| File: | build/source/llvm/lib/CodeGen/CodeGenPrepare.cpp |
| Warning: | line 1242, column 37 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This pass munges the code in the input function to better prepare it for | |||
| 10 | // SelectionDAG-based code generation. This works around limitations in it's | |||
| 11 | // basic-block-at-a-time approach. It should eventually be removed. | |||
| 12 | // | |||
| 13 | //===----------------------------------------------------------------------===// | |||
| 14 | ||||
| 15 | #include "llvm/ADT/APInt.h" | |||
| 16 | #include "llvm/ADT/ArrayRef.h" | |||
| 17 | #include "llvm/ADT/DenseMap.h" | |||
| 18 | #include "llvm/ADT/MapVector.h" | |||
| 19 | #include "llvm/ADT/PointerIntPair.h" | |||
| 20 | #include "llvm/ADT/STLExtras.h" | |||
| 21 | #include "llvm/ADT/SmallPtrSet.h" | |||
| 22 | #include "llvm/ADT/SmallVector.h" | |||
| 23 | #include "llvm/ADT/Statistic.h" | |||
| 24 | #include "llvm/Analysis/BlockFrequencyInfo.h" | |||
| 25 | #include "llvm/Analysis/BranchProbabilityInfo.h" | |||
| 26 | #include "llvm/Analysis/InstructionSimplify.h" | |||
| 27 | #include "llvm/Analysis/LoopInfo.h" | |||
| 28 | #include "llvm/Analysis/ProfileSummaryInfo.h" | |||
| 29 | #include "llvm/Analysis/TargetLibraryInfo.h" | |||
| 30 | #include "llvm/Analysis/TargetTransformInfo.h" | |||
| 31 | #include "llvm/Analysis/ValueTracking.h" | |||
| 32 | #include "llvm/Analysis/VectorUtils.h" | |||
| 33 | #include "llvm/CodeGen/Analysis.h" | |||
| 34 | #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" | |||
| 35 | #include "llvm/CodeGen/ISDOpcodes.h" | |||
| 36 | #include "llvm/CodeGen/MachineValueType.h" | |||
| 37 | #include "llvm/CodeGen/SelectionDAGNodes.h" | |||
| 38 | #include "llvm/CodeGen/TargetLowering.h" | |||
| 39 | #include "llvm/CodeGen/TargetPassConfig.h" | |||
| 40 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | |||
| 41 | #include "llvm/CodeGen/ValueTypes.h" | |||
| 42 | #include "llvm/Config/llvm-config.h" | |||
| 43 | #include "llvm/IR/Argument.h" | |||
| 44 | #include "llvm/IR/Attributes.h" | |||
| 45 | #include "llvm/IR/BasicBlock.h" | |||
| 46 | #include "llvm/IR/Constant.h" | |||
| 47 | #include "llvm/IR/Constants.h" | |||
| 48 | #include "llvm/IR/DataLayout.h" | |||
| 49 | #include "llvm/IR/DebugInfo.h" | |||
| 50 | #include "llvm/IR/DerivedTypes.h" | |||
| 51 | #include "llvm/IR/Dominators.h" | |||
| 52 | #include "llvm/IR/Function.h" | |||
| 53 | #include "llvm/IR/GetElementPtrTypeIterator.h" | |||
| 54 | #include "llvm/IR/GlobalValue.h" | |||
| 55 | #include "llvm/IR/GlobalVariable.h" | |||
| 56 | #include "llvm/IR/IRBuilder.h" | |||
| 57 | #include "llvm/IR/InlineAsm.h" | |||
| 58 | #include "llvm/IR/InstrTypes.h" | |||
| 59 | #include "llvm/IR/Instruction.h" | |||
| 60 | #include "llvm/IR/Instructions.h" | |||
| 61 | #include "llvm/IR/IntrinsicInst.h" | |||
| 62 | #include "llvm/IR/Intrinsics.h" | |||
| 63 | #include "llvm/IR/IntrinsicsAArch64.h" | |||
| 64 | #include "llvm/IR/LLVMContext.h" | |||
| 65 | #include "llvm/IR/MDBuilder.h" | |||
| 66 | #include "llvm/IR/Module.h" | |||
| 67 | #include "llvm/IR/Operator.h" | |||
| 68 | #include "llvm/IR/PatternMatch.h" | |||
| 69 | #include "llvm/IR/ProfDataUtils.h" | |||
| 70 | #include "llvm/IR/Statepoint.h" | |||
| 71 | #include "llvm/IR/Type.h" | |||
| 72 | #include "llvm/IR/Use.h" | |||
| 73 | #include "llvm/IR/User.h" | |||
| 74 | #include "llvm/IR/Value.h" | |||
| 75 | #include "llvm/IR/ValueHandle.h" | |||
| 76 | #include "llvm/IR/ValueMap.h" | |||
| 77 | #include "llvm/InitializePasses.h" | |||
| 78 | #include "llvm/Pass.h" | |||
| 79 | #include "llvm/Support/BlockFrequency.h" | |||
| 80 | #include "llvm/Support/BranchProbability.h" | |||
| 81 | #include "llvm/Support/Casting.h" | |||
| 82 | #include "llvm/Support/CommandLine.h" | |||
| 83 | #include "llvm/Support/Compiler.h" | |||
| 84 | #include "llvm/Support/Debug.h" | |||
| 85 | #include "llvm/Support/ErrorHandling.h" | |||
| 86 | #include "llvm/Support/MathExtras.h" | |||
| 87 | #include "llvm/Support/raw_ostream.h" | |||
| 88 | #include "llvm/Target/TargetMachine.h" | |||
| 89 | #include "llvm/Target/TargetOptions.h" | |||
| 90 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | |||
| 91 | #include "llvm/Transforms/Utils/BypassSlowDivision.h" | |||
| 92 | #include "llvm/Transforms/Utils/Local.h" | |||
| 93 | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" | |||
| 94 | #include "llvm/Transforms/Utils/SizeOpts.h" | |||
| 95 | #include <algorithm> | |||
| 96 | #include <cassert> | |||
| 97 | #include <cstdint> | |||
| 98 | #include <iterator> | |||
| 99 | #include <limits> | |||
| 100 | #include <memory> | |||
| 101 | #include <optional> | |||
| 102 | #include <utility> | |||
| 103 | #include <vector> | |||
| 104 | ||||
| 105 | using namespace llvm; | |||
| 106 | using namespace llvm::PatternMatch; | |||
| 107 | ||||
| 108 | #define DEBUG_TYPE"codegenprepare" "codegenprepare" | |||
| 109 | ||||
| 110 | STATISTIC(NumBlocksElim, "Number of blocks eliminated")static llvm::Statistic NumBlocksElim = {"codegenprepare", "NumBlocksElim" , "Number of blocks eliminated"}; | |||
| 111 | STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated")static llvm::Statistic NumPHIsElim = {"codegenprepare", "NumPHIsElim" , "Number of trivial PHIs eliminated"}; | |||
| 112 | STATISTIC(NumGEPsElim, "Number of GEPs converted to casts")static llvm::Statistic NumGEPsElim = {"codegenprepare", "NumGEPsElim" , "Number of GEPs converted to casts"}; | |||
| 113 | STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "static llvm::Statistic NumCmpUses = {"codegenprepare", "NumCmpUses" , "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps" } | |||
| 114 | "sunken Cmps")static llvm::Statistic NumCmpUses = {"codegenprepare", "NumCmpUses" , "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps" }; | |||
| 115 | STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "static llvm::Statistic NumCastUses = {"codegenprepare", "NumCastUses" , "Number of uses of Cast expressions replaced with uses " "of sunken Casts" } | |||
| 116 | "of sunken Casts")static llvm::Statistic NumCastUses = {"codegenprepare", "NumCastUses" , "Number of uses of Cast expressions replaced with uses " "of sunken Casts" }; | |||
| 117 | STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "static llvm::Statistic NumMemoryInsts = {"codegenprepare", "NumMemoryInsts" , "Number of memory instructions whose address " "computations were sunk" } | |||
| 118 | "computations were sunk")static llvm::Statistic NumMemoryInsts = {"codegenprepare", "NumMemoryInsts" , "Number of memory instructions whose address " "computations were sunk" }; | |||
| 119 | STATISTIC(NumMemoryInstsPhiCreated,static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"} | |||
| 120 | "Number of phis created when address "static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"} | |||
| 121 | "computations were sunk to memory instructions")static llvm::Statistic NumMemoryInstsPhiCreated = {"codegenprepare" , "NumMemoryInstsPhiCreated", "Number of phis created when address " "computations were sunk to memory instructions"}; | |||
| 122 | STATISTIC(NumMemoryInstsSelectCreated,static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"} | |||
| 123 | "Number of select created when address "static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"} | |||
| 124 | "computations were sunk to memory instructions")static llvm::Statistic NumMemoryInstsSelectCreated = {"codegenprepare" , "NumMemoryInstsSelectCreated", "Number of select created when address " "computations were sunk to memory instructions"}; | |||
| 125 | STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads")static llvm::Statistic NumExtsMoved = {"codegenprepare", "NumExtsMoved" , "Number of [s|z]ext instructions combined with loads"}; | |||
| 126 | STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized")static llvm::Statistic NumExtUses = {"codegenprepare", "NumExtUses" , "Number of uses of [s|z]ext instructions optimized"}; | |||
| 127 | STATISTIC(NumAndsAdded,static llvm::Statistic NumAndsAdded = {"codegenprepare", "NumAndsAdded" , "Number of and mask instructions added to form ext loads"} | |||
| 128 | "Number of and mask instructions added to form ext loads")static llvm::Statistic NumAndsAdded = {"codegenprepare", "NumAndsAdded" , "Number of and mask instructions added to form ext loads"}; | |||
| 129 | STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized")static llvm::Statistic NumAndUses = {"codegenprepare", "NumAndUses" , "Number of uses of and mask instructions optimized"}; | |||
| 130 | STATISTIC(NumRetsDup, "Number of return instructions duplicated")static llvm::Statistic NumRetsDup = {"codegenprepare", "NumRetsDup" , "Number of return instructions duplicated"}; | |||
| 131 | STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved")static llvm::Statistic NumDbgValueMoved = {"codegenprepare", "NumDbgValueMoved" , "Number of debug value instructions moved"}; | |||
| 132 | STATISTIC(NumSelectsExpanded, "Number of selects turned into branches")static llvm::Statistic NumSelectsExpanded = {"codegenprepare" , "NumSelectsExpanded", "Number of selects turned into branches" }; | |||
| 133 | STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed")static llvm::Statistic NumStoreExtractExposed = {"codegenprepare" , "NumStoreExtractExposed", "Number of store(extractelement) exposed" }; | |||
| 134 | ||||
| 135 | static cl::opt<bool> DisableBranchOpts( | |||
| 136 | "disable-cgp-branch-opts", cl::Hidden, cl::init(false), | |||
| 137 | cl::desc("Disable branch optimizations in CodeGenPrepare")); | |||
| 138 | ||||
| 139 | static cl::opt<bool> | |||
| 140 | DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), | |||
| 141 | cl::desc("Disable GC optimizations in CodeGenPrepare")); | |||
| 142 | ||||
| 143 | static cl::opt<bool> | |||
| 144 | DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, | |||
| 145 | cl::init(false), | |||
| 146 | cl::desc("Disable select to branch conversion.")); | |||
| 147 | ||||
| 148 | static cl::opt<bool> | |||
| 149 | AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), | |||
| 150 | cl::desc("Address sinking in CGP using GEPs.")); | |||
| 151 | ||||
| 152 | static cl::opt<bool> | |||
| 153 | EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), | |||
| 154 | cl::desc("Enable sinkinig and/cmp into branches.")); | |||
| 155 | ||||
| 156 | static cl::opt<bool> DisableStoreExtract( | |||
| 157 | "disable-cgp-store-extract", cl::Hidden, cl::init(false), | |||
| 158 | cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); | |||
| 159 | ||||
| 160 | static cl::opt<bool> StressStoreExtract( | |||
| 161 | "stress-cgp-store-extract", cl::Hidden, cl::init(false), | |||
| 162 | cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); | |||
| 163 | ||||
| 164 | static cl::opt<bool> DisableExtLdPromotion( | |||
| 165 | "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | |||
| 166 | cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " | |||
| 167 | "CodeGenPrepare")); | |||
| 168 | ||||
| 169 | static cl::opt<bool> StressExtLdPromotion( | |||
| 170 | "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), | |||
| 171 | cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " | |||
| 172 | "optimization in CodeGenPrepare")); | |||
| 173 | ||||
| 174 | static cl::opt<bool> DisablePreheaderProtect( | |||
| 175 | "disable-preheader-prot", cl::Hidden, cl::init(false), | |||
| 176 | cl::desc("Disable protection against removing loop preheaders")); | |||
| 177 | ||||
| 178 | static cl::opt<bool> ProfileGuidedSectionPrefix( | |||
| 179 | "profile-guided-section-prefix", cl::Hidden, cl::init(true), | |||
| 180 | cl::desc("Use profile info to add section prefix for hot/cold functions")); | |||
| 181 | ||||
| 182 | static cl::opt<bool> ProfileUnknownInSpecialSection( | |||
| 183 | "profile-unknown-in-special-section", cl::Hidden, | |||
| 184 | cl::desc("In profiling mode like sampleFDO, if a function doesn't have " | |||
| 185 | "profile, we cannot tell the function is cold for sure because " | |||
| 186 | "it may be a function newly added without ever being sampled. " | |||
| 187 | "With the flag enabled, compiler can put such profile unknown " | |||
| 188 | "functions into a special section, so runtime system can choose " | |||
| 189 | "to handle it in a different way than .text section, to save " | |||
| 190 | "RAM for example. ")); | |||
| 191 | ||||
| 192 | static cl::opt<bool> BBSectionsGuidedSectionPrefix( | |||
| 193 | "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), | |||
| 194 | cl::desc("Use the basic-block-sections profile to determine the text " | |||
| 195 | "section prefix for hot functions. Functions with " | |||
| 196 | "basic-block-sections profile will be placed in `.text.hot` " | |||
| 197 | "regardless of their FDO profile info. Other functions won't be " | |||
| 198 | "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " | |||
| 199 | "profiles.")); | |||
| 200 | ||||
| 201 | static cl::opt<unsigned> FreqRatioToSkipMerge( | |||
| 202 | "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), | |||
| 203 | cl::desc("Skip merging empty blocks if (frequency of empty block) / " | |||
| 204 | "(frequency of destination block) is greater than this ratio")); | |||
| 205 | ||||
| 206 | static cl::opt<bool> ForceSplitStore( | |||
| 207 | "force-split-store", cl::Hidden, cl::init(false), | |||
| 208 | cl::desc("Force store splitting no matter what the target query says.")); | |||
| 209 | ||||
| 210 | static cl::opt<bool> EnableTypePromotionMerge( | |||
| 211 | "cgp-type-promotion-merge", cl::Hidden, | |||
| 212 | cl::desc("Enable merging of redundant sexts when one is dominating" | |||
| 213 | " the other."), | |||
| 214 | cl::init(true)); | |||
| 215 | ||||
| 216 | static cl::opt<bool> DisableComplexAddrModes( | |||
| 217 | "disable-complex-addr-modes", cl::Hidden, cl::init(false), | |||
| 218 | cl::desc("Disables combining addressing modes with different parts " | |||
| 219 | "in optimizeMemoryInst.")); | |||
| 220 | ||||
| 221 | static cl::opt<bool> | |||
| 222 | AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), | |||
| 223 | cl::desc("Allow creation of Phis in Address sinking.")); | |||
| 224 | ||||
| 225 | static cl::opt<bool> AddrSinkNewSelects( | |||
| 226 | "addr-sink-new-select", cl::Hidden, cl::init(true), | |||
| 227 | cl::desc("Allow creation of selects in Address sinking.")); | |||
| 228 | ||||
| 229 | static cl::opt<bool> AddrSinkCombineBaseReg( | |||
| 230 | "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), | |||
| 231 | cl::desc("Allow combining of BaseReg field in Address sinking.")); | |||
| 232 | ||||
| 233 | static cl::opt<bool> AddrSinkCombineBaseGV( | |||
| 234 | "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), | |||
| 235 | cl::desc("Allow combining of BaseGV field in Address sinking.")); | |||
| 236 | ||||
| 237 | static cl::opt<bool> AddrSinkCombineBaseOffs( | |||
| 238 | "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), | |||
| 239 | cl::desc("Allow combining of BaseOffs field in Address sinking.")); | |||
| 240 | ||||
| 241 | static cl::opt<bool> AddrSinkCombineScaledReg( | |||
| 242 | "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), | |||
| 243 | cl::desc("Allow combining of ScaledReg field in Address sinking.")); | |||
| 244 | ||||
| 245 | static cl::opt<bool> | |||
| 246 | EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, | |||
| 247 | cl::init(true), | |||
| 248 | cl::desc("Enable splitting large offset of GEP.")); | |||
| 249 | ||||
| 250 | static cl::opt<bool> EnableICMP_EQToICMP_ST( | |||
| 251 | "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), | |||
| 252 | cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); | |||
| 253 | ||||
| 254 | static cl::opt<bool> | |||
| 255 | VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), | |||
| 256 | cl::desc("Enable BFI update verification for " | |||
| 257 | "CodeGenPrepare.")); | |||
| 258 | ||||
| 259 | static cl::opt<bool> | |||
| 260 | OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(false), | |||
| 261 | cl::desc("Enable converting phi types in CodeGenPrepare")); | |||
| 262 | ||||
| 263 | static cl::opt<unsigned> | |||
| 264 | HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, | |||
| 265 | cl::desc("Least BB number of huge function.")); | |||
| 266 | ||||
| 267 | static cl::opt<unsigned> | |||
| 268 | MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), | |||
| 269 | cl::Hidden, | |||
| 270 | cl::desc("Max number of address users to look at")); | |||
| 271 | namespace { | |||
| 272 | ||||
| 273 | enum ExtType { | |||
| 274 | ZeroExtension, // Zero extension has been seen. | |||
| 275 | SignExtension, // Sign extension has been seen. | |||
| 276 | BothExtension // This extension type is used if we saw sext after | |||
| 277 | // ZeroExtension had been set, or if we saw zext after | |||
| 278 | // SignExtension had been set. It makes the type | |||
| 279 | // information of a promoted instruction invalid. | |||
| 280 | }; | |||
| 281 | ||||
| 282 | enum ModifyDT { | |||
| 283 | NotModifyDT, // Not Modify any DT. | |||
| 284 | ModifyBBDT, // Modify the Basic Block Dominator Tree. | |||
| 285 | ModifyInstDT // Modify the Instruction Dominator in a Basic Block, | |||
| 286 | // This usually means we move/delete/insert instruction | |||
| 287 | // in a Basic Block. So we should re-iterate instructions | |||
| 288 | // in such Basic Block. | |||
| 289 | }; | |||
| 290 | ||||
| 291 | using SetOfInstrs = SmallPtrSet<Instruction *, 16>; | |||
| 292 | using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; | |||
| 293 | using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; | |||
| 294 | using SExts = SmallVector<Instruction *, 16>; | |||
| 295 | using ValueToSExts = MapVector<Value *, SExts>; | |||
| 296 | ||||
| 297 | class TypePromotionTransaction; | |||
| 298 | ||||
| 299 | class CodeGenPrepare : public FunctionPass { | |||
| 300 | const TargetMachine *TM = nullptr; | |||
| 301 | const TargetSubtargetInfo *SubtargetInfo = nullptr; | |||
| 302 | const TargetLowering *TLI = nullptr; | |||
| 303 | const TargetRegisterInfo *TRI = nullptr; | |||
| 304 | const TargetTransformInfo *TTI = nullptr; | |||
| 305 | const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; | |||
| 306 | const TargetLibraryInfo *TLInfo = nullptr; | |||
| 307 | const LoopInfo *LI = nullptr; | |||
| 308 | std::unique_ptr<BlockFrequencyInfo> BFI; | |||
| 309 | std::unique_ptr<BranchProbabilityInfo> BPI; | |||
| 310 | ProfileSummaryInfo *PSI = nullptr; | |||
| 311 | ||||
| 312 | /// As we scan instructions optimizing them, this is the next instruction | |||
| 313 | /// to optimize. Transforms that can invalidate this should update it. | |||
| 314 | BasicBlock::iterator CurInstIterator; | |||
| 315 | ||||
| 316 | /// Keeps track of non-local addresses that have been sunk into a block. | |||
| 317 | /// This allows us to avoid inserting duplicate code for blocks with | |||
| 318 | /// multiple load/stores of the same address. The usage of WeakTrackingVH | |||
| 319 | /// enables SunkAddrs to be treated as a cache whose entries can be | |||
| 320 | /// invalidated if a sunken address computation has been erased. | |||
| 321 | ValueMap<Value *, WeakTrackingVH> SunkAddrs; | |||
| 322 | ||||
| 323 | /// Keeps track of all instructions inserted for the current function. | |||
| 324 | SetOfInstrs InsertedInsts; | |||
| 325 | ||||
| 326 | /// Keeps track of the type of the related instruction before their | |||
| 327 | /// promotion for the current function. | |||
| 328 | InstrToOrigTy PromotedInsts; | |||
| 329 | ||||
| 330 | /// Keep track of instructions removed during promotion. | |||
| 331 | SetOfInstrs RemovedInsts; | |||
| 332 | ||||
| 333 | /// Keep track of sext chains based on their initial value. | |||
| 334 | DenseMap<Value *, Instruction *> SeenChainsForSExt; | |||
| 335 | ||||
| 336 | /// Keep track of GEPs accessing the same data structures such as structs or | |||
| 337 | /// arrays that are candidates to be split later because of their large | |||
| 338 | /// size. | |||
| 339 | MapVector<AssertingVH<Value>, | |||
| 340 | SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> | |||
| 341 | LargeOffsetGEPMap; | |||
| 342 | ||||
| 343 | /// Keep track of new GEP base after splitting the GEPs having large offset. | |||
| 344 | SmallSet<AssertingVH<Value>, 2> NewGEPBases; | |||
| 345 | ||||
| 346 | /// Map serial numbers to Large offset GEPs. | |||
| 347 | DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; | |||
| 348 | ||||
| 349 | /// Keep track of SExt promoted. | |||
| 350 | ValueToSExts ValToSExtendedUses; | |||
| 351 | ||||
| 352 | /// True if the function has the OptSize attribute. | |||
| 353 | bool OptSize; | |||
| 354 | ||||
| 355 | /// DataLayout for the Function being processed. | |||
| 356 | const DataLayout *DL = nullptr; | |||
| 357 | ||||
| 358 | /// Building the dominator tree can be expensive, so we only build it | |||
| 359 | /// lazily and update it when required. | |||
| 360 | std::unique_ptr<DominatorTree> DT; | |||
| 361 | ||||
| 362 | public: | |||
| 363 | /// If encounter huge function, we need to limit the build time. | |||
| 364 | bool IsHugeFunc = false; | |||
| 365 | ||||
| 366 | /// FreshBBs is like worklist, it collected the updated BBs which need | |||
| 367 | /// to be optimized again. | |||
| 368 | /// Note: Consider building time in this pass, when a BB updated, we need | |||
| 369 | /// to insert such BB into FreshBBs for huge function. | |||
| 370 | SmallSet<BasicBlock *, 32> FreshBBs; | |||
| 371 | ||||
| 372 | static char ID; // Pass identification, replacement for typeid | |||
| 373 | ||||
| 374 | CodeGenPrepare() : FunctionPass(ID) { | |||
| 375 | initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); | |||
| 376 | } | |||
| 377 | ||||
| 378 | bool runOnFunction(Function &F) override; | |||
| 379 | ||||
| 380 | StringRef getPassName() const override { return "CodeGen Prepare"; } | |||
| 381 | ||||
| 382 | void getAnalysisUsage(AnalysisUsage &AU) const override { | |||
| 383 | // FIXME: When we can selectively preserve passes, preserve the domtree. | |||
| 384 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | |||
| 385 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | |||
| 386 | AU.addRequired<TargetPassConfig>(); | |||
| 387 | AU.addRequired<TargetTransformInfoWrapperPass>(); | |||
| 388 | AU.addRequired<LoopInfoWrapperPass>(); | |||
| 389 | AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>(); | |||
| 390 | } | |||
| 391 | ||||
| 392 | private: | |||
| 393 | template <typename F> | |||
| 394 | void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { | |||
| 395 | // Substituting can cause recursive simplifications, which can invalidate | |||
| 396 | // our iterator. Use a WeakTrackingVH to hold onto it in case this | |||
| 397 | // happens. | |||
| 398 | Value *CurValue = &*CurInstIterator; | |||
| 399 | WeakTrackingVH IterHandle(CurValue); | |||
| 400 | ||||
| 401 | f(); | |||
| 402 | ||||
| 403 | // If the iterator instruction was recursively deleted, start over at the | |||
| 404 | // start of the block. | |||
| 405 | if (IterHandle != CurValue) { | |||
| 406 | CurInstIterator = BB->begin(); | |||
| 407 | SunkAddrs.clear(); | |||
| 408 | } | |||
| 409 | } | |||
| 410 | ||||
| 411 | // Get the DominatorTree, building if necessary. | |||
| 412 | DominatorTree &getDT(Function &F) { | |||
| 413 | if (!DT) | |||
| 414 | DT = std::make_unique<DominatorTree>(F); | |||
| 415 | return *DT; | |||
| 416 | } | |||
| 417 | ||||
| 418 | void removeAllAssertingVHReferences(Value *V); | |||
| 419 | bool eliminateAssumptions(Function &F); | |||
| 420 | bool eliminateFallThrough(Function &F); | |||
| 421 | bool eliminateMostlyEmptyBlocks(Function &F); | |||
| 422 | BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); | |||
| 423 | bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; | |||
| 424 | void eliminateMostlyEmptyBlock(BasicBlock *BB); | |||
| 425 | bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, | |||
| 426 | bool isPreheader); | |||
| 427 | bool makeBitReverse(Instruction &I); | |||
| 428 | bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); | |||
| 429 | bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); | |||
| 430 | bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, | |||
| 431 | unsigned AddrSpace); | |||
| 432 | bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); | |||
| 433 | bool optimizeInlineAsmInst(CallInst *CS); | |||
| 434 | bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); | |||
| 435 | bool optimizeExt(Instruction *&I); | |||
| 436 | bool optimizeExtUses(Instruction *I); | |||
| 437 | bool optimizeLoadExt(LoadInst *Load); | |||
| 438 | bool optimizeShiftInst(BinaryOperator *BO); | |||
| 439 | bool optimizeFunnelShift(IntrinsicInst *Fsh); | |||
| 440 | bool optimizeSelectInst(SelectInst *SI); | |||
| 441 | bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); | |||
| 442 | bool optimizeSwitchType(SwitchInst *SI); | |||
| 443 | bool optimizeSwitchPhiConstants(SwitchInst *SI); | |||
| 444 | bool optimizeSwitchInst(SwitchInst *SI); | |||
| 445 | bool optimizeExtractElementInst(Instruction *Inst); | |||
| 446 | bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); | |||
| 447 | bool fixupDbgValue(Instruction *I); | |||
| 448 | bool placeDbgValues(Function &F); | |||
| 449 | bool placePseudoProbes(Function &F); | |||
| 450 | bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, | |||
| 451 | LoadInst *&LI, Instruction *&Inst, bool HasPromoted); | |||
| 452 | bool tryToPromoteExts(TypePromotionTransaction &TPT, | |||
| 453 | const SmallVectorImpl<Instruction *> &Exts, | |||
| 454 | SmallVectorImpl<Instruction *> &ProfitablyMovedExts, | |||
| 455 | unsigned CreatedInstsCost = 0); | |||
| 456 | bool mergeSExts(Function &F); | |||
| 457 | bool splitLargeGEPOffsets(); | |||
| 458 | bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, | |||
| 459 | SmallPtrSetImpl<Instruction *> &DeletedInstrs); | |||
| 460 | bool optimizePhiTypes(Function &F); | |||
| 461 | bool performAddressTypePromotion( | |||
| 462 | Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, | |||
| 463 | bool HasPromoted, TypePromotionTransaction &TPT, | |||
| 464 | SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); | |||
| 465 | bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); | |||
| 466 | bool simplifyOffsetableRelocate(GCStatepointInst &I); | |||
| 467 | ||||
| 468 | bool tryToSinkFreeOperands(Instruction *I); | |||
| 469 | bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, | |||
| 470 | CmpInst *Cmp, Intrinsic::ID IID); | |||
| 471 | bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); | |||
| 472 | bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); | |||
| 473 | bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); | |||
| 474 | void verifyBFIUpdates(Function &F); | |||
| 475 | }; | |||
| 476 | ||||
| 477 | } // end anonymous namespace | |||
| 478 | ||||
| 479 | char CodeGenPrepare::ID = 0; | |||
| 480 | ||||
| 481 | INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,static void *initializeCodeGenPreparePassOnce(PassRegistry & Registry) { | |||
| 482 | "Optimize for code generation", false, false)static void *initializeCodeGenPreparePassOnce(PassRegistry & Registry) { | |||
| 483 | INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader)initializeBasicBlockSectionsProfileReaderPass(Registry); | |||
| 484 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry); | |||
| 485 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)initializeProfileSummaryInfoWrapperPassPass(Registry); | |||
| 486 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | |||
| 487 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)initializeTargetPassConfigPass(Registry); | |||
| 488 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry); | |||
| 489 | INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation",PassInfo *PI = new PassInfo( "Optimize for code generation", "codegenprepare" , &CodeGenPrepare::ID, PassInfo::NormalCtor_t(callDefaultCtor <CodeGenPrepare>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeCodeGenPreparePassFlag ; void llvm::initializeCodeGenPreparePass(PassRegistry &Registry ) { llvm::call_once(InitializeCodeGenPreparePassFlag, initializeCodeGenPreparePassOnce , std::ref(Registry)); } | |||
| 490 | false, false)PassInfo *PI = new PassInfo( "Optimize for code generation", "codegenprepare" , &CodeGenPrepare::ID, PassInfo::NormalCtor_t(callDefaultCtor <CodeGenPrepare>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeCodeGenPreparePassFlag ; void llvm::initializeCodeGenPreparePass(PassRegistry &Registry ) { llvm::call_once(InitializeCodeGenPreparePassFlag, initializeCodeGenPreparePassOnce , std::ref(Registry)); } | |||
| 491 | ||||
| 492 | FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } | |||
| 493 | ||||
| 494 | bool CodeGenPrepare::runOnFunction(Function &F) { | |||
| 495 | if (skipFunction(F)) | |||
| 496 | return false; | |||
| 497 | ||||
| 498 | DL = &F.getParent()->getDataLayout(); | |||
| 499 | ||||
| 500 | bool EverMadeChange = false; | |||
| 501 | // Clear per function information. | |||
| 502 | InsertedInsts.clear(); | |||
| 503 | PromotedInsts.clear(); | |||
| 504 | FreshBBs.clear(); | |||
| 505 | ||||
| 506 | TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); | |||
| 507 | SubtargetInfo = TM->getSubtargetImpl(F); | |||
| 508 | TLI = SubtargetInfo->getTargetLowering(); | |||
| 509 | TRI = SubtargetInfo->getRegisterInfo(); | |||
| 510 | TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | |||
| 511 | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | |||
| 512 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | |||
| 513 | BPI.reset(new BranchProbabilityInfo(F, *LI)); | |||
| 514 | BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); | |||
| 515 | PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | |||
| 516 | BBSectionsProfileReader = | |||
| 517 | getAnalysisIfAvailable<BasicBlockSectionsProfileReader>(); | |||
| 518 | OptSize = F.hasOptSize(); | |||
| 519 | // Use the basic-block-sections profile to promote hot functions to .text.hot | |||
| 520 | // if requested. | |||
| 521 | if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && | |||
| 522 | BBSectionsProfileReader->isFunctionHot(F.getName())) { | |||
| 523 | F.setSectionPrefix("hot"); | |||
| 524 | } else if (ProfileGuidedSectionPrefix) { | |||
| 525 | // The hot attribute overwrites profile count based hotness while profile | |||
| 526 | // counts based hotness overwrite the cold attribute. | |||
| 527 | // This is a conservative behabvior. | |||
| 528 | if (F.hasFnAttribute(Attribute::Hot) || | |||
| 529 | PSI->isFunctionHotInCallGraph(&F, *BFI)) | |||
| 530 | F.setSectionPrefix("hot"); | |||
| 531 | // If PSI shows this function is not hot, we will placed the function | |||
| 532 | // into unlikely section if (1) PSI shows this is a cold function, or | |||
| 533 | // (2) the function has a attribute of cold. | |||
| 534 | else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || | |||
| 535 | F.hasFnAttribute(Attribute::Cold)) | |||
| 536 | F.setSectionPrefix("unlikely"); | |||
| 537 | else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && | |||
| 538 | PSI->isFunctionHotnessUnknown(F)) | |||
| 539 | F.setSectionPrefix("unknown"); | |||
| 540 | } | |||
| 541 | ||||
| 542 | /// This optimization identifies DIV instructions that can be | |||
| 543 | /// profitably bypassed and carried out with a shorter, faster divide. | |||
| 544 | if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { | |||
| 545 | const DenseMap<unsigned int, unsigned int> &BypassWidths = | |||
| 546 | TLI->getBypassSlowDivWidths(); | |||
| 547 | BasicBlock *BB = &*F.begin(); | |||
| 548 | while (BB != nullptr) { | |||
| 549 | // bypassSlowDivision may create new BBs, but we don't want to reapply the | |||
| 550 | // optimization to those blocks. | |||
| 551 | BasicBlock *Next = BB->getNextNode(); | |||
| 552 | // F.hasOptSize is already checked in the outer if statement. | |||
| 553 | if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) | |||
| 554 | EverMadeChange |= bypassSlowDivision(BB, BypassWidths); | |||
| 555 | BB = Next; | |||
| 556 | } | |||
| 557 | } | |||
| 558 | ||||
| 559 | // Get rid of @llvm.assume builtins before attempting to eliminate empty | |||
| 560 | // blocks, since there might be blocks that only contain @llvm.assume calls | |||
| 561 | // (plus arguments that we can get rid of). | |||
| 562 | EverMadeChange |= eliminateAssumptions(F); | |||
| 563 | ||||
| 564 | // Eliminate blocks that contain only PHI nodes and an | |||
| 565 | // unconditional branch. | |||
| 566 | EverMadeChange |= eliminateMostlyEmptyBlocks(F); | |||
| 567 | ||||
| 568 | ModifyDT ModifiedDT = ModifyDT::NotModifyDT; | |||
| 569 | if (!DisableBranchOpts) | |||
| 570 | EverMadeChange |= splitBranchCondition(F, ModifiedDT); | |||
| 571 | ||||
| 572 | // Split some critical edges where one of the sources is an indirect branch, | |||
| 573 | // to help generate sane code for PHIs involving such edges. | |||
| 574 | EverMadeChange |= | |||
| 575 | SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); | |||
| 576 | ||||
| 577 | // If we are optimzing huge function, we need to consider the build time. | |||
| 578 | // Because the basic algorithm's complex is near O(N!). | |||
| 579 | IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; | |||
| 580 | ||||
| 581 | bool MadeChange = true; | |||
| 582 | bool FuncIterated = false; | |||
| 583 | while (MadeChange) { | |||
| 584 | MadeChange = false; | |||
| 585 | DT.reset(); | |||
| 586 | ||||
| 587 | for (BasicBlock &BB : llvm::make_early_inc_range(F)) { | |||
| 588 | if (FuncIterated && !FreshBBs.contains(&BB)) | |||
| 589 | continue; | |||
| 590 | ||||
| 591 | ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; | |||
| 592 | bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); | |||
| 593 | ||||
| 594 | MadeChange |= Changed; | |||
| 595 | if (IsHugeFunc) { | |||
| 596 | // If the BB is updated, it may still has chance to be optimized. | |||
| 597 | // This usually happen at sink optimization. | |||
| 598 | // For example: | |||
| 599 | // | |||
| 600 | // bb0: | |||
| 601 | // %and = and i32 %a, 4 | |||
| 602 | // %cmp = icmp eq i32 %and, 0 | |||
| 603 | // | |||
| 604 | // If the %cmp sink to other BB, the %and will has chance to sink. | |||
| 605 | if (Changed) | |||
| 606 | FreshBBs.insert(&BB); | |||
| 607 | else if (FuncIterated) | |||
| 608 | FreshBBs.erase(&BB); | |||
| 609 | ||||
| 610 | if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) | |||
| 611 | DT.reset(); | |||
| 612 | } else { | |||
| 613 | // For small/normal functions, we restart BB iteration if the dominator | |||
| 614 | // tree of the Function was changed. | |||
| 615 | if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) | |||
| 616 | break; | |||
| 617 | } | |||
| 618 | } | |||
| 619 | // We have iterated all the BB in the (only work for huge) function. | |||
| 620 | FuncIterated = IsHugeFunc; | |||
| 621 | ||||
| 622 | if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) | |||
| 623 | MadeChange |= mergeSExts(F); | |||
| 624 | if (!LargeOffsetGEPMap.empty()) | |||
| 625 | MadeChange |= splitLargeGEPOffsets(); | |||
| 626 | MadeChange |= optimizePhiTypes(F); | |||
| 627 | ||||
| 628 | if (MadeChange) | |||
| 629 | eliminateFallThrough(F); | |||
| 630 | ||||
| 631 | // Really free removed instructions during promotion. | |||
| 632 | for (Instruction *I : RemovedInsts) | |||
| 633 | I->deleteValue(); | |||
| 634 | ||||
| 635 | EverMadeChange |= MadeChange; | |||
| 636 | SeenChainsForSExt.clear(); | |||
| 637 | ValToSExtendedUses.clear(); | |||
| 638 | RemovedInsts.clear(); | |||
| 639 | LargeOffsetGEPMap.clear(); | |||
| 640 | LargeOffsetGEPID.clear(); | |||
| 641 | } | |||
| 642 | ||||
| 643 | NewGEPBases.clear(); | |||
| 644 | SunkAddrs.clear(); | |||
| 645 | ||||
| 646 | if (!DisableBranchOpts) { | |||
| 647 | MadeChange = false; | |||
| 648 | // Use a set vector to get deterministic iteration order. The order the | |||
| 649 | // blocks are removed may affect whether or not PHI nodes in successors | |||
| 650 | // are removed. | |||
| 651 | SmallSetVector<BasicBlock *, 8> WorkList; | |||
| 652 | for (BasicBlock &BB : F) { | |||
| 653 | SmallVector<BasicBlock *, 2> Successors(successors(&BB)); | |||
| 654 | MadeChange |= ConstantFoldTerminator(&BB, true); | |||
| 655 | if (!MadeChange) | |||
| 656 | continue; | |||
| 657 | ||||
| 658 | for (BasicBlock *Succ : Successors) | |||
| 659 | if (pred_empty(Succ)) | |||
| 660 | WorkList.insert(Succ); | |||
| 661 | } | |||
| 662 | ||||
| 663 | // Delete the dead blocks and any of their dead successors. | |||
| 664 | MadeChange |= !WorkList.empty(); | |||
| 665 | while (!WorkList.empty()) { | |||
| 666 | BasicBlock *BB = WorkList.pop_back_val(); | |||
| 667 | SmallVector<BasicBlock *, 2> Successors(successors(BB)); | |||
| 668 | ||||
| 669 | DeleteDeadBlock(BB); | |||
| 670 | ||||
| 671 | for (BasicBlock *Succ : Successors) | |||
| 672 | if (pred_empty(Succ)) | |||
| 673 | WorkList.insert(Succ); | |||
| 674 | } | |||
| 675 | ||||
| 676 | // Merge pairs of basic blocks with unconditional branches, connected by | |||
| 677 | // a single edge. | |||
| 678 | if (EverMadeChange || MadeChange) | |||
| 679 | MadeChange |= eliminateFallThrough(F); | |||
| 680 | ||||
| 681 | EverMadeChange |= MadeChange; | |||
| 682 | } | |||
| 683 | ||||
| 684 | if (!DisableGCOpts) { | |||
| 685 | SmallVector<GCStatepointInst *, 2> Statepoints; | |||
| 686 | for (BasicBlock &BB : F) | |||
| 687 | for (Instruction &I : BB) | |||
| 688 | if (auto *SP = dyn_cast<GCStatepointInst>(&I)) | |||
| 689 | Statepoints.push_back(SP); | |||
| 690 | for (auto &I : Statepoints) | |||
| 691 | EverMadeChange |= simplifyOffsetableRelocate(*I); | |||
| 692 | } | |||
| 693 | ||||
| 694 | // Do this last to clean up use-before-def scenarios introduced by other | |||
| 695 | // preparatory transforms. | |||
| 696 | EverMadeChange |= placeDbgValues(F); | |||
| 697 | EverMadeChange |= placePseudoProbes(F); | |||
| 698 | ||||
| 699 | #ifndef NDEBUG | |||
| 700 | if (VerifyBFIUpdates) | |||
| 701 | verifyBFIUpdates(F); | |||
| 702 | #endif | |||
| 703 | ||||
| 704 | return EverMadeChange; | |||
| 705 | } | |||
| 706 | ||||
| 707 | bool CodeGenPrepare::eliminateAssumptions(Function &F) { | |||
| 708 | bool MadeChange = false; | |||
| 709 | for (BasicBlock &BB : F) { | |||
| 710 | CurInstIterator = BB.begin(); | |||
| 711 | while (CurInstIterator != BB.end()) { | |||
| 712 | Instruction *I = &*(CurInstIterator++); | |||
| 713 | if (auto *Assume = dyn_cast<AssumeInst>(I)) { | |||
| 714 | MadeChange = true; | |||
| 715 | Value *Operand = Assume->getOperand(0); | |||
| 716 | Assume->eraseFromParent(); | |||
| 717 | ||||
| 718 | resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { | |||
| 719 | RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); | |||
| 720 | }); | |||
| 721 | } | |||
| 722 | } | |||
| 723 | } | |||
| 724 | return MadeChange; | |||
| 725 | } | |||
| 726 | ||||
| 727 | /// An instruction is about to be deleted, so remove all references to it in our | |||
| 728 | /// GEP-tracking data strcutures. | |||
| 729 | void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { | |||
| 730 | LargeOffsetGEPMap.erase(V); | |||
| 731 | NewGEPBases.erase(V); | |||
| 732 | ||||
| 733 | auto GEP = dyn_cast<GetElementPtrInst>(V); | |||
| 734 | if (!GEP) | |||
| 735 | return; | |||
| 736 | ||||
| 737 | LargeOffsetGEPID.erase(GEP); | |||
| 738 | ||||
| 739 | auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); | |||
| 740 | if (VecI == LargeOffsetGEPMap.end()) | |||
| 741 | return; | |||
| 742 | ||||
| 743 | auto &GEPVector = VecI->second; | |||
| 744 | llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); | |||
| 745 | ||||
| 746 | if (GEPVector.empty()) | |||
| 747 | LargeOffsetGEPMap.erase(VecI); | |||
| 748 | } | |||
| 749 | ||||
| 750 | // Verify BFI has been updated correctly by recomputing BFI and comparing them. | |||
| 751 | void LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__)) CodeGenPrepare::verifyBFIUpdates(Function &F) { | |||
| 752 | DominatorTree NewDT(F); | |||
| 753 | LoopInfo NewLI(NewDT); | |||
| 754 | BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); | |||
| 755 | BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); | |||
| 756 | NewBFI.verifyMatch(*BFI); | |||
| 757 | } | |||
| 758 | ||||
| 759 | /// Merge basic blocks which are connected by a single edge, where one of the | |||
| 760 | /// basic blocks has a single successor pointing to the other basic block, | |||
| 761 | /// which has a single predecessor. | |||
| 762 | bool CodeGenPrepare::eliminateFallThrough(Function &F) { | |||
| 763 | bool Changed = false; | |||
| 764 | // Scan all of the blocks in the function, except for the entry block. | |||
| 765 | // Use a temporary array to avoid iterator being invalidated when | |||
| 766 | // deleting blocks. | |||
| 767 | SmallVector<WeakTrackingVH, 16> Blocks; | |||
| 768 | for (auto &Block : llvm::drop_begin(F)) | |||
| 769 | Blocks.push_back(&Block); | |||
| 770 | ||||
| 771 | SmallSet<WeakTrackingVH, 16> Preds; | |||
| 772 | for (auto &Block : Blocks) { | |||
| 773 | auto *BB = cast_or_null<BasicBlock>(Block); | |||
| 774 | if (!BB) | |||
| 775 | continue; | |||
| 776 | // If the destination block has a single pred, then this is a trivial | |||
| 777 | // edge, just collapse it. | |||
| 778 | BasicBlock *SinglePred = BB->getSinglePredecessor(); | |||
| 779 | ||||
| 780 | // Don't merge if BB's address is taken. | |||
| 781 | if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) | |||
| 782 | continue; | |||
| 783 | ||||
| 784 | BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); | |||
| 785 | if (Term && !Term->isConditional()) { | |||
| 786 | Changed = true; | |||
| 787 | LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "To merge:\n" << * BB << "\n\n\n"; } } while (false); | |||
| 788 | ||||
| 789 | // Merge BB into SinglePred and delete it. | |||
| 790 | MergeBlockIntoPredecessor(BB); | |||
| 791 | Preds.insert(SinglePred); | |||
| 792 | ||||
| 793 | if (IsHugeFunc) { | |||
| 794 | // Update FreshBBs to optimize the merged BB. | |||
| 795 | FreshBBs.insert(SinglePred); | |||
| 796 | FreshBBs.erase(BB); | |||
| 797 | } | |||
| 798 | } | |||
| 799 | } | |||
| 800 | ||||
| 801 | // (Repeatedly) merging blocks into their predecessors can create redundant | |||
| 802 | // debug intrinsics. | |||
| 803 | for (const auto &Pred : Preds) | |||
| 804 | if (auto *BB = cast_or_null<BasicBlock>(Pred)) | |||
| 805 | RemoveRedundantDbgInstrs(BB); | |||
| 806 | ||||
| 807 | return Changed; | |||
| 808 | } | |||
| 809 | ||||
| 810 | /// Find a destination block from BB if BB is mergeable empty block. | |||
| 811 | BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { | |||
| 812 | // If this block doesn't end with an uncond branch, ignore it. | |||
| 813 | BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); | |||
| 814 | if (!BI || !BI->isUnconditional()) | |||
| 815 | return nullptr; | |||
| 816 | ||||
| 817 | // If the instruction before the branch (skipping debug info) isn't a phi | |||
| 818 | // node, then other stuff is happening here. | |||
| 819 | BasicBlock::iterator BBI = BI->getIterator(); | |||
| 820 | if (BBI != BB->begin()) { | |||
| 821 | --BBI; | |||
| 822 | while (isa<DbgInfoIntrinsic>(BBI)) { | |||
| 823 | if (BBI == BB->begin()) | |||
| 824 | break; | |||
| 825 | --BBI; | |||
| 826 | } | |||
| 827 | if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) | |||
| 828 | return nullptr; | |||
| 829 | } | |||
| 830 | ||||
| 831 | // Do not break infinite loops. | |||
| 832 | BasicBlock *DestBB = BI->getSuccessor(0); | |||
| 833 | if (DestBB == BB) | |||
| 834 | return nullptr; | |||
| 835 | ||||
| 836 | if (!canMergeBlocks(BB, DestBB)) | |||
| 837 | DestBB = nullptr; | |||
| 838 | ||||
| 839 | return DestBB; | |||
| 840 | } | |||
| 841 | ||||
| 842 | /// Eliminate blocks that contain only PHI nodes, debug info directives, and an | |||
| 843 | /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split | |||
| 844 | /// edges in ways that are non-optimal for isel. Start by eliminating these | |||
| 845 | /// blocks so we can split them the way we want them. | |||
| 846 | bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { | |||
| 847 | SmallPtrSet<BasicBlock *, 16> Preheaders; | |||
| 848 | SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); | |||
| 849 | while (!LoopList.empty()) { | |||
| 850 | Loop *L = LoopList.pop_back_val(); | |||
| 851 | llvm::append_range(LoopList, *L); | |||
| 852 | if (BasicBlock *Preheader = L->getLoopPreheader()) | |||
| 853 | Preheaders.insert(Preheader); | |||
| 854 | } | |||
| 855 | ||||
| 856 | bool MadeChange = false; | |||
| 857 | // Copy blocks into a temporary array to avoid iterator invalidation issues | |||
| 858 | // as we remove them. | |||
| 859 | // Note that this intentionally skips the entry block. | |||
| 860 | SmallVector<WeakTrackingVH, 16> Blocks; | |||
| 861 | for (auto &Block : llvm::drop_begin(F)) | |||
| 862 | Blocks.push_back(&Block); | |||
| 863 | ||||
| 864 | for (auto &Block : Blocks) { | |||
| 865 | BasicBlock *BB = cast_or_null<BasicBlock>(Block); | |||
| 866 | if (!BB) | |||
| 867 | continue; | |||
| 868 | BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); | |||
| 869 | if (!DestBB || | |||
| 870 | !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) | |||
| 871 | continue; | |||
| 872 | ||||
| 873 | eliminateMostlyEmptyBlock(BB); | |||
| 874 | MadeChange = true; | |||
| 875 | } | |||
| 876 | return MadeChange; | |||
| 877 | } | |||
| 878 | ||||
| 879 | bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, | |||
| 880 | BasicBlock *DestBB, | |||
| 881 | bool isPreheader) { | |||
| 882 | // Do not delete loop preheaders if doing so would create a critical edge. | |||
| 883 | // Loop preheaders can be good locations to spill registers. If the | |||
| 884 | // preheader is deleted and we create a critical edge, registers may be | |||
| 885 | // spilled in the loop body instead. | |||
| 886 | if (!DisablePreheaderProtect && isPreheader && | |||
| 887 | !(BB->getSinglePredecessor() && | |||
| 888 | BB->getSinglePredecessor()->getSingleSuccessor())) | |||
| 889 | return false; | |||
| 890 | ||||
| 891 | // Skip merging if the block's successor is also a successor to any callbr | |||
| 892 | // that leads to this block. | |||
| 893 | // FIXME: Is this really needed? Is this a correctness issue? | |||
| 894 | for (BasicBlock *Pred : predecessors(BB)) { | |||
| 895 | if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) | |||
| 896 | for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) | |||
| 897 | if (DestBB == CBI->getSuccessor(i)) | |||
| 898 | return false; | |||
| 899 | } | |||
| 900 | ||||
| 901 | // Try to skip merging if the unique predecessor of BB is terminated by a | |||
| 902 | // switch or indirect branch instruction, and BB is used as an incoming block | |||
| 903 | // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to | |||
| 904 | // add COPY instructions in the predecessor of BB instead of BB (if it is not | |||
| 905 | // merged). Note that the critical edge created by merging such blocks wont be | |||
| 906 | // split in MachineSink because the jump table is not analyzable. By keeping | |||
| 907 | // such empty block (BB), ISel will place COPY instructions in BB, not in the | |||
| 908 | // predecessor of BB. | |||
| 909 | BasicBlock *Pred = BB->getUniquePredecessor(); | |||
| 910 | if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || | |||
| 911 | isa<IndirectBrInst>(Pred->getTerminator()))) | |||
| 912 | return true; | |||
| 913 | ||||
| 914 | if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) | |||
| 915 | return true; | |||
| 916 | ||||
| 917 | // We use a simple cost heuristic which determine skipping merging is | |||
| 918 | // profitable if the cost of skipping merging is less than the cost of | |||
| 919 | // merging : Cost(skipping merging) < Cost(merging BB), where the | |||
| 920 | // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and | |||
| 921 | // the Cost(merging BB) is Freq(Pred) * Cost(Copy). | |||
| 922 | // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : | |||
| 923 | // Freq(Pred) / Freq(BB) > 2. | |||
| 924 | // Note that if there are multiple empty blocks sharing the same incoming | |||
| 925 | // value for the PHIs in the DestBB, we consider them together. In such | |||
| 926 | // case, Cost(merging BB) will be the sum of their frequencies. | |||
| 927 | ||||
| 928 | if (!isa<PHINode>(DestBB->begin())) | |||
| 929 | return true; | |||
| 930 | ||||
| 931 | SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; | |||
| 932 | ||||
| 933 | // Find all other incoming blocks from which incoming values of all PHIs in | |||
| 934 | // DestBB are the same as the ones from BB. | |||
| 935 | for (BasicBlock *DestBBPred : predecessors(DestBB)) { | |||
| 936 | if (DestBBPred == BB) | |||
| 937 | continue; | |||
| 938 | ||||
| 939 | if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { | |||
| 940 | return DestPN.getIncomingValueForBlock(BB) == | |||
| 941 | DestPN.getIncomingValueForBlock(DestBBPred); | |||
| 942 | })) | |||
| 943 | SameIncomingValueBBs.insert(DestBBPred); | |||
| 944 | } | |||
| 945 | ||||
| 946 | // See if all BB's incoming values are same as the value from Pred. In this | |||
| 947 | // case, no reason to skip merging because COPYs are expected to be place in | |||
| 948 | // Pred already. | |||
| 949 | if (SameIncomingValueBBs.count(Pred)) | |||
| 950 | return true; | |||
| 951 | ||||
| 952 | BlockFrequency PredFreq = BFI->getBlockFreq(Pred); | |||
| 953 | BlockFrequency BBFreq = BFI->getBlockFreq(BB); | |||
| 954 | ||||
| 955 | for (auto *SameValueBB : SameIncomingValueBBs) | |||
| 956 | if (SameValueBB->getUniquePredecessor() == Pred && | |||
| 957 | DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) | |||
| 958 | BBFreq += BFI->getBlockFreq(SameValueBB); | |||
| 959 | ||||
| 960 | return PredFreq.getFrequency() <= | |||
| 961 | BBFreq.getFrequency() * FreqRatioToSkipMerge; | |||
| 962 | } | |||
| 963 | ||||
| 964 | /// Return true if we can merge BB into DestBB if there is a single | |||
| 965 | /// unconditional branch between them, and BB contains no other non-phi | |||
| 966 | /// instructions. | |||
| 967 | bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, | |||
| 968 | const BasicBlock *DestBB) const { | |||
| 969 | // We only want to eliminate blocks whose phi nodes are used by phi nodes in | |||
| 970 | // the successor. If there are more complex condition (e.g. preheaders), | |||
| 971 | // don't mess around with them. | |||
| 972 | for (const PHINode &PN : BB->phis()) { | |||
| 973 | for (const User *U : PN.users()) { | |||
| 974 | const Instruction *UI = cast<Instruction>(U); | |||
| 975 | if (UI->getParent() != DestBB || !isa<PHINode>(UI)) | |||
| 976 | return false; | |||
| 977 | // If User is inside DestBB block and it is a PHINode then check | |||
| 978 | // incoming value. If incoming value is not from BB then this is | |||
| 979 | // a complex condition (e.g. preheaders) we want to avoid here. | |||
| 980 | if (UI->getParent() == DestBB) { | |||
| 981 | if (const PHINode *UPN = dyn_cast<PHINode>(UI)) | |||
| 982 | for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { | |||
| 983 | Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); | |||
| 984 | if (Insn && Insn->getParent() == BB && | |||
| 985 | Insn->getParent() != UPN->getIncomingBlock(I)) | |||
| 986 | return false; | |||
| 987 | } | |||
| 988 | } | |||
| 989 | } | |||
| 990 | } | |||
| 991 | ||||
| 992 | // If BB and DestBB contain any common predecessors, then the phi nodes in BB | |||
| 993 | // and DestBB may have conflicting incoming values for the block. If so, we | |||
| 994 | // can't merge the block. | |||
| 995 | const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); | |||
| 996 | if (!DestBBPN) | |||
| 997 | return true; // no conflict. | |||
| 998 | ||||
| 999 | // Collect the preds of BB. | |||
| 1000 | SmallPtrSet<const BasicBlock *, 16> BBPreds; | |||
| 1001 | if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | |||
| 1002 | // It is faster to get preds from a PHI than with pred_iterator. | |||
| 1003 | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | |||
| 1004 | BBPreds.insert(BBPN->getIncomingBlock(i)); | |||
| 1005 | } else { | |||
| 1006 | BBPreds.insert(pred_begin(BB), pred_end(BB)); | |||
| 1007 | } | |||
| 1008 | ||||
| 1009 | // Walk the preds of DestBB. | |||
| 1010 | for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { | |||
| 1011 | BasicBlock *Pred = DestBBPN->getIncomingBlock(i); | |||
| 1012 | if (BBPreds.count(Pred)) { // Common predecessor? | |||
| 1013 | for (const PHINode &PN : DestBB->phis()) { | |||
| 1014 | const Value *V1 = PN.getIncomingValueForBlock(Pred); | |||
| 1015 | const Value *V2 = PN.getIncomingValueForBlock(BB); | |||
| 1016 | ||||
| 1017 | // If V2 is a phi node in BB, look up what the mapped value will be. | |||
| 1018 | if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) | |||
| 1019 | if (V2PN->getParent() == BB) | |||
| 1020 | V2 = V2PN->getIncomingValueForBlock(Pred); | |||
| 1021 | ||||
| 1022 | // If there is a conflict, bail out. | |||
| 1023 | if (V1 != V2) | |||
| 1024 | return false; | |||
| 1025 | } | |||
| 1026 | } | |||
| 1027 | } | |||
| 1028 | ||||
| 1029 | return true; | |||
| 1030 | } | |||
| 1031 | ||||
| 1032 | /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. | |||
| 1033 | static void replaceAllUsesWith(Value *Old, Value *New, | |||
| 1034 | SmallSet<BasicBlock *, 32> &FreshBBs, | |||
| 1035 | bool IsHuge) { | |||
| 1036 | auto *OldI = dyn_cast<Instruction>(Old); | |||
| 1037 | if (OldI) { | |||
| 1038 | for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); | |||
| 1039 | UI != E; ++UI) { | |||
| 1040 | Instruction *User = cast<Instruction>(*UI); | |||
| 1041 | if (IsHuge) | |||
| 1042 | FreshBBs.insert(User->getParent()); | |||
| 1043 | } | |||
| 1044 | } | |||
| 1045 | Old->replaceAllUsesWith(New); | |||
| 1046 | } | |||
| 1047 | ||||
| 1048 | /// Eliminate a basic block that has only phi's and an unconditional branch in | |||
| 1049 | /// it. | |||
| 1050 | void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { | |||
| 1051 | BranchInst *BI = cast<BranchInst>(BB->getTerminator()); | |||
| 1052 | BasicBlock *DestBB = BI->getSuccessor(0); | |||
| 1053 | ||||
| 1054 | LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB; } } while (false) | |||
| 1055 | << *BB << *DestBB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB; } } while (false); | |||
| 1056 | ||||
| 1057 | // If the destination block has a single pred, then this is a trivial edge, | |||
| 1058 | // just collapse it. | |||
| 1059 | if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { | |||
| 1060 | if (SinglePred != DestBB) { | |||
| 1061 | assert(SinglePred == BB &&(static_cast <bool> (SinglePred == BB && "Single predecessor not the same as predecessor" ) ? void (0) : __assert_fail ("SinglePred == BB && \"Single predecessor not the same as predecessor\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1062, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1062 | "Single predecessor not the same as predecessor")(static_cast <bool> (SinglePred == BB && "Single predecessor not the same as predecessor" ) ? void (0) : __assert_fail ("SinglePred == BB && \"Single predecessor not the same as predecessor\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1062, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1063 | // Merge DestBB into SinglePred/BB and delete it. | |||
| 1064 | MergeBlockIntoPredecessor(DestBB); | |||
| 1065 | // Note: BB(=SinglePred) will not be deleted on this path. | |||
| 1066 | // DestBB(=its single successor) is the one that was deleted. | |||
| 1067 | LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"; } } while (false); | |||
| 1068 | ||||
| 1069 | if (IsHugeFunc) { | |||
| 1070 | // Update FreshBBs to optimize the merged BB. | |||
| 1071 | FreshBBs.insert(SinglePred); | |||
| 1072 | FreshBBs.erase(DestBB); | |||
| 1073 | } | |||
| 1074 | return; | |||
| 1075 | } | |||
| 1076 | } | |||
| 1077 | ||||
| 1078 | // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB | |||
| 1079 | // to handle the new incoming edges it is about to have. | |||
| 1080 | for (PHINode &PN : DestBB->phis()) { | |||
| 1081 | // Remove the incoming value for BB, and remember it. | |||
| 1082 | Value *InVal = PN.removeIncomingValue(BB, false); | |||
| 1083 | ||||
| 1084 | // Two options: either the InVal is a phi node defined in BB or it is some | |||
| 1085 | // value that dominates BB. | |||
| 1086 | PHINode *InValPhi = dyn_cast<PHINode>(InVal); | |||
| 1087 | if (InValPhi && InValPhi->getParent() == BB) { | |||
| 1088 | // Add all of the input values of the input PHI as inputs of this phi. | |||
| 1089 | for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) | |||
| 1090 | PN.addIncoming(InValPhi->getIncomingValue(i), | |||
| 1091 | InValPhi->getIncomingBlock(i)); | |||
| 1092 | } else { | |||
| 1093 | // Otherwise, add one instance of the dominating value for each edge that | |||
| 1094 | // we will be adding. | |||
| 1095 | if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { | |||
| 1096 | for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) | |||
| 1097 | PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); | |||
| 1098 | } else { | |||
| 1099 | for (BasicBlock *Pred : predecessors(BB)) | |||
| 1100 | PN.addIncoming(InVal, Pred); | |||
| 1101 | } | |||
| 1102 | } | |||
| 1103 | } | |||
| 1104 | ||||
| 1105 | // The PHIs are now updated, change everything that refers to BB to use | |||
| 1106 | // DestBB and remove BB. | |||
| 1107 | BB->replaceAllUsesWith(DestBB); | |||
| 1108 | BB->eraseFromParent(); | |||
| 1109 | ++NumBlocksElim; | |||
| 1110 | ||||
| 1111 | LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"; } } while (false); | |||
| 1112 | } | |||
| 1113 | ||||
| 1114 | // Computes a map of base pointer relocation instructions to corresponding | |||
| 1115 | // derived pointer relocation instructions given a vector of all relocate calls | |||
| 1116 | static void computeBaseDerivedRelocateMap( | |||
| 1117 | const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, | |||
| 1118 | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> | |||
| 1119 | &RelocateInstMap) { | |||
| 1120 | // Collect information in two maps: one primarily for locating the base object | |||
| 1121 | // while filling the second map; the second map is the final structure holding | |||
| 1122 | // a mapping between Base and corresponding Derived relocate calls | |||
| 1123 | DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; | |||
| 1124 | for (auto *ThisRelocate : AllRelocateCalls) { | |||
| 1125 | auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), | |||
| 1126 | ThisRelocate->getDerivedPtrIndex()); | |||
| 1127 | RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); | |||
| 1128 | } | |||
| 1129 | for (auto &Item : RelocateIdxMap) { | |||
| 1130 | std::pair<unsigned, unsigned> Key = Item.first; | |||
| 1131 | if (Key.first == Key.second) | |||
| 1132 | // Base relocation: nothing to insert | |||
| 1133 | continue; | |||
| 1134 | ||||
| 1135 | GCRelocateInst *I = Item.second; | |||
| 1136 | auto BaseKey = std::make_pair(Key.first, Key.first); | |||
| 1137 | ||||
| 1138 | // We're iterating over RelocateIdxMap so we cannot modify it. | |||
| 1139 | auto MaybeBase = RelocateIdxMap.find(BaseKey); | |||
| 1140 | if (MaybeBase == RelocateIdxMap.end()) | |||
| 1141 | // TODO: We might want to insert a new base object relocate and gep off | |||
| 1142 | // that, if there are enough derived object relocates. | |||
| 1143 | continue; | |||
| 1144 | ||||
| 1145 | RelocateInstMap[MaybeBase->second].push_back(I); | |||
| 1146 | } | |||
| 1147 | } | |||
| 1148 | ||||
| 1149 | // Accepts a GEP and extracts the operands into a vector provided they're all | |||
| 1150 | // small integer constants | |||
| 1151 | static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, | |||
| 1152 | SmallVectorImpl<Value *> &OffsetV) { | |||
| 1153 | for (unsigned i = 1; i < GEP->getNumOperands(); i++) { | |||
| 1154 | // Only accept small constant integer operands | |||
| 1155 | auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); | |||
| 1156 | if (!Op || Op->getZExtValue() > 20) | |||
| 1157 | return false; | |||
| 1158 | } | |||
| 1159 | ||||
| 1160 | for (unsigned i = 1; i < GEP->getNumOperands(); i++) | |||
| 1161 | OffsetV.push_back(GEP->getOperand(i)); | |||
| 1162 | return true; | |||
| 1163 | } | |||
| 1164 | ||||
| 1165 | // Takes a RelocatedBase (base pointer relocation instruction) and Targets to | |||
| 1166 | // replace, computes a replacement, and affects it. | |||
| 1167 | static bool | |||
| 1168 | simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, | |||
| 1169 | const SmallVectorImpl<GCRelocateInst *> &Targets) { | |||
| 1170 | bool MadeChange = false; | |||
| 1171 | // We must ensure the relocation of derived pointer is defined after | |||
| 1172 | // relocation of base pointer. If we find a relocation corresponding to base | |||
| 1173 | // defined earlier than relocation of base then we move relocation of base | |||
| 1174 | // right before found relocation. We consider only relocation in the same | |||
| 1175 | // basic block as relocation of base. Relocations from other basic block will | |||
| 1176 | // be skipped by optimization and we do not care about them. | |||
| 1177 | for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); | |||
| 1178 | &*R != RelocatedBase; ++R) | |||
| 1179 | if (auto *RI = dyn_cast<GCRelocateInst>(R)) | |||
| 1180 | if (RI->getStatepoint() == RelocatedBase->getStatepoint()) | |||
| 1181 | if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { | |||
| 1182 | RelocatedBase->moveBefore(RI); | |||
| 1183 | break; | |||
| 1184 | } | |||
| 1185 | ||||
| 1186 | for (GCRelocateInst *ToReplace : Targets) { | |||
| 1187 | assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&(static_cast <bool> (ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && "Not relocating a derived object of the original base object" ) ? void (0) : __assert_fail ("ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && \"Not relocating a derived object of the original base object\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1188, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1188 | "Not relocating a derived object of the original base object")(static_cast <bool> (ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && "Not relocating a derived object of the original base object" ) ? void (0) : __assert_fail ("ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && \"Not relocating a derived object of the original base object\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1188, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1189 | if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { | |||
| 1190 | // A duplicate relocate call. TODO: coalesce duplicates. | |||
| 1191 | continue; | |||
| 1192 | } | |||
| 1193 | ||||
| 1194 | if (RelocatedBase->getParent() != ToReplace->getParent()) { | |||
| 1195 | // Base and derived relocates are in different basic blocks. | |||
| 1196 | // In this case transform is only valid when base dominates derived | |||
| 1197 | // relocate. However it would be too expensive to check dominance | |||
| 1198 | // for each such relocate, so we skip the whole transformation. | |||
| 1199 | continue; | |||
| 1200 | } | |||
| 1201 | ||||
| 1202 | Value *Base = ToReplace->getBasePtr(); | |||
| 1203 | auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); | |||
| 1204 | if (!Derived
| |||
| 1205 | continue; | |||
| 1206 | ||||
| 1207 | SmallVector<Value *, 2> OffsetV; | |||
| 1208 | if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) | |||
| 1209 | continue; | |||
| 1210 | ||||
| 1211 | // Create a Builder and replace the target callsite with a gep | |||
| 1212 | assert(RelocatedBase->getNextNode() &&(static_cast <bool> (RelocatedBase->getNextNode() && "Should always have one since it's not a terminator") ? void (0) : __assert_fail ("RelocatedBase->getNextNode() && \"Should always have one since it's not a terminator\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1213, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1213 | "Should always have one since it's not a terminator")(static_cast <bool> (RelocatedBase->getNextNode() && "Should always have one since it's not a terminator") ? void (0) : __assert_fail ("RelocatedBase->getNextNode() && \"Should always have one since it's not a terminator\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1213, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1214 | ||||
| 1215 | // Insert after RelocatedBase | |||
| 1216 | IRBuilder<> Builder(RelocatedBase->getNextNode()); | |||
| 1217 | Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); | |||
| 1218 | ||||
| 1219 | // If gc_relocate does not match the actual type, cast it to the right type. | |||
| 1220 | // In theory, there must be a bitcast after gc_relocate if the type does not | |||
| 1221 | // match, and we should reuse it to get the derived pointer. But it could be | |||
| 1222 | // cases like this: | |||
| 1223 | // bb1: | |||
| 1224 | // ... | |||
| 1225 | // %g1 = call coldcc i8 addrspace(1)* | |||
| 1226 | // @llvm.experimental.gc.relocate.p1i8(...) br label %merge | |||
| 1227 | // | |||
| 1228 | // bb2: | |||
| 1229 | // ... | |||
| 1230 | // %g2 = call coldcc i8 addrspace(1)* | |||
| 1231 | // @llvm.experimental.gc.relocate.p1i8(...) br label %merge | |||
| 1232 | // | |||
| 1233 | // merge: | |||
| 1234 | // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] | |||
| 1235 | // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* | |||
| 1236 | // | |||
| 1237 | // In this case, we can not find the bitcast any more. So we insert a new | |||
| 1238 | // bitcast no matter there is already one or not. In this way, we can handle | |||
| 1239 | // all cases, and the extra bitcast should be optimized away in later | |||
| 1240 | // passes. | |||
| 1241 | Value *ActualRelocatedBase = RelocatedBase; | |||
| 1242 | if (RelocatedBase->getType() != Base->getType()) { | |||
| ||||
| 1243 | ActualRelocatedBase = | |||
| 1244 | Builder.CreateBitCast(RelocatedBase, Base->getType()); | |||
| 1245 | } | |||
| 1246 | Value *Replacement = | |||
| 1247 | Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, | |||
| 1248 | ArrayRef(OffsetV)); | |||
| 1249 | Replacement->takeName(ToReplace); | |||
| 1250 | // If the newly generated derived pointer's type does not match the original | |||
| 1251 | // derived pointer's type, cast the new derived pointer to match it. Same | |||
| 1252 | // reasoning as above. | |||
| 1253 | Value *ActualReplacement = Replacement; | |||
| 1254 | if (Replacement->getType() != ToReplace->getType()) { | |||
| 1255 | ActualReplacement = | |||
| 1256 | Builder.CreateBitCast(Replacement, ToReplace->getType()); | |||
| 1257 | } | |||
| 1258 | ToReplace->replaceAllUsesWith(ActualReplacement); | |||
| 1259 | ToReplace->eraseFromParent(); | |||
| 1260 | ||||
| 1261 | MadeChange = true; | |||
| 1262 | } | |||
| 1263 | return MadeChange; | |||
| 1264 | } | |||
| 1265 | ||||
| 1266 | // Turns this: | |||
| 1267 | // | |||
| 1268 | // %base = ... | |||
| 1269 | // %ptr = gep %base + 15 | |||
| 1270 | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | |||
| 1271 | // %base' = relocate(%tok, i32 4, i32 4) | |||
| 1272 | // %ptr' = relocate(%tok, i32 4, i32 5) | |||
| 1273 | // %val = load %ptr' | |||
| 1274 | // | |||
| 1275 | // into this: | |||
| 1276 | // | |||
| 1277 | // %base = ... | |||
| 1278 | // %ptr = gep %base + 15 | |||
| 1279 | // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) | |||
| 1280 | // %base' = gc.relocate(%tok, i32 4, i32 4) | |||
| 1281 | // %ptr' = gep %base' + 15 | |||
| 1282 | // %val = load %ptr' | |||
| 1283 | bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { | |||
| 1284 | bool MadeChange = false; | |||
| 1285 | SmallVector<GCRelocateInst *, 2> AllRelocateCalls; | |||
| 1286 | for (auto *U : I.users()) | |||
| 1287 | if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) | |||
| 1288 | // Collect all the relocate calls associated with a statepoint | |||
| 1289 | AllRelocateCalls.push_back(Relocate); | |||
| 1290 | ||||
| 1291 | // We need at least one base pointer relocation + one derived pointer | |||
| 1292 | // relocation to mangle | |||
| 1293 | if (AllRelocateCalls.size() < 2) | |||
| ||||
| 1294 | return false; | |||
| 1295 | ||||
| 1296 | // RelocateInstMap is a mapping from the base relocate instruction to the | |||
| 1297 | // corresponding derived relocate instructions | |||
| 1298 | DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; | |||
| 1299 | computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); | |||
| 1300 | if (RelocateInstMap.empty()) | |||
| 1301 | return false; | |||
| 1302 | ||||
| 1303 | for (auto &Item : RelocateInstMap) | |||
| 1304 | // Item.first is the RelocatedBase to offset against | |||
| 1305 | // Item.second is the vector of Targets to replace | |||
| 1306 | MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); | |||
| 1307 | return MadeChange; | |||
| 1308 | } | |||
| 1309 | ||||
| 1310 | /// Sink the specified cast instruction into its user blocks. | |||
| 1311 | static bool SinkCast(CastInst *CI) { | |||
| 1312 | BasicBlock *DefBB = CI->getParent(); | |||
| 1313 | ||||
| 1314 | /// InsertedCasts - Only insert a cast in each block once. | |||
| 1315 | DenseMap<BasicBlock *, CastInst *> InsertedCasts; | |||
| 1316 | ||||
| 1317 | bool MadeChange = false; | |||
| 1318 | for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); | |||
| 1319 | UI != E;) { | |||
| 1320 | Use &TheUse = UI.getUse(); | |||
| 1321 | Instruction *User = cast<Instruction>(*UI); | |||
| 1322 | ||||
| 1323 | // Figure out which BB this cast is used in. For PHI's this is the | |||
| 1324 | // appropriate predecessor block. | |||
| 1325 | BasicBlock *UserBB = User->getParent(); | |||
| 1326 | if (PHINode *PN = dyn_cast<PHINode>(User)) { | |||
| 1327 | UserBB = PN->getIncomingBlock(TheUse); | |||
| 1328 | } | |||
| 1329 | ||||
| 1330 | // Preincrement use iterator so we don't invalidate it. | |||
| 1331 | ++UI; | |||
| 1332 | ||||
| 1333 | // The first insertion point of a block containing an EH pad is after the | |||
| 1334 | // pad. If the pad is the user, we cannot sink the cast past the pad. | |||
| 1335 | if (User->isEHPad()) | |||
| 1336 | continue; | |||
| 1337 | ||||
| 1338 | // If the block selected to receive the cast is an EH pad that does not | |||
| 1339 | // allow non-PHI instructions before the terminator, we can't sink the | |||
| 1340 | // cast. | |||
| 1341 | if (UserBB->getTerminator()->isEHPad()) | |||
| 1342 | continue; | |||
| 1343 | ||||
| 1344 | // If this user is in the same block as the cast, don't change the cast. | |||
| 1345 | if (UserBB == DefBB) | |||
| 1346 | continue; | |||
| 1347 | ||||
| 1348 | // If we have already inserted a cast into this block, use it. | |||
| 1349 | CastInst *&InsertedCast = InsertedCasts[UserBB]; | |||
| 1350 | ||||
| 1351 | if (!InsertedCast) { | |||
| 1352 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | |||
| 1353 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 1353, __extension__ __PRETTY_FUNCTION__)); | |||
| 1354 | InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), | |||
| 1355 | CI->getType(), "", &*InsertPt); | |||
| 1356 | InsertedCast->setDebugLoc(CI->getDebugLoc()); | |||
| 1357 | } | |||
| 1358 | ||||
| 1359 | // Replace a use of the cast with a use of the new cast. | |||
| 1360 | TheUse = InsertedCast; | |||
| 1361 | MadeChange = true; | |||
| 1362 | ++NumCastUses; | |||
| 1363 | } | |||
| 1364 | ||||
| 1365 | // If we removed all uses, nuke the cast. | |||
| 1366 | if (CI->use_empty()) { | |||
| 1367 | salvageDebugInfo(*CI); | |||
| 1368 | CI->eraseFromParent(); | |||
| 1369 | MadeChange = true; | |||
| 1370 | } | |||
| 1371 | ||||
| 1372 | return MadeChange; | |||
| 1373 | } | |||
| 1374 | ||||
| 1375 | /// If the specified cast instruction is a noop copy (e.g. it's casting from | |||
| 1376 | /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to | |||
| 1377 | /// reduce the number of virtual registers that must be created and coalesced. | |||
| 1378 | /// | |||
| 1379 | /// Return true if any changes are made. | |||
| 1380 | static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, | |||
| 1381 | const DataLayout &DL) { | |||
| 1382 | // Sink only "cheap" (or nop) address-space casts. This is a weaker condition | |||
| 1383 | // than sinking only nop casts, but is helpful on some platforms. | |||
| 1384 | if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { | |||
| 1385 | if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), | |||
| 1386 | ASC->getDestAddressSpace())) | |||
| 1387 | return false; | |||
| 1388 | } | |||
| 1389 | ||||
| 1390 | // If this is a noop copy, | |||
| 1391 | EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); | |||
| 1392 | EVT DstVT = TLI.getValueType(DL, CI->getType()); | |||
| 1393 | ||||
| 1394 | // This is an fp<->int conversion? | |||
| 1395 | if (SrcVT.isInteger() != DstVT.isInteger()) | |||
| 1396 | return false; | |||
| 1397 | ||||
| 1398 | // If this is an extension, it will be a zero or sign extension, which | |||
| 1399 | // isn't a noop. | |||
| 1400 | if (SrcVT.bitsLT(DstVT)) | |||
| 1401 | return false; | |||
| 1402 | ||||
| 1403 | // If these values will be promoted, find out what they will be promoted | |||
| 1404 | // to. This helps us consider truncates on PPC as noop copies when they | |||
| 1405 | // are. | |||
| 1406 | if (TLI.getTypeAction(CI->getContext(), SrcVT) == | |||
| 1407 | TargetLowering::TypePromoteInteger) | |||
| 1408 | SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); | |||
| 1409 | if (TLI.getTypeAction(CI->getContext(), DstVT) == | |||
| 1410 | TargetLowering::TypePromoteInteger) | |||
| 1411 | DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); | |||
| 1412 | ||||
| 1413 | // If, after promotion, these are the same types, this is a noop copy. | |||
| 1414 | if (SrcVT != DstVT) | |||
| 1415 | return false; | |||
| 1416 | ||||
| 1417 | return SinkCast(CI); | |||
| 1418 | } | |||
| 1419 | ||||
| 1420 | // Match a simple increment by constant operation. Note that if a sub is | |||
| 1421 | // matched, the step is negated (as if the step had been canonicalized to | |||
| 1422 | // an add, even though we leave the instruction alone.) | |||
| 1423 | bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, | |||
| 1424 | Constant *&Step) { | |||
| 1425 | if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || | |||
| 1426 | match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( | |||
| 1427 | m_Instruction(LHS), m_Constant(Step))))) | |||
| 1428 | return true; | |||
| 1429 | if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || | |||
| 1430 | match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( | |||
| 1431 | m_Instruction(LHS), m_Constant(Step))))) { | |||
| 1432 | Step = ConstantExpr::getNeg(Step); | |||
| 1433 | return true; | |||
| 1434 | } | |||
| 1435 | return false; | |||
| 1436 | } | |||
| 1437 | ||||
| 1438 | /// If given \p PN is an inductive variable with value IVInc coming from the | |||
| 1439 | /// backedge, and on each iteration it gets increased by Step, return pair | |||
| 1440 | /// <IVInc, Step>. Otherwise, return std::nullopt. | |||
| 1441 | static std::optional<std::pair<Instruction *, Constant *>> | |||
| 1442 | getIVIncrement(const PHINode *PN, const LoopInfo *LI) { | |||
| 1443 | const Loop *L = LI->getLoopFor(PN->getParent()); | |||
| 1444 | if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) | |||
| 1445 | return std::nullopt; | |||
| 1446 | auto *IVInc = | |||
| 1447 | dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); | |||
| 1448 | if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) | |||
| 1449 | return std::nullopt; | |||
| 1450 | Instruction *LHS = nullptr; | |||
| 1451 | Constant *Step = nullptr; | |||
| 1452 | if (matchIncrement(IVInc, LHS, Step) && LHS == PN) | |||
| 1453 | return std::make_pair(IVInc, Step); | |||
| 1454 | return std::nullopt; | |||
| 1455 | } | |||
| 1456 | ||||
| 1457 | static bool isIVIncrement(const Value *V, const LoopInfo *LI) { | |||
| 1458 | auto *I = dyn_cast<Instruction>(V); | |||
| 1459 | if (!I) | |||
| 1460 | return false; | |||
| 1461 | Instruction *LHS = nullptr; | |||
| 1462 | Constant *Step = nullptr; | |||
| 1463 | if (!matchIncrement(I, LHS, Step)) | |||
| 1464 | return false; | |||
| 1465 | if (auto *PN = dyn_cast<PHINode>(LHS)) | |||
| 1466 | if (auto IVInc = getIVIncrement(PN, LI)) | |||
| 1467 | return IVInc->first == I; | |||
| 1468 | return false; | |||
| 1469 | } | |||
| 1470 | ||||
| 1471 | bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, | |||
| 1472 | Value *Arg0, Value *Arg1, | |||
| 1473 | CmpInst *Cmp, | |||
| 1474 | Intrinsic::ID IID) { | |||
| 1475 | auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { | |||
| 1476 | if (!isIVIncrement(BO, LI)) | |||
| 1477 | return false; | |||
| 1478 | const Loop *L = LI->getLoopFor(BO->getParent()); | |||
| 1479 | assert(L && "L should not be null after isIVIncrement()")(static_cast <bool> (L && "L should not be null after isIVIncrement()" ) ? void (0) : __assert_fail ("L && \"L should not be null after isIVIncrement()\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1479, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1480 | // Do not risk on moving increment into a child loop. | |||
| 1481 | if (LI->getLoopFor(Cmp->getParent()) != L) | |||
| 1482 | return false; | |||
| 1483 | ||||
| 1484 | // Finally, we need to ensure that the insert point will dominate all | |||
| 1485 | // existing uses of the increment. | |||
| 1486 | ||||
| 1487 | auto &DT = getDT(*BO->getParent()->getParent()); | |||
| 1488 | if (DT.dominates(Cmp->getParent(), BO->getParent())) | |||
| 1489 | // If we're moving up the dom tree, all uses are trivially dominated. | |||
| 1490 | // (This is the common case for code produced by LSR.) | |||
| 1491 | return true; | |||
| 1492 | ||||
| 1493 | // Otherwise, special case the single use in the phi recurrence. | |||
| 1494 | return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); | |||
| 1495 | }; | |||
| 1496 | if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { | |||
| 1497 | // We used to use a dominator tree here to allow multi-block optimization. | |||
| 1498 | // But that was problematic because: | |||
| 1499 | // 1. It could cause a perf regression by hoisting the math op into the | |||
| 1500 | // critical path. | |||
| 1501 | // 2. It could cause a perf regression by creating a value that was live | |||
| 1502 | // across multiple blocks and increasing register pressure. | |||
| 1503 | // 3. Use of a dominator tree could cause large compile-time regression. | |||
| 1504 | // This is because we recompute the DT on every change in the main CGP | |||
| 1505 | // run-loop. The recomputing is probably unnecessary in many cases, so if | |||
| 1506 | // that was fixed, using a DT here would be ok. | |||
| 1507 | // | |||
| 1508 | // There is one important particular case we still want to handle: if BO is | |||
| 1509 | // the IV increment. Important properties that make it profitable: | |||
| 1510 | // - We can speculate IV increment anywhere in the loop (as long as the | |||
| 1511 | // indvar Phi is its only user); | |||
| 1512 | // - Upon computing Cmp, we effectively compute something equivalent to the | |||
| 1513 | // IV increment (despite it loops differently in the IR). So moving it up | |||
| 1514 | // to the cmp point does not really increase register pressure. | |||
| 1515 | return false; | |||
| 1516 | } | |||
| 1517 | ||||
| 1518 | // We allow matching the canonical IR (add X, C) back to (usubo X, -C). | |||
| 1519 | if (BO->getOpcode() == Instruction::Add && | |||
| 1520 | IID == Intrinsic::usub_with_overflow) { | |||
| 1521 | assert(isa<Constant>(Arg1) && "Unexpected input for usubo")(static_cast <bool> (isa<Constant>(Arg1) && "Unexpected input for usubo") ? void (0) : __assert_fail ("isa<Constant>(Arg1) && \"Unexpected input for usubo\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1521, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1522 | Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); | |||
| 1523 | } | |||
| 1524 | ||||
| 1525 | // Insert at the first instruction of the pair. | |||
| 1526 | Instruction *InsertPt = nullptr; | |||
| 1527 | for (Instruction &Iter : *Cmp->getParent()) { | |||
| 1528 | // If BO is an XOR, it is not guaranteed that it comes after both inputs to | |||
| 1529 | // the overflow intrinsic are defined. | |||
| 1530 | if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { | |||
| 1531 | InsertPt = &Iter; | |||
| 1532 | break; | |||
| 1533 | } | |||
| 1534 | } | |||
| 1535 | assert(InsertPt != nullptr && "Parent block did not contain cmp or binop")(static_cast <bool> (InsertPt != nullptr && "Parent block did not contain cmp or binop" ) ? void (0) : __assert_fail ("InsertPt != nullptr && \"Parent block did not contain cmp or binop\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1535, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1536 | ||||
| 1537 | IRBuilder<> Builder(InsertPt); | |||
| 1538 | Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); | |||
| 1539 | if (BO->getOpcode() != Instruction::Xor) { | |||
| 1540 | Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); | |||
| 1541 | replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); | |||
| 1542 | } else | |||
| 1543 | assert(BO->hasOneUse() &&(static_cast <bool> (BO->hasOneUse() && "Patterns with XOr should use the BO only in the compare" ) ? void (0) : __assert_fail ("BO->hasOneUse() && \"Patterns with XOr should use the BO only in the compare\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1544, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1544 | "Patterns with XOr should use the BO only in the compare")(static_cast <bool> (BO->hasOneUse() && "Patterns with XOr should use the BO only in the compare" ) ? void (0) : __assert_fail ("BO->hasOneUse() && \"Patterns with XOr should use the BO only in the compare\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1544, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1545 | Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); | |||
| 1546 | replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); | |||
| 1547 | Cmp->eraseFromParent(); | |||
| 1548 | BO->eraseFromParent(); | |||
| 1549 | return true; | |||
| 1550 | } | |||
| 1551 | ||||
| 1552 | /// Match special-case patterns that check for unsigned add overflow. | |||
| 1553 | static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, | |||
| 1554 | BinaryOperator *&Add) { | |||
| 1555 | // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) | |||
| 1556 | // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) | |||
| 1557 | Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); | |||
| 1558 | ||||
| 1559 | // We are not expecting non-canonical/degenerate code. Just bail out. | |||
| 1560 | if (isa<Constant>(A)) | |||
| 1561 | return false; | |||
| 1562 | ||||
| 1563 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | |||
| 1564 | if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) | |||
| 1565 | B = ConstantInt::get(B->getType(), 1); | |||
| 1566 | else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) | |||
| 1567 | B = ConstantInt::get(B->getType(), -1); | |||
| 1568 | else | |||
| 1569 | return false; | |||
| 1570 | ||||
| 1571 | // Check the users of the variable operand of the compare looking for an add | |||
| 1572 | // with the adjusted constant. | |||
| 1573 | for (User *U : A->users()) { | |||
| 1574 | if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { | |||
| 1575 | Add = cast<BinaryOperator>(U); | |||
| 1576 | return true; | |||
| 1577 | } | |||
| 1578 | } | |||
| 1579 | return false; | |||
| 1580 | } | |||
| 1581 | ||||
| 1582 | /// Try to combine the compare into a call to the llvm.uadd.with.overflow | |||
| 1583 | /// intrinsic. Return true if any changes were made. | |||
| 1584 | bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, | |||
| 1585 | ModifyDT &ModifiedDT) { | |||
| 1586 | bool EdgeCase = false; | |||
| 1587 | Value *A, *B; | |||
| 1588 | BinaryOperator *Add; | |||
| 1589 | if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { | |||
| 1590 | if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) | |||
| 1591 | return false; | |||
| 1592 | // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. | |||
| 1593 | A = Add->getOperand(0); | |||
| 1594 | B = Add->getOperand(1); | |||
| 1595 | EdgeCase = true; | |||
| 1596 | } | |||
| 1597 | ||||
| 1598 | if (!TLI->shouldFormOverflowOp(ISD::UADDO, | |||
| 1599 | TLI->getValueType(*DL, Add->getType()), | |||
| 1600 | Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) | |||
| 1601 | return false; | |||
| 1602 | ||||
| 1603 | // We don't want to move around uses of condition values this late, so we | |||
| 1604 | // check if it is legal to create the call to the intrinsic in the basic | |||
| 1605 | // block containing the icmp. | |||
| 1606 | if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) | |||
| 1607 | return false; | |||
| 1608 | ||||
| 1609 | if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, | |||
| 1610 | Intrinsic::uadd_with_overflow)) | |||
| 1611 | return false; | |||
| 1612 | ||||
| 1613 | // Reset callers - do not crash by iterating over a dead instruction. | |||
| 1614 | ModifiedDT = ModifyDT::ModifyInstDT; | |||
| 1615 | return true; | |||
| 1616 | } | |||
| 1617 | ||||
| 1618 | bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, | |||
| 1619 | ModifyDT &ModifiedDT) { | |||
| 1620 | // We are not expecting non-canonical/degenerate code. Just bail out. | |||
| 1621 | Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); | |||
| 1622 | if (isa<Constant>(A) && isa<Constant>(B)) | |||
| 1623 | return false; | |||
| 1624 | ||||
| 1625 | // Convert (A u> B) to (A u< B) to simplify pattern matching. | |||
| 1626 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | |||
| 1627 | if (Pred == ICmpInst::ICMP_UGT) { | |||
| 1628 | std::swap(A, B); | |||
| 1629 | Pred = ICmpInst::ICMP_ULT; | |||
| 1630 | } | |||
| 1631 | // Convert special-case: (A == 0) is the same as (A u< 1). | |||
| 1632 | if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { | |||
| 1633 | B = ConstantInt::get(B->getType(), 1); | |||
| 1634 | Pred = ICmpInst::ICMP_ULT; | |||
| 1635 | } | |||
| 1636 | // Convert special-case: (A != 0) is the same as (0 u< A). | |||
| 1637 | if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { | |||
| 1638 | std::swap(A, B); | |||
| 1639 | Pred = ICmpInst::ICMP_ULT; | |||
| 1640 | } | |||
| 1641 | if (Pred != ICmpInst::ICMP_ULT) | |||
| 1642 | return false; | |||
| 1643 | ||||
| 1644 | // Walk the users of a variable operand of a compare looking for a subtract or | |||
| 1645 | // add with that same operand. Also match the 2nd operand of the compare to | |||
| 1646 | // the add/sub, but that may be a negated constant operand of an add. | |||
| 1647 | Value *CmpVariableOperand = isa<Constant>(A) ? B : A; | |||
| 1648 | BinaryOperator *Sub = nullptr; | |||
| 1649 | for (User *U : CmpVariableOperand->users()) { | |||
| 1650 | // A - B, A u< B --> usubo(A, B) | |||
| 1651 | if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { | |||
| 1652 | Sub = cast<BinaryOperator>(U); | |||
| 1653 | break; | |||
| 1654 | } | |||
| 1655 | ||||
| 1656 | // A + (-C), A u< C (canonicalized form of (sub A, C)) | |||
| 1657 | const APInt *CmpC, *AddC; | |||
| 1658 | if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && | |||
| 1659 | match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { | |||
| 1660 | Sub = cast<BinaryOperator>(U); | |||
| 1661 | break; | |||
| 1662 | } | |||
| 1663 | } | |||
| 1664 | if (!Sub) | |||
| 1665 | return false; | |||
| 1666 | ||||
| 1667 | if (!TLI->shouldFormOverflowOp(ISD::USUBO, | |||
| 1668 | TLI->getValueType(*DL, Sub->getType()), | |||
| 1669 | Sub->hasNUsesOrMore(1))) | |||
| 1670 | return false; | |||
| 1671 | ||||
| 1672 | if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), | |||
| 1673 | Cmp, Intrinsic::usub_with_overflow)) | |||
| 1674 | return false; | |||
| 1675 | ||||
| 1676 | // Reset callers - do not crash by iterating over a dead instruction. | |||
| 1677 | ModifiedDT = ModifyDT::ModifyInstDT; | |||
| 1678 | return true; | |||
| 1679 | } | |||
| 1680 | ||||
| 1681 | /// Sink the given CmpInst into user blocks to reduce the number of virtual | |||
| 1682 | /// registers that must be created and coalesced. This is a clear win except on | |||
| 1683 | /// targets with multiple condition code registers (PowerPC), where it might | |||
| 1684 | /// lose; some adjustment may be wanted there. | |||
| 1685 | /// | |||
| 1686 | /// Return true if any changes are made. | |||
| 1687 | static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { | |||
| 1688 | if (TLI.hasMultipleConditionRegisters()) | |||
| 1689 | return false; | |||
| 1690 | ||||
| 1691 | // Avoid sinking soft-FP comparisons, since this can move them into a loop. | |||
| 1692 | if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) | |||
| 1693 | return false; | |||
| 1694 | ||||
| 1695 | // Only insert a cmp in each block once. | |||
| 1696 | DenseMap<BasicBlock *, CmpInst *> InsertedCmps; | |||
| 1697 | ||||
| 1698 | bool MadeChange = false; | |||
| 1699 | for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); | |||
| 1700 | UI != E;) { | |||
| 1701 | Use &TheUse = UI.getUse(); | |||
| 1702 | Instruction *User = cast<Instruction>(*UI); | |||
| 1703 | ||||
| 1704 | // Preincrement use iterator so we don't invalidate it. | |||
| 1705 | ++UI; | |||
| 1706 | ||||
| 1707 | // Don't bother for PHI nodes. | |||
| 1708 | if (isa<PHINode>(User)) | |||
| 1709 | continue; | |||
| 1710 | ||||
| 1711 | // Figure out which BB this cmp is used in. | |||
| 1712 | BasicBlock *UserBB = User->getParent(); | |||
| 1713 | BasicBlock *DefBB = Cmp->getParent(); | |||
| 1714 | ||||
| 1715 | // If this user is in the same block as the cmp, don't change the cmp. | |||
| 1716 | if (UserBB == DefBB) | |||
| 1717 | continue; | |||
| 1718 | ||||
| 1719 | // If we have already inserted a cmp into this block, use it. | |||
| 1720 | CmpInst *&InsertedCmp = InsertedCmps[UserBB]; | |||
| 1721 | ||||
| 1722 | if (!InsertedCmp) { | |||
| 1723 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | |||
| 1724 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 1724, __extension__ __PRETTY_FUNCTION__)); | |||
| 1725 | InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), | |||
| 1726 | Cmp->getOperand(0), Cmp->getOperand(1), "", | |||
| 1727 | &*InsertPt); | |||
| 1728 | // Propagate the debug info. | |||
| 1729 | InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); | |||
| 1730 | } | |||
| 1731 | ||||
| 1732 | // Replace a use of the cmp with a use of the new cmp. | |||
| 1733 | TheUse = InsertedCmp; | |||
| 1734 | MadeChange = true; | |||
| 1735 | ++NumCmpUses; | |||
| 1736 | } | |||
| 1737 | ||||
| 1738 | // If we removed all uses, nuke the cmp. | |||
| 1739 | if (Cmp->use_empty()) { | |||
| 1740 | Cmp->eraseFromParent(); | |||
| 1741 | MadeChange = true; | |||
| 1742 | } | |||
| 1743 | ||||
| 1744 | return MadeChange; | |||
| 1745 | } | |||
| 1746 | ||||
| 1747 | /// For pattern like: | |||
| 1748 | /// | |||
| 1749 | /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) | |||
| 1750 | /// ... | |||
| 1751 | /// DomBB: | |||
| 1752 | /// ... | |||
| 1753 | /// br DomCond, TrueBB, CmpBB | |||
| 1754 | /// CmpBB: (with DomBB being the single predecessor) | |||
| 1755 | /// ... | |||
| 1756 | /// Cmp = icmp eq CmpOp0, CmpOp1 | |||
| 1757 | /// ... | |||
| 1758 | /// | |||
| 1759 | /// It would use two comparison on targets that lowering of icmp sgt/slt is | |||
| 1760 | /// different from lowering of icmp eq (PowerPC). This function try to convert | |||
| 1761 | /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. | |||
| 1762 | /// After that, DomCond and Cmp can use the same comparison so reduce one | |||
| 1763 | /// comparison. | |||
| 1764 | /// | |||
| 1765 | /// Return true if any changes are made. | |||
| 1766 | static bool foldICmpWithDominatingICmp(CmpInst *Cmp, | |||
| 1767 | const TargetLowering &TLI) { | |||
| 1768 | if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) | |||
| 1769 | return false; | |||
| 1770 | ||||
| 1771 | ICmpInst::Predicate Pred = Cmp->getPredicate(); | |||
| 1772 | if (Pred != ICmpInst::ICMP_EQ) | |||
| 1773 | return false; | |||
| 1774 | ||||
| 1775 | // If icmp eq has users other than BranchInst and SelectInst, converting it to | |||
| 1776 | // icmp slt/sgt would introduce more redundant LLVM IR. | |||
| 1777 | for (User *U : Cmp->users()) { | |||
| 1778 | if (isa<BranchInst>(U)) | |||
| 1779 | continue; | |||
| 1780 | if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) | |||
| 1781 | continue; | |||
| 1782 | return false; | |||
| 1783 | } | |||
| 1784 | ||||
| 1785 | // This is a cheap/incomplete check for dominance - just match a single | |||
| 1786 | // predecessor with a conditional branch. | |||
| 1787 | BasicBlock *CmpBB = Cmp->getParent(); | |||
| 1788 | BasicBlock *DomBB = CmpBB->getSinglePredecessor(); | |||
| 1789 | if (!DomBB) | |||
| 1790 | return false; | |||
| 1791 | ||||
| 1792 | // We want to ensure that the only way control gets to the comparison of | |||
| 1793 | // interest is that a less/greater than comparison on the same operands is | |||
| 1794 | // false. | |||
| 1795 | Value *DomCond; | |||
| 1796 | BasicBlock *TrueBB, *FalseBB; | |||
| 1797 | if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) | |||
| 1798 | return false; | |||
| 1799 | if (CmpBB != FalseBB) | |||
| 1800 | return false; | |||
| 1801 | ||||
| 1802 | Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); | |||
| 1803 | ICmpInst::Predicate DomPred; | |||
| 1804 | if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) | |||
| 1805 | return false; | |||
| 1806 | if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) | |||
| 1807 | return false; | |||
| 1808 | ||||
| 1809 | // Convert the equality comparison to the opposite of the dominating | |||
| 1810 | // comparison and swap the direction for all branch/select users. | |||
| 1811 | // We have conceptually converted: | |||
| 1812 | // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; | |||
| 1813 | // to | |||
| 1814 | // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; | |||
| 1815 | // And similarly for branches. | |||
| 1816 | for (User *U : Cmp->users()) { | |||
| 1817 | if (auto *BI = dyn_cast<BranchInst>(U)) { | |||
| 1818 | assert(BI->isConditional() && "Must be conditional")(static_cast <bool> (BI->isConditional() && "Must be conditional" ) ? void (0) : __assert_fail ("BI->isConditional() && \"Must be conditional\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1818, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1819 | BI->swapSuccessors(); | |||
| 1820 | continue; | |||
| 1821 | } | |||
| 1822 | if (auto *SI = dyn_cast<SelectInst>(U)) { | |||
| 1823 | // Swap operands | |||
| 1824 | SI->swapValues(); | |||
| 1825 | SI->swapProfMetadata(); | |||
| 1826 | continue; | |||
| 1827 | } | |||
| 1828 | llvm_unreachable("Must be a branch or a select")::llvm::llvm_unreachable_internal("Must be a branch or a select" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1828); | |||
| 1829 | } | |||
| 1830 | Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); | |||
| 1831 | return true; | |||
| 1832 | } | |||
| 1833 | ||||
| 1834 | bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { | |||
| 1835 | if (sinkCmpExpression(Cmp, *TLI)) | |||
| 1836 | return true; | |||
| 1837 | ||||
| 1838 | if (combineToUAddWithOverflow(Cmp, ModifiedDT)) | |||
| 1839 | return true; | |||
| 1840 | ||||
| 1841 | if (combineToUSubWithOverflow(Cmp, ModifiedDT)) | |||
| 1842 | return true; | |||
| 1843 | ||||
| 1844 | if (foldICmpWithDominatingICmp(Cmp, *TLI)) | |||
| 1845 | return true; | |||
| 1846 | ||||
| 1847 | return false; | |||
| 1848 | } | |||
| 1849 | ||||
| 1850 | /// Duplicate and sink the given 'and' instruction into user blocks where it is | |||
| 1851 | /// used in a compare to allow isel to generate better code for targets where | |||
| 1852 | /// this operation can be combined. | |||
| 1853 | /// | |||
| 1854 | /// Return true if any changes are made. | |||
| 1855 | static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, | |||
| 1856 | SetOfInstrs &InsertedInsts) { | |||
| 1857 | // Double-check that we're not trying to optimize an instruction that was | |||
| 1858 | // already optimized by some other part of this pass. | |||
| 1859 | assert(!InsertedInsts.count(AndI) &&(static_cast <bool> (!InsertedInsts.count(AndI) && "Attempting to optimize already optimized and instruction") ? void (0) : __assert_fail ("!InsertedInsts.count(AndI) && \"Attempting to optimize already optimized and instruction\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1860, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1860 | "Attempting to optimize already optimized and instruction")(static_cast <bool> (!InsertedInsts.count(AndI) && "Attempting to optimize already optimized and instruction") ? void (0) : __assert_fail ("!InsertedInsts.count(AndI) && \"Attempting to optimize already optimized and instruction\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1860, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1861 | (void)InsertedInsts; | |||
| 1862 | ||||
| 1863 | // Nothing to do for single use in same basic block. | |||
| 1864 | if (AndI->hasOneUse() && | |||
| 1865 | AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) | |||
| 1866 | return false; | |||
| 1867 | ||||
| 1868 | // Try to avoid cases where sinking/duplicating is likely to increase register | |||
| 1869 | // pressure. | |||
| 1870 | if (!isa<ConstantInt>(AndI->getOperand(0)) && | |||
| 1871 | !isa<ConstantInt>(AndI->getOperand(1)) && | |||
| 1872 | AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) | |||
| 1873 | return false; | |||
| 1874 | ||||
| 1875 | for (auto *U : AndI->users()) { | |||
| 1876 | Instruction *User = cast<Instruction>(U); | |||
| 1877 | ||||
| 1878 | // Only sink 'and' feeding icmp with 0. | |||
| 1879 | if (!isa<ICmpInst>(User)) | |||
| 1880 | return false; | |||
| 1881 | ||||
| 1882 | auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); | |||
| 1883 | if (!CmpC || !CmpC->isZero()) | |||
| 1884 | return false; | |||
| 1885 | } | |||
| 1886 | ||||
| 1887 | if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) | |||
| 1888 | return false; | |||
| 1889 | ||||
| 1890 | LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "found 'and' feeding only icmp 0;\n" ; } } while (false); | |||
| 1891 | LLVM_DEBUG(AndI->getParent()->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { AndI->getParent()->dump(); } } while (false); | |||
| 1892 | ||||
| 1893 | // Push the 'and' into the same block as the icmp 0. There should only be | |||
| 1894 | // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any | |||
| 1895 | // others, so we don't need to keep track of which BBs we insert into. | |||
| 1896 | for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); | |||
| 1897 | UI != E;) { | |||
| 1898 | Use &TheUse = UI.getUse(); | |||
| 1899 | Instruction *User = cast<Instruction>(*UI); | |||
| 1900 | ||||
| 1901 | // Preincrement use iterator so we don't invalidate it. | |||
| 1902 | ++UI; | |||
| 1903 | ||||
| 1904 | LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "sinking 'and' use: " << *User << "\n"; } } while (false); | |||
| 1905 | ||||
| 1906 | // Keep the 'and' in the same place if the use is already in the same block. | |||
| 1907 | Instruction *InsertPt = | |||
| 1908 | User->getParent() == AndI->getParent() ? AndI : User; | |||
| 1909 | Instruction *InsertedAnd = | |||
| 1910 | BinaryOperator::Create(Instruction::And, AndI->getOperand(0), | |||
| 1911 | AndI->getOperand(1), "", InsertPt); | |||
| 1912 | // Propagate the debug info. | |||
| 1913 | InsertedAnd->setDebugLoc(AndI->getDebugLoc()); | |||
| 1914 | ||||
| 1915 | // Replace a use of the 'and' with a use of the new 'and'. | |||
| 1916 | TheUse = InsertedAnd; | |||
| 1917 | ++NumAndUses; | |||
| 1918 | LLVM_DEBUG(User->getParent()->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { User->getParent()->dump(); } } while (false); | |||
| 1919 | } | |||
| 1920 | ||||
| 1921 | // We removed all uses, nuke the and. | |||
| 1922 | AndI->eraseFromParent(); | |||
| 1923 | return true; | |||
| 1924 | } | |||
| 1925 | ||||
| 1926 | /// Check if the candidates could be combined with a shift instruction, which | |||
| 1927 | /// includes: | |||
| 1928 | /// 1. Truncate instruction | |||
| 1929 | /// 2. And instruction and the imm is a mask of the low bits: | |||
| 1930 | /// imm & (imm+1) == 0 | |||
| 1931 | static bool isExtractBitsCandidateUse(Instruction *User) { | |||
| 1932 | if (!isa<TruncInst>(User)) { | |||
| 1933 | if (User->getOpcode() != Instruction::And || | |||
| 1934 | !isa<ConstantInt>(User->getOperand(1))) | |||
| 1935 | return false; | |||
| 1936 | ||||
| 1937 | const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); | |||
| 1938 | ||||
| 1939 | if ((Cimm & (Cimm + 1)).getBoolValue()) | |||
| 1940 | return false; | |||
| 1941 | } | |||
| 1942 | return true; | |||
| 1943 | } | |||
| 1944 | ||||
| 1945 | /// Sink both shift and truncate instruction to the use of truncate's BB. | |||
| 1946 | static bool | |||
| 1947 | SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, | |||
| 1948 | DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, | |||
| 1949 | const TargetLowering &TLI, const DataLayout &DL) { | |||
| 1950 | BasicBlock *UserBB = User->getParent(); | |||
| 1951 | DenseMap<BasicBlock *, CastInst *> InsertedTruncs; | |||
| 1952 | auto *TruncI = cast<TruncInst>(User); | |||
| 1953 | bool MadeChange = false; | |||
| 1954 | ||||
| 1955 | for (Value::user_iterator TruncUI = TruncI->user_begin(), | |||
| 1956 | TruncE = TruncI->user_end(); | |||
| 1957 | TruncUI != TruncE;) { | |||
| 1958 | ||||
| 1959 | Use &TruncTheUse = TruncUI.getUse(); | |||
| 1960 | Instruction *TruncUser = cast<Instruction>(*TruncUI); | |||
| 1961 | // Preincrement use iterator so we don't invalidate it. | |||
| 1962 | ||||
| 1963 | ++TruncUI; | |||
| 1964 | ||||
| 1965 | int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); | |||
| 1966 | if (!ISDOpcode) | |||
| 1967 | continue; | |||
| 1968 | ||||
| 1969 | // If the use is actually a legal node, there will not be an | |||
| 1970 | // implicit truncate. | |||
| 1971 | // FIXME: always querying the result type is just an | |||
| 1972 | // approximation; some nodes' legality is determined by the | |||
| 1973 | // operand or other means. There's no good way to find out though. | |||
| 1974 | if (TLI.isOperationLegalOrCustom( | |||
| 1975 | ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) | |||
| 1976 | continue; | |||
| 1977 | ||||
| 1978 | // Don't bother for PHI nodes. | |||
| 1979 | if (isa<PHINode>(TruncUser)) | |||
| 1980 | continue; | |||
| 1981 | ||||
| 1982 | BasicBlock *TruncUserBB = TruncUser->getParent(); | |||
| 1983 | ||||
| 1984 | if (UserBB == TruncUserBB) | |||
| 1985 | continue; | |||
| 1986 | ||||
| 1987 | BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; | |||
| 1988 | CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; | |||
| 1989 | ||||
| 1990 | if (!InsertedShift && !InsertedTrunc) { | |||
| 1991 | BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); | |||
| 1992 | assert(InsertPt != TruncUserBB->end())(static_cast <bool> (InsertPt != TruncUserBB->end()) ? void (0) : __assert_fail ("InsertPt != TruncUserBB->end()" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 1992, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1993 | // Sink the shift | |||
| 1994 | if (ShiftI->getOpcode() == Instruction::AShr) | |||
| 1995 | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | |||
| 1996 | "", &*InsertPt); | |||
| 1997 | else | |||
| 1998 | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | |||
| 1999 | "", &*InsertPt); | |||
| 2000 | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); | |||
| 2001 | ||||
| 2002 | // Sink the trunc | |||
| 2003 | BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); | |||
| 2004 | TruncInsertPt++; | |||
| 2005 | assert(TruncInsertPt != TruncUserBB->end())(static_cast <bool> (TruncInsertPt != TruncUserBB->end ()) ? void (0) : __assert_fail ("TruncInsertPt != TruncUserBB->end()" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2005, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2006 | ||||
| 2007 | InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, | |||
| 2008 | TruncI->getType(), "", &*TruncInsertPt); | |||
| 2009 | InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); | |||
| 2010 | ||||
| 2011 | MadeChange = true; | |||
| 2012 | ||||
| 2013 | TruncTheUse = InsertedTrunc; | |||
| 2014 | } | |||
| 2015 | } | |||
| 2016 | return MadeChange; | |||
| 2017 | } | |||
| 2018 | ||||
| 2019 | /// Sink the shift *right* instruction into user blocks if the uses could | |||
| 2020 | /// potentially be combined with this shift instruction and generate BitExtract | |||
| 2021 | /// instruction. It will only be applied if the architecture supports BitExtract | |||
| 2022 | /// instruction. Here is an example: | |||
| 2023 | /// BB1: | |||
| 2024 | /// %x.extract.shift = lshr i64 %arg1, 32 | |||
| 2025 | /// BB2: | |||
| 2026 | /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 | |||
| 2027 | /// ==> | |||
| 2028 | /// | |||
| 2029 | /// BB2: | |||
| 2030 | /// %x.extract.shift.1 = lshr i64 %arg1, 32 | |||
| 2031 | /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 | |||
| 2032 | /// | |||
| 2033 | /// CodeGen will recognize the pattern in BB2 and generate BitExtract | |||
| 2034 | /// instruction. | |||
| 2035 | /// Return true if any changes are made. | |||
| 2036 | static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, | |||
| 2037 | const TargetLowering &TLI, | |||
| 2038 | const DataLayout &DL) { | |||
| 2039 | BasicBlock *DefBB = ShiftI->getParent(); | |||
| 2040 | ||||
| 2041 | /// Only insert instructions in each block once. | |||
| 2042 | DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; | |||
| 2043 | ||||
| 2044 | bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); | |||
| 2045 | ||||
| 2046 | bool MadeChange = false; | |||
| 2047 | for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); | |||
| 2048 | UI != E;) { | |||
| 2049 | Use &TheUse = UI.getUse(); | |||
| 2050 | Instruction *User = cast<Instruction>(*UI); | |||
| 2051 | // Preincrement use iterator so we don't invalidate it. | |||
| 2052 | ++UI; | |||
| 2053 | ||||
| 2054 | // Don't bother for PHI nodes. | |||
| 2055 | if (isa<PHINode>(User)) | |||
| 2056 | continue; | |||
| 2057 | ||||
| 2058 | if (!isExtractBitsCandidateUse(User)) | |||
| 2059 | continue; | |||
| 2060 | ||||
| 2061 | BasicBlock *UserBB = User->getParent(); | |||
| 2062 | ||||
| 2063 | if (UserBB == DefBB) { | |||
| 2064 | // If the shift and truncate instruction are in the same BB. The use of | |||
| 2065 | // the truncate(TruncUse) may still introduce another truncate if not | |||
| 2066 | // legal. In this case, we would like to sink both shift and truncate | |||
| 2067 | // instruction to the BB of TruncUse. | |||
| 2068 | // for example: | |||
| 2069 | // BB1: | |||
| 2070 | // i64 shift.result = lshr i64 opnd, imm | |||
| 2071 | // trunc.result = trunc shift.result to i16 | |||
| 2072 | // | |||
| 2073 | // BB2: | |||
| 2074 | // ----> We will have an implicit truncate here if the architecture does | |||
| 2075 | // not have i16 compare. | |||
| 2076 | // cmp i16 trunc.result, opnd2 | |||
| 2077 | // | |||
| 2078 | if (isa<TruncInst>(User) && | |||
| 2079 | shiftIsLegal | |||
| 2080 | // If the type of the truncate is legal, no truncate will be | |||
| 2081 | // introduced in other basic blocks. | |||
| 2082 | && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) | |||
| 2083 | MadeChange = | |||
| 2084 | SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); | |||
| 2085 | ||||
| 2086 | continue; | |||
| 2087 | } | |||
| 2088 | // If we have already inserted a shift into this block, use it. | |||
| 2089 | BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; | |||
| 2090 | ||||
| 2091 | if (!InsertedShift) { | |||
| 2092 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | |||
| 2093 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2093, __extension__ __PRETTY_FUNCTION__)); | |||
| 2094 | ||||
| 2095 | if (ShiftI->getOpcode() == Instruction::AShr) | |||
| 2096 | InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, | |||
| 2097 | "", &*InsertPt); | |||
| 2098 | else | |||
| 2099 | InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, | |||
| 2100 | "", &*InsertPt); | |||
| 2101 | InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); | |||
| 2102 | ||||
| 2103 | MadeChange = true; | |||
| 2104 | } | |||
| 2105 | ||||
| 2106 | // Replace a use of the shift with a use of the new shift. | |||
| 2107 | TheUse = InsertedShift; | |||
| 2108 | } | |||
| 2109 | ||||
| 2110 | // If we removed all uses, or there are none, nuke the shift. | |||
| 2111 | if (ShiftI->use_empty()) { | |||
| 2112 | salvageDebugInfo(*ShiftI); | |||
| 2113 | ShiftI->eraseFromParent(); | |||
| 2114 | MadeChange = true; | |||
| 2115 | } | |||
| 2116 | ||||
| 2117 | return MadeChange; | |||
| 2118 | } | |||
| 2119 | ||||
| 2120 | /// If counting leading or trailing zeros is an expensive operation and a zero | |||
| 2121 | /// input is defined, add a check for zero to avoid calling the intrinsic. | |||
| 2122 | /// | |||
| 2123 | /// We want to transform: | |||
| 2124 | /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) | |||
| 2125 | /// | |||
| 2126 | /// into: | |||
| 2127 | /// entry: | |||
| 2128 | /// %cmpz = icmp eq i64 %A, 0 | |||
| 2129 | /// br i1 %cmpz, label %cond.end, label %cond.false | |||
| 2130 | /// cond.false: | |||
| 2131 | /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) | |||
| 2132 | /// br label %cond.end | |||
| 2133 | /// cond.end: | |||
| 2134 | /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] | |||
| 2135 | /// | |||
| 2136 | /// If the transform is performed, return true and set ModifiedDT to true. | |||
| 2137 | static bool despeculateCountZeros(IntrinsicInst *CountZeros, | |||
| 2138 | const TargetLowering *TLI, | |||
| 2139 | const DataLayout *DL, ModifyDT &ModifiedDT, | |||
| 2140 | SmallSet<BasicBlock *, 32> &FreshBBs, | |||
| 2141 | bool IsHugeFunc) { | |||
| 2142 | // If a zero input is undefined, it doesn't make sense to despeculate that. | |||
| 2143 | if (match(CountZeros->getOperand(1), m_One())) | |||
| 2144 | return false; | |||
| 2145 | ||||
| 2146 | // If it's cheap to speculate, there's nothing to do. | |||
| 2147 | Type *Ty = CountZeros->getType(); | |||
| 2148 | auto IntrinsicID = CountZeros->getIntrinsicID(); | |||
| 2149 | if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || | |||
| 2150 | (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) | |||
| 2151 | return false; | |||
| 2152 | ||||
| 2153 | // Only handle legal scalar cases. Anything else requires too much work. | |||
| 2154 | unsigned SizeInBits = Ty->getScalarSizeInBits(); | |||
| 2155 | if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) | |||
| 2156 | return false; | |||
| 2157 | ||||
| 2158 | // Bail if the value is never zero. | |||
| 2159 | Use &Op = CountZeros->getOperandUse(0); | |||
| 2160 | if (isKnownNonZero(Op, *DL)) | |||
| 2161 | return false; | |||
| 2162 | ||||
| 2163 | // The intrinsic will be sunk behind a compare against zero and branch. | |||
| 2164 | BasicBlock *StartBlock = CountZeros->getParent(); | |||
| 2165 | BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); | |||
| 2166 | if (IsHugeFunc) | |||
| 2167 | FreshBBs.insert(CallBlock); | |||
| 2168 | ||||
| 2169 | // Create another block after the count zero intrinsic. A PHI will be added | |||
| 2170 | // in this block to select the result of the intrinsic or the bit-width | |||
| 2171 | // constant if the input to the intrinsic is zero. | |||
| 2172 | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); | |||
| 2173 | BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); | |||
| 2174 | if (IsHugeFunc) | |||
| 2175 | FreshBBs.insert(EndBlock); | |||
| 2176 | ||||
| 2177 | // Set up a builder to create a compare, conditional branch, and PHI. | |||
| 2178 | IRBuilder<> Builder(CountZeros->getContext()); | |||
| 2179 | Builder.SetInsertPoint(StartBlock->getTerminator()); | |||
| 2180 | Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); | |||
| 2181 | ||||
| 2182 | // Replace the unconditional branch that was created by the first split with | |||
| 2183 | // a compare against zero and a conditional branch. | |||
| 2184 | Value *Zero = Constant::getNullValue(Ty); | |||
| 2185 | // Avoid introducing branch on poison. This also replaces the ctz operand. | |||
| 2186 | if (!isGuaranteedNotToBeUndefOrPoison(Op)) | |||
| 2187 | Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); | |||
| 2188 | Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); | |||
| 2189 | Builder.CreateCondBr(Cmp, EndBlock, CallBlock); | |||
| 2190 | StartBlock->getTerminator()->eraseFromParent(); | |||
| 2191 | ||||
| 2192 | // Create a PHI in the end block to select either the output of the intrinsic | |||
| 2193 | // or the bit width of the operand. | |||
| 2194 | Builder.SetInsertPoint(&EndBlock->front()); | |||
| 2195 | PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); | |||
| 2196 | replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); | |||
| 2197 | Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); | |||
| 2198 | PN->addIncoming(BitWidth, StartBlock); | |||
| 2199 | PN->addIncoming(CountZeros, CallBlock); | |||
| 2200 | ||||
| 2201 | // We are explicitly handling the zero case, so we can set the intrinsic's | |||
| 2202 | // undefined zero argument to 'true'. This will also prevent reprocessing the | |||
| 2203 | // intrinsic; we only despeculate when a zero input is defined. | |||
| 2204 | CountZeros->setArgOperand(1, Builder.getTrue()); | |||
| 2205 | ModifiedDT = ModifyDT::ModifyBBDT; | |||
| 2206 | return true; | |||
| 2207 | } | |||
| 2208 | ||||
| 2209 | bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { | |||
| 2210 | BasicBlock *BB = CI->getParent(); | |||
| 2211 | ||||
| 2212 | // Lower inline assembly if we can. | |||
| 2213 | // If we found an inline asm expession, and if the target knows how to | |||
| 2214 | // lower it to normal LLVM code, do so now. | |||
| 2215 | if (CI->isInlineAsm()) { | |||
| 2216 | if (TLI->ExpandInlineAsm(CI)) { | |||
| 2217 | // Avoid invalidating the iterator. | |||
| 2218 | CurInstIterator = BB->begin(); | |||
| 2219 | // Avoid processing instructions out of order, which could cause | |||
| 2220 | // reuse before a value is defined. | |||
| 2221 | SunkAddrs.clear(); | |||
| 2222 | return true; | |||
| 2223 | } | |||
| 2224 | // Sink address computing for memory operands into the block. | |||
| 2225 | if (optimizeInlineAsmInst(CI)) | |||
| 2226 | return true; | |||
| 2227 | } | |||
| 2228 | ||||
| 2229 | // Align the pointer arguments to this call if the target thinks it's a good | |||
| 2230 | // idea | |||
| 2231 | unsigned MinSize; | |||
| 2232 | Align PrefAlign; | |||
| 2233 | if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { | |||
| 2234 | for (auto &Arg : CI->args()) { | |||
| 2235 | // We want to align both objects whose address is used directly and | |||
| 2236 | // objects whose address is used in casts and GEPs, though it only makes | |||
| 2237 | // sense for GEPs if the offset is a multiple of the desired alignment and | |||
| 2238 | // if size - offset meets the size threshold. | |||
| 2239 | if (!Arg->getType()->isPointerTy()) | |||
| 2240 | continue; | |||
| 2241 | APInt Offset(DL->getIndexSizeInBits( | |||
| 2242 | cast<PointerType>(Arg->getType())->getAddressSpace()), | |||
| 2243 | 0); | |||
| 2244 | Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); | |||
| 2245 | uint64_t Offset2 = Offset.getLimitedValue(); | |||
| 2246 | if (!isAligned(PrefAlign, Offset2)) | |||
| 2247 | continue; | |||
| 2248 | AllocaInst *AI; | |||
| 2249 | if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && | |||
| 2250 | DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) | |||
| 2251 | AI->setAlignment(PrefAlign); | |||
| 2252 | // Global variables can only be aligned if they are defined in this | |||
| 2253 | // object (i.e. they are uniquely initialized in this object), and | |||
| 2254 | // over-aligning global variables that have an explicit section is | |||
| 2255 | // forbidden. | |||
| 2256 | GlobalVariable *GV; | |||
| 2257 | if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && | |||
| 2258 | GV->getPointerAlignment(*DL) < PrefAlign && | |||
| 2259 | DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) | |||
| 2260 | GV->setAlignment(PrefAlign); | |||
| 2261 | } | |||
| 2262 | } | |||
| 2263 | // If this is a memcpy (or similar) then we may be able to improve the | |||
| 2264 | // alignment. | |||
| 2265 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { | |||
| 2266 | Align DestAlign = getKnownAlignment(MI->getDest(), *DL); | |||
| 2267 | MaybeAlign MIDestAlign = MI->getDestAlign(); | |||
| 2268 | if (!MIDestAlign || DestAlign > *MIDestAlign) | |||
| 2269 | MI->setDestAlignment(DestAlign); | |||
| 2270 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { | |||
| 2271 | MaybeAlign MTISrcAlign = MTI->getSourceAlign(); | |||
| 2272 | Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); | |||
| 2273 | if (!MTISrcAlign || SrcAlign > *MTISrcAlign) | |||
| 2274 | MTI->setSourceAlignment(SrcAlign); | |||
| 2275 | } | |||
| 2276 | } | |||
| 2277 | ||||
| 2278 | // If we have a cold call site, try to sink addressing computation into the | |||
| 2279 | // cold block. This interacts with our handling for loads and stores to | |||
| 2280 | // ensure that we can fold all uses of a potential addressing computation | |||
| 2281 | // into their uses. TODO: generalize this to work over profiling data | |||
| 2282 | if (CI->hasFnAttr(Attribute::Cold) && !OptSize && | |||
| 2283 | !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) | |||
| 2284 | for (auto &Arg : CI->args()) { | |||
| 2285 | if (!Arg->getType()->isPointerTy()) | |||
| 2286 | continue; | |||
| 2287 | unsigned AS = Arg->getType()->getPointerAddressSpace(); | |||
| 2288 | if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) | |||
| 2289 | return true; | |||
| 2290 | } | |||
| 2291 | ||||
| 2292 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); | |||
| 2293 | if (II) { | |||
| 2294 | switch (II->getIntrinsicID()) { | |||
| 2295 | default: | |||
| 2296 | break; | |||
| 2297 | case Intrinsic::assume: | |||
| 2298 | llvm_unreachable("llvm.assume should have been removed already")::llvm::llvm_unreachable_internal("llvm.assume should have been removed already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2298); | |||
| 2299 | case Intrinsic::experimental_widenable_condition: { | |||
| 2300 | // Give up on future widening oppurtunties so that we can fold away dead | |||
| 2301 | // paths and merge blocks before going into block-local instruction | |||
| 2302 | // selection. | |||
| 2303 | if (II->use_empty()) { | |||
| 2304 | II->eraseFromParent(); | |||
| 2305 | return true; | |||
| 2306 | } | |||
| 2307 | Constant *RetVal = ConstantInt::getTrue(II->getContext()); | |||
| 2308 | resetIteratorIfInvalidatedWhileCalling(BB, [&]() { | |||
| 2309 | replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); | |||
| 2310 | }); | |||
| 2311 | return true; | |||
| 2312 | } | |||
| 2313 | case Intrinsic::objectsize: | |||
| 2314 | llvm_unreachable("llvm.objectsize.* should have been lowered already")::llvm::llvm_unreachable_internal("llvm.objectsize.* should have been lowered already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2314); | |||
| 2315 | case Intrinsic::is_constant: | |||
| 2316 | llvm_unreachable("llvm.is.constant.* should have been lowered already")::llvm::llvm_unreachable_internal("llvm.is.constant.* should have been lowered already" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2316); | |||
| 2317 | case Intrinsic::aarch64_stlxr: | |||
| 2318 | case Intrinsic::aarch64_stxr: { | |||
| 2319 | ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); | |||
| 2320 | if (!ExtVal || !ExtVal->hasOneUse() || | |||
| 2321 | ExtVal->getParent() == CI->getParent()) | |||
| 2322 | return false; | |||
| 2323 | // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. | |||
| 2324 | ExtVal->moveBefore(CI); | |||
| 2325 | // Mark this instruction as "inserted by CGP", so that other | |||
| 2326 | // optimizations don't touch it. | |||
| 2327 | InsertedInsts.insert(ExtVal); | |||
| 2328 | return true; | |||
| 2329 | } | |||
| 2330 | ||||
| 2331 | case Intrinsic::launder_invariant_group: | |||
| 2332 | case Intrinsic::strip_invariant_group: { | |||
| 2333 | Value *ArgVal = II->getArgOperand(0); | |||
| 2334 | auto it = LargeOffsetGEPMap.find(II); | |||
| 2335 | if (it != LargeOffsetGEPMap.end()) { | |||
| 2336 | // Merge entries in LargeOffsetGEPMap to reflect the RAUW. | |||
| 2337 | // Make sure not to have to deal with iterator invalidation | |||
| 2338 | // after possibly adding ArgVal to LargeOffsetGEPMap. | |||
| 2339 | auto GEPs = std::move(it->second); | |||
| 2340 | LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); | |||
| 2341 | LargeOffsetGEPMap.erase(II); | |||
| 2342 | } | |||
| 2343 | ||||
| 2344 | replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); | |||
| 2345 | II->eraseFromParent(); | |||
| 2346 | return true; | |||
| 2347 | } | |||
| 2348 | case Intrinsic::cttz: | |||
| 2349 | case Intrinsic::ctlz: | |||
| 2350 | // If counting zeros is expensive, try to avoid it. | |||
| 2351 | return despeculateCountZeros(II, TLI, DL, ModifiedDT, FreshBBs, | |||
| 2352 | IsHugeFunc); | |||
| 2353 | case Intrinsic::fshl: | |||
| 2354 | case Intrinsic::fshr: | |||
| 2355 | return optimizeFunnelShift(II); | |||
| 2356 | case Intrinsic::dbg_assign: | |||
| 2357 | case Intrinsic::dbg_value: | |||
| 2358 | return fixupDbgValue(II); | |||
| 2359 | case Intrinsic::masked_gather: | |||
| 2360 | return optimizeGatherScatterInst(II, II->getArgOperand(0)); | |||
| 2361 | case Intrinsic::masked_scatter: | |||
| 2362 | return optimizeGatherScatterInst(II, II->getArgOperand(1)); | |||
| 2363 | } | |||
| 2364 | ||||
| 2365 | SmallVector<Value *, 2> PtrOps; | |||
| 2366 | Type *AccessTy; | |||
| 2367 | if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) | |||
| 2368 | while (!PtrOps.empty()) { | |||
| 2369 | Value *PtrVal = PtrOps.pop_back_val(); | |||
| 2370 | unsigned AS = PtrVal->getType()->getPointerAddressSpace(); | |||
| 2371 | if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) | |||
| 2372 | return true; | |||
| 2373 | } | |||
| 2374 | } | |||
| 2375 | ||||
| 2376 | // From here on out we're working with named functions. | |||
| 2377 | if (!CI->getCalledFunction()) | |||
| 2378 | return false; | |||
| 2379 | ||||
| 2380 | // Lower all default uses of _chk calls. This is very similar | |||
| 2381 | // to what InstCombineCalls does, but here we are only lowering calls | |||
| 2382 | // to fortified library functions (e.g. __memcpy_chk) that have the default | |||
| 2383 | // "don't know" as the objectsize. Anything else should be left alone. | |||
| 2384 | FortifiedLibCallSimplifier Simplifier(TLInfo, true); | |||
| 2385 | IRBuilder<> Builder(CI); | |||
| 2386 | if (Value *V = Simplifier.optimizeCall(CI, Builder)) { | |||
| 2387 | replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); | |||
| 2388 | CI->eraseFromParent(); | |||
| 2389 | return true; | |||
| 2390 | } | |||
| 2391 | ||||
| 2392 | return false; | |||
| 2393 | } | |||
| 2394 | ||||
| 2395 | /// Look for opportunities to duplicate return instructions to the predecessor | |||
| 2396 | /// to enable tail call optimizations. The case it is currently looking for is: | |||
| 2397 | /// @code | |||
| 2398 | /// bb0: | |||
| 2399 | /// %tmp0 = tail call i32 @f0() | |||
| 2400 | /// br label %return | |||
| 2401 | /// bb1: | |||
| 2402 | /// %tmp1 = tail call i32 @f1() | |||
| 2403 | /// br label %return | |||
| 2404 | /// bb2: | |||
| 2405 | /// %tmp2 = tail call i32 @f2() | |||
| 2406 | /// br label %return | |||
| 2407 | /// return: | |||
| 2408 | /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] | |||
| 2409 | /// ret i32 %retval | |||
| 2410 | /// @endcode | |||
| 2411 | /// | |||
| 2412 | /// => | |||
| 2413 | /// | |||
| 2414 | /// @code | |||
| 2415 | /// bb0: | |||
| 2416 | /// %tmp0 = tail call i32 @f0() | |||
| 2417 | /// ret i32 %tmp0 | |||
| 2418 | /// bb1: | |||
| 2419 | /// %tmp1 = tail call i32 @f1() | |||
| 2420 | /// ret i32 %tmp1 | |||
| 2421 | /// bb2: | |||
| 2422 | /// %tmp2 = tail call i32 @f2() | |||
| 2423 | /// ret i32 %tmp2 | |||
| 2424 | /// @endcode | |||
| 2425 | bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, | |||
| 2426 | ModifyDT &ModifiedDT) { | |||
| 2427 | if (!BB->getTerminator()) | |||
| 2428 | return false; | |||
| 2429 | ||||
| 2430 | ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); | |||
| 2431 | if (!RetI) | |||
| 2432 | return false; | |||
| 2433 | ||||
| 2434 | PHINode *PN = nullptr; | |||
| 2435 | ExtractValueInst *EVI = nullptr; | |||
| 2436 | BitCastInst *BCI = nullptr; | |||
| 2437 | Value *V = RetI->getReturnValue(); | |||
| 2438 | if (V) { | |||
| 2439 | BCI = dyn_cast<BitCastInst>(V); | |||
| 2440 | if (BCI) | |||
| 2441 | V = BCI->getOperand(0); | |||
| 2442 | ||||
| 2443 | EVI = dyn_cast<ExtractValueInst>(V); | |||
| 2444 | if (EVI) { | |||
| 2445 | V = EVI->getOperand(0); | |||
| 2446 | if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) | |||
| 2447 | return false; | |||
| 2448 | } | |||
| 2449 | ||||
| 2450 | PN = dyn_cast<PHINode>(V); | |||
| 2451 | if (!PN) | |||
| 2452 | return false; | |||
| 2453 | } | |||
| 2454 | ||||
| 2455 | if (PN && PN->getParent() != BB) | |||
| 2456 | return false; | |||
| 2457 | ||||
| 2458 | auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { | |||
| 2459 | const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); | |||
| 2460 | if (BC && BC->hasOneUse()) | |||
| 2461 | Inst = BC->user_back(); | |||
| 2462 | ||||
| 2463 | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) | |||
| 2464 | return II->getIntrinsicID() == Intrinsic::lifetime_end; | |||
| 2465 | return false; | |||
| 2466 | }; | |||
| 2467 | ||||
| 2468 | // Make sure there are no instructions between the first instruction | |||
| 2469 | // and return. | |||
| 2470 | const Instruction *BI = BB->getFirstNonPHI(); | |||
| 2471 | // Skip over debug and the bitcast. | |||
| 2472 | while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || | |||
| 2473 | isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) | |||
| 2474 | BI = BI->getNextNode(); | |||
| 2475 | if (BI != RetI) | |||
| 2476 | return false; | |||
| 2477 | ||||
| 2478 | /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail | |||
| 2479 | /// call. | |||
| 2480 | const Function *F = BB->getParent(); | |||
| 2481 | SmallVector<BasicBlock *, 4> TailCallBBs; | |||
| 2482 | if (PN) { | |||
| 2483 | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { | |||
| 2484 | // Look through bitcasts. | |||
| 2485 | Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); | |||
| 2486 | CallInst *CI = dyn_cast<CallInst>(IncomingVal); | |||
| 2487 | BasicBlock *PredBB = PN->getIncomingBlock(I); | |||
| 2488 | // Make sure the phi value is indeed produced by the tail call. | |||
| 2489 | if (CI && CI->hasOneUse() && CI->getParent() == PredBB && | |||
| 2490 | TLI->mayBeEmittedAsTailCall(CI) && | |||
| 2491 | attributesPermitTailCall(F, CI, RetI, *TLI)) | |||
| 2492 | TailCallBBs.push_back(PredBB); | |||
| 2493 | } | |||
| 2494 | } else { | |||
| 2495 | SmallPtrSet<BasicBlock *, 4> VisitedBBs; | |||
| 2496 | for (BasicBlock *Pred : predecessors(BB)) { | |||
| 2497 | if (!VisitedBBs.insert(Pred).second) | |||
| 2498 | continue; | |||
| 2499 | if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { | |||
| 2500 | CallInst *CI = dyn_cast<CallInst>(I); | |||
| 2501 | if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && | |||
| 2502 | attributesPermitTailCall(F, CI, RetI, *TLI)) | |||
| 2503 | TailCallBBs.push_back(Pred); | |||
| 2504 | } | |||
| 2505 | } | |||
| 2506 | } | |||
| 2507 | ||||
| 2508 | bool Changed = false; | |||
| 2509 | for (auto const &TailCallBB : TailCallBBs) { | |||
| 2510 | // Make sure the call instruction is followed by an unconditional branch to | |||
| 2511 | // the return block. | |||
| 2512 | BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); | |||
| 2513 | if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) | |||
| 2514 | continue; | |||
| 2515 | ||||
| 2516 | // Duplicate the return into TailCallBB. | |||
| 2517 | (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); | |||
| 2518 | assert(!VerifyBFIUpdates ||(static_cast <bool> (!VerifyBFIUpdates || BFI->getBlockFreq (BB) >= BFI->getBlockFreq(TailCallBB)) ? void (0) : __assert_fail ("!VerifyBFIUpdates || BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2519, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2519 | BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB))(static_cast <bool> (!VerifyBFIUpdates || BFI->getBlockFreq (BB) >= BFI->getBlockFreq(TailCallBB)) ? void (0) : __assert_fail ("!VerifyBFIUpdates || BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2519, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2520 | BFI->setBlockFreq( | |||
| 2521 | BB, | |||
| 2522 | (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); | |||
| 2523 | ModifiedDT = ModifyDT::ModifyBBDT; | |||
| 2524 | Changed = true; | |||
| 2525 | ++NumRetsDup; | |||
| 2526 | } | |||
| 2527 | ||||
| 2528 | // If we eliminated all predecessors of the block, delete the block now. | |||
| 2529 | if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) | |||
| 2530 | BB->eraseFromParent(); | |||
| 2531 | ||||
| 2532 | return Changed; | |||
| 2533 | } | |||
| 2534 | ||||
| 2535 | //===----------------------------------------------------------------------===// | |||
| 2536 | // Memory Optimization | |||
| 2537 | //===----------------------------------------------------------------------===// | |||
| 2538 | ||||
| 2539 | namespace { | |||
| 2540 | ||||
| 2541 | /// This is an extended version of TargetLowering::AddrMode | |||
| 2542 | /// which holds actual Value*'s for register values. | |||
| 2543 | struct ExtAddrMode : public TargetLowering::AddrMode { | |||
| 2544 | Value *BaseReg = nullptr; | |||
| 2545 | Value *ScaledReg = nullptr; | |||
| 2546 | Value *OriginalValue = nullptr; | |||
| 2547 | bool InBounds = true; | |||
| 2548 | ||||
| 2549 | enum FieldName { | |||
| 2550 | NoField = 0x00, | |||
| 2551 | BaseRegField = 0x01, | |||
| 2552 | BaseGVField = 0x02, | |||
| 2553 | BaseOffsField = 0x04, | |||
| 2554 | ScaledRegField = 0x08, | |||
| 2555 | ScaleField = 0x10, | |||
| 2556 | MultipleFields = 0xff | |||
| 2557 | }; | |||
| 2558 | ||||
| 2559 | ExtAddrMode() = default; | |||
| 2560 | ||||
| 2561 | void print(raw_ostream &OS) const; | |||
| 2562 | void dump() const; | |||
| 2563 | ||||
| 2564 | FieldName compare(const ExtAddrMode &other) { | |||
| 2565 | // First check that the types are the same on each field, as differing types | |||
| 2566 | // is something we can't cope with later on. | |||
| 2567 | if (BaseReg && other.BaseReg && | |||
| 2568 | BaseReg->getType() != other.BaseReg->getType()) | |||
| 2569 | return MultipleFields; | |||
| 2570 | if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) | |||
| 2571 | return MultipleFields; | |||
| 2572 | if (ScaledReg && other.ScaledReg && | |||
| 2573 | ScaledReg->getType() != other.ScaledReg->getType()) | |||
| 2574 | return MultipleFields; | |||
| 2575 | ||||
| 2576 | // Conservatively reject 'inbounds' mismatches. | |||
| 2577 | if (InBounds != other.InBounds) | |||
| 2578 | return MultipleFields; | |||
| 2579 | ||||
| 2580 | // Check each field to see if it differs. | |||
| 2581 | unsigned Result = NoField; | |||
| 2582 | if (BaseReg != other.BaseReg) | |||
| 2583 | Result |= BaseRegField; | |||
| 2584 | if (BaseGV != other.BaseGV) | |||
| 2585 | Result |= BaseGVField; | |||
| 2586 | if (BaseOffs != other.BaseOffs) | |||
| 2587 | Result |= BaseOffsField; | |||
| 2588 | if (ScaledReg != other.ScaledReg) | |||
| 2589 | Result |= ScaledRegField; | |||
| 2590 | // Don't count 0 as being a different scale, because that actually means | |||
| 2591 | // unscaled (which will already be counted by having no ScaledReg). | |||
| 2592 | if (Scale && other.Scale && Scale != other.Scale) | |||
| 2593 | Result |= ScaleField; | |||
| 2594 | ||||
| 2595 | if (llvm::popcount(Result) > 1) | |||
| 2596 | return MultipleFields; | |||
| 2597 | else | |||
| 2598 | return static_cast<FieldName>(Result); | |||
| 2599 | } | |||
| 2600 | ||||
| 2601 | // An AddrMode is trivial if it involves no calculation i.e. it is just a base | |||
| 2602 | // with no offset. | |||
| 2603 | bool isTrivial() { | |||
| 2604 | // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is | |||
| 2605 | // trivial if at most one of these terms is nonzero, except that BaseGV and | |||
| 2606 | // BaseReg both being zero actually means a null pointer value, which we | |||
| 2607 | // consider to be 'non-zero' here. | |||
| 2608 | return !BaseOffs && !Scale && !(BaseGV && BaseReg); | |||
| 2609 | } | |||
| 2610 | ||||
| 2611 | Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { | |||
| 2612 | switch (Field) { | |||
| 2613 | default: | |||
| 2614 | return nullptr; | |||
| 2615 | case BaseRegField: | |||
| 2616 | return BaseReg; | |||
| 2617 | case BaseGVField: | |||
| 2618 | return BaseGV; | |||
| 2619 | case ScaledRegField: | |||
| 2620 | return ScaledReg; | |||
| 2621 | case BaseOffsField: | |||
| 2622 | return ConstantInt::get(IntPtrTy, BaseOffs); | |||
| 2623 | } | |||
| 2624 | } | |||
| 2625 | ||||
| 2626 | void SetCombinedField(FieldName Field, Value *V, | |||
| 2627 | const SmallVectorImpl<ExtAddrMode> &AddrModes) { | |||
| 2628 | switch (Field) { | |||
| 2629 | default: | |||
| 2630 | llvm_unreachable("Unhandled fields are expected to be rejected earlier")::llvm::llvm_unreachable_internal("Unhandled fields are expected to be rejected earlier" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 2630); | |||
| 2631 | break; | |||
| 2632 | case ExtAddrMode::BaseRegField: | |||
| 2633 | BaseReg = V; | |||
| 2634 | break; | |||
| 2635 | case ExtAddrMode::BaseGVField: | |||
| 2636 | // A combined BaseGV is an Instruction, not a GlobalValue, so it goes | |||
| 2637 | // in the BaseReg field. | |||
| 2638 | assert(BaseReg == nullptr)(static_cast <bool> (BaseReg == nullptr) ? void (0) : __assert_fail ("BaseReg == nullptr", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2638, __extension__ __PRETTY_FUNCTION__)); | |||
| 2639 | BaseReg = V; | |||
| 2640 | BaseGV = nullptr; | |||
| 2641 | break; | |||
| 2642 | case ExtAddrMode::ScaledRegField: | |||
| 2643 | ScaledReg = V; | |||
| 2644 | // If we have a mix of scaled and unscaled addrmodes then we want scale | |||
| 2645 | // to be the scale and not zero. | |||
| 2646 | if (!Scale) | |||
| 2647 | for (const ExtAddrMode &AM : AddrModes) | |||
| 2648 | if (AM.Scale) { | |||
| 2649 | Scale = AM.Scale; | |||
| 2650 | break; | |||
| 2651 | } | |||
| 2652 | break; | |||
| 2653 | case ExtAddrMode::BaseOffsField: | |||
| 2654 | // The offset is no longer a constant, so it goes in ScaledReg with a | |||
| 2655 | // scale of 1. | |||
| 2656 | assert(ScaledReg == nullptr)(static_cast <bool> (ScaledReg == nullptr) ? void (0) : __assert_fail ("ScaledReg == nullptr", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 2656, __extension__ __PRETTY_FUNCTION__)); | |||
| 2657 | ScaledReg = V; | |||
| 2658 | Scale = 1; | |||
| 2659 | BaseOffs = 0; | |||
| 2660 | break; | |||
| 2661 | } | |||
| 2662 | } | |||
| 2663 | }; | |||
| 2664 | ||||
| 2665 | #ifndef NDEBUG | |||
| 2666 | static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { | |||
| 2667 | AM.print(OS); | |||
| 2668 | return OS; | |||
| 2669 | } | |||
| 2670 | #endif | |||
| 2671 | ||||
| 2672 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | |||
| 2673 | void ExtAddrMode::print(raw_ostream &OS) const { | |||
| 2674 | bool NeedPlus = false; | |||
| 2675 | OS << "["; | |||
| 2676 | if (InBounds) | |||
| 2677 | OS << "inbounds "; | |||
| 2678 | if (BaseGV) { | |||
| 2679 | OS << "GV:"; | |||
| 2680 | BaseGV->printAsOperand(OS, /*PrintType=*/false); | |||
| 2681 | NeedPlus = true; | |||
| 2682 | } | |||
| 2683 | ||||
| 2684 | if (BaseOffs) { | |||
| 2685 | OS << (NeedPlus ? " + " : "") << BaseOffs; | |||
| 2686 | NeedPlus = true; | |||
| 2687 | } | |||
| 2688 | ||||
| 2689 | if (BaseReg) { | |||
| 2690 | OS << (NeedPlus ? " + " : "") << "Base:"; | |||
| 2691 | BaseReg->printAsOperand(OS, /*PrintType=*/false); | |||
| 2692 | NeedPlus = true; | |||
| 2693 | } | |||
| 2694 | if (Scale) { | |||
| 2695 | OS << (NeedPlus ? " + " : "") << Scale << "*"; | |||
| 2696 | ScaledReg->printAsOperand(OS, /*PrintType=*/false); | |||
| 2697 | } | |||
| 2698 | ||||
| 2699 | OS << ']'; | |||
| 2700 | } | |||
| 2701 | ||||
| 2702 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void ExtAddrMode::dump() const { | |||
| 2703 | print(dbgs()); | |||
| 2704 | dbgs() << '\n'; | |||
| 2705 | } | |||
| 2706 | #endif | |||
| 2707 | ||||
| 2708 | } // end anonymous namespace | |||
| 2709 | ||||
| 2710 | namespace { | |||
| 2711 | ||||
| 2712 | /// This class provides transaction based operation on the IR. | |||
| 2713 | /// Every change made through this class is recorded in the internal state and | |||
| 2714 | /// can be undone (rollback) until commit is called. | |||
| 2715 | /// CGP does not check if instructions could be speculatively executed when | |||
| 2716 | /// moved. Preserving the original location would pessimize the debugging | |||
| 2717 | /// experience, as well as negatively impact the quality of sample PGO. | |||
| 2718 | class TypePromotionTransaction { | |||
| 2719 | /// This represents the common interface of the individual transaction. | |||
| 2720 | /// Each class implements the logic for doing one specific modification on | |||
| 2721 | /// the IR via the TypePromotionTransaction. | |||
| 2722 | class TypePromotionAction { | |||
| 2723 | protected: | |||
| 2724 | /// The Instruction modified. | |||
| 2725 | Instruction *Inst; | |||
| 2726 | ||||
| 2727 | public: | |||
| 2728 | /// Constructor of the action. | |||
| 2729 | /// The constructor performs the related action on the IR. | |||
| 2730 | TypePromotionAction(Instruction *Inst) : Inst(Inst) {} | |||
| 2731 | ||||
| 2732 | virtual ~TypePromotionAction() = default; | |||
| 2733 | ||||
| 2734 | /// Undo the modification done by this action. | |||
| 2735 | /// When this method is called, the IR must be in the same state as it was | |||
| 2736 | /// before this action was applied. | |||
| 2737 | /// \pre Undoing the action works if and only if the IR is in the exact same | |||
| 2738 | /// state as it was directly after this action was applied. | |||
| 2739 | virtual void undo() = 0; | |||
| 2740 | ||||
| 2741 | /// Advocate every change made by this action. | |||
| 2742 | /// When the results on the IR of the action are to be kept, it is important | |||
| 2743 | /// to call this function, otherwise hidden information may be kept forever. | |||
| 2744 | virtual void commit() { | |||
| 2745 | // Nothing to be done, this action is not doing anything. | |||
| 2746 | } | |||
| 2747 | }; | |||
| 2748 | ||||
| 2749 | /// Utility to remember the position of an instruction. | |||
| 2750 | class InsertionHandler { | |||
| 2751 | /// Position of an instruction. | |||
| 2752 | /// Either an instruction: | |||
| 2753 | /// - Is the first in a basic block: BB is used. | |||
| 2754 | /// - Has a previous instruction: PrevInst is used. | |||
| 2755 | union { | |||
| 2756 | Instruction *PrevInst; | |||
| 2757 | BasicBlock *BB; | |||
| 2758 | } Point; | |||
| 2759 | ||||
| 2760 | /// Remember whether or not the instruction had a previous instruction. | |||
| 2761 | bool HasPrevInstruction; | |||
| 2762 | ||||
| 2763 | public: | |||
| 2764 | /// Record the position of \p Inst. | |||
| 2765 | InsertionHandler(Instruction *Inst) { | |||
| 2766 | BasicBlock::iterator It = Inst->getIterator(); | |||
| 2767 | HasPrevInstruction = (It != (Inst->getParent()->begin())); | |||
| 2768 | if (HasPrevInstruction) | |||
| 2769 | Point.PrevInst = &*--It; | |||
| 2770 | else | |||
| 2771 | Point.BB = Inst->getParent(); | |||
| 2772 | } | |||
| 2773 | ||||
| 2774 | /// Insert \p Inst at the recorded position. | |||
| 2775 | void insert(Instruction *Inst) { | |||
| 2776 | if (HasPrevInstruction) { | |||
| 2777 | if (Inst->getParent()) | |||
| 2778 | Inst->removeFromParent(); | |||
| 2779 | Inst->insertAfter(Point.PrevInst); | |||
| 2780 | } else { | |||
| 2781 | Instruction *Position = &*Point.BB->getFirstInsertionPt(); | |||
| 2782 | if (Inst->getParent()) | |||
| 2783 | Inst->moveBefore(Position); | |||
| 2784 | else | |||
| 2785 | Inst->insertBefore(Position); | |||
| 2786 | } | |||
| 2787 | } | |||
| 2788 | }; | |||
| 2789 | ||||
| 2790 | /// Move an instruction before another. | |||
| 2791 | class InstructionMoveBefore : public TypePromotionAction { | |||
| 2792 | /// Original position of the instruction. | |||
| 2793 | InsertionHandler Position; | |||
| 2794 | ||||
| 2795 | public: | |||
| 2796 | /// Move \p Inst before \p Before. | |||
| 2797 | InstructionMoveBefore(Instruction *Inst, Instruction *Before) | |||
| 2798 | : TypePromotionAction(Inst), Position(Inst) { | |||
| 2799 | LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Beforedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: move: " << * Inst << "\nbefore: " << *Before << "\n"; } } while (false) | |||
| 2800 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: move: " << * Inst << "\nbefore: " << *Before << "\n"; } } while (false); | |||
| 2801 | Inst->moveBefore(Before); | |||
| 2802 | } | |||
| 2803 | ||||
| 2804 | /// Move the instruction back to its original position. | |||
| 2805 | void undo() override { | |||
| 2806 | LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: moveBefore: " << *Inst << "\n"; } } while (false); | |||
| 2807 | Position.insert(Inst); | |||
| 2808 | } | |||
| 2809 | }; | |||
| 2810 | ||||
| 2811 | /// Set the operand of an instruction with a new value. | |||
| 2812 | class OperandSetter : public TypePromotionAction { | |||
| 2813 | /// Original operand of the instruction. | |||
| 2814 | Value *Origin; | |||
| 2815 | ||||
| 2816 | /// Index of the modified instruction. | |||
| 2817 | unsigned Idx; | |||
| 2818 | ||||
| 2819 | public: | |||
| 2820 | /// Set \p Idx operand of \p Inst with \p NewVal. | |||
| 2821 | OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) | |||
| 2822 | : TypePromotionAction(Inst), Idx(Idx) { | |||
| 2823 | LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false) | |||
| 2824 | << "for:" << *Inst << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false) | |||
| 2825 | << "with:" << *NewVal << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"; } } while ( false); | |||
| 2826 | Origin = Inst->getOperand(Idx); | |||
| 2827 | Inst->setOperand(Idx, NewVal); | |||
| 2828 | } | |||
| 2829 | ||||
| 2830 | /// Restore the original value of the instruction. | |||
| 2831 | void undo() override { | |||
| 2832 | LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false) | |||
| 2833 | << "for: " << *Inst << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false) | |||
| 2834 | << "with: " << *Origin << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"; } } while ( false); | |||
| 2835 | Inst->setOperand(Idx, Origin); | |||
| 2836 | } | |||
| 2837 | }; | |||
| 2838 | ||||
| 2839 | /// Hide the operands of an instruction. | |||
| 2840 | /// Do as if this instruction was not using any of its operands. | |||
| 2841 | class OperandsHider : public TypePromotionAction { | |||
| 2842 | /// The list of original operands. | |||
| 2843 | SmallVector<Value *, 4> OriginalValues; | |||
| 2844 | ||||
| 2845 | public: | |||
| 2846 | /// Remove \p Inst from the uses of the operands of \p Inst. | |||
| 2847 | OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { | |||
| 2848 | LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: OperandsHider: " << *Inst << "\n"; } } while (false); | |||
| 2849 | unsigned NumOpnds = Inst->getNumOperands(); | |||
| 2850 | OriginalValues.reserve(NumOpnds); | |||
| 2851 | for (unsigned It = 0; It < NumOpnds; ++It) { | |||
| 2852 | // Save the current operand. | |||
| 2853 | Value *Val = Inst->getOperand(It); | |||
| 2854 | OriginalValues.push_back(Val); | |||
| 2855 | // Set a dummy one. | |||
| 2856 | // We could use OperandSetter here, but that would imply an overhead | |||
| 2857 | // that we are not willing to pay. | |||
| 2858 | Inst->setOperand(It, UndefValue::get(Val->getType())); | |||
| 2859 | } | |||
| 2860 | } | |||
| 2861 | ||||
| 2862 | /// Restore the original list of uses. | |||
| 2863 | void undo() override { | |||
| 2864 | LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: OperandsHider: " << *Inst << "\n"; } } while (false); | |||
| 2865 | for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) | |||
| 2866 | Inst->setOperand(It, OriginalValues[It]); | |||
| 2867 | } | |||
| 2868 | }; | |||
| 2869 | ||||
| 2870 | /// Build a truncate instruction. | |||
| 2871 | class TruncBuilder : public TypePromotionAction { | |||
| 2872 | Value *Val; | |||
| 2873 | ||||
| 2874 | public: | |||
| 2875 | /// Build a truncate instruction of \p Opnd producing a \p Ty | |||
| 2876 | /// result. | |||
| 2877 | /// trunc Opnd to Ty. | |||
| 2878 | TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { | |||
| 2879 | IRBuilder<> Builder(Opnd); | |||
| 2880 | Builder.SetCurrentDebugLocation(DebugLoc()); | |||
| 2881 | Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); | |||
| 2882 | LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: TruncBuilder: " << *Val << "\n"; } } while (false); | |||
| 2883 | } | |||
| 2884 | ||||
| 2885 | /// Get the built value. | |||
| 2886 | Value *getBuiltValue() { return Val; } | |||
| 2887 | ||||
| 2888 | /// Remove the built instruction. | |||
| 2889 | void undo() override { | |||
| 2890 | LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: TruncBuilder: " << *Val << "\n"; } } while (false); | |||
| 2891 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | |||
| 2892 | IVal->eraseFromParent(); | |||
| 2893 | } | |||
| 2894 | }; | |||
| 2895 | ||||
| 2896 | /// Build a sign extension instruction. | |||
| 2897 | class SExtBuilder : public TypePromotionAction { | |||
| 2898 | Value *Val; | |||
| 2899 | ||||
| 2900 | public: | |||
| 2901 | /// Build a sign extension instruction of \p Opnd producing a \p Ty | |||
| 2902 | /// result. | |||
| 2903 | /// sext Opnd to Ty. | |||
| 2904 | SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | |||
| 2905 | : TypePromotionAction(InsertPt) { | |||
| 2906 | IRBuilder<> Builder(InsertPt); | |||
| 2907 | Val = Builder.CreateSExt(Opnd, Ty, "promoted"); | |||
| 2908 | LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: SExtBuilder: " << *Val << "\n"; } } while (false); | |||
| 2909 | } | |||
| 2910 | ||||
| 2911 | /// Get the built value. | |||
| 2912 | Value *getBuiltValue() { return Val; } | |||
| 2913 | ||||
| 2914 | /// Remove the built instruction. | |||
| 2915 | void undo() override { | |||
| 2916 | LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: SExtBuilder: " << *Val << "\n"; } } while (false); | |||
| 2917 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | |||
| 2918 | IVal->eraseFromParent(); | |||
| 2919 | } | |||
| 2920 | }; | |||
| 2921 | ||||
| 2922 | /// Build a zero extension instruction. | |||
| 2923 | class ZExtBuilder : public TypePromotionAction { | |||
| 2924 | Value *Val; | |||
| 2925 | ||||
| 2926 | public: | |||
| 2927 | /// Build a zero extension instruction of \p Opnd producing a \p Ty | |||
| 2928 | /// result. | |||
| 2929 | /// zext Opnd to Ty. | |||
| 2930 | ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) | |||
| 2931 | : TypePromotionAction(InsertPt) { | |||
| 2932 | IRBuilder<> Builder(InsertPt); | |||
| 2933 | Builder.SetCurrentDebugLocation(DebugLoc()); | |||
| 2934 | Val = Builder.CreateZExt(Opnd, Ty, "promoted"); | |||
| 2935 | LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: ZExtBuilder: " << *Val << "\n"; } } while (false); | |||
| 2936 | } | |||
| 2937 | ||||
| 2938 | /// Get the built value. | |||
| 2939 | Value *getBuiltValue() { return Val; } | |||
| 2940 | ||||
| 2941 | /// Remove the built instruction. | |||
| 2942 | void undo() override { | |||
| 2943 | LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"; } } while (false); | |||
| 2944 | if (Instruction *IVal = dyn_cast<Instruction>(Val)) | |||
| 2945 | IVal->eraseFromParent(); | |||
| 2946 | } | |||
| 2947 | }; | |||
| 2948 | ||||
| 2949 | /// Mutate an instruction to another type. | |||
| 2950 | class TypeMutator : public TypePromotionAction { | |||
| 2951 | /// Record the original type. | |||
| 2952 | Type *OrigTy; | |||
| 2953 | ||||
| 2954 | public: | |||
| 2955 | /// Mutate the type of \p Inst into \p NewTy. | |||
| 2956 | TypeMutator(Instruction *Inst, Type *NewTy) | |||
| 2957 | : TypePromotionAction(Inst), OrigTy(Inst->getType()) { | |||
| 2958 | LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"; } } while (false) | |||
| 2959 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"; } } while (false); | |||
| 2960 | Inst->mutateType(NewTy); | |||
| 2961 | } | |||
| 2962 | ||||
| 2963 | /// Mutate the instruction back to its original type. | |||
| 2964 | void undo() override { | |||
| 2965 | LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"; } } while (false) | |||
| 2966 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"; } } while (false); | |||
| 2967 | Inst->mutateType(OrigTy); | |||
| 2968 | } | |||
| 2969 | }; | |||
| 2970 | ||||
| 2971 | /// Replace the uses of an instruction by another instruction. | |||
| 2972 | class UsesReplacer : public TypePromotionAction { | |||
| 2973 | /// Helper structure to keep track of the replaced uses. | |||
| 2974 | struct InstructionAndIdx { | |||
| 2975 | /// The instruction using the instruction. | |||
| 2976 | Instruction *Inst; | |||
| 2977 | ||||
| 2978 | /// The index where this instruction is used for Inst. | |||
| 2979 | unsigned Idx; | |||
| 2980 | ||||
| 2981 | InstructionAndIdx(Instruction *Inst, unsigned Idx) | |||
| 2982 | : Inst(Inst), Idx(Idx) {} | |||
| 2983 | }; | |||
| 2984 | ||||
| 2985 | /// Keep track of the original uses (pair Instruction, Index). | |||
| 2986 | SmallVector<InstructionAndIdx, 4> OriginalUses; | |||
| 2987 | /// Keep track of the debug users. | |||
| 2988 | SmallVector<DbgValueInst *, 1> DbgValues; | |||
| 2989 | ||||
| 2990 | /// Keep track of the new value so that we can undo it by replacing | |||
| 2991 | /// instances of the new value with the original value. | |||
| 2992 | Value *New; | |||
| 2993 | ||||
| 2994 | using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; | |||
| 2995 | ||||
| 2996 | public: | |||
| 2997 | /// Replace all the use of \p Inst by \p New. | |||
| 2998 | UsesReplacer(Instruction *Inst, Value *New) | |||
| 2999 | : TypePromotionAction(Inst), New(New) { | |||
| 3000 | LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *Newdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"; } } while (false) | |||
| 3001 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"; } } while (false); | |||
| 3002 | // Record the original uses. | |||
| 3003 | for (Use &U : Inst->uses()) { | |||
| 3004 | Instruction *UserI = cast<Instruction>(U.getUser()); | |||
| 3005 | OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); | |||
| 3006 | } | |||
| 3007 | // Record the debug uses separately. They are not in the instruction's | |||
| 3008 | // use list, but they are replaced by RAUW. | |||
| 3009 | findDbgValues(DbgValues, Inst); | |||
| 3010 | ||||
| 3011 | // Now, we can replace the uses. | |||
| 3012 | Inst->replaceAllUsesWith(New); | |||
| 3013 | } | |||
| 3014 | ||||
| 3015 | /// Reassign the original uses of Inst to Inst. | |||
| 3016 | void undo() override { | |||
| 3017 | LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"; } } while (false); | |||
| 3018 | for (InstructionAndIdx &Use : OriginalUses) | |||
| 3019 | Use.Inst->setOperand(Use.Idx, Inst); | |||
| 3020 | // RAUW has replaced all original uses with references to the new value, | |||
| 3021 | // including the debug uses. Since we are undoing the replacements, | |||
| 3022 | // the original debug uses must also be reinstated to maintain the | |||
| 3023 | // correctness and utility of debug value instructions. | |||
| 3024 | for (auto *DVI : DbgValues) | |||
| 3025 | DVI->replaceVariableLocationOp(New, Inst); | |||
| 3026 | } | |||
| 3027 | }; | |||
| 3028 | ||||
| 3029 | /// Remove an instruction from the IR. | |||
| 3030 | class InstructionRemover : public TypePromotionAction { | |||
| 3031 | /// Original position of the instruction. | |||
| 3032 | InsertionHandler Inserter; | |||
| 3033 | ||||
| 3034 | /// Helper structure to hide all the link to the instruction. In other | |||
| 3035 | /// words, this helps to do as if the instruction was removed. | |||
| 3036 | OperandsHider Hider; | |||
| 3037 | ||||
| 3038 | /// Keep track of the uses replaced, if any. | |||
| 3039 | UsesReplacer *Replacer = nullptr; | |||
| 3040 | ||||
| 3041 | /// Keep track of instructions removed. | |||
| 3042 | SetOfInstrs &RemovedInsts; | |||
| 3043 | ||||
| 3044 | public: | |||
| 3045 | /// Remove all reference of \p Inst and optionally replace all its | |||
| 3046 | /// uses with New. | |||
| 3047 | /// \p RemovedInsts Keep track of the instructions removed by this Action. | |||
| 3048 | /// \pre If !Inst->use_empty(), then New != nullptr | |||
| 3049 | InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, | |||
| 3050 | Value *New = nullptr) | |||
| 3051 | : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), | |||
| 3052 | RemovedInsts(RemovedInsts) { | |||
| 3053 | if (New) | |||
| 3054 | Replacer = new UsesReplacer(Inst, New); | |||
| 3055 | LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Do: InstructionRemover: " << *Inst << "\n"; } } while (false); | |||
| 3056 | RemovedInsts.insert(Inst); | |||
| 3057 | /// The instructions removed here will be freed after completing | |||
| 3058 | /// optimizeBlock() for all blocks as we need to keep track of the | |||
| 3059 | /// removed instructions during promotion. | |||
| 3060 | Inst->removeFromParent(); | |||
| 3061 | } | |||
| 3062 | ||||
| 3063 | ~InstructionRemover() override { delete Replacer; } | |||
| 3064 | ||||
| 3065 | /// Resurrect the instruction and reassign it to the proper uses if | |||
| 3066 | /// new value was provided when build this action. | |||
| 3067 | void undo() override { | |||
| 3068 | LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"; } } while (false); | |||
| 3069 | Inserter.insert(Inst); | |||
| 3070 | if (Replacer) | |||
| 3071 | Replacer->undo(); | |||
| 3072 | Hider.undo(); | |||
| 3073 | RemovedInsts.erase(Inst); | |||
| 3074 | } | |||
| 3075 | }; | |||
| 3076 | ||||
| 3077 | public: | |||
| 3078 | /// Restoration point. | |||
| 3079 | /// The restoration point is a pointer to an action instead of an iterator | |||
| 3080 | /// because the iterator may be invalidated but not the pointer. | |||
| 3081 | using ConstRestorationPt = const TypePromotionAction *; | |||
| 3082 | ||||
| 3083 | TypePromotionTransaction(SetOfInstrs &RemovedInsts) | |||
| 3084 | : RemovedInsts(RemovedInsts) {} | |||
| 3085 | ||||
| 3086 | /// Advocate every changes made in that transaction. Return true if any change | |||
| 3087 | /// happen. | |||
| 3088 | bool commit(); | |||
| 3089 | ||||
| 3090 | /// Undo all the changes made after the given point. | |||
| 3091 | void rollback(ConstRestorationPt Point); | |||
| 3092 | ||||
| 3093 | /// Get the current restoration point. | |||
| 3094 | ConstRestorationPt getRestorationPoint() const; | |||
| 3095 | ||||
| 3096 | /// \name API for IR modification with state keeping to support rollback. | |||
| 3097 | /// @{ | |||
| 3098 | /// Same as Instruction::setOperand. | |||
| 3099 | void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); | |||
| 3100 | ||||
| 3101 | /// Same as Instruction::eraseFromParent. | |||
| 3102 | void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); | |||
| 3103 | ||||
| 3104 | /// Same as Value::replaceAllUsesWith. | |||
| 3105 | void replaceAllUsesWith(Instruction *Inst, Value *New); | |||
| 3106 | ||||
| 3107 | /// Same as Value::mutateType. | |||
| 3108 | void mutateType(Instruction *Inst, Type *NewTy); | |||
| 3109 | ||||
| 3110 | /// Same as IRBuilder::createTrunc. | |||
| 3111 | Value *createTrunc(Instruction *Opnd, Type *Ty); | |||
| 3112 | ||||
| 3113 | /// Same as IRBuilder::createSExt. | |||
| 3114 | Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); | |||
| 3115 | ||||
| 3116 | /// Same as IRBuilder::createZExt. | |||
| 3117 | Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); | |||
| 3118 | ||||
| 3119 | /// Same as Instruction::moveBefore. | |||
| 3120 | void moveBefore(Instruction *Inst, Instruction *Before); | |||
| 3121 | /// @} | |||
| 3122 | ||||
| 3123 | private: | |||
| 3124 | /// The ordered list of actions made so far. | |||
| 3125 | SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; | |||
| 3126 | ||||
| 3127 | using CommitPt = | |||
| 3128 | SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; | |||
| 3129 | ||||
| 3130 | SetOfInstrs &RemovedInsts; | |||
| 3131 | }; | |||
| 3132 | ||||
| 3133 | } // end anonymous namespace | |||
| 3134 | ||||
| 3135 | void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, | |||
| 3136 | Value *NewVal) { | |||
| 3137 | Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( | |||
| 3138 | Inst, Idx, NewVal)); | |||
| 3139 | } | |||
| 3140 | ||||
| 3141 | void TypePromotionTransaction::eraseInstruction(Instruction *Inst, | |||
| 3142 | Value *NewVal) { | |||
| 3143 | Actions.push_back( | |||
| 3144 | std::make_unique<TypePromotionTransaction::InstructionRemover>( | |||
| 3145 | Inst, RemovedInsts, NewVal)); | |||
| 3146 | } | |||
| 3147 | ||||
| 3148 | void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, | |||
| 3149 | Value *New) { | |||
| 3150 | Actions.push_back( | |||
| 3151 | std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); | |||
| 3152 | } | |||
| 3153 | ||||
| 3154 | void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { | |||
| 3155 | Actions.push_back( | |||
| 3156 | std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); | |||
| 3157 | } | |||
| 3158 | ||||
| 3159 | Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { | |||
| 3160 | std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); | |||
| 3161 | Value *Val = Ptr->getBuiltValue(); | |||
| 3162 | Actions.push_back(std::move(Ptr)); | |||
| 3163 | return Val; | |||
| 3164 | } | |||
| 3165 | ||||
| 3166 | Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, | |||
| 3167 | Type *Ty) { | |||
| 3168 | std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); | |||
| 3169 | Value *Val = Ptr->getBuiltValue(); | |||
| 3170 | Actions.push_back(std::move(Ptr)); | |||
| 3171 | return Val; | |||
| 3172 | } | |||
| 3173 | ||||
| 3174 | Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, | |||
| 3175 | Type *Ty) { | |||
| 3176 | std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); | |||
| 3177 | Value *Val = Ptr->getBuiltValue(); | |||
| 3178 | Actions.push_back(std::move(Ptr)); | |||
| 3179 | return Val; | |||
| 3180 | } | |||
| 3181 | ||||
| 3182 | void TypePromotionTransaction::moveBefore(Instruction *Inst, | |||
| 3183 | Instruction *Before) { | |||
| 3184 | Actions.push_back( | |||
| 3185 | std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( | |||
| 3186 | Inst, Before)); | |||
| 3187 | } | |||
| 3188 | ||||
| 3189 | TypePromotionTransaction::ConstRestorationPt | |||
| 3190 | TypePromotionTransaction::getRestorationPoint() const { | |||
| 3191 | return !Actions.empty() ? Actions.back().get() : nullptr; | |||
| 3192 | } | |||
| 3193 | ||||
| 3194 | bool TypePromotionTransaction::commit() { | |||
| 3195 | for (std::unique_ptr<TypePromotionAction> &Action : Actions) | |||
| 3196 | Action->commit(); | |||
| 3197 | bool Modified = !Actions.empty(); | |||
| 3198 | Actions.clear(); | |||
| 3199 | return Modified; | |||
| 3200 | } | |||
| 3201 | ||||
| 3202 | void TypePromotionTransaction::rollback( | |||
| 3203 | TypePromotionTransaction::ConstRestorationPt Point) { | |||
| 3204 | while (!Actions.empty() && Point != Actions.back().get()) { | |||
| 3205 | std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); | |||
| 3206 | Curr->undo(); | |||
| 3207 | } | |||
| 3208 | } | |||
| 3209 | ||||
| 3210 | namespace { | |||
| 3211 | ||||
| 3212 | /// A helper class for matching addressing modes. | |||
| 3213 | /// | |||
| 3214 | /// This encapsulates the logic for matching the target-legal addressing modes. | |||
| 3215 | class AddressingModeMatcher { | |||
| 3216 | SmallVectorImpl<Instruction *> &AddrModeInsts; | |||
| 3217 | const TargetLowering &TLI; | |||
| 3218 | const TargetRegisterInfo &TRI; | |||
| 3219 | const DataLayout &DL; | |||
| 3220 | const LoopInfo &LI; | |||
| 3221 | const std::function<const DominatorTree &()> getDTFn; | |||
| 3222 | ||||
| 3223 | /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and | |||
| 3224 | /// the memory instruction that we're computing this address for. | |||
| 3225 | Type *AccessTy; | |||
| 3226 | unsigned AddrSpace; | |||
| 3227 | Instruction *MemoryInst; | |||
| 3228 | ||||
| 3229 | /// This is the addressing mode that we're building up. This is | |||
| 3230 | /// part of the return value of this addressing mode matching stuff. | |||
| 3231 | ExtAddrMode &AddrMode; | |||
| 3232 | ||||
| 3233 | /// The instructions inserted by other CodeGenPrepare optimizations. | |||
| 3234 | const SetOfInstrs &InsertedInsts; | |||
| 3235 | ||||
| 3236 | /// A map from the instructions to their type before promotion. | |||
| 3237 | InstrToOrigTy &PromotedInsts; | |||
| 3238 | ||||
| 3239 | /// The ongoing transaction where every action should be registered. | |||
| 3240 | TypePromotionTransaction &TPT; | |||
| 3241 | ||||
| 3242 | // A GEP which has too large offset to be folded into the addressing mode. | |||
| 3243 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; | |||
| 3244 | ||||
| 3245 | /// This is set to true when we should not do profitability checks. | |||
| 3246 | /// When true, IsProfitableToFoldIntoAddressingMode always returns true. | |||
| 3247 | bool IgnoreProfitability; | |||
| 3248 | ||||
| 3249 | /// True if we are optimizing for size. | |||
| 3250 | bool OptSize = false; | |||
| 3251 | ||||
| 3252 | ProfileSummaryInfo *PSI; | |||
| 3253 | BlockFrequencyInfo *BFI; | |||
| 3254 | ||||
| 3255 | AddressingModeMatcher( | |||
| 3256 | SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, | |||
| 3257 | const TargetRegisterInfo &TRI, const LoopInfo &LI, | |||
| 3258 | const std::function<const DominatorTree &()> getDTFn, Type *AT, | |||
| 3259 | unsigned AS, Instruction *MI, ExtAddrMode &AM, | |||
| 3260 | const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, | |||
| 3261 | TypePromotionTransaction &TPT, | |||
| 3262 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, | |||
| 3263 | bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) | |||
| 3264 | : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), | |||
| 3265 | DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), | |||
| 3266 | AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), | |||
| 3267 | InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), | |||
| 3268 | LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { | |||
| 3269 | IgnoreProfitability = false; | |||
| 3270 | } | |||
| 3271 | ||||
| 3272 | public: | |||
| 3273 | /// Find the maximal addressing mode that a load/store of V can fold, | |||
| 3274 | /// give an access type of AccessTy. This returns a list of involved | |||
| 3275 | /// instructions in AddrModeInsts. | |||
| 3276 | /// \p InsertedInsts The instructions inserted by other CodeGenPrepare | |||
| 3277 | /// optimizations. | |||
| 3278 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
| 3279 | /// \p The ongoing transaction where every action should be registered. | |||
| 3280 | static ExtAddrMode | |||
| 3281 | Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, | |||
| 3282 | SmallVectorImpl<Instruction *> &AddrModeInsts, | |||
| 3283 | const TargetLowering &TLI, const LoopInfo &LI, | |||
| 3284 | const std::function<const DominatorTree &()> getDTFn, | |||
| 3285 | const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, | |||
| 3286 | InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, | |||
| 3287 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, | |||
| 3288 | bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { | |||
| 3289 | ExtAddrMode Result; | |||
| 3290 | ||||
| 3291 | bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, | |||
| 3292 | AccessTy, AS, MemoryInst, Result, | |||
| 3293 | InsertedInsts, PromotedInsts, TPT, | |||
| 3294 | LargeOffsetGEP, OptSize, PSI, BFI) | |||
| 3295 | .matchAddr(V, 0); | |||
| 3296 | (void)Success; | |||
| 3297 | assert(Success && "Couldn't select *anything*?")(static_cast <bool> (Success && "Couldn't select *anything*?" ) ? void (0) : __assert_fail ("Success && \"Couldn't select *anything*?\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3297, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3298 | return Result; | |||
| 3299 | } | |||
| 3300 | ||||
| 3301 | private: | |||
| 3302 | bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); | |||
| 3303 | bool matchAddr(Value *Addr, unsigned Depth); | |||
| 3304 | bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, | |||
| 3305 | bool *MovedAway = nullptr); | |||
| 3306 | bool isProfitableToFoldIntoAddressingMode(Instruction *I, | |||
| 3307 | ExtAddrMode &AMBefore, | |||
| 3308 | ExtAddrMode &AMAfter); | |||
| 3309 | bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); | |||
| 3310 | bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, | |||
| 3311 | Value *PromotedOperand) const; | |||
| 3312 | }; | |||
| 3313 | ||||
| 3314 | class PhiNodeSet; | |||
| 3315 | ||||
| 3316 | /// An iterator for PhiNodeSet. | |||
| 3317 | class PhiNodeSetIterator { | |||
| 3318 | PhiNodeSet *const Set; | |||
| 3319 | size_t CurrentIndex = 0; | |||
| 3320 | ||||
| 3321 | public: | |||
| 3322 | /// The constructor. Start should point to either a valid element, or be equal | |||
| 3323 | /// to the size of the underlying SmallVector of the PhiNodeSet. | |||
| 3324 | PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); | |||
| 3325 | PHINode *operator*() const; | |||
| 3326 | PhiNodeSetIterator &operator++(); | |||
| 3327 | bool operator==(const PhiNodeSetIterator &RHS) const; | |||
| 3328 | bool operator!=(const PhiNodeSetIterator &RHS) const; | |||
| 3329 | }; | |||
| 3330 | ||||
| 3331 | /// Keeps a set of PHINodes. | |||
| 3332 | /// | |||
| 3333 | /// This is a minimal set implementation for a specific use case: | |||
| 3334 | /// It is very fast when there are very few elements, but also provides good | |||
| 3335 | /// performance when there are many. It is similar to SmallPtrSet, but also | |||
| 3336 | /// provides iteration by insertion order, which is deterministic and stable | |||
| 3337 | /// across runs. It is also similar to SmallSetVector, but provides removing | |||
| 3338 | /// elements in O(1) time. This is achieved by not actually removing the element | |||
| 3339 | /// from the underlying vector, so comes at the cost of using more memory, but | |||
| 3340 | /// that is fine, since PhiNodeSets are used as short lived objects. | |||
| 3341 | class PhiNodeSet { | |||
| 3342 | friend class PhiNodeSetIterator; | |||
| 3343 | ||||
| 3344 | using MapType = SmallDenseMap<PHINode *, size_t, 32>; | |||
| 3345 | using iterator = PhiNodeSetIterator; | |||
| 3346 | ||||
| 3347 | /// Keeps the elements in the order of their insertion in the underlying | |||
| 3348 | /// vector. To achieve constant time removal, it never deletes any element. | |||
| 3349 | SmallVector<PHINode *, 32> NodeList; | |||
| 3350 | ||||
| 3351 | /// Keeps the elements in the underlying set implementation. This (and not the | |||
| 3352 | /// NodeList defined above) is the source of truth on whether an element | |||
| 3353 | /// is actually in the collection. | |||
| 3354 | MapType NodeMap; | |||
| 3355 | ||||
| 3356 | /// Points to the first valid (not deleted) element when the set is not empty | |||
| 3357 | /// and the value is not zero. Equals to the size of the underlying vector | |||
| 3358 | /// when the set is empty. When the value is 0, as in the beginning, the | |||
| 3359 | /// first element may or may not be valid. | |||
| 3360 | size_t FirstValidElement = 0; | |||
| 3361 | ||||
| 3362 | public: | |||
| 3363 | /// Inserts a new element to the collection. | |||
| 3364 | /// \returns true if the element is actually added, i.e. was not in the | |||
| 3365 | /// collection before the operation. | |||
| 3366 | bool insert(PHINode *Ptr) { | |||
| 3367 | if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { | |||
| 3368 | NodeList.push_back(Ptr); | |||
| 3369 | return true; | |||
| 3370 | } | |||
| 3371 | return false; | |||
| 3372 | } | |||
| 3373 | ||||
| 3374 | /// Removes the element from the collection. | |||
| 3375 | /// \returns whether the element is actually removed, i.e. was in the | |||
| 3376 | /// collection before the operation. | |||
| 3377 | bool erase(PHINode *Ptr) { | |||
| 3378 | if (NodeMap.erase(Ptr)) { | |||
| 3379 | SkipRemovedElements(FirstValidElement); | |||
| 3380 | return true; | |||
| 3381 | } | |||
| 3382 | return false; | |||
| 3383 | } | |||
| 3384 | ||||
| 3385 | /// Removes all elements and clears the collection. | |||
| 3386 | void clear() { | |||
| 3387 | NodeMap.clear(); | |||
| 3388 | NodeList.clear(); | |||
| 3389 | FirstValidElement = 0; | |||
| 3390 | } | |||
| 3391 | ||||
| 3392 | /// \returns an iterator that will iterate the elements in the order of | |||
| 3393 | /// insertion. | |||
| 3394 | iterator begin() { | |||
| 3395 | if (FirstValidElement == 0) | |||
| 3396 | SkipRemovedElements(FirstValidElement); | |||
| 3397 | return PhiNodeSetIterator(this, FirstValidElement); | |||
| 3398 | } | |||
| 3399 | ||||
| 3400 | /// \returns an iterator that points to the end of the collection. | |||
| 3401 | iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } | |||
| 3402 | ||||
| 3403 | /// Returns the number of elements in the collection. | |||
| 3404 | size_t size() const { return NodeMap.size(); } | |||
| 3405 | ||||
| 3406 | /// \returns 1 if the given element is in the collection, and 0 if otherwise. | |||
| 3407 | size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } | |||
| 3408 | ||||
| 3409 | private: | |||
| 3410 | /// Updates the CurrentIndex so that it will point to a valid element. | |||
| 3411 | /// | |||
| 3412 | /// If the element of NodeList at CurrentIndex is valid, it does not | |||
| 3413 | /// change it. If there are no more valid elements, it updates CurrentIndex | |||
| 3414 | /// to point to the end of the NodeList. | |||
| 3415 | void SkipRemovedElements(size_t &CurrentIndex) { | |||
| 3416 | while (CurrentIndex < NodeList.size()) { | |||
| 3417 | auto it = NodeMap.find(NodeList[CurrentIndex]); | |||
| 3418 | // If the element has been deleted and added again later, NodeMap will | |||
| 3419 | // point to a different index, so CurrentIndex will still be invalid. | |||
| 3420 | if (it != NodeMap.end() && it->second == CurrentIndex) | |||
| 3421 | break; | |||
| 3422 | ++CurrentIndex; | |||
| 3423 | } | |||
| 3424 | } | |||
| 3425 | }; | |||
| 3426 | ||||
| 3427 | PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) | |||
| 3428 | : Set(Set), CurrentIndex(Start) {} | |||
| 3429 | ||||
| 3430 | PHINode *PhiNodeSetIterator::operator*() const { | |||
| 3431 | assert(CurrentIndex < Set->NodeList.size() &&(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3432, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3432 | "PhiNodeSet access out of range")(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3432, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3433 | return Set->NodeList[CurrentIndex]; | |||
| 3434 | } | |||
| 3435 | ||||
| 3436 | PhiNodeSetIterator &PhiNodeSetIterator::operator++() { | |||
| 3437 | assert(CurrentIndex < Set->NodeList.size() &&(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3438, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3438 | "PhiNodeSet access out of range")(static_cast <bool> (CurrentIndex < Set->NodeList .size() && "PhiNodeSet access out of range") ? void ( 0) : __assert_fail ("CurrentIndex < Set->NodeList.size() && \"PhiNodeSet access out of range\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3438, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3439 | ++CurrentIndex; | |||
| 3440 | Set->SkipRemovedElements(CurrentIndex); | |||
| 3441 | return *this; | |||
| 3442 | } | |||
| 3443 | ||||
| 3444 | bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { | |||
| 3445 | return CurrentIndex == RHS.CurrentIndex; | |||
| 3446 | } | |||
| 3447 | ||||
| 3448 | bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { | |||
| 3449 | return !((*this) == RHS); | |||
| 3450 | } | |||
| 3451 | ||||
| 3452 | /// Keep track of simplification of Phi nodes. | |||
| 3453 | /// Accept the set of all phi nodes and erase phi node from this set | |||
| 3454 | /// if it is simplified. | |||
| 3455 | class SimplificationTracker { | |||
| 3456 | DenseMap<Value *, Value *> Storage; | |||
| 3457 | const SimplifyQuery &SQ; | |||
| 3458 | // Tracks newly created Phi nodes. The elements are iterated by insertion | |||
| 3459 | // order. | |||
| 3460 | PhiNodeSet AllPhiNodes; | |||
| 3461 | // Tracks newly created Select nodes. | |||
| 3462 | SmallPtrSet<SelectInst *, 32> AllSelectNodes; | |||
| 3463 | ||||
| 3464 | public: | |||
| 3465 | SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} | |||
| 3466 | ||||
| 3467 | Value *Get(Value *V) { | |||
| 3468 | do { | |||
| 3469 | auto SV = Storage.find(V); | |||
| 3470 | if (SV == Storage.end()) | |||
| 3471 | return V; | |||
| 3472 | V = SV->second; | |||
| 3473 | } while (true); | |||
| 3474 | } | |||
| 3475 | ||||
| 3476 | Value *Simplify(Value *Val) { | |||
| 3477 | SmallVector<Value *, 32> WorkList; | |||
| 3478 | SmallPtrSet<Value *, 32> Visited; | |||
| 3479 | WorkList.push_back(Val); | |||
| 3480 | while (!WorkList.empty()) { | |||
| 3481 | auto *P = WorkList.pop_back_val(); | |||
| 3482 | if (!Visited.insert(P).second) | |||
| 3483 | continue; | |||
| 3484 | if (auto *PI = dyn_cast<Instruction>(P)) | |||
| 3485 | if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { | |||
| 3486 | for (auto *U : PI->users()) | |||
| 3487 | WorkList.push_back(cast<Value>(U)); | |||
| 3488 | Put(PI, V); | |||
| 3489 | PI->replaceAllUsesWith(V); | |||
| 3490 | if (auto *PHI = dyn_cast<PHINode>(PI)) | |||
| 3491 | AllPhiNodes.erase(PHI); | |||
| 3492 | if (auto *Select = dyn_cast<SelectInst>(PI)) | |||
| 3493 | AllSelectNodes.erase(Select); | |||
| 3494 | PI->eraseFromParent(); | |||
| 3495 | } | |||
| 3496 | } | |||
| 3497 | return Get(Val); | |||
| 3498 | } | |||
| 3499 | ||||
| 3500 | void Put(Value *From, Value *To) { Storage.insert({From, To}); } | |||
| 3501 | ||||
| 3502 | void ReplacePhi(PHINode *From, PHINode *To) { | |||
| 3503 | Value *OldReplacement = Get(From); | |||
| 3504 | while (OldReplacement != From) { | |||
| 3505 | From = To; | |||
| 3506 | To = dyn_cast<PHINode>(OldReplacement); | |||
| 3507 | OldReplacement = Get(From); | |||
| 3508 | } | |||
| 3509 | assert(To && Get(To) == To && "Replacement PHI node is already replaced.")(static_cast <bool> (To && Get(To) == To && "Replacement PHI node is already replaced.") ? void (0) : __assert_fail ("To && Get(To) == To && \"Replacement PHI node is already replaced.\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3509, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3510 | Put(From, To); | |||
| 3511 | From->replaceAllUsesWith(To); | |||
| 3512 | AllPhiNodes.erase(From); | |||
| 3513 | From->eraseFromParent(); | |||
| 3514 | } | |||
| 3515 | ||||
| 3516 | PhiNodeSet &newPhiNodes() { return AllPhiNodes; } | |||
| 3517 | ||||
| 3518 | void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } | |||
| 3519 | ||||
| 3520 | void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } | |||
| 3521 | ||||
| 3522 | unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } | |||
| 3523 | ||||
| 3524 | unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } | |||
| 3525 | ||||
| 3526 | void destroyNewNodes(Type *CommonType) { | |||
| 3527 | // For safe erasing, replace the uses with dummy value first. | |||
| 3528 | auto *Dummy = PoisonValue::get(CommonType); | |||
| 3529 | for (auto *I : AllPhiNodes) { | |||
| 3530 | I->replaceAllUsesWith(Dummy); | |||
| 3531 | I->eraseFromParent(); | |||
| 3532 | } | |||
| 3533 | AllPhiNodes.clear(); | |||
| 3534 | for (auto *I : AllSelectNodes) { | |||
| 3535 | I->replaceAllUsesWith(Dummy); | |||
| 3536 | I->eraseFromParent(); | |||
| 3537 | } | |||
| 3538 | AllSelectNodes.clear(); | |||
| 3539 | } | |||
| 3540 | }; | |||
| 3541 | ||||
| 3542 | /// A helper class for combining addressing modes. | |||
| 3543 | class AddressingModeCombiner { | |||
| 3544 | typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; | |||
| 3545 | typedef std::pair<PHINode *, PHINode *> PHIPair; | |||
| 3546 | ||||
| 3547 | private: | |||
| 3548 | /// The addressing modes we've collected. | |||
| 3549 | SmallVector<ExtAddrMode, 16> AddrModes; | |||
| 3550 | ||||
| 3551 | /// The field in which the AddrModes differ, when we have more than one. | |||
| 3552 | ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; | |||
| 3553 | ||||
| 3554 | /// Are the AddrModes that we have all just equal to their original values? | |||
| 3555 | bool AllAddrModesTrivial = true; | |||
| 3556 | ||||
| 3557 | /// Common Type for all different fields in addressing modes. | |||
| 3558 | Type *CommonType = nullptr; | |||
| 3559 | ||||
| 3560 | /// SimplifyQuery for simplifyInstruction utility. | |||
| 3561 | const SimplifyQuery &SQ; | |||
| 3562 | ||||
| 3563 | /// Original Address. | |||
| 3564 | Value *Original; | |||
| 3565 | ||||
| 3566 | /// Common value among addresses | |||
| 3567 | Value *CommonValue = nullptr; | |||
| 3568 | ||||
| 3569 | public: | |||
| 3570 | AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) | |||
| 3571 | : SQ(_SQ), Original(OriginalValue) {} | |||
| 3572 | ||||
| 3573 | ~AddressingModeCombiner() { eraseCommonValueIfDead(); } | |||
| 3574 | ||||
| 3575 | /// Get the combined AddrMode | |||
| 3576 | const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } | |||
| 3577 | ||||
| 3578 | /// Add a new AddrMode if it's compatible with the AddrModes we already | |||
| 3579 | /// have. | |||
| 3580 | /// \return True iff we succeeded in doing so. | |||
| 3581 | bool addNewAddrMode(ExtAddrMode &NewAddrMode) { | |||
| 3582 | // Take note of if we have any non-trivial AddrModes, as we need to detect | |||
| 3583 | // when all AddrModes are trivial as then we would introduce a phi or select | |||
| 3584 | // which just duplicates what's already there. | |||
| 3585 | AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); | |||
| 3586 | ||||
| 3587 | // If this is the first addrmode then everything is fine. | |||
| 3588 | if (AddrModes.empty()) { | |||
| 3589 | AddrModes.emplace_back(NewAddrMode); | |||
| 3590 | return true; | |||
| 3591 | } | |||
| 3592 | ||||
| 3593 | // Figure out how different this is from the other address modes, which we | |||
| 3594 | // can do just by comparing against the first one given that we only care | |||
| 3595 | // about the cumulative difference. | |||
| 3596 | ExtAddrMode::FieldName ThisDifferentField = | |||
| 3597 | AddrModes[0].compare(NewAddrMode); | |||
| 3598 | if (DifferentField == ExtAddrMode::NoField) | |||
| 3599 | DifferentField = ThisDifferentField; | |||
| 3600 | else if (DifferentField != ThisDifferentField) | |||
| 3601 | DifferentField = ExtAddrMode::MultipleFields; | |||
| 3602 | ||||
| 3603 | // If NewAddrMode differs in more than one dimension we cannot handle it. | |||
| 3604 | bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; | |||
| 3605 | ||||
| 3606 | // If Scale Field is different then we reject. | |||
| 3607 | CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; | |||
| 3608 | ||||
| 3609 | // We also must reject the case when base offset is different and | |||
| 3610 | // scale reg is not null, we cannot handle this case due to merge of | |||
| 3611 | // different offsets will be used as ScaleReg. | |||
| 3612 | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || | |||
| 3613 | !NewAddrMode.ScaledReg); | |||
| 3614 | ||||
| 3615 | // We also must reject the case when GV is different and BaseReg installed | |||
| 3616 | // due to we want to use base reg as a merge of GV values. | |||
| 3617 | CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || | |||
| 3618 | !NewAddrMode.HasBaseReg); | |||
| 3619 | ||||
| 3620 | // Even if NewAddMode is the same we still need to collect it due to | |||
| 3621 | // original value is different. And later we will need all original values | |||
| 3622 | // as anchors during finding the common Phi node. | |||
| 3623 | if (CanHandle) | |||
| 3624 | AddrModes.emplace_back(NewAddrMode); | |||
| 3625 | else | |||
| 3626 | AddrModes.clear(); | |||
| 3627 | ||||
| 3628 | return CanHandle; | |||
| 3629 | } | |||
| 3630 | ||||
| 3631 | /// Combine the addressing modes we've collected into a single | |||
| 3632 | /// addressing mode. | |||
| 3633 | /// \return True iff we successfully combined them or we only had one so | |||
| 3634 | /// didn't need to combine them anyway. | |||
| 3635 | bool combineAddrModes() { | |||
| 3636 | // If we have no AddrModes then they can't be combined. | |||
| 3637 | if (AddrModes.size() == 0) | |||
| 3638 | return false; | |||
| 3639 | ||||
| 3640 | // A single AddrMode can trivially be combined. | |||
| 3641 | if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) | |||
| 3642 | return true; | |||
| 3643 | ||||
| 3644 | // If the AddrModes we collected are all just equal to the value they are | |||
| 3645 | // derived from then combining them wouldn't do anything useful. | |||
| 3646 | if (AllAddrModesTrivial) | |||
| 3647 | return false; | |||
| 3648 | ||||
| 3649 | if (!addrModeCombiningAllowed()) | |||
| 3650 | return false; | |||
| 3651 | ||||
| 3652 | // Build a map between <original value, basic block where we saw it> to | |||
| 3653 | // value of base register. | |||
| 3654 | // Bail out if there is no common type. | |||
| 3655 | FoldAddrToValueMapping Map; | |||
| 3656 | if (!initializeMap(Map)) | |||
| 3657 | return false; | |||
| 3658 | ||||
| 3659 | CommonValue = findCommon(Map); | |||
| 3660 | if (CommonValue) | |||
| 3661 | AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); | |||
| 3662 | return CommonValue != nullptr; | |||
| 3663 | } | |||
| 3664 | ||||
| 3665 | private: | |||
| 3666 | /// `CommonValue` may be a placeholder inserted by us. | |||
| 3667 | /// If the placeholder is not used, we should remove this dead instruction. | |||
| 3668 | void eraseCommonValueIfDead() { | |||
| 3669 | if (CommonValue && CommonValue->getNumUses() == 0) | |||
| 3670 | if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) | |||
| 3671 | CommonInst->eraseFromParent(); | |||
| 3672 | } | |||
| 3673 | ||||
| 3674 | /// Initialize Map with anchor values. For address seen | |||
| 3675 | /// we set the value of different field saw in this address. | |||
| 3676 | /// At the same time we find a common type for different field we will | |||
| 3677 | /// use to create new Phi/Select nodes. Keep it in CommonType field. | |||
| 3678 | /// Return false if there is no common type found. | |||
| 3679 | bool initializeMap(FoldAddrToValueMapping &Map) { | |||
| 3680 | // Keep track of keys where the value is null. We will need to replace it | |||
| 3681 | // with constant null when we know the common type. | |||
| 3682 | SmallVector<Value *, 2> NullValue; | |||
| 3683 | Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); | |||
| 3684 | for (auto &AM : AddrModes) { | |||
| 3685 | Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); | |||
| 3686 | if (DV) { | |||
| 3687 | auto *Type = DV->getType(); | |||
| 3688 | if (CommonType && CommonType != Type) | |||
| 3689 | return false; | |||
| 3690 | CommonType = Type; | |||
| 3691 | Map[AM.OriginalValue] = DV; | |||
| 3692 | } else { | |||
| 3693 | NullValue.push_back(AM.OriginalValue); | |||
| 3694 | } | |||
| 3695 | } | |||
| 3696 | assert(CommonType && "At least one non-null value must be!")(static_cast <bool> (CommonType && "At least one non-null value must be!" ) ? void (0) : __assert_fail ("CommonType && \"At least one non-null value must be!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3696, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3697 | for (auto *V : NullValue) | |||
| 3698 | Map[V] = Constant::getNullValue(CommonType); | |||
| 3699 | return true; | |||
| 3700 | } | |||
| 3701 | ||||
| 3702 | /// We have mapping between value A and other value B where B was a field in | |||
| 3703 | /// addressing mode represented by A. Also we have an original value C | |||
| 3704 | /// representing an address we start with. Traversing from C through phi and | |||
| 3705 | /// selects we ended up with A's in a map. This utility function tries to find | |||
| 3706 | /// a value V which is a field in addressing mode C and traversing through phi | |||
| 3707 | /// nodes and selects we will end up in corresponded values B in a map. | |||
| 3708 | /// The utility will create a new Phi/Selects if needed. | |||
| 3709 | // The simple example looks as follows: | |||
| 3710 | // BB1: | |||
| 3711 | // p1 = b1 + 40 | |||
| 3712 | // br cond BB2, BB3 | |||
| 3713 | // BB2: | |||
| 3714 | // p2 = b2 + 40 | |||
| 3715 | // br BB3 | |||
| 3716 | // BB3: | |||
| 3717 | // p = phi [p1, BB1], [p2, BB2] | |||
| 3718 | // v = load p | |||
| 3719 | // Map is | |||
| 3720 | // p1 -> b1 | |||
| 3721 | // p2 -> b2 | |||
| 3722 | // Request is | |||
| 3723 | // p -> ? | |||
| 3724 | // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. | |||
| 3725 | Value *findCommon(FoldAddrToValueMapping &Map) { | |||
| 3726 | // Tracks the simplification of newly created phi nodes. The reason we use | |||
| 3727 | // this mapping is because we will add new created Phi nodes in AddrToBase. | |||
| 3728 | // Simplification of Phi nodes is recursive, so some Phi node may | |||
| 3729 | // be simplified after we added it to AddrToBase. In reality this | |||
| 3730 | // simplification is possible only if original phi/selects were not | |||
| 3731 | // simplified yet. | |||
| 3732 | // Using this mapping we can find the current value in AddrToBase. | |||
| 3733 | SimplificationTracker ST(SQ); | |||
| 3734 | ||||
| 3735 | // First step, DFS to create PHI nodes for all intermediate blocks. | |||
| 3736 | // Also fill traverse order for the second step. | |||
| 3737 | SmallVector<Value *, 32> TraverseOrder; | |||
| 3738 | InsertPlaceholders(Map, TraverseOrder, ST); | |||
| 3739 | ||||
| 3740 | // Second Step, fill new nodes by merged values and simplify if possible. | |||
| 3741 | FillPlaceholders(Map, TraverseOrder, ST); | |||
| 3742 | ||||
| 3743 | if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { | |||
| 3744 | ST.destroyNewNodes(CommonType); | |||
| 3745 | return nullptr; | |||
| 3746 | } | |||
| 3747 | ||||
| 3748 | // Now we'd like to match New Phi nodes to existed ones. | |||
| 3749 | unsigned PhiNotMatchedCount = 0; | |||
| 3750 | if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { | |||
| 3751 | ST.destroyNewNodes(CommonType); | |||
| 3752 | return nullptr; | |||
| 3753 | } | |||
| 3754 | ||||
| 3755 | auto *Result = ST.Get(Map.find(Original)->second); | |||
| 3756 | if (Result) { | |||
| 3757 | NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; | |||
| 3758 | NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); | |||
| 3759 | } | |||
| 3760 | return Result; | |||
| 3761 | } | |||
| 3762 | ||||
| 3763 | /// Try to match PHI node to Candidate. | |||
| 3764 | /// Matcher tracks the matched Phi nodes. | |||
| 3765 | bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, | |||
| 3766 | SmallSetVector<PHIPair, 8> &Matcher, | |||
| 3767 | PhiNodeSet &PhiNodesToMatch) { | |||
| 3768 | SmallVector<PHIPair, 8> WorkList; | |||
| 3769 | Matcher.insert({PHI, Candidate}); | |||
| 3770 | SmallSet<PHINode *, 8> MatchedPHIs; | |||
| 3771 | MatchedPHIs.insert(PHI); | |||
| 3772 | WorkList.push_back({PHI, Candidate}); | |||
| 3773 | SmallSet<PHIPair, 8> Visited; | |||
| 3774 | while (!WorkList.empty()) { | |||
| 3775 | auto Item = WorkList.pop_back_val(); | |||
| 3776 | if (!Visited.insert(Item).second) | |||
| 3777 | continue; | |||
| 3778 | // We iterate over all incoming values to Phi to compare them. | |||
| 3779 | // If values are different and both of them Phi and the first one is a | |||
| 3780 | // Phi we added (subject to match) and both of them is in the same basic | |||
| 3781 | // block then we can match our pair if values match. So we state that | |||
| 3782 | // these values match and add it to work list to verify that. | |||
| 3783 | for (auto *B : Item.first->blocks()) { | |||
| 3784 | Value *FirstValue = Item.first->getIncomingValueForBlock(B); | |||
| 3785 | Value *SecondValue = Item.second->getIncomingValueForBlock(B); | |||
| 3786 | if (FirstValue == SecondValue) | |||
| 3787 | continue; | |||
| 3788 | ||||
| 3789 | PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); | |||
| 3790 | PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); | |||
| 3791 | ||||
| 3792 | // One of them is not Phi or | |||
| 3793 | // The first one is not Phi node from the set we'd like to match or | |||
| 3794 | // Phi nodes from different basic blocks then | |||
| 3795 | // we will not be able to match. | |||
| 3796 | if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || | |||
| 3797 | FirstPhi->getParent() != SecondPhi->getParent()) | |||
| 3798 | return false; | |||
| 3799 | ||||
| 3800 | // If we already matched them then continue. | |||
| 3801 | if (Matcher.count({FirstPhi, SecondPhi})) | |||
| 3802 | continue; | |||
| 3803 | // So the values are different and does not match. So we need them to | |||
| 3804 | // match. (But we register no more than one match per PHI node, so that | |||
| 3805 | // we won't later try to replace them twice.) | |||
| 3806 | if (MatchedPHIs.insert(FirstPhi).second) | |||
| 3807 | Matcher.insert({FirstPhi, SecondPhi}); | |||
| 3808 | // But me must check it. | |||
| 3809 | WorkList.push_back({FirstPhi, SecondPhi}); | |||
| 3810 | } | |||
| 3811 | } | |||
| 3812 | return true; | |||
| 3813 | } | |||
| 3814 | ||||
| 3815 | /// For the given set of PHI nodes (in the SimplificationTracker) try | |||
| 3816 | /// to find their equivalents. | |||
| 3817 | /// Returns false if this matching fails and creation of new Phi is disabled. | |||
| 3818 | bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, | |||
| 3819 | unsigned &PhiNotMatchedCount) { | |||
| 3820 | // Matched and PhiNodesToMatch iterate their elements in a deterministic | |||
| 3821 | // order, so the replacements (ReplacePhi) are also done in a deterministic | |||
| 3822 | // order. | |||
| 3823 | SmallSetVector<PHIPair, 8> Matched; | |||
| 3824 | SmallPtrSet<PHINode *, 8> WillNotMatch; | |||
| 3825 | PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); | |||
| 3826 | while (PhiNodesToMatch.size()) { | |||
| 3827 | PHINode *PHI = *PhiNodesToMatch.begin(); | |||
| 3828 | ||||
| 3829 | // Add us, if no Phi nodes in the basic block we do not match. | |||
| 3830 | WillNotMatch.clear(); | |||
| 3831 | WillNotMatch.insert(PHI); | |||
| 3832 | ||||
| 3833 | // Traverse all Phis until we found equivalent or fail to do that. | |||
| 3834 | bool IsMatched = false; | |||
| 3835 | for (auto &P : PHI->getParent()->phis()) { | |||
| 3836 | // Skip new Phi nodes. | |||
| 3837 | if (PhiNodesToMatch.count(&P)) | |||
| 3838 | continue; | |||
| 3839 | if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) | |||
| 3840 | break; | |||
| 3841 | // If it does not match, collect all Phi nodes from matcher. | |||
| 3842 | // if we end up with no match, them all these Phi nodes will not match | |||
| 3843 | // later. | |||
| 3844 | for (auto M : Matched) | |||
| 3845 | WillNotMatch.insert(M.first); | |||
| 3846 | Matched.clear(); | |||
| 3847 | } | |||
| 3848 | if (IsMatched) { | |||
| 3849 | // Replace all matched values and erase them. | |||
| 3850 | for (auto MV : Matched) | |||
| 3851 | ST.ReplacePhi(MV.first, MV.second); | |||
| 3852 | Matched.clear(); | |||
| 3853 | continue; | |||
| 3854 | } | |||
| 3855 | // If we are not allowed to create new nodes then bail out. | |||
| 3856 | if (!AllowNewPhiNodes) | |||
| 3857 | return false; | |||
| 3858 | // Just remove all seen values in matcher. They will not match anything. | |||
| 3859 | PhiNotMatchedCount += WillNotMatch.size(); | |||
| 3860 | for (auto *P : WillNotMatch) | |||
| 3861 | PhiNodesToMatch.erase(P); | |||
| 3862 | } | |||
| 3863 | return true; | |||
| 3864 | } | |||
| 3865 | /// Fill the placeholders with values from predecessors and simplify them. | |||
| 3866 | void FillPlaceholders(FoldAddrToValueMapping &Map, | |||
| 3867 | SmallVectorImpl<Value *> &TraverseOrder, | |||
| 3868 | SimplificationTracker &ST) { | |||
| 3869 | while (!TraverseOrder.empty()) { | |||
| 3870 | Value *Current = TraverseOrder.pop_back_val(); | |||
| 3871 | assert(Map.contains(Current) && "No node to fill!!!")(static_cast <bool> (Map.contains(Current) && "No node to fill!!!" ) ? void (0) : __assert_fail ("Map.contains(Current) && \"No node to fill!!!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3871, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3872 | Value *V = Map[Current]; | |||
| 3873 | ||||
| 3874 | if (SelectInst *Select = dyn_cast<SelectInst>(V)) { | |||
| 3875 | // CurrentValue also must be Select. | |||
| 3876 | auto *CurrentSelect = cast<SelectInst>(Current); | |||
| 3877 | auto *TrueValue = CurrentSelect->getTrueValue(); | |||
| 3878 | assert(Map.contains(TrueValue) && "No True Value!")(static_cast <bool> (Map.contains(TrueValue) && "No True Value!") ? void (0) : __assert_fail ("Map.contains(TrueValue) && \"No True Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3878, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3879 | Select->setTrueValue(ST.Get(Map[TrueValue])); | |||
| 3880 | auto *FalseValue = CurrentSelect->getFalseValue(); | |||
| 3881 | assert(Map.contains(FalseValue) && "No False Value!")(static_cast <bool> (Map.contains(FalseValue) && "No False Value!") ? void (0) : __assert_fail ("Map.contains(FalseValue) && \"No False Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3881, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3882 | Select->setFalseValue(ST.Get(Map[FalseValue])); | |||
| 3883 | } else { | |||
| 3884 | // Must be a Phi node then. | |||
| 3885 | auto *PHI = cast<PHINode>(V); | |||
| 3886 | // Fill the Phi node with values from predecessors. | |||
| 3887 | for (auto *B : predecessors(PHI->getParent())) { | |||
| 3888 | Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); | |||
| 3889 | assert(Map.contains(PV) && "No predecessor Value!")(static_cast <bool> (Map.contains(PV) && "No predecessor Value!" ) ? void (0) : __assert_fail ("Map.contains(PV) && \"No predecessor Value!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3889, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3890 | PHI->addIncoming(ST.Get(Map[PV]), B); | |||
| 3891 | } | |||
| 3892 | } | |||
| 3893 | Map[Current] = ST.Simplify(V); | |||
| 3894 | } | |||
| 3895 | } | |||
| 3896 | ||||
| 3897 | /// Starting from original value recursively iterates over def-use chain up to | |||
| 3898 | /// known ending values represented in a map. For each traversed phi/select | |||
| 3899 | /// inserts a placeholder Phi or Select. | |||
| 3900 | /// Reports all new created Phi/Select nodes by adding them to set. | |||
| 3901 | /// Also reports and order in what values have been traversed. | |||
| 3902 | void InsertPlaceholders(FoldAddrToValueMapping &Map, | |||
| 3903 | SmallVectorImpl<Value *> &TraverseOrder, | |||
| 3904 | SimplificationTracker &ST) { | |||
| 3905 | SmallVector<Value *, 32> Worklist; | |||
| 3906 | assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&(static_cast <bool> ((isa<PHINode>(Original) || isa <SelectInst>(Original)) && "Address must be a Phi or Select node" ) ? void (0) : __assert_fail ("(isa<PHINode>(Original) || isa<SelectInst>(Original)) && \"Address must be a Phi or Select node\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3907, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3907 | "Address must be a Phi or Select node")(static_cast <bool> ((isa<PHINode>(Original) || isa <SelectInst>(Original)) && "Address must be a Phi or Select node" ) ? void (0) : __assert_fail ("(isa<PHINode>(Original) || isa<SelectInst>(Original)) && \"Address must be a Phi or Select node\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 3907, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3908 | auto *Dummy = PoisonValue::get(CommonType); | |||
| 3909 | Worklist.push_back(Original); | |||
| 3910 | while (!Worklist.empty()) { | |||
| 3911 | Value *Current = Worklist.pop_back_val(); | |||
| 3912 | // if it is already visited or it is an ending value then skip it. | |||
| 3913 | if (Map.contains(Current)) | |||
| 3914 | continue; | |||
| 3915 | TraverseOrder.push_back(Current); | |||
| 3916 | ||||
| 3917 | // CurrentValue must be a Phi node or select. All others must be covered | |||
| 3918 | // by anchors. | |||
| 3919 | if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { | |||
| 3920 | // Is it OK to get metadata from OrigSelect?! | |||
| 3921 | // Create a Select placeholder with dummy value. | |||
| 3922 | SelectInst *Select = SelectInst::Create( | |||
| 3923 | CurrentSelect->getCondition(), Dummy, Dummy, | |||
| 3924 | CurrentSelect->getName(), CurrentSelect, CurrentSelect); | |||
| 3925 | Map[Current] = Select; | |||
| 3926 | ST.insertNewSelect(Select); | |||
| 3927 | // We are interested in True and False values. | |||
| 3928 | Worklist.push_back(CurrentSelect->getTrueValue()); | |||
| 3929 | Worklist.push_back(CurrentSelect->getFalseValue()); | |||
| 3930 | } else { | |||
| 3931 | // It must be a Phi node then. | |||
| 3932 | PHINode *CurrentPhi = cast<PHINode>(Current); | |||
| 3933 | unsigned PredCount = CurrentPhi->getNumIncomingValues(); | |||
| 3934 | PHINode *PHI = | |||
| 3935 | PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); | |||
| 3936 | Map[Current] = PHI; | |||
| 3937 | ST.insertNewPhi(PHI); | |||
| 3938 | append_range(Worklist, CurrentPhi->incoming_values()); | |||
| 3939 | } | |||
| 3940 | } | |||
| 3941 | } | |||
| 3942 | ||||
| 3943 | bool addrModeCombiningAllowed() { | |||
| 3944 | if (DisableComplexAddrModes) | |||
| 3945 | return false; | |||
| 3946 | switch (DifferentField) { | |||
| 3947 | default: | |||
| 3948 | return false; | |||
| 3949 | case ExtAddrMode::BaseRegField: | |||
| 3950 | return AddrSinkCombineBaseReg; | |||
| 3951 | case ExtAddrMode::BaseGVField: | |||
| 3952 | return AddrSinkCombineBaseGV; | |||
| 3953 | case ExtAddrMode::BaseOffsField: | |||
| 3954 | return AddrSinkCombineBaseOffs; | |||
| 3955 | case ExtAddrMode::ScaledRegField: | |||
| 3956 | return AddrSinkCombineScaledReg; | |||
| 3957 | } | |||
| 3958 | } | |||
| 3959 | }; | |||
| 3960 | } // end anonymous namespace | |||
| 3961 | ||||
| 3962 | /// Try adding ScaleReg*Scale to the current addressing mode. | |||
| 3963 | /// Return true and update AddrMode if this addr mode is legal for the target, | |||
| 3964 | /// false if not. | |||
| 3965 | bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, | |||
| 3966 | unsigned Depth) { | |||
| 3967 | // If Scale is 1, then this is the same as adding ScaleReg to the addressing | |||
| 3968 | // mode. Just process that directly. | |||
| 3969 | if (Scale == 1) | |||
| 3970 | return matchAddr(ScaleReg, Depth); | |||
| 3971 | ||||
| 3972 | // If the scale is 0, it takes nothing to add this. | |||
| 3973 | if (Scale == 0) | |||
| 3974 | return true; | |||
| 3975 | ||||
| 3976 | // If we already have a scale of this value, we can add to it, otherwise, we | |||
| 3977 | // need an available scale field. | |||
| 3978 | if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) | |||
| 3979 | return false; | |||
| 3980 | ||||
| 3981 | ExtAddrMode TestAddrMode = AddrMode; | |||
| 3982 | ||||
| 3983 | // Add scale to turn X*4+X*3 -> X*7. This could also do things like | |||
| 3984 | // [A+B + A*7] -> [B+A*8]. | |||
| 3985 | TestAddrMode.Scale += Scale; | |||
| 3986 | TestAddrMode.ScaledReg = ScaleReg; | |||
| 3987 | ||||
| 3988 | // If the new address isn't legal, bail out. | |||
| 3989 | if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) | |||
| 3990 | return false; | |||
| 3991 | ||||
| 3992 | // It was legal, so commit it. | |||
| 3993 | AddrMode = TestAddrMode; | |||
| 3994 | ||||
| 3995 | // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now | |||
| 3996 | // to see if ScaleReg is actually X+C. If so, we can turn this into adding | |||
| 3997 | // X*Scale + C*Scale to addr mode. If we found available IV increment, do not | |||
| 3998 | // go any further: we can reuse it and cannot eliminate it. | |||
| 3999 | ConstantInt *CI = nullptr; | |||
| 4000 | Value *AddLHS = nullptr; | |||
| 4001 | if (isa<Instruction>(ScaleReg) && // not a constant expr. | |||
| 4002 | match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && | |||
| 4003 | !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { | |||
| 4004 | TestAddrMode.InBounds = false; | |||
| 4005 | TestAddrMode.ScaledReg = AddLHS; | |||
| 4006 | TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; | |||
| 4007 | ||||
| 4008 | // If this addressing mode is legal, commit it and remember that we folded | |||
| 4009 | // this instruction. | |||
| 4010 | if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { | |||
| 4011 | AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); | |||
| 4012 | AddrMode = TestAddrMode; | |||
| 4013 | return true; | |||
| 4014 | } | |||
| 4015 | // Restore status quo. | |||
| 4016 | TestAddrMode = AddrMode; | |||
| 4017 | } | |||
| 4018 | ||||
| 4019 | // If this is an add recurrence with a constant step, return the increment | |||
| 4020 | // instruction and the canonicalized step. | |||
| 4021 | auto GetConstantStep = | |||
| 4022 | [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { | |||
| 4023 | auto *PN = dyn_cast<PHINode>(V); | |||
| 4024 | if (!PN) | |||
| 4025 | return std::nullopt; | |||
| 4026 | auto IVInc = getIVIncrement(PN, &LI); | |||
| 4027 | if (!IVInc) | |||
| 4028 | return std::nullopt; | |||
| 4029 | // TODO: The result of the intrinsics above is two-complement. However when | |||
| 4030 | // IV inc is expressed as add or sub, iv.next is potentially a poison value. | |||
| 4031 | // If it has nuw or nsw flags, we need to make sure that these flags are | |||
| 4032 | // inferrable at the point of memory instruction. Otherwise we are replacing | |||
| 4033 | // well-defined two-complement computation with poison. Currently, to avoid | |||
| 4034 | // potentially complex analysis needed to prove this, we reject such cases. | |||
| 4035 | if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) | |||
| 4036 | if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) | |||
| 4037 | return std::nullopt; | |||
| 4038 | if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) | |||
| 4039 | return std::make_pair(IVInc->first, ConstantStep->getValue()); | |||
| 4040 | return std::nullopt; | |||
| 4041 | }; | |||
| 4042 | ||||
| 4043 | // Try to account for the following special case: | |||
| 4044 | // 1. ScaleReg is an inductive variable; | |||
| 4045 | // 2. We use it with non-zero offset; | |||
| 4046 | // 3. IV's increment is available at the point of memory instruction. | |||
| 4047 | // | |||
| 4048 | // In this case, we may reuse the IV increment instead of the IV Phi to | |||
| 4049 | // achieve the following advantages: | |||
| 4050 | // 1. If IV step matches the offset, we will have no need in the offset; | |||
| 4051 | // 2. Even if they don't match, we will reduce the overlap of living IV | |||
| 4052 | // and IV increment, that will potentially lead to better register | |||
| 4053 | // assignment. | |||
| 4054 | if (AddrMode.BaseOffs) { | |||
| 4055 | if (auto IVStep = GetConstantStep(ScaleReg)) { | |||
| 4056 | Instruction *IVInc = IVStep->first; | |||
| 4057 | // The following assert is important to ensure a lack of infinite loops. | |||
| 4058 | // This transforms is (intentionally) the inverse of the one just above. | |||
| 4059 | // If they don't agree on the definition of an increment, we'd alternate | |||
| 4060 | // back and forth indefinitely. | |||
| 4061 | assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep")(static_cast <bool> (isIVIncrement(IVInc, &LI) && "implied by GetConstantStep") ? void (0) : __assert_fail ("isIVIncrement(IVInc, &LI) && \"implied by GetConstantStep\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4061, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4062 | APInt Step = IVStep->second; | |||
| 4063 | APInt Offset = Step * AddrMode.Scale; | |||
| 4064 | if (Offset.isSignedIntN(64)) { | |||
| 4065 | TestAddrMode.InBounds = false; | |||
| 4066 | TestAddrMode.ScaledReg = IVInc; | |||
| 4067 | TestAddrMode.BaseOffs -= Offset.getLimitedValue(); | |||
| 4068 | // If this addressing mode is legal, commit it.. | |||
| 4069 | // (Note that we defer the (expensive) domtree base legality check | |||
| 4070 | // to the very last possible point.) | |||
| 4071 | if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && | |||
| 4072 | getDTFn().dominates(IVInc, MemoryInst)) { | |||
| 4073 | AddrModeInsts.push_back(cast<Instruction>(IVInc)); | |||
| 4074 | AddrMode = TestAddrMode; | |||
| 4075 | return true; | |||
| 4076 | } | |||
| 4077 | // Restore status quo. | |||
| 4078 | TestAddrMode = AddrMode; | |||
| 4079 | } | |||
| 4080 | } | |||
| 4081 | } | |||
| 4082 | ||||
| 4083 | // Otherwise, just return what we have. | |||
| 4084 | return true; | |||
| 4085 | } | |||
| 4086 | ||||
| 4087 | /// This is a little filter, which returns true if an addressing computation | |||
| 4088 | /// involving I might be folded into a load/store accessing it. | |||
| 4089 | /// This doesn't need to be perfect, but needs to accept at least | |||
| 4090 | /// the set of instructions that MatchOperationAddr can. | |||
| 4091 | static bool MightBeFoldableInst(Instruction *I) { | |||
| 4092 | switch (I->getOpcode()) { | |||
| 4093 | case Instruction::BitCast: | |||
| 4094 | case Instruction::AddrSpaceCast: | |||
| 4095 | // Don't touch identity bitcasts. | |||
| 4096 | if (I->getType() == I->getOperand(0)->getType()) | |||
| 4097 | return false; | |||
| 4098 | return I->getType()->isIntOrPtrTy(); | |||
| 4099 | case Instruction::PtrToInt: | |||
| 4100 | // PtrToInt is always a noop, as we know that the int type is pointer sized. | |||
| 4101 | return true; | |||
| 4102 | case Instruction::IntToPtr: | |||
| 4103 | // We know the input is intptr_t, so this is foldable. | |||
| 4104 | return true; | |||
| 4105 | case Instruction::Add: | |||
| 4106 | return true; | |||
| 4107 | case Instruction::Mul: | |||
| 4108 | case Instruction::Shl: | |||
| 4109 | // Can only handle X*C and X << C. | |||
| 4110 | return isa<ConstantInt>(I->getOperand(1)); | |||
| 4111 | case Instruction::GetElementPtr: | |||
| 4112 | return true; | |||
| 4113 | default: | |||
| 4114 | return false; | |||
| 4115 | } | |||
| 4116 | } | |||
| 4117 | ||||
| 4118 | /// Check whether or not \p Val is a legal instruction for \p TLI. | |||
| 4119 | /// \note \p Val is assumed to be the product of some type promotion. | |||
| 4120 | /// Therefore if \p Val has an undefined state in \p TLI, this is assumed | |||
| 4121 | /// to be legal, as the non-promoted value would have had the same state. | |||
| 4122 | static bool isPromotedInstructionLegal(const TargetLowering &TLI, | |||
| 4123 | const DataLayout &DL, Value *Val) { | |||
| 4124 | Instruction *PromotedInst = dyn_cast<Instruction>(Val); | |||
| 4125 | if (!PromotedInst) | |||
| 4126 | return false; | |||
| 4127 | int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); | |||
| 4128 | // If the ISDOpcode is undefined, it was undefined before the promotion. | |||
| 4129 | if (!ISDOpcode) | |||
| 4130 | return true; | |||
| 4131 | // Otherwise, check if the promoted instruction is legal or not. | |||
| 4132 | return TLI.isOperationLegalOrCustom( | |||
| 4133 | ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); | |||
| 4134 | } | |||
| 4135 | ||||
| 4136 | namespace { | |||
| 4137 | ||||
| 4138 | /// Hepler class to perform type promotion. | |||
| 4139 | class TypePromotionHelper { | |||
| 4140 | /// Utility function to add a promoted instruction \p ExtOpnd to | |||
| 4141 | /// \p PromotedInsts and record the type of extension we have seen. | |||
| 4142 | static void addPromotedInst(InstrToOrigTy &PromotedInsts, | |||
| 4143 | Instruction *ExtOpnd, bool IsSExt) { | |||
| 4144 | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; | |||
| 4145 | InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); | |||
| 4146 | if (It != PromotedInsts.end()) { | |||
| 4147 | // If the new extension is same as original, the information in | |||
| 4148 | // PromotedInsts[ExtOpnd] is still correct. | |||
| 4149 | if (It->second.getInt() == ExtTy) | |||
| 4150 | return; | |||
| 4151 | ||||
| 4152 | // Now the new extension is different from old extension, we make | |||
| 4153 | // the type information invalid by setting extension type to | |||
| 4154 | // BothExtension. | |||
| 4155 | ExtTy = BothExtension; | |||
| 4156 | } | |||
| 4157 | PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); | |||
| 4158 | } | |||
| 4159 | ||||
| 4160 | /// Utility function to query the original type of instruction \p Opnd | |||
| 4161 | /// with a matched extension type. If the extension doesn't match, we | |||
| 4162 | /// cannot use the information we had on the original type. | |||
| 4163 | /// BothExtension doesn't match any extension type. | |||
| 4164 | static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, | |||
| 4165 | Instruction *Opnd, bool IsSExt) { | |||
| 4166 | ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; | |||
| 4167 | InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); | |||
| 4168 | if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) | |||
| 4169 | return It->second.getPointer(); | |||
| 4170 | return nullptr; | |||
| 4171 | } | |||
| 4172 | ||||
| 4173 | /// Utility function to check whether or not a sign or zero extension | |||
| 4174 | /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by | |||
| 4175 | /// either using the operands of \p Inst or promoting \p Inst. | |||
| 4176 | /// The type of the extension is defined by \p IsSExt. | |||
| 4177 | /// In other words, check if: | |||
| 4178 | /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. | |||
| 4179 | /// #1 Promotion applies: | |||
| 4180 | /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). | |||
| 4181 | /// #2 Operand reuses: | |||
| 4182 | /// ext opnd1 to ConsideredExtType. | |||
| 4183 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
| 4184 | static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, | |||
| 4185 | const InstrToOrigTy &PromotedInsts, bool IsSExt); | |||
| 4186 | ||||
| 4187 | /// Utility function to determine if \p OpIdx should be promoted when | |||
| 4188 | /// promoting \p Inst. | |||
| 4189 | static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { | |||
| 4190 | return !(isa<SelectInst>(Inst) && OpIdx == 0); | |||
| 4191 | } | |||
| 4192 | ||||
| 4193 | /// Utility function to promote the operand of \p Ext when this | |||
| 4194 | /// operand is a promotable trunc or sext or zext. | |||
| 4195 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
| 4196 | /// \p CreatedInstsCost[out] contains the cost of all instructions | |||
| 4197 | /// created to promote the operand of Ext. | |||
| 4198 | /// Newly added extensions are inserted in \p Exts. | |||
| 4199 | /// Newly added truncates are inserted in \p Truncs. | |||
| 4200 | /// Should never be called directly. | |||
| 4201 | /// \return The promoted value which is used instead of Ext. | |||
| 4202 | static Value *promoteOperandForTruncAndAnyExt( | |||
| 4203 | Instruction *Ext, TypePromotionTransaction &TPT, | |||
| 4204 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
| 4205 | SmallVectorImpl<Instruction *> *Exts, | |||
| 4206 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); | |||
| 4207 | ||||
| 4208 | /// Utility function to promote the operand of \p Ext when this | |||
| 4209 | /// operand is promotable and is not a supported trunc or sext. | |||
| 4210 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
| 4211 | /// \p CreatedInstsCost[out] contains the cost of all the instructions | |||
| 4212 | /// created to promote the operand of Ext. | |||
| 4213 | /// Newly added extensions are inserted in \p Exts. | |||
| 4214 | /// Newly added truncates are inserted in \p Truncs. | |||
| 4215 | /// Should never be called directly. | |||
| 4216 | /// \return The promoted value which is used instead of Ext. | |||
| 4217 | static Value *promoteOperandForOther(Instruction *Ext, | |||
| 4218 | TypePromotionTransaction &TPT, | |||
| 4219 | InstrToOrigTy &PromotedInsts, | |||
| 4220 | unsigned &CreatedInstsCost, | |||
| 4221 | SmallVectorImpl<Instruction *> *Exts, | |||
| 4222 | SmallVectorImpl<Instruction *> *Truncs, | |||
| 4223 | const TargetLowering &TLI, bool IsSExt); | |||
| 4224 | ||||
| 4225 | /// \see promoteOperandForOther. | |||
| 4226 | static Value *signExtendOperandForOther( | |||
| 4227 | Instruction *Ext, TypePromotionTransaction &TPT, | |||
| 4228 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
| 4229 | SmallVectorImpl<Instruction *> *Exts, | |||
| 4230 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | |||
| 4231 | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | |||
| 4232 | Exts, Truncs, TLI, true); | |||
| 4233 | } | |||
| 4234 | ||||
| 4235 | /// \see promoteOperandForOther. | |||
| 4236 | static Value *zeroExtendOperandForOther( | |||
| 4237 | Instruction *Ext, TypePromotionTransaction &TPT, | |||
| 4238 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
| 4239 | SmallVectorImpl<Instruction *> *Exts, | |||
| 4240 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | |||
| 4241 | return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, | |||
| 4242 | Exts, Truncs, TLI, false); | |||
| 4243 | } | |||
| 4244 | ||||
| 4245 | public: | |||
| 4246 | /// Type for the utility function that promotes the operand of Ext. | |||
| 4247 | using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, | |||
| 4248 | InstrToOrigTy &PromotedInsts, | |||
| 4249 | unsigned &CreatedInstsCost, | |||
| 4250 | SmallVectorImpl<Instruction *> *Exts, | |||
| 4251 | SmallVectorImpl<Instruction *> *Truncs, | |||
| 4252 | const TargetLowering &TLI); | |||
| 4253 | ||||
| 4254 | /// Given a sign/zero extend instruction \p Ext, return the appropriate | |||
| 4255 | /// action to promote the operand of \p Ext instead of using Ext. | |||
| 4256 | /// \return NULL if no promotable action is possible with the current | |||
| 4257 | /// sign extension. | |||
| 4258 | /// \p InsertedInsts keeps track of all the instructions inserted by the | |||
| 4259 | /// other CodeGenPrepare optimizations. This information is important | |||
| 4260 | /// because we do not want to promote these instructions as CodeGenPrepare | |||
| 4261 | /// will reinsert them later. Thus creating an infinite loop: create/remove. | |||
| 4262 | /// \p PromotedInsts maps the instructions to their type before promotion. | |||
| 4263 | static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, | |||
| 4264 | const TargetLowering &TLI, | |||
| 4265 | const InstrToOrigTy &PromotedInsts); | |||
| 4266 | }; | |||
| 4267 | ||||
| 4268 | } // end anonymous namespace | |||
| 4269 | ||||
| 4270 | bool TypePromotionHelper::canGetThrough(const Instruction *Inst, | |||
| 4271 | Type *ConsideredExtType, | |||
| 4272 | const InstrToOrigTy &PromotedInsts, | |||
| 4273 | bool IsSExt) { | |||
| 4274 | // The promotion helper does not know how to deal with vector types yet. | |||
| 4275 | // To be able to fix that, we would need to fix the places where we | |||
| 4276 | // statically extend, e.g., constants and such. | |||
| 4277 | if (Inst->getType()->isVectorTy()) | |||
| 4278 | return false; | |||
| 4279 | ||||
| 4280 | // We can always get through zext. | |||
| 4281 | if (isa<ZExtInst>(Inst)) | |||
| 4282 | return true; | |||
| 4283 | ||||
| 4284 | // sext(sext) is ok too. | |||
| 4285 | if (IsSExt && isa<SExtInst>(Inst)) | |||
| 4286 | return true; | |||
| 4287 | ||||
| 4288 | // We can get through binary operator, if it is legal. In other words, the | |||
| 4289 | // binary operator must have a nuw or nsw flag. | |||
| 4290 | if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) | |||
| 4291 | if (isa<OverflowingBinaryOperator>(BinOp) && | |||
| 4292 | ((!IsSExt && BinOp->hasNoUnsignedWrap()) || | |||
| 4293 | (IsSExt && BinOp->hasNoSignedWrap()))) | |||
| 4294 | return true; | |||
| 4295 | ||||
| 4296 | // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) | |||
| 4297 | if ((Inst->getOpcode() == Instruction::And || | |||
| 4298 | Inst->getOpcode() == Instruction::Or)) | |||
| 4299 | return true; | |||
| 4300 | ||||
| 4301 | // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) | |||
| 4302 | if (Inst->getOpcode() == Instruction::Xor) { | |||
| 4303 | // Make sure it is not a NOT. | |||
| 4304 | if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) | |||
| 4305 | if (!Cst->getValue().isAllOnes()) | |||
| 4306 | return true; | |||
| 4307 | } | |||
| 4308 | ||||
| 4309 | // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) | |||
| 4310 | // It may change a poisoned value into a regular value, like | |||
| 4311 | // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 | |||
| 4312 | // poisoned value regular value | |||
| 4313 | // It should be OK since undef covers valid value. | |||
| 4314 | if (Inst->getOpcode() == Instruction::LShr && !IsSExt) | |||
| 4315 | return true; | |||
| 4316 | ||||
| 4317 | // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) | |||
| 4318 | // It may change a poisoned value into a regular value, like | |||
| 4319 | // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 | |||
| 4320 | // poisoned value regular value | |||
| 4321 | // It should be OK since undef covers valid value. | |||
| 4322 | if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { | |||
| 4323 | const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); | |||
| 4324 | if (ExtInst->hasOneUse()) { | |||
| 4325 | const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); | |||
| 4326 | if (AndInst && AndInst->getOpcode() == Instruction::And) { | |||
| 4327 | const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); | |||
| 4328 | if (Cst && | |||
| 4329 | Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) | |||
| 4330 | return true; | |||
| 4331 | } | |||
| 4332 | } | |||
| 4333 | } | |||
| 4334 | ||||
| 4335 | // Check if we can do the following simplification. | |||
| 4336 | // ext(trunc(opnd)) --> ext(opnd) | |||
| 4337 | if (!isa<TruncInst>(Inst)) | |||
| 4338 | return false; | |||
| 4339 | ||||
| 4340 | Value *OpndVal = Inst->getOperand(0); | |||
| 4341 | // Check if we can use this operand in the extension. | |||
| 4342 | // If the type is larger than the result type of the extension, we cannot. | |||
| 4343 | if (!OpndVal->getType()->isIntegerTy() || | |||
| 4344 | OpndVal->getType()->getIntegerBitWidth() > | |||
| 4345 | ConsideredExtType->getIntegerBitWidth()) | |||
| 4346 | return false; | |||
| 4347 | ||||
| 4348 | // If the operand of the truncate is not an instruction, we will not have | |||
| 4349 | // any information on the dropped bits. | |||
| 4350 | // (Actually we could for constant but it is not worth the extra logic). | |||
| 4351 | Instruction *Opnd = dyn_cast<Instruction>(OpndVal); | |||
| 4352 | if (!Opnd) | |||
| 4353 | return false; | |||
| 4354 | ||||
| 4355 | // Check if the source of the type is narrow enough. | |||
| 4356 | // I.e., check that trunc just drops extended bits of the same kind of | |||
| 4357 | // the extension. | |||
| 4358 | // #1 get the type of the operand and check the kind of the extended bits. | |||
| 4359 | const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); | |||
| 4360 | if (OpndType) | |||
| 4361 | ; | |||
| 4362 | else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) | |||
| 4363 | OpndType = Opnd->getOperand(0)->getType(); | |||
| 4364 | else | |||
| 4365 | return false; | |||
| 4366 | ||||
| 4367 | // #2 check that the truncate just drops extended bits. | |||
| 4368 | return Inst->getType()->getIntegerBitWidth() >= | |||
| 4369 | OpndType->getIntegerBitWidth(); | |||
| 4370 | } | |||
| 4371 | ||||
| 4372 | TypePromotionHelper::Action TypePromotionHelper::getAction( | |||
| 4373 | Instruction *Ext, const SetOfInstrs &InsertedInsts, | |||
| 4374 | const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { | |||
| 4375 | assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&(static_cast <bool> ((isa<SExtInst>(Ext) || isa< ZExtInst>(Ext)) && "Unexpected instruction type") ? void (0) : __assert_fail ("(isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && \"Unexpected instruction type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4376, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4376 | "Unexpected instruction type")(static_cast <bool> ((isa<SExtInst>(Ext) || isa< ZExtInst>(Ext)) && "Unexpected instruction type") ? void (0) : __assert_fail ("(isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && \"Unexpected instruction type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4376, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4377 | Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); | |||
| 4378 | Type *ExtTy = Ext->getType(); | |||
| 4379 | bool IsSExt = isa<SExtInst>(Ext); | |||
| 4380 | // If the operand of the extension is not an instruction, we cannot | |||
| 4381 | // get through. | |||
| 4382 | // If it, check we can get through. | |||
| 4383 | if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) | |||
| 4384 | return nullptr; | |||
| 4385 | ||||
| 4386 | // Do not promote if the operand has been added by codegenprepare. | |||
| 4387 | // Otherwise, it means we are undoing an optimization that is likely to be | |||
| 4388 | // redone, thus causing potential infinite loop. | |||
| 4389 | if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) | |||
| 4390 | return nullptr; | |||
| 4391 | ||||
| 4392 | // SExt or Trunc instructions. | |||
| 4393 | // Return the related handler. | |||
| 4394 | if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || | |||
| 4395 | isa<ZExtInst>(ExtOpnd)) | |||
| 4396 | return promoteOperandForTruncAndAnyExt; | |||
| 4397 | ||||
| 4398 | // Regular instruction. | |||
| 4399 | // Abort early if we will have to insert non-free instructions. | |||
| 4400 | if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) | |||
| 4401 | return nullptr; | |||
| 4402 | return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; | |||
| 4403 | } | |||
| 4404 | ||||
| 4405 | Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( | |||
| 4406 | Instruction *SExt, TypePromotionTransaction &TPT, | |||
| 4407 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
| 4408 | SmallVectorImpl<Instruction *> *Exts, | |||
| 4409 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { | |||
| 4410 | // By construction, the operand of SExt is an instruction. Otherwise we cannot | |||
| 4411 | // get through it and this method should not be called. | |||
| 4412 | Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); | |||
| 4413 | Value *ExtVal = SExt; | |||
| 4414 | bool HasMergedNonFreeExt = false; | |||
| 4415 | if (isa<ZExtInst>(SExtOpnd)) { | |||
| 4416 | // Replace s|zext(zext(opnd)) | |||
| 4417 | // => zext(opnd). | |||
| 4418 | HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); | |||
| 4419 | Value *ZExt = | |||
| 4420 | TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); | |||
| 4421 | TPT.replaceAllUsesWith(SExt, ZExt); | |||
| 4422 | TPT.eraseInstruction(SExt); | |||
| 4423 | ExtVal = ZExt; | |||
| 4424 | } else { | |||
| 4425 | // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) | |||
| 4426 | // => z|sext(opnd). | |||
| 4427 | TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); | |||
| 4428 | } | |||
| 4429 | CreatedInstsCost = 0; | |||
| 4430 | ||||
| 4431 | // Remove dead code. | |||
| 4432 | if (SExtOpnd->use_empty()) | |||
| 4433 | TPT.eraseInstruction(SExtOpnd); | |||
| 4434 | ||||
| 4435 | // Check if the extension is still needed. | |||
| 4436 | Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); | |||
| 4437 | if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { | |||
| 4438 | if (ExtInst) { | |||
| 4439 | if (Exts) | |||
| 4440 | Exts->push_back(ExtInst); | |||
| 4441 | CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; | |||
| 4442 | } | |||
| 4443 | return ExtVal; | |||
| 4444 | } | |||
| 4445 | ||||
| 4446 | // At this point we have: ext ty opnd to ty. | |||
| 4447 | // Reassign the uses of ExtInst to the opnd and remove ExtInst. | |||
| 4448 | Value *NextVal = ExtInst->getOperand(0); | |||
| 4449 | TPT.eraseInstruction(ExtInst, NextVal); | |||
| 4450 | return NextVal; | |||
| 4451 | } | |||
| 4452 | ||||
| 4453 | Value *TypePromotionHelper::promoteOperandForOther( | |||
| 4454 | Instruction *Ext, TypePromotionTransaction &TPT, | |||
| 4455 | InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, | |||
| 4456 | SmallVectorImpl<Instruction *> *Exts, | |||
| 4457 | SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, | |||
| 4458 | bool IsSExt) { | |||
| 4459 | // By construction, the operand of Ext is an instruction. Otherwise we cannot | |||
| 4460 | // get through it and this method should not be called. | |||
| 4461 | Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); | |||
| 4462 | CreatedInstsCost = 0; | |||
| 4463 | if (!ExtOpnd->hasOneUse()) { | |||
| 4464 | // ExtOpnd will be promoted. | |||
| 4465 | // All its uses, but Ext, will need to use a truncated value of the | |||
| 4466 | // promoted version. | |||
| 4467 | // Create the truncate now. | |||
| 4468 | Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); | |||
| 4469 | if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { | |||
| 4470 | // Insert it just after the definition. | |||
| 4471 | ITrunc->moveAfter(ExtOpnd); | |||
| 4472 | if (Truncs) | |||
| 4473 | Truncs->push_back(ITrunc); | |||
| 4474 | } | |||
| 4475 | ||||
| 4476 | TPT.replaceAllUsesWith(ExtOpnd, Trunc); | |||
| 4477 | // Restore the operand of Ext (which has been replaced by the previous call | |||
| 4478 | // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. | |||
| 4479 | TPT.setOperand(Ext, 0, ExtOpnd); | |||
| 4480 | } | |||
| 4481 | ||||
| 4482 | // Get through the Instruction: | |||
| 4483 | // 1. Update its type. | |||
| 4484 | // 2. Replace the uses of Ext by Inst. | |||
| 4485 | // 3. Extend each operand that needs to be extended. | |||
| 4486 | ||||
| 4487 | // Remember the original type of the instruction before promotion. | |||
| 4488 | // This is useful to know that the high bits are sign extended bits. | |||
| 4489 | addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); | |||
| 4490 | // Step #1. | |||
| 4491 | TPT.mutateType(ExtOpnd, Ext->getType()); | |||
| 4492 | // Step #2. | |||
| 4493 | TPT.replaceAllUsesWith(Ext, ExtOpnd); | |||
| 4494 | // Step #3. | |||
| 4495 | Instruction *ExtForOpnd = Ext; | |||
| 4496 | ||||
| 4497 | LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Propagate Ext to operands\n" ; } } while (false); | |||
| 4498 | for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; | |||
| 4499 | ++OpIdx) { | |||
| 4500 | LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Operand:\n" << * (ExtOpnd->getOperand(OpIdx)) << '\n'; } } while (false ); | |||
| 4501 | if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || | |||
| 4502 | !shouldExtOperand(ExtOpnd, OpIdx)) { | |||
| 4503 | LLVM_DEBUG(dbgs() << "No need to propagate\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "No need to propagate\n" ; } } while (false); | |||
| 4504 | continue; | |||
| 4505 | } | |||
| 4506 | // Check if we can statically extend the operand. | |||
| 4507 | Value *Opnd = ExtOpnd->getOperand(OpIdx); | |||
| 4508 | if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { | |||
| 4509 | LLVM_DEBUG(dbgs() << "Statically extend\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Statically extend\n"; } } while (false); | |||
| 4510 | unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); | |||
| 4511 | APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) | |||
| 4512 | : Cst->getValue().zext(BitWidth); | |||
| 4513 | TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); | |||
| 4514 | continue; | |||
| 4515 | } | |||
| 4516 | // UndefValue are typed, so we have to statically sign extend them. | |||
| 4517 | if (isa<UndefValue>(Opnd)) { | |||
| 4518 | LLVM_DEBUG(dbgs() << "Statically extend\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Statically extend\n"; } } while (false); | |||
| 4519 | TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); | |||
| 4520 | continue; | |||
| 4521 | } | |||
| 4522 | ||||
| 4523 | // Otherwise we have to explicitly sign extend the operand. | |||
| 4524 | // Check if Ext was reused to extend an operand. | |||
| 4525 | if (!ExtForOpnd) { | |||
| 4526 | // If yes, create a new one. | |||
| 4527 | LLVM_DEBUG(dbgs() << "More operands to ext\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "More operands to ext\n" ; } } while (false); | |||
| 4528 | Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) | |||
| 4529 | : TPT.createZExt(Ext, Opnd, Ext->getType()); | |||
| 4530 | if (!isa<Instruction>(ValForExtOpnd)) { | |||
| 4531 | TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); | |||
| 4532 | continue; | |||
| 4533 | } | |||
| 4534 | ExtForOpnd = cast<Instruction>(ValForExtOpnd); | |||
| 4535 | } | |||
| 4536 | if (Exts) | |||
| 4537 | Exts->push_back(ExtForOpnd); | |||
| 4538 | TPT.setOperand(ExtForOpnd, 0, Opnd); | |||
| 4539 | ||||
| 4540 | // Move the sign extension before the insertion point. | |||
| 4541 | TPT.moveBefore(ExtForOpnd, ExtOpnd); | |||
| 4542 | TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); | |||
| 4543 | CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); | |||
| 4544 | // If more sext are required, new instructions will have to be created. | |||
| 4545 | ExtForOpnd = nullptr; | |||
| 4546 | } | |||
| 4547 | if (ExtForOpnd == Ext) { | |||
| 4548 | LLVM_DEBUG(dbgs() << "Extension is useless now\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Extension is useless now\n" ; } } while (false); | |||
| 4549 | TPT.eraseInstruction(Ext); | |||
| 4550 | } | |||
| 4551 | return ExtOpnd; | |||
| 4552 | } | |||
| 4553 | ||||
| 4554 | /// Check whether or not promoting an instruction to a wider type is profitable. | |||
| 4555 | /// \p NewCost gives the cost of extension instructions created by the | |||
| 4556 | /// promotion. | |||
| 4557 | /// \p OldCost gives the cost of extension instructions before the promotion | |||
| 4558 | /// plus the number of instructions that have been | |||
| 4559 | /// matched in the addressing mode the promotion. | |||
| 4560 | /// \p PromotedOperand is the value that has been promoted. | |||
| 4561 | /// \return True if the promotion is profitable, false otherwise. | |||
| 4562 | bool AddressingModeMatcher::isPromotionProfitable( | |||
| 4563 | unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { | |||
| 4564 | LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'; } } while (false) | |||
| 4565 | << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'; } } while (false); | |||
| 4566 | // The cost of the new extensions is greater than the cost of the | |||
| 4567 | // old extension plus what we folded. | |||
| 4568 | // This is not profitable. | |||
| 4569 | if (NewCost > OldCost) | |||
| 4570 | return false; | |||
| 4571 | if (NewCost < OldCost) | |||
| 4572 | return true; | |||
| 4573 | // The promotion is neutral but it may help folding the sign extension in | |||
| 4574 | // loads for instance. | |||
| 4575 | // Check that we did not create an illegal instruction. | |||
| 4576 | return isPromotedInstructionLegal(TLI, DL, PromotedOperand); | |||
| 4577 | } | |||
| 4578 | ||||
| 4579 | /// Given an instruction or constant expr, see if we can fold the operation | |||
| 4580 | /// into the addressing mode. If so, update the addressing mode and return | |||
| 4581 | /// true, otherwise return false without modifying AddrMode. | |||
| 4582 | /// If \p MovedAway is not NULL, it contains the information of whether or | |||
| 4583 | /// not AddrInst has to be folded into the addressing mode on success. | |||
| 4584 | /// If \p MovedAway == true, \p AddrInst will not be part of the addressing | |||
| 4585 | /// because it has been moved away. | |||
| 4586 | /// Thus AddrInst must not be added in the matched instructions. | |||
| 4587 | /// This state can happen when AddrInst is a sext, since it may be moved away. | |||
| 4588 | /// Therefore, AddrInst may not be valid when MovedAway is true and it must | |||
| 4589 | /// not be referenced anymore. | |||
| 4590 | bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, | |||
| 4591 | unsigned Depth, | |||
| 4592 | bool *MovedAway) { | |||
| 4593 | // Avoid exponential behavior on extremely deep expression trees. | |||
| 4594 | if (Depth >= 5) | |||
| 4595 | return false; | |||
| 4596 | ||||
| 4597 | // By default, all matched instructions stay in place. | |||
| 4598 | if (MovedAway) | |||
| 4599 | *MovedAway = false; | |||
| 4600 | ||||
| 4601 | switch (Opcode) { | |||
| 4602 | case Instruction::PtrToInt: | |||
| 4603 | // PtrToInt is always a noop, as we know that the int type is pointer sized. | |||
| 4604 | return matchAddr(AddrInst->getOperand(0), Depth); | |||
| 4605 | case Instruction::IntToPtr: { | |||
| 4606 | auto AS = AddrInst->getType()->getPointerAddressSpace(); | |||
| 4607 | auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); | |||
| 4608 | // This inttoptr is a no-op if the integer type is pointer sized. | |||
| 4609 | if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) | |||
| 4610 | return matchAddr(AddrInst->getOperand(0), Depth); | |||
| 4611 | return false; | |||
| 4612 | } | |||
| 4613 | case Instruction::BitCast: | |||
| 4614 | // BitCast is always a noop, and we can handle it as long as it is | |||
| 4615 | // int->int or pointer->pointer (we don't want int<->fp or something). | |||
| 4616 | if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && | |||
| 4617 | // Don't touch identity bitcasts. These were probably put here by LSR, | |||
| 4618 | // and we don't want to mess around with them. Assume it knows what it | |||
| 4619 | // is doing. | |||
| 4620 | AddrInst->getOperand(0)->getType() != AddrInst->getType()) | |||
| 4621 | return matchAddr(AddrInst->getOperand(0), Depth); | |||
| 4622 | return false; | |||
| 4623 | case Instruction::AddrSpaceCast: { | |||
| 4624 | unsigned SrcAS = | |||
| 4625 | AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); | |||
| 4626 | unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); | |||
| 4627 | if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) | |||
| 4628 | return matchAddr(AddrInst->getOperand(0), Depth); | |||
| 4629 | return false; | |||
| 4630 | } | |||
| 4631 | case Instruction::Add: { | |||
| 4632 | // Check to see if we can merge in one operand, then the other. If so, we | |||
| 4633 | // win. | |||
| 4634 | ExtAddrMode BackupAddrMode = AddrMode; | |||
| 4635 | unsigned OldSize = AddrModeInsts.size(); | |||
| 4636 | // Start a transaction at this point. | |||
| 4637 | // The LHS may match but not the RHS. | |||
| 4638 | // Therefore, we need a higher level restoration point to undo partially | |||
| 4639 | // matched operation. | |||
| 4640 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
| 4641 | TPT.getRestorationPoint(); | |||
| 4642 | ||||
| 4643 | // Try to match an integer constant second to increase its chance of ending | |||
| 4644 | // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. | |||
| 4645 | int First = 0, Second = 1; | |||
| 4646 | if (isa<ConstantInt>(AddrInst->getOperand(First)) | |||
| 4647 | && !isa<ConstantInt>(AddrInst->getOperand(Second))) | |||
| 4648 | std::swap(First, Second); | |||
| 4649 | AddrMode.InBounds = false; | |||
| 4650 | if (matchAddr(AddrInst->getOperand(First), Depth + 1) && | |||
| 4651 | matchAddr(AddrInst->getOperand(Second), Depth + 1)) | |||
| 4652 | return true; | |||
| 4653 | ||||
| 4654 | // Restore the old addr mode info. | |||
| 4655 | AddrMode = BackupAddrMode; | |||
| 4656 | AddrModeInsts.resize(OldSize); | |||
| 4657 | TPT.rollback(LastKnownGood); | |||
| 4658 | ||||
| 4659 | // Otherwise this was over-aggressive. Try merging operands in the opposite | |||
| 4660 | // order. | |||
| 4661 | if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && | |||
| 4662 | matchAddr(AddrInst->getOperand(First), Depth + 1)) | |||
| 4663 | return true; | |||
| 4664 | ||||
| 4665 | // Otherwise we definitely can't merge the ADD in. | |||
| 4666 | AddrMode = BackupAddrMode; | |||
| 4667 | AddrModeInsts.resize(OldSize); | |||
| 4668 | TPT.rollback(LastKnownGood); | |||
| 4669 | break; | |||
| 4670 | } | |||
| 4671 | // case Instruction::Or: | |||
| 4672 | // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. | |||
| 4673 | // break; | |||
| 4674 | case Instruction::Mul: | |||
| 4675 | case Instruction::Shl: { | |||
| 4676 | // Can only handle X*C and X << C. | |||
| 4677 | AddrMode.InBounds = false; | |||
| 4678 | ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); | |||
| 4679 | if (!RHS || RHS->getBitWidth() > 64) | |||
| 4680 | return false; | |||
| 4681 | int64_t Scale = Opcode == Instruction::Shl | |||
| 4682 | ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) | |||
| 4683 | : RHS->getSExtValue(); | |||
| 4684 | ||||
| 4685 | return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); | |||
| 4686 | } | |||
| 4687 | case Instruction::GetElementPtr: { | |||
| 4688 | // Scan the GEP. We check it if it contains constant offsets and at most | |||
| 4689 | // one variable offset. | |||
| 4690 | int VariableOperand = -1; | |||
| 4691 | unsigned VariableScale = 0; | |||
| 4692 | ||||
| 4693 | int64_t ConstantOffset = 0; | |||
| 4694 | gep_type_iterator GTI = gep_type_begin(AddrInst); | |||
| 4695 | for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { | |||
| 4696 | if (StructType *STy = GTI.getStructTypeOrNull()) { | |||
| 4697 | const StructLayout *SL = DL.getStructLayout(STy); | |||
| 4698 | unsigned Idx = | |||
| 4699 | cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); | |||
| 4700 | ConstantOffset += SL->getElementOffset(Idx); | |||
| 4701 | } else { | |||
| 4702 | TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); | |||
| 4703 | if (TS.isNonZero()) { | |||
| 4704 | // The optimisations below currently only work for fixed offsets. | |||
| 4705 | if (TS.isScalable()) | |||
| 4706 | return false; | |||
| 4707 | int64_t TypeSize = TS.getFixedValue(); | |||
| 4708 | if (ConstantInt *CI = | |||
| 4709 | dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { | |||
| 4710 | const APInt &CVal = CI->getValue(); | |||
| 4711 | if (CVal.getSignificantBits() <= 64) { | |||
| 4712 | ConstantOffset += CVal.getSExtValue() * TypeSize; | |||
| 4713 | continue; | |||
| 4714 | } | |||
| 4715 | } | |||
| 4716 | // We only allow one variable index at the moment. | |||
| 4717 | if (VariableOperand != -1) | |||
| 4718 | return false; | |||
| 4719 | ||||
| 4720 | // Remember the variable index. | |||
| 4721 | VariableOperand = i; | |||
| 4722 | VariableScale = TypeSize; | |||
| 4723 | } | |||
| 4724 | } | |||
| 4725 | } | |||
| 4726 | ||||
| 4727 | // A common case is for the GEP to only do a constant offset. In this case, | |||
| 4728 | // just add it to the disp field and check validity. | |||
| 4729 | if (VariableOperand == -1) { | |||
| 4730 | AddrMode.BaseOffs += ConstantOffset; | |||
| 4731 | if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { | |||
| 4732 | if (!cast<GEPOperator>(AddrInst)->isInBounds()) | |||
| 4733 | AddrMode.InBounds = false; | |||
| 4734 | return true; | |||
| 4735 | } | |||
| 4736 | AddrMode.BaseOffs -= ConstantOffset; | |||
| 4737 | ||||
| 4738 | if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && | |||
| 4739 | TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && | |||
| 4740 | ConstantOffset > 0) { | |||
| 4741 | // Record GEPs with non-zero offsets as candidates for splitting in | |||
| 4742 | // the event that the offset cannot fit into the r+i addressing mode. | |||
| 4743 | // Simple and common case that only one GEP is used in calculating the | |||
| 4744 | // address for the memory access. | |||
| 4745 | Value *Base = AddrInst->getOperand(0); | |||
| 4746 | auto *BaseI = dyn_cast<Instruction>(Base); | |||
| 4747 | auto *GEP = cast<GetElementPtrInst>(AddrInst); | |||
| 4748 | if (isa<Argument>(Base) || isa<GlobalValue>(Base) || | |||
| 4749 | (BaseI && !isa<CastInst>(BaseI) && | |||
| 4750 | !isa<GetElementPtrInst>(BaseI))) { | |||
| 4751 | // Make sure the parent block allows inserting non-PHI instructions | |||
| 4752 | // before the terminator. | |||
| 4753 | BasicBlock *Parent = BaseI ? BaseI->getParent() | |||
| 4754 | : &GEP->getFunction()->getEntryBlock(); | |||
| 4755 | if (!Parent->getTerminator()->isEHPad()) | |||
| 4756 | LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); | |||
| 4757 | } | |||
| 4758 | } | |||
| 4759 | ||||
| 4760 | return false; | |||
| 4761 | } | |||
| 4762 | ||||
| 4763 | // Save the valid addressing mode in case we can't match. | |||
| 4764 | ExtAddrMode BackupAddrMode = AddrMode; | |||
| 4765 | unsigned OldSize = AddrModeInsts.size(); | |||
| 4766 | ||||
| 4767 | // See if the scale and offset amount is valid for this target. | |||
| 4768 | AddrMode.BaseOffs += ConstantOffset; | |||
| 4769 | if (!cast<GEPOperator>(AddrInst)->isInBounds()) | |||
| 4770 | AddrMode.InBounds = false; | |||
| 4771 | ||||
| 4772 | // Match the base operand of the GEP. | |||
| 4773 | if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { | |||
| 4774 | // If it couldn't be matched, just stuff the value in a register. | |||
| 4775 | if (AddrMode.HasBaseReg) { | |||
| 4776 | AddrMode = BackupAddrMode; | |||
| 4777 | AddrModeInsts.resize(OldSize); | |||
| 4778 | return false; | |||
| 4779 | } | |||
| 4780 | AddrMode.HasBaseReg = true; | |||
| 4781 | AddrMode.BaseReg = AddrInst->getOperand(0); | |||
| 4782 | } | |||
| 4783 | ||||
| 4784 | // Match the remaining variable portion of the GEP. | |||
| 4785 | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, | |||
| 4786 | Depth)) { | |||
| 4787 | // If it couldn't be matched, try stuffing the base into a register | |||
| 4788 | // instead of matching it, and retrying the match of the scale. | |||
| 4789 | AddrMode = BackupAddrMode; | |||
| 4790 | AddrModeInsts.resize(OldSize); | |||
| 4791 | if (AddrMode.HasBaseReg) | |||
| 4792 | return false; | |||
| 4793 | AddrMode.HasBaseReg = true; | |||
| 4794 | AddrMode.BaseReg = AddrInst->getOperand(0); | |||
| 4795 | AddrMode.BaseOffs += ConstantOffset; | |||
| 4796 | if (!matchScaledValue(AddrInst->getOperand(VariableOperand), | |||
| 4797 | VariableScale, Depth)) { | |||
| 4798 | // If even that didn't work, bail. | |||
| 4799 | AddrMode = BackupAddrMode; | |||
| 4800 | AddrModeInsts.resize(OldSize); | |||
| 4801 | return false; | |||
| 4802 | } | |||
| 4803 | } | |||
| 4804 | ||||
| 4805 | return true; | |||
| 4806 | } | |||
| 4807 | case Instruction::SExt: | |||
| 4808 | case Instruction::ZExt: { | |||
| 4809 | Instruction *Ext = dyn_cast<Instruction>(AddrInst); | |||
| 4810 | if (!Ext) | |||
| 4811 | return false; | |||
| 4812 | ||||
| 4813 | // Try to move this ext out of the way of the addressing mode. | |||
| 4814 | // Ask for a method for doing so. | |||
| 4815 | TypePromotionHelper::Action TPH = | |||
| 4816 | TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); | |||
| 4817 | if (!TPH) | |||
| 4818 | return false; | |||
| 4819 | ||||
| 4820 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
| 4821 | TPT.getRestorationPoint(); | |||
| 4822 | unsigned CreatedInstsCost = 0; | |||
| 4823 | unsigned ExtCost = !TLI.isExtFree(Ext); | |||
| 4824 | Value *PromotedOperand = | |||
| 4825 | TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); | |||
| 4826 | // SExt has been moved away. | |||
| 4827 | // Thus either it will be rematched later in the recursive calls or it is | |||
| 4828 | // gone. Anyway, we must not fold it into the addressing mode at this point. | |||
| 4829 | // E.g., | |||
| 4830 | // op = add opnd, 1 | |||
| 4831 | // idx = ext op | |||
| 4832 | // addr = gep base, idx | |||
| 4833 | // is now: | |||
| 4834 | // promotedOpnd = ext opnd <- no match here | |||
| 4835 | // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) | |||
| 4836 | // addr = gep base, op <- match | |||
| 4837 | if (MovedAway) | |||
| 4838 | *MovedAway = true; | |||
| 4839 | ||||
| 4840 | assert(PromotedOperand &&(static_cast <bool> (PromotedOperand && "TypePromotionHelper should have filtered out those cases" ) ? void (0) : __assert_fail ("PromotedOperand && \"TypePromotionHelper should have filtered out those cases\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4841, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4841 | "TypePromotionHelper should have filtered out those cases")(static_cast <bool> (PromotedOperand && "TypePromotionHelper should have filtered out those cases" ) ? void (0) : __assert_fail ("PromotedOperand && \"TypePromotionHelper should have filtered out those cases\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 4841, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4842 | ||||
| 4843 | ExtAddrMode BackupAddrMode = AddrMode; | |||
| 4844 | unsigned OldSize = AddrModeInsts.size(); | |||
| 4845 | ||||
| 4846 | if (!matchAddr(PromotedOperand, Depth) || | |||
| 4847 | // The total of the new cost is equal to the cost of the created | |||
| 4848 | // instructions. | |||
| 4849 | // The total of the old cost is equal to the cost of the extension plus | |||
| 4850 | // what we have saved in the addressing mode. | |||
| 4851 | !isPromotionProfitable(CreatedInstsCost, | |||
| 4852 | ExtCost + (AddrModeInsts.size() - OldSize), | |||
| 4853 | PromotedOperand)) { | |||
| 4854 | AddrMode = BackupAddrMode; | |||
| 4855 | AddrModeInsts.resize(OldSize); | |||
| 4856 | LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Sign extension does not pay off: rollback\n" ; } } while (false); | |||
| 4857 | TPT.rollback(LastKnownGood); | |||
| 4858 | return false; | |||
| 4859 | } | |||
| 4860 | return true; | |||
| 4861 | } | |||
| 4862 | } | |||
| 4863 | return false; | |||
| 4864 | } | |||
| 4865 | ||||
| 4866 | /// If we can, try to add the value of 'Addr' into the current addressing mode. | |||
| 4867 | /// If Addr can't be added to AddrMode this returns false and leaves AddrMode | |||
| 4868 | /// unmodified. This assumes that Addr is either a pointer type or intptr_t | |||
| 4869 | /// for the target. | |||
| 4870 | /// | |||
| 4871 | bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { | |||
| 4872 | // Start a transaction at this point that we will rollback if the matching | |||
| 4873 | // fails. | |||
| 4874 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
| 4875 | TPT.getRestorationPoint(); | |||
| 4876 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { | |||
| 4877 | if (CI->getValue().isSignedIntN(64)) { | |||
| 4878 | // Fold in immediates if legal for the target. | |||
| 4879 | AddrMode.BaseOffs += CI->getSExtValue(); | |||
| 4880 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | |||
| 4881 | return true; | |||
| 4882 | AddrMode.BaseOffs -= CI->getSExtValue(); | |||
| 4883 | } | |||
| 4884 | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { | |||
| 4885 | // If this is a global variable, try to fold it into the addressing mode. | |||
| 4886 | if (!AddrMode.BaseGV) { | |||
| 4887 | AddrMode.BaseGV = GV; | |||
| 4888 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | |||
| 4889 | return true; | |||
| 4890 | AddrMode.BaseGV = nullptr; | |||
| 4891 | } | |||
| 4892 | } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { | |||
| 4893 | ExtAddrMode BackupAddrMode = AddrMode; | |||
| 4894 | unsigned OldSize = AddrModeInsts.size(); | |||
| 4895 | ||||
| 4896 | // Check to see if it is possible to fold this operation. | |||
| 4897 | bool MovedAway = false; | |||
| 4898 | if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { | |||
| 4899 | // This instruction may have been moved away. If so, there is nothing | |||
| 4900 | // to check here. | |||
| 4901 | if (MovedAway) | |||
| 4902 | return true; | |||
| 4903 | // Okay, it's possible to fold this. Check to see if it is actually | |||
| 4904 | // *profitable* to do so. We use a simple cost model to avoid increasing | |||
| 4905 | // register pressure too much. | |||
| 4906 | if (I->hasOneUse() || | |||
| 4907 | isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { | |||
| 4908 | AddrModeInsts.push_back(I); | |||
| 4909 | return true; | |||
| 4910 | } | |||
| 4911 | ||||
| 4912 | // It isn't profitable to do this, roll back. | |||
| 4913 | AddrMode = BackupAddrMode; | |||
| 4914 | AddrModeInsts.resize(OldSize); | |||
| 4915 | TPT.rollback(LastKnownGood); | |||
| 4916 | } | |||
| 4917 | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { | |||
| 4918 | if (matchOperationAddr(CE, CE->getOpcode(), Depth)) | |||
| 4919 | return true; | |||
| 4920 | TPT.rollback(LastKnownGood); | |||
| 4921 | } else if (isa<ConstantPointerNull>(Addr)) { | |||
| 4922 | // Null pointer gets folded without affecting the addressing mode. | |||
| 4923 | return true; | |||
| 4924 | } | |||
| 4925 | ||||
| 4926 | // Worse case, the target should support [reg] addressing modes. :) | |||
| 4927 | if (!AddrMode.HasBaseReg) { | |||
| 4928 | AddrMode.HasBaseReg = true; | |||
| 4929 | AddrMode.BaseReg = Addr; | |||
| 4930 | // Still check for legality in case the target supports [imm] but not [i+r]. | |||
| 4931 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | |||
| 4932 | return true; | |||
| 4933 | AddrMode.HasBaseReg = false; | |||
| 4934 | AddrMode.BaseReg = nullptr; | |||
| 4935 | } | |||
| 4936 | ||||
| 4937 | // If the base register is already taken, see if we can do [r+r]. | |||
| 4938 | if (AddrMode.Scale == 0) { | |||
| 4939 | AddrMode.Scale = 1; | |||
| 4940 | AddrMode.ScaledReg = Addr; | |||
| 4941 | if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) | |||
| 4942 | return true; | |||
| 4943 | AddrMode.Scale = 0; | |||
| 4944 | AddrMode.ScaledReg = nullptr; | |||
| 4945 | } | |||
| 4946 | // Couldn't match. | |||
| 4947 | TPT.rollback(LastKnownGood); | |||
| 4948 | return false; | |||
| 4949 | } | |||
| 4950 | ||||
| 4951 | /// Check to see if all uses of OpVal by the specified inline asm call are due | |||
| 4952 | /// to memory operands. If so, return true, otherwise return false. | |||
| 4953 | static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, | |||
| 4954 | const TargetLowering &TLI, | |||
| 4955 | const TargetRegisterInfo &TRI) { | |||
| 4956 | const Function *F = CI->getFunction(); | |||
| 4957 | TargetLowering::AsmOperandInfoVector TargetConstraints = | |||
| 4958 | TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); | |||
| 4959 | ||||
| 4960 | for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { | |||
| 4961 | // Compute the constraint code and ConstraintType to use. | |||
| 4962 | TLI.ComputeConstraintToUse(OpInfo, SDValue()); | |||
| 4963 | ||||
| 4964 | // If this asm operand is our Value*, and if it isn't an indirect memory | |||
| 4965 | // operand, we can't fold it! TODO: Also handle C_Address? | |||
| 4966 | if (OpInfo.CallOperandVal == OpVal && | |||
| 4967 | (OpInfo.ConstraintType != TargetLowering::C_Memory || | |||
| 4968 | !OpInfo.isIndirect)) | |||
| 4969 | return false; | |||
| 4970 | } | |||
| 4971 | ||||
| 4972 | return true; | |||
| 4973 | } | |||
| 4974 | ||||
| 4975 | /// Recursively walk all the uses of I until we find a memory use. | |||
| 4976 | /// If we find an obviously non-foldable instruction, return true. | |||
| 4977 | /// Add accessed addresses and types to MemoryUses. | |||
| 4978 | static bool FindAllMemoryUses( | |||
| 4979 | Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, | |||
| 4980 | SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, | |||
| 4981 | const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, | |||
| 4982 | BlockFrequencyInfo *BFI, unsigned &SeenInsts) { | |||
| 4983 | // If we already considered this instruction, we're done. | |||
| 4984 | if (!ConsideredInsts.insert(I).second) | |||
| 4985 | return false; | |||
| 4986 | ||||
| 4987 | // If this is an obviously unfoldable instruction, bail out. | |||
| 4988 | if (!MightBeFoldableInst(I)) | |||
| 4989 | return true; | |||
| 4990 | ||||
| 4991 | // Loop over all the uses, recursively processing them. | |||
| 4992 | for (Use &U : I->uses()) { | |||
| 4993 | // Conservatively return true if we're seeing a large number or a deep chain | |||
| 4994 | // of users. This avoids excessive compilation times in pathological cases. | |||
| 4995 | if (SeenInsts++ >= MaxAddressUsersToScan) | |||
| 4996 | return true; | |||
| 4997 | ||||
| 4998 | Instruction *UserI = cast<Instruction>(U.getUser()); | |||
| 4999 | if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { | |||
| 5000 | MemoryUses.push_back({&U, LI->getType()}); | |||
| 5001 | continue; | |||
| 5002 | } | |||
| 5003 | ||||
| 5004 | if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { | |||
| 5005 | if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) | |||
| 5006 | return true; // Storing addr, not into addr. | |||
| 5007 | MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); | |||
| 5008 | continue; | |||
| 5009 | } | |||
| 5010 | ||||
| 5011 | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { | |||
| 5012 | if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) | |||
| 5013 | return true; // Storing addr, not into addr. | |||
| 5014 | MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); | |||
| 5015 | continue; | |||
| 5016 | } | |||
| 5017 | ||||
| 5018 | if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { | |||
| 5019 | if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) | |||
| 5020 | return true; // Storing addr, not into addr. | |||
| 5021 | MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); | |||
| 5022 | continue; | |||
| 5023 | } | |||
| 5024 | ||||
| 5025 | if (CallInst *CI = dyn_cast<CallInst>(UserI)) { | |||
| 5026 | if (CI->hasFnAttr(Attribute::Cold)) { | |||
| 5027 | // If this is a cold call, we can sink the addressing calculation into | |||
| 5028 | // the cold path. See optimizeCallInst | |||
| 5029 | bool OptForSize = | |||
| 5030 | OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); | |||
| 5031 | if (!OptForSize) | |||
| 5032 | continue; | |||
| 5033 | } | |||
| 5034 | ||||
| 5035 | InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); | |||
| 5036 | if (!IA) | |||
| 5037 | return true; | |||
| 5038 | ||||
| 5039 | // If this is a memory operand, we're cool, otherwise bail out. | |||
| 5040 | if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) | |||
| 5041 | return true; | |||
| 5042 | continue; | |||
| 5043 | } | |||
| 5044 | ||||
| 5045 | if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, | |||
| 5046 | PSI, BFI, SeenInsts)) | |||
| 5047 | return true; | |||
| 5048 | } | |||
| 5049 | ||||
| 5050 | return false; | |||
| 5051 | } | |||
| 5052 | ||||
| 5053 | static bool FindAllMemoryUses( | |||
| 5054 | Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, | |||
| 5055 | const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, | |||
| 5056 | ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { | |||
| 5057 | unsigned SeenInsts = 0; | |||
| 5058 | SmallPtrSet<Instruction *, 16> ConsideredInsts; | |||
| 5059 | return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, | |||
| 5060 | PSI, BFI, SeenInsts); | |||
| 5061 | } | |||
| 5062 | ||||
| 5063 | ||||
| 5064 | /// Return true if Val is already known to be live at the use site that we're | |||
| 5065 | /// folding it into. If so, there is no cost to include it in the addressing | |||
| 5066 | /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the | |||
| 5067 | /// instruction already. | |||
| 5068 | bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, | |||
| 5069 | Value *KnownLive1, | |||
| 5070 | Value *KnownLive2) { | |||
| 5071 | // If Val is either of the known-live values, we know it is live! | |||
| 5072 | if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) | |||
| 5073 | return true; | |||
| 5074 | ||||
| 5075 | // All values other than instructions and arguments (e.g. constants) are live. | |||
| 5076 | if (!isa<Instruction>(Val) && !isa<Argument>(Val)) | |||
| 5077 | return true; | |||
| 5078 | ||||
| 5079 | // If Val is a constant sized alloca in the entry block, it is live, this is | |||
| 5080 | // true because it is just a reference to the stack/frame pointer, which is | |||
| 5081 | // live for the whole function. | |||
| 5082 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) | |||
| 5083 | if (AI->isStaticAlloca()) | |||
| 5084 | return true; | |||
| 5085 | ||||
| 5086 | // Check to see if this value is already used in the memory instruction's | |||
| 5087 | // block. If so, it's already live into the block at the very least, so we | |||
| 5088 | // can reasonably fold it. | |||
| 5089 | return Val->isUsedInBasicBlock(MemoryInst->getParent()); | |||
| 5090 | } | |||
| 5091 | ||||
| 5092 | /// It is possible for the addressing mode of the machine to fold the specified | |||
| 5093 | /// instruction into a load or store that ultimately uses it. | |||
| 5094 | /// However, the specified instruction has multiple uses. | |||
| 5095 | /// Given this, it may actually increase register pressure to fold it | |||
| 5096 | /// into the load. For example, consider this code: | |||
| 5097 | /// | |||
| 5098 | /// X = ... | |||
| 5099 | /// Y = X+1 | |||
| 5100 | /// use(Y) -> nonload/store | |||
| 5101 | /// Z = Y+1 | |||
| 5102 | /// load Z | |||
| 5103 | /// | |||
| 5104 | /// In this case, Y has multiple uses, and can be folded into the load of Z | |||
| 5105 | /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to | |||
| 5106 | /// be live at the use(Y) line. If we don't fold Y into load Z, we use one | |||
| 5107 | /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the | |||
| 5108 | /// number of computations either. | |||
| 5109 | /// | |||
| 5110 | /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If | |||
| 5111 | /// X was live across 'load Z' for other reasons, we actually *would* want to | |||
| 5112 | /// fold the addressing mode in the Z case. This would make Y die earlier. | |||
| 5113 | bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( | |||
| 5114 | Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { | |||
| 5115 | if (IgnoreProfitability) | |||
| 5116 | return true; | |||
| 5117 | ||||
| 5118 | // AMBefore is the addressing mode before this instruction was folded into it, | |||
| 5119 | // and AMAfter is the addressing mode after the instruction was folded. Get | |||
| 5120 | // the set of registers referenced by AMAfter and subtract out those | |||
| 5121 | // referenced by AMBefore: this is the set of values which folding in this | |||
| 5122 | // address extends the lifetime of. | |||
| 5123 | // | |||
| 5124 | // Note that there are only two potential values being referenced here, | |||
| 5125 | // BaseReg and ScaleReg (global addresses are always available, as are any | |||
| 5126 | // folded immediates). | |||
| 5127 | Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; | |||
| 5128 | ||||
| 5129 | // If the BaseReg or ScaledReg was referenced by the previous addrmode, their | |||
| 5130 | // lifetime wasn't extended by adding this instruction. | |||
| 5131 | if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | |||
| 5132 | BaseReg = nullptr; | |||
| 5133 | if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) | |||
| 5134 | ScaledReg = nullptr; | |||
| 5135 | ||||
| 5136 | // If folding this instruction (and it's subexprs) didn't extend any live | |||
| 5137 | // ranges, we're ok with it. | |||
| 5138 | if (!BaseReg && !ScaledReg) | |||
| 5139 | return true; | |||
| 5140 | ||||
| 5141 | // If all uses of this instruction can have the address mode sunk into them, | |||
| 5142 | // we can remove the addressing mode and effectively trade one live register | |||
| 5143 | // for another (at worst.) In this context, folding an addressing mode into | |||
| 5144 | // the use is just a particularly nice way of sinking it. | |||
| 5145 | SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; | |||
| 5146 | if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) | |||
| 5147 | return false; // Has a non-memory, non-foldable use! | |||
| 5148 | ||||
| 5149 | // Now that we know that all uses of this instruction are part of a chain of | |||
| 5150 | // computation involving only operations that could theoretically be folded | |||
| 5151 | // into a memory use, loop over each of these memory operation uses and see | |||
| 5152 | // if they could *actually* fold the instruction. The assumption is that | |||
| 5153 | // addressing modes are cheap and that duplicating the computation involved | |||
| 5154 | // many times is worthwhile, even on a fastpath. For sinking candidates | |||
| 5155 | // (i.e. cold call sites), this serves as a way to prevent excessive code | |||
| 5156 | // growth since most architectures have some reasonable small and fast way to | |||
| 5157 | // compute an effective address. (i.e LEA on x86) | |||
| 5158 | SmallVector<Instruction *, 32> MatchedAddrModeInsts; | |||
| 5159 | for (const std::pair<Use *, Type *> &Pair : MemoryUses) { | |||
| 5160 | Value *Address = Pair.first->get(); | |||
| 5161 | Instruction *UserI = cast<Instruction>(Pair.first->getUser()); | |||
| 5162 | Type *AddressAccessTy = Pair.second; | |||
| 5163 | unsigned AS = Address->getType()->getPointerAddressSpace(); | |||
| 5164 | ||||
| 5165 | // Do a match against the root of this address, ignoring profitability. This | |||
| 5166 | // will tell us if the addressing mode for the memory operation will | |||
| 5167 | // *actually* cover the shared instruction. | |||
| 5168 | ExtAddrMode Result; | |||
| 5169 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, | |||
| 5170 | 0); | |||
| 5171 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
| 5172 | TPT.getRestorationPoint(); | |||
| 5173 | AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, | |||
| 5174 | AddressAccessTy, AS, UserI, Result, | |||
| 5175 | InsertedInsts, PromotedInsts, TPT, | |||
| 5176 | LargeOffsetGEP, OptSize, PSI, BFI); | |||
| 5177 | Matcher.IgnoreProfitability = true; | |||
| 5178 | bool Success = Matcher.matchAddr(Address, 0); | |||
| 5179 | (void)Success; | |||
| 5180 | assert(Success && "Couldn't select *anything*?")(static_cast <bool> (Success && "Couldn't select *anything*?" ) ? void (0) : __assert_fail ("Success && \"Couldn't select *anything*?\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5180, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5181 | ||||
| 5182 | // The match was to check the profitability, the changes made are not | |||
| 5183 | // part of the original matcher. Therefore, they should be dropped | |||
| 5184 | // otherwise the original matcher will not present the right state. | |||
| 5185 | TPT.rollback(LastKnownGood); | |||
| 5186 | ||||
| 5187 | // If the match didn't cover I, then it won't be shared by it. | |||
| 5188 | if (!is_contained(MatchedAddrModeInsts, I)) | |||
| 5189 | return false; | |||
| 5190 | ||||
| 5191 | MatchedAddrModeInsts.clear(); | |||
| 5192 | } | |||
| 5193 | ||||
| 5194 | return true; | |||
| 5195 | } | |||
| 5196 | ||||
| 5197 | /// Return true if the specified values are defined in a | |||
| 5198 | /// different basic block than BB. | |||
| 5199 | static bool IsNonLocalValue(Value *V, BasicBlock *BB) { | |||
| 5200 | if (Instruction *I = dyn_cast<Instruction>(V)) | |||
| 5201 | return I->getParent() != BB; | |||
| 5202 | return false; | |||
| 5203 | } | |||
| 5204 | ||||
| 5205 | /// Sink addressing mode computation immediate before MemoryInst if doing so | |||
| 5206 | /// can be done without increasing register pressure. The need for the | |||
| 5207 | /// register pressure constraint means this can end up being an all or nothing | |||
| 5208 | /// decision for all uses of the same addressing computation. | |||
| 5209 | /// | |||
| 5210 | /// Load and Store Instructions often have addressing modes that can do | |||
| 5211 | /// significant amounts of computation. As such, instruction selection will try | |||
| 5212 | /// to get the load or store to do as much computation as possible for the | |||
| 5213 | /// program. The problem is that isel can only see within a single block. As | |||
| 5214 | /// such, we sink as much legal addressing mode work into the block as possible. | |||
| 5215 | /// | |||
| 5216 | /// This method is used to optimize both load/store and inline asms with memory | |||
| 5217 | /// operands. It's also used to sink addressing computations feeding into cold | |||
| 5218 | /// call sites into their (cold) basic block. | |||
| 5219 | /// | |||
| 5220 | /// The motivation for handling sinking into cold blocks is that doing so can | |||
| 5221 | /// both enable other address mode sinking (by satisfying the register pressure | |||
| 5222 | /// constraint above), and reduce register pressure globally (by removing the | |||
| 5223 | /// addressing mode computation from the fast path entirely.). | |||
| 5224 | bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, | |||
| 5225 | Type *AccessTy, unsigned AddrSpace) { | |||
| 5226 | Value *Repl = Addr; | |||
| 5227 | ||||
| 5228 | // Try to collapse single-value PHI nodes. This is necessary to undo | |||
| 5229 | // unprofitable PRE transformations. | |||
| 5230 | SmallVector<Value *, 8> worklist; | |||
| 5231 | SmallPtrSet<Value *, 16> Visited; | |||
| 5232 | worklist.push_back(Addr); | |||
| 5233 | ||||
| 5234 | // Use a worklist to iteratively look through PHI and select nodes, and | |||
| 5235 | // ensure that the addressing mode obtained from the non-PHI/select roots of | |||
| 5236 | // the graph are compatible. | |||
| 5237 | bool PhiOrSelectSeen = false; | |||
| 5238 | SmallVector<Instruction *, 16> AddrModeInsts; | |||
| 5239 | const SimplifyQuery SQ(*DL, TLInfo); | |||
| 5240 | AddressingModeCombiner AddrModes(SQ, Addr); | |||
| 5241 | TypePromotionTransaction TPT(RemovedInsts); | |||
| 5242 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
| 5243 | TPT.getRestorationPoint(); | |||
| 5244 | while (!worklist.empty()) { | |||
| 5245 | Value *V = worklist.pop_back_val(); | |||
| 5246 | ||||
| 5247 | // We allow traversing cyclic Phi nodes. | |||
| 5248 | // In case of success after this loop we ensure that traversing through | |||
| 5249 | // Phi nodes ends up with all cases to compute address of the form | |||
| 5250 | // BaseGV + Base + Scale * Index + Offset | |||
| 5251 | // where Scale and Offset are constans and BaseGV, Base and Index | |||
| 5252 | // are exactly the same Values in all cases. | |||
| 5253 | // It means that BaseGV, Scale and Offset dominate our memory instruction | |||
| 5254 | // and have the same value as they had in address computation represented | |||
| 5255 | // as Phi. So we can safely sink address computation to memory instruction. | |||
| 5256 | if (!Visited.insert(V).second) | |||
| 5257 | continue; | |||
| 5258 | ||||
| 5259 | // For a PHI node, push all of its incoming values. | |||
| 5260 | if (PHINode *P = dyn_cast<PHINode>(V)) { | |||
| 5261 | append_range(worklist, P->incoming_values()); | |||
| 5262 | PhiOrSelectSeen = true; | |||
| 5263 | continue; | |||
| 5264 | } | |||
| 5265 | // Similar for select. | |||
| 5266 | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | |||
| 5267 | worklist.push_back(SI->getFalseValue()); | |||
| 5268 | worklist.push_back(SI->getTrueValue()); | |||
| 5269 | PhiOrSelectSeen = true; | |||
| 5270 | continue; | |||
| 5271 | } | |||
| 5272 | ||||
| 5273 | // For non-PHIs, determine the addressing mode being computed. Note that | |||
| 5274 | // the result may differ depending on what other uses our candidate | |||
| 5275 | // addressing instructions might have. | |||
| 5276 | AddrModeInsts.clear(); | |||
| 5277 | std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, | |||
| 5278 | 0); | |||
| 5279 | // Defer the query (and possible computation of) the dom tree to point of | |||
| 5280 | // actual use. It's expected that most address matches don't actually need | |||
| 5281 | // the domtree. | |||
| 5282 | auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { | |||
| 5283 | Function *F = MemoryInst->getParent()->getParent(); | |||
| 5284 | return this->getDT(*F); | |||
| 5285 | }; | |||
| 5286 | ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( | |||
| 5287 | V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, | |||
| 5288 | *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, | |||
| 5289 | BFI.get()); | |||
| 5290 | ||||
| 5291 | GetElementPtrInst *GEP = LargeOffsetGEP.first; | |||
| 5292 | if (GEP && !NewGEPBases.count(GEP)) { | |||
| 5293 | // If splitting the underlying data structure can reduce the offset of a | |||
| 5294 | // GEP, collect the GEP. Skip the GEPs that are the new bases of | |||
| 5295 | // previously split data structures. | |||
| 5296 | LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); | |||
| 5297 | LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); | |||
| 5298 | } | |||
| 5299 | ||||
| 5300 | NewAddrMode.OriginalValue = V; | |||
| 5301 | if (!AddrModes.addNewAddrMode(NewAddrMode)) | |||
| 5302 | break; | |||
| 5303 | } | |||
| 5304 | ||||
| 5305 | // Try to combine the AddrModes we've collected. If we couldn't collect any, | |||
| 5306 | // or we have multiple but either couldn't combine them or combining them | |||
| 5307 | // wouldn't do anything useful, bail out now. | |||
| 5308 | if (!AddrModes.combineAddrModes()) { | |||
| 5309 | TPT.rollback(LastKnownGood); | |||
| 5310 | return false; | |||
| 5311 | } | |||
| 5312 | bool Modified = TPT.commit(); | |||
| 5313 | ||||
| 5314 | // Get the combined AddrMode (or the only AddrMode, if we only had one). | |||
| 5315 | ExtAddrMode AddrMode = AddrModes.getAddrMode(); | |||
| 5316 | ||||
| 5317 | // If all the instructions matched are already in this BB, don't do anything. | |||
| 5318 | // If we saw a Phi node then it is not local definitely, and if we saw a | |||
| 5319 | // select then we want to push the address calculation past it even if it's | |||
| 5320 | // already in this BB. | |||
| 5321 | if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { | |||
| 5322 | return IsNonLocalValue(V, MemoryInst->getParent()); | |||
| 5323 | })) { | |||
| 5324 | LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"; } } while (false) | |||
| 5325 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"; } } while (false); | |||
| 5326 | return Modified; | |||
| 5327 | } | |||
| 5328 | ||||
| 5329 | // Insert this computation right after this user. Since our caller is | |||
| 5330 | // scanning from the top of the BB to the bottom, reuse of the expr are | |||
| 5331 | // guaranteed to happen later. | |||
| 5332 | IRBuilder<> Builder(MemoryInst); | |||
| 5333 | ||||
| 5334 | // Now that we determined the addressing expression we want to use and know | |||
| 5335 | // that we have to sink it into this block. Check to see if we have already | |||
| 5336 | // done this for some other load/store instr in this block. If so, reuse | |||
| 5337 | // the computation. Before attempting reuse, check if the address is valid | |||
| 5338 | // as it may have been erased. | |||
| 5339 | ||||
| 5340 | WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; | |||
| 5341 | ||||
| 5342 | Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; | |||
| 5343 | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | |||
| 5344 | if (SunkAddr) { | |||
| 5345 | LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | |||
| 5346 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | |||
| 5347 | if (SunkAddr->getType() != Addr->getType()) { | |||
| 5348 | if (SunkAddr->getType()->getPointerAddressSpace() != | |||
| 5349 | Addr->getType()->getPointerAddressSpace() && | |||
| 5350 | !DL->isNonIntegralPointerType(Addr->getType())) { | |||
| 5351 | // There are two reasons the address spaces might not match: a no-op | |||
| 5352 | // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a | |||
| 5353 | // ptrtoint/inttoptr pair to ensure we match the original semantics. | |||
| 5354 | // TODO: allow bitcast between different address space pointers with the | |||
| 5355 | // same size. | |||
| 5356 | SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); | |||
| 5357 | SunkAddr = | |||
| 5358 | Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); | |||
| 5359 | } else | |||
| 5360 | SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); | |||
| 5361 | } | |||
| 5362 | } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && | |||
| 5363 | SubtargetInfo->addrSinkUsingGEPs())) { | |||
| 5364 | // By default, we use the GEP-based method when AA is used later. This | |||
| 5365 | // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. | |||
| 5366 | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | |||
| 5367 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | |||
| 5368 | Value *ResultPtr = nullptr, *ResultIndex = nullptr; | |||
| 5369 | ||||
| 5370 | // First, find the pointer. | |||
| 5371 | if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { | |||
| 5372 | ResultPtr = AddrMode.BaseReg; | |||
| 5373 | AddrMode.BaseReg = nullptr; | |||
| 5374 | } | |||
| 5375 | ||||
| 5376 | if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { | |||
| 5377 | // We can't add more than one pointer together, nor can we scale a | |||
| 5378 | // pointer (both of which seem meaningless). | |||
| 5379 | if (ResultPtr || AddrMode.Scale != 1) | |||
| 5380 | return Modified; | |||
| 5381 | ||||
| 5382 | ResultPtr = AddrMode.ScaledReg; | |||
| 5383 | AddrMode.Scale = 0; | |||
| 5384 | } | |||
| 5385 | ||||
| 5386 | // It is only safe to sign extend the BaseReg if we know that the math | |||
| 5387 | // required to create it did not overflow before we extend it. Since | |||
| 5388 | // the original IR value was tossed in favor of a constant back when | |||
| 5389 | // the AddrMode was created we need to bail out gracefully if widths | |||
| 5390 | // do not match instead of extending it. | |||
| 5391 | // | |||
| 5392 | // (See below for code to add the scale.) | |||
| 5393 | if (AddrMode.Scale) { | |||
| 5394 | Type *ScaledRegTy = AddrMode.ScaledReg->getType(); | |||
| 5395 | if (cast<IntegerType>(IntPtrTy)->getBitWidth() > | |||
| 5396 | cast<IntegerType>(ScaledRegTy)->getBitWidth()) | |||
| 5397 | return Modified; | |||
| 5398 | } | |||
| 5399 | ||||
| 5400 | if (AddrMode.BaseGV) { | |||
| 5401 | if (ResultPtr) | |||
| 5402 | return Modified; | |||
| 5403 | ||||
| 5404 | ResultPtr = AddrMode.BaseGV; | |||
| 5405 | } | |||
| 5406 | ||||
| 5407 | // If the real base value actually came from an inttoptr, then the matcher | |||
| 5408 | // will look through it and provide only the integer value. In that case, | |||
| 5409 | // use it here. | |||
| 5410 | if (!DL->isNonIntegralPointerType(Addr->getType())) { | |||
| 5411 | if (!ResultPtr && AddrMode.BaseReg) { | |||
| 5412 | ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), | |||
| 5413 | "sunkaddr"); | |||
| 5414 | AddrMode.BaseReg = nullptr; | |||
| 5415 | } else if (!ResultPtr && AddrMode.Scale == 1) { | |||
| 5416 | ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), | |||
| 5417 | "sunkaddr"); | |||
| 5418 | AddrMode.Scale = 0; | |||
| 5419 | } | |||
| 5420 | } | |||
| 5421 | ||||
| 5422 | if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && | |||
| 5423 | !AddrMode.BaseOffs) { | |||
| 5424 | SunkAddr = Constant::getNullValue(Addr->getType()); | |||
| 5425 | } else if (!ResultPtr) { | |||
| 5426 | return Modified; | |||
| 5427 | } else { | |||
| 5428 | Type *I8PtrTy = | |||
| 5429 | Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); | |||
| 5430 | Type *I8Ty = Builder.getInt8Ty(); | |||
| 5431 | ||||
| 5432 | // Start with the base register. Do this first so that subsequent address | |||
| 5433 | // matching finds it last, which will prevent it from trying to match it | |||
| 5434 | // as the scaled value in case it happens to be a mul. That would be | |||
| 5435 | // problematic if we've sunk a different mul for the scale, because then | |||
| 5436 | // we'd end up sinking both muls. | |||
| 5437 | if (AddrMode.BaseReg) { | |||
| 5438 | Value *V = AddrMode.BaseReg; | |||
| 5439 | if (V->getType() != IntPtrTy) | |||
| 5440 | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | |||
| 5441 | ||||
| 5442 | ResultIndex = V; | |||
| 5443 | } | |||
| 5444 | ||||
| 5445 | // Add the scale value. | |||
| 5446 | if (AddrMode.Scale) { | |||
| 5447 | Value *V = AddrMode.ScaledReg; | |||
| 5448 | if (V->getType() == IntPtrTy) { | |||
| 5449 | // done. | |||
| 5450 | } else { | |||
| 5451 | assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5453, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5452 | cast<IntegerType>(V->getType())->getBitWidth() &&(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5453, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5453 | "We can't transform if ScaledReg is too narrow")(static_cast <bool> (cast<IntegerType>(IntPtrTy)-> getBitWidth() < cast<IntegerType>(V->getType())-> getBitWidth() && "We can't transform if ScaledReg is too narrow" ) ? void (0) : __assert_fail ("cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && \"We can't transform if ScaledReg is too narrow\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5453, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5454 | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | |||
| 5455 | } | |||
| 5456 | ||||
| 5457 | if (AddrMode.Scale != 1) | |||
| 5458 | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | |||
| 5459 | "sunkaddr"); | |||
| 5460 | if (ResultIndex) | |||
| 5461 | ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); | |||
| 5462 | else | |||
| 5463 | ResultIndex = V; | |||
| 5464 | } | |||
| 5465 | ||||
| 5466 | // Add in the Base Offset if present. | |||
| 5467 | if (AddrMode.BaseOffs) { | |||
| 5468 | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | |||
| 5469 | if (ResultIndex) { | |||
| 5470 | // We need to add this separately from the scale above to help with | |||
| 5471 | // SDAG consecutive load/store merging. | |||
| 5472 | if (ResultPtr->getType() != I8PtrTy) | |||
| 5473 | ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); | |||
| 5474 | ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, | |||
| 5475 | "sunkaddr", AddrMode.InBounds); | |||
| 5476 | } | |||
| 5477 | ||||
| 5478 | ResultIndex = V; | |||
| 5479 | } | |||
| 5480 | ||||
| 5481 | if (!ResultIndex) { | |||
| 5482 | SunkAddr = ResultPtr; | |||
| 5483 | } else { | |||
| 5484 | if (ResultPtr->getType() != I8PtrTy) | |||
| 5485 | ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); | |||
| 5486 | SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", | |||
| 5487 | AddrMode.InBounds); | |||
| 5488 | } | |||
| 5489 | ||||
| 5490 | if (SunkAddr->getType() != Addr->getType()) { | |||
| 5491 | if (SunkAddr->getType()->getPointerAddressSpace() != | |||
| 5492 | Addr->getType()->getPointerAddressSpace() && | |||
| 5493 | !DL->isNonIntegralPointerType(Addr->getType())) { | |||
| 5494 | // There are two reasons the address spaces might not match: a no-op | |||
| 5495 | // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a | |||
| 5496 | // ptrtoint/inttoptr pair to ensure we match the original semantics. | |||
| 5497 | // TODO: allow bitcast between different address space pointers with | |||
| 5498 | // the same size. | |||
| 5499 | SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); | |||
| 5500 | SunkAddr = | |||
| 5501 | Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); | |||
| 5502 | } else | |||
| 5503 | SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); | |||
| 5504 | } | |||
| 5505 | } | |||
| 5506 | } else { | |||
| 5507 | // We'd require a ptrtoint/inttoptr down the line, which we can't do for | |||
| 5508 | // non-integral pointers, so in that case bail out now. | |||
| 5509 | Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; | |||
| 5510 | Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; | |||
| 5511 | PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); | |||
| 5512 | PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); | |||
| 5513 | if (DL->isNonIntegralPointerType(Addr->getType()) || | |||
| 5514 | (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || | |||
| 5515 | (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || | |||
| 5516 | (AddrMode.BaseGV && | |||
| 5517 | DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) | |||
| 5518 | return Modified; | |||
| 5519 | ||||
| 5520 | LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrModedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false) | |||
| 5521 | << " for " << *MemoryInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"; } } while (false); | |||
| 5522 | Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); | |||
| 5523 | Value *Result = nullptr; | |||
| 5524 | ||||
| 5525 | // Start with the base register. Do this first so that subsequent address | |||
| 5526 | // matching finds it last, which will prevent it from trying to match it | |||
| 5527 | // as the scaled value in case it happens to be a mul. That would be | |||
| 5528 | // problematic if we've sunk a different mul for the scale, because then | |||
| 5529 | // we'd end up sinking both muls. | |||
| 5530 | if (AddrMode.BaseReg) { | |||
| 5531 | Value *V = AddrMode.BaseReg; | |||
| 5532 | if (V->getType()->isPointerTy()) | |||
| 5533 | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | |||
| 5534 | if (V->getType() != IntPtrTy) | |||
| 5535 | V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); | |||
| 5536 | Result = V; | |||
| 5537 | } | |||
| 5538 | ||||
| 5539 | // Add the scale value. | |||
| 5540 | if (AddrMode.Scale) { | |||
| 5541 | Value *V = AddrMode.ScaledReg; | |||
| 5542 | if (V->getType() == IntPtrTy) { | |||
| 5543 | // done. | |||
| 5544 | } else if (V->getType()->isPointerTy()) { | |||
| 5545 | V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); | |||
| 5546 | } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < | |||
| 5547 | cast<IntegerType>(V->getType())->getBitWidth()) { | |||
| 5548 | V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); | |||
| 5549 | } else { | |||
| 5550 | // It is only safe to sign extend the BaseReg if we know that the math | |||
| 5551 | // required to create it did not overflow before we extend it. Since | |||
| 5552 | // the original IR value was tossed in favor of a constant back when | |||
| 5553 | // the AddrMode was created we need to bail out gracefully if widths | |||
| 5554 | // do not match instead of extending it. | |||
| 5555 | Instruction *I = dyn_cast_or_null<Instruction>(Result); | |||
| 5556 | if (I && (Result != AddrMode.BaseReg)) | |||
| 5557 | I->eraseFromParent(); | |||
| 5558 | return Modified; | |||
| 5559 | } | |||
| 5560 | if (AddrMode.Scale != 1) | |||
| 5561 | V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), | |||
| 5562 | "sunkaddr"); | |||
| 5563 | if (Result) | |||
| 5564 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | |||
| 5565 | else | |||
| 5566 | Result = V; | |||
| 5567 | } | |||
| 5568 | ||||
| 5569 | // Add in the BaseGV if present. | |||
| 5570 | if (AddrMode.BaseGV) { | |||
| 5571 | Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); | |||
| 5572 | if (Result) | |||
| 5573 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | |||
| 5574 | else | |||
| 5575 | Result = V; | |||
| 5576 | } | |||
| 5577 | ||||
| 5578 | // Add in the Base Offset if present. | |||
| 5579 | if (AddrMode.BaseOffs) { | |||
| 5580 | Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); | |||
| 5581 | if (Result) | |||
| 5582 | Result = Builder.CreateAdd(Result, V, "sunkaddr"); | |||
| 5583 | else | |||
| 5584 | Result = V; | |||
| 5585 | } | |||
| 5586 | ||||
| 5587 | if (!Result) | |||
| 5588 | SunkAddr = Constant::getNullValue(Addr->getType()); | |||
| 5589 | else | |||
| 5590 | SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); | |||
| 5591 | } | |||
| 5592 | ||||
| 5593 | MemoryInst->replaceUsesOfWith(Repl, SunkAddr); | |||
| 5594 | // Store the newly computed address into the cache. In the case we reused a | |||
| 5595 | // value, this should be idempotent. | |||
| 5596 | SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); | |||
| 5597 | ||||
| 5598 | // If we have no uses, recursively delete the value and all dead instructions | |||
| 5599 | // using it. | |||
| 5600 | if (Repl->use_empty()) { | |||
| 5601 | resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { | |||
| 5602 | RecursivelyDeleteTriviallyDeadInstructions( | |||
| 5603 | Repl, TLInfo, nullptr, | |||
| 5604 | [&](Value *V) { removeAllAssertingVHReferences(V); }); | |||
| 5605 | }); | |||
| 5606 | } | |||
| 5607 | ++NumMemoryInsts; | |||
| 5608 | return true; | |||
| 5609 | } | |||
| 5610 | ||||
| 5611 | /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find | |||
| 5612 | /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can | |||
| 5613 | /// only handle a 2 operand GEP in the same basic block or a splat constant | |||
| 5614 | /// vector. The 2 operands to the GEP must have a scalar pointer and a vector | |||
| 5615 | /// index. | |||
| 5616 | /// | |||
| 5617 | /// If the existing GEP has a vector base pointer that is splat, we can look | |||
| 5618 | /// through the splat to find the scalar pointer. If we can't find a scalar | |||
| 5619 | /// pointer there's nothing we can do. | |||
| 5620 | /// | |||
| 5621 | /// If we have a GEP with more than 2 indices where the middle indices are all | |||
| 5622 | /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. | |||
| 5623 | /// | |||
| 5624 | /// If the final index isn't a vector or is a splat, we can emit a scalar GEP | |||
| 5625 | /// followed by a GEP with an all zeroes vector index. This will enable | |||
| 5626 | /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a | |||
| 5627 | /// zero index. | |||
| 5628 | bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, | |||
| 5629 | Value *Ptr) { | |||
| 5630 | Value *NewAddr; | |||
| 5631 | ||||
| 5632 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { | |||
| 5633 | // Don't optimize GEPs that don't have indices. | |||
| 5634 | if (!GEP->hasIndices()) | |||
| 5635 | return false; | |||
| 5636 | ||||
| 5637 | // If the GEP and the gather/scatter aren't in the same BB, don't optimize. | |||
| 5638 | // FIXME: We should support this by sinking the GEP. | |||
| 5639 | if (MemoryInst->getParent() != GEP->getParent()) | |||
| 5640 | return false; | |||
| 5641 | ||||
| 5642 | SmallVector<Value *, 2> Ops(GEP->operands()); | |||
| 5643 | ||||
| 5644 | bool RewriteGEP = false; | |||
| 5645 | ||||
| 5646 | if (Ops[0]->getType()->isVectorTy()) { | |||
| 5647 | Ops[0] = getSplatValue(Ops[0]); | |||
| 5648 | if (!Ops[0]) | |||
| 5649 | return false; | |||
| 5650 | RewriteGEP = true; | |||
| 5651 | } | |||
| 5652 | ||||
| 5653 | unsigned FinalIndex = Ops.size() - 1; | |||
| 5654 | ||||
| 5655 | // Ensure all but the last index is 0. | |||
| 5656 | // FIXME: This isn't strictly required. All that's required is that they are | |||
| 5657 | // all scalars or splats. | |||
| 5658 | for (unsigned i = 1; i < FinalIndex; ++i) { | |||
| 5659 | auto *C = dyn_cast<Constant>(Ops[i]); | |||
| 5660 | if (!C) | |||
| 5661 | return false; | |||
| 5662 | if (isa<VectorType>(C->getType())) | |||
| 5663 | C = C->getSplatValue(); | |||
| 5664 | auto *CI = dyn_cast_or_null<ConstantInt>(C); | |||
| 5665 | if (!CI || !CI->isZero()) | |||
| 5666 | return false; | |||
| 5667 | // Scalarize the index if needed. | |||
| 5668 | Ops[i] = CI; | |||
| 5669 | } | |||
| 5670 | ||||
| 5671 | // Try to scalarize the final index. | |||
| 5672 | if (Ops[FinalIndex]->getType()->isVectorTy()) { | |||
| 5673 | if (Value *V = getSplatValue(Ops[FinalIndex])) { | |||
| 5674 | auto *C = dyn_cast<ConstantInt>(V); | |||
| 5675 | // Don't scalarize all zeros vector. | |||
| 5676 | if (!C || !C->isZero()) { | |||
| 5677 | Ops[FinalIndex] = V; | |||
| 5678 | RewriteGEP = true; | |||
| 5679 | } | |||
| 5680 | } | |||
| 5681 | } | |||
| 5682 | ||||
| 5683 | // If we made any changes or the we have extra operands, we need to generate | |||
| 5684 | // new instructions. | |||
| 5685 | if (!RewriteGEP && Ops.size() == 2) | |||
| 5686 | return false; | |||
| 5687 | ||||
| 5688 | auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); | |||
| 5689 | ||||
| 5690 | IRBuilder<> Builder(MemoryInst); | |||
| 5691 | ||||
| 5692 | Type *SourceTy = GEP->getSourceElementType(); | |||
| 5693 | Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); | |||
| 5694 | ||||
| 5695 | // If the final index isn't a vector, emit a scalar GEP containing all ops | |||
| 5696 | // and a vector GEP with all zeroes final index. | |||
| 5697 | if (!Ops[FinalIndex]->getType()->isVectorTy()) { | |||
| 5698 | NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); | |||
| 5699 | auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); | |||
| 5700 | auto *SecondTy = GetElementPtrInst::getIndexedType( | |||
| 5701 | SourceTy, ArrayRef(Ops).drop_front()); | |||
| 5702 | NewAddr = | |||
| 5703 | Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); | |||
| 5704 | } else { | |||
| 5705 | Value *Base = Ops[0]; | |||
| 5706 | Value *Index = Ops[FinalIndex]; | |||
| 5707 | ||||
| 5708 | // Create a scalar GEP if there are more than 2 operands. | |||
| 5709 | if (Ops.size() != 2) { | |||
| 5710 | // Replace the last index with 0. | |||
| 5711 | Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); | |||
| 5712 | Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); | |||
| 5713 | SourceTy = GetElementPtrInst::getIndexedType( | |||
| 5714 | SourceTy, ArrayRef(Ops).drop_front()); | |||
| 5715 | } | |||
| 5716 | ||||
| 5717 | // Now create the GEP with scalar pointer and vector index. | |||
| 5718 | NewAddr = Builder.CreateGEP(SourceTy, Base, Index); | |||
| 5719 | } | |||
| 5720 | } else if (!isa<Constant>(Ptr)) { | |||
| 5721 | // Not a GEP, maybe its a splat and we can create a GEP to enable | |||
| 5722 | // SelectionDAGBuilder to use it as a uniform base. | |||
| 5723 | Value *V = getSplatValue(Ptr); | |||
| 5724 | if (!V) | |||
| 5725 | return false; | |||
| 5726 | ||||
| 5727 | auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); | |||
| 5728 | ||||
| 5729 | IRBuilder<> Builder(MemoryInst); | |||
| 5730 | ||||
| 5731 | // Emit a vector GEP with a scalar pointer and all 0s vector index. | |||
| 5732 | Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); | |||
| 5733 | auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); | |||
| 5734 | Type *ScalarTy; | |||
| 5735 | if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == | |||
| 5736 | Intrinsic::masked_gather) { | |||
| 5737 | ScalarTy = MemoryInst->getType()->getScalarType(); | |||
| 5738 | } else { | |||
| 5739 | assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==(static_cast <bool> (cast<IntrinsicInst>(MemoryInst )->getIntrinsicID() == Intrinsic::masked_scatter) ? void ( 0) : __assert_fail ("cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == Intrinsic::masked_scatter" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5740, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5740 | Intrinsic::masked_scatter)(static_cast <bool> (cast<IntrinsicInst>(MemoryInst )->getIntrinsicID() == Intrinsic::masked_scatter) ? void ( 0) : __assert_fail ("cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == Intrinsic::masked_scatter" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5740, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5741 | ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); | |||
| 5742 | } | |||
| 5743 | NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); | |||
| 5744 | } else { | |||
| 5745 | // Constant, SelectionDAGBuilder knows to check if its a splat. | |||
| 5746 | return false; | |||
| 5747 | } | |||
| 5748 | ||||
| 5749 | MemoryInst->replaceUsesOfWith(Ptr, NewAddr); | |||
| 5750 | ||||
| 5751 | // If we have no uses, recursively delete the value and all dead instructions | |||
| 5752 | // using it. | |||
| 5753 | if (Ptr->use_empty()) | |||
| 5754 | RecursivelyDeleteTriviallyDeadInstructions( | |||
| 5755 | Ptr, TLInfo, nullptr, | |||
| 5756 | [&](Value *V) { removeAllAssertingVHReferences(V); }); | |||
| 5757 | ||||
| 5758 | return true; | |||
| 5759 | } | |||
| 5760 | ||||
| 5761 | /// If there are any memory operands, use OptimizeMemoryInst to sink their | |||
| 5762 | /// address computing into the block when possible / profitable. | |||
| 5763 | bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { | |||
| 5764 | bool MadeChange = false; | |||
| 5765 | ||||
| 5766 | const TargetRegisterInfo *TRI = | |||
| 5767 | TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); | |||
| 5768 | TargetLowering::AsmOperandInfoVector TargetConstraints = | |||
| 5769 | TLI->ParseConstraints(*DL, TRI, *CS); | |||
| 5770 | unsigned ArgNo = 0; | |||
| 5771 | for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { | |||
| 5772 | // Compute the constraint code and ConstraintType to use. | |||
| 5773 | TLI->ComputeConstraintToUse(OpInfo, SDValue()); | |||
| 5774 | ||||
| 5775 | // TODO: Also handle C_Address? | |||
| 5776 | if (OpInfo.ConstraintType == TargetLowering::C_Memory && | |||
| 5777 | OpInfo.isIndirect) { | |||
| 5778 | Value *OpVal = CS->getArgOperand(ArgNo++); | |||
| 5779 | MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); | |||
| 5780 | } else if (OpInfo.Type == InlineAsm::isInput) | |||
| 5781 | ArgNo++; | |||
| 5782 | } | |||
| 5783 | ||||
| 5784 | return MadeChange; | |||
| 5785 | } | |||
| 5786 | ||||
| 5787 | /// Check if all the uses of \p Val are equivalent (or free) zero or | |||
| 5788 | /// sign extensions. | |||
| 5789 | static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { | |||
| 5790 | assert(!Val->use_empty() && "Input must have at least one use")(static_cast <bool> (!Val->use_empty() && "Input must have at least one use" ) ? void (0) : __assert_fail ("!Val->use_empty() && \"Input must have at least one use\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5790, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5791 | const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); | |||
| 5792 | bool IsSExt = isa<SExtInst>(FirstUser); | |||
| 5793 | Type *ExtTy = FirstUser->getType(); | |||
| 5794 | for (const User *U : Val->users()) { | |||
| 5795 | const Instruction *UI = cast<Instruction>(U); | |||
| 5796 | if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) | |||
| 5797 | return false; | |||
| 5798 | Type *CurTy = UI->getType(); | |||
| 5799 | // Same input and output types: Same instruction after CSE. | |||
| 5800 | if (CurTy == ExtTy) | |||
| 5801 | continue; | |||
| 5802 | ||||
| 5803 | // If IsSExt is true, we are in this situation: | |||
| 5804 | // a = Val | |||
| 5805 | // b = sext ty1 a to ty2 | |||
| 5806 | // c = sext ty1 a to ty3 | |||
| 5807 | // Assuming ty2 is shorter than ty3, this could be turned into: | |||
| 5808 | // a = Val | |||
| 5809 | // b = sext ty1 a to ty2 | |||
| 5810 | // c = sext ty2 b to ty3 | |||
| 5811 | // However, the last sext is not free. | |||
| 5812 | if (IsSExt) | |||
| 5813 | return false; | |||
| 5814 | ||||
| 5815 | // This is a ZExt, maybe this is free to extend from one type to another. | |||
| 5816 | // In that case, we would not account for a different use. | |||
| 5817 | Type *NarrowTy; | |||
| 5818 | Type *LargeTy; | |||
| 5819 | if (ExtTy->getScalarType()->getIntegerBitWidth() > | |||
| 5820 | CurTy->getScalarType()->getIntegerBitWidth()) { | |||
| 5821 | NarrowTy = CurTy; | |||
| 5822 | LargeTy = ExtTy; | |||
| 5823 | } else { | |||
| 5824 | NarrowTy = ExtTy; | |||
| 5825 | LargeTy = CurTy; | |||
| 5826 | } | |||
| 5827 | ||||
| 5828 | if (!TLI.isZExtFree(NarrowTy, LargeTy)) | |||
| 5829 | return false; | |||
| 5830 | } | |||
| 5831 | // All uses are the same or can be derived from one another for free. | |||
| 5832 | return true; | |||
| 5833 | } | |||
| 5834 | ||||
| 5835 | /// Try to speculatively promote extensions in \p Exts and continue | |||
| 5836 | /// promoting through newly promoted operands recursively as far as doing so is | |||
| 5837 | /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. | |||
| 5838 | /// When some promotion happened, \p TPT contains the proper state to revert | |||
| 5839 | /// them. | |||
| 5840 | /// | |||
| 5841 | /// \return true if some promotion happened, false otherwise. | |||
| 5842 | bool CodeGenPrepare::tryToPromoteExts( | |||
| 5843 | TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, | |||
| 5844 | SmallVectorImpl<Instruction *> &ProfitablyMovedExts, | |||
| 5845 | unsigned CreatedInstsCost) { | |||
| 5846 | bool Promoted = false; | |||
| 5847 | ||||
| 5848 | // Iterate over all the extensions to try to promote them. | |||
| 5849 | for (auto *I : Exts) { | |||
| 5850 | // Early check if we directly have ext(load). | |||
| 5851 | if (isa<LoadInst>(I->getOperand(0))) { | |||
| 5852 | ProfitablyMovedExts.push_back(I); | |||
| 5853 | continue; | |||
| 5854 | } | |||
| 5855 | ||||
| 5856 | // Check whether or not we want to do any promotion. The reason we have | |||
| 5857 | // this check inside the for loop is to catch the case where an extension | |||
| 5858 | // is directly fed by a load because in such case the extension can be moved | |||
| 5859 | // up without any promotion on its operands. | |||
| 5860 | if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) | |||
| 5861 | return false; | |||
| 5862 | ||||
| 5863 | // Get the action to perform the promotion. | |||
| 5864 | TypePromotionHelper::Action TPH = | |||
| 5865 | TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); | |||
| 5866 | // Check if we can promote. | |||
| 5867 | if (!TPH) { | |||
| 5868 | // Save the current extension as we cannot move up through its operand. | |||
| 5869 | ProfitablyMovedExts.push_back(I); | |||
| 5870 | continue; | |||
| 5871 | } | |||
| 5872 | ||||
| 5873 | // Save the current state. | |||
| 5874 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
| 5875 | TPT.getRestorationPoint(); | |||
| 5876 | SmallVector<Instruction *, 4> NewExts; | |||
| 5877 | unsigned NewCreatedInstsCost = 0; | |||
| 5878 | unsigned ExtCost = !TLI->isExtFree(I); | |||
| 5879 | // Promote. | |||
| 5880 | Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, | |||
| 5881 | &NewExts, nullptr, *TLI); | |||
| 5882 | assert(PromotedVal &&(static_cast <bool> (PromotedVal && "TypePromotionHelper should have filtered out those cases" ) ? void (0) : __assert_fail ("PromotedVal && \"TypePromotionHelper should have filtered out those cases\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5883, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5883 | "TypePromotionHelper should have filtered out those cases")(static_cast <bool> (PromotedVal && "TypePromotionHelper should have filtered out those cases" ) ? void (0) : __assert_fail ("PromotedVal && \"TypePromotionHelper should have filtered out those cases\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 5883, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5884 | ||||
| 5885 | // We would be able to merge only one extension in a load. | |||
| 5886 | // Therefore, if we have more than 1 new extension we heuristically | |||
| 5887 | // cut this search path, because it means we degrade the code quality. | |||
| 5888 | // With exactly 2, the transformation is neutral, because we will merge | |||
| 5889 | // one extension but leave one. However, we optimistically keep going, | |||
| 5890 | // because the new extension may be removed too. | |||
| 5891 | long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; | |||
| 5892 | // FIXME: It would be possible to propagate a negative value instead of | |||
| 5893 | // conservatively ceiling it to 0. | |||
| 5894 | TotalCreatedInstsCost = | |||
| 5895 | std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); | |||
| 5896 | if (!StressExtLdPromotion && | |||
| 5897 | (TotalCreatedInstsCost > 1 || | |||
| 5898 | !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { | |||
| 5899 | // This promotion is not profitable, rollback to the previous state, and | |||
| 5900 | // save the current extension in ProfitablyMovedExts as the latest | |||
| 5901 | // speculative promotion turned out to be unprofitable. | |||
| 5902 | TPT.rollback(LastKnownGood); | |||
| 5903 | ProfitablyMovedExts.push_back(I); | |||
| 5904 | continue; | |||
| 5905 | } | |||
| 5906 | // Continue promoting NewExts as far as doing so is profitable. | |||
| 5907 | SmallVector<Instruction *, 2> NewlyMovedExts; | |||
| 5908 | (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); | |||
| 5909 | bool NewPromoted = false; | |||
| 5910 | for (auto *ExtInst : NewlyMovedExts) { | |||
| 5911 | Instruction *MovedExt = cast<Instruction>(ExtInst); | |||
| 5912 | Value *ExtOperand = MovedExt->getOperand(0); | |||
| 5913 | // If we have reached to a load, we need this extra profitability check | |||
| 5914 | // as it could potentially be merged into an ext(load). | |||
| 5915 | if (isa<LoadInst>(ExtOperand) && | |||
| 5916 | !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || | |||
| 5917 | (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) | |||
| 5918 | continue; | |||
| 5919 | ||||
| 5920 | ProfitablyMovedExts.push_back(MovedExt); | |||
| 5921 | NewPromoted = true; | |||
| 5922 | } | |||
| 5923 | ||||
| 5924 | // If none of speculative promotions for NewExts is profitable, rollback | |||
| 5925 | // and save the current extension (I) as the last profitable extension. | |||
| 5926 | if (!NewPromoted) { | |||
| 5927 | TPT.rollback(LastKnownGood); | |||
| 5928 | ProfitablyMovedExts.push_back(I); | |||
| 5929 | continue; | |||
| 5930 | } | |||
| 5931 | // The promotion is profitable. | |||
| 5932 | Promoted = true; | |||
| 5933 | } | |||
| 5934 | return Promoted; | |||
| 5935 | } | |||
| 5936 | ||||
| 5937 | /// Merging redundant sexts when one is dominating the other. | |||
| 5938 | bool CodeGenPrepare::mergeSExts(Function &F) { | |||
| 5939 | bool Changed = false; | |||
| 5940 | for (auto &Entry : ValToSExtendedUses) { | |||
| 5941 | SExts &Insts = Entry.second; | |||
| 5942 | SExts CurPts; | |||
| 5943 | for (Instruction *Inst : Insts) { | |||
| 5944 | if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || | |||
| 5945 | Inst->getOperand(0) != Entry.first) | |||
| 5946 | continue; | |||
| 5947 | bool inserted = false; | |||
| 5948 | for (auto &Pt : CurPts) { | |||
| 5949 | if (getDT(F).dominates(Inst, Pt)) { | |||
| 5950 | replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); | |||
| 5951 | RemovedInsts.insert(Pt); | |||
| 5952 | Pt->removeFromParent(); | |||
| 5953 | Pt = Inst; | |||
| 5954 | inserted = true; | |||
| 5955 | Changed = true; | |||
| 5956 | break; | |||
| 5957 | } | |||
| 5958 | if (!getDT(F).dominates(Pt, Inst)) | |||
| 5959 | // Give up if we need to merge in a common dominator as the | |||
| 5960 | // experiments show it is not profitable. | |||
| 5961 | continue; | |||
| 5962 | replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); | |||
| 5963 | RemovedInsts.insert(Inst); | |||
| 5964 | Inst->removeFromParent(); | |||
| 5965 | inserted = true; | |||
| 5966 | Changed = true; | |||
| 5967 | break; | |||
| 5968 | } | |||
| 5969 | if (!inserted) | |||
| 5970 | CurPts.push_back(Inst); | |||
| 5971 | } | |||
| 5972 | } | |||
| 5973 | return Changed; | |||
| 5974 | } | |||
| 5975 | ||||
| 5976 | // Splitting large data structures so that the GEPs accessing them can have | |||
| 5977 | // smaller offsets so that they can be sunk to the same blocks as their users. | |||
| 5978 | // For example, a large struct starting from %base is split into two parts | |||
| 5979 | // where the second part starts from %new_base. | |||
| 5980 | // | |||
| 5981 | // Before: | |||
| 5982 | // BB0: | |||
| 5983 | // %base = | |||
| 5984 | // | |||
| 5985 | // BB1: | |||
| 5986 | // %gep0 = gep %base, off0 | |||
| 5987 | // %gep1 = gep %base, off1 | |||
| 5988 | // %gep2 = gep %base, off2 | |||
| 5989 | // | |||
| 5990 | // BB2: | |||
| 5991 | // %load1 = load %gep0 | |||
| 5992 | // %load2 = load %gep1 | |||
| 5993 | // %load3 = load %gep2 | |||
| 5994 | // | |||
| 5995 | // After: | |||
| 5996 | // BB0: | |||
| 5997 | // %base = | |||
| 5998 | // %new_base = gep %base, off0 | |||
| 5999 | // | |||
| 6000 | // BB1: | |||
| 6001 | // %new_gep0 = %new_base | |||
| 6002 | // %new_gep1 = gep %new_base, off1 - off0 | |||
| 6003 | // %new_gep2 = gep %new_base, off2 - off0 | |||
| 6004 | // | |||
| 6005 | // BB2: | |||
| 6006 | // %load1 = load i32, i32* %new_gep0 | |||
| 6007 | // %load2 = load i32, i32* %new_gep1 | |||
| 6008 | // %load3 = load i32, i32* %new_gep2 | |||
| 6009 | // | |||
| 6010 | // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because | |||
| 6011 | // their offsets are smaller enough to fit into the addressing mode. | |||
| 6012 | bool CodeGenPrepare::splitLargeGEPOffsets() { | |||
| 6013 | bool Changed = false; | |||
| 6014 | for (auto &Entry : LargeOffsetGEPMap) { | |||
| 6015 | Value *OldBase = Entry.first; | |||
| 6016 | SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> | |||
| 6017 | &LargeOffsetGEPs = Entry.second; | |||
| 6018 | auto compareGEPOffset = | |||
| 6019 | [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, | |||
| 6020 | const std::pair<GetElementPtrInst *, int64_t> &RHS) { | |||
| 6021 | if (LHS.first == RHS.first) | |||
| 6022 | return false; | |||
| 6023 | if (LHS.second != RHS.second) | |||
| 6024 | return LHS.second < RHS.second; | |||
| 6025 | return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; | |||
| 6026 | }; | |||
| 6027 | // Sorting all the GEPs of the same data structures based on the offsets. | |||
| 6028 | llvm::sort(LargeOffsetGEPs, compareGEPOffset); | |||
| 6029 | LargeOffsetGEPs.erase( | |||
| 6030 | std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), | |||
| 6031 | LargeOffsetGEPs.end()); | |||
| 6032 | // Skip if all the GEPs have the same offsets. | |||
| 6033 | if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) | |||
| 6034 | continue; | |||
| 6035 | GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; | |||
| 6036 | int64_t BaseOffset = LargeOffsetGEPs.begin()->second; | |||
| 6037 | Value *NewBaseGEP = nullptr; | |||
| 6038 | ||||
| 6039 | auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); | |||
| 6040 | while (LargeOffsetGEP != LargeOffsetGEPs.end()) { | |||
| 6041 | GetElementPtrInst *GEP = LargeOffsetGEP->first; | |||
| 6042 | int64_t Offset = LargeOffsetGEP->second; | |||
| 6043 | if (Offset != BaseOffset) { | |||
| 6044 | TargetLowering::AddrMode AddrMode; | |||
| 6045 | AddrMode.HasBaseReg = true; | |||
| 6046 | AddrMode.BaseOffs = Offset - BaseOffset; | |||
| 6047 | // The result type of the GEP might not be the type of the memory | |||
| 6048 | // access. | |||
| 6049 | if (!TLI->isLegalAddressingMode(*DL, AddrMode, | |||
| 6050 | GEP->getResultElementType(), | |||
| 6051 | GEP->getAddressSpace())) { | |||
| 6052 | // We need to create a new base if the offset to the current base is | |||
| 6053 | // too large to fit into the addressing mode. So, a very large struct | |||
| 6054 | // may be split into several parts. | |||
| 6055 | BaseGEP = GEP; | |||
| 6056 | BaseOffset = Offset; | |||
| 6057 | NewBaseGEP = nullptr; | |||
| 6058 | } | |||
| 6059 | } | |||
| 6060 | ||||
| 6061 | // Generate a new GEP to replace the current one. | |||
| 6062 | LLVMContext &Ctx = GEP->getContext(); | |||
| 6063 | Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); | |||
| 6064 | Type *I8PtrTy = | |||
| 6065 | Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); | |||
| 6066 | Type *I8Ty = Type::getInt8Ty(Ctx); | |||
| 6067 | ||||
| 6068 | if (!NewBaseGEP) { | |||
| 6069 | // Create a new base if we don't have one yet. Find the insertion | |||
| 6070 | // pointer for the new base first. | |||
| 6071 | BasicBlock::iterator NewBaseInsertPt; | |||
| 6072 | BasicBlock *NewBaseInsertBB; | |||
| 6073 | if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { | |||
| 6074 | // If the base of the struct is an instruction, the new base will be | |||
| 6075 | // inserted close to it. | |||
| 6076 | NewBaseInsertBB = BaseI->getParent(); | |||
| 6077 | if (isa<PHINode>(BaseI)) | |||
| 6078 | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); | |||
| 6079 | else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { | |||
| 6080 | NewBaseInsertBB = | |||
| 6081 | SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); | |||
| 6082 | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); | |||
| 6083 | } else | |||
| 6084 | NewBaseInsertPt = std::next(BaseI->getIterator()); | |||
| 6085 | } else { | |||
| 6086 | // If the current base is an argument or global value, the new base | |||
| 6087 | // will be inserted to the entry block. | |||
| 6088 | NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); | |||
| 6089 | NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); | |||
| 6090 | } | |||
| 6091 | IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); | |||
| 6092 | // Create a new base. | |||
| 6093 | Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); | |||
| 6094 | NewBaseGEP = OldBase; | |||
| 6095 | if (NewBaseGEP->getType() != I8PtrTy) | |||
| 6096 | NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); | |||
| 6097 | NewBaseGEP = | |||
| 6098 | NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); | |||
| 6099 | NewGEPBases.insert(NewBaseGEP); | |||
| 6100 | } | |||
| 6101 | ||||
| 6102 | IRBuilder<> Builder(GEP); | |||
| 6103 | Value *NewGEP = NewBaseGEP; | |||
| 6104 | if (Offset == BaseOffset) { | |||
| 6105 | if (GEP->getType() != I8PtrTy) | |||
| 6106 | NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); | |||
| 6107 | } else { | |||
| 6108 | // Calculate the new offset for the new GEP. | |||
| 6109 | Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); | |||
| 6110 | NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); | |||
| 6111 | ||||
| 6112 | if (GEP->getType() != I8PtrTy) | |||
| 6113 | NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); | |||
| 6114 | } | |||
| 6115 | replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); | |||
| 6116 | LargeOffsetGEPID.erase(GEP); | |||
| 6117 | LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); | |||
| 6118 | GEP->eraseFromParent(); | |||
| 6119 | Changed = true; | |||
| 6120 | } | |||
| 6121 | } | |||
| 6122 | return Changed; | |||
| 6123 | } | |||
| 6124 | ||||
| 6125 | bool CodeGenPrepare::optimizePhiType( | |||
| 6126 | PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, | |||
| 6127 | SmallPtrSetImpl<Instruction *> &DeletedInstrs) { | |||
| 6128 | // We are looking for a collection on interconnected phi nodes that together | |||
| 6129 | // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts | |||
| 6130 | // are of the same type. Convert the whole set of nodes to the type of the | |||
| 6131 | // bitcast. | |||
| 6132 | Type *PhiTy = I->getType(); | |||
| 6133 | Type *ConvertTy = nullptr; | |||
| 6134 | if (Visited.count(I) || | |||
| 6135 | (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) | |||
| 6136 | return false; | |||
| 6137 | ||||
| 6138 | SmallVector<Instruction *, 4> Worklist; | |||
| 6139 | Worklist.push_back(cast<Instruction>(I)); | |||
| 6140 | SmallPtrSet<PHINode *, 4> PhiNodes; | |||
| 6141 | SmallPtrSet<ConstantData *, 4> Constants; | |||
| 6142 | PhiNodes.insert(I); | |||
| 6143 | Visited.insert(I); | |||
| 6144 | SmallPtrSet<Instruction *, 4> Defs; | |||
| 6145 | SmallPtrSet<Instruction *, 4> Uses; | |||
| 6146 | // This works by adding extra bitcasts between load/stores and removing | |||
| 6147 | // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) | |||
| 6148 | // we can get in the situation where we remove a bitcast in one iteration | |||
| 6149 | // just to add it again in the next. We need to ensure that at least one | |||
| 6150 | // bitcast we remove are anchored to something that will not change back. | |||
| 6151 | bool AnyAnchored = false; | |||
| 6152 | ||||
| 6153 | while (!Worklist.empty()) { | |||
| 6154 | Instruction *II = Worklist.pop_back_val(); | |||
| 6155 | ||||
| 6156 | if (auto *Phi = dyn_cast<PHINode>(II)) { | |||
| 6157 | // Handle Defs, which might also be PHI's | |||
| 6158 | for (Value *V : Phi->incoming_values()) { | |||
| 6159 | if (auto *OpPhi = dyn_cast<PHINode>(V)) { | |||
| 6160 | if (!PhiNodes.count(OpPhi)) { | |||
| 6161 | if (!Visited.insert(OpPhi).second) | |||
| 6162 | return false; | |||
| 6163 | PhiNodes.insert(OpPhi); | |||
| 6164 | Worklist.push_back(OpPhi); | |||
| 6165 | } | |||
| 6166 | } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { | |||
| 6167 | if (!OpLoad->isSimple()) | |||
| 6168 | return false; | |||
| 6169 | if (Defs.insert(OpLoad).second) | |||
| 6170 | Worklist.push_back(OpLoad); | |||
| 6171 | } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { | |||
| 6172 | if (Defs.insert(OpEx).second) | |||
| 6173 | Worklist.push_back(OpEx); | |||
| 6174 | } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { | |||
| 6175 | if (!ConvertTy) | |||
| 6176 | ConvertTy = OpBC->getOperand(0)->getType(); | |||
| 6177 | if (OpBC->getOperand(0)->getType() != ConvertTy) | |||
| 6178 | return false; | |||
| 6179 | if (Defs.insert(OpBC).second) { | |||
| 6180 | Worklist.push_back(OpBC); | |||
| 6181 | AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && | |||
| 6182 | !isa<ExtractElementInst>(OpBC->getOperand(0)); | |||
| 6183 | } | |||
| 6184 | } else if (auto *OpC = dyn_cast<ConstantData>(V)) | |||
| 6185 | Constants.insert(OpC); | |||
| 6186 | else | |||
| 6187 | return false; | |||
| 6188 | } | |||
| 6189 | } | |||
| 6190 | ||||
| 6191 | // Handle uses which might also be phi's | |||
| 6192 | for (User *V : II->users()) { | |||
| 6193 | if (auto *OpPhi = dyn_cast<PHINode>(V)) { | |||
| 6194 | if (!PhiNodes.count(OpPhi)) { | |||
| 6195 | if (Visited.count(OpPhi)) | |||
| 6196 | return false; | |||
| 6197 | PhiNodes.insert(OpPhi); | |||
| 6198 | Visited.insert(OpPhi); | |||
| 6199 | Worklist.push_back(OpPhi); | |||
| 6200 | } | |||
| 6201 | } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { | |||
| 6202 | if (!OpStore->isSimple() || OpStore->getOperand(0) != II) | |||
| 6203 | return false; | |||
| 6204 | Uses.insert(OpStore); | |||
| 6205 | } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { | |||
| 6206 | if (!ConvertTy) | |||
| 6207 | ConvertTy = OpBC->getType(); | |||
| 6208 | if (OpBC->getType() != ConvertTy) | |||
| 6209 | return false; | |||
| 6210 | Uses.insert(OpBC); | |||
| 6211 | AnyAnchored |= | |||
| 6212 | any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); | |||
| 6213 | } else { | |||
| 6214 | return false; | |||
| 6215 | } | |||
| 6216 | } | |||
| 6217 | } | |||
| 6218 | ||||
| 6219 | if (!ConvertTy || !AnyAnchored || | |||
| 6220 | !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) | |||
| 6221 | return false; | |||
| 6222 | ||||
| 6223 | LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Converting " << * I << "\n and connected nodes to " << *ConvertTy << "\n"; } } while (false) | |||
| 6224 | << *ConvertTy << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Converting " << * I << "\n and connected nodes to " << *ConvertTy << "\n"; } } while (false); | |||
| 6225 | ||||
| 6226 | // Create all the new phi nodes of the new type, and bitcast any loads to the | |||
| 6227 | // correct type. | |||
| 6228 | ValueToValueMap ValMap; | |||
| 6229 | for (ConstantData *C : Constants) | |||
| 6230 | ValMap[C] = ConstantExpr::getCast(Instruction::BitCast, C, ConvertTy); | |||
| 6231 | for (Instruction *D : Defs) { | |||
| 6232 | if (isa<BitCastInst>(D)) { | |||
| 6233 | ValMap[D] = D->getOperand(0); | |||
| 6234 | DeletedInstrs.insert(D); | |||
| 6235 | } else { | |||
| 6236 | ValMap[D] = | |||
| 6237 | new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); | |||
| 6238 | } | |||
| 6239 | } | |||
| 6240 | for (PHINode *Phi : PhiNodes) | |||
| 6241 | ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), | |||
| 6242 | Phi->getName() + ".tc", Phi); | |||
| 6243 | // Pipe together all the PhiNodes. | |||
| 6244 | for (PHINode *Phi : PhiNodes) { | |||
| 6245 | PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); | |||
| 6246 | for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) | |||
| 6247 | NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], | |||
| 6248 | Phi->getIncomingBlock(i)); | |||
| 6249 | Visited.insert(NewPhi); | |||
| 6250 | } | |||
| 6251 | // And finally pipe up the stores and bitcasts | |||
| 6252 | for (Instruction *U : Uses) { | |||
| 6253 | if (isa<BitCastInst>(U)) { | |||
| 6254 | DeletedInstrs.insert(U); | |||
| 6255 | replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); | |||
| 6256 | } else { | |||
| 6257 | U->setOperand(0, | |||
| 6258 | new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); | |||
| 6259 | } | |||
| 6260 | } | |||
| 6261 | ||||
| 6262 | // Save the removed phis to be deleted later. | |||
| 6263 | for (PHINode *Phi : PhiNodes) | |||
| 6264 | DeletedInstrs.insert(Phi); | |||
| 6265 | return true; | |||
| 6266 | } | |||
| 6267 | ||||
| 6268 | bool CodeGenPrepare::optimizePhiTypes(Function &F) { | |||
| 6269 | if (!OptimizePhiTypes) | |||
| 6270 | return false; | |||
| 6271 | ||||
| 6272 | bool Changed = false; | |||
| 6273 | SmallPtrSet<PHINode *, 4> Visited; | |||
| 6274 | SmallPtrSet<Instruction *, 4> DeletedInstrs; | |||
| 6275 | ||||
| 6276 | // Attempt to optimize all the phis in the functions to the correct type. | |||
| 6277 | for (auto &BB : F) | |||
| 6278 | for (auto &Phi : BB.phis()) | |||
| 6279 | Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); | |||
| 6280 | ||||
| 6281 | // Remove any old phi's that have been converted. | |||
| 6282 | for (auto *I : DeletedInstrs) { | |||
| 6283 | replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); | |||
| 6284 | I->eraseFromParent(); | |||
| 6285 | } | |||
| 6286 | ||||
| 6287 | return Changed; | |||
| 6288 | } | |||
| 6289 | ||||
| 6290 | /// Return true, if an ext(load) can be formed from an extension in | |||
| 6291 | /// \p MovedExts. | |||
| 6292 | bool CodeGenPrepare::canFormExtLd( | |||
| 6293 | const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, | |||
| 6294 | Instruction *&Inst, bool HasPromoted) { | |||
| 6295 | for (auto *MovedExtInst : MovedExts) { | |||
| 6296 | if (isa<LoadInst>(MovedExtInst->getOperand(0))) { | |||
| 6297 | LI = cast<LoadInst>(MovedExtInst->getOperand(0)); | |||
| 6298 | Inst = MovedExtInst; | |||
| 6299 | break; | |||
| 6300 | } | |||
| 6301 | } | |||
| 6302 | if (!LI) | |||
| 6303 | return false; | |||
| 6304 | ||||
| 6305 | // If they're already in the same block, there's nothing to do. | |||
| 6306 | // Make the cheap checks first if we did not promote. | |||
| 6307 | // If we promoted, we need to check if it is indeed profitable. | |||
| 6308 | if (!HasPromoted && LI->getParent() == Inst->getParent()) | |||
| 6309 | return false; | |||
| 6310 | ||||
| 6311 | return TLI->isExtLoad(LI, Inst, *DL); | |||
| 6312 | } | |||
| 6313 | ||||
| 6314 | /// Move a zext or sext fed by a load into the same basic block as the load, | |||
| 6315 | /// unless conditions are unfavorable. This allows SelectionDAG to fold the | |||
| 6316 | /// extend into the load. | |||
| 6317 | /// | |||
| 6318 | /// E.g., | |||
| 6319 | /// \code | |||
| 6320 | /// %ld = load i32* %addr | |||
| 6321 | /// %add = add nuw i32 %ld, 4 | |||
| 6322 | /// %zext = zext i32 %add to i64 | |||
| 6323 | // \endcode | |||
| 6324 | /// => | |||
| 6325 | /// \code | |||
| 6326 | /// %ld = load i32* %addr | |||
| 6327 | /// %zext = zext i32 %ld to i64 | |||
| 6328 | /// %add = add nuw i64 %zext, 4 | |||
| 6329 | /// \encode | |||
| 6330 | /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which | |||
| 6331 | /// allow us to match zext(load i32*) to i64. | |||
| 6332 | /// | |||
| 6333 | /// Also, try to promote the computations used to obtain a sign extended | |||
| 6334 | /// value used into memory accesses. | |||
| 6335 | /// E.g., | |||
| 6336 | /// \code | |||
| 6337 | /// a = add nsw i32 b, 3 | |||
| 6338 | /// d = sext i32 a to i64 | |||
| 6339 | /// e = getelementptr ..., i64 d | |||
| 6340 | /// \endcode | |||
| 6341 | /// => | |||
| 6342 | /// \code | |||
| 6343 | /// f = sext i32 b to i64 | |||
| 6344 | /// a = add nsw i64 f, 3 | |||
| 6345 | /// e = getelementptr ..., i64 a | |||
| 6346 | /// \endcode | |||
| 6347 | /// | |||
| 6348 | /// \p Inst[in/out] the extension may be modified during the process if some | |||
| 6349 | /// promotions apply. | |||
| 6350 | bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { | |||
| 6351 | bool AllowPromotionWithoutCommonHeader = false; | |||
| 6352 | /// See if it is an interesting sext operations for the address type | |||
| 6353 | /// promotion before trying to promote it, e.g., the ones with the right | |||
| 6354 | /// type and used in memory accesses. | |||
| 6355 | bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( | |||
| 6356 | *Inst, AllowPromotionWithoutCommonHeader); | |||
| 6357 | TypePromotionTransaction TPT(RemovedInsts); | |||
| 6358 | TypePromotionTransaction::ConstRestorationPt LastKnownGood = | |||
| 6359 | TPT.getRestorationPoint(); | |||
| 6360 | SmallVector<Instruction *, 1> Exts; | |||
| 6361 | SmallVector<Instruction *, 2> SpeculativelyMovedExts; | |||
| 6362 | Exts.push_back(Inst); | |||
| 6363 | ||||
| 6364 | bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); | |||
| 6365 | ||||
| 6366 | // Look for a load being extended. | |||
| 6367 | LoadInst *LI = nullptr; | |||
| 6368 | Instruction *ExtFedByLoad; | |||
| 6369 | ||||
| 6370 | // Try to promote a chain of computation if it allows to form an extended | |||
| 6371 | // load. | |||
| 6372 | if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { | |||
| 6373 | assert(LI && ExtFedByLoad && "Expect a valid load and extension")(static_cast <bool> (LI && ExtFedByLoad && "Expect a valid load and extension") ? void (0) : __assert_fail ("LI && ExtFedByLoad && \"Expect a valid load and extension\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6373, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6374 | TPT.commit(); | |||
| 6375 | // Move the extend into the same block as the load. | |||
| 6376 | ExtFedByLoad->moveAfter(LI); | |||
| 6377 | ++NumExtsMoved; | |||
| 6378 | Inst = ExtFedByLoad; | |||
| 6379 | return true; | |||
| 6380 | } | |||
| 6381 | ||||
| 6382 | // Continue promoting SExts if known as considerable depending on targets. | |||
| 6383 | if (ATPConsiderable && | |||
| 6384 | performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, | |||
| 6385 | HasPromoted, TPT, SpeculativelyMovedExts)) | |||
| 6386 | return true; | |||
| 6387 | ||||
| 6388 | TPT.rollback(LastKnownGood); | |||
| 6389 | return false; | |||
| 6390 | } | |||
| 6391 | ||||
| 6392 | // Perform address type promotion if doing so is profitable. | |||
| 6393 | // If AllowPromotionWithoutCommonHeader == false, we should find other sext | |||
| 6394 | // instructions that sign extended the same initial value. However, if | |||
| 6395 | // AllowPromotionWithoutCommonHeader == true, we expect promoting the | |||
| 6396 | // extension is just profitable. | |||
| 6397 | bool CodeGenPrepare::performAddressTypePromotion( | |||
| 6398 | Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, | |||
| 6399 | bool HasPromoted, TypePromotionTransaction &TPT, | |||
| 6400 | SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { | |||
| 6401 | bool Promoted = false; | |||
| 6402 | SmallPtrSet<Instruction *, 1> UnhandledExts; | |||
| 6403 | bool AllSeenFirst = true; | |||
| 6404 | for (auto *I : SpeculativelyMovedExts) { | |||
| 6405 | Value *HeadOfChain = I->getOperand(0); | |||
| 6406 | DenseMap<Value *, Instruction *>::iterator AlreadySeen = | |||
| 6407 | SeenChainsForSExt.find(HeadOfChain); | |||
| 6408 | // If there is an unhandled SExt which has the same header, try to promote | |||
| 6409 | // it as well. | |||
| 6410 | if (AlreadySeen != SeenChainsForSExt.end()) { | |||
| 6411 | if (AlreadySeen->second != nullptr) | |||
| 6412 | UnhandledExts.insert(AlreadySeen->second); | |||
| 6413 | AllSeenFirst = false; | |||
| 6414 | } | |||
| 6415 | } | |||
| 6416 | ||||
| 6417 | if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && | |||
| 6418 | SpeculativelyMovedExts.size() == 1)) { | |||
| 6419 | TPT.commit(); | |||
| 6420 | if (HasPromoted) | |||
| 6421 | Promoted = true; | |||
| 6422 | for (auto *I : SpeculativelyMovedExts) { | |||
| 6423 | Value *HeadOfChain = I->getOperand(0); | |||
| 6424 | SeenChainsForSExt[HeadOfChain] = nullptr; | |||
| 6425 | ValToSExtendedUses[HeadOfChain].push_back(I); | |||
| 6426 | } | |||
| 6427 | // Update Inst as promotion happen. | |||
| 6428 | Inst = SpeculativelyMovedExts.pop_back_val(); | |||
| 6429 | } else { | |||
| 6430 | // This is the first chain visited from the header, keep the current chain | |||
| 6431 | // as unhandled. Defer to promote this until we encounter another SExt | |||
| 6432 | // chain derived from the same header. | |||
| 6433 | for (auto *I : SpeculativelyMovedExts) { | |||
| 6434 | Value *HeadOfChain = I->getOperand(0); | |||
| 6435 | SeenChainsForSExt[HeadOfChain] = Inst; | |||
| 6436 | } | |||
| 6437 | return false; | |||
| 6438 | } | |||
| 6439 | ||||
| 6440 | if (!AllSeenFirst && !UnhandledExts.empty()) | |||
| 6441 | for (auto *VisitedSExt : UnhandledExts) { | |||
| 6442 | if (RemovedInsts.count(VisitedSExt)) | |||
| 6443 | continue; | |||
| 6444 | TypePromotionTransaction TPT(RemovedInsts); | |||
| 6445 | SmallVector<Instruction *, 1> Exts; | |||
| 6446 | SmallVector<Instruction *, 2> Chains; | |||
| 6447 | Exts.push_back(VisitedSExt); | |||
| 6448 | bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); | |||
| 6449 | TPT.commit(); | |||
| 6450 | if (HasPromoted) | |||
| 6451 | Promoted = true; | |||
| 6452 | for (auto *I : Chains) { | |||
| 6453 | Value *HeadOfChain = I->getOperand(0); | |||
| 6454 | // Mark this as handled. | |||
| 6455 | SeenChainsForSExt[HeadOfChain] = nullptr; | |||
| 6456 | ValToSExtendedUses[HeadOfChain].push_back(I); | |||
| 6457 | } | |||
| 6458 | } | |||
| 6459 | return Promoted; | |||
| 6460 | } | |||
| 6461 | ||||
| 6462 | bool CodeGenPrepare::optimizeExtUses(Instruction *I) { | |||
| 6463 | BasicBlock *DefBB = I->getParent(); | |||
| 6464 | ||||
| 6465 | // If the result of a {s|z}ext and its source are both live out, rewrite all | |||
| 6466 | // other uses of the source with result of extension. | |||
| 6467 | Value *Src = I->getOperand(0); | |||
| 6468 | if (Src->hasOneUse()) | |||
| 6469 | return false; | |||
| 6470 | ||||
| 6471 | // Only do this xform if truncating is free. | |||
| 6472 | if (!TLI->isTruncateFree(I->getType(), Src->getType())) | |||
| 6473 | return false; | |||
| 6474 | ||||
| 6475 | // Only safe to perform the optimization if the source is also defined in | |||
| 6476 | // this block. | |||
| 6477 | if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) | |||
| 6478 | return false; | |||
| 6479 | ||||
| 6480 | bool DefIsLiveOut = false; | |||
| 6481 | for (User *U : I->users()) { | |||
| 6482 | Instruction *UI = cast<Instruction>(U); | |||
| 6483 | ||||
| 6484 | // Figure out which BB this ext is used in. | |||
| 6485 | BasicBlock *UserBB = UI->getParent(); | |||
| 6486 | if (UserBB == DefBB) | |||
| 6487 | continue; | |||
| 6488 | DefIsLiveOut = true; | |||
| 6489 | break; | |||
| 6490 | } | |||
| 6491 | if (!DefIsLiveOut) | |||
| 6492 | return false; | |||
| 6493 | ||||
| 6494 | // Make sure none of the uses are PHI nodes. | |||
| 6495 | for (User *U : Src->users()) { | |||
| 6496 | Instruction *UI = cast<Instruction>(U); | |||
| 6497 | BasicBlock *UserBB = UI->getParent(); | |||
| 6498 | if (UserBB == DefBB) | |||
| 6499 | continue; | |||
| 6500 | // Be conservative. We don't want this xform to end up introducing | |||
| 6501 | // reloads just before load / store instructions. | |||
| 6502 | if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) | |||
| 6503 | return false; | |||
| 6504 | } | |||
| 6505 | ||||
| 6506 | // InsertedTruncs - Only insert one trunc in each block once. | |||
| 6507 | DenseMap<BasicBlock *, Instruction *> InsertedTruncs; | |||
| 6508 | ||||
| 6509 | bool MadeChange = false; | |||
| 6510 | for (Use &U : Src->uses()) { | |||
| 6511 | Instruction *User = cast<Instruction>(U.getUser()); | |||
| 6512 | ||||
| 6513 | // Figure out which BB this ext is used in. | |||
| 6514 | BasicBlock *UserBB = User->getParent(); | |||
| 6515 | if (UserBB == DefBB) | |||
| 6516 | continue; | |||
| 6517 | ||||
| 6518 | // Both src and def are live in this block. Rewrite the use. | |||
| 6519 | Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; | |||
| 6520 | ||||
| 6521 | if (!InsertedTrunc) { | |||
| 6522 | BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); | |||
| 6523 | assert(InsertPt != UserBB->end())(static_cast <bool> (InsertPt != UserBB->end()) ? void (0) : __assert_fail ("InsertPt != UserBB->end()", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 6523, __extension__ __PRETTY_FUNCTION__)); | |||
| 6524 | InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); | |||
| 6525 | InsertedInsts.insert(InsertedTrunc); | |||
| 6526 | } | |||
| 6527 | ||||
| 6528 | // Replace a use of the {s|z}ext source with a use of the result. | |||
| 6529 | U = InsertedTrunc; | |||
| 6530 | ++NumExtUses; | |||
| 6531 | MadeChange = true; | |||
| 6532 | } | |||
| 6533 | ||||
| 6534 | return MadeChange; | |||
| 6535 | } | |||
| 6536 | ||||
| 6537 | // Find loads whose uses only use some of the loaded value's bits. Add an "and" | |||
| 6538 | // just after the load if the target can fold this into one extload instruction, | |||
| 6539 | // with the hope of eliminating some of the other later "and" instructions using | |||
| 6540 | // the loaded value. "and"s that are made trivially redundant by the insertion | |||
| 6541 | // of the new "and" are removed by this function, while others (e.g. those whose | |||
| 6542 | // path from the load goes through a phi) are left for isel to potentially | |||
| 6543 | // remove. | |||
| 6544 | // | |||
| 6545 | // For example: | |||
| 6546 | // | |||
| 6547 | // b0: | |||
| 6548 | // x = load i32 | |||
| 6549 | // ... | |||
| 6550 | // b1: | |||
| 6551 | // y = and x, 0xff | |||
| 6552 | // z = use y | |||
| 6553 | // | |||
| 6554 | // becomes: | |||
| 6555 | // | |||
| 6556 | // b0: | |||
| 6557 | // x = load i32 | |||
| 6558 | // x' = and x, 0xff | |||
| 6559 | // ... | |||
| 6560 | // b1: | |||
| 6561 | // z = use x' | |||
| 6562 | // | |||
| 6563 | // whereas: | |||
| 6564 | // | |||
| 6565 | // b0: | |||
| 6566 | // x1 = load i32 | |||
| 6567 | // ... | |||
| 6568 | // b1: | |||
| 6569 | // x2 = load i32 | |||
| 6570 | // ... | |||
| 6571 | // b2: | |||
| 6572 | // x = phi x1, x2 | |||
| 6573 | // y = and x, 0xff | |||
| 6574 | // | |||
| 6575 | // becomes (after a call to optimizeLoadExt for each load): | |||
| 6576 | // | |||
| 6577 | // b0: | |||
| 6578 | // x1 = load i32 | |||
| 6579 | // x1' = and x1, 0xff | |||
| 6580 | // ... | |||
| 6581 | // b1: | |||
| 6582 | // x2 = load i32 | |||
| 6583 | // x2' = and x2, 0xff | |||
| 6584 | // ... | |||
| 6585 | // b2: | |||
| 6586 | // x = phi x1', x2' | |||
| 6587 | // y = and x, 0xff | |||
| 6588 | bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { | |||
| 6589 | if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) | |||
| 6590 | return false; | |||
| 6591 | ||||
| 6592 | // Skip loads we've already transformed. | |||
| 6593 | if (Load->hasOneUse() && | |||
| 6594 | InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) | |||
| 6595 | return false; | |||
| 6596 | ||||
| 6597 | // Look at all uses of Load, looking through phis, to determine how many bits | |||
| 6598 | // of the loaded value are needed. | |||
| 6599 | SmallVector<Instruction *, 8> WorkList; | |||
| 6600 | SmallPtrSet<Instruction *, 16> Visited; | |||
| 6601 | SmallVector<Instruction *, 8> AndsToMaybeRemove; | |||
| 6602 | for (auto *U : Load->users()) | |||
| 6603 | WorkList.push_back(cast<Instruction>(U)); | |||
| 6604 | ||||
| 6605 | EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); | |||
| 6606 | unsigned BitWidth = LoadResultVT.getSizeInBits(); | |||
| 6607 | // If the BitWidth is 0, do not try to optimize the type | |||
| 6608 | if (BitWidth == 0) | |||
| 6609 | return false; | |||
| 6610 | ||||
| 6611 | APInt DemandBits(BitWidth, 0); | |||
| 6612 | APInt WidestAndBits(BitWidth, 0); | |||
| 6613 | ||||
| 6614 | while (!WorkList.empty()) { | |||
| 6615 | Instruction *I = WorkList.pop_back_val(); | |||
| 6616 | ||||
| 6617 | // Break use-def graph loops. | |||
| 6618 | if (!Visited.insert(I).second) | |||
| 6619 | continue; | |||
| 6620 | ||||
| 6621 | // For a PHI node, push all of its users. | |||
| 6622 | if (auto *Phi = dyn_cast<PHINode>(I)) { | |||
| 6623 | for (auto *U : Phi->users()) | |||
| 6624 | WorkList.push_back(cast<Instruction>(U)); | |||
| 6625 | continue; | |||
| 6626 | } | |||
| 6627 | ||||
| 6628 | switch (I->getOpcode()) { | |||
| 6629 | case Instruction::And: { | |||
| 6630 | auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); | |||
| 6631 | if (!AndC) | |||
| 6632 | return false; | |||
| 6633 | APInt AndBits = AndC->getValue(); | |||
| 6634 | DemandBits |= AndBits; | |||
| 6635 | // Keep track of the widest and mask we see. | |||
| 6636 | if (AndBits.ugt(WidestAndBits)) | |||
| 6637 | WidestAndBits = AndBits; | |||
| 6638 | if (AndBits == WidestAndBits && I->getOperand(0) == Load) | |||
| 6639 | AndsToMaybeRemove.push_back(I); | |||
| 6640 | break; | |||
| 6641 | } | |||
| 6642 | ||||
| 6643 | case Instruction::Shl: { | |||
| 6644 | auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); | |||
| 6645 | if (!ShlC) | |||
| 6646 | return false; | |||
| 6647 | uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); | |||
| 6648 | DemandBits.setLowBits(BitWidth - ShiftAmt); | |||
| 6649 | break; | |||
| 6650 | } | |||
| 6651 | ||||
| 6652 | case Instruction::Trunc: { | |||
| 6653 | EVT TruncVT = TLI->getValueType(*DL, I->getType()); | |||
| 6654 | unsigned TruncBitWidth = TruncVT.getSizeInBits(); | |||
| 6655 | DemandBits.setLowBits(TruncBitWidth); | |||
| 6656 | break; | |||
| 6657 | } | |||
| 6658 | ||||
| 6659 | default: | |||
| 6660 | return false; | |||
| 6661 | } | |||
| 6662 | } | |||
| 6663 | ||||
| 6664 | uint32_t ActiveBits = DemandBits.getActiveBits(); | |||
| 6665 | // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the | |||
| 6666 | // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, | |||
| 6667 | // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but | |||
| 6668 | // (and (load x) 1) is not matched as a single instruction, rather as a LDR | |||
| 6669 | // followed by an AND. | |||
| 6670 | // TODO: Look into removing this restriction by fixing backends to either | |||
| 6671 | // return false for isLoadExtLegal for i1 or have them select this pattern to | |||
| 6672 | // a single instruction. | |||
| 6673 | // | |||
| 6674 | // Also avoid hoisting if we didn't see any ands with the exact DemandBits | |||
| 6675 | // mask, since these are the only ands that will be removed by isel. | |||
| 6676 | if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || | |||
| 6677 | WidestAndBits != DemandBits) | |||
| 6678 | return false; | |||
| 6679 | ||||
| 6680 | LLVMContext &Ctx = Load->getType()->getContext(); | |||
| 6681 | Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); | |||
| 6682 | EVT TruncVT = TLI->getValueType(*DL, TruncTy); | |||
| 6683 | ||||
| 6684 | // Reject cases that won't be matched as extloads. | |||
| 6685 | if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || | |||
| 6686 | !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) | |||
| 6687 | return false; | |||
| 6688 | ||||
| 6689 | IRBuilder<> Builder(Load->getNextNode()); | |||
| 6690 | auto *NewAnd = cast<Instruction>( | |||
| 6691 | Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); | |||
| 6692 | // Mark this instruction as "inserted by CGP", so that other | |||
| 6693 | // optimizations don't touch it. | |||
| 6694 | InsertedInsts.insert(NewAnd); | |||
| 6695 | ||||
| 6696 | // Replace all uses of load with new and (except for the use of load in the | |||
| 6697 | // new and itself). | |||
| 6698 | replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); | |||
| 6699 | NewAnd->setOperand(0, Load); | |||
| 6700 | ||||
| 6701 | // Remove any and instructions that are now redundant. | |||
| 6702 | for (auto *And : AndsToMaybeRemove) | |||
| 6703 | // Check that the and mask is the same as the one we decided to put on the | |||
| 6704 | // new and. | |||
| 6705 | if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { | |||
| 6706 | replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); | |||
| 6707 | if (&*CurInstIterator == And) | |||
| 6708 | CurInstIterator = std::next(And->getIterator()); | |||
| 6709 | And->eraseFromParent(); | |||
| 6710 | ++NumAndUses; | |||
| 6711 | } | |||
| 6712 | ||||
| 6713 | ++NumAndsAdded; | |||
| 6714 | return true; | |||
| 6715 | } | |||
| 6716 | ||||
| 6717 | /// Check if V (an operand of a select instruction) is an expensive instruction | |||
| 6718 | /// that is only used once. | |||
| 6719 | static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { | |||
| 6720 | auto *I = dyn_cast<Instruction>(V); | |||
| 6721 | // If it's safe to speculatively execute, then it should not have side | |||
| 6722 | // effects; therefore, it's safe to sink and possibly *not* execute. | |||
| 6723 | return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && | |||
| 6724 | TTI->isExpensiveToSpeculativelyExecute(I); | |||
| 6725 | } | |||
| 6726 | ||||
| 6727 | /// Returns true if a SelectInst should be turned into an explicit branch. | |||
| 6728 | static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, | |||
| 6729 | const TargetLowering *TLI, | |||
| 6730 | SelectInst *SI) { | |||
| 6731 | // If even a predictable select is cheap, then a branch can't be cheaper. | |||
| 6732 | if (!TLI->isPredictableSelectExpensive()) | |||
| 6733 | return false; | |||
| 6734 | ||||
| 6735 | // FIXME: This should use the same heuristics as IfConversion to determine | |||
| 6736 | // whether a select is better represented as a branch. | |||
| 6737 | ||||
| 6738 | // If metadata tells us that the select condition is obviously predictable, | |||
| 6739 | // then we want to replace the select with a branch. | |||
| 6740 | uint64_t TrueWeight, FalseWeight; | |||
| 6741 | if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { | |||
| 6742 | uint64_t Max = std::max(TrueWeight, FalseWeight); | |||
| 6743 | uint64_t Sum = TrueWeight + FalseWeight; | |||
| 6744 | if (Sum != 0) { | |||
| 6745 | auto Probability = BranchProbability::getBranchProbability(Max, Sum); | |||
| 6746 | if (Probability > TTI->getPredictableBranchThreshold()) | |||
| 6747 | return true; | |||
| 6748 | } | |||
| 6749 | } | |||
| 6750 | ||||
| 6751 | CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); | |||
| 6752 | ||||
| 6753 | // If a branch is predictable, an out-of-order CPU can avoid blocking on its | |||
| 6754 | // comparison condition. If the compare has more than one use, there's | |||
| 6755 | // probably another cmov or setcc around, so it's not worth emitting a branch. | |||
| 6756 | if (!Cmp || !Cmp->hasOneUse()) | |||
| 6757 | return false; | |||
| 6758 | ||||
| 6759 | // If either operand of the select is expensive and only needed on one side | |||
| 6760 | // of the select, we should form a branch. | |||
| 6761 | if (sinkSelectOperand(TTI, SI->getTrueValue()) || | |||
| 6762 | sinkSelectOperand(TTI, SI->getFalseValue())) | |||
| 6763 | return true; | |||
| 6764 | ||||
| 6765 | return false; | |||
| 6766 | } | |||
| 6767 | ||||
| 6768 | /// If \p isTrue is true, return the true value of \p SI, otherwise return | |||
| 6769 | /// false value of \p SI. If the true/false value of \p SI is defined by any | |||
| 6770 | /// select instructions in \p Selects, look through the defining select | |||
| 6771 | /// instruction until the true/false value is not defined in \p Selects. | |||
| 6772 | static Value * | |||
| 6773 | getTrueOrFalseValue(SelectInst *SI, bool isTrue, | |||
| 6774 | const SmallPtrSet<const Instruction *, 2> &Selects) { | |||
| 6775 | Value *V = nullptr; | |||
| 6776 | ||||
| 6777 | for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); | |||
| 6778 | DefSI = dyn_cast<SelectInst>(V)) { | |||
| 6779 | assert(DefSI->getCondition() == SI->getCondition() &&(static_cast <bool> (DefSI->getCondition() == SI-> getCondition() && "The condition of DefSI does not match with SI" ) ? void (0) : __assert_fail ("DefSI->getCondition() == SI->getCondition() && \"The condition of DefSI does not match with SI\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6780, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6780 | "The condition of DefSI does not match with SI")(static_cast <bool> (DefSI->getCondition() == SI-> getCondition() && "The condition of DefSI does not match with SI" ) ? void (0) : __assert_fail ("DefSI->getCondition() == SI->getCondition() && \"The condition of DefSI does not match with SI\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6780, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6781 | V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); | |||
| 6782 | } | |||
| 6783 | ||||
| 6784 | assert(V && "Failed to get select true/false value")(static_cast <bool> (V && "Failed to get select true/false value" ) ? void (0) : __assert_fail ("V && \"Failed to get select true/false value\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6784, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6785 | return V; | |||
| 6786 | } | |||
| 6787 | ||||
| 6788 | bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { | |||
| 6789 | assert(Shift->isShift() && "Expected a shift")(static_cast <bool> (Shift->isShift() && "Expected a shift" ) ? void (0) : __assert_fail ("Shift->isShift() && \"Expected a shift\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6789, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6790 | ||||
| 6791 | // If this is (1) a vector shift, (2) shifts by scalars are cheaper than | |||
| 6792 | // general vector shifts, and (3) the shift amount is a select-of-splatted | |||
| 6793 | // values, hoist the shifts before the select: | |||
| 6794 | // shift Op0, (select Cond, TVal, FVal) --> | |||
| 6795 | // select Cond, (shift Op0, TVal), (shift Op0, FVal) | |||
| 6796 | // | |||
| 6797 | // This is inverting a generic IR transform when we know that the cost of a | |||
| 6798 | // general vector shift is more than the cost of 2 shift-by-scalars. | |||
| 6799 | // We can't do this effectively in SDAG because we may not be able to | |||
| 6800 | // determine if the select operands are splats from within a basic block. | |||
| 6801 | Type *Ty = Shift->getType(); | |||
| 6802 | if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) | |||
| 6803 | return false; | |||
| 6804 | Value *Cond, *TVal, *FVal; | |||
| 6805 | if (!match(Shift->getOperand(1), | |||
| 6806 | m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) | |||
| 6807 | return false; | |||
| 6808 | if (!isSplatValue(TVal) || !isSplatValue(FVal)) | |||
| 6809 | return false; | |||
| 6810 | ||||
| 6811 | IRBuilder<> Builder(Shift); | |||
| 6812 | BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); | |||
| 6813 | Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); | |||
| 6814 | Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); | |||
| 6815 | Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); | |||
| 6816 | replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); | |||
| 6817 | Shift->eraseFromParent(); | |||
| 6818 | return true; | |||
| 6819 | } | |||
| 6820 | ||||
| 6821 | bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { | |||
| 6822 | Intrinsic::ID Opcode = Fsh->getIntrinsicID(); | |||
| 6823 | assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&(static_cast <bool> ((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && "Expected a funnel shift") ? void (0) : __assert_fail ("(Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && \"Expected a funnel shift\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6824, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6824 | "Expected a funnel shift")(static_cast <bool> ((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && "Expected a funnel shift") ? void (0) : __assert_fail ("(Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && \"Expected a funnel shift\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6824, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6825 | ||||
| 6826 | // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper | |||
| 6827 | // than general vector shifts, and (3) the shift amount is select-of-splatted | |||
| 6828 | // values, hoist the funnel shifts before the select: | |||
| 6829 | // fsh Op0, Op1, (select Cond, TVal, FVal) --> | |||
| 6830 | // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) | |||
| 6831 | // | |||
| 6832 | // This is inverting a generic IR transform when we know that the cost of a | |||
| 6833 | // general vector shift is more than the cost of 2 shift-by-scalars. | |||
| 6834 | // We can't do this effectively in SDAG because we may not be able to | |||
| 6835 | // determine if the select operands are splats from within a basic block. | |||
| 6836 | Type *Ty = Fsh->getType(); | |||
| 6837 | if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) | |||
| 6838 | return false; | |||
| 6839 | Value *Cond, *TVal, *FVal; | |||
| 6840 | if (!match(Fsh->getOperand(2), | |||
| 6841 | m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) | |||
| 6842 | return false; | |||
| 6843 | if (!isSplatValue(TVal) || !isSplatValue(FVal)) | |||
| 6844 | return false; | |||
| 6845 | ||||
| 6846 | IRBuilder<> Builder(Fsh); | |||
| 6847 | Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); | |||
| 6848 | Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); | |||
| 6849 | Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); | |||
| 6850 | Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); | |||
| 6851 | replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); | |||
| 6852 | Fsh->eraseFromParent(); | |||
| 6853 | return true; | |||
| 6854 | } | |||
| 6855 | ||||
| 6856 | /// If we have a SelectInst that will likely profit from branch prediction, | |||
| 6857 | /// turn it into a branch. | |||
| 6858 | bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { | |||
| 6859 | if (DisableSelectToBranch) | |||
| 6860 | return false; | |||
| 6861 | ||||
| 6862 | // If the SelectOptimize pass is enabled, selects have already been optimized. | |||
| 6863 | if (!getCGPassBuilderOption().DisableSelectOptimize) | |||
| 6864 | return false; | |||
| 6865 | ||||
| 6866 | // Find all consecutive select instructions that share the same condition. | |||
| 6867 | SmallVector<SelectInst *, 2> ASI; | |||
| 6868 | ASI.push_back(SI); | |||
| 6869 | for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); | |||
| 6870 | It != SI->getParent()->end(); ++It) { | |||
| 6871 | SelectInst *I = dyn_cast<SelectInst>(&*It); | |||
| 6872 | if (I && SI->getCondition() == I->getCondition()) { | |||
| 6873 | ASI.push_back(I); | |||
| 6874 | } else { | |||
| 6875 | break; | |||
| 6876 | } | |||
| 6877 | } | |||
| 6878 | ||||
| 6879 | SelectInst *LastSI = ASI.back(); | |||
| 6880 | // Increment the current iterator to skip all the rest of select instructions | |||
| 6881 | // because they will be either "not lowered" or "all lowered" to branch. | |||
| 6882 | CurInstIterator = std::next(LastSI->getIterator()); | |||
| 6883 | ||||
| 6884 | bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); | |||
| 6885 | ||||
| 6886 | // Can we convert the 'select' to CF ? | |||
| 6887 | if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) | |||
| 6888 | return false; | |||
| 6889 | ||||
| 6890 | TargetLowering::SelectSupportKind SelectKind; | |||
| 6891 | if (SI->getType()->isVectorTy()) | |||
| 6892 | SelectKind = TargetLowering::ScalarCondVectorVal; | |||
| 6893 | else | |||
| 6894 | SelectKind = TargetLowering::ScalarValSelect; | |||
| 6895 | ||||
| 6896 | if (TLI->isSelectSupported(SelectKind) && | |||
| 6897 | (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || | |||
| 6898 | llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) | |||
| 6899 | return false; | |||
| 6900 | ||||
| 6901 | // The DominatorTree needs to be rebuilt by any consumers after this | |||
| 6902 | // transformation. We simply reset here rather than setting the ModifiedDT | |||
| 6903 | // flag to avoid restarting the function walk in runOnFunction for each | |||
| 6904 | // select optimized. | |||
| 6905 | DT.reset(); | |||
| 6906 | ||||
| 6907 | // Transform a sequence like this: | |||
| 6908 | // start: | |||
| 6909 | // %cmp = cmp uge i32 %a, %b | |||
| 6910 | // %sel = select i1 %cmp, i32 %c, i32 %d | |||
| 6911 | // | |||
| 6912 | // Into: | |||
| 6913 | // start: | |||
| 6914 | // %cmp = cmp uge i32 %a, %b | |||
| 6915 | // %cmp.frozen = freeze %cmp | |||
| 6916 | // br i1 %cmp.frozen, label %select.true, label %select.false | |||
| 6917 | // select.true: | |||
| 6918 | // br label %select.end | |||
| 6919 | // select.false: | |||
| 6920 | // br label %select.end | |||
| 6921 | // select.end: | |||
| 6922 | // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] | |||
| 6923 | // | |||
| 6924 | // %cmp should be frozen, otherwise it may introduce undefined behavior. | |||
| 6925 | // In addition, we may sink instructions that produce %c or %d from | |||
| 6926 | // the entry block into the destination(s) of the new branch. | |||
| 6927 | // If the true or false blocks do not contain a sunken instruction, that | |||
| 6928 | // block and its branch may be optimized away. In that case, one side of the | |||
| 6929 | // first branch will point directly to select.end, and the corresponding PHI | |||
| 6930 | // predecessor block will be the start block. | |||
| 6931 | ||||
| 6932 | // First, we split the block containing the select into 2 blocks. | |||
| 6933 | BasicBlock *StartBlock = SI->getParent(); | |||
| 6934 | BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); | |||
| 6935 | BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); | |||
| 6936 | if (IsHugeFunc) | |||
| 6937 | FreshBBs.insert(EndBlock); | |||
| 6938 | BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); | |||
| 6939 | ||||
| 6940 | // Delete the unconditional branch that was just created by the split. | |||
| 6941 | StartBlock->getTerminator()->eraseFromParent(); | |||
| 6942 | ||||
| 6943 | // These are the new basic blocks for the conditional branch. | |||
| 6944 | // At least one will become an actual new basic block. | |||
| 6945 | BasicBlock *TrueBlock = nullptr; | |||
| 6946 | BasicBlock *FalseBlock = nullptr; | |||
| 6947 | BranchInst *TrueBranch = nullptr; | |||
| 6948 | BranchInst *FalseBranch = nullptr; | |||
| 6949 | ||||
| 6950 | // Sink expensive instructions into the conditional blocks to avoid executing | |||
| 6951 | // them speculatively. | |||
| 6952 | for (SelectInst *SI : ASI) { | |||
| 6953 | if (sinkSelectOperand(TTI, SI->getTrueValue())) { | |||
| 6954 | if (TrueBlock == nullptr) { | |||
| 6955 | TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", | |||
| 6956 | EndBlock->getParent(), EndBlock); | |||
| 6957 | TrueBranch = BranchInst::Create(EndBlock, TrueBlock); | |||
| 6958 | if (IsHugeFunc) | |||
| 6959 | FreshBBs.insert(TrueBlock); | |||
| 6960 | TrueBranch->setDebugLoc(SI->getDebugLoc()); | |||
| 6961 | } | |||
| 6962 | auto *TrueInst = cast<Instruction>(SI->getTrueValue()); | |||
| 6963 | TrueInst->moveBefore(TrueBranch); | |||
| 6964 | } | |||
| 6965 | if (sinkSelectOperand(TTI, SI->getFalseValue())) { | |||
| 6966 | if (FalseBlock == nullptr) { | |||
| 6967 | FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", | |||
| 6968 | EndBlock->getParent(), EndBlock); | |||
| 6969 | if (IsHugeFunc) | |||
| 6970 | FreshBBs.insert(FalseBlock); | |||
| 6971 | FalseBranch = BranchInst::Create(EndBlock, FalseBlock); | |||
| 6972 | FalseBranch->setDebugLoc(SI->getDebugLoc()); | |||
| 6973 | } | |||
| 6974 | auto *FalseInst = cast<Instruction>(SI->getFalseValue()); | |||
| 6975 | FalseInst->moveBefore(FalseBranch); | |||
| 6976 | } | |||
| 6977 | } | |||
| 6978 | ||||
| 6979 | // If there was nothing to sink, then arbitrarily choose the 'false' side | |||
| 6980 | // for a new input value to the PHI. | |||
| 6981 | if (TrueBlock == FalseBlock) { | |||
| 6982 | assert(TrueBlock == nullptr &&(static_cast <bool> (TrueBlock == nullptr && "Unexpected basic block transform while optimizing select" ) ? void (0) : __assert_fail ("TrueBlock == nullptr && \"Unexpected basic block transform while optimizing select\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6983, __extension__ __PRETTY_FUNCTION__ )) | |||
| 6983 | "Unexpected basic block transform while optimizing select")(static_cast <bool> (TrueBlock == nullptr && "Unexpected basic block transform while optimizing select" ) ? void (0) : __assert_fail ("TrueBlock == nullptr && \"Unexpected basic block transform while optimizing select\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 6983, __extension__ __PRETTY_FUNCTION__ )); | |||
| 6984 | ||||
| 6985 | FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", | |||
| 6986 | EndBlock->getParent(), EndBlock); | |||
| 6987 | if (IsHugeFunc) | |||
| 6988 | FreshBBs.insert(FalseBlock); | |||
| 6989 | auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); | |||
| 6990 | FalseBranch->setDebugLoc(SI->getDebugLoc()); | |||
| 6991 | } | |||
| 6992 | ||||
| 6993 | // Insert the real conditional branch based on the original condition. | |||
| 6994 | // If we did not create a new block for one of the 'true' or 'false' paths | |||
| 6995 | // of the condition, it means that side of the branch goes to the end block | |||
| 6996 | // directly and the path originates from the start block from the point of | |||
| 6997 | // view of the new PHI. | |||
| 6998 | BasicBlock *TT, *FT; | |||
| 6999 | if (TrueBlock == nullptr) { | |||
| 7000 | TT = EndBlock; | |||
| 7001 | FT = FalseBlock; | |||
| 7002 | TrueBlock = StartBlock; | |||
| 7003 | } else if (FalseBlock == nullptr) { | |||
| 7004 | TT = TrueBlock; | |||
| 7005 | FT = EndBlock; | |||
| 7006 | FalseBlock = StartBlock; | |||
| 7007 | } else { | |||
| 7008 | TT = TrueBlock; | |||
| 7009 | FT = FalseBlock; | |||
| 7010 | } | |||
| 7011 | IRBuilder<> IB(SI); | |||
| 7012 | auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); | |||
| 7013 | IB.CreateCondBr(CondFr, TT, FT, SI); | |||
| 7014 | ||||
| 7015 | SmallPtrSet<const Instruction *, 2> INS; | |||
| 7016 | INS.insert(ASI.begin(), ASI.end()); | |||
| 7017 | // Use reverse iterator because later select may use the value of the | |||
| 7018 | // earlier select, and we need to propagate value through earlier select | |||
| 7019 | // to get the PHI operand. | |||
| 7020 | for (SelectInst *SI : llvm::reverse(ASI)) { | |||
| 7021 | // The select itself is replaced with a PHI Node. | |||
| 7022 | PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); | |||
| 7023 | PN->takeName(SI); | |||
| 7024 | PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); | |||
| 7025 | PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); | |||
| 7026 | PN->setDebugLoc(SI->getDebugLoc()); | |||
| 7027 | ||||
| 7028 | replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); | |||
| 7029 | SI->eraseFromParent(); | |||
| 7030 | INS.erase(SI); | |||
| 7031 | ++NumSelectsExpanded; | |||
| 7032 | } | |||
| 7033 | ||||
| 7034 | // Instruct OptimizeBlock to skip to the next block. | |||
| 7035 | CurInstIterator = StartBlock->end(); | |||
| 7036 | return true; | |||
| 7037 | } | |||
| 7038 | ||||
| 7039 | /// Some targets only accept certain types for splat inputs. For example a VDUP | |||
| 7040 | /// in MVE takes a GPR (integer) register, and the instruction that incorporate | |||
| 7041 | /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. | |||
| 7042 | bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { | |||
| 7043 | // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only | |||
| 7044 | if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), | |||
| 7045 | m_Undef(), m_ZeroMask()))) | |||
| 7046 | return false; | |||
| 7047 | Type *NewType = TLI->shouldConvertSplatType(SVI); | |||
| 7048 | if (!NewType) | |||
| 7049 | return false; | |||
| 7050 | ||||
| 7051 | auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); | |||
| 7052 | assert(!NewType->isVectorTy() && "Expected a scalar type!")(static_cast <bool> (!NewType->isVectorTy() && "Expected a scalar type!") ? void (0) : __assert_fail ("!NewType->isVectorTy() && \"Expected a scalar type!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7052, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7053 | assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&(static_cast <bool> (NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && "Expected a type of the same size!" ) ? void (0) : __assert_fail ("NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && \"Expected a type of the same size!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7054, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7054 | "Expected a type of the same size!")(static_cast <bool> (NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && "Expected a type of the same size!" ) ? void (0) : __assert_fail ("NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && \"Expected a type of the same size!\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7054, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7055 | auto *NewVecType = | |||
| 7056 | FixedVectorType::get(NewType, SVIVecType->getNumElements()); | |||
| 7057 | ||||
| 7058 | // Create a bitcast (shuffle (insert (bitcast(..)))) | |||
| 7059 | IRBuilder<> Builder(SVI->getContext()); | |||
| 7060 | Builder.SetInsertPoint(SVI); | |||
| 7061 | Value *BC1 = Builder.CreateBitCast( | |||
| 7062 | cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); | |||
| 7063 | Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); | |||
| 7064 | Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); | |||
| 7065 | ||||
| 7066 | replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); | |||
| 7067 | RecursivelyDeleteTriviallyDeadInstructions( | |||
| 7068 | SVI, TLInfo, nullptr, | |||
| 7069 | [&](Value *V) { removeAllAssertingVHReferences(V); }); | |||
| 7070 | ||||
| 7071 | // Also hoist the bitcast up to its operand if it they are not in the same | |||
| 7072 | // block. | |||
| 7073 | if (auto *BCI = dyn_cast<Instruction>(BC1)) | |||
| 7074 | if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) | |||
| 7075 | if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && | |||
| 7076 | !Op->isTerminator() && !Op->isEHPad()) | |||
| 7077 | BCI->moveAfter(Op); | |||
| 7078 | ||||
| 7079 | return true; | |||
| 7080 | } | |||
| 7081 | ||||
| 7082 | bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { | |||
| 7083 | // If the operands of I can be folded into a target instruction together with | |||
| 7084 | // I, duplicate and sink them. | |||
| 7085 | SmallVector<Use *, 4> OpsToSink; | |||
| 7086 | if (!TLI->shouldSinkOperands(I, OpsToSink)) | |||
| 7087 | return false; | |||
| 7088 | ||||
| 7089 | // OpsToSink can contain multiple uses in a use chain (e.g. | |||
| 7090 | // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating | |||
| 7091 | // uses must come first, so we process the ops in reverse order so as to not | |||
| 7092 | // create invalid IR. | |||
| 7093 | BasicBlock *TargetBB = I->getParent(); | |||
| 7094 | bool Changed = false; | |||
| 7095 | SmallVector<Use *, 4> ToReplace; | |||
| 7096 | Instruction *InsertPoint = I; | |||
| 7097 | DenseMap<const Instruction *, unsigned long> InstOrdering; | |||
| 7098 | unsigned long InstNumber = 0; | |||
| 7099 | for (const auto &I : *TargetBB) | |||
| 7100 | InstOrdering[&I] = InstNumber++; | |||
| 7101 | ||||
| 7102 | for (Use *U : reverse(OpsToSink)) { | |||
| 7103 | auto *UI = cast<Instruction>(U->get()); | |||
| 7104 | if (isa<PHINode>(UI)) | |||
| 7105 | continue; | |||
| 7106 | if (UI->getParent() == TargetBB) { | |||
| 7107 | if (InstOrdering[UI] < InstOrdering[InsertPoint]) | |||
| 7108 | InsertPoint = UI; | |||
| 7109 | continue; | |||
| 7110 | } | |||
| 7111 | ToReplace.push_back(U); | |||
| 7112 | } | |||
| 7113 | ||||
| 7114 | SetVector<Instruction *> MaybeDead; | |||
| 7115 | DenseMap<Instruction *, Instruction *> NewInstructions; | |||
| 7116 | for (Use *U : ToReplace) { | |||
| 7117 | auto *UI = cast<Instruction>(U->get()); | |||
| 7118 | Instruction *NI = UI->clone(); | |||
| 7119 | ||||
| 7120 | if (IsHugeFunc) { | |||
| 7121 | // Now we clone an instruction, its operands' defs may sink to this BB | |||
| 7122 | // now. So we put the operands defs' BBs into FreshBBs to do optmization. | |||
| 7123 | for (unsigned I = 0; I < NI->getNumOperands(); ++I) { | |||
| 7124 | auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I)); | |||
| 7125 | if (!OpDef) | |||
| 7126 | continue; | |||
| 7127 | FreshBBs.insert(OpDef->getParent()); | |||
| 7128 | } | |||
| 7129 | } | |||
| 7130 | ||||
| 7131 | NewInstructions[UI] = NI; | |||
| 7132 | MaybeDead.insert(UI); | |||
| 7133 | LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Sinking " << *UI << " to user " << *I << "\n"; } } while (false ); | |||
| 7134 | NI->insertBefore(InsertPoint); | |||
| 7135 | InsertPoint = NI; | |||
| 7136 | InsertedInsts.insert(NI); | |||
| 7137 | ||||
| 7138 | // Update the use for the new instruction, making sure that we update the | |||
| 7139 | // sunk instruction uses, if it is part of a chain that has already been | |||
| 7140 | // sunk. | |||
| 7141 | Instruction *OldI = cast<Instruction>(U->getUser()); | |||
| 7142 | if (NewInstructions.count(OldI)) | |||
| 7143 | NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); | |||
| 7144 | else | |||
| 7145 | U->set(NI); | |||
| 7146 | Changed = true; | |||
| 7147 | } | |||
| 7148 | ||||
| 7149 | // Remove instructions that are dead after sinking. | |||
| 7150 | for (auto *I : MaybeDead) { | |||
| 7151 | if (!I->hasNUsesOrMore(1)) { | |||
| 7152 | LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Removing dead instruction: " << *I << "\n"; } } while (false); | |||
| 7153 | I->eraseFromParent(); | |||
| 7154 | } | |||
| 7155 | } | |||
| 7156 | ||||
| 7157 | return Changed; | |||
| 7158 | } | |||
| 7159 | ||||
| 7160 | bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { | |||
| 7161 | Value *Cond = SI->getCondition(); | |||
| 7162 | Type *OldType = Cond->getType(); | |||
| 7163 | LLVMContext &Context = Cond->getContext(); | |||
| 7164 | EVT OldVT = TLI->getValueType(*DL, OldType); | |||
| 7165 | MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); | |||
| 7166 | unsigned RegWidth = RegType.getSizeInBits(); | |||
| 7167 | ||||
| 7168 | if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) | |||
| 7169 | return false; | |||
| 7170 | ||||
| 7171 | // If the register width is greater than the type width, expand the condition | |||
| 7172 | // of the switch instruction and each case constant to the width of the | |||
| 7173 | // register. By widening the type of the switch condition, subsequent | |||
| 7174 | // comparisons (for case comparisons) will not need to be extended to the | |||
| 7175 | // preferred register width, so we will potentially eliminate N-1 extends, | |||
| 7176 | // where N is the number of cases in the switch. | |||
| 7177 | auto *NewType = Type::getIntNTy(Context, RegWidth); | |||
| 7178 | ||||
| 7179 | // Extend the switch condition and case constants using the target preferred | |||
| 7180 | // extend unless the switch condition is a function argument with an extend | |||
| 7181 | // attribute. In that case, we can avoid an unnecessary mask/extension by | |||
| 7182 | // matching the argument extension instead. | |||
| 7183 | Instruction::CastOps ExtType = Instruction::ZExt; | |||
| 7184 | // Some targets prefer SExt over ZExt. | |||
| 7185 | if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) | |||
| 7186 | ExtType = Instruction::SExt; | |||
| 7187 | ||||
| 7188 | if (auto *Arg = dyn_cast<Argument>(Cond)) { | |||
| 7189 | if (Arg->hasSExtAttr()) | |||
| 7190 | ExtType = Instruction::SExt; | |||
| 7191 | if (Arg->hasZExtAttr()) | |||
| 7192 | ExtType = Instruction::ZExt; | |||
| 7193 | } | |||
| 7194 | ||||
| 7195 | auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); | |||
| 7196 | ExtInst->insertBefore(SI); | |||
| 7197 | ExtInst->setDebugLoc(SI->getDebugLoc()); | |||
| 7198 | SI->setCondition(ExtInst); | |||
| 7199 | for (auto Case : SI->cases()) { | |||
| 7200 | const APInt &NarrowConst = Case.getCaseValue()->getValue(); | |||
| 7201 | APInt WideConst = (ExtType == Instruction::ZExt) | |||
| 7202 | ? NarrowConst.zext(RegWidth) | |||
| 7203 | : NarrowConst.sext(RegWidth); | |||
| 7204 | Case.setValue(ConstantInt::get(Context, WideConst)); | |||
| 7205 | } | |||
| 7206 | ||||
| 7207 | return true; | |||
| 7208 | } | |||
| 7209 | ||||
| 7210 | bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { | |||
| 7211 | // The SCCP optimization tends to produce code like this: | |||
| 7212 | // switch(x) { case 42: phi(42, ...) } | |||
| 7213 | // Materializing the constant for the phi-argument needs instructions; So we | |||
| 7214 | // change the code to: | |||
| 7215 | // switch(x) { case 42: phi(x, ...) } | |||
| 7216 | ||||
| 7217 | Value *Condition = SI->getCondition(); | |||
| 7218 | // Avoid endless loop in degenerate case. | |||
| 7219 | if (isa<ConstantInt>(*Condition)) | |||
| 7220 | return false; | |||
| 7221 | ||||
| 7222 | bool Changed = false; | |||
| 7223 | BasicBlock *SwitchBB = SI->getParent(); | |||
| 7224 | Type *ConditionType = Condition->getType(); | |||
| 7225 | ||||
| 7226 | for (const SwitchInst::CaseHandle &Case : SI->cases()) { | |||
| 7227 | ConstantInt *CaseValue = Case.getCaseValue(); | |||
| 7228 | BasicBlock *CaseBB = Case.getCaseSuccessor(); | |||
| 7229 | // Set to true if we previously checked that `CaseBB` is only reached by | |||
| 7230 | // a single case from this switch. | |||
| 7231 | bool CheckedForSinglePred = false; | |||
| 7232 | for (PHINode &PHI : CaseBB->phis()) { | |||
| 7233 | Type *PHIType = PHI.getType(); | |||
| 7234 | // If ZExt is free then we can also catch patterns like this: | |||
| 7235 | // switch((i32)x) { case 42: phi((i64)42, ...); } | |||
| 7236 | // and replace `(i64)42` with `zext i32 %x to i64`. | |||
| 7237 | bool TryZExt = | |||
| 7238 | PHIType->isIntegerTy() && | |||
| 7239 | PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && | |||
| 7240 | TLI->isZExtFree(ConditionType, PHIType); | |||
| 7241 | if (PHIType == ConditionType || TryZExt) { | |||
| 7242 | // Set to true to skip this case because of multiple preds. | |||
| 7243 | bool SkipCase = false; | |||
| 7244 | Value *Replacement = nullptr; | |||
| 7245 | for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { | |||
| 7246 | Value *PHIValue = PHI.getIncomingValue(I); | |||
| 7247 | if (PHIValue != CaseValue) { | |||
| 7248 | if (!TryZExt) | |||
| 7249 | continue; | |||
| 7250 | ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); | |||
| 7251 | if (!PHIValueInt || | |||
| 7252 | PHIValueInt->getValue() != | |||
| 7253 | CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) | |||
| 7254 | continue; | |||
| 7255 | } | |||
| 7256 | if (PHI.getIncomingBlock(I) != SwitchBB) | |||
| 7257 | continue; | |||
| 7258 | // We cannot optimize if there are multiple case labels jumping to | |||
| 7259 | // this block. This check may get expensive when there are many | |||
| 7260 | // case labels so we test for it last. | |||
| 7261 | if (!CheckedForSinglePred) { | |||
| 7262 | CheckedForSinglePred = true; | |||
| 7263 | if (SI->findCaseDest(CaseBB) == nullptr) { | |||
| 7264 | SkipCase = true; | |||
| 7265 | break; | |||
| 7266 | } | |||
| 7267 | } | |||
| 7268 | ||||
| 7269 | if (Replacement == nullptr) { | |||
| 7270 | if (PHIValue == CaseValue) { | |||
| 7271 | Replacement = Condition; | |||
| 7272 | } else { | |||
| 7273 | IRBuilder<> Builder(SI); | |||
| 7274 | Replacement = Builder.CreateZExt(Condition, PHIType); | |||
| 7275 | } | |||
| 7276 | } | |||
| 7277 | PHI.setIncomingValue(I, Replacement); | |||
| 7278 | Changed = true; | |||
| 7279 | } | |||
| 7280 | if (SkipCase) | |||
| 7281 | break; | |||
| 7282 | } | |||
| 7283 | } | |||
| 7284 | } | |||
| 7285 | return Changed; | |||
| 7286 | } | |||
| 7287 | ||||
| 7288 | bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { | |||
| 7289 | bool Changed = optimizeSwitchType(SI); | |||
| 7290 | Changed |= optimizeSwitchPhiConstants(SI); | |||
| 7291 | return Changed; | |||
| 7292 | } | |||
| 7293 | ||||
| 7294 | namespace { | |||
| 7295 | ||||
| 7296 | /// Helper class to promote a scalar operation to a vector one. | |||
| 7297 | /// This class is used to move downward extractelement transition. | |||
| 7298 | /// E.g., | |||
| 7299 | /// a = vector_op <2 x i32> | |||
| 7300 | /// b = extractelement <2 x i32> a, i32 0 | |||
| 7301 | /// c = scalar_op b | |||
| 7302 | /// store c | |||
| 7303 | /// | |||
| 7304 | /// => | |||
| 7305 | /// a = vector_op <2 x i32> | |||
| 7306 | /// c = vector_op a (equivalent to scalar_op on the related lane) | |||
| 7307 | /// * d = extractelement <2 x i32> c, i32 0 | |||
| 7308 | /// * store d | |||
| 7309 | /// Assuming both extractelement and store can be combine, we get rid of the | |||
| 7310 | /// transition. | |||
| 7311 | class VectorPromoteHelper { | |||
| 7312 | /// DataLayout associated with the current module. | |||
| 7313 | const DataLayout &DL; | |||
| 7314 | ||||
| 7315 | /// Used to perform some checks on the legality of vector operations. | |||
| 7316 | const TargetLowering &TLI; | |||
| 7317 | ||||
| 7318 | /// Used to estimated the cost of the promoted chain. | |||
| 7319 | const TargetTransformInfo &TTI; | |||
| 7320 | ||||
| 7321 | /// The transition being moved downwards. | |||
| 7322 | Instruction *Transition; | |||
| 7323 | ||||
| 7324 | /// The sequence of instructions to be promoted. | |||
| 7325 | SmallVector<Instruction *, 4> InstsToBePromoted; | |||
| 7326 | ||||
| 7327 | /// Cost of combining a store and an extract. | |||
| 7328 | unsigned StoreExtractCombineCost; | |||
| 7329 | ||||
| 7330 | /// Instruction that will be combined with the transition. | |||
| 7331 | Instruction *CombineInst = nullptr; | |||
| 7332 | ||||
| 7333 | /// The instruction that represents the current end of the transition. | |||
| 7334 | /// Since we are faking the promotion until we reach the end of the chain | |||
| 7335 | /// of computation, we need a way to get the current end of the transition. | |||
| 7336 | Instruction *getEndOfTransition() const { | |||
| 7337 | if (InstsToBePromoted.empty()) | |||
| 7338 | return Transition; | |||
| 7339 | return InstsToBePromoted.back(); | |||
| 7340 | } | |||
| 7341 | ||||
| 7342 | /// Return the index of the original value in the transition. | |||
| 7343 | /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, | |||
| 7344 | /// c, is at index 0. | |||
| 7345 | unsigned getTransitionOriginalValueIdx() const { | |||
| 7346 | assert(isa<ExtractElementInst>(Transition) &&(static_cast <bool> (isa<ExtractElementInst>(Transition ) && "Other kind of transitions are not supported yet" ) ? void (0) : __assert_fail ("isa<ExtractElementInst>(Transition) && \"Other kind of transitions are not supported yet\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7347, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7347 | "Other kind of transitions are not supported yet")(static_cast <bool> (isa<ExtractElementInst>(Transition ) && "Other kind of transitions are not supported yet" ) ? void (0) : __assert_fail ("isa<ExtractElementInst>(Transition) && \"Other kind of transitions are not supported yet\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7347, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7348 | return 0; | |||
| 7349 | } | |||
| 7350 | ||||
| 7351 | /// Return the index of the index in the transition. | |||
| 7352 | /// E.g., for "extractelement <2 x i32> c, i32 0" the index | |||
| 7353 | /// is at index 1. | |||
| 7354 | unsigned getTransitionIdx() const { | |||
| 7355 | assert(isa<ExtractElementInst>(Transition) &&(static_cast <bool> (isa<ExtractElementInst>(Transition ) && "Other kind of transitions are not supported yet" ) ? void (0) : __assert_fail ("isa<ExtractElementInst>(Transition) && \"Other kind of transitions are not supported yet\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7356, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7356 | "Other kind of transitions are not supported yet")(static_cast <bool> (isa<ExtractElementInst>(Transition ) && "Other kind of transitions are not supported yet" ) ? void (0) : __assert_fail ("isa<ExtractElementInst>(Transition) && \"Other kind of transitions are not supported yet\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7356, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7357 | return 1; | |||
| 7358 | } | |||
| 7359 | ||||
| 7360 | /// Get the type of the transition. | |||
| 7361 | /// This is the type of the original value. | |||
| 7362 | /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the | |||
| 7363 | /// transition is <2 x i32>. | |||
| 7364 | Type *getTransitionType() const { | |||
| 7365 | return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); | |||
| 7366 | } | |||
| 7367 | ||||
| 7368 | /// Promote \p ToBePromoted by moving \p Def downward through. | |||
| 7369 | /// I.e., we have the following sequence: | |||
| 7370 | /// Def = Transition <ty1> a to <ty2> | |||
| 7371 | /// b = ToBePromoted <ty2> Def, ... | |||
| 7372 | /// => | |||
| 7373 | /// b = ToBePromoted <ty1> a, ... | |||
| 7374 | /// Def = Transition <ty1> ToBePromoted to <ty2> | |||
| 7375 | void promoteImpl(Instruction *ToBePromoted); | |||
| 7376 | ||||
| 7377 | /// Check whether or not it is profitable to promote all the | |||
| 7378 | /// instructions enqueued to be promoted. | |||
| 7379 | bool isProfitableToPromote() { | |||
| 7380 | Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); | |||
| 7381 | unsigned Index = isa<ConstantInt>(ValIdx) | |||
| 7382 | ? cast<ConstantInt>(ValIdx)->getZExtValue() | |||
| 7383 | : -1; | |||
| 7384 | Type *PromotedType = getTransitionType(); | |||
| 7385 | ||||
| 7386 | StoreInst *ST = cast<StoreInst>(CombineInst); | |||
| 7387 | unsigned AS = ST->getPointerAddressSpace(); | |||
| 7388 | // Check if this store is supported. | |||
| 7389 | if (!TLI.allowsMisalignedMemoryAccesses( | |||
| 7390 | TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, | |||
| 7391 | ST->getAlign())) { | |||
| 7392 | // If this is not supported, there is no way we can combine | |||
| 7393 | // the extract with the store. | |||
| 7394 | return false; | |||
| 7395 | } | |||
| 7396 | ||||
| 7397 | // The scalar chain of computation has to pay for the transition | |||
| 7398 | // scalar to vector. | |||
| 7399 | // The vector chain has to account for the combining cost. | |||
| 7400 | enum TargetTransformInfo::TargetCostKind CostKind = | |||
| 7401 | TargetTransformInfo::TCK_RecipThroughput; | |||
| 7402 | InstructionCost ScalarCost = | |||
| 7403 | TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); | |||
| 7404 | InstructionCost VectorCost = StoreExtractCombineCost; | |||
| 7405 | for (const auto &Inst : InstsToBePromoted) { | |||
| 7406 | // Compute the cost. | |||
| 7407 | // By construction, all instructions being promoted are arithmetic ones. | |||
| 7408 | // Moreover, one argument is a constant that can be viewed as a splat | |||
| 7409 | // constant. | |||
| 7410 | Value *Arg0 = Inst->getOperand(0); | |||
| 7411 | bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || | |||
| 7412 | isa<ConstantFP>(Arg0); | |||
| 7413 | TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; | |||
| 7414 | if (IsArg0Constant) | |||
| 7415 | Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; | |||
| 7416 | else | |||
| 7417 | Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; | |||
| 7418 | ||||
| 7419 | ScalarCost += TTI.getArithmeticInstrCost( | |||
| 7420 | Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); | |||
| 7421 | VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, | |||
| 7422 | CostKind, Arg0Info, Arg1Info); | |||
| 7423 | } | |||
| 7424 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Estimated cost of computation to be promoted:\nScalar: " << ScalarCost << "\nVector: " << VectorCost << '\n'; } } while (false) | |||
| 7425 | dbgs() << "Estimated cost of computation to be promoted:\nScalar: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Estimated cost of computation to be promoted:\nScalar: " << ScalarCost << "\nVector: " << VectorCost << '\n'; } } while (false) | |||
| 7426 | << ScalarCost << "\nVector: " << VectorCost << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Estimated cost of computation to be promoted:\nScalar: " << ScalarCost << "\nVector: " << VectorCost << '\n'; } } while (false); | |||
| 7427 | return ScalarCost > VectorCost; | |||
| 7428 | } | |||
| 7429 | ||||
| 7430 | /// Generate a constant vector with \p Val with the same | |||
| 7431 | /// number of elements as the transition. | |||
| 7432 | /// \p UseSplat defines whether or not \p Val should be replicated | |||
| 7433 | /// across the whole vector. | |||
| 7434 | /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, | |||
| 7435 | /// otherwise we generate a vector with as many undef as possible: | |||
| 7436 | /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only | |||
| 7437 | /// used at the index of the extract. | |||
| 7438 | Value *getConstantVector(Constant *Val, bool UseSplat) const { | |||
| 7439 | unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); | |||
| 7440 | if (!UseSplat) { | |||
| 7441 | // If we cannot determine where the constant must be, we have to | |||
| 7442 | // use a splat constant. | |||
| 7443 | Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); | |||
| 7444 | if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) | |||
| 7445 | ExtractIdx = CstVal->getSExtValue(); | |||
| 7446 | else | |||
| 7447 | UseSplat = true; | |||
| 7448 | } | |||
| 7449 | ||||
| 7450 | ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); | |||
| 7451 | if (UseSplat) | |||
| 7452 | return ConstantVector::getSplat(EC, Val); | |||
| 7453 | ||||
| 7454 | if (!EC.isScalable()) { | |||
| 7455 | SmallVector<Constant *, 4> ConstVec; | |||
| 7456 | UndefValue *UndefVal = UndefValue::get(Val->getType()); | |||
| 7457 | for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { | |||
| 7458 | if (Idx == ExtractIdx) | |||
| 7459 | ConstVec.push_back(Val); | |||
| 7460 | else | |||
| 7461 | ConstVec.push_back(UndefVal); | |||
| 7462 | } | |||
| 7463 | return ConstantVector::get(ConstVec); | |||
| 7464 | } else | |||
| 7465 | llvm_unreachable(::llvm::llvm_unreachable_internal("Generate scalable vector for non-splat is unimplemented" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7466) | |||
| 7466 | "Generate scalable vector for non-splat is unimplemented")::llvm::llvm_unreachable_internal("Generate scalable vector for non-splat is unimplemented" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7466); | |||
| 7467 | } | |||
| 7468 | ||||
| 7469 | /// Check if promoting to a vector type an operand at \p OperandIdx | |||
| 7470 | /// in \p Use can trigger undefined behavior. | |||
| 7471 | static bool canCauseUndefinedBehavior(const Instruction *Use, | |||
| 7472 | unsigned OperandIdx) { | |||
| 7473 | // This is not safe to introduce undef when the operand is on | |||
| 7474 | // the right hand side of a division-like instruction. | |||
| 7475 | if (OperandIdx != 1) | |||
| 7476 | return false; | |||
| 7477 | switch (Use->getOpcode()) { | |||
| 7478 | default: | |||
| 7479 | return false; | |||
| 7480 | case Instruction::SDiv: | |||
| 7481 | case Instruction::UDiv: | |||
| 7482 | case Instruction::SRem: | |||
| 7483 | case Instruction::URem: | |||
| 7484 | return true; | |||
| 7485 | case Instruction::FDiv: | |||
| 7486 | case Instruction::FRem: | |||
| 7487 | return !Use->hasNoNaNs(); | |||
| 7488 | } | |||
| 7489 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 7489); | |||
| 7490 | } | |||
| 7491 | ||||
| 7492 | public: | |||
| 7493 | VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, | |||
| 7494 | const TargetTransformInfo &TTI, Instruction *Transition, | |||
| 7495 | unsigned CombineCost) | |||
| 7496 | : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), | |||
| 7497 | StoreExtractCombineCost(CombineCost) { | |||
| 7498 | assert(Transition && "Do not know how to promote null")(static_cast <bool> (Transition && "Do not know how to promote null" ) ? void (0) : __assert_fail ("Transition && \"Do not know how to promote null\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7498, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7499 | } | |||
| 7500 | ||||
| 7501 | /// Check if we can promote \p ToBePromoted to \p Type. | |||
| 7502 | bool canPromote(const Instruction *ToBePromoted) const { | |||
| 7503 | // We could support CastInst too. | |||
| 7504 | return isa<BinaryOperator>(ToBePromoted); | |||
| 7505 | } | |||
| 7506 | ||||
| 7507 | /// Check if it is profitable to promote \p ToBePromoted | |||
| 7508 | /// by moving downward the transition through. | |||
| 7509 | bool shouldPromote(const Instruction *ToBePromoted) const { | |||
| 7510 | // Promote only if all the operands can be statically expanded. | |||
| 7511 | // Indeed, we do not want to introduce any new kind of transitions. | |||
| 7512 | for (const Use &U : ToBePromoted->operands()) { | |||
| 7513 | const Value *Val = U.get(); | |||
| 7514 | if (Val == getEndOfTransition()) { | |||
| 7515 | // If the use is a division and the transition is on the rhs, | |||
| 7516 | // we cannot promote the operation, otherwise we may create a | |||
| 7517 | // division by zero. | |||
| 7518 | if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) | |||
| 7519 | return false; | |||
| 7520 | continue; | |||
| 7521 | } | |||
| 7522 | if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && | |||
| 7523 | !isa<ConstantFP>(Val)) | |||
| 7524 | return false; | |||
| 7525 | } | |||
| 7526 | // Check that the resulting operation is legal. | |||
| 7527 | int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); | |||
| 7528 | if (!ISDOpcode) | |||
| 7529 | return false; | |||
| 7530 | return StressStoreExtract || | |||
| 7531 | TLI.isOperationLegalOrCustom( | |||
| 7532 | ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); | |||
| 7533 | } | |||
| 7534 | ||||
| 7535 | /// Check whether or not \p Use can be combined | |||
| 7536 | /// with the transition. | |||
| 7537 | /// I.e., is it possible to do Use(Transition) => AnotherUse? | |||
| 7538 | bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } | |||
| 7539 | ||||
| 7540 | /// Record \p ToBePromoted as part of the chain to be promoted. | |||
| 7541 | void enqueueForPromotion(Instruction *ToBePromoted) { | |||
| 7542 | InstsToBePromoted.push_back(ToBePromoted); | |||
| 7543 | } | |||
| 7544 | ||||
| 7545 | /// Set the instruction that will be combined with the transition. | |||
| 7546 | void recordCombineInstruction(Instruction *ToBeCombined) { | |||
| 7547 | assert(canCombine(ToBeCombined) && "Unsupported instruction to combine")(static_cast <bool> (canCombine(ToBeCombined) && "Unsupported instruction to combine") ? void (0) : __assert_fail ("canCombine(ToBeCombined) && \"Unsupported instruction to combine\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7547, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7548 | CombineInst = ToBeCombined; | |||
| 7549 | } | |||
| 7550 | ||||
| 7551 | /// Promote all the instructions enqueued for promotion if it is | |||
| 7552 | /// is profitable. | |||
| 7553 | /// \return True if the promotion happened, false otherwise. | |||
| 7554 | bool promote() { | |||
| 7555 | // Check if there is something to promote. | |||
| 7556 | // Right now, if we do not have anything to combine with, | |||
| 7557 | // we assume the promotion is not profitable. | |||
| 7558 | if (InstsToBePromoted.empty() || !CombineInst) | |||
| 7559 | return false; | |||
| 7560 | ||||
| 7561 | // Check cost. | |||
| 7562 | if (!StressStoreExtract && !isProfitableToPromote()) | |||
| 7563 | return false; | |||
| 7564 | ||||
| 7565 | // Promote. | |||
| 7566 | for (auto &ToBePromoted : InstsToBePromoted) | |||
| 7567 | promoteImpl(ToBePromoted); | |||
| 7568 | InstsToBePromoted.clear(); | |||
| 7569 | return true; | |||
| 7570 | } | |||
| 7571 | }; | |||
| 7572 | ||||
| 7573 | } // end anonymous namespace | |||
| 7574 | ||||
| 7575 | void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { | |||
| 7576 | // At this point, we know that all the operands of ToBePromoted but Def | |||
| 7577 | // can be statically promoted. | |||
| 7578 | // For Def, we need to use its parameter in ToBePromoted: | |||
| 7579 | // b = ToBePromoted ty1 a | |||
| 7580 | // Def = Transition ty1 b to ty2 | |||
| 7581 | // Move the transition down. | |||
| 7582 | // 1. Replace all uses of the promoted operation by the transition. | |||
| 7583 | // = ... b => = ... Def. | |||
| 7584 | assert(ToBePromoted->getType() == Transition->getType() &&(static_cast <bool> (ToBePromoted->getType() == Transition ->getType() && "The type of the result of the transition does not match " "the final type") ? void (0) : __assert_fail ("ToBePromoted->getType() == Transition->getType() && \"The type of the result of the transition does not match \" \"the final type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7586, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7585 | "The type of the result of the transition does not match "(static_cast <bool> (ToBePromoted->getType() == Transition ->getType() && "The type of the result of the transition does not match " "the final type") ? void (0) : __assert_fail ("ToBePromoted->getType() == Transition->getType() && \"The type of the result of the transition does not match \" \"the final type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7586, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7586 | "the final type")(static_cast <bool> (ToBePromoted->getType() == Transition ->getType() && "The type of the result of the transition does not match " "the final type") ? void (0) : __assert_fail ("ToBePromoted->getType() == Transition->getType() && \"The type of the result of the transition does not match \" \"the final type\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7586, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7587 | ToBePromoted->replaceAllUsesWith(Transition); | |||
| 7588 | // 2. Update the type of the uses. | |||
| 7589 | // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. | |||
| 7590 | Type *TransitionTy = getTransitionType(); | |||
| 7591 | ToBePromoted->mutateType(TransitionTy); | |||
| 7592 | // 3. Update all the operands of the promoted operation with promoted | |||
| 7593 | // operands. | |||
| 7594 | // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. | |||
| 7595 | for (Use &U : ToBePromoted->operands()) { | |||
| 7596 | Value *Val = U.get(); | |||
| 7597 | Value *NewVal = nullptr; | |||
| 7598 | if (Val == Transition) | |||
| 7599 | NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); | |||
| 7600 | else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || | |||
| 7601 | isa<ConstantFP>(Val)) { | |||
| 7602 | // Use a splat constant if it is not safe to use undef. | |||
| 7603 | NewVal = getConstantVector( | |||
| 7604 | cast<Constant>(Val), | |||
| 7605 | isa<UndefValue>(Val) || | |||
| 7606 | canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); | |||
| 7607 | } else | |||
| 7608 | llvm_unreachable("Did you modified shouldPromote and forgot to update "::llvm::llvm_unreachable_internal("Did you modified shouldPromote and forgot to update " "this?", "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7609) | |||
| 7609 | "this?")::llvm::llvm_unreachable_internal("Did you modified shouldPromote and forgot to update " "this?", "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7609); | |||
| 7610 | ToBePromoted->setOperand(U.getOperandNo(), NewVal); | |||
| 7611 | } | |||
| 7612 | Transition->moveAfter(ToBePromoted); | |||
| 7613 | Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); | |||
| 7614 | } | |||
| 7615 | ||||
| 7616 | /// Some targets can do store(extractelement) with one instruction. | |||
| 7617 | /// Try to push the extractelement towards the stores when the target | |||
| 7618 | /// has this feature and this is profitable. | |||
| 7619 | bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { | |||
| 7620 | unsigned CombineCost = std::numeric_limits<unsigned>::max(); | |||
| 7621 | if (DisableStoreExtract || | |||
| 7622 | (!StressStoreExtract && | |||
| 7623 | !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), | |||
| 7624 | Inst->getOperand(1), CombineCost))) | |||
| 7625 | return false; | |||
| 7626 | ||||
| 7627 | // At this point we know that Inst is a vector to scalar transition. | |||
| 7628 | // Try to move it down the def-use chain, until: | |||
| 7629 | // - We can combine the transition with its single use | |||
| 7630 | // => we got rid of the transition. | |||
| 7631 | // - We escape the current basic block | |||
| 7632 | // => we would need to check that we are moving it at a cheaper place and | |||
| 7633 | // we do not do that for now. | |||
| 7634 | BasicBlock *Parent = Inst->getParent(); | |||
| 7635 | LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Found an interesting transition: " << *Inst << '\n'; } } while (false); | |||
| 7636 | VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); | |||
| 7637 | // If the transition has more than one use, assume this is not going to be | |||
| 7638 | // beneficial. | |||
| 7639 | while (Inst->hasOneUse()) { | |||
| 7640 | Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); | |||
| 7641 | LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Use: " << *ToBePromoted << '\n'; } } while (false); | |||
| 7642 | ||||
| 7643 | if (ToBePromoted->getParent() != Parent) { | |||
| 7644 | LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Instruction to promote is in a different block (" << ToBePromoted->getParent()->getName() << ") than the transition (" << Parent->getName() << ").\n"; } } while (false) | |||
| 7645 | << ToBePromoted->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Instruction to promote is in a different block (" << ToBePromoted->getParent()->getName() << ") than the transition (" << Parent->getName() << ").\n"; } } while (false) | |||
| 7646 | << ") than the transition (" << Parent->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Instruction to promote is in a different block (" << ToBePromoted->getParent()->getName() << ") than the transition (" << Parent->getName() << ").\n"; } } while (false) | |||
| 7647 | << ").\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Instruction to promote is in a different block (" << ToBePromoted->getParent()->getName() << ") than the transition (" << Parent->getName() << ").\n"; } } while (false); | |||
| 7648 | return false; | |||
| 7649 | } | |||
| 7650 | ||||
| 7651 | if (VPH.canCombine(ToBePromoted)) { | |||
| 7652 | LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Assume " << *Inst << '\n' << "will be combined with: " << *ToBePromoted << '\n'; } } while (false) | |||
| 7653 | << "will be combined with: " << *ToBePromoted << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Assume " << *Inst << '\n' << "will be combined with: " << *ToBePromoted << '\n'; } } while (false); | |||
| 7654 | VPH.recordCombineInstruction(ToBePromoted); | |||
| 7655 | bool Changed = VPH.promote(); | |||
| 7656 | NumStoreExtractExposed += Changed; | |||
| 7657 | return Changed; | |||
| 7658 | } | |||
| 7659 | ||||
| 7660 | LLVM_DEBUG(dbgs() << "Try promoting.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Try promoting.\n"; } } while (false); | |||
| 7661 | if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) | |||
| 7662 | return false; | |||
| 7663 | ||||
| 7664 | LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Promoting is possible... Enqueue for promotion!\n" ; } } while (false); | |||
| 7665 | ||||
| 7666 | VPH.enqueueForPromotion(ToBePromoted); | |||
| 7667 | Inst = ToBePromoted; | |||
| 7668 | } | |||
| 7669 | return false; | |||
| 7670 | } | |||
| 7671 | ||||
| 7672 | /// For the instruction sequence of store below, F and I values | |||
| 7673 | /// are bundled together as an i64 value before being stored into memory. | |||
| 7674 | /// Sometimes it is more efficient to generate separate stores for F and I, | |||
| 7675 | /// which can remove the bitwise instructions or sink them to colder places. | |||
| 7676 | /// | |||
| 7677 | /// (store (or (zext (bitcast F to i32) to i64), | |||
| 7678 | /// (shl (zext I to i64), 32)), addr) --> | |||
| 7679 | /// (store F, addr) and (store I, addr+4) | |||
| 7680 | /// | |||
| 7681 | /// Similarly, splitting for other merged store can also be beneficial, like: | |||
| 7682 | /// For pair of {i32, i32}, i64 store --> two i32 stores. | |||
| 7683 | /// For pair of {i32, i16}, i64 store --> two i32 stores. | |||
| 7684 | /// For pair of {i16, i16}, i32 store --> two i16 stores. | |||
| 7685 | /// For pair of {i16, i8}, i32 store --> two i16 stores. | |||
| 7686 | /// For pair of {i8, i8}, i16 store --> two i8 stores. | |||
| 7687 | /// | |||
| 7688 | /// We allow each target to determine specifically which kind of splitting is | |||
| 7689 | /// supported. | |||
| 7690 | /// | |||
| 7691 | /// The store patterns are commonly seen from the simple code snippet below | |||
| 7692 | /// if only std::make_pair(...) is sroa transformed before inlined into hoo. | |||
| 7693 | /// void goo(const std::pair<int, float> &); | |||
| 7694 | /// hoo() { | |||
| 7695 | /// ... | |||
| 7696 | /// goo(std::make_pair(tmp, ftmp)); | |||
| 7697 | /// ... | |||
| 7698 | /// } | |||
| 7699 | /// | |||
| 7700 | /// Although we already have similar splitting in DAG Combine, we duplicate | |||
| 7701 | /// it in CodeGenPrepare to catch the case in which pattern is across | |||
| 7702 | /// multiple BBs. The logic in DAG Combine is kept to catch case generated | |||
| 7703 | /// during code expansion. | |||
| 7704 | static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, | |||
| 7705 | const TargetLowering &TLI) { | |||
| 7706 | // Handle simple but common cases only. | |||
| 7707 | Type *StoreType = SI.getValueOperand()->getType(); | |||
| 7708 | ||||
| 7709 | // The code below assumes shifting a value by <number of bits>, | |||
| 7710 | // whereas scalable vectors would have to be shifted by | |||
| 7711 | // <2log(vscale) + number of bits> in order to store the | |||
| 7712 | // low/high parts. Bailing out for now. | |||
| 7713 | if (StoreType->isScalableTy()) | |||
| 7714 | return false; | |||
| 7715 | ||||
| 7716 | if (!DL.typeSizeEqualsStoreSize(StoreType) || | |||
| 7717 | DL.getTypeSizeInBits(StoreType) == 0) | |||
| 7718 | return false; | |||
| 7719 | ||||
| 7720 | unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; | |||
| 7721 | Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); | |||
| 7722 | if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) | |||
| 7723 | return false; | |||
| 7724 | ||||
| 7725 | // Don't split the store if it is volatile. | |||
| 7726 | if (SI.isVolatile()) | |||
| 7727 | return false; | |||
| 7728 | ||||
| 7729 | // Match the following patterns: | |||
| 7730 | // (store (or (zext LValue to i64), | |||
| 7731 | // (shl (zext HValue to i64), 32)), HalfValBitSize) | |||
| 7732 | // or | |||
| 7733 | // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) | |||
| 7734 | // (zext LValue to i64), | |||
| 7735 | // Expect both operands of OR and the first operand of SHL have only | |||
| 7736 | // one use. | |||
| 7737 | Value *LValue, *HValue; | |||
| 7738 | if (!match(SI.getValueOperand(), | |||
| 7739 | m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), | |||
| 7740 | m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), | |||
| 7741 | m_SpecificInt(HalfValBitSize)))))) | |||
| 7742 | return false; | |||
| 7743 | ||||
| 7744 | // Check LValue and HValue are int with size less or equal than 32. | |||
| 7745 | if (!LValue->getType()->isIntegerTy() || | |||
| 7746 | DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || | |||
| 7747 | !HValue->getType()->isIntegerTy() || | |||
| 7748 | DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) | |||
| 7749 | return false; | |||
| 7750 | ||||
| 7751 | // If LValue/HValue is a bitcast instruction, use the EVT before bitcast | |||
| 7752 | // as the input of target query. | |||
| 7753 | auto *LBC = dyn_cast<BitCastInst>(LValue); | |||
| 7754 | auto *HBC = dyn_cast<BitCastInst>(HValue); | |||
| 7755 | EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) | |||
| 7756 | : EVT::getEVT(LValue->getType()); | |||
| 7757 | EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) | |||
| 7758 | : EVT::getEVT(HValue->getType()); | |||
| 7759 | if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) | |||
| 7760 | return false; | |||
| 7761 | ||||
| 7762 | // Start to split store. | |||
| 7763 | IRBuilder<> Builder(SI.getContext()); | |||
| 7764 | Builder.SetInsertPoint(&SI); | |||
| 7765 | ||||
| 7766 | // If LValue/HValue is a bitcast in another BB, create a new one in current | |||
| 7767 | // BB so it may be merged with the splitted stores by dag combiner. | |||
| 7768 | if (LBC && LBC->getParent() != SI.getParent()) | |||
| 7769 | LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); | |||
| 7770 | if (HBC && HBC->getParent() != SI.getParent()) | |||
| 7771 | HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); | |||
| 7772 | ||||
| 7773 | bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); | |||
| 7774 | auto CreateSplitStore = [&](Value *V, bool Upper) { | |||
| 7775 | V = Builder.CreateZExtOrBitCast(V, SplitStoreType); | |||
| 7776 | Value *Addr = Builder.CreateBitCast( | |||
| 7777 | SI.getOperand(1), | |||
| 7778 | SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); | |||
| 7779 | Align Alignment = SI.getAlign(); | |||
| 7780 | const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); | |||
| 7781 | if (IsOffsetStore) { | |||
| 7782 | Addr = Builder.CreateGEP( | |||
| 7783 | SplitStoreType, Addr, | |||
| 7784 | ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); | |||
| 7785 | ||||
| 7786 | // When splitting the store in half, naturally one half will retain the | |||
| 7787 | // alignment of the original wider store, regardless of whether it was | |||
| 7788 | // over-aligned or not, while the other will require adjustment. | |||
| 7789 | Alignment = commonAlignment(Alignment, HalfValBitSize / 8); | |||
| 7790 | } | |||
| 7791 | Builder.CreateAlignedStore(V, Addr, Alignment); | |||
| 7792 | }; | |||
| 7793 | ||||
| 7794 | CreateSplitStore(LValue, false); | |||
| 7795 | CreateSplitStore(HValue, true); | |||
| 7796 | ||||
| 7797 | // Delete the old store. | |||
| 7798 | SI.eraseFromParent(); | |||
| 7799 | return true; | |||
| 7800 | } | |||
| 7801 | ||||
| 7802 | // Return true if the GEP has two operands, the first operand is of a sequential | |||
| 7803 | // type, and the second operand is a constant. | |||
| 7804 | static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { | |||
| 7805 | gep_type_iterator I = gep_type_begin(*GEP); | |||
| 7806 | return GEP->getNumOperands() == 2 && I.isSequential() && | |||
| 7807 | isa<ConstantInt>(GEP->getOperand(1)); | |||
| 7808 | } | |||
| 7809 | ||||
| 7810 | // Try unmerging GEPs to reduce liveness interference (register pressure) across | |||
| 7811 | // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, | |||
| 7812 | // reducing liveness interference across those edges benefits global register | |||
| 7813 | // allocation. Currently handles only certain cases. | |||
| 7814 | // | |||
| 7815 | // For example, unmerge %GEPI and %UGEPI as below. | |||
| 7816 | // | |||
| 7817 | // ---------- BEFORE ---------- | |||
| 7818 | // SrcBlock: | |||
| 7819 | // ... | |||
| 7820 | // %GEPIOp = ... | |||
| 7821 | // ... | |||
| 7822 | // %GEPI = gep %GEPIOp, Idx | |||
| 7823 | // ... | |||
| 7824 | // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] | |||
| 7825 | // (* %GEPI is alive on the indirectbr edges due to other uses ahead) | |||
| 7826 | // (* %GEPIOp is alive on the indirectbr edges only because of it's used by | |||
| 7827 | // %UGEPI) | |||
| 7828 | // | |||
| 7829 | // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) | |||
| 7830 | // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) | |||
| 7831 | // ... | |||
| 7832 | // | |||
| 7833 | // DstBi: | |||
| 7834 | // ... | |||
| 7835 | // %UGEPI = gep %GEPIOp, UIdx | |||
| 7836 | // ... | |||
| 7837 | // --------------------------- | |||
| 7838 | // | |||
| 7839 | // ---------- AFTER ---------- | |||
| 7840 | // SrcBlock: | |||
| 7841 | // ... (same as above) | |||
| 7842 | // (* %GEPI is still alive on the indirectbr edges) | |||
| 7843 | // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the | |||
| 7844 | // unmerging) | |||
| 7845 | // ... | |||
| 7846 | // | |||
| 7847 | // DstBi: | |||
| 7848 | // ... | |||
| 7849 | // %UGEPI = gep %GEPI, (UIdx-Idx) | |||
| 7850 | // ... | |||
| 7851 | // --------------------------- | |||
| 7852 | // | |||
| 7853 | // The register pressure on the IndirectBr edges is reduced because %GEPIOp is | |||
| 7854 | // no longer alive on them. | |||
| 7855 | // | |||
| 7856 | // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging | |||
| 7857 | // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as | |||
| 7858 | // not to disable further simplications and optimizations as a result of GEP | |||
| 7859 | // merging. | |||
| 7860 | // | |||
| 7861 | // Note this unmerging may increase the length of the data flow critical path | |||
| 7862 | // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff | |||
| 7863 | // between the register pressure and the length of data-flow critical | |||
| 7864 | // path. Restricting this to the uncommon IndirectBr case would minimize the | |||
| 7865 | // impact of potentially longer critical path, if any, and the impact on compile | |||
| 7866 | // time. | |||
| 7867 | static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, | |||
| 7868 | const TargetTransformInfo *TTI) { | |||
| 7869 | BasicBlock *SrcBlock = GEPI->getParent(); | |||
| 7870 | // Check that SrcBlock ends with an IndirectBr. If not, give up. The common | |||
| 7871 | // (non-IndirectBr) cases exit early here. | |||
| 7872 | if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) | |||
| 7873 | return false; | |||
| 7874 | // Check that GEPI is a simple gep with a single constant index. | |||
| 7875 | if (!GEPSequentialConstIndexed(GEPI)) | |||
| 7876 | return false; | |||
| 7877 | ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); | |||
| 7878 | // Check that GEPI is a cheap one. | |||
| 7879 | if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), | |||
| 7880 | TargetTransformInfo::TCK_SizeAndLatency) > | |||
| 7881 | TargetTransformInfo::TCC_Basic) | |||
| 7882 | return false; | |||
| 7883 | Value *GEPIOp = GEPI->getOperand(0); | |||
| 7884 | // Check that GEPIOp is an instruction that's also defined in SrcBlock. | |||
| 7885 | if (!isa<Instruction>(GEPIOp)) | |||
| 7886 | return false; | |||
| 7887 | auto *GEPIOpI = cast<Instruction>(GEPIOp); | |||
| 7888 | if (GEPIOpI->getParent() != SrcBlock) | |||
| 7889 | return false; | |||
| 7890 | // Check that GEP is used outside the block, meaning it's alive on the | |||
| 7891 | // IndirectBr edge(s). | |||
| 7892 | if (llvm::none_of(GEPI->users(), [&](User *Usr) { | |||
| 7893 | if (auto *I = dyn_cast<Instruction>(Usr)) { | |||
| 7894 | if (I->getParent() != SrcBlock) { | |||
| 7895 | return true; | |||
| 7896 | } | |||
| 7897 | } | |||
| 7898 | return false; | |||
| 7899 | })) | |||
| 7900 | return false; | |||
| 7901 | // The second elements of the GEP chains to be unmerged. | |||
| 7902 | std::vector<GetElementPtrInst *> UGEPIs; | |||
| 7903 | // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive | |||
| 7904 | // on IndirectBr edges. | |||
| 7905 | for (User *Usr : GEPIOp->users()) { | |||
| 7906 | if (Usr == GEPI) | |||
| 7907 | continue; | |||
| 7908 | // Check if Usr is an Instruction. If not, give up. | |||
| 7909 | if (!isa<Instruction>(Usr)) | |||
| 7910 | return false; | |||
| 7911 | auto *UI = cast<Instruction>(Usr); | |||
| 7912 | // Check if Usr in the same block as GEPIOp, which is fine, skip. | |||
| 7913 | if (UI->getParent() == SrcBlock) | |||
| 7914 | continue; | |||
| 7915 | // Check if Usr is a GEP. If not, give up. | |||
| 7916 | if (!isa<GetElementPtrInst>(Usr)) | |||
| 7917 | return false; | |||
| 7918 | auto *UGEPI = cast<GetElementPtrInst>(Usr); | |||
| 7919 | // Check if UGEPI is a simple gep with a single constant index and GEPIOp is | |||
| 7920 | // the pointer operand to it. If so, record it in the vector. If not, give | |||
| 7921 | // up. | |||
| 7922 | if (!GEPSequentialConstIndexed(UGEPI)) | |||
| 7923 | return false; | |||
| 7924 | if (UGEPI->getOperand(0) != GEPIOp) | |||
| 7925 | return false; | |||
| 7926 | if (GEPIIdx->getType() != | |||
| 7927 | cast<ConstantInt>(UGEPI->getOperand(1))->getType()) | |||
| 7928 | return false; | |||
| 7929 | ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); | |||
| 7930 | if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), | |||
| 7931 | TargetTransformInfo::TCK_SizeAndLatency) > | |||
| 7932 | TargetTransformInfo::TCC_Basic) | |||
| 7933 | return false; | |||
| 7934 | UGEPIs.push_back(UGEPI); | |||
| 7935 | } | |||
| 7936 | if (UGEPIs.size() == 0) | |||
| 7937 | return false; | |||
| 7938 | // Check the materializing cost of (Uidx-Idx). | |||
| 7939 | for (GetElementPtrInst *UGEPI : UGEPIs) { | |||
| 7940 | ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); | |||
| 7941 | APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); | |||
| 7942 | InstructionCost ImmCost = TTI->getIntImmCost( | |||
| 7943 | NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); | |||
| 7944 | if (ImmCost > TargetTransformInfo::TCC_Basic) | |||
| 7945 | return false; | |||
| 7946 | } | |||
| 7947 | // Now unmerge between GEPI and UGEPIs. | |||
| 7948 | for (GetElementPtrInst *UGEPI : UGEPIs) { | |||
| 7949 | UGEPI->setOperand(0, GEPI); | |||
| 7950 | ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); | |||
| 7951 | Constant *NewUGEPIIdx = ConstantInt::get( | |||
| 7952 | GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); | |||
| 7953 | UGEPI->setOperand(1, NewUGEPIIdx); | |||
| 7954 | // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not | |||
| 7955 | // inbounds to avoid UB. | |||
| 7956 | if (!GEPI->isInBounds()) { | |||
| 7957 | UGEPI->setIsInBounds(false); | |||
| 7958 | } | |||
| 7959 | } | |||
| 7960 | // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not | |||
| 7961 | // alive on IndirectBr edges). | |||
| 7962 | assert(llvm::none_of(GEPIOp->users(),(static_cast <bool> (llvm::none_of(GEPIOp->users(), [ &](User *Usr) { return cast<Instruction>(Usr)->getParent () != SrcBlock; }) && "GEPIOp is used outside SrcBlock" ) ? void (0) : __assert_fail ("llvm::none_of(GEPIOp->users(), [&](User *Usr) { return cast<Instruction>(Usr)->getParent() != SrcBlock; }) && \"GEPIOp is used outside SrcBlock\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7966, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7963 | [&](User *Usr) {(static_cast <bool> (llvm::none_of(GEPIOp->users(), [ &](User *Usr) { return cast<Instruction>(Usr)->getParent () != SrcBlock; }) && "GEPIOp is used outside SrcBlock" ) ? void (0) : __assert_fail ("llvm::none_of(GEPIOp->users(), [&](User *Usr) { return cast<Instruction>(Usr)->getParent() != SrcBlock; }) && \"GEPIOp is used outside SrcBlock\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7966, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7964 | return cast<Instruction>(Usr)->getParent() != SrcBlock;(static_cast <bool> (llvm::none_of(GEPIOp->users(), [ &](User *Usr) { return cast<Instruction>(Usr)->getParent () != SrcBlock; }) && "GEPIOp is used outside SrcBlock" ) ? void (0) : __assert_fail ("llvm::none_of(GEPIOp->users(), [&](User *Usr) { return cast<Instruction>(Usr)->getParent() != SrcBlock; }) && \"GEPIOp is used outside SrcBlock\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7966, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7965 | }) &&(static_cast <bool> (llvm::none_of(GEPIOp->users(), [ &](User *Usr) { return cast<Instruction>(Usr)->getParent () != SrcBlock; }) && "GEPIOp is used outside SrcBlock" ) ? void (0) : __assert_fail ("llvm::none_of(GEPIOp->users(), [&](User *Usr) { return cast<Instruction>(Usr)->getParent() != SrcBlock; }) && \"GEPIOp is used outside SrcBlock\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7966, __extension__ __PRETTY_FUNCTION__ )) | |||
| 7966 | "GEPIOp is used outside SrcBlock")(static_cast <bool> (llvm::none_of(GEPIOp->users(), [ &](User *Usr) { return cast<Instruction>(Usr)->getParent () != SrcBlock; }) && "GEPIOp is used outside SrcBlock" ) ? void (0) : __assert_fail ("llvm::none_of(GEPIOp->users(), [&](User *Usr) { return cast<Instruction>(Usr)->getParent() != SrcBlock; }) && \"GEPIOp is used outside SrcBlock\"" , "llvm/lib/CodeGen/CodeGenPrepare.cpp", 7966, __extension__ __PRETTY_FUNCTION__ )); | |||
| 7967 | return true; | |||
| 7968 | } | |||
| 7969 | ||||
| 7970 | static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, | |||
| 7971 | SmallSet<BasicBlock *, 32> &FreshBBs, | |||
| 7972 | bool IsHugeFunc) { | |||
| 7973 | // Try and convert | |||
| 7974 | // %c = icmp ult %x, 8 | |||
| 7975 | // br %c, bla, blb | |||
| 7976 | // %tc = lshr %x, 3 | |||
| 7977 | // to | |||
| 7978 | // %tc = lshr %x, 3 | |||
| 7979 | // %c = icmp eq %tc, 0 | |||
| 7980 | // br %c, bla, blb | |||
| 7981 | // Creating the cmp to zero can be better for the backend, especially if the | |||
| 7982 | // lshr produces flags that can be used automatically. | |||
| 7983 | if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) | |||
| 7984 | return false; | |||
| 7985 | ||||
| 7986 | ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); | |||
| 7987 | if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) | |||
| 7988 | return false; | |||
| 7989 | ||||
| 7990 | Value *X = Cmp->getOperand(0); | |||
| 7991 | APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); | |||
| 7992 | ||||
| 7993 | for (auto *U : X->users()) { | |||
| 7994 | Instruction *UI = dyn_cast<Instruction>(U); | |||
| 7995 | // A quick dominance check | |||
| 7996 | if (!UI || | |||
| 7997 | (UI->getParent() != Branch->getParent() && | |||
| 7998 | UI->getParent() != Branch->getSuccessor(0) && | |||
| 7999 | UI->getParent() != Branch->getSuccessor(1)) || | |||
| 8000 | (UI->getParent() != Branch->getParent() && | |||
| 8001 | !UI->getParent()->getSinglePredecessor())) | |||
| 8002 | continue; | |||
| 8003 | ||||
| 8004 | if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && | |||
| 8005 | match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { | |||
| 8006 | IRBuilder<> Builder(Branch); | |||
| 8007 | if (UI->getParent() != Branch->getParent()) | |||
| 8008 | UI->moveBefore(Branch); | |||
| 8009 | Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, | |||
| 8010 | ConstantInt::get(UI->getType(), 0)); | |||
| 8011 | LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Converting " << * Cmp << "\n"; } } while (false); | |||
| 8012 | LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << " to compare on zero: " << *NewCmp << "\n"; } } while (false); | |||
| 8013 | replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); | |||
| 8014 | return true; | |||
| 8015 | } | |||
| 8016 | if (Cmp->isEquality() && | |||
| 8017 | (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || | |||
| 8018 | match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { | |||
| 8019 | IRBuilder<> Builder(Branch); | |||
| 8020 | if (UI->getParent() != Branch->getParent()) | |||
| 8021 | UI->moveBefore(Branch); | |||
| 8022 | Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, | |||
| 8023 | ConstantInt::get(UI->getType(), 0)); | |||
| 8024 | LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Converting " << * Cmp << "\n"; } } while (false); | |||
| 8025 | LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << " to compare on zero: " << *NewCmp << "\n"; } } while (false); | |||
| 8026 | replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); | |||
| 8027 | return true; | |||
| 8028 | } | |||
| 8029 | } | |||
| 8030 | return false; | |||
| 8031 | } | |||
| 8032 | ||||
| 8033 | bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { | |||
| 8034 | // Bail out if we inserted the instruction to prevent optimizations from | |||
| 8035 | // stepping on each other's toes. | |||
| 8036 | if (InsertedInsts.count(I)) | |||
| 8037 | return false; | |||
| 8038 | ||||
| 8039 | // TODO: Move into the switch on opcode below here. | |||
| 8040 | if (PHINode *P = dyn_cast<PHINode>(I)) { | |||
| 8041 | // It is possible for very late stage optimizations (such as SimplifyCFG) | |||
| 8042 | // to introduce PHI nodes too late to be cleaned up. If we detect such a | |||
| 8043 | // trivial PHI, go ahead and zap it here. | |||
| 8044 | if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { | |||
| 8045 | LargeOffsetGEPMap.erase(P); | |||
| 8046 | replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); | |||
| 8047 | P->eraseFromParent(); | |||
| 8048 | ++NumPHIsElim; | |||
| 8049 | return true; | |||
| 8050 | } | |||
| 8051 | return false; | |||
| 8052 | } | |||
| 8053 | ||||
| 8054 | if (CastInst *CI = dyn_cast<CastInst>(I)) { | |||
| 8055 | // If the source of the cast is a constant, then this should have | |||
| 8056 | // already been constant folded. The only reason NOT to constant fold | |||
| 8057 | // it is if something (e.g. LSR) was careful to place the constant | |||
| 8058 | // evaluation in a block other than then one that uses it (e.g. to hoist | |||
| 8059 | // the address of globals out of a loop). If this is the case, we don't | |||
| 8060 | // want to forward-subst the cast. | |||
| 8061 | if (isa<Constant>(CI->getOperand(0))) | |||
| 8062 | return false; | |||
| 8063 | ||||
| 8064 | if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) | |||
| 8065 | return true; | |||
| 8066 | ||||
| 8067 | if ((isa<UIToFPInst>(I) || isa<FPToUIInst>(I) || isa<TruncInst>(I)) && | |||
| 8068 | TLI->optimizeExtendOrTruncateConversion(I, | |||
| 8069 | LI->getLoopFor(I->getParent()))) | |||
| 8070 | return true; | |||
| 8071 | ||||
| 8072 | if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { | |||
| 8073 | /// Sink a zext or sext into its user blocks if the target type doesn't | |||
| 8074 | /// fit in one register | |||
| 8075 | if (TLI->getTypeAction(CI->getContext(), | |||
| 8076 | TLI->getValueType(*DL, CI->getType())) == | |||
| 8077 | TargetLowering::TypeExpandInteger) { | |||
| 8078 | return SinkCast(CI); | |||
| 8079 | } else { | |||
| 8080 | if (TLI->optimizeExtendOrTruncateConversion( | |||
| 8081 | I, LI->getLoopFor(I->getParent()))) | |||
| 8082 | return true; | |||
| 8083 | ||||
| 8084 | bool MadeChange = optimizeExt(I); | |||
| 8085 | return MadeChange | optimizeExtUses(I); | |||
| 8086 | } | |||
| 8087 | } | |||
| 8088 | return false; | |||
| 8089 | } | |||
| 8090 | ||||
| 8091 | if (auto *Cmp = dyn_cast<CmpInst>(I)) | |||
| 8092 | if (optimizeCmp(Cmp, ModifiedDT)) | |||
| 8093 | return true; | |||
| 8094 | ||||
| 8095 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | |||
| 8096 | LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); | |||
| 8097 | bool Modified = optimizeLoadExt(LI); | |||
| 8098 | unsigned AS = LI->getPointerAddressSpace(); | |||
| 8099 | Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); | |||
| 8100 | return Modified; | |||
| 8101 | } | |||
| 8102 | ||||
| 8103 | if (StoreInst *SI = dyn_cast<StoreInst>(I)) { | |||
| 8104 | if (splitMergedValStore(*SI, *DL, *TLI)) | |||
| 8105 | return true; | |||
| 8106 | SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); | |||
| 8107 | unsigned AS = SI->getPointerAddressSpace(); | |||
| 8108 | return optimizeMemoryInst(I, SI->getOperand(1), | |||
| 8109 | SI->getOperand(0)->getType(), AS); | |||
| 8110 | } | |||
| 8111 | ||||
| 8112 | if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { | |||
| 8113 | unsigned AS = RMW->getPointerAddressSpace(); | |||
| 8114 | return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); | |||
| 8115 | } | |||
| 8116 | ||||
| 8117 | if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { | |||
| 8118 | unsigned AS = CmpX->getPointerAddressSpace(); | |||
| 8119 | return optimizeMemoryInst(I, CmpX->getPointerOperand(), | |||
| 8120 | CmpX->getCompareOperand()->getType(), AS); | |||
| 8121 | } | |||
| 8122 | ||||
| 8123 | BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); | |||
| 8124 | ||||
| 8125 | if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && | |||
| 8126 | sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) | |||
| 8127 | return true; | |||
| 8128 | ||||
| 8129 | // TODO: Move this into the switch on opcode - it handles shifts already. | |||
| 8130 | if (BinOp && (BinOp->getOpcode() == Instruction::AShr || | |||
| 8131 | BinOp->getOpcode() == Instruction::LShr)) { | |||
| 8132 | ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); | |||
| 8133 | if (CI && TLI->hasExtractBitsInsn()) | |||
| 8134 | if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) | |||
| 8135 | return true; | |||
| 8136 | } | |||
| 8137 | ||||
| 8138 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { | |||
| 8139 | if (GEPI->hasAllZeroIndices()) { | |||
| 8140 | /// The GEP operand must be a pointer, so must its result -> BitCast | |||
| 8141 | Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), | |||
| 8142 | GEPI->getName(), GEPI); | |||
| 8143 | NC->setDebugLoc(GEPI->getDebugLoc()); | |||
| 8144 | replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); | |||
| 8145 | GEPI->eraseFromParent(); | |||
| 8146 | ++NumGEPsElim; | |||
| 8147 | optimizeInst(NC, ModifiedDT); | |||
| 8148 | return true; | |||
| 8149 | } | |||
| 8150 | if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { | |||
| 8151 | return true; | |||
| 8152 | } | |||
| 8153 | return false; | |||
| 8154 | } | |||
| 8155 | ||||
| 8156 | if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { | |||
| 8157 | // freeze(icmp a, const)) -> icmp (freeze a), const | |||
| 8158 | // This helps generate efficient conditional jumps. | |||
| 8159 | Instruction *CmpI = nullptr; | |||
| 8160 | if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) | |||
| 8161 | CmpI = II; | |||
| 8162 | else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) | |||
| 8163 | CmpI = F->getFastMathFlags().none() ? F : nullptr; | |||
| 8164 | ||||
| 8165 | if (CmpI && CmpI->hasOneUse()) { | |||
| 8166 | auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); | |||
| 8167 | bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || | |||
| 8168 | isa<ConstantPointerNull>(Op0); | |||
| 8169 | bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || | |||
| 8170 | isa<ConstantPointerNull>(Op1); | |||
| 8171 | if (Const0 || Const1) { | |||
| 8172 | if (!Const0 || !Const1) { | |||
| 8173 | auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); | |||
| 8174 | F->takeName(FI); | |||
| 8175 | CmpI->setOperand(Const0 ? 1 : 0, F); | |||
| 8176 | } | |||
| 8177 | replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); | |||
| 8178 | FI->eraseFromParent(); | |||
| 8179 | return true; | |||
| 8180 | } | |||
| 8181 | } | |||
| 8182 | return false; | |||
| 8183 | } | |||
| 8184 | ||||
| 8185 | if (tryToSinkFreeOperands(I)) | |||
| 8186 | return true; | |||
| 8187 | ||||
| 8188 | switch (I->getOpcode()) { | |||
| 8189 | case Instruction::Shl: | |||
| 8190 | case Instruction::LShr: | |||
| 8191 | case Instruction::AShr: | |||
| 8192 | return optimizeShiftInst(cast<BinaryOperator>(I)); | |||
| 8193 | case Instruction::Call: | |||
| 8194 | return optimizeCallInst(cast<CallInst>(I), ModifiedDT); | |||
| 8195 | case Instruction::Select: | |||
| 8196 | return optimizeSelectInst(cast<SelectInst>(I)); | |||
| 8197 | case Instruction::ShuffleVector: | |||
| 8198 | return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); | |||
| 8199 | case Instruction::Switch: | |||
| 8200 | return optimizeSwitchInst(cast<SwitchInst>(I)); | |||
| 8201 | case Instruction::ExtractElement: | |||
| 8202 | return optimizeExtractElementInst(cast<ExtractElementInst>(I)); | |||
| 8203 | case Instruction::Br: | |||
| 8204 | return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); | |||
| 8205 | } | |||
| 8206 | ||||
| 8207 | return false; | |||
| 8208 | } | |||
| 8209 | ||||
| 8210 | /// Given an OR instruction, check to see if this is a bitreverse | |||
| 8211 | /// idiom. If so, insert the new intrinsic and return true. | |||
| 8212 | bool CodeGenPrepare::makeBitReverse(Instruction &I) { | |||
| 8213 | if (!I.getType()->isIntegerTy() || | |||
| 8214 | !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, | |||
| 8215 | TLI->getValueType(*DL, I.getType(), true))) | |||
| 8216 | return false; | |||
| 8217 | ||||
| 8218 | SmallVector<Instruction *, 4> Insts; | |||
| 8219 | if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) | |||
| 8220 | return false; | |||
| 8221 | Instruction *LastInst = Insts.back(); | |||
| 8222 | replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); | |||
| 8223 | RecursivelyDeleteTriviallyDeadInstructions( | |||
| 8224 | &I, TLInfo, nullptr, | |||
| 8225 | [&](Value *V) { removeAllAssertingVHReferences(V); }); | |||
| 8226 | return true; | |||
| 8227 | } | |||
| 8228 | ||||
| 8229 | // In this pass we look for GEP and cast instructions that are used | |||
| 8230 | // across basic blocks and rewrite them to improve basic-block-at-a-time | |||
| 8231 | // selection. | |||
| 8232 | bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { | |||
| 8233 | SunkAddrs.clear(); | |||
| 8234 | bool MadeChange = false; | |||
| 8235 | ||||
| 8236 | do { | |||
| 8237 | CurInstIterator = BB.begin(); | |||
| 8238 | ModifiedDT = ModifyDT::NotModifyDT; | |||
| 8239 | while (CurInstIterator != BB.end()) { | |||
| 8240 | MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); | |||
| 8241 | if (ModifiedDT != ModifyDT::NotModifyDT) { | |||
| 8242 | // For huge function we tend to quickly go though the inner optmization | |||
| 8243 | // opportunities in the BB. So we go back to the BB head to re-optimize | |||
| 8244 | // each instruction instead of go back to the function head. | |||
| 8245 | if (IsHugeFunc) { | |||
| 8246 | DT.reset(); | |||
| 8247 | getDT(*BB.getParent()); | |||
| 8248 | break; | |||
| 8249 | } else { | |||
| 8250 | return true; | |||
| 8251 | } | |||
| 8252 | } | |||
| 8253 | } | |||
| 8254 | } while (ModifiedDT == ModifyDT::ModifyInstDT); | |||
| 8255 | ||||
| 8256 | bool MadeBitReverse = true; | |||
| 8257 | while (MadeBitReverse) { | |||
| 8258 | MadeBitReverse = false; | |||
| 8259 | for (auto &I : reverse(BB)) { | |||
| 8260 | if (makeBitReverse(I)) { | |||
| 8261 | MadeBitReverse = MadeChange = true; | |||
| 8262 | break; | |||
| 8263 | } | |||
| 8264 | } | |||
| 8265 | } | |||
| 8266 | MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); | |||
| 8267 | ||||
| 8268 | return MadeChange; | |||
| 8269 | } | |||
| 8270 | ||||
| 8271 | // Some CGP optimizations may move or alter what's computed in a block. Check | |||
| 8272 | // whether a dbg.value intrinsic could be pointed at a more appropriate operand. | |||
| 8273 | bool CodeGenPrepare::fixupDbgValue(Instruction *I) { | |||
| 8274 | assert(isa<DbgValueInst>(I))(static_cast <bool> (isa<DbgValueInst>(I)) ? void (0) : __assert_fail ("isa<DbgValueInst>(I)", "llvm/lib/CodeGen/CodeGenPrepare.cpp" , 8274, __extension__ __PRETTY_FUNCTION__)); | |||
| 8275 | DbgValueInst &DVI = *cast<DbgValueInst>(I); | |||
| 8276 | ||||
| 8277 | // Does this dbg.value refer to a sunk address calculation? | |||
| 8278 | bool AnyChange = false; | |||
| 8279 | SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), | |||
| 8280 | DVI.location_ops().end()); | |||
| 8281 | for (Value *Location : LocationOps) { | |||
| 8282 | WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; | |||
| 8283 | Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; | |||
| 8284 | if (SunkAddr) { | |||
| 8285 | // Point dbg.value at locally computed address, which should give the best | |||
| 8286 | // opportunity to be accurately lowered. This update may change the type | |||
| 8287 | // of pointer being referred to; however this makes no difference to | |||
| 8288 | // debugging information, and we can't generate bitcasts that may affect | |||
| 8289 | // codegen. | |||
| 8290 | DVI.replaceVariableLocationOp(Location, SunkAddr); | |||
| 8291 | AnyChange = true; | |||
| 8292 | } | |||
| 8293 | } | |||
| 8294 | return AnyChange; | |||
| 8295 | } | |||
| 8296 | ||||
| 8297 | // A llvm.dbg.value may be using a value before its definition, due to | |||
| 8298 | // optimizations in this pass and others. Scan for such dbg.values, and rescue | |||
| 8299 | // them by moving the dbg.value to immediately after the value definition. | |||
| 8300 | // FIXME: Ideally this should never be necessary, and this has the potential | |||
| 8301 | // to re-order dbg.value intrinsics. | |||
| 8302 | bool CodeGenPrepare::placeDbgValues(Function &F) { | |||
| 8303 | bool MadeChange = false; | |||
| 8304 | DominatorTree DT(F); | |||
| 8305 | ||||
| 8306 | for (BasicBlock &BB : F) { | |||
| 8307 | for (Instruction &Insn : llvm::make_early_inc_range(BB)) { | |||
| 8308 | DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); | |||
| 8309 | if (!DVI) | |||
| 8310 | continue; | |||
| 8311 | ||||
| 8312 | SmallVector<Instruction *, 4> VIs; | |||
| 8313 | for (Value *V : DVI->getValues()) | |||
| 8314 | if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) | |||
| 8315 | VIs.push_back(VI); | |||
| 8316 | ||||
| 8317 | // This DVI may depend on multiple instructions, complicating any | |||
| 8318 | // potential sink. This block takes the defensive approach, opting to | |||
| 8319 | // "undef" the DVI if it has more than one instruction and any of them do | |||
| 8320 | // not dominate DVI. | |||
| 8321 | for (Instruction *VI : VIs) { | |||
| 8322 | if (VI->isTerminator()) | |||
| 8323 | continue; | |||
| 8324 | ||||
| 8325 | // If VI is a phi in a block with an EHPad terminator, we can't insert | |||
| 8326 | // after it. | |||
| 8327 | if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) | |||
| 8328 | continue; | |||
| 8329 | ||||
| 8330 | // If the defining instruction dominates the dbg.value, we do not need | |||
| 8331 | // to move the dbg.value. | |||
| 8332 | if (DT.dominates(VI, DVI)) | |||
| 8333 | continue; | |||
| 8334 | ||||
| 8335 | // If we depend on multiple instructions and any of them doesn't | |||
| 8336 | // dominate this DVI, we probably can't salvage it: moving it to | |||
| 8337 | // after any of the instructions could cause us to lose the others. | |||
| 8338 | if (VIs.size() > 1) { | |||
| 8339 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Unable to find valid location for Debug Value, undefing:\n" << *DVI; } } while (false) | |||
| 8340 | dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Unable to find valid location for Debug Value, undefing:\n" << *DVI; } } while (false) | |||
| 8341 | << "Unable to find valid location for Debug Value, undefing:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Unable to find valid location for Debug Value, undefing:\n" << *DVI; } } while (false) | |||
| 8342 | << *DVI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Unable to find valid location for Debug Value, undefing:\n" << *DVI; } } while (false); | |||
| 8343 | DVI->setKillLocation(); | |||
| 8344 | break; | |||
| 8345 | } | |||
| 8346 | ||||
| 8347 | LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI; } } while (false) | |||
| 8348 | << *DVI << ' ' << *VI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI; } } while (false); | |||
| 8349 | DVI->removeFromParent(); | |||
| 8350 | if (isa<PHINode>(VI)) | |||
| 8351 | DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); | |||
| 8352 | else | |||
| 8353 | DVI->insertAfter(VI); | |||
| 8354 | MadeChange = true; | |||
| 8355 | ++NumDbgValueMoved; | |||
| 8356 | } | |||
| 8357 | } | |||
| 8358 | } | |||
| 8359 | return MadeChange; | |||
| 8360 | } | |||
| 8361 | ||||
| 8362 | // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered | |||
| 8363 | // probes can be chained dependencies of other regular DAG nodes and block DAG | |||
| 8364 | // combine optimizations. | |||
| 8365 | bool CodeGenPrepare::placePseudoProbes(Function &F) { | |||
| 8366 | bool MadeChange = false; | |||
| 8367 | for (auto &Block : F) { | |||
| 8368 | // Move the rest probes to the beginning of the block. | |||
| 8369 | auto FirstInst = Block.getFirstInsertionPt(); | |||
| 8370 | while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) | |||
| 8371 | ++FirstInst; | |||
| 8372 | BasicBlock::iterator I(FirstInst); | |||
| 8373 | I++; | |||
| 8374 | while (I != Block.end()) { | |||
| 8375 | if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { | |||
| 8376 | II->moveBefore(&*FirstInst); | |||
| 8377 | MadeChange = true; | |||
| 8378 | } | |||
| 8379 | } | |||
| 8380 | } | |||
| 8381 | return MadeChange; | |||
| 8382 | } | |||
| 8383 | ||||
| 8384 | /// Scale down both weights to fit into uint32_t. | |||
| 8385 | static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { | |||
| 8386 | uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; | |||
| 8387 | uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; | |||
| 8388 | NewTrue = NewTrue / Scale; | |||
| 8389 | NewFalse = NewFalse / Scale; | |||
| 8390 | } | |||
| 8391 | ||||
| 8392 | /// Some targets prefer to split a conditional branch like: | |||
| 8393 | /// \code | |||
| 8394 | /// %0 = icmp ne i32 %a, 0 | |||
| 8395 | /// %1 = icmp ne i32 %b, 0 | |||
| 8396 | /// %or.cond = or i1 %0, %1 | |||
| 8397 | /// br i1 %or.cond, label %TrueBB, label %FalseBB | |||
| 8398 | /// \endcode | |||
| 8399 | /// into multiple branch instructions like: | |||
| 8400 | /// \code | |||
| 8401 | /// bb1: | |||
| 8402 | /// %0 = icmp ne i32 %a, 0 | |||
| 8403 | /// br i1 %0, label %TrueBB, label %bb2 | |||
| 8404 | /// bb2: | |||
| 8405 | /// %1 = icmp ne i32 %b, 0 | |||
| 8406 | /// br i1 %1, label %TrueBB, label %FalseBB | |||
| 8407 | /// \endcode | |||
| 8408 | /// This usually allows instruction selection to do even further optimizations | |||
| 8409 | /// and combine the compare with the branch instruction. Currently this is | |||
| 8410 | /// applied for targets which have "cheap" jump instructions. | |||
| 8411 | /// | |||
| 8412 | /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. | |||
| 8413 | /// | |||
| 8414 | bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { | |||
| 8415 | if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) | |||
| 8416 | return false; | |||
| 8417 | ||||
| 8418 | bool MadeChange = false; | |||
| 8419 | for (auto &BB : F) { | |||
| 8420 | // Does this BB end with the following? | |||
| 8421 | // %cond1 = icmp|fcmp|binary instruction ... | |||
| 8422 | // %cond2 = icmp|fcmp|binary instruction ... | |||
| 8423 | // %cond.or = or|and i1 %cond1, cond2 | |||
| 8424 | // br i1 %cond.or label %dest1, label %dest2" | |||
| 8425 | Instruction *LogicOp; | |||
| 8426 | BasicBlock *TBB, *FBB; | |||
| 8427 | if (!match(BB.getTerminator(), | |||
| 8428 | m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) | |||
| 8429 | continue; | |||
| 8430 | ||||
| 8431 | auto *Br1 = cast<BranchInst>(BB.getTerminator()); | |||
| 8432 | if (Br1->getMetadata(LLVMContext::MD_unpredictable)) | |||
| 8433 | continue; | |||
| 8434 | ||||
| 8435 | // The merging of mostly empty BB can cause a degenerate branch. | |||
| 8436 | if (TBB == FBB) | |||
| 8437 | continue; | |||
| 8438 | ||||
| 8439 | unsigned Opc; | |||
| 8440 | Value *Cond1, *Cond2; | |||
| 8441 | if (match(LogicOp, | |||
| 8442 | m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) | |||
| 8443 | Opc = Instruction::And; | |||
| 8444 | else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), | |||
| 8445 | m_OneUse(m_Value(Cond2))))) | |||
| 8446 | Opc = Instruction::Or; | |||
| 8447 | else | |||
| 8448 | continue; | |||
| 8449 | ||||
| 8450 | auto IsGoodCond = [](Value *Cond) { | |||
| 8451 | return match( | |||
| 8452 | Cond, | |||
| 8453 | m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), | |||
| 8454 | m_LogicalOr(m_Value(), m_Value())))); | |||
| 8455 | }; | |||
| 8456 | if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) | |||
| 8457 | continue; | |||
| 8458 | ||||
| 8459 | LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "Before branch condition splitting\n" ; BB.dump(); } } while (false); | |||
| 8460 | ||||
| 8461 | // Create a new BB. | |||
| 8462 | auto *TmpBB = | |||
| 8463 | BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", | |||
| 8464 | BB.getParent(), BB.getNextNode()); | |||
| 8465 | if (IsHugeFunc) | |||
| 8466 | FreshBBs.insert(TmpBB); | |||
| 8467 | ||||
| 8468 | // Update original basic block by using the first condition directly by the | |||
| 8469 | // branch instruction and removing the no longer needed and/or instruction. | |||
| 8470 | Br1->setCondition(Cond1); | |||
| 8471 | LogicOp->eraseFromParent(); | |||
| 8472 | ||||
| 8473 | // Depending on the condition we have to either replace the true or the | |||
| 8474 | // false successor of the original branch instruction. | |||
| 8475 | if (Opc == Instruction::And) | |||
| 8476 | Br1->setSuccessor(0, TmpBB); | |||
| 8477 | else | |||
| 8478 | Br1->setSuccessor(1, TmpBB); | |||
| 8479 | ||||
| 8480 | // Fill in the new basic block. | |||
| 8481 | auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); | |||
| 8482 | if (auto *I = dyn_cast<Instruction>(Cond2)) { | |||
| 8483 | I->removeFromParent(); | |||
| 8484 | I->insertBefore(Br2); | |||
| 8485 | } | |||
| 8486 | ||||
| 8487 | // Update PHI nodes in both successors. The original BB needs to be | |||
| 8488 | // replaced in one successor's PHI nodes, because the branch comes now from | |||
| 8489 | // the newly generated BB (NewBB). In the other successor we need to add one | |||
| 8490 | // incoming edge to the PHI nodes, because both branch instructions target | |||
| 8491 | // now the same successor. Depending on the original branch condition | |||
| 8492 | // (and/or) we have to swap the successors (TrueDest, FalseDest), so that | |||
| 8493 | // we perform the correct update for the PHI nodes. | |||
| 8494 | // This doesn't change the successor order of the just created branch | |||
| 8495 | // instruction (or any other instruction). | |||
| 8496 | if (Opc == Instruction::Or) | |||
| 8497 | std::swap(TBB, FBB); | |||
| 8498 | ||||
| 8499 | // Replace the old BB with the new BB. | |||
| 8500 | TBB->replacePhiUsesWith(&BB, TmpBB); | |||
| 8501 | ||||
| 8502 | // Add another incoming edge from the new BB. | |||
| 8503 | for (PHINode &PN : FBB->phis()) { | |||
| 8504 | auto *Val = PN.getIncomingValueForBlock(&BB); | |||
| 8505 | PN.addIncoming(Val, TmpBB); | |||
| 8506 | } | |||
| 8507 | ||||
| 8508 | // Update the branch weights (from SelectionDAGBuilder:: | |||
| 8509 | // FindMergedConditions). | |||
| 8510 | if (Opc == Instruction::Or) { | |||
| 8511 | // Codegen X | Y as: | |||
| 8512 | // BB1: | |||
| 8513 | // jmp_if_X TBB | |||
| 8514 | // jmp TmpBB | |||
| 8515 | // TmpBB: | |||
| 8516 | // jmp_if_Y TBB | |||
| 8517 | // jmp FBB | |||
| 8518 | // | |||
| 8519 | ||||
| 8520 | // We have flexibility in setting Prob for BB1 and Prob for NewBB. | |||
| 8521 | // The requirement is that | |||
| 8522 | // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) | |||
| 8523 | // = TrueProb for original BB. | |||
| 8524 | // Assuming the original weights are A and B, one choice is to set BB1's | |||
| 8525 | // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice | |||
| 8526 | // assumes that | |||
| 8527 | // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. | |||
| 8528 | // Another choice is to assume TrueProb for BB1 equals to TrueProb for | |||
| 8529 | // TmpBB, but the math is more complicated. | |||
| 8530 | uint64_t TrueWeight, FalseWeight; | |||
| 8531 | if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { | |||
| 8532 | uint64_t NewTrueWeight = TrueWeight; | |||
| 8533 | uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; | |||
| 8534 | scaleWeights(NewTrueWeight, NewFalseWeight); | |||
| 8535 | Br1->setMetadata(LLVMContext::MD_prof, | |||
| 8536 | MDBuilder(Br1->getContext()) | |||
| 8537 | .createBranchWeights(TrueWeight, FalseWeight)); | |||
| 8538 | ||||
| 8539 | NewTrueWeight = TrueWeight; | |||
| 8540 | NewFalseWeight = 2 * FalseWeight; | |||
| 8541 | scaleWeights(NewTrueWeight, NewFalseWeight); | |||
| 8542 | Br2->setMetadata(LLVMContext::MD_prof, | |||
| 8543 | MDBuilder(Br2->getContext()) | |||
| 8544 | .createBranchWeights(TrueWeight, FalseWeight)); | |||
| 8545 | } | |||
| 8546 | } else { | |||
| 8547 | // Codegen X & Y as: | |||
| 8548 | // BB1: | |||
| 8549 | // jmp_if_X TmpBB | |||
| 8550 | // jmp FBB | |||
| 8551 | // TmpBB: | |||
| 8552 | // jmp_if_Y TBB | |||
| 8553 | // jmp FBB | |||
| 8554 | // | |||
| 8555 | // This requires creation of TmpBB after CurBB. | |||
| 8556 | ||||
| 8557 | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. | |||
| 8558 | // The requirement is that | |||
| 8559 | // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) | |||
| 8560 | // = FalseProb for original BB. | |||
| 8561 | // Assuming the original weights are A and B, one choice is to set BB1's | |||
| 8562 | // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice | |||
| 8563 | // assumes that | |||
| 8564 | // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. | |||
| 8565 | uint64_t TrueWeight, FalseWeight; | |||
| 8566 | if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { | |||
| 8567 | uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; | |||
| 8568 | uint64_t NewFalseWeight = FalseWeight; | |||
| 8569 | scaleWeights(NewTrueWeight, NewFalseWeight); | |||
| 8570 | Br1->setMetadata(LLVMContext::MD_prof, | |||
| 8571 | MDBuilder(Br1->getContext()) | |||
| 8572 | .createBranchWeights(TrueWeight, FalseWeight)); | |||
| 8573 | ||||
| 8574 | NewTrueWeight = 2 * TrueWeight; | |||
| 8575 | NewFalseWeight = FalseWeight; | |||
| 8576 | scaleWeights(NewTrueWeight, NewFalseWeight); | |||
| 8577 | Br2->setMetadata(LLVMContext::MD_prof, | |||
| 8578 | MDBuilder(Br2->getContext()) | |||
| 8579 | .createBranchWeights(TrueWeight, FalseWeight)); | |||
| 8580 | } | |||
| 8581 | } | |||
| 8582 | ||||
| 8583 | ModifiedDT = ModifyDT::ModifyBBDT; | |||
| 8584 | MadeChange = true; | |||
| 8585 | ||||
| 8586 | LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "After branch condition splitting\n" ; BB.dump(); TmpBB->dump(); } } while (false) | |||
| 8587 | TmpBB->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("codegenprepare")) { dbgs() << "After branch condition splitting\n" ; BB.dump(); TmpBB->dump(); } } while (false); | |||
| 8588 | } | |||
| 8589 | return MadeChange; | |||
| 8590 | } |