File: | build/source/llvm/lib/CodeGen/CodeGenPrepare.cpp |
Warning: | line 2468, column 10 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // This pass munges the code in the input function to better prepare it for | ||||
10 | // SelectionDAG-based code generation. This works around limitations in it's | ||||
11 | // basic-block-at-a-time approach. It should eventually be removed. | ||||
12 | // | ||||
13 | //===----------------------------------------------------------------------===// | ||||
14 | |||||
15 | #include "llvm/ADT/APInt.h" | ||||
16 | #include "llvm/ADT/ArrayRef.h" | ||||
17 | #include "llvm/ADT/DenseMap.h" | ||||
18 | #include "llvm/ADT/MapVector.h" | ||||
19 | #include "llvm/ADT/PointerIntPair.h" | ||||
20 | #include "llvm/ADT/STLExtras.h" | ||||
21 | #include "llvm/ADT/SmallPtrSet.h" | ||||
22 | #include "llvm/ADT/SmallVector.h" | ||||
23 | #include "llvm/ADT/Statistic.h" | ||||
24 | #include "llvm/Analysis/BlockFrequencyInfo.h" | ||||
25 | #include "llvm/Analysis/BranchProbabilityInfo.h" | ||||
26 | #include "llvm/Analysis/InstructionSimplify.h" | ||||
27 | #include "llvm/Analysis/LoopInfo.h" | ||||
28 | #include "llvm/Analysis/ProfileSummaryInfo.h" | ||||
29 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||
30 | #include "llvm/Analysis/TargetTransformInfo.h" | ||||
31 | #include "llvm/Analysis/ValueTracking.h" | ||||
32 | #include "llvm/Analysis/VectorUtils.h" | ||||
33 | #include "llvm/CodeGen/Analysis.h" | ||||
34 | #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" | ||||
35 | #include "llvm/CodeGen/ISDOpcodes.h" | ||||
36 | #include "llvm/CodeGen/SelectionDAGNodes.h" | ||||
37 | #include "llvm/CodeGen/TargetLowering.h" | ||||
38 | #include "llvm/CodeGen/TargetPassConfig.h" | ||||
39 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | ||||
40 | #include "llvm/CodeGen/ValueTypes.h" | ||||
41 | #include "llvm/Config/llvm-config.h" | ||||
42 | #include "llvm/IR/Argument.h" | ||||
43 | #include "llvm/IR/Attributes.h" | ||||
44 | #include "llvm/IR/BasicBlock.h" | ||||
45 | #include "llvm/IR/Constant.h" | ||||
46 | #include "llvm/IR/Constants.h" | ||||
47 | #include "llvm/IR/DataLayout.h" | ||||
48 | #include "llvm/IR/DebugInfo.h" | ||||
49 | #include "llvm/IR/DerivedTypes.h" | ||||
50 | #include "llvm/IR/Dominators.h" | ||||
51 | #include "llvm/IR/Function.h" | ||||
52 | #include "llvm/IR/GetElementPtrTypeIterator.h" | ||||
53 | #include "llvm/IR/GlobalValue.h" | ||||
54 | #include "llvm/IR/GlobalVariable.h" | ||||
55 | #include "llvm/IR/IRBuilder.h" | ||||
56 | #include "llvm/IR/InlineAsm.h" | ||||
57 | #include "llvm/IR/InstrTypes.h" | ||||
58 | #include "llvm/IR/Instruction.h" | ||||
59 | #include "llvm/IR/Instructions.h" | ||||
60 | #include "llvm/IR/IntrinsicInst.h" | ||||
61 | #include "llvm/IR/Intrinsics.h" | ||||
62 | #include "llvm/IR/IntrinsicsAArch64.h" | ||||
63 | #include "llvm/IR/LLVMContext.h" | ||||
64 | #include "llvm/IR/MDBuilder.h" | ||||
65 | #include "llvm/IR/Module.h" | ||||
66 | #include "llvm/IR/Operator.h" | ||||
67 | #include "llvm/IR/PatternMatch.h" | ||||
68 | #include "llvm/IR/ProfDataUtils.h" | ||||
69 | #include "llvm/IR/Statepoint.h" | ||||
70 | #include "llvm/IR/Type.h" | ||||
71 | #include "llvm/IR/Use.h" | ||||
72 | #include "llvm/IR/User.h" | ||||
73 | #include "llvm/IR/Value.h" | ||||
74 | #include "llvm/IR/ValueHandle.h" | ||||
75 | #include "llvm/IR/ValueMap.h" | ||||
76 | #include "llvm/InitializePasses.h" | ||||
77 | #include "llvm/Pass.h" | ||||
78 | #include "llvm/Support/BlockFrequency.h" | ||||
79 | #include "llvm/Support/BranchProbability.h" | ||||
80 | #include "llvm/Support/Casting.h" | ||||
81 | #include "llvm/Support/CommandLine.h" | ||||
82 | #include "llvm/Support/Compiler.h" | ||||
83 | #include "llvm/Support/Debug.h" | ||||
84 | #include "llvm/Support/ErrorHandling.h" | ||||
85 | #include "llvm/Support/MachineValueType.h" | ||||
86 | #include "llvm/Support/MathExtras.h" | ||||
87 | #include "llvm/Support/raw_ostream.h" | ||||
88 | #include "llvm/Target/TargetMachine.h" | ||||
89 | #include "llvm/Target/TargetOptions.h" | ||||
90 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | ||||
91 | #include "llvm/Transforms/Utils/BypassSlowDivision.h" | ||||
92 | #include "llvm/Transforms/Utils/Local.h" | ||||
93 | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" | ||||
94 | #include "llvm/Transforms/Utils/SizeOpts.h" | ||||
95 | #include <algorithm> | ||||
96 | #include <cassert> | ||||
97 | #include <cstdint> | ||||
98 | #include <iterator> | ||||
99 | #include <limits> | ||||
100 | #include <memory> | ||||
101 | #include <optional> | ||||
102 | #include <utility> | ||||
103 | #include <vector> | ||||
104 | |||||
105 | using namespace llvm; | ||||
106 | using namespace llvm::PatternMatch; | ||||
107 | |||||
108 | #define DEBUG_TYPE"codegenprepare" "codegenprepare" | ||||
109 | |||||
110 | STATISTIC(NumBlocksElim, "Number of blocks eliminated")static llvm::Statistic NumBlocksElim = {"codegenprepare", "NumBlocksElim" , "Number of blocks eliminated"}; | ||||
111 | STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated")static llvm::Statistic NumPHIsElim = {"codegenprepare", "NumPHIsElim" , "Number of trivial PHIs eliminated"}; | ||||
112 | STATISTIC(NumGEPsElim, "Number of GEPs converted to casts")static llvm::Statistic NumGEPsElim = {"codegenprepare", "NumGEPsElim" , "Number of GEPs converted to casts"}; | ||||
113 | STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "static llvm::Statistic NumCmpUses = {"codegenprepare", "NumCmpUses" , "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps" } | ||||
114 | "sunken Cmps")static llvm::Statistic NumCmpUses = {"codegenprepare", "NumCmpUses" , "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps" }; | ||||
115 | STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "static llvm::Statistic NumCastUses = {"codegenprepare", "NumCastUses" , "Number of uses of Cast expressions replaced with uses " "of sunken Casts" } | ||||
116 | "of sunken Casts")static llvm::Statistic NumCastUses = {"codegenprepare", "NumCastUses" , "Number of uses of Cast expressions replaced with uses " "of sunken Casts" }; | ||||
117 | STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "static llvm::Statistic NumMemoryInsts = {"codegenprepare", "NumMemoryInsts" , "Number of memory instructions whose address " "computations were sunk" } | ||||
118 | "computations were sunk")static llvm::Statistic NumMemoryInsts = {"codegenprepare", "NumMemoryInsts" , "Number of memory instructions whose address " "computations were sunk" }; | ||||
119 | STATISTIC(NumMemoryInstsPhiCreated,static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"} | ||||
120 | "Number of phis created when address "static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"} | ||||
121 | "computations were sunk to memory instructions")static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"}; | ||||
122 | STATISTIC(NumMemoryInstsSelectCreated,static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"} | ||||
123 | "Number of select created when address "static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"} | ||||
124 | "computations were sunk to memory instructions")static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"}; | ||||
125 | STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads")static llvm::Statistic NumExtsMoved = {"codegenprepare", "NumExtsMoved" , "Number of [s|z]ext instructions combined with loads"}; | ||||
126 | STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized")static llvm::Statistic NumExtUses = {"codegenprepare", "NumExtUses" , "Number of uses of [s|z]ext instructions optimized"}; | ||||
127 | STATISTIC(NumAndsAdded,static llvm::Statistic NumAndsAdded = {"codegenprepare", "NumAndsAdded" , "Number of and mask instructions added to form ext loads"} | ||||
128 | "Number of and mask instructions added to form ext loads")static llvm::Statistic NumAndsAdded = {"codegenprepare", "NumAndsAdded" , "Number of and mask instructions added to form ext loads"}; | ||||
129 | STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized")static llvm::Statistic NumAndUses = {"codegenprepare", "NumAndUses" , "Number of uses of and mask instructions optimized"}; | ||||
130 | STATISTIC(NumRetsDup, "Number of return instructions duplicated")static llvm::Statistic NumRetsDup = {"codegenprepare", "NumRetsDup" , "Number of return instructions duplicated"}; | ||||
131 | STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved")static llvm::Statistic NumDbgValueMoved = {"codegenprepare", "NumDbgValueMoved" , "Number of debug value instructions moved"}; | ||||
132 | STATISTIC(NumSelectsExpanded, "Number of selects turned into branches")static llvm::Statistic NumSelectsExpanded = {"codegenprepare" , "NumSelectsExpanded", "Number of selects turned into branches" }; | ||||
133 | STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed")static llvm::Statistic NumStoreExtractExposed = {"codegenprepare" , "NumStoreExtractExposed", "Number of store(extractelement) exposed" }; | ||||
134 | |||||
135 | static cl::opt<bool> DisableBranchOpts( | ||||
136 | "disable-cgp-branch-opts", cl::Hidden, cl::init(false), | ||||
137 | cl::desc("Disable branch optimizations in CodeGenPrepare")); | ||||
138 | |||||
139 | static cl::opt<bool> | ||||
140 | DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), | ||||
141 | cl::desc("Disable GC optimizations in CodeGenPrepare")); | ||||
142 | |||||
143 | static cl::opt<bool> | ||||
144 | DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, | ||||
145 | cl::init(false), | ||||
146 | cl::desc("Disable select to branch conversion.")); | ||||
147 | |||||
148 | static cl::opt<bool> | ||||
149 | AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), | ||||
150 | cl::desc("Address sinking in CGP using GEPs.")); | ||||
151 | |||||
152 | static cl::opt<bool> | ||||
153 | EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), | ||||
154 | cl::desc("Enable sinkinig and/cmp into branches.")); | ||||
155 | |||||
156 | static cl::opt<bool> DisableStoreExtract( | ||||
157 | "disable-cgp-store-extract", cl::Hidden, cl::init(false), | ||||
158 | cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); | ||||
159 | |||||
160 | static cl::opt<bool> StressStoreExtract( | ||||
161 | "stress-cgp-store-extract", cl::Hidden, cl::init(false), | ||||
162 | cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); | ||||
163 | |||||
164 | static cl::opt<bool> DisableExtLdPromotion( | ||||
165 | "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | ||||
166 | cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " | ||||
167 | "CodeGenPrepare")); | ||||
168 | |||||
169 | static cl::opt<bool> StressExtLdPromotion( | ||||
170 | "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | ||||
171 | cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " | ||||
172 | "optimization in CodeGenPrepare")); | ||||
173 | |||||
174 | static cl::opt<bool> DisablePreheaderProtect( | ||||
175 | "disable-preheader-prot", cl::Hidden, cl::init(false), | ||||
176 | cl::desc("Disable protection against removing loop preheaders")); | ||||
177 | |||||
178 | static cl::opt<bool> ProfileGuidedSectionPrefix( | ||||
179 | "profile-guided-section-prefix", cl::Hidden, cl::init(true), | ||||
180 | cl::desc("Use profile info to add section prefix for hot/cold functions")); | ||||
181 | |||||
182 | static cl::opt<bool> ProfileUnknownInSpecialSection( | ||||
183 | "profile-unknown-in-special-section", cl::Hidden, | ||||
184 | cl::desc("In profiling mode like sampleFDO, if a function doesn't have " | ||||
185 | "profile, we cannot tell the function is cold for sure because " | ||||
186 | "it may be a function newly added without ever being sampled. " | ||||
187 | "With the flag enabled, compiler can put such profile unknown " | ||||
188 | "functions into a special section, so runtime system can choose " | ||||
189 | "to handle it in a different way than .text section, to save " | ||||
190 | "RAM for example. ")); | ||||
191 | |||||
192 | static cl::opt<bool> BBSectionsGuidedSectionPrefix( | ||||
193 | "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), | ||||
194 | cl::desc("Use the basic-block-sections profile to determine the text " | ||||
195 | "section prefix for hot functions. Functions with " | ||||
196 | "basic-block-sections profile will be placed in `.text.hot` " | ||||
197 | "regardless of their FDO profile info. Other functions won't be " | ||||
198 | "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " | ||||
199 | "profiles.")); | ||||
200 | |||||
201 | static cl::opt<unsigned> FreqRatioToSkipMerge( | ||||
202 | "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), | ||||
203 | cl::desc("Skip merging empty blocks if (frequency of empty block) / " | ||||
204 | "(frequency of destination block) is greater than this ratio")); | ||||
205 | |||||
206 | static cl::opt<bool> ForceSplitStore( | ||||
207 | "force-split-store", cl::Hidden, cl::init(false), | ||||
208 | cl::desc("Force store splitting no matter what the target query says.")); | ||||
209 | |||||
210 | static cl::opt<bool> EnableTypePromotionMerge( | ||||
211 | "cgp-type-promotion-merge", cl::Hidden, | ||||
212 | cl::desc("Enable merging of redundant sexts when one is dominating" | ||||
213 | " the other."), | ||||
214 | cl::init(true)); | ||||
215 | |||||
216 | static cl::opt<bool> DisableComplexAddrModes( | ||||
217 | "disable-complex-addr-modes", cl::Hidden, cl::init(false), | ||||
218 | cl::desc("Disables combining addressing modes with different parts " | ||||
219 | "in optimizeMemoryInst.")); | ||||
220 | |||||
221 | static cl::opt<bool> | ||||
222 | AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), | ||||
223 | cl::desc("Allow creation of Phis in Address sinking.")); | ||||
224 | |||||
225 | static cl::opt<bool> AddrSinkNewSelects( | ||||
226 | "addr-sink-new-select", cl::Hidden, cl::init(true), | ||||
227 | cl::desc("Allow creation of selects in Address sinking.")); | ||||
228 | |||||
229 | static cl::opt<bool> AddrSinkCombineBaseReg( | ||||
230 | "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), | ||||
231 | cl::desc("Allow combining of BaseReg field in Address sinking.")); | ||||
232 | |||||
233 | static cl::opt<bool> AddrSinkCombineBaseGV( | ||||
234 | "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), | ||||
235 | cl::desc("Allow combining of BaseGV field in Address sinking.")); | ||||
236 | |||||
237 | static cl::opt<bool> AddrSinkCombineBaseOffs( | ||||
238 | "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), | ||||
239 | cl::desc("Allow combining of BaseOffs field in Address sinking.")); | ||||
240 | |||||
241 | static cl::opt<bool> AddrSinkCombineScaledReg( | ||||
242 | "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), | ||||
243 | cl::desc("Allow combining of ScaledReg field in Address sinking.")); | ||||
244 | |||||
245 | static cl::opt<bool> | ||||
246 | EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, | ||||
247 | cl::init(true), | ||||
248 | cl::desc("Enable splitting large offset of GEP.")); | ||||
249 | |||||
250 | static cl::opt<bool> EnableICMP_EQToICMP_ST( | ||||
251 | "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), | ||||
252 | cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); | ||||
253 | |||||
254 | static cl::opt<bool> | ||||
255 | VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), | ||||
256 | cl::desc("Enable BFI update verification for " | ||||
257 | "CodeGenPrepare.")); | ||||
258 | |||||
259 | static cl::opt<bool> | ||||
260 | OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(false), | ||||
261 | cl::desc("Enable converting phi types in CodeGenPrepare")); | ||||
262 | |||||
263 | static cl::opt<unsigned> | ||||
264 | HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, | ||||
265 | cl::desc("Least BB number of huge function.")); | ||||
266 | |||||
267 | namespace { | ||||
268 | |||||
269 | enum ExtType { | ||||
270 | ZeroExtension, // Zero extension has been seen. | ||||
271 | SignExtension, // Sign extension has been seen. | ||||
272 | BothExtension // This extension type is used if we saw sext after | ||||
273 | // ZeroExtension had been set, or if we saw zext after | ||||
274 | // SignExtension had been set. It makes the type | ||||
275 | // information of a promoted instruction invalid. | ||||
276 | }; | ||||
277 | |||||
278 | enum ModifyDT { | ||||
279 | NotModifyDT, // Not Modify any DT. | ||||
280 | ModifyBBDT, // Modify the Basic Block Dominator Tree. | ||||
281 | ModifyInstDT // Modify the Instruction Dominator in a Basic Block, | ||||
282 | // This usually means we move/delete/insert instruction | ||||
283 | // in a Basic Block. So we should re-iterate instructions | ||||
284 | // in such Basic Block. | ||||
285 | }; | ||||
286 | |||||
287 | using SetOfInstrs = SmallPtrSet<Instruction *, 16>; | ||||
288 | using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; | ||||
289 | using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; | ||||
290 | using SExts = SmallVector<Instruction *, 16>; | ||||
291 | using ValueToSExts = MapVector<Value *, SExts>; | ||||
292 | |||||
293 | class TypePromotionTransaction; | ||||
294 | |||||
295 | class CodeGenPrepare : public FunctionPass { | ||||
296 | const TargetMachine *TM = nullptr; | ||||
297 | const TargetSubtargetInfo *SubtargetInfo; | ||||
298 | const TargetLowering *TLI = nullptr; | ||||
299 | const TargetRegisterInfo *TRI; | ||||
300 | const TargetTransformInfo *TTI = nullptr; | ||||
301 | const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; | ||||
302 | const TargetLibraryInfo *TLInfo; | ||||
303 | const LoopInfo *LI; | ||||
304 | std::unique_ptr<BlockFrequencyInfo> BFI; | ||||
305 | std::unique_ptr<BranchProbabilityInfo> BPI; | ||||
306 | ProfileSummaryInfo *PSI; | ||||
307 | |||||
308 | /// As we scan instructions optimizing them, this is the next instruction | ||||
309 | /// to optimize. Transforms that can invalidate this should update it. | ||||
310 | BasicBlock::iterator CurInstIterator; | ||||
311 | |||||
312 | /// Keeps track of non-local addresses that have been sunk into a block. | ||||
313 | /// This allows us to avoid inserting duplicate code for blocks with | ||||
314 | /// multiple load/stores of the same address. The usage of WeakTrackingVH | ||||
315 | /// enables SunkAddrs to be treated as a cache whose entries can be | ||||
316 | /// invalidated if a sunken address computation has been erased. | ||||
317 | ValueMap<Value *, WeakTrackingVH> SunkAddrs; | ||||
318 | |||||
319 | /// Keeps track of all instructions inserted for the current function. | ||||
320 | SetOfInstrs InsertedInsts; | ||||
321 | |||||
322 | /// Keeps track of the type of the related instruction before their | ||||
323 | /// promotion for the current function. | ||||
324 | InstrToOrigTy PromotedInsts; | ||||
325 | |||||
326 | /// Keep track of instructions removed during promotion. | ||||
327 | SetOfInstrs RemovedInsts; | ||||
328 | |||||
329 | /// Keep track of sext chains based on their initial value. | ||||
330 | DenseMap<Value *, Instruction *> SeenChainsForSExt; | ||||
331 | |||||
332 | /// Keep track of GEPs accessing the same data structures such as structs or | ||||
333 | /// arrays that are candidates to be split later because of their large | ||||
334 | /// size. | ||||
335 | MapVector<AssertingVH<Value>, | ||||
336 | SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> | ||||
337 | LargeOffsetGEPMap; | ||||
338 | |||||
339 | /// Keep track of new GEP base after splitting the GEPs having large offset. | ||||
340 | SmallSet<AssertingVH<Value>, 2> NewGEPBases; | ||||
341 | |||||
342 | /// Map serial numbers to Large offset GEPs. | ||||
343 | DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; | ||||
344 | |||||
345 | /// Keep track of SExt promoted. | ||||
346 | ValueToSExts ValToSExtendedUses; | ||||
347 | |||||
348 | /// True if the function has the OptSize attribute. | ||||
349 | bool OptSize; | ||||
350 | |||||
351 | /// DataLayout for the Function being processed. | ||||
352 | const DataLayout *DL = nullptr; | ||||
353 | |||||
354 | /// Building the dominator tree can be expensive, so we only build it | ||||
355 | /// lazily and update it when required. | ||||
356 | std::unique_ptr<DominatorTree> DT; | ||||
357 | |||||
358 | public: | ||||
359 | /// If encounter huge function, we need to limit the build time. | ||||
360 | bool IsHugeFunc = false; | ||||
361 | |||||
362 | /// FreshBBs is like worklist, it collected the updated BBs which need | ||||
363 | /// to be optimized again. | ||||
364 | /// Note: Consider building time in this pass, when a BB updated, we need | ||||
365 | /// to insert such BB into FreshBBs for huge function. | ||||
366 | SmallSet<BasicBlock *, 32> FreshBBs; | ||||
367 | |||||
368 | static char ID; // Pass identification, replacement for typeid | ||||
369 | |||||
370 | CodeGenPrepare() : FunctionPass(ID) { | ||||
371 | initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); | ||||
372 | } | ||||
373 | |||||
374 | bool runOnFunction(Function &F) override; | ||||
375 | |||||
376 | StringRef getPassName() const override { return "CodeGen Prepare"; } | ||||
377 | |||||
378 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
379 | // FIXME: When we can selectively preserve passes, preserve the domtree. | ||||
380 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | ||||
381 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||
382 | AU.addRequired<TargetPassConfig>(); | ||||
383 | AU.addRequired<TargetTransformInfoWrapperPass>(); | ||||
384 | AU.addRequired<LoopInfoWrapperPass>(); | ||||
385 | AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>(); | ||||
386 | } | ||||
387 | |||||
388 | private: | ||||
389 | template <typename F> | ||||
390 | void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { | ||||
391 | // Substituting can cause recursive simplifications, which can invalidate | ||||
392 | // our iterator. Use a WeakTrackingVH to hold onto it in case this | ||||
393 | // happens. | ||||
394 | Value *CurValue = &*CurInstIterator; | ||||
395 | WeakTrackingVH IterHandle(CurValue); | ||||
396 | |||||
397 | f(); | ||||
398 | |||||
399 | // If the iterator instruction was recursively deleted, start over at the | ||||
400 | // start of the block. | ||||
401 | if (IterHandle != CurValue) { | ||||
402 | CurInstIterator = BB->begin(); | ||||
403 | SunkAddrs.clear(); | ||||
404 | } | ||||
405 | } | ||||
406 | |||||
407 | // Get the DominatorTree, building if necessary. | ||||
408 | DominatorTree &getDT(Function &F) { | ||||
409 | if (!DT) | ||||
410 | DT = std::make_unique<DominatorTree>(F); | ||||
411 | return *DT; | ||||
412 | } | ||||
413 | |||||
414 | void removeAllAssertingVHReferences(Value *V); | ||||
415 | bool eliminateAssumptions(Function &F); | ||||
416 | bool eliminateFallThrough(Function &F); | ||||
417 | bool eliminateMostlyEmptyBlocks(Function &F); | ||||
418 | BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); | ||||
419 | bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; | ||||
420 | void eliminateMostlyEmptyBlock(BasicBlock *BB); | ||||
421 | bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, | ||||
422 | bool isPreheader); | ||||
423 | bool makeBitReverse(Instruction &I); | ||||
424 | bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); | ||||
425 | bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); | ||||
426 | bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, | ||||
427 | unsigned AddrSpace); | ||||
428 | bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); | ||||
429 | bool optimizeInlineAsmInst(CallInst *CS); | ||||
430 | bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); | ||||
431 | bool optimizeExt(Instruction *&I); | ||||
432 | bool optimizeExtUses(Instruction *I); | ||||
433 | bool optimizeLoadExt(LoadInst *Load); | ||||
434 | bool optimizeShiftInst(BinaryOperator *BO); | ||||
435 | bool optimizeFunnelShift(IntrinsicInst *Fsh); | ||||
436 | bool optimizeSelectInst(SelectInst *SI); | ||||
437 | bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); | ||||
438 | bool optimizeSwitchType(SwitchInst *SI); | ||||
439 | bool optimizeSwitchPhiConstants(SwitchInst *SI); | ||||
440 | bool optimizeSwitchInst(SwitchInst *SI); | ||||
441 | bool optimizeExtractElementInst(Instruction *Inst); | ||||
442 | bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); | ||||
443 | bool fixupDbgValue(Instruction *I); | ||||
444 | bool placeDbgValues(Function &F); | ||||
445 | bool placePseudoProbes(Function &F); | ||||
446 | bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, | ||||
447 | LoadInst *&LI, Instruction *&Inst, bool HasPromoted); | ||||
448 | bool tryToPromoteExts(TypePromotionTransaction &TPT, | ||||
449 | const SmallVectorImpl<Instruction *> &Exts, | ||||
450 | SmallVectorImpl<Instruction *> &ProfitablyMovedExts, | ||||
451 | unsigned CreatedInstsCost = 0); | ||||
452 | bool mergeSExts(Function &F); | ||||
453 | bool splitLargeGEPOffsets(); | ||||
454 | bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, | ||||
455 | SmallPtrSetImpl<Instruction *> &DeletedInstrs); | ||||
456 | bool optimizePhiTypes(Function &F); | ||||
457 | bool performAddressTypePromotion( | ||||
458 | Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, | ||||
459 | bool HasPromoted, TypePromotionTransaction &TPT, | ||||
460 | SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); | ||||
461 | bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); | ||||
462 | bool simplifyOffsetableRelocate(GCStatepointInst &I); | ||||
463 | |||||
464 | bool tryToSinkFreeOperands(Instruction *I); | ||||
465 | bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, | ||||
466 | CmpInst *Cmp, Intrinsic::ID IID); | ||||
467 | bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); | ||||
468 | bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); | ||||
469 | bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); | ||||
470 | void verifyBFIUpdates(Function &F); | ||||
471 | }; | ||||
472 | |||||
473 | } // end anonymous namespace | ||||
474 | |||||
475 | char CodeGenPrepare::ID = 0; | ||||
476 | |||||
477 | INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,static void *initializeCodeGenPreparePassOnce(PassRegistry & Registry) { | ||||
478 | "Optimize for code generation", false, false)static void *initializeCodeGenPreparePassOnce(PassRegistry & Registry) { | ||||
479 | INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader)initializeBasicBlockSectionsProfileReaderPass(Registry); | ||||
480 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry); | ||||
481 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)initializeProfileSummaryInfoWrapperPassPass(Registry); | ||||
482 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||
483 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)initializeTargetPassConfigPass(Registry); | ||||
484 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry); | ||||
485 | INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation",PassInfo *PI = new PassInfo( "Optimize for code generation", "codegenprepare" , &CodeGenPrepare::ID, PassInfo::NormalCtor_t(callDefaultCtor <CodeGenPrepare>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeCodeGenPreparePassFlag ; void llvm::initializeCodeGenPreparePass(PassRegistry &Registry ) { llvm::call_once(InitializeCodeGenPreparePassFlag, initializeCodeGenPreparePassOnce , std::ref(Registry)); } | ||||
486 | false, false)PassInfo *PI = new PassInfo( "Optimize for code generation", "codegenprepare" , &CodeGenPrepare::ID, PassInfo::NormalCtor_t(callDefaultCtor <CodeGenPrepare>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeCodeGenPreparePassFlag ; void llvm::initializeCodeGenPreparePass(PassRegistry &Registry ) { llvm::call_once(InitializeCodeGenPreparePassFlag, initializeCodeGenPreparePassOnce , std::ref(Registry)); } | ||||
487 | |||||
488 | FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } | ||||
489 | |||||
490 | bool CodeGenPrepare::runOnFunction(Function &F) { | ||||
491 | if (skipFunction(F)) | ||||
492 | return false; | ||||
493 | |||||
494 | DL = &F.getParent()->getDataLayout(); | ||||
495 | |||||
496 | bool EverMadeChange = false; | ||||
497 | // Clear per function information. | ||||
498 | InsertedInsts.clear(); | ||||
499 | PromotedInsts.clear(); | ||||
500 | FreshBBs.clear(); | ||||
501 | |||||
502 | TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); | ||||
503 | SubtargetInfo = TM->getSubtargetImpl(F); | ||||
504 | TLI = SubtargetInfo->getTargetLowering(); | ||||
505 | TRI = SubtargetInfo->getRegisterInfo(); | ||||
506 | TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | ||||
507 | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | ||||
508 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | ||||
509 | BPI.reset(new BranchProbabilityInfo(F, *LI)); | ||||
510 | BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); | ||||
511 | PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | ||||
512 | BBSectionsProfileReader = | ||||
513 | getAnalysisIfAvailable<BasicBlockSectionsProfileReader>(); | ||||
514 | OptSize = F.hasOptSize(); | ||||
515 | // Use the basic-block-sections profile to promote hot functions to .text.hot | ||||
516 | // if requested. | ||||
517 | if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && | ||||
518 | BBSectionsProfileReader->isFunctionHot(F.getName())) { | ||||
519 | F.setSectionPrefix("hot"); | ||||
520 | } else if (ProfileGuidedSectionPrefix) { | ||||
521 | // The hot attribute overwrites profile count based hotness while profile | ||||
522 | // counts based hotness overwrite the cold attribute. | ||||
523 | // This is a conservative behabvior. | ||||
524 | if (F.hasFnAttribute(Attribute::Hot) || | ||||
525 | PSI->isFunctionHotInCallGraph(&F, *BFI)) | ||||
526 | F.setSectionPrefix("hot"); | ||||
527 | // If PSI shows this function is not hot, we will placed the function | ||||
528 | // into unlikely section if (1) PSI shows this is a cold function, or | ||||
529 | // (2) the function has a attribute of cold. | ||||
530 | else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || | ||||
531 | F.hasFnAttribute(Attribute::Cold)) | ||||
532 | F.setSectionPrefix("unlikely"); | ||||
533 | else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && | ||||
534 | PSI->isFunctionHotnessUnknown(F)) | ||||
535 | F.setSectionPrefix("unknown"); | ||||
536 | } | ||||
537 | |||||
538 | /// This optimization identifies DIV instructions that can be | ||||
539 | /// profitably bypassed and carried out with a shorter, faster divide. | ||||
540 | if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { | ||||
541 | const DenseMap<unsigned int, unsigned int> &BypassWidths = | ||||
542 | TLI->getBypassSlowDivWidths(); | ||||
543 | BasicBlock *BB = &*F.begin(); | ||||
544 | while (BB != nullptr) { | ||||
545 | // bypassSlowDivision may create new BBs, but we don't want to reapply the | ||||
546 | // optimization to those blocks. | ||||
547 | BasicBlock *Next = BB->getNextNode(); | ||||
548 | // F.hasOptSize is already checked in the outer if statement. | ||||
549 | if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) | ||||
550 | EverMadeChange |= bypassSlowDivision(BB, BypassWidths); | ||||
551 | BB = Next; | ||||
552 | } | ||||
553 | } | ||||
554 | |||||
555 | // Get rid of @llvm.assume builtins before attempting to eliminate empty | ||||
556 | // blocks, since there might be blocks that only contain @llvm.assume calls | ||||
557 | // (plus arguments that we can get rid of). | ||||
558 | EverMadeChange |= eliminateAssumptions(F); | ||||
559 | |||||
560 | // Eliminate blocks that contain only PHI nodes and an | ||||
561 | // unconditional branch. | ||||
562 | EverMadeChange |= eliminateMostlyEmptyBlocks(F); | ||||
563 | |||||
564 | ModifyDT ModifiedDT = ModifyDT::NotModifyDT; | ||||
565 | if (!DisableBranchOpts) | ||||
566 | EverMadeChange |= splitBranchCondition(F, ModifiedDT); | ||||
567 | |||||
568 | // Split some critical edges where one of the sources is an indirect branch, | ||||
569 | // to help generate sane code for PHIs involving such edges. | ||||
570 | EverMadeChange |= | ||||
571 | SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); | ||||
572 | |||||
573 | // If we are optimzing huge function, we need to consider the build time. | ||||
574 | // Because the basic algorithm's complex is near O(N!). | ||||
575 | IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; | ||||
576 | |||||
577 | bool MadeChange = true; | ||||
578 | bool FuncIterated = false; | ||||
579 | while (MadeChange) { | ||||
580 | MadeChange = false; | ||||
581 | DT.reset(); | ||||
582 | |||||
583 | for (BasicBlock &BB : llvm::make_early_inc_range(F)) { | ||||
584 | if (FuncIterated && !FreshBBs.contains(&BB)) | ||||
585 | continue; | ||||
586 | |||||
587 | ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; | ||||
588 | bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); | ||||
589 | |||||
590 | MadeChange |= Changed; | ||||
591 | if (IsHugeFunc) { | ||||
592 | // If the BB is updated, it may still has chance to be optimized. | ||||
593 | // This usually happen at sink optimization. | ||||
594 | // For example: | ||||
595 | // | ||||
596 | // bb0: | ||||
597 | // %and = and i32 %a, 4 | ||||
598 | // %cmp = icmp eq i32 %and, 0 | ||||
599 | // | ||||
600 | // If the %cmp sink to other BB, the %and will has chance to sink. | ||||
601 | if (Changed) | ||||
602 | FreshBBs.insert(&BB); | ||||
603 | else if (FuncIterated) | ||||
604 | FreshBBs.erase(&BB); | ||||
605 | |||||
606 | if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) | ||||
607 | DT.reset(); | ||||
608 | } else { | ||||
609 | // For small/normal functions, we restart BB iteration if the dominator | ||||
610 | // tree of the Function was changed. | ||||
611 | if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) | ||||
612 | break; | ||||
613 | } | ||||
614 | } | ||||
615 | // We have iterated all the BB in the (only work for huge) function. | ||||
616 | FuncIterated = IsHugeFunc; | ||||
617 | |||||
618 | if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) | ||||
619 | MadeChange |= mergeSExts(F); | ||||
620 | if (!LargeOffsetGEPMap.empty()) | ||||
621 | MadeChange |= splitLargeGEPOffsets(); | ||||
622 | MadeChange |= optimizePhiTypes(F); | ||||
623 | |||||
624 | if (MadeChange) | ||||
625 | eliminateFallThrough(F); | ||||
626 | |||||
627 | // Really free removed instructions during promotion. | ||||
628 | for (Instruction *I : RemovedInsts) | ||||
629 | I->deleteValue(); | ||||
630 | |||||
631 | EverMadeChange |= MadeChange; | ||||
632 | SeenChainsForSExt.clear(); | ||||
633 | ValToSExtendedUses.clear(); | ||||
634 | RemovedInsts.clear(); | ||||
635 | LargeOffsetGEPMap.clear(); | ||||
636 | LargeOffsetGEPID.clear(); | ||||
637 | } | ||||
638 | |||||
639 | NewGEPBases.clear(); | ||||
640 | SunkAddrs.clear(); | ||||
641 | |||||
642 | if (!DisableBranchOpts) { | ||||
643 | MadeChange = false; | ||||
644 | // Use a set vector to get deterministic iteration order. The order the | ||||
645 | // blocks are removed may affect whether or not PHI nodes in successors | ||||
646 | // are removed. | ||||
647 | SmallSetVector<BasicBlock *, 8> WorkList; | ||||
648 | for (BasicBlock &BB : F) { | ||||
649 | SmallVector<BasicBlock *, 2> Successors(successors(&BB)); | ||||
650 | MadeChange |= ConstantFoldTerminator(&BB, true); | ||||
651 | if (!MadeChange) | ||||
652 | continue; | ||||
653 | |||||
654 | for (BasicBlock *Succ : Successors) | ||||
655 | if (pred_empty(Succ)) | ||||
656 | WorkList.insert(Succ); | ||||
657 | } | ||||
658 | |||||
659 | // Delete the dead blocks and any of their dead successors. | ||||
660 | MadeChange |= !WorkList.empty(); | ||||
661 | while (!WorkList.empty()) { | ||||
662 | BasicBlock *BB = WorkList.pop_back_val(); | ||||
663 | SmallVector<BasicBlock *, 2> Successors(successors(BB)); | ||||
664 | |||||
665 | DeleteDeadBlock(BB); | ||||
666 | |||||
667 | for (BasicBlock *Succ : Successors) | ||||
668 | if (pred_empty(Succ)) | ||||
669 | WorkList.insert(Succ); | ||||
670 | } | ||||
671 | |||||
672 | // Merge pairs of basic blocks with unconditional branches, connected by | ||||
673 | // a single edge. | ||||
674 | if (EverMadeChange || MadeChange) | ||||
675 | MadeChange |= eliminateFallThrough(F); | ||||
676 | |||||
677 | EverMadeChange |= MadeChange; | ||||
678 | } | ||||
679 | |||||
680 | if (!DisableGCOpts) { | ||||
681 | SmallVector<GCStatepointInst *, 2> Statepoints; | ||||
682 | for (BasicBlock &BB : F) | ||||
683 | for (Instruction &I : BB) | ||||
684 | if (auto *SP = dyn_cast<GCStatepointInst>(&I)) | ||||
685 | Statepoints.push_back(SP); | ||||
686 | for (auto &I : Statepoints) | ||||
687 | EverMadeChange |= simplifyOffsetableRelocate(*I); | ||||
688 | } | ||||
689 | |||||
690 | // Do this last to clean up use-before-def scenarios introduced by other | ||||
691 | // preparatory transforms. | ||||
692 | EverMadeChange |= placeDbgValues(F); | ||||
693 | EverMadeChange |= placePseudoProbes(F); | ||||
694 | |||||
695 | #ifndef NDEBUG | ||||
696 | if (VerifyBFIUpdates) | ||||
697 | verifyBFIUpdates(F); | ||||
698 | #endif | ||||
699 | |||||
700 | return EverMadeChange; | ||||
701 | } | ||||
702 | |||||
703 | bool CodeGenPrepare::eliminateAssumptions(Function &F) { | ||||
704 | bool MadeChange = false; | ||||
705 | for (BasicBlock &BB : F) { | ||||
706 | CurInstIterator = BB.begin(); | ||||
707 | while (CurInstIterator != BB.end()) { | ||||
708 | Instruction *I = &*(CurInstIterator++); | ||||
709 | if (auto *Assume = dyn_cast<AssumeInst>(I)) { | ||||
710 | MadeChange = true; | ||||
711 | Value *Operand = Assume->getOperand(0); | ||||
712 | Assume->eraseFromParent(); | ||||
713 | |||||
714 | resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { | ||||
715 | RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); | ||||
716 | }); | ||||
717 | } | ||||
718 | } | ||||
719 | } | ||||
720 | return MadeChange; | ||||
721 | } | ||||
722 | |||||
723 | /// An instruction is about to be deleted, so remove all references to it in our | ||||
724 | /// GEP-tracking data strcutures. | ||||
725 | void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { | ||||
726 | LargeOffsetGEPMap.erase(V); | ||||
727 | NewGEPBases.erase(V); | ||||
728 | |||||
729 | auto GEP = dyn_cast<GetElementPtrInst>(V); | ||||
730 | if (!GEP) | ||||
731 | return; | ||||
732 | |||||
733 | LargeOffsetGEPID.erase(GEP); | ||||
734 | |||||
735 | auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); | ||||
736 | if (VecI == LargeOffsetGEPMap.end()) | ||||
737 | return; | ||||
738 | |||||
739 | auto &GEPVector = VecI->second; | ||||
740 | llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); | ||||
741 | |||||
742 | if (GEPVector.empty()) | ||||
743 | LargeOffsetGEPMap.erase(VecI); | ||||
744 | } | ||||
745 | |||||
746 | // Verify BFI has been updated correctly by recomputing BFI and comparing them. | ||||
747 | void LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__)) CodeGenPrepare::verifyBFIUpdates(Function &F) { | ||||
748 | DominatorTree NewDT(F); | ||||
749 | LoopInfo NewLI(NewDT); | ||||
750 | BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); | ||||
751 | BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); | ||||
752 | NewBFI.verifyMatch(*BFI); | ||||
753 | } | ||||
754 | |||||
755 | /// Merge basic blocks which are connected by a single edge, where one of the | ||||
756 | /// basic blocks has a single successor pointing to the other basic block, | ||||
757 | /// which has a single predecessor. | ||||
758 | bool CodeGenPrepare::eliminateFallThrough(Function &F) { | ||||
759 | bool Changed = false; | ||||
760 | // Scan all of the blocks in the function, except for the entry block. | ||||
761 | // Use a temporary array to avoid iterator being invalidated when | ||||
762 | // deleting blocks. | ||||
763 | SmallVector<WeakTrackingVH, 16> Blocks; | ||||
764 | for (auto &Block : llvm::drop_begin(F)) | ||||
765 | Blocks.push_back(&Block); | ||||
766 | |||||
767 | SmallSet<WeakTrackingVH, 16> Preds; | ||||
768 | for (auto &Block : Blocks) { | ||||
769 | auto *BB = cast_or_null<BasicBlock>(Block); | ||||
770 | if (!BB) | ||||
771 | continue; | ||||
772 | // If the destination block has a single pred, then this is a trivial | ||||
773 | // edge, just collapse it. | ||||
774 | BasicBlock *SinglePred = BB->getSinglePredecessor(); | ||||
775 | |||||
776 | // Don't merge if BB's address is taken. | ||||
777 | if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) | ||||
778 | continue; | ||||
779 | |||||
780 | BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); | ||||
781 | if (Term && !Term->isConditional()) { | ||||
782 | Changed = true; | ||||
783 | LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "To merge:\n" << * BB << "\n\n\n"; } } while (false); | ||||
784 | |||||
785 | // Merge BB into SinglePred and delete it. | ||||
786 | MergeBlockIntoPredecessor(BB); | ||||
787 | Preds.insert(SinglePred); | ||||
788 | |||||
789 | if (IsHugeFunc) { | ||||
790 | // Update FreshBBs to optimize the merged BB. | ||||
791 | FreshBBs.insert(SinglePred); | ||||
792 | FreshBBs.erase(BB); | ||||
793 | } | ||||
794 | } | ||||
795 | } | ||||
796 | |||||
797 | // (Repeatedly) merging blocks into their predecessors can create redundant | ||||
798 | // debug intrinsics. | ||||
799 | for (const auto &Pred : Preds) | ||||
800 | if (auto *BB = cast_or_null<BasicBlock>(Pred)) | ||||
801 | RemoveRedundantDbgInstrs(BB); | ||||
802 | |||||
803 | return Changed; | ||||
804 | } | ||||
805 | |||||
806 | /// Find a destination block from BB if BB is mergeable empty block. | ||||
807 | BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { | ||||
808 | // If this block doesn't end with an uncond branch, ignore it. | ||||
809 | BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | ||||
810 | if (!BI || !BI->isUnconditional()) | ||||
811 | return nullptr; | ||||
812 | |||||
813 | // If the instruction before the branch (skipping debug info) isn't a phi | ||||
814 | // node, then other stuff is happening here. | ||||
815 | BasicBlock::iterator BBI = BI->getIterator(); | ||||
816 | if (BBI != BB->begin()) { | ||||
817 | --BBI; | ||||
818 | while (isa<DbgInfoIntrinsic>(BBI)) { | ||||
819 | if (BBI == BB->begin()) | ||||
820 | break; | ||||
821 | --BBI; | ||||
822 | } | ||||
823 | if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) | ||||
824 | return nullptr; | ||||
825 | } | ||||
826 | |||||
827 | // Do not break infinite loops. | ||||
828 | BasicBlock *DestBB = BI->getSuccessor(0); | ||||
829 | if (DestBB == BB) | ||||
830 | return nullptr; | ||||
831 | |||||
832 | if (!canMergeBlocks(BB, DestBB)) | ||||
833 | DestBB = nullptr; | ||||
834 | |||||
835 | return DestBB; | ||||
836 | } | ||||
837 | |||||
838 | /// Eliminate blocks that contain only PHI nodes, debug info directives, and an | ||||
839 | /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split | ||||
840 | /// edges in ways that are non-optimal for isel. Start by eliminating these | ||||
841 | /// blocks so we can split them the way we want them. | ||||
842 | bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { | ||||
843 | SmallPtrSet<BasicBlock *, 16> Preheaders; | ||||
844 | SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); | ||||
845 | while (!LoopList.empty()) { | ||||
846 | Loop *L = LoopList.pop_back_val(); | ||||
847 | llvm::append_range(LoopList, *L); | ||||
848 | if (BasicBlock *Preheader = L->getLoopPreheader()) | ||||
849 | Preheaders.insert(Preheader); | ||||
850 | } | ||||
851 | |||||
852 | bool MadeChange = false; | ||||
853 | // Copy blocks into a temporary array to avoid iterator invalidation issues | ||||
854 | // as we remove them. | ||||
855 | // Note that this intentionally skips the entry block. | ||||
856 | SmallVector<WeakTrackingVH, 16> Blocks; | ||||
857 | for (auto &Block : llvm::drop_begin(F)) | ||||
858 | Blocks.push_back(&Block); | ||||
859 | |||||
860 | for (auto &Block : Blocks) { | ||||
861 | BasicBlock *BB = cast_or_null<BasicBlock>(Block); | ||||
862 | if (!BB) | ||||
863 | continue; | ||||
864 | BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); | ||||
865 | if (!DestBB || | ||||
866 | !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) | ||||
867 | continue; | ||||
868 | |||||
869 | eliminateMostlyEmptyBlock(BB); | ||||
870 | MadeChange = true; | ||||
871 | } | ||||
872 | return MadeChange; | ||||
873 | } | ||||
874 | |||||
875 | bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, | ||||
876 | BasicBlock *DestBB, | ||||
877 | bool isPreheader) { | ||||
878 | // Do not delete loop preheaders if doing so would create a critical edge. | ||||
879 | // Loop preheaders can be good locations to spill registers. If the | ||||
880 | // preheader is deleted and we create a critical edge, registers may be | ||||
881 | // spilled in the loop body instead. | ||||
882 | if (!DisablePreheaderProtect && isPreheader && | ||||
883 | !(BB->getSinglePredecessor() && | ||||
884 | BB->getSinglePredecessor()->getSingleSuccessor())) | ||||
885 | return false; | ||||
886 | |||||
887 | // Skip merging if the block's successor is also a successor to any callbr | ||||
888 | // that leads to this block. | ||||
889 | // FIXME: Is this really needed? Is this a correctness issue? | ||||
890 | for (BasicBlock *Pred : predecessors(BB)) { | ||||
891 | if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) | ||||
892 | for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) | ||||
893 | if (DestBB == CBI->getSuccessor(i)) | ||||
894 | return false; | ||||
895 | } | ||||
896 | |||||
897 | // Try to skip merging if the unique predecessor of BB is terminated by a | ||||
898 | // switch or indirect branch instruction, and BB is used as an incoming block | ||||
899 | // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to | ||||
900 | // add COPY instructions in the predecessor of BB instead of BB (if it is not | ||||
901 | // merged). Note that the critical edge created by merging such blocks wont be | ||||
902 | // split in MachineSink because the jump table is not analyzable. By keeping | ||||
903 | // such empty block (BB), ISel will place COPY instructions in BB, not in the | ||||
904 | // predecessor of BB. | ||||
905 | BasicBlock *Pred = BB->getUniquePredecessor(); | ||||
906 | if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || | ||||
907 | isa<IndirectBrInst>(Pred->getTerminator()))) | ||||
908 | return true; | ||||
909 | |||||
910 | if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) | ||||
911 | return true; | ||||
912 | |||||
913 | // We use a simple cost heuristic which determine skipping merging is | ||||
914 | // profitable if the cost of skipping merging is less than the cost of | ||||
915 | // merging : Cost(skipping merging) < Cost(merging BB), where the | ||||
916 | // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and | ||||
917 | // the Cost(merging BB) is Freq(Pred) * Cost(Copy). | ||||
918 | // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : | ||||
919 | // Freq(Pred) / Freq(BB) > 2. | ||||
920 | // Note that if there are multiple empty blocks sharing the same incoming | ||||
921 | // value for the PHIs in the DestBB, we consider them together. In such | ||||
922 | // case, Cost(merging BB) will be the sum of their frequencies. | ||||
923 | |||||
924 | if (!isa<PHINode>(DestBB->begin())) | ||||
925 | return true; | ||||
926 | |||||
927 | SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; | ||||
928 | |||||
929 | // Find all other incoming blocks from which incoming values of all PHIs in | ||||
930 | // DestBB are the same as the ones from BB. | ||||
931 | for (BasicBlock *DestBBPred : predecessors(DestBB)) { | ||||
932 | if (DestBBPred == BB) | ||||
933 | continue; | ||||
934 | |||||
935 | if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { | ||||
936 | return DestPN.getIncomingValueForBlock(BB) == | ||||
937 | DestPN.getIncomingValueForBlock(DestBBPred); | ||||
938 | })) | ||||
939 | SameIncomingValueBBs.insert(DestBBPred); | ||||
940 | } | ||||
941 | |||||
942 | // See if all BB's incoming values are same as the value from Pred. In this | ||||
943 | // case, no reason to skip merging because COPYs are expected to be place in | ||||
944 | // Pred already. | ||||
945 | if (SameIncomingValueBBs.count(Pred)) | ||||
946 | return true; | ||||
947 | |||||
948 | BlockFrequency PredFreq = BFI->getBlockFreq(Pred); | ||||
949 | BlockFrequency BBFreq = BFI->getBlockFreq(BB); | ||||
950 | |||||
951 | for (auto *SameValueBB : SameIncomingValueBBs) | ||||
952 | if (SameValueBB->getUniquePredecessor() == Pred && | ||||
953 | DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) | ||||
954 | BBFreq += BFI->getBlockFreq(SameValueBB); | ||||
955 | |||||
956 | return PredFreq.getFrequency() <= | ||||
957 | BBFreq.getFrequency() * FreqRatioToSkipMerge; | ||||
958 | } | ||||
959 | |||||
960 | /// Return true if we can merge BB into DestBB if there is a single | ||||
961 | /// unconditional branch between them, and BB contains no other non-phi | ||||
962 | /// instructions. | ||||
963 | bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, | ||||
964 | const BasicBlock *DestBB) const { | ||||
965 | // We only want to eliminate blocks whose phi nodes are used by phi nodes in | ||||
966 | // the successor. If there are more complex condition (e.g. preheaders), | ||||
967 | // don't mess around with them. | ||||
968 | for (const PHINode &PN : BB->phis()) { | ||||
969 | for (const User *U : PN.users()) { | ||||
970 | const Instruction *UI = cast<Instruction>(U); | ||||
971 | if (UI->getParent() != DestBB || !isa<PHINode>(UI)) | ||||
972 | return false; | ||||
973 | // If User is inside DestBB block and it is a PHINode then check | ||||
974 | // incoming value. If incoming value is not from BB then this is | ||||
975 | // a complex condition (e.g. preheaders) we want to avoid here. | ||||
976 | if (UI->getParent() == DestBB) { | ||||
977 | if (const PHINode *UPN = dyn_cast<PHINode>(UI)) | ||||
978 | for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { | ||||
979 | Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); | ||||
980 | if (Insn && Insn->getParent() == BB && | ||||
981 | Insn->getParent() != UPN->getIncomingBlock(I)) | ||||
982 | return false; | ||||
983 | } | ||||
984 | } | ||||
985 | } | ||||
986 | } | ||||
987 | |||||
988 | // If BB and DestBB contain any common predecessors, then the phi nodes in BB | ||||
989 | // and DestBB may have conflicting incoming values for the block. If so, we | ||||
990 | // can't merge the block. | ||||
991 | const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); | ||||
992 | if (!DestBBPN) | ||||
993 | return true; // no conflict. | ||||
994 | |||||
995 | // Collect the preds of BB. | ||||
996 | SmallPtrSet<const BasicBlock *, 16> BBPreds; | ||||
997 | if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | ||||
998 | // It is faster to get preds from a PHI than with pred_iterator. | ||||
999 | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | ||||
1000 | BBPreds.insert(BBPN->getIncomingBlock(i)); | ||||
1001 | } else { | ||||
1002 | BBPreds.insert(pred_begin(BB), pred_end(BB)); | ||||
1003 | } | ||||
1004 | |||||
1005 | // Walk the preds of DestBB. | ||||
1006 | for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { | ||||
1007 | BasicBlock *Pred = DestBBPN->getIncomingBlock(i); | ||||
1008 | if (BBPreds.count(Pred)) { // Common predecessor? | ||||
1009 | for (const PHINode &PN : DestBB->phis()) { | ||||
1010 | const Value *V1 = PN.getIncomingValueForBlock(Pred); | ||||
1011 | const Value *V2 = PN.getIncomingValueForBlock(BB); | ||||
1012 | |||||
1013 | // If V2 is a phi node in BB, look up what the mapped value will be. | ||||
1014 | if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) | ||||
1015 | if (V2PN->getParent() == BB) | ||||
1016 | V2 = V2PN->getIncomingValueForBlock(Pred); | ||||
1017 | |||||
1018 | // If there is a conflict, bail out. | ||||
1019 | if (V1 != V2) | ||||
1020 | return false; | ||||
1021 | } | ||||
1022 | } | ||||
1023 | } | ||||
1024 | |||||
1025 | return true; | ||||
1026 | } | ||||
1027 | |||||
1028 | /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. | ||||
1029 | static void replaceAllUsesWith(Value *Old, Value *New, | ||||
1030 | SmallSet<BasicBlock *, 32> &FreshBBs, | ||||
1031 | bool IsHuge) { | ||||
1032 | auto *OldI = dyn_cast<Instruction>(Old); | ||||
1033 | if (OldI) { | ||||
1034 | for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); | ||||
1035 | UI != E; ++UI) { | ||||
1036 | Instruction *User = cast<Instruction>(*UI); | ||||
1037 | if (IsHuge) | ||||
1038 | FreshBBs.insert(User->getParent()); | ||||
1039 | } | ||||
1040 | } | ||||
1041 | Old->replaceAllUsesWith(New); | ||||
1042 | } | ||||
1043 | |||||
1044 | /// Eliminate a basic block that has only phi's and an unconditional branch in | ||||
1045 | /// it. | ||||
1046 | void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { | ||||
1047 | BranchInst *BI = cast<BranchInst>(BB->getTerminator()); | ||||
1048 | BasicBlock *DestBB = BI->getSuccessor(0); | ||||
1049 | |||||
1050 | LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB; } } while (false) | ||||
1051 | << *BB << *DestBB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB; } } while (false); | ||||
1052 | |||||
1053 | // If the destination block has a single pred, then this is a trivial edge, | ||||
1054 | // just collapse it. | ||||
1055 | if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { | ||||
1056 | if (SinglePred != DestBB) { | ||||
1057 | assert(SinglePred == BB &&(static_cast <bool> (SinglePred == BB && "Single predecessor not the same as predecessor" ) ? void (0) : __assert_fail ("SinglePred == BB && \"Single predecessor not the same as predecessor\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1058, __extension__ __PRETTY_FUNCTION__ )) | ||||
1058 | "Single predecessor not the same as predecessor")(static_cast <bool> (SinglePred == BB && "Single predecessor not the same as predecessor" ) ? void (0) : __assert_fail ("SinglePred == BB && \"Single predecessor not the same as predecessor\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1058, __extension__ __PRETTY_FUNCTION__ )); | ||||
1059 | // Merge DestBB into SinglePred/BB and delete it. | ||||
1060 | MergeBlockIntoPredecessor(DestBB); | ||||
1061 | // Note: BB(=SinglePred) will not be deleted on this path. | ||||
1062 | // DestBB(=its single successor) is the one that was deleted. | ||||
1063 | LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"; } } while (false); | ||||
1064 | |||||
1065 | if (IsHugeFunc) { | ||||
1066 | // Update FreshBBs to optimize the merged BB. | ||||
1067 | FreshBBs.insert(SinglePred); | ||||
1068 | FreshBBs.erase(DestBB); | ||||
1069 | } | ||||
1070 | return; | ||||
1071 | } | ||||
1072 | } | ||||
1073 | |||||
1074 | // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB | ||||
1075 | // to handle the new incoming edges it is about to have. | ||||
1076 | for (PHINode &PN : DestBB->phis()) { | ||||
1077 | // Remove the incoming value for BB, and remember it. | ||||
1078 | Value *InVal = PN.removeIncomingValue(BB, false); | ||||
1079 | |||||
1080 | // Two options: either the InVal is a phi node defined in BB or it is some | ||||
1081 | // value that dominates BB. | ||||
1082 | PHINode *InValPhi = dyn_cast<PHINode>(InVal); | ||||
1083 | if (InValPhi && InValPhi->getParent() == BB) { | ||||
1084 | // Add all of the input values of the input PHI as inputs of this phi. | ||||
1085 | for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) | ||||
1086 | PN.addIncoming(InValPhi->getIncomingValue(i), | ||||
1087 | InValPhi->getIncomingBlock(i)); | ||||
1088 | } else { | ||||
1089 | // Otherwise, add one instance of the dominating value for each edge that | ||||
1090 | // we will be adding. | ||||
1091 | if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | ||||
1092 | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | ||||
1093 | PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); | ||||
1094 | } else { | ||||
1095 | for (BasicBlock *Pred : predecessors(BB)) | ||||
1096 | PN.addIncoming(InVal, Pred); | ||||
1097 | } | ||||
1098 | } | ||||
1099 | } | ||||
1100 | |||||
1101 | // The PHIs are now updated, change everything that refers to BB to use | ||||
1102 | // DestBB and remove BB. | ||||
1103 | BB->replaceAllUsesWith(DestBB); | ||||
1104 | BB->eraseFromParent(); | ||||
1105 | ++NumBlocksElim; | ||||
1106 | |||||
1107 | LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"; } } while (false); | ||||
1108 | } | ||||
1109 | |||||
1110 | // Computes a map of base pointer relocation instructions to corresponding | ||||
1111 | // derived pointer relocation instructions given a vector of all relocate calls | ||||
1112 | static void computeBaseDerivedRelocateMap( | ||||
1113 | const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, | ||||
1114 | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> | ||||
1115 | &RelocateInstMap) { | ||||
1116 | // Collect information in two maps: one primarily for locating the base object | ||||
1117 | // while filling the second map; the second map is the final structure holding | ||||
1118 | // a mapping between Base and corresponding Derived relocate calls | ||||
1119 | DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; | ||||
1120 | for (auto *ThisRelocate : AllRelocateCalls) { | ||||
1121 | auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), | ||||
1122 | ThisRelocate->getDerivedPtrIndex()); | ||||
1123 | RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); | ||||
1124 | } | ||||
1125 | for (auto &Item : RelocateIdxMap) { | ||||
1126 | std::pair<unsigned, unsigned> Key = Item.first; | ||||
1127 | if (Key.first == Key.second) | ||||
1128 | // Base relocation: nothing to insert | ||||
1129 | continue; | ||||
1130 | |||||
1131 | GCRelocateInst *I = Item.second; | ||||
1132 | auto BaseKey = std::make_pair(Key.first, Key.first); | ||||
1133 | |||||
1134 | // We're iterating over RelocateIdxMap so we cannot modify it. | ||||
1135 | auto MaybeBase = RelocateIdxMap.find(BaseKey); | ||||
1136 | if (MaybeBase == RelocateIdxMap.end()) | ||||
1137 | // TODO: We might want to insert a new base object relocate and gep off | ||||
1138 | // that, if there are enough derived object relocates. | ||||
1139 | continue; | ||||
1140 | |||||
1141 | RelocateInstMap[MaybeBase->second].push_back(I); | ||||
1142 | } | ||||
1143 | } | ||||
1144 | |||||
1145 | // Accepts a GEP and extracts the operands into a vector provided they're all | ||||
1146 | // small integer constants | ||||
1147 | static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, | ||||
1148 | SmallVectorImpl<Value *> &OffsetV) { | ||||
1149 | for (unsigned i = 1; i < GEP->getNumOperands(); i++) { | ||||
1150 | // Only accept small constant integer operands | ||||
1151 | auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); | ||||
1152 | if (!Op || Op->getZExtValue() > 20) | ||||
1153 | return false; | ||||
1154 | } | ||||
1155 | |||||
1156 | for (unsigned i = 1; i < GEP->getNumOperands(); i++) | ||||
1157 | OffsetV.push_back(GEP->getOperand(i)); | ||||
1158 | return true; | ||||
1159 | } | ||||
1160 | |||||
1161 | // Takes a RelocatedBase (base pointer relocation instruction) and Targets to | ||||
1162 | // replace, computes a replacement, and affects it. | ||||
1163 | static bool | ||||
1164 | simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, | ||||
1165 | const SmallVectorImpl<GCRelocateInst *> &Targets) { | ||||
1166 | bool MadeChange = false; | ||||
1167 | // We must ensure the relocation of derived pointer is defined after | ||||
1168 | // relocation of base pointer. If we find a relocation corresponding to base | ||||
1169 | // defined earlier than relocation of base then we move relocation of base | ||||
1170 | // right before found relocation. We consider only relocation in the same | ||||
1171 | // basic block as relocation of base. Relocations from other basic block will | ||||
1172 | // be skipped by optimization and we do not care about them. | ||||
1173 | for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); | ||||
1174 | &*R != RelocatedBase; ++R) | ||||
1175 | if (auto *RI = dyn_cast<GCRelocateInst>(R)) | ||||
1176 | if (RI->getStatepoint() == RelocatedBase->getStatepoint()) | ||||
1177 | if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { | ||||
1178 | RelocatedBase->moveBefore(RI); | ||||
1179 | break; | ||||
1180 | } | ||||
1181 | |||||
1182 | for (GCRelocateInst *ToReplace : Targets) { | ||||
1183 | assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&(static_cast <bool> (ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && "Not relocating a derived object of the original base object" ) ? void (0) : __assert_fail ("ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && \"Not relocating a derived object of the original base object\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1184, __extension__ __PRETTY_FUNCTION__ )) | ||||
1184 | "Not relocating a derived object of the original base object")(static_cast <bool> (ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && "Not relocating a derived object of the original base object" ) ? void (0) : __assert_fail ("ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && \"Not relocating a derived object of the original base object\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1184, __extension__ __PRETTY_FUNCTION__ )); | ||||
1185 | if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { | ||||
1186 | // A duplicate relocate call. TODO: coalesce duplicates. | ||||
1187 | continue; | ||||
1188 | } | ||||
1189 | |||||
1190 | if (RelocatedBase->getParent() != ToReplace->getParent()) { | ||||
1191 | // Base and derived relocates are in different basic blocks. | ||||
1192 | // In this case transform is only valid when base dominates derived | ||||
1193 | // relocate. However it would be too expensive to check dominance | ||||
1194 | // for each such relocate, so we skip the whole transformation. | ||||
1195 | continue; | ||||
1196 | } | ||||
1197 | |||||
1198 | Value *Base = ToReplace->getBasePtr(); | ||||
1199 | auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); | ||||
1200 | if (!Derived || Derived->getPointerOperand() != Base) | ||||
1201 | continue; | ||||
1202 | |||||
1203 | SmallVector<Value *, 2> OffsetV; | ||||
1204 | if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) | ||||
1205 | continue; | ||||
1206 | |||||
1207 | // Create a Builder and replace the target callsite with a gep | ||||
1208 | assert(RelocatedBase->getNextNode() &&(static_cast <bool> (RelocatedBase->getNextNode() && "Should always have one since it's not a terminator") ? void (0) : __assert_fail ("RelocatedBase->getNextNode() && \"Should always have one since it's not a terminator\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1209, __extension__ __PRETTY_FUNCTION__ )) | ||||
1209 | "Should always have one since it's not a terminator")(static_cast <bool> (RelocatedBase->getNextNode() && "Should always have one since it's not a terminator") ? void (0) : __assert_fail ("RelocatedBase->getNextNode() && \"Should always have one since it's not a terminator\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1209, __extension__ __PRETTY_FUNCTION__ )); | ||||
1210 | |||||
1211 | // Insert after RelocatedBase | ||||
1212 | IRBuilder<> Builder(RelocatedBase->getNextNode()); | ||||
1213 | Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); | ||||
1214 | |||||
1215 | // If gc_relocate does not match the actual type, cast it to the right type. | ||||
1216 | // In theory, there must be a bitcast after gc_relocate if the type does not | ||||
1217 | // match, and we should reuse it to get the derived pointer. But it could be | ||||
1218 | // cases like this: | ||||
1219 | // bb1: | ||||
1220 | // ... | ||||
1221 | // %g1 = call coldcc i8 addrspace(1)* | ||||
1222 | // @llvm.experimental.gc.relocate.p1i8(...) br label %merge | ||||
1223 | // | ||||
1224 | // bb2: | ||||
1225 | // ... | ||||
1226 | // %g2 = call coldcc i8 addrspace(1)* | ||||
1227 | // @llvm.experimental.gc.relocate.p1i8(...) br label %merge | ||||
1228 | // | ||||
1229 | // merge: | ||||
1230 | // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] | ||||
1231 | // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* | ||||
1232 | // | ||||
1233 | // In this case, we can not find the bitcast any more. So we insert a new | ||||
1234 | // bitcast no matter there is already one or not. In this way, we can handle | ||||
1235 | // all cases, and the extra bitcast should be optimized away in later | ||||
1236 | // passes. | ||||
1237 | Value *ActualRelocatedBase = RelocatedBase; | ||||
1238 | if (RelocatedBase->getType() != Base->getType()) { | ||||
1239 | ActualRelocatedBase = | ||||
1240 | Builder.CreateBitCast(RelocatedBase, Base->getType()); | ||||
1241 | } | ||||
1242 | Value *Replacement = | ||||
1243 | Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, | ||||
1244 | ArrayRef(OffsetV)); | ||||
1245 | Replacement->takeName(ToReplace); | ||||
1246 | // If the newly generated derived pointer's type does not match the original | ||||
1247 | // derived pointer's type, cast the new derived pointer to match it. Same | ||||
1248 | // reasoning as above. | ||||
1249 | Value *ActualReplacement = Replacement; | ||||
1250 | if (Replacement->getType() != ToReplace->getType()) { | ||||
1251 | ActualReplacement = | ||||
1252 | Builder.CreateBitCast(Replacement, ToReplace->getType()); | ||||
1253 | } | ||||
1254 | ToReplace->replaceAllUsesWith(ActualReplacement); | ||||
1255 | ToReplace->eraseFromParent(); | ||||
1256 | |||||
1257 | MadeChange = true; | ||||
1258 | } | ||||
1259 | return MadeChange; | ||||
1260 | } | ||||
1261 | |||||
1262 | // Turns this: | ||||
1263 | // | ||||
1264 | // %base = ... | ||||
1265 | // %ptr = gep %base + 15 | ||||
1266 | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | ||||
1267 | // %base' = relocate(%tok, i32 4, i32 4) | ||||
1268 | // %ptr' = relocate(%tok, i32 4, i32 5) | ||||
1269 | // %val = load %ptr' | ||||
1270 | // | ||||
1271 | // into this: | ||||
1272 | // | ||||
1273 | // %base = ... | ||||
1274 | // %ptr = gep %base + 15 | ||||
1275 | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | ||||
1276 | // %base' = gc.relocate(%tok, i32 4, i32 4) | ||||
1277 | // %ptr' = gep %base' + 15 | ||||
1278 | // %val = load %ptr' | ||||
1279 | bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { | ||||
1280 | bool MadeChange = false; | ||||
1281 | SmallVector<GCRelocateInst *, 2> AllRelocateCalls; | ||||
1282 | for (auto *U : I.users()) | ||||
1283 | if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) | ||||
1284 | // Collect all the relocate calls associated with a statepoint | ||||
1285 | AllRelocateCalls.push_back(Relocate); | ||||
1286 | |||||
1287 | // We need at least one base pointer relocation + one derived pointer | ||||
1288 | // relocation to mangle | ||||
1289 | if (AllRelocateCalls.size() < 2) | ||||
1290 | return false; | ||||
1291 | |||||
1292 | // RelocateInstMap is a mapping from the base relocate instruction to the | ||||
1293 | // corresponding derived relocate instructions | ||||
1294 | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; | ||||
1295 | computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); | ||||
1296 | if (RelocateInstMap.empty()) | ||||
1297 | return false; | ||||
1298 | |||||
1299 | for (auto &Item : RelocateInstMap) | ||||
1300 | // Item.first is the RelocatedBase to offset against | ||||
1301 | // Item.second is the vector of Targets to replace | ||||
1302 | MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); | ||||
1303 | return MadeChange; | ||||
1304 | } | ||||
1305 | |||||
1306 | /// Sink the specified cast instruction into its user blocks. | ||||
1307 | static bool SinkCast(CastInst *CI) { | ||||
1308 | BasicBlock *DefBB = CI->getParent(); | ||||
1309 | |||||
1310 | /// InsertedCasts - Only insert a cast in each block once. | ||||
1311 | DenseMap<BasicBlock *, CastInst *> InsertedCasts; | ||||
1312 | |||||
1313 | bool MadeChange = false; | ||||
1314 | for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); | ||||
1315 | UI != E;) { | ||||
1316 | Use &TheUse = UI.getUse(); | ||||
1317 | Instruction *User = cast<Instruction>(*UI); | ||||
1318 | |||||
1319 | // Figure out which BB this cast is used in. For PHI's this is the | ||||
1320 | // appropriate predecessor block. | ||||
1321 | BasicBlock *UserBB = User->getParent(); | ||||
1322 | if (PHINode *PN = dyn_cast<PHINode>(User)) { | ||||
1323 | UserBB = PN->getIncomingBlock(TheUse); | ||||
1324 | } | ||||
1325 | |||||
1326 | // Preincrement use iterator so we don't invalidate it. | ||||
1327 | ++UI; | ||||
1328 | |||||
1329 | // The first insertion point of a block containing an EH pad is after the | ||||
1330 | // pad. If the pad is the user, we cannot sink the cast past the pad. | ||||
1331 | if (User->isEHPad()) | ||||
1332 | continue; | ||||
1333 | |||||
1334 | // If the block selected to receive the cast is an EH pad that does not | ||||
1335 | // allow non-PHI instructions before the terminator, we can't sink the | ||||
1336 | // cast. | ||||
1337 | if (UserBB->getTerminator()->isEHPad()) | ||||
1338 | continue; | ||||
1339 | |||||
1340 | // If this user is in the same block as the cast, don't change the cast. | ||||
1341 | if (UserBB == DefBB) | ||||
1342 | continue; | ||||
1343 | |||||
1344 | // If we have already inserted a cast into this block, use it. | ||||
1345 | CastInst *&InsertedCast = InsertedCasts[UserBB]; | ||||
1346 | |||||
1347 | if (!InsertedCast) { | ||||
1348 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | ||||
1349 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 1349, __extension__ __PRETTY_FUNCTION__)); | ||||
1350 | InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), | ||||
1351 | CI->getType(), "", &*InsertPt); | ||||
1352 | InsertedCast->setDebugLoc(CI->getDebugLoc()); | ||||
1353 | } | ||||
1354 | |||||
1355 | // Replace a use of the cast with a use of the new cast. | ||||
1356 | TheUse = InsertedCast; | ||||
1357 | MadeChange = true; | ||||
1358 | ++NumCastUses; | ||||
1359 | } | ||||
1360 | |||||
1361 | // If we removed all uses, nuke the cast. | ||||
1362 | if (CI->use_empty()) { | ||||
1363 | salvageDebugInfo(*CI); | ||||
1364 | CI->eraseFromParent(); | ||||
1365 | MadeChange = true; | ||||
1366 | } | ||||
1367 | |||||
1368 | return MadeChange; | ||||
1369 | } | ||||
1370 | |||||
1371 | /// If the specified cast instruction is a noop copy (e.g. it's casting from | ||||
1372 | /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to | ||||
1373 | /// reduce the number of virtual registers that must be created and coalesced. | ||||
1374 | /// | ||||
1375 | /// Return true if any changes are made. | ||||
1376 | static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, | ||||
1377 | const DataLayout &DL) { | ||||
1378 | // Sink only "cheap" (or nop) address-space casts. This is a weaker condition | ||||
1379 | // than sinking only nop casts, but is helpful on some platforms. | ||||
1380 | if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { | ||||
1381 | if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), | ||||
1382 | ASC->getDestAddressSpace())) | ||||
1383 | return false; | ||||
1384 | } | ||||
1385 | |||||
1386 | // If this is a noop copy, | ||||
1387 | EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); | ||||
1388 | EVT DstVT = TLI.getValueType(DL, CI->getType()); | ||||
1389 | |||||
1390 | // This is an fp<->int conversion? | ||||
1391 | if (SrcVT.isInteger() != DstVT.isInteger()) | ||||
1392 | return false; | ||||
1393 | |||||
1394 | // If this is an extension, it will be a zero or sign extension, which | ||||
1395 | // isn't a noop. | ||||
1396 | if (SrcVT.bitsLT(DstVT)) | ||||
1397 | return false; | ||||
1398 | |||||
1399 | // If these values will be promoted, find out what they will be promoted | ||||
1400 | // to. This helps us consider truncates on PPC as noop copies when they | ||||
1401 | // are. | ||||
1402 | if (TLI.getTypeAction(CI->getContext(), SrcVT) == | ||||
1403 | TargetLowering::TypePromoteInteger) | ||||
1404 | SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); | ||||
1405 | if (TLI.getTypeAction(CI->getContext(), DstVT) == | ||||
1406 | TargetLowering::TypePromoteInteger) | ||||
1407 | DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); | ||||
1408 | |||||
1409 | // If, after promotion, these are the same types, this is a noop copy. | ||||
1410 | if (SrcVT != DstVT) | ||||
1411 | return false; | ||||
1412 | |||||
1413 | return SinkCast(CI); | ||||
1414 | } | ||||
1415 | |||||
1416 | // Match a simple increment by constant operation. Note that if a sub is | ||||
1417 | // matched, the step is negated (as if the step had been canonicalized to | ||||
1418 | // an add, even though we leave the instruction alone.) | ||||
1419 | bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, | ||||
1420 | Constant *&Step) { | ||||
1421 | if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || | ||||
1422 | match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( | ||||
1423 | m_Instruction(LHS), m_Constant(Step))))) | ||||
1424 | return true; | ||||
1425 | if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || | ||||
1426 | match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( | ||||
1427 | m_Instruction(LHS), m_Constant(Step))))) { | ||||
1428 | Step = ConstantExpr::getNeg(Step); | ||||
1429 | return true; | ||||
1430 | } | ||||
1431 | return false; | ||||
1432 | } | ||||
1433 | |||||
1434 | /// If given \p PN is an inductive variable with value IVInc coming from the | ||||
1435 | /// backedge, and on each iteration it gets increased by Step, return pair | ||||
1436 | /// <IVInc, Step>. Otherwise, return std::nullopt. | ||||
1437 | static std::optional<std::pair<Instruction *, Constant *>> | ||||
1438 | getIVIncrement(const PHINode *PN, const LoopInfo *LI) { | ||||
1439 | const Loop *L = LI->getLoopFor(PN->getParent()); | ||||
1440 | if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) | ||||
1441 | return std::nullopt; | ||||
1442 | auto *IVInc = | ||||
1443 | dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); | ||||
1444 | if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) | ||||
1445 | return std::nullopt; | ||||
1446 | Instruction *LHS = nullptr; | ||||
1447 | Constant *Step = nullptr; | ||||
1448 | if (matchIncrement(IVInc, LHS, Step) && LHS == PN) | ||||
1449 | return std::make_pair(IVInc, Step); | ||||
1450 | return std::nullopt; | ||||
1451 | } | ||||
1452 | |||||
1453 | static bool isIVIncrement(const Value *V, const LoopInfo *LI) { | ||||
1454 | auto *I = dyn_cast<Instruction>(V); | ||||
1455 | if (!I) | ||||
1456 | return false; | ||||
1457 | Instruction *LHS = nullptr; | ||||
1458 | Constant *Step = nullptr; | ||||
1459 | if (!matchIncrement(I, LHS, Step)) | ||||
1460 | return false; | ||||
1461 | if (auto *PN = dyn_cast<PHINode>(LHS)) | ||||
1462 | if (auto IVInc = getIVIncrement(PN, LI)) | ||||
1463 | return IVInc->first == I; | ||||
1464 | return false; | ||||
1465 | } | ||||
1466 | |||||
1467 | bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, | ||||
1468 | Value *Arg0, Value *Arg1, | ||||
1469 | CmpInst *Cmp, | ||||
1470 | Intrinsic::ID IID) { | ||||
1471 | auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { | ||||
1472 | if (!isIVIncrement(BO, LI)) | ||||
1473 | return false; | ||||
1474 | const Loop *L = LI->getLoopFor(BO->getParent()); | ||||
1475 | assert(L && "L should not be null after isIVIncrement()")(static_cast <bool> (L && "L should not be null after isIVIncrement()" ) ? void (0) : __assert_fail ("L && \"L should not be null after isIVIncrement()\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1475, __extension__ __PRETTY_FUNCTION__ )); | ||||
1476 | // Do not risk on moving increment into a child loop. | ||||
1477 | if (LI->getLoopFor(Cmp->getParent()) != L) | ||||
1478 | return false; | ||||
1479 | |||||
1480 | // Finally, we need to ensure that the insert point will dominate all | ||||
1481 | // existing uses of the increment. | ||||
1482 | |||||
1483 | auto &DT = getDT(*BO->getParent()->getParent()); | ||||
1484 | if (DT.dominates(Cmp->getParent(), BO->getParent())) | ||||
1485 | // If we're moving up the dom tree, all uses are trivially dominated. | ||||
1486 | // (This is the common case for code produced by LSR.) | ||||
1487 | return true; | ||||
1488 | |||||
1489 | // Otherwise, special case the single use in the phi recurrence. | ||||
1490 | return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); | ||||
1491 | }; | ||||
1492 | if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { | ||||
1493 | // We used to use a dominator tree here to allow multi-block optimization. | ||||
1494 | // But that was problematic because: | ||||
1495 | // 1. It could cause a perf regression by hoisting the math op into the | ||||
1496 | // critical path. | ||||
1497 | // 2. It could cause a perf regression by creating a value that was live | ||||
1498 | // across multiple blocks and increasing register pressure. | ||||
1499 | // 3. Use of a dominator tree could cause large compile-time regression. | ||||
1500 | // This is because we recompute the DT on every change in the main CGP | ||||
1501 | // run-loop. The recomputing is probably unnecessary in many cases, so if | ||||
1502 | // that was fixed, using a DT here would be ok. | ||||
1503 | // | ||||
1504 | // There is one important particular case we still want to handle: if BO is | ||||
1505 | // the IV increment. Important properties that make it profitable: | ||||
1506 | // - We can speculate IV increment anywhere in the loop (as long as the | ||||
1507 | // indvar Phi is its only user); | ||||
1508 | // - Upon computing Cmp, we effectively compute something equivalent to the | ||||
1509 | // IV increment (despite it loops differently in the IR). So moving it up | ||||
1510 | // to the cmp point does not really increase register pressure. | ||||
1511 | return false; | ||||
1512 | } | ||||
1513 | |||||
1514 | // We allow matching the canonical IR (add X, C) back to (usubo X, -C). | ||||
1515 | if (BO->getOpcode() == Instruction::Add && | ||||
1516 | IID == Intrinsic::usub_with_overflow) { | ||||
1517 | assert(isa<Constant>(Arg1) && "Unexpected input for usubo")(static_cast <bool> (isa<Constant>(Arg1) && "Unexpected input for usubo") ? void (0) : __assert_fail ("isa<Constant>(Arg1) && \"Unexpected input for usubo\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1517, __extension__ __PRETTY_FUNCTION__ )); | ||||
1518 | Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); | ||||
1519 | } | ||||
1520 | |||||
1521 | // Insert at the first instruction of the pair. | ||||
1522 | Instruction *InsertPt = nullptr; | ||||
1523 | for (Instruction &Iter : *Cmp->getParent()) { | ||||
1524 | // If BO is an XOR, it is not guaranteed that it comes after both inputs to | ||||
1525 | // the overflow intrinsic are defined. | ||||
1526 | if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { | ||||
1527 | InsertPt = &Iter; | ||||
1528 | break; | ||||
1529 | } | ||||
1530 | } | ||||
1531 | assert(InsertPt != nullptr && "Parent block did not contain cmp or binop")(static_cast <bool> (InsertPt != nullptr && "Parent block did not contain cmp or binop" ) ? void (0) : __assert_fail ("InsertPt != nullptr && \"Parent block did not contain cmp or binop\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1531, __extension__ __PRETTY_FUNCTION__ )); | ||||
1532 | |||||
1533 | IRBuilder<> Builder(InsertPt); | ||||
1534 | Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); | ||||
1535 | if (BO->getOpcode() != Instruction::Xor) { | ||||
1536 | Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); | ||||
1537 | replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); | ||||
1538 | } else | ||||
1539 | assert(BO->hasOneUse() &&(static_cast <bool> (BO->hasOneUse() && "Patterns with XOr should use the BO only in the compare" ) ? void (0) : __assert_fail ("BO->hasOneUse() && \"Patterns with XOr should use the BO only in the compare\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1540, __extension__ __PRETTY_FUNCTION__ )) | ||||
1540 | "Patterns with XOr should use the BO only in the compare")(static_cast <bool> (BO->hasOneUse() && "Patterns with XOr should use the BO only in the compare" ) ? void (0) : __assert_fail ("BO->hasOneUse() && \"Patterns with XOr should use the BO only in the compare\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1540, __extension__ __PRETTY_FUNCTION__ )); | ||||
1541 | Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); | ||||
1542 | replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); | ||||
1543 | Cmp->eraseFromParent(); | ||||
1544 | BO->eraseFromParent(); | ||||
1545 | return true; | ||||
1546 | } | ||||
1547 | |||||
1548 | /// Match special-case patterns that check for unsigned add overflow. | ||||
1549 | static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, | ||||
1550 | BinaryOperator *&Add) { | ||||
1551 | // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) | ||||
1552 | // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) | ||||
1553 | Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); | ||||
1554 | |||||
1555 | // We are not expecting non-canonical/degenerate code. Just bail out. | ||||
1556 | if (isa<Constant>(A)) | ||||
1557 | return false; | ||||
1558 | |||||
1559 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | ||||
1560 | if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) | ||||
1561 | B = ConstantInt::get(B->getType(), 1); | ||||
1562 | else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) | ||||
1563 | B = ConstantInt::get(B->getType(), -1); | ||||
1564 | else | ||||
1565 | return false; | ||||
1566 | |||||
1567 | // Check the users of the variable operand of the compare looking for an add | ||||
1568 | // with the adjusted constant. | ||||
1569 | for (User *U : A->users()) { | ||||
1570 | if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { | ||||
1571 | Add = cast<BinaryOperator>(U); | ||||
1572 | return true; | ||||
1573 | } | ||||
1574 | } | ||||
1575 | return false; | ||||
1576 | } | ||||
1577 | |||||
1578 | /// Try to combine the compare into a call to the llvm.uadd.with.overflow | ||||
1579 | /// intrinsic. Return true if any changes were made. | ||||
1580 | bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, | ||||
1581 | ModifyDT &ModifiedDT) { | ||||
1582 | Value *A, *B; | ||||
1583 | BinaryOperator *Add; | ||||
1584 | if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { | ||||
1585 | if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) | ||||
1586 | return false; | ||||
1587 | // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. | ||||
1588 | A = Add->getOperand(0); | ||||
1589 | B = Add->getOperand(1); | ||||
1590 | } | ||||
1591 | |||||
1592 | if (!TLI->shouldFormOverflowOp(ISD::UADDO, | ||||
1593 | TLI->getValueType(*DL, Add->getType()), | ||||
1594 | Add->hasNUsesOrMore(2))) | ||||
1595 | return false; | ||||
1596 | |||||
1597 | // We don't want to move around uses of condition values this late, so we | ||||
1598 | // check if it is legal to create the call to the intrinsic in the basic | ||||
1599 | // block containing the icmp. | ||||
1600 | if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) | ||||
1601 | return false; | ||||
1602 | |||||
1603 | if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, | ||||
1604 | Intrinsic::uadd_with_overflow)) | ||||
1605 | return false; | ||||
1606 | |||||
1607 | // Reset callers - do not crash by iterating over a dead instruction. | ||||
1608 | ModifiedDT = ModifyDT::ModifyInstDT; | ||||
1609 | return true; | ||||
1610 | } | ||||
1611 | |||||
1612 | bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, | ||||
1613 | ModifyDT &ModifiedDT) { | ||||
1614 | // We are not expecting non-canonical/degenerate code. Just bail out. | ||||
1615 | Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); | ||||
1616 | if (isa<Constant>(A) && isa<Constant>(B)) | ||||
1617 | return false; | ||||
1618 | |||||
1619 | // Convert (A u> B) to (A u< B) to simplify pattern matching. | ||||
1620 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | ||||
1621 | if (Pred == ICmpInst::ICMP_UGT) { | ||||
1622 | std::swap(A, B); | ||||
1623 | Pred = ICmpInst::ICMP_ULT; | ||||
1624 | } | ||||
1625 | // Convert special-case: (A == 0) is the same as (A u< 1). | ||||
1626 | if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { | ||||
1627 | B = ConstantInt::get(B->getType(), 1); | ||||
1628 | Pred = ICmpInst::ICMP_ULT; | ||||
1629 | } | ||||
1630 | // Convert special-case: (A != 0) is the same as (0 u< A). | ||||
1631 | if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { | ||||
1632 | std::swap(A, B); | ||||
1633 | Pred = ICmpInst::ICMP_ULT; | ||||
1634 | } | ||||
1635 | if (Pred != ICmpInst::ICMP_ULT) | ||||
1636 | return false; | ||||
1637 | |||||
1638 | // Walk the users of a variable operand of a compare looking for a subtract or | ||||
1639 | // add with that same operand. Also match the 2nd operand of the compare to | ||||
1640 | // the add/sub, but that may be a negated constant operand of an add. | ||||
1641 | Value *CmpVariableOperand = isa<Constant>(A) ? B : A; | ||||
1642 | BinaryOperator *Sub = nullptr; | ||||
1643 | for (User *U : CmpVariableOperand->users()) { | ||||
1644 | // A - B, A u< B --> usubo(A, B) | ||||
1645 | if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { | ||||
1646 | Sub = cast<BinaryOperator>(U); | ||||
1647 | break; | ||||
1648 | } | ||||
1649 | |||||
1650 | // A + (-C), A u< C (canonicalized form of (sub A, C)) | ||||
1651 | const APInt *CmpC, *AddC; | ||||
1652 | if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && | ||||
1653 | match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { | ||||
1654 | Sub = cast<BinaryOperator>(U); | ||||
1655 | break; | ||||
1656 | } | ||||
1657 | } | ||||
1658 | if (!Sub) | ||||
1659 | return false; | ||||
1660 | |||||
1661 | if (!TLI->shouldFormOverflowOp(ISD::USUBO, | ||||
1662 | TLI->getValueType(*DL, Sub->getType()), | ||||
1663 | Sub->hasNUsesOrMore(2))) | ||||
1664 | return false; | ||||
1665 | |||||
1666 | if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), | ||||
1667 | Cmp, Intrinsic::usub_with_overflow)) | ||||
1668 | return false; | ||||
1669 | |||||
1670 | // Reset callers - do not crash by iterating over a dead instruction. | ||||
1671 | ModifiedDT = ModifyDT::ModifyInstDT; | ||||
1672 | return true; | ||||
1673 | } | ||||
1674 | |||||
1675 | /// Sink the given CmpInst into user blocks to reduce the number of virtual | ||||
1676 | /// registers that must be created and coalesced. This is a clear win except on | ||||
1677 | /// targets with multiple condition code registers (PowerPC), where it might | ||||
1678 | /// lose; some adjustment may be wanted there. | ||||
1679 | /// | ||||
1680 | /// Return true if any changes are made. | ||||
1681 | static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { | ||||
1682 | if (TLI.hasMultipleConditionRegisters()) | ||||
1683 | return false; | ||||
1684 | |||||
1685 | // Avoid sinking soft-FP comparisons, since this can move them into a loop. | ||||
1686 | if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) | ||||
1687 | return false; | ||||
1688 | |||||
1689 | // Only insert a cmp in each block once. | ||||
1690 | DenseMap<BasicBlock *, CmpInst *> InsertedCmps; | ||||
1691 | |||||
1692 | bool MadeChange = false; | ||||
1693 | for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); | ||||
1694 | UI != E;) { | ||||
1695 | Use &TheUse = UI.getUse(); | ||||
1696 | Instruction *User = cast<Instruction>(*UI); | ||||
1697 | |||||
1698 | // Preincrement use iterator so we don't invalidate it. | ||||
1699 | ++UI; | ||||
1700 | |||||
1701 | // Don't bother for PHI nodes. | ||||
1702 | if (isa<PHINode>(User)) | ||||
1703 | continue; | ||||
1704 | |||||
1705 | // Figure out which BB this cmp is used in. | ||||
1706 | BasicBlock *UserBB = User->getParent(); | ||||
1707 | BasicBlock *DefBB = Cmp->getParent(); | ||||
1708 | |||||
1709 | // If this user is in the same block as the cmp, don't change the cmp. | ||||
1710 | if (UserBB == DefBB) | ||||
1711 | continue; | ||||
1712 | |||||
1713 | // If we have already inserted a cmp into this block, use it. | ||||
1714 | CmpInst *&InsertedCmp = InsertedCmps[UserBB]; | ||||
1715 | |||||
1716 | if (!InsertedCmp) { | ||||
1717 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | ||||
1718 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 1718, __extension__ __PRETTY_FUNCTION__)); | ||||
1719 | InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), | ||||
1720 | Cmp->getOperand(0), Cmp->getOperand(1), "", | ||||
1721 | &*InsertPt); | ||||
1722 | // Propagate the debug info. | ||||
1723 | InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); | ||||
1724 | } | ||||
1725 | |||||
1726 | // Replace a use of the cmp with a use of the new cmp. | ||||
1727 | TheUse = InsertedCmp; | ||||
1728 | MadeChange = true; | ||||
1729 | ++NumCmpUses; | ||||
1730 | } | ||||
1731 | |||||
1732 | // If we removed all uses, nuke the cmp. | ||||
1733 | if (Cmp->use_empty()) { | ||||
1734 | Cmp->eraseFromParent(); | ||||
1735 | MadeChange = true; | ||||
1736 | } | ||||
1737 | |||||
1738 | return MadeChange; | ||||
1739 | } | ||||
1740 | |||||
1741 | /// For pattern like: | ||||
1742 | /// | ||||
1743 | /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) | ||||
1744 | /// ... | ||||
1745 | /// DomBB: | ||||
1746 | /// ... | ||||
1747 | /// br DomCond, TrueBB, CmpBB | ||||
1748 | /// CmpBB: (with DomBB being the single predecessor) | ||||
1749 | /// ... | ||||
1750 | /// Cmp = icmp eq CmpOp0, CmpOp1 | ||||
1751 | /// ... | ||||
1752 | /// | ||||
1753 | /// It would use two comparison on targets that lowering of icmp sgt/slt is | ||||
1754 | /// different from lowering of icmp eq (PowerPC). This function try to convert | ||||
1755 | /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. | ||||
1756 | /// After that, DomCond and Cmp can use the same comparison so reduce one | ||||
1757 | /// comparison. | ||||
1758 | /// | ||||
1759 | /// Return true if any changes are made. | ||||
1760 | static bool foldICmpWithDominatingICmp(CmpInst *Cmp, | ||||
1761 | const TargetLowering &TLI) { | ||||
1762 | if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) | ||||
1763 | return false; | ||||
1764 | |||||
1765 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | ||||
1766 | if (Pred != ICmpInst::ICMP_EQ) | ||||
1767 | return false; | ||||
1768 | |||||
1769 | // If icmp eq has users other than BranchInst and SelectInst, converting it to | ||||
1770 | // icmp slt/sgt would introduce more redundant LLVM IR. | ||||
1771 | for (User *U : Cmp->users()) { | ||||
1772 | if (isa<BranchInst>(U)) | ||||
1773 | continue; | ||||
1774 | if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) | ||||
1775 | continue; | ||||
1776 | return false; | ||||
1777 | } | ||||
1778 | |||||
1779 | // This is a cheap/incomplete check for dominance - just match a single | ||||
1780 | // predecessor with a conditional branch. | ||||
1781 | BasicBlock *CmpBB = Cmp->getParent(); | ||||
1782 | BasicBlock *DomBB = CmpBB->getSinglePredecessor(); | ||||
1783 | if (!DomBB) | ||||
1784 | return false; | ||||
1785 | |||||
1786 | // We want to ensure that the only way control gets to the comparison of | ||||
1787 | // interest is that a less/greater than comparison on the same operands is | ||||
1788 | // false. | ||||
1789 | Value *DomCond; | ||||
1790 | BasicBlock *TrueBB, *FalseBB; | ||||
1791 | if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) | ||||
1792 | return false; | ||||
1793 | if (CmpBB != FalseBB) | ||||
1794 | return false; | ||||
1795 | |||||
1796 | Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); | ||||
1797 | ICmpInst::Predicate DomPred; | ||||
1798 | if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) | ||||
1799 | return false; | ||||
1800 | if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) | ||||
1801 | return false; | ||||
1802 | |||||
1803 | // Convert the equality comparison to the opposite of the dominating | ||||
1804 | // comparison and swap the direction for all branch/select users. | ||||
1805 | // We have conceptually converted: | ||||
1806 | // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; | ||||
1807 | // to | ||||
1808 | // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; | ||||
1809 | // And similarly for branches. | ||||
1810 | for (User *U : Cmp->users()) { | ||||
1811 | if (auto *BI = dyn_cast<BranchInst>(U)) { | ||||
1812 | assert(BI->isConditional() && "Must be conditional")(static_cast <bool> (BI->isConditional() && "Must be conditional" ) ? void (0) : __assert_fail ("BI->isConditional() && \"Must be conditional\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1812, __extension__ __PRETTY_FUNCTION__ )); | ||||
1813 | BI->swapSuccessors(); | ||||
1814 | continue; | ||||
1815 | } | ||||
1816 | if (auto *SI = dyn_cast<SelectInst>(U)) { | ||||
1817 | // Swap operands | ||||
1818 | SI->swapValues(); | ||||
1819 | SI->swapProfMetadata(); | ||||
1820 | continue; | ||||
1821 | } | ||||
1822 | llvm_unreachable("Must be a branch or a select")::llvm::llvm_unreachable_internal("Must be a branch or a select" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1822); | ||||
1823 | } | ||||
1824 | Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); | ||||
1825 | return true; | ||||
1826 | } | ||||
1827 | |||||
1828 | bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { | ||||
1829 | if (sinkCmpExpression(Cmp, *TLI)) | ||||
1830 | return true; | ||||
1831 | |||||
1832 | if (combineToUAddWithOverflow(Cmp, ModifiedDT)) | ||||
1833 | return true; | ||||
1834 | |||||
1835 | if (combineToUSubWithOverflow(Cmp, ModifiedDT)) | ||||
1836 | return true; | ||||
1837 | |||||
1838 | if (foldICmpWithDominatingICmp(Cmp, *TLI)) | ||||
1839 | return true; | ||||
1840 | |||||
1841 | return false; | ||||
1842 | } | ||||
1843 | |||||
1844 | /// Duplicate and sink the given 'and' instruction into user blocks where it is | ||||
1845 | /// used in a compare to allow isel to generate better code for targets where | ||||
1846 | /// this operation can be combined. | ||||
1847 | /// | ||||
1848 | /// Return true if any changes are made. | ||||
1849 | static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, | ||||
1850 | SetOfInstrs &InsertedInsts) { | ||||
1851 | // Double-check that we're not trying to optimize an instruction that was | ||||
1852 | // already optimized by some other part of this pass. | ||||
1853 | assert(!InsertedInsts.count(AndI) &&(static_cast <bool> (!InsertedInsts.count(AndI) && "Attempting to optimize already optimized and instruction") ? void (0) : __assert_fail ("!InsertedInsts.count(AndI) && \"Attempting to optimize already optimized and instruction\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1854, __extension__ __PRETTY_FUNCTION__ )) | ||||
1854 | "Attempting to optimize already optimized and instruction")(static_cast <bool> (!InsertedInsts.count(AndI) && "Attempting to optimize already optimized and instruction") ? void (0) : __assert_fail ("!InsertedInsts.count(AndI) && \"Attempting to optimize already optimized and instruction\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1854, __extension__ __PRETTY_FUNCTION__ )); | ||||
1855 | (void)InsertedInsts; | ||||
1856 | |||||
1857 | // Nothing to do for single use in same basic block. | ||||
1858 | if (AndI->hasOneUse() && | ||||
1859 | AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) | ||||
1860 | return false; | ||||
1861 | |||||
1862 | // Try to avoid cases where sinking/duplicating is likely to increase register | ||||
1863 | // pressure. | ||||
1864 | if (!isa<ConstantInt>(AndI->getOperand(0)) && | ||||
1865 | !isa<ConstantInt>(AndI->getOperand(1)) && | ||||
1866 | AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) | ||||
1867 | return false; | ||||
1868 | |||||
1869 | for (auto *U : AndI->users()) { | ||||
1870 | Instruction *User = cast<Instruction>(U); | ||||
1871 | |||||
1872 | // Only sink 'and' feeding icmp with 0. | ||||
1873 | if (!isa<ICmpInst>(User)) | ||||
1874 | return false; | ||||
1875 | |||||
1876 | auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); | ||||
1877 | if (!CmpC || !CmpC->isZero()) | ||||
1878 | return false; | ||||
1879 | } | ||||
1880 | |||||
1881 | if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) | ||||
1882 | return false; | ||||
1883 | |||||
1884 | LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "found 'and' feeding only icmp 0;\n" ; } } while (false); | ||||
1885 | LLVM_DEBUG(AndI->getParent()->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { AndI->getParent()->dump(); } } while (false); | ||||
1886 | |||||
1887 | // Push the 'and' into the same block as the icmp 0. There should only be | ||||
1888 | // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any | ||||
1889 | // others, so we don't need to keep track of which BBs we insert into. | ||||
1890 | for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); | ||||
1891 | UI != E;) { | ||||
1892 | Use &TheUse = UI.getUse(); | ||||
1893 | Instruction *User = cast<Instruction>(*UI); | ||||
1894 | |||||
1895 | // Preincrement use iterator so we don't invalidate it. | ||||
1896 | ++UI; | ||||
1897 | |||||
1898 | LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "sinking 'and' use: " << *User << "\n"; } } while (false); | ||||
1899 | |||||
1900 | // Keep the 'and' in the same place if the use is already in the same block. | ||||
1901 | Instruction *InsertPt = | ||||
1902 | User->getParent() == AndI->getParent() ? AndI : User; | ||||
1903 | Instruction *InsertedAnd = | ||||
1904 | BinaryOperator::Create(Instruction::And, AndI->getOperand(0), | ||||
1905 | AndI->getOperand(1), "", InsertPt); | ||||
1906 | // Propagate the debug info. | ||||
1907 | InsertedAnd->setDebugLoc(AndI->getDebugLoc()); | ||||
1908 | |||||
1909 | // Replace a use of the 'and' with a use of the new 'and'. | ||||
1910 | TheUse = InsertedAnd; | ||||
1911 | ++NumAndUses; | ||||
1912 | LLVM_DEBUG(User->getParent()->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { User->getParent()->dump(); } } while (false); | ||||
1913 | } | ||||
1914 | |||||
1915 | // We removed all uses, nuke the and. | ||||
1916 | AndI->eraseFromParent(); | ||||
1917 | return true; | ||||
1918 | } | ||||
1919 | |||||
1920 | /// Check if the candidates could be combined with a shift instruction, which | ||||
1921 | /// includes: | ||||
1922 | /// 1. Truncate instruction | ||||
1923 | /// 2. And instruction and the imm is a mask of the low bits: | ||||
1924 | /// imm & (imm+1) == 0 | ||||
1925 | static bool isExtractBitsCandidateUse(Instruction *User) { | ||||
1926 | if (!isa<TruncInst>(User)) { | ||||
1927 | if (User->getOpcode() != Instruction::And || | ||||
1928 | !isa<ConstantInt>(User->getOperand(1))) | ||||
1929 | return false; | ||||
1930 | |||||
1931 | const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); | ||||
1932 | |||||
1933 | if ((Cimm & (Cimm + 1)).getBoolValue()) | ||||
1934 | return false; | ||||
1935 | } | ||||
1936 | return true; | ||||
1937 | } | ||||
1938 | |||||
1939 | /// Sink both shift and truncate instruction to the use of truncate's BB. | ||||
1940 | static bool | ||||
1941 | SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, | ||||
1942 | DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, | ||||
1943 | const TargetLowering &TLI, const DataLayout &DL) { | ||||
1944 | BasicBlock *UserBB = User->getParent(); | ||||
1945 | DenseMap<BasicBlock *, CastInst *> InsertedTruncs; | ||||
1946 | auto *TruncI = cast<TruncInst>(User); | ||||
1947 | bool MadeChange = false; | ||||
1948 | |||||
1949 | for (Value::user_iterator TruncUI = TruncI->user_begin(), | ||||
1950 | TruncE = TruncI->user_end(); | ||||
1951 | TruncUI != TruncE;) { | ||||
1952 | |||||
1953 | Use &TruncTheUse = TruncUI.getUse(); | ||||
1954 | Instruction *TruncUser = cast<Instruction>(*TruncUI); | ||||
1955 | // Preincrement use iterator so we don't invalidate it. | ||||
1956 | |||||
1957 | ++TruncUI; | ||||
1958 | |||||
1959 | int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); | ||||
1960 | if (!ISDOpcode) | ||||
1961 | continue; | ||||
1962 | |||||
1963 | // If the use is actually a legal node, there will not be an | ||||
1964 | // implicit truncate. | ||||
1965 | // FIXME: always querying the result type is just an | ||||
1966 | // approximation; some nodes' legality is determined by the | ||||
1967 | // operand or other means. There's no good way to find out though. | ||||
1968 | if (TLI.isOperationLegalOrCustom( | ||||
1969 | ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) | ||||
1970 | continue; | ||||
1971 | |||||
1972 | // Don't bother for PHI nodes. | ||||
1973 | if (isa<PHINode>(TruncUser)) | ||||
1974 | continue; | ||||
1975 | |||||
1976 | BasicBlock *TruncUserBB = TruncUser->getParent(); | ||||
1977 | |||||
1978 | if (UserBB == TruncUserBB) | ||||
1979 | continue; | ||||
1980 | |||||
1981 | BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; | ||||
1982 | CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; | ||||
1983 | |||||
1984 | if (!InsertedShift && !InsertedTrunc) { | ||||
1985 | BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); | ||||
1986 | assert(InsertPt != TruncUserBB->end())(static_cast <bool> (InsertPt != TruncUserBB->end()) ? void (0) : __assert_fail ("InsertPt != TruncUserBB->end()" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1986, __extension__ __PRETTY_FUNCTION__ )); | ||||
1987 | // Sink the shift | ||||
1988 | if (ShiftI->getOpcode() == Instruction::AShr) | ||||
1989 | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | ||||
1990 | "", &*InsertPt); | ||||
1991 | else | ||||
1992 | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | ||||
1993 | "", &*InsertPt); | ||||
1994 | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); | ||||
1995 | |||||
1996 | // Sink the trunc | ||||
1997 | BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); | ||||
1998 | TruncInsertPt++; | ||||
1999 | assert(TruncInsertPt != TruncUserBB->end())(static_cast <bool> (TruncInsertPt != TruncUserBB->end ()) ? void (0) : __assert_fail ("TruncInsertPt != TruncUserBB->end()" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1999, __extension__ __PRETTY_FUNCTION__ )); | ||||
2000 | |||||
2001 | InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, | ||||
2002 | TruncI->getType(), "", &*TruncInsertPt); | ||||
2003 | InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); | ||||
2004 | |||||
2005 | MadeChange = true; | ||||
2006 | |||||
2007 | TruncTheUse = InsertedTrunc; | ||||
2008 | } | ||||
2009 | } | ||||
2010 | return MadeChange; | ||||
2011 | } | ||||
2012 | |||||
2013 | /// Sink the shift *right* instruction into user blocks if the uses could | ||||
2014 | /// potentially be combined with this shift instruction and generate BitExtract | ||||
2015 | /// instruction. It will only be applied if the architecture supports BitExtract | ||||
2016 | /// instruction. Here is an example: | ||||
2017 | /// BB1: | ||||
2018 | /// %x.extract.shift = lshr i64 %arg1, 32 | ||||
2019 | /// BB2: | ||||
2020 | /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 | ||||
2021 | /// ==> | ||||
2022 | /// | ||||
2023 | /// BB2: | ||||
2024 | /// %x.extract.shift.1 = lshr i64 %arg1, 32 | ||||
2025 | /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 | ||||
2026 | /// | ||||
2027 | /// CodeGen will recognize the pattern in BB2 and generate BitExtract | ||||
2028 | /// instruction. | ||||
2029 | /// Return true if any changes are made. | ||||
2030 | static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, | ||||
2031 | const TargetLowering &TLI, | ||||
2032 | const DataLayout &DL) { | ||||
2033 | BasicBlock *DefBB = ShiftI->getParent(); | ||||
2034 | |||||
2035 | /// Only insert instructions in each block once. | ||||
2036 | DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; | ||||
2037 | |||||
2038 | bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); | ||||
2039 | |||||
2040 | bool MadeChange = false; | ||||
2041 | for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); | ||||
2042 | UI != E;) { | ||||
2043 | Use &TheUse = UI.getUse(); | ||||
2044 | Instruction *User = cast<Instruction>(*UI); | ||||
2045 | // Preincrement use iterator so we don't invalidate it. | ||||
2046 | ++UI; | ||||
2047 | |||||
2048 | // Don't bother for PHI nodes. | ||||
2049 | if (isa<PHINode>(User)) | ||||
2050 | continue; | ||||
2051 | |||||
2052 | if (!isExtractBitsCandidateUse(User)) | ||||
2053 | continue; | ||||
2054 | |||||
2055 | BasicBlock *UserBB = User->getParent(); | ||||
2056 | |||||
2057 | if (UserBB == DefBB) { | ||||
2058 | // If the shift and truncate instruction are in the same BB. The use of | ||||
2059 | // the truncate(TruncUse) may still introduce another truncate if not | ||||
2060 | // legal. In this case, we would like to sink both shift and truncate | ||||
2061 | // instruction to the BB of TruncUse. | ||||
2062 | // for example: | ||||
2063 | // BB1: | ||||
2064 | // i64 shift.result = lshr i64 opnd, imm | ||||
2065 | // trunc.result = trunc shift.result to i16 | ||||
2066 | // | ||||
2067 | // BB2: | ||||
2068 | // ----> We will have an implicit truncate here if the architecture does | ||||
2069 | // not have i16 compare. | ||||
2070 | // cmp i16 trunc.result, opnd2 | ||||
2071 | // | ||||
2072 | if (isa<TruncInst>(User) && | ||||
2073 | shiftIsLegal | ||||
2074 | // If the type of the truncate is legal, no truncate will be | ||||
2075 | // introduced in other basic blocks. | ||||
2076 | && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) | ||||
2077 | MadeChange = | ||||
2078 | SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); | ||||
2079 | |||||
2080 | continue; | ||||
2081 | } | ||||
2082 | // If we have already inserted a shift into this block, use it. | ||||
2083 | BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; | ||||
2084 | |||||
2085 | if (!InsertedShift) { | ||||
2086 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | ||||
2087 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2087, __extension__ __PRETTY_FUNCTION__)); | ||||
2088 | |||||
2089 | if (ShiftI->getOpcode() == Instruction::AShr) | ||||
2090 | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | ||||
2091 | "", &*InsertPt); | ||||
2092 | else | ||||
2093 | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | ||||
2094 | "", &*InsertPt); | ||||
2095 | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); | ||||
2096 | |||||
2097 | MadeChange = true; | ||||
2098 | } | ||||
2099 | |||||
2100 | // Replace a use of the shift with a use of the new shift. | ||||
2101 | TheUse = InsertedShift; | ||||
2102 | } | ||||
2103 | |||||
2104 | // If we removed all uses, or there are none, nuke the shift. | ||||
2105 | if (ShiftI->use_empty()) { | ||||
2106 | salvageDebugInfo(*ShiftI); | ||||
2107 | ShiftI->eraseFromParent(); | ||||
2108 | MadeChange = true; | ||||
2109 | } | ||||
2110 | |||||
2111 | return MadeChange; | ||||
2112 | } | ||||
2113 | |||||
2114 | /// If counting leading or trailing zeros is an expensive operation and a zero | ||||
2115 | /// input is defined, add a check for zero to avoid calling the intrinsic. | ||||
2116 | /// | ||||
2117 | /// We want to transform: | ||||
2118 | /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) | ||||
2119 | /// | ||||
2120 | /// into: | ||||
2121 | /// entry: | ||||
2122 | /// %cmpz = icmp eq i64 %A, 0 | ||||
2123 | /// br i1 %cmpz, label %cond.end, label %cond.false | ||||
2124 | /// cond.false: | ||||
2125 | /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) | ||||
2126 | /// br label %cond.end | ||||
2127 | /// cond.end: | ||||
2128 | /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] | ||||
2129 | /// | ||||
2130 | /// If the transform is performed, return true and set ModifiedDT to true. | ||||
2131 | static bool despeculateCountZeros(IntrinsicInst *CountZeros, | ||||
2132 | const TargetLowering *TLI, | ||||
2133 | const DataLayout *DL, ModifyDT &ModifiedDT, | ||||
2134 | SmallSet<BasicBlock *, 32> &FreshBBs, | ||||
2135 | bool IsHugeFunc) { | ||||
2136 | // If a zero input is undefined, it doesn't make sense to despeculate that. | ||||
2137 | if (match(CountZeros->getOperand(1), m_One())) | ||||
2138 | return false; | ||||
2139 | |||||
2140 | // If it's cheap to speculate, there's nothing to do. | ||||
2141 | Type *Ty = CountZeros->getType(); | ||||
2142 | auto IntrinsicID = CountZeros->getIntrinsicID(); | ||||
2143 | if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || | ||||
2144 | (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) | ||||
2145 | return false; | ||||
2146 | |||||
2147 | // Only handle legal scalar cases. Anything else requires too much work. | ||||
2148 | unsigned SizeInBits = Ty->getScalarSizeInBits(); | ||||
2149 | if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) | ||||
2150 | return false; | ||||
2151 | |||||
2152 | // Bail if the value is never zero. | ||||
2153 | Use &Op = CountZeros->getOperandUse(0); | ||||
2154 | if (isKnownNonZero(Op, *DL)) | ||||
2155 | return false; | ||||
2156 | |||||
2157 | // The intrinsic will be sunk behind a compare against zero and branch. | ||||
2158 | BasicBlock *StartBlock = CountZeros->getParent(); | ||||
2159 | BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); | ||||
2160 | if (IsHugeFunc) | ||||
2161 | FreshBBs.insert(CallBlock); | ||||
2162 | |||||
2163 | // Create another block after the count zero intrinsic. A PHI will be added | ||||
2164 | // in this block to select the result of the intrinsic or the bit-width | ||||
2165 | // constant if the input to the intrinsic is zero. | ||||
2166 | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); | ||||
2167 | BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); | ||||
2168 | if (IsHugeFunc) | ||||
2169 | FreshBBs.insert(EndBlock); | ||||
2170 | |||||
2171 | // Set up a builder to create a compare, conditional branch, and PHI. | ||||
2172 | IRBuilder<> Builder(CountZeros->getContext()); | ||||
2173 | Builder.SetInsertPoint(StartBlock->getTerminator()); | ||||
2174 | Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); | ||||
2175 | |||||
2176 | // Replace the unconditional branch that was created by the first split with | ||||
2177 | // a compare against zero and a conditional branch. | ||||
2178 | Value *Zero = Constant::getNullValue(Ty); | ||||
2179 | // Avoid introducing branch on poison. This also replaces the ctz operand. | ||||
2180 | if (!isGuaranteedNotToBeUndefOrPoison(Op)) | ||||
2181 | Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); | ||||
2182 | Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); | ||||
2183 | Builder.CreateCondBr(Cmp, EndBlock, CallBlock); | ||||
2184 | StartBlock->getTerminator()->eraseFromParent(); | ||||
2185 | |||||
2186 | // Create a PHI in the end block to select either the output of the intrinsic | ||||
2187 | // or the bit width of the operand. | ||||
2188 | Builder.SetInsertPoint(&EndBlock->front()); | ||||
2189 | PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); | ||||
2190 | replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); | ||||
2191 | Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); | ||||
2192 | PN->addIncoming(BitWidth, StartBlock); | ||||
2193 | PN->addIncoming(CountZeros, CallBlock); | ||||
2194 | |||||
2195 | // We are explicitly handling the zero case, so we can set the intrinsic's | ||||
2196 | // undefined zero argument to 'true'. This will also prevent reprocessing the | ||||
2197 | // intrinsic; we only despeculate when a zero input is defined. | ||||
2198 | CountZeros->setArgOperand(1, Builder.getTrue()); | ||||
2199 | ModifiedDT = ModifyDT::ModifyBBDT; | ||||
2200 | return true; | ||||
2201 | } | ||||
2202 | |||||
2203 | bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { | ||||
2204 | BasicBlock *BB = CI->getParent(); | ||||
2205 | |||||
2206 | // Lower inline assembly if we can. | ||||
2207 | // If we found an inline asm expession, and if the target knows how to | ||||
2208 | // lower it to normal LLVM code, do so now. | ||||
2209 | if (CI->isInlineAsm()) { | ||||
2210 | if (TLI->ExpandInlineAsm(CI)) { | ||||
2211 | // Avoid invalidating the iterator. | ||||
2212 | CurInstIterator = BB->begin(); | ||||
2213 | // Avoid processing instructions out of order, which could cause | ||||
2214 | // reuse before a value is defined. | ||||
2215 | SunkAddrs.clear(); | ||||
2216 | return true; | ||||
2217 | } | ||||
2218 | // Sink address computing for memory operands into the block. | ||||
2219 | if (optimizeInlineAsmInst(CI)) | ||||
2220 | return true; | ||||
2221 | } | ||||
2222 | |||||
2223 | // Align the pointer arguments to this call if the target thinks it's a good | ||||
2224 | // idea | ||||
2225 | unsigned MinSize; | ||||
2226 | Align PrefAlign; | ||||
2227 | if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { | ||||
2228 | for (auto &Arg : CI->args()) { | ||||
2229 | // We want to align both objects whose address is used directly and | ||||
2230 | // objects whose address is used in casts and GEPs, though it only makes | ||||
2231 | // sense for GEPs if the offset is a multiple of the desired alignment and | ||||
2232 | // if size - offset meets the size threshold. | ||||
2233 | if (!Arg->getType()->isPointerTy()) | ||||
2234 | continue; | ||||
2235 | APInt Offset(DL->getIndexSizeInBits( | ||||
2236 | cast<PointerType>(Arg->getType())->getAddressSpace()), | ||||
2237 | 0); | ||||
2238 | Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); | ||||
2239 | uint64_t Offset2 = Offset.getLimitedValue(); | ||||
2240 | if (!isAligned(PrefAlign, Offset2)) | ||||
2241 | continue; | ||||
2242 | AllocaInst *AI; | ||||
2243 | if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && | ||||
2244 | DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) | ||||
2245 | AI->setAlignment(PrefAlign); | ||||
2246 | // Global variables can only be aligned if they are defined in this | ||||
2247 | // object (i.e. they are uniquely initialized in this object), and | ||||
2248 | // over-aligning global variables that have an explicit section is | ||||
2249 | // forbidden. | ||||
2250 | GlobalVariable *GV; | ||||
2251 | if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && | ||||
2252 | GV->getPointerAlignment(*DL) < PrefAlign && | ||||
2253 | DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) | ||||
2254 | GV->setAlignment(PrefAlign); | ||||
2255 | } | ||||
2256 | } | ||||
2257 | // If this is a memcpy (or similar) then we may be able to improve the | ||||
2258 | // alignment. | ||||
2259 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { | ||||
2260 | Align DestAlign = getKnownAlignment(MI->getDest(), *DL); | ||||
2261 | MaybeAlign MIDestAlign = MI->getDestAlign(); | ||||
2262 | if (!MIDestAlign || DestAlign > *MIDestAlign) | ||||
2263 | MI->setDestAlignment(DestAlign); | ||||
2264 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { | ||||
2265 | MaybeAlign MTISrcAlign = MTI->getSourceAlign(); | ||||
2266 | Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); | ||||
2267 | if (!MTISrcAlign || SrcAlign > *MTISrcAlign) | ||||
2268 | MTI->setSourceAlignment(SrcAlign); | ||||
2269 | } | ||||
2270 | } | ||||
2271 | |||||
2272 | // If we have a cold call site, try to sink addressing computation into the | ||||
2273 | // cold block. This interacts with our handling for loads and stores to | ||||
2274 | // ensure that we can fold all uses of a potential addressing computation | ||||
2275 | // into their uses. TODO: generalize this to work over profiling data | ||||
2276 | if (CI->hasFnAttr(Attribute::Cold) && !OptSize && | ||||
2277 | !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) | ||||
2278 | for (auto &Arg : CI->args()) { | ||||
2279 | if (!Arg->getType()->isPointerTy()) | ||||
2280 | continue; | ||||
2281 | unsigned AS = Arg->getType()->getPointerAddressSpace(); | ||||
2282 | if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) | ||||
2283 | return true; | ||||
2284 | } | ||||
2285 | |||||
2286 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); | ||||
2287 | if (II) { | ||||
2288 | switch (II->getIntrinsicID()) { | ||||
2289 | default: | ||||
2290 | break; | ||||
2291 | case Intrinsic::assume: | ||||
2292 | llvm_unreachable("llvm.assume should have been removed already")::llvm::llvm_unreachable_internal("llvm.assume should have been removed already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2292); | ||||
2293 | case Intrinsic::experimental_widenable_condition: { | ||||
2294 | // Give up on future widening oppurtunties so that we can fold away dead | ||||
2295 | // paths and merge blocks before going into block-local instruction | ||||
2296 | // selection. | ||||
2297 | if (II->use_empty()) { | ||||
2298 | II->eraseFromParent(); | ||||
2299 | return true; | ||||
2300 | } | ||||
2301 | Constant *RetVal = ConstantInt::getTrue(II->getContext()); | ||||
2302 | resetIteratorIfInvalidatedWhileCalling(BB, [&]() { | ||||
2303 | replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); | ||||
2304 | }); | ||||
2305 | return true; | ||||
2306 | } | ||||
2307 | case Intrinsic::objectsize: | ||||
2308 | llvm_unreachable("llvm.objectsize.* should have been lowered already")::llvm::llvm_unreachable_internal("llvm.objectsize.* should have been lowered already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2308); | ||||
2309 | case Intrinsic::is_constant: | ||||
2310 | llvm_unreachable("llvm.is.constant.* should have been lowered already")::llvm::llvm_unreachable_internal("llvm.is.constant.* should have been lowered already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2310); | ||||
2311 | case Intrinsic::aarch64_stlxr: | ||||
2312 | case Intrinsic::aarch64_stxr: { | ||||
2313 | ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); | ||||
2314 | if (!ExtVal || !ExtVal->hasOneUse() || | ||||
2315 | ExtVal->getParent() == CI->getParent()) | ||||
2316 | return false; | ||||
2317 | // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. | ||||
2318 | ExtVal->moveBefore(CI); | ||||
2319 | // Mark this instruction as "inserted by CGP", so that other | ||||
2320 | // optimizations don't touch it. | ||||
2321 | InsertedInsts.insert(ExtVal); | ||||
2322 | return true; | ||||
2323 | } | ||||
2324 | |||||
2325 | case Intrinsic::launder_invariant_group: | ||||
2326 | case Intrinsic::strip_invariant_group: { | ||||
2327 | Value *ArgVal = II->getArgOperand(0); | ||||
2328 | auto it = LargeOffsetGEPMap.find(II); | ||||
2329 | if (it != LargeOffsetGEPMap.end()) { | ||||
2330 | // Merge entries in LargeOffsetGEPMap to reflect the RAUW. | ||||
2331 | // Make sure not to have to deal with iterator invalidation | ||||
2332 | // after possibly adding ArgVal to LargeOffsetGEPMap. | ||||
2333 | auto GEPs = std::move(it->second); | ||||
2334 | LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); | ||||
2335 | LargeOffsetGEPMap.erase(II); | ||||
2336 | } | ||||
2337 | |||||
2338 | replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); | ||||
2339 | II->eraseFromParent(); | ||||
2340 | return true; | ||||
2341 | } | ||||
2342 | case Intrinsic::cttz: | ||||
2343 | case Intrinsic::ctlz: | ||||
2344 | // If counting zeros is expensive, try to avoid it. | ||||
2345 | return despeculateCountZeros(II, TLI, DL, ModifiedDT, FreshBBs, | ||||
2346 | IsHugeFunc); | ||||
2347 | case Intrinsic::fshl: | ||||
2348 | case Intrinsic::fshr: | ||||
2349 | return optimizeFunnelShift(II); | ||||
2350 | case Intrinsic::dbg_assign: | ||||
2351 | case Intrinsic::dbg_value: | ||||
2352 | return fixupDbgValue(II); | ||||
2353 | case Intrinsic::masked_gather: | ||||
2354 | return optimizeGatherScatterInst(II, II->getArgOperand(0)); | ||||
2355 | case Intrinsic::masked_scatter: | ||||
2356 | return optimizeGatherScatterInst(II, II->getArgOperand(1)); | ||||
2357 | } | ||||
2358 | |||||
2359 | SmallVector<Value *, 2> PtrOps; | ||||
2360 | Type *AccessTy; | ||||
2361 | if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) | ||||
2362 | while (!PtrOps.empty()) { | ||||
2363 | Value *PtrVal = PtrOps.pop_back_val(); | ||||
2364 | unsigned AS = PtrVal->getType()->getPointerAddressSpace(); | ||||
2365 | if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) | ||||
2366 | return true; | ||||
2367 | } | ||||
2368 | } | ||||
2369 | |||||
2370 | // From here on out we're working with named functions. | ||||
2371 | if (!CI->getCalledFunction()) | ||||
2372 | return false; | ||||
2373 | |||||
2374 | // Lower all default uses of _chk calls. This is very similar | ||||
2375 | // to what InstCombineCalls does, but here we are only lowering calls | ||||
2376 | // to fortified library functions (e.g. __memcpy_chk) that have the default | ||||
2377 | // "don't know" as the objectsize. Anything else should be left alone. | ||||
2378 | FortifiedLibCallSimplifier Simplifier(TLInfo, true); | ||||
2379 | IRBuilder<> Builder(CI); | ||||
2380 | if (Value *V = Simplifier.optimizeCall(CI, Builder)) { | ||||
2381 | replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); | ||||
2382 | CI->eraseFromParent(); | ||||
2383 | return true; | ||||
2384 | } | ||||
2385 | |||||
2386 | return false; | ||||
2387 | } | ||||
2388 | |||||
2389 | /// Look for opportunities to duplicate return instructions to the predecessor | ||||
2390 | /// to enable tail call optimizations. The case it is currently looking for is: | ||||
2391 | /// @code | ||||
2392 | /// bb0: | ||||
2393 | /// %tmp0 = tail call i32 @f0() | ||||
2394 | /// br label %return | ||||
2395 | /// bb1: | ||||
2396 | /// %tmp1 = tail call i32 @f1() | ||||
2397 | /// br label %return | ||||
2398 | /// bb2: | ||||
2399 | /// %tmp2 = tail call i32 @f2() | ||||
2400 | /// br label %return | ||||
2401 | /// return: | ||||
2402 | /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] | ||||
2403 | /// ret i32 %retval | ||||
2404 | /// @endcode | ||||
2405 | /// | ||||
2406 | /// => | ||||
2407 | /// | ||||
2408 | /// @code | ||||
2409 | /// bb0: | ||||
2410 | /// %tmp0 = tail call i32 @f0() | ||||
2411 | /// ret i32 %tmp0 | ||||
2412 | /// bb1: | ||||
2413 | /// %tmp1 = tail call i32 @f1() | ||||
2414 | /// ret i32 %tmp1 | ||||
2415 | /// bb2: | ||||
2416 | /// %tmp2 = tail call i32 @f2() | ||||
2417 | /// ret i32 %tmp2 | ||||
2418 | /// @endcode | ||||
2419 | bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, | ||||
2420 | ModifyDT &ModifiedDT) { | ||||
2421 | if (!BB->getTerminator()) | ||||
| |||||
2422 | return false; | ||||
2423 | |||||
2424 | ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); | ||||
2425 | if (!RetI
| ||||
2426 | return false; | ||||
2427 | |||||
2428 | PHINode *PN = nullptr; | ||||
2429 | ExtractValueInst *EVI = nullptr; | ||||
2430 | BitCastInst *BCI = nullptr; | ||||
2431 | Value *V = RetI->getReturnValue(); | ||||
2432 | if (V
| ||||
2433 | BCI = dyn_cast<BitCastInst>(V); | ||||
2434 | if (BCI) | ||||
2435 | V = BCI->getOperand(0); | ||||
2436 | |||||
2437 | EVI = dyn_cast<ExtractValueInst>(V); | ||||
2438 | if (EVI) { | ||||
2439 | V = EVI->getOperand(0); | ||||
2440 | if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) | ||||
2441 | return false; | ||||
2442 | } | ||||
2443 | |||||
2444 | PN = dyn_cast<PHINode>(V); | ||||
2445 | if (!PN) | ||||
2446 | return false; | ||||
2447 | } | ||||
2448 | |||||
2449 | if (PN
| ||||
2450 | return false; | ||||
2451 | |||||
2452 | auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { | ||||
2453 | const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); | ||||
2454 | if (BC && BC->hasOneUse()) | ||||
2455 | Inst = BC->user_back(); | ||||
2456 | |||||
2457 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) | ||||
2458 | return II->getIntrinsicID() == Intrinsic::lifetime_end; | ||||
2459 | return false; | ||||
2460 | }; | ||||
2461 | |||||
2462 | // Make sure there are no instructions between the first instruction | ||||
2463 | // and return. | ||||
2464 | const Instruction *BI = BB->getFirstNonPHI(); | ||||
2465 | // Skip over debug and the bitcast. | ||||
2466 | while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || | ||||
2467 | isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) | ||||
2468 | BI = BI->getNextNode(); | ||||
| |||||
2469 | if (BI != RetI) | ||||
2470 | return false; | ||||
2471 | |||||
2472 | /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail | ||||
2473 | /// call. | ||||
2474 | const Function *F = BB->getParent(); | ||||
2475 | SmallVector<BasicBlock *, 4> TailCallBBs; | ||||
2476 | if (PN) { | ||||
2477 | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { | ||||
2478 | // Look through bitcasts. | ||||
2479 | Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); | ||||
2480 | CallInst *CI = dyn_cast<CallInst>(IncomingVal); | ||||
2481 | BasicBlock *PredBB = PN->getIncomingBlock(I); | ||||
2482 | // Make sure the phi value is indeed produced by the tail call. | ||||
2483 | if (CI && CI->hasOneUse() && CI->getParent() == PredBB && | ||||
2484 | TLI->mayBeEmittedAsTailCall(CI) && | ||||
2485 | attributesPermitTailCall(F, CI, RetI, *TLI)) | ||||
2486 | TailCallBBs.push_back(PredBB); | ||||
2487 | } | ||||
2488 | } else { | ||||
2489 | SmallPtrSet<BasicBlock *, 4> VisitedBBs; | ||||
2490 | for (BasicBlock *Pred : predecessors(BB)) { | ||||
2491 | if (!VisitedBBs.insert(Pred).second) | ||||
2492 | continue; | ||||
2493 | if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { | ||||
2494 | CallInst *CI = dyn_cast<CallInst>(I); | ||||
2495 | if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && | ||||
2496 | attributesPermitTailCall(F, CI, RetI, *TLI)) | ||||
2497 | TailCallBBs.push_back(Pred); | ||||
2498 | } | ||||
2499 | } | ||||
2500 | } | ||||
2501 | |||||
2502 | bool Changed = false; | ||||
2503 | for (auto const &TailCallBB : TailCallBBs) { | ||||
2504 | // Make sure the call instruction is followed by an unconditional branch to | ||||
2505 | // the return block. | ||||
2506 | BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); | ||||
2507 | if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) | ||||
2508 | continue; | ||||
2509 | |||||
2510 | // Duplicate the return into TailCallBB. | ||||
2511 | (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); | ||||
2512 | assert(!VerifyBFIUpdates ||(static_cast <bool> (!VerifyBFIUpdates || BFI->getBlockFreq (BB) >= BFI->getBlockFreq(TailCallBB)) ? void (0) : __assert_fail ("!VerifyBFIUpdates || BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2513, __extension__ __PRETTY_FUNCTION__ )) | ||||
2513 | BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB))(static_cast <bool> (!VerifyBFIUpdates || BFI->getBlockFreq (BB) >= BFI->getBlockFreq(TailCallBB)) ? void (0) : __assert_fail ("!VerifyBFIUpdates || BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2513, __extension__ __PRETTY_FUNCTION__ )); | ||||
2514 | BFI->setBlockFreq( | ||||
2515 | BB, | ||||
2516 | (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); | ||||
2517 | ModifiedDT = ModifyDT::ModifyBBDT; | ||||
2518 | Changed = true; | ||||
2519 | ++NumRetsDup; | ||||
2520 | } | ||||
2521 | |||||
2522 | // If we eliminated all predecessors of the block, delete the block now. | ||||
2523 | if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) | ||||
2524 | BB->eraseFromParent(); | ||||
2525 | |||||
2526 | return Changed; | ||||
2527 | } | ||||
2528 | |||||
2529 | //===----------------------------------------------------------------------===// | ||||
2530 | // Memory Optimization | ||||
2531 | //===----------------------------------------------------------------------===// | ||||
2532 | |||||
2533 | namespace { | ||||
2534 | |||||
2535 | /// This is an extended version of TargetLowering::AddrMode | ||||
2536 | /// which holds actual Value*'s for register values. | ||||
2537 | struct ExtAddrMode : public TargetLowering::AddrMode { | ||||
2538 | Value *BaseReg = nullptr; | ||||
2539 | Value *ScaledReg = nullptr; | ||||
2540 | Value *OriginalValue = nullptr; | ||||
2541 | bool InBounds = true; | ||||
2542 | |||||
2543 | enum FieldName { | ||||
2544 | NoField = 0x00, | ||||
2545 | BaseRegField = 0x01, | ||||
2546 | BaseGVField = 0x02, | ||||
2547 | BaseOffsField = 0x04, | ||||
2548 | ScaledRegField = 0x08, | ||||
2549 | ScaleField = 0x10, | ||||
2550 | MultipleFields = 0xff | ||||
2551 | }; | ||||
2552 | |||||
2553 | ExtAddrMode() = default; | ||||
2554 | |||||
2555 | void print(raw_ostream &OS) const; | ||||
2556 | void dump() const; | ||||
2557 | |||||
2558 | FieldName compare(const ExtAddrMode &other) { | ||||
2559 | // First check that the types are the same on each field, as differing types | ||||
2560 | // is something we can't cope with later on. | ||||
2561 | if (BaseReg && other.BaseReg && | ||||
2562 | BaseReg->getType() != other.BaseReg->getType()) | ||||
2563 | return MultipleFields; | ||||
2564 | if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) | ||||
2565 | return MultipleFields; | ||||
2566 | if (ScaledReg && other.ScaledReg && | ||||
2567 | ScaledReg->getType() != other.ScaledReg->getType()) | ||||
2568 | return MultipleFields; | ||||
2569 | |||||
2570 | // Conservatively reject 'inbounds' mismatches. | ||||
2571 | if (InBounds != other.InBounds) | ||||
2572 | return MultipleFields; | ||||
2573 | |||||
2574 | // Check each field to see if it differs. | ||||
2575 | unsigned Result = NoField; | ||||
2576 | if (BaseReg != other.BaseReg) | ||||
2577 | Result |= BaseRegField; | ||||
2578 | if (BaseGV != other.BaseGV) | ||||
2579 | Result |= BaseGVField; | ||||
2580 | if (BaseOffs != other.BaseOffs) | ||||
2581 | Result |= BaseOffsField; | ||||
2582 | if (ScaledReg != other.ScaledReg) | ||||
2583 | Result |= ScaledRegField; | ||||
2584 | // Don't count 0 as being a different scale, because that actually means | ||||
2585 | // unscaled (which will already be counted by having no ScaledReg). | ||||
2586 | if (Scale && other.Scale && Scale != other.Scale) | ||||
2587 | Result |= ScaleField; | ||||
2588 | |||||
2589 | if (llvm::popcount(Result) > 1) | ||||
2590 | return MultipleFields; | ||||
2591 | else | ||||
2592 | return static_cast<FieldName>(Result); | ||||
2593 | } | ||||
2594 | |||||
2595 | // An AddrMode is trivial if it involves no calculation i.e. it is just a base | ||||
2596 | // with no offset. | ||||
2597 | bool isTrivial() { | ||||
2598 | // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is | ||||
2599 | // trivial if at most one of these terms is nonzero, except that BaseGV and | ||||
2600 | // BaseReg both being zero actually means a null pointer value, which we | ||||
2601 | // consider to be 'non-zero' here. | ||||
2602 | return !BaseOffs && !Scale && !(BaseGV && BaseReg); | ||||
2603 | } | ||||
2604 | |||||
2605 | Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { | ||||
2606 | switch (Field) { | ||||
2607 | default: | ||||
2608 | return nullptr; | ||||
2609 | case BaseRegField: | ||||
2610 | return BaseReg; | ||||
2611 | case BaseGVField: | ||||
2612 | return BaseGV; | ||||
2613 | case ScaledRegField: | ||||
2614 | return ScaledReg; | ||||
2615 | case BaseOffsField: | ||||
2616 | return ConstantInt::get(IntPtrTy, BaseOffs); | ||||
2617 | } | ||||
2618 | } | ||||
2619 | |||||
2620 | void SetCombinedField(FieldName Field, Value *V, | ||||
2621 | const SmallVectorImpl<ExtAddrMode> &AddrModes) { | ||||
2622 | switch (Field) { | ||||
2623 | default: | ||||
2624 | llvm_unreachable("Unhandled fields are expected to be rejected earlier")::llvm::llvm_unreachable_internal("Unhandled fields are expected to be rejected earlier" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2624); | ||||
2625 | break; | ||||
2626 | case ExtAddrMode::BaseRegField: | ||||
2627 | BaseReg = V; | ||||
2628 | break; | ||||
2629 | case ExtAddrMode::BaseGVField: | ||||
2630 | // A combined BaseGV is an Instruction, not a GlobalValue, so it goes | ||||
2631 | // in the BaseReg field. | ||||
2632 | assert(BaseReg == nullptr)(static_cast <bool> (BaseReg == nullptr) ? void (0) : __assert_fail ("BaseReg == nullptr", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2632, __extension__ __PRETTY_FUNCTION__)); | ||||
2633 | BaseReg = V; | ||||
2634 | BaseGV = nullptr; | ||||
2635 | break; | ||||
2636 | case ExtAddrMode::ScaledRegField: | ||||
2637 | ScaledReg = V; | ||||
2638 | // If we have a mix of scaled and unscaled addrmodes then we want scale | ||||
2639 | // to be the scale and not zero. | ||||
2640 | if (!Scale) | ||||
2641 | for (const ExtAddrMode &AM : AddrModes) | ||||
2642 | if (AM.Scale) { | ||||
2643 | Scale = AM.Scale; | ||||
2644 | break; | ||||
2645 | } | ||||
2646 | break; | ||||
2647 | case ExtAddrMode::BaseOffsField: | ||||
2648 | // The offset is no longer a constant, so it goes in ScaledReg with a | ||||
2649 | // scale of 1. | ||||
2650 | assert(ScaledReg == nullptr)(static_cast <bool> (ScaledReg == nullptr) ? void (0) : __assert_fail ("ScaledReg == nullptr", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2650, __extension__ __PRETTY_FUNCTION__)); | ||||
2651 | ScaledReg = V; | ||||
2652 | Scale = 1; | ||||
2653 | BaseOffs = 0; | ||||
2654 | break; | ||||
2655 | } | ||||
2656 | } | ||||
2657 | }; | ||||
2658 | |||||
2659 | #ifndef NDEBUG | ||||
2660 | static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { | ||||
2661 | AM.print(OS); | ||||
2662 | return OS; | ||||
2663 | } | ||||
2664 | #endif | ||||
2665 | |||||
2666 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | ||||
2667 | void ExtAddrMode::print(raw_ostream &OS) const { | ||||
2668 | bool NeedPlus = false; | ||||
2669 | OS << "["; | ||||
2670 | if (InBounds) | ||||
2671 | OS << "inbounds "; | ||||
2672 | if (BaseGV) { | ||||
2673 | OS << "GV:"; | ||||
2674 | BaseGV->printAsOperand(OS, /*PrintType=*/false); | ||||
2675 | NeedPlus = true; | ||||
2676 | } | ||||
2677 | |||||
2678 | if (BaseOffs) { | ||||
2679 | OS << (NeedPlus ? " + " : "") << BaseOffs; | ||||
2680 | NeedPlus = true; | ||||
2681 | } | ||||
2682 | |||||
2683 | if (BaseReg) { | ||||
2684 | OS << (NeedPlus ? " + " : "") << "Base:"; | ||||
2685 | BaseReg->printAsOperand(OS, /*PrintType=*/false); | ||||
2686 | NeedPlus = true; | ||||
2687 | } | ||||
2688 | if (Scale) { | ||||
2689 | OS << (NeedPlus ? " + " : "") << Scale << "*"; | ||||
2690 | ScaledReg->printAsOperand(OS, /*PrintType=*/false); | ||||
2691 | } | ||||
2692 | |||||
2693 | OS << ']'; | ||||
2694 | } | ||||
2695 | |||||
2696 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void ExtAddrMode::dump() const { | ||||
2697 | print(dbgs()); | ||||
2698 | dbgs() << '\n'; | ||||
2699 | } | ||||
2700 | #endif | ||||
2701 | |||||
2702 | } // end anonymous namespace | ||||
2703 | |||||
2704 | namespace { | ||||
2705 | |||||
2706 | /// This class provides transaction based operation on the IR. | ||||
2707 | /// Every change made through this class is recorded in the internal state and | ||||
2708 | /// can be undone (rollback) until commit is called. | ||||
2709 | /// CGP does not check if instructions could be speculatively executed when | ||||
2710 | /// moved. Preserving the original location would pessimize the debugging | ||||
2711 | /// experience, as well as negatively impact the quality of sample PGO. | ||||
2712 | class TypePromotionTransaction { | ||||
2713 | /// This represents the common interface of the individual transaction. | ||||
2714 | /// Each class implements the logic for doing one specific modification on | ||||
2715 | /// the IR via the TypePromotionTransaction. | ||||
2716 | class TypePromotionAction { | ||||
2717 | protected: | ||||
2718 | /// The Instruction modified. | ||||
2719 | Instruction *Inst; | ||||
2720 | |||||
2721 | public: | ||||
2722 | /// Constructor of the action. | ||||
2723 | /// The constructor performs the related action on the IR. | ||||
2724 | TypePromotionAction(Instruction *Inst) : Inst(Inst) {} | ||||
2725 | |||||
2726 | virtual ~TypePromotionAction() = default; | ||||
2727 | |||||
2728 | /// Undo the modification done by this action. | ||||
2729 | /// When this method is called, the IR must be in the same state as it was | ||||
2730 | /// before this action was applied. | ||||
2731 | /// \pre Undoing the action works if and only if the IR is in the exact same | ||||
2732 | /// state as it was directly after this action was applied. | ||||
2733 | virtual void undo() = 0; | ||||
2734 | |||||
2735 | /// Advocate every change made by this action. | ||||
2736 | /// When the results on the IR of the action are to be kept, it is important | ||||
2737 | /// to call this function, otherwise hidden information may be kept forever. | ||||
2738 | virtual void commit() { | ||||
2739 | // Nothing to be done, this action is not doing anything. | ||||
2740 | } | ||||
2741 | }; | ||||
2742 | |||||
2743 | /// Utility to remember the position of an instruction. | ||||
2744 | class InsertionHandler { | ||||
2745 | /// Position of an instruction. | ||||
2746 | /// Either an instruction: | ||||
2747 | /// - Is the first in a basic block: BB is used. | ||||
2748 | /// - Has a previous instruction: PrevInst is used. | ||||
2749 | union { | ||||
2750 | Instruction *PrevInst; | ||||
2751 | BasicBlock *BB; | ||||
2752 | } Point; | ||||
2753 | |||||
2754 | /// Remember whether or not the instruction had a previous instruction. | ||||
2755 | bool HasPrevInstruction; | ||||
2756 | |||||
2757 | public: | ||||
2758 | /// Record the position of \p Inst. | ||||
2759 | InsertionHandler(Instruction *Inst) { | ||||
2760 | BasicBlock::iterator It = Inst->getIterator(); | ||||
2761 | HasPrevInstruction = (It != (Inst->getParent()->begin())); | ||||
2762 | if (HasPrevInstruction) | ||||
2763 | Point.PrevInst = &*--It; | ||||
2764 | else | ||||
2765 | Point.BB = Inst->getParent(); | ||||
2766 | } | ||||
2767 | |||||
2768 | /// Insert \p Inst at the recorded position. | ||||
2769 | void insert(Instruction *Inst) { | ||||
2770 | if (HasPrevInstruction) { | ||||
2771 | if (Inst->getParent()) | ||||
2772 | Inst->removeFromParent(); | ||||
2773 | Inst->insertAfter(Point.PrevInst); | ||||
2774 | } else { | ||||
2775 | Instruction *Position = &*Point.BB->getFirstInsertionPt(); | ||||
2776 | if (Inst->getParent()) | ||||
2777 | Inst->moveBefore(Position); | ||||
2778 | else | ||||
2779 | Inst->insertBefore(Position); | ||||
2780 | } | ||||
2781 | } | ||||
2782 | }; | ||||
2783 | |||||
2784 | /// Move an instruction before another. | ||||
2785 | class InstructionMoveBefore : public TypePromotionAction { | ||||
2786 | /// Original position of the instruction. | ||||
2787 | InsertionHandler Position; | ||||
2788 | |||||
2789 | public: | ||||
2790 | /// Move \p Inst before \p Before. | ||||
2791 | InstructionMoveBefore(Instruction *Inst, Instruction *Before) | ||||
2792 | : TypePromotionAction(Inst), Position(Inst) { | ||||
2793 | LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Beforedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: move: " << * Inst << "\nbefore: " << *Before << "\n"; } } while (false) | ||||
2794 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: move: " << * Inst << "\nbefore: " << *Before << "\n"; } } while (false); | ||||
2795 | Inst->moveBefore(Before); | ||||
2796 | } | ||||
2797 | |||||
2798 | /// Move the instruction back to its original position. | ||||
2799 | void undo() override { | ||||
2800 | LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: moveBefore: " << *Inst << "\n"; } } while (false); | ||||
2801 | Position.insert(Inst); | ||||
2802 | } | ||||
2803 | }; | ||||
2804 | |||||
2805 | /// Set the operand of an instruction with a new value. | ||||
2806 | class OperandSetter : public TypePromotionAction { | ||||
2807 | /// Original operand of the instruction. | ||||
2808 | Value *Origin; | ||||
2809 | |||||
2810 | /// Index of the modified instruction. | ||||
2811 | unsigned Idx; | ||||
2812 | |||||
2813 | public: | ||||
2814 | /// Set \p Idx operand of \p Inst with \p NewVal. | ||||
2815 | OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) | ||||
2816 | : TypePromotionAction(Inst), Idx(Idx) { | ||||
2817 | LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false) | ||||
2818 | << "for:" << *Inst << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false) | ||||
2819 | << "with:" << *NewVal << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false); | ||||
2820 | Origin = Inst->getOperand(Idx); | ||||
2821 | Inst->setOperand(Idx, NewVal); | ||||
2822 | } | ||||
2823 | |||||
2824 | /// Restore the original value of the instruction. | ||||
2825 | void undo() override { | ||||
2826 | LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false) | ||||
2827 | << "for: " << *Inst << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false) | ||||
2828 | << "with: " << *Origin << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false); | ||||
2829 | Inst->setOperand(Idx, Origin); | ||||
2830 | } | ||||
2831 | }; | ||||
2832 | |||||
2833 | /// Hide the operands of an instruction. | ||||
2834 | /// Do as if this instruction was not using any of its operands. | ||||
2835 | class OperandsHider : public TypePromotionAction { | ||||
2836 | /// The list of original operands. | ||||
2837 | SmallVector<Value *, 4> OriginalValues; | ||||
2838 | |||||
2839 | public: | ||||
2840 | /// Remove \p Inst from the uses of the operands of \p Inst. | ||||
2841 | OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { | ||||
2842 | LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: OperandsHider: " << *Inst << "\n"; } } while (false); | ||||
2843 | unsigned NumOpnds = Inst->getNumOperands(); | ||||
2844 | OriginalValues.reserve(NumOpnds); | ||||
2845 | for (unsigned It = 0; It < NumOpnds; ++It) { | ||||
2846 | // Save the current operand. | ||||
2847 | Value *Val = Inst->getOperand(It); | ||||
2848 | OriginalValues.push_back(Val); | ||||
2849 | // Set a dummy one. | ||||
2850 | // We could use OperandSetter here, but that would imply an overhead | ||||
2851 | // that we are not willing to pay. | ||||
2852 | Inst->setOperand(It, UndefValue::get(Val->getType())); | ||||
2853 | } | ||||
2854 | } | ||||
2855 | |||||
2856 | /// Restore the original list of uses. | ||||
2857 | void undo() override { | ||||
2858 | LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: OperandsHider: " << *Inst << "\n"; } } while (false); | ||||
2859 | for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) | ||||
2860 | Inst->setOperand(It, OriginalValues[It]); | ||||
2861 | } | ||||
2862 | }; | ||||
2863 | |||||
2864 | /// Build a truncate instruction. | ||||
2865 | class TruncBuilder : public TypePromotionAction { | ||||
2866 | Value *Val; | ||||
2867 | |||||
2868 | public: | ||||
2869 | /// Build a truncate instruction of \p Opnd producing a \p Ty | ||||
2870 | /// result. | ||||
2871 | /// trunc Opnd to Ty. | ||||
2872 | TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { | ||||
2873 | IRBuilder<> Builder(Opnd); | ||||
2874 | Builder.SetCurrentDebugLocation(DebugLoc()); | ||||
2875 | Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); | ||||
2876 | LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: TruncBuilder: " << *Val << "\n"; } } while (false); | ||||
2877 | } | ||||
2878 | |||||
2879 | /// Get the built value. | ||||
2880 | Value *getBuiltValue() { return Val; } | ||||
2881 | |||||
2882 | /// Remove the built instruction. | ||||
2883 | void undo() override { | ||||
2884 | LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: TruncBuilder: " << *Val << "\n"; } } while (false); | ||||
2885 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | ||||
2886 | IVal->eraseFromParent(); | ||||
2887 | } | ||||
2888 | }; | ||||
2889 | |||||
2890 | /// Build a sign extension instruction. | ||||
2891 | class SExtBuilder : public TypePromotionAction { | ||||
2892 | Value *Val; | ||||
2893 | |||||
2894 | public: | ||||
2895 | /// Build a sign extension instruction of \p Opnd producing a \p Ty | ||||
2896 | /// result. | ||||
2897 | /// sext Opnd to Ty. | ||||
2898 | SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | ||||
2899 | : TypePromotionAction(InsertPt) { | ||||
2900 | IRBuilder<> Builder(InsertPt); | ||||
2901 | Val = Builder.CreateSExt(Opnd, Ty, "promoted"); | ||||
2902 | LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: SExtBuilder: " << *Val << "\n"; } } while (false); | ||||
2903 | } | ||||
2904 | |||||
2905 | /// Get the built value. | ||||
2906 | Value *getBuiltValue() { return Val; } | ||||
2907 | |||||
2908 | /// Remove the built instruction. | ||||
2909 | void undo() override { | ||||
2910 | LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: SExtBuilder: " << *Val << "\n"; } } while (false); | ||||
2911 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | ||||
2912 | IVal->eraseFromParent(); | ||||
2913 | } | ||||
2914 | }; | ||||
2915 | |||||
2916 | /// Build a zero extension instruction. | ||||
2917 | class ZExtBuilder : public TypePromotionAction { | ||||
2918 | Value *Val; | ||||
2919 | |||||
2920 | public: | ||||
2921 | /// Build a zero extension instruction of \p Opnd producing a \p Ty | ||||
2922 | /// result. | ||||
2923 | /// zext Opnd to Ty. | ||||
2924 | ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | ||||
2925 | : TypePromotionAction(InsertPt) { | ||||
2926 | IRBuilder<> Builder(InsertPt); | ||||
2927 | Builder.SetCurrentDebugLocation(DebugLoc()); | ||||
2928 | Val = Builder.CreateZExt(Opnd, Ty, "promoted"); | ||||
2929 | LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: ZExtBuilder: " << *Val << "\n"; } } while (false); | ||||
2930 | } | ||||
2931 | |||||
2932 | /// Get the built value. | ||||
2933 | Value *getBuiltValue() { return Val; } | ||||
2934 | |||||
2935 | /// Remove the built instruction. | ||||
2936 | void undo() override { | ||||
2937 | LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"; } } while (false); | ||||
2938 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | ||||
2939 | IVal->eraseFromParent(); | ||||
2940 | } | ||||
2941 | }; | ||||
2942 | |||||
2943 | /// Mutate an instruction to another type. | ||||
2944 | class TypeMutator : public TypePromotionAction { | ||||
2945 | /// Record the original type. | ||||
2946 | Type *OrigTy; | ||||
2947 | |||||
2948 | public: | ||||
2949 | /// Mutate the type of \p Inst into \p NewTy. | ||||
2950 | TypeMutator(Instruction *Inst, Type *NewTy) | ||||
2951 | : TypePromotionAction(Inst), OrigTy(Inst->getType()) { | ||||
2952 | LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"; } } while (false) | ||||
2953 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"; } } while (false); | ||||
2954 | Inst->mutateType(NewTy); | ||||
2955 | } | ||||
2956 | |||||
2957 | /// Mutate the instruction back to its original type. | ||||
2958 | void undo() override { | ||||
2959 | LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"; } } while (false) | ||||
2960 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"; } } while (false); | ||||
2961 | Inst->mutateType(OrigTy); | ||||
2962 | } | ||||
2963 | }; | ||||
2964 | |||||
2965 | /// Replace the uses of an instruction by another instruction. | ||||
2966 | class UsesReplacer : public TypePromotionAction { | ||||
2967 | /// Helper structure to keep track of the replaced uses. | ||||
2968 | struct InstructionAndIdx { | ||||
2969 | /// The instruction using the instruction. | ||||
2970 | Instruction *Inst; | ||||
2971 | |||||
2972 | /// The index where this instruction is used for Inst. | ||||
2973 | unsigned Idx; | ||||
2974 | |||||
2975 | InstructionAndIdx(Instruction *Inst, unsigned Idx) | ||||
2976 | : Inst(Inst), Idx(Idx) {} | ||||
2977 | }; | ||||
2978 | |||||
2979 | /// Keep track of the original uses (pair Instruction, Index). | ||||
2980 | SmallVector<InstructionAndIdx, 4> OriginalUses; | ||||
2981 | /// Keep track of the debug users. | ||||
2982 | SmallVector<DbgValueInst *, 1> DbgValues; | ||||
2983 | |||||
2984 | /// Keep track of the new value so that we can undo it by replacing | ||||
2985 | /// instances of the new value with the original value. | ||||
2986 | Value *New; | ||||
2987 | |||||
2988 | using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; | ||||
2989 | |||||
2990 | public: | ||||
2991 | /// Replace all the use of \p Inst by \p New. | ||||
2992 | UsesReplacer(Instruction *Inst, Value *New) | ||||
2993 | : TypePromotionAction(Inst), New(New) { | ||||
2994 | LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *Newdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"; } } while (false) | ||||
2995 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"; } } while (false); | ||||
2996 | // Record the original uses. | ||||
2997 | for (Use &U : Inst->uses()) { | ||||
2998 | Instruction *UserI = cast<Instruction>(U.getUser()); | ||||
2999 | OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); | ||||
3000 | } | ||||
3001 | // Record the debug uses separately. They are not in the instruction's | ||||
3002 | // use list, but they are replaced by RAUW. | ||||
3003 | findDbgValues(DbgValues, Inst); | ||||
3004 | |||||
3005 | // Now, we can replace the uses. | ||||
3006 | Inst->replaceAllUsesWith(New); | ||||
3007 | } | ||||
3008 | |||||
3009 | /// Reassign the original uses of Inst to Inst. | ||||
3010 | void undo() override { | ||||
3011 | LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"; } } while (false); | ||||
3012 | for (InstructionAndIdx &Use : OriginalUses) | ||||
3013 | Use.Inst->setOperand(Use.Idx, Inst); | ||||
3014 | // RAUW has replaced all original uses with references to the new value, | ||||
3015 | // including the debug uses. Since we are undoing the replacements, | ||||
3016 | // the original debug uses must also be reinstated to maintain the | ||||
3017 | // correctness and utility of debug value instructions. | ||||
3018 | for (auto *DVI : DbgValues) | ||||
3019 | DVI->replaceVariableLocationOp(New, Inst); | ||||
3020 | } | ||||
3021 | }; | ||||
3022 | |||||
3023 | /// Remove an instruction from the IR. | ||||
3024 | class InstructionRemover : public TypePromotionAction { | ||||
3025 | /// Original position of the instruction. | ||||
3026 | InsertionHandler Inserter; | ||||
3027 | |||||
3028 | /// Helper structure to hide all the link to the instruction. In other | ||||
3029 | /// words, this helps to do as if the instruction was removed. | ||||
3030 | OperandsHider Hider; | ||||
3031 | |||||
3032 | /// Keep track of the uses replaced, if any. | ||||
3033 | UsesReplacer *Replacer = nullptr; | ||||
3034 | |||||
3035 | /// Keep track of instructions removed. | ||||
3036 | SetOfInstrs &RemovedInsts; | ||||
3037 | |||||
3038 | public: | ||||
3039 | /// Remove all reference of \p Inst and optionally replace all its | ||||
3040 | /// uses with New. | ||||
3041 | /// \p RemovedInsts Keep track of the instructions removed by this Action. | ||||
3042 | /// \pre If !Inst->use_empty(), then New != nullptr | ||||
3043 | InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, | ||||
3044 | Value *New = nullptr) | ||||
3045 | : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), | ||||
3046 | RemovedInsts(RemovedInsts) { | ||||
3047 | if (New) | ||||
3048 | Replacer = new UsesReplacer(Inst, New); | ||||
3049 | LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: InstructionRemover: " << *Inst << "\n"; } } while (false); | ||||
3050 | RemovedInsts.insert(Inst); | ||||
3051 | /// The instructions removed here will be freed after completing | ||||
3052 | /// optimizeBlock() for all blocks as we need to keep track of the | ||||
3053 | /// removed instructions during promotion. | ||||
3054 | Inst->removeFromParent(); | ||||
3055 | } | ||||
3056 | |||||
3057 | ~InstructionRemover() override { delete Replacer; } | ||||
3058 | |||||
3059 | /// Resurrect the instruction and reassign it to the proper uses if | ||||
3060 | /// new value was provided when build this action. | ||||
3061 | void undo() override { | ||||
3062 | LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"; } } while (false); | ||||
3063 | Inserter.insert(Inst); | ||||
3064 | if (Replacer) | ||||
3065 | Replacer->undo(); | ||||
3066 | Hider.undo(); | ||||
3067 | RemovedInsts.erase(Inst); | ||||
3068 | } | ||||
3069 | }; | ||||
3070 | |||||
3071 | public: | ||||
3072 | /// Restoration point. | ||||
3073 | /// The restoration point is a pointer to an action instead of an iterator | ||||
3074 | /// because the iterator may be invalidated but not the pointer. | ||||
3075 | using ConstRestorationPt = const TypePromotionAction *; | ||||
3076 | |||||
3077 | TypePromotionTransaction(SetOfInstrs &RemovedInsts) | ||||
3078 | : RemovedInsts(RemovedInsts) {} | ||||
3079 | |||||
3080 | /// Advocate every changes made in that transaction. Return true if any change | ||||
3081 | /// happen. | ||||
3082 | bool commit(); | ||||
3083 | |||||
3084 | /// Undo all the changes made after the given point. | ||||
3085 | void rollback(ConstRestorationPt Point); | ||||
3086 | |||||
3087 | /// Get the current restoration point. | ||||
3088 | ConstRestorationPt getRestorationPoint() const; | ||||
3089 | |||||
3090 | /// \name API for IR modification with state keeping to support rollback. | ||||
3091 | /// @{ | ||||
3092 | /// Same as Instruction::setOperand. | ||||
3093 | void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); | ||||
3094 | |||||
3095 | /// Same as Instruction::eraseFromParent. | ||||
3096 | void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); | ||||
3097 | |||||
3098 | /// Same as Value::replaceAllUsesWith. | ||||
3099 | void replaceAllUsesWith(Instruction *Inst, Value *New); | ||||
3100 | |||||
3101 | /// Same as Value::mutateType. | ||||
3102 | void mutateType(Instruction *Inst, Type *NewTy); | ||||
3103 | |||||
3104 | /// Same as IRBuilder::createTrunc. | ||||
3105 | Value *createTrunc(Instruction *Opnd, Type *Ty); | ||||
3106 | |||||
3107 | /// Same as IRBuilder::createSExt. | ||||
3108 | Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); | ||||
3109 | |||||
3110 | /// Same as IRBuilder::createZExt. | ||||
3111 | Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); | ||||
3112 | |||||
3113 | /// Same as Instruction::moveBefore. | ||||
3114 | void moveBefore(Instruction *Inst, Instruction *Before); | ||||
3115 | /// @} | ||||
3116 | |||||
3117 | private: | ||||
3118 | /// The ordered list of actions made so far. | ||||
3119 | SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; | ||||
3120 | |||||
3121 | using CommitPt = | ||||
3122 | SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; | ||||
3123 | |||||
3124 | SetOfInstrs &RemovedInsts; | ||||
3125 | }; | ||||
3126 | |||||
3127 | } // end anonymous namespace | ||||
3128 | |||||
3129 | void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, | ||||
3130 | Value *NewVal) { | ||||
3131 | Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( | ||||
3132 | Inst, Idx, NewVal)); | ||||
3133 | } | ||||
3134 | |||||
3135 | void TypePromotionTransaction::eraseInstruction(Instruction *Inst, | ||||
3136 | Value *NewVal) { | ||||
3137 | Actions.push_back( | ||||
3138 | std::make_unique<TypePromotionTransaction::InstructionRemover>( | ||||
3139 | Inst, RemovedInsts, NewVal)); | ||||
3140 | } | ||||
3141 | |||||
3142 | void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, | ||||
3143 | Value *New) { | ||||
3144 | Actions.push_back( | ||||
3145 | std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); | ||||
3146 | } | ||||
3147 | |||||
3148 | void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { | ||||
3149 | Actions.push_back( | ||||
3150 | std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); | ||||
3151 | } | ||||
3152 | |||||
3153 | Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { | ||||
3154 | std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); | ||||
3155 | Value *Val = Ptr->getBuiltValue(); | ||||
3156 | Actions.push_back(std::move(Ptr)); | ||||
3157 | return Val; | ||||
3158 | } | ||||
3159 | |||||
3160 | Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, | ||||
3161 | Type *Ty) { | ||||
3162 | std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); | ||||
3163 | Value *Val = Ptr->getBuiltValue(); | ||||
3164 | Actions.push_back(std::move(Ptr)); | ||||
3165 | return Val; | ||||
3166 | } | ||||
3167 | |||||
3168 | Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, | ||||
3169 | Type *Ty) { | ||||
3170 | std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); | ||||
3171 | Value *Val = Ptr->getBuiltValue(); | ||||
3172 | Actions.push_back(std::move(Ptr)); | ||||
3173 | return Val; | ||||
3174 | } | ||||
3175 | |||||
3176 | void TypePromotionTransaction::moveBefore(Instruction *Inst, | ||||
3177 | Instruction *Before) { | ||||
3178 | Actions.push_back( | ||||
3179 | std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( | ||||
3180 | Inst, Before)); | ||||
3181 | } | ||||
3182 | |||||
3183 | TypePromotionTransaction::ConstRestorationPt | ||||
3184 | TypePromotionTransaction::getRestorationPoint() const { | ||||
3185 | return !Actions.empty() ? Actions.back().get() : nullptr; | ||||
3186 | } | ||||
3187 | |||||
3188 | bool TypePromotionTransaction::commit() { | ||||
3189 | for (std::unique_ptr<TypePromotionAction> &Action : Actions) | ||||
3190 | Action->commit(); | ||||
3191 | bool Modified = !Actions.empty(); | ||||
3192 | Actions.clear(); | ||||
3193 | return Modified; | ||||
3194 | } | ||||
3195 | |||||
3196 | void TypePromotionTransaction::rollback( | ||||
3197 | TypePromotionTransaction::ConstRestorationPt Point) { | ||||
3198 | while (!Actions.empty() && Point != Actions.back().get()) { | ||||
3199 | std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); | ||||
3200 | Curr->undo(); | ||||
3201 | } | ||||
3202 | } | ||||
3203 | |||||
3204 | namespace { | ||||
3205 | |||||
3206 | /// A helper class for matching addressing modes. | ||||
3207 | /// | ||||
3208 | /// This encapsulates the logic for matching the target-legal addressing modes. | ||||
3209 | class AddressingModeMatcher { | ||||
3210 | SmallVectorImpl<Instruction *> &AddrModeInsts; | ||||
3211 | const TargetLowering &TLI; | ||||
3212 | const TargetRegisterInfo &TRI; | ||||
3213 | const DataLayout &DL; | ||||
3214 | const LoopInfo &LI; | ||||
3215 | const std::function<const DominatorTree &()> getDTFn; | ||||
3216 | |||||
3217 | /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and | ||||
3218 | /// the memory instruction that we're computing this address for. | ||||
3219 | Type *AccessTy; | ||||
3220 | unsigned AddrSpace; | ||||
3221 | Instruction *MemoryInst; | ||||
3222 | |||||
3223 | /// This is the addressing mode that we're building up. This is | ||||
3224 | /// part of the return value of this addressing mode matching stuff. | ||||
3225 | ExtAddrMode &AddrMode; | ||||
3226 | |||||
3227 | /// The instructions inserted by other CodeGenPrepare optimizations. | ||||
3228 | const SetOfInstrs &InsertedInsts; | ||||
3229 | |||||
3230 | /// A map from the instructions to their type before promotion. | ||||
3231 | InstrToOrigTy &PromotedInsts; | ||||
3232 | |||||
3233 | /// The ongoing transaction where every action should be registered. | ||||
3234 | TypePromotionTransaction &TPT; | ||||
3235 | |||||
3236 | // A GEP which has too large offset to be folded into the addressing mode. | ||||
3237 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; | ||||
3238 | |||||
3239 | /// This is set to true when we should not do profitability checks. | ||||
3240 | /// When true, IsProfitableToFoldIntoAddressingMode always returns true. | ||||
3241 | bool IgnoreProfitability; | ||||
3242 | |||||
3243 | /// True if we are optimizing for size. | ||||
3244 | bool OptSize; | ||||
3245 | |||||
3246 | ProfileSummaryInfo *PSI; | ||||
3247 | BlockFrequencyInfo *BFI; | ||||
3248 | |||||
3249 | AddressingModeMatcher( | ||||
3250 | SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, | ||||
3251 | const TargetRegisterInfo &TRI, const LoopInfo &LI, | ||||
3252 | const std::function<const DominatorTree &()> getDTFn, Type *AT, | ||||
3253 | unsigned AS, Instruction *MI, ExtAddrMode &AM, | ||||
3254 | const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, | ||||
3255 | TypePromotionTransaction &TPT, | ||||
3256 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, | ||||
3257 | bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) | ||||
3258 | : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), | ||||
3259 | DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), | ||||
3260 | AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), | ||||
3261 | InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), | ||||
3262 | LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { | ||||
3263 | IgnoreProfitability = false; | ||||
3264 | } | ||||
3265 | |||||
3266 | public: | ||||
3267 | /// Find the maximal addressing mode that a load/store of V can fold, | ||||
3268 | /// give an access type of AccessTy. This returns a list of involved | ||||
3269 | /// instructions in AddrModeInsts. | ||||
3270 | /// \p InsertedInsts The instructions inserted by other CodeGenPrepare | ||||
3271 | /// optimizations. | ||||
3272 | /// \p PromotedInsts maps the instructions to their type before promotion. | ||||
3273 | /// \p The ongoing transaction where every action should be registered. | ||||
3274 | static ExtAddrMode | ||||
3275 | Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, | ||||
3276 | SmallVectorImpl<Instruction *> &AddrModeInsts, | ||||
3277 | const TargetLowering &TLI, const LoopInfo &LI, | ||||
3278 | const std::function<const DominatorTree &()> getDTFn, | ||||
3279 | const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, | ||||
3280 | InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, | ||||
3281 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, | ||||
3282 | bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { | ||||
3283 | ExtAddrMode Result; | ||||
3284 | |||||
3285 | bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, | ||||
3286 | AccessTy, AS, MemoryInst, Result, | ||||
3287 | InsertedInsts, PromotedInsts, TPT, | ||||
3288 | LargeOffsetGEP, OptSize, PSI, BFI) | ||||
3289 | .matchAddr(V, 0); | ||||
3290 | (void)Success; | ||||
3291 | assert(Success && "Couldn't select *anything*?")(static_cast <bool> (Success && "Couldn't select *anything*?" ) ? void (0) : __assert_fail ("Success && \"Couldn't select *anything*?\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3291, __extension__ __PRETTY_FUNCTION__ )); | ||||
3292 | return Result; | ||||
3293 | } | ||||
3294 | |||||
3295 | private: | ||||
3296 | bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); | ||||
3297 | bool matchAddr(Value *Addr, unsigned Depth); | ||||
3298 | bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, | ||||
3299 | bool *MovedAway = nullptr); | ||||
3300 | bool isProfitableToFoldIntoAddressingMode(Instruction *I, | ||||
3301 | ExtAddrMode &AMBefore, | ||||
3302 | ExtAddrMode &AMAfter); | ||||
3303 | bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); | ||||
3304 | bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, | ||||
3305 | Value *PromotedOperand) const; | ||||
3306 | }; | ||||
3307 | |||||
3308 | class PhiNodeSet; | ||||
3309 | |||||
3310 | /// An iterator for PhiNodeSet. | ||||
3311 | class PhiNodeSetIterator { | ||||
3312 | PhiNodeSet *const Set; | ||||
3313 | size_t CurrentIndex = 0; | ||||
3314 | |||||
3315 | public: | ||||
3316 | /// The constructor. Start should point to either a valid element, or be equal | ||||
3317 | /// to the size of the underlying SmallVector of the PhiNodeSet. | ||||
3318 | PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); | ||||
3319 | PHINode *operator*() const; | ||||
3320 | PhiNodeSetIterator &operator++(); | ||||
3321 | bool operator==(const PhiNodeSetIterator &RHS) const; | ||||
3322 | bool operator!=(const PhiNodeSetIterator &RHS) const; | ||||
3323 | }; | ||||
3324 | |||||
3325 | /// Keeps a set of PHINodes. | ||||
3326 | /// | ||||
3327 | /// This is a minimal set implementation for a specific use case: | ||||
3328 | /// It is very fast when there are very few elements, but also provides good | ||||
3329 | /// performance when there are many. It is similar to SmallPtrSet, but also | ||||
3330 | /// provides iteration by insertion order, which is deterministic and stable | ||||
3331 | /// across runs. It is also similar to SmallSetVector, but provides removing | ||||
3332 | /// elements in O(1) time. This is achieved by not actually removing the element | ||||
3333 | /// from the underlying vector, so comes at the cost of using more memory, but | ||||
3334 | /// that is fine, since PhiNodeSets are used as short lived objects. | ||||
3335 | class PhiNodeSet { | ||||
3336 | friend class PhiNodeSetIterator; | ||||
3337 | |||||
3338 | using MapType = SmallDenseMap<PHINode *, size_t, 32>; | ||||
3339 | using iterator = PhiNodeSetIterator; | ||||
3340 | |||||
3341 | /// Keeps the elements in the order of their insertion in the underlying | ||||
3342 | /// vector. To achieve constant time removal, it never deletes any element. | ||||
3343 | SmallVector<PHINode *, 32> NodeList; | ||||
3344 | |||||
3345 | /// Keeps the elements in the underlying set implementation. This (and not the | ||||
3346 | /// NodeList defined above) is the source of truth on whether an element | ||||
3347 | /// is actually in the collection. | ||||
3348 | MapType NodeMap; | ||||
3349 | |||||
3350 | /// Points to the first valid (not deleted) element when the set is not empty | ||||
3351 | /// and the value is not zero. Equals to the size of the underlying vector | ||||
3352 | /// when the set is empty. When the value is 0, as in the beginning, the | ||||
3353 | /// first element may or may not be valid. | ||||
3354 | size_t FirstValidElement = 0; | ||||
3355 | |||||
3356 | public: | ||||
3357 | /// Inserts a new element to the collection. | ||||
3358 | /// \returns true if the element is actually added, i.e. was not in the | ||||
3359 | /// collection before the operation. | ||||
3360 | bool insert(PHINode *Ptr) { | ||||
3361 | if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { | ||||
3362 | NodeList.push_back(Ptr); | ||||
3363 | return true; | ||||
3364 | } | ||||
3365 | return false; | ||||
3366 | } | ||||
3367 | |||||
3368 | /// Removes the element from the collection. | ||||
3369 | /// \returns whether the element is actually removed, i.e. was in the | ||||
3370 | /// collection before the operation. | ||||
3371 | bool erase(PHINode *Ptr) { | ||||
3372 | if (NodeMap.erase(Ptr)) { | ||||
3373 | SkipRemovedElements(FirstValidElement); | ||||
3374 | return true; | ||||
3375 | } | ||||
3376 | return false; | ||||
3377 | } | ||||
3378 | |||||
3379 | /// Removes all elements and clears the collection. | ||||
3380 | void clear() { | ||||
3381 | NodeMap.clear(); | ||||
3382 | NodeList.clear(); | ||||
3383 | FirstValidElement = 0; | ||||
3384 | } | ||||
3385 | |||||
3386 | /// \returns an iterator that will iterate the elements in the order of | ||||
3387 | /// insertion. | ||||
3388 | iterator begin() { | ||||
3389 | if (FirstValidElement == 0) | ||||
3390 | SkipRemovedElements(FirstValidElement); | ||||
3391 | return PhiNodeSetIterator(this, FirstValidElement); | ||||
3392 | } | ||||
3393 | |||||
3394 | /// \returns an iterator that points to the end of the collection. | ||||
3395 | iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } | ||||
3396 | |||||
3397 | /// Returns the number of elements in the collection. | ||||
3398 | size_t size() const { return NodeMap.size(); } | ||||
3399 | |||||
3400 | /// \returns 1 if the given element is in the collection, and 0 if otherwise. | ||||
3401 | size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } | ||||
3402 | |||||
3403 | private: | ||||
3404 | /// Updates the CurrentIndex so that it will point to a valid element. | ||||
3405 | /// | ||||
3406 | /// If the element of NodeList at CurrentIndex is valid, it does not | ||||
3407 | /// change it. If there are no more valid elements, it updates CurrentIndex | ||||
3408 | /// to point to the end of the NodeList. | ||||
3409 | void SkipRemovedElements(size_t &CurrentIndex) { | ||||
3410 | while (CurrentIndex < NodeList.size()) { | ||||
3411 | auto it = NodeMap.find(NodeList[CurrentIndex]); | ||||
3412 | // If the element has been deleted and added again later, NodeMap will | ||||
3413 | // point to a different index, so CurrentIndex will still be invalid. | ||||
3414 | if (it != NodeMap.end() && it->second == CurrentIndex) | ||||
3415 | break; | ||||
3416 | ++CurrentIndex; | ||||
3417 | } | ||||
3418 | } | ||||
3419 | }; | ||||
3420 | |||||
3421 | PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) | ||||
3422 | : Set(Set), CurrentIndex(Start) {} | ||||
3423 | |||||
3424 | PHINode *PhiNodeSetIterator::operator*() const { | ||||
3425 | assert(CurrentIndex < Set->NodeList.size() &&(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3426, __extension__ __PRETTY_FUNCTION__ )) | ||||
3426 | "PhiNodeSet access out of range")(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3426, __extension__ __PRETTY_FUNCTION__ )); | ||||
3427 | return Set->NodeList[CurrentIndex]; | ||||
3428 | } | ||||
3429 | |||||
3430 | PhiNodeSetIterator &PhiNodeSetIterator::operator++() { | ||||
3431 | assert(CurrentIndex < Set->NodeList.size() &&(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3432, __extension__ __PRETTY_FUNCTION__ )) | ||||
3432 | "PhiNodeSet access out of range")(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3432, __extension__ __PRETTY_FUNCTION__ )); | ||||
3433 | ++CurrentIndex; | ||||
3434 | Set->SkipRemovedElements(CurrentIndex); | ||||
3435 | return *this; | ||||
3436 | } | ||||
3437 | |||||
3438 | bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { | ||||
3439 | return CurrentIndex == RHS.CurrentIndex; | ||||
3440 | } | ||||
3441 | |||||
3442 | bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { | ||||
3443 | return !((*this) == RHS); | ||||
3444 | } | ||||
3445 | |||||
3446 | /// Keep track of simplification of Phi nodes. | ||||
3447 | /// Accept the set of all phi nodes and erase phi node from this set | ||||
3448 | /// if it is simplified. | ||||
3449 | class SimplificationTracker { | ||||
3450 | DenseMap<Value *, Value *> Storage; | ||||
3451 | const SimplifyQuery &SQ; | ||||
3452 | // Tracks newly created Phi nodes. The elements are iterated by insertion | ||||
3453 | // order. | ||||
3454 | PhiNodeSet AllPhiNodes; | ||||
3455 | // Tracks newly created Select nodes. | ||||
3456 | SmallPtrSet<SelectInst *, 32> AllSelectNodes; | ||||
3457 | |||||
3458 | public: | ||||
3459 | SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} | ||||
3460 | |||||
3461 | Value *Get(Value *V) { | ||||
3462 | do { | ||||
3463 | auto SV = Storage.find(V); | ||||
3464 | if (SV == Storage.end()) | ||||
3465 | return V; | ||||
3466 | V = SV->second; | ||||
3467 | } while (true); | ||||
3468 | } | ||||
3469 | |||||
3470 | Value *Simplify(Value *Val) { | ||||
3471 | SmallVector<Value *, 32> WorkList; | ||||
3472 | SmallPtrSet<Value *, 32> Visited; | ||||
3473 | WorkList.push_back(Val); | ||||
3474 | while (!WorkList.empty()) { | ||||
3475 | auto *P = WorkList.pop_back_val(); | ||||
3476 | if (!Visited.insert(P).second) | ||||
3477 | continue; | ||||
3478 | if (auto *PI = dyn_cast<Instruction>(P)) | ||||
3479 | if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { | ||||
3480 | for (auto *U : PI->users()) | ||||
3481 | WorkList.push_back(cast<Value>(U)); | ||||
3482 | Put(PI, V); | ||||
3483 | PI->replaceAllUsesWith(V); | ||||
3484 | if (auto *PHI = dyn_cast<PHINode>(PI)) | ||||
3485 | AllPhiNodes.erase(PHI); | ||||
3486 | if (auto *Select = dyn_cast<SelectInst>(PI)) | ||||
3487 | AllSelectNodes.erase(Select); | ||||
3488 | PI->eraseFromParent(); | ||||
3489 | } | ||||
3490 | } | ||||
3491 | return Get(Val); | ||||
3492 | } | ||||
3493 | |||||
3494 | void Put(Value *From, Value *To) { Storage.insert({From, To}); } | ||||
3495 | |||||
3496 | void ReplacePhi(PHINode *From, PHINode *To) { | ||||
3497 | Value *OldReplacement = Get(From); | ||||
3498 | while (OldReplacement != From) { | ||||
3499 | From = To; | ||||
3500 | To = dyn_cast<PHINode>(OldReplacement); | ||||
3501 | OldReplacement = Get(From); | ||||
3502 | } | ||||
3503 | assert(To && Get(To) == To && "Replacement PHI node is already replaced.")(static_cast <bool> (To && Get(To) == To && "Replacement PHI node is already replaced.") ? void (0) : __assert_fail ("To && Get(To) == To && \"Replacement PHI node is already replaced.\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3503, __extension__ __PRETTY_FUNCTION__ )); | ||||
3504 | Put(From, To); | ||||
3505 | From->replaceAllUsesWith(To); | ||||
3506 | AllPhiNodes.erase(From); | ||||
3507 | From->eraseFromParent(); | ||||
3508 | } | ||||
3509 | |||||
3510 | PhiNodeSet &newPhiNodes() { return AllPhiNodes; } | ||||
3511 | |||||
3512 | void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } | ||||
3513 | |||||
3514 | void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } | ||||
3515 | |||||
3516 | unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } | ||||
3517 | |||||
3518 | unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } | ||||
3519 | |||||
3520 | void destroyNewNodes(Type *CommonType) { | ||||
3521 | // For safe erasing, replace the uses with dummy value first. | ||||
3522 | auto *Dummy = PoisonValue::get(CommonType); | ||||
3523 | for (auto *I : AllPhiNodes) { | ||||
3524 | I->replaceAllUsesWith(Dummy); | ||||
3525 | I->eraseFromParent(); | ||||
3526 | } | ||||
3527 | AllPhiNodes.clear(); | ||||
3528 | for (auto *I : AllSelectNodes) { | ||||
3529 | I->replaceAllUsesWith(Dummy); | ||||
3530 | I->eraseFromParent(); | ||||
3531 | } | ||||
3532 | AllSelectNodes.clear(); | ||||
3533 | } | ||||
3534 | }; | ||||
3535 | |||||
3536 | /// A helper class for combining addressing modes. | ||||
3537 | class AddressingModeCombiner { | ||||
3538 | typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; | ||||
3539 | typedef std::pair<PHINode *, PHINode *> PHIPair; | ||||
3540 | |||||
3541 | private: | ||||
3542 | /// The addressing modes we've collected. | ||||
3543 | SmallVector<ExtAddrMode, 16> AddrModes; | ||||
3544 | |||||
3545 | /// The field in which the AddrModes differ, when we have more than one. | ||||
3546 | ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; | ||||
3547 | |||||
3548 | /// Are the AddrModes that we have all just equal to their original values? | ||||
3549 | bool AllAddrModesTrivial = true; | ||||
3550 | |||||
3551 | /// Common Type for all different fields in addressing modes. | ||||
3552 | Type *CommonType = nullptr; | ||||
3553 | |||||
3554 | /// SimplifyQuery for simplifyInstruction utility. | ||||
3555 | const SimplifyQuery &SQ; | ||||
3556 | |||||
3557 | /// Original Address. | ||||
3558 | Value *Original; | ||||
3559 | |||||
3560 | public: | ||||
3561 | AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) | ||||
3562 | : SQ(_SQ), Original(OriginalValue) {} | ||||
3563 | |||||
3564 | /// Get the combined AddrMode | ||||
3565 | const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } | ||||
3566 | |||||
3567 | /// Add a new AddrMode if it's compatible with the AddrModes we already | ||||
3568 | /// have. | ||||
3569 | /// \return True iff we succeeded in doing so. | ||||
3570 | bool addNewAddrMode(ExtAddrMode &NewAddrMode) { | ||||
3571 | // Take note of if we have any non-trivial AddrModes, as we need to detect | ||||
3572 | // when all AddrModes are trivial as then we would introduce a phi or select | ||||
3573 | // which just duplicates what's already there. | ||||
3574 | AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); | ||||
3575 | |||||
3576 | // If this is the first addrmode then everything is fine. | ||||
3577 | if (AddrModes.empty()) { | ||||
3578 | AddrModes.emplace_back(NewAddrMode); | ||||
3579 | return true; | ||||
3580 | } | ||||
3581 | |||||
3582 | // Figure out how different this is from the other address modes, which we | ||||
3583 | // can do just by comparing against the first one given that we only care | ||||
3584 | // about the cumulative difference. | ||||
3585 | ExtAddrMode::FieldName ThisDifferentField = | ||||
3586 | AddrModes[0].compare(NewAddrMode); | ||||
3587 | if (DifferentField == ExtAddrMode::NoField) | ||||
3588 | DifferentField = ThisDifferentField; | ||||
3589 | else if (DifferentField != ThisDifferentField) | ||||
3590 | DifferentField = ExtAddrMode::MultipleFields; | ||||
3591 | |||||
3592 | // If NewAddrMode differs in more than one dimension we cannot handle it. | ||||
3593 | bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; | ||||
3594 | |||||
3595 | // If Scale Field is different then we reject. | ||||
3596 | CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; | ||||
3597 | |||||
3598 | // We also must reject the case when base offset is different and | ||||
3599 | // scale reg is not null, we cannot handle this case due to merge of | ||||
3600 | // different offsets will be used as ScaleReg. | ||||
3601 | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || | ||||
3602 | !NewAddrMode.ScaledReg); | ||||
3603 | |||||
3604 | // We also must reject the case when GV is different and BaseReg installed | ||||
3605 | // due to we want to use base reg as a merge of GV values. | ||||
3606 | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || | ||||
3607 | !NewAddrMode.HasBaseReg); | ||||
3608 | |||||
3609 | // Even if NewAddMode is the same we still need to collect it due to | ||||
3610 | // original value is different. And later we will need all original values | ||||
3611 | // as anchors during finding the common Phi node. | ||||
3612 | if (CanHandle) | ||||
3613 | AddrModes.emplace_back(NewAddrMode); | ||||
3614 | else | ||||
3615 | AddrModes.clear(); | ||||
3616 | |||||
3617 | return CanHandle; | ||||
3618 | } | ||||
3619 | |||||
3620 | /// Combine the addressing modes we've collected into a single | ||||
3621 | /// addressing mode. | ||||
3622 | /// \return True iff we successfully combined them or we only had one so | ||||
3623 | /// didn't need to combine them anyway. | ||||
3624 | bool combineAddrModes() { | ||||
3625 | // If we have no AddrModes then they can't be combined. | ||||
3626 | if (AddrModes.size() == 0) | ||||
3627 | return false; | ||||
3628 | |||||
3629 | // A single AddrMode can trivially be combined. | ||||
3630 | if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) | ||||
3631 | return true; | ||||
3632 | |||||
3633 | // If the AddrModes we collected are all just equal to the value they are | ||||
3634 | // derived from then combining them wouldn't do anything useful. | ||||
3635 | if (AllAddrModesTrivial) | ||||
3636 | return false; | ||||
3637 | |||||
3638 | if (!addrModeCombiningAllowed()) | ||||
3639 | return false; | ||||
3640 | |||||
3641 | // Build a map between <original value, basic block where we saw it> to | ||||
3642 | // value of base register. | ||||
3643 | // Bail out if there is no common type. | ||||
3644 | FoldAddrToValueMapping Map; | ||||
3645 | if (!initializeMap(Map)) | ||||
3646 | return false; | ||||
3647 | |||||
3648 | Value *CommonValue = findCommon(Map); | ||||
3649 | if (CommonValue) | ||||
3650 | AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); | ||||
3651 | return CommonValue != nullptr; | ||||
3652 | } | ||||
3653 | |||||
3654 | private: | ||||
3655 | /// Initialize Map with anchor values. For address seen | ||||
3656 | /// we set the value of different field saw in this address. | ||||
3657 | /// At the same time we find a common type for different field we will | ||||
3658 | /// use to create new Phi/Select nodes. Keep it in CommonType field. | ||||
3659 | /// Return false if there is no common type found. | ||||
3660 | bool initializeMap(FoldAddrToValueMapping &Map) { | ||||
3661 | // Keep track of keys where the value is null. We will need to replace it | ||||
3662 | // with constant null when we know the common type. | ||||
3663 | SmallVector<Value *, 2> NullValue; | ||||
3664 | Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); | ||||
3665 | for (auto &AM : AddrModes) { | ||||
3666 | Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); | ||||
3667 | if (DV) { | ||||
3668 | auto *Type = DV->getType(); | ||||
3669 | if (CommonType && CommonType != Type) | ||||
3670 | return false; | ||||
3671 | CommonType = Type; | ||||
3672 | Map[AM.OriginalValue] = DV; | ||||
3673 | } else { | ||||
3674 | NullValue.push_back(AM.OriginalValue); | ||||
3675 | } | ||||
3676 | } | ||||
3677 | assert(CommonType && "At least one non-null value must be!")(static_cast <bool> (CommonType && "At least one non-null value must be!" ) ? void (0) : __assert_fail ("CommonType && \"At least one non-null value must be!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3677, __extension__ __PRETTY_FUNCTION__ )); | ||||
3678 | for (auto *V : NullValue) | ||||
3679 | Map[V] = Constant::getNullValue(CommonType); | ||||
3680 | return true; | ||||
3681 | } | ||||
3682 | |||||
3683 | /// We have mapping between value A and other value B where B was a field in | ||||
3684 | /// addressing mode represented by A. Also we have an original value C | ||||
3685 | /// representing an address we start with. Traversing from C through phi and | ||||
3686 | /// selects we ended up with A's in a map. This utility function tries to find | ||||
3687 | /// a value V which is a field in addressing mode C and traversing through phi | ||||
3688 | /// nodes and selects we will end up in corresponded values B in a map. | ||||
3689 | /// The utility will create a new Phi/Selects if needed. | ||||
3690 | // The simple example looks as follows: | ||||
3691 | // BB1: | ||||
3692 | // p1 = b1 + 40 | ||||
3693 | // br cond BB2, BB3 | ||||
3694 | // BB2: | ||||
3695 | // p2 = b2 + 40 | ||||
3696 | // br BB3 | ||||
3697 | // BB3: | ||||
3698 | // p = phi [p1, BB1], [p2, BB2] | ||||
3699 | // v = load p | ||||
3700 | // Map is | ||||
3701 | // p1 -> b1 | ||||
3702 | // p2 -> b2 | ||||
3703 | // Request is | ||||
3704 | // p -> ? | ||||
3705 | // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. | ||||
3706 | Value *findCommon(FoldAddrToValueMapping &Map) { | ||||
3707 | // Tracks the simplification of newly created phi nodes. The reason we use | ||||
3708 | // this mapping is because we will add new created Phi nodes in AddrToBase. | ||||
3709 | // Simplification of Phi nodes is recursive, so some Phi node may | ||||
3710 | // be simplified after we added it to AddrToBase. In reality this | ||||
3711 | // simplification is possible only if original phi/selects were not | ||||
3712 | // simplified yet. | ||||
3713 | // Using this mapping we can find the current value in AddrToBase. | ||||
3714 | SimplificationTracker ST(SQ); | ||||
3715 | |||||
3716 | // First step, DFS to create PHI nodes for all intermediate blocks. | ||||
3717 | // Also fill traverse order for the second step. | ||||
3718 | SmallVector<Value *, 32> TraverseOrder; | ||||
3719 | InsertPlaceholders(Map, TraverseOrder, ST); | ||||
3720 | |||||
3721 | // Second Step, fill new nodes by merged values and simplify if possible. | ||||
3722 | FillPlaceholders(Map, TraverseOrder, ST); | ||||
3723 | |||||
3724 | if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { | ||||
3725 | ST.destroyNewNodes(CommonType); | ||||
3726 | return nullptr; | ||||
3727 | } | ||||
3728 | |||||
3729 | // Now we'd like to match New Phi nodes to existed ones. | ||||
3730 | unsigned PhiNotMatchedCount = 0; | ||||
3731 | if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { | ||||
3732 | ST.destroyNewNodes(CommonType); | ||||
3733 | return nullptr; | ||||
3734 | } | ||||
3735 | |||||
3736 | auto *Result = ST.Get(Map.find(Original)->second); | ||||
3737 | if (Result) { | ||||
3738 | NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; | ||||
3739 | NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); | ||||
3740 | } | ||||
3741 | return Result; | ||||
3742 | } | ||||
3743 | |||||
3744 | /// Try to match PHI node to Candidate. | ||||
3745 | /// Matcher tracks the matched Phi nodes. | ||||
3746 | bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, | ||||
3747 | SmallSetVector<PHIPair, 8> &Matcher, | ||||
3748 | PhiNodeSet &PhiNodesToMatch) { | ||||
3749 | SmallVector<PHIPair, 8> WorkList; | ||||
3750 | Matcher.insert({PHI, Candidate}); | ||||
3751 | SmallSet<PHINode *, 8> MatchedPHIs; | ||||
3752 | MatchedPHIs.insert(PHI); | ||||
3753 | WorkList.push_back({PHI, Candidate}); | ||||
3754 | SmallSet<PHIPair, 8> Visited; | ||||
3755 | while (!WorkList.empty()) { | ||||
3756 | auto Item = WorkList.pop_back_val(); | ||||
3757 | if (!Visited.insert(Item).second) | ||||
3758 | continue; | ||||
3759 | // We iterate over all incoming values to Phi to compare them. | ||||
3760 | // If values are different and both of them Phi and the first one is a | ||||
3761 | // Phi we added (subject to match) and both of them is in the same basic | ||||
3762 | // block then we can match our pair if values match. So we state that | ||||
3763 | // these values match and add it to work list to verify that. | ||||
3764 | for (auto *B : Item.first->blocks()) { | ||||
3765 | Value *FirstValue = Item.first->getIncomingValueForBlock(B); | ||||
3766 | Value *SecondValue = Item.second->getIncomingValueForBlock(B); | ||||
3767 | if (FirstValue == SecondValue) | ||||
3768 | continue; | ||||
3769 | |||||
3770 | PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); | ||||
3771 | PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); | ||||
3772 | |||||
3773 | // One of them is not Phi or | ||||
3774 | // The first one is not Phi node from the set we'd like to match or | ||||
3775 | // Phi nodes from different basic blocks then | ||||
3776 | // we will not be able to match. | ||||
3777 | if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || | ||||
3778 | FirstPhi->getParent() != SecondPhi->getParent()) | ||||
3779 | return false; | ||||
3780 | |||||
3781 | // If we already matched them then continue. | ||||
3782 | if (Matcher.count({FirstPhi, SecondPhi})) | ||||
3783 | continue; | ||||
3784 | // So the values are different and does not match. So we need them to | ||||
3785 | // match. (But we register no more than one match per PHI node, so that | ||||
3786 | // we won't later try to replace them twice.) | ||||
3787 | if (MatchedPHIs.insert(FirstPhi).second) | ||||
3788 | Matcher.insert({FirstPhi, SecondPhi}); | ||||
3789 | // But me must check it. | ||||
3790 | WorkList.push_back({FirstPhi, SecondPhi}); | ||||
3791 | } | ||||
3792 | } | ||||
3793 | return true; | ||||
3794 | } | ||||
3795 | |||||
3796 | /// For the given set of PHI nodes (in the SimplificationTracker) try | ||||
3797 | /// to find their equivalents. | ||||
3798 | /// Returns false if this matching fails and creation of new Phi is disabled. | ||||
3799 | bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, | ||||
3800 | unsigned &PhiNotMatchedCount) { | ||||
3801 | // Matched and PhiNodesToMatch iterate their elements in a deterministic | ||||
3802 | // order, so the replacements (ReplacePhi) are also done in a deterministic | ||||
3803 | // order. | ||||
3804 | SmallSetVector<PHIPair, 8> Matched; | ||||
3805 | SmallPtrSet<PHINode *, 8> WillNotMatch; | ||||
3806 | PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); | ||||
3807 | while (PhiNodesToMatch.size()) { | ||||
3808 | PHINode *PHI = *PhiNodesToMatch.begin(); | ||||
3809 | |||||
3810 | // Add us, if no Phi nodes in the basic block we do not match. | ||||
3811 | WillNotMatch.clear(); | ||||
3812 | WillNotMatch.insert(PHI); | ||||
3813 | |||||
3814 | // Traverse all Phis until we found equivalent or fail to do that. | ||||
3815 | bool IsMatched = false; | ||||
3816 | for (auto &P : PHI->getParent()->phis()) { | ||||
3817 | // Skip new Phi nodes. | ||||
3818 | if (PhiNodesToMatch.count(&P)) | ||||
3819 | continue; | ||||
3820 | if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) | ||||
3821 | break; | ||||
3822 | // If it does not match, collect all Phi nodes from matcher. | ||||
3823 | // if we end up with no match, them all these Phi nodes will not match | ||||
3824 | // later. | ||||
3825 | for (auto M : Matched) | ||||
3826 | WillNotMatch.insert(M.first); | ||||
3827 | Matched.clear(); | ||||
3828 | } | ||||
3829 | if (IsMatched) { | ||||
3830 | // Replace all matched values and erase them. | ||||
3831 | for (auto MV : Matched) | ||||
3832 | ST.ReplacePhi(MV.first, MV.second); | ||||
3833 | Matched.clear(); | ||||
3834 | continue; | ||||
3835 | } | ||||
3836 | // If we are not allowed to create new nodes then bail out. | ||||
3837 | if (!AllowNewPhiNodes) | ||||
3838 | return false; | ||||
3839 | // Just remove all seen values in matcher. They will not match anything. | ||||
3840 | PhiNotMatchedCount += WillNotMatch.size(); | ||||
3841 | for (auto *P : WillNotMatch) | ||||
3842 | PhiNodesToMatch.erase(P); | ||||
3843 | } | ||||
3844 | return true; | ||||
3845 | } | ||||
3846 | /// Fill the placeholders with values from predecessors and simplify them. | ||||
3847 | void FillPlaceholders(FoldAddrToValueMapping &Map, | ||||
3848 | SmallVectorImpl<Value *> &TraverseOrder, | ||||
3849 | SimplificationTracker &ST) { | ||||
3850 | while (!TraverseOrder.empty()) { | ||||
3851 | Value *Current = TraverseOrder.pop_back_val(); | ||||
3852 | assert(Map.contains(Current) && "No node to fill!!!")(static_cast <bool> (Map.contains(Current) && "No node to fill!!!" ) ? void (0) : __assert_fail ("Map.contains(Current) && \"No node to fill!!!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3852, __extension__ __PRETTY_FUNCTION__ )); | ||||
3853 | Value *V = Map[Current]; | ||||
3854 | |||||
3855 | if (SelectInst *Select = dyn_cast<SelectInst>(V)) { | ||||
3856 | // CurrentValue also must be Select. | ||||
3857 | auto *CurrentSelect = cast<SelectInst>(Current); | ||||
3858 | auto *TrueValue = CurrentSelect->getTrueValue(); | ||||
3859 | assert(Map.contains(TrueValue) && "No True Value!")(static_cast <bool> (Map.contains(TrueValue) && "No True Value!") ? void (0) : __assert_fail ("Map.contains(TrueValue) && \"No True Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3859, __extension__ __PRETTY_FUNCTION__ )); | ||||
3860 | Select->setTrueValue(ST.Get(Map[TrueValue])); | ||||
3861 | auto *FalseValue = CurrentSelect->getFalseValue(); | ||||
3862 | assert(Map.contains(FalseValue) && "No False Value!")(static_cast <bool> (Map.contains(FalseValue) && "No False Value!") ? void (0) : __assert_fail ("Map.contains(FalseValue) && \"No False Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3862, __extension__ __PRETTY_FUNCTION__ )); | ||||
3863 | Select->setFalseValue(ST.Get(Map[FalseValue])); | ||||
3864 | } else { | ||||
3865 | // Must be a Phi node then. | ||||
3866 | auto *PHI = cast<PHINode>(V); | ||||
3867 | // Fill the Phi node with values from predecessors. | ||||
3868 | for (auto *B : predecessors(PHI->getParent())) { | ||||
3869 | Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); | ||||
3870 | assert(Map.contains(PV) && "No predecessor Value!")(static_cast <bool> (Map.contains(PV) && "No predecessor Value!" ) ? void (0) : __assert_fail ("Map.contains(PV) && \"No predecessor Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3870, __extension__ __PRETTY_FUNCTION__ )); | ||||
3871 | PHI->addIncoming(ST.Get(Map[PV]), B); | ||||
3872 | } | ||||
3873 | } | ||||
3874 | Map[Current] = ST.Simplify(V); | ||||
3875 | } | ||||
3876 | } | ||||
3877 | |||||
3878 | /// Starting from original value recursively iterates over def-use chain up to | ||||
3879 | /// known ending values represented in a map. For each traversed phi/select | ||||
3880 | /// inserts a placeholder Phi or Select. | ||||
3881 | /// Reports all new created Phi/Select nodes by adding them to set. | ||||
3882 | /// Also reports and order in what values have been traversed. | ||||
3883 | void InsertPlaceholders(FoldAddrToValueMapping &Map, | ||||
3884 | SmallVectorImpl<Value *> &TraverseOrder, | ||||
3885 | SimplificationTracker &ST) { | ||||
3886 | SmallVector<Value *, 32> Worklist; | ||||
3887 | assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&(static_cast <bool> ((isa<PHINode>(Original) || isa <SelectInst>(Original)) && "Address must be a Phi or Select node" ) ? void (0) : __assert_fail ("(isa<PHINode>(Original) || isa<SelectInst>(Original)) && \"Address must be a Phi or Select node\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3888, __extension__ __PRETTY_FUNCTION__ )) | ||||
3888 | "Address must be a Phi or Select node")(static_cast <bool> ((isa<PHINode>(Original) || isa <SelectInst>(Original)) && "Address must be a Phi or Select node" ) ? void (0) : __assert_fail ("(isa<PHINode>(Original) || isa<SelectInst>(Original)) && \"Address must be a Phi or Select node\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3888, __extension__ __PRETTY_FUNCTION__ )); | ||||
3889 | auto *Dummy = PoisonValue::get(CommonType); | ||||
3890 | Worklist.push_back(Original); | ||||
3891 | while (!Worklist.empty()) { | ||||
3892 | Value *Current = Worklist.pop_back_val(); | ||||
3893 | // if it is already visited or it is an ending value then skip it. | ||||
3894 | if (Map.contains(Current)) | ||||
3895 | continue; | ||||
3896 | TraverseOrder.push_back(Current); | ||||
3897 | |||||
3898 | // CurrentValue must be a Phi node or select. All others must be covered | ||||
3899 | // by anchors. | ||||
3900 | if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { | ||||
3901 | // Is it OK to get metadata from OrigSelect?! | ||||
3902 | // Create a Select placeholder with dummy value. | ||||
3903 | SelectInst *Select = SelectInst::Create( | ||||
3904 | CurrentSelect->getCondition(), Dummy, Dummy, | ||||
3905 | CurrentSelect->getName(), CurrentSelect, CurrentSelect); | ||||
3906 | Map[Current] = Select; | ||||
3907 | ST.insertNewSelect(Select); | ||||
3908 | // We are interested in True and False values. | ||||
3909 | Worklist.push_back(CurrentSelect->getTrueValue()); | ||||
3910 | Worklist.push_back(CurrentSelect->getFalseValue()); | ||||
3911 | } else { | ||||
3912 | // It must be a Phi node then. | ||||
3913 | PHINode *CurrentPhi = cast<PHINode>(Current); | ||||
3914 | unsigned PredCount = CurrentPhi->getNumIncomingValues(); | ||||
3915 | PHINode *PHI = | ||||
3916 | PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); | ||||
3917 | Map[Current] = PHI; | ||||
3918 | ST.insertNewPhi(PHI); | ||||
3919 | append_range(Worklist, CurrentPhi->incoming_values()); | ||||
3920 | } | ||||
3921 | } | ||||
3922 | } | ||||
3923 | |||||
3924 | bool addrModeCombiningAllowed() { | ||||
3925 | if (DisableComplexAddrModes) | ||||
3926 | return false; | ||||
3927 | switch (DifferentField) { | ||||
3928 | default: | ||||
3929 | return false; | ||||
3930 | case ExtAddrMode::BaseRegField: | ||||
3931 | return AddrSinkCombineBaseReg; | ||||
3932 | case ExtAddrMode::BaseGVField: | ||||
3933 | return AddrSinkCombineBaseGV; | ||||
3934 | case ExtAddrMode::BaseOffsField: | ||||
3935 | return AddrSinkCombineBaseOffs; | ||||
3936 | case ExtAddrMode::ScaledRegField: | ||||
3937 | return AddrSinkCombineScaledReg; | ||||
3938 | } | ||||
3939 | } | ||||
3940 | }; | ||||
3941 | } // end anonymous namespace | ||||
3942 | |||||
3943 | /// Try adding ScaleReg*Scale to the current addressing mode. | ||||
3944 | /// Return true and update AddrMode if this addr mode is legal for the target, | ||||
3945 | /// false if not. | ||||
3946 | bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, | ||||
3947 | unsigned Depth) { | ||||
3948 | // If Scale is 1, then this is the same as adding ScaleReg to the addressing | ||||
3949 | // mode. Just process that directly. | ||||
3950 | if (Scale == 1) | ||||
3951 | return matchAddr(ScaleReg, Depth); | ||||
3952 | |||||
3953 | // If the scale is 0, it takes nothing to add this. | ||||
3954 | if (Scale == 0) | ||||
3955 | return true; | ||||
3956 | |||||
3957 | // If we already have a scale of this value, we can add to it, otherwise, we | ||||
3958 | // need an available scale field. | ||||
3959 | if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) | ||||
3960 | return false; | ||||
3961 | |||||
3962 | ExtAddrMode TestAddrMode = AddrMode; | ||||
3963 | |||||
3964 | // Add scale to turn X*4+X*3 -> X*7. This could also do things like | ||||
3965 | // [A+B + A*7] -> [B+A*8]. | ||||
3966 | TestAddrMode.Scale += Scale; | ||||
3967 | TestAddrMode.ScaledReg = ScaleReg; | ||||
3968 | |||||
3969 | // If the new address isn't legal, bail out. | ||||
3970 | if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) | ||||
3971 | return false; | ||||
3972 | |||||
3973 | // It was legal, so commit it. | ||||
3974 | AddrMode = TestAddrMode; | ||||
3975 | |||||
3976 | // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now | ||||
3977 | // to see if ScaleReg is actually X+C. If so, we can turn this into adding | ||||
3978 | // X*Scale + C*Scale to addr mode. If we found available IV increment, do not | ||||
3979 | // go any further: we can reuse it and cannot eliminate it. | ||||
3980 | ConstantInt *CI = nullptr; | ||||
3981 | Value *AddLHS = nullptr; | ||||
3982 | if (isa<Instruction>(ScaleReg) && // not a constant expr. | ||||
3983 | match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && | ||||
3984 | !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { | ||||
3985 | TestAddrMode.InBounds = false; | ||||
3986 | TestAddrMode.ScaledReg = AddLHS; | ||||
3987 | TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; | ||||
3988 | |||||
3989 | // If this addressing mode is legal, commit it and remember that we folded | ||||
3990 | // this instruction. | ||||
3991 | if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { | ||||
3992 | AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); | ||||
3993 | AddrMode = TestAddrMode; | ||||
3994 | return true; | ||||
3995 | } | ||||
3996 | // Restore status quo. | ||||
3997 | TestAddrMode = AddrMode; | ||||
3998 | } | ||||
3999 | |||||
4000 | // If this is an add recurrence with a constant step, return the increment | ||||
4001 | // instruction and the canonicalized step. | ||||
4002 | auto GetConstantStep = | ||||
4003 | [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { | ||||
4004 | auto *PN = dyn_cast<PHINode>(V); | ||||
4005 | if (!PN) | ||||
4006 | return std::nullopt; | ||||
4007 | auto IVInc = getIVIncrement(PN, &LI); | ||||
4008 | if (!IVInc) | ||||
4009 | return std::nullopt; | ||||
4010 | // TODO: The result of the intrinsics above is two-complement. However when | ||||
4011 | // IV inc is expressed as add or sub, iv.next is potentially a poison value. | ||||
4012 | // If it has nuw or nsw flags, we need to make sure that these flags are | ||||
4013 | // inferrable at the point of memory instruction. Otherwise we are replacing | ||||
4014 | // well-defined two-complement computation with poison. Currently, to avoid | ||||
4015 | // potentially complex analysis needed to prove this, we reject such cases. | ||||
4016 | if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) | ||||
4017 | if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) | ||||
4018 | return std::nullopt; | ||||
4019 | if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) | ||||
4020 | return std::make_pair(IVInc->first, ConstantStep->getValue()); | ||||
4021 | return std::nullopt; | ||||
4022 | }; | ||||
4023 | |||||
4024 | // Try to account for the following special case: | ||||
4025 | // 1. ScaleReg is an inductive variable; | ||||
4026 | // 2. We use it with non-zero offset; | ||||
4027 | // 3. IV's increment is available at the point of memory instruction. | ||||
4028 | // | ||||
4029 | // In this case, we may reuse the IV increment instead of the IV Phi to | ||||
4030 | // achieve the following advantages: | ||||
4031 | // 1. If IV step matches the offset, we will have no need in the offset; | ||||
4032 | // 2. Even if they don't match, we will reduce the overlap of living IV | ||||
4033 | // and IV increment, that will potentially lead to better register | ||||
4034 | // assignment. | ||||
4035 | if (AddrMode.BaseOffs) { | ||||
4036 | if (auto IVStep = GetConstantStep(ScaleReg)) { | ||||
4037 | Instruction *IVInc = IVStep->first; | ||||
4038 | // The following assert is important to ensure a lack of infinite loops. | ||||
4039 | // This transforms is (intentionally) the inverse of the one just above. | ||||
4040 | // If they don't agree on the definition of an increment, we'd alternate | ||||
4041 | // back and forth indefinitely. | ||||
4042 | assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep")(static_cast <bool> (isIVIncrement(IVInc, &LI) && "implied by GetConstantStep") ? void (0) : __assert_fail ("isIVIncrement(IVInc, &LI) && \"implied by GetConstantStep\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4042, __extension__ __PRETTY_FUNCTION__ )); | ||||
4043 | APInt Step = IVStep->second; | ||||
4044 | APInt Offset = Step * AddrMode.Scale; | ||||
4045 | if (Offset.isSignedIntN(64)) { | ||||
4046 | TestAddrMode.InBounds = false; | ||||
4047 | TestAddrMode.ScaledReg = IVInc; | ||||
4048 | TestAddrMode.BaseOffs -= Offset.getLimitedValue(); | ||||
4049 | // If this addressing mode is legal, commit it.. | ||||
4050 | // (Note that we defer the (expensive) domtree base legality check | ||||
4051 | // to the very last possible point.) | ||||
4052 | if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && | ||||
4053 | getDTFn().dominates(IVInc, MemoryInst)) { | ||||
4054 | AddrModeInsts.push_back(cast<Instruction>(IVInc)); | ||||
4055 | AddrMode = TestAddrMode; | ||||
4056 | return true; | ||||
4057 | } | ||||
4058 | // Restore status quo. | ||||
4059 | TestAddrMode = AddrMode; | ||||
4060 | } | ||||
4061 | } | ||||
4062 | } | ||||
4063 | |||||
4064 | // Otherwise, just return what we have. | ||||
4065 | return true; | ||||
4066 | } | ||||
4067 | |||||
4068 | /// This is a little filter, which returns true if an addressing computation | ||||
4069 | /// involving I might be folded into a load/store accessing it. | ||||
4070 | /// This doesn't need to be perfect, but needs to accept at least | ||||
4071 | /// the set of instructions that MatchOperationAddr can. | ||||
4072 | static bool MightBeFoldableInst(Instruction *I) { | ||||
4073 | switch (I->getOpcode()) { | ||||
4074 | case Instruction::BitCast: | ||||
4075 | case Instruction::AddrSpaceCast: | ||||
4076 | // Don't touch identity bitcasts. | ||||
4077 | if (I->getType() == I->getOperand(0)->getType()) | ||||
4078 | return false; | ||||
4079 | return I->getType()->isIntOrPtrTy(); | ||||
4080 | case Instruction::PtrToInt: | ||||
4081 | // PtrToInt is always a noop, as we know that the int type is pointer sized. | ||||
4082 | return true; | ||||
4083 | case Instruction::IntToPtr: | ||||
4084 | // We know the input is intptr_t, so this is foldable. | ||||
4085 | return true; | ||||
4086 | case Instruction::Add: | ||||
4087 | return true; | ||||
4088 | case Instruction::Mul: | ||||
4089 | case Instruction::Shl: | ||||
4090 | // Can only handle X*C and X << C. | ||||
4091 | return isa<ConstantInt>(I->getOperand(1)); | ||||
4092 | case Instruction::GetElementPtr: | ||||
4093 | return true; | ||||
4094 | default: | ||||
4095 | return false; | ||||
4096 | } | ||||
4097 | } | ||||
4098 | |||||
4099 | /// Check whether or not \p Val is a legal instruction for \p TLI. | ||||
4100 | /// \note \p Val is assumed to be the product of some type promotion. | ||||
4101 | /// Therefore if \p Val has an undefined state in \p TLI, this is assumed | ||||
4102 | /// to be legal, as the non-promoted value would have had the same state. | ||||
4103 | static bool isPromotedInstructionLegal(const TargetLowering &TLI, | ||||
4104 | const DataLayout &DL, Value *Val) { | ||||
4105 | Instruction *PromotedInst = dyn_cast<Instruction>(Val); | ||||
4106 | if (!PromotedInst) | ||||
4107 | return false; | ||||
4108 | int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); | ||||
4109 | // If the ISDOpcode is undefined, it was undefined before the promotion. | ||||
4110 | if (!ISDOpcode) | ||||
4111 | return true; | ||||
4112 | // Otherwise, check if the promoted instruction is legal or not. | ||||
4113 | return TLI.isOperationLegalOrCustom( | ||||
4114 | ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); | ||||
4115 | } | ||||
4116 | |||||
4117 | namespace { | ||||
4118 | |||||
4119 | /// Hepler class to perform type promotion. | ||||
4120 | class TypePromotionHelper { | ||||
4121 | /// Utility function to add a promoted instruction \p ExtOpnd to | ||||
4122 | /// \p PromotedInsts and record the type of extension we have seen. | ||||
4123 | static void addPromotedInst(InstrToOrigTy &PromotedInsts, | ||||
4124 | Instruction *ExtOpnd, bool IsSExt) { | ||||
4125 | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; | ||||
4126 | InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); | ||||
4127 | if (It != PromotedInsts.end()) { | ||||
4128 | // If the new extension is same as original, the information in | ||||
4129 | // PromotedInsts[ExtOpnd] is still correct. | ||||
4130 | if (It->second.getInt() == ExtTy) | ||||
4131 | return; | ||||
4132 | |||||
4133 | // Now the new extension is different from old extension, we make | ||||
4134 | // the type information invalid by setting extension type to | ||||
4135 | // BothExtension. | ||||
4136 | ExtTy = BothExtension; | ||||
4137 | } | ||||
4138 | PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); | ||||
4139 | } | ||||
4140 | |||||
4141 | /// Utility function to query the original type of instruction \p Opnd | ||||
4142 | /// with a matched extension type. If the extension doesn't match, we | ||||
4143 | /// cannot use the information we had on the original type. | ||||
4144 | /// BothExtension doesn't match any extension type. | ||||
4145 | static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, | ||||
4146 | Instruction *Opnd, bool IsSExt) { | ||||
4147 | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; | ||||
4148 | InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); | ||||
4149 | if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) | ||||
4150 | return It->second.getPointer(); | ||||
4151 | return nullptr; | ||||
4152 | } | ||||
4153 | |||||
4154 | /// Utility function to check whether or not a sign or zero extension | ||||
4155 | /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by | ||||
4156 | /// either using the operands of \p Inst or promoting \p Inst. | ||||
4157 | /// The type of the extension is defined by \p IsSExt. | ||||
4158 | /// In other words, check if: | ||||
4159 | /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. | ||||
4160 | /// #1 Promotion applies: | ||||
4161 | /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). | ||||
4162 | /// #2 Operand reuses: | ||||
4163 | /// ext opnd1 to ConsideredExtType. | ||||
4164 | /// \p PromotedInsts maps the instructions to their type before promotion. | ||||
4165 | static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, | ||||
4166 | const InstrToOrigTy &PromotedInsts, bool IsSExt); | ||||
4167 | |||||
4168 | /// Utility function to determine if \p OpIdx should be promoted when | ||||
4169 | /// promoting \p Inst. | ||||
4170 | static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { | ||||
4171 | return !(isa<SelectInst>(Inst) && OpIdx == 0); | ||||
4172 | } | ||||
4173 | |||||
4174 | /// Utility function to promote the operand of \p Ext when this | ||||
4175 | /// operand is a promotable trunc or sext or zext. | ||||
4176 | /// \p PromotedInsts maps the instructions to their type before promotion. | ||||
4177 | /// \p CreatedInstsCost[out] contains the cost of all instructions | ||||
4178 | /// created to promote the operand of Ext. | ||||
4179 | /// Newly added extensions are inserted in \p Exts. | ||||
4180 | /// Newly added truncates are inserted in \p Truncs. | ||||
4181 | /// Should never be called directly. | ||||
4182 | /// \return The promoted value which is used instead of Ext. | ||||
4183 | static Value *promoteOperandForTruncAndAnyExt( | ||||
4184 | Instruction *Ext, TypePromotionTransaction &TPT, | ||||
4185 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | ||||
4186 | SmallVectorImpl<Instruction *> *Exts, | ||||
4187 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); | ||||
4188 | |||||
4189 | /// Utility function to promote the operand of \p Ext when this | ||||
4190 | /// operand is promotable and is not a supported trunc or sext. | ||||
4191 | /// \p PromotedInsts maps the instructions to their type before promotion. | ||||
4192 | /// \p CreatedInstsCost[out] contains the cost of all the instructions | ||||
4193 | /// created to promote the operand of Ext. | ||||
4194 | /// Newly added extensions are inserted in \p Exts. | ||||
4195 | /// Newly added truncates are inserted in \p Truncs. | ||||
4196 | /// Should never be called directly. | ||||
4197 | /// \return The promoted value which is used instead of Ext. | ||||
4198 | static Value *promoteOperandForOther(Instruction *Ext, | ||||
4199 | TypePromotionTransaction &TPT, | ||||
4200 | InstrToOrigTy &PromotedInsts, | ||||
4201 | unsigned &CreatedInstsCost, | ||||
4202 | SmallVectorImpl<Instruction *> *Exts, | ||||
4203 | SmallVectorImpl<Instruction *> *Truncs, | ||||
4204 | const TargetLowering &TLI, bool IsSExt); | ||||
4205 | |||||
4206 | /// \see promoteOperandForOther. | ||||
4207 | static Value *signExtendOperandForOther( | ||||
4208 | Instruction *Ext, TypePromotionTransaction &TPT, | ||||
4209 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | ||||
4210 | SmallVectorImpl<Instruction *> *Exts, | ||||
4211 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | ||||
4212 | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | ||||
4213 | Exts, Truncs, TLI, true); | ||||
4214 | } | ||||
4215 | |||||
4216 | /// \see promoteOperandForOther. | ||||
4217 | static Value *zeroExtendOperandForOther( | ||||
4218 | Instruction *Ext, TypePromotionTransaction &TPT, | ||||
4219 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | ||||
4220 | SmallVectorImpl<Instruction *> *Exts, | ||||
4221 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | ||||
4222 | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | ||||
4223 | Exts, Truncs, TLI, false); | ||||
4224 | } | ||||
4225 | |||||
4226 | public: | ||||
4227 | /// Type for the utility function that promotes the operand of Ext. | ||||
4228 | using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, | ||||
4229 | InstrToOrigTy &PromotedInsts, | ||||
4230 | unsigned &CreatedInstsCost, | ||||
4231 | SmallVectorImpl<Instruction *> *Exts, | ||||
4232 | SmallVectorImpl<Instruction *> *Truncs, | ||||
4233 | const TargetLowering &TLI); | ||||
4234 | |||||
4235 | /// Given a sign/zero extend instruction \p Ext, return the appropriate | ||||
4236 | /// action to promote the operand of \p Ext instead of using Ext. | ||||
4237 | /// \return NULL if no promotable action is possible with the current | ||||
4238 | /// sign extension. | ||||
4239 | /// \p InsertedInsts keeps track of all the instructions inserted by the | ||||
4240 | /// other CodeGenPrepare optimizations. This information is important | ||||
4241 | /// because we do not want to promote these instructions as CodeGenPrepare | ||||
4242 | /// will reinsert them later. Thus creating an infinite loop: create/remove. | ||||
4243 | /// \p PromotedInsts maps the instructions to their type before promotion. | ||||
4244 | static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, | ||||
4245 | const TargetLowering &TLI, | ||||
4246 | const InstrToOrigTy &PromotedInsts); | ||||
4247 | }; | ||||
4248 | |||||
4249 | } // end anonymous namespace | ||||
4250 | |||||
4251 | bool TypePromotionHelper::canGetThrough(const Instruction *Inst, | ||||
4252 | Type *ConsideredExtType, | ||||
4253 | const InstrToOrigTy &PromotedInsts, | ||||
4254 | bool IsSExt) { | ||||
4255 | // The promotion helper does not know how to deal with vector types yet. | ||||
4256 | // To be able to fix that, we would need to fix the places where we | ||||
4257 | // statically extend, e.g., constants and such. | ||||
4258 | if (Inst->getType()->isVectorTy()) | ||||
4259 | return false; | ||||
4260 | |||||
4261 | // We can always get through zext. | ||||
4262 | if (isa<ZExtInst>(Inst)) | ||||
4263 | return true; | ||||
4264 | |||||
4265 | // sext(sext) is ok too. | ||||
4266 | if (IsSExt && isa<SExtInst>(Inst)) | ||||
4267 | return true; | ||||
4268 | |||||
4269 | // We can get through binary operator, if it is legal. In other words, the | ||||
4270 | // binary operator must have a nuw or nsw flag. | ||||
4271 | if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) | ||||
4272 | if (isa<OverflowingBinaryOperator>(BinOp) && | ||||
4273 | ((!IsSExt && BinOp->hasNoUnsignedWrap()) || | ||||
4274 | (IsSExt && BinOp->hasNoSignedWrap()))) | ||||
4275 | return true; | ||||
4276 | |||||
4277 | // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) | ||||
4278 | if ((Inst->getOpcode() == Instruction::And || | ||||
4279 | Inst->getOpcode() == Instruction::Or)) | ||||
4280 | return true; | ||||
4281 | |||||
4282 | // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) | ||||
4283 | if (Inst->getOpcode() == Instruction::Xor) { | ||||
4284 | // Make sure it is not a NOT. | ||||
4285 | if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) | ||||
4286 | if (!Cst->getValue().isAllOnes()) | ||||
4287 | return true; | ||||
4288 | } | ||||
4289 | |||||
4290 | // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) | ||||
4291 | // It may change a poisoned value into a regular value, like | ||||
4292 | // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 | ||||
4293 | // poisoned value regular value | ||||
4294 | // It should be OK since undef covers valid value. | ||||
4295 | if (Inst->getOpcode() == Instruction::LShr && !IsSExt) | ||||
4296 | return true; | ||||
4297 | |||||
4298 | // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) | ||||
4299 | // It may change a poisoned value into a regular value, like | ||||
4300 | // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 | ||||
4301 | // poisoned value regular value | ||||
4302 | // It should be OK since undef covers valid value. | ||||
4303 | if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { | ||||
4304 | const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); | ||||
4305 | if (ExtInst->hasOneUse()) { | ||||
4306 | const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); | ||||
4307 | if (AndInst && AndInst->getOpcode() == Instruction::And) { | ||||
4308 | const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); | ||||
4309 | if (Cst && | ||||
4310 | Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) | ||||
4311 | return true; | ||||
4312 | } | ||||
4313 | } | ||||
4314 | } | ||||
4315 | |||||
4316 | // Check if we can do the following simplification. | ||||
4317 | // ext(trunc(opnd)) --> ext(opnd) | ||||
4318 | if (!isa<TruncInst>(Inst)) | ||||
4319 | return false; | ||||
4320 | |||||
4321 | Value *OpndVal = Inst->getOperand(0); | ||||
4322 | // Check if we can use this operand in the extension. | ||||
4323 | // If the type is larger than the result type of the extension, we cannot. | ||||
4324 | if (!OpndVal->getType()->isIntegerTy() || | ||||
4325 | OpndVal->getType()->getIntegerBitWidth() > | ||||
4326 | ConsideredExtType->getIntegerBitWidth()) | ||||
4327 | return false; | ||||
4328 | |||||
4329 | // If the operand of the truncate is not an instruction, we will not have | ||||
4330 | // any information on the dropped bits. | ||||
4331 | // (Actually we could for constant but it is not worth the extra logic). | ||||
4332 | Instruction *Opnd = dyn_cast<Instruction>(OpndVal); | ||||
4333 | if (!Opnd) | ||||
4334 | return false; | ||||
4335 | |||||
4336 | // Check if the source of the type is narrow enough. | ||||
4337 | // I.e., check that trunc just drops extended bits of the same kind of | ||||
4338 | // the extension. | ||||
4339 | // #1 get the type of the operand and check the kind of the extended bits. | ||||
4340 | const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); | ||||
4341 | if (OpndType) | ||||
4342 | ; | ||||
4343 | else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) | ||||
4344 | OpndType = Opnd->getOperand(0)->getType(); | ||||
4345 | else | ||||
4346 | return false; | ||||
4347 | |||||
4348 | // #2 check that the truncate just drops extended bits. | ||||
4349 | return Inst->getType()->getIntegerBitWidth() >= | ||||
4350 | OpndType->getIntegerBitWidth(); | ||||
4351 | } | ||||
4352 | |||||
4353 | TypePromotionHelper::Action TypePromotionHelper::getAction( | ||||
4354 | Instruction *Ext, const SetOfInstrs &InsertedInsts, | ||||
4355 | const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { | ||||
4356 | assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&(static_cast <bool> ((isa<SExtInst>(Ext) || isa< ZExtInst>(Ext)) && "Unexpected instruction type") ? void (0) : __assert_fail ("(isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && \"Unexpected instruction type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4357, __extension__ __PRETTY_FUNCTION__ )) | ||||
4357 | "Unexpected instruction type")(static_cast <bool> ((isa<SExtInst>(Ext) || isa< ZExtInst>(Ext)) && "Unexpected instruction type") ? void (0) : __assert_fail ("(isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && \"Unexpected instruction type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4357, __extension__ __PRETTY_FUNCTION__ )); | ||||
4358 | Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); | ||||
4359 | Type *ExtTy = Ext->getType(); | ||||
4360 | bool IsSExt = isa<SExtInst>(Ext); | ||||
4361 | // If the operand of the extension is not an instruction, we cannot | ||||
4362 | // get through. | ||||
4363 | // If it, check we can get through. | ||||
4364 | if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) | ||||
4365 | return nullptr; | ||||
4366 | |||||
4367 | // Do not promote if the operand has been added by codegenprepare. | ||||
4368 | // Otherwise, it means we are undoing an optimization that is likely to be | ||||
4369 | // redone, thus causing potential infinite loop. | ||||
4370 | if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) | ||||
4371 | return nullptr; | ||||
4372 | |||||
4373 | // SExt or Trunc instructions. | ||||
4374 | // Return the related handler. | ||||
4375 | if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || | ||||
4376 | isa<ZExtInst>(ExtOpnd)) | ||||
4377 | return promoteOperandForTruncAndAnyExt; | ||||
4378 | |||||
4379 | // Regular instruction. | ||||
4380 | // Abort early if we will have to insert non-free instructions. | ||||
4381 | if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) | ||||
4382 | return nullptr; | ||||
4383 | return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; | ||||
4384 | } | ||||
4385 | |||||
4386 | Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( | ||||
4387 | Instruction *SExt, TypePromotionTransaction &TPT, | ||||
4388 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | ||||
4389 | SmallVectorImpl<Instruction *> *Exts, | ||||
4390 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | ||||
4391 | // By construction, the operand of SExt is an instruction. Otherwise we cannot | ||||
4392 | // get through it and this method should not be called. | ||||
4393 | Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); | ||||
4394 | Value *ExtVal = SExt; | ||||
4395 | bool HasMergedNonFreeExt = false; | ||||
4396 | if (isa<ZExtInst>(SExtOpnd)) { | ||||
4397 | // Replace s|zext(zext(opnd)) | ||||
4398 | // => zext(opnd). | ||||
4399 | HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); | ||||
4400 | Value *ZExt = | ||||
4401 | TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); | ||||
4402 | TPT.replaceAllUsesWith(SExt, ZExt); | ||||
4403 | TPT.eraseInstruction(SExt); | ||||
4404 | ExtVal = ZExt; | ||||
4405 | } else { | ||||
4406 | // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) | ||||
4407 | // => z|sext(opnd). | ||||
4408 | TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); | ||||
4409 | } | ||||
4410 | CreatedInstsCost = 0; | ||||
4411 | |||||
4412 | // Remove dead code. | ||||
4413 | if (SExtOpnd->use_empty()) | ||||
4414 | TPT.eraseInstruction(SExtOpnd); | ||||
4415 | |||||
4416 | // Check if the extension is still needed. | ||||
4417 | Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); | ||||
4418 | if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { | ||||
4419 | if (ExtInst) { | ||||
4420 | if (Exts) | ||||
4421 | Exts->push_back(ExtInst); | ||||
4422 | CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; | ||||
4423 | } | ||||
4424 | return ExtVal; | ||||
4425 | } | ||||
4426 | |||||
4427 | // At this point we have: ext ty opnd to ty. | ||||
4428 | // Reassign the uses of ExtInst to the opnd and remove ExtInst. | ||||
4429 | Value *NextVal = ExtInst->getOperand(0); | ||||
4430 | TPT.eraseInstruction(ExtInst, NextVal); | ||||
4431 | return NextVal; | ||||
4432 | } | ||||
4433 | |||||
4434 | Value *TypePromotionHelper::promoteOperandForOther( | ||||
4435 | Instruction *Ext, TypePromotionTransaction &TPT, | ||||
4436 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | ||||
4437 | SmallVectorImpl<Instruction *> *Exts, | ||||
4438 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, | ||||
4439 | bool IsSExt) { | ||||
4440 | // By construction, the operand of Ext is an instruction. Otherwise we cannot | ||||
4441 | // get through it and this method should not be called. | ||||
4442 | Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); | ||||
4443 | CreatedInstsCost = 0; | ||||
4444 | if (!ExtOpnd->hasOneUse()) { | ||||
4445 | // ExtOpnd will be promoted. | ||||
4446 | // All its uses, but Ext, will need to use a truncated value of the | ||||
4447 | // promoted version. | ||||
4448 | // Create the truncate now. | ||||
4449 | Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); | ||||
4450 | if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { | ||||
4451 | // Insert it just after the definition. | ||||
4452 | ITrunc->moveAfter(ExtOpnd); | ||||
4453 | if (Truncs) | ||||
4454 | Truncs->push_back(ITrunc); | ||||
4455 | } | ||||
4456 | |||||
4457 | TPT.replaceAllUsesWith(ExtOpnd, Trunc); | ||||
4458 | // Restore the operand of Ext (which has been replaced by the previous call | ||||
4459 | // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. | ||||
4460 | TPT.setOperand(Ext, 0, ExtOpnd); | ||||
4461 | } | ||||
4462 | |||||
4463 | // Get through the Instruction: | ||||
4464 | // 1. Update its type. | ||||
4465 | // 2. Replace the uses of Ext by Inst. | ||||
4466 | // 3. Extend each operand that needs to be extended. | ||||
4467 | |||||
4468 | // Remember the original type of the instruction before promotion. | ||||
4469 | // This is useful to know that the high bits are sign extended bits. | ||||
4470 | addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); | ||||
4471 | // Step #1. | ||||
4472 | TPT.mutateType(ExtOpnd, Ext->getType()); | ||||
4473 | // Step #2. | ||||
4474 | TPT.replaceAllUsesWith(Ext, ExtOpnd); | ||||
4475 | // Step #3. | ||||
4476 | Instruction *ExtForOpnd = Ext; | ||||
4477 | |||||
4478 | LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Propagate Ext to operands\n" ; } } while (false); | ||||
4479 | for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; | ||||
4480 | ++OpIdx) { | ||||
4481 | LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Operand:\n" << * (ExtOpnd->getOperand(OpIdx)) << '\n'; } } while (false ); | ||||
4482 | if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || | ||||
4483 | !shouldExtOperand(ExtOpnd, OpIdx)) { | ||||
4484 | LLVM_DEBUG(dbgs() << "No need to propagate\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "No need to propagate\n" ; } } while (false); | ||||
4485 | continue; | ||||
4486 | } | ||||
4487 | // Check if we can statically extend the operand. | ||||
4488 | Value *Opnd = ExtOpnd->getOperand(OpIdx); | ||||
4489 | if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { | ||||
4490 | LLVM_DEBUG(dbgs() << "Statically extend\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Statically extend\n"; } } while (false); | ||||
4491 | unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); | ||||
4492 | APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) | ||||
4493 | : Cst->getValue().zext(BitWidth); | ||||
4494 | TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); | ||||
4495 | continue; | ||||
4496 | } | ||||
4497 | // UndefValue are typed, so we have to statically sign extend them. | ||||
4498 | if (isa<UndefValue>(Opnd)) { | ||||
4499 | LLVM_DEBUG(dbgs() << "Statically extend\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Statically extend\n"; } } while (false); | ||||
4500 | TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); | ||||
4501 | continue; | ||||
4502 | } | ||||
4503 | |||||
4504 | // Otherwise we have to explicitly sign extend the operand. | ||||
4505 | // Check if Ext was reused to extend an operand. | ||||
4506 | if (!ExtForOpnd) { | ||||
4507 | // If yes, create a new one. | ||||
4508 | LLVM_DEBUG(dbgs() << "More operands to ext\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "More operands to ext\n" ; } } while (false); | ||||
4509 | Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) | ||||
4510 | : TPT.createZExt(Ext, Opnd, Ext->getType()); | ||||
4511 | if (!isa<Instruction>(ValForExtOpnd)) { | ||||
4512 | TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); | ||||
4513 | continue; | ||||
4514 | } | ||||
4515 | ExtForOpnd = cast<Instruction>(ValForExtOpnd); | ||||
4516 | } | ||||
4517 | if (Exts) | ||||
4518 | Exts->push_back(ExtForOpnd); | ||||
4519 | TPT.setOperand(ExtForOpnd, 0, Opnd); | ||||
4520 | |||||
4521 | // Move the sign extension before the insertion point. | ||||
4522 | TPT.moveBefore(ExtForOpnd, ExtOpnd); | ||||
4523 | TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); | ||||
4524 | CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); | ||||
4525 | // If more sext are required, new instructions will have to be created. | ||||
4526 | ExtForOpnd = nullptr; | ||||
4527 | } | ||||
4528 | if (ExtForOpnd == Ext) { | ||||
4529 | LLVM_DEBUG(dbgs() << "Extension is useless now\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Extension is useless now\n" ; } } while (false); | ||||
4530 | TPT.eraseInstruction(Ext); | ||||
4531 | } | ||||
4532 | return ExtOpnd; | ||||
4533 | } | ||||
4534 | |||||
4535 | /// Check whether or not promoting an instruction to a wider type is profitable. | ||||
4536 | /// \p NewCost gives the cost of extension instructions created by the | ||||
4537 | /// promotion. | ||||
4538 | /// \p OldCost gives the cost of extension instructions before the promotion | ||||
4539 | /// plus the number of instructions that have been | ||||
4540 | /// matched in the addressing mode the promotion. | ||||
4541 | /// \p PromotedOperand is the value that has been promoted. | ||||
4542 | /// \return True if the promotion is profitable, false otherwise. | ||||
4543 | bool AddressingModeMatcher::isPromotionProfitable( | ||||
4544 | unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { | ||||
4545 | LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'; } } while (false) | ||||
4546 | << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'; } } while (false); | ||||
4547 | // The cost of the new extensions is greater than the cost of the | ||||
4548 | // old extension plus what we folded. | ||||
4549 | // This is not profitable. | ||||
4550 | if (NewCost > OldCost) | ||||
4551 | return false; | ||||
4552 | if (NewCost < OldCost) | ||||
4553 | return true; | ||||
4554 | // The promotion is neutral but it may help folding the sign extension in | ||||
4555 | // loads for instance. | ||||
4556 | // Check that we did not create an illegal instruction. | ||||
4557 | return isPromotedInstructionLegal(TLI, DL, PromotedOperand); | ||||
4558 | } | ||||
4559 | |||||
4560 | /// Given an instruction or constant expr, see if we can fold the operation | ||||
4561 | /// into the addressing mode. If so, update the addressing mode and return | ||||
4562 | /// true, otherwise return false without modifying AddrMode. | ||||
4563 | /// If \p MovedAway is not NULL, it contains the information of whether or | ||||
4564 | /// not AddrInst has to be folded into the addressing mode on success. | ||||
4565 | /// If \p MovedAway == true, \p AddrInst will not be part of the addressing | ||||
4566 | /// because it has been moved away. | ||||
4567 | /// Thus AddrInst must not be added in the matched instructions. | ||||
4568 | /// This state can happen when AddrInst is a sext, since it may be moved away. | ||||
4569 | /// Therefore, AddrInst may not be valid when MovedAway is true and it must | ||||
4570 | /// not be referenced anymore. | ||||
4571 | bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, | ||||
4572 | unsigned Depth, | ||||
4573 | bool *MovedAway) { | ||||
4574 | // Avoid exponential behavior on extremely deep expression trees. | ||||
4575 | if (Depth >= 5) | ||||
4576 | return false; | ||||
4577 | |||||
4578 | // By default, all matched instructions stay in place. | ||||
4579 | if (MovedAway) | ||||
4580 | *MovedAway = false; | ||||
4581 | |||||
4582 | switch (Opcode) { | ||||
4583 | case Instruction::PtrToInt: | ||||
4584 | // PtrToInt is always a noop, as we know that the int type is pointer sized. | ||||
4585 | return matchAddr(AddrInst->getOperand(0), Depth); | ||||
4586 | case Instruction::IntToPtr: { | ||||
4587 | auto AS = AddrInst->getType()->getPointerAddressSpace(); | ||||
4588 | auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); | ||||
4589 | // This inttoptr is a no-op if the integer type is pointer sized. | ||||
4590 | if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) | ||||
4591 | return matchAddr(AddrInst->getOperand(0), Depth); | ||||
4592 | return false; | ||||
4593 | } | ||||
4594 | case Instruction::BitCast: | ||||
4595 | // BitCast is always a noop, and we can handle it as long as it is | ||||
4596 | // int->int or pointer->pointer (we don't want int<->fp or something). | ||||
4597 | if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && | ||||
4598 | // Don't touch identity bitcasts. These were probably put here by LSR, | ||||
4599 | // and we don't want to mess around with them. Assume it knows what it | ||||
4600 | // is doing. | ||||
4601 | AddrInst->getOperand(0)->getType() != AddrInst->getType()) | ||||
4602 | return matchAddr(AddrInst->getOperand(0), Depth); | ||||
4603 | return false; | ||||
4604 | case Instruction::AddrSpaceCast: { | ||||
4605 | unsigned SrcAS = | ||||
4606 | AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); | ||||
4607 | unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); | ||||
4608 | if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) | ||||
4609 | return matchAddr(AddrInst->getOperand(0), Depth); | ||||
4610 | return false; | ||||
4611 | } | ||||
4612 | case Instruction::Add: { | ||||
4613 | // Check to see if we can merge in the RHS then the LHS. If so, we win. | ||||
4614 | ExtAddrMode BackupAddrMode = AddrMode; | ||||
4615 | unsigned OldSize = AddrModeInsts.size(); | ||||
4616 | // Start a transaction at this point. | ||||
4617 | // The LHS may match but not the RHS. | ||||
4618 | // Therefore, we need a higher level restoration point to undo partially | ||||
4619 | // matched operation. | ||||
4620 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | ||||
4621 | TPT.getRestorationPoint(); | ||||
4622 | |||||
4623 | AddrMode.InBounds = false; | ||||
4624 | if (matchAddr(AddrInst->getOperand(1), Depth + 1) && | ||||
4625 | matchAddr(AddrInst->getOperand(0), Depth + 1)) | ||||
4626 | return true; | ||||
4627 | |||||
4628 | // Restore the old addr mode info. | ||||
4629 | AddrMode = BackupAddrMode; | ||||
4630 | AddrModeInsts.resize(OldSize); | ||||
4631 | TPT.rollback(LastKnownGood); | ||||
4632 | |||||
4633 | // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. | ||||
4634 | if (matchAddr(AddrInst->getOperand(0), Depth + 1) && | ||||
4635 | matchAddr(AddrInst->getOperand(1), Depth + 1)) | ||||
4636 | return true; | ||||
4637 | |||||
4638 | // Otherwise we definitely can't merge the ADD in. | ||||
4639 | AddrMode = BackupAddrMode; | ||||
4640 | AddrModeInsts.resize(OldSize); | ||||
4641 | TPT.rollback(LastKnownGood); | ||||
4642 | break; | ||||
4643 | } | ||||
4644 | // case Instruction::Or: | ||||
4645 | // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. | ||||
4646 | // break; | ||||
4647 | case Instruction::Mul: | ||||
4648 | case Instruction::Shl: { | ||||
4649 | // Can only handle X*C and X << C. | ||||
4650 | AddrMode.InBounds = false; | ||||
4651 | ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); | ||||
4652 | if (!RHS || RHS->getBitWidth() > 64) | ||||
4653 | return false; | ||||
4654 | int64_t Scale = Opcode == Instruction::Shl | ||||
4655 | ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) | ||||
4656 | : RHS->getSExtValue(); | ||||
4657 | |||||
4658 | return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); | ||||
4659 | } | ||||
4660 | case Instruction::GetElementPtr: { | ||||
4661 | // Scan the GEP. We check it if it contains constant offsets and at most | ||||
4662 | // one variable offset. | ||||
4663 | int VariableOperand = -1; | ||||
4664 | unsigned VariableScale = 0; | ||||
4665 | |||||
4666 | int64_t ConstantOffset = 0; | ||||
4667 | gep_type_iterator GTI = gep_type_begin(AddrInst); | ||||
4668 | for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { | ||||
4669 | if (StructType *STy = GTI.getStructTypeOrNull()) { | ||||
4670 | const StructLayout *SL = DL.getStructLayout(STy); | ||||
4671 | unsigned Idx = | ||||
4672 | cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); | ||||
4673 | ConstantOffset += SL->getElementOffset(Idx); | ||||
4674 | } else { | ||||
4675 | TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); | ||||
4676 | if (TS.isNonZero()) { | ||||
4677 | // The optimisations below currently only work for fixed offsets. | ||||
4678 | if (TS.isScalable()) | ||||
4679 | return false; | ||||
4680 | int64_t TypeSize = TS.getFixedValue(); | ||||
4681 | if (ConstantInt *CI = | ||||
4682 | dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { | ||||
4683 | const APInt &CVal = CI->getValue(); | ||||
4684 | if (CVal.getSignificantBits() <= 64) { | ||||
4685 | ConstantOffset += CVal.getSExtValue() * TypeSize; | ||||
4686 | continue; | ||||
4687 | } | ||||
4688 | } | ||||
4689 | // We only allow one variable index at the moment. | ||||
4690 | if (VariableOperand != -1) | ||||
4691 | return false; | ||||
4692 | |||||
4693 | // Remember the variable index. | ||||
4694 | VariableOperand = i; | ||||
4695 | VariableScale = TypeSize; | ||||
4696 | } | ||||
4697 | } | ||||
4698 | } | ||||
4699 | |||||
4700 | // A common case is for the GEP to only do a constant offset. In this case, | ||||
4701 | // just add it to the disp field and check validity. | ||||
4702 | if (VariableOperand == -1) { | ||||
4703 | AddrMode.BaseOffs += ConstantOffset; | ||||
4704 | if (ConstantOffset == 0 || | ||||
4705 | TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { | ||||
4706 | // Check to see if we can fold the base pointer in too. | ||||
4707 | if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { | ||||
4708 | if (!cast<GEPOperator>(AddrInst)->isInBounds()) | ||||
4709 | AddrMode.InBounds = false; | ||||
4710 | return true; | ||||
4711 | } | ||||
4712 | } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && | ||||
4713 | TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && | ||||
4714 | ConstantOffset > 0) { | ||||
4715 | // Record GEPs with non-zero offsets as candidates for splitting in the | ||||
4716 | // event that the offset cannot fit into the r+i addressing mode. | ||||
4717 | // Simple and common case that only one GEP is used in calculating the | ||||
4718 | // address for the memory access. | ||||
4719 | Value *Base = AddrInst->getOperand(0); | ||||
4720 | auto *BaseI = dyn_cast<Instruction>(Base); | ||||
4721 | auto *GEP = cast<GetElementPtrInst>(AddrInst); | ||||
4722 | if (isa<Argument>(Base) || isa<GlobalValue>(Base) || | ||||
4723 | (BaseI && !isa<CastInst>(BaseI) && | ||||
4724 | !isa<GetElementPtrInst>(BaseI))) { | ||||
4725 | // Make sure the parent block allows inserting non-PHI instructions | ||||
4726 | // before the terminator. | ||||
4727 | BasicBlock *Parent = | ||||
4728 | BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); | ||||
4729 | if (!Parent->getTerminator()->isEHPad()) | ||||
4730 | LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); | ||||
4731 | } | ||||
4732 | } | ||||
4733 | AddrMode.BaseOffs -= ConstantOffset; | ||||
4734 | return false; | ||||
4735 | } | ||||
4736 | |||||
4737 | // Save the valid addressing mode in case we can't match. | ||||
4738 | ExtAddrMode BackupAddrMode = AddrMode; | ||||
4739 | unsigned OldSize = AddrModeInsts.size(); | ||||
4740 | |||||
4741 | // See if the scale and offset amount is valid for this target. | ||||
4742 | AddrMode.BaseOffs += ConstantOffset; | ||||
4743 | if (!cast<GEPOperator>(AddrInst)->isInBounds()) | ||||
4744 | AddrMode.InBounds = false; | ||||
4745 | |||||
4746 | // Match the base operand of the GEP. | ||||
4747 | if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { | ||||
4748 | // If it couldn't be matched, just stuff the value in a register. | ||||
4749 | if (AddrMode.HasBaseReg) { | ||||
4750 | AddrMode = BackupAddrMode; | ||||
4751 | AddrModeInsts.resize(OldSize); | ||||
4752 | return false; | ||||
4753 | } | ||||
4754 | AddrMode.HasBaseReg = true; | ||||
4755 | AddrMode.BaseReg = AddrInst->getOperand(0); | ||||
4756 | } | ||||
4757 | |||||
4758 | // Match the remaining variable portion of the GEP. | ||||
4759 | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, | ||||
4760 | Depth)) { | ||||
4761 | // If it couldn't be matched, try stuffing the base into a register | ||||
4762 | // instead of matching it, and retrying the match of the scale. | ||||
4763 | AddrMode = BackupAddrMode; | ||||
4764 | AddrModeInsts.resize(OldSize); | ||||
4765 | if (AddrMode.HasBaseReg) | ||||
4766 | return false; | ||||
4767 | AddrMode.HasBaseReg = true; | ||||
4768 | AddrMode.BaseReg = AddrInst->getOperand(0); | ||||
4769 | AddrMode.BaseOffs += ConstantOffset; | ||||
4770 | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), | ||||
4771 | VariableScale, Depth)) { | ||||
4772 | // If even that didn't work, bail. | ||||
4773 | AddrMode = BackupAddrMode; | ||||
4774 | AddrModeInsts.resize(OldSize); | ||||
4775 | return false; | ||||
4776 | } | ||||
4777 | } | ||||
4778 | |||||
4779 | return true; | ||||
4780 | } | ||||
4781 | case Instruction::SExt: | ||||
4782 | case Instruction::ZExt: { | ||||
4783 | Instruction *Ext = dyn_cast<Instruction>(AddrInst); | ||||
4784 | if (!Ext) | ||||
4785 | return false; | ||||
4786 | |||||
4787 | // Try to move this ext out of the way of the addressing mode. | ||||
4788 | // Ask for a method for doing so. | ||||
4789 | TypePromotionHelper::Action TPH = | ||||
4790 | TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); | ||||
4791 | if (!TPH) | ||||
4792 | return false; | ||||
4793 | |||||
4794 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | ||||
4795 | TPT.getRestorationPoint(); | ||||
4796 | unsigned CreatedInstsCost = 0; | ||||
4797 | unsigned ExtCost = !TLI.isExtFree(Ext); | ||||
4798 | Value *PromotedOperand = | ||||
4799 | TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); | ||||
4800 | // SExt has been moved away. | ||||
4801 | // Thus either it will be rematched later in the recursive calls or it is | ||||
4802 | // gone. Anyway, we must not fold it into the addressing mode at this point. | ||||
4803 | // E.g., | ||||
4804 | // op = add opnd, 1 | ||||
4805 | // idx = ext op | ||||
4806 | // addr = gep base, idx | ||||
4807 | // is now: | ||||
4808 | // promotedOpnd = ext opnd <- no match here | ||||
4809 | // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) | ||||
4810 | // addr = gep base, op <- match | ||||
4811 | if (MovedAway) | ||||
4812 | *MovedAway = true; | ||||
4813 | |||||
4814 | assert(PromotedOperand &&(static_cast <bool> (PromotedOperand && "TypePromotionHelper should have filtered out those cases" ) ? void (0) : __assert_fail ("PromotedOperand && \"TypePromotionHelper should have filtered out those cases\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4815, __extension__ __PRETTY_FUNCTION__ )) | ||||
4815 | "TypePromotionHelper should have filtered out those cases")(static_cast <bool> (PromotedOperand && "TypePromotionHelper should have filtered out those cases" ) ? void (0) : __assert_fail ("PromotedOperand && \"TypePromotionHelper should have filtered out those cases\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4815, __extension__ __PRETTY_FUNCTION__ )); | ||||
4816 | |||||
4817 | ExtAddrMode BackupAddrMode = AddrMode; | ||||
4818 | unsigned OldSize = AddrModeInsts.size(); | ||||
4819 | |||||
4820 | if (!matchAddr(PromotedOperand, Depth) || | ||||
4821 | // The total of the new cost is equal to the cost of the created | ||||
4822 | // instructions. | ||||
4823 | // The total of the old cost is equal to the cost of the extension plus | ||||
4824 | // what we have saved in the addressing mode. | ||||
4825 | !isPromotionProfitable(CreatedInstsCost, | ||||
4826 | ExtCost + (AddrModeInsts.size() - OldSize), | ||||
4827 | PromotedOperand)) { | ||||
4828 | AddrMode = BackupAddrMode; | ||||
4829 | AddrModeInsts.resize(OldSize); | ||||
4830 | LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Sign extension does not pay off: rollback\n" ; } } while (false); | ||||
4831 | TPT.rollback(LastKnownGood); | ||||
4832 | return false; | ||||
4833 | } | ||||
4834 | return true; | ||||
4835 | } | ||||
4836 | } | ||||
4837 | return false; | ||||
4838 | } | ||||
4839 | |||||
4840 | /// If we can, try to add the value of 'Addr' into the current addressing mode. | ||||
4841 | /// If Addr can't be added to AddrMode this returns false and leaves AddrMode | ||||
4842 | /// unmodified. This assumes that Addr is either a pointer type or intptr_t | ||||
4843 | /// for the target. | ||||
4844 | /// | ||||
4845 | bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { | ||||
4846 | // Start a transaction at this point that we will rollback if the matching | ||||
4847 | // fails. | ||||
4848 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | ||||
4849 | TPT.getRestorationPoint(); | ||||
4850 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { | ||||
4851 | if (CI->getValue().isSignedIntN(64)) { | ||||
4852 | // Fold in immediates if legal for the target. | ||||
4853 | AddrMode.BaseOffs += CI->getSExtValue(); | ||||
4854 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | ||||
4855 | return true; | ||||
4856 | AddrMode.BaseOffs -= CI->getSExtValue(); | ||||
4857 | } | ||||
4858 | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { | ||||
4859 | // If this is a global variable, try to fold it into the addressing mode. | ||||
4860 | if (!AddrMode.BaseGV) { | ||||
4861 | AddrMode.BaseGV = GV; | ||||
4862 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | ||||
4863 | return true; | ||||
4864 | AddrMode.BaseGV = nullptr; | ||||
4865 | } | ||||
4866 | } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { | ||||
4867 | ExtAddrMode BackupAddrMode = AddrMode; | ||||
4868 | unsigned OldSize = AddrModeInsts.size(); | ||||
4869 | |||||
4870 | // Check to see if it is possible to fold this operation. | ||||
4871 | bool MovedAway = false; | ||||
4872 | if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { | ||||
4873 | // This instruction may have been moved away. If so, there is nothing | ||||
4874 | // to check here. | ||||
4875 | if (MovedAway) | ||||
4876 | return true; | ||||
4877 | // Okay, it's possible to fold this. Check to see if it is actually | ||||
4878 | // *profitable* to do so. We use a simple cost model to avoid increasing | ||||
4879 | // register pressure too much. | ||||
4880 | if (I->hasOneUse() || | ||||
4881 | isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { | ||||
4882 | AddrModeInsts.push_back(I); | ||||
4883 | return true; | ||||
4884 | } | ||||
4885 | |||||
4886 | // It isn't profitable to do this, roll back. | ||||
4887 | AddrMode = BackupAddrMode; | ||||
4888 | AddrModeInsts.resize(OldSize); | ||||
4889 | TPT.rollback(LastKnownGood); | ||||
4890 | } | ||||
4891 | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { | ||||
4892 | if (matchOperationAddr(CE, CE->getOpcode(), Depth)) | ||||
4893 | return true; | ||||
4894 | TPT.rollback(LastKnownGood); | ||||
4895 | } else if (isa<ConstantPointerNull>(Addr)) { | ||||
4896 | // Null pointer gets folded without affecting the addressing mode. | ||||
4897 | return true; | ||||
4898 | } | ||||
4899 | |||||
4900 | // Worse case, the target should support [reg] addressing modes. :) | ||||
4901 | if (!AddrMode.HasBaseReg) { | ||||
4902 | AddrMode.HasBaseReg = true; | ||||
4903 | AddrMode.BaseReg = Addr; | ||||
4904 | // Still check for legality in case the target supports [imm] but not [i+r]. | ||||
4905 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | ||||
4906 | return true; | ||||
4907 | AddrMode.HasBaseReg = false; | ||||
4908 | AddrMode.BaseReg = nullptr; | ||||
4909 | } | ||||
4910 | |||||
4911 | // If the base register is already taken, see if we can do [r+r]. | ||||
4912 | if (AddrMode.Scale == 0) { | ||||
4913 | AddrMode.Scale = 1; | ||||
4914 | AddrMode.ScaledReg = Addr; | ||||
4915 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | ||||
4916 | return true; | ||||
4917 | AddrMode.Scale = 0; | ||||
4918 | AddrMode.ScaledReg = nullptr; | ||||
4919 | } | ||||
4920 | // Couldn't match. | ||||
4921 | TPT.rollback(LastKnownGood); | ||||
4922 | return false; | ||||
4923 | } | ||||
4924 | |||||
4925 | /// Check to see if all uses of OpVal by the specified inline asm call are due | ||||
4926 | /// to memory operands. If so, return true, otherwise return false. | ||||
4927 | static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, | ||||
4928 | const TargetLowering &TLI, | ||||
4929 | const TargetRegisterInfo &TRI) { | ||||
4930 | const Function *F = CI->getFunction(); | ||||
4931 | TargetLowering::AsmOperandInfoVector TargetConstraints = | ||||
4932 | TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); | ||||
4933 | |||||
4934 | for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { | ||||
4935 | // Compute the constraint code and ConstraintType to use. | ||||
4936 | TLI.ComputeConstraintToUse(OpInfo, SDValue()); | ||||
4937 | |||||
4938 | // If this asm operand is our Value*, and if it isn't an indirect memory | ||||
4939 | // operand, we can't fold it! TODO: Also handle C_Address? | ||||
4940 | if (OpInfo.CallOperandVal == OpVal && | ||||
4941 | (OpInfo.ConstraintType != TargetLowering::C_Memory || | ||||
4942 | !OpInfo.isIndirect)) | ||||
4943 | return false; | ||||
4944 | } | ||||
4945 | |||||
4946 | return true; | ||||
4947 | } | ||||
4948 | |||||
4949 | // Max number of memory uses to look at before aborting the search to conserve | ||||
4950 | // compile time. | ||||
4951 | static constexpr int MaxMemoryUsesToScan = 20; | ||||
4952 | |||||
4953 | /// Recursively walk all the uses of I until we find a memory use. | ||||
4954 | /// If we find an obviously non-foldable instruction, return true. | ||||
4955 | /// Add accessed addresses and types to MemoryUses. | ||||
4956 | static bool FindAllMemoryUses( | ||||
4957 | Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, | ||||
4958 | SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, | ||||
4959 | const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, | ||||
4960 | BlockFrequencyInfo *BFI, int SeenInsts = 0) { | ||||
4961 | // If we already considered this instruction, we're done. | ||||
4962 | if (!ConsideredInsts.insert(I).second) | ||||
4963 | return false; | ||||
4964 | |||||
4965 | // If this is an obviously unfoldable instruction, bail out. | ||||
4966 | if (!MightBeFoldableInst(I)) | ||||
4967 | return true; | ||||
4968 | |||||
4969 | // Loop over all the uses, recursively processing them. | ||||
4970 | for (Use &U : I->uses()) { | ||||
4971 | // Conservatively return true if we're seeing a large number or a deep chain | ||||
4972 | // of users. This avoids excessive compilation times in pathological cases. | ||||
4973 | if (SeenInsts++ >= MaxMemoryUsesToScan) | ||||
4974 | return true; | ||||
4975 | |||||
4976 | Instruction *UserI = cast<Instruction>(U.getUser()); | ||||
4977 | if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { | ||||
4978 | MemoryUses.push_back({U.get(), LI->getType()}); | ||||
4979 | continue; | ||||
4980 | } | ||||
4981 | |||||
4982 | if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { | ||||
4983 | if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) | ||||
4984 | return true; // Storing addr, not into addr. | ||||
4985 | MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); | ||||
4986 | continue; | ||||
4987 | } | ||||
4988 | |||||
4989 | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { | ||||
4990 | if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) | ||||
4991 | return true; // Storing addr, not into addr. | ||||
4992 | MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); | ||||
4993 | continue; | ||||
4994 | } | ||||
4995 | |||||
4996 | if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { | ||||
4997 | if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) | ||||
4998 | return true; // Storing addr, not into addr. | ||||
4999 | MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); | ||||
5000 | continue; | ||||
5001 | } | ||||
5002 | |||||
5003 | if (CallInst *CI = dyn_cast<CallInst>(UserI)) { | ||||
5004 | if (CI->hasFnAttr(Attribute::Cold)) { | ||||
5005 | // If this is a cold call, we can sink the addressing calculation into | ||||
5006 | // the cold path. See optimizeCallInst | ||||
5007 | bool OptForSize = | ||||
5008 | OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); | ||||
5009 | if (!OptForSize) | ||||
5010 | continue; | ||||
5011 | } | ||||
5012 | |||||
5013 | InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); | ||||
5014 | if (!IA) | ||||
5015 | return true; | ||||
5016 | |||||
5017 | // If this is a memory operand, we're cool, otherwise bail out. | ||||
5018 | if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) | ||||
5019 | return true; | ||||
5020 | continue; | ||||
5021 | } | ||||
5022 | |||||
5023 | if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, | ||||
5024 | PSI, BFI, SeenInsts)) | ||||
5025 | return true; | ||||
5026 | } | ||||
5027 | |||||
5028 | return false; | ||||
5029 | } | ||||
5030 | |||||
5031 | /// Return true if Val is already known to be live at the use site that we're | ||||
5032 | /// folding it into. If so, there is no cost to include it in the addressing | ||||
5033 | /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the | ||||
5034 | /// instruction already. | ||||
5035 | bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, | ||||
5036 | Value *KnownLive1, | ||||
5037 | Value *KnownLive2) { | ||||
5038 | // If Val is either of the known-live values, we know it is live! | ||||
5039 | if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) | ||||
5040 | return true; | ||||
5041 | |||||
5042 | // All values other than instructions and arguments (e.g. constants) are live. | ||||
5043 | if (!isa<Instruction>(Val) && !isa<Argument>(Val)) | ||||
5044 | return true; | ||||
5045 | |||||
5046 | // If Val is a constant sized alloca in the entry block, it is live, this is | ||||
5047 | // true because it is just a reference to the stack/frame pointer, which is | ||||
5048 | // live for the whole function. | ||||
5049 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) | ||||
5050 | if (AI->isStaticAlloca()) | ||||
5051 | return true; | ||||
5052 | |||||
5053 | // Check to see if this value is already used in the memory instruction's | ||||
5054 | // block. If so, it's already live into the block at the very least, so we | ||||
5055 | // can reasonably fold it. | ||||
5056 | return Val->isUsedInBasicBlock(MemoryInst->getParent()); | ||||
5057 | } | ||||
5058 | |||||
5059 | /// It is possible for the addressing mode of the machine to fold the specified | ||||
5060 | /// instruction into a load or store that ultimately uses it. | ||||
5061 | /// However, the specified instruction has multiple uses. | ||||
5062 | /// Given this, it may actually increase register pressure to fold it | ||||
5063 | /// into the load. For example, consider this code: | ||||
5064 | /// | ||||
5065 | /// X = ... | ||||
5066 | /// Y = X+1 | ||||
5067 | /// use(Y) -> nonload/store | ||||
5068 | /// Z = Y+1 | ||||
5069 | /// load Z | ||||
5070 | /// | ||||
5071 | /// In this case, Y has multiple uses, and can be folded into the load of Z | ||||
5072 | /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to | ||||
5073 | /// be live at the use(Y) line. If we don't fold Y into load Z, we use one | ||||
5074 | /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the | ||||
5075 | /// number of computations either. | ||||
5076 | /// | ||||
5077 | /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If | ||||
5078 | /// X was live across 'load Z' for other reasons, we actually *would* want to | ||||
5079 | /// fold the addressing mode in the Z case. This would make Y die earlier. | ||||
5080 | bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( | ||||
5081 | Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { | ||||
5082 | if (IgnoreProfitability) | ||||
5083 | return true; | ||||
5084 | |||||
5085 | // AMBefore is the addressing mode before this instruction was folded into it, | ||||
5086 | // and AMAfter is the addressing mode after the instruction was folded. Get | ||||
5087 | // the set of registers referenced by AMAfter and subtract out those | ||||
5088 | // referenced by AMBefore: this is the set of values which folding in this | ||||
5089 | // address extends the lifetime of. | ||||
5090 | // | ||||
5091 | // Note that there are only two potential values being referenced here, | ||||
5092 | // BaseReg and ScaleReg (global addresses are always available, as are any | ||||
5093 | // folded immediates). | ||||
5094 | Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; | ||||
5095 | |||||
5096 | // If the BaseReg or ScaledReg was referenced by the previous addrmode, their | ||||
5097 | // lifetime wasn't extended by adding this instruction. | ||||
5098 | if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | ||||
5099 | BaseReg = nullptr; | ||||
5100 | if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | ||||
5101 | ScaledReg = nullptr; | ||||
5102 | |||||
5103 | // If folding this instruction (and it's subexprs) didn't extend any live | ||||
5104 | // ranges, we're ok with it. | ||||
5105 | if (!BaseReg && !ScaledReg) | ||||
5106 | return true; | ||||
5107 | |||||
5108 | // If all uses of this instruction can have the address mode sunk into them, | ||||
5109 | // we can remove the addressing mode and effectively trade one live register | ||||
5110 | // for another (at worst.) In this context, folding an addressing mode into | ||||
5111 | // the use is just a particularly nice way of sinking it. | ||||
5112 | SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; | ||||
5113 | SmallPtrSet<Instruction *, 16> ConsideredInsts; | ||||
5114 | if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, PSI, | ||||
5115 | BFI)) | ||||
5116 | return false; // Has a non-memory, non-foldable use! | ||||
5117 | |||||
5118 | // Now that we know that all uses of this instruction are part of a chain of | ||||
5119 | // computation involving only operations that could theoretically be folded | ||||
5120 | // into a memory use, loop over each of these memory operation uses and see | ||||
5121 | // if they could *actually* fold the instruction. The assumption is that | ||||
5122 | // addressing modes are cheap and that duplicating the computation involved | ||||
5123 | // many times is worthwhile, even on a fastpath. For sinking candidates | ||||
5124 | // (i.e. cold call sites), this serves as a way to prevent excessive code | ||||
5125 | // growth since most architectures have some reasonable small and fast way to | ||||
5126 | // compute an effective address. (i.e LEA on x86) | ||||
5127 | SmallVector<Instruction *, 32> MatchedAddrModeInsts; | ||||
5128 | for (const std::pair<Value *, Type *> &Pair : MemoryUses) { | ||||
5129 | Value *Address = Pair.first; | ||||
5130 | Type *AddressAccessTy = Pair.second; | ||||
5131 | unsigned AS = Address->getType()->getPointerAddressSpace(); | ||||
5132 | |||||
5133 | // Do a match against the root of this address, ignoring profitability. This | ||||
5134 | // will tell us if the addressing mode for the memory operation will | ||||
5135 | // *actually* cover the shared instruction. | ||||
5136 | ExtAddrMode Result; | ||||
5137 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, | ||||
5138 | 0); | ||||
5139 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | ||||
5140 | TPT.getRestorationPoint(); | ||||
5141 | AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, | ||||
5142 | AddressAccessTy, AS, MemoryInst, Result, | ||||
5143 | InsertedInsts, PromotedInsts, TPT, | ||||
5144 | LargeOffsetGEP, OptSize, PSI, BFI); | ||||
5145 | Matcher.IgnoreProfitability = true; | ||||
5146 | bool Success = Matcher.matchAddr(Address, 0); | ||||
5147 | (void)Success; | ||||
5148 | assert(Success && "Couldn't select *anything*?")(static_cast <bool> (Success && "Couldn't select *anything*?" ) ? void (0) : __assert_fail ("Success && \"Couldn't select *anything*?\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5148, __extension__ __PRETTY_FUNCTION__ )); | ||||
5149 | |||||
5150 | // The match was to check the profitability, the changes made are not | ||||
5151 | // part of the original matcher. Therefore, they should be dropped | ||||
5152 | // otherwise the original matcher will not present the right state. | ||||
5153 | TPT.rollback(LastKnownGood); | ||||
5154 | |||||
5155 | // If the match didn't cover I, then it won't be shared by it. | ||||
5156 | if (!is_contained(MatchedAddrModeInsts, I)) | ||||
5157 | return false; | ||||
5158 | |||||
5159 | MatchedAddrModeInsts.clear(); | ||||
5160 | } | ||||
5161 | |||||
5162 | return true; | ||||
5163 | } | ||||
5164 | |||||
5165 | /// Return true if the specified values are defined in a | ||||
5166 | /// different basic block than BB. | ||||
5167 | static bool IsNonLocalValue(Value *V, BasicBlock *BB) { | ||||
5168 | if (Instruction *I = dyn_cast<Instruction>(V)) | ||||
5169 | return I->getParent() != BB; | ||||
5170 | return false; | ||||
5171 | } | ||||
5172 | |||||
5173 | /// Sink addressing mode computation immediate before MemoryInst if doing so | ||||
5174 | /// can be done without increasing register pressure. The need for the | ||||
5175 | /// register pressure constraint means this can end up being an all or nothing | ||||
5176 | /// decision for all uses of the same addressing computation. | ||||
5177 | /// | ||||
5178 | /// Load and Store Instructions often have addressing modes that can do | ||||
5179 | /// significant amounts of computation. As such, instruction selection will try | ||||
5180 | /// to get the load or store to do as much computation as possible for the | ||||
5181 | /// program. The problem is that isel can only see within a single block. As | ||||
5182 | /// such, we sink as much legal addressing mode work into the block as possible. | ||||
5183 | /// | ||||
5184 | /// This method is used to optimize both load/store and inline asms with memory | ||||
5185 | /// operands. It's also used to sink addressing computations feeding into cold | ||||
5186 | /// call sites into their (cold) basic block. | ||||
5187 | /// | ||||
5188 | /// The motivation for handling sinking into cold blocks is that doing so can | ||||
5189 | /// both enable other address mode sinking (by satisfying the register pressure | ||||
5190 | /// constraint above), and reduce register pressure globally (by removing the | ||||
5191 | /// addressing mode computation from the fast path entirely.). | ||||
5192 | bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, | ||||
5193 | Type *AccessTy, unsigned AddrSpace) { | ||||
5194 | Value *Repl = Addr; | ||||
5195 | |||||
5196 | // Try to collapse single-value PHI nodes. This is necessary to undo | ||||
5197 | // unprofitable PRE transformations. | ||||
5198 | SmallVector<Value *, 8> worklist; | ||||
5199 | SmallPtrSet<Value *, 16> Visited; | ||||
5200 | worklist.push_back(Addr); | ||||
5201 | |||||
5202 | // Use a worklist to iteratively look through PHI and select nodes, and | ||||
5203 | // ensure that the addressing mode obtained from the non-PHI/select roots of | ||||
5204 | // the graph are compatible. | ||||
5205 | bool PhiOrSelectSeen = false; | ||||
5206 | SmallVector<Instruction *, 16> AddrModeInsts; | ||||
5207 | const SimplifyQuery SQ(*DL, TLInfo); | ||||
5208 | AddressingModeCombiner AddrModes(SQ, Addr); | ||||
5209 | TypePromotionTransaction TPT(RemovedInsts); | ||||
5210 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | ||||
5211 | TPT.getRestorationPoint(); | ||||
5212 | while (!worklist.empty()) { | ||||
5213 | Value *V = worklist.pop_back_val(); | ||||
5214 | |||||
5215 | // We allow traversing cyclic Phi nodes. | ||||
5216 | // In case of success after this loop we ensure that traversing through | ||||
5217 | // Phi nodes ends up with all cases to compute address of the form | ||||
5218 | // BaseGV + Base + Scale * Index + Offset | ||||
5219 | // where Scale and Offset are constans and BaseGV, Base and Index | ||||
5220 | // are exactly the same Values in all cases. | ||||
5221 | // It means that BaseGV, Scale and Offset dominate our memory instruction | ||||
5222 | // and have the same value as they had in address computation represented | ||||
5223 | // as Phi. So we can safely sink address computation to memory instruction. | ||||
5224 | if (!Visited.insert(V).second) | ||||
5225 | continue; | ||||
5226 | |||||
5227 | // For a PHI node, push all of its incoming values. | ||||
5228 | if (PHINode *P = dyn_cast<PHINode>(V)) { | ||||
5229 | append_range(worklist, P->incoming_values()); | ||||
5230 | PhiOrSelectSeen = true; | ||||
5231 | continue; | ||||
5232 | } | ||||
5233 | // Similar for select. | ||||
5234 | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | ||||
5235 | worklist.push_back(SI->getFalseValue()); | ||||
5236 | worklist.push_back(SI->getTrueValue()); | ||||
5237 | PhiOrSelectSeen = true; | ||||
5238 | continue; | ||||
5239 | } | ||||
5240 | |||||
5241 | // For non-PHIs, determine the addressing mode being computed. Note that | ||||
5242 | // the result may differ depending on what other uses our candidate | ||||
5243 | // addressing instructions might have. | ||||
5244 | AddrModeInsts.clear(); | ||||
5245 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, | ||||
5246 | 0); | ||||
5247 | // Defer the query (and possible computation of) the dom tree to point of | ||||
5248 | // actual use. It's expected that most address matches don't actually need | ||||
5249 | // the domtree. | ||||
5250 | auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { | ||||
5251 | Function *F = MemoryInst->getParent()->getParent(); | ||||
5252 | return this->getDT(*F); | ||||
5253 | }; | ||||
5254 | ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( | ||||
5255 | V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, | ||||
5256 | *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, | ||||
5257 | BFI.get()); | ||||
5258 | |||||
5259 | GetElementPtrInst *GEP = LargeOffsetGEP.first; | ||||
5260 | if (GEP && !NewGEPBases.count(GEP)) { | ||||
5261 | // If splitting the underlying data structure can reduce the offset of a | ||||
5262 | // GEP, collect the GEP. Skip the GEPs that are the new bases of | ||||
5263 | // previously split data structures. | ||||
5264 | LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); | ||||
5265 | LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); | ||||
5266 | } | ||||
5267 | |||||
5268 | NewAddrMode.OriginalValue = V; | ||||
5269 | if (!AddrModes.addNewAddrMode(NewAddrMode)) | ||||
5270 | break; | ||||
5271 | } | ||||
5272 | |||||
5273 | // Try to combine the AddrModes we've collected. If we couldn't collect any, | ||||
5274 | // or we have multiple but either couldn't combine them or combining them | ||||
5275 | // wouldn't do anything useful, bail out now. | ||||
5276 | if (!AddrModes.combineAddrModes()) { | ||||
5277 | TPT.rollback(LastKnownGood); | ||||
5278 | return false; | ||||
5279 | } | ||||
5280 | bool Modified = TPT.commit(); | ||||
5281 | |||||
5282 | // Get the combined AddrMode (or the only AddrMode, if we only had one). | ||||
5283 | ExtAddrMode AddrMode = AddrModes.getAddrMode(); | ||||
5284 | |||||
5285 | // If all the instructions matched are already in this BB, don't do anything. | ||||
5286 | // If we saw a Phi node then it is not local definitely, and if we saw a | ||||
5287 | // select then we want to push the address calculation past it even if it's | ||||
5288 | // already in this BB. | ||||
5289 | if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { | ||||
5290 | return IsNonLocalValue(V, MemoryInst->getParent()); | ||||
5291 | })) { | ||||
5292 | LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"; } } while (false) | ||||
5293 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"; } } while (false); | ||||
5294 | return Modified; | ||||
5295 | } | ||||
5296 | |||||
5297 | // Insert this computation right after this user. Since our caller is | ||||
5298 | // scanning from the top of the BB to the bottom, reuse of the expr are | ||||
5299 | // guaranteed to happen later. | ||||
5300 | IRBuilder<> Builder(MemoryInst); | ||||
5301 | |||||
5302 | // Now that we determined the addressing expression we want to use and know | ||||
5303 | // that we have to sink it into this block. Check to see if we have already | ||||
5304 | // done this for some other load/store instr in this block. If so, reuse | ||||
5305 | // the computation. Before attempting reuse, check if the address is valid | ||||
5306 | // as it may have been erased. | ||||
5307 | |||||
5308 | WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; | ||||
5309 | |||||
5310 | Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; | ||||
5311 | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | ||||
5312 | if (SunkAddr) { | ||||
5313 | LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | ||||
5314 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | ||||
5315 | if (SunkAddr->getType() != Addr->getType()) { | ||||
5316 | if (SunkAddr->getType()->getPointerAddressSpace() != | ||||
5317 | Addr->getType()->getPointerAddressSpace() && | ||||
5318 | !DL->isNonIntegralPointerType(Addr->getType())) { | ||||
5319 | // There are two reasons the address spaces might not match: a no-op | ||||
5320 | // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a | ||||
5321 | // ptrtoint/inttoptr pair to ensure we match the original semantics. | ||||
5322 | // TODO: allow bitcast between different address space pointers with the | ||||
5323 | // same size. | ||||
5324 | SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); | ||||
5325 | SunkAddr = | ||||
5326 | Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); | ||||
5327 | } else | ||||
5328 | SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); | ||||
5329 | } | ||||
5330 | } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && | ||||
5331 | SubtargetInfo->addrSinkUsingGEPs())) { | ||||
5332 | // By default, we use the GEP-based method when AA is used later. This | ||||
5333 | // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. | ||||
5334 | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | ||||
5335 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | ||||
5336 | Value *ResultPtr = nullptr, *ResultIndex = nullptr; | ||||
5337 | |||||
5338 | // First, find the pointer. | ||||
5339 | if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { | ||||
5340 | ResultPtr = AddrMode.BaseReg; | ||||
5341 | AddrMode.BaseReg = nullptr; | ||||
5342 | } | ||||
5343 | |||||
5344 | if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { | ||||
5345 | // We can't add more than one pointer together, nor can we scale a | ||||
5346 | // pointer (both of which seem meaningless). | ||||
5347 | if (ResultPtr || AddrMode.Scale != 1) | ||||
5348 | return Modified; | ||||
5349 | |||||
5350 | ResultPtr = AddrMode.ScaledReg; | ||||
5351 | AddrMode.Scale = 0; | ||||
5352 | } | ||||
5353 | |||||
5354 | // It is only safe to sign extend the BaseReg if we know that the math | ||||
5355 | // required to create it did not overflow before we extend it. Since | ||||
5356 | // the original IR value was tossed in favor of a constant back when | ||||
5357 | // the AddrMode was created we need to bail out gracefully if widths | ||||
5358 | // do not match instead of extending it. | ||||
5359 | // | ||||
5360 | // (See below for code to add the scale.) | ||||
5361 | if (AddrMode.Scale) { | ||||
5362 | Type *ScaledRegTy = AddrMode.ScaledReg->getType(); | ||||
5363 | if (cast<IntegerType>(IntPtrTy)->getBitWidth() > | ||||
5364 | cast<IntegerType>(ScaledRegTy)->getBitWidth()) | ||||
5365 | return Modified; | ||||
5366 | } | ||||
5367 | |||||
5368 | if (AddrMode.BaseGV) { | ||||
5369 | if (ResultPtr) | ||||
5370 | return Modified; | ||||
5371 | |||||
5372 | ResultPtr = AddrMode.BaseGV; | ||||
5373 | } | ||||
5374 | |||||
5375 | // If the real base value actually came from an inttoptr, then the matcher | ||||
5376 | // will look through it and provide only the integer value. In that case, | ||||
5377 | // use it here. | ||||
5378 | if (!DL->isNonIntegralPointerType(Addr->getType())) { | ||||
5379 | if (!ResultPtr && AddrMode.BaseReg) { | ||||
5380 | ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), | ||||
5381 | "sunkaddr"); | ||||
5382 | AddrMode.BaseReg = nullptr; | ||||
5383 | } else if (!ResultPtr && AddrMode.Scale == 1) { | ||||
5384 | ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), | ||||
5385 | "sunkaddr"); | ||||
5386 | AddrMode.Scale = 0; | ||||
5387 | } | ||||
5388 | } | ||||
5389 | |||||
5390 | if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && | ||||
5391 | !AddrMode.BaseOffs) { | ||||
5392 | SunkAddr = Constant::getNullValue(Addr->getType()); | ||||
5393 | } else if (!ResultPtr) { | ||||
5394 | return Modified; | ||||
5395 | } else { | ||||
5396 | Type *I8PtrTy = | ||||
5397 | Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); | ||||
5398 | Type *I8Ty = Builder.getInt8Ty(); | ||||
5399 | |||||
5400 | // Start with the base register. Do this first so that subsequent address | ||||
5401 | // matching finds it last, which will prevent it from trying to match it | ||||
5402 | // as the scaled value in case it happens to be a mul. That would be | ||||
5403 | // problematic if we've sunk a different mul for the scale, because then | ||||
5404 | // we'd end up sinking both muls. | ||||
5405 | if (AddrMode.BaseReg) { | ||||
5406 | Value *V = AddrMode.BaseReg; | ||||
5407 | if (V->getType() != IntPtrTy) | ||||
5408 | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | ||||
5409 | |||||
5410 | ResultIndex = V; | ||||
5411 | } | ||||
5412 | |||||
5413 | // Add the scale value. | ||||
5414 | if (AddrMode.Scale) { | ||||
5415 | Value *V = AddrMode.ScaledReg; | ||||
5416 | if (V->getType() == IntPtrTy) { | ||||
5417 | // done. | ||||
5418 | } else { | ||||
5419 | assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5421, __extension__ __PRETTY_FUNCTION__ )) | ||||
5420 | cast<IntegerType>(V->getType())->getBitWidth() &&(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5421, __extension__ __PRETTY_FUNCTION__ )) | ||||
5421 | "We can't transform if ScaledReg is too narrow")(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5421, __extension__ __PRETTY_FUNCTION__ )); | ||||
5422 | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | ||||
5423 | } | ||||
5424 | |||||
5425 | if (AddrMode.Scale != 1) | ||||
5426 | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | ||||
5427 | "sunkaddr"); | ||||
5428 | if (ResultIndex) | ||||
5429 | ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); | ||||
5430 | else | ||||
5431 | ResultIndex = V; | ||||
5432 | } | ||||
5433 | |||||
5434 | // Add in the Base Offset if present. | ||||
5435 | if (AddrMode.BaseOffs) { | ||||
5436 | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | ||||
5437 | if (ResultIndex) { | ||||
5438 | // We need to add this separately from the scale above to help with | ||||
5439 | // SDAG consecutive load/store merging. | ||||
5440 | if (ResultPtr->getType() != I8PtrTy) | ||||
5441 | ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); | ||||
5442 | ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, | ||||
5443 | "sunkaddr", AddrMode.InBounds); | ||||
5444 | } | ||||
5445 | |||||
5446 | ResultIndex = V; | ||||
5447 | } | ||||
5448 | |||||
5449 | if (!ResultIndex) { | ||||
5450 | SunkAddr = ResultPtr; | ||||
5451 | } else { | ||||
5452 | if (ResultPtr->getType() != I8PtrTy) | ||||
5453 | ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); | ||||
5454 | SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", | ||||
5455 | AddrMode.InBounds); | ||||
5456 | } | ||||
5457 | |||||
5458 | if (SunkAddr->getType() != Addr->getType()) { | ||||
5459 | if (SunkAddr->getType()->getPointerAddressSpace() != | ||||
5460 | Addr->getType()->getPointerAddressSpace() && | ||||
5461 | !DL->isNonIntegralPointerType(Addr->getType())) { | ||||
5462 | // There are two reasons the address spaces might not match: a no-op | ||||
5463 | // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a | ||||
5464 | // ptrtoint/inttoptr pair to ensure we match the original semantics. | ||||
5465 | // TODO: allow bitcast between different address space pointers with | ||||
5466 | // the same size. | ||||
5467 | SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); | ||||
5468 | SunkAddr = | ||||
5469 | Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); | ||||
5470 | } else | ||||
5471 | SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); | ||||
5472 | } | ||||
5473 | } | ||||
5474 | } else { | ||||
5475 | // We'd require a ptrtoint/inttoptr down the line, which we can't do for | ||||
5476 | // non-integral pointers, so in that case bail out now. | ||||
5477 | Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; | ||||
5478 | Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; | ||||
5479 | PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); | ||||
5480 | PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); | ||||
5481 | if (DL->isNonIntegralPointerType(Addr->getType()) || | ||||
5482 | (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || | ||||
5483 | (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || | ||||
5484 | (AddrMode.BaseGV && | ||||
5485 | DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) | ||||
5486 | return Modified; | ||||
5487 | |||||
5488 | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | ||||
5489 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | ||||
5490 | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | ||||
5491 | Value *Result = nullptr; | ||||
5492 | |||||
5493 | // Start with the base register. Do this first so that subsequent address | ||||
5494 | // matching finds it last, which will prevent it from trying to match it | ||||
5495 | // as the scaled value in case it happens to be a mul. That would be | ||||
5496 | // problematic if we've sunk a different mul for the scale, because then | ||||
5497 | // we'd end up sinking both muls. | ||||
5498 | if (AddrMode.BaseReg) { | ||||
5499 | Value *V = AddrMode.BaseReg; | ||||
5500 | if (V->getType()->isPointerTy()) | ||||
5501 | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | ||||
5502 | if (V->getType() != IntPtrTy) | ||||
5503 | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | ||||
5504 | Result = V; | ||||
5505 | } | ||||
5506 | |||||
5507 | // Add the scale value. | ||||
5508 | if (AddrMode.Scale) { | ||||
5509 | Value *V = AddrMode.ScaledReg; | ||||
5510 | if (V->getType() == IntPtrTy) { | ||||
5511 | // done. | ||||
5512 | } else if (V->getType()->isPointerTy()) { | ||||
5513 | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | ||||
5514 | } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < | ||||
5515 | cast<IntegerType>(V->getType())->getBitWidth()) { | ||||
5516 | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | ||||
5517 | } else { | ||||
5518 | // It is only safe to sign extend the BaseReg if we know that the math | ||||
5519 | // required to create it did not overflow before we extend it. Since | ||||
5520 | // the original IR value was tossed in favor of a constant back when | ||||
5521 | // the AddrMode was created we need to bail out gracefully if widths | ||||
5522 | // do not match instead of extending it. | ||||
5523 | Instruction *I = dyn_cast_or_null<Instruction>(Result); | ||||
5524 | if (I && (Result != AddrMode.BaseReg)) | ||||
5525 | I->eraseFromParent(); | ||||
5526 | return Modified; | ||||
5527 | } | ||||
5528 | if (AddrMode.Scale != 1) | ||||
5529 | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | ||||
5530 | "sunkaddr"); | ||||
5531 | if (Result) | ||||
5532 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | ||||
5533 | else | ||||
5534 | Result = V; | ||||
5535 | } | ||||
5536 | |||||
5537 | // Add in the BaseGV if present. | ||||
5538 | if (AddrMode.BaseGV) { | ||||
5539 | Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); | ||||
5540 | if (Result) | ||||
5541 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | ||||
5542 | else | ||||
5543 | Result = V; | ||||
5544 | } | ||||
5545 | |||||
5546 | // Add in the Base Offset if present. | ||||
5547 | if (AddrMode.BaseOffs) { | ||||
5548 | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | ||||
5549 | if (Result) | ||||
5550 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | ||||
5551 | else | ||||
5552 | Result = V; | ||||
5553 | } | ||||
5554 | |||||
5555 | if (!Result) | ||||
5556 | SunkAddr = Constant::getNullValue(Addr->getType()); | ||||
5557 | else | ||||
5558 | SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); | ||||
5559 | } | ||||
5560 | |||||
5561 | MemoryInst->replaceUsesOfWith(Repl, SunkAddr); | ||||
5562 | // Store the newly computed address into the cache. In the case we reused a | ||||
5563 | // value, this should be idempotent. | ||||
5564 | SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); | ||||
5565 | |||||
5566 | // If we have no uses, recursively delete the value and all dead instructions | ||||
5567 | // using it. | ||||
5568 | if (Repl->use_empty()) { | ||||
5569 | resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { | ||||
5570 | RecursivelyDeleteTriviallyDeadInstructions( | ||||
5571 | Repl, TLInfo, nullptr, | ||||
5572 | [&](Value *V) { removeAllAssertingVHReferences(V); }); | ||||
5573 | }); | ||||
5574 | } | ||||
5575 | ++NumMemoryInsts; | ||||
5576 | return true; | ||||
5577 | } | ||||
5578 | |||||
5579 | /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find | ||||
5580 | /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can | ||||
5581 | /// only handle a 2 operand GEP in the same basic block or a splat constant | ||||
5582 | /// vector. The 2 operands to the GEP must have a scalar pointer and a vector | ||||
5583 | /// index. | ||||
5584 | /// | ||||
5585 | /// If the existing GEP has a vector base pointer that is splat, we can look | ||||
5586 | /// through the splat to find the scalar pointer. If we can't find a scalar | ||||
5587 | /// pointer there's nothing we can do. | ||||
5588 | /// | ||||
5589 | /// If we have a GEP with more than 2 indices where the middle indices are all | ||||
5590 | /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. | ||||
5591 | /// | ||||
5592 | /// If the final index isn't a vector or is a splat, we can emit a scalar GEP | ||||
5593 | /// followed by a GEP with an all zeroes vector index. This will enable | ||||
5594 | /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a | ||||
5595 | /// zero index. | ||||
5596 | bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, | ||||
5597 | Value *Ptr) { | ||||
5598 | Value *NewAddr; | ||||
5599 | |||||
5600 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { | ||||
5601 | // Don't optimize GEPs that don't have indices. | ||||
5602 | if (!GEP->hasIndices()) | ||||
5603 | return false; | ||||
5604 | |||||
5605 | // If the GEP and the gather/scatter aren't in the same BB, don't optimize. | ||||
5606 | // FIXME: We should support this by sinking the GEP. | ||||
5607 | if (MemoryInst->getParent() != GEP->getParent()) | ||||
5608 | return false; | ||||
5609 | |||||
5610 | SmallVector<Value *, 2> Ops(GEP->operands()); | ||||
5611 | |||||
5612 | bool RewriteGEP = false; | ||||
5613 | |||||
5614 | if (Ops[0]->getType()->isVectorTy()) { | ||||
5615 | Ops[0] = getSplatValue(Ops[0]); | ||||
5616 | if (!Ops[0]) | ||||
5617 | return false; | ||||
5618 | RewriteGEP = true; | ||||
5619 | } | ||||
5620 | |||||
5621 | unsigned FinalIndex = Ops.size() - 1; | ||||
5622 | |||||
5623 | // Ensure all but the last index is 0. | ||||
5624 | // FIXME: This isn't strictly required. All that's required is that they are | ||||
5625 | // all scalars or splats. | ||||
5626 | for (unsigned i = 1; i < FinalIndex; ++i) { | ||||
5627 | auto *C = dyn_cast<Constant>(Ops[i]); | ||||
5628 | if (!C) | ||||
5629 | return false; | ||||
5630 | if (isa<VectorType>(C->getType())) | ||||
5631 | C = C->getSplatValue(); | ||||
5632 | auto *CI = dyn_cast_or_null<ConstantInt>(C); | ||||
5633 | if (!CI || !CI->isZero()) | ||||
5634 | return false; | ||||
5635 | // Scalarize the index if needed. | ||||
5636 | Ops[i] = CI; | ||||
5637 | } | ||||
5638 | |||||
5639 | // Try to scalarize the final index. | ||||
5640 | if (Ops[FinalIndex]->getType()->isVectorTy()) { | ||||
5641 | if (Value *V = getSplatValue(Ops[FinalIndex])) { | ||||
5642 | auto *C = dyn_cast<ConstantInt>(V); | ||||
5643 | // Don't scalarize all zeros vector. | ||||
5644 | if (!C || !C->isZero()) { | ||||
5645 | Ops[FinalIndex] = V; | ||||
5646 | RewriteGEP = true; | ||||
5647 | } | ||||
5648 | } | ||||
5649 | } | ||||
5650 | |||||
5651 | // If we made any changes or the we have extra operands, we need to generate | ||||
5652 | // new instructions. | ||||
5653 | if (!RewriteGEP && Ops.size() == 2) | ||||
5654 | return false; | ||||
5655 | |||||
5656 | auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); | ||||
5657 | |||||
5658 | IRBuilder<> Builder(MemoryInst); | ||||
5659 | |||||
5660 | Type *SourceTy = GEP->getSourceElementType(); | ||||
5661 | Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); | ||||
5662 | |||||
5663 | // If the final index isn't a vector, emit a scalar GEP containing all ops | ||||
5664 | // and a vector GEP with all zeroes final index. | ||||
5665 | if (!Ops[FinalIndex]->getType()->isVectorTy()) { | ||||
5666 | NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); | ||||
5667 | auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); | ||||
5668 | auto *SecondTy = GetElementPtrInst::getIndexedType( | ||||
5669 | SourceTy, ArrayRef(Ops).drop_front()); | ||||
5670 | NewAddr = | ||||
5671 | Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); | ||||
5672 | } else { | ||||
5673 | Value *Base = Ops[0]; | ||||
5674 | Value *Index = Ops[FinalIndex]; | ||||
5675 | |||||
5676 | // Create a scalar GEP if there are more than 2 operands. | ||||
5677 | if (Ops.size() != 2) { | ||||
5678 | // Replace the last index with 0. | ||||
5679 | Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); | ||||
5680 | Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); | ||||
5681 | SourceTy = GetElementPtrInst::getIndexedType( | ||||
5682 | SourceTy, ArrayRef(Ops).drop_front()); | ||||
5683 | } | ||||
5684 | |||||
5685 | // Now create the GEP with scalar pointer and vector index. | ||||
5686 | NewAddr = Builder.CreateGEP(SourceTy, Base, Index); | ||||
5687 | } | ||||
5688 | } else if (!isa<Constant>(Ptr)) { | ||||
5689 | // Not a GEP, maybe its a splat and we can create a GEP to enable | ||||
5690 | // SelectionDAGBuilder to use it as a uniform base. | ||||
5691 | Value *V = getSplatValue(Ptr); | ||||
5692 | if (!V) | ||||
5693 | return false; | ||||
5694 | |||||
5695 | auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); | ||||
5696 | |||||
5697 | IRBuilder<> Builder(MemoryInst); | ||||
5698 | |||||
5699 | // Emit a vector GEP with a scalar pointer and all 0s vector index. | ||||
5700 | Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); | ||||
5701 | auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); | ||||
5702 | Type *ScalarTy; | ||||
5703 | if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == | ||||
5704 | Intrinsic::masked_gather) { | ||||
5705 | ScalarTy = MemoryInst->getType()->getScalarType(); | ||||
5706 | } else { | ||||
5707 | assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==(static_cast <bool> (cast<IntrinsicInst>(MemoryInst )->getIntrinsicID() == Intrinsic::masked_scatter) ? void ( 0) : __assert_fail ("cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == Intrinsic::masked_scatter" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5708, __extension__ __PRETTY_FUNCTION__ )) | ||||
5708 | Intrinsic::masked_scatter)(static_cast <bool> (cast<IntrinsicInst>(MemoryInst )->getIntrinsicID() == Intrinsic::masked_scatter) ? void ( 0) : __assert_fail ("cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == Intrinsic::masked_scatter" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5708, __extension__ __PRETTY_FUNCTION__ )); | ||||
5709 | ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); | ||||
5710 | } | ||||
5711 | NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); | ||||
5712 | } else { | ||||
5713 | // Constant, SelectionDAGBuilder knows to check if its a splat. | ||||
5714 | return false; | ||||
5715 | } | ||||
5716 | |||||
5717 | MemoryInst->replaceUsesOfWith(Ptr, NewAddr); | ||||
5718 | |||||
5719 | // If we have no uses, recursively delete the value and all dead instructions | ||||
5720 | // using it. | ||||
5721 | if (Ptr->use_empty()) | ||||
5722 | RecursivelyDeleteTriviallyDeadInstructions( | ||||
5723 | Ptr, TLInfo, nullptr, | ||||
5724 | [&](Value *V) { removeAllAssertingVHReferences(V); }); | ||||
5725 | |||||
5726 | return true; | ||||
5727 | } | ||||
5728 | |||||
5729 | /// If there are any memory operands, use OptimizeMemoryInst to sink their | ||||
5730 | /// address computing into the block when possible / profitable. | ||||
5731 | bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { | ||||
5732 | bool MadeChange = false; | ||||
5733 | |||||
5734 | const TargetRegisterInfo *TRI = | ||||
5735 | TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); | ||||
5736 | TargetLowering::AsmOperandInfoVector TargetConstraints = | ||||
5737 | TLI->ParseConstraints(*DL, TRI, *CS); | ||||
5738 | unsigned ArgNo = 0; | ||||
5739 | for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { | ||||
5740 | // Compute the constraint code and ConstraintType to use. | ||||
5741 | TLI->ComputeConstraintToUse(OpInfo, SDValue()); | ||||
5742 | |||||
5743 | // TODO: Also handle C_Address? | ||||
5744 | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | ||||
5745 | OpInfo.isIndirect) { | ||||
5746 | Value *OpVal = CS->getArgOperand(ArgNo++); | ||||
5747 | MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); | ||||
5748 | } else if (OpInfo.Type == InlineAsm::isInput) | ||||
5749 | ArgNo++; | ||||
5750 | } | ||||
5751 | |||||
5752 | return MadeChange; | ||||
5753 | } | ||||
5754 | |||||
5755 | /// Check if all the uses of \p Val are equivalent (or free) zero or | ||||
5756 | /// sign extensions. | ||||
5757 | static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { | ||||
5758 | assert(!Val->use_empty() && "Input must have at least one use")(static_cast <bool> (!Val->use_empty() && "Input must have at least one use" ) ? void (0) : __assert_fail ("!Val->use_empty() && \"Input must have at least one use\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5758, __extension__ __PRETTY_FUNCTION__ )); | ||||
5759 | const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); | ||||
5760 | bool IsSExt = isa<SExtInst>(FirstUser); | ||||
5761 | Type *ExtTy = FirstUser->getType(); | ||||
5762 | for (const User *U : Val->users()) { | ||||
5763 | const Instruction *UI = cast<Instruction>(U); | ||||
5764 | if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) | ||||
5765 | return false; | ||||
5766 | Type *CurTy = UI->getType(); | ||||
5767 | // Same input and output types: Same instruction after CSE. | ||||
5768 | if (CurTy == ExtTy) | ||||
5769 | continue; | ||||
5770 | |||||
5771 | // If IsSExt is true, we are in this situation: | ||||
5772 | // a = Val | ||||
5773 | // b = sext ty1 a to ty2 | ||||
5774 | // c = sext ty1 a to ty3 | ||||
5775 | // Assuming ty2 is shorter than ty3, this could be turned into: | ||||
5776 | // a = Val | ||||
5777 | // b = sext ty1 a to ty2 | ||||
5778 | // c = sext ty2 b to ty3 | ||||
5779 | // However, the last sext is not free. | ||||
5780 | if (IsSExt) | ||||
5781 | return false; | ||||
5782 | |||||
5783 | // This is a ZExt, maybe this is free to extend from one type to another. | ||||
5784 | // In that case, we would not account for a different use. | ||||
5785 | Type *NarrowTy; | ||||
5786 | Type *LargeTy; | ||||
5787 | if (ExtTy->getScalarType()->getIntegerBitWidth() > | ||||
5788 | CurTy->getScalarType()->getIntegerBitWidth()) { | ||||
5789 | NarrowTy = CurTy; | ||||
5790 | LargeTy = ExtTy; | ||||
5791 | } else { | ||||
5792 | NarrowTy = ExtTy; | ||||