File: | build/source/llvm/lib/CodeGen/CodeGenPrepare.cpp |
Warning: | line 1238, column 37 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This pass munges the code in the input function to better prepare it for | |||
10 | // SelectionDAG-based code generation. This works around limitations in it's | |||
11 | // basic-block-at-a-time approach. It should eventually be removed. | |||
12 | // | |||
13 | //===----------------------------------------------------------------------===// | |||
14 | ||||
15 | #include "llvm/ADT/APInt.h" | |||
16 | #include "llvm/ADT/ArrayRef.h" | |||
17 | #include "llvm/ADT/DenseMap.h" | |||
18 | #include "llvm/ADT/MapVector.h" | |||
19 | #include "llvm/ADT/PointerIntPair.h" | |||
20 | #include "llvm/ADT/STLExtras.h" | |||
21 | #include "llvm/ADT/SmallPtrSet.h" | |||
22 | #include "llvm/ADT/SmallVector.h" | |||
23 | #include "llvm/ADT/Statistic.h" | |||
24 | #include "llvm/Analysis/BlockFrequencyInfo.h" | |||
25 | #include "llvm/Analysis/BranchProbabilityInfo.h" | |||
26 | #include "llvm/Analysis/InstructionSimplify.h" | |||
27 | #include "llvm/Analysis/LoopInfo.h" | |||
28 | #include "llvm/Analysis/ProfileSummaryInfo.h" | |||
29 | #include "llvm/Analysis/TargetLibraryInfo.h" | |||
30 | #include "llvm/Analysis/TargetTransformInfo.h" | |||
31 | #include "llvm/Analysis/ValueTracking.h" | |||
32 | #include "llvm/Analysis/VectorUtils.h" | |||
33 | #include "llvm/CodeGen/Analysis.h" | |||
34 | #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" | |||
35 | #include "llvm/CodeGen/ISDOpcodes.h" | |||
36 | #include "llvm/CodeGen/SelectionDAGNodes.h" | |||
37 | #include "llvm/CodeGen/TargetLowering.h" | |||
38 | #include "llvm/CodeGen/TargetPassConfig.h" | |||
39 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | |||
40 | #include "llvm/CodeGen/ValueTypes.h" | |||
41 | #include "llvm/Config/llvm-config.h" | |||
42 | #include "llvm/IR/Argument.h" | |||
43 | #include "llvm/IR/Attributes.h" | |||
44 | #include "llvm/IR/BasicBlock.h" | |||
45 | #include "llvm/IR/Constant.h" | |||
46 | #include "llvm/IR/Constants.h" | |||
47 | #include "llvm/IR/DataLayout.h" | |||
48 | #include "llvm/IR/DebugInfo.h" | |||
49 | #include "llvm/IR/DerivedTypes.h" | |||
50 | #include "llvm/IR/Dominators.h" | |||
51 | #include "llvm/IR/Function.h" | |||
52 | #include "llvm/IR/GetElementPtrTypeIterator.h" | |||
53 | #include "llvm/IR/GlobalValue.h" | |||
54 | #include "llvm/IR/GlobalVariable.h" | |||
55 | #include "llvm/IR/IRBuilder.h" | |||
56 | #include "llvm/IR/InlineAsm.h" | |||
57 | #include "llvm/IR/InstrTypes.h" | |||
58 | #include "llvm/IR/Instruction.h" | |||
59 | #include "llvm/IR/Instructions.h" | |||
60 | #include "llvm/IR/IntrinsicInst.h" | |||
61 | #include "llvm/IR/Intrinsics.h" | |||
62 | #include "llvm/IR/IntrinsicsAArch64.h" | |||
63 | #include "llvm/IR/LLVMContext.h" | |||
64 | #include "llvm/IR/MDBuilder.h" | |||
65 | #include "llvm/IR/Module.h" | |||
66 | #include "llvm/IR/Operator.h" | |||
67 | #include "llvm/IR/PatternMatch.h" | |||
68 | #include "llvm/IR/ProfDataUtils.h" | |||
69 | #include "llvm/IR/Statepoint.h" | |||
70 | #include "llvm/IR/Type.h" | |||
71 | #include "llvm/IR/Use.h" | |||
72 | #include "llvm/IR/User.h" | |||
73 | #include "llvm/IR/Value.h" | |||
74 | #include "llvm/IR/ValueHandle.h" | |||
75 | #include "llvm/IR/ValueMap.h" | |||
76 | #include "llvm/InitializePasses.h" | |||
77 | #include "llvm/Pass.h" | |||
78 | #include "llvm/Support/BlockFrequency.h" | |||
79 | #include "llvm/Support/BranchProbability.h" | |||
80 | #include "llvm/Support/Casting.h" | |||
81 | #include "llvm/Support/CommandLine.h" | |||
82 | #include "llvm/Support/Compiler.h" | |||
83 | #include "llvm/Support/Debug.h" | |||
84 | #include "llvm/Support/ErrorHandling.h" | |||
85 | #include "llvm/Support/MachineValueType.h" | |||
86 | #include "llvm/Support/MathExtras.h" | |||
87 | #include "llvm/Support/raw_ostream.h" | |||
88 | #include "llvm/Target/TargetMachine.h" | |||
89 | #include "llvm/Target/TargetOptions.h" | |||
90 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | |||
91 | #include "llvm/Transforms/Utils/BypassSlowDivision.h" | |||
92 | #include "llvm/Transforms/Utils/Local.h" | |||
93 | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" | |||
94 | #include "llvm/Transforms/Utils/SizeOpts.h" | |||
95 | #include <algorithm> | |||
96 | #include <cassert> | |||
97 | #include <cstdint> | |||
98 | #include <iterator> | |||
99 | #include <limits> | |||
100 | #include <memory> | |||
101 | #include <optional> | |||
102 | #include <utility> | |||
103 | #include <vector> | |||
104 | ||||
105 | using namespace llvm; | |||
106 | using namespace llvm::PatternMatch; | |||
107 | ||||
108 | #define DEBUG_TYPE"codegenprepare" "codegenprepare" | |||
109 | ||||
110 | STATISTIC(NumBlocksElim, "Number of blocks eliminated")static llvm::Statistic NumBlocksElim = {"codegenprepare", "NumBlocksElim" , "Number of blocks eliminated"}; | |||
111 | STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated")static llvm::Statistic NumPHIsElim = {"codegenprepare", "NumPHIsElim" , "Number of trivial PHIs eliminated"}; | |||
112 | STATISTIC(NumGEPsElim, "Number of GEPs converted to casts")static llvm::Statistic NumGEPsElim = {"codegenprepare", "NumGEPsElim" , "Number of GEPs converted to casts"}; | |||
113 | STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "static llvm::Statistic NumCmpUses = {"codegenprepare", "NumCmpUses" , "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps" } | |||
114 | "sunken Cmps")static llvm::Statistic NumCmpUses = {"codegenprepare", "NumCmpUses" , "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps" }; | |||
115 | STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "static llvm::Statistic NumCastUses = {"codegenprepare", "NumCastUses" , "Number of uses of Cast expressions replaced with uses " "of sunken Casts" } | |||
116 | "of sunken Casts")static llvm::Statistic NumCastUses = {"codegenprepare", "NumCastUses" , "Number of uses of Cast expressions replaced with uses " "of sunken Casts" }; | |||
117 | STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "static llvm::Statistic NumMemoryInsts = {"codegenprepare", "NumMemoryInsts" , "Number of memory instructions whose address " "computations were sunk" } | |||
118 | "computations were sunk")static llvm::Statistic NumMemoryInsts = {"codegenprepare", "NumMemoryInsts" , "Number of memory instructions whose address " "computations were sunk" }; | |||
119 | STATISTIC(NumMemoryInstsPhiCreated,static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"} | |||
120 | "Number of phis created when address "static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"} | |||
121 | "computations were sunk to memory instructions")static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"}; | |||
122 | STATISTIC(NumMemoryInstsSelectCreated,static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"} | |||
123 | "Number of select created when address "static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"} | |||
124 | "computations were sunk to memory instructions")static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"}; | |||
125 | STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads")static llvm::Statistic NumExtsMoved = {"codegenprepare", "NumExtsMoved" , "Number of [s|z]ext instructions combined with loads"}; | |||
126 | STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized")static llvm::Statistic NumExtUses = {"codegenprepare", "NumExtUses" , "Number of uses of [s|z]ext instructions optimized"}; | |||
127 | STATISTIC(NumAndsAdded,static llvm::Statistic NumAndsAdded = {"codegenprepare", "NumAndsAdded" , "Number of and mask instructions added to form ext loads"} | |||
128 | "Number of and mask instructions added to form ext loads")static llvm::Statistic NumAndsAdded = {"codegenprepare", "NumAndsAdded" , "Number of and mask instructions added to form ext loads"}; | |||
129 | STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized")static llvm::Statistic NumAndUses = {"codegenprepare", "NumAndUses" , "Number of uses of and mask instructions optimized"}; | |||
130 | STATISTIC(NumRetsDup, "Number of return instructions duplicated")static llvm::Statistic NumRetsDup = {"codegenprepare", "NumRetsDup" , "Number of return instructions duplicated"}; | |||
131 | STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved")static llvm::Statistic NumDbgValueMoved = {"codegenprepare", "NumDbgValueMoved" , "Number of debug value instructions moved"}; | |||
132 | STATISTIC(NumSelectsExpanded, "Number of selects turned into branches")static llvm::Statistic NumSelectsExpanded = {"codegenprepare" , "NumSelectsExpanded", "Number of selects turned into branches" }; | |||
133 | STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed")static llvm::Statistic NumStoreExtractExposed = {"codegenprepare" , "NumStoreExtractExposed", "Number of store(extractelement) exposed" }; | |||
134 | ||||
135 | static cl::opt<bool> DisableBranchOpts( | |||
136 | "disable-cgp-branch-opts", cl::Hidden, cl::init(false), | |||
137 | cl::desc("Disable branch optimizations in CodeGenPrepare")); | |||
138 | ||||
139 | static cl::opt<bool> | |||
140 | DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), | |||
141 | cl::desc("Disable GC optimizations in CodeGenPrepare")); | |||
142 | ||||
143 | static cl::opt<bool> | |||
144 | DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, | |||
145 | cl::init(false), | |||
146 | cl::desc("Disable select to branch conversion.")); | |||
147 | ||||
148 | static cl::opt<bool> | |||
149 | AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), | |||
150 | cl::desc("Address sinking in CGP using GEPs.")); | |||
151 | ||||
152 | static cl::opt<bool> | |||
153 | EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), | |||
154 | cl::desc("Enable sinkinig and/cmp into branches.")); | |||
155 | ||||
156 | static cl::opt<bool> DisableStoreExtract( | |||
157 | "disable-cgp-store-extract", cl::Hidden, cl::init(false), | |||
158 | cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); | |||
159 | ||||
160 | static cl::opt<bool> StressStoreExtract( | |||
161 | "stress-cgp-store-extract", cl::Hidden, cl::init(false), | |||
162 | cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); | |||
163 | ||||
164 | static cl::opt<bool> DisableExtLdPromotion( | |||
165 | "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | |||
166 | cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " | |||
167 | "CodeGenPrepare")); | |||
168 | ||||
169 | static cl::opt<bool> StressExtLdPromotion( | |||
170 | "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | |||
171 | cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " | |||
172 | "optimization in CodeGenPrepare")); | |||
173 | ||||
174 | static cl::opt<bool> DisablePreheaderProtect( | |||
175 | "disable-preheader-prot", cl::Hidden, cl::init(false), | |||
176 | cl::desc("Disable protection against removing loop preheaders")); | |||
177 | ||||
178 | static cl::opt<bool> ProfileGuidedSectionPrefix( | |||
179 | "profile-guided-section-prefix", cl::Hidden, cl::init(true), | |||
180 | cl::desc("Use profile info to add section prefix for hot/cold functions")); | |||
181 | ||||
182 | static cl::opt<bool> ProfileUnknownInSpecialSection( | |||
183 | "profile-unknown-in-special-section", cl::Hidden, | |||
184 | cl::desc("In profiling mode like sampleFDO, if a function doesn't have " | |||
185 | "profile, we cannot tell the function is cold for sure because " | |||
186 | "it may be a function newly added without ever being sampled. " | |||
187 | "With the flag enabled, compiler can put such profile unknown " | |||
188 | "functions into a special section, so runtime system can choose " | |||
189 | "to handle it in a different way than .text section, to save " | |||
190 | "RAM for example. ")); | |||
191 | ||||
192 | static cl::opt<bool> BBSectionsGuidedSectionPrefix( | |||
193 | "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), | |||
194 | cl::desc("Use the basic-block-sections profile to determine the text " | |||
195 | "section prefix for hot functions. Functions with " | |||
196 | "basic-block-sections profile will be placed in `.text.hot` " | |||
197 | "regardless of their FDO profile info. Other functions won't be " | |||
198 | "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " | |||
199 | "profiles.")); | |||
200 | ||||
201 | static cl::opt<unsigned> FreqRatioToSkipMerge( | |||
202 | "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), | |||
203 | cl::desc("Skip merging empty blocks if (frequency of empty block) / " | |||
204 | "(frequency of destination block) is greater than this ratio")); | |||
205 | ||||
206 | static cl::opt<bool> ForceSplitStore( | |||
207 | "force-split-store", cl::Hidden, cl::init(false), | |||
208 | cl::desc("Force store splitting no matter what the target query says.")); | |||
209 | ||||
210 | static cl::opt<bool> EnableTypePromotionMerge( | |||
211 | "cgp-type-promotion-merge", cl::Hidden, | |||
212 | cl::desc("Enable merging of redundant sexts when one is dominating" | |||
213 | " the other."), | |||
214 | cl::init(true)); | |||
215 | ||||
216 | static cl::opt<bool> DisableComplexAddrModes( | |||
217 | "disable-complex-addr-modes", cl::Hidden, cl::init(false), | |||
218 | cl::desc("Disables combining addressing modes with different parts " | |||
219 | "in optimizeMemoryInst.")); | |||
220 | ||||
221 | static cl::opt<bool> | |||
222 | AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), | |||
223 | cl::desc("Allow creation of Phis in Address sinking.")); | |||
224 | ||||
225 | static cl::opt<bool> AddrSinkNewSelects( | |||
226 | "addr-sink-new-select", cl::Hidden, cl::init(true), | |||
227 | cl::desc("Allow creation of selects in Address sinking.")); | |||
228 | ||||
229 | static cl::opt<bool> AddrSinkCombineBaseReg( | |||
230 | "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), | |||
231 | cl::desc("Allow combining of BaseReg field in Address sinking.")); | |||
232 | ||||
233 | static cl::opt<bool> AddrSinkCombineBaseGV( | |||
234 | "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), | |||
235 | cl::desc("Allow combining of BaseGV field in Address sinking.")); | |||
236 | ||||
237 | static cl::opt<bool> AddrSinkCombineBaseOffs( | |||
238 | "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), | |||
239 | cl::desc("Allow combining of BaseOffs field in Address sinking.")); | |||
240 | ||||
241 | static cl::opt<bool> AddrSinkCombineScaledReg( | |||
242 | "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), | |||
243 | cl::desc("Allow combining of ScaledReg field in Address sinking.")); | |||
244 | ||||
245 | static cl::opt<bool> | |||
246 | EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, | |||
247 | cl::init(true), | |||
248 | cl::desc("Enable splitting large offset of GEP.")); | |||
249 | ||||
250 | static cl::opt<bool> EnableICMP_EQToICMP_ST( | |||
251 | "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), | |||
252 | cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); | |||
253 | ||||
254 | static cl::opt<bool> | |||
255 | VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), | |||
256 | cl::desc("Enable BFI update verification for " | |||
257 | "CodeGenPrepare.")); | |||
258 | ||||
259 | static cl::opt<bool> | |||
260 | OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(false), | |||
261 | cl::desc("Enable converting phi types in CodeGenPrepare")); | |||
262 | ||||
263 | static cl::opt<unsigned> | |||
264 | HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, | |||
265 | cl::desc("Least BB number of huge function.")); | |||
266 | ||||
267 | namespace { | |||
268 | ||||
269 | enum ExtType { | |||
270 | ZeroExtension, // Zero extension has been seen. | |||
271 | SignExtension, // Sign extension has been seen. | |||
272 | BothExtension // This extension type is used if we saw sext after | |||
273 | // ZeroExtension had been set, or if we saw zext after | |||
274 | // SignExtension had been set. It makes the type | |||
275 | // information of a promoted instruction invalid. | |||
276 | }; | |||
277 | ||||
278 | enum ModifyDT { | |||
279 | NotModifyDT, // Not Modify any DT. | |||
280 | ModifyBBDT, // Modify the Basic Block Dominator Tree. | |||
281 | ModifyInstDT // Modify the Instruction Dominator in a Basic Block, | |||
282 | // This usually means we move/delete/insert instruction | |||
283 | // in a Basic Block. So we should re-iterate instructions | |||
284 | // in such Basic Block. | |||
285 | }; | |||
286 | ||||
287 | using SetOfInstrs = SmallPtrSet<Instruction *, 16>; | |||
288 | using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; | |||
289 | using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; | |||
290 | using SExts = SmallVector<Instruction *, 16>; | |||
291 | using ValueToSExts = MapVector<Value *, SExts>; | |||
292 | ||||
293 | class TypePromotionTransaction; | |||
294 | ||||
295 | class CodeGenPrepare : public FunctionPass { | |||
296 | const TargetMachine *TM = nullptr; | |||
297 | const TargetSubtargetInfo *SubtargetInfo; | |||
298 | const TargetLowering *TLI = nullptr; | |||
299 | const TargetRegisterInfo *TRI; | |||
300 | const TargetTransformInfo *TTI = nullptr; | |||
301 | const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; | |||
302 | const TargetLibraryInfo *TLInfo; | |||
303 | const LoopInfo *LI; | |||
304 | std::unique_ptr<BlockFrequencyInfo> BFI; | |||
305 | std::unique_ptr<BranchProbabilityInfo> BPI; | |||
306 | ProfileSummaryInfo *PSI; | |||
307 | ||||
308 | /// As we scan instructions optimizing them, this is the next instruction | |||
309 | /// to optimize. Transforms that can invalidate this should update it. | |||
310 | BasicBlock::iterator CurInstIterator; | |||
311 | ||||
312 | /// Keeps track of non-local addresses that have been sunk into a block. | |||
313 | /// This allows us to avoid inserting duplicate code for blocks with | |||
314 | /// multiple load/stores of the same address. The usage of WeakTrackingVH | |||
315 | /// enables SunkAddrs to be treated as a cache whose entries can be | |||
316 | /// invalidated if a sunken address computation has been erased. | |||
317 | ValueMap<Value *, WeakTrackingVH> SunkAddrs; | |||
318 | ||||
319 | /// Keeps track of all instructions inserted for the current function. | |||
320 | SetOfInstrs InsertedInsts; | |||
321 | ||||
322 | /// Keeps track of the type of the related instruction before their | |||
323 | /// promotion for the current function. | |||
324 | InstrToOrigTy PromotedInsts; | |||
325 | ||||
326 | /// Keep track of instructions removed during promotion. | |||
327 | SetOfInstrs RemovedInsts; | |||
328 | ||||
329 | /// Keep track of sext chains based on their initial value. | |||
330 | DenseMap<Value *, Instruction *> SeenChainsForSExt; | |||
331 | ||||
332 | /// Keep track of GEPs accessing the same data structures such as structs or | |||
333 | /// arrays that are candidates to be split later because of their large | |||
334 | /// size. | |||
335 | MapVector<AssertingVH<Value>, | |||
336 | SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> | |||
337 | LargeOffsetGEPMap; | |||
338 | ||||
339 | /// Keep track of new GEP base after splitting the GEPs having large offset. | |||
340 | SmallSet<AssertingVH<Value>, 2> NewGEPBases; | |||
341 | ||||
342 | /// Map serial numbers to Large offset GEPs. | |||
343 | DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; | |||
344 | ||||
345 | /// Keep track of SExt promoted. | |||
346 | ValueToSExts ValToSExtendedUses; | |||
347 | ||||
348 | /// True if the function has the OptSize attribute. | |||
349 | bool OptSize; | |||
350 | ||||
351 | /// DataLayout for the Function being processed. | |||
352 | const DataLayout *DL = nullptr; | |||
353 | ||||
354 | /// Building the dominator tree can be expensive, so we only build it | |||
355 | /// lazily and update it when required. | |||
356 | std::unique_ptr<DominatorTree> DT; | |||
357 | ||||
358 | public: | |||
359 | /// If encounter huge function, we need to limit the build time. | |||
360 | bool IsHugeFunc = false; | |||
361 | ||||
362 | /// FreshBBs is like worklist, it collected the updated BBs which need | |||
363 | /// to be optimized again. | |||
364 | /// Note: Consider building time in this pass, when a BB updated, we need | |||
365 | /// to insert such BB into FreshBBs for huge function. | |||
366 | SmallSet<BasicBlock *, 32> FreshBBs; | |||
367 | ||||
368 | static char ID; // Pass identification, replacement for typeid | |||
369 | ||||
370 | CodeGenPrepare() : FunctionPass(ID) { | |||
371 | initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); | |||
372 | } | |||
373 | ||||
374 | bool runOnFunction(Function &F) override; | |||
375 | ||||
376 | StringRef getPassName() const override { return "CodeGen Prepare"; } | |||
377 | ||||
378 | void getAnalysisUsage(AnalysisUsage &AU) const override { | |||
379 | // FIXME: When we can selectively preserve passes, preserve the domtree. | |||
380 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | |||
381 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | |||
382 | AU.addRequired<TargetPassConfig>(); | |||
383 | AU.addRequired<TargetTransformInfoWrapperPass>(); | |||
384 | AU.addRequired<LoopInfoWrapperPass>(); | |||
385 | AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>(); | |||
386 | } | |||
387 | ||||
388 | private: | |||
389 | template <typename F> | |||
390 | void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { | |||
391 | // Substituting can cause recursive simplifications, which can invalidate | |||
392 | // our iterator. Use a WeakTrackingVH to hold onto it in case this | |||
393 | // happens. | |||
394 | Value *CurValue = &*CurInstIterator; | |||
395 | WeakTrackingVH IterHandle(CurValue); | |||
396 | ||||
397 | f(); | |||
398 | ||||
399 | // If the iterator instruction was recursively deleted, start over at the | |||
400 | // start of the block. | |||
401 | if (IterHandle != CurValue) { | |||
402 | CurInstIterator = BB->begin(); | |||
403 | SunkAddrs.clear(); | |||
404 | } | |||
405 | } | |||
406 | ||||
407 | // Get the DominatorTree, building if necessary. | |||
408 | DominatorTree &getDT(Function &F) { | |||
409 | if (!DT) | |||
410 | DT = std::make_unique<DominatorTree>(F); | |||
411 | return *DT; | |||
412 | } | |||
413 | ||||
414 | void removeAllAssertingVHReferences(Value *V); | |||
415 | bool eliminateAssumptions(Function &F); | |||
416 | bool eliminateFallThrough(Function &F); | |||
417 | bool eliminateMostlyEmptyBlocks(Function &F); | |||
418 | BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); | |||
419 | bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; | |||
420 | void eliminateMostlyEmptyBlock(BasicBlock *BB); | |||
421 | bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, | |||
422 | bool isPreheader); | |||
423 | bool makeBitReverse(Instruction &I); | |||
424 | bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); | |||
425 | bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); | |||
426 | bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, | |||
427 | unsigned AddrSpace); | |||
428 | bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); | |||
429 | bool optimizeInlineAsmInst(CallInst *CS); | |||
430 | bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); | |||
431 | bool optimizeExt(Instruction *&I); | |||
432 | bool optimizeExtUses(Instruction *I); | |||
433 | bool optimizeLoadExt(LoadInst *Load); | |||
434 | bool optimizeShiftInst(BinaryOperator *BO); | |||
435 | bool optimizeFunnelShift(IntrinsicInst *Fsh); | |||
436 | bool optimizeSelectInst(SelectInst *SI); | |||
437 | bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); | |||
438 | bool optimizeSwitchType(SwitchInst *SI); | |||
439 | bool optimizeSwitchPhiConstants(SwitchInst *SI); | |||
440 | bool optimizeSwitchInst(SwitchInst *SI); | |||
441 | bool optimizeExtractElementInst(Instruction *Inst); | |||
442 | bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); | |||
443 | bool fixupDbgValue(Instruction *I); | |||
444 | bool placeDbgValues(Function &F); | |||
445 | bool placePseudoProbes(Function &F); | |||
446 | bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, | |||
447 | LoadInst *&LI, Instruction *&Inst, bool HasPromoted); | |||
448 | bool tryToPromoteExts(TypePromotionTransaction &TPT, | |||
449 | const SmallVectorImpl<Instruction *> &Exts, | |||
450 | SmallVectorImpl<Instruction *> &ProfitablyMovedExts, | |||
451 | unsigned CreatedInstsCost = 0); | |||
452 | bool mergeSExts(Function &F); | |||
453 | bool splitLargeGEPOffsets(); | |||
454 | bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, | |||
455 | SmallPtrSetImpl<Instruction *> &DeletedInstrs); | |||
456 | bool optimizePhiTypes(Function &F); | |||
457 | bool performAddressTypePromotion( | |||
458 | Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, | |||
459 | bool HasPromoted, TypePromotionTransaction &TPT, | |||
460 | SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); | |||
461 | bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); | |||
462 | bool simplifyOffsetableRelocate(GCStatepointInst &I); | |||
463 | ||||
464 | bool tryToSinkFreeOperands(Instruction *I); | |||
465 | bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, | |||
466 | CmpInst *Cmp, Intrinsic::ID IID); | |||
467 | bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); | |||
468 | bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); | |||
469 | bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); | |||
470 | void verifyBFIUpdates(Function &F); | |||
471 | }; | |||
472 | ||||
473 | } // end anonymous namespace | |||
474 | ||||
475 | char CodeGenPrepare::ID = 0; | |||
476 | ||||
477 | INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,static void *initializeCodeGenPreparePassOnce(PassRegistry & Registry) { | |||
478 | "Optimize for code generation", false, false)static void *initializeCodeGenPreparePassOnce(PassRegistry & Registry) { | |||
479 | INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader)initializeBasicBlockSectionsProfileReaderPass(Registry); | |||
480 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry); | |||
481 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)initializeProfileSummaryInfoWrapperPassPass(Registry); | |||
482 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | |||
483 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)initializeTargetPassConfigPass(Registry); | |||
484 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry); | |||
485 | INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation",PassInfo *PI = new PassInfo( "Optimize for code generation", "codegenprepare" , &CodeGenPrepare::ID, PassInfo::NormalCtor_t(callDefaultCtor <CodeGenPrepare>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeCodeGenPreparePassFlag ; void llvm::initializeCodeGenPreparePass(PassRegistry &Registry ) { llvm::call_once(InitializeCodeGenPreparePassFlag, initializeCodeGenPreparePassOnce , std::ref(Registry)); } | |||
486 | false, false)PassInfo *PI = new PassInfo( "Optimize for code generation", "codegenprepare" , &CodeGenPrepare::ID, PassInfo::NormalCtor_t(callDefaultCtor <CodeGenPrepare>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeCodeGenPreparePassFlag ; void llvm::initializeCodeGenPreparePass(PassRegistry &Registry ) { llvm::call_once(InitializeCodeGenPreparePassFlag, initializeCodeGenPreparePassOnce , std::ref(Registry)); } | |||
487 | ||||
488 | FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } | |||
489 | ||||
490 | bool CodeGenPrepare::runOnFunction(Function &F) { | |||
491 | if (skipFunction(F)) | |||
492 | return false; | |||
493 | ||||
494 | DL = &F.getParent()->getDataLayout(); | |||
495 | ||||
496 | bool EverMadeChange = false; | |||
497 | // Clear per function information. | |||
498 | InsertedInsts.clear(); | |||
499 | PromotedInsts.clear(); | |||
500 | FreshBBs.clear(); | |||
501 | ||||
502 | TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); | |||
503 | SubtargetInfo = TM->getSubtargetImpl(F); | |||
504 | TLI = SubtargetInfo->getTargetLowering(); | |||
505 | TRI = SubtargetInfo->getRegisterInfo(); | |||
506 | TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | |||
507 | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | |||
508 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | |||
509 | BPI.reset(new BranchProbabilityInfo(F, *LI)); | |||
510 | BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); | |||
511 | PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | |||
512 | BBSectionsProfileReader = | |||
513 | getAnalysisIfAvailable<BasicBlockSectionsProfileReader>(); | |||
514 | OptSize = F.hasOptSize(); | |||
515 | // Use the basic-block-sections profile to promote hot functions to .text.hot | |||
516 | // if requested. | |||
517 | if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && | |||
518 | BBSectionsProfileReader->isFunctionHot(F.getName())) { | |||
519 | F.setSectionPrefix("hot"); | |||
520 | } else if (ProfileGuidedSectionPrefix) { | |||
521 | // The hot attribute overwrites profile count based hotness while profile | |||
522 | // counts based hotness overwrite the cold attribute. | |||
523 | // This is a conservative behabvior. | |||
524 | if (F.hasFnAttribute(Attribute::Hot) || | |||
525 | PSI->isFunctionHotInCallGraph(&F, *BFI)) | |||
526 | F.setSectionPrefix("hot"); | |||
527 | // If PSI shows this function is not hot, we will placed the function | |||
528 | // into unlikely section if (1) PSI shows this is a cold function, or | |||
529 | // (2) the function has a attribute of cold. | |||
530 | else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || | |||
531 | F.hasFnAttribute(Attribute::Cold)) | |||
532 | F.setSectionPrefix("unlikely"); | |||
533 | else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && | |||
534 | PSI->isFunctionHotnessUnknown(F)) | |||
535 | F.setSectionPrefix("unknown"); | |||
536 | } | |||
537 | ||||
538 | /// This optimization identifies DIV instructions that can be | |||
539 | /// profitably bypassed and carried out with a shorter, faster divide. | |||
540 | if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { | |||
541 | const DenseMap<unsigned int, unsigned int> &BypassWidths = | |||
542 | TLI->getBypassSlowDivWidths(); | |||
543 | BasicBlock *BB = &*F.begin(); | |||
544 | while (BB != nullptr) { | |||
545 | // bypassSlowDivision may create new BBs, but we don't want to reapply the | |||
546 | // optimization to those blocks. | |||
547 | BasicBlock *Next = BB->getNextNode(); | |||
548 | // F.hasOptSize is already checked in the outer if statement. | |||
549 | if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) | |||
550 | EverMadeChange |= bypassSlowDivision(BB, BypassWidths); | |||
551 | BB = Next; | |||
552 | } | |||
553 | } | |||
554 | ||||
555 | // Get rid of @llvm.assume builtins before attempting to eliminate empty | |||
556 | // blocks, since there might be blocks that only contain @llvm.assume calls | |||
557 | // (plus arguments that we can get rid of). | |||
558 | EverMadeChange |= eliminateAssumptions(F); | |||
559 | ||||
560 | // Eliminate blocks that contain only PHI nodes and an | |||
561 | // unconditional branch. | |||
562 | EverMadeChange |= eliminateMostlyEmptyBlocks(F); | |||
563 | ||||
564 | ModifyDT ModifiedDT = ModifyDT::NotModifyDT; | |||
565 | if (!DisableBranchOpts) | |||
566 | EverMadeChange |= splitBranchCondition(F, ModifiedDT); | |||
567 | ||||
568 | // Split some critical edges where one of the sources is an indirect branch, | |||
569 | // to help generate sane code for PHIs involving such edges. | |||
570 | EverMadeChange |= | |||
571 | SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); | |||
572 | ||||
573 | // If we are optimzing huge function, we need to consider the build time. | |||
574 | // Because the basic algorithm's complex is near O(N!). | |||
575 | IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; | |||
576 | ||||
577 | bool MadeChange = true; | |||
578 | bool FuncIterated = false; | |||
579 | while (MadeChange) { | |||
580 | MadeChange = false; | |||
581 | DT.reset(); | |||
582 | ||||
583 | for (BasicBlock &BB : llvm::make_early_inc_range(F)) { | |||
584 | if (FuncIterated && !FreshBBs.contains(&BB)) | |||
585 | continue; | |||
586 | ||||
587 | ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; | |||
588 | bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); | |||
589 | ||||
590 | MadeChange |= Changed; | |||
591 | if (IsHugeFunc) { | |||
592 | // If the BB is updated, it may still has chance to be optimized. | |||
593 | // This usually happen at sink optimization. | |||
594 | // For example: | |||
595 | // | |||
596 | // bb0: | |||
597 | // %and = and i32 %a, 4 | |||
598 | // %cmp = icmp eq i32 %and, 0 | |||
599 | // | |||
600 | // If the %cmp sink to other BB, the %and will has chance to sink. | |||
601 | if (Changed) | |||
602 | FreshBBs.insert(&BB); | |||
603 | else if (FuncIterated) | |||
604 | FreshBBs.erase(&BB); | |||
605 | ||||
606 | if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) | |||
607 | DT.reset(); | |||
608 | } else { | |||
609 | // For small/normal functions, we restart BB iteration if the dominator | |||
610 | // tree of the Function was changed. | |||
611 | if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) | |||
612 | break; | |||
613 | } | |||
614 | } | |||
615 | // We have iterated all the BB in the (only work for huge) function. | |||
616 | FuncIterated = IsHugeFunc; | |||
617 | ||||
618 | if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) | |||
619 | MadeChange |= mergeSExts(F); | |||
620 | if (!LargeOffsetGEPMap.empty()) | |||
621 | MadeChange |= splitLargeGEPOffsets(); | |||
622 | MadeChange |= optimizePhiTypes(F); | |||
623 | ||||
624 | if (MadeChange) | |||
625 | eliminateFallThrough(F); | |||
626 | ||||
627 | // Really free removed instructions during promotion. | |||
628 | for (Instruction *I : RemovedInsts) | |||
629 | I->deleteValue(); | |||
630 | ||||
631 | EverMadeChange |= MadeChange; | |||
632 | SeenChainsForSExt.clear(); | |||
633 | ValToSExtendedUses.clear(); | |||
634 | RemovedInsts.clear(); | |||
635 | LargeOffsetGEPMap.clear(); | |||
636 | LargeOffsetGEPID.clear(); | |||
637 | } | |||
638 | ||||
639 | NewGEPBases.clear(); | |||
640 | SunkAddrs.clear(); | |||
641 | ||||
642 | if (!DisableBranchOpts) { | |||
643 | MadeChange = false; | |||
644 | // Use a set vector to get deterministic iteration order. The order the | |||
645 | // blocks are removed may affect whether or not PHI nodes in successors | |||
646 | // are removed. | |||
647 | SmallSetVector<BasicBlock *, 8> WorkList; | |||
648 | for (BasicBlock &BB : F) { | |||
649 | SmallVector<BasicBlock *, 2> Successors(successors(&BB)); | |||
650 | MadeChange |= ConstantFoldTerminator(&BB, true); | |||
651 | if (!MadeChange) | |||
652 | continue; | |||
653 | ||||
654 | for (BasicBlock *Succ : Successors) | |||
655 | if (pred_empty(Succ)) | |||
656 | WorkList.insert(Succ); | |||
657 | } | |||
658 | ||||
659 | // Delete the dead blocks and any of their dead successors. | |||
660 | MadeChange |= !WorkList.empty(); | |||
661 | while (!WorkList.empty()) { | |||
662 | BasicBlock *BB = WorkList.pop_back_val(); | |||
663 | SmallVector<BasicBlock *, 2> Successors(successors(BB)); | |||
664 | ||||
665 | DeleteDeadBlock(BB); | |||
666 | ||||
667 | for (BasicBlock *Succ : Successors) | |||
668 | if (pred_empty(Succ)) | |||
669 | WorkList.insert(Succ); | |||
670 | } | |||
671 | ||||
672 | // Merge pairs of basic blocks with unconditional branches, connected by | |||
673 | // a single edge. | |||
674 | if (EverMadeChange || MadeChange) | |||
675 | MadeChange |= eliminateFallThrough(F); | |||
676 | ||||
677 | EverMadeChange |= MadeChange; | |||
678 | } | |||
679 | ||||
680 | if (!DisableGCOpts) { | |||
681 | SmallVector<GCStatepointInst *, 2> Statepoints; | |||
682 | for (BasicBlock &BB : F) | |||
683 | for (Instruction &I : BB) | |||
684 | if (auto *SP = dyn_cast<GCStatepointInst>(&I)) | |||
685 | Statepoints.push_back(SP); | |||
686 | for (auto &I : Statepoints) | |||
687 | EverMadeChange |= simplifyOffsetableRelocate(*I); | |||
688 | } | |||
689 | ||||
690 | // Do this last to clean up use-before-def scenarios introduced by other | |||
691 | // preparatory transforms. | |||
692 | EverMadeChange |= placeDbgValues(F); | |||
693 | EverMadeChange |= placePseudoProbes(F); | |||
694 | ||||
695 | #ifndef NDEBUG | |||
696 | if (VerifyBFIUpdates) | |||
697 | verifyBFIUpdates(F); | |||
698 | #endif | |||
699 | ||||
700 | return EverMadeChange; | |||
701 | } | |||
702 | ||||
703 | bool CodeGenPrepare::eliminateAssumptions(Function &F) { | |||
704 | bool MadeChange = false; | |||
705 | for (BasicBlock &BB : F) { | |||
706 | CurInstIterator = BB.begin(); | |||
707 | while (CurInstIterator != BB.end()) { | |||
708 | Instruction *I = &*(CurInstIterator++); | |||
709 | if (auto *Assume = dyn_cast<AssumeInst>(I)) { | |||
710 | MadeChange = true; | |||
711 | Value *Operand = Assume->getOperand(0); | |||
712 | Assume->eraseFromParent(); | |||
713 | ||||
714 | resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { | |||
715 | RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); | |||
716 | }); | |||
717 | } | |||
718 | } | |||
719 | } | |||
720 | return MadeChange; | |||
721 | } | |||
722 | ||||
723 | /// An instruction is about to be deleted, so remove all references to it in our | |||
724 | /// GEP-tracking data strcutures. | |||
725 | void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { | |||
726 | LargeOffsetGEPMap.erase(V); | |||
727 | NewGEPBases.erase(V); | |||
728 | ||||
729 | auto GEP = dyn_cast<GetElementPtrInst>(V); | |||
730 | if (!GEP) | |||
731 | return; | |||
732 | ||||
733 | LargeOffsetGEPID.erase(GEP); | |||
734 | ||||
735 | auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); | |||
736 | if (VecI == LargeOffsetGEPMap.end()) | |||
737 | return; | |||
738 | ||||
739 | auto &GEPVector = VecI->second; | |||
740 | llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); | |||
741 | ||||
742 | if (GEPVector.empty()) | |||
743 | LargeOffsetGEPMap.erase(VecI); | |||
744 | } | |||
745 | ||||
746 | // Verify BFI has been updated correctly by recomputing BFI and comparing them. | |||
747 | void LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__)) CodeGenPrepare::verifyBFIUpdates(Function &F) { | |||
748 | DominatorTree NewDT(F); | |||
749 | LoopInfo NewLI(NewDT); | |||
750 | BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); | |||
751 | BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); | |||
752 | NewBFI.verifyMatch(*BFI); | |||
753 | } | |||
754 | ||||
755 | /// Merge basic blocks which are connected by a single edge, where one of the | |||
756 | /// basic blocks has a single successor pointing to the other basic block, | |||
757 | /// which has a single predecessor. | |||
758 | bool CodeGenPrepare::eliminateFallThrough(Function &F) { | |||
759 | bool Changed = false; | |||
760 | // Scan all of the blocks in the function, except for the entry block. | |||
761 | // Use a temporary array to avoid iterator being invalidated when | |||
762 | // deleting blocks. | |||
763 | SmallVector<WeakTrackingVH, 16> Blocks; | |||
764 | for (auto &Block : llvm::drop_begin(F)) | |||
765 | Blocks.push_back(&Block); | |||
766 | ||||
767 | SmallSet<WeakTrackingVH, 16> Preds; | |||
768 | for (auto &Block : Blocks) { | |||
769 | auto *BB = cast_or_null<BasicBlock>(Block); | |||
770 | if (!BB) | |||
771 | continue; | |||
772 | // If the destination block has a single pred, then this is a trivial | |||
773 | // edge, just collapse it. | |||
774 | BasicBlock *SinglePred = BB->getSinglePredecessor(); | |||
775 | ||||
776 | // Don't merge if BB's address is taken. | |||
777 | if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) | |||
778 | continue; | |||
779 | ||||
780 | BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); | |||
781 | if (Term && !Term->isConditional()) { | |||
782 | Changed = true; | |||
783 | LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "To merge:\n" << * BB << "\n\n\n"; } } while (false); | |||
784 | ||||
785 | // Merge BB into SinglePred and delete it. | |||
786 | MergeBlockIntoPredecessor(BB); | |||
787 | Preds.insert(SinglePred); | |||
788 | ||||
789 | if (IsHugeFunc) { | |||
790 | // Update FreshBBs to optimize the merged BB. | |||
791 | FreshBBs.insert(SinglePred); | |||
792 | FreshBBs.erase(BB); | |||
793 | } | |||
794 | } | |||
795 | } | |||
796 | ||||
797 | // (Repeatedly) merging blocks into their predecessors can create redundant | |||
798 | // debug intrinsics. | |||
799 | for (const auto &Pred : Preds) | |||
800 | if (auto *BB = cast_or_null<BasicBlock>(Pred)) | |||
801 | RemoveRedundantDbgInstrs(BB); | |||
802 | ||||
803 | return Changed; | |||
804 | } | |||
805 | ||||
806 | /// Find a destination block from BB if BB is mergeable empty block. | |||
807 | BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { | |||
808 | // If this block doesn't end with an uncond branch, ignore it. | |||
809 | BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | |||
810 | if (!BI || !BI->isUnconditional()) | |||
811 | return nullptr; | |||
812 | ||||
813 | // If the instruction before the branch (skipping debug info) isn't a phi | |||
814 | // node, then other stuff is happening here. | |||
815 | BasicBlock::iterator BBI = BI->getIterator(); | |||
816 | if (BBI != BB->begin()) { | |||
817 | --BBI; | |||
818 | while (isa<DbgInfoIntrinsic>(BBI)) { | |||
819 | if (BBI == BB->begin()) | |||
820 | break; | |||
821 | --BBI; | |||
822 | } | |||
823 | if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) | |||
824 | return nullptr; | |||
825 | } | |||
826 | ||||
827 | // Do not break infinite loops. | |||
828 | BasicBlock *DestBB = BI->getSuccessor(0); | |||
829 | if (DestBB == BB) | |||
830 | return nullptr; | |||
831 | ||||
832 | if (!canMergeBlocks(BB, DestBB)) | |||
833 | DestBB = nullptr; | |||
834 | ||||
835 | return DestBB; | |||
836 | } | |||
837 | ||||
838 | /// Eliminate blocks that contain only PHI nodes, debug info directives, and an | |||
839 | /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split | |||
840 | /// edges in ways that are non-optimal for isel. Start by eliminating these | |||
841 | /// blocks so we can split them the way we want them. | |||
842 | bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { | |||
843 | SmallPtrSet<BasicBlock *, 16> Preheaders; | |||
844 | SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); | |||
845 | while (!LoopList.empty()) { | |||
846 | Loop *L = LoopList.pop_back_val(); | |||
847 | llvm::append_range(LoopList, *L); | |||
848 | if (BasicBlock *Preheader = L->getLoopPreheader()) | |||
849 | Preheaders.insert(Preheader); | |||
850 | } | |||
851 | ||||
852 | bool MadeChange = false; | |||
853 | // Copy blocks into a temporary array to avoid iterator invalidation issues | |||
854 | // as we remove them. | |||
855 | // Note that this intentionally skips the entry block. | |||
856 | SmallVector<WeakTrackingVH, 16> Blocks; | |||
857 | for (auto &Block : llvm::drop_begin(F)) | |||
858 | Blocks.push_back(&Block); | |||
859 | ||||
860 | for (auto &Block : Blocks) { | |||
861 | BasicBlock *BB = cast_or_null<BasicBlock>(Block); | |||
862 | if (!BB) | |||
863 | continue; | |||
864 | BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); | |||
865 | if (!DestBB || | |||
866 | !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) | |||
867 | continue; | |||
868 | ||||
869 | eliminateMostlyEmptyBlock(BB); | |||
870 | MadeChange = true; | |||
871 | } | |||
872 | return MadeChange; | |||
873 | } | |||
874 | ||||
875 | bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, | |||
876 | BasicBlock *DestBB, | |||
877 | bool isPreheader) { | |||
878 | // Do not delete loop preheaders if doing so would create a critical edge. | |||
879 | // Loop preheaders can be good locations to spill registers. If the | |||
880 | // preheader is deleted and we create a critical edge, registers may be | |||
881 | // spilled in the loop body instead. | |||
882 | if (!DisablePreheaderProtect && isPreheader && | |||
883 | !(BB->getSinglePredecessor() && | |||
884 | BB->getSinglePredecessor()->getSingleSuccessor())) | |||
885 | return false; | |||
886 | ||||
887 | // Skip merging if the block's successor is also a successor to any callbr | |||
888 | // that leads to this block. | |||
889 | // FIXME: Is this really needed? Is this a correctness issue? | |||
890 | for (BasicBlock *Pred : predecessors(BB)) { | |||
891 | if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) | |||
892 | for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) | |||
893 | if (DestBB == CBI->getSuccessor(i)) | |||
894 | return false; | |||
895 | } | |||
896 | ||||
897 | // Try to skip merging if the unique predecessor of BB is terminated by a | |||
898 | // switch or indirect branch instruction, and BB is used as an incoming block | |||
899 | // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to | |||
900 | // add COPY instructions in the predecessor of BB instead of BB (if it is not | |||
901 | // merged). Note that the critical edge created by merging such blocks wont be | |||
902 | // split in MachineSink because the jump table is not analyzable. By keeping | |||
903 | // such empty block (BB), ISel will place COPY instructions in BB, not in the | |||
904 | // predecessor of BB. | |||
905 | BasicBlock *Pred = BB->getUniquePredecessor(); | |||
906 | if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || | |||
907 | isa<IndirectBrInst>(Pred->getTerminator()))) | |||
908 | return true; | |||
909 | ||||
910 | if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) | |||
911 | return true; | |||
912 | ||||
913 | // We use a simple cost heuristic which determine skipping merging is | |||
914 | // profitable if the cost of skipping merging is less than the cost of | |||
915 | // merging : Cost(skipping merging) < Cost(merging BB), where the | |||
916 | // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and | |||
917 | // the Cost(merging BB) is Freq(Pred) * Cost(Copy). | |||
918 | // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : | |||
919 | // Freq(Pred) / Freq(BB) > 2. | |||
920 | // Note that if there are multiple empty blocks sharing the same incoming | |||
921 | // value for the PHIs in the DestBB, we consider them together. In such | |||
922 | // case, Cost(merging BB) will be the sum of their frequencies. | |||
923 | ||||
924 | if (!isa<PHINode>(DestBB->begin())) | |||
925 | return true; | |||
926 | ||||
927 | SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; | |||
928 | ||||
929 | // Find all other incoming blocks from which incoming values of all PHIs in | |||
930 | // DestBB are the same as the ones from BB. | |||
931 | for (BasicBlock *DestBBPred : predecessors(DestBB)) { | |||
932 | if (DestBBPred == BB) | |||
933 | continue; | |||
934 | ||||
935 | if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { | |||
936 | return DestPN.getIncomingValueForBlock(BB) == | |||
937 | DestPN.getIncomingValueForBlock(DestBBPred); | |||
938 | })) | |||
939 | SameIncomingValueBBs.insert(DestBBPred); | |||
940 | } | |||
941 | ||||
942 | // See if all BB's incoming values are same as the value from Pred. In this | |||
943 | // case, no reason to skip merging because COPYs are expected to be place in | |||
944 | // Pred already. | |||
945 | if (SameIncomingValueBBs.count(Pred)) | |||
946 | return true; | |||
947 | ||||
948 | BlockFrequency PredFreq = BFI->getBlockFreq(Pred); | |||
949 | BlockFrequency BBFreq = BFI->getBlockFreq(BB); | |||
950 | ||||
951 | for (auto *SameValueBB : SameIncomingValueBBs) | |||
952 | if (SameValueBB->getUniquePredecessor() == Pred && | |||
953 | DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) | |||
954 | BBFreq += BFI->getBlockFreq(SameValueBB); | |||
955 | ||||
956 | return PredFreq.getFrequency() <= | |||
957 | BBFreq.getFrequency() * FreqRatioToSkipMerge; | |||
958 | } | |||
959 | ||||
960 | /// Return true if we can merge BB into DestBB if there is a single | |||
961 | /// unconditional branch between them, and BB contains no other non-phi | |||
962 | /// instructions. | |||
963 | bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, | |||
964 | const BasicBlock *DestBB) const { | |||
965 | // We only want to eliminate blocks whose phi nodes are used by phi nodes in | |||
966 | // the successor. If there are more complex condition (e.g. preheaders), | |||
967 | // don't mess around with them. | |||
968 | for (const PHINode &PN : BB->phis()) { | |||
969 | for (const User *U : PN.users()) { | |||
970 | const Instruction *UI = cast<Instruction>(U); | |||
971 | if (UI->getParent() != DestBB || !isa<PHINode>(UI)) | |||
972 | return false; | |||
973 | // If User is inside DestBB block and it is a PHINode then check | |||
974 | // incoming value. If incoming value is not from BB then this is | |||
975 | // a complex condition (e.g. preheaders) we want to avoid here. | |||
976 | if (UI->getParent() == DestBB) { | |||
977 | if (const PHINode *UPN = dyn_cast<PHINode>(UI)) | |||
978 | for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { | |||
979 | Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); | |||
980 | if (Insn && Insn->getParent() == BB && | |||
981 | Insn->getParent() != UPN->getIncomingBlock(I)) | |||
982 | return false; | |||
983 | } | |||
984 | } | |||
985 | } | |||
986 | } | |||
987 | ||||
988 | // If BB and DestBB contain any common predecessors, then the phi nodes in BB | |||
989 | // and DestBB may have conflicting incoming values for the block. If so, we | |||
990 | // can't merge the block. | |||
991 | const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); | |||
992 | if (!DestBBPN) | |||
993 | return true; // no conflict. | |||
994 | ||||
995 | // Collect the preds of BB. | |||
996 | SmallPtrSet<const BasicBlock *, 16> BBPreds; | |||
997 | if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | |||
998 | // It is faster to get preds from a PHI than with pred_iterator. | |||
999 | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | |||
1000 | BBPreds.insert(BBPN->getIncomingBlock(i)); | |||
1001 | } else { | |||
1002 | BBPreds.insert(pred_begin(BB), pred_end(BB)); | |||
1003 | } | |||
1004 | ||||
1005 | // Walk the preds of DestBB. | |||
1006 | for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { | |||
1007 | BasicBlock *Pred = DestBBPN->getIncomingBlock(i); | |||
1008 | if (BBPreds.count(Pred)) { // Common predecessor? | |||
1009 | for (const PHINode &PN : DestBB->phis()) { | |||
1010 | const Value *V1 = PN.getIncomingValueForBlock(Pred); | |||
1011 | const Value *V2 = PN.getIncomingValueForBlock(BB); | |||
1012 | ||||
1013 | // If V2 is a phi node in BB, look up what the mapped value will be. | |||
1014 | if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) | |||
1015 | if (V2PN->getParent() == BB) | |||
1016 | V2 = V2PN->getIncomingValueForBlock(Pred); | |||
1017 | ||||
1018 | // If there is a conflict, bail out. | |||
1019 | if (V1 != V2) | |||
1020 | return false; | |||
1021 | } | |||
1022 | } | |||
1023 | } | |||
1024 | ||||
1025 | return true; | |||
1026 | } | |||
1027 | ||||
1028 | /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. | |||
1029 | static void replaceAllUsesWith(Value *Old, Value *New, | |||
1030 | SmallSet<BasicBlock *, 32> &FreshBBs, | |||
1031 | bool IsHuge) { | |||
1032 | auto *OldI = dyn_cast<Instruction>(Old); | |||
1033 | if (OldI) { | |||
1034 | for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); | |||
1035 | UI != E; ++UI) { | |||
1036 | Instruction *User = cast<Instruction>(*UI); | |||
1037 | if (IsHuge) | |||
1038 | FreshBBs.insert(User->getParent()); | |||
1039 | } | |||
1040 | } | |||
1041 | Old->replaceAllUsesWith(New); | |||
1042 | } | |||
1043 | ||||
1044 | /// Eliminate a basic block that has only phi's and an unconditional branch in | |||
1045 | /// it. | |||
1046 | void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { | |||
1047 | BranchInst *BI = cast<BranchInst>(BB->getTerminator()); | |||
1048 | BasicBlock *DestBB = BI->getSuccessor(0); | |||
1049 | ||||
1050 | LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB; } } while (false) | |||
1051 | << *BB << *DestBB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB; } } while (false); | |||
1052 | ||||
1053 | // If the destination block has a single pred, then this is a trivial edge, | |||
1054 | // just collapse it. | |||
1055 | if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { | |||
1056 | if (SinglePred != DestBB) { | |||
1057 | assert(SinglePred == BB &&(static_cast <bool> (SinglePred == BB && "Single predecessor not the same as predecessor" ) ? void (0) : __assert_fail ("SinglePred == BB && \"Single predecessor not the same as predecessor\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1058, __extension__ __PRETTY_FUNCTION__ )) | |||
1058 | "Single predecessor not the same as predecessor")(static_cast <bool> (SinglePred == BB && "Single predecessor not the same as predecessor" ) ? void (0) : __assert_fail ("SinglePred == BB && \"Single predecessor not the same as predecessor\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1058, __extension__ __PRETTY_FUNCTION__ )); | |||
1059 | // Merge DestBB into SinglePred/BB and delete it. | |||
1060 | MergeBlockIntoPredecessor(DestBB); | |||
1061 | // Note: BB(=SinglePred) will not be deleted on this path. | |||
1062 | // DestBB(=its single successor) is the one that was deleted. | |||
1063 | LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"; } } while (false); | |||
1064 | ||||
1065 | if (IsHugeFunc) { | |||
1066 | // Update FreshBBs to optimize the merged BB. | |||
1067 | FreshBBs.insert(SinglePred); | |||
1068 | FreshBBs.erase(DestBB); | |||
1069 | } | |||
1070 | return; | |||
1071 | } | |||
1072 | } | |||
1073 | ||||
1074 | // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB | |||
1075 | // to handle the new incoming edges it is about to have. | |||
1076 | for (PHINode &PN : DestBB->phis()) { | |||
1077 | // Remove the incoming value for BB, and remember it. | |||
1078 | Value *InVal = PN.removeIncomingValue(BB, false); | |||
1079 | ||||
1080 | // Two options: either the InVal is a phi node defined in BB or it is some | |||
1081 | // value that dominates BB. | |||
1082 | PHINode *InValPhi = dyn_cast<PHINode>(InVal); | |||
1083 | if (InValPhi && InValPhi->getParent() == BB) { | |||
1084 | // Add all of the input values of the input PHI as inputs of this phi. | |||
1085 | for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) | |||
1086 | PN.addIncoming(InValPhi->getIncomingValue(i), | |||
1087 | InValPhi->getIncomingBlock(i)); | |||
1088 | } else { | |||
1089 | // Otherwise, add one instance of the dominating value for each edge that | |||
1090 | // we will be adding. | |||
1091 | if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | |||
1092 | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | |||
1093 | PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); | |||
1094 | } else { | |||
1095 | for (BasicBlock *Pred : predecessors(BB)) | |||
1096 | PN.addIncoming(InVal, Pred); | |||
1097 | } | |||
1098 | } | |||
1099 | } | |||
1100 | ||||
1101 | // The PHIs are now updated, change everything that refers to BB to use | |||
1102 | // DestBB and remove BB. | |||
1103 | BB->replaceAllUsesWith(DestBB); | |||
1104 | BB->eraseFromParent(); | |||
1105 | ++NumBlocksElim; | |||
1106 | ||||
1107 | LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"; } } while (false); | |||
1108 | } | |||
1109 | ||||
1110 | // Computes a map of base pointer relocation instructions to corresponding | |||
1111 | // derived pointer relocation instructions given a vector of all relocate calls | |||
1112 | static void computeBaseDerivedRelocateMap( | |||
1113 | const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, | |||
1114 | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> | |||
1115 | &RelocateInstMap) { | |||
1116 | // Collect information in two maps: one primarily for locating the base object | |||
1117 | // while filling the second map; the second map is the final structure holding | |||
1118 | // a mapping between Base and corresponding Derived relocate calls | |||
1119 | DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; | |||
1120 | for (auto *ThisRelocate : AllRelocateCalls) { | |||
1121 | auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), | |||
1122 | ThisRelocate->getDerivedPtrIndex()); | |||
1123 | RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); | |||
1124 | } | |||
1125 | for (auto &Item : RelocateIdxMap) { | |||
1126 | std::pair<unsigned, unsigned> Key = Item.first; | |||
1127 | if (Key.first == Key.second) | |||
1128 | // Base relocation: nothing to insert | |||
1129 | continue; | |||
1130 | ||||
1131 | GCRelocateInst *I = Item.second; | |||
1132 | auto BaseKey = std::make_pair(Key.first, Key.first); | |||
1133 | ||||
1134 | // We're iterating over RelocateIdxMap so we cannot modify it. | |||
1135 | auto MaybeBase = RelocateIdxMap.find(BaseKey); | |||
1136 | if (MaybeBase == RelocateIdxMap.end()) | |||
1137 | // TODO: We might want to insert a new base object relocate and gep off | |||
1138 | // that, if there are enough derived object relocates. | |||
1139 | continue; | |||
1140 | ||||
1141 | RelocateInstMap[MaybeBase->second].push_back(I); | |||
1142 | } | |||
1143 | } | |||
1144 | ||||
1145 | // Accepts a GEP and extracts the operands into a vector provided they're all | |||
1146 | // small integer constants | |||
1147 | static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, | |||
1148 | SmallVectorImpl<Value *> &OffsetV) { | |||
1149 | for (unsigned i = 1; i < GEP->getNumOperands(); i++) { | |||
1150 | // Only accept small constant integer operands | |||
1151 | auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); | |||
1152 | if (!Op || Op->getZExtValue() > 20) | |||
1153 | return false; | |||
1154 | } | |||
1155 | ||||
1156 | for (unsigned i = 1; i < GEP->getNumOperands(); i++) | |||
1157 | OffsetV.push_back(GEP->getOperand(i)); | |||
1158 | return true; | |||
1159 | } | |||
1160 | ||||
1161 | // Takes a RelocatedBase (base pointer relocation instruction) and Targets to | |||
1162 | // replace, computes a replacement, and affects it. | |||
1163 | static bool | |||
1164 | simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, | |||
1165 | const SmallVectorImpl<GCRelocateInst *> &Targets) { | |||
1166 | bool MadeChange = false; | |||
1167 | // We must ensure the relocation of derived pointer is defined after | |||
1168 | // relocation of base pointer. If we find a relocation corresponding to base | |||
1169 | // defined earlier than relocation of base then we move relocation of base | |||
1170 | // right before found relocation. We consider only relocation in the same | |||
1171 | // basic block as relocation of base. Relocations from other basic block will | |||
1172 | // be skipped by optimization and we do not care about them. | |||
1173 | for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); | |||
1174 | &*R != RelocatedBase; ++R) | |||
1175 | if (auto *RI = dyn_cast<GCRelocateInst>(R)) | |||
1176 | if (RI->getStatepoint() == RelocatedBase->getStatepoint()) | |||
1177 | if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { | |||
1178 | RelocatedBase->moveBefore(RI); | |||
1179 | break; | |||
1180 | } | |||
1181 | ||||
1182 | for (GCRelocateInst *ToReplace : Targets) { | |||
1183 | assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&(static_cast <bool> (ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && "Not relocating a derived object of the original base object" ) ? void (0) : __assert_fail ("ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && \"Not relocating a derived object of the original base object\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1184, __extension__ __PRETTY_FUNCTION__ )) | |||
1184 | "Not relocating a derived object of the original base object")(static_cast <bool> (ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && "Not relocating a derived object of the original base object" ) ? void (0) : __assert_fail ("ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && \"Not relocating a derived object of the original base object\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1184, __extension__ __PRETTY_FUNCTION__ )); | |||
1185 | if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { | |||
1186 | // A duplicate relocate call. TODO: coalesce duplicates. | |||
1187 | continue; | |||
1188 | } | |||
1189 | ||||
1190 | if (RelocatedBase->getParent() != ToReplace->getParent()) { | |||
1191 | // Base and derived relocates are in different basic blocks. | |||
1192 | // In this case transform is only valid when base dominates derived | |||
1193 | // relocate. However it would be too expensive to check dominance | |||
1194 | // for each such relocate, so we skip the whole transformation. | |||
1195 | continue; | |||
1196 | } | |||
1197 | ||||
1198 | Value *Base = ToReplace->getBasePtr(); | |||
1199 | auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); | |||
1200 | if (!Derived
| |||
1201 | continue; | |||
1202 | ||||
1203 | SmallVector<Value *, 2> OffsetV; | |||
1204 | if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) | |||
1205 | continue; | |||
1206 | ||||
1207 | // Create a Builder and replace the target callsite with a gep | |||
1208 | assert(RelocatedBase->getNextNode() &&(static_cast <bool> (RelocatedBase->getNextNode() && "Should always have one since it's not a terminator") ? void (0) : __assert_fail ("RelocatedBase->getNextNode() && \"Should always have one since it's not a terminator\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1209, __extension__ __PRETTY_FUNCTION__ )) | |||
1209 | "Should always have one since it's not a terminator")(static_cast <bool> (RelocatedBase->getNextNode() && "Should always have one since it's not a terminator") ? void (0) : __assert_fail ("RelocatedBase->getNextNode() && \"Should always have one since it's not a terminator\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1209, __extension__ __PRETTY_FUNCTION__ )); | |||
1210 | ||||
1211 | // Insert after RelocatedBase | |||
1212 | IRBuilder<> Builder(RelocatedBase->getNextNode()); | |||
1213 | Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); | |||
1214 | ||||
1215 | // If gc_relocate does not match the actual type, cast it to the right type. | |||
1216 | // In theory, there must be a bitcast after gc_relocate if the type does not | |||
1217 | // match, and we should reuse it to get the derived pointer. But it could be | |||
1218 | // cases like this: | |||
1219 | // bb1: | |||
1220 | // ... | |||
1221 | // %g1 = call coldcc i8 addrspace(1)* | |||
1222 | // @llvm.experimental.gc.relocate.p1i8(...) br label %merge | |||
1223 | // | |||
1224 | // bb2: | |||
1225 | // ... | |||
1226 | // %g2 = call coldcc i8 addrspace(1)* | |||
1227 | // @llvm.experimental.gc.relocate.p1i8(...) br label %merge | |||
1228 | // | |||
1229 | // merge: | |||
1230 | // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] | |||
1231 | // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* | |||
1232 | // | |||
1233 | // In this case, we can not find the bitcast any more. So we insert a new | |||
1234 | // bitcast no matter there is already one or not. In this way, we can handle | |||
1235 | // all cases, and the extra bitcast should be optimized away in later | |||
1236 | // passes. | |||
1237 | Value *ActualRelocatedBase = RelocatedBase; | |||
1238 | if (RelocatedBase->getType() != Base->getType()) { | |||
| ||||
1239 | ActualRelocatedBase = | |||
1240 | Builder.CreateBitCast(RelocatedBase, Base->getType()); | |||
1241 | } | |||
1242 | Value *Replacement = | |||
1243 | Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, | |||
1244 | ArrayRef(OffsetV)); | |||
1245 | Replacement->takeName(ToReplace); | |||
1246 | // If the newly generated derived pointer's type does not match the original | |||
1247 | // derived pointer's type, cast the new derived pointer to match it. Same | |||
1248 | // reasoning as above. | |||
1249 | Value *ActualReplacement = Replacement; | |||
1250 | if (Replacement->getType() != ToReplace->getType()) { | |||
1251 | ActualReplacement = | |||
1252 | Builder.CreateBitCast(Replacement, ToReplace->getType()); | |||
1253 | } | |||
1254 | ToReplace->replaceAllUsesWith(ActualReplacement); | |||
1255 | ToReplace->eraseFromParent(); | |||
1256 | ||||
1257 | MadeChange = true; | |||
1258 | } | |||
1259 | return MadeChange; | |||
1260 | } | |||
1261 | ||||
1262 | // Turns this: | |||
1263 | // | |||
1264 | // %base = ... | |||
1265 | // %ptr = gep %base + 15 | |||
1266 | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | |||
1267 | // %base' = relocate(%tok, i32 4, i32 4) | |||
1268 | // %ptr' = relocate(%tok, i32 4, i32 5) | |||
1269 | // %val = load %ptr' | |||
1270 | // | |||
1271 | // into this: | |||
1272 | // | |||
1273 | // %base = ... | |||
1274 | // %ptr = gep %base + 15 | |||
1275 | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | |||
1276 | // %base' = gc.relocate(%tok, i32 4, i32 4) | |||
1277 | // %ptr' = gep %base' + 15 | |||
1278 | // %val = load %ptr' | |||
1279 | bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { | |||
1280 | bool MadeChange = false; | |||
1281 | SmallVector<GCRelocateInst *, 2> AllRelocateCalls; | |||
1282 | for (auto *U : I.users()) | |||
1283 | if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) | |||
1284 | // Collect all the relocate calls associated with a statepoint | |||
1285 | AllRelocateCalls.push_back(Relocate); | |||
1286 | ||||
1287 | // We need at least one base pointer relocation + one derived pointer | |||
1288 | // relocation to mangle | |||
1289 | if (AllRelocateCalls.size() < 2) | |||
| ||||
1290 | return false; | |||
1291 | ||||
1292 | // RelocateInstMap is a mapping from the base relocate instruction to the | |||
1293 | // corresponding derived relocate instructions | |||
1294 | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; | |||
1295 | computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); | |||
1296 | if (RelocateInstMap.empty()) | |||
1297 | return false; | |||
1298 | ||||
1299 | for (auto &Item : RelocateInstMap) | |||
1300 | // Item.first is the RelocatedBase to offset against | |||
1301 | // Item.second is the vector of Targets to replace | |||
1302 | MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); | |||
1303 | return MadeChange; | |||
1304 | } | |||
1305 | ||||
1306 | /// Sink the specified cast instruction into its user blocks. | |||
1307 | static bool SinkCast(CastInst *CI) { | |||
1308 | BasicBlock *DefBB = CI->getParent(); | |||
1309 | ||||
1310 | /// InsertedCasts - Only insert a cast in each block once. | |||
1311 | DenseMap<BasicBlock *, CastInst *> InsertedCasts; | |||
1312 | ||||
1313 | bool MadeChange = false; | |||
1314 | for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); | |||
1315 | UI != E;) { | |||
1316 | Use &TheUse = UI.getUse(); | |||
1317 | Instruction *User = cast<Instruction>(*UI); | |||
1318 | ||||
1319 | // Figure out which BB this cast is used in. For PHI's this is the | |||
1320 | // appropriate predecessor block. | |||
1321 | BasicBlock *UserBB = User->getParent(); | |||
1322 | if (PHINode *PN = dyn_cast<PHINode>(User)) { | |||
1323 | UserBB = PN->getIncomingBlock(TheUse); | |||
1324 | } | |||
1325 | ||||
1326 | // Preincrement use iterator so we don't invalidate it. | |||
1327 | ++UI; | |||
1328 | ||||
1329 | // The first insertion point of a block containing an EH pad is after the | |||
1330 | // pad. If the pad is the user, we cannot sink the cast past the pad. | |||
1331 | if (User->isEHPad()) | |||
1332 | continue; | |||
1333 | ||||
1334 | // If the block selected to receive the cast is an EH pad that does not | |||
1335 | // allow non-PHI instructions before the terminator, we can't sink the | |||
1336 | // cast. | |||
1337 | if (UserBB->getTerminator()->isEHPad()) | |||
1338 | continue; | |||
1339 | ||||
1340 | // If this user is in the same block as the cast, don't change the cast. | |||
1341 | if (UserBB == DefBB) | |||
1342 | continue; | |||
1343 | ||||
1344 | // If we have already inserted a cast into this block, use it. | |||
1345 | CastInst *&InsertedCast = InsertedCasts[UserBB]; | |||
1346 | ||||
1347 | if (!InsertedCast) { | |||
1348 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | |||
1349 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 1349, __extension__ __PRETTY_FUNCTION__)); | |||
1350 | InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), | |||
1351 | CI->getType(), "", &*InsertPt); | |||
1352 | InsertedCast->setDebugLoc(CI->getDebugLoc()); | |||
1353 | } | |||
1354 | ||||
1355 | // Replace a use of the cast with a use of the new cast. | |||
1356 | TheUse = InsertedCast; | |||
1357 | MadeChange = true; | |||
1358 | ++NumCastUses; | |||
1359 | } | |||
1360 | ||||
1361 | // If we removed all uses, nuke the cast. | |||
1362 | if (CI->use_empty()) { | |||
1363 | salvageDebugInfo(*CI); | |||
1364 | CI->eraseFromParent(); | |||
1365 | MadeChange = true; | |||
1366 | } | |||
1367 | ||||
1368 | return MadeChange; | |||
1369 | } | |||
1370 | ||||
1371 | /// If the specified cast instruction is a noop copy (e.g. it's casting from | |||
1372 | /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to | |||
1373 | /// reduce the number of virtual registers that must be created and coalesced. | |||
1374 | /// | |||
1375 | /// Return true if any changes are made. | |||
1376 | static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, | |||
1377 | const DataLayout &DL) { | |||
1378 | // Sink only "cheap" (or nop) address-space casts. This is a weaker condition | |||
1379 | // than sinking only nop casts, but is helpful on some platforms. | |||
1380 | if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { | |||
1381 | if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), | |||
1382 | ASC->getDestAddressSpace())) | |||
1383 | return false; | |||
1384 | } | |||
1385 | ||||
1386 | // If this is a noop copy, | |||
1387 | EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); | |||
1388 | EVT DstVT = TLI.getValueType(DL, CI->getType()); | |||
1389 | ||||
1390 | // This is an fp<->int conversion? | |||
1391 | if (SrcVT.isInteger() != DstVT.isInteger()) | |||
1392 | return false; | |||
1393 | ||||
1394 | // If this is an extension, it will be a zero or sign extension, which | |||
1395 | // isn't a noop. | |||
1396 | if (SrcVT.bitsLT(DstVT)) | |||
1397 | return false; | |||
1398 | ||||
1399 | // If these values will be promoted, find out what they will be promoted | |||
1400 | // to. This helps us consider truncates on PPC as noop copies when they | |||
1401 | // are. | |||
1402 | if (TLI.getTypeAction(CI->getContext(), SrcVT) == | |||
1403 | TargetLowering::TypePromoteInteger) | |||
1404 | SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); | |||
1405 | if (TLI.getTypeAction(CI->getContext(), DstVT) == | |||
1406 | TargetLowering::TypePromoteInteger) | |||
1407 | DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); | |||
1408 | ||||
1409 | // If, after promotion, these are the same types, this is a noop copy. | |||
1410 | if (SrcVT != DstVT) | |||
1411 | return false; | |||
1412 | ||||
1413 | return SinkCast(CI); | |||
1414 | } | |||
1415 | ||||
1416 | // Match a simple increment by constant operation. Note that if a sub is | |||
1417 | // matched, the step is negated (as if the step had been canonicalized to | |||
1418 | // an add, even though we leave the instruction alone.) | |||
1419 | bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, | |||
1420 | Constant *&Step) { | |||
1421 | if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || | |||
1422 | match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( | |||
1423 | m_Instruction(LHS), m_Constant(Step))))) | |||
1424 | return true; | |||
1425 | if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || | |||
1426 | match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( | |||
1427 | m_Instruction(LHS), m_Constant(Step))))) { | |||
1428 | Step = ConstantExpr::getNeg(Step); | |||
1429 | return true; | |||
1430 | } | |||
1431 | return false; | |||
1432 | } | |||
1433 | ||||
1434 | /// If given \p PN is an inductive variable with value IVInc coming from the | |||
1435 | /// backedge, and on each iteration it gets increased by Step, return pair | |||
1436 | /// <IVInc, Step>. Otherwise, return std::nullopt. | |||
1437 | static std::optional<std::pair<Instruction *, Constant *>> | |||
1438 | getIVIncrement(const PHINode *PN, const LoopInfo *LI) { | |||
1439 | const Loop *L = LI->getLoopFor(PN->getParent()); | |||
1440 | if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) | |||
1441 | return std::nullopt; | |||
1442 | auto *IVInc = | |||
1443 | dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); | |||
1444 | if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) | |||
1445 | return std::nullopt; | |||
1446 | Instruction *LHS = nullptr; | |||
1447 | Constant *Step = nullptr; | |||
1448 | if (matchIncrement(IVInc, LHS, Step) && LHS == PN) | |||
1449 | return std::make_pair(IVInc, Step); | |||
1450 | return std::nullopt; | |||
1451 | } | |||
1452 | ||||
1453 | static bool isIVIncrement(const Value *V, const LoopInfo *LI) { | |||
1454 | auto *I = dyn_cast<Instruction>(V); | |||
1455 | if (!I) | |||
1456 | return false; | |||
1457 | Instruction *LHS = nullptr; | |||
1458 | Constant *Step = nullptr; | |||
1459 | if (!matchIncrement(I, LHS, Step)) | |||
1460 | return false; | |||
1461 | if (auto *PN = dyn_cast<PHINode>(LHS)) | |||
1462 | if (auto IVInc = getIVIncrement(PN, LI)) | |||
1463 | return IVInc->first == I; | |||
1464 | return false; | |||
1465 | } | |||
1466 | ||||
1467 | bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, | |||
1468 | Value *Arg0, Value *Arg1, | |||
1469 | CmpInst *Cmp, | |||
1470 | Intrinsic::ID IID) { | |||
1471 | auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { | |||
1472 | if (!isIVIncrement(BO, LI)) | |||
1473 | return false; | |||
1474 | const Loop *L = LI->getLoopFor(BO->getParent()); | |||
1475 | assert(L && "L should not be null after isIVIncrement()")(static_cast <bool> (L && "L should not be null after isIVIncrement()" ) ? void (0) : __assert_fail ("L && \"L should not be null after isIVIncrement()\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1475, __extension__ __PRETTY_FUNCTION__ )); | |||
1476 | // Do not risk on moving increment into a child loop. | |||
1477 | if (LI->getLoopFor(Cmp->getParent()) != L) | |||
1478 | return false; | |||
1479 | ||||
1480 | // Finally, we need to ensure that the insert point will dominate all | |||
1481 | // existing uses of the increment. | |||
1482 | ||||
1483 | auto &DT = getDT(*BO->getParent()->getParent()); | |||
1484 | if (DT.dominates(Cmp->getParent(), BO->getParent())) | |||
1485 | // If we're moving up the dom tree, all uses are trivially dominated. | |||
1486 | // (This is the common case for code produced by LSR.) | |||
1487 | return true; | |||
1488 | ||||
1489 | // Otherwise, special case the single use in the phi recurrence. | |||
1490 | return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); | |||
1491 | }; | |||
1492 | if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { | |||
1493 | // We used to use a dominator tree here to allow multi-block optimization. | |||
1494 | // But that was problematic because: | |||
1495 | // 1. It could cause a perf regression by hoisting the math op into the | |||
1496 | // critical path. | |||
1497 | // 2. It could cause a perf regression by creating a value that was live | |||
1498 | // across multiple blocks and increasing register pressure. | |||
1499 | // 3. Use of a dominator tree could cause large compile-time regression. | |||
1500 | // This is because we recompute the DT on every change in the main CGP | |||
1501 | // run-loop. The recomputing is probably unnecessary in many cases, so if | |||
1502 | // that was fixed, using a DT here would be ok. | |||
1503 | // | |||
1504 | // There is one important particular case we still want to handle: if BO is | |||
1505 | // the IV increment. Important properties that make it profitable: | |||
1506 | // - We can speculate IV increment anywhere in the loop (as long as the | |||
1507 | // indvar Phi is its only user); | |||
1508 | // - Upon computing Cmp, we effectively compute something equivalent to the | |||
1509 | // IV increment (despite it loops differently in the IR). So moving it up | |||
1510 | // to the cmp point does not really increase register pressure. | |||
1511 | return false; | |||
1512 | } | |||
1513 | ||||
1514 | // We allow matching the canonical IR (add X, C) back to (usubo X, -C). | |||
1515 | if (BO->getOpcode() == Instruction::Add && | |||
1516 | IID == Intrinsic::usub_with_overflow) { | |||
1517 | assert(isa<Constant>(Arg1) && "Unexpected input for usubo")(static_cast <bool> (isa<Constant>(Arg1) && "Unexpected input for usubo") ? void (0) : __assert_fail ("isa<Constant>(Arg1) && \"Unexpected input for usubo\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1517, __extension__ __PRETTY_FUNCTION__ )); | |||
1518 | Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); | |||
1519 | } | |||
1520 | ||||
1521 | // Insert at the first instruction of the pair. | |||
1522 | Instruction *InsertPt = nullptr; | |||
1523 | for (Instruction &Iter : *Cmp->getParent()) { | |||
1524 | // If BO is an XOR, it is not guaranteed that it comes after both inputs to | |||
1525 | // the overflow intrinsic are defined. | |||
1526 | if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { | |||
1527 | InsertPt = &Iter; | |||
1528 | break; | |||
1529 | } | |||
1530 | } | |||
1531 | assert(InsertPt != nullptr && "Parent block did not contain cmp or binop")(static_cast <bool> (InsertPt != nullptr && "Parent block did not contain cmp or binop" ) ? void (0) : __assert_fail ("InsertPt != nullptr && \"Parent block did not contain cmp or binop\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1531, __extension__ __PRETTY_FUNCTION__ )); | |||
1532 | ||||
1533 | IRBuilder<> Builder(InsertPt); | |||
1534 | Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); | |||
1535 | if (BO->getOpcode() != Instruction::Xor) { | |||
1536 | Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); | |||
1537 | replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); | |||
1538 | } else | |||
1539 | assert(BO->hasOneUse() &&(static_cast <bool> (BO->hasOneUse() && "Patterns with XOr should use the BO only in the compare" ) ? void (0) : __assert_fail ("BO->hasOneUse() && \"Patterns with XOr should use the BO only in the compare\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1540, __extension__ __PRETTY_FUNCTION__ )) | |||
1540 | "Patterns with XOr should use the BO only in the compare")(static_cast <bool> (BO->hasOneUse() && "Patterns with XOr should use the BO only in the compare" ) ? void (0) : __assert_fail ("BO->hasOneUse() && \"Patterns with XOr should use the BO only in the compare\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1540, __extension__ __PRETTY_FUNCTION__ )); | |||
1541 | Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); | |||
1542 | replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); | |||
1543 | Cmp->eraseFromParent(); | |||
1544 | BO->eraseFromParent(); | |||
1545 | return true; | |||
1546 | } | |||
1547 | ||||
1548 | /// Match special-case patterns that check for unsigned add overflow. | |||
1549 | static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, | |||
1550 | BinaryOperator *&Add) { | |||
1551 | // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) | |||
1552 | // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) | |||
1553 | Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); | |||
1554 | ||||
1555 | // We are not expecting non-canonical/degenerate code. Just bail out. | |||
1556 | if (isa<Constant>(A)) | |||
1557 | return false; | |||
1558 | ||||
1559 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | |||
1560 | if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) | |||
1561 | B = ConstantInt::get(B->getType(), 1); | |||
1562 | else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) | |||
1563 | B = ConstantInt::get(B->getType(), -1); | |||
1564 | else | |||
1565 | return false; | |||
1566 | ||||
1567 | // Check the users of the variable operand of the compare looking for an add | |||
1568 | // with the adjusted constant. | |||
1569 | for (User *U : A->users()) { | |||
1570 | if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { | |||
1571 | Add = cast<BinaryOperator>(U); | |||
1572 | return true; | |||
1573 | } | |||
1574 | } | |||
1575 | return false; | |||
1576 | } | |||
1577 | ||||
1578 | /// Try to combine the compare into a call to the llvm.uadd.with.overflow | |||
1579 | /// intrinsic. Return true if any changes were made. | |||
1580 | bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, | |||
1581 | ModifyDT &ModifiedDT) { | |||
1582 | Value *A, *B; | |||
1583 | BinaryOperator *Add; | |||
1584 | if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { | |||
1585 | if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) | |||
1586 | return false; | |||
1587 | // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. | |||
1588 | A = Add->getOperand(0); | |||
1589 | B = Add->getOperand(1); | |||
1590 | } | |||
1591 | ||||
1592 | if (!TLI->shouldFormOverflowOp(ISD::UADDO, | |||
1593 | TLI->getValueType(*DL, Add->getType()), | |||
1594 | Add->hasNUsesOrMore(2))) | |||
1595 | return false; | |||
1596 | ||||
1597 | // We don't want to move around uses of condition values this late, so we | |||
1598 | // check if it is legal to create the call to the intrinsic in the basic | |||
1599 | // block containing the icmp. | |||
1600 | if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) | |||
1601 | return false; | |||
1602 | ||||
1603 | if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, | |||
1604 | Intrinsic::uadd_with_overflow)) | |||
1605 | return false; | |||
1606 | ||||
1607 | // Reset callers - do not crash by iterating over a dead instruction. | |||
1608 | ModifiedDT = ModifyDT::ModifyInstDT; | |||
1609 | return true; | |||
1610 | } | |||
1611 | ||||
1612 | bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, | |||
1613 | ModifyDT &ModifiedDT) { | |||
1614 | // We are not expecting non-canonical/degenerate code. Just bail out. | |||
1615 | Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); | |||
1616 | if (isa<Constant>(A) && isa<Constant>(B)) | |||
1617 | return false; | |||
1618 | ||||
1619 | // Convert (A u> B) to (A u< B) to simplify pattern matching. | |||
1620 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | |||
1621 | if (Pred == ICmpInst::ICMP_UGT) { | |||
1622 | std::swap(A, B); | |||
1623 | Pred = ICmpInst::ICMP_ULT; | |||
1624 | } | |||
1625 | // Convert special-case: (A == 0) is the same as (A u< 1). | |||
1626 | if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { | |||
1627 | B = ConstantInt::get(B->getType(), 1); | |||
1628 | Pred = ICmpInst::ICMP_ULT; | |||
1629 | } | |||
1630 | // Convert special-case: (A != 0) is the same as (0 u< A). | |||
1631 | if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { | |||
1632 | std::swap(A, B); | |||
1633 | Pred = ICmpInst::ICMP_ULT; | |||
1634 | } | |||
1635 | if (Pred != ICmpInst::ICMP_ULT) | |||
1636 | return false; | |||
1637 | ||||
1638 | // Walk the users of a variable operand of a compare looking for a subtract or | |||
1639 | // add with that same operand. Also match the 2nd operand of the compare to | |||
1640 | // the add/sub, but that may be a negated constant operand of an add. | |||
1641 | Value *CmpVariableOperand = isa<Constant>(A) ? B : A; | |||
1642 | BinaryOperator *Sub = nullptr; | |||
1643 | for (User *U : CmpVariableOperand->users()) { | |||
1644 | // A - B, A u< B --> usubo(A, B) | |||
1645 | if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { | |||
1646 | Sub = cast<BinaryOperator>(U); | |||
1647 | break; | |||
1648 | } | |||
1649 | ||||
1650 | // A + (-C), A u< C (canonicalized form of (sub A, C)) | |||
1651 | const APInt *CmpC, *AddC; | |||
1652 | if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && | |||
1653 | match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { | |||
1654 | Sub = cast<BinaryOperator>(U); | |||
1655 | break; | |||
1656 | } | |||
1657 | } | |||
1658 | if (!Sub) | |||
1659 | return false; | |||
1660 | ||||
1661 | if (!TLI->shouldFormOverflowOp(ISD::USUBO, | |||
1662 | TLI->getValueType(*DL, Sub->getType()), | |||
1663 | Sub->hasNUsesOrMore(2))) | |||
1664 | return false; | |||
1665 | ||||
1666 | if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), | |||
1667 | Cmp, Intrinsic::usub_with_overflow)) | |||
1668 | return false; | |||
1669 | ||||
1670 | // Reset callers - do not crash by iterating over a dead instruction. | |||
1671 | ModifiedDT = ModifyDT::ModifyInstDT; | |||
1672 | return true; | |||
1673 | } | |||
1674 | ||||
1675 | /// Sink the given CmpInst into user blocks to reduce the number of virtual | |||
1676 | /// registers that must be created and coalesced. This is a clear win except on | |||
1677 | /// targets with multiple condition code registers (PowerPC), where it might | |||
1678 | /// lose; some adjustment may be wanted there. | |||
1679 | /// | |||
1680 | /// Return true if any changes are made. | |||
1681 | static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { | |||
1682 | if (TLI.hasMultipleConditionRegisters()) | |||
1683 | return false; | |||
1684 | ||||
1685 | // Avoid sinking soft-FP comparisons, since this can move them into a loop. | |||
1686 | if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) | |||
1687 | return false; | |||
1688 | ||||
1689 | // Only insert a cmp in each block once. | |||
1690 | DenseMap<BasicBlock *, CmpInst *> InsertedCmps; | |||
1691 | ||||
1692 | bool MadeChange = false; | |||
1693 | for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); | |||
1694 | UI != E;) { | |||
1695 | Use &TheUse = UI.getUse(); | |||
1696 | Instruction *User = cast<Instruction>(*UI); | |||
1697 | ||||
1698 | // Preincrement use iterator so we don't invalidate it. | |||
1699 | ++UI; | |||
1700 | ||||
1701 | // Don't bother for PHI nodes. | |||
1702 | if (isa<PHINode>(User)) | |||
1703 | continue; | |||
1704 | ||||
1705 | // Figure out which BB this cmp is used in. | |||
1706 | BasicBlock *UserBB = User->getParent(); | |||
1707 | BasicBlock *DefBB = Cmp->getParent(); | |||
1708 | ||||
1709 | // If this user is in the same block as the cmp, don't change the cmp. | |||
1710 | if (UserBB == DefBB) | |||
1711 | continue; | |||
1712 | ||||
1713 | // If we have already inserted a cmp into this block, use it. | |||
1714 | CmpInst *&InsertedCmp = InsertedCmps[UserBB]; | |||
1715 | ||||
1716 | if (!InsertedCmp) { | |||
1717 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | |||
1718 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 1718, __extension__ __PRETTY_FUNCTION__)); | |||
1719 | InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), | |||
1720 | Cmp->getOperand(0), Cmp->getOperand(1), "", | |||
1721 | &*InsertPt); | |||
1722 | // Propagate the debug info. | |||
1723 | InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); | |||
1724 | } | |||
1725 | ||||
1726 | // Replace a use of the cmp with a use of the new cmp. | |||
1727 | TheUse = InsertedCmp; | |||
1728 | MadeChange = true; | |||
1729 | ++NumCmpUses; | |||
1730 | } | |||
1731 | ||||
1732 | // If we removed all uses, nuke the cmp. | |||
1733 | if (Cmp->use_empty()) { | |||
1734 | Cmp->eraseFromParent(); | |||
1735 | MadeChange = true; | |||
1736 | } | |||
1737 | ||||
1738 | return MadeChange; | |||
1739 | } | |||
1740 | ||||
1741 | /// For pattern like: | |||
1742 | /// | |||
1743 | /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) | |||
1744 | /// ... | |||
1745 | /// DomBB: | |||
1746 | /// ... | |||
1747 | /// br DomCond, TrueBB, CmpBB | |||
1748 | /// CmpBB: (with DomBB being the single predecessor) | |||
1749 | /// ... | |||
1750 | /// Cmp = icmp eq CmpOp0, CmpOp1 | |||
1751 | /// ... | |||
1752 | /// | |||
1753 | /// It would use two comparison on targets that lowering of icmp sgt/slt is | |||
1754 | /// different from lowering of icmp eq (PowerPC). This function try to convert | |||
1755 | /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. | |||
1756 | /// After that, DomCond and Cmp can use the same comparison so reduce one | |||
1757 | /// comparison. | |||
1758 | /// | |||
1759 | /// Return true if any changes are made. | |||
1760 | static bool foldICmpWithDominatingICmp(CmpInst *Cmp, | |||
1761 | const TargetLowering &TLI) { | |||
1762 | if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) | |||
1763 | return false; | |||
1764 | ||||
1765 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | |||
1766 | if (Pred != ICmpInst::ICMP_EQ) | |||
1767 | return false; | |||
1768 | ||||
1769 | // If icmp eq has users other than BranchInst and SelectInst, converting it to | |||
1770 | // icmp slt/sgt would introduce more redundant LLVM IR. | |||
1771 | for (User *U : Cmp->users()) { | |||
1772 | if (isa<BranchInst>(U)) | |||
1773 | continue; | |||
1774 | if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) | |||
1775 | continue; | |||
1776 | return false; | |||
1777 | } | |||
1778 | ||||
1779 | // This is a cheap/incomplete check for dominance - just match a single | |||
1780 | // predecessor with a conditional branch. | |||
1781 | BasicBlock *CmpBB = Cmp->getParent(); | |||
1782 | BasicBlock *DomBB = CmpBB->getSinglePredecessor(); | |||
1783 | if (!DomBB) | |||
1784 | return false; | |||
1785 | ||||
1786 | // We want to ensure that the only way control gets to the comparison of | |||
1787 | // interest is that a less/greater than comparison on the same operands is | |||
1788 | // false. | |||
1789 | Value *DomCond; | |||
1790 | BasicBlock *TrueBB, *FalseBB; | |||
1791 | if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) | |||
1792 | return false; | |||
1793 | if (CmpBB != FalseBB) | |||
1794 | return false; | |||
1795 | ||||
1796 | Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); | |||
1797 | ICmpInst::Predicate DomPred; | |||
1798 | if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) | |||
1799 | return false; | |||
1800 | if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) | |||
1801 | return false; | |||
1802 | ||||
1803 | // Convert the equality comparison to the opposite of the dominating | |||
1804 | // comparison and swap the direction for all branch/select users. | |||
1805 | // We have conceptually converted: | |||
1806 | // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; | |||
1807 | // to | |||
1808 | // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; | |||
1809 | // And similarly for branches. | |||
1810 | for (User *U : Cmp->users()) { | |||
1811 | if (auto *BI = dyn_cast<BranchInst>(U)) { | |||
1812 | assert(BI->isConditional() && "Must be conditional")(static_cast <bool> (BI->isConditional() && "Must be conditional" ) ? void (0) : __assert_fail ("BI->isConditional() && \"Must be conditional\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1812, __extension__ __PRETTY_FUNCTION__ )); | |||
1813 | BI->swapSuccessors(); | |||
1814 | continue; | |||
1815 | } | |||
1816 | if (auto *SI = dyn_cast<SelectInst>(U)) { | |||
1817 | // Swap operands | |||
1818 | SI->swapValues(); | |||
1819 | SI->swapProfMetadata(); | |||
1820 | continue; | |||
1821 | } | |||
1822 | llvm_unreachable("Must be a branch or a select")::llvm::llvm_unreachable_internal("Must be a branch or a select" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1822); | |||
1823 | } | |||
1824 | Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); | |||
1825 | return true; | |||
1826 | } | |||
1827 | ||||
1828 | bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { | |||
1829 | if (sinkCmpExpression(Cmp, *TLI)) | |||
1830 | return true; | |||
1831 | ||||
1832 | if (combineToUAddWithOverflow(Cmp, ModifiedDT)) | |||
1833 | return true; | |||
1834 | ||||
1835 | if (combineToUSubWithOverflow(Cmp, ModifiedDT)) | |||
1836 | return true; | |||
1837 | ||||
1838 | if (foldICmpWithDominatingICmp(Cmp, *TLI)) | |||
1839 | return true; | |||
1840 | ||||
1841 | return false; | |||
1842 | } | |||
1843 | ||||
1844 | /// Duplicate and sink the given 'and' instruction into user blocks where it is | |||
1845 | /// used in a compare to allow isel to generate better code for targets where | |||
1846 | /// this operation can be combined. | |||
1847 | /// | |||
1848 | /// Return true if any changes are made. | |||
1849 | static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, | |||
1850 | SetOfInstrs &InsertedInsts) { | |||
1851 | // Double-check that we're not trying to optimize an instruction that was | |||
1852 | // already optimized by some other part of this pass. | |||
1853 | assert(!InsertedInsts.count(AndI) &&(static_cast <bool> (!InsertedInsts.count(AndI) && "Attempting to optimize already optimized and instruction") ? void (0) : __assert_fail ("!InsertedInsts.count(AndI) && \"Attempting to optimize already optimized and instruction\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1854, __extension__ __PRETTY_FUNCTION__ )) | |||
1854 | "Attempting to optimize already optimized and instruction")(static_cast <bool> (!InsertedInsts.count(AndI) && "Attempting to optimize already optimized and instruction") ? void (0) : __assert_fail ("!InsertedInsts.count(AndI) && \"Attempting to optimize already optimized and instruction\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1854, __extension__ __PRETTY_FUNCTION__ )); | |||
1855 | (void)InsertedInsts; | |||
1856 | ||||
1857 | // Nothing to do for single use in same basic block. | |||
1858 | if (AndI->hasOneUse() && | |||
1859 | AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) | |||
1860 | return false; | |||
1861 | ||||
1862 | // Try to avoid cases where sinking/duplicating is likely to increase register | |||
1863 | // pressure. | |||
1864 | if (!isa<ConstantInt>(AndI->getOperand(0)) && | |||
1865 | !isa<ConstantInt>(AndI->getOperand(1)) && | |||
1866 | AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) | |||
1867 | return false; | |||
1868 | ||||
1869 | for (auto *U : AndI->users()) { | |||
1870 | Instruction *User = cast<Instruction>(U); | |||
1871 | ||||
1872 | // Only sink 'and' feeding icmp with 0. | |||
1873 | if (!isa<ICmpInst>(User)) | |||
1874 | return false; | |||
1875 | ||||
1876 | auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); | |||
1877 | if (!CmpC || !CmpC->isZero()) | |||
1878 | return false; | |||
1879 | } | |||
1880 | ||||
1881 | if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) | |||
1882 | return false; | |||
1883 | ||||
1884 | LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "found 'and' feeding only icmp 0;\n" ; } } while (false); | |||
1885 | LLVM_DEBUG(AndI->getParent()->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { AndI->getParent()->dump(); } } while (false); | |||
1886 | ||||
1887 | // Push the 'and' into the same block as the icmp 0. There should only be | |||
1888 | // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any | |||
1889 | // others, so we don't need to keep track of which BBs we insert into. | |||
1890 | for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); | |||
1891 | UI != E;) { | |||
1892 | Use &TheUse = UI.getUse(); | |||
1893 | Instruction *User = cast<Instruction>(*UI); | |||
1894 | ||||
1895 | // Preincrement use iterator so we don't invalidate it. | |||
1896 | ++UI; | |||
1897 | ||||
1898 | LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "sinking 'and' use: " << *User << "\n"; } } while (false); | |||
1899 | ||||
1900 | // Keep the 'and' in the same place if the use is already in the same block. | |||
1901 | Instruction *InsertPt = | |||
1902 | User->getParent() == AndI->getParent() ? AndI : User; | |||
1903 | Instruction *InsertedAnd = | |||
1904 | BinaryOperator::Create(Instruction::And, AndI->getOperand(0), | |||
1905 | AndI->getOperand(1), "", InsertPt); | |||
1906 | // Propagate the debug info. | |||
1907 | InsertedAnd->setDebugLoc(AndI->getDebugLoc()); | |||
1908 | ||||
1909 | // Replace a use of the 'and' with a use of the new 'and'. | |||
1910 | TheUse = InsertedAnd; | |||
1911 | ++NumAndUses; | |||
1912 | LLVM_DEBUG(User->getParent()->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { User->getParent()->dump(); } } while (false); | |||
1913 | } | |||
1914 | ||||
1915 | // We removed all uses, nuke the and. | |||
1916 | AndI->eraseFromParent(); | |||
1917 | return true; | |||
1918 | } | |||
1919 | ||||
1920 | /// Check if the candidates could be combined with a shift instruction, which | |||
1921 | /// includes: | |||
1922 | /// 1. Truncate instruction | |||
1923 | /// 2. And instruction and the imm is a mask of the low bits: | |||
1924 | /// imm & (imm+1) == 0 | |||
1925 | static bool isExtractBitsCandidateUse(Instruction *User) { | |||
1926 | if (!isa<TruncInst>(User)) { | |||
1927 | if (User->getOpcode() != Instruction::And || | |||
1928 | !isa<ConstantInt>(User->getOperand(1))) | |||
1929 | return false; | |||
1930 | ||||
1931 | const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); | |||
1932 | ||||
1933 | if ((Cimm & (Cimm + 1)).getBoolValue()) | |||
1934 | return false; | |||
1935 | } | |||
1936 | return true; | |||
1937 | } | |||
1938 | ||||
1939 | /// Sink both shift and truncate instruction to the use of truncate's BB. | |||
1940 | static bool | |||
1941 | SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, | |||
1942 | DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, | |||
1943 | const TargetLowering &TLI, const DataLayout &DL) { | |||
1944 | BasicBlock *UserBB = User->getParent(); | |||
1945 | DenseMap<BasicBlock *, CastInst *> InsertedTruncs; | |||
1946 | auto *TruncI = cast<TruncInst>(User); | |||
1947 | bool MadeChange = false; | |||
1948 | ||||
1949 | for (Value::user_iterator TruncUI = TruncI->user_begin(), | |||
1950 | TruncE = TruncI->user_end(); | |||
1951 | TruncUI != TruncE;) { | |||
1952 | ||||
1953 | Use &TruncTheUse = TruncUI.getUse(); | |||
1954 | Instruction *TruncUser = cast<Instruction>(*TruncUI); | |||
1955 | // Preincrement use iterator so we don't invalidate it. | |||
1956 | ||||
1957 | ++TruncUI; | |||
1958 | ||||
1959 | int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); | |||
1960 | if (!ISDOpcode) | |||
1961 | continue; | |||
1962 | ||||
1963 | // If the use is actually a legal node, there will not be an | |||
1964 | // implicit truncate. | |||
1965 | // FIXME: always querying the result type is just an | |||
1966 | // approximation; some nodes' legality is determined by the | |||
1967 | // operand or other means. There's no good way to find out though. | |||
1968 | if (TLI.isOperationLegalOrCustom( | |||
1969 | ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) | |||
1970 | continue; | |||
1971 | ||||
1972 | // Don't bother for PHI nodes. | |||
1973 | if (isa<PHINode>(TruncUser)) | |||
1974 | continue; | |||
1975 | ||||
1976 | BasicBlock *TruncUserBB = TruncUser->getParent(); | |||
1977 | ||||
1978 | if (UserBB == TruncUserBB) | |||
1979 | continue; | |||
1980 | ||||
1981 | BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; | |||
1982 | CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; | |||
1983 | ||||
1984 | if (!InsertedShift && !InsertedTrunc) { | |||
1985 | BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); | |||
1986 | assert(InsertPt != TruncUserBB->end())(static_cast <bool> (InsertPt != TruncUserBB->end()) ? void (0) : __assert_fail ("InsertPt != TruncUserBB->end()" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1986, __extension__ __PRETTY_FUNCTION__ )); | |||
1987 | // Sink the shift | |||
1988 | if (ShiftI->getOpcode() == Instruction::AShr) | |||
1989 | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | |||
1990 | "", &*InsertPt); | |||
1991 | else | |||
1992 | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | |||
1993 | "", &*InsertPt); | |||
1994 | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); | |||
1995 | ||||
1996 | // Sink the trunc | |||
1997 | BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); | |||
1998 | TruncInsertPt++; | |||
1999 | assert(TruncInsertPt != TruncUserBB->end())(static_cast <bool> (TruncInsertPt != TruncUserBB->end ()) ? void (0) : __assert_fail ("TruncInsertPt != TruncUserBB->end()" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1999, __extension__ __PRETTY_FUNCTION__ )); | |||
2000 | ||||
2001 | InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, | |||
2002 | TruncI->getType(), "", &*TruncInsertPt); | |||
2003 | InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); | |||
2004 | ||||
2005 | MadeChange = true; | |||
2006 | ||||
2007 | TruncTheUse = InsertedTrunc; | |||
2008 | } | |||
2009 | } | |||
2010 | return MadeChange; | |||
2011 | } | |||
2012 | ||||
2013 | /// Sink the shift *right* instruction into user blocks if the uses could | |||
2014 | /// potentially be combined with this shift instruction and generate BitExtract | |||
2015 | /// instruction. It will only be applied if the architecture supports BitExtract | |||
2016 | /// instruction. Here is an example: | |||
2017 | /// BB1: | |||
2018 | /// %x.extract.shift = lshr i64 %arg1, 32 | |||
2019 | /// BB2: | |||
2020 | /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 | |||
2021 | /// ==> | |||
2022 | /// | |||
2023 | /// BB2: | |||
2024 | /// %x.extract.shift.1 = lshr i64 %arg1, 32 | |||
2025 | /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 | |||
2026 | /// | |||
2027 | /// CodeGen will recognize the pattern in BB2 and generate BitExtract | |||
2028 | /// instruction. | |||
2029 | /// Return true if any changes are made. | |||
2030 | static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, | |||
2031 | const TargetLowering &TLI, | |||
2032 | const DataLayout &DL) { | |||
2033 | BasicBlock *DefBB = ShiftI->getParent(); | |||
2034 | ||||
2035 | /// Only insert instructions in each block once. | |||
2036 | DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; | |||
2037 | ||||
2038 | bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); | |||
2039 | ||||
2040 | bool MadeChange = false; | |||
2041 | for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); | |||
2042 | UI != E;) { | |||
2043 | Use &TheUse = UI.getUse(); | |||
2044 | Instruction *User = cast<Instruction>(*UI); | |||
2045 | // Preincrement use iterator so we don't invalidate it. | |||
2046 | ++UI; | |||
2047 | ||||
2048 | // Don't bother for PHI nodes. | |||
2049 | if (isa<PHINode>(User)) | |||
2050 | continue; | |||
2051 | ||||
2052 | if (!isExtractBitsCandidateUse(User)) | |||
2053 | continue; | |||
2054 | ||||
2055 | BasicBlock *UserBB = User->getParent(); | |||
2056 | ||||
2057 | if (UserBB == DefBB) { | |||
2058 | // If the shift and truncate instruction are in the same BB. The use of | |||
2059 | // the truncate(TruncUse) may still introduce another truncate if not | |||
2060 | // legal. In this case, we would like to sink both shift and truncate | |||
2061 | // instruction to the BB of TruncUse. | |||
2062 | // for example: | |||
2063 | // BB1: | |||
2064 | // i64 shift.result = lshr i64 opnd, imm | |||
2065 | // trunc.result = trunc shift.result to i16 | |||
2066 | // | |||
2067 | // BB2: | |||
2068 | // ----> We will have an implicit truncate here if the architecture does | |||
2069 | // not have i16 compare. | |||
2070 | // cmp i16 trunc.result, opnd2 | |||
2071 | // | |||
2072 | if (isa<TruncInst>(User) && | |||
2073 | shiftIsLegal | |||
2074 | // If the type of the truncate is legal, no truncate will be | |||
2075 | // introduced in other basic blocks. | |||
2076 | && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) | |||
2077 | MadeChange = | |||
2078 | SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); | |||
2079 | ||||
2080 | continue; | |||
2081 | } | |||
2082 | // If we have already inserted a shift into this block, use it. | |||
2083 | BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; | |||
2084 | ||||
2085 | if (!InsertedShift) { | |||
2086 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | |||
2087 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2087, __extension__ __PRETTY_FUNCTION__)); | |||
2088 | ||||
2089 | if (ShiftI->getOpcode() == Instruction::AShr) | |||
2090 | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | |||
2091 | "", &*InsertPt); | |||
2092 | else | |||
2093 | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | |||
2094 | "", &*InsertPt); | |||
2095 | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); | |||
2096 | ||||
2097 | MadeChange = true; | |||
2098 | } | |||
2099 | ||||
2100 | // Replace a use of the shift with a use of the new shift. | |||
2101 | TheUse = InsertedShift; | |||
2102 | } | |||
2103 | ||||
2104 | // If we removed all uses, or there are none, nuke the shift. | |||
2105 | if (ShiftI->use_empty()) { | |||
2106 | salvageDebugInfo(*ShiftI); | |||
2107 | ShiftI->eraseFromParent(); | |||
2108 | MadeChange = true; | |||
2109 | } | |||
2110 | ||||
2111 | return MadeChange; | |||
2112 | } | |||
2113 | ||||
2114 | /// If counting leading or trailing zeros is an expensive operation and a zero | |||
2115 | /// input is defined, add a check for zero to avoid calling the intrinsic. | |||
2116 | /// | |||
2117 | /// We want to transform: | |||
2118 | /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) | |||
2119 | /// | |||
2120 | /// into: | |||
2121 | /// entry: | |||
2122 | /// %cmpz = icmp eq i64 %A, 0 | |||
2123 | /// br i1 %cmpz, label %cond.end, label %cond.false | |||
2124 | /// cond.false: | |||
2125 | /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) | |||
2126 | /// br label %cond.end | |||
2127 | /// cond.end: | |||
2128 | /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] | |||
2129 | /// | |||
2130 | /// If the transform is performed, return true and set ModifiedDT to true. | |||
2131 | static bool despeculateCountZeros(IntrinsicInst *CountZeros, | |||
2132 | const TargetLowering *TLI, | |||
2133 | const DataLayout *DL, ModifyDT &ModifiedDT, | |||
2134 | SmallSet<BasicBlock *, 32> &FreshBBs, | |||
2135 | bool IsHugeFunc) { | |||
2136 | // If a zero input is undefined, it doesn't make sense to despeculate that. | |||
2137 | if (match(CountZeros->getOperand(1), m_One())) | |||
2138 | return false; | |||
2139 | ||||
2140 | // If it's cheap to speculate, there's nothing to do. | |||
2141 | Type *Ty = CountZeros->getType(); | |||
2142 | auto IntrinsicID = CountZeros->getIntrinsicID(); | |||
2143 | if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || | |||
2144 | (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) | |||
2145 | return false; | |||
2146 | ||||
2147 | // Only handle legal scalar cases. Anything else requires too much work. | |||
2148 | unsigned SizeInBits = Ty->getScalarSizeInBits(); | |||
2149 | if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) | |||
2150 | return false; | |||
2151 | ||||
2152 | // Bail if the value is never zero. | |||
2153 | Use &Op = CountZeros->getOperandUse(0); | |||
2154 | if (isKnownNonZero(Op, *DL)) | |||
2155 | return false; | |||
2156 | ||||
2157 | // The intrinsic will be sunk behind a compare against zero and branch. | |||
2158 | BasicBlock *StartBlock = CountZeros->getParent(); | |||
2159 | BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); | |||
2160 | if (IsHugeFunc) | |||
2161 | FreshBBs.insert(CallBlock); | |||
2162 | ||||
2163 | // Create another block after the count zero intrinsic. A PHI will be added | |||
2164 | // in this block to select the result of the intrinsic or the bit-width | |||
2165 | // constant if the input to the intrinsic is zero. | |||
2166 | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); | |||
2167 | BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); | |||
2168 | if (IsHugeFunc) | |||
2169 | FreshBBs.insert(EndBlock); | |||
2170 | ||||
2171 | // Set up a builder to create a compare, conditional branch, and PHI. | |||
2172 | IRBuilder<> Builder(CountZeros->getContext()); | |||
2173 | Builder.SetInsertPoint(StartBlock->getTerminator()); | |||
2174 | Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); | |||
2175 | ||||
2176 | // Replace the unconditional branch that was created by the first split with | |||
2177 | // a compare against zero and a conditional branch. | |||
2178 | Value *Zero = Constant::getNullValue(Ty); | |||
2179 | // Avoid introducing branch on poison. This also replaces the ctz operand. | |||
2180 | if (!isGuaranteedNotToBeUndefOrPoison(Op)) | |||
2181 | Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); | |||
2182 | Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); | |||
2183 | Builder.CreateCondBr(Cmp, EndBlock, CallBlock); | |||
2184 | StartBlock->getTerminator()->eraseFromParent(); | |||
2185 | ||||
2186 | // Create a PHI in the end block to select either the output of the intrinsic | |||
2187 | // or the bit width of the operand. | |||
2188 | Builder.SetInsertPoint(&EndBlock->front()); | |||
2189 | PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); | |||
2190 | replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); | |||
2191 | Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); | |||
2192 | PN->addIncoming(BitWidth, StartBlock); | |||
2193 | PN->addIncoming(CountZeros, CallBlock); | |||
2194 | ||||
2195 | // We are explicitly handling the zero case, so we can set the intrinsic's | |||
2196 | // undefined zero argument to 'true'. This will also prevent reprocessing the | |||
2197 | // intrinsic; we only despeculate when a zero input is defined. | |||
2198 | CountZeros->setArgOperand(1, Builder.getTrue()); | |||
2199 | ModifiedDT = ModifyDT::ModifyBBDT; | |||
2200 | return true; | |||
2201 | } | |||
2202 | ||||
2203 | bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { | |||
2204 | BasicBlock *BB = CI->getParent(); | |||
2205 | ||||
2206 | // Lower inline assembly if we can. | |||
2207 | // If we found an inline asm expession, and if the target knows how to | |||
2208 | // lower it to normal LLVM code, do so now. | |||
2209 | if (CI->isInlineAsm()) { | |||
2210 | if (TLI->ExpandInlineAsm(CI)) { | |||
2211 | // Avoid invalidating the iterator. | |||
2212 | CurInstIterator = BB->begin(); | |||
2213 | // Avoid processing instructions out of order, which could cause | |||
2214 | // reuse before a value is defined. | |||
2215 | SunkAddrs.clear(); | |||
2216 | return true; | |||
2217 | } | |||
2218 | // Sink address computing for memory operands into the block. | |||
2219 | if (optimizeInlineAsmInst(CI)) | |||
2220 | return true; | |||
2221 | } | |||
2222 | ||||
2223 | // Align the pointer arguments to this call if the target thinks it's a good | |||
2224 | // idea | |||
2225 | unsigned MinSize; | |||
2226 | Align PrefAlign; | |||
2227 | if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { | |||
2228 | for (auto &Arg : CI->args()) { | |||
2229 | // We want to align both objects whose address is used directly and | |||
2230 | // objects whose address is used in casts and GEPs, though it only makes | |||
2231 | // sense for GEPs if the offset is a multiple of the desired alignment and | |||
2232 | // if size - offset meets the size threshold. | |||
2233 | if (!Arg->getType()->isPointerTy()) | |||
2234 | continue; | |||
2235 | APInt Offset(DL->getIndexSizeInBits( | |||
2236 | cast<PointerType>(Arg->getType())->getAddressSpace()), | |||
2237 | 0); | |||
2238 | Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); | |||
2239 | uint64_t Offset2 = Offset.getLimitedValue(); | |||
2240 | if (!isAligned(PrefAlign, Offset2)) | |||
2241 | continue; | |||
2242 | AllocaInst *AI; | |||
2243 | if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && | |||
2244 | DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) | |||
2245 | AI->setAlignment(PrefAlign); | |||
2246 | // Global variables can only be aligned if they are defined in this | |||
2247 | // object (i.e. they are uniquely initialized in this object), and | |||
2248 | // over-aligning global variables that have an explicit section is | |||
2249 | // forbidden. | |||
2250 | GlobalVariable *GV; | |||
2251 | if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && | |||
2252 | GV->getPointerAlignment(*DL) < PrefAlign && | |||
2253 | DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) | |||
2254 | GV->setAlignment(PrefAlign); | |||
2255 | } | |||
2256 | } | |||
2257 | // If this is a memcpy (or similar) then we may be able to improve the | |||
2258 | // alignment. | |||
2259 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { | |||
2260 | Align DestAlign = getKnownAlignment(MI->getDest(), *DL); | |||
2261 | MaybeAlign MIDestAlign = MI->getDestAlign(); | |||
2262 | if (!MIDestAlign || DestAlign > *MIDestAlign) | |||
2263 | MI->setDestAlignment(DestAlign); | |||
2264 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { | |||
2265 | MaybeAlign MTISrcAlign = MTI->getSourceAlign(); | |||
2266 | Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); | |||
2267 | if (!MTISrcAlign || SrcAlign > *MTISrcAlign) | |||
2268 | MTI->setSourceAlignment(SrcAlign); | |||
2269 | } | |||
2270 | } | |||
2271 | ||||
2272 | // If we have a cold call site, try to sink addressing computation into the | |||
2273 | // cold block. This interacts with our handling for loads and stores to | |||
2274 | // ensure that we can fold all uses of a potential addressing computation | |||
2275 | // into their uses. TODO: generalize this to work over profiling data | |||
2276 | if (CI->hasFnAttr(Attribute::Cold) && !OptSize && | |||
2277 | !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) | |||
2278 | for (auto &Arg : CI->args()) { | |||
2279 | if (!Arg->getType()->isPointerTy()) | |||
2280 | continue; | |||
2281 | unsigned AS = Arg->getType()->getPointerAddressSpace(); | |||
2282 | if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) | |||
2283 | return true; | |||
2284 | } | |||
2285 | ||||
2286 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); | |||
2287 | if (II) { | |||
2288 | switch (II->getIntrinsicID()) { | |||
2289 | default: | |||
2290 | break; | |||
2291 | case Intrinsic::assume: | |||
2292 | llvm_unreachable("llvm.assume should have been removed already")::llvm::llvm_unreachable_internal("llvm.assume should have been removed already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2292); | |||
2293 | case Intrinsic::experimental_widenable_condition: { | |||
2294 | // Give up on future widening oppurtunties so that we can fold away dead | |||
2295 | // paths and merge blocks before going into block-local instruction | |||
2296 | // selection. | |||
2297 | if (II->use_empty()) { | |||
2298 | II->eraseFromParent(); | |||
2299 | return true; | |||
2300 | } | |||
2301 | Constant *RetVal = ConstantInt::getTrue(II->getContext()); | |||
2302 | resetIteratorIfInvalidatedWhileCalling(BB, [&]() { | |||
2303 | replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); | |||
2304 | }); | |||
2305 | return true; | |||
2306 | } | |||
2307 | case Intrinsic::objectsize: | |||
2308 | llvm_unreachable("llvm.objectsize.* should have been lowered already")::llvm::llvm_unreachable_internal("llvm.objectsize.* should have been lowered already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2308); | |||
2309 | case Intrinsic::is_constant: | |||
2310 | llvm_unreachable("llvm.is.constant.* should have been lowered already")::llvm::llvm_unreachable_internal("llvm.is.constant.* should have been lowered already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2310); | |||
2311 | case Intrinsic::aarch64_stlxr: | |||
2312 | case Intrinsic::aarch64_stxr: { | |||
2313 | ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); | |||
2314 | if (!ExtVal || !ExtVal->hasOneUse() || | |||
2315 | ExtVal->getParent() == CI->getParent()) | |||
2316 | return false; | |||
2317 | // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. | |||
2318 | ExtVal->moveBefore(CI); | |||
2319 | // Mark this instruction as "inserted by CGP", so that other | |||
2320 | // optimizations don't touch it. | |||
2321 | InsertedInsts.insert(ExtVal); | |||
2322 | return true; | |||
2323 | } | |||
2324 | ||||
2325 | case Intrinsic::launder_invariant_group: | |||
2326 | case Intrinsic::strip_invariant_group: { | |||
2327 | Value *ArgVal = II->getArgOperand(0); | |||
2328 | auto it = LargeOffsetGEPMap.find(II); | |||
2329 | if (it != LargeOffsetGEPMap.end()) { | |||
2330 | // Merge entries in LargeOffsetGEPMap to reflect the RAUW. | |||
2331 | // Make sure not to have to deal with iterator invalidation | |||
2332 | // after possibly adding ArgVal to LargeOffsetGEPMap. | |||
2333 | auto GEPs = std::move(it->second); | |||
2334 | LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); | |||
2335 | LargeOffsetGEPMap.erase(II); | |||
2336 | } | |||
2337 | ||||
2338 | replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); | |||
2339 | II->eraseFromParent(); | |||
2340 | return true; | |||
2341 | } | |||
2342 | case Intrinsic::cttz: | |||
2343 | case Intrinsic::ctlz: | |||
2344 | // If counting zeros is expensive, try to avoid it. | |||
2345 | return despeculateCountZeros(II, TLI, DL, ModifiedDT, FreshBBs, | |||
2346 | IsHugeFunc); | |||
2347 | case Intrinsic::fshl: | |||
2348 | case Intrinsic::fshr: | |||
2349 | return optimizeFunnelShift(II); | |||
2350 | case Intrinsic::dbg_assign: | |||
2351 | case Intrinsic::dbg_value: | |||
2352 | return fixupDbgValue(II); | |||
2353 | case Intrinsic::masked_gather: | |||
2354 | return optimizeGatherScatterInst(II, II->getArgOperand(0)); | |||
2355 | case Intrinsic::masked_scatter: | |||
2356 | return optimizeGatherScatterInst(II, II->getArgOperand(1)); | |||
2357 | } | |||
2358 | ||||
2359 | SmallVector<Value *, 2> PtrOps; | |||
2360 | Type *AccessTy; | |||
2361 | if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) | |||
2362 | while (!PtrOps.empty()) { | |||
2363 | Value *PtrVal = PtrOps.pop_back_val(); | |||
2364 | unsigned AS = PtrVal->getType()->getPointerAddressSpace(); | |||
2365 | if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) | |||
2366 | return true; | |||
2367 | } | |||
2368 | } | |||
2369 | ||||
2370 | // From here on out we're working with named functions. | |||
2371 | if (!CI->getCalledFunction()) | |||
2372 | return false; | |||
2373 | ||||
2374 | // Lower all default uses of _chk calls. This is very similar | |||
2375 | // to what InstCombineCalls does, but here we are only lowering calls | |||
2376 | // to fortified library functions (e.g. __memcpy_chk) that have the default | |||
2377 | // "don't know" as the objectsize. Anything else should be left alone. | |||
2378 | FortifiedLibCallSimplifier Simplifier(TLInfo, true); | |||
2379 | IRBuilder<> Builder(CI); | |||
2380 | if (Value *V = Simplifier.optimizeCall(CI, Builder)) { | |||
2381 | replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); | |||
2382 | CI->eraseFromParent(); | |||
2383 | return true; | |||
2384 | } | |||
2385 | ||||
2386 | return false; | |||
2387 | } | |||
2388 | ||||
2389 | /// Look for opportunities to duplicate return instructions to the predecessor | |||
2390 | /// to enable tail call optimizations. The case it is currently looking for is: | |||
2391 | /// @code | |||
2392 | /// bb0: | |||
2393 | /// %tmp0 = tail call i32 @f0() | |||
2394 | /// br label %return | |||
2395 | /// bb1: | |||
2396 | /// %tmp1 = tail call i32 @f1() | |||
2397 | /// br label %return | |||
2398 | /// bb2: | |||
2399 | /// %tmp2 = tail call i32 @f2() | |||
2400 | /// br label %return | |||
2401 | /// return: | |||
2402 | /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] | |||
2403 | /// ret i32 %retval | |||
2404 | /// @endcode | |||
2405 | /// | |||
2406 | /// => | |||
2407 | /// | |||
2408 | /// @code | |||
2409 | /// bb0: | |||
2410 | /// %tmp0 = tail call i32 @f0() | |||
2411 | /// ret i32 %tmp0 | |||
2412 | /// bb1: | |||
2413 | /// %tmp1 = tail call i32 @f1() | |||
2414 | /// ret i32 %tmp1 | |||
2415 | /// bb2: | |||
2416 | /// %tmp2 = tail call i32 @f2() | |||
2417 | /// ret i32 %tmp2 | |||
2418 | /// @endcode | |||
2419 | bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, | |||
2420 | ModifyDT &ModifiedDT) { | |||
2421 | if (!BB->getTerminator()) | |||
2422 | return false; | |||
2423 | ||||
2424 | ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); | |||
2425 | if (!RetI) | |||
2426 | return false; | |||
2427 | ||||
2428 | PHINode *PN = nullptr; | |||
2429 | ExtractValueInst *EVI = nullptr; | |||
2430 | BitCastInst *BCI = nullptr; | |||
2431 | Value *V = RetI->getReturnValue(); | |||
2432 | if (V) { | |||
2433 | BCI = dyn_cast<BitCastInst>(V); | |||
2434 | if (BCI) | |||
2435 | V = BCI->getOperand(0); | |||
2436 | ||||
2437 | EVI = dyn_cast<ExtractValueInst>(V); | |||
2438 | if (EVI) { | |||
2439 | V = EVI->getOperand(0); | |||
2440 | if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) | |||
2441 | return false; | |||
2442 | } | |||
2443 | ||||
2444 | PN = dyn_cast<PHINode>(V); | |||
2445 | if (!PN) | |||
2446 | return false; | |||
2447 | } | |||
2448 | ||||
2449 | if (PN && PN->getParent() != BB) | |||
2450 | return false; | |||
2451 | ||||
2452 | auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { | |||
2453 | const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); | |||
2454 | if (BC && BC->hasOneUse()) | |||
2455 | Inst = BC->user_back(); | |||
2456 | ||||
2457 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) | |||
2458 | return II->getIntrinsicID() == Intrinsic::lifetime_end; | |||
2459 | return false; | |||
2460 | }; | |||
2461 | ||||
2462 | // Make sure there are no instructions between the first instruction | |||
2463 | // and return. | |||
2464 | const Instruction *BI = BB->getFirstNonPHI(); | |||
2465 | // Skip over debug and the bitcast. | |||
2466 | while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || | |||
2467 | isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) | |||
2468 | BI = BI->getNextNode(); | |||
2469 | if (BI != RetI) | |||
2470 | return false; | |||
2471 | ||||
2472 | /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail | |||
2473 | /// call. | |||
2474 | const Function *F = BB->getParent(); | |||
2475 | SmallVector<BasicBlock *, 4> TailCallBBs; | |||
2476 | if (PN) { | |||
2477 | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { | |||
2478 | // Look through bitcasts. | |||
2479 | Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); | |||
2480 | CallInst *CI = dyn_cast<CallInst>(IncomingVal); | |||
2481 | BasicBlock *PredBB = PN->getIncomingBlock(I); | |||
2482 | // Make sure the phi value is indeed produced by the tail call. | |||
2483 | if (CI && CI->hasOneUse() && CI->getParent() == PredBB && | |||
2484 | TLI->mayBeEmittedAsTailCall(CI) && | |||
2485 | attributesPermitTailCall(F, CI, RetI, *TLI)) | |||
2486 | TailCallBBs.push_back(PredBB); | |||
2487 | } | |||
2488 | } else { | |||
2489 | SmallPtrSet<BasicBlock *, 4> VisitedBBs; | |||
2490 | for (BasicBlock *Pred : predecessors(BB)) { | |||
2491 | if (!VisitedBBs.insert(Pred).second) | |||
2492 | continue; | |||
2493 | if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { | |||
2494 | CallInst *CI = dyn_cast<CallInst>(I); | |||
2495 | if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && | |||
2496 | attributesPermitTailCall(F, CI, RetI, *TLI)) | |||
2497 | TailCallBBs.push_back(Pred); | |||
2498 | } | |||
2499 | } | |||
2500 | } | |||
2501 | ||||
2502 | bool Changed = false; | |||
2503 | for (auto const &TailCallBB : TailCallBBs) { | |||
2504 | // Make sure the call instruction is followed by an unconditional branch to | |||
2505 | // the return block. | |||
2506 | BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); | |||
2507 | if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) | |||
2508 | continue; | |||
2509 | ||||
2510 | // Duplicate the return into TailCallBB. | |||
2511 | (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); | |||
2512 | assert(!VerifyBFIUpdates ||(static_cast <bool> (!VerifyBFIUpdates || BFI->getBlockFreq (BB) >= BFI->getBlockFreq(TailCallBB)) ? void (0) : __assert_fail ("!VerifyBFIUpdates || BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2513, __extension__ __PRETTY_FUNCTION__ )) | |||
2513 | BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB))(static_cast <bool> (!VerifyBFIUpdates || BFI->getBlockFreq (BB) >= BFI->getBlockFreq(TailCallBB)) ? void (0) : __assert_fail ("!VerifyBFIUpdates || BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2513, __extension__ __PRETTY_FUNCTION__ )); | |||
2514 | BFI->setBlockFreq( | |||
2515 | BB, | |||
2516 | (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); | |||
2517 | ModifiedDT = ModifyDT::ModifyBBDT; | |||
2518 | Changed = true; | |||
2519 | ++NumRetsDup; | |||
2520 | } | |||
2521 | ||||
2522 | // If we eliminated all predecessors of the block, delete the block now. | |||
2523 | if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) | |||
2524 | BB->eraseFromParent(); | |||
2525 | ||||
2526 | return Changed; | |||
2527 | } | |||
2528 | ||||
2529 | //===----------------------------------------------------------------------===// | |||
2530 | // Memory Optimization | |||
2531 | //===----------------------------------------------------------------------===// | |||
2532 | ||||
2533 | namespace { | |||
2534 | ||||
2535 | /// This is an extended version of TargetLowering::AddrMode | |||
2536 | /// which holds actual Value*'s for register values. | |||
2537 | struct ExtAddrMode : public TargetLowering::AddrMode { | |||
2538 | Value *BaseReg = nullptr; | |||
2539 | Value *ScaledReg = nullptr; | |||
2540 | Value *OriginalValue = nullptr; | |||
2541 | bool InBounds = true; | |||
2542 | ||||
2543 | enum FieldName { | |||
2544 | NoField = 0x00, | |||
2545 | BaseRegField = 0x01, | |||
2546 | BaseGVField = 0x02, | |||
2547 | BaseOffsField = 0x04, | |||
2548 | ScaledRegField = 0x08, | |||
2549 | ScaleField = 0x10, | |||
2550 | MultipleFields = 0xff | |||
2551 | }; | |||
2552 | ||||
2553 | ExtAddrMode() = default; | |||
2554 | ||||
2555 | void print(raw_ostream &OS) const; | |||
2556 | void dump() const; | |||
2557 | ||||
2558 | FieldName compare(const ExtAddrMode &other) { | |||
2559 | // First check that the types are the same on each field, as differing types | |||
2560 | // is something we can't cope with later on. | |||
2561 | if (BaseReg && other.BaseReg && | |||
2562 | BaseReg->getType() != other.BaseReg->getType()) | |||
2563 | return MultipleFields; | |||
2564 | if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) | |||
2565 | return MultipleFields; | |||
2566 | if (ScaledReg && other.ScaledReg && | |||
2567 | ScaledReg->getType() != other.ScaledReg->getType()) | |||
2568 | return MultipleFields; | |||
2569 | ||||
2570 | // Conservatively reject 'inbounds' mismatches. | |||
2571 | if (InBounds != other.InBounds) | |||
2572 | return MultipleFields; | |||
2573 | ||||
2574 | // Check each field to see if it differs. | |||
2575 | unsigned Result = NoField; | |||
2576 | if (BaseReg != other.BaseReg) | |||
2577 | Result |= BaseRegField; | |||
2578 | if (BaseGV != other.BaseGV) | |||
2579 | Result |= BaseGVField; | |||
2580 | if (BaseOffs != other.BaseOffs) | |||
2581 | Result |= BaseOffsField; | |||
2582 | if (ScaledReg != other.ScaledReg) | |||
2583 | Result |= ScaledRegField; | |||
2584 | // Don't count 0 as being a different scale, because that actually means | |||
2585 | // unscaled (which will already be counted by having no ScaledReg). | |||
2586 | if (Scale && other.Scale && Scale != other.Scale) | |||
2587 | Result |= ScaleField; | |||
2588 | ||||
2589 | if (llvm::popcount(Result) > 1) | |||
2590 | return MultipleFields; | |||
2591 | else | |||
2592 | return static_cast<FieldName>(Result); | |||
2593 | } | |||
2594 | ||||
2595 | // An AddrMode is trivial if it involves no calculation i.e. it is just a base | |||
2596 | // with no offset. | |||
2597 | bool isTrivial() { | |||
2598 | // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is | |||
2599 | // trivial if at most one of these terms is nonzero, except that BaseGV and | |||
2600 | // BaseReg both being zero actually means a null pointer value, which we | |||
2601 | // consider to be 'non-zero' here. | |||
2602 | return !BaseOffs && !Scale && !(BaseGV && BaseReg); | |||
2603 | } | |||
2604 | ||||
2605 | Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { | |||
2606 | switch (Field) { | |||
2607 | default: | |||
2608 | return nullptr; | |||
2609 | case BaseRegField: | |||
2610 | return BaseReg; | |||
2611 | case BaseGVField: | |||
2612 | return BaseGV; | |||
2613 | case ScaledRegField: | |||
2614 | return ScaledReg; | |||
2615 | case BaseOffsField: | |||
2616 | return ConstantInt::get(IntPtrTy, BaseOffs); | |||
2617 | } | |||
2618 | } | |||
2619 | ||||
2620 | void SetCombinedField(FieldName Field, Value *V, | |||
2621 | const SmallVectorImpl<ExtAddrMode> &AddrModes) { | |||
2622 | switch (Field) { | |||
2623 | default: | |||
2624 | llvm_unreachable("Unhandled fields are expected to be rejected earlier")::llvm::llvm_unreachable_internal("Unhandled fields are expected to be rejected earlier" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2624); | |||
2625 | break; | |||
2626 | case ExtAddrMode::BaseRegField: | |||
2627 | BaseReg = V; | |||
2628 | break; | |||
2629 | case ExtAddrMode::BaseGVField: | |||
2630 | // A combined BaseGV is an Instruction, not a GlobalValue, so it goes | |||
2631 | // in the BaseReg field. | |||
2632 | assert(BaseReg == nullptr)(static_cast <bool> (BaseReg == nullptr) ? void (0) : __assert_fail ("BaseReg == nullptr", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2632, __extension__ __PRETTY_FUNCTION__)); | |||
2633 | BaseReg = V; | |||
2634 | BaseGV = nullptr; | |||
2635 | break; | |||
2636 | case ExtAddrMode::ScaledRegField: | |||
2637 | ScaledReg = V; | |||
2638 | // If we have a mix of scaled and unscaled addrmodes then we want scale | |||
2639 | // to be the scale and not zero. | |||
2640 | if (!Scale) | |||
2641 | for (const ExtAddrMode &AM : AddrModes) | |||
2642 | if (AM.Scale) { | |||
2643 | Scale = AM.Scale; | |||
2644 | break; | |||
2645 | } | |||
2646 | break; | |||
2647 | case ExtAddrMode::BaseOffsField: | |||
2648 | // The offset is no longer a constant, so it goes in ScaledReg with a | |||
2649 | // scale of 1. | |||
2650 | assert(ScaledReg == nullptr)(static_cast <bool> (ScaledReg == nullptr) ? void (0) : __assert_fail ("ScaledReg == nullptr", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2650, __extension__ __PRETTY_FUNCTION__)); | |||
2651 | ScaledReg = V; | |||
2652 | Scale = 1; | |||
2653 | BaseOffs = 0; | |||
2654 | break; | |||
2655 | } | |||
2656 | } | |||
2657 | }; | |||
2658 | ||||
2659 | #ifndef NDEBUG | |||
2660 | static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { | |||
2661 | AM.print(OS); | |||
2662 | return OS; | |||
2663 | } | |||
2664 | #endif | |||
2665 | ||||
2666 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | |||
2667 | void ExtAddrMode::print(raw_ostream &OS) const { | |||
2668 | bool NeedPlus = false; | |||
2669 | OS << "["; | |||
2670 | if (InBounds) | |||
2671 | OS << "inbounds "; | |||
2672 | if (BaseGV) { | |||
2673 | OS << "GV:"; | |||
2674 | BaseGV->printAsOperand(OS, /*PrintType=*/false); | |||
2675 | NeedPlus = true; | |||
2676 | } | |||
2677 | ||||
2678 | if (BaseOffs) { | |||
2679 | OS << (NeedPlus ? " + " : "") << BaseOffs; | |||
2680 | NeedPlus = true; | |||
2681 | } | |||
2682 | ||||
2683 | if (BaseReg) { | |||
2684 | OS << (NeedPlus ? " + " : "") << "Base:"; | |||
2685 | BaseReg->printAsOperand(OS, /*PrintType=*/false); | |||
2686 | NeedPlus = true; | |||
2687 | } | |||
2688 | if (Scale) { | |||
2689 | OS << (NeedPlus ? " + " : "") << Scale << "*"; | |||
2690 | ScaledReg->printAsOperand(OS, /*PrintType=*/false); | |||
2691 | } | |||
2692 | ||||
2693 | OS << ']'; | |||
2694 | } | |||
2695 | ||||
2696 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void ExtAddrMode::dump() const { | |||
2697 | print(dbgs()); | |||
2698 | dbgs() << '\n'; | |||
2699 | } | |||
2700 | #endif | |||
2701 | ||||
2702 | } // end anonymous namespace | |||
2703 | ||||
2704 | namespace { | |||
2705 | ||||
2706 | /// This class provides transaction based operation on the IR. | |||
2707 | /// Every change made through this class is recorded in the internal state and | |||
2708 | /// can be undone (rollback) until commit is called. | |||
2709 | /// CGP does not check if instructions could be speculatively executed when | |||
2710 | /// moved. Preserving the original location would pessimize the debugging | |||
2711 | /// experience, as well as negatively impact the quality of sample PGO. | |||
2712 | class TypePromotionTransaction { | |||
2713 | /// This represents the common interface of the individual transaction. | |||
2714 | /// Each class implements the logic for doing one specific modification on | |||
2715 | /// the IR via the TypePromotionTransaction. | |||
2716 | class TypePromotionAction { | |||
2717 | protected: | |||
2718 | /// The Instruction modified. | |||
2719 | Instruction *Inst; | |||
2720 | ||||
2721 | public: | |||
2722 | /// Constructor of the action. | |||
2723 | /// The constructor performs the related action on the IR. | |||
2724 | TypePromotionAction(Instruction *Inst) : Inst(Inst) {} | |||
2725 | ||||
2726 | virtual ~TypePromotionAction() = default; | |||
2727 | ||||
2728 | /// Undo the modification done by this action. | |||
2729 | /// When this method is called, the IR must be in the same state as it was | |||
2730 | /// before this action was applied. | |||
2731 | /// \pre Undoing the action works if and only if the IR is in the exact same | |||
2732 | /// state as it was directly after this action was applied. | |||
2733 | virtual void undo() = 0; | |||
2734 | ||||
2735 | /// Advocate every change made by this action. | |||
2736 | /// When the results on the IR of the action are to be kept, it is important | |||
2737 | /// to call this function, otherwise hidden information may be kept forever. | |||
2738 | virtual void commit() { | |||
2739 | // Nothing to be done, this action is not doing anything. | |||
2740 | } | |||
2741 | }; | |||
2742 | ||||
2743 | /// Utility to remember the position of an instruction. | |||
2744 | class InsertionHandler { | |||
2745 | /// Position of an instruction. | |||
2746 | /// Either an instruction: | |||
2747 | /// - Is the first in a basic block: BB is used. | |||
2748 | /// - Has a previous instruction: PrevInst is used. | |||
2749 | union { | |||
2750 | Instruction *PrevInst; | |||
2751 | BasicBlock *BB; | |||
2752 | } Point; | |||
2753 | ||||
2754 | /// Remember whether or not the instruction had a previous instruction. | |||
2755 | bool HasPrevInstruction; | |||
2756 | ||||
2757 | public: | |||
2758 | /// Record the position of \p Inst. | |||
2759 | InsertionHandler(Instruction *Inst) { | |||
2760 | BasicBlock::iterator It = Inst->getIterator(); | |||
2761 | HasPrevInstruction = (It != (Inst->getParent()->begin())); | |||
2762 | if (HasPrevInstruction) | |||
2763 | Point.PrevInst = &*--It; | |||
2764 | else | |||
2765 | Point.BB = Inst->getParent(); | |||
2766 | } | |||
2767 | ||||
2768 | /// Insert \p Inst at the recorded position. | |||
2769 | void insert(Instruction *Inst) { | |||
2770 | if (HasPrevInstruction) { | |||
2771 | if (Inst->getParent()) | |||
2772 | Inst->removeFromParent(); | |||
2773 | Inst->insertAfter(Point.PrevInst); | |||
2774 | } else { | |||
2775 | Instruction *Position = &*Point.BB->getFirstInsertionPt(); | |||
2776 | if (Inst->getParent()) | |||
2777 | Inst->moveBefore(Position); | |||
2778 | else | |||
2779 | Inst->insertBefore(Position); | |||
2780 | } | |||
2781 | } | |||
2782 | }; | |||
2783 | ||||
2784 | /// Move an instruction before another. | |||
2785 | class InstructionMoveBefore : public TypePromotionAction { | |||
2786 | /// Original position of the instruction. | |||
2787 | InsertionHandler Position; | |||
2788 | ||||
2789 | public: | |||
2790 | /// Move \p Inst before \p Before. | |||
2791 | InstructionMoveBefore(Instruction *Inst, Instruction *Before) | |||
2792 | : TypePromotionAction(Inst), Position(Inst) { | |||
2793 | LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Beforedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: move: " << * Inst << "\nbefore: " << *Before << "\n"; } } while (false) | |||
2794 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: move: " << * Inst << "\nbefore: " << *Before << "\n"; } } while (false); | |||
2795 | Inst->moveBefore(Before); | |||
2796 | } | |||
2797 | ||||
2798 | /// Move the instruction back to its original position. | |||
2799 | void undo() override { | |||
2800 | LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: moveBefore: " << *Inst << "\n"; } } while (false); | |||
2801 | Position.insert(Inst); | |||
2802 | } | |||
2803 | }; | |||
2804 | ||||
2805 | /// Set the operand of an instruction with a new value. | |||
2806 | class OperandSetter : public TypePromotionAction { | |||
2807 | /// Original operand of the instruction. | |||
2808 | Value *Origin; | |||
2809 | ||||
2810 | /// Index of the modified instruction. | |||
2811 | unsigned Idx; | |||
2812 | ||||
2813 | public: | |||
2814 | /// Set \p Idx operand of \p Inst with \p NewVal. | |||
2815 | OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) | |||
2816 | : TypePromotionAction(Inst), Idx(Idx) { | |||
2817 | LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false) | |||
2818 | << "for:" << *Inst << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false) | |||
2819 | << "with:" << *NewVal << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false); | |||
2820 | Origin = Inst->getOperand(Idx); | |||
2821 | Inst->setOperand(Idx, NewVal); | |||
2822 | } | |||
2823 | ||||
2824 | /// Restore the original value of the instruction. | |||
2825 | void undo() override { | |||
2826 | LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false) | |||
2827 | << "for: " << *Inst << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false) | |||
2828 | << "with: " << *Origin << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false); | |||
2829 | Inst->setOperand(Idx, Origin); | |||
2830 | } | |||
2831 | }; | |||
2832 | ||||
2833 | /// Hide the operands of an instruction. | |||
2834 | /// Do as if this instruction was not using any of its operands. | |||
2835 | class OperandsHider : public TypePromotionAction { | |||
2836 | /// The list of original operands. | |||
2837 | SmallVector<Value *, 4> OriginalValues; | |||
2838 | ||||
2839 | public: | |||
2840 | /// Remove \p Inst from the uses of the operands of \p Inst. | |||
2841 | OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { | |||
2842 | LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: OperandsHider: " << *Inst << "\n"; } } while (false); | |||
2843 | unsigned NumOpnds = Inst->getNumOperands(); | |||
2844 | OriginalValues.reserve(NumOpnds); | |||
2845 | for (unsigned It = 0; It < NumOpnds; ++It) { | |||
2846 | // Save the current operand. | |||
2847 | Value *Val = Inst->getOperand(It); | |||
2848 | OriginalValues.push_back(Val); | |||
2849 | // Set a dummy one. | |||
2850 | // We could use OperandSetter here, but that would imply an overhead | |||
2851 | // that we are not willing to pay. | |||
2852 | Inst->setOperand(It, UndefValue::get(Val->getType())); | |||
2853 | } | |||
2854 | } | |||
2855 | ||||
2856 | /// Restore the original list of uses. | |||
2857 | void undo() override { | |||
2858 | LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: OperandsHider: " << *Inst << "\n"; } } while (false); | |||
2859 | for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) | |||
2860 | Inst->setOperand(It, OriginalValues[It]); | |||
2861 | } | |||
2862 | }; | |||
2863 | ||||
2864 | /// Build a truncate instruction. | |||
2865 | class TruncBuilder : public TypePromotionAction { | |||
2866 | Value *Val; | |||
2867 | ||||
2868 | public: | |||
2869 | /// Build a truncate instruction of \p Opnd producing a \p Ty | |||
2870 | /// result. | |||
2871 | /// trunc Opnd to Ty. | |||
2872 | TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { | |||
2873 | IRBuilder<> Builder(Opnd); | |||
2874 | Builder.SetCurrentDebugLocation(DebugLoc()); | |||
2875 | Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); | |||
2876 | LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: TruncBuilder: " << *Val << "\n"; } } while (false); | |||
2877 | } | |||
2878 | ||||
2879 | /// Get the built value. | |||
2880 | Value *getBuiltValue() { return Val; } | |||
2881 | ||||
2882 | /// Remove the built instruction. | |||
2883 | void undo() override { | |||
2884 | LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: TruncBuilder: " << *Val << "\n"; } } while (false); | |||
2885 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | |||
2886 | IVal->eraseFromParent(); | |||
2887 | } | |||
2888 | }; | |||
2889 | ||||
2890 | /// Build a sign extension instruction. | |||
2891 | class SExtBuilder : public TypePromotionAction { | |||
2892 | Value *Val; | |||
2893 | ||||
2894 | public: | |||
2895 | /// Build a sign extension instruction of \p Opnd producing a \p Ty | |||
2896 | /// result. | |||
2897 | /// sext Opnd to Ty. | |||
2898 | SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | |||
2899 | : TypePromotionAction(InsertPt) { | |||
2900 | IRBuilder<> Builder(InsertPt); | |||
2901 | Val = Builder.CreateSExt(Opnd, Ty, "promoted"); | |||
2902 | LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: SExtBuilder: " << *Val << "\n"; } } while (false); | |||
2903 | } | |||
2904 | ||||
2905 | /// Get the built value. | |||
2906 | Value *getBuiltValue() { return Val; } | |||
2907 | ||||
2908 | /// Remove the built instruction. | |||
2909 | void undo() override { | |||
2910 | LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: SExtBuilder: " << *Val << "\n"; } } while (false); | |||
2911 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | |||
2912 | IVal->eraseFromParent(); | |||
2913 | } | |||
2914 | }; | |||
2915 | ||||
2916 | /// Build a zero extension instruction. | |||
2917 | class ZExtBuilder : public TypePromotionAction { | |||
2918 | Value *Val; | |||
2919 | ||||
2920 | public: | |||
2921 | /// Build a zero extension instruction of \p Opnd producing a \p Ty | |||
2922 | /// result. | |||
2923 | /// zext Opnd to Ty. | |||
2924 | ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | |||
2925 | : TypePromotionAction(InsertPt) { | |||
2926 | IRBuilder<> Builder(InsertPt); | |||
2927 | Builder.SetCurrentDebugLocation(DebugLoc()); | |||
2928 | Val = Builder.CreateZExt(Opnd, Ty, "promoted"); | |||
2929 | LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: ZExtBuilder: " << *Val << "\n"; } } while (false); | |||
2930 | } | |||
2931 | ||||
2932 | /// Get the built value. | |||
2933 | Value *getBuiltValue() { return Val; } | |||
2934 | ||||
2935 | /// Remove the built instruction. | |||
2936 | void undo() override { | |||
2937 | LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"; } } while (false); | |||
2938 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | |||
2939 | IVal->eraseFromParent(); | |||
2940 | } | |||
2941 | }; | |||
2942 | ||||
2943 | /// Mutate an instruction to another type. | |||
2944 | class TypeMutator : public TypePromotionAction { | |||
2945 | /// Record the original type. | |||
2946 | Type *OrigTy; | |||
2947 | ||||
2948 | public: | |||
2949 | /// Mutate the type of \p Inst into \p NewTy. | |||
2950 | TypeMutator(Instruction *Inst, Type *NewTy) | |||
2951 | : TypePromotionAction(Inst), OrigTy(Inst->getType()) { | |||
2952 | LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"; } } while (false) | |||
2953 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"; } } while (false); | |||
2954 | Inst->mutateType(NewTy); | |||
2955 | } | |||
2956 | ||||
2957 | /// Mutate the instruction back to its original type. | |||
2958 | void undo() override { | |||
2959 | LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"; } } while (false) | |||
2960 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"; } } while (false); | |||
2961 | Inst->mutateType(OrigTy); | |||
2962 | } | |||
2963 | }; | |||
2964 | ||||
2965 | /// Replace the uses of an instruction by another instruction. | |||
2966 | class UsesReplacer : public TypePromotionAction { | |||
2967 | /// Helper structure to keep track of the replaced uses. | |||
2968 | struct InstructionAndIdx { | |||
2969 | /// The instruction using the instruction. | |||
2970 | Instruction *Inst; | |||
2971 | ||||
2972 | /// The index where this instruction is used for Inst. | |||
2973 | unsigned Idx; | |||
2974 | ||||
2975 | InstructionAndIdx(Instruction *Inst, unsigned Idx) | |||
2976 | : Inst(Inst), Idx(Idx) {} | |||
2977 | }; | |||
2978 | ||||
2979 | /// Keep track of the original uses (pair Instruction, Index). | |||
2980 | SmallVector<InstructionAndIdx, 4> OriginalUses; | |||
2981 | /// Keep track of the debug users. | |||
2982 | SmallVector<DbgValueInst *, 1> DbgValues; | |||
2983 | ||||
2984 | /// Keep track of the new value so that we can undo it by replacing | |||
2985 | /// instances of the new value with the original value. | |||
2986 | Value *New; | |||
2987 | ||||
2988 | using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; | |||
2989 | ||||
2990 | public: | |||
2991 | /// Replace all the use of \p Inst by \p New. | |||
2992 | UsesReplacer(Instruction *Inst, Value *New) | |||
2993 | : TypePromotionAction(Inst), New(New) { | |||
2994 | LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *Newdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"; } } while (false) | |||
2995 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"; } } while (false); | |||
2996 | // Record the original uses. | |||
2997 | for (Use &U : Inst->uses()) { | |||
2998 | Instruction *UserI = cast<Instruction>(U.getUser()); | |||
2999 | OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); | |||
3000 | } | |||
3001 | // Record the debug uses separately. They are not in the instruction's | |||
3002 | // use list, but they are replaced by RAUW. | |||
3003 | findDbgValues(DbgValues, Inst); | |||
3004 | ||||
3005 | // Now, we can replace the uses. | |||
3006 | Inst->replaceAllUsesWith(New); | |||
3007 | } | |||
3008 | ||||
3009 | /// Reassign the original uses of Inst to Inst. | |||
3010 | void undo() override { | |||
3011 | LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"; } } while (false); | |||
3012 | for (InstructionAndIdx &Use : OriginalUses) | |||
3013 | Use.Inst->setOperand(Use.Idx, Inst); | |||
3014 | // RAUW has replaced all original uses with references to the new value, | |||
3015 | // including the debug uses. Since we are undoing the replacements, | |||
3016 | // the original debug uses must also be reinstated to maintain the | |||
3017 | // correctness and utility of debug value instructions. | |||
3018 | for (auto *DVI : DbgValues) | |||
3019 | DVI->replaceVariableLocationOp(New, Inst); | |||
3020 | } | |||
3021 | }; | |||
3022 | ||||
3023 | /// Remove an instruction from the IR. | |||
3024 | class InstructionRemover : public TypePromotionAction { | |||
3025 | /// Original position of the instruction. | |||
3026 | InsertionHandler Inserter; | |||
3027 | ||||
3028 | /// Helper structure to hide all the link to the instruction. In other | |||
3029 | /// words, this helps to do as if the instruction was removed. | |||
3030 | OperandsHider Hider; | |||
3031 | ||||
3032 | /// Keep track of the uses replaced, if any. | |||
3033 | UsesReplacer *Replacer = nullptr; | |||
3034 | ||||
3035 | /// Keep track of instructions removed. | |||
3036 | SetOfInstrs &RemovedInsts; | |||
3037 | ||||
3038 | public: | |||
3039 | /// Remove all reference of \p Inst and optionally replace all its | |||
3040 | /// uses with New. | |||
3041 | /// \p RemovedInsts Keep track of the instructions removed by this Action. | |||
3042 | /// \pre If !Inst->use_empty(), then New != nullptr | |||
3043 | InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, | |||
3044 | Value *New = nullptr) | |||
3045 | : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), | |||
3046 | RemovedInsts(RemovedInsts) { | |||
3047 | if (New) | |||
3048 | Replacer = new UsesReplacer(Inst, New); | |||
3049 | LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: InstructionRemover: " << *Inst << "\n"; } } while (false); | |||
3050 | RemovedInsts.insert(Inst); | |||
3051 | /// The instructions removed here will be freed after completing | |||
3052 | /// optimizeBlock() for all blocks as we need to keep track of the | |||
3053 | /// removed instructions during promotion. | |||
3054 | Inst->removeFromParent(); | |||
3055 | } | |||
3056 | ||||
3057 | ~InstructionRemover() override { delete Replacer; } | |||
3058 | ||||
3059 | /// Resurrect the instruction and reassign it to the proper uses if | |||
3060 | /// new value was provided when build this action. | |||
3061 | void undo() override { | |||
3062 | LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"; } } while (false); | |||
3063 | Inserter.insert(Inst); | |||
3064 | if (Replacer) | |||
3065 | Replacer->undo(); | |||
3066 | Hider.undo(); | |||
3067 | RemovedInsts.erase(Inst); | |||
3068 | } | |||
3069 | }; | |||
3070 | ||||
3071 | public: | |||
3072 | /// Restoration point. | |||
3073 | /// The restoration point is a pointer to an action instead of an iterator | |||
3074 | /// because the iterator may be invalidated but not the pointer. | |||
3075 | using ConstRestorationPt = const TypePromotionAction *; | |||
3076 | ||||
3077 | TypePromotionTransaction(SetOfInstrs &RemovedInsts) | |||
3078 | : RemovedInsts(RemovedInsts) {} | |||
3079 | ||||
3080 | /// Advocate every changes made in that transaction. Return true if any change | |||
3081 | /// happen. | |||
3082 | bool commit(); | |||
3083 | ||||
3084 | /// Undo all the changes made after the given point. | |||
3085 | void rollback(ConstRestorationPt Point); | |||
3086 | ||||
3087 | /// Get the current restoration point. | |||
3088 | ConstRestorationPt getRestorationPoint() const; | |||
3089 | ||||
3090 | /// \name API for IR modification with state keeping to support rollback. | |||
3091 | /// @{ | |||
3092 | /// Same as Instruction::setOperand. | |||
3093 | void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); | |||
3094 | ||||
3095 | /// Same as Instruction::eraseFromParent. | |||
3096 | void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); | |||
3097 | ||||
3098 | /// Same as Value::replaceAllUsesWith. | |||
3099 | void replaceAllUsesWith(Instruction *Inst, Value *New); | |||
3100 | ||||
3101 | /// Same as Value::mutateType. | |||
3102 | void mutateType(Instruction *Inst, Type *NewTy); | |||
3103 | ||||
3104 | /// Same as IRBuilder::createTrunc. | |||
3105 | Value *createTrunc(Instruction *Opnd, Type *Ty); | |||
3106 | ||||
3107 | /// Same as IRBuilder::createSExt. | |||
3108 | Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); | |||
3109 | ||||
3110 | /// Same as IRBuilder::createZExt. | |||
3111 | Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); | |||
3112 | ||||
3113 | /// Same as Instruction::moveBefore. | |||
3114 | void moveBefore(Instruction *Inst, Instruction *Before); | |||
3115 | /// @} | |||
3116 | ||||
3117 | private: | |||
3118 | /// The ordered list of actions made so far. | |||
3119 | SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; | |||
3120 | ||||
3121 | using CommitPt = | |||
3122 | SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; | |||
3123 | ||||
3124 | SetOfInstrs &RemovedInsts; | |||
3125 | }; | |||
3126 | ||||
3127 | } // end anonymous namespace | |||
3128 | ||||
3129 | void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, | |||
3130 | Value *NewVal) { | |||
3131 | Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( | |||
3132 | Inst, Idx, NewVal)); | |||
3133 | } | |||
3134 | ||||
3135 | void TypePromotionTransaction::eraseInstruction(Instruction *Inst, | |||
3136 | Value *NewVal) { | |||
3137 | Actions.push_back( | |||
3138 | std::make_unique<TypePromotionTransaction::InstructionRemover>( | |||
3139 | Inst, RemovedInsts, NewVal)); | |||
3140 | } | |||
3141 | ||||
3142 | void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, | |||
3143 | Value *New) { | |||
3144 | Actions.push_back( | |||
3145 | std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); | |||
3146 | } | |||
3147 | ||||
3148 | void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { | |||
3149 | Actions.push_back( | |||
3150 | std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); | |||
3151 | } | |||
3152 | ||||
3153 | Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { | |||
3154 | std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); | |||
3155 | Value *Val = Ptr->getBuiltValue(); | |||
3156 | Actions.push_back(std::move(Ptr)); | |||
3157 | return Val; | |||
3158 | } | |||
3159 | ||||
3160 | Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, | |||
3161 | Type *Ty) { | |||
3162 | std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); | |||
3163 | Value *Val = Ptr->getBuiltValue(); | |||
3164 | Actions.push_back(std::move(Ptr)); | |||
3165 | return Val; | |||
3166 | } | |||
3167 | ||||
3168 | Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, | |||
3169 | Type *Ty) { | |||
3170 | std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); | |||
3171 | Value *Val = Ptr->getBuiltValue(); | |||
3172 | Actions.push_back(std::move(Ptr)); | |||
3173 | return Val; | |||
3174 | } | |||
3175 | ||||
3176 | void TypePromotionTransaction::moveBefore(Instruction *Inst, | |||
3177 | Instruction *Before) { | |||
3178 | Actions.push_back( | |||
3179 | std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( | |||
3180 | Inst, Before)); | |||
3181 | } | |||
3182 | ||||
3183 | TypePromotionTransaction::ConstRestorationPt | |||
3184 | TypePromotionTransaction::getRestorationPoint() const { | |||
3185 | return !Actions.empty() ? Actions.back().get() : nullptr; | |||
3186 | } | |||
3187 | ||||
3188 | bool TypePromotionTransaction::commit() { | |||
3189 | for (std::unique_ptr<TypePromotionAction> &Action : Actions) | |||
3190 | Action->commit(); | |||
3191 | bool Modified = !Actions.empty(); | |||
3192 | Actions.clear(); | |||
3193 | return Modified; | |||
3194 | } | |||
3195 | ||||
3196 | void TypePromotionTransaction::rollback( | |||
3197 | TypePromotionTransaction::ConstRestorationPt Point) { | |||
3198 | while (!Actions.empty() && Point != Actions.back().get()) { | |||
3199 | std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); | |||
3200 | Curr->undo(); | |||
3201 | } | |||
3202 | } | |||
3203 | ||||
3204 | namespace { | |||
3205 | ||||
3206 | /// A helper class for matching addressing modes. | |||
3207 | /// | |||
3208 | /// This encapsulates the logic for matching the target-legal addressing modes. | |||
3209 | class AddressingModeMatcher { | |||
3210 | SmallVectorImpl<Instruction *> &AddrModeInsts; | |||
3211 | const TargetLowering &TLI; | |||
3212 | const TargetRegisterInfo &TRI; | |||
3213 | const DataLayout &DL; | |||
3214 | const LoopInfo &LI; | |||
3215 | const std::function<const DominatorTree &()> getDTFn; | |||
3216 | ||||
3217 | /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and | |||
3218 | /// the memory instruction that we're computing this address for. | |||
3219 | Type *AccessTy; | |||
3220 | unsigned AddrSpace; | |||
3221 | Instruction *MemoryInst; | |||
3222 | ||||
3223 | /// This is the addressing mode that we're building up. This is | |||
3224 | /// part of the return value of this addressing mode matching stuff. | |||
3225 | ExtAddrMode &AddrMode; | |||
3226 | ||||
3227 | /// The instructions inserted by other CodeGenPrepare optimizations. | |||
3228 | const SetOfInstrs &InsertedInsts; | |||
3229 | ||||
3230 | /// A map from the instructions to their type before promotion. | |||
3231 | InstrToOrigTy &PromotedInsts; | |||
3232 | ||||
3233 | /// The ongoing transaction where every action should be registered. | |||
3234 | TypePromotionTransaction &TPT; | |||
3235 | ||||
3236 | // A GEP which has too large offset to be folded into the addressing mode. | |||
3237 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; | |||
3238 | ||||
3239 | /// This is set to true when we should not do profitability checks. | |||
3240 | /// When true, IsProfitableToFoldIntoAddressingMode always returns true. | |||
3241 | bool IgnoreProfitability; | |||
3242 | ||||
3243 | /// True if we are optimizing for size. | |||
3244 | bool OptSize; | |||
3245 | ||||
3246 | ProfileSummaryInfo *PSI; | |||
3247 | BlockFrequencyInfo *BFI; | |||
3248 | ||||
3249 | AddressingModeMatcher( | |||
3250 | SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, | |||
3251 | const TargetRegisterInfo &TRI, const LoopInfo &LI, | |||
3252 | const std::function<const DominatorTree &()> getDTFn, Type *AT, | |||
3253 | unsigned AS, Instruction *MI, ExtAddrMode &AM, | |||
3254 | const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, | |||
3255 | TypePromotionTransaction &TPT, | |||
3256 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, | |||
3257 | bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) | |||
3258 | : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), | |||
3259 | DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), | |||
3260 | AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), | |||
3261 | InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), | |||
3262 | LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { | |||
3263 | IgnoreProfitability = false; | |||
3264 | } | |||
3265 | ||||
3266 | public: | |||
3267 | /// Find the maximal addressing mode that a load/store of V can fold, | |||
3268 | /// give an access type of AccessTy. This returns a list of involved | |||
3269 | /// instructions in AddrModeInsts. | |||
3270 | /// \p InsertedInsts The instructions inserted by other CodeGenPrepare | |||
3271 | /// optimizations. | |||
3272 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
3273 | /// \p The ongoing transaction where every action should be registered. | |||
3274 | static ExtAddrMode | |||
3275 | Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, | |||
3276 | SmallVectorImpl<Instruction *> &AddrModeInsts, | |||
3277 | const TargetLowering &TLI, const LoopInfo &LI, | |||
3278 | const std::function<const DominatorTree &()> getDTFn, | |||
3279 | const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, | |||
3280 | InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, | |||
3281 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, | |||
3282 | bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { | |||
3283 | ExtAddrMode Result; | |||
3284 | ||||
3285 | bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, | |||
3286 | AccessTy, AS, MemoryInst, Result, | |||
3287 | InsertedInsts, PromotedInsts, TPT, | |||
3288 | LargeOffsetGEP, OptSize, PSI, BFI) | |||
3289 | .matchAddr(V, 0); | |||
3290 | (void)Success; | |||
3291 | assert(Success && "Couldn't select *anything*?")(static_cast <bool> (Success && "Couldn't select *anything*?" ) ? void (0) : __assert_fail ("Success && \"Couldn't select *anything*?\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3291, __extension__ __PRETTY_FUNCTION__ )); | |||
3292 | return Result; | |||
3293 | } | |||
3294 | ||||
3295 | private: | |||
3296 | bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); | |||
3297 | bool matchAddr(Value *Addr, unsigned Depth); | |||
3298 | bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, | |||
3299 | bool *MovedAway = nullptr); | |||
3300 | bool isProfitableToFoldIntoAddressingMode(Instruction *I, | |||
3301 | ExtAddrMode &AMBefore, | |||
3302 | ExtAddrMode &AMAfter); | |||
3303 | bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); | |||
3304 | bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, | |||
3305 | Value *PromotedOperand) const; | |||
3306 | }; | |||
3307 | ||||
3308 | class PhiNodeSet; | |||
3309 | ||||
3310 | /// An iterator for PhiNodeSet. | |||
3311 | class PhiNodeSetIterator { | |||
3312 | PhiNodeSet *const Set; | |||
3313 | size_t CurrentIndex = 0; | |||
3314 | ||||
3315 | public: | |||
3316 | /// The constructor. Start should point to either a valid element, or be equal | |||
3317 | /// to the size of the underlying SmallVector of the PhiNodeSet. | |||
3318 | PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); | |||
3319 | PHINode *operator*() const; | |||
3320 | PhiNodeSetIterator &operator++(); | |||
3321 | bool operator==(const PhiNodeSetIterator &RHS) const; | |||
3322 | bool operator!=(const PhiNodeSetIterator &RHS) const; | |||
3323 | }; | |||
3324 | ||||
3325 | /// Keeps a set of PHINodes. | |||
3326 | /// | |||
3327 | /// This is a minimal set implementation for a specific use case: | |||
3328 | /// It is very fast when there are very few elements, but also provides good | |||
3329 | /// performance when there are many. It is similar to SmallPtrSet, but also | |||
3330 | /// provides iteration by insertion order, which is deterministic and stable | |||
3331 | /// across runs. It is also similar to SmallSetVector, but provides removing | |||
3332 | /// elements in O(1) time. This is achieved by not actually removing the element | |||
3333 | /// from the underlying vector, so comes at the cost of using more memory, but | |||
3334 | /// that is fine, since PhiNodeSets are used as short lived objects. | |||
3335 | class PhiNodeSet { | |||
3336 | friend class PhiNodeSetIterator; | |||
3337 | ||||
3338 | using MapType = SmallDenseMap<PHINode *, size_t, 32>; | |||
3339 | using iterator = PhiNodeSetIterator; | |||
3340 | ||||
3341 | /// Keeps the elements in the order of their insertion in the underlying | |||
3342 | /// vector. To achieve constant time removal, it never deletes any element. | |||
3343 | SmallVector<PHINode *, 32> NodeList; | |||
3344 | ||||
3345 | /// Keeps the elements in the underlying set implementation. This (and not the | |||
3346 | /// NodeList defined above) is the source of truth on whether an element | |||
3347 | /// is actually in the collection. | |||
3348 | MapType NodeMap; | |||
3349 | ||||
3350 | /// Points to the first valid (not deleted) element when the set is not empty | |||
3351 | /// and the value is not zero. Equals to the size of the underlying vector | |||
3352 | /// when the set is empty. When the value is 0, as in the beginning, the | |||
3353 | /// first element may or may not be valid. | |||
3354 | size_t FirstValidElement = 0; | |||
3355 | ||||
3356 | public: | |||
3357 | /// Inserts a new element to the collection. | |||
3358 | /// \returns true if the element is actually added, i.e. was not in the | |||
3359 | /// collection before the operation. | |||
3360 | bool insert(PHINode *Ptr) { | |||
3361 | if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { | |||
3362 | NodeList.push_back(Ptr); | |||
3363 | return true; | |||
3364 | } | |||
3365 | return false; | |||
3366 | } | |||
3367 | ||||
3368 | /// Removes the element from the collection. | |||
3369 | /// \returns whether the element is actually removed, i.e. was in the | |||
3370 | /// collection before the operation. | |||
3371 | bool erase(PHINode *Ptr) { | |||
3372 | if (NodeMap.erase(Ptr)) { | |||
3373 | SkipRemovedElements(FirstValidElement); | |||
3374 | return true; | |||
3375 | } | |||
3376 | return false; | |||
3377 | } | |||
3378 | ||||
3379 | /// Removes all elements and clears the collection. | |||
3380 | void clear() { | |||
3381 | NodeMap.clear(); | |||
3382 | NodeList.clear(); | |||
3383 | FirstValidElement = 0; | |||
3384 | } | |||
3385 | ||||
3386 | /// \returns an iterator that will iterate the elements in the order of | |||
3387 | /// insertion. | |||
3388 | iterator begin() { | |||
3389 | if (FirstValidElement == 0) | |||
3390 | SkipRemovedElements(FirstValidElement); | |||
3391 | return PhiNodeSetIterator(this, FirstValidElement); | |||
3392 | } | |||
3393 | ||||
3394 | /// \returns an iterator that points to the end of the collection. | |||
3395 | iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } | |||
3396 | ||||
3397 | /// Returns the number of elements in the collection. | |||
3398 | size_t size() const { return NodeMap.size(); } | |||
3399 | ||||
3400 | /// \returns 1 if the given element is in the collection, and 0 if otherwise. | |||
3401 | size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } | |||
3402 | ||||
3403 | private: | |||
3404 | /// Updates the CurrentIndex so that it will point to a valid element. | |||
3405 | /// | |||
3406 | /// If the element of NodeList at CurrentIndex is valid, it does not | |||
3407 | /// change it. If there are no more valid elements, it updates CurrentIndex | |||
3408 | /// to point to the end of the NodeList. | |||
3409 | void SkipRemovedElements(size_t &CurrentIndex) { | |||
3410 | while (CurrentIndex < NodeList.size()) { | |||
3411 | auto it = NodeMap.find(NodeList[CurrentIndex]); | |||
3412 | // If the element has been deleted and added again later, NodeMap will | |||
3413 | // point to a different index, so CurrentIndex will still be invalid. | |||
3414 | if (it != NodeMap.end() && it->second == CurrentIndex) | |||
3415 | break; | |||
3416 | ++CurrentIndex; | |||
3417 | } | |||
3418 | } | |||
3419 | }; | |||
3420 | ||||
3421 | PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) | |||
3422 | : Set(Set), CurrentIndex(Start) {} | |||
3423 | ||||
3424 | PHINode *PhiNodeSetIterator::operator*() const { | |||
3425 | assert(CurrentIndex < Set->NodeList.size() &&(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3426, __extension__ __PRETTY_FUNCTION__ )) | |||
3426 | "PhiNodeSet access out of range")(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3426, __extension__ __PRETTY_FUNCTION__ )); | |||
3427 | return Set->NodeList[CurrentIndex]; | |||
3428 | } | |||
3429 | ||||
3430 | PhiNodeSetIterator &PhiNodeSetIterator::operator++() { | |||
3431 | assert(CurrentIndex < Set->NodeList.size() &&(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3432, __extension__ __PRETTY_FUNCTION__ )) | |||
3432 | "PhiNodeSet access out of range")(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3432, __extension__ __PRETTY_FUNCTION__ )); | |||
3433 | ++CurrentIndex; | |||
3434 | Set->SkipRemovedElements(CurrentIndex); | |||
3435 | return *this; | |||
3436 | } | |||
3437 | ||||
3438 | bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { | |||
3439 | return CurrentIndex == RHS.CurrentIndex; | |||
3440 | } | |||
3441 | ||||
3442 | bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { | |||
3443 | return !((*this) == RHS); | |||
3444 | } | |||
3445 | ||||
3446 | /// Keep track of simplification of Phi nodes. | |||
3447 | /// Accept the set of all phi nodes and erase phi node from this set | |||
3448 | /// if it is simplified. | |||
3449 | class SimplificationTracker { | |||
3450 | DenseMap<Value *, Value *> Storage; | |||
3451 | const SimplifyQuery &SQ; | |||
3452 | // Tracks newly created Phi nodes. The elements are iterated by insertion | |||
3453 | // order. | |||
3454 | PhiNodeSet AllPhiNodes; | |||
3455 | // Tracks newly created Select nodes. | |||
3456 | SmallPtrSet<SelectInst *, 32> AllSelectNodes; | |||
3457 | ||||
3458 | public: | |||
3459 | SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} | |||
3460 | ||||
3461 | Value *Get(Value *V) { | |||
3462 | do { | |||
3463 | auto SV = Storage.find(V); | |||
3464 | if (SV == Storage.end()) | |||
3465 | return V; | |||
3466 | V = SV->second; | |||
3467 | } while (true); | |||
3468 | } | |||
3469 | ||||
3470 | Value *Simplify(Value *Val) { | |||
3471 | SmallVector<Value *, 32> WorkList; | |||
3472 | SmallPtrSet<Value *, 32> Visited; | |||
3473 | WorkList.push_back(Val); | |||
3474 | while (!WorkList.empty()) { | |||
3475 | auto *P = WorkList.pop_back_val(); | |||
3476 | if (!Visited.insert(P).second) | |||
3477 | continue; | |||
3478 | if (auto *PI = dyn_cast<Instruction>(P)) | |||
3479 | if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { | |||
3480 | for (auto *U : PI->users()) | |||
3481 | WorkList.push_back(cast<Value>(U)); | |||
3482 | Put(PI, V); | |||
3483 | PI->replaceAllUsesWith(V); | |||
3484 | if (auto *PHI = dyn_cast<PHINode>(PI)) | |||
3485 | AllPhiNodes.erase(PHI); | |||
3486 | if (auto *Select = dyn_cast<SelectInst>(PI)) | |||
3487 | AllSelectNodes.erase(Select); | |||
3488 | PI->eraseFromParent(); | |||
3489 | } | |||
3490 | } | |||
3491 | return Get(Val); | |||
3492 | } | |||
3493 | ||||
3494 | void Put(Value *From, Value *To) { Storage.insert({From, To}); } | |||
3495 | ||||
3496 | void ReplacePhi(PHINode *From, PHINode *To) { | |||
3497 | Value *OldReplacement = Get(From); | |||
3498 | while (OldReplacement != From) { | |||
3499 | From = To; | |||
3500 | To = dyn_cast<PHINode>(OldReplacement); | |||
3501 | OldReplacement = Get(From); | |||
3502 | } | |||
3503 | assert(To && Get(To) == To && "Replacement PHI node is already replaced.")(static_cast <bool> (To && Get(To) == To && "Replacement PHI node is already replaced.") ? void (0) : __assert_fail ("To && Get(To) == To && \"Replacement PHI node is already replaced.\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3503, __extension__ __PRETTY_FUNCTION__ )); | |||
3504 | Put(From, To); | |||
3505 | From->replaceAllUsesWith(To); | |||
3506 | AllPhiNodes.erase(From); | |||
3507 | From->eraseFromParent(); | |||
3508 | } | |||
3509 | ||||
3510 | PhiNodeSet &newPhiNodes() { return AllPhiNodes; } | |||
3511 | ||||
3512 | void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } | |||
3513 | ||||
3514 | void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } | |||
3515 | ||||
3516 | unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } | |||
3517 | ||||
3518 | unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } | |||
3519 | ||||
3520 | void destroyNewNodes(Type *CommonType) { | |||
3521 | // For safe erasing, replace the uses with dummy value first. | |||
3522 | auto *Dummy = PoisonValue::get(CommonType); | |||
3523 | for (auto *I : AllPhiNodes) { | |||
3524 | I->replaceAllUsesWith(Dummy); | |||
3525 | I->eraseFromParent(); | |||
3526 | } | |||
3527 | AllPhiNodes.clear(); | |||
3528 | for (auto *I : AllSelectNodes) { | |||
3529 | I->replaceAllUsesWith(Dummy); | |||
3530 | I->eraseFromParent(); | |||
3531 | } | |||
3532 | AllSelectNodes.clear(); | |||
3533 | } | |||
3534 | }; | |||
3535 | ||||
3536 | /// A helper class for combining addressing modes. | |||
3537 | class AddressingModeCombiner { | |||
3538 | typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; | |||
3539 | typedef std::pair<PHINode *, PHINode *> PHIPair; | |||
3540 | ||||
3541 | private: | |||
3542 | /// The addressing modes we've collected. | |||
3543 | SmallVector<ExtAddrMode, 16> AddrModes; | |||
3544 | ||||
3545 | /// The field in which the AddrModes differ, when we have more than one. | |||
3546 | ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; | |||
3547 | ||||
3548 | /// Are the AddrModes that we have all just equal to their original values? | |||
3549 | bool AllAddrModesTrivial = true; | |||
3550 | ||||
3551 | /// Common Type for all different fields in addressing modes. | |||
3552 | Type *CommonType = nullptr; | |||
3553 | ||||
3554 | /// SimplifyQuery for simplifyInstruction utility. | |||
3555 | const SimplifyQuery &SQ; | |||
3556 | ||||
3557 | /// Original Address. | |||
3558 | Value *Original; | |||
3559 | ||||
3560 | public: | |||
3561 | AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) | |||
3562 | : SQ(_SQ), Original(OriginalValue) {} | |||
3563 | ||||
3564 | /// Get the combined AddrMode | |||
3565 | const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } | |||
3566 | ||||
3567 | /// Add a new AddrMode if it's compatible with the AddrModes we already | |||
3568 | /// have. | |||
3569 | /// \return True iff we succeeded in doing so. | |||
3570 | bool addNewAddrMode(ExtAddrMode &NewAddrMode) { | |||
3571 | // Take note of if we have any non-trivial AddrModes, as we need to detect | |||
3572 | // when all AddrModes are trivial as then we would introduce a phi or select | |||
3573 | // which just duplicates what's already there. | |||
3574 | AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); | |||
3575 | ||||
3576 | // If this is the first addrmode then everything is fine. | |||
3577 | if (AddrModes.empty()) { | |||
3578 | AddrModes.emplace_back(NewAddrMode); | |||
3579 | return true; | |||
3580 | } | |||
3581 | ||||
3582 | // Figure out how different this is from the other address modes, which we | |||
3583 | // can do just by comparing against the first one given that we only care | |||
3584 | // about the cumulative difference. | |||
3585 | ExtAddrMode::FieldName ThisDifferentField = | |||
3586 | AddrModes[0].compare(NewAddrMode); | |||
3587 | if (DifferentField == ExtAddrMode::NoField) | |||
3588 | DifferentField = ThisDifferentField; | |||
3589 | else if (DifferentField != ThisDifferentField) | |||
3590 | DifferentField = ExtAddrMode::MultipleFields; | |||
3591 | ||||
3592 | // If NewAddrMode differs in more than one dimension we cannot handle it. | |||
3593 | bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; | |||
3594 | ||||
3595 | // If Scale Field is different then we reject. | |||
3596 | CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; | |||
3597 | ||||
3598 | // We also must reject the case when base offset is different and | |||
3599 | // scale reg is not null, we cannot handle this case due to merge of | |||
3600 | // different offsets will be used as ScaleReg. | |||
3601 | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || | |||
3602 | !NewAddrMode.ScaledReg); | |||
3603 | ||||
3604 | // We also must reject the case when GV is different and BaseReg installed | |||
3605 | // due to we want to use base reg as a merge of GV values. | |||
3606 | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || | |||
3607 | !NewAddrMode.HasBaseReg); | |||
3608 | ||||
3609 | // Even if NewAddMode is the same we still need to collect it due to | |||
3610 | // original value is different. And later we will need all original values | |||
3611 | // as anchors during finding the common Phi node. | |||
3612 | if (CanHandle) | |||
3613 | AddrModes.emplace_back(NewAddrMode); | |||
3614 | else | |||
3615 | AddrModes.clear(); | |||
3616 | ||||
3617 | return CanHandle; | |||
3618 | } | |||
3619 | ||||
3620 | /// Combine the addressing modes we've collected into a single | |||
3621 | /// addressing mode. | |||
3622 | /// \return True iff we successfully combined them or we only had one so | |||
3623 | /// didn't need to combine them anyway. | |||
3624 | bool combineAddrModes() { | |||
3625 | // If we have no AddrModes then they can't be combined. | |||
3626 | if (AddrModes.size() == 0) | |||
3627 | return false; | |||
3628 | ||||
3629 | // A single AddrMode can trivially be combined. | |||
3630 | if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) | |||
3631 | return true; | |||
3632 | ||||
3633 | // If the AddrModes we collected are all just equal to the value they are | |||
3634 | // derived from then combining them wouldn't do anything useful. | |||
3635 | if (AllAddrModesTrivial) | |||
3636 | return false; | |||
3637 | ||||
3638 | if (!addrModeCombiningAllowed()) | |||
3639 | return false; | |||
3640 | ||||
3641 | // Build a map between <original value, basic block where we saw it> to | |||
3642 | // value of base register. | |||
3643 | // Bail out if there is no common type. | |||
3644 | FoldAddrToValueMapping Map; | |||
3645 | if (!initializeMap(Map)) | |||
3646 | return false; | |||
3647 | ||||
3648 | Value *CommonValue = findCommon(Map); | |||
3649 | if (CommonValue) | |||
3650 | AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); | |||
3651 | return CommonValue != nullptr; | |||
3652 | } | |||
3653 | ||||
3654 | private: | |||
3655 | /// Initialize Map with anchor values. For address seen | |||
3656 | /// we set the value of different field saw in this address. | |||
3657 | /// At the same time we find a common type for different field we will | |||
3658 | /// use to create new Phi/Select nodes. Keep it in CommonType field. | |||
3659 | /// Return false if there is no common type found. | |||
3660 | bool initializeMap(FoldAddrToValueMapping &Map) { | |||
3661 | // Keep track of keys where the value is null. We will need to replace it | |||
3662 | // with constant null when we know the common type. | |||
3663 | SmallVector<Value *, 2> NullValue; | |||
3664 | Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); | |||
3665 | for (auto &AM : AddrModes) { | |||
3666 | Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); | |||
3667 | if (DV) { | |||
3668 | auto *Type = DV->getType(); | |||
3669 | if (CommonType && CommonType != Type) | |||
3670 | return false; | |||
3671 | CommonType = Type; | |||
3672 | Map[AM.OriginalValue] = DV; | |||
3673 | } else { | |||
3674 | NullValue.push_back(AM.OriginalValue); | |||
3675 | } | |||
3676 | } | |||
3677 | assert(CommonType && "At least one non-null value must be!")(static_cast <bool> (CommonType && "At least one non-null value must be!" ) ? void (0) : __assert_fail ("CommonType && \"At least one non-null value must be!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3677, __extension__ __PRETTY_FUNCTION__ )); | |||
3678 | for (auto *V : NullValue) | |||
3679 | Map[V] = Constant::getNullValue(CommonType); | |||
3680 | return true; | |||
3681 | } | |||
3682 | ||||
3683 | /// We have mapping between value A and other value B where B was a field in | |||
3684 | /// addressing mode represented by A. Also we have an original value C | |||
3685 | /// representing an address we start with. Traversing from C through phi and | |||
3686 | /// selects we ended up with A's in a map. This utility function tries to find | |||
3687 | /// a value V which is a field in addressing mode C and traversing through phi | |||
3688 | /// nodes and selects we will end up in corresponded values B in a map. | |||
3689 | /// The utility will create a new Phi/Selects if needed. | |||
3690 | // The simple example looks as follows: | |||
3691 | // BB1: | |||
3692 | // p1 = b1 + 40 | |||
3693 | // br cond BB2, BB3 | |||
3694 | // BB2: | |||
3695 | // p2 = b2 + 40 | |||
3696 | // br BB3 | |||
3697 | // BB3: | |||
3698 | // p = phi [p1, BB1], [p2, BB2] | |||
3699 | // v = load p | |||
3700 | // Map is | |||
3701 | // p1 -> b1 | |||
3702 | // p2 -> b2 | |||
3703 | // Request is | |||
3704 | // p -> ? | |||
3705 | // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. | |||
3706 | Value *findCommon(FoldAddrToValueMapping &Map) { | |||
3707 | // Tracks the simplification of newly created phi nodes. The reason we use | |||
3708 | // this mapping is because we will add new created Phi nodes in AddrToBase. | |||
3709 | // Simplification of Phi nodes is recursive, so some Phi node may | |||
3710 | // be simplified after we added it to AddrToBase. In reality this | |||
3711 | // simplification is possible only if original phi/selects were not | |||
3712 | // simplified yet. | |||
3713 | // Using this mapping we can find the current value in AddrToBase. | |||
3714 | SimplificationTracker ST(SQ); | |||
3715 | ||||
3716 | // First step, DFS to create PHI nodes for all intermediate blocks. | |||
3717 | // Also fill traverse order for the second step. | |||
3718 | SmallVector<Value *, 32> TraverseOrder; | |||
3719 | InsertPlaceholders(Map, TraverseOrder, ST); | |||
3720 | ||||
3721 | // Second Step, fill new nodes by merged values and simplify if possible. | |||
3722 | FillPlaceholders(Map, TraverseOrder, ST); | |||
3723 | ||||
3724 | if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { | |||
3725 | ST.destroyNewNodes(CommonType); | |||
3726 | return nullptr; | |||
3727 | } | |||
3728 | ||||
3729 | // Now we'd like to match New Phi nodes to existed ones. | |||
3730 | unsigned PhiNotMatchedCount = 0; | |||
3731 | if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { | |||
3732 | ST.destroyNewNodes(CommonType); | |||
3733 | return nullptr; | |||
3734 | } | |||
3735 | ||||
3736 | auto *Result = ST.Get(Map.find(Original)->second); | |||
3737 | if (Result) { | |||
3738 | NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; | |||
3739 | NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); | |||
3740 | } | |||
3741 | return Result; | |||
3742 | } | |||
3743 | ||||
3744 | /// Try to match PHI node to Candidate. | |||
3745 | /// Matcher tracks the matched Phi nodes. | |||
3746 | bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, | |||
3747 | SmallSetVector<PHIPair, 8> &Matcher, | |||
3748 | PhiNodeSet &PhiNodesToMatch) { | |||
3749 | SmallVector<PHIPair, 8> WorkList; | |||
3750 | Matcher.insert({PHI, Candidate}); | |||
3751 | SmallSet<PHINode *, 8> MatchedPHIs; | |||
3752 | MatchedPHIs.insert(PHI); | |||
3753 | WorkList.push_back({PHI, Candidate}); | |||
3754 | SmallSet<PHIPair, 8> Visited; | |||
3755 | while (!WorkList.empty()) { | |||
3756 | auto Item = WorkList.pop_back_val(); | |||
3757 | if (!Visited.insert(Item).second) | |||
3758 | continue; | |||
3759 | // We iterate over all incoming values to Phi to compare them. | |||
3760 | // If values are different and both of them Phi and the first one is a | |||
3761 | // Phi we added (subject to match) and both of them is in the same basic | |||
3762 | // block then we can match our pair if values match. So we state that | |||
3763 | // these values match and add it to work list to verify that. | |||
3764 | for (auto *B : Item.first->blocks()) { | |||
3765 | Value *FirstValue = Item.first->getIncomingValueForBlock(B); | |||
3766 | Value *SecondValue = Item.second->getIncomingValueForBlock(B); | |||
3767 | if (FirstValue == SecondValue) | |||
3768 | continue; | |||
3769 | ||||
3770 | PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); | |||
3771 | PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); | |||
3772 | ||||
3773 | // One of them is not Phi or | |||
3774 | // The first one is not Phi node from the set we'd like to match or | |||
3775 | // Phi nodes from different basic blocks then | |||
3776 | // we will not be able to match. | |||
3777 | if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || | |||
3778 | FirstPhi->getParent() != SecondPhi->getParent()) | |||
3779 | return false; | |||
3780 | ||||
3781 | // If we already matched them then continue. | |||
3782 | if (Matcher.count({FirstPhi, SecondPhi})) | |||
3783 | continue; | |||
3784 | // So the values are different and does not match. So we need them to | |||
3785 | // match. (But we register no more than one match per PHI node, so that | |||
3786 | // we won't later try to replace them twice.) | |||
3787 | if (MatchedPHIs.insert(FirstPhi).second) | |||
3788 | Matcher.insert({FirstPhi, SecondPhi}); | |||
3789 | // But me must check it. | |||
3790 | WorkList.push_back({FirstPhi, SecondPhi}); | |||
3791 | } | |||
3792 | } | |||
3793 | return true; | |||
3794 | } | |||
3795 | ||||
3796 | /// For the given set of PHI nodes (in the SimplificationTracker) try | |||
3797 | /// to find their equivalents. | |||
3798 | /// Returns false if this matching fails and creation of new Phi is disabled. | |||
3799 | bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, | |||
3800 | unsigned &PhiNotMatchedCount) { | |||
3801 | // Matched and PhiNodesToMatch iterate their elements in a deterministic | |||
3802 | // order, so the replacements (ReplacePhi) are also done in a deterministic | |||
3803 | // order. | |||
3804 | SmallSetVector<PHIPair, 8> Matched; | |||
3805 | SmallPtrSet<PHINode *, 8> WillNotMatch; | |||
3806 | PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); | |||
3807 | while (PhiNodesToMatch.size()) { | |||
3808 | PHINode *PHI = *PhiNodesToMatch.begin(); | |||
3809 | ||||
3810 | // Add us, if no Phi nodes in the basic block we do not match. | |||
3811 | WillNotMatch.clear(); | |||
3812 | WillNotMatch.insert(PHI); | |||
3813 | ||||
3814 | // Traverse all Phis until we found equivalent or fail to do that. | |||
3815 | bool IsMatched = false; | |||
3816 | for (auto &P : PHI->getParent()->phis()) { | |||
3817 | // Skip new Phi nodes. | |||
3818 | if (PhiNodesToMatch.count(&P)) | |||
3819 | continue; | |||
3820 | if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) | |||
3821 | break; | |||
3822 | // If it does not match, collect all Phi nodes from matcher. | |||
3823 | // if we end up with no match, them all these Phi nodes will not match | |||
3824 | // later. | |||
3825 | for (auto M : Matched) | |||
3826 | WillNotMatch.insert(M.first); | |||
3827 | Matched.clear(); | |||
3828 | } | |||
3829 | if (IsMatched) { | |||
3830 | // Replace all matched values and erase them. | |||
3831 | for (auto MV : Matched) | |||
3832 | ST.ReplacePhi(MV.first, MV.second); | |||
3833 | Matched.clear(); | |||
3834 | continue; | |||
3835 | } | |||
3836 | // If we are not allowed to create new nodes then bail out. | |||
3837 | if (!AllowNewPhiNodes) | |||
3838 | return false; | |||
3839 | // Just remove all seen values in matcher. They will not match anything. | |||
3840 | PhiNotMatchedCount += WillNotMatch.size(); | |||
3841 | for (auto *P : WillNotMatch) | |||
3842 | PhiNodesToMatch.erase(P); | |||
3843 | } | |||
3844 | return true; | |||
3845 | } | |||
3846 | /// Fill the placeholders with values from predecessors and simplify them. | |||
3847 | void FillPlaceholders(FoldAddrToValueMapping &Map, | |||
3848 | SmallVectorImpl<Value *> &TraverseOrder, | |||
3849 | SimplificationTracker &ST) { | |||
3850 | while (!TraverseOrder.empty()) { | |||
3851 | Value *Current = TraverseOrder.pop_back_val(); | |||
3852 | assert(Map.contains(Current) && "No node to fill!!!")(static_cast <bool> (Map.contains(Current) && "No node to fill!!!" ) ? void (0) : __assert_fail ("Map.contains(Current) && \"No node to fill!!!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3852, __extension__ __PRETTY_FUNCTION__ )); | |||
3853 | Value *V = Map[Current]; | |||
3854 | ||||
3855 | if (SelectInst *Select = dyn_cast<SelectInst>(V)) { | |||
3856 | // CurrentValue also must be Select. | |||
3857 | auto *CurrentSelect = cast<SelectInst>(Current); | |||
3858 | auto *TrueValue = CurrentSelect->getTrueValue(); | |||
3859 | assert(Map.contains(TrueValue) && "No True Value!")(static_cast <bool> (Map.contains(TrueValue) && "No True Value!") ? void (0) : __assert_fail ("Map.contains(TrueValue) && \"No True Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3859, __extension__ __PRETTY_FUNCTION__ )); | |||
3860 | Select->setTrueValue(ST.Get(Map[TrueValue])); | |||
3861 | auto *FalseValue = CurrentSelect->getFalseValue(); | |||
3862 | assert(Map.contains(FalseValue) && "No False Value!")(static_cast <bool> (Map.contains(FalseValue) && "No False Value!") ? void (0) : __assert_fail ("Map.contains(FalseValue) && \"No False Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3862, __extension__ __PRETTY_FUNCTION__ )); | |||
3863 | Select->setFalseValue(ST.Get(Map[FalseValue])); | |||
3864 | } else { | |||
3865 | // Must be a Phi node then. | |||
3866 | auto *PHI = cast<PHINode>(V); | |||
3867 | // Fill the Phi node with values from predecessors. | |||
3868 | for (auto *B : predecessors(PHI->getParent())) { | |||
3869 | Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); | |||
3870 | assert(Map.contains(PV) && "No predecessor Value!")(static_cast <bool> (Map.contains(PV) && "No predecessor Value!" ) ? void (0) : __assert_fail ("Map.contains(PV) && \"No predecessor Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3870, __extension__ __PRETTY_FUNCTION__ )); | |||
3871 | PHI->addIncoming(ST.Get(Map[PV]), B); | |||
3872 | } | |||
3873 | } | |||
3874 | Map[Current] = ST.Simplify(V); | |||
3875 | } | |||
3876 | } | |||
3877 | ||||
3878 | /// Starting from original value recursively iterates over def-use chain up to | |||
3879 | /// known ending values represented in a map. For each traversed phi/select | |||
3880 | /// inserts a placeholder Phi or Select. | |||
3881 | /// Reports all new created Phi/Select nodes by adding them to set. | |||
3882 | /// Also reports and order in what values have been traversed. | |||
3883 | void InsertPlaceholders(FoldAddrToValueMapping &Map, | |||
3884 | SmallVectorImpl<Value *> &TraverseOrder, | |||
3885 | SimplificationTracker &ST) { | |||
3886 | SmallVector<Value *, 32> Worklist; | |||
3887 | assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&(static_cast <bool> ((isa<PHINode>(Original) || isa <SelectInst>(Original)) && "Address must be a Phi or Select node" ) ? void (0) : __assert_fail ("(isa<PHINode>(Original) || isa<SelectInst>(Original)) && \"Address must be a Phi or Select node\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3888, __extension__ __PRETTY_FUNCTION__ )) | |||
3888 | "Address must be a Phi or Select node")(static_cast <bool> ((isa<PHINode>(Original) || isa <SelectInst>(Original)) && "Address must be a Phi or Select node" ) ? void (0) : __assert_fail ("(isa<PHINode>(Original) || isa<SelectInst>(Original)) && \"Address must be a Phi or Select node\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3888, __extension__ __PRETTY_FUNCTION__ )); | |||
3889 | auto *Dummy = PoisonValue::get(CommonType); | |||
3890 | Worklist.push_back(Original); | |||
3891 | while (!Worklist.empty()) { | |||
3892 | Value *Current = Worklist.pop_back_val(); | |||
3893 | // if it is already visited or it is an ending value then skip it. | |||
3894 | if (Map.contains(Current)) | |||
3895 | continue; | |||
3896 | TraverseOrder.push_back(Current); | |||
3897 | ||||
3898 | // CurrentValue must be a Phi node or select. All others must be covered | |||
3899 | // by anchors. | |||
3900 | if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { | |||
3901 | // Is it OK to get metadata from OrigSelect?! | |||
3902 | // Create a Select placeholder with dummy value. | |||
3903 | SelectInst *Select = SelectInst::Create( | |||
3904 | CurrentSelect->getCondition(), Dummy, Dummy, | |||
3905 | CurrentSelect->getName(), CurrentSelect, CurrentSelect); | |||
3906 | Map[Current] = Select; | |||
3907 | ST.insertNewSelect(Select); | |||
3908 | // We are interested in True and False values. | |||
3909 | Worklist.push_back(CurrentSelect->getTrueValue()); | |||
3910 | Worklist.push_back(CurrentSelect->getFalseValue()); | |||
3911 | } else { | |||
3912 | // It must be a Phi node then. | |||
3913 | PHINode *CurrentPhi = cast<PHINode>(Current); | |||
3914 | unsigned PredCount = CurrentPhi->getNumIncomingValues(); | |||
3915 | PHINode *PHI = | |||
3916 | PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); | |||
3917 | Map[Current] = PHI; | |||
3918 | ST.insertNewPhi(PHI); | |||
3919 | append_range(Worklist, CurrentPhi->incoming_values()); | |||
3920 | } | |||
3921 | } | |||
3922 | } | |||
3923 | ||||
3924 | bool addrModeCombiningAllowed() { | |||
3925 | if (DisableComplexAddrModes) | |||
3926 | return false; | |||
3927 | switch (DifferentField) { | |||
3928 | default: | |||
3929 | return false; | |||
3930 | case ExtAddrMode::BaseRegField: | |||
3931 | return AddrSinkCombineBaseReg; | |||
3932 | case ExtAddrMode::BaseGVField: | |||
3933 | return AddrSinkCombineBaseGV; | |||
3934 | case ExtAddrMode::BaseOffsField: | |||
3935 | return AddrSinkCombineBaseOffs; | |||
3936 | case ExtAddrMode::ScaledRegField: | |||
3937 | return AddrSinkCombineScaledReg; | |||
3938 | } | |||
3939 | } | |||
3940 | }; | |||
3941 | } // end anonymous namespace | |||
3942 | ||||
3943 | /// Try adding ScaleReg*Scale to the current addressing mode. | |||
3944 | /// Return true and update AddrMode if this addr mode is legal for the target, | |||
3945 | /// false if not. | |||
3946 | bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, | |||
3947 | unsigned Depth) { | |||
3948 | // If Scale is 1, then this is the same as adding ScaleReg to the addressing | |||
3949 | // mode. Just process that directly. | |||
3950 | if (Scale == 1) | |||
3951 | return matchAddr(ScaleReg, Depth); | |||
3952 | ||||
3953 | // If the scale is 0, it takes nothing to add this. | |||
3954 | if (Scale == 0) | |||
3955 | return true; | |||
3956 | ||||
3957 | // If we already have a scale of this value, we can add to it, otherwise, we | |||
3958 | // need an available scale field. | |||
3959 | if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) | |||
3960 | return false; | |||
3961 | ||||
3962 | ExtAddrMode TestAddrMode = AddrMode; | |||
3963 | ||||
3964 | // Add scale to turn X*4+X*3 -> X*7. This could also do things like | |||
3965 | // [A+B + A*7] -> [B+A*8]. | |||
3966 | TestAddrMode.Scale += Scale; | |||
3967 | TestAddrMode.ScaledReg = ScaleReg; | |||
3968 | ||||
3969 | // If the new address isn't legal, bail out. | |||
3970 | if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) | |||
3971 | return false; | |||
3972 | ||||
3973 | // It was legal, so commit it. | |||
3974 | AddrMode = TestAddrMode; | |||
3975 | ||||
3976 | // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now | |||
3977 | // to see if ScaleReg is actually X+C. If so, we can turn this into adding | |||
3978 | // X*Scale + C*Scale to addr mode. If we found available IV increment, do not | |||
3979 | // go any further: we can reuse it and cannot eliminate it. | |||
3980 | ConstantInt *CI = nullptr; | |||
3981 | Value *AddLHS = nullptr; | |||
3982 | if (isa<Instruction>(ScaleReg) && // not a constant expr. | |||
3983 | match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && | |||
3984 | !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { | |||
3985 | TestAddrMode.InBounds = false; | |||
3986 | TestAddrMode.ScaledReg = AddLHS; | |||
3987 | TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; | |||
3988 | ||||
3989 | // If this addressing mode is legal, commit it and remember that we folded | |||
3990 | // this instruction. | |||
3991 | if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { | |||
3992 | AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); | |||
3993 | AddrMode = TestAddrMode; | |||
3994 | return true; | |||
3995 | } | |||
3996 | // Restore status quo. | |||
3997 | TestAddrMode = AddrMode; | |||
3998 | } | |||
3999 | ||||
4000 | // If this is an add recurrence with a constant step, return the increment | |||
4001 | // instruction and the canonicalized step. | |||
4002 | auto GetConstantStep = | |||
4003 | [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { | |||
4004 | auto *PN = dyn_cast<PHINode>(V); | |||
4005 | if (!PN) | |||
4006 | return std::nullopt; | |||
4007 | auto IVInc = getIVIncrement(PN, &LI); | |||
4008 | if (!IVInc) | |||
4009 | return std::nullopt; | |||
4010 | // TODO: The result of the intrinsics above is two-complement. However when | |||
4011 | // IV inc is expressed as add or sub, iv.next is potentially a poison value. | |||
4012 | // If it has nuw or nsw flags, we need to make sure that these flags are | |||
4013 | // inferrable at the point of memory instruction. Otherwise we are replacing | |||
4014 | // well-defined two-complement computation with poison. Currently, to avoid | |||
4015 | // potentially complex analysis needed to prove this, we reject such cases. | |||
4016 | if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) | |||
4017 | if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) | |||
4018 | return std::nullopt; | |||
4019 | if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) | |||
4020 | return std::make_pair(IVInc->first, ConstantStep->getValue()); | |||
4021 | return std::nullopt; | |||
4022 | }; | |||
4023 | ||||
4024 | // Try to account for the following special case: | |||
4025 | // 1. ScaleReg is an inductive variable; | |||
4026 | // 2. We use it with non-zero offset; | |||
4027 | // 3. IV's increment is available at the point of memory instruction. | |||
4028 | // | |||
4029 | // In this case, we may reuse the IV increment instead of the IV Phi to | |||
4030 | // achieve the following advantages: | |||
4031 | // 1. If IV step matches the offset, we will have no need in the offset; | |||
4032 | // 2. Even if they don't match, we will reduce the overlap of living IV | |||
4033 | // and IV increment, that will potentially lead to better register | |||
4034 | // assignment. | |||
4035 | if (AddrMode.BaseOffs) { | |||
4036 | if (auto IVStep = GetConstantStep(ScaleReg)) { | |||
4037 | Instruction *IVInc = IVStep->first; | |||
4038 | // The following assert is important to ensure a lack of infinite loops. | |||
4039 | // This transforms is (intentionally) the inverse of the one just above. | |||
4040 | // If they don't agree on the definition of an increment, we'd alternate | |||
4041 | // back and forth indefinitely. | |||
4042 | assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep")(static_cast <bool> (isIVIncrement(IVInc, &LI) && "implied by GetConstantStep") ? void (0) : __assert_fail ("isIVIncrement(IVInc, &LI) && \"implied by GetConstantStep\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4042, __extension__ __PRETTY_FUNCTION__ )); | |||
4043 | APInt Step = IVStep->second; | |||
4044 | APInt Offset = Step * AddrMode.Scale; | |||
4045 | if (Offset.isSignedIntN(64)) { | |||
4046 | TestAddrMode.InBounds = false; | |||
4047 | TestAddrMode.ScaledReg = IVInc; | |||
4048 | TestAddrMode.BaseOffs -= Offset.getLimitedValue(); | |||
4049 | // If this addressing mode is legal, commit it.. | |||
4050 | // (Note that we defer the (expensive) domtree base legality check | |||
4051 | // to the very last possible point.) | |||
4052 | if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && | |||
4053 | getDTFn().dominates(IVInc, MemoryInst)) { | |||
4054 | AddrModeInsts.push_back(cast<Instruction>(IVInc)); | |||
4055 | AddrMode = TestAddrMode; | |||
4056 | return true; | |||
4057 | } | |||
4058 | // Restore status quo. | |||
4059 | TestAddrMode = AddrMode; | |||
4060 | } | |||
4061 | } | |||
4062 | } | |||
4063 | ||||
4064 | // Otherwise, just return what we have. | |||
4065 | return true; | |||
4066 | } | |||
4067 | ||||
4068 | /// This is a little filter, which returns true if an addressing computation | |||
4069 | /// involving I might be folded into a load/store accessing it. | |||
4070 | /// This doesn't need to be perfect, but needs to accept at least | |||
4071 | /// the set of instructions that MatchOperationAddr can. | |||
4072 | static bool MightBeFoldableInst(Instruction *I) { | |||
4073 | switch (I->getOpcode()) { | |||
4074 | case Instruction::BitCast: | |||
4075 | case Instruction::AddrSpaceCast: | |||
4076 | // Don't touch identity bitcasts. | |||
4077 | if (I->getType() == I->getOperand(0)->getType()) | |||
4078 | return false; | |||
4079 | return I->getType()->isIntOrPtrTy(); | |||
4080 | case Instruction::PtrToInt: | |||
4081 | // PtrToInt is always a noop, as we know that the int type is pointer sized. | |||
4082 | return true; | |||
4083 | case Instruction::IntToPtr: | |||
4084 | // We know the input is intptr_t, so this is foldable. | |||
4085 | return true; | |||
4086 | case Instruction::Add: | |||
4087 | return true; | |||
4088 | case Instruction::Mul: | |||
4089 | case Instruction::Shl: | |||
4090 | // Can only handle X*C and X << C. | |||
4091 | return isa<ConstantInt>(I->getOperand(1)); | |||
4092 | case Instruction::GetElementPtr: | |||
4093 | return true; | |||
4094 | default: | |||
4095 | return false; | |||
4096 | } | |||
4097 | } | |||
4098 | ||||
4099 | /// Check whether or not \p Val is a legal instruction for \p TLI. | |||
4100 | /// \note \p Val is assumed to be the product of some type promotion. | |||
4101 | /// Therefore if \p Val has an undefined state in \p TLI, this is assumed | |||
4102 | /// to be legal, as the non-promoted value would have had the same state. | |||
4103 | static bool isPromotedInstructionLegal(const TargetLowering &TLI, | |||
4104 | const DataLayout &DL, Value *Val) { | |||
4105 | Instruction *PromotedInst = dyn_cast<Instruction>(Val); | |||
4106 | if (!PromotedInst) | |||
4107 | return false; | |||
4108 | int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); | |||
4109 | // If the ISDOpcode is undefined, it was undefined before the promotion. | |||
4110 | if (!ISDOpcode) | |||
4111 | return true; | |||
4112 | // Otherwise, check if the promoted instruction is legal or not. | |||
4113 | return TLI.isOperationLegalOrCustom( | |||
4114 | ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); | |||
4115 | } | |||
4116 | ||||
4117 | namespace { | |||
4118 | ||||
4119 | /// Hepler class to perform type promotion. | |||
4120 | class TypePromotionHelper { | |||
4121 | /// Utility function to add a promoted instruction \p ExtOpnd to | |||
4122 | /// \p PromotedInsts and record the type of extension we have seen. | |||
4123 | static void addPromotedInst(InstrToOrigTy &PromotedInsts, | |||
4124 | Instruction *ExtOpnd, bool IsSExt) { | |||
4125 | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; | |||
4126 | InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); | |||
4127 | if (It != PromotedInsts.end()) { | |||
4128 | // If the new extension is same as original, the information in | |||
4129 | // PromotedInsts[ExtOpnd] is still correct. | |||
4130 | if (It->second.getInt() == ExtTy) | |||
4131 | return; | |||
4132 | ||||
4133 | // Now the new extension is different from old extension, we make | |||
4134 | // the type information invalid by setting extension type to | |||
4135 | // BothExtension. | |||
4136 | ExtTy = BothExtension; | |||
4137 | } | |||
4138 | PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); | |||
4139 | } | |||
4140 | ||||
4141 | /// Utility function to query the original type of instruction \p Opnd | |||
4142 | /// with a matched extension type. If the extension doesn't match, we | |||
4143 | /// cannot use the information we had on the original type. | |||
4144 | /// BothExtension doesn't match any extension type. | |||
4145 | static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, | |||
4146 | Instruction *Opnd, bool IsSExt) { | |||
4147 | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; | |||
4148 | InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); | |||
4149 | if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) | |||
4150 | return It->second.getPointer(); | |||
4151 | return nullptr; | |||
4152 | } | |||
4153 | ||||
4154 | /// Utility function to check whether or not a sign or zero extension | |||
4155 | /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by | |||
4156 | /// either using the operands of \p Inst or promoting \p Inst. | |||
4157 | /// The type of the extension is defined by \p IsSExt. | |||
4158 | /// In other words, check if: | |||
4159 | /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. | |||
4160 | /// #1 Promotion applies: | |||
4161 | /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). | |||
4162 | /// #2 Operand reuses: | |||
4163 | /// ext opnd1 to ConsideredExtType. | |||
4164 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
4165 | static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, | |||
4166 | const InstrToOrigTy &PromotedInsts, bool IsSExt); | |||
4167 | ||||
4168 | /// Utility function to determine if \p OpIdx should be promoted when | |||
4169 | /// promoting \p Inst. | |||
4170 | static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { | |||
4171 | return !(isa<SelectInst>(Inst) && OpIdx == 0); | |||
4172 | } | |||
4173 | ||||
4174 | /// Utility function to promote the operand of \p Ext when this | |||
4175 | /// operand is a promotable trunc or sext or zext. | |||
4176 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
4177 | /// \p CreatedInstsCost[out] contains the cost of all instructions | |||
4178 | /// created to promote the operand of Ext. | |||
4179 | /// Newly added extensions are inserted in \p Exts. | |||
4180 | /// Newly added truncates are inserted in \p Truncs. | |||
4181 | /// Should never be called directly. | |||
4182 | /// \return The promoted value which is used instead of Ext. | |||
4183 | static Value *promoteOperandForTruncAndAnyExt( | |||
4184 | Instruction *Ext, TypePromotionTransaction &TPT, | |||
4185 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
4186 | SmallVectorImpl<Instruction *> *Exts, | |||
4187 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); | |||
4188 | ||||
4189 | /// Utility function to promote the operand of \p Ext when this | |||
4190 | /// operand is promotable and is not a supported trunc or sext. | |||
4191 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
4192 | /// \p CreatedInstsCost[out] contains the cost of all the instructions | |||
4193 | /// created to promote the operand of Ext. | |||
4194 | /// Newly added extensions are inserted in \p Exts. | |||
4195 | /// Newly added truncates are inserted in \p Truncs. | |||
4196 | /// Should never be called directly. | |||
4197 | /// \return The promoted value which is used instead of Ext. | |||
4198 | static Value *promoteOperandForOther(Instruction *Ext, | |||
4199 | TypePromotionTransaction &TPT, | |||
4200 | InstrToOrigTy &PromotedInsts, | |||
4201 | unsigned &CreatedInstsCost, | |||
4202 | SmallVectorImpl<Instruction *> *Exts, | |||
4203 | SmallVectorImpl<Instruction *> *Truncs, | |||
4204 | const TargetLowering &TLI, bool IsSExt); | |||
4205 | ||||
4206 | /// \see promoteOperandForOther. | |||
4207 | static Value *signExtendOperandForOther( | |||
4208 | Instruction *Ext, TypePromotionTransaction &TPT, | |||
4209 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
4210 | SmallVectorImpl<Instruction *> *Exts, | |||
4211 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | |||
4212 | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | |||
4213 | Exts, Truncs, TLI, true); | |||
4214 | } | |||
4215 | ||||
4216 | /// \see promoteOperandForOther. | |||
4217 | static Value *zeroExtendOperandForOther( | |||
4218 | Instruction *Ext, TypePromotionTransaction &TPT, | |||
4219 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
4220 | SmallVectorImpl<Instruction *> *Exts, | |||
4221 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | |||
4222 | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | |||
4223 | Exts, Truncs, TLI, false); | |||
4224 | } | |||
4225 | ||||
4226 | public: | |||
4227 | /// Type for the utility function that promotes the operand of Ext. | |||
4228 | using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, | |||
4229 | InstrToOrigTy &PromotedInsts, | |||
4230 | unsigned &CreatedInstsCost, | |||
4231 | SmallVectorImpl<Instruction *> *Exts, | |||
4232 | SmallVectorImpl<Instruction *> *Truncs, | |||
4233 | const TargetLowering &TLI); | |||
4234 | ||||
4235 | /// Given a sign/zero extend instruction \p Ext, return the appropriate | |||
4236 | /// action to promote the operand of \p Ext instead of using Ext. | |||
4237 | /// \return NULL if no promotable action is possible with the current | |||
4238 | /// sign extension. | |||
4239 | /// \p InsertedInsts keeps track of all the instructions inserted by the | |||
4240 | /// other CodeGenPrepare optimizations. This information is important | |||
4241 | /// because we do not want to promote these instructions as CodeGenPrepare | |||
4242 | /// will reinsert them later. Thus creating an infinite loop: create/remove. | |||
4243 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
4244 | static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, | |||
4245 | const TargetLowering &TLI, | |||
4246 | const InstrToOrigTy &PromotedInsts); | |||
4247 | }; | |||
4248 | ||||
4249 | } // end anonymous namespace | |||
4250 | ||||
4251 | bool TypePromotionHelper::canGetThrough(const Instruction *Inst, | |||
4252 | Type *ConsideredExtType, | |||
4253 | const InstrToOrigTy &PromotedInsts, | |||
4254 | bool IsSExt) { | |||
4255 | // The promotion helper does not know how to deal with vector types yet. | |||
4256 | // To be able to fix that, we would need to fix the places where we | |||
4257 | // statically extend, e.g., constants and such. | |||
4258 | if (Inst->getType()->isVectorTy()) | |||
4259 | return false; | |||
4260 | ||||
4261 | // We can always get through zext. | |||
4262 | if (isa<ZExtInst>(Inst)) | |||
4263 | return true; | |||
4264 | ||||
4265 | // sext(sext) is ok too. | |||
4266 | if (IsSExt && isa<SExtInst>(Inst)) | |||
4267 | return true; | |||
4268 | ||||
4269 | // We can get through binary operator, if it is legal. In other words, the | |||
4270 | // binary operator must have a nuw or nsw flag. | |||
4271 | if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) | |||
4272 | if (isa<OverflowingBinaryOperator>(BinOp) && | |||
4273 | ((!IsSExt && BinOp->hasNoUnsignedWrap()) || | |||
4274 | (IsSExt && BinOp->hasNoSignedWrap()))) | |||
4275 | return true; | |||
4276 | ||||
4277 | // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) | |||
4278 | if ((Inst->getOpcode() == Instruction::And || | |||
4279 | Inst->getOpcode() == Instruction::Or)) | |||
4280 | return true; | |||
4281 | ||||
4282 | // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) | |||
4283 | if (Inst->getOpcode() == Instruction::Xor) { | |||
4284 | // Make sure it is not a NOT. | |||
4285 | if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) | |||
4286 | if (!Cst->getValue().isAllOnes()) | |||
4287 | return true; | |||
4288 | } | |||
4289 | ||||
4290 | // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) | |||
4291 | // It may change a poisoned value into a regular value, like | |||
4292 | // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 | |||
4293 | // poisoned value regular value | |||
4294 | // It should be OK since undef covers valid value. | |||
4295 | if (Inst->getOpcode() == Instruction::LShr && !IsSExt) | |||
4296 | return true; | |||
4297 | ||||
4298 | // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) | |||
4299 | // It may change a poisoned value into a regular value, like | |||
4300 | // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 | |||
4301 | // poisoned value regular value | |||
4302 | // It should be OK since undef covers valid value. | |||
4303 | if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { | |||
4304 | const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); | |||
4305 | if (ExtInst->hasOneUse()) { | |||
4306 | const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); | |||
4307 | if (AndInst && AndInst->getOpcode() == Instruction::And) { | |||
4308 | const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); | |||
4309 | if (Cst && | |||
4310 | Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) | |||
4311 | return true; | |||
4312 | } | |||
4313 | } | |||
4314 | } | |||
4315 | ||||
4316 | // Check if we can do the following simplification. | |||
4317 | // ext(trunc(opnd)) --> ext(opnd) | |||
4318 | if (!isa<TruncInst>(Inst)) | |||
4319 | return false; | |||
4320 | ||||
4321 | Value *OpndVal = Inst->getOperand(0); | |||
4322 | // Check if we can use this operand in the extension. | |||
4323 | // If the type is larger than the result type of the extension, we cannot. | |||
4324 | if (!OpndVal->getType()->isIntegerTy() || | |||
4325 | OpndVal->getType()->getIntegerBitWidth() > | |||
4326 | ConsideredExtType->getIntegerBitWidth()) | |||
4327 | return false; | |||
4328 | ||||
4329 | // If the operand of the truncate is not an instruction, we will not have | |||
4330 | // any information on the dropped bits. | |||
4331 | // (Actually we could for constant but it is not worth the extra logic). | |||
4332 | Instruction *Opnd = dyn_cast<Instruction>(OpndVal); | |||
4333 | if (!Opnd) | |||
4334 | return false; | |||
4335 | ||||
4336 | // Check if the source of the type is narrow enough. | |||
4337 | // I.e., check that trunc just drops extended bits of the same kind of | |||
4338 | // the extension. | |||
4339 | // #1 get the type of the operand and check the kind of the extended bits. | |||
4340 | const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); | |||
4341 | if (OpndType) | |||
4342 | ; | |||
4343 | else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) | |||
4344 | OpndType = Opnd->getOperand(0)->getType(); | |||
4345 | else | |||
4346 | return false; | |||
4347 | ||||
4348 | // #2 check that the truncate just drops extended bits. | |||
4349 | return Inst->getType()->getIntegerBitWidth() >= | |||
4350 | OpndType->getIntegerBitWidth(); | |||
4351 | } | |||
4352 | ||||
4353 | TypePromotionHelper::Action TypePromotionHelper::getAction( | |||
4354 | Instruction *Ext, const SetOfInstrs &InsertedInsts, | |||
4355 | const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { | |||
4356 | assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&(static_cast <bool> ((isa<SExtInst>(Ext) || isa< ZExtInst>(Ext)) && "Unexpected instruction type") ? void (0) : __assert_fail ("(isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && \"Unexpected instruction type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4357, __extension__ __PRETTY_FUNCTION__ )) | |||
4357 | "Unexpected instruction type")(static_cast <bool> ((isa<SExtInst>(Ext) || isa< ZExtInst>(Ext)) && "Unexpected instruction type") ? void (0) : __assert_fail ("(isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && \"Unexpected instruction type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4357, __extension__ __PRETTY_FUNCTION__ )); | |||
4358 | Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); | |||
4359 | Type *ExtTy = Ext->getType(); | |||
4360 | bool IsSExt = isa<SExtInst>(Ext); | |||
4361 | // If the operand of the extension is not an instruction, we cannot | |||
4362 | // get through. | |||
4363 | // If it, check we can get through. | |||
4364 | if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) | |||
4365 | return nullptr; | |||
4366 | ||||
4367 | // Do not promote if the operand has been added by codegenprepare. | |||
4368 | // Otherwise, it means we are undoing an optimization that is likely to be | |||
4369 | // redone, thus causing potential infinite loop. | |||
4370 | if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) | |||
4371 | return nullptr; | |||
4372 | ||||
4373 | // SExt or Trunc instructions. | |||
4374 | // Return the related handler. | |||
4375 | if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || | |||
4376 | isa<ZExtInst>(ExtOpnd)) | |||
4377 | return promoteOperandForTruncAndAnyExt; | |||
4378 | ||||
4379 | // Regular instruction. | |||
4380 | // Abort early if we will have to insert non-free instructions. | |||
4381 | if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) | |||
4382 | return nullptr; | |||
4383 | return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; | |||
4384 | } | |||
4385 | ||||
4386 | Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( | |||
4387 | Instruction *SExt, TypePromotionTransaction &TPT, | |||
4388 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
4389 | SmallVectorImpl<Instruction *> *Exts, | |||
4390 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | |||
4391 | // By construction, the operand of SExt is an instruction. Otherwise we cannot | |||
4392 | // get through it and this method should not be called. | |||
4393 | Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); | |||
4394 | Value *ExtVal = SExt; | |||
4395 | bool HasMergedNonFreeExt = false; | |||
4396 | if (isa<ZExtInst>(SExtOpnd)) { | |||
4397 | // Replace s|zext(zext(opnd)) | |||
4398 | // => zext(opnd). | |||
4399 | HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); | |||
4400 | Value *ZExt = | |||
4401 | TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); | |||
4402 | TPT.replaceAllUsesWith(SExt, ZExt); | |||
4403 | TPT.eraseInstruction(SExt); | |||
4404 | ExtVal = ZExt; | |||
4405 | } else { | |||
4406 | // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) | |||
4407 | // => z|sext(opnd). | |||
4408 | TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); | |||
4409 | } | |||
4410 | CreatedInstsCost = 0; | |||
4411 | ||||
4412 | // Remove dead code. | |||
4413 | if (SExtOpnd->use_empty()) | |||
4414 | TPT.eraseInstruction(SExtOpnd); | |||
4415 | ||||
4416 | // Check if the extension is still needed. | |||
4417 | Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); | |||
4418 | if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { | |||
4419 | if (ExtInst) { | |||
4420 | if (Exts) | |||
4421 | Exts->push_back(ExtInst); | |||
4422 | CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; | |||
4423 | } | |||
4424 | return ExtVal; | |||
4425 | } | |||
4426 | ||||
4427 | // At this point we have: ext ty opnd to ty. | |||
4428 | // Reassign the uses of ExtInst to the opnd and remove ExtInst. | |||
4429 | Value *NextVal = ExtInst->getOperand(0); | |||
4430 | TPT.eraseInstruction(ExtInst, NextVal); | |||
4431 | return NextVal; | |||
4432 | } | |||
4433 | ||||
4434 | Value *TypePromotionHelper::promoteOperandForOther( | |||
4435 | Instruction *Ext, TypePromotionTransaction &TPT, | |||
4436 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
4437 | SmallVectorImpl<Instruction *> *Exts, | |||
4438 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, | |||
4439 | bool IsSExt) { | |||
4440 | // By construction, the operand of Ext is an instruction. Otherwise we cannot | |||
4441 | // get through it and this method should not be called. | |||
4442 | Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); | |||
4443 | CreatedInstsCost = 0; | |||
4444 | if (!ExtOpnd->hasOneUse()) { | |||
4445 | // ExtOpnd will be promoted. | |||
4446 | // All its uses, but Ext, will need to use a truncated value of the | |||
4447 | // promoted version. | |||
4448 | // Create the truncate now. | |||
4449 | Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); | |||
4450 | if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { | |||
4451 | // Insert it just after the definition. | |||
4452 | ITrunc->moveAfter(ExtOpnd); | |||
4453 | if (Truncs) | |||
4454 | Truncs->push_back(ITrunc); | |||
4455 | } | |||
4456 | ||||
4457 | TPT.replaceAllUsesWith(ExtOpnd, Trunc); | |||
4458 | // Restore the operand of Ext (which has been replaced by the previous call | |||
4459 | // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. | |||
4460 | TPT.setOperand(Ext, 0, ExtOpnd); | |||
4461 | } | |||
4462 | ||||
4463 | // Get through the Instruction: | |||
4464 | // 1. Update its type. | |||
4465 | // 2. Replace the uses of Ext by Inst. | |||
4466 | // 3. Extend each operand that needs to be extended. | |||
4467 | ||||
4468 | // Remember the original type of the instruction before promotion. | |||
4469 | // This is useful to know that the high bits are sign extended bits. | |||
4470 | addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); | |||
4471 | // Step #1. | |||
4472 | TPT.mutateType(ExtOpnd, Ext->getType()); | |||
4473 | // Step #2. | |||
4474 | TPT.replaceAllUsesWith(Ext, ExtOpnd); | |||
4475 | // Step #3. | |||
4476 | Instruction *ExtForOpnd = Ext; | |||
4477 | ||||
4478 | LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Propagate Ext to operands\n" ; } } while (false); | |||
4479 | for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; | |||
4480 | ++OpIdx) { | |||
4481 | LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Operand:\n" << * (ExtOpnd->getOperand(OpIdx)) << '\n'; } } while (false ); | |||
4482 | if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || | |||
4483 | !shouldExtOperand(ExtOpnd, OpIdx)) { | |||
4484 | LLVM_DEBUG(dbgs() << "No need to propagate\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "No need to propagate\n" ; } } while (false); | |||
4485 | continue; | |||
4486 | } | |||
4487 | // Check if we can statically extend the operand. | |||
4488 | Value *Opnd = ExtOpnd->getOperand(OpIdx); | |||
4489 | if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { | |||
4490 | LLVM_DEBUG(dbgs() << "Statically extend\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Statically extend\n"; } } while (false); | |||
4491 | unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); | |||
4492 | APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) | |||
4493 | : Cst->getValue().zext(BitWidth); | |||
4494 | TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); | |||
4495 | continue; | |||
4496 | } | |||
4497 | // UndefValue are typed, so we have to statically sign extend them. | |||
4498 | if (isa<UndefValue>(Opnd)) { | |||
4499 | LLVM_DEBUG(dbgs() << "Statically extend\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Statically extend\n"; } } while (false); | |||
4500 | TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); | |||
4501 | continue; | |||
4502 | } | |||
4503 | ||||
4504 | // Otherwise we have to explicitly sign extend the operand. | |||
4505 | // Check if Ext was reused to extend an operand. | |||
4506 | if (!ExtForOpnd) { | |||
4507 | // If yes, create a new one. | |||
4508 | LLVM_DEBUG(dbgs() << "More operands to ext\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "More operands to ext\n" ; } } while (false); | |||
4509 | Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) | |||
4510 | : TPT.createZExt(Ext, Opnd, Ext->getType()); | |||
4511 | if (!isa<Instruction>(ValForExtOpnd)) { | |||
4512 | TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); | |||
4513 | continue; | |||
4514 | } | |||
4515 | ExtForOpnd = cast<Instruction>(ValForExtOpnd); | |||
4516 | } | |||
4517 | if (Exts) | |||
4518 | Exts->push_back(ExtForOpnd); | |||
4519 | TPT.setOperand(ExtForOpnd, 0, Opnd); | |||
4520 | ||||
4521 | // Move the sign extension before the insertion point. | |||
4522 | TPT.moveBefore(ExtForOpnd, ExtOpnd); | |||
4523 | TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); | |||
4524 | CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); | |||
4525 | // If more sext are required, new instructions will have to be created. | |||
4526 | ExtForOpnd = nullptr; | |||
4527 | } | |||
4528 | if (ExtForOpnd == Ext) { | |||
4529 | LLVM_DEBUG(dbgs() << "Extension is useless now\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Extension is useless now\n" ; } } while (false); | |||
4530 | TPT.eraseInstruction(Ext); | |||
4531 | } | |||
4532 | return ExtOpnd; | |||
4533 | } | |||
4534 | ||||
4535 | /// Check whether or not promoting an instruction to a wider type is profitable. | |||
4536 | /// \p NewCost gives the cost of extension instructions created by the | |||
4537 | /// promotion. | |||
4538 | /// \p OldCost gives the cost of extension instructions before the promotion | |||
4539 | /// plus the number of instructions that have been | |||
4540 | /// matched in the addressing mode the promotion. | |||
4541 | /// \p PromotedOperand is the value that has been promoted. | |||
4542 | /// \return True if the promotion is profitable, false otherwise. | |||
4543 | bool AddressingModeMatcher::isPromotionProfitable( | |||
4544 | unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { | |||
4545 | LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'; } } while (false) | |||
4546 | << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'; } } while (false); | |||
4547 | // The cost of the new extensions is greater than the cost of the | |||
4548 | // old extension plus what we folded. | |||
4549 | // This is not profitable. | |||
4550 | if (NewCost > OldCost) | |||
4551 | return false; | |||
4552 | if (NewCost < OldCost) | |||
4553 | return true; | |||
4554 | // The promotion is neutral but it may help folding the sign extension in | |||
4555 | // loads for instance. | |||
4556 | // Check that we did not create an illegal instruction. | |||
4557 | return isPromotedInstructionLegal(TLI, DL, PromotedOperand); | |||
4558 | } | |||
4559 | ||||
4560 | /// Given an instruction or constant expr, see if we can fold the operation | |||
4561 | /// into the addressing mode. If so, update the addressing mode and return | |||
4562 | /// true, otherwise return false without modifying AddrMode. | |||
4563 | /// If \p MovedAway is not NULL, it contains the information of whether or | |||
4564 | /// not AddrInst has to be folded into the addressing mode on success. | |||
4565 | /// If \p MovedAway == true, \p AddrInst will not be part of the addressing | |||
4566 | /// because it has been moved away. | |||
4567 | /// Thus AddrInst must not be added in the matched instructions. | |||
4568 | /// This state can happen when AddrInst is a sext, since it may be moved away. | |||
4569 | /// Therefore, AddrInst may not be valid when MovedAway is true and it must | |||
4570 | /// not be referenced anymore. | |||
4571 | bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, | |||
4572 | unsigned Depth, | |||
4573 | bool *MovedAway) { | |||
4574 | // Avoid exponential behavior on extremely deep expression trees. | |||
4575 | if (Depth >= 5) | |||
4576 | return false; | |||
4577 | ||||
4578 | // By default, all matched instructions stay in place. | |||
4579 | if (MovedAway) | |||
4580 | *MovedAway = false; | |||
4581 | ||||
4582 | switch (Opcode) { | |||
4583 | case Instruction::PtrToInt: | |||
4584 | // PtrToInt is always a noop, as we know that the int type is pointer sized. | |||
4585 | return matchAddr(AddrInst->getOperand(0), Depth); | |||
4586 | case Instruction::IntToPtr: { | |||
4587 | auto AS = AddrInst->getType()->getPointerAddressSpace(); | |||
4588 | auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); | |||
4589 | // This inttoptr is a no-op if the integer type is pointer sized. | |||
4590 | if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) | |||
4591 | return matchAddr(AddrInst->getOperand(0), Depth); | |||
4592 | return false; | |||
4593 | } | |||
4594 | case Instruction::BitCast: | |||
4595 | // BitCast is always a noop, and we can handle it as long as it is | |||
4596 | // int->int or pointer->pointer (we don't want int<->fp or something). | |||
4597 | if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && | |||
4598 | // Don't touch identity bitcasts. These were probably put here by LSR, | |||
4599 | // and we don't want to mess around with them. Assume it knows what it | |||
4600 | // is doing. | |||
4601 | AddrInst->getOperand(0)->getType() != AddrInst->getType()) | |||
4602 | return matchAddr(AddrInst->getOperand(0), Depth); | |||
4603 | return false; | |||
4604 | case Instruction::AddrSpaceCast: { | |||
4605 | unsigned SrcAS = | |||
4606 | AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); | |||
4607 | unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); | |||
4608 | if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) | |||
4609 | return matchAddr(AddrInst->getOperand(0), Depth); | |||
4610 | return false; | |||
4611 | } | |||
4612 | case Instruction::Add: { | |||
4613 | // Check to see if we can merge in the RHS then the LHS. If so, we win. | |||
4614 | ExtAddrMode BackupAddrMode = AddrMode; | |||
4615 | unsigned OldSize = AddrModeInsts.size(); | |||
4616 | // Start a transaction at this point. | |||
4617 | // The LHS may match but not the RHS. | |||
4618 | // Therefore, we need a higher level restoration point to undo partially | |||
4619 | // matched operation. | |||
4620 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
4621 | TPT.getRestorationPoint(); | |||
4622 | ||||
4623 | AddrMode.InBounds = false; | |||
4624 | if (matchAddr(AddrInst->getOperand(1), Depth + 1) && | |||
4625 | matchAddr(AddrInst->getOperand(0), Depth + 1)) | |||
4626 | return true; | |||
4627 | ||||
4628 | // Restore the old addr mode info. | |||
4629 | AddrMode = BackupAddrMode; | |||
4630 | AddrModeInsts.resize(OldSize); | |||
4631 | TPT.rollback(LastKnownGood); | |||
4632 | ||||
4633 | // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. | |||
4634 | if (matchAddr(AddrInst->getOperand(0), Depth + 1) && | |||
4635 | matchAddr(AddrInst->getOperand(1), Depth + 1)) | |||
4636 | return true; | |||
4637 | ||||
4638 | // Otherwise we definitely can't merge the ADD in. | |||
4639 | AddrMode = BackupAddrMode; | |||
4640 | AddrModeInsts.resize(OldSize); | |||
4641 | TPT.rollback(LastKnownGood); | |||
4642 | break; | |||
4643 | } | |||
4644 | // case Instruction::Or: | |||
4645 | // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. | |||
4646 | // break; | |||
4647 | case Instruction::Mul: | |||
4648 | case Instruction::Shl: { | |||
4649 | // Can only handle X*C and X << C. | |||
4650 | AddrMode.InBounds = false; | |||
4651 | ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); | |||
4652 | if (!RHS || RHS->getBitWidth() > 64) | |||
4653 | return false; | |||
4654 | int64_t Scale = Opcode == Instruction::Shl | |||
4655 | ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) | |||
4656 | : RHS->getSExtValue(); | |||
4657 | ||||
4658 | return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); | |||
4659 | } | |||
4660 | case Instruction::GetElementPtr: { | |||
4661 | // Scan the GEP. We check it if it contains constant offsets and at most | |||
4662 | // one variable offset. | |||
4663 | int VariableOperand = -1; | |||
4664 | unsigned VariableScale = 0; | |||
4665 | ||||
4666 | int64_t ConstantOffset = 0; | |||
4667 | gep_type_iterator GTI = gep_type_begin(AddrInst); | |||
4668 | for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { | |||
4669 | if (StructType *STy = GTI.getStructTypeOrNull()) { | |||
4670 | const StructLayout *SL = DL.getStructLayout(STy); | |||
4671 | unsigned Idx = | |||
4672 | cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); | |||
4673 | ConstantOffset += SL->getElementOffset(Idx); | |||
4674 | } else { | |||
4675 | TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); | |||
4676 | if (TS.isNonZero()) { | |||
4677 | // The optimisations below currently only work for fixed offsets. | |||
4678 | if (TS.isScalable()) | |||
4679 | return false; | |||
4680 | int64_t TypeSize = TS.getFixedValue(); | |||
4681 | if (ConstantInt *CI = | |||
4682 | dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { | |||
4683 | const APInt &CVal = CI->getValue(); | |||
4684 | if (CVal.getSignificantBits() <= 64) { | |||
4685 | ConstantOffset += CVal.getSExtValue() * TypeSize; | |||
4686 | continue; | |||
4687 | } | |||
4688 | } | |||
4689 | // We only allow one variable index at the moment. | |||
4690 | if (VariableOperand != -1) | |||
4691 | return false; | |||
4692 | ||||
4693 | // Remember the variable index. | |||
4694 | VariableOperand = i; | |||
4695 | VariableScale = TypeSize; | |||
4696 | } | |||
4697 | } | |||
4698 | } | |||
4699 | ||||
4700 | // A common case is for the GEP to only do a constant offset. In this case, | |||
4701 | // just add it to the disp field and check validity. | |||
4702 | if (VariableOperand == -1) { | |||
4703 | AddrMode.BaseOffs += ConstantOffset; | |||
4704 | if (ConstantOffset == 0 || | |||
4705 | TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { | |||
4706 | // Check to see if we can fold the base pointer in too. | |||
4707 | if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { | |||
4708 | if (!cast<GEPOperator>(AddrInst)->isInBounds()) | |||
4709 | AddrMode.InBounds = false; | |||
4710 | return true; | |||
4711 | } | |||
4712 | } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && | |||
4713 | TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && | |||
4714 | ConstantOffset > 0) { | |||
4715 | // Record GEPs with non-zero offsets as candidates for splitting in the | |||
4716 | // event that the offset cannot fit into the r+i addressing mode. | |||
4717 | // Simple and common case that only one GEP is used in calculating the | |||
4718 | // address for the memory access. | |||
4719 | Value *Base = AddrInst->getOperand(0); | |||
4720 | auto *BaseI = dyn_cast<Instruction>(Base); | |||
4721 | auto *GEP = cast<GetElementPtrInst>(AddrInst); | |||
4722 | if (isa<Argument>(Base) || isa<GlobalValue>(Base) || | |||
4723 | (BaseI && !isa<CastInst>(BaseI) && | |||
4724 | !isa<GetElementPtrInst>(BaseI))) { | |||
4725 | // Make sure the parent block allows inserting non-PHI instructions | |||
4726 | // before the terminator. | |||
4727 | BasicBlock *Parent = | |||
4728 | BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); | |||
4729 | if (!Parent->getTerminator()->isEHPad()) | |||
4730 | LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); | |||
4731 | } | |||
4732 | } | |||
4733 | AddrMode.BaseOffs -= ConstantOffset; | |||
4734 | return false; | |||
4735 | } | |||
4736 | ||||
4737 | // Save the valid addressing mode in case we can't match. | |||
4738 | ExtAddrMode BackupAddrMode = AddrMode; | |||
4739 | unsigned OldSize = AddrModeInsts.size(); | |||
4740 | ||||
4741 | // See if the scale and offset amount is valid for this target. | |||
4742 | AddrMode.BaseOffs += ConstantOffset; | |||
4743 | if (!cast<GEPOperator>(AddrInst)->isInBounds()) | |||
4744 | AddrMode.InBounds = false; | |||
4745 | ||||
4746 | // Match the base operand of the GEP. | |||
4747 | if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { | |||
4748 | // If it couldn't be matched, just stuff the value in a register. | |||
4749 | if (AddrMode.HasBaseReg) { | |||
4750 | AddrMode = BackupAddrMode; | |||
4751 | AddrModeInsts.resize(OldSize); | |||
4752 | return false; | |||
4753 | } | |||
4754 | AddrMode.HasBaseReg = true; | |||
4755 | AddrMode.BaseReg = AddrInst->getOperand(0); | |||
4756 | } | |||
4757 | ||||
4758 | // Match the remaining variable portion of the GEP. | |||
4759 | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, | |||
4760 | Depth)) { | |||
4761 | // If it couldn't be matched, try stuffing the base into a register | |||
4762 | // instead of matching it, and retrying the match of the scale. | |||
4763 | AddrMode = BackupAddrMode; | |||
4764 | AddrModeInsts.resize(OldSize); | |||
4765 | if (AddrMode.HasBaseReg) | |||
4766 | return false; | |||
4767 | AddrMode.HasBaseReg = true; | |||
4768 | AddrMode.BaseReg = AddrInst->getOperand(0); | |||
4769 | AddrMode.BaseOffs += ConstantOffset; | |||
4770 | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), | |||
4771 | VariableScale, Depth)) { | |||
4772 | // If even that didn't work, bail. | |||
4773 | AddrMode = BackupAddrMode; | |||
4774 | AddrModeInsts.resize(OldSize); | |||
4775 | return false; | |||
4776 | } | |||
4777 | } | |||
4778 | ||||
4779 | return true; | |||
4780 | } | |||
4781 | case Instruction::SExt: | |||
4782 | case Instruction::ZExt: { | |||
4783 | Instruction *Ext = dyn_cast<Instruction>(AddrInst); | |||
4784 | if (!Ext) | |||
4785 | return false; | |||
4786 | ||||
4787 | // Try to move this ext out of the way of the addressing mode. | |||
4788 | // Ask for a method for doing so. | |||
4789 | TypePromotionHelper::Action TPH = | |||
4790 | TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); | |||
4791 | if (!TPH) | |||
4792 | return false; | |||
4793 | ||||
4794 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
4795 | TPT.getRestorationPoint(); | |||
4796 | unsigned CreatedInstsCost = 0; | |||
4797 | unsigned ExtCost = !TLI.isExtFree(Ext); | |||
4798 | Value *PromotedOperand = | |||
4799 | TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); | |||
4800 | // SExt has been moved away. | |||
4801 | // Thus either it will be rematched later in the recursive calls or it is | |||
4802 | // gone. Anyway, we must not fold it into the addressing mode at this point. | |||
4803 | // E.g., | |||
4804 | // op = add opnd, 1 | |||
4805 | // idx = ext op | |||
4806 | // addr = gep base, idx | |||
4807 | // is now: | |||
4808 | // promotedOpnd = ext opnd <- no match here | |||
4809 | // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) | |||
4810 | // addr = gep base, op <- match | |||
4811 | if (MovedAway) | |||
4812 | *MovedAway = true; | |||
4813 | ||||
4814 | assert(PromotedOperand &&(static_cast <bool> (PromotedOperand && "TypePromotionHelper should have filtered out those cases" ) ? void (0) : __assert_fail ("PromotedOperand && \"TypePromotionHelper should have filtered out those cases\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4815, __extension__ __PRETTY_FUNCTION__ )) | |||
4815 | "TypePromotionHelper should have filtered out those cases")(static_cast <bool> (PromotedOperand && "TypePromotionHelper should have filtered out those cases" ) ? void (0) : __assert_fail ("PromotedOperand && \"TypePromotionHelper should have filtered out those cases\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4815, __extension__ __PRETTY_FUNCTION__ )); | |||
4816 | ||||
4817 | ExtAddrMode BackupAddrMode = AddrMode; | |||
4818 | unsigned OldSize = AddrModeInsts.size(); | |||
4819 | ||||
4820 | if (!matchAddr(PromotedOperand, Depth) || | |||
4821 | // The total of the new cost is equal to the cost of the created | |||
4822 | // instructions. | |||
4823 | // The total of the old cost is equal to the cost of the extension plus | |||
4824 | // what we have saved in the addressing mode. | |||
4825 | !isPromotionProfitable(CreatedInstsCost, | |||
4826 | ExtCost + (AddrModeInsts.size() - OldSize), | |||
4827 | PromotedOperand)) { | |||
4828 | AddrMode = BackupAddrMode; | |||
4829 | AddrModeInsts.resize(OldSize); | |||
4830 | LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Sign extension does not pay off: rollback\n" ; } } while (false); | |||
4831 | TPT.rollback(LastKnownGood); | |||
4832 | return false; | |||
4833 | } | |||
4834 | return true; | |||
4835 | } | |||
4836 | } | |||
4837 | return false; | |||
4838 | } | |||
4839 | ||||
4840 | /// If we can, try to add the value of 'Addr' into the current addressing mode. | |||
4841 | /// If Addr can't be added to AddrMode this returns false and leaves AddrMode | |||
4842 | /// unmodified. This assumes that Addr is either a pointer type or intptr_t | |||
4843 | /// for the target. | |||
4844 | /// | |||
4845 | bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { | |||
4846 | // Start a transaction at this point that we will rollback if the matching | |||
4847 | // fails. | |||
4848 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
4849 | TPT.getRestorationPoint(); | |||
4850 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { | |||
4851 | if (CI->getValue().isSignedIntN(64)) { | |||
4852 | // Fold in immediates if legal for the target. | |||
4853 | AddrMode.BaseOffs += CI->getSExtValue(); | |||
4854 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | |||
4855 | return true; | |||
4856 | AddrMode.BaseOffs -= CI->getSExtValue(); | |||
4857 | } | |||
4858 | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { | |||
4859 | // If this is a global variable, try to fold it into the addressing mode. | |||
4860 | if (!AddrMode.BaseGV) { | |||
4861 | AddrMode.BaseGV = GV; | |||
4862 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | |||
4863 | return true; | |||
4864 | AddrMode.BaseGV = nullptr; | |||
4865 | } | |||
4866 | } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { | |||
4867 | ExtAddrMode BackupAddrMode = AddrMode; | |||
4868 | unsigned OldSize = AddrModeInsts.size(); | |||
4869 | ||||
4870 | // Check to see if it is possible to fold this operation. | |||
4871 | bool MovedAway = false; | |||
4872 | if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { | |||
4873 | // This instruction may have been moved away. If so, there is nothing | |||
4874 | // to check here. | |||
4875 | if (MovedAway) | |||
4876 | return true; | |||
4877 | // Okay, it's possible to fold this. Check to see if it is actually | |||
4878 | // *profitable* to do so. We use a simple cost model to avoid increasing | |||
4879 | // register pressure too much. | |||
4880 | if (I->hasOneUse() || | |||
4881 | isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { | |||
4882 | AddrModeInsts.push_back(I); | |||
4883 | return true; | |||
4884 | } | |||
4885 | ||||
4886 | // It isn't profitable to do this, roll back. | |||
4887 | AddrMode = BackupAddrMode; | |||
4888 | AddrModeInsts.resize(OldSize); | |||
4889 | TPT.rollback(LastKnownGood); | |||
4890 | } | |||
4891 | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { | |||
4892 | if (matchOperationAddr(CE, CE->getOpcode(), Depth)) | |||
4893 | return true; | |||
4894 | TPT.rollback(LastKnownGood); | |||
4895 | } else if (isa<ConstantPointerNull>(Addr)) { | |||
4896 | // Null pointer gets folded without affecting the addressing mode. | |||
4897 | return true; | |||
4898 | } | |||
4899 | ||||
4900 | // Worse case, the target should support [reg] addressing modes. :) | |||
4901 | if (!AddrMode.HasBaseReg) { | |||
4902 | AddrMode.HasBaseReg = true; | |||
4903 | AddrMode.BaseReg = Addr; | |||
4904 | // Still check for legality in case the target supports [imm] but not [i+r]. | |||
4905 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | |||
4906 | return true; | |||
4907 | AddrMode.HasBaseReg = false; | |||
4908 | AddrMode.BaseReg = nullptr; | |||
4909 | } | |||
4910 | ||||
4911 | // If the base register is already taken, see if we can do [r+r]. | |||
4912 | if (AddrMode.Scale == 0) { | |||
4913 | AddrMode.Scale = 1; | |||
4914 | AddrMode.ScaledReg = Addr; | |||
4915 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | |||
4916 | return true; | |||
4917 | AddrMode.Scale = 0; | |||
4918 | AddrMode.ScaledReg = nullptr; | |||
4919 | } | |||
4920 | // Couldn't match. | |||
4921 | TPT.rollback(LastKnownGood); | |||
4922 | return false; | |||
4923 | } | |||
4924 | ||||
4925 | /// Check to see if all uses of OpVal by the specified inline asm call are due | |||
4926 | /// to memory operands. If so, return true, otherwise return false. | |||
4927 | static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, | |||
4928 | const TargetLowering &TLI, | |||
4929 | const TargetRegisterInfo &TRI) { | |||
4930 | const Function *F = CI->getFunction(); | |||
4931 | TargetLowering::AsmOperandInfoVector TargetConstraints = | |||
4932 | TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); | |||
4933 | ||||
4934 | for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { | |||
4935 | // Compute the constraint code and ConstraintType to use. | |||
4936 | TLI.ComputeConstraintToUse(OpInfo, SDValue()); | |||
4937 | ||||
4938 | // If this asm operand is our Value*, and if it isn't an indirect memory | |||
4939 | // operand, we can't fold it! TODO: Also handle C_Address? | |||
4940 | if (OpInfo.CallOperandVal == OpVal && | |||
4941 | (OpInfo.ConstraintType != TargetLowering::C_Memory || | |||
4942 | !OpInfo.isIndirect)) | |||
4943 | return false; | |||
4944 | } | |||
4945 | ||||
4946 | return true; | |||
4947 | } | |||
4948 | ||||
4949 | // Max number of memory uses to look at before aborting the search to conserve | |||
4950 | // compile time. | |||
4951 | static constexpr int MaxMemoryUsesToScan = 20; | |||
4952 | ||||
4953 | /// Recursively walk all the uses of I until we find a memory use. | |||
4954 | /// If we find an obviously non-foldable instruction, return true. | |||
4955 | /// Add accessed addresses and types to MemoryUses. | |||
4956 | static bool FindAllMemoryUses( | |||
4957 | Instruction *I, SmallVectorImpl<std::pair<Value *, Type *>> &MemoryUses, | |||
4958 | SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, | |||
4959 | const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, | |||
4960 | BlockFrequencyInfo *BFI, int SeenInsts = 0) { | |||
4961 | // If we already considered this instruction, we're done. | |||
4962 | if (!ConsideredInsts.insert(I).second) | |||
4963 | return false; | |||
4964 | ||||
4965 | // If this is an obviously unfoldable instruction, bail out. | |||
4966 | if (!MightBeFoldableInst(I)) | |||
4967 | return true; | |||
4968 | ||||
4969 | // Loop over all the uses, recursively processing them. | |||
4970 | for (Use &U : I->uses()) { | |||
4971 | // Conservatively return true if we're seeing a large number or a deep chain | |||
4972 | // of users. This avoids excessive compilation times in pathological cases. | |||
4973 | if (SeenInsts++ >= MaxMemoryUsesToScan) | |||
4974 | return true; | |||
4975 | ||||
4976 | Instruction *UserI = cast<Instruction>(U.getUser()); | |||
4977 | if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { | |||
4978 | MemoryUses.push_back({U.get(), LI->getType()}); | |||
4979 | continue; | |||
4980 | } | |||
4981 | ||||
4982 | if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { | |||
4983 | if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) | |||
4984 | return true; // Storing addr, not into addr. | |||
4985 | MemoryUses.push_back({U.get(), SI->getValueOperand()->getType()}); | |||
4986 | continue; | |||
4987 | } | |||
4988 | ||||
4989 | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { | |||
4990 | if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) | |||
4991 | return true; // Storing addr, not into addr. | |||
4992 | MemoryUses.push_back({U.get(), RMW->getValOperand()->getType()}); | |||
4993 | continue; | |||
4994 | } | |||
4995 | ||||
4996 | if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { | |||
4997 | if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) | |||
4998 | return true; // Storing addr, not into addr. | |||
4999 | MemoryUses.push_back({U.get(), CmpX->getCompareOperand()->getType()}); | |||
5000 | continue; | |||
5001 | } | |||
5002 | ||||
5003 | if (CallInst *CI = dyn_cast<CallInst>(UserI)) { | |||
5004 | if (CI->hasFnAttr(Attribute::Cold)) { | |||
5005 | // If this is a cold call, we can sink the addressing calculation into | |||
5006 | // the cold path. See optimizeCallInst | |||
5007 | bool OptForSize = | |||
5008 | OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); | |||
5009 | if (!OptForSize) | |||
5010 | continue; | |||
5011 | } | |||
5012 | ||||
5013 | InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); | |||
5014 | if (!IA) | |||
5015 | return true; | |||
5016 | ||||
5017 | // If this is a memory operand, we're cool, otherwise bail out. | |||
5018 | if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) | |||
5019 | return true; | |||
5020 | continue; | |||
5021 | } | |||
5022 | ||||
5023 | if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, | |||
5024 | PSI, BFI, SeenInsts)) | |||
5025 | return true; | |||
5026 | } | |||
5027 | ||||
5028 | return false; | |||
5029 | } | |||
5030 | ||||
5031 | /// Return true if Val is already known to be live at the use site that we're | |||
5032 | /// folding it into. If so, there is no cost to include it in the addressing | |||
5033 | /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the | |||
5034 | /// instruction already. | |||
5035 | bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, | |||
5036 | Value *KnownLive1, | |||
5037 | Value *KnownLive2) { | |||
5038 | // If Val is either of the known-live values, we know it is live! | |||
5039 | if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) | |||
5040 | return true; | |||
5041 | ||||
5042 | // All values other than instructions and arguments (e.g. constants) are live. | |||
5043 | if (!isa<Instruction>(Val) && !isa<Argument>(Val)) | |||
5044 | return true; | |||
5045 | ||||
5046 | // If Val is a constant sized alloca in the entry block, it is live, this is | |||
5047 | // true because it is just a reference to the stack/frame pointer, which is | |||
5048 | // live for the whole function. | |||
5049 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) | |||
5050 | if (AI->isStaticAlloca()) | |||
5051 | return true; | |||
5052 | ||||
5053 | // Check to see if this value is already used in the memory instruction's | |||
5054 | // block. If so, it's already live into the block at the very least, so we | |||
5055 | // can reasonably fold it. | |||
5056 | return Val->isUsedInBasicBlock(MemoryInst->getParent()); | |||
5057 | } | |||
5058 | ||||
5059 | /// It is possible for the addressing mode of the machine to fold the specified | |||
5060 | /// instruction into a load or store that ultimately uses it. | |||
5061 | /// However, the specified instruction has multiple uses. | |||
5062 | /// Given this, it may actually increase register pressure to fold it | |||
5063 | /// into the load. For example, consider this code: | |||
5064 | /// | |||
5065 | /// X = ... | |||
5066 | /// Y = X+1 | |||
5067 | /// use(Y) -> nonload/store | |||
5068 | /// Z = Y+1 | |||
5069 | /// load Z | |||
5070 | /// | |||
5071 | /// In this case, Y has multiple uses, and can be folded into the load of Z | |||
5072 | /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to | |||
5073 | /// be live at the use(Y) line. If we don't fold Y into load Z, we use one | |||
5074 | /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the | |||
5075 | /// number of computations either. | |||
5076 | /// | |||
5077 | /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If | |||
5078 | /// X was live across 'load Z' for other reasons, we actually *would* want to | |||
5079 | /// fold the addressing mode in the Z case. This would make Y die earlier. | |||
5080 | bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( | |||
5081 | Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { | |||
5082 | if (IgnoreProfitability) | |||
5083 | return true; | |||
5084 | ||||
5085 | // AMBefore is the addressing mode before this instruction was folded into it, | |||
5086 | // and AMAfter is the addressing mode after the instruction was folded. Get | |||
5087 | // the set of registers referenced by AMAfter and subtract out those | |||
5088 | // referenced by AMBefore: this is the set of values which folding in this | |||
5089 | // address extends the lifetime of. | |||
5090 | // | |||
5091 | // Note that there are only two potential values being referenced here, | |||
5092 | // BaseReg and ScaleReg (global addresses are always available, as are any | |||
5093 | // folded immediates). | |||
5094 | Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; | |||
5095 | ||||
5096 | // If the BaseReg or ScaledReg was referenced by the previous addrmode, their | |||
5097 | // lifetime wasn't extended by adding this instruction. | |||
5098 | if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | |||
5099 | BaseReg = nullptr; | |||
5100 | if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | |||
5101 | ScaledReg = nullptr; | |||
5102 | ||||
5103 | // If folding this instruction (and it's subexprs) didn't extend any live | |||
5104 | // ranges, we're ok with it. | |||
5105 | if (!BaseReg && !ScaledReg) | |||
5106 | return true; | |||
5107 | ||||
5108 | // If all uses of this instruction can have the address mode sunk into them, | |||
5109 | // we can remove the addressing mode and effectively trade one live register | |||
5110 | // for another (at worst.) In this context, folding an addressing mode into | |||
5111 | // the use is just a particularly nice way of sinking it. | |||
5112 | SmallVector<std::pair<Value *, Type *>, 16> MemoryUses; | |||
5113 | SmallPtrSet<Instruction *, 16> ConsideredInsts; | |||
5114 | if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, PSI, | |||
5115 | BFI)) | |||
5116 | return false; // Has a non-memory, non-foldable use! | |||
5117 | ||||
5118 | // Now that we know that all uses of this instruction are part of a chain of | |||
5119 | // computation involving only operations that could theoretically be folded | |||
5120 | // into a memory use, loop over each of these memory operation uses and see | |||
5121 | // if they could *actually* fold the instruction. The assumption is that | |||
5122 | // addressing modes are cheap and that duplicating the computation involved | |||
5123 | // many times is worthwhile, even on a fastpath. For sinking candidates | |||
5124 | // (i.e. cold call sites), this serves as a way to prevent excessive code | |||
5125 | // growth since most architectures have some reasonable small and fast way to | |||
5126 | // compute an effective address. (i.e LEA on x86) | |||
5127 | SmallVector<Instruction *, 32> MatchedAddrModeInsts; | |||
5128 | for (const std::pair<Value *, Type *> &Pair : MemoryUses) { | |||
5129 | Value *Address = Pair.first; | |||
5130 | Type *AddressAccessTy = Pair.second; | |||
5131 | unsigned AS = Address->getType()->getPointerAddressSpace(); | |||
5132 | ||||
5133 | // Do a match against the root of this address, ignoring profitability. This | |||
5134 | // will tell us if the addressing mode for the memory operation will | |||
5135 | // *actually* cover the shared instruction. | |||
5136 | ExtAddrMode Result; | |||
5137 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, | |||
5138 | 0); | |||
5139 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
5140 | TPT.getRestorationPoint(); | |||
5141 | AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, | |||
5142 | AddressAccessTy, AS, MemoryInst, Result, | |||
5143 | InsertedInsts, PromotedInsts, TPT, | |||
5144 | LargeOffsetGEP, OptSize, PSI, BFI); | |||
5145 | Matcher.IgnoreProfitability = true; | |||
5146 | bool Success = Matcher.matchAddr(Address, 0); | |||
5147 | (void)Success; | |||
5148 | assert(Success && "Couldn't select *anything*?")(static_cast <bool> (Success && "Couldn't select *anything*?" ) ? void (0) : __assert_fail ("Success && \"Couldn't select *anything*?\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5148, __extension__ __PRETTY_FUNCTION__ )); | |||
5149 | ||||
5150 | // The match was to check the profitability, the changes made are not | |||
5151 | // part of the original matcher. Therefore, they should be dropped | |||
5152 | // otherwise the original matcher will not present the right state. | |||
5153 | TPT.rollback(LastKnownGood); | |||
5154 | ||||
5155 | // If the match didn't cover I, then it won't be shared by it. | |||
5156 | if (!is_contained(MatchedAddrModeInsts, I)) | |||
5157 | return false; | |||
5158 | ||||
5159 | MatchedAddrModeInsts.clear(); | |||
5160 | } | |||
5161 | ||||
5162 | return true; | |||
5163 | } | |||
5164 | ||||
5165 | /// Return true if the specified values are defined in a | |||
5166 | /// different basic block than BB. | |||
5167 | static bool IsNonLocalValue(Value *V, BasicBlock *BB) { | |||
5168 | if (Instruction *I = dyn_cast<Instruction>(V)) | |||
5169 | return I->getParent() != BB; | |||
5170 | return false; | |||
5171 | } | |||
5172 | ||||
5173 | /// Sink addressing mode computation immediate before MemoryInst if doing so | |||
5174 | /// can be done without increasing register pressure. The need for the | |||
5175 | /// register pressure constraint means this can end up being an all or nothing | |||
5176 | /// decision for all uses of the same addressing computation. | |||
5177 | /// | |||
5178 | /// Load and Store Instructions often have addressing modes that can do | |||
5179 | /// significant amounts of computation. As such, instruction selection will try | |||
5180 | /// to get the load or store to do as much computation as possible for the | |||
5181 | /// program. The problem is that isel can only see within a single block. As | |||
5182 | /// such, we sink as much legal addressing mode work into the block as possible. | |||
5183 | /// | |||
5184 | /// This method is used to optimize both load/store and inline asms with memory | |||
5185 | /// operands. It's also used to sink addressing computations feeding into cold | |||
5186 | /// call sites into their (cold) basic block. | |||
5187 | /// | |||
5188 | /// The motivation for handling sinking into cold blocks is that doing so can | |||
5189 | /// both enable other address mode sinking (by satisfying the register pressure | |||
5190 | /// constraint above), and reduce register pressure globally (by removing the | |||
5191 | /// addressing mode computation from the fast path entirely.). | |||
5192 | bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, | |||
5193 | Type *AccessTy, unsigned AddrSpace) { | |||
5194 | Value *Repl = Addr; | |||
5195 | ||||
5196 | // Try to collapse single-value PHI nodes. This is necessary to undo | |||
5197 | // unprofitable PRE transformations. | |||
5198 | SmallVector<Value *, 8> worklist; | |||
5199 | SmallPtrSet<Value *, 16> Visited; | |||
5200 | worklist.push_back(Addr); | |||
5201 | ||||
5202 | // Use a worklist to iteratively look through PHI and select nodes, and | |||
5203 | // ensure that the addressing mode obtained from the non-PHI/select roots of | |||
5204 | // the graph are compatible. | |||
5205 | bool PhiOrSelectSeen = false; | |||
5206 | SmallVector<Instruction *, 16> AddrModeInsts; | |||
5207 | const SimplifyQuery SQ(*DL, TLInfo); | |||
5208 | AddressingModeCombiner AddrModes(SQ, Addr); | |||
5209 | TypePromotionTransaction TPT(RemovedInsts); | |||
5210 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
5211 | TPT.getRestorationPoint(); | |||
5212 | while (!worklist.empty()) { | |||
5213 | Value *V = worklist.pop_back_val(); | |||
5214 | ||||
5215 | // We allow traversing cyclic Phi nodes. | |||
5216 | // In case of success after this loop we ensure that traversing through | |||
5217 | // Phi nodes ends up with all cases to compute address of the form | |||
5218 | // BaseGV + Base + Scale * Index + Offset | |||
5219 | // where Scale and Offset are constans and BaseGV, Base and Index | |||
5220 | // are exactly the same Values in all cases. | |||
5221 | // It means that BaseGV, Scale and Offset dominate our memory instruction | |||
5222 | // and have the same value as they had in address computation represented | |||
5223 | // as Phi. So we can safely sink address computation to memory instruction. | |||
5224 | if (!Visited.insert(V).second) | |||
5225 | continue; | |||
5226 | ||||
5227 | // For a PHI node, push all of its incoming values. | |||
5228 | if (PHINode *P = dyn_cast<PHINode>(V)) { | |||
5229 | append_range(worklist, P->incoming_values()); | |||
5230 | PhiOrSelectSeen = true; | |||
5231 | continue; | |||
5232 | } | |||
5233 | // Similar for select. | |||
5234 | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | |||
5235 | worklist.push_back(SI->getFalseValue()); | |||
5236 | worklist.push_back(SI->getTrueValue()); | |||
5237 | PhiOrSelectSeen = true; | |||
5238 | continue; | |||
5239 | } | |||
5240 | ||||
5241 | // For non-PHIs, determine the addressing mode being computed. Note that | |||
5242 | // the result may differ depending on what other uses our candidate | |||
5243 | // addressing instructions might have. | |||
5244 | AddrModeInsts.clear(); | |||
5245 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, | |||
5246 | 0); | |||
5247 | // Defer the query (and possible computation of) the dom tree to point of | |||
5248 | // actual use. It's expected that most address matches don't actually need | |||
5249 | // the domtree. | |||
5250 | auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { | |||
5251 | Function *F = MemoryInst->getParent()->getParent(); | |||
5252 | return this->getDT(*F); | |||
5253 | }; | |||
5254 | ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( | |||
5255 | V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, | |||
5256 | *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, | |||
5257 | BFI.get()); | |||
5258 | ||||
5259 | GetElementPtrInst *GEP = LargeOffsetGEP.first; | |||
5260 | if (GEP && !NewGEPBases.count(GEP)) { | |||
5261 | // If splitting the underlying data structure can reduce the offset of a | |||
5262 | // GEP, collect the GEP. Skip the GEPs that are the new bases of | |||
5263 | // previously split data structures. | |||
5264 | LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); | |||
5265 | LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); | |||
5266 | } | |||
5267 | ||||
5268 | NewAddrMode.OriginalValue = V; | |||
5269 | if (!AddrModes.addNewAddrMode(NewAddrMode)) | |||
5270 | break; | |||
5271 | } | |||
5272 | ||||
5273 | // Try to combine the AddrModes we've collected. If we couldn't collect any, | |||
5274 | // or we have multiple but either couldn't combine them or combining them | |||
5275 | // wouldn't do anything useful, bail out now. | |||
5276 | if (!AddrModes.combineAddrModes()) { | |||
5277 | TPT.rollback(LastKnownGood); | |||
5278 | return false; | |||
5279 | } | |||
5280 | bool Modified = TPT.commit(); | |||
5281 | ||||
5282 | // Get the combined AddrMode (or the only AddrMode, if we only had one). | |||
5283 | ExtAddrMode AddrMode = AddrModes.getAddrMode(); | |||
5284 | ||||
5285 | // If all the instructions matched are already in this BB, don't do anything. | |||
5286 | // If we saw a Phi node then it is not local definitely, and if we saw a | |||
5287 | // select then we want to push the address calculation past it even if it's | |||
5288 | // already in this BB. | |||
5289 | if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { | |||
5290 | return IsNonLocalValue(V, MemoryInst->getParent()); | |||
5291 | })) { | |||
5292 | LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"; } } while (false) | |||
5293 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"; } } while (false); | |||
5294 | return Modified; | |||
5295 | } | |||
5296 | ||||
5297 | // Insert this computation right after this user. Since our caller is | |||
5298 | // scanning from the top of the BB to the bottom, reuse of the expr are | |||
5299 | // guaranteed to happen later. | |||
5300 | IRBuilder<> Builder(MemoryInst); | |||
5301 | ||||
5302 | // Now that we determined the addressing expression we want to use and know | |||
5303 | // that we have to sink it into this block. Check to see if we have already | |||
5304 | // done this for some other load/store instr in this block. If so, reuse | |||
5305 | // the computation. Before attempting reuse, check if the address is valid | |||
5306 | // as it may have been erased. | |||
5307 | ||||
5308 | WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; | |||
5309 | ||||
5310 | Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; | |||
5311 | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | |||
5312 | if (SunkAddr) { | |||
5313 | LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | |||
5314 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | |||
5315 | if (SunkAddr->getType() != Addr->getType()) { | |||
5316 | if (SunkAddr->getType()->getPointerAddressSpace() != | |||
5317 | Addr->getType()->getPointerAddressSpace() && | |||
5318 | !DL->isNonIntegralPointerType(Addr->getType())) { | |||
5319 | // There are two reasons the address spaces might not match: a no-op | |||
5320 | // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a | |||
5321 | // ptrtoint/inttoptr pair to ensure we match the original semantics. | |||
5322 | // TODO: allow bitcast between different address space pointers with the | |||
5323 | // same size. | |||
5324 | SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); | |||
5325 | SunkAddr = | |||
5326 | Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); | |||
5327 | } else | |||
5328 | SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); | |||
5329 | } | |||
5330 | } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && | |||
5331 | SubtargetInfo->addrSinkUsingGEPs())) { | |||
5332 | // By default, we use the GEP-based method when AA is used later. This | |||
5333 | // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. | |||
5334 | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | |||
5335 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | |||
5336 | Value *ResultPtr = nullptr, *ResultIndex = nullptr; | |||
5337 | ||||
5338 | // First, find the pointer. | |||
5339 | if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { | |||
5340 | ResultPtr = AddrMode.BaseReg; | |||
5341 | AddrMode.BaseReg = nullptr; | |||
5342 | } | |||
5343 | ||||
5344 | if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { | |||
5345 | // We can't add more than one pointer together, nor can we scale a | |||
5346 | // pointer (both of which seem meaningless). | |||
5347 | if (ResultPtr || AddrMode.Scale != 1) | |||
5348 | return Modified; | |||
5349 | ||||
5350 | ResultPtr = AddrMode.ScaledReg; | |||
5351 | AddrMode.Scale = 0; | |||
5352 | } | |||
5353 | ||||
5354 | // It is only safe to sign extend the BaseReg if we know that the math | |||
5355 | // required to create it did not overflow before we extend it. Since | |||
5356 | // the original IR value was tossed in favor of a constant back when | |||
5357 | // the AddrMode was created we need to bail out gracefully if widths | |||
5358 | // do not match instead of extending it. | |||
5359 | // | |||
5360 | // (See below for code to add the scale.) | |||
5361 | if (AddrMode.Scale) { | |||
5362 | Type *ScaledRegTy = AddrMode.ScaledReg->getType(); | |||
5363 | if (cast<IntegerType>(IntPtrTy)->getBitWidth() > | |||
5364 | cast<IntegerType>(ScaledRegTy)->getBitWidth()) | |||
5365 | return Modified; | |||
5366 | } | |||
5367 | ||||
5368 | if (AddrMode.BaseGV) { | |||
5369 | if (ResultPtr) | |||
5370 | return Modified; | |||
5371 | ||||
5372 | ResultPtr = AddrMode.BaseGV; | |||
5373 | } | |||
5374 | ||||
5375 | // If the real base value actually came from an inttoptr, then the matcher | |||
5376 | // will look through it and provide only the integer value. In that case, | |||
5377 | // use it here. | |||
5378 | if (!DL->isNonIntegralPointerType(Addr->getType())) { | |||
5379 | if (!ResultPtr && AddrMode.BaseReg) { | |||
5380 | ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), | |||
5381 | "sunkaddr"); | |||
5382 | AddrMode.BaseReg = nullptr; | |||
5383 | } else if (!ResultPtr && AddrMode.Scale == 1) { | |||
5384 | ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), | |||
5385 | "sunkaddr"); | |||
5386 | AddrMode.Scale = 0; | |||
5387 | } | |||
5388 | } | |||
5389 | ||||
5390 | if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && | |||
5391 | !AddrMode.BaseOffs) { | |||
5392 | SunkAddr = Constant::getNullValue(Addr->getType()); | |||
5393 | } else if (!ResultPtr) { | |||
5394 | return Modified; | |||
5395 | } else { | |||
5396 | Type *I8PtrTy = | |||
5397 | Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); | |||
5398 | Type *I8Ty = Builder.getInt8Ty(); | |||
5399 | ||||
5400 | // Start with the base register. Do this first so that subsequent address | |||
5401 | // matching finds it last, which will prevent it from trying to match it | |||
5402 | // as the scaled value in case it happens to be a mul. That would be | |||
5403 | // problematic if we've sunk a different mul for the scale, because then | |||
5404 | // we'd end up sinking both muls. | |||
5405 | if (AddrMode.BaseReg) { | |||
5406 | Value *V = AddrMode.BaseReg; | |||
5407 | if (V->getType() != IntPtrTy) | |||
5408 | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | |||
5409 | ||||
5410 | ResultIndex = V; | |||
5411 | } | |||
5412 | ||||
5413 | // Add the scale value. | |||
5414 | if (AddrMode.Scale) { | |||
5415 | Value *V = AddrMode.ScaledReg; | |||
5416 | if (V->getType() == IntPtrTy) { | |||
5417 | // done. | |||
5418 | } else { | |||
5419 | assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5421, __extension__ __PRETTY_FUNCTION__ )) | |||
5420 | cast<IntegerType>(V->getType())->getBitWidth() &&(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5421, __extension__ __PRETTY_FUNCTION__ )) | |||
5421 | "We can't transform if ScaledReg is too narrow")(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5421, __extension__ __PRETTY_FUNCTION__ )); | |||
5422 | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | |||
5423 | } | |||
5424 | ||||
5425 | if (AddrMode.Scale != 1) | |||
5426 | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | |||
5427 | "sunkaddr"); | |||
5428 | if (ResultIndex) | |||
5429 | ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); | |||
5430 | else | |||
5431 | ResultIndex = V; | |||
5432 | } | |||
5433 | ||||
5434 | // Add in the Base Offset if present. | |||
5435 | if (AddrMode.BaseOffs) { | |||
5436 | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | |||
5437 | if (ResultIndex) { | |||
5438 | // We need to add this separately from the scale above to help with | |||
5439 | // SDAG consecutive load/store merging. | |||
5440 | if (ResultPtr->getType() != I8PtrTy) | |||
5441 | ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); | |||
5442 | ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, | |||
5443 | "sunkaddr", AddrMode.InBounds); | |||
5444 | } | |||
5445 | ||||
5446 | ResultIndex = V; | |||
5447 | } | |||
5448 | ||||
5449 | if (!ResultIndex) { | |||
5450 | SunkAddr = ResultPtr; | |||
5451 | } else { | |||
5452 | if (ResultPtr->getType() != I8PtrTy) | |||
5453 | ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); | |||
5454 | SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", | |||
5455 | AddrMode.InBounds); | |||
5456 | } | |||
5457 | ||||
5458 | if (SunkAddr->getType() != Addr->getType()) { | |||
5459 | if (SunkAddr->getType()->getPointerAddressSpace() != | |||
5460 | Addr->getType()->getPointerAddressSpace() && | |||
5461 | !DL->isNonIntegralPointerType(Addr->getType())) { | |||
5462 | // There are two reasons the address spaces might not match: a no-op | |||
5463 | // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a | |||
5464 | // ptrtoint/inttoptr pair to ensure we match the original semantics. | |||
5465 | // TODO: allow bitcast between different address space pointers with | |||
5466 | // the same size. | |||
5467 | SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); | |||
5468 | SunkAddr = | |||
5469 | Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); | |||
5470 | } else | |||
5471 | SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); | |||
5472 | } | |||
5473 | } | |||
5474 | } else { | |||
5475 | // We'd require a ptrtoint/inttoptr down the line, which we can't do for | |||
5476 | // non-integral pointers, so in that case bail out now. | |||
5477 | Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; | |||
5478 | Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; | |||
5479 | PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); | |||
5480 | PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); | |||
5481 | if (DL->isNonIntegralPointerType(Addr->getType()) || | |||
5482 | (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || | |||
5483 | (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || | |||
5484 | (AddrMode.BaseGV && | |||
5485 | DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) | |||
5486 | return Modified; | |||
5487 | ||||
5488 | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | |||
5489 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | |||
5490 | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | |||
5491 | Value *Result = nullptr; | |||
5492 | ||||
5493 | // Start with the base register. Do this first so that subsequent address | |||
5494 | // matching finds it last, which will prevent it from trying to match it | |||
5495 | // as the scaled value in case it happens to be a mul. That would be | |||
5496 | // problematic if we've sunk a different mul for the scale, because then | |||
5497 | // we'd end up sinking both muls. | |||
5498 | if (AddrMode.BaseReg) { | |||
5499 | Value *V = AddrMode.BaseReg; | |||
5500 | if (V->getType()->isPointerTy()) | |||
5501 | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | |||
5502 | if (V->getType() != IntPtrTy) | |||
5503 | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | |||
5504 | Result = V; | |||
5505 | } | |||
5506 | ||||
5507 | // Add the scale value. | |||
5508 | if (AddrMode.Scale) { | |||
5509 | Value *V = AddrMode.ScaledReg; | |||
5510 | if (V->getType() == IntPtrTy) { | |||
5511 | // done. | |||
5512 | } else if (V->getType()->isPointerTy()) { | |||
5513 | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | |||
5514 | } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < | |||
5515 | cast<IntegerType>(V->getType())->getBitWidth()) { | |||
5516 | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | |||
5517 | } else { | |||
5518 | // It is only safe to sign extend the BaseReg if we know that the math | |||
5519 | // required to create it did not overflow before we extend it. Since | |||
5520 | // the original IR value was tossed in favor of a constant back when | |||
5521 | // the AddrMode was created we need to bail out gracefully if widths | |||
5522 | // do not match instead of extending it. | |||
5523 | Instruction *I = dyn_cast_or_null<Instruction>(Result); | |||
5524 | if (I && (Result != AddrMode.BaseReg)) | |||
5525 | I->eraseFromParent(); | |||
5526 | return Modified; | |||
5527 | } | |||
5528 | if (AddrMode.Scale != 1) | |||
5529 | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | |||
5530 | "sunkaddr"); | |||
5531 | if (Result) | |||
5532 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | |||
5533 | else | |||
5534 | Result = V; | |||
5535 | } | |||
5536 | ||||
5537 | // Add in the BaseGV if present. | |||
5538 | if (AddrMode.BaseGV) { | |||
5539 | Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); | |||
5540 | if (Result) | |||
5541 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | |||
5542 | else | |||
5543 | Result = V; | |||
5544 | } | |||
5545 | ||||
5546 | // Add in the Base Offset if present. | |||
5547 | if (AddrMode.BaseOffs) { | |||
5548 | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | |||
5549 | if (Result) | |||
5550 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | |||
5551 | else | |||
5552 | Result = V; | |||
5553 | } | |||
5554 | ||||
5555 | if (!Result) | |||
5556 | SunkAddr = Constant::getNullValue(Addr->getType()); | |||
5557 | else | |||
5558 | SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); | |||
5559 | } | |||
5560 | ||||
5561 | MemoryInst->replaceUsesOfWith(Repl, SunkAddr); | |||
5562 | // Store the newly computed address into the cache. In the case we reused a | |||
5563 | // value, this should be idempotent. | |||
5564 | SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); | |||
5565 | ||||
5566 | // If we have no uses, recursively delete the value and all dead instructions | |||
5567 | // using it. | |||
5568 | if (Repl->use_empty()) { | |||
5569 | resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { | |||
5570 | RecursivelyDeleteTriviallyDeadInstructions( | |||
5571 | Repl, TLInfo, nullptr, | |||
5572 | [&](Value *V) { removeAllAssertingVHReferences(V); }); | |||
5573 | }); | |||
5574 | } | |||
5575 | ++NumMemoryInsts; | |||
5576 | return true; | |||
5577 | } | |||
5578 | ||||
5579 | /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find | |||
5580 | /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can | |||
5581 | /// only handle a 2 operand GEP in the same basic block or a splat constant | |||
5582 | /// vector. The 2 operands to the GEP must have a scalar pointer and a vector | |||
5583 | /// index. | |||
5584 | /// | |||
5585 | /// If the existing GEP has a vector base pointer that is splat, we can look | |||
5586 | /// through the splat to find the scalar pointer. If we can't find a scalar | |||
5587 | /// pointer there's nothing we can do. | |||
5588 | /// | |||
5589 | /// If we have a GEP with more than 2 indices where the middle indices are all | |||
5590 | /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. | |||
5591 | /// | |||
5592 | /// If the final index isn't a vector or is a splat, we can emit a scalar GEP | |||
5593 | /// followed by a GEP with an all zeroes vector index. This will enable | |||
5594 | /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a | |||
5595 | /// zero index. | |||
5596 | bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, | |||
5597 | Value *Ptr) { | |||
5598 | Value *NewAddr; | |||
5599 | ||||
5600 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { | |||
5601 | // Don't optimize GEPs that don't have indices. | |||
5602 | if (!GEP->hasIndices()) | |||
5603 | return false; | |||
5604 | ||||
5605 | // If the GEP and the gather/scatter aren't in the same BB, don't optimize. | |||
5606 | // FIXME: We should support this by sinking the GEP. | |||
5607 | if (MemoryInst->getParent() != GEP->getParent()) | |||
5608 | return false; | |||
5609 | ||||
5610 | SmallVector<Value *, 2> Ops(GEP->operands()); | |||
5611 | ||||
5612 | bool RewriteGEP = false; | |||
5613 | ||||
5614 | if (Ops[0]->getType()->isVectorTy()) { | |||
5615 | Ops[0] = getSplatValue(Ops[0]); | |||
5616 | if (!Ops[0]) | |||
5617 | return false; | |||
5618 | RewriteGEP = true; | |||
5619 | } | |||
5620 | ||||
5621 | unsigned FinalIndex = Ops.size() - 1; | |||
5622 | ||||
5623 | // Ensure all but the last index is 0. | |||
5624 | // FIXME: This isn't strictly required. All that's required is that they are | |||
5625 | // all scalars or splats. | |||
5626 | for (unsigned i = 1; i < FinalIndex; ++i) { | |||
5627 | auto *C = dyn_cast<Constant>(Ops[i]); | |||
5628 | if (!C) | |||
5629 | return false; | |||
5630 | if (isa<VectorType>(C->getType())) | |||
5631 | C = C->getSplatValue(); | |||
5632 | auto *CI = dyn_cast_or_null<ConstantInt>(C); | |||
5633 | if (!CI || !CI->isZero()) | |||
5634 | return false; | |||
5635 | // Scalarize the index if needed. | |||
5636 | Ops[i] = CI; | |||
5637 | } | |||
5638 | ||||
5639 | // Try to scalarize the final index. | |||
5640 | if (Ops[FinalIndex]->getType()->isVectorTy()) { | |||
5641 | if (Value *V = getSplatValue(Ops[FinalIndex])) { | |||
5642 | auto *C = dyn_cast<ConstantInt>(V); | |||
5643 | // Don't scalarize all zeros vector. | |||
5644 | if (!C || !C->isZero()) { | |||
5645 | Ops[FinalIndex] = V; | |||
5646 | RewriteGEP = true; | |||
5647 | } | |||
5648 | } | |||
5649 | } | |||
5650 | ||||
5651 | // If we made any changes or the we have extra operands, we need to generate | |||
5652 | // new instructions. | |||
5653 | if (!RewriteGEP && Ops.size() == 2) | |||
5654 | return false; | |||
5655 | ||||
5656 | auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); | |||
5657 | ||||
5658 | IRBuilder<> Builder(MemoryInst); | |||
5659 | ||||
5660 | Type *SourceTy = GEP->getSourceElementType(); | |||
5661 | Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); | |||
5662 | ||||
5663 | // If the final index isn't a vector, emit a scalar GEP containing all ops | |||
5664 | // and a vector GEP with all zeroes final index. | |||
5665 | if (!Ops[FinalIndex]->getType()->isVectorTy()) { | |||
5666 | NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); | |||
5667 | auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); | |||
5668 | auto *SecondTy = GetElementPtrInst::getIndexedType( | |||
5669 | SourceTy, ArrayRef(Ops).drop_front()); | |||
5670 | NewAddr = | |||
5671 | Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); | |||
5672 | } else { | |||
5673 | Value *Base = Ops[0]; | |||
5674 | Value *Index = Ops[FinalIndex]; | |||
5675 | ||||
5676 | // Create a scalar GEP if there are more than 2 operands. | |||
5677 | if (Ops.size() != 2) { | |||
5678 | // Replace the last index with 0. | |||
5679 | Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); | |||
5680 | Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); | |||
5681 | SourceTy = GetElementPtrInst::getIndexedType( | |||
5682 | SourceTy, ArrayRef(Ops).drop_front()); | |||
5683 | } | |||
5684 | ||||
5685 | // Now create the GEP with scalar pointer and vector index. | |||
5686 | NewAddr = Builder.CreateGEP(SourceTy, Base, Index); | |||
5687 | } | |||
5688 | } else if (!isa<Constant>(Ptr)) { | |||
5689 | // Not a GEP, maybe its a splat and we can create a GEP to enable | |||
5690 | // SelectionDAGBuilder to use it as a uniform base. | |||
5691 | Value *V = getSplatValue(Ptr); | |||
5692 | if (!V) | |||
5693 | return false; | |||
5694 | ||||
5695 | auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); | |||
5696 | ||||
5697 | IRBuilder<> Builder(MemoryInst); | |||
5698 | ||||
5699 | // Emit a vector GEP with a scalar pointer and all 0s vector index. | |||
5700 | Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); | |||
5701 | auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); | |||
5702 | Type *ScalarTy; | |||
5703 | if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == | |||
5704 | Intrinsic::masked_gather) { | |||
5705 | ScalarTy = MemoryInst->getType()->getScalarType(); | |||
5706 | } else { | |||
5707 | assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==(static_cast <bool> (cast<IntrinsicInst>(MemoryInst )->getIntrinsicID() == Intrinsic::masked_scatter) ? void ( 0) : __assert_fail ("cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == Intrinsic::masked_scatter" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5708, __extension__ __PRETTY_FUNCTION__ )) | |||
5708 | Intrinsic::masked_scatter)(static_cast <bool> (cast<IntrinsicInst>(MemoryInst )->getIntrinsicID() == Intrinsic::masked_scatter) ? void ( 0) : __assert_fail ("cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == Intrinsic::masked_scatter" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5708, __extension__ __PRETTY_FUNCTION__ )); | |||
5709 | ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); | |||
5710 | } | |||
5711 | NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); | |||
5712 | } else { | |||
5713 | // Constant, SelectionDAGBuilder knows to check if its a splat. | |||
5714 | return false; | |||
5715 | } | |||
5716 | ||||
5717 | MemoryInst->replaceUsesOfWith(Ptr, NewAddr); | |||
5718 | ||||
5719 | // If we have no uses, recursively delete the value and all dead instructions | |||
5720 | // using it. | |||
5721 | if (Ptr->use_empty()) | |||
5722 | RecursivelyDeleteTriviallyDeadInstructions( | |||
5723 | Ptr, TLInfo, nullptr, | |||
5724 | [&](Value *V) { removeAllAssertingVHReferences(V); }); | |||
5725 | ||||
5726 | return true; | |||
5727 | } | |||
5728 | ||||
5729 | /// If there are any memory operands, use OptimizeMemoryInst to sink their | |||
5730 | /// address computing into the block when possible / profitable. | |||
5731 | bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { | |||
5732 | bool MadeChange = false; | |||
5733 | ||||
5734 | const TargetRegisterInfo *TRI = | |||
5735 | TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); | |||
5736 | TargetLowering::AsmOperandInfoVector TargetConstraints = | |||
5737 | TLI->ParseConstraints(*DL, TRI, *CS); | |||
5738 | unsigned ArgNo = 0; | |||
5739 | for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { | |||
5740 | // Compute the constraint code and ConstraintType to use. | |||
5741 | TLI->ComputeConstraintToUse(OpInfo, SDValue()); | |||
5742 | ||||
5743 | // TODO: Also handle C_Address? | |||
5744 | if (OpInfo.ConstraintType == TargetLo |