Bug Summary

File:llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
Warning:line 3656, column 50
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CombinerHelper.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen/GlobalISel -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen/GlobalISel -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/CodeGen/GlobalISel -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/CodeGen/GlobalISel -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
1//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9#include "llvm/ADT/SetVector.h"
10#include "llvm/ADT/SmallBitVector.h"
11#include "llvm/CodeGen/GlobalISel/Combiner.h"
12#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
13#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
14#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
15#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
16#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
17#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
19#include "llvm/CodeGen/GlobalISel/Utils.h"
20#include "llvm/CodeGen/LowLevelType.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineMemOperand.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetInstrInfo.h"
28#include "llvm/CodeGen/TargetLowering.h"
29#include "llvm/CodeGen/TargetOpcodes.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Target/TargetMachine.h"
32#include <tuple>
33
34#define DEBUG_TYPE"gi-combiner" "gi-combiner"
35
36using namespace llvm;
37using namespace MIPatternMatch;
38
39// Option to allow testing of the combiner while no targets know about indexed
40// addressing.
41static cl::opt<bool>
42 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
43 cl::desc("Force all indexed operations to be "
44 "legal for the GlobalISel combiner"));
45
46CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
47 MachineIRBuilder &B, GISelKnownBits *KB,
48 MachineDominatorTree *MDT,
49 const LegalizerInfo *LI)
50 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
51 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
52 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
53 (void)this->KB;
54}
55
56const TargetLowering &CombinerHelper::getTargetLowering() const {
57 return *Builder.getMF().getSubtarget().getTargetLowering();
58}
59
60/// \returns The little endian in-memory byte position of byte \p I in a
61/// \p ByteWidth bytes wide type.
62///
63/// E.g. Given a 4-byte type x, x[0] -> byte 0
64static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
65 assert(I < ByteWidth && "I must be in [0, ByteWidth)")(static_cast<void> (0));
66 return I;
67}
68
69/// \returns The big endian in-memory byte position of byte \p I in a
70/// \p ByteWidth bytes wide type.
71///
72/// E.g. Given a 4-byte type x, x[0] -> byte 3
73static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
74 assert(I < ByteWidth && "I must be in [0, ByteWidth)")(static_cast<void> (0));
75 return ByteWidth - I - 1;
76}
77
78/// Given a map from byte offsets in memory to indices in a load/store,
79/// determine if that map corresponds to a little or big endian byte pattern.
80///
81/// \param MemOffset2Idx maps memory offsets to address offsets.
82/// \param LowestIdx is the lowest index in \p MemOffset2Idx.
83///
84/// \returns true if the map corresponds to a big endian byte pattern, false
85/// if it corresponds to a little endian byte pattern, and None otherwise.
86///
87/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
88/// are as follows:
89///
90/// AddrOffset Little endian Big endian
91/// 0 0 3
92/// 1 1 2
93/// 2 2 1
94/// 3 3 0
95static Optional<bool>
96isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
97 int64_t LowestIdx) {
98 // Need at least two byte positions to decide on endianness.
99 unsigned Width = MemOffset2Idx.size();
100 if (Width < 2)
101 return None;
102 bool BigEndian = true, LittleEndian = true;
103 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
104 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
105 if (MemOffsetAndIdx == MemOffset2Idx.end())
106 return None;
107 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
108 assert(Idx >= 0 && "Expected non-negative byte offset?")(static_cast<void> (0));
109 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
110 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
111 if (!BigEndian && !LittleEndian)
112 return None;
113 }
114
115 assert((BigEndian != LittleEndian) &&(static_cast<void> (0))
116 "Pattern cannot be both big and little endian!")(static_cast<void> (0));
117 return BigEndian;
118}
119
120bool CombinerHelper::isLegalOrBeforeLegalizer(
121 const LegalityQuery &Query) const {
122 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal;
123}
124
125void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
126 Register ToReg) const {
127 Observer.changingAllUsesOfReg(MRI, FromReg);
128
129 if (MRI.constrainRegAttrs(ToReg, FromReg))
130 MRI.replaceRegWith(FromReg, ToReg);
131 else
132 Builder.buildCopy(ToReg, FromReg);
133
134 Observer.finishedChangingAllUsesOfReg();
135}
136
137void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
138 MachineOperand &FromRegOp,
139 Register ToReg) const {
140 assert(FromRegOp.getParent() && "Expected an operand in an MI")(static_cast<void> (0));
141 Observer.changingInstr(*FromRegOp.getParent());
142
143 FromRegOp.setReg(ToReg);
144
145 Observer.changedInstr(*FromRegOp.getParent());
146}
147
148const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
149 return RBI->getRegBank(Reg, MRI, *TRI);
150}
151
152void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
153 if (RegBank)
154 MRI.setRegBank(Reg, *RegBank);
155}
156
157bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
158 if (matchCombineCopy(MI)) {
159 applyCombineCopy(MI);
160 return true;
161 }
162 return false;
163}
164bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
165 if (MI.getOpcode() != TargetOpcode::COPY)
166 return false;
167 Register DstReg = MI.getOperand(0).getReg();
168 Register SrcReg = MI.getOperand(1).getReg();
169 return canReplaceReg(DstReg, SrcReg, MRI);
170}
171void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
172 Register DstReg = MI.getOperand(0).getReg();
173 Register SrcReg = MI.getOperand(1).getReg();
174 MI.eraseFromParent();
175 replaceRegWith(MRI, DstReg, SrcReg);
176}
177
178bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
179 bool IsUndef = false;
180 SmallVector<Register, 4> Ops;
181 if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
182 applyCombineConcatVectors(MI, IsUndef, Ops);
183 return true;
184 }
185 return false;
186}
187
188bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
189 SmallVectorImpl<Register> &Ops) {
190 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&(static_cast<void> (0))
191 "Invalid instruction")(static_cast<void> (0));
192 IsUndef = true;
193 MachineInstr *Undef = nullptr;
194
195 // Walk over all the operands of concat vectors and check if they are
196 // build_vector themselves or undef.
197 // Then collect their operands in Ops.
198 for (const MachineOperand &MO : MI.uses()) {
199 Register Reg = MO.getReg();
200 MachineInstr *Def = MRI.getVRegDef(Reg);
201 assert(Def && "Operand not defined")(static_cast<void> (0));
202 switch (Def->getOpcode()) {
203 case TargetOpcode::G_BUILD_VECTOR:
204 IsUndef = false;
205 // Remember the operands of the build_vector to fold
206 // them into the yet-to-build flattened concat vectors.
207 for (const MachineOperand &BuildVecMO : Def->uses())
208 Ops.push_back(BuildVecMO.getReg());
209 break;
210 case TargetOpcode::G_IMPLICIT_DEF: {
211 LLT OpType = MRI.getType(Reg);
212 // Keep one undef value for all the undef operands.
213 if (!Undef) {
214 Builder.setInsertPt(*MI.getParent(), MI);
215 Undef = Builder.buildUndef(OpType.getScalarType());
216 }
217 assert(MRI.getType(Undef->getOperand(0).getReg()) ==(static_cast<void> (0))
218 OpType.getScalarType() &&(static_cast<void> (0))
219 "All undefs should have the same type")(static_cast<void> (0));
220 // Break the undef vector in as many scalar elements as needed
221 // for the flattening.
222 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
223 EltIdx != EltEnd; ++EltIdx)
224 Ops.push_back(Undef->getOperand(0).getReg());
225 break;
226 }
227 default:
228 return false;
229 }
230 }
231 return true;
232}
233void CombinerHelper::applyCombineConcatVectors(
234 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
235 // We determined that the concat_vectors can be flatten.
236 // Generate the flattened build_vector.
237 Register DstReg = MI.getOperand(0).getReg();
238 Builder.setInsertPt(*MI.getParent(), MI);
239 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
240
241 // Note: IsUndef is sort of redundant. We could have determine it by
242 // checking that at all Ops are undef. Alternatively, we could have
243 // generate a build_vector of undefs and rely on another combine to
244 // clean that up. For now, given we already gather this information
245 // in tryCombineConcatVectors, just save compile time and issue the
246 // right thing.
247 if (IsUndef)
248 Builder.buildUndef(NewDstReg);
249 else
250 Builder.buildBuildVector(NewDstReg, Ops);
251 MI.eraseFromParent();
252 replaceRegWith(MRI, DstReg, NewDstReg);
253}
254
255bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
256 SmallVector<Register, 4> Ops;
257 if (matchCombineShuffleVector(MI, Ops)) {
258 applyCombineShuffleVector(MI, Ops);
259 return true;
260 }
261 return false;
262}
263
264bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
265 SmallVectorImpl<Register> &Ops) {
266 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&(static_cast<void> (0))
267 "Invalid instruction kind")(static_cast<void> (0));
268 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
269 Register Src1 = MI.getOperand(1).getReg();
270 LLT SrcType = MRI.getType(Src1);
271 // As bizarre as it may look, shuffle vector can actually produce
272 // scalar! This is because at the IR level a <1 x ty> shuffle
273 // vector is perfectly valid.
274 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
275 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
276
277 // If the resulting vector is smaller than the size of the source
278 // vectors being concatenated, we won't be able to replace the
279 // shuffle vector into a concat_vectors.
280 //
281 // Note: We may still be able to produce a concat_vectors fed by
282 // extract_vector_elt and so on. It is less clear that would
283 // be better though, so don't bother for now.
284 //
285 // If the destination is a scalar, the size of the sources doesn't
286 // matter. we will lower the shuffle to a plain copy. This will
287 // work only if the source and destination have the same size. But
288 // that's covered by the next condition.
289 //
290 // TODO: If the size between the source and destination don't match
291 // we could still emit an extract vector element in that case.
292 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
293 return false;
294
295 // Check that the shuffle mask can be broken evenly between the
296 // different sources.
297 if (DstNumElts % SrcNumElts != 0)
298 return false;
299
300 // Mask length is a multiple of the source vector length.
301 // Check if the shuffle is some kind of concatenation of the input
302 // vectors.
303 unsigned NumConcat = DstNumElts / SrcNumElts;
304 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
305 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
306 for (unsigned i = 0; i != DstNumElts; ++i) {
307 int Idx = Mask[i];
308 // Undef value.
309 if (Idx < 0)
310 continue;
311 // Ensure the indices in each SrcType sized piece are sequential and that
312 // the same source is used for the whole piece.
313 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
314 (ConcatSrcs[i / SrcNumElts] >= 0 &&
315 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
316 return false;
317 // Remember which source this index came from.
318 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
319 }
320
321 // The shuffle is concatenating multiple vectors together.
322 // Collect the different operands for that.
323 Register UndefReg;
324 Register Src2 = MI.getOperand(2).getReg();
325 for (auto Src : ConcatSrcs) {
326 if (Src < 0) {
327 if (!UndefReg) {
328 Builder.setInsertPt(*MI.getParent(), MI);
329 UndefReg = Builder.buildUndef(SrcType).getReg(0);
330 }
331 Ops.push_back(UndefReg);
332 } else if (Src == 0)
333 Ops.push_back(Src1);
334 else
335 Ops.push_back(Src2);
336 }
337 return true;
338}
339
340void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
341 const ArrayRef<Register> Ops) {
342 Register DstReg = MI.getOperand(0).getReg();
343 Builder.setInsertPt(*MI.getParent(), MI);
344 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
345
346 if (Ops.size() == 1)
347 Builder.buildCopy(NewDstReg, Ops[0]);
348 else
349 Builder.buildMerge(NewDstReg, Ops);
350
351 MI.eraseFromParent();
352 replaceRegWith(MRI, DstReg, NewDstReg);
353}
354
355namespace {
356
357/// Select a preference between two uses. CurrentUse is the current preference
358/// while *ForCandidate is attributes of the candidate under consideration.
359PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
360 const LLT TyForCandidate,
361 unsigned OpcodeForCandidate,
362 MachineInstr *MIForCandidate) {
363 if (!CurrentUse.Ty.isValid()) {
364 if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
365 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
366 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
367 return CurrentUse;
368 }
369
370 // We permit the extend to hoist through basic blocks but this is only
371 // sensible if the target has extending loads. If you end up lowering back
372 // into a load and extend during the legalizer then the end result is
373 // hoisting the extend up to the load.
374
375 // Prefer defined extensions to undefined extensions as these are more
376 // likely to reduce the number of instructions.
377 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
378 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
379 return CurrentUse;
380 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
381 OpcodeForCandidate != TargetOpcode::G_ANYEXT)
382 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
383
384 // Prefer sign extensions to zero extensions as sign-extensions tend to be
385 // more expensive.
386 if (CurrentUse.Ty == TyForCandidate) {
387 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
388 OpcodeForCandidate == TargetOpcode::G_ZEXT)
389 return CurrentUse;
390 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
391 OpcodeForCandidate == TargetOpcode::G_SEXT)
392 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
393 }
394
395 // This is potentially target specific. We've chosen the largest type
396 // because G_TRUNC is usually free. One potential catch with this is that
397 // some targets have a reduced number of larger registers than smaller
398 // registers and this choice potentially increases the live-range for the
399 // larger value.
400 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
401 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
402 }
403 return CurrentUse;
404}
405
406/// Find a suitable place to insert some instructions and insert them. This
407/// function accounts for special cases like inserting before a PHI node.
408/// The current strategy for inserting before PHI's is to duplicate the
409/// instructions for each predecessor. However, while that's ok for G_TRUNC
410/// on most targets since it generally requires no code, other targets/cases may
411/// want to try harder to find a dominating block.
412static void InsertInsnsWithoutSideEffectsBeforeUse(
413 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
414 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
415 MachineOperand &UseMO)>
416 Inserter) {
417 MachineInstr &UseMI = *UseMO.getParent();
418
419 MachineBasicBlock *InsertBB = UseMI.getParent();
420
421 // If the use is a PHI then we want the predecessor block instead.
422 if (UseMI.isPHI()) {
423 MachineOperand *PredBB = std::next(&UseMO);
424 InsertBB = PredBB->getMBB();
425 }
426
427 // If the block is the same block as the def then we want to insert just after
428 // the def instead of at the start of the block.
429 if (InsertBB == DefMI.getParent()) {
430 MachineBasicBlock::iterator InsertPt = &DefMI;
431 Inserter(InsertBB, std::next(InsertPt), UseMO);
432 return;
433 }
434
435 // Otherwise we want the start of the BB
436 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
437}
438} // end anonymous namespace
439
440bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
441 PreferredTuple Preferred;
442 if (matchCombineExtendingLoads(MI, Preferred)) {
443 applyCombineExtendingLoads(MI, Preferred);
444 return true;
445 }
446 return false;
447}
448
449bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
450 PreferredTuple &Preferred) {
451 // We match the loads and follow the uses to the extend instead of matching
452 // the extends and following the def to the load. This is because the load
453 // must remain in the same position for correctness (unless we also add code
454 // to find a safe place to sink it) whereas the extend is freely movable.
455 // It also prevents us from duplicating the load for the volatile case or just
456 // for performance.
457 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
458 if (!LoadMI)
459 return false;
460
461 Register LoadReg = LoadMI->getDstReg();
462
463 LLT LoadValueTy = MRI.getType(LoadReg);
464 if (!LoadValueTy.isScalar())
465 return false;
466
467 // Most architectures are going to legalize <s8 loads into at least a 1 byte
468 // load, and the MMOs can only describe memory accesses in multiples of bytes.
469 // If we try to perform extload combining on those, we can end up with
470 // %a(s8) = extload %ptr (load 1 byte from %ptr)
471 // ... which is an illegal extload instruction.
472 if (LoadValueTy.getSizeInBits() < 8)
473 return false;
474
475 // For non power-of-2 types, they will very likely be legalized into multiple
476 // loads. Don't bother trying to match them into extending loads.
477 if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
478 return false;
479
480 // Find the preferred type aside from the any-extends (unless it's the only
481 // one) and non-extending ops. We'll emit an extending load to that type and
482 // and emit a variant of (extend (trunc X)) for the others according to the
483 // relative type sizes. At the same time, pick an extend to use based on the
484 // extend involved in the chosen type.
485 unsigned PreferredOpcode =
486 isa<GLoad>(&MI)
487 ? TargetOpcode::G_ANYEXT
488 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
489 Preferred = {LLT(), PreferredOpcode, nullptr};
490 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
491 if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
492 UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
493 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
494 const auto &MMO = LoadMI->getMMO();
495 // For atomics, only form anyextending loads.
496 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
497 continue;
498 // Check for legality.
499 if (LI) {
500 LegalityQuery::MemDesc MMDesc(MMO);
501 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
502 LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
503 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}})
504 .Action != LegalizeActions::Legal)
505 continue;
506 }
507 Preferred = ChoosePreferredUse(Preferred,
508 MRI.getType(UseMI.getOperand(0).getReg()),
509 UseMI.getOpcode(), &UseMI);
510 }
511 }
512
513 // There were no extends
514 if (!Preferred.MI)
515 return false;
516 // It should be impossible to chose an extend without selecting a different
517 // type since by definition the result of an extend is larger.
518 assert(Preferred.Ty != LoadValueTy && "Extending to same type?")(static_cast<void> (0));
519
520 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI)do { } while (false);
521 return true;
522}
523
524void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
525 PreferredTuple &Preferred) {
526 // Rewrite the load to the chosen extending load.
527 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
528
529 // Inserter to insert a truncate back to the original type at a given point
530 // with some basic CSE to limit truncate duplication to one per BB.
531 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
532 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
533 MachineBasicBlock::iterator InsertBefore,
534 MachineOperand &UseMO) {
535 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
536 if (PreviouslyEmitted) {
537 Observer.changingInstr(*UseMO.getParent());
538 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
539 Observer.changedInstr(*UseMO.getParent());
540 return;
541 }
542
543 Builder.setInsertPt(*InsertIntoBB, InsertBefore);
544 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
545 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
546 EmittedInsns[InsertIntoBB] = NewMI;
547 replaceRegOpWith(MRI, UseMO, NewDstReg);
548 };
549
550 Observer.changingInstr(MI);
551 MI.setDesc(
552 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
553 ? TargetOpcode::G_SEXTLOAD
554 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
555 ? TargetOpcode::G_ZEXTLOAD
556 : TargetOpcode::G_LOAD));
557
558 // Rewrite all the uses to fix up the types.
559 auto &LoadValue = MI.getOperand(0);
560 SmallVector<MachineOperand *, 4> Uses;
561 for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
562 Uses.push_back(&UseMO);
563
564 for (auto *UseMO : Uses) {
565 MachineInstr *UseMI = UseMO->getParent();
566
567 // If the extend is compatible with the preferred extend then we should fix
568 // up the type and extend so that it uses the preferred use.
569 if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
570 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
571 Register UseDstReg = UseMI->getOperand(0).getReg();
572 MachineOperand &UseSrcMO = UseMI->getOperand(1);
573 const LLT UseDstTy = MRI.getType(UseDstReg);
574 if (UseDstReg != ChosenDstReg) {
575 if (Preferred.Ty == UseDstTy) {
576 // If the use has the same type as the preferred use, then merge
577 // the vregs and erase the extend. For example:
578 // %1:_(s8) = G_LOAD ...
579 // %2:_(s32) = G_SEXT %1(s8)
580 // %3:_(s32) = G_ANYEXT %1(s8)
581 // ... = ... %3(s32)
582 // rewrites to:
583 // %2:_(s32) = G_SEXTLOAD ...
584 // ... = ... %2(s32)
585 replaceRegWith(MRI, UseDstReg, ChosenDstReg);
586 Observer.erasingInstr(*UseMO->getParent());
587 UseMO->getParent()->eraseFromParent();
588 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
589 // If the preferred size is smaller, then keep the extend but extend
590 // from the result of the extending load. For example:
591 // %1:_(s8) = G_LOAD ...
592 // %2:_(s32) = G_SEXT %1(s8)
593 // %3:_(s64) = G_ANYEXT %1(s8)
594 // ... = ... %3(s64)
595 /// rewrites to:
596 // %2:_(s32) = G_SEXTLOAD ...
597 // %3:_(s64) = G_ANYEXT %2:_(s32)
598 // ... = ... %3(s64)
599 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
600 } else {
601 // If the preferred size is large, then insert a truncate. For
602 // example:
603 // %1:_(s8) = G_LOAD ...
604 // %2:_(s64) = G_SEXT %1(s8)
605 // %3:_(s32) = G_ZEXT %1(s8)
606 // ... = ... %3(s32)
607 /// rewrites to:
608 // %2:_(s64) = G_SEXTLOAD ...
609 // %4:_(s8) = G_TRUNC %2:_(s32)
610 // %3:_(s64) = G_ZEXT %2:_(s8)
611 // ... = ... %3(s64)
612 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
613 InsertTruncAt);
614 }
615 continue;
616 }
617 // The use is (one of) the uses of the preferred use we chose earlier.
618 // We're going to update the load to def this value later so just erase
619 // the old extend.
620 Observer.erasingInstr(*UseMO->getParent());
621 UseMO->getParent()->eraseFromParent();
622 continue;
623 }
624
625 // The use isn't an extend. Truncate back to the type we originally loaded.
626 // This is free on many targets.
627 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
628 }
629
630 MI.getOperand(0).setReg(ChosenDstReg);
631 Observer.changedInstr(MI);
632}
633
634bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
635 const MachineInstr &UseMI) {
636 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&(static_cast<void> (0))
637 "shouldn't consider debug uses")(static_cast<void> (0));
638 assert(DefMI.getParent() == UseMI.getParent())(static_cast<void> (0));
639 if (&DefMI == &UseMI)
640 return false;
641 const MachineBasicBlock &MBB = *DefMI.getParent();
642 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
643 return &MI == &DefMI || &MI == &UseMI;
644 });
645 if (DefOrUse == MBB.end())
646 llvm_unreachable("Block must contain both DefMI and UseMI!")__builtin_unreachable();
647 return &*DefOrUse == &DefMI;
648}
649
650bool CombinerHelper::dominates(const MachineInstr &DefMI,
651 const MachineInstr &UseMI) {
652 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&(static_cast<void> (0))
653 "shouldn't consider debug uses")(static_cast<void> (0));
654 if (MDT)
655 return MDT->dominates(&DefMI, &UseMI);
656 else if (DefMI.getParent() != UseMI.getParent())
657 return false;
658
659 return isPredecessor(DefMI, UseMI);
660}
661
662bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
663 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast<void> (0));
664 Register SrcReg = MI.getOperand(1).getReg();
665 Register LoadUser = SrcReg;
666
667 if (MRI.getType(SrcReg).isVector())
668 return false;
669
670 Register TruncSrc;
671 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
672 LoadUser = TruncSrc;
673
674 uint64_t SizeInBits = MI.getOperand(2).getImm();
675 // If the source is a G_SEXTLOAD from the same bit width, then we don't
676 // need any extend at all, just a truncate.
677 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
678 // If truncating more than the original extended value, abort.
679 auto LoadSizeBits = LoadMI->getMemSizeInBits();
680 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
681 return false;
682 if (LoadSizeBits == SizeInBits)
683 return true;
684 }
685 return false;
686}
687
688void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
689 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast<void> (0));
690 Builder.setInstrAndDebugLoc(MI);
691 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
692 MI.eraseFromParent();
693}
694
695bool CombinerHelper::matchSextInRegOfLoad(
696 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
697 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast<void> (0));
698
699 // Only supports scalars for now.
700 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
701 return false;
702
703 Register SrcReg = MI.getOperand(1).getReg();
704 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
705 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) ||
706 !LoadDef->isSimple())
707 return false;
708
709 // If the sign extend extends from a narrower width than the load's width,
710 // then we can narrow the load width when we combine to a G_SEXTLOAD.
711 // Avoid widening the load at all.
712 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(),
713 LoadDef->getMemSizeInBits());
714
715 // Don't generate G_SEXTLOADs with a < 1 byte width.
716 if (NewSizeBits < 8)
717 return false;
718 // Don't bother creating a non-power-2 sextload, it will likely be broken up
719 // anyway for most targets.
720 if (!isPowerOf2_32(NewSizeBits))
721 return false;
722
723 const MachineMemOperand &MMO = LoadDef->getMMO();
724 LegalityQuery::MemDesc MMDesc(MMO);
725 MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
726 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
727 {MRI.getType(LoadDef->getDstReg()),
728 MRI.getType(LoadDef->getPointerReg())},
729 {MMDesc}}))
730 return false;
731
732 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
733 return true;
734}
735
736void CombinerHelper::applySextInRegOfLoad(
737 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
738 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast<void> (0));
739 Register LoadReg;
740 unsigned ScalarSizeBits;
741 std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
742 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
743
744 // If we have the following:
745 // %ld = G_LOAD %ptr, (load 2)
746 // %ext = G_SEXT_INREG %ld, 8
747 // ==>
748 // %ld = G_SEXTLOAD %ptr (load 1)
749
750 auto &MMO = LoadDef->getMMO();
751 Builder.setInstrAndDebugLoc(*LoadDef);
752 auto &MF = Builder.getMF();
753 auto PtrInfo = MMO.getPointerInfo();
754 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
755 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
756 LoadDef->getPointerReg(), *NewMMO);
757 MI.eraseFromParent();
758}
759
760bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
761 Register &Base, Register &Offset) {
762 auto &MF = *MI.getParent()->getParent();
763 const auto &TLI = *MF.getSubtarget().getTargetLowering();
764
765#ifndef NDEBUG1
766 unsigned Opcode = MI.getOpcode();
767 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||(static_cast<void> (0))
768 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE)(static_cast<void> (0));
769#endif
770
771 Base = MI.getOperand(1).getReg();
772 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
773 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
774 return false;
775
776 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI)do { } while (false);
777 // FIXME: The following use traversal needs a bail out for patholigical cases.
778 for (auto &Use : MRI.use_nodbg_instructions(Base)) {
779 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
780 continue;
781
782 Offset = Use.getOperand(2).getReg();
783 if (!ForceLegalIndexing &&
784 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
785 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: "do { } while (false)
786 << Use)do { } while (false);
787 continue;
788 }
789
790 // Make sure the offset calculation is before the potentially indexed op.
791 // FIXME: we really care about dependency here. The offset calculation might
792 // be movable.
793 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
794 if (!OffsetDef || !dominates(*OffsetDef, MI)) {
795 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: "do { } while (false)
796 << Use)do { } while (false);
797 continue;
798 }
799
800 // FIXME: check whether all uses of Base are load/store with foldable
801 // addressing modes. If so, using the normal addr-modes is better than
802 // forming an indexed one.
803
804 bool MemOpDominatesAddrUses = true;
805 for (auto &PtrAddUse :
806 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
807 if (!dominates(MI, PtrAddUse)) {
808 MemOpDominatesAddrUses = false;
809 break;
810 }
811 }
812
813 if (!MemOpDominatesAddrUses) {
814 LLVM_DEBUG(do { } while (false)
815 dbgs() << " Ignoring candidate as memop does not dominate uses: "do { } while (false)
816 << Use)do { } while (false);
817 continue;
818 }
819
820 LLVM_DEBUG(dbgs() << " Found match: " << Use)do { } while (false);
821 Addr = Use.getOperand(0).getReg();
822 return true;
823 }
824
825 return false;
826}
827
828bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
829 Register &Base, Register &Offset) {
830 auto &MF = *MI.getParent()->getParent();
831 const auto &TLI = *MF.getSubtarget().getTargetLowering();
832
833#ifndef NDEBUG1
834 unsigned Opcode = MI.getOpcode();
835 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||(static_cast<void> (0))
836 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE)(static_cast<void> (0));
837#endif
838
839 Addr = MI.getOperand(1).getReg();
840 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
841 if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
842 return false;
843
844 Base = AddrDef->getOperand(1).getReg();
845 Offset = AddrDef->getOperand(2).getReg();
846
847 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI)do { } while (false);
848
849 if (!ForceLegalIndexing &&
850 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
851 LLVM_DEBUG(dbgs() << " Skipping, not legal for target")do { } while (false);
852 return false;
853 }
854
855 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
856 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
857 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway.")do { } while (false);
858 return false;
859 }
860
861 if (MI.getOpcode() == TargetOpcode::G_STORE) {
862 // Would require a copy.
863 if (Base == MI.getOperand(0).getReg()) {
864 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway.")do { } while (false);
865 return false;
866 }
867
868 // We're expecting one use of Addr in MI, but it could also be the
869 // value stored, which isn't actually dominated by the instruction.
870 if (MI.getOperand(0).getReg() == Addr) {
871 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses")do { } while (false);
872 return false;
873 }
874 }
875
876 // FIXME: check whether all uses of the base pointer are constant PtrAdds.
877 // That might allow us to end base's liveness here by adjusting the constant.
878
879 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
880 if (!dominates(MI, UseMI)) {
881 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses.")do { } while (false);
882 return false;
883 }
884 }
885
886 return true;
887}
888
889bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
890 IndexedLoadStoreMatchInfo MatchInfo;
891 if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
892 applyCombineIndexedLoadStore(MI, MatchInfo);
893 return true;
894 }
895 return false;
896}
897
898bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
899 unsigned Opcode = MI.getOpcode();
900 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
901 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
902 return false;
903
904 // For now, no targets actually support these opcodes so don't waste time
905 // running these unless we're forced to for testing.
906 if (!ForceLegalIndexing)
907 return false;
908
909 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
910 MatchInfo.Offset);
911 if (!MatchInfo.IsPre &&
912 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
913 MatchInfo.Offset))
914 return false;
915
916 return true;
917}
918
919void CombinerHelper::applyCombineIndexedLoadStore(
920 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
921 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
922 MachineIRBuilder MIRBuilder(MI);
923 unsigned Opcode = MI.getOpcode();
924 bool IsStore = Opcode == TargetOpcode::G_STORE;
925 unsigned NewOpcode;
926 switch (Opcode) {
927 case TargetOpcode::G_LOAD:
928 NewOpcode = TargetOpcode::G_INDEXED_LOAD;
929 break;
930 case TargetOpcode::G_SEXTLOAD:
931 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
932 break;
933 case TargetOpcode::G_ZEXTLOAD:
934 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
935 break;
936 case TargetOpcode::G_STORE:
937 NewOpcode = TargetOpcode::G_INDEXED_STORE;
938 break;
939 default:
940 llvm_unreachable("Unknown load/store opcode")__builtin_unreachable();
941 }
942
943 auto MIB = MIRBuilder.buildInstr(NewOpcode);
944 if (IsStore) {
945 MIB.addDef(MatchInfo.Addr);
946 MIB.addUse(MI.getOperand(0).getReg());
947 } else {
948 MIB.addDef(MI.getOperand(0).getReg());
949 MIB.addDef(MatchInfo.Addr);
950 }
951
952 MIB.addUse(MatchInfo.Base);
953 MIB.addUse(MatchInfo.Offset);
954 MIB.addImm(MatchInfo.IsPre);
955 MI.eraseFromParent();
956 AddrDef.eraseFromParent();
957
958 LLVM_DEBUG(dbgs() << " Combinined to indexed operation")do { } while (false);
959}
960
961bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
962 MachineInstr *&OtherMI) {
963 unsigned Opcode = MI.getOpcode();
964 bool IsDiv, IsSigned;
965
966 switch (Opcode) {
967 default:
968 llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
969 case TargetOpcode::G_SDIV:
970 case TargetOpcode::G_UDIV: {
971 IsDiv = true;
972 IsSigned = Opcode == TargetOpcode::G_SDIV;
973 break;
974 }
975 case TargetOpcode::G_SREM:
976 case TargetOpcode::G_UREM: {
977 IsDiv = false;
978 IsSigned = Opcode == TargetOpcode::G_SREM;
979 break;
980 }
981 }
982
983 Register Src1 = MI.getOperand(1).getReg();
984 unsigned DivOpcode, RemOpcode, DivremOpcode;
985 if (IsSigned) {
986 DivOpcode = TargetOpcode::G_SDIV;
987 RemOpcode = TargetOpcode::G_SREM;
988 DivremOpcode = TargetOpcode::G_SDIVREM;
989 } else {
990 DivOpcode = TargetOpcode::G_UDIV;
991 RemOpcode = TargetOpcode::G_UREM;
992 DivremOpcode = TargetOpcode::G_UDIVREM;
993 }
994
995 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
996 return false;
997
998 // Combine:
999 // %div:_ = G_[SU]DIV %src1:_, %src2:_
1000 // %rem:_ = G_[SU]REM %src1:_, %src2:_
1001 // into:
1002 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1003
1004 // Combine:
1005 // %rem:_ = G_[SU]REM %src1:_, %src2:_
1006 // %div:_ = G_[SU]DIV %src1:_, %src2:_
1007 // into:
1008 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1009
1010 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
1011 if (MI.getParent() == UseMI.getParent() &&
1012 ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
1013 (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
1014 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) {
1015 OtherMI = &UseMI;
1016 return true;
1017 }
1018 }
1019
1020 return false;
1021}
1022
1023void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1024 MachineInstr *&OtherMI) {
1025 unsigned Opcode = MI.getOpcode();
1026 assert(OtherMI && "OtherMI shouldn't be empty.")(static_cast<void> (0));
1027
1028 Register DestDivReg, DestRemReg;
1029 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1030 DestDivReg = MI.getOperand(0).getReg();
1031 DestRemReg = OtherMI->getOperand(0).getReg();
1032 } else {
1033 DestDivReg = OtherMI->getOperand(0).getReg();
1034 DestRemReg = MI.getOperand(0).getReg();
1035 }
1036
1037 bool IsSigned =
1038 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1039
1040 // Check which instruction is first in the block so we don't break def-use
1041 // deps by "moving" the instruction incorrectly.
1042 if (dominates(MI, *OtherMI))
1043 Builder.setInstrAndDebugLoc(MI);
1044 else
1045 Builder.setInstrAndDebugLoc(*OtherMI);
1046
1047 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1048 : TargetOpcode::G_UDIVREM,
1049 {DestDivReg, DestRemReg},
1050 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
1051 MI.eraseFromParent();
1052 OtherMI->eraseFromParent();
1053}
1054
1055bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1056 MachineInstr *&BrCond) {
1057 assert(MI.getOpcode() == TargetOpcode::G_BR)(static_cast<void> (0));
1058
1059 // Try to match the following:
1060 // bb1:
1061 // G_BRCOND %c1, %bb2
1062 // G_BR %bb3
1063 // bb2:
1064 // ...
1065 // bb3:
1066
1067 // The above pattern does not have a fall through to the successor bb2, always
1068 // resulting in a branch no matter which path is taken. Here we try to find
1069 // and replace that pattern with conditional branch to bb3 and otherwise
1070 // fallthrough to bb2. This is generally better for branch predictors.
1071
1072 MachineBasicBlock *MBB = MI.getParent();
1073 MachineBasicBlock::iterator BrIt(MI);
1074 if (BrIt == MBB->begin())
1075 return false;
1076 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator")(static_cast<void> (0));
1077
1078 BrCond = &*std::prev(BrIt);
1079 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1080 return false;
1081
1082 // Check that the next block is the conditional branch target. Also make sure
1083 // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1084 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1085 return BrCondTarget != MI.getOperand(0).getMBB() &&
1086 MBB->isLayoutSuccessor(BrCondTarget);
1087}
1088
1089void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1090 MachineInstr *&BrCond) {
1091 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1092 Builder.setInstrAndDebugLoc(*BrCond);
1093 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1094 // FIXME: Does int/fp matter for this? If so, we might need to restrict
1095 // this to i1 only since we might not know for sure what kind of
1096 // compare generated the condition value.
1097 auto True = Builder.buildConstant(
1098 Ty, getICmpTrueVal(getTargetLowering(), false, false));
1099 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1100
1101 auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1102 Observer.changingInstr(MI);
1103 MI.getOperand(0).setMBB(FallthroughBB);
1104 Observer.changedInstr(MI);
1105
1106 // Change the conditional branch to use the inverted condition and
1107 // new target block.
1108 Observer.changingInstr(*BrCond);
1109 BrCond->getOperand(0).setReg(Xor.getReg(0));
1110 BrCond->getOperand(1).setMBB(BrTarget);
1111 Observer.changedInstr(*BrCond);
1112}
1113
1114static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
1115 // On Darwin, -Os means optimize for size without hurting performance, so
1116 // only really optimize for size when -Oz (MinSize) is used.
1117 if (MF.getTarget().getTargetTriple().isOSDarwin())
1118 return MF.getFunction().hasMinSize();
1119 return MF.getFunction().hasOptSize();
1120}
1121
1122// Returns a list of types to use for memory op lowering in MemOps. A partial
1123// port of findOptimalMemOpLowering in TargetLowering.
1124static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
1125 unsigned Limit, const MemOp &Op,
1126 unsigned DstAS, unsigned SrcAS,
1127 const AttributeList &FuncAttributes,
1128 const TargetLowering &TLI) {
1129 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
1130 return false;
1131
1132 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
1133
1134 if (Ty == LLT()) {
1135 // Use the largest scalar type whose alignment constraints are satisfied.
1136 // We only need to check DstAlign here as SrcAlign is always greater or
1137 // equal to DstAlign (or zero).
1138 Ty = LLT::scalar(64);
1139 if (Op.isFixedDstAlign())
1140 while (Op.getDstAlign() < Ty.getSizeInBytes() &&
1141 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
1142 Ty = LLT::scalar(Ty.getSizeInBytes());
1143 assert(Ty.getSizeInBits() > 0 && "Could not find valid type")(static_cast<void> (0));
1144 // FIXME: check for the largest legal type we can load/store to.
1145 }
1146
1147 unsigned NumMemOps = 0;
1148 uint64_t Size = Op.size();
1149 while (Size) {
1150 unsigned TySize = Ty.getSizeInBytes();
1151 while (TySize > Size) {
1152 // For now, only use non-vector load / store's for the left-over pieces.
1153 LLT NewTy = Ty;
1154 // FIXME: check for mem op safety and legality of the types. Not all of
1155 // SDAGisms map cleanly to GISel concepts.
1156 if (NewTy.isVector())
1157 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
1158 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
1159 unsigned NewTySize = NewTy.getSizeInBytes();
1160 assert(NewTySize > 0 && "Could not find appropriate type")(static_cast<void> (0));
1161
1162 // If the new LLT cannot cover all of the remaining bits, then consider
1163 // issuing a (or a pair of) unaligned and overlapping load / store.
1164 bool Fast;
1165 // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
1166 MVT VT = getMVTForLLT(Ty);
1167 if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
1168 TLI.allowsMisalignedMemoryAccesses(
1169 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
1170 MachineMemOperand::MONone, &Fast) &&
1171 Fast)
1172 TySize = Size;
1173 else {
1174 Ty = NewTy;
1175 TySize = NewTySize;
1176 }
1177 }
1178
1179 if (++NumMemOps > Limit)
1180 return false;
1181
1182 MemOps.push_back(Ty);
1183 Size -= TySize;
1184 }
1185
1186 return true;
1187}
1188
1189static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1190 if (Ty.isVector())
1191 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1192 Ty.getNumElements());
1193 return IntegerType::get(C, Ty.getSizeInBits());
1194}
1195
1196// Get a vectorized representation of the memset value operand, GISel edition.
1197static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
1198 MachineRegisterInfo &MRI = *MIB.getMRI();
1199 unsigned NumBits = Ty.getScalarSizeInBits();
1200 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1201 if (!Ty.isVector() && ValVRegAndVal) {
1202 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
1203 APInt SplatVal = APInt::getSplat(NumBits, Scalar);
1204 return MIB.buildConstant(Ty, SplatVal).getReg(0);
1205 }
1206
1207 // Extend the byte value to the larger type, and then multiply by a magic
1208 // value 0x010101... in order to replicate it across every byte.
1209 // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
1210 if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
1211 return MIB.buildConstant(Ty, 0).getReg(0);
1212 }
1213
1214 LLT ExtType = Ty.getScalarType();
1215 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
1216 if (NumBits > 8) {
1217 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
1218 auto MagicMI = MIB.buildConstant(ExtType, Magic);
1219 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
1220 }
1221
1222 // For vector types create a G_BUILD_VECTOR.
1223 if (Ty.isVector())
1224 Val = MIB.buildSplatVector(Ty, Val).getReg(0);
1225
1226 return Val;
1227}
1228
1229bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst,
1230 Register Val, uint64_t KnownLen,
1231 Align Alignment, bool IsVolatile) {
1232 auto &MF = *MI.getParent()->getParent();
1233 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1234 auto &DL = MF.getDataLayout();
1235 LLVMContext &C = MF.getFunction().getContext();
1236
1237 assert(KnownLen != 0 && "Have a zero length memset length!")(static_cast<void> (0));
1238
1239 bool DstAlignCanChange = false;
1240 MachineFrameInfo &MFI = MF.getFrameInfo();
1241 bool OptSize = shouldLowerMemFuncForSize(MF);
1242
1243 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1244 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1245 DstAlignCanChange = true;
1246
1247 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
1248 std::vector<LLT> MemOps;
1249
1250 const auto &DstMMO = **MI.memoperands_begin();
1251 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1252
1253 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1254 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
1255
1256 if (!findGISelOptimalMemOpLowering(MemOps, Limit,
1257 MemOp::Set(KnownLen, DstAlignCanChange,
1258 Alignment,
1259 /*IsZeroMemset=*/IsZeroVal,
1260 /*IsVolatile=*/IsVolatile),
1261 DstPtrInfo.getAddrSpace(), ~0u,
1262 MF.getFunction().getAttributes(), TLI))
1263 return false;
1264
1265 if (DstAlignCanChange) {
1266 // Get an estimate of the type from the LLT.
1267 Type *IRTy = getTypeForLLT(MemOps[0], C);
1268 Align NewAlign = DL.getABITypeAlign(IRTy);
1269 if (NewAlign > Alignment) {
1270 Alignment = NewAlign;
1271 unsigned FI = FIDef->getOperand(1).getIndex();
1272 // Give the stack frame object a larger alignment if needed.
1273 if (MFI.getObjectAlign(FI) < Alignment)
1274 MFI.setObjectAlignment(FI, Alignment);
1275 }
1276 }
1277
1278 MachineIRBuilder MIB(MI);
1279 // Find the largest store and generate the bit pattern for it.
1280 LLT LargestTy = MemOps[0];
1281 for (unsigned i = 1; i < MemOps.size(); i++)
1282 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
1283 LargestTy = MemOps[i];
1284
1285 // The memset stored value is always defined as an s8, so in order to make it
1286 // work with larger store types we need to repeat the bit pattern across the
1287 // wider type.
1288 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
1289
1290 if (!MemSetValue)
1291 return false;
1292
1293 // Generate the stores. For each store type in the list, we generate the
1294 // matching store of that type to the destination address.
1295 LLT PtrTy = MRI.getType(Dst);
1296 unsigned DstOff = 0;
1297 unsigned Size = KnownLen;
1298 for (unsigned I = 0; I < MemOps.size(); I++) {
1299 LLT Ty = MemOps[I];
1300 unsigned TySize = Ty.getSizeInBytes();
1301 if (TySize > Size) {
1302 // Issuing an unaligned load / store pair that overlaps with the previous
1303 // pair. Adjust the offset accordingly.
1304 assert(I == MemOps.size() - 1 && I != 0)(static_cast<void> (0));
1305 DstOff -= TySize - Size;
1306 }
1307
1308 // If this store is smaller than the largest store see whether we can get
1309 // the smaller value for free with a truncate.
1310 Register Value = MemSetValue;
1311 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
1312 MVT VT = getMVTForLLT(Ty);
1313 MVT LargestVT = getMVTForLLT(LargestTy);
1314 if (!LargestTy.isVector() && !Ty.isVector() &&
1315 TLI.isTruncateFree(LargestVT, VT))
1316 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
1317 else
1318 Value = getMemsetValue(Val, Ty, MIB);
1319 if (!Value)
1320 return false;
1321 }
1322
1323 auto *StoreMMO =
1324 MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
1325
1326 Register Ptr = Dst;
1327 if (DstOff != 0) {
1328 auto Offset =
1329 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
1330 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1331 }
1332
1333 MIB.buildStore(Value, Ptr, *StoreMMO);
1334 DstOff += Ty.getSizeInBytes();
1335 Size -= TySize;
1336 }
1337
1338 MI.eraseFromParent();
1339 return true;
1340}
1341
1342bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1343 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE)(static_cast<void> (0));
1344
1345 Register Dst = MI.getOperand(0).getReg();
1346 Register Src = MI.getOperand(1).getReg();
1347 Register Len = MI.getOperand(2).getReg();
1348
1349 const auto *MMOIt = MI.memoperands_begin();
1350 const MachineMemOperand *MemOp = *MMOIt;
1351 bool IsVolatile = MemOp->isVolatile();
1352
1353 // See if this is a constant length copy
1354 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1355 // FIXME: support dynamically sized G_MEMCPY_INLINE
1356 assert(LenVRegAndVal.hasValue() &&(static_cast<void> (0))
1357 "inline memcpy with dynamic size is not yet supported")(static_cast<void> (0));
1358 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
1359 if (KnownLen == 0) {
1360 MI.eraseFromParent();
1361 return true;
1362 }
1363
1364 const auto &DstMMO = **MI.memoperands_begin();
1365 const auto &SrcMMO = **std::next(MI.memoperands_begin());
1366 Align DstAlign = DstMMO.getBaseAlign();
1367 Align SrcAlign = SrcMMO.getBaseAlign();
1368
1369 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
1370 IsVolatile);
1371}
1372
1373bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst,
1374 Register Src, uint64_t KnownLen,
1375 Align DstAlign, Align SrcAlign,
1376 bool IsVolatile) {
1377 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE)(static_cast<void> (0));
1378 return optimizeMemcpy(MI, Dst, Src, KnownLen,
1379 std::numeric_limits<uint64_t>::max(), DstAlign,
1380 SrcAlign, IsVolatile);
1381}
1382
1383bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
1384 Register Src, uint64_t KnownLen,
1385 uint64_t Limit, Align DstAlign,
1386 Align SrcAlign, bool IsVolatile) {
1387 auto &MF = *MI.getParent()->getParent();
1388 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1389 auto &DL = MF.getDataLayout();
1390 LLVMContext &C = MF.getFunction().getContext();
1391
1392 assert(KnownLen != 0 && "Have a zero length memcpy length!")(static_cast<void> (0));
1393
1394 bool DstAlignCanChange = false;
1395 MachineFrameInfo &MFI = MF.getFrameInfo();
1396 Align Alignment = commonAlignment(DstAlign, SrcAlign);
1397
1398 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1399 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1400 DstAlignCanChange = true;
1401
1402 // FIXME: infer better src pointer alignment like SelectionDAG does here.
1403 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
1404 // if the memcpy is in a tail call position.
1405
1406 std::vector<LLT> MemOps;
1407
1408 const auto &DstMMO = **MI.memoperands_begin();
1409 const auto &SrcMMO = **std::next(MI.memoperands_begin());
1410 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1411 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1412
1413 if (!findGISelOptimalMemOpLowering(
1414 MemOps, Limit,
1415 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1416 IsVolatile),
1417 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1418 MF.getFunction().getAttributes(), TLI))
1419 return false;
1420
1421 if (DstAlignCanChange) {
1422 // Get an estimate of the type from the LLT.
1423 Type *IRTy = getTypeForLLT(MemOps[0], C);
1424 Align NewAlign = DL.getABITypeAlign(IRTy);
1425
1426 // Don't promote to an alignment that would require dynamic stack
1427 // realignment.
1428 if (!TRI->hasStackRealignment(MF))
1429 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1430 NewAlign = NewAlign / 2;
1431
1432 if (NewAlign > Alignment) {
1433 Alignment = NewAlign;
1434 unsigned FI = FIDef->getOperand(1).getIndex();
1435 // Give the stack frame object a larger alignment if needed.
1436 if (MFI.getObjectAlign(FI) < Alignment)
1437 MFI.setObjectAlignment(FI, Alignment);
1438 }
1439 }
1440
1441 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n")do { } while (false);
1442
1443 MachineIRBuilder MIB(MI);
1444 // Now we need to emit a pair of load and stores for each of the types we've
1445 // collected. I.e. for each type, generate a load from the source pointer of
1446 // that type width, and then generate a corresponding store to the dest buffer
1447 // of that value loaded. This can result in a sequence of loads and stores
1448 // mixed types, depending on what the target specifies as good types to use.
1449 unsigned CurrOffset = 0;
1450 LLT PtrTy = MRI.getType(Src);
1451 unsigned Size = KnownLen;
1452 for (auto CopyTy : MemOps) {
1453 // Issuing an unaligned load / store pair that overlaps with the previous
1454 // pair. Adjust the offset accordingly.
1455 if (CopyTy.getSizeInBytes() > Size)
1456 CurrOffset -= CopyTy.getSizeInBytes() - Size;
1457
1458 // Construct MMOs for the accesses.
1459 auto *LoadMMO =
1460 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1461 auto *StoreMMO =
1462 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1463
1464 // Create the load.
1465 Register LoadPtr = Src;
1466 Register Offset;
1467 if (CurrOffset != 0) {
1468 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
1469 .getReg(0);
1470 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1471 }
1472 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
1473
1474 // Create the store.
1475 Register StorePtr =
1476 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1477 MIB.buildStore(LdVal, StorePtr, *StoreMMO);
1478 CurrOffset += CopyTy.getSizeInBytes();
1479 Size -= CopyTy.getSizeInBytes();
1480 }
1481
1482 MI.eraseFromParent();
1483 return true;
1484}
1485
1486bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
1487 Register Src, uint64_t KnownLen,
1488 Align DstAlign, Align SrcAlign,
1489 bool IsVolatile) {
1490 auto &MF = *MI.getParent()->getParent();
1491 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1492 auto &DL = MF.getDataLayout();
1493 LLVMContext &C = MF.getFunction().getContext();
1494
1495 assert(KnownLen != 0 && "Have a zero length memmove length!")(static_cast<void> (0));
1496
1497 bool DstAlignCanChange = false;
1498 MachineFrameInfo &MFI = MF.getFrameInfo();
1499 bool OptSize = shouldLowerMemFuncForSize(MF);
1500 Align Alignment = commonAlignment(DstAlign, SrcAlign);
1501
1502 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1503 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1504 DstAlignCanChange = true;
1505
1506 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
1507 std::vector<LLT> MemOps;
1508
1509 const auto &DstMMO = **MI.memoperands_begin();
1510 const auto &SrcMMO = **std::next(MI.memoperands_begin());
1511 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1512 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1513
1514 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
1515 // to a bug in it's findOptimalMemOpLowering implementation. For now do the
1516 // same thing here.
1517 if (!findGISelOptimalMemOpLowering(
1518 MemOps, Limit,
1519 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1520 /*IsVolatile*/ true),
1521 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1522 MF.getFunction().getAttributes(), TLI))
1523 return false;
1524
1525 if (DstAlignCanChange) {
1526 // Get an estimate of the type from the LLT.
1527 Type *IRTy = getTypeForLLT(MemOps[0], C);
1528 Align NewAlign = DL.getABITypeAlign(IRTy);
1529
1530 // Don't promote to an alignment that would require dynamic stack
1531 // realignment.
1532 if (!TRI->hasStackRealignment(MF))
1533 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1534 NewAlign = NewAlign / 2;
1535
1536 if (NewAlign > Alignment) {
1537 Alignment = NewAlign;
1538 unsigned FI = FIDef->getOperand(1).getIndex();
1539 // Give the stack frame object a larger alignment if needed.
1540 if (MFI.getObjectAlign(FI) < Alignment)
1541 MFI.setObjectAlignment(FI, Alignment);
1542 }
1543 }
1544
1545 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n")do { } while (false);
1546
1547 MachineIRBuilder MIB(MI);
1548 // Memmove requires that we perform the loads first before issuing the stores.
1549 // Apart from that, this loop is pretty much doing the same thing as the
1550 // memcpy codegen function.
1551 unsigned CurrOffset = 0;
1552 LLT PtrTy = MRI.getType(Src);
1553 SmallVector<Register, 16> LoadVals;
1554 for (auto CopyTy : MemOps) {
1555 // Construct MMO for the load.
1556 auto *LoadMMO =
1557 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1558
1559 // Create the load.
1560 Register LoadPtr = Src;
1561 if (CurrOffset != 0) {
1562 auto Offset =
1563 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1564 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1565 }
1566 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
1567 CurrOffset += CopyTy.getSizeInBytes();
1568 }
1569
1570 CurrOffset = 0;
1571 for (unsigned I = 0; I < MemOps.size(); ++I) {
1572 LLT CopyTy = MemOps[I];
1573 // Now store the values loaded.
1574 auto *StoreMMO =
1575 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1576
1577 Register StorePtr = Dst;
1578 if (CurrOffset != 0) {
1579 auto Offset =
1580 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1581 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1582 }
1583 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
1584 CurrOffset += CopyTy.getSizeInBytes();
1585 }
1586 MI.eraseFromParent();
1587 return true;
1588}
1589
1590bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1591 const unsigned Opc = MI.getOpcode();
1592 // This combine is fairly complex so it's not written with a separate
1593 // matcher function.
1594 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||(static_cast<void> (0))
1595 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction")(static_cast<void> (0));
1596
1597 auto MMOIt = MI.memoperands_begin();
1598 const MachineMemOperand *MemOp = *MMOIt;
1599
1600 Align DstAlign = MemOp->getBaseAlign();
1601 Align SrcAlign;
1602 Register Dst = MI.getOperand(0).getReg();
1603 Register Src = MI.getOperand(1).getReg();
1604 Register Len = MI.getOperand(2).getReg();
1605
1606 if (Opc != TargetOpcode::G_MEMSET) {
1607 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI")(static_cast<void> (0));
1608 MemOp = *(++MMOIt);
1609 SrcAlign = MemOp->getBaseAlign();
1610 }
1611
1612 // See if this is a constant length copy
1613 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1614 if (!LenVRegAndVal)
1615 return false; // Leave it to the legalizer to lower it to a libcall.
1616 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
1617
1618 if (KnownLen == 0) {
1619 MI.eraseFromParent();
1620 return true;
1621 }
1622
1623 bool IsVolatile = MemOp->isVolatile();
1624 if (Opc == TargetOpcode::G_MEMCPY_INLINE)
1625 return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
1626 IsVolatile);
1627
1628 // Don't try to optimize volatile.
1629 if (IsVolatile)
1630 return false;
1631
1632 if (MaxLen && KnownLen > MaxLen)
1633 return false;
1634
1635 if (Opc == TargetOpcode::G_MEMCPY) {
1636 auto &MF = *MI.getParent()->getParent();
1637 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1638 bool OptSize = shouldLowerMemFuncForSize(MF);
1639 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
1640 return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
1641 IsVolatile);
1642 }
1643 if (Opc == TargetOpcode::G_MEMMOVE)
1644 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1645 if (Opc == TargetOpcode::G_MEMSET)
1646 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
1647 return false;
1648}
1649
1650static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
1651 const Register Op,
1652 const MachineRegisterInfo &MRI) {
1653 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1654 if (!MaybeCst)
1655 return None;
1656
1657 APFloat V = MaybeCst->getValueAPF();
1658 switch (Opcode) {
1659 default:
1660 llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
1661 case TargetOpcode::G_FNEG: {
1662 V.changeSign();
1663 return V;
1664 }
1665 case TargetOpcode::G_FABS: {
1666 V.clearSign();
1667 return V;
1668 }
1669 case TargetOpcode::G_FPTRUNC:
1670 break;
1671 case TargetOpcode::G_FSQRT: {
1672 bool Unused;
1673 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1674 V = APFloat(sqrt(V.convertToDouble()));
1675 break;
1676 }
1677 case TargetOpcode::G_FLOG2: {
1678 bool Unused;
1679 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1680 V = APFloat(log2(V.convertToDouble()));
1681 break;
1682 }
1683 }
1684 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1685 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1686 // and `G_FLOG2` reach here.
1687 bool Unused;
1688 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1689 return V;
1690}
1691
1692bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
1693 Optional<APFloat> &Cst) {
1694 Register DstReg = MI.getOperand(0).getReg();
1695 Register SrcReg = MI.getOperand(1).getReg();
1696 LLT DstTy = MRI.getType(DstReg);
1697 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1698 return Cst.hasValue();
1699}
1700
1701void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1702 Optional<APFloat> &Cst) {
1703 assert(Cst.hasValue() && "Optional is unexpectedly empty!")(static_cast<void> (0));
1704 Builder.setInstrAndDebugLoc(MI);
1705 MachineFunction &MF = Builder.getMF();
1706 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1707 Register DstReg = MI.getOperand(0).getReg();
1708 Builder.buildFConstant(DstReg, *FPVal);
1709 MI.eraseFromParent();
1710}
1711
1712bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1713 PtrAddChain &MatchInfo) {
1714 // We're trying to match the following pattern:
1715 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1716 // %root = G_PTR_ADD %t1, G_CONSTANT imm2
1717 // -->
1718 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1719
1720 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1721 return false;
1722
1723 Register Add2 = MI.getOperand(1).getReg();
1724 Register Imm1 = MI.getOperand(2).getReg();
1725 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1726 if (!MaybeImmVal)
1727 return false;
1728
1729 MachineInstr *Add2Def = MRI.getVRegDef(Add2);
1730 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1731 return false;
1732
1733 Register Base = Add2Def->getOperand(1).getReg();
1734 Register Imm2 = Add2Def->getOperand(2).getReg();
1735 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1736 if (!MaybeImm2Val)
1737 return false;
1738
1739 // Check if the new combined immediate forms an illegal addressing mode.
1740 // Do not combine if it was legal before but would get illegal.
1741 // To do so, we need to find a load/store user of the pointer to get
1742 // the access type.
1743 Type *AccessTy = nullptr;
1744 auto &MF = *MI.getMF();
1745 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
1746 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
1747 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
1748 MF.getFunction().getContext());
1749 break;
1750 }
1751 }
1752 TargetLoweringBase::AddrMode AMNew;
1753 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
1754 AMNew.BaseOffs = CombinedImm.getSExtValue();
1755 if (AccessTy) {
1756 AMNew.HasBaseReg = true;
1757 TargetLoweringBase::AddrMode AMOld;
1758 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue();
1759 AMOld.HasBaseReg = true;
1760 unsigned AS = MRI.getType(Add2).getAddressSpace();
1761 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1762 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
1763 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
1764 return false;
1765 }
1766
1767 // Pass the combined immediate to the apply function.
1768 MatchInfo.Imm = AMNew.BaseOffs;
1769 MatchInfo.Base = Base;
1770 MatchInfo.Bank = getRegBank(Imm2);
1771 return true;
1772}
1773
1774void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1775 PtrAddChain &MatchInfo) {
1776 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD")(static_cast<void> (0));
1777 MachineIRBuilder MIB(MI);
1778 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1779 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1780 setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
1781 Observer.changingInstr(MI);
1782 MI.getOperand(1).setReg(MatchInfo.Base);
1783 MI.getOperand(2).setReg(NewOffset.getReg(0));
1784 Observer.changedInstr(MI);
1785}
1786
1787bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1788 RegisterImmPair &MatchInfo) {
1789 // We're trying to match the following pattern with any of
1790 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1791 // %t1 = SHIFT %base, G_CONSTANT imm1
1792 // %root = SHIFT %t1, G_CONSTANT imm2
1793 // -->
1794 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1795
1796 unsigned Opcode = MI.getOpcode();
1797 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||(static_cast<void> (0))
1798 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||(static_cast<void> (0))
1799 Opcode == TargetOpcode::G_USHLSAT) &&(static_cast<void> (0))
1800 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT")(static_cast<void> (0));
1801
1802 Register Shl2 = MI.getOperand(1).getReg();
1803 Register Imm1 = MI.getOperand(2).getReg();
1804 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1805 if (!MaybeImmVal)
1806 return false;
1807
1808 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1809 if (Shl2Def->getOpcode() != Opcode)
1810 return false;
1811
1812 Register Base = Shl2Def->getOperand(1).getReg();
1813 Register Imm2 = Shl2Def->getOperand(2).getReg();
1814 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1815 if (!MaybeImm2Val)
1816 return false;
1817
1818 // Pass the combined immediate to the apply function.
1819 MatchInfo.Imm =
1820 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1821 MatchInfo.Reg = Base;
1822
1823 // There is no simple replacement for a saturating unsigned left shift that
1824 // exceeds the scalar size.
1825 if (Opcode == TargetOpcode::G_USHLSAT &&
1826 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1827 return false;
1828
1829 return true;
1830}
1831
1832void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1833 RegisterImmPair &MatchInfo) {
1834 unsigned Opcode = MI.getOpcode();
1835 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||(static_cast<void> (0))
1836 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||(static_cast<void> (0))
1837 Opcode == TargetOpcode::G_USHLSAT) &&(static_cast<void> (0))
1838 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT")(static_cast<void> (0));
1839
1840 Builder.setInstrAndDebugLoc(MI);
1841 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1842 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1843 auto Imm = MatchInfo.Imm;
1844
1845 if (Imm >= ScalarSizeInBits) {
1846 // Any logical shift that exceeds scalar size will produce zero.
1847 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1848 Builder.buildConstant(MI.getOperand(0), 0);
1849 MI.eraseFromParent();
1850 return;
1851 }
1852 // Arithmetic shift and saturating signed left shift have no effect beyond
1853 // scalar size.
1854 Imm = ScalarSizeInBits - 1;
1855 }
1856
1857 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1858 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1859 Observer.changingInstr(MI);
1860 MI.getOperand(1).setReg(MatchInfo.Reg);
1861 MI.getOperand(2).setReg(NewImm);
1862 Observer.changedInstr(MI);
1863}
1864
1865bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1866 ShiftOfShiftedLogic &MatchInfo) {
1867 // We're trying to match the following pattern with any of
1868 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1869 // with any of G_AND/G_OR/G_XOR logic instructions.
1870 // %t1 = SHIFT %X, G_CONSTANT C0
1871 // %t2 = LOGIC %t1, %Y
1872 // %root = SHIFT %t2, G_CONSTANT C1
1873 // -->
1874 // %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1875 // %t4 = SHIFT %Y, G_CONSTANT C1
1876 // %root = LOGIC %t3, %t4
1877 unsigned ShiftOpcode = MI.getOpcode();
1878 assert((ShiftOpcode == TargetOpcode::G_SHL ||(static_cast<void> (0))
1879 ShiftOpcode == TargetOpcode::G_ASHR ||(static_cast<void> (0))
1880 ShiftOpcode == TargetOpcode::G_LSHR ||(static_cast<void> (0))
1881 ShiftOpcode == TargetOpcode::G_USHLSAT ||(static_cast<void> (0))
1882 ShiftOpcode == TargetOpcode::G_SSHLSAT) &&(static_cast<void> (0))
1883 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT")(static_cast<void> (0));
1884
1885 // Match a one-use bitwise logic op.
1886 Register LogicDest = MI.getOperand(1).getReg();
1887 if (!MRI.hasOneNonDBGUse(LogicDest))
1888 return false;
1889
1890 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1891 unsigned LogicOpcode = LogicMI->getOpcode();
1892 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1893 LogicOpcode != TargetOpcode::G_XOR)
1894 return false;
1895
1896 // Find a matching one-use shift by constant.
1897 const Register C1 = MI.getOperand(2).getReg();
1898 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI);
1899 if (!MaybeImmVal)
1900 return false;
1901
1902 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1903
1904 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1905 // Shift should match previous one and should be a one-use.
1906 if (MI->getOpcode() != ShiftOpcode ||
1907 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1908 return false;
1909
1910 // Must be a constant.
1911 auto MaybeImmVal =
1912 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1913 if (!MaybeImmVal)
1914 return false;
1915
1916 ShiftVal = MaybeImmVal->Value.getSExtValue();
1917 return true;
1918 };
1919
1920 // Logic ops are commutative, so check each operand for a match.
1921 Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1922 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1923 Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1924 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1925 uint64_t C0Val;
1926
1927 if (matchFirstShift(LogicMIOp1, C0Val)) {
1928 MatchInfo.LogicNonShiftReg = LogicMIReg2;
1929 MatchInfo.Shift2 = LogicMIOp1;
1930 } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1931 MatchInfo.LogicNonShiftReg = LogicMIReg1;
1932 MatchInfo.Shift2 = LogicMIOp2;
1933 } else
1934 return false;
1935
1936 MatchInfo.ValSum = C0Val + C1Val;
1937
1938 // The fold is not valid if the sum of the shift values exceeds bitwidth.
1939 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1940 return false;
1941
1942 MatchInfo.Logic = LogicMI;
1943 return true;
1944}
1945
1946void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1947 ShiftOfShiftedLogic &MatchInfo) {
1948 unsigned Opcode = MI.getOpcode();
1949 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||(static_cast<void> (0))
1950 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||(static_cast<void> (0))
1951 Opcode == TargetOpcode::G_SSHLSAT) &&(static_cast<void> (0))
1952 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT")(static_cast<void> (0));
1953
1954 LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1955 LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1956 Builder.setInstrAndDebugLoc(MI);
1957
1958 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1959
1960 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1961 Register Shift1 =
1962 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1963
1964 Register Shift2Const = MI.getOperand(2).getReg();
1965 Register Shift2 = Builder
1966 .buildInstr(Opcode, {DestType},
1967 {MatchInfo.LogicNonShiftReg, Shift2Const})
1968 .getReg(0);
1969
1970 Register Dest = MI.getOperand(0).getReg();
1971 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1972
1973 // These were one use so it's safe to remove them.
1974 MatchInfo.Shift2->eraseFromParentAndMarkDBGValuesForRemoval();
1975 MatchInfo.Logic->eraseFromParentAndMarkDBGValuesForRemoval();
1976
1977 MI.eraseFromParent();
1978}
1979
1980bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1981 unsigned &ShiftVal) {
1982 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL")(static_cast<void> (0));
1983 auto MaybeImmVal =
1984 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1985 if (!MaybeImmVal)
1986 return false;
1987
1988 ShiftVal = MaybeImmVal->Value.exactLogBase2();
1989 return (static_cast<int32_t>(ShiftVal) != -1);
1990}
1991
1992void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1993 unsigned &ShiftVal) {
1994 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL")(static_cast<void> (0));
1995 MachineIRBuilder MIB(MI);
1996 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1997 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1998 Observer.changingInstr(MI);
1999 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
2000 MI.getOperand(2).setReg(ShiftCst.getReg(0));
2001 Observer.changedInstr(MI);
2002}
2003
2004// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
2005bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
2006 RegisterImmPair &MatchData) {
2007 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB)(static_cast<void> (0));
2008
2009 Register LHS = MI.getOperand(1).getReg();
2010
2011 Register ExtSrc;
2012 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
2013 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
2014 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
2015 return false;
2016
2017 // TODO: Should handle vector splat.
2018 Register RHS = MI.getOperand(2).getReg();
2019 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI);
2020 if (!MaybeShiftAmtVal)
2021 return false;
2022
2023 if (LI) {
2024 LLT SrcTy = MRI.getType(ExtSrc);
2025
2026 // We only really care about the legality with the shifted value. We can
2027 // pick any type the constant shift amount, so ask the target what to
2028 // use. Otherwise we would have to guess and hope it is reported as legal.
2029 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
2030 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
2031 return false;
2032 }
2033
2034 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
2035 MatchData.Reg = ExtSrc;
2036 MatchData.Imm = ShiftAmt;
2037
2038 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
2039 return MinLeadingZeros >= ShiftAmt;
2040}
2041
2042void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
2043 const RegisterImmPair &MatchData) {
2044 Register ExtSrcReg = MatchData.Reg;
2045 int64_t ShiftAmtVal = MatchData.Imm;
2046
2047 LLT ExtSrcTy = MRI.getType(ExtSrcReg);
2048 Builder.setInstrAndDebugLoc(MI);
2049 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
2050 auto NarrowShift =
2051 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
2052 Builder.buildZExt(MI.getOperand(0), NarrowShift);
2053 MI.eraseFromParent();
2054}
2055
2056bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
2057 Register &MatchInfo) {
2058 GMerge &Merge = cast<GMerge>(MI);
2059 SmallVector<Register, 16> MergedValues;
2060 for (unsigned I = 0; I < Merge.getNumSources(); ++I)
2061 MergedValues.emplace_back(Merge.getSourceReg(I));
2062
2063 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
2064 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
2065 return false;
2066
2067 for (unsigned I = 0; I < MergedValues.size(); ++I)
2068 if (MergedValues[I] != Unmerge->getReg(I))
2069 return false;
2070
2071 MatchInfo = Unmerge->getSourceReg();
2072 return true;
2073}
2074
2075static Register peekThroughBitcast(Register Reg,
2076 const MachineRegisterInfo &MRI) {
2077 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
2078 ;
2079
2080 return Reg;
2081}
2082
2083bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
2084 MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
2085 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast<void> (0))
2086 "Expected an unmerge")(static_cast<void> (0));
2087 auto &Unmerge = cast<GUnmerge>(MI);
2088 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
2089
2090 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI);
2091 if (!SrcInstr)
2092 return false;
2093
2094 // Check the source type of the merge.
2095 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
2096 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
2097 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
2098 if (SrcMergeTy != Dst0Ty && !SameSize)
2099 return false;
2100 // They are the same now (modulo a bitcast).
2101 // We can collect all the src registers.
2102 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
2103 Operands.push_back(SrcInstr->getSourceReg(Idx));
2104 return true;
2105}
2106
2107void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
2108 MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
2109 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast<void> (0))
2110 "Expected an unmerge")(static_cast<void> (0));
2111 assert((MI.getNumOperands() - 1 == Operands.size()) &&(static_cast<void> (0))
2112 "Not enough operands to replace all defs")(static_cast<void> (0));
2113 unsigned NumElems = MI.getNumOperands() - 1;
2114
2115 LLT SrcTy = MRI.getType(Operands[0]);
2116 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2117 bool CanReuseInputDirectly = DstTy == SrcTy;
2118 Builder.setInstrAndDebugLoc(MI);
2119 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2120 Register DstReg = MI.getOperand(Idx).getReg();
2121 Register SrcReg = Operands[Idx];
2122 if (CanReuseInputDirectly)
2123 replaceRegWith(MRI, DstReg, SrcReg);
2124 else
2125 Builder.buildCast(DstReg, SrcReg);
2126 }
2127 MI.eraseFromParent();
2128}
2129
2130bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
2131 SmallVectorImpl<APInt> &Csts) {
2132 unsigned SrcIdx = MI.getNumOperands() - 1;
2133 Register SrcReg = MI.getOperand(SrcIdx).getReg();
2134 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
2135 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
2136 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
2137 return false;
2138 // Break down the big constant in smaller ones.
2139 const MachineOperand &CstVal = SrcInstr->getOperand(1);
2140 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
2141 ? CstVal.getCImm()->getValue()
2142 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
2143
2144 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
2145 unsigned ShiftAmt = Dst0Ty.getSizeInBits();
2146 // Unmerge a constant.
2147 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
2148 Csts.emplace_back(Val.trunc(ShiftAmt));
2149 Val = Val.lshr(ShiftAmt);
2150 }
2151
2152 return true;
2153}
2154
2155void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
2156 SmallVectorImpl<APInt> &Csts) {
2157 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast<void> (0))
2158 "Expected an unmerge")(static_cast<void> (0));
2159 assert((MI.getNumOperands() - 1 == Csts.size()) &&(static_cast<void> (0))
2160 "Not enough operands to replace all defs")(static_cast<void> (0));
2161 unsigned NumElems = MI.getNumOperands() - 1;
2162 Builder.setInstrAndDebugLoc(MI);
2163 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2164 Register DstReg = MI.getOperand(Idx).getReg();
2165 Builder.buildConstant(DstReg, Csts[Idx]);
2166 }
2167
2168 MI.eraseFromParent();
2169}
2170
2171bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2172 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast<void> (0))
2173 "Expected an unmerge")(static_cast<void> (0));
2174 // Check that all the lanes are dead except the first one.
2175 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2176 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
2177 return false;
2178 }
2179 return true;
2180}
2181
2182void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2183 Builder.setInstrAndDebugLoc(MI);
2184 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2185 // Truncating a vector is going to truncate every single lane,
2186 // whereas we want the full lowbits.
2187 // Do the operation on a scalar instead.
2188 LLT SrcTy = MRI.getType(SrcReg);
2189 if (SrcTy.isVector())
2190 SrcReg =
2191 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
2192
2193 Register Dst0Reg = MI.getOperand(0).getReg();
2194 LLT Dst0Ty = MRI.getType(Dst0Reg);
2195 if (Dst0Ty.isVector()) {
2196 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
2197 Builder.buildCast(Dst0Reg, MIB);
2198 } else
2199 Builder.buildTrunc(Dst0Reg, SrcReg);
2200 MI.eraseFromParent();
2201}
2202
2203bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
2204 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast<void> (0))
2205 "Expected an unmerge")(static_cast<void> (0));
2206 Register Dst0Reg = MI.getOperand(0).getReg();
2207 LLT Dst0Ty = MRI.getType(Dst0Reg);
2208 // G_ZEXT on vector applies to each lane, so it will
2209 // affect all destinations. Therefore we won't be able
2210 // to simplify the unmerge to just the first definition.
2211 if (Dst0Ty.isVector())
2212 return false;
2213 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2214 LLT SrcTy = MRI.getType(SrcReg);
2215 if (SrcTy.isVector())
2216 return false;
2217
2218 Register ZExtSrcReg;
2219 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
2220 return false;
2221
2222 // Finally we can replace the first definition with
2223 // a zext of the source if the definition is big enough to hold
2224 // all of ZExtSrc bits.
2225 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2226 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
2227}
2228
2229void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
2230 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast<void> (0))
2231 "Expected an unmerge")(static_cast<void> (0));
2232
2233 Register Dst0Reg = MI.getOperand(0).getReg();
2234
2235 MachineInstr *ZExtInstr =
2236 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
2237 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&(static_cast<void> (0))
2238 "Expecting a G_ZEXT")(static_cast<void> (0));
2239
2240 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
2241 LLT Dst0Ty = MRI.getType(Dst0Reg);
2242 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2243
2244 Builder.setInstrAndDebugLoc(MI);
2245
2246 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
2247 Builder.buildZExt(Dst0Reg, ZExtSrcReg);
2248 } else {
2249 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&(static_cast<void> (0))
2250 "ZExt src doesn't fit in destination")(static_cast<void> (0));
2251 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
2252 }
2253
2254 Register ZeroReg;
2255 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2256 if (!ZeroReg)
2257 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
2258 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
2259 }
2260 MI.eraseFromParent();
2261}
2262
2263bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
2264 unsigned TargetShiftSize,
2265 unsigned &ShiftVal) {
2266 assert((MI.getOpcode() == TargetOpcode::G_SHL ||(static_cast<void> (0))
2267 MI.getOpcode() == TargetOpcode::G_LSHR ||(static_cast<void> (0))
2268 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift")(static_cast<void> (0));
2269
2270 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2271 if (Ty.isVector()) // TODO:
2272 return false;
2273
2274 // Don't narrow further than the requested size.
2275 unsigned Size = Ty.getSizeInBits();
2276 if (Size <= TargetShiftSize)
2277 return false;
2278
2279 auto MaybeImmVal =
2280 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2281 if (!MaybeImmVal)
2282 return false;
2283
2284 ShiftVal = MaybeImmVal->Value.getSExtValue();
2285 return ShiftVal >= Size / 2 && ShiftVal < Size;
2286}
2287
2288void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
2289 const unsigned &ShiftVal) {
2290 Register DstReg = MI.getOperand(0).getReg();
2291 Register SrcReg = MI.getOperand(1).getReg();
2292 LLT Ty = MRI.getType(SrcReg);
2293 unsigned Size = Ty.getSizeInBits();
2294 unsigned HalfSize = Size / 2;
2295 assert(ShiftVal >= HalfSize)(static_cast<void> (0));
2296
2297 LLT HalfTy = LLT::scalar(HalfSize);
2298
2299 Builder.setInstr(MI);
2300 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
2301 unsigned NarrowShiftAmt = ShiftVal - HalfSize;
2302
2303 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2304 Register Narrowed = Unmerge.getReg(1);
2305
2306 // dst = G_LSHR s64:x, C for C >= 32
2307 // =>
2308 // lo, hi = G_UNMERGE_VALUES x
2309 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
2310
2311 if (NarrowShiftAmt != 0) {
2312 Narrowed = Builder.buildLShr(HalfTy, Narrowed,
2313 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2314 }
2315
2316 auto Zero = Builder.buildConstant(HalfTy, 0);
2317 Builder.buildMerge(DstReg, { Narrowed, Zero });
2318 } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
2319 Register Narrowed = Unmerge.getReg(0);
2320 // dst = G_SHL s64:x, C for C >= 32
2321 // =>
2322 // lo, hi = G_UNMERGE_VALUES x
2323 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
2324 if (NarrowShiftAmt != 0) {
2325 Narrowed = Builder.buildShl(HalfTy, Narrowed,
2326 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2327 }
2328
2329 auto Zero = Builder.buildConstant(HalfTy, 0);
2330 Builder.buildMerge(DstReg, { Zero, Narrowed });
2331 } else {
2332 assert(MI.getOpcode() == TargetOpcode::G_ASHR)(static_cast<void> (0));
2333 auto Hi = Builder.buildAShr(
2334 HalfTy, Unmerge.getReg(1),
2335 Builder.buildConstant(HalfTy, HalfSize - 1));
2336
2337 if (ShiftVal == HalfSize) {
2338 // (G_ASHR i64:x, 32) ->
2339 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
2340 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
2341 } else if (ShiftVal == Size - 1) {
2342 // Don't need a second shift.
2343 // (G_ASHR i64:x, 63) ->
2344 // %narrowed = (G_ASHR hi_32(x), 31)
2345 // G_MERGE_VALUES %narrowed, %narrowed
2346 Builder.buildMerge(DstReg, { Hi, Hi });
2347 } else {
2348 auto Lo = Builder.buildAShr(
2349 HalfTy, Unmerge.getReg(1),
2350 Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2351
2352 // (G_ASHR i64:x, C) ->, for C >= 32
2353 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2354 Builder.buildMerge(DstReg, { Lo, Hi });
2355 }
2356 }
2357
2358 MI.eraseFromParent();
2359}
2360
2361bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2362 unsigned TargetShiftAmount) {
2363 unsigned ShiftAmt;
2364 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2365 applyCombineShiftToUnmerge(MI, ShiftAmt);
2366 return true;
2367 }
2368
2369 return false;
2370}
2371
2372bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2373 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR")(static_cast<void> (0));
2374 Register DstReg = MI.getOperand(0).getReg();
2375 LLT DstTy = MRI.getType(DstReg);
2376 Register SrcReg = MI.getOperand(1).getReg();
2377 return mi_match(SrcReg, MRI,
2378 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2379}
2380
2381void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2382 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR")(static_cast<void> (0));
2383 Register DstReg = MI.getOperand(0).getReg();
2384 Builder.setInstr(MI);
2385 Builder.buildCopy(DstReg, Reg);
2386 MI.eraseFromParent();
2387}
2388
2389bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2390 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT")(static_cast<void> (0));
2391 Register SrcReg = MI.getOperand(1).getReg();
2392 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
2393}
2394
2395void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2396 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT")(static_cast<void> (0));
2397 Register DstReg = MI.getOperand(0).getReg();
2398 Builder.setInstr(MI);
2399 Builder.buildZExtOrTrunc(DstReg, Reg);
2400 MI.eraseFromParent();
2401}
2402
2403bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2404 MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2405 assert(MI.getOpcode() == TargetOpcode::G_ADD)(static_cast<void> (0));
2406 Register LHS = MI.getOperand(1).getReg();
2407 Register RHS = MI.getOperand(2).getReg();
2408 LLT IntTy = MRI.getType(LHS);
2409
2410 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2411 // instruction.
2412 PtrReg.second = false;
2413 for (Register SrcReg : {LHS, RHS}) {
2414 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2415 // Don't handle cases where the integer is implicitly converted to the
2416 // pointer width.
2417 LLT PtrTy = MRI.getType(PtrReg.first);
2418 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2419 return true;
2420 }
2421
2422 PtrReg.second = true;
2423 }
2424
2425 return false;
2426}
2427
2428void CombinerHelper::applyCombineAddP2IToPtrAdd(
2429 MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2430 Register Dst = MI.getOperand(0).getReg();
2431 Register LHS = MI.getOperand(1).getReg();
2432 Register RHS = MI.getOperand(2).getReg();
2433
2434 const bool DoCommute = PtrReg.second;
2435 if (DoCommute)
2436 std::swap(LHS, RHS);
2437 LHS = PtrReg.first;
2438
2439 LLT PtrTy = MRI.getType(LHS);
2440
2441 Builder.setInstrAndDebugLoc(MI);
2442 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2443 Builder.buildPtrToInt(Dst, PtrAdd);
2444 MI.eraseFromParent();
2445}
2446
2447bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2448 int64_t &NewCst) {
2449 auto &PtrAdd = cast<GPtrAdd>(MI);
2450 Register LHS = PtrAdd.getBaseReg();
2451 Register RHS = PtrAdd.getOffsetReg();
2452 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2453
2454 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) {
2455 int64_t Cst;
2456 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2457 NewCst = Cst + *RHSCst;
2458 return true;
2459 }
2460 }
2461
2462 return false;
2463}
2464
2465void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2466 int64_t &NewCst) {
2467 auto &PtrAdd = cast<GPtrAdd>(MI);
2468 Register Dst = PtrAdd.getReg(0);
2469
2470 Builder.setInstrAndDebugLoc(MI);
2471 Builder.buildConstant(Dst, NewCst);
2472 PtrAdd.eraseFromParent();
2473}
2474
2475bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2476 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT")(static_cast<void> (0));
2477 Register DstReg = MI.getOperand(0).getReg();
2478 Register SrcReg = MI.getOperand(1).getReg();
2479 LLT DstTy = MRI.getType(DstReg);
2480 return mi_match(SrcReg, MRI,
2481 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2482}
2483
2484bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2485 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT")(static_cast<void> (0));
2486 Register DstReg = MI.getOperand(0).getReg();
2487 Register SrcReg = MI.getOperand(1).getReg();
2488 LLT DstTy = MRI.getType(DstReg);
2489 if (mi_match(SrcReg, MRI,
2490 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2491 unsigned DstSize = DstTy.getScalarSizeInBits();
2492 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2493 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2494 }
2495 return false;
2496}
2497
2498bool CombinerHelper::matchCombineExtOfExt(
2499 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2500 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||(static_cast<void> (0))
2501 MI.getOpcode() == TargetOpcode::G_SEXT ||(static_cast<void> (0))
2502 MI.getOpcode() == TargetOpcode::G_ZEXT) &&(static_cast<void> (0))
2503 "Expected a G_[ASZ]EXT")(static_cast<void> (0));
2504 Register SrcReg = MI.getOperand(1).getReg();
2505 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2506 // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2507 unsigned Opc = MI.getOpcode();
2508 unsigned SrcOpc = SrcMI->getOpcode();
2509 if (Opc == SrcOpc ||
2510 (Opc == TargetOpcode::G_ANYEXT &&
2511 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2512 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2513 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2514 return true;
2515 }
2516 return false;
2517}
2518
2519void CombinerHelper::applyCombineExtOfExt(
2520 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2521 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||(static_cast<void> (0))
2522 MI.getOpcode() == TargetOpcode::G_SEXT ||(static_cast<void> (0))
2523 MI.getOpcode() == TargetOpcode::G_ZEXT) &&(static_cast<void> (0))
2524 "Expected a G_[ASZ]EXT")(static_cast<void> (0));
2525
2526 Register Reg = std::get<0>(MatchInfo);
2527 unsigned SrcExtOp = std::get<1>(MatchInfo);
2528
2529 // Combine exts with the same opcode.
2530 if (MI.getOpcode() == SrcExtOp) {
2531 Observer.changingInstr(MI);
2532 MI.getOperand(1).setReg(Reg);
2533 Observer.changedInstr(MI);
2534 return;
2535 }
2536
2537 // Combine:
2538 // - anyext([sz]ext x) to [sz]ext x
2539 // - sext(zext x) to zext x
2540 if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2541 (MI.getOpcode() == TargetOpcode::G_SEXT &&
2542 SrcExtOp == TargetOpcode::G_ZEXT)) {
2543 Register DstReg = MI.getOperand(0).getReg();
2544 Builder.setInstrAndDebugLoc(MI);
2545 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2546 MI.eraseFromParent();
2547 }
2548}
2549
2550void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2551 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL")(static_cast<void> (0));
2552 Register DstReg = MI.getOperand(0).getReg();
2553 Register SrcReg = MI.getOperand(1).getReg();
2554 LLT DstTy = MRI.getType(DstReg);
2555
2556 Builder.setInstrAndDebugLoc(MI);
2557 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2558 MI.getFlags());
2559 MI.eraseFromParent();
2560}
2561
2562bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
2563 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG")(static_cast<void> (0));
2564 Register SrcReg = MI.getOperand(1).getReg();
2565 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
2566}
2567
2568bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2569 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS")(static_cast<void> (0));
2570 Src = MI.getOperand(1).getReg();
2571 Register AbsSrc;
2572 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
2573}
2574
2575bool CombinerHelper::matchCombineTruncOfExt(
2576 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2577 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC")(static_cast<void> (0));
2578 Register SrcReg = MI.getOperand(1).getReg();
2579 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2580 unsigned SrcOpc = SrcMI->getOpcode();
2581 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2582 SrcOpc == TargetOpcode::G_ZEXT) {
2583 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2584 return true;
2585 }
2586 return false;
2587}
2588
2589void CombinerHelper::applyCombineTruncOfExt(
2590 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2591 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC")(static_cast<void> (0));
2592 Register SrcReg = MatchInfo.first;
2593 unsigned SrcExtOp = MatchInfo.second;
2594 Register DstReg = MI.getOperand(0).getReg();
2595 LLT SrcTy = MRI.getType(SrcReg);
2596 LLT DstTy = MRI.getType(DstReg);
2597 if (SrcTy == DstTy) {
2598 MI.eraseFromParent();
2599 replaceRegWith(MRI, DstReg, SrcReg);
2600 return;
2601 }
2602 Builder.setInstrAndDebugLoc(MI);
2603 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2604 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2605 else
2606 Builder.buildTrunc(DstReg, SrcReg);
2607 MI.eraseFromParent();
2608}
2609
2610bool CombinerHelper::matchCombineTruncOfShl(
2611 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2612 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC")(static_cast<void> (0));
2613 Register DstReg = MI.getOperand(0).getReg();
2614 Register SrcReg = MI.getOperand(1).getReg();
2615 LLT DstTy = MRI.getType(DstReg);
2616 Register ShiftSrc;
2617 Register ShiftAmt;
2618
2619 if (MRI.hasOneNonDBGUse(SrcReg) &&
2620 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
2621 isLegalOrBeforeLegalizer(
2622 {TargetOpcode::G_SHL,
2623 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
2624 KnownBits Known = KB->getKnownBits(ShiftAmt);
2625 unsigned Size = DstTy.getSizeInBits();
2626 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
2627 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
2628 return true;
2629 }
2630 }
2631 return false;
2632}
2633
2634void CombinerHelper::applyCombineTruncOfShl(
2635 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2636 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC")(static_cast<void> (0));
2637 Register DstReg = MI.getOperand(0).getReg();
2638 Register SrcReg = MI.getOperand(1).getReg();
2639 LLT DstTy = MRI.getType(DstReg);
2640 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2641
2642 Register ShiftSrc = MatchInfo.first;
2643 Register ShiftAmt = MatchInfo.second;
2644 Builder.setInstrAndDebugLoc(MI);
2645 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
2646 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
2647 MI.eraseFromParent();
2648}
2649
2650bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2651 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2652 return MO.isReg() &&
2653 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2654 });
2655}
2656
2657bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2658 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2659 return !MO.isReg() ||
2660 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2661 });
2662}
2663
2664bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2665 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR)(static_cast<void> (0));
2666 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2667 return all_of(Mask, [](int Elt) { return Elt < 0; });
2668}
2669
2670bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2671 assert(MI.getOpcode() == TargetOpcode::G_STORE)(static_cast<void> (0));
2672 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2673 MRI);
2674}
2675
2676bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2677 assert(MI.getOpcode() == TargetOpcode::G_SELECT)(static_cast<void> (0));
2678 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2679 MRI);
2680}
2681
2682bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2683 assert(MI.getOpcode() == TargetOpcode::G_SELECT)(static_cast<void> (0));
2684 if (auto MaybeCstCmp =
2685 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) {
2686 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2;
2687 return true;
2688 }
2689 return false;
2690}
2691
2692bool CombinerHelper::eraseInst(MachineInstr &MI) {
2693 MI.eraseFromParent();
2694 return true;
2695}
2696
2697bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2698 const MachineOperand &MOP2) {
2699 if (!MOP1.isReg() || !MOP2.isReg())
2700 return false;
2701 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
2702 if (!InstAndDef1)
2703 return false;
2704 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
2705 if (!InstAndDef2)
2706 return false;
2707 MachineInstr *I1 = InstAndDef1->MI;
2708 MachineInstr *I2 = InstAndDef2->MI;
2709
2710 // Handle a case like this:
2711 //
2712 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2713 //
2714 // Even though %0 and %1 are produced by the same instruction they are not
2715 // the same values.
2716 if (I1 == I2)
2717 return MOP1.getReg() == MOP2.getReg();
2718
2719 // If we have an instruction which loads or stores, we can't guarantee that
2720 // it is identical.
2721 //
2722 // For example, we may have
2723 //
2724 // %x1 = G_LOAD %addr (load N from @somewhere)
2725 // ...
2726 // call @foo
2727 // ...
2728 // %x2 = G_LOAD %addr (load N from @somewhere)
2729 // ...
2730 // %or = G_OR %x1, %x2
2731 //
2732 // It's possible that @foo will modify whatever lives at the address we're
2733 // loading from. To be safe, let's just assume that all loads and stores
2734 // are different (unless we have something which is guaranteed to not
2735 // change.)
2736 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr))
2737 return false;
2738
2739 // Check for physical registers on the instructions first to avoid cases
2740 // like this:
2741 //
2742 // %a = COPY $physreg
2743 // ...
2744 // SOMETHING implicit-def $physreg
2745 // ...
2746 // %b = COPY $physreg
2747 //
2748 // These copies are not equivalent.
2749 if (any_of(I1->uses(), [](const MachineOperand &MO) {
2750 return MO.isReg() && MO.getReg().isPhysical();
2751 })) {
2752 // Check if we have a case like this:
2753 //
2754 // %a = COPY $physreg
2755 // %b = COPY %a
2756 //
2757 // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2758 // From that, we know that they must have the same value, since they must
2759 // have come from the same COPY.
2760 return I1->isIdenticalTo(*I2);
2761 }
2762
2763 // We don't have any physical registers, so we don't necessarily need the
2764 // same vreg defs.
2765 //
2766 // On the off-chance that there's some target instruction feeding into the
2767 // instruction, let's use produceSameValue instead of isIdenticalTo.
2768 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
2769 // Handle instructions with multiple defs that produce same values. Values
2770 // are same for operands with same index.
2771 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2772 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2773 // I1 and I2 are different instructions but produce same values,
2774 // %1 and %6 are same, %1 and %7 are not the same value.
2775 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) ==
2776 I2->findRegisterDefOperandIdx(InstAndDef2->Reg);
2777 }
2778 return false;
2779}
2780
2781bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2782 if (!MOP.isReg())
2783 return false;
2784 // MIPatternMatch doesn't let us look through G_ZEXT etc.
2785 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI);
2786 return ValAndVReg && ValAndVReg->Value == C;
2787}
2788
2789bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2790 unsigned OpIdx) {
2791 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?")(static_cast<void> (0));
2792 Register OldReg = MI.getOperand(0).getReg();
2793 Register Replacement = MI.getOperand(OpIdx).getReg();
2794 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?")(static_cast<void> (0));
2795 MI.eraseFromParent();
2796 replaceRegWith(MRI, OldReg, Replacement);
2797 return true;
2798}
2799
2800bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2801 Register Replacement) {
2802 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?")(static_cast<void> (0));
2803 Register OldReg = MI.getOperand(0).getReg();
2804 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?")(static_cast<void> (0));
2805 MI.eraseFromParent();
2806 replaceRegWith(MRI, OldReg, Replacement);
2807 return true;
2808}
2809
2810bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2811 assert(MI.getOpcode() == TargetOpcode::G_SELECT)(static_cast<void> (0));
2812 // Match (cond ? x : x)
2813 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2814 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2815 MRI);
2816}
2817
2818bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2819 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2820 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2821 MRI);
2822}
2823
2824bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2825 return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2826 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2827 MRI);
2828}
2829
2830bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2831 MachineOperand &MO = MI.getOperand(OpIdx);
2832 return MO.isReg() &&
2833 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2834}
2835
2836bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2837 unsigned OpIdx) {
2838 MachineOperand &MO = MI.getOperand(OpIdx);
2839 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2840}
2841
2842bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2843 assert(MI.getNumDefs() == 1 && "Expected only one def?")(static_cast<void> (0));
2844 Builder.setInstr(MI);
2845 Builder.buildFConstant(MI.getOperand(0), C);
2846 MI.eraseFromParent();
2847 return true;
2848}
2849
2850bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2851 assert(MI.getNumDefs() == 1 && "Expected only one def?")(static_cast<void> (0));
2852 Builder.setInstr(MI);
2853 Builder.buildConstant(MI.getOperand(0), C);
2854 MI.eraseFromParent();
2855 return true;
2856}
2857
2858bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2859 assert(MI.getNumDefs() == 1 && "Expected only one def?")(static_cast<void> (0));
2860 Builder.setInstr(MI);
2861 Builder.buildConstant(MI.getOperand(0), C);
2862 MI.eraseFromParent();
2863 return true;
2864}
2865
2866bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2867 assert(MI.getNumDefs() == 1 && "Expected only one def?")(static_cast<void> (0));
2868 Builder.setInstr(MI);
2869 Builder.buildUndef(MI.getOperand(0));
2870 MI.eraseFromParent();
2871 return true;
2872}
2873
2874bool CombinerHelper::matchSimplifyAddToSub(
2875 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2876 Register LHS = MI.getOperand(1).getReg();
2877 Register RHS = MI.getOperand(2).getReg();
2878 Register &NewLHS = std::get<0>(MatchInfo);
2879 Register &NewRHS = std::get<1>(MatchInfo);
2880
2881 // Helper lambda to check for opportunities for
2882 // ((0-A) + B) -> B - A
2883 // (A + (0-B)) -> A - B
2884 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2885 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2886 return false;
2887 NewLHS = MaybeNewLHS;
2888 return true;
2889 };
2890
2891 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2892}
2893
2894bool CombinerHelper::matchCombineInsertVecElts(
2895 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2896 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&(static_cast<void> (0))
2897 "Invalid opcode")(static_cast<void> (0));
2898 Register DstReg = MI.getOperand(0).getReg();
2899 LLT DstTy = MRI.getType(DstReg);
2900 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?")(static_cast<void> (0));
2901 unsigned NumElts = DstTy.getNumElements();
2902 // If this MI is part of a sequence of insert_vec_elts, then
2903 // don't do the combine in the middle of the sequence.
2904 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2905 TargetOpcode::G_INSERT_VECTOR_ELT)
2906 return false;
2907 MachineInstr *CurrInst = &MI;
2908 MachineInstr *TmpInst;
2909 int64_t IntImm;
2910 Register TmpReg;
2911 MatchInfo.resize(NumElts);
2912 while (mi_match(
2913 CurrInst->getOperand(0).getReg(), MRI,
2914 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2915 if (IntImm >= NumElts)
2916 return false;
2917 if (!MatchInfo[IntImm])
2918 MatchInfo[IntImm] = TmpReg;
2919 CurrInst = TmpInst;
2920 }
2921 // Variable index.
2922 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2923 return false;
2924 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2925 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2926 if (!MatchInfo[I - 1].isValid())
2927 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2928 }
2929 return true;
2930 }
2931 // If we didn't end in a G_IMPLICIT_DEF, bail out.
2932 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2933}
2934
2935void CombinerHelper::applyCombineInsertVecElts(
2936 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2937 Builder.setInstr(MI);
2938 Register UndefReg;
2939 auto GetUndef = [&]() {
2940 if (UndefReg)
2941 return UndefReg;
2942 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2943 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2944 return UndefReg;
2945 };
2946 for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2947 if (!MatchInfo[I])
2948 MatchInfo[I] = GetUndef();
2949 }
2950 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2951 MI.eraseFromParent();
2952}
2953
2954void CombinerHelper::applySimplifyAddToSub(
2955 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2956 Builder.setInstr(MI);
2957 Register SubLHS, SubRHS;
2958 std::tie(SubLHS, SubRHS) = MatchInfo;
2959 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2960 MI.eraseFromParent();
2961}
2962
2963bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2964 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2965 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2966 //
2967 // Creates the new hand + logic instruction (but does not insert them.)
2968 //
2969 // On success, MatchInfo is populated with the new instructions. These are
2970 // inserted in applyHoistLogicOpWithSameOpcodeHands.
2971 unsigned LogicOpcode = MI.getOpcode();
2972 assert(LogicOpcode == TargetOpcode::G_AND ||(static_cast<void> (0))
2973 LogicOpcode == TargetOpcode::G_OR ||(static_cast<void> (0))
2974 LogicOpcode == TargetOpcode::G_XOR)(static_cast<void> (0));
2975 MachineIRBuilder MIB(MI);
2976 Register Dst = MI.getOperand(0).getReg();
2977 Register LHSReg = MI.getOperand(1).getReg();
2978 Register RHSReg = MI.getOperand(2).getReg();
2979
2980 // Don't recompute anything.
2981 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2982 return false;
2983
2984 // Make sure we have (hand x, ...), (hand y, ...)
2985 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2986 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2987 if (!LeftHandInst || !RightHandInst)
2988 return false;
2989 unsigned HandOpcode = LeftHandInst->getOpcode();
2990 if (HandOpcode != RightHandInst->getOpcode())
2991 return false;
2992 if (!LeftHandInst->getOperand(1).isReg() ||
2993 !RightHandInst->getOperand(1).isReg())
2994 return false;
2995
2996 // Make sure the types match up, and if we're doing this post-legalization,
2997 // we end up with legal types.
2998 Register X = LeftHandInst->getOperand(1).getReg();
2999 Register Y = RightHandInst->getOperand(1).getReg();
3000 LLT XTy = MRI.getType(X);
3001 LLT YTy = MRI.getType(Y);
3002 if (XTy != YTy)
3003 return false;
3004 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
3005 return false;
3006
3007 // Optional extra source register.
3008 Register ExtraHandOpSrcReg;
3009 switch (HandOpcode) {
3010 default:
3011 return false;
3012 case TargetOpcode::G_ANYEXT:
3013 case TargetOpcode::G_SEXT:
3014 case TargetOpcode::G_ZEXT: {
3015 // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
3016 break;
3017 }
3018 case TargetOpcode::G_AND:
3019 case TargetOpcode::G_ASHR:
3020 case TargetOpcode::G_LSHR:
3021 case TargetOpcode::G_SHL: {
3022 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
3023 MachineOperand &ZOp = LeftHandInst->getOperand(2);
3024 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
3025 return false;
3026 ExtraHandOpSrcReg = ZOp.getReg();
3027 break;
3028 }
3029 }
3030
3031 // Record the steps to build the new instructions.
3032 //
3033 // Steps to build (logic x, y)
3034 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
3035 OperandBuildSteps LogicBuildSteps = {
3036 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
3037 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
3038 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
3039 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
3040
3041 // Steps to build hand (logic x, y), ...z
3042 OperandBuildSteps HandBuildSteps = {
3043 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
3044 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
3045 if (ExtraHandOpSrcReg.isValid())
3046 HandBuildSteps.push_back(
3047 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
3048 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
3049
3050 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
3051 return true;
3052}
3053
3054void CombinerHelper::applyBuildInstructionSteps(
3055 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
3056 assert(MatchInfo.InstrsToBuild.size() &&(static_cast<void> (0))
3057 "Expected at least one instr to build?")(static_cast<void> (0));
3058 Builder.setInstr(MI);
3059 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
3060 assert(InstrToBuild.Opcode && "Expected a valid opcode?")(static_cast<void> (0));
3061 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?")(static_cast<void> (0));
3062 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
3063 for (auto &OperandFn : InstrToBuild.OperandFns)
3064 OperandFn(Instr);
3065 }
3066 MI.eraseFromParent();
3067}
3068
3069bool CombinerHelper::matchAshrShlToSextInreg(
3070 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3071 assert(MI.getOpcode() == TargetOpcode::G_ASHR)(static_cast<void> (0));
3072 int64_t ShlCst, AshrCst;
3073 Register Src;
3074 // FIXME: detect splat constant vectors.
3075 if (!mi_match(MI.getOperand(0).getReg(), MRI,
3076 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
3077 return false;
3078 if (ShlCst != AshrCst)
3079 return false;
3080 if (!isLegalOrBeforeLegalizer(
3081 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
3082 return false;
3083 MatchInfo = std::make_tuple(Src, ShlCst);
3084 return true;
3085}
3086
3087void CombinerHelper::applyAshShlToSextInreg(
3088 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3089 assert(MI.getOpcode() == TargetOpcode::G_ASHR)(static_cast<void> (0));
3090 Register Src;
3091 int64_t ShiftAmt;
3092 std::tie(Src, ShiftAmt) = MatchInfo;
3093 unsigned Size = MRI.getType(Src).getScalarSizeInBits();
3094 Builder.setInstrAndDebugLoc(MI);
3095 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
3096 MI.eraseFromParent();
3097}
3098
3099/// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
3100bool CombinerHelper::matchOverlappingAnd(
3101 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3102 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast<void> (0));
3103
3104 Register Dst = MI.getOperand(0).getReg();
3105 LLT Ty = MRI.getType(Dst);
3106
3107 Register R;
3108 int64_t C1;
3109 int64_t C2;
3110 if (!mi_match(
3111 Dst, MRI,
3112 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
3113 return false;
3114
3115 MatchInfo = [=](MachineIRBuilder &B) {
3116 if (C1 & C2) {
3117 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
3118 return;
3119 }
3120 auto Zero = B.buildConstant(Ty, 0);
3121 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
3122 };
3123 return true;
3124}
3125
3126bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
3127 Register &Replacement) {
3128 // Given
3129 //
3130 // %y:_(sN) = G_SOMETHING
3131 // %x:_(sN) = G_SOMETHING
3132 // %res:_(sN) = G_AND %x, %y
3133 //
3134 // Eliminate the G_AND when it is known that x & y == x or x & y == y.
3135 //
3136 // Patterns like this can appear as a result of legalization. E.g.
3137 //
3138 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
3139 // %one:_(s32) = G_CONSTANT i32 1
3140 // %and:_(s32) = G_AND %cmp, %one
3141 //
3142 // In this case, G_ICMP only produces a single bit, so x & 1 == x.
3143 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast<void> (0));
3144 if (!KB)
3145 return false;
3146
3147 Register AndDst = MI.getOperand(0).getReg();
3148 LLT DstTy = MRI.getType(AndDst);
3149
3150 // FIXME: This should be removed once GISelKnownBits supports vectors.
3151 if (DstTy.isVector())
3152 return false;
3153
3154 Register LHS = MI.getOperand(1).getReg();
3155 Register RHS = MI.getOperand(2).getReg();
3156 KnownBits LHSBits = KB->getKnownBits(LHS);
3157 KnownBits RHSBits = KB->getKnownBits(RHS);
3158
3159 // Check that x & Mask == x.
3160 // x & 1 == x, always
3161 // x & 0 == x, only if x is also 0
3162 // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
3163 //
3164 // Check if we can replace AndDst with the LHS of the G_AND
3165 if (canReplaceReg(AndDst, LHS, MRI) &&
3166 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
3167 Replacement = LHS;
3168 return true;
3169 }
3170
3171 // Check if we can replace AndDst with the RHS of the G_AND
3172 if (canReplaceReg(AndDst, RHS, MRI) &&
3173 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
3174 Replacement = RHS;
3175 return true;
3176 }
3177
3178 return false;
3179}
3180
3181bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
3182 // Given
3183 //
3184 // %y:_(sN) = G_SOMETHING
3185 // %x:_(sN) = G_SOMETHING
3186 // %res:_(sN) = G_OR %x, %y
3187 //
3188 // Eliminate the G_OR when it is known that x | y == x or x | y == y.
3189 assert(MI.getOpcode() == TargetOpcode::G_OR)(static_cast<void> (0));
3190 if (!KB)
3191 return false;
3192
3193 Register OrDst = MI.getOperand(0).getReg();
3194 LLT DstTy = MRI.getType(OrDst);
3195
3196 // FIXME: This should be removed once GISelKnownBits supports vectors.
3197 if (DstTy.isVector())
3198 return false;
3199
3200 Register LHS = MI.getOperand(1).getReg();
3201 Register RHS = MI.getOperand(2).getReg();
3202 KnownBits LHSBits = KB->getKnownBits(LHS);
3203 KnownBits RHSBits = KB->getKnownBits(RHS);
3204
3205 // Check that x | Mask == x.
3206 // x | 0 == x, always
3207 // x | 1 == x, only if x is also 1
3208 // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
3209 //
3210 // Check if we can replace OrDst with the LHS of the G_OR
3211 if (canReplaceReg(OrDst, LHS, MRI) &&
3212 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
3213 Replacement = LHS;
3214 return true;
3215 }
3216
3217 // Check if we can replace OrDst with the RHS of the G_OR
3218 if (canReplaceReg(OrDst, RHS, MRI) &&
3219 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
3220 Replacement = RHS;
3221 return true;
3222 }
3223
3224 return false;
3225}
3226
3227bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
3228 // If the input is already sign extended, just drop the extension.
3229 Register Src = MI.getOperand(1).getReg();
3230 unsigned ExtBits = MI.getOperand(2).getImm();
3231 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
3232 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
3233}
3234
3235static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
3236 int64_t Cst, bool IsVector, bool IsFP) {
3237 // For i1, Cst will always be -1 regardless of boolean contents.
3238 return (ScalarSizeBits == 1 && Cst == -1) ||
3239 isConstTrueVal(TLI, Cst, IsVector, IsFP);
3240}
3241
3242bool CombinerHelper::matchNotCmp(MachineInstr &MI,
3243 SmallVectorImpl<Register> &RegsToNegate) {
3244 assert(MI.getOpcode() == TargetOpcode::G_XOR)(static_cast<void> (0));
3245 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3246 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
3247 Register XorSrc;
3248 Register CstReg;
3249 // We match xor(src, true) here.
3250 if (!mi_match(MI.getOperand(0).getReg(), MRI,
3251 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
3252 return false;
3253
3254 if (!MRI.hasOneNonDBGUse(XorSrc))
3255 return false;
3256
3257 // Check that XorSrc is the root of a tree of comparisons combined with ANDs
3258 // and ORs. The suffix of RegsToNegate starting from index I is used a work
3259 // list of tree nodes to visit.
3260 RegsToNegate.push_back(XorSrc);
3261 // Remember whether the comparisons are all integer or all floating point.
3262 bool IsInt = false;
3263 bool IsFP = false;
3264 for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
3265 Register Reg = RegsToNegate[I];
3266 if (!MRI.hasOneNonDBGUse(Reg))
3267 return false;
3268 MachineInstr *Def = MRI.getVRegDef(Reg);
3269 switch (Def->getOpcode()) {
3270 default:
3271 // Don't match if the tree contains anything other than ANDs, ORs and
3272 // comparisons.
3273 return false;
3274 case TargetOpcode::G_ICMP:
3275 if (IsFP)
3276 return false;
3277 IsInt = true;
3278 // When we apply the combine we will invert the predicate.
3279 break;
3280 case TargetOpcode::G_FCMP:
3281 if (IsInt)
3282 return false;
3283 IsFP = true;
3284 // When we apply the combine we will invert the predicate.
3285 break;
3286 case TargetOpcode::G_AND:
3287 case TargetOpcode::G_OR:
3288 // Implement De Morgan's laws:
3289 // ~(x & y) -> ~x | ~y
3290 // ~(x | y) -> ~x & ~y
3291 // When we apply the combine we will change the opcode and recursively
3292 // negate the operands.
3293 RegsToNegate.push_back(Def->getOperand(1).getReg());
3294 RegsToNegate.push_back(Def->getOperand(2).getReg());
3295 break;
3296 }
3297 }
3298
3299 // Now we know whether the comparisons are integer or floating point, check
3300 // the constant in the xor.
3301 int64_t Cst;
3302 if (Ty.isVector()) {
3303 MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3304 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI);
3305 if (!MaybeCst)
3306 return false;
3307 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3308 return false;
3309 } else {
3310 if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3311 return false;
3312 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3313 return false;
3314 }
3315
3316 return true;
3317}
3318
3319void CombinerHelper::applyNotCmp(MachineInstr &MI,
3320 SmallVectorImpl<Register> &RegsToNegate) {
3321 for (Register Reg : RegsToNegate) {
3322 MachineInstr *Def = MRI.getVRegDef(Reg);
3323 Observer.changingInstr(*Def);
3324 // For each comparison, invert the opcode. For each AND and OR, change the
3325 // opcode.
3326 switch (Def->getOpcode()) {
3327 default:
3328 llvm_unreachable("Unexpected opcode")__builtin_unreachable();
3329 case TargetOpcode::G_ICMP:
3330 case TargetOpcode::G_FCMP: {
3331 MachineOperand &PredOp = Def->getOperand(1);
3332 CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3333 (CmpInst::Predicate)PredOp.getPredicate());
3334 PredOp.setPredicate(NewP);
3335 break;
3336 }
3337 case TargetOpcode::G_AND:
3338 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3339 break;
3340 case TargetOpcode::G_OR:
3341 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3342 break;
3343 }
3344 Observer.changedInstr(*Def);
3345 }
3346
3347 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3348 MI.eraseFromParent();
3349}
3350
3351bool CombinerHelper::matchXorOfAndWithSameReg(
3352 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3353 // Match (xor (and x, y), y) (or any of its commuted cases)
3354 assert(MI.getOpcode() == TargetOpcode::G_XOR)(static_cast<void> (0));
3355 Register &X = MatchInfo.first;
3356 Register &Y = MatchInfo.second;
3357 Register AndReg = MI.getOperand(1).getReg();
3358 Register SharedReg = MI.getOperand(2).getReg();
3359
3360 // Find a G_AND on either side of the G_XOR.
3361 // Look for one of
3362 //
3363 // (xor (and x, y), SharedReg)
3364 // (xor SharedReg, (and x, y))
3365 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3366 std::swap(AndReg, SharedReg);
3367 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3368 return false;
3369 }
3370
3371 // Only do this if we'll eliminate the G_AND.
3372 if (!MRI.hasOneNonDBGUse(AndReg))
3373 return false;
3374
3375 // We can combine if SharedReg is the same as either the LHS or RHS of the
3376 // G_AND.
3377 if (Y != SharedReg)
3378 std::swap(X, Y);
3379 return Y == SharedReg;
3380}
3381
3382void CombinerHelper::applyXorOfAndWithSameReg(
3383 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3384 // Fold (xor (and x, y), y) -> (and (not x), y)
3385 Builder.setInstrAndDebugLoc(MI);
3386 Register X, Y;
3387 std::tie(X, Y) = MatchInfo;
3388 auto Not = Builder.buildNot(MRI.getType(X), X);
3389 Observer.changingInstr(MI);
3390 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3391 MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3392 MI.getOperand(2).setReg(Y);
3393 Observer.changedInstr(MI);
3394}
3395
3396bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3397 auto &PtrAdd = cast<GPtrAdd>(MI);
3398 Register DstReg = PtrAdd.getReg(0);
3399 LLT Ty = MRI.getType(DstReg);
3400 const DataLayout &DL = Builder.getMF().getDataLayout();
3401
3402 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3403 return false;
3404
3405 if (Ty.isPointer()) {
3406 auto ConstVal = getConstantVRegVal(PtrAdd.getBaseReg(), MRI);
3407 return ConstVal && *ConstVal == 0;
3408 }
3409
3410 assert(Ty.isVector() && "Expecting a vector type")(static_cast<void> (0));
3411 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
3412 return isBuildVectorAllZeros(*VecMI, MRI);
3413}
3414
3415void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3416 auto &PtrAdd = cast<GPtrAdd>(MI);
3417 Builder.setInstrAndDebugLoc(PtrAdd);
3418 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
3419 PtrAdd.eraseFromParent();
3420}
3421
3422/// The second source operand is known to be a power of 2.
3423void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3424 Register DstReg = MI.getOperand(0).getReg();
3425 Register Src0 = MI.getOperand(1).getReg();
3426 Register Pow2Src1 = MI.getOperand(2).getReg();
3427 LLT Ty = MRI.getType(DstReg);
3428 Builder.setInstrAndDebugLoc(MI);
3429
3430 // Fold (urem x, pow2) -> (and x, pow2-1)
3431 auto NegOne = Builder.buildConstant(Ty, -1);
3432 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3433 Builder.buildAnd(DstReg, Src0, Add);
3434 MI.eraseFromParent();
3435}
3436
3437Optional<SmallVector<Register, 8>>
3438CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3439 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!")(static_cast<void> (0));
3440 // We want to detect if Root is part of a tree which represents a bunch
3441 // of loads being merged into a larger load. We'll try to recognize patterns
3442 // like, for example:
3443 //
3444 // Reg Reg
3445 // \ /
3446 // OR_1 Reg
3447 // \ /
3448 // OR_2
3449 // \ Reg
3450 // .. /
3451 // Root
3452 //
3453 // Reg Reg Reg Reg
3454 // \ / \ /
3455 // OR_1 OR_2
3456 // \ /
3457 // \ /
3458 // ...
3459 // Root
3460 //
3461 // Each "Reg" may have been produced by a load + some arithmetic. This
3462 // function will save each of them.
3463 SmallVector<Register, 8> RegsToVisit;
3464 SmallVector<const MachineInstr *, 7> Ors = {Root};
3465
3466 // In the "worst" case, we're dealing with a load for each byte. So, there
3467 // are at most #bytes - 1 ORs.
3468 const unsigned MaxIter =
3469 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3470 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3471 if (Ors.empty())
3472 break;
3473 const MachineInstr *Curr = Ors.pop_back_val();
3474 Register OrLHS = Curr->getOperand(1).getReg();
3475 Register OrRHS = Curr->getOperand(2).getReg();
3476
3477 // In the combine, we want to elimate the entire tree.
3478 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3479 return None;
3480
3481 // If it's a G_OR, save it and continue to walk. If it's not, then it's
3482 // something that may be a load + arithmetic.
3483 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3484 Ors.push_back(Or);
3485 else
3486 RegsToVisit.push_back(OrLHS);
3487 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3488 Ors.push_back(Or);
3489 else
3490 RegsToVisit.push_back(OrRHS);
3491 }
3492
3493 // We're going to try and merge each register into a wider power-of-2 type,
3494 // so we ought to have an even number of registers.
3495 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3496 return None;
3497 return RegsToVisit;
3498}
3499
3500/// Helper function for findLoadOffsetsForLoadOrCombine.
3501///
3502/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3503/// and then moving that value into a specific byte offset.
3504///
3505/// e.g. x[i] << 24
3506///
3507/// \returns The load instruction and the byte offset it is moved into.
3508static Optional<std::pair<GZExtLoad *, int64_t>>
3509matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3510 const MachineRegisterInfo &MRI) {
3511 assert(MRI.hasOneNonDBGUse(Reg) &&(static_cast<void> (0))
3512 "Expected Reg to only have one non-debug use?")(static_cast<void> (0));
3513 Register MaybeLoad;
3514 int64_t Shift;
3515 if (!mi_match(Reg, MRI,
3516 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3517 Shift = 0;
3518 MaybeLoad = Reg;
3519 }
3520
3521 if (Shift % MemSizeInBits != 0)
3522 return None;
3523
3524 // TODO: Handle other types of loads.
3525 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3526 if (!Load)
3527 return None;
3528
3529 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3530 return None;
3531
3532 return std::make_pair(Load, Shift / MemSizeInBits);
3533}
3534
3535Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
3536CombinerHelper::findLoadOffsetsForLoadOrCombine(
3537 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3538 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3539
3540 // Each load found for the pattern. There should be one for each RegsToVisit.
3541 SmallSetVector<const MachineInstr *, 8> Loads;
3542
3543 // The lowest index used in any load. (The lowest "i" for each x[i].)
3544 int64_t LowestIdx = INT64_MAX(9223372036854775807L);
3545
3546 // The load which uses the lowest index.
3547 GZExtLoad *LowestIdxLoad = nullptr;
3548
3549 // Keeps track of the load indices we see. We shouldn't see any indices twice.
3550 SmallSet<int64_t, 8> SeenIdx;
3551
3552 // Ensure each load is in the same MBB.
3553 // TODO: Support multiple MachineBasicBlocks.
3554 MachineBasicBlock *MBB = nullptr;
3555 const MachineMemOperand *MMO = nullptr;
3556
3557 // Earliest instruction-order load in the pattern.
3558 GZExtLoad *EarliestLoad = nullptr;
10
'EarliestLoad' initialized to a null pointer value
3559
3560 // Latest instruction-order load in the pattern.
3561 GZExtLoad *LatestLoad = nullptr;
3562
3563 // Base pointer which every load should share.
3564 Register BasePtr;
3565
3566 // We want to find a load for each register. Each load should have some
3567 // appropriate bit twiddling arithmetic. During this loop, we will also keep
3568 // track of the load which uses the lowest index. Later, we will check if we
3569 // can use its pointer in the final, combined load.
3570 for (auto Reg : RegsToVisit) {
11
Assuming '__begin1' is equal to '__end1'
3571 // Find the load, and find the position that it will end up in (e.g. a
3572 // shifted) value.
3573 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3574 if (!LoadAndPos)
3575 return None;
3576 GZExtLoad *Load;
3577 int64_t DstPos;
3578 std::tie(Load, DstPos) = *LoadAndPos;
3579
3580 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3581 // it is difficult to check for stores/calls/etc between loads.
3582 MachineBasicBlock *LoadMBB = Load->getParent();
3583 if (!MBB)
3584 MBB = LoadMBB;
3585 if (LoadMBB != MBB)
3586 return None;
3587
3588 // Make sure that the MachineMemOperands of every seen load are compatible.
3589 auto &LoadMMO = Load->getMMO();
3590 if (!MMO)
3591 MMO = &LoadMMO;
3592 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3593 return None;
3594
3595 // Find out what the base pointer and index for the load is.
3596 Register LoadPtr;
3597 int64_t Idx;
3598 if (!mi_match(Load->getOperand(1).getReg(), MRI,
3599 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3600 LoadPtr = Load->getOperand(1).getReg();
3601 Idx = 0;
3602 }
3603
3604 // Don't combine things like a[i], a[i] -> a bigger load.
3605 if (!SeenIdx.insert(Idx).second)
3606 return None;
3607
3608 // Every load must share the same base pointer; don't combine things like:
3609 //
3610 // a[i], b[i + 1] -> a bigger load.
3611 if (!BasePtr.isValid())
3612 BasePtr = LoadPtr;
3613 if (BasePtr != LoadPtr)
3614 return None;
3615
3616 if (Idx < LowestIdx) {
3617 LowestIdx = Idx;
3618 LowestIdxLoad = Load;
3619 }
3620
3621 // Keep track of the byte offset that this load ends up at. If we have seen
3622 // the byte offset, then stop here. We do not want to combine:
3623 //
3624 // a[i] << 16, a[i + k] << 16 -> a bigger load.
3625 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3626 return None;
3627 Loads.insert(Load);
3628
3629 // Keep track of the position of the earliest/latest loads in the pattern.
3630 // We will check that there are no load fold barriers between them later
3631 // on.
3632 //
3633 // FIXME: Is there a better way to check for load fold barriers?
3634 if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3635 EarliestLoad = Load;
3636 if (!LatestLoad || dominates(*LatestLoad, *Load))
3637 LatestLoad = Load;
3638 }
3639
3640 // We found a load for each register. Let's check if each load satisfies the
3641 // pattern.
3642 assert(Loads.size() == RegsToVisit.size() &&(static_cast<void> (0))
3643 "Expected to find a load for each register?")(static_cast<void> (0));
3644 assert(EarliestLoad != LatestLoad && EarliestLoad &&(static_cast<void> (0))
3645 LatestLoad && "Expected at least two loads?")(static_cast<void> (0));
3646
3647 // Check if there are any stores, calls, etc. between any of the loads. If
3648 // there are, then we can't safely perform the combine.
3649 //
3650 // MaxIter is chosen based off the (worst case) number of iterations it
3651 // typically takes to succeed in the LLVM test suite plus some padding.
3652 //
3653 // FIXME: Is there a better way to check for load fold barriers?
3654 const unsigned MaxIter = 20;
3655 unsigned Iter = 0;
3656 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
12
Called C++ object pointer is null
3657 LatestLoad->getIterator())) {
3658 if (Loads.count(&MI))
3659 continue;
3660 if (MI.isLoadFoldBarrier())
3661 return None;
3662 if (Iter++ == MaxIter)
3663 return None;
3664 }
3665
3666 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3667}
3668
3669bool CombinerHelper::matchLoadOrCombine(
3670 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3671 assert(MI.getOpcode() == TargetOpcode::G_OR)(static_cast<void> (0));
3672 MachineFunction &MF = *MI.getMF();
3673 // Assuming a little-endian target, transform:
3674 // s8 *a = ...
3675 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3676 // =>
3677 // s32 val = *((i32)a)
3678 //
3679 // s8 *a = ...
3680 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3681 // =>
3682 // s32 val = BSWAP(*((s32)a))
3683 Register Dst = MI.getOperand(0).getReg();
3684 LLT Ty = MRI.getType(Dst);
3685 if (Ty.isVector())
1
Assuming the condition is false
2
Taking false branch
3686 return false;
3687
3688 // We need to combine at least two loads into this type. Since the smallest
3689 // possible load is into a byte, we need at least a 16-bit wide type.
3690 const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3691 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3
Assuming 'WideMemSizeInBits' is >= 16
4
Assuming the condition is false
5
Taking false branch
3692 return false;
3693
3694 // Match a collection of non-OR instructions in the pattern.
3695 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3696 if (!RegsToVisit)
6
Taking false branch
3697 return false;
3698
3699 // We have a collection of non-OR instructions. Figure out how wide each of
3700 // the small loads should be based off of the number of potential loads we
3701 // found.
3702 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3703 if (NarrowMemSizeInBits % 8 != 0)
7
Assuming the condition is false
8
Taking false branch
3704 return false;
3705
3706 // Check if each register feeding into each OR is a load from the same
3707 // base pointer + some arithmetic.
3708 //
3709 // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3710 //
3711 // Also verify that each of these ends up putting a[i] into the same memory
3712 // offset as a load into a wide type would.
3713 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3714 GZExtLoad *LowestIdxLoad, *LatestLoad;
3715 int64_t LowestIdx;
3716 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
9
Calling 'CombinerHelper::findLoadOffsetsForLoadOrCombine'
3717 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3718 if (!MaybeLoadInfo)
3719 return false;
3720 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3721
3722 // We have a bunch of loads being OR'd together. Using the addresses + offsets
3723 // we found before, check if this corresponds to a big or little endian byte
3724 // pattern. If it does, then we can represent it using a load + possibly a
3725 // BSWAP.
3726 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3727 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3728 if (!IsBigEndian.hasValue())
3729 return false;
3730 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3731 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3732 return false;
3733
3734 // Make sure that the load from the lowest index produces offset 0 in the
3735 // final value.
3736 //
3737 // This ensures that we won't combine something like this:
3738 //
3739 // load x[i] -> byte 2
3740 // load x[i+1] -> byte 0 ---> wide_load x[i]
3741 // load x[i+2] -> byte 1
3742 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3743 const unsigned ZeroByteOffset =
3744 *IsBigEndian
3745 ? bigEndianByteAt(NumLoadsInTy, 0)
3746 : littleEndianByteAt(NumLoadsInTy, 0);
3747 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3748 if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3749 ZeroOffsetIdx->second != LowestIdx)
3750 return false;
3751
3752 // We wil reuse the pointer from the load which ends up at byte offset 0. It
3753 // may not use index 0.
3754 Register Ptr = LowestIdxLoad->getPointerReg();
3755 const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3756 LegalityQuery::MemDesc MMDesc(MMO);
3757 MMDesc.MemoryTy = Ty;
3758 if (!isLegalOrBeforeLegalizer(
3759 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3760 return false;
3761 auto PtrInfo = MMO.getPointerInfo();
3762 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3763
3764 // Load must be allowed and fast on the target.
3765 LLVMContext &C = MF.getFunction().getContext();
3766 auto &DL = MF.getDataLayout();
3767 bool Fast = false;
3768 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3769 !Fast)
3770 return false;
3771
3772 MatchInfo = [=](MachineIRBuilder &MIB) {
3773 MIB.setInstrAndDebugLoc(*LatestLoad);
3774 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3775 MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3776 if (NeedsBSwap)
3777 MIB.buildBSwap(Dst, LoadDst);
3778 };
3779 return true;
3780}
3781
3782bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
3783 MachineInstr *&ExtMI) {
3784 assert(MI.getOpcode() == TargetOpcode::G_PHI)(static_cast<void> (0));
3785
3786 Register DstReg = MI.getOperand(0).getReg();
3787
3788 // TODO: Extending a vector may be expensive, don't do this until heuristics
3789 // are better.
3790 if (MRI.getType(DstReg).isVector())
3791 return false;
3792
3793 // Try to match a phi, whose only use is an extend.
3794 if (!MRI.hasOneNonDBGUse(DstReg))
3795 return false;
3796 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
3797 switch (ExtMI->getOpcode()) {
3798 case TargetOpcode::G_ANYEXT:
3799 return true; // G_ANYEXT is usually free.
3800 case TargetOpcode::G_ZEXT:
3801 case TargetOpcode::G_SEXT:
3802 break;
3803 default:
3804 return false;
3805 }
3806
3807 // If the target is likely to fold this extend away, don't propagate.
3808 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
3809 return false;
3810
3811 // We don't want to propagate the extends unless there's a good chance that
3812 // they'll be optimized in some way.
3813 // Collect the unique incoming values.
3814 SmallPtrSet<MachineInstr *, 4> InSrcs;
3815 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
3816 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
3817 switch (DefMI->getOpcode()) {
3818 case TargetOpcode::G_LOAD:
3819 case TargetOpcode::G_TRUNC:
3820 case TargetOpcode::G_SEXT:
3821 case TargetOpcode::G_ZEXT:
3822 case TargetOpcode::G_ANYEXT:
3823 case TargetOpcode::G_CONSTANT:
3824 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
3825 // Don't try to propagate if there are too many places to create new
3826 // extends, chances are it'll increase code size.
3827 if (InSrcs.size() > 2)
3828 return false;
3829 break;
3830 default:
3831 return false;
3832 }
3833 }
3834 return true;
3835}
3836
3837void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
3838 MachineInstr *&ExtMI) {
3839 assert(MI.getOpcode() == TargetOpcode::G_PHI)(static_cast<void> (0));
3840 Register DstReg = ExtMI->getOperand(0).getReg();
3841 LLT ExtTy = MRI.getType(DstReg);
3842
3843 // Propagate the extension into the block of each incoming reg's block.
3844 // Use a SetVector here because PHIs can have duplicate edges, and we want
3845 // deterministic iteration order.
3846 SmallSetVector<MachineInstr *, 8> SrcMIs;
3847 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
3848 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
3849 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
3850 if (!SrcMIs.insert(SrcMI))
3851 continue;
3852
3853 // Build an extend after each src inst.
3854 auto *MBB = SrcMI->getParent();
3855 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
3856 if (InsertPt != MBB->end() && InsertPt->isPHI())
3857 InsertPt = MBB->getFirstNonPHI();
3858
3859 Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
3860 Builder.setDebugLoc(MI.getDebugLoc());
3861 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
3862 SrcMI->getOperand(0).getReg());
3863 OldToNewSrcMap[SrcMI] = NewExt;
3864 }
3865
3866 // Create a new phi with the extended inputs.
3867 Builder.setInstrAndDebugLoc(MI);
3868 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
3869 NewPhi.addDef(DstReg);
3870 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) {
3871 auto &MO = MI.getOperand(SrcIdx);
3872 if (!MO.isReg()) {
3873 NewPhi.addMBB(MO.getMBB());
3874 continue;
3875 }
3876 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
3877 NewPhi.addUse(NewSrc->getOperand(0).getReg());
3878 }
3879 Builder.insertInstr(NewPhi);
3880 ExtMI->eraseFromParent();
3881}
3882
3883bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
3884 Register &Reg) {
3885 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT)(static_cast<void> (0));
3886 // If we have a constant index, look for a G_BUILD_VECTOR source
3887 // and find the source register that the index maps to.
3888 Register SrcVec = MI.getOperand(1).getReg();
3889 LLT SrcTy = MRI.getType(SrcVec);
3890 if (!isLegalOrBeforeLegalizer(
3891 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}}))
3892 return false;
3893
3894 auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
3895 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
3896 return false;
3897
3898 unsigned VecIdx = Cst->Value.getZExtValue();
3899 MachineInstr *BuildVecMI =
3900 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI);
3901 if (!BuildVecMI) {
3902 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI);
3903 if (!BuildVecMI)
3904 return false;
3905 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg());
3906 if (!isLegalOrBeforeLegalizer(
3907 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}}))
3908 return false;
3909 }
3910
3911 EVT Ty(getMVTForLLT(SrcTy));
3912 if (!MRI.hasOneNonDBGUse(SrcVec) &&
3913 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
3914 return false;
3915
3916 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg();
3917 return true;
3918}
3919
3920void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
3921 Register &Reg) {
3922 // Check the type of the register, since it may have come from a
3923 // G_BUILD_VECTOR_TRUNC.
3924 LLT ScalarTy = MRI.getType(Reg);
3925 Register DstReg = MI.getOperand(0).getReg();
3926 LLT DstTy = MRI.getType(DstReg);
3927
3928 Builder.setInstrAndDebugLoc(MI);
3929 if (ScalarTy != DstTy) {
3930 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits())(static_cast<void> (0));
3931 Builder.buildTrunc(DstReg, Reg);
3932 MI.eraseFromParent();
3933 return;
3934 }
3935 replaceSingleDefInstWithReg(MI, Reg);
3936}
3937
3938bool CombinerHelper::matchExtractAllEltsFromBuildVector(
3939 MachineInstr &MI,
3940 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3941 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR)(static_cast<void> (0));
3942 // This combine tries to find build_vector's which have every source element
3943 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
3944 // the masked load scalarization is run late in the pipeline. There's already
3945 // a combine for a similar pattern starting from the extract, but that
3946 // doesn't attempt to do it if there are multiple uses of the build_vector,
3947 // which in this case is true. Starting the combine from the build_vector
3948 // feels more natural than trying to find sibling nodes of extracts.
3949 // E.g.
3950 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
3951 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
3952 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
3953 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
3954 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
3955 // ==>
3956 // replace ext{1,2,3,4} with %s{1,2,3,4}
3957
3958 Register DstReg = MI.getOperand(0).getReg();
3959 LLT DstTy = MRI.getType(DstReg);
3960 unsigned NumElts = DstTy.getNumElements();
3961
3962 SmallBitVector ExtractedElts(NumElts);
3963 for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg),
3964 MRI.use_instr_nodbg_end())) {
3965 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
3966 return false;
3967 auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI);
3968 if (!Cst)
3969 return false;
3970 unsigned Idx = Cst.getValue().getZExtValue();
3971 if (Idx >= NumElts)
3972 return false; // Out of range.
3973 ExtractedElts.set(Idx);
3974 SrcDstPairs.emplace_back(
3975 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
3976 }
3977 // Match if every element was extracted.
3978 return ExtractedElts.all();
3979}
3980
3981void CombinerHelper::applyExtractAllEltsFromBuildVector(
3982 MachineInstr &MI,
3983 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3984 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR)(static_cast<void> (0));
3985 for (auto &Pair : SrcDstPairs) {
3986 auto *ExtMI = Pair.second;
3987 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
3988 ExtMI->eraseFromParent();
3989 }
3990 MI.eraseFromParent();
3991}
3992
3993void CombinerHelper::applyBuildFn(
3994 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3995 Builder.setInstrAndDebugLoc(MI);
3996 MatchInfo(Builder);
3997 MI.eraseFromParent();
3998}
3999
4000void CombinerHelper::applyBuildFnNoErase(
4001 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4002 Builder.setInstrAndDebugLoc(MI);
4003 MatchInfo(Builder);
4004}
4005
4006/// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
4007bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
4008 unsigned Opc = MI.getOpcode();
4009 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR)(static_cast<void> (0));
4010 Register X = MI.getOperand(1).getReg();
4011 Register Y = MI.getOperand(2).getReg();
4012 if (X != Y)
4013 return false;
4014 unsigned RotateOpc =
4015 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
4016 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
4017}
4018
4019void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
4020 unsigned Opc = MI.getOpcode();
4021 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR)(static_cast<void> (0));
4022 bool IsFSHL = Opc == TargetOpcode::G_FSHL;
4023 Observer.changingInstr(MI);
4024 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
4025 : TargetOpcode::G_ROTR));
4026 MI.RemoveOperand(2);
4027 Observer.changedInstr(MI);
4028}
4029
4030// Fold (rot x, c) -> (rot x, c % BitSize)
4031bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
4032 assert(MI.getOpcode() == TargetOpcode::G_ROTL ||(static_cast<void> (0))
4033 MI.getOpcode() == TargetOpcode::G_ROTR)(static_cast<void> (0));
4034 unsigned Bitsize =
4035 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4036 Register AmtReg = MI.getOperand(2).getReg();
4037 bool OutOfRange = false;
4038 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
4039 if (auto *CI = dyn_cast<ConstantInt>(C))
4040 OutOfRange |= CI->getValue().uge(Bitsize);
4041 return true;
4042 };
4043 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
4044}
4045
4046void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
4047 assert(MI.getOpcode() == TargetOpcode::G_ROTL ||(static_cast<void> (0))
4048 MI.getOpcode() == TargetOpcode::G_ROTR)(static_cast<void> (0));
4049 unsigned Bitsize =
4050 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4051 Builder.setInstrAndDebugLoc(MI);
4052 Register Amt = MI.getOperand(2).getReg();
4053 LLT AmtTy = MRI.getType(Amt);
4054 auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4055 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4056 Observer.changingInstr(MI);
4057 MI.getOperand(2).setReg(Amt);
4058 Observer.changedInstr(MI);
4059}
4060
4061bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4062 int64_t &MatchInfo) {
4063 assert(MI.getOpcode() == TargetOpcode::G_ICMP)(static_cast<void> (0));
4064 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4065 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4066 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4067 Optional<bool> KnownVal;
4068 switch (Pred) {
4069 default:
4070 llvm_unreachable("Unexpected G_ICMP predicate?")__builtin_unreachable();
4071 case CmpInst::ICMP_EQ:
4072 KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4073 break;
4074 case CmpInst::ICMP_NE:
4075 KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4076 break;
4077 case CmpInst::ICMP_SGE:
4078 KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4079 break;
4080 case CmpInst::ICMP_SGT:
4081 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4082 break;
4083 case CmpInst::ICMP_SLE:
4084 KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4085 break;
4086 case CmpInst::ICMP_SLT:
4087 KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4088 break;
4089 case CmpInst::ICMP_UGE:
4090 KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4091 break;
4092 case CmpInst::ICMP_UGT:
4093 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4094 break;
4095 case CmpInst::ICMP_ULE:
4096 KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4097 break;
4098 case CmpInst::ICMP_ULT:
4099 KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4100 break;
4101 }
4102 if (!KnownVal)
4103 return false;
4104 MatchInfo =
4105 *KnownVal
4106 ? getICmpTrueVal(getTargetLowering(),
4107 /*IsVector = */
4108 MRI.getType(MI.getOperand(0).getReg()).isVector(),
4109 /* IsFP = */ false)
4110 : 0;
4111 return true;
4112}
4113
4114bool CombinerHelper::matchICmpToLHSKnownBits(
4115 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4116 assert(MI.getOpcode() == TargetOpcode::G_ICMP)(static_cast<void> (0));
4117 // Given:
4118 //
4119 // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4120 // %cmp = G_ICMP ne %x, 0
4121 //
4122 // Or:
4123 //
4124 // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4125 // %cmp = G_ICMP eq %x, 1
4126 //
4127 // We can replace %cmp with %x assuming true is 1 on the target.
4128 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4129 if (!CmpInst::isEquality(Pred))
4130 return false;
4131 Register Dst = MI.getOperand(0).getReg();
4132 LLT DstTy = MRI.getType(Dst);
4133 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
4134 /* IsFP = */ false) != 1)
4135 return false;
4136 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
4137 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
4138 return false;
4139 Register LHS = MI.getOperand(2).getReg();
4140 auto KnownLHS = KB->getKnownBits(LHS);
4141 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
4142 return false;
4143 // Make sure replacing Dst with the LHS is a legal operation.
4144 LLT LHSTy = MRI.getType(LHS);
4145 unsigned LHSSize = LHSTy.getSizeInBits();
4146 unsigned DstSize = DstTy.getSizeInBits();
4147 unsigned Op = TargetOpcode::COPY;
4148 if (DstSize != LHSSize)
4149 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
4150 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
4151 return false;
4152 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
4153 return true;
4154}
4155
4156/// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
4157bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4158 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4159 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast<void> (0));
4160 Register Dst = MI.getOperand(0).getReg();
4161 Register Src = MI.getOperand(1).getReg();
4162 LLT Ty = MRI.getType(Src);
4163 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4164 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4165 return false;
4166 int64_t Width = MI.getOperand(2).getImm();
4167 Register ShiftSrc;
4168 int64_t ShiftImm;
4169 if (!mi_match(
4170 Src, MRI,
4171 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4172 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4173 return false;
4174 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4175 return false;
4176
4177 MatchInfo = [=](MachineIRBuilder &B) {
4178 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4179 auto Cst2 = B.buildConstant(ExtractTy, Width);
4180 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4181 };
4182 return true;
4183}
4184
4185/// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
4186bool CombinerHelper::matchBitfieldExtractFromAnd(
4187 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4188 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast<void> (0));
4189 Register Dst = MI.getOperand(0).getReg();
4190 LLT Ty = MRI.getType(Dst);
4191 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal(
4192 TargetOpcode::G_UBFX, Ty, Ty))
4193 return false;
4194
4195 int64_t AndImm, LSBImm;
4196 Register ShiftSrc;
4197 const unsigned Size = Ty.getScalarSizeInBits();
4198 if (!mi_match(MI.getOperand(0).getReg(), MRI,
4199 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4200 m_ICst(AndImm))))
4201 return false;
4202
4203 // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4204 auto MaybeMask = static_cast<uint64_t>(AndImm);
4205 if (MaybeMask & (MaybeMask + 1))
4206 return false;
4207
4208 // LSB must fit within the register.
4209 if (static_cast<uint64_t>(LSBImm) >= Size)
4210 return false;
4211
4212 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4213 uint64_t Width = APInt(Size, AndImm).countTrailingOnes();
4214 MatchInfo = [=](MachineIRBuilder &B) {
4215 auto WidthCst = B.buildConstant(ExtractTy, Width);
4216 auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4217 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4218 };
4219 return true;
4220}
4221
4222bool CombinerHelper::matchBitfieldExtractFromShr(
4223 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4224 const unsigned Opcode = MI.getOpcode();
4225 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR)(static_cast<void> (0));
4226
4227 const Register Dst = MI.getOperand(0).getReg();
4228
4229 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
4230 ? TargetOpcode::G_SBFX
4231 : TargetOpcode::G_UBFX;
4232
4233 // Check if the type we would use for the extract is legal
4234 LLT Ty = MRI.getType(Dst);
4235 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4236 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
4237 return false;
4238
4239 Register ShlSrc;
4240 int64_t ShrAmt;
4241 int64_t ShlAmt;
4242 const unsigned Size = Ty.getScalarSizeInBits();
4243
4244 // Try to match shr (shl x, c1), c2
4245 if (!mi_match(Dst, MRI,
4246 m_BinOp(Opcode,
4247 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
4248 m_ICst(ShrAmt))))
4249 return false;
4250
4251 // Make sure that the shift sizes can fit a bitfield extract
4252 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
4253 return false;
4254
4255 // Skip this combine if the G_SEXT_INREG combine could handle it
4256 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
4257 return false;
4258
4259 // Calculate start position and width of the extract
4260 const int64_t Pos = ShrAmt - ShlAmt;
4261 const int64_t Width = Size - ShrAmt;
4262
4263 MatchInfo = [=](MachineIRBuilder &B) {
4264 auto WidthCst = B.buildConstant(ExtractTy, Width);
4265 auto PosCst = B.buildConstant(ExtractTy, Pos);
4266 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
4267 };
4268 return true;
4269}
4270
4271bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4272 MachineInstr &PtrAdd) {
4273 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD)(static_cast<void> (0));
4274
4275 Register Src1Reg = PtrAdd.getOperand(1).getReg();
4276 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
4277 if (!Src1Def)
4278 return false;
4279
4280 Register Src2Reg = PtrAdd.getOperand(2).getReg();
4281
4282 if (MRI.hasOneNonDBGUse(Src1Reg))
4283 return false;
4284
4285 auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
4286 if (!C1)
4287 return false;
4288 auto C2 = getConstantVRegVal(Src2Reg, MRI);
4289 if (!C2)
4290 return false;
4291
4292 const APInt &C1APIntVal = *C1;
4293 const APInt &C2APIntVal = *C2;
4294 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4295
4296 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
4297 // This combine may end up running before ptrtoint/inttoptr combines
4298 // manage to eliminate redundant conversions, so try to look through them.
4299 MachineInstr *ConvUseMI = &UseMI;
4300 unsigned ConvUseOpc = ConvUseMI->getOpcode();
4301 while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4302 ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4303 Register DefReg = ConvUseMI->getOperand(0).getReg();
4304 if (!MRI.hasOneNonDBGUse(DefReg))
4305 break;
4306 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4307 ConvUseOpc = ConvUseMI->getOpcode();
4308 }
4309 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
4310 ConvUseOpc == TargetOpcode::G_STORE;
4311 if (!LoadStore)
4312 continue;
4313 // Is x[offset2] already not a legal addressing mode? If so then
4314 // reassociating the constants breaks nothing (we test offset2 because
4315 // that's the one we hope to fold into the load or store).
4316 TargetLoweringBase::AddrMode AM;
4317 AM.HasBaseReg = true;
4318 AM.BaseOffs = C2APIntVal.getSExtValue();
4319 unsigned AS =
4320 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
4321 Type *AccessTy =
4322 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
4323 PtrAdd.getMF()->getFunction().getContext());
4324 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4325 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4326 AccessTy, AS))
4327 continue;
4328
4329 // Would x[offset1+offset2] still be a legal addressing mode?
4330 AM.BaseOffs = CombinedValue;
4331 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4332 AccessTy, AS))
4333 return true;
4334 }
4335
4336 return false;
4337}
4338
4339bool CombinerHelper::matchReassocPtrAdd(
4340 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4341 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD)(static_cast<void> (0));
4342 // We're trying to match a few pointer computation patterns here for
4343 // re-association opportunities.
4344 // 1) Isolating a constant operand to be on the RHS, e.g.:
4345 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4346 //
4347 // 2) Folding two constants in each sub-tree as long as such folding
4348 // doesn't break a legal addressing mode.
4349 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4350 Register Src1Reg = MI.getOperand(1).getReg();
4351 Register Src2Reg = MI.getOperand(2).getReg();
4352 MachineInstr *LHS = MRI.getVRegDef(Src1Reg);
4353 MachineInstr *RHS = MRI.getVRegDef(Src2Reg);
4354
4355 if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) {
4356 // Try to match example 1).
4357 if (RHS->getOpcode() != TargetOpcode::G_ADD)
4358 return false;
4359 auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4360 if (!C2)
4361 return false;
4362
4363 MatchInfo = [=,&MI](MachineIRBuilder &B) {
4364 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4365
4366 auto NewBase =
4367 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4368 Observer.changingInstr(MI);
4369 MI.getOperand(1).setReg(NewBase.getReg(0));
4370 MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4371 Observer.changedInstr(MI);
4372 };
4373 } else {
4374 // Try to match example 2.
4375 Register LHSSrc1 = LHS->getOperand(1).getReg();
4376 Register LHSSrc2 = LHS->getOperand(2).getReg();
4377 auto C1 = getConstantVRegVal(LHSSrc2, MRI);
4378 if (!C1)
4379 return false;
4380 auto C2 = getConstantVRegVal(Src2Reg, MRI);
4381 if (!C2)
4382 return false;
4383
4384 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4385 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4386 Observer.changingInstr(MI);
4387 MI.getOperand(1).setReg(LHSSrc1);
4388 MI.getOperand(2).setReg(NewCst.getReg(0));
4389 Observer.changedInstr(MI);
4390 };
4391 }
4392 return !reassociationCanBreakAddressingModePattern(MI);
4393}
4394
4395bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
4396 Register Op1 = MI.getOperand(1).getReg();
4397 Register Op2 = MI.getOperand(2).getReg();
4398 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4399 if (!MaybeCst)
4400 return false;
4401 MatchInfo = *MaybeCst;
4402 return true;
4403}
4404
4405bool CombinerHelper::matchNarrowBinopFeedingAnd(
4406 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4407 // Look for a binop feeding into an AND with a mask:
4408 //
4409 // %add = G_ADD %lhs, %rhs
4410 // %and = G_AND %add, 000...11111111
4411 //
4412 // Check if it's possible to perform the binop at a narrower width and zext
4413 // back to the original width like so:
4414 //
4415 // %narrow_lhs = G_TRUNC %lhs
4416 // %narrow_rhs = G_TRUNC %rhs
4417 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
4418 // %new_add = G_ZEXT %narrow_add
4419 // %and = G_AND %new_add, 000...11111111
4420 //
4421 // This can allow later combines to eliminate the G_AND if it turns out
4422 // that the mask is irrelevant.
4423 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast<void> (0));
4424 Register Dst = MI.getOperand(0).getReg();
4425 Register AndLHS = MI.getOperand(1).getReg();
4426 Register AndRHS = MI.getOperand(2).getReg();
4427 LLT WideTy = MRI.getType(Dst);
4428
4429 // If the potential binop has more than one use, then it's possible that one
4430 // of those uses will need its full width.
4431 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
4432 return false;
4433
4434 // Check if the LHS feeding the AND is impacted by the high bits that we're
4435 // masking out.
4436 //
4437 // e.g. for 64-bit x, y:
4438 //
4439 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
4440 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
4441 if (!LHSInst)
4442 return false;
4443 unsigned LHSOpc = LHSInst->getOpcode();
4444 switch (LHSOpc) {
4445 default:
4446 return false;
4447 case TargetOpcode::G_ADD:
4448 case TargetOpcode::G_SUB:
4449 case TargetOpcode::G_MUL:
4450 case TargetOpcode::G_AND:
4451 case TargetOpcode::G_OR:
4452 case TargetOpcode::G_XOR:
4453 break;
4454 }
4455
4456 // Find the mask on the RHS.
4457 auto Cst = getConstantVRegValWithLookThrough(AndRHS, MRI);
4458 if (!Cst)
4459 return false;
4460 auto Mask = Cst->Value;
4461 if (!Mask.isMask())
4462 return false;
4463
4464 // No point in combining if there's nothing to truncate.
4465 unsigned NarrowWidth = Mask.countTrailingOnes();
4466 if (NarrowWidth == WideTy.getSizeInBits())
4467 return false;
4468 LLT NarrowTy = LLT::scalar(NarrowWidth);
4469
4470 // Check if adding the zext + truncates could be harmful.
4471 auto &MF = *MI.getMF();
4472 const auto &TLI = getTargetLowering();
4473 LLVMContext &Ctx = MF.getFunction().getContext();
4474 auto &DL = MF.getDataLayout();
4475 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
4476 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
4477 return false;
4478 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
4479 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
4480 return false;
4481 Register BinOpLHS = LHSInst->getOperand(1).getReg();
4482 Register BinOpRHS = LHSInst->getOperand(2).getReg();
4483 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4484 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
4485 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
4486 auto NarrowBinOp =
4487 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
4488 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
4489 Observer.changingInstr(MI);
4490 MI.getOperand(1).setReg(Ext.getReg(0));
4491 Observer.changedInstr(MI);
4492 };
4493 return true;
4494}
4495
4496bool CombinerHelper::tryCombine(MachineInstr &MI) {
4497 if (tryCombineCopy(MI))
4498 return true;
4499 if (tryCombineExtendingLoads(MI))
4500 return true;
4501 if (tryCombineIndexedLoadStore(MI))
4502 return true;
4503 return false;
4504}