Bug Summary

File:build/source/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
Warning:line 4893, column 16
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CombinerHelper.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen/GlobalISel -I /build/source/llvm/lib/CodeGen/GlobalISel -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679443490 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-22-005342-16304-1 -x c++ /build/source/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
1//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9#include "llvm/ADT/SetVector.h"
10#include "llvm/ADT/SmallBitVector.h"
11#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
12#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
13#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
14#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
15#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
16#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
17#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18#include "llvm/CodeGen/GlobalISel/Utils.h"
19#include "llvm/CodeGen/LowLevelType.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/CodeGen/MachineMemOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/RegisterBankInfo.h"
26#include "llvm/CodeGen/TargetInstrInfo.h"
27#include "llvm/CodeGen/TargetLowering.h"
28#include "llvm/CodeGen/TargetOpcodes.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/InstrTypes.h"
31#include "llvm/Support/Casting.h"
32#include "llvm/Support/DivisionByConstantInfo.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetMachine.h"
35#include <cmath>
36#include <optional>
37#include <tuple>
38
39#define DEBUG_TYPE"gi-combiner" "gi-combiner"
40
41using namespace llvm;
42using namespace MIPatternMatch;
43
44// Option to allow testing of the combiner while no targets know about indexed
45// addressing.
46static cl::opt<bool>
47 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
48 cl::desc("Force all indexed operations to be "
49 "legal for the GlobalISel combiner"));
50
51CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
52 MachineIRBuilder &B, bool IsPreLegalize,
53 GISelKnownBits *KB, MachineDominatorTree *MDT,
54 const LegalizerInfo *LI)
55 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
56 MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI),
57 RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
58 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
59 (void)this->KB;
60}
61
62const TargetLowering &CombinerHelper::getTargetLowering() const {
63 return *Builder.getMF().getSubtarget().getTargetLowering();
64}
65
66/// \returns The little endian in-memory byte position of byte \p I in a
67/// \p ByteWidth bytes wide type.
68///
69/// E.g. Given a 4-byte type x, x[0] -> byte 0
70static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
71 assert(I < ByteWidth && "I must be in [0, ByteWidth)")(static_cast <bool> (I < ByteWidth && "I must be in [0, ByteWidth)"
) ? void (0) : __assert_fail ("I < ByteWidth && \"I must be in [0, ByteWidth)\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 71, __extension__
__PRETTY_FUNCTION__))
;
72 return I;
73}
74
75/// Determines the LogBase2 value for a non-null input value using the
76/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
77static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
78 auto &MRI = *MIB.getMRI();
79 LLT Ty = MRI.getType(V);
80 auto Ctlz = MIB.buildCTLZ(Ty, V);
81 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
82 return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
83}
84
85/// \returns The big endian in-memory byte position of byte \p I in a
86/// \p ByteWidth bytes wide type.
87///
88/// E.g. Given a 4-byte type x, x[0] -> byte 3
89static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
90 assert(I < ByteWidth && "I must be in [0, ByteWidth)")(static_cast <bool> (I < ByteWidth && "I must be in [0, ByteWidth)"
) ? void (0) : __assert_fail ("I < ByteWidth && \"I must be in [0, ByteWidth)\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 90, __extension__
__PRETTY_FUNCTION__))
;
91 return ByteWidth - I - 1;
92}
93
94/// Given a map from byte offsets in memory to indices in a load/store,
95/// determine if that map corresponds to a little or big endian byte pattern.
96///
97/// \param MemOffset2Idx maps memory offsets to address offsets.
98/// \param LowestIdx is the lowest index in \p MemOffset2Idx.
99///
100/// \returns true if the map corresponds to a big endian byte pattern, false if
101/// it corresponds to a little endian byte pattern, and std::nullopt otherwise.
102///
103/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
104/// are as follows:
105///
106/// AddrOffset Little endian Big endian
107/// 0 0 3
108/// 1 1 2
109/// 2 2 1
110/// 3 3 0
111static std::optional<bool>
112isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
113 int64_t LowestIdx) {
114 // Need at least two byte positions to decide on endianness.
115 unsigned Width = MemOffset2Idx.size();
116 if (Width < 2)
117 return std::nullopt;
118 bool BigEndian = true, LittleEndian = true;
119 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
120 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
121 if (MemOffsetAndIdx == MemOffset2Idx.end())
122 return std::nullopt;
123 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
124 assert(Idx >= 0 && "Expected non-negative byte offset?")(static_cast <bool> (Idx >= 0 && "Expected non-negative byte offset?"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Expected non-negative byte offset?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 124, __extension__
__PRETTY_FUNCTION__))
;
125 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
126 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
127 if (!BigEndian && !LittleEndian)
128 return std::nullopt;
129 }
130
131 assert((BigEndian != LittleEndian) &&(static_cast <bool> ((BigEndian != LittleEndian) &&
"Pattern cannot be both big and little endian!") ? void (0) :
__assert_fail ("(BigEndian != LittleEndian) && \"Pattern cannot be both big and little endian!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 132, __extension__
__PRETTY_FUNCTION__))
132 "Pattern cannot be both big and little endian!")(static_cast <bool> ((BigEndian != LittleEndian) &&
"Pattern cannot be both big and little endian!") ? void (0) :
__assert_fail ("(BigEndian != LittleEndian) && \"Pattern cannot be both big and little endian!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 132, __extension__
__PRETTY_FUNCTION__))
;
133 return BigEndian;
134}
135
136bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; }
137
138bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
139 assert(LI && "Must have LegalizerInfo to query isLegal!")(static_cast <bool> (LI && "Must have LegalizerInfo to query isLegal!"
) ? void (0) : __assert_fail ("LI && \"Must have LegalizerInfo to query isLegal!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 139, __extension__
__PRETTY_FUNCTION__))
;
140 return LI->getAction(Query).Action == LegalizeActions::Legal;
141}
142
143bool CombinerHelper::isLegalOrBeforeLegalizer(
144 const LegalityQuery &Query) const {
145 return isPreLegalize() || isLegal(Query);
146}
147
148bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
149 if (!Ty.isVector())
150 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
151 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
152 if (isPreLegalize())
153 return true;
154 LLT EltTy = Ty.getElementType();
155 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
156 isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
157}
158
159void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
160 Register ToReg) const {
161 Observer.changingAllUsesOfReg(MRI, FromReg);
162
163 if (MRI.constrainRegAttrs(ToReg, FromReg))
164 MRI.replaceRegWith(FromReg, ToReg);
165 else
166 Builder.buildCopy(ToReg, FromReg);
167
168 Observer.finishedChangingAllUsesOfReg();
169}
170
171void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
172 MachineOperand &FromRegOp,
173 Register ToReg) const {
174 assert(FromRegOp.getParent() && "Expected an operand in an MI")(static_cast <bool> (FromRegOp.getParent() && "Expected an operand in an MI"
) ? void (0) : __assert_fail ("FromRegOp.getParent() && \"Expected an operand in an MI\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 174, __extension__
__PRETTY_FUNCTION__))
;
175 Observer.changingInstr(*FromRegOp.getParent());
176
177 FromRegOp.setReg(ToReg);
178
179 Observer.changedInstr(*FromRegOp.getParent());
180}
181
182void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
183 unsigned ToOpcode) const {
184 Observer.changingInstr(FromMI);
185
186 FromMI.setDesc(Builder.getTII().get(ToOpcode));
187
188 Observer.changedInstr(FromMI);
189}
190
191const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
192 return RBI->getRegBank(Reg, MRI, *TRI);
193}
194
195void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
196 if (RegBank)
197 MRI.setRegBank(Reg, *RegBank);
198}
199
200bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
201 if (matchCombineCopy(MI)) {
202 applyCombineCopy(MI);
203 return true;
204 }
205 return false;
206}
207bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
208 if (MI.getOpcode() != TargetOpcode::COPY)
209 return false;
210 Register DstReg = MI.getOperand(0).getReg();
211 Register SrcReg = MI.getOperand(1).getReg();
212 return canReplaceReg(DstReg, SrcReg, MRI);
213}
214void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
215 Register DstReg = MI.getOperand(0).getReg();
216 Register SrcReg = MI.getOperand(1).getReg();
217 MI.eraseFromParent();
218 replaceRegWith(MRI, DstReg, SrcReg);
219}
220
221bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
222 bool IsUndef = false;
223 SmallVector<Register, 4> Ops;
224 if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
225 applyCombineConcatVectors(MI, IsUndef, Ops);
226 return true;
227 }
228 return false;
229}
230
231bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
232 SmallVectorImpl<Register> &Ops) {
233 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS
&& "Invalid instruction") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && \"Invalid instruction\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 234, __extension__
__PRETTY_FUNCTION__))
234 "Invalid instruction")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS
&& "Invalid instruction") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && \"Invalid instruction\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 234, __extension__
__PRETTY_FUNCTION__))
;
235 IsUndef = true;
236 MachineInstr *Undef = nullptr;
237
238 // Walk over all the operands of concat vectors and check if they are
239 // build_vector themselves or undef.
240 // Then collect their operands in Ops.
241 for (const MachineOperand &MO : MI.uses()) {
242 Register Reg = MO.getReg();
243 MachineInstr *Def = MRI.getVRegDef(Reg);
244 assert(Def && "Operand not defined")(static_cast <bool> (Def && "Operand not defined"
) ? void (0) : __assert_fail ("Def && \"Operand not defined\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 244, __extension__
__PRETTY_FUNCTION__))
;
245 switch (Def->getOpcode()) {
246 case TargetOpcode::G_BUILD_VECTOR:
247 IsUndef = false;
248 // Remember the operands of the build_vector to fold
249 // them into the yet-to-build flattened concat vectors.
250 for (const MachineOperand &BuildVecMO : Def->uses())
251 Ops.push_back(BuildVecMO.getReg());
252 break;
253 case TargetOpcode::G_IMPLICIT_DEF: {
254 LLT OpType = MRI.getType(Reg);
255 // Keep one undef value for all the undef operands.
256 if (!Undef) {
257 Builder.setInsertPt(*MI.getParent(), MI);
258 Undef = Builder.buildUndef(OpType.getScalarType());
259 }
260 assert(MRI.getType(Undef->getOperand(0).getReg()) ==(static_cast <bool> (MRI.getType(Undef->getOperand(0
).getReg()) == OpType.getScalarType() && "All undefs should have the same type"
) ? void (0) : __assert_fail ("MRI.getType(Undef->getOperand(0).getReg()) == OpType.getScalarType() && \"All undefs should have the same type\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 262, __extension__
__PRETTY_FUNCTION__))
261 OpType.getScalarType() &&(static_cast <bool> (MRI.getType(Undef->getOperand(0
).getReg()) == OpType.getScalarType() && "All undefs should have the same type"
) ? void (0) : __assert_fail ("MRI.getType(Undef->getOperand(0).getReg()) == OpType.getScalarType() && \"All undefs should have the same type\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 262, __extension__
__PRETTY_FUNCTION__))
262 "All undefs should have the same type")(static_cast <bool> (MRI.getType(Undef->getOperand(0
).getReg()) == OpType.getScalarType() && "All undefs should have the same type"
) ? void (0) : __assert_fail ("MRI.getType(Undef->getOperand(0).getReg()) == OpType.getScalarType() && \"All undefs should have the same type\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 262, __extension__
__PRETTY_FUNCTION__))
;
263 // Break the undef vector in as many scalar elements as needed
264 // for the flattening.
265 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
266 EltIdx != EltEnd; ++EltIdx)
267 Ops.push_back(Undef->getOperand(0).getReg());
268 break;
269 }
270 default:
271 return false;
272 }
273 }
274 return true;
275}
276void CombinerHelper::applyCombineConcatVectors(
277 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
278 // We determined that the concat_vectors can be flatten.
279 // Generate the flattened build_vector.
280 Register DstReg = MI.getOperand(0).getReg();
281 Builder.setInsertPt(*MI.getParent(), MI);
282 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
283
284 // Note: IsUndef is sort of redundant. We could have determine it by
285 // checking that at all Ops are undef. Alternatively, we could have
286 // generate a build_vector of undefs and rely on another combine to
287 // clean that up. For now, given we already gather this information
288 // in tryCombineConcatVectors, just save compile time and issue the
289 // right thing.
290 if (IsUndef)
291 Builder.buildUndef(NewDstReg);
292 else
293 Builder.buildBuildVector(NewDstReg, Ops);
294 MI.eraseFromParent();
295 replaceRegWith(MRI, DstReg, NewDstReg);
296}
297
298bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
299 SmallVector<Register, 4> Ops;
300 if (matchCombineShuffleVector(MI, Ops)) {
301 applyCombineShuffleVector(MI, Ops);
302 return true;
303 }
304 return false;
305}
306
307bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
308 SmallVectorImpl<Register> &Ops) {
309 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR
&& "Invalid instruction kind") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && \"Invalid instruction kind\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 310, __extension__
__PRETTY_FUNCTION__))
310 "Invalid instruction kind")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR
&& "Invalid instruction kind") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && \"Invalid instruction kind\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 310, __extension__
__PRETTY_FUNCTION__))
;
311 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
312 Register Src1 = MI.getOperand(1).getReg();
313 LLT SrcType = MRI.getType(Src1);
314 // As bizarre as it may look, shuffle vector can actually produce
315 // scalar! This is because at the IR level a <1 x ty> shuffle
316 // vector is perfectly valid.
317 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
318 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
319
320 // If the resulting vector is smaller than the size of the source
321 // vectors being concatenated, we won't be able to replace the
322 // shuffle vector into a concat_vectors.
323 //
324 // Note: We may still be able to produce a concat_vectors fed by
325 // extract_vector_elt and so on. It is less clear that would
326 // be better though, so don't bother for now.
327 //
328 // If the destination is a scalar, the size of the sources doesn't
329 // matter. we will lower the shuffle to a plain copy. This will
330 // work only if the source and destination have the same size. But
331 // that's covered by the next condition.
332 //
333 // TODO: If the size between the source and destination don't match
334 // we could still emit an extract vector element in that case.
335 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
336 return false;
337
338 // Check that the shuffle mask can be broken evenly between the
339 // different sources.
340 if (DstNumElts % SrcNumElts != 0)
341 return false;
342
343 // Mask length is a multiple of the source vector length.
344 // Check if the shuffle is some kind of concatenation of the input
345 // vectors.
346 unsigned NumConcat = DstNumElts / SrcNumElts;
347 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
348 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
349 for (unsigned i = 0; i != DstNumElts; ++i) {
350 int Idx = Mask[i];
351 // Undef value.
352 if (Idx < 0)
353 continue;
354 // Ensure the indices in each SrcType sized piece are sequential and that
355 // the same source is used for the whole piece.
356 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
357 (ConcatSrcs[i / SrcNumElts] >= 0 &&
358 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
359 return false;
360 // Remember which source this index came from.
361 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
362 }
363
364 // The shuffle is concatenating multiple vectors together.
365 // Collect the different operands for that.
366 Register UndefReg;
367 Register Src2 = MI.getOperand(2).getReg();
368 for (auto Src : ConcatSrcs) {
369 if (Src < 0) {
370 if (!UndefReg) {
371 Builder.setInsertPt(*MI.getParent(), MI);
372 UndefReg = Builder.buildUndef(SrcType).getReg(0);
373 }
374 Ops.push_back(UndefReg);
375 } else if (Src == 0)
376 Ops.push_back(Src1);
377 else
378 Ops.push_back(Src2);
379 }
380 return true;
381}
382
383void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
384 const ArrayRef<Register> Ops) {
385 Register DstReg = MI.getOperand(0).getReg();
386 Builder.setInsertPt(*MI.getParent(), MI);
387 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
388
389 if (Ops.size() == 1)
390 Builder.buildCopy(NewDstReg, Ops[0]);
391 else
392 Builder.buildMergeLikeInstr(NewDstReg, Ops);
393
394 MI.eraseFromParent();
395 replaceRegWith(MRI, DstReg, NewDstReg);
396}
397
398namespace {
399
400/// Select a preference between two uses. CurrentUse is the current preference
401/// while *ForCandidate is attributes of the candidate under consideration.
402PreferredTuple ChoosePreferredUse(MachineInstr &LoadMI,
403 PreferredTuple &CurrentUse,
404 const LLT TyForCandidate,
405 unsigned OpcodeForCandidate,
406 MachineInstr *MIForCandidate) {
407 if (!CurrentUse.Ty.isValid()) {
408 if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
409 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
410 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
411 return CurrentUse;
412 }
413
414 // We permit the extend to hoist through basic blocks but this is only
415 // sensible if the target has extending loads. If you end up lowering back
416 // into a load and extend during the legalizer then the end result is
417 // hoisting the extend up to the load.
418
419 // Prefer defined extensions to undefined extensions as these are more
420 // likely to reduce the number of instructions.
421 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
422 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
423 return CurrentUse;
424 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
425 OpcodeForCandidate != TargetOpcode::G_ANYEXT)
426 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
427
428 // Prefer sign extensions to zero extensions as sign-extensions tend to be
429 // more expensive. Don't do this if the load is already a zero-extend load
430 // though, otherwise we'll rewrite a zero-extend load into a sign-extend
431 // later.
432 if (!isa<GZExtLoad>(LoadMI) && CurrentUse.Ty == TyForCandidate) {
433 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
434 OpcodeForCandidate == TargetOpcode::G_ZEXT)
435 return CurrentUse;
436 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
437 OpcodeForCandidate == TargetOpcode::G_SEXT)
438 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
439 }
440
441 // This is potentially target specific. We've chosen the largest type
442 // because G_TRUNC is usually free. One potential catch with this is that
443 // some targets have a reduced number of larger registers than smaller
444 // registers and this choice potentially increases the live-range for the
445 // larger value.
446 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
447 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
448 }
449 return CurrentUse;
450}
451
452/// Find a suitable place to insert some instructions and insert them. This
453/// function accounts for special cases like inserting before a PHI node.
454/// The current strategy for inserting before PHI's is to duplicate the
455/// instructions for each predecessor. However, while that's ok for G_TRUNC
456/// on most targets since it generally requires no code, other targets/cases may
457/// want to try harder to find a dominating block.
458static void InsertInsnsWithoutSideEffectsBeforeUse(
459 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
460 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
461 MachineOperand &UseMO)>
462 Inserter) {
463 MachineInstr &UseMI = *UseMO.getParent();
464
465 MachineBasicBlock *InsertBB = UseMI.getParent();
466
467 // If the use is a PHI then we want the predecessor block instead.
468 if (UseMI.isPHI()) {
469 MachineOperand *PredBB = std::next(&UseMO);
470 InsertBB = PredBB->getMBB();
471 }
472
473 // If the block is the same block as the def then we want to insert just after
474 // the def instead of at the start of the block.
475 if (InsertBB == DefMI.getParent()) {
476 MachineBasicBlock::iterator InsertPt = &DefMI;
477 Inserter(InsertBB, std::next(InsertPt), UseMO);
478 return;
479 }
480
481 // Otherwise we want the start of the BB
482 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
483}
484} // end anonymous namespace
485
486bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
487 PreferredTuple Preferred;
488 if (matchCombineExtendingLoads(MI, Preferred)) {
489 applyCombineExtendingLoads(MI, Preferred);
490 return true;
491 }
492 return false;
493}
494
495static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) {
496 unsigned CandidateLoadOpc;
497 switch (ExtOpc) {
498 case TargetOpcode::G_ANYEXT:
499 CandidateLoadOpc = TargetOpcode::G_LOAD;
500 break;
501 case TargetOpcode::G_SEXT:
502 CandidateLoadOpc = TargetOpcode::G_SEXTLOAD;
503 break;
504 case TargetOpcode::G_ZEXT:
505 CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD;
506 break;
507 default:
508 llvm_unreachable("Unexpected extend opc")::llvm::llvm_unreachable_internal("Unexpected extend opc", "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp"
, 508)
;
509 }
510 return CandidateLoadOpc;
511}
512
513bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
514 PreferredTuple &Preferred) {
515 // We match the loads and follow the uses to the extend instead of matching
516 // the extends and following the def to the load. This is because the load
517 // must remain in the same position for correctness (unless we also add code
518 // to find a safe place to sink it) whereas the extend is freely movable.
519 // It also prevents us from duplicating the load for the volatile case or just
520 // for performance.
521 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
522 if (!LoadMI)
523 return false;
524
525 Register LoadReg = LoadMI->getDstReg();
526
527 LLT LoadValueTy = MRI.getType(LoadReg);
528 if (!LoadValueTy.isScalar())
529 return false;
530
531 // Most architectures are going to legalize <s8 loads into at least a 1 byte
532 // load, and the MMOs can only describe memory accesses in multiples of bytes.
533 // If we try to perform extload combining on those, we can end up with
534 // %a(s8) = extload %ptr (load 1 byte from %ptr)
535 // ... which is an illegal extload instruction.
536 if (LoadValueTy.getSizeInBits() < 8)
537 return false;
538
539 // For non power-of-2 types, they will very likely be legalized into multiple
540 // loads. Don't bother trying to match them into extending loads.
541 if (!llvm::has_single_bit<uint32_t>(LoadValueTy.getSizeInBits()))
542 return false;
543
544 // Find the preferred type aside from the any-extends (unless it's the only
545 // one) and non-extending ops. We'll emit an extending load to that type and
546 // and emit a variant of (extend (trunc X)) for the others according to the
547 // relative type sizes. At the same time, pick an extend to use based on the
548 // extend involved in the chosen type.
549 unsigned PreferredOpcode =
550 isa<GLoad>(&MI)
551 ? TargetOpcode::G_ANYEXT
552 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
553 Preferred = {LLT(), PreferredOpcode, nullptr};
554 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
555 if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
556 UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
557 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
558 const auto &MMO = LoadMI->getMMO();
559 // For atomics, only form anyextending loads.
560 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
561 continue;
562 // Check for legality.
563 if (!isPreLegalize()) {
564 LegalityQuery::MemDesc MMDesc(MMO);
565 unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode());
566 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
567 LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
568 if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}})
569 .Action != LegalizeActions::Legal)
570 continue;
571 }
572 Preferred = ChoosePreferredUse(MI, Preferred,
573 MRI.getType(UseMI.getOperand(0).getReg()),
574 UseMI.getOpcode(), &UseMI);
575 }
576 }
577
578 // There were no extends
579 if (!Preferred.MI)
580 return false;
581 // It should be impossible to chose an extend without selecting a different
582 // type since by definition the result of an extend is larger.
583 assert(Preferred.Ty != LoadValueTy && "Extending to same type?")(static_cast <bool> (Preferred.Ty != LoadValueTy &&
"Extending to same type?") ? void (0) : __assert_fail ("Preferred.Ty != LoadValueTy && \"Extending to same type?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 583, __extension__
__PRETTY_FUNCTION__))
;
584
585 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << "Preferred use is: " <<
*Preferred.MI; } } while (false)
;
586 return true;
587}
588
589void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
590 PreferredTuple &Preferred) {
591 // Rewrite the load to the chosen extending load.
592 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
593
594 // Inserter to insert a truncate back to the original type at a given point
595 // with some basic CSE to limit truncate duplication to one per BB.
596 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
597 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
598 MachineBasicBlock::iterator InsertBefore,
599 MachineOperand &UseMO) {
600 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
601 if (PreviouslyEmitted) {
602 Observer.changingInstr(*UseMO.getParent());
603 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
604 Observer.changedInstr(*UseMO.getParent());
605 return;
606 }
607
608 Builder.setInsertPt(*InsertIntoBB, InsertBefore);
609 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
610 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
611 EmittedInsns[InsertIntoBB] = NewMI;
612 replaceRegOpWith(MRI, UseMO, NewDstReg);
613 };
614
615 Observer.changingInstr(MI);
616 unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode);
617 MI.setDesc(Builder.getTII().get(LoadOpc));
618
619 // Rewrite all the uses to fix up the types.
620 auto &LoadValue = MI.getOperand(0);
621 SmallVector<MachineOperand *, 4> Uses;
622 for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
623 Uses.push_back(&UseMO);
624
625 for (auto *UseMO : Uses) {
626 MachineInstr *UseMI = UseMO->getParent();
627
628 // If the extend is compatible with the preferred extend then we should fix
629 // up the type and extend so that it uses the preferred use.
630 if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
631 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
632 Register UseDstReg = UseMI->getOperand(0).getReg();
633 MachineOperand &UseSrcMO = UseMI->getOperand(1);
634 const LLT UseDstTy = MRI.getType(UseDstReg);
635 if (UseDstReg != ChosenDstReg) {
636 if (Preferred.Ty == UseDstTy) {
637 // If the use has the same type as the preferred use, then merge
638 // the vregs and erase the extend. For example:
639 // %1:_(s8) = G_LOAD ...
640 // %2:_(s32) = G_SEXT %1(s8)
641 // %3:_(s32) = G_ANYEXT %1(s8)
642 // ... = ... %3(s32)
643 // rewrites to:
644 // %2:_(s32) = G_SEXTLOAD ...
645 // ... = ... %2(s32)
646 replaceRegWith(MRI, UseDstReg, ChosenDstReg);
647 Observer.erasingInstr(*UseMO->getParent());
648 UseMO->getParent()->eraseFromParent();
649 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
650 // If the preferred size is smaller, then keep the extend but extend
651 // from the result of the extending load. For example:
652 // %1:_(s8) = G_LOAD ...
653 // %2:_(s32) = G_SEXT %1(s8)
654 // %3:_(s64) = G_ANYEXT %1(s8)
655 // ... = ... %3(s64)
656 /// rewrites to:
657 // %2:_(s32) = G_SEXTLOAD ...
658 // %3:_(s64) = G_ANYEXT %2:_(s32)
659 // ... = ... %3(s64)
660 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
661 } else {
662 // If the preferred size is large, then insert a truncate. For
663 // example:
664 // %1:_(s8) = G_LOAD ...
665 // %2:_(s64) = G_SEXT %1(s8)
666 // %3:_(s32) = G_ZEXT %1(s8)
667 // ... = ... %3(s32)
668 /// rewrites to:
669 // %2:_(s64) = G_SEXTLOAD ...
670 // %4:_(s8) = G_TRUNC %2:_(s32)
671 // %3:_(s64) = G_ZEXT %2:_(s8)
672 // ... = ... %3(s64)
673 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
674 InsertTruncAt);
675 }
676 continue;
677 }
678 // The use is (one of) the uses of the preferred use we chose earlier.
679 // We're going to update the load to def this value later so just erase
680 // the old extend.
681 Observer.erasingInstr(*UseMO->getParent());
682 UseMO->getParent()->eraseFromParent();
683 continue;
684 }
685
686 // The use isn't an extend. Truncate back to the type we originally loaded.
687 // This is free on many targets.
688 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
689 }
690
691 MI.getOperand(0).setReg(ChosenDstReg);
692 Observer.changedInstr(MI);
693}
694
695bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
696 BuildFnTy &MatchInfo) {
697 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_AND
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_AND"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 697, __extension__
__PRETTY_FUNCTION__))
;
698
699 // If we have the following code:
700 // %mask = G_CONSTANT 255
701 // %ld = G_LOAD %ptr, (load s16)
702 // %and = G_AND %ld, %mask
703 //
704 // Try to fold it into
705 // %ld = G_ZEXTLOAD %ptr, (load s8)
706
707 Register Dst = MI.getOperand(0).getReg();
708 if (MRI.getType(Dst).isVector())
709 return false;
710
711 auto MaybeMask =
712 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
713 if (!MaybeMask)
714 return false;
715
716 APInt MaskVal = MaybeMask->Value;
717
718 if (!MaskVal.isMask())
719 return false;
720
721 Register SrcReg = MI.getOperand(1).getReg();
722 // Don't use getOpcodeDef() here since intermediate instructions may have
723 // multiple users.
724 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg));
725 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()))
726 return false;
727
728 Register LoadReg = LoadMI->getDstReg();
729 LLT RegTy = MRI.getType(LoadReg);
730 Register PtrReg = LoadMI->getPointerReg();
731 unsigned RegSize = RegTy.getSizeInBits();
732 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits();
733 unsigned MaskSizeBits = MaskVal.countr_one();
734
735 // The mask may not be larger than the in-memory type, as it might cover sign
736 // extended bits
737 if (MaskSizeBits > LoadSizeBits)
738 return false;
739
740 // If the mask covers the whole destination register, there's nothing to
741 // extend
742 if (MaskSizeBits >= RegSize)
743 return false;
744
745 // Most targets cannot deal with loads of size < 8 and need to re-legalize to
746 // at least byte loads. Avoid creating such loads here
747 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
748 return false;
749
750 const MachineMemOperand &MMO = LoadMI->getMMO();
751 LegalityQuery::MemDesc MemDesc(MMO);
752
753 // Don't modify the memory access size if this is atomic/volatile, but we can
754 // still adjust the opcode to indicate the high bit behavior.
755 if (LoadMI->isSimple())
756 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
757 else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize)
758 return false;
759
760 // TODO: Could check if it's legal with the reduced or original memory size.
761 if (!isLegalOrBeforeLegalizer(
762 {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}}))
763 return false;
764
765 MatchInfo = [=](MachineIRBuilder &B) {
766 B.setInstrAndDebugLoc(*LoadMI);
767 auto &MF = B.getMF();
768 auto PtrInfo = MMO.getPointerInfo();
769 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy);
770 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
771 LoadMI->eraseFromParent();
772 };
773 return true;
774}
775
776bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
777 const MachineInstr &UseMI) {
778 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&(static_cast <bool> (!DefMI.isDebugInstr() && !
UseMI.isDebugInstr() && "shouldn't consider debug uses"
) ? void (0) : __assert_fail ("!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && \"shouldn't consider debug uses\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 779, __extension__
__PRETTY_FUNCTION__))
779 "shouldn't consider debug uses")(static_cast <bool> (!DefMI.isDebugInstr() && !
UseMI.isDebugInstr() && "shouldn't consider debug uses"
) ? void (0) : __assert_fail ("!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && \"shouldn't consider debug uses\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 779, __extension__
__PRETTY_FUNCTION__))
;
780 assert(DefMI.getParent() == UseMI.getParent())(static_cast <bool> (DefMI.getParent() == UseMI.getParent
()) ? void (0) : __assert_fail ("DefMI.getParent() == UseMI.getParent()"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 780, __extension__
__PRETTY_FUNCTION__))
;
781 if (&DefMI == &UseMI)
782 return true;
783 const MachineBasicBlock &MBB = *DefMI.getParent();
784 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
785 return &MI == &DefMI || &MI == &UseMI;
786 });
787 if (DefOrUse == MBB.end())
788 llvm_unreachable("Block must contain both DefMI and UseMI!")::llvm::llvm_unreachable_internal("Block must contain both DefMI and UseMI!"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 788)
;
789 return &*DefOrUse == &DefMI;
790}
791
792bool CombinerHelper::dominates(const MachineInstr &DefMI,
793 const MachineInstr &UseMI) {
794 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&(static_cast <bool> (!DefMI.isDebugInstr() && !
UseMI.isDebugInstr() && "shouldn't consider debug uses"
) ? void (0) : __assert_fail ("!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && \"shouldn't consider debug uses\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 795, __extension__
__PRETTY_FUNCTION__))
795 "shouldn't consider debug uses")(static_cast <bool> (!DefMI.isDebugInstr() && !
UseMI.isDebugInstr() && "shouldn't consider debug uses"
) ? void (0) : __assert_fail ("!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && \"shouldn't consider debug uses\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 795, __extension__
__PRETTY_FUNCTION__))
;
796 if (MDT)
797 return MDT->dominates(&DefMI, &UseMI);
798 else if (DefMI.getParent() != UseMI.getParent())
799 return false;
800
801 return isPredecessor(DefMI, UseMI);
802}
803
804bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
805 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SEXT_INREG
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SEXT_INREG"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 805, __extension__
__PRETTY_FUNCTION__))
;
806 Register SrcReg = MI.getOperand(1).getReg();
807 Register LoadUser = SrcReg;
808
809 if (MRI.getType(SrcReg).isVector())
810 return false;
811
812 Register TruncSrc;
813 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
814 LoadUser = TruncSrc;
815
816 uint64_t SizeInBits = MI.getOperand(2).getImm();
817 // If the source is a G_SEXTLOAD from the same bit width, then we don't
818 // need any extend at all, just a truncate.
819 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
820 // If truncating more than the original extended value, abort.
821 auto LoadSizeBits = LoadMI->getMemSizeInBits();
822 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
823 return false;
824 if (LoadSizeBits == SizeInBits)
825 return true;
826 }
827 return false;
828}
829
830void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
831 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SEXT_INREG
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SEXT_INREG"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 831, __extension__
__PRETTY_FUNCTION__))
;
832 Builder.setInstrAndDebugLoc(MI);
833 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
834 MI.eraseFromParent();
835}
836
837bool CombinerHelper::matchSextInRegOfLoad(
838 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
839 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SEXT_INREG
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SEXT_INREG"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 839, __extension__
__PRETTY_FUNCTION__))
;
840
841 Register DstReg = MI.getOperand(0).getReg();
842 LLT RegTy = MRI.getType(DstReg);
843
844 // Only supports scalars for now.
845 if (RegTy.isVector())
846 return false;
847
848 Register SrcReg = MI.getOperand(1).getReg();
849 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
850 if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg))
851 return false;
852
853 uint64_t MemBits = LoadDef->getMemSizeInBits();
854
855 // If the sign extend extends from a narrower width than the load's width,
856 // then we can narrow the load width when we combine to a G_SEXTLOAD.
857 // Avoid widening the load at all.
858 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits);
859
860 // Don't generate G_SEXTLOADs with a < 1 byte width.
861 if (NewSizeBits < 8)
862 return false;
863 // Don't bother creating a non-power-2 sextload, it will likely be broken up
864 // anyway for most targets.
865 if (!isPowerOf2_32(NewSizeBits))
866 return false;
867
868 const MachineMemOperand &MMO = LoadDef->getMMO();
869 LegalityQuery::MemDesc MMDesc(MMO);
870
871 // Don't modify the memory access size if this is atomic/volatile, but we can
872 // still adjust the opcode to indicate the high bit behavior.
873 if (LoadDef->isSimple())
874 MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
875 else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits())
876 return false;
877
878 // TODO: Could check if it's legal with the reduced or original memory size.
879 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
880 {MRI.getType(LoadDef->getDstReg()),
881 MRI.getType(LoadDef->getPointerReg())},
882 {MMDesc}}))
883 return false;
884
885 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
886 return true;
887}
888
889void CombinerHelper::applySextInRegOfLoad(
890 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
891 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SEXT_INREG
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SEXT_INREG"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 891, __extension__
__PRETTY_FUNCTION__))
;
892 Register LoadReg;
893 unsigned ScalarSizeBits;
894 std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
895 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
896
897 // If we have the following:
898 // %ld = G_LOAD %ptr, (load 2)
899 // %ext = G_SEXT_INREG %ld, 8
900 // ==>
901 // %ld = G_SEXTLOAD %ptr (load 1)
902
903 auto &MMO = LoadDef->getMMO();
904 Builder.setInstrAndDebugLoc(*LoadDef);
905 auto &MF = Builder.getMF();
906 auto PtrInfo = MMO.getPointerInfo();
907 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
908 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
909 LoadDef->getPointerReg(), *NewMMO);
910 MI.eraseFromParent();
911}
912
913bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
914 Register &Base, Register &Offset) {
915 auto &MF = *MI.getParent()->getParent();
916 const auto &TLI = *MF.getSubtarget().getTargetLowering();
917
918#ifndef NDEBUG
919 unsigned Opcode = MI.getOpcode();
920 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||(static_cast <bool> (Opcode == TargetOpcode::G_LOAD || Opcode
== TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD
|| Opcode == TargetOpcode::G_STORE) ? void (0) : __assert_fail
("Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 921, __extension__
__PRETTY_FUNCTION__))
921 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE)(static_cast <bool> (Opcode == TargetOpcode::G_LOAD || Opcode
== TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD
|| Opcode == TargetOpcode::G_STORE) ? void (0) : __assert_fail
("Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 921, __extension__
__PRETTY_FUNCTION__))
;
922#endif
923
924 Base = MI.getOperand(1).getReg();
925 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
926 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
927 return false;
928
929 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << "Searching for post-indexing opportunity for: "
<< MI; } } while (false)
;
930 // FIXME: The following use traversal needs a bail out for patholigical cases.
931 for (auto &Use : MRI.use_nodbg_instructions(Base)) {
932 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
933 continue;
934
935 Offset = Use.getOperand(2).getReg();
936 if (!ForceLegalIndexing &&
937 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
938 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Ignoring candidate with illegal addrmode: "
<< Use; } } while (false)
939 << Use)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Ignoring candidate with illegal addrmode: "
<< Use; } } while (false)
;
940 continue;
941 }
942
943 // Make sure the offset calculation is before the potentially indexed op.
944 // FIXME: we really care about dependency here. The offset calculation might
945 // be movable.
946 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
947 if (!OffsetDef || !dominates(*OffsetDef, MI)) {
948 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Ignoring candidate with offset after mem-op: "
<< Use; } } while (false)
949 << Use)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Ignoring candidate with offset after mem-op: "
<< Use; } } while (false)
;
950 continue;
951 }
952
953 // FIXME: check whether all uses of Base are load/store with foldable
954 // addressing modes. If so, using the normal addr-modes is better than
955 // forming an indexed one.
956
957 bool MemOpDominatesAddrUses = true;
958 for (auto &PtrAddUse :
959 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
960 if (!dominates(MI, PtrAddUse)) {
961 MemOpDominatesAddrUses = false;
962 break;
963 }
964 }
965
966 if (!MemOpDominatesAddrUses) {
967 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Ignoring candidate as memop does not dominate uses: "
<< Use; } } while (false)
968 dbgs() << " Ignoring candidate as memop does not dominate uses: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Ignoring candidate as memop does not dominate uses: "
<< Use; } } while (false)
969 << Use)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Ignoring candidate as memop does not dominate uses: "
<< Use; } } while (false)
;
970 continue;
971 }
972
973 LLVM_DEBUG(dbgs() << " Found match: " << Use)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Found match: " <<
Use; } } while (false)
;
974 Addr = Use.getOperand(0).getReg();
975 return true;
976 }
977
978 return false;
979}
980
981bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
982 Register &Base, Register &Offset) {
983 auto &MF = *MI.getParent()->getParent();
984 const auto &TLI = *MF.getSubtarget().getTargetLowering();
985
986#ifndef NDEBUG
987 unsigned Opcode = MI.getOpcode();
988 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||(static_cast <bool> (Opcode == TargetOpcode::G_LOAD || Opcode
== TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD
|| Opcode == TargetOpcode::G_STORE) ? void (0) : __assert_fail
("Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 989, __extension__
__PRETTY_FUNCTION__))
989 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE)(static_cast <bool> (Opcode == TargetOpcode::G_LOAD || Opcode
== TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD
|| Opcode == TargetOpcode::G_STORE) ? void (0) : __assert_fail
("Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 989, __extension__
__PRETTY_FUNCTION__))
;
990#endif
991
992 Addr = MI.getOperand(1).getReg();
993 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
994 if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
995 return false;
996
997 Base = AddrDef->getOperand(1).getReg();
998 Offset = AddrDef->getOperand(2).getReg();
999
1000 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << "Found potential pre-indexed load_store: "
<< MI; } } while (false)
;
1001
1002 if (!ForceLegalIndexing &&
1003 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
1004 LLVM_DEBUG(dbgs() << " Skipping, not legal for target")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Skipping, not legal for target"
; } } while (false)
;
1005 return false;
1006 }
1007
1008 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
1009 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
1010 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Skipping, frame index would need copy anyway."
; } } while (false)
;
1011 return false;
1012 }
1013
1014 if (MI.getOpcode() == TargetOpcode::G_STORE) {
1015 // Would require a copy.
1016 if (Base == MI.getOperand(0).getReg()) {
1017 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Skipping, storing base so need copy anyway."
; } } while (false)
;
1018 return false;
1019 }
1020
1021 // We're expecting one use of Addr in MI, but it could also be the
1022 // value stored, which isn't actually dominated by the instruction.
1023 if (MI.getOperand(0).getReg() == Addr) {
1024 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Skipping, does not dominate all addr uses"
; } } while (false)
;
1025 return false;
1026 }
1027 }
1028
1029 // FIXME: check whether all uses of the base pointer are constant PtrAdds.
1030 // That might allow us to end base's liveness here by adjusting the constant.
1031
1032 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
1033 if (!dominates(MI, UseMI)) {
1034 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Skipping, does not dominate all addr uses."
; } } while (false)
;
1035 return false;
1036 }
1037 }
1038
1039 return true;
1040}
1041
1042bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
1043 IndexedLoadStoreMatchInfo MatchInfo;
1044 if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
1045 applyCombineIndexedLoadStore(MI, MatchInfo);
1046 return true;
1047 }
1048 return false;
1049}
1050
1051bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1052 unsigned Opcode = MI.getOpcode();
1053 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
1054 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
1055 return false;
1056
1057 // For now, no targets actually support these opcodes so don't waste time
1058 // running these unless we're forced to for testing.
1059 if (!ForceLegalIndexing)
1060 return false;
1061
1062 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
1063 MatchInfo.Offset);
1064 if (!MatchInfo.IsPre &&
1065 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
1066 MatchInfo.Offset))
1067 return false;
1068
1069 return true;
1070}
1071
1072void CombinerHelper::applyCombineIndexedLoadStore(
1073 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1074 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
1075 MachineIRBuilder MIRBuilder(MI);
1076 unsigned Opcode = MI.getOpcode();
1077 bool IsStore = Opcode == TargetOpcode::G_STORE;
1078 unsigned NewOpcode;
1079 switch (Opcode) {
1080 case TargetOpcode::G_LOAD:
1081 NewOpcode = TargetOpcode::G_INDEXED_LOAD;
1082 break;
1083 case TargetOpcode::G_SEXTLOAD:
1084 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
1085 break;
1086 case TargetOpcode::G_ZEXTLOAD:
1087 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
1088 break;
1089 case TargetOpcode::G_STORE:
1090 NewOpcode = TargetOpcode::G_INDEXED_STORE;
1091 break;
1092 default:
1093 llvm_unreachable("Unknown load/store opcode")::llvm::llvm_unreachable_internal("Unknown load/store opcode"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1093)
;
1094 }
1095
1096 auto MIB = MIRBuilder.buildInstr(NewOpcode);
1097 if (IsStore) {
1098 MIB.addDef(MatchInfo.Addr);
1099 MIB.addUse(MI.getOperand(0).getReg());
1100 } else {
1101 MIB.addDef(MI.getOperand(0).getReg());
1102 MIB.addDef(MatchInfo.Addr);
1103 }
1104
1105 MIB.addUse(MatchInfo.Base);
1106 MIB.addUse(MatchInfo.Offset);
1107 MIB.addImm(MatchInfo.IsPre);
1108 MI.eraseFromParent();
1109 AddrDef.eraseFromParent();
1110
1111 LLVM_DEBUG(dbgs() << " Combinined to indexed operation")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gi-combiner")) { dbgs() << " Combinined to indexed operation"
; } } while (false)
;
1112}
1113
1114bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
1115 MachineInstr *&OtherMI) {
1116 unsigned Opcode = MI.getOpcode();
1117 bool IsDiv, IsSigned;
1118
1119 switch (Opcode) {
1120 default:
1121 llvm_unreachable("Unexpected opcode!")::llvm::llvm_unreachable_internal("Unexpected opcode!", "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp"
, 1121)
;
1122 case TargetOpcode::G_SDIV:
1123 case TargetOpcode::G_UDIV: {
1124 IsDiv = true;
1125 IsSigned = Opcode == TargetOpcode::G_SDIV;
1126 break;
1127 }
1128 case TargetOpcode::G_SREM:
1129 case TargetOpcode::G_UREM: {
1130 IsDiv = false;
1131 IsSigned = Opcode == TargetOpcode::G_SREM;
1132 break;
1133 }
1134 }
1135
1136 Register Src1 = MI.getOperand(1).getReg();
1137 unsigned DivOpcode, RemOpcode, DivremOpcode;
1138 if (IsSigned) {
1139 DivOpcode = TargetOpcode::G_SDIV;
1140 RemOpcode = TargetOpcode::G_SREM;
1141 DivremOpcode = TargetOpcode::G_SDIVREM;
1142 } else {
1143 DivOpcode = TargetOpcode::G_UDIV;
1144 RemOpcode = TargetOpcode::G_UREM;
1145 DivremOpcode = TargetOpcode::G_UDIVREM;
1146 }
1147
1148 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
1149 return false;
1150
1151 // Combine:
1152 // %div:_ = G_[SU]DIV %src1:_, %src2:_
1153 // %rem:_ = G_[SU]REM %src1:_, %src2:_
1154 // into:
1155 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1156
1157 // Combine:
1158 // %rem:_ = G_[SU]REM %src1:_, %src2:_
1159 // %div:_ = G_[SU]DIV %src1:_, %src2:_
1160 // into:
1161 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1162
1163 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
1164 if (MI.getParent() == UseMI.getParent() &&
1165 ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
1166 (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
1167 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) &&
1168 matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) {
1169 OtherMI = &UseMI;
1170 return true;
1171 }
1172 }
1173
1174 return false;
1175}
1176
1177void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1178 MachineInstr *&OtherMI) {
1179 unsigned Opcode = MI.getOpcode();
1180 assert(OtherMI && "OtherMI shouldn't be empty.")(static_cast <bool> (OtherMI && "OtherMI shouldn't be empty."
) ? void (0) : __assert_fail ("OtherMI && \"OtherMI shouldn't be empty.\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1180, __extension__
__PRETTY_FUNCTION__))
;
1181
1182 Register DestDivReg, DestRemReg;
1183 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1184 DestDivReg = MI.getOperand(0).getReg();
1185 DestRemReg = OtherMI->getOperand(0).getReg();
1186 } else {
1187 DestDivReg = OtherMI->getOperand(0).getReg();
1188 DestRemReg = MI.getOperand(0).getReg();
1189 }
1190
1191 bool IsSigned =
1192 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1193
1194 // Check which instruction is first in the block so we don't break def-use
1195 // deps by "moving" the instruction incorrectly.
1196 if (dominates(MI, *OtherMI))
1197 Builder.setInstrAndDebugLoc(MI);
1198 else
1199 Builder.setInstrAndDebugLoc(*OtherMI);
1200
1201 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1202 : TargetOpcode::G_UDIVREM,
1203 {DestDivReg, DestRemReg},
1204 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
1205 MI.eraseFromParent();
1206 OtherMI->eraseFromParent();
1207}
1208
1209bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1210 MachineInstr *&BrCond) {
1211 assert(MI.getOpcode() == TargetOpcode::G_BR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_BR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_BR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1211, __extension__
__PRETTY_FUNCTION__))
;
1212
1213 // Try to match the following:
1214 // bb1:
1215 // G_BRCOND %c1, %bb2
1216 // G_BR %bb3
1217 // bb2:
1218 // ...
1219 // bb3:
1220
1221 // The above pattern does not have a fall through to the successor bb2, always
1222 // resulting in a branch no matter which path is taken. Here we try to find
1223 // and replace that pattern with conditional branch to bb3 and otherwise
1224 // fallthrough to bb2. This is generally better for branch predictors.
1225
1226 MachineBasicBlock *MBB = MI.getParent();
1227 MachineBasicBlock::iterator BrIt(MI);
1228 if (BrIt == MBB->begin())
1229 return false;
1230 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator")(static_cast <bool> (std::next(BrIt) == MBB->end() &&
"expected G_BR to be a terminator") ? void (0) : __assert_fail
("std::next(BrIt) == MBB->end() && \"expected G_BR to be a terminator\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1230, __extension__
__PRETTY_FUNCTION__))
;
1231
1232 BrCond = &*std::prev(BrIt);
1233 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1234 return false;
1235
1236 // Check that the next block is the conditional branch target. Also make sure
1237 // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1238 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1239 return BrCondTarget != MI.getOperand(0).getMBB() &&
1240 MBB->isLayoutSuccessor(BrCondTarget);
1241}
1242
1243void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1244 MachineInstr *&BrCond) {
1245 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1246 Builder.setInstrAndDebugLoc(*BrCond);
1247 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1248 // FIXME: Does int/fp matter for this? If so, we might need to restrict
1249 // this to i1 only since we might not know for sure what kind of
1250 // compare generated the condition value.
1251 auto True = Builder.buildConstant(
1252 Ty, getICmpTrueVal(getTargetLowering(), false, false));
1253 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1254
1255 auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1256 Observer.changingInstr(MI);
1257 MI.getOperand(0).setMBB(FallthroughBB);
1258 Observer.changedInstr(MI);
1259
1260 // Change the conditional branch to use the inverted condition and
1261 // new target block.
1262 Observer.changingInstr(*BrCond);
1263 BrCond->getOperand(0).setReg(Xor.getReg(0));
1264 BrCond->getOperand(1).setMBB(BrTarget);
1265 Observer.changedInstr(*BrCond);
1266}
1267
1268static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1269 if (Ty.isVector())
1270 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1271 Ty.getNumElements());
1272 return IntegerType::get(C, Ty.getSizeInBits());
1273}
1274
1275bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1276 MachineIRBuilder HelperBuilder(MI);
1277 GISelObserverWrapper DummyObserver;
1278 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1279 return Helper.lowerMemcpyInline(MI) ==
1280 LegalizerHelper::LegalizeResult::Legalized;
1281}
1282
1283bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1284 MachineIRBuilder HelperBuilder(MI);
1285 GISelObserverWrapper DummyObserver;
1286 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1287 return Helper.lowerMemCpyFamily(MI, MaxLen) ==
1288 LegalizerHelper::LegalizeResult::Legalized;
1289}
1290
1291static std::optional<APFloat>
1292constantFoldFpUnary(unsigned Opcode, LLT DstTy, const Register Op,
1293 const MachineRegisterInfo &MRI) {
1294 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1295 if (!MaybeCst)
1296 return std::nullopt;
1297
1298 APFloat V = MaybeCst->getValueAPF();
1299 switch (Opcode) {
1300 default:
1301 llvm_unreachable("Unexpected opcode!")::llvm::llvm_unreachable_internal("Unexpected opcode!", "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp"
, 1301)
;
1302 case TargetOpcode::G_FNEG: {
1303 V.changeSign();
1304 return V;
1305 }
1306 case TargetOpcode::G_FABS: {
1307 V.clearSign();
1308 return V;
1309 }
1310 case TargetOpcode::G_FPTRUNC:
1311 break;
1312 case TargetOpcode::G_FSQRT: {
1313 bool Unused;
1314 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1315 V = APFloat(sqrt(V.convertToDouble()));
1316 break;
1317 }
1318 case TargetOpcode::G_FLOG2: {
1319 bool Unused;
1320 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1321 V = APFloat(log2(V.convertToDouble()));
1322 break;
1323 }
1324 }
1325 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1326 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1327 // and `G_FLOG2` reach here.
1328 bool Unused;
1329 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1330 return V;
1331}
1332
1333bool CombinerHelper::matchCombineConstantFoldFpUnary(
1334 MachineInstr &MI, std::optional<APFloat> &Cst) {
1335 Register DstReg = MI.getOperand(0).getReg();
1336 Register SrcReg = MI.getOperand(1).getReg();
1337 LLT DstTy = MRI.getType(DstReg);
1338 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1339 return Cst.has_value();
1340}
1341
1342void CombinerHelper::applyCombineConstantFoldFpUnary(
1343 MachineInstr &MI, std::optional<APFloat> &Cst) {
1344 assert(Cst && "Optional is unexpectedly empty!")(static_cast <bool> (Cst && "Optional is unexpectedly empty!"
) ? void (0) : __assert_fail ("Cst && \"Optional is unexpectedly empty!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1344, __extension__
__PRETTY_FUNCTION__))
;
1345 Builder.setInstrAndDebugLoc(MI);
1346 MachineFunction &MF = Builder.getMF();
1347 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1348 Register DstReg = MI.getOperand(0).getReg();
1349 Builder.buildFConstant(DstReg, *FPVal);
1350 MI.eraseFromParent();
1351}
1352
1353bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1354 PtrAddChain &MatchInfo) {
1355 // We're trying to match the following pattern:
1356 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1357 // %root = G_PTR_ADD %t1, G_CONSTANT imm2
1358 // -->
1359 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1360
1361 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1362 return false;
1363
1364 Register Add2 = MI.getOperand(1).getReg();
1365 Register Imm1 = MI.getOperand(2).getReg();
1366 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1367 if (!MaybeImmVal)
1368 return false;
1369
1370 MachineInstr *Add2Def = MRI.getVRegDef(Add2);
1371 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1372 return false;
1373
1374 Register Base = Add2Def->getOperand(1).getReg();
1375 Register Imm2 = Add2Def->getOperand(2).getReg();
1376 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1377 if (!MaybeImm2Val)
1378 return false;
1379
1380 // Check if the new combined immediate forms an illegal addressing mode.
1381 // Do not combine if it was legal before but would get illegal.
1382 // To do so, we need to find a load/store user of the pointer to get
1383 // the access type.
1384 Type *AccessTy = nullptr;
1385 auto &MF = *MI.getMF();
1386 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
1387 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
1388 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
1389 MF.getFunction().getContext());
1390 break;
1391 }
1392 }
1393 TargetLoweringBase::AddrMode AMNew;
1394 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
1395 AMNew.BaseOffs = CombinedImm.getSExtValue();
1396 if (AccessTy) {
1397 AMNew.HasBaseReg = true;
1398 TargetLoweringBase::AddrMode AMOld;
1399 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue();
1400 AMOld.HasBaseReg = true;
1401 unsigned AS = MRI.getType(Add2).getAddressSpace();
1402 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1403 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
1404 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
1405 return false;
1406 }
1407
1408 // Pass the combined immediate to the apply function.
1409 MatchInfo.Imm = AMNew.BaseOffs;
1410 MatchInfo.Base = Base;
1411 MatchInfo.Bank = getRegBank(Imm2);
1412 return true;
1413}
1414
1415void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1416 PtrAddChain &MatchInfo) {
1417 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_PTR_ADD
&& "Expected G_PTR_ADD") ? void (0) : __assert_fail (
"MI.getOpcode() == TargetOpcode::G_PTR_ADD && \"Expected G_PTR_ADD\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1417, __extension__
__PRETTY_FUNCTION__))
;
1418 MachineIRBuilder MIB(MI);
1419 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1420 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1421 setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
1422 Observer.changingInstr(MI);
1423 MI.getOperand(1).setReg(MatchInfo.Base);
1424 MI.getOperand(2).setReg(NewOffset.getReg(0));
1425 Observer.changedInstr(MI);
1426}
1427
1428bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1429 RegisterImmPair &MatchInfo) {
1430 // We're trying to match the following pattern with any of
1431 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1432 // %t1 = SHIFT %base, G_CONSTANT imm1
1433 // %root = SHIFT %t1, G_CONSTANT imm2
1434 // -->
1435 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1436
1437 unsigned Opcode = MI.getOpcode();
1438 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::
G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1441, __extension__
__PRETTY_FUNCTION__))
1439 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::
G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1441, __extension__
__PRETTY_FUNCTION__))
1440 Opcode == TargetOpcode::G_USHLSAT) &&(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::
G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1441, __extension__
__PRETTY_FUNCTION__))
1441 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT")(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::
G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1441, __extension__
__PRETTY_FUNCTION__))
;
1442
1443 Register Shl2 = MI.getOperand(1).getReg();
1444 Register Imm1 = MI.getOperand(2).getReg();
1445 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1446 if (!MaybeImmVal)
1447 return false;
1448
1449 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1450 if (Shl2Def->getOpcode() != Opcode)
1451 return false;
1452
1453 Register Base = Shl2Def->getOperand(1).getReg();
1454 Register Imm2 = Shl2Def->getOperand(2).getReg();
1455 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1456 if (!MaybeImm2Val)
1457 return false;
1458
1459 // Pass the combined immediate to the apply function.
1460 MatchInfo.Imm =
1461 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1462 MatchInfo.Reg = Base;
1463
1464 // There is no simple replacement for a saturating unsigned left shift that
1465 // exceeds the scalar size.
1466 if (Opcode == TargetOpcode::G_USHLSAT &&
1467 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1468 return false;
1469
1470 return true;
1471}
1472
1473void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1474 RegisterImmPair &MatchInfo) {
1475 unsigned Opcode = MI.getOpcode();
1476 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::
G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1479, __extension__
__PRETTY_FUNCTION__))
1477 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::
G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1479, __extension__
__PRETTY_FUNCTION__))
1478 Opcode == TargetOpcode::G_USHLSAT) &&(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::
G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1479, __extension__
__PRETTY_FUNCTION__))
1479 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT")(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::
G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1479, __extension__
__PRETTY_FUNCTION__))
;
1480
1481 Builder.setInstrAndDebugLoc(MI);
1482 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1483 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1484 auto Imm = MatchInfo.Imm;
1485
1486 if (Imm >= ScalarSizeInBits) {
1487 // Any logical shift that exceeds scalar size will produce zero.
1488 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1489 Builder.buildConstant(MI.getOperand(0), 0);
1490 MI.eraseFromParent();
1491 return;
1492 }
1493 // Arithmetic shift and saturating signed left shift have no effect beyond
1494 // scalar size.
1495 Imm = ScalarSizeInBits - 1;
1496 }
1497
1498 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1499 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1500 Observer.changingInstr(MI);
1501 MI.getOperand(1).setReg(MatchInfo.Reg);
1502 MI.getOperand(2).setReg(NewImm);
1503 Observer.changedInstr(MI);
1504}
1505
1506bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1507 ShiftOfShiftedLogic &MatchInfo) {
1508 // We're trying to match the following pattern with any of
1509 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1510 // with any of G_AND/G_OR/G_XOR logic instructions.
1511 // %t1 = SHIFT %X, G_CONSTANT C0
1512 // %t2 = LOGIC %t1, %Y
1513 // %root = SHIFT %t2, G_CONSTANT C1
1514 // -->
1515 // %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1516 // %t4 = SHIFT %Y, G_CONSTANT C1
1517 // %root = LOGIC %t3, %t4
1518 unsigned ShiftOpcode = MI.getOpcode();
1519 assert((ShiftOpcode == TargetOpcode::G_SHL ||(static_cast <bool> ((ShiftOpcode == TargetOpcode::G_SHL
|| ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode
::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode
== TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(ShiftOpcode == TargetOpcode::G_SHL || ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1524, __extension__
__PRETTY_FUNCTION__))
1520 ShiftOpcode == TargetOpcode::G_ASHR ||(static_cast <bool> ((ShiftOpcode == TargetOpcode::G_SHL
|| ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode
::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode
== TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(ShiftOpcode == TargetOpcode::G_SHL || ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1524, __extension__
__PRETTY_FUNCTION__))
1521 ShiftOpcode == TargetOpcode::G_LSHR ||(static_cast <bool> ((ShiftOpcode == TargetOpcode::G_SHL
|| ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode
::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode
== TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(ShiftOpcode == TargetOpcode::G_SHL || ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1524, __extension__
__PRETTY_FUNCTION__))
1522 ShiftOpcode == TargetOpcode::G_USHLSAT ||(static_cast <bool> ((ShiftOpcode == TargetOpcode::G_SHL
|| ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode
::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode
== TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(ShiftOpcode == TargetOpcode::G_SHL || ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1524, __extension__
__PRETTY_FUNCTION__))
1523 ShiftOpcode == TargetOpcode::G_SSHLSAT) &&(static_cast <bool> ((ShiftOpcode == TargetOpcode::G_SHL
|| ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode
::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode
== TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(ShiftOpcode == TargetOpcode::G_SHL || ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1524, __extension__
__PRETTY_FUNCTION__))
1524 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT")(static_cast <bool> ((ShiftOpcode == TargetOpcode::G_SHL
|| ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode
::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode
== TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(ShiftOpcode == TargetOpcode::G_SHL || ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1524, __extension__
__PRETTY_FUNCTION__))
;
1525
1526 // Match a one-use bitwise logic op.
1527 Register LogicDest = MI.getOperand(1).getReg();
1528 if (!MRI.hasOneNonDBGUse(LogicDest))
1529 return false;
1530
1531 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1532 unsigned LogicOpcode = LogicMI->getOpcode();
1533 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1534 LogicOpcode != TargetOpcode::G_XOR)
1535 return false;
1536
1537 // Find a matching one-use shift by constant.
1538 const Register C1 = MI.getOperand(2).getReg();
1539 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
1540 if (!MaybeImmVal)
1541 return false;
1542
1543 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1544
1545 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1546 // Shift should match previous one and should be a one-use.
1547 if (MI->getOpcode() != ShiftOpcode ||
1548 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1549 return false;
1550
1551 // Must be a constant.
1552 auto MaybeImmVal =
1553 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1554 if (!MaybeImmVal)
1555 return false;
1556
1557 ShiftVal = MaybeImmVal->Value.getSExtValue();
1558 return true;
1559 };
1560
1561 // Logic ops are commutative, so check each operand for a match.
1562 Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1563 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1564 Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1565 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1566 uint64_t C0Val;
1567
1568 if (matchFirstShift(LogicMIOp1, C0Val)) {
1569 MatchInfo.LogicNonShiftReg = LogicMIReg2;
1570 MatchInfo.Shift2 = LogicMIOp1;
1571 } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1572 MatchInfo.LogicNonShiftReg = LogicMIReg1;
1573 MatchInfo.Shift2 = LogicMIOp2;
1574 } else
1575 return false;
1576
1577 MatchInfo.ValSum = C0Val + C1Val;
1578
1579 // The fold is not valid if the sum of the shift values exceeds bitwidth.
1580 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1581 return false;
1582
1583 MatchInfo.Logic = LogicMI;
1584 return true;
1585}
1586
1587void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1588 ShiftOfShiftedLogic &MatchInfo) {
1589 unsigned Opcode = MI.getOpcode();
1590 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::
G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1593, __extension__
__PRETTY_FUNCTION__))
1591 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::
G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1593, __extension__
__PRETTY_FUNCTION__))
1592 Opcode == TargetOpcode::G_SSHLSAT) &&(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::
G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1593, __extension__
__PRETTY_FUNCTION__))
1593 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT")(static_cast <bool> ((Opcode == TargetOpcode::G_SHL || Opcode
== TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::
G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"
) ? void (0) : __assert_fail ("(Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::G_SSHLSAT) && \"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1593, __extension__
__PRETTY_FUNCTION__))
;
1594
1595 LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1596 LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1597 Builder.setInstrAndDebugLoc(MI);
1598
1599 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1600
1601 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1602 Register Shift1 =
1603 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1604
1605 // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same
1606 // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when
1607 // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we
1608 // remove old shift1. And it will cause crash later. So erase it earlier to
1609 // avoid the crash.
1610 MatchInfo.Shift2->eraseFromParent();
1611
1612 Register Shift2Const = MI.getOperand(2).getReg();
1613 Register Shift2 = Builder
1614 .buildInstr(Opcode, {DestType},
1615 {MatchInfo.LogicNonShiftReg, Shift2Const})
1616 .getReg(0);
1617
1618 Register Dest = MI.getOperand(0).getReg();
1619 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1620
1621 // This was one use so it's safe to remove it.
1622 MatchInfo.Logic->eraseFromParent();
1623
1624 MI.eraseFromParent();
1625}
1626
1627bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1628 unsigned &ShiftVal) {
1629 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_MUL
&& "Expected a G_MUL") ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_MUL && \"Expected a G_MUL\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1629, __extension__
__PRETTY_FUNCTION__))
;
1630 auto MaybeImmVal =
1631 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1632 if (!MaybeImmVal)
1633 return false;
1634
1635 ShiftVal = MaybeImmVal->Value.exactLogBase2();
1636 return (static_cast<int32_t>(ShiftVal) != -1);
1637}
1638
1639void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1640 unsigned &ShiftVal) {
1641 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_MUL
&& "Expected a G_MUL") ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_MUL && \"Expected a G_MUL\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1641, __extension__
__PRETTY_FUNCTION__))
;
1642 MachineIRBuilder MIB(MI);
1643 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1644 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1645 Observer.changingInstr(MI);
1646 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1647 MI.getOperand(2).setReg(ShiftCst.getReg(0));
1648 Observer.changedInstr(MI);
1649}
1650
1651// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
1652bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1653 RegisterImmPair &MatchData) {
1654 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SHL
&& KB) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SHL && KB"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1654, __extension__
__PRETTY_FUNCTION__))
;
1655
1656 Register LHS = MI.getOperand(1).getReg();
1657
1658 Register ExtSrc;
1659 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1660 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1661 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1662 return false;
1663
1664 // TODO: Should handle vector splat.
1665 Register RHS = MI.getOperand(2).getReg();
1666 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1667 if (!MaybeShiftAmtVal)
1668 return false;
1669
1670 if (LI) {
1671 LLT SrcTy = MRI.getType(ExtSrc);
1672
1673 // We only really care about the legality with the shifted value. We can
1674 // pick any type the constant shift amount, so ask the target what to
1675 // use. Otherwise we would have to guess and hope it is reported as legal.
1676 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1677 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1678 return false;
1679 }
1680
1681 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
1682 MatchData.Reg = ExtSrc;
1683 MatchData.Imm = ShiftAmt;
1684
1685 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countl_one();
1686 return MinLeadingZeros >= ShiftAmt;
1687}
1688
1689void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
1690 const RegisterImmPair &MatchData) {
1691 Register ExtSrcReg = MatchData.Reg;
1692 int64_t ShiftAmtVal = MatchData.Imm;
1693
1694 LLT ExtSrcTy = MRI.getType(ExtSrcReg);
1695 Builder.setInstrAndDebugLoc(MI);
1696 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
1697 auto NarrowShift =
1698 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
1699 Builder.buildZExt(MI.getOperand(0), NarrowShift);
1700 MI.eraseFromParent();
1701}
1702
1703bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
1704 Register &MatchInfo) {
1705 GMerge &Merge = cast<GMerge>(MI);
1706 SmallVector<Register, 16> MergedValues;
1707 for (unsigned I = 0; I < Merge.getNumSources(); ++I)
1708 MergedValues.emplace_back(Merge.getSourceReg(I));
1709
1710 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
1711 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
1712 return false;
1713
1714 for (unsigned I = 0; I < MergedValues.size(); ++I)
1715 if (MergedValues[I] != Unmerge->getReg(I))
1716 return false;
1717
1718 MatchInfo = Unmerge->getSourceReg();
1719 return true;
1720}
1721
1722static Register peekThroughBitcast(Register Reg,
1723 const MachineRegisterInfo &MRI) {
1724 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
1725 ;
1726
1727 return Reg;
1728}
1729
1730bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
1731 MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1732 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1733, __extension__
__PRETTY_FUNCTION__))
1733 "Expected an unmerge")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1733, __extension__
__PRETTY_FUNCTION__))
;
1734 auto &Unmerge = cast<GUnmerge>(MI);
1735 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
1736
1737 auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI);
1738 if (!SrcInstr)
1739 return false;
1740
1741 // Check the source type of the merge.
1742 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
1743 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
1744 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
1745 if (SrcMergeTy != Dst0Ty && !SameSize)
1746 return false;
1747 // They are the same now (modulo a bitcast).
1748 // We can collect all the src registers.
1749 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
1750 Operands.push_back(SrcInstr->getSourceReg(Idx));
1751 return true;
1752}
1753
1754void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
1755 MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1756 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1757, __extension__
__PRETTY_FUNCTION__))
1757 "Expected an unmerge")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1757, __extension__
__PRETTY_FUNCTION__))
;
1758 assert((MI.getNumOperands() - 1 == Operands.size()) &&(static_cast <bool> ((MI.getNumOperands() - 1 == Operands
.size()) && "Not enough operands to replace all defs"
) ? void (0) : __assert_fail ("(MI.getNumOperands() - 1 == Operands.size()) && \"Not enough operands to replace all defs\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1759, __extension__
__PRETTY_FUNCTION__))
1759 "Not enough operands to replace all defs")(static_cast <bool> ((MI.getNumOperands() - 1 == Operands
.size()) && "Not enough operands to replace all defs"
) ? void (0) : __assert_fail ("(MI.getNumOperands() - 1 == Operands.size()) && \"Not enough operands to replace all defs\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1759, __extension__
__PRETTY_FUNCTION__))
;
1760 unsigned NumElems = MI.getNumOperands() - 1;
1761
1762 LLT SrcTy = MRI.getType(Operands[0]);
1763 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1764 bool CanReuseInputDirectly = DstTy == SrcTy;
1765 Builder.setInstrAndDebugLoc(MI);
1766 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1767 Register DstReg = MI.getOperand(Idx).getReg();
1768 Register SrcReg = Operands[Idx];
1769
1770 // This combine may run after RegBankSelect, so we need to be aware of
1771 // register banks.
1772 const auto &DstCB = MRI.getRegClassOrRegBank(DstReg);
1773 if (!DstCB.isNull() && DstCB != MRI.getRegClassOrRegBank(SrcReg)) {
1774 SrcReg = Builder.buildCopy(MRI.getType(SrcReg), SrcReg).getReg(0);
1775 MRI.setRegClassOrRegBank(SrcReg, DstCB);
1776 }
1777
1778 if (CanReuseInputDirectly)
1779 replaceRegWith(MRI, DstReg, SrcReg);
1780 else
1781 Builder.buildCast(DstReg, SrcReg);
1782 }
1783 MI.eraseFromParent();
1784}
1785
1786bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
1787 SmallVectorImpl<APInt> &Csts) {
1788 unsigned SrcIdx = MI.getNumOperands() - 1;
1789 Register SrcReg = MI.getOperand(SrcIdx).getReg();
1790 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
1791 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
1792 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
1793 return false;
1794 // Break down the big constant in smaller ones.
1795 const MachineOperand &CstVal = SrcInstr->getOperand(1);
1796 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
1797 ? CstVal.getCImm()->getValue()
1798 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
1799
1800 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
1801 unsigned ShiftAmt = Dst0Ty.getSizeInBits();
1802 // Unmerge a constant.
1803 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
1804 Csts.emplace_back(Val.trunc(ShiftAmt));
1805 Val = Val.lshr(ShiftAmt);
1806 }
1807
1808 return true;
1809}
1810
1811void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
1812 SmallVectorImpl<APInt> &Csts) {
1813 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1814, __extension__
__PRETTY_FUNCTION__))
1814 "Expected an unmerge")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1814, __extension__
__PRETTY_FUNCTION__))
;
1815 assert((MI.getNumOperands() - 1 == Csts.size()) &&(static_cast <bool> ((MI.getNumOperands() - 1 == Csts.size
()) && "Not enough operands to replace all defs") ? void
(0) : __assert_fail ("(MI.getNumOperands() - 1 == Csts.size()) && \"Not enough operands to replace all defs\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1816, __extension__
__PRETTY_FUNCTION__))
1816 "Not enough operands to replace all defs")(static_cast <bool> ((MI.getNumOperands() - 1 == Csts.size
()) && "Not enough operands to replace all defs") ? void
(0) : __assert_fail ("(MI.getNumOperands() - 1 == Csts.size()) && \"Not enough operands to replace all defs\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1816, __extension__
__PRETTY_FUNCTION__))
;
1817 unsigned NumElems = MI.getNumOperands() - 1;
1818 Builder.setInstrAndDebugLoc(MI);
1819 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1820 Register DstReg = MI.getOperand(Idx).getReg();
1821 Builder.buildConstant(DstReg, Csts[Idx]);
1822 }
1823
1824 MI.eraseFromParent();
1825}
1826
1827bool CombinerHelper::matchCombineUnmergeUndef(
1828 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
1829 unsigned SrcIdx = MI.getNumOperands() - 1;
1830 Register SrcReg = MI.getOperand(SrcIdx).getReg();
1831 MatchInfo = [&MI](MachineIRBuilder &B) {
1832 unsigned NumElems = MI.getNumOperands() - 1;
1833 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1834 Register DstReg = MI.getOperand(Idx).getReg();
1835 B.buildUndef(DstReg);
1836 }
1837 };
1838 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
1839}
1840
1841bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1842 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1843, __extension__
__PRETTY_FUNCTION__))
1843 "Expected an unmerge")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1843, __extension__
__PRETTY_FUNCTION__))
;
1844 // Check that all the lanes are dead except the first one.
1845 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1846 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
1847 return false;
1848 }
1849 return true;
1850}
1851
1852void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1853 Builder.setInstrAndDebugLoc(MI);
1854 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1855 // Truncating a vector is going to truncate every single lane,
1856 // whereas we want the full lowbits.
1857 // Do the operation on a scalar instead.
1858 LLT SrcTy = MRI.getType(SrcReg);
1859 if (SrcTy.isVector())
1860 SrcReg =
1861 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
1862
1863 Register Dst0Reg = MI.getOperand(0).getReg();
1864 LLT Dst0Ty = MRI.getType(Dst0Reg);
1865 if (Dst0Ty.isVector()) {
1866 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
1867 Builder.buildCast(Dst0Reg, MIB);
1868 } else
1869 Builder.buildTrunc(Dst0Reg, SrcReg);
1870 MI.eraseFromParent();
1871}
1872
1873bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
1874 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1875, __extension__
__PRETTY_FUNCTION__))
1875 "Expected an unmerge")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1875, __extension__
__PRETTY_FUNCTION__))
;
1876 Register Dst0Reg = MI.getOperand(0).getReg();
1877 LLT Dst0Ty = MRI.getType(Dst0Reg);
1878 // G_ZEXT on vector applies to each lane, so it will
1879 // affect all destinations. Therefore we won't be able
1880 // to simplify the unmerge to just the first definition.
1881 if (Dst0Ty.isVector())
1882 return false;
1883 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1884 LLT SrcTy = MRI.getType(SrcReg);
1885 if (SrcTy.isVector())
1886 return false;
1887
1888 Register ZExtSrcReg;
1889 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
1890 return false;
1891
1892 // Finally we can replace the first definition with
1893 // a zext of the source if the definition is big enough to hold
1894 // all of ZExtSrc bits.
1895 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1896 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
1897}
1898
1899void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
1900 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1901, __extension__
__PRETTY_FUNCTION__))
1901 "Expected an unmerge")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
&& "Expected an unmerge") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && \"Expected an unmerge\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1901, __extension__
__PRETTY_FUNCTION__))
;
1902
1903 Register Dst0Reg = MI.getOperand(0).getReg();
1904
1905 MachineInstr *ZExtInstr =
1906 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
1907 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&(static_cast <bool> (ZExtInstr && ZExtInstr->
getOpcode() == TargetOpcode::G_ZEXT && "Expecting a G_ZEXT"
) ? void (0) : __assert_fail ("ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && \"Expecting a G_ZEXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1908, __extension__
__PRETTY_FUNCTION__))
1908 "Expecting a G_ZEXT")(static_cast <bool> (ZExtInstr && ZExtInstr->
getOpcode() == TargetOpcode::G_ZEXT && "Expecting a G_ZEXT"
) ? void (0) : __assert_fail ("ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && \"Expecting a G_ZEXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1908, __extension__
__PRETTY_FUNCTION__))
;
1909
1910 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
1911 LLT Dst0Ty = MRI.getType(Dst0Reg);
1912 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1913
1914 Builder.setInstrAndDebugLoc(MI);
1915
1916 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
1917 Builder.buildZExt(Dst0Reg, ZExtSrcReg);
1918 } else {
1919 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&(static_cast <bool> (Dst0Ty.getSizeInBits() == ZExtSrcTy
.getSizeInBits() && "ZExt src doesn't fit in destination"
) ? void (0) : __assert_fail ("Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && \"ZExt src doesn't fit in destination\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1920, __extension__
__PRETTY_FUNCTION__))
1920 "ZExt src doesn't fit in destination")(static_cast <bool> (Dst0Ty.getSizeInBits() == ZExtSrcTy
.getSizeInBits() && "ZExt src doesn't fit in destination"
) ? void (0) : __assert_fail ("Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && \"ZExt src doesn't fit in destination\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1920, __extension__
__PRETTY_FUNCTION__))
;
1921 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
1922 }
1923
1924 Register ZeroReg;
1925 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1926 if (!ZeroReg)
1927 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
1928 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
1929 }
1930 MI.eraseFromParent();
1931}
1932
1933bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
1934 unsigned TargetShiftSize,
1935 unsigned &ShiftVal) {
1936 assert((MI.getOpcode() == TargetOpcode::G_SHL ||(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_SHL
|| MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() ==
TargetOpcode::G_ASHR) && "Expected a shift") ? void (
0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_SHL || MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() == TargetOpcode::G_ASHR) && \"Expected a shift\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1938, __extension__
__PRETTY_FUNCTION__))
1937 MI.getOpcode() == TargetOpcode::G_LSHR ||(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_SHL
|| MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() ==
TargetOpcode::G_ASHR) && "Expected a shift") ? void (
0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_SHL || MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() == TargetOpcode::G_ASHR) && \"Expected a shift\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1938, __extension__
__PRETTY_FUNCTION__))
1938 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift")(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_SHL
|| MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() ==
TargetOpcode::G_ASHR) && "Expected a shift") ? void (
0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_SHL || MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() == TargetOpcode::G_ASHR) && \"Expected a shift\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 1938, __extension__
__PRETTY_FUNCTION__))
;
1939
1940 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1941 if (Ty.isVector()) // TODO:
1942 return false;
1943
1944 // Don't narrow further than the requested size.
1945 unsigned Size = Ty.getSizeInBits();
1946 if (Size <= TargetShiftSize)
1947 return false;
1948
1949 auto MaybeImmVal =
1950 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1951 if (!MaybeImmVal)
1952 return false;
1953
1954 ShiftVal = MaybeImmVal->Value.getSExtValue();
1955 return ShiftVal >= Size / 2 && ShiftVal < Size;
1956}
1957
1958void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
1959 const unsigned &ShiftVal) {
1960 Register DstReg = MI.getOperand(0).getReg();
1961 Register SrcReg = MI.getOperand(1).getReg();
1962 LLT Ty = MRI.getType(SrcReg);
1963 unsigned Size = Ty.getSizeInBits();
1964 unsigned HalfSize = Size / 2;
1965 assert(ShiftVal >= HalfSize)(static_cast <bool> (ShiftVal >= HalfSize) ? void (0
) : __assert_fail ("ShiftVal >= HalfSize", "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp"
, 1965, __extension__ __PRETTY_FUNCTION__))
;
1966
1967 LLT HalfTy = LLT::scalar(HalfSize);
1968
1969 Builder.setInstr(MI);
1970 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
1971 unsigned NarrowShiftAmt = ShiftVal - HalfSize;
1972
1973 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
1974 Register Narrowed = Unmerge.getReg(1);
1975
1976 // dst = G_LSHR s64:x, C for C >= 32
1977 // =>
1978 // lo, hi = G_UNMERGE_VALUES x
1979 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
1980
1981 if (NarrowShiftAmt != 0) {
1982 Narrowed = Builder.buildLShr(HalfTy, Narrowed,
1983 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
1984 }
1985
1986 auto Zero = Builder.buildConstant(HalfTy, 0);
1987 Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero});
1988 } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
1989 Register Narrowed = Unmerge.getReg(0);
1990 // dst = G_SHL s64:x, C for C >= 32
1991 // =>
1992 // lo, hi = G_UNMERGE_VALUES x
1993 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
1994 if (NarrowShiftAmt != 0) {
1995 Narrowed = Builder.buildShl(HalfTy, Narrowed,
1996 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
1997 }
1998
1999 auto Zero = Builder.buildConstant(HalfTy, 0);
2000 Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed});
2001 } else {
2002 assert(MI.getOpcode() == TargetOpcode::G_ASHR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ASHR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_ASHR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2002, __extension__
__PRETTY_FUNCTION__))
;
2003 auto Hi = Builder.buildAShr(
2004 HalfTy, Unmerge.getReg(1),
2005 Builder.buildConstant(HalfTy, HalfSize - 1));
2006
2007 if (ShiftVal == HalfSize) {
2008 // (G_ASHR i64:x, 32) ->
2009 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
2010 Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi});
2011 } else if (ShiftVal == Size - 1) {
2012 // Don't need a second shift.
2013 // (G_ASHR i64:x, 63) ->
2014 // %narrowed = (G_ASHR hi_32(x), 31)
2015 // G_MERGE_VALUES %narrowed, %narrowed
2016 Builder.buildMergeLikeInstr(DstReg, {Hi, Hi});
2017 } else {
2018 auto Lo = Builder.buildAShr(
2019 HalfTy, Unmerge.getReg(1),
2020 Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2021
2022 // (G_ASHR i64:x, C) ->, for C >= 32
2023 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2024 Builder.buildMergeLikeInstr(DstReg, {Lo, Hi});
2025 }
2026 }
2027
2028 MI.eraseFromParent();
2029}
2030
2031bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2032 unsigned TargetShiftAmount) {
2033 unsigned ShiftAmt;
2034 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2035 applyCombineShiftToUnmerge(MI, ShiftAmt);
2036 return true;
2037 }
2038
2039 return false;
2040}
2041
2042bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2043 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_INTTOPTR
&& "Expected a G_INTTOPTR") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_INTTOPTR && \"Expected a G_INTTOPTR\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2043, __extension__
__PRETTY_FUNCTION__))
;
2044 Register DstReg = MI.getOperand(0).getReg();
2045 LLT DstTy = MRI.getType(DstReg);
2046 Register SrcReg = MI.getOperand(1).getReg();
2047 return mi_match(SrcReg, MRI,
2048 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2049}
2050
2051void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2052 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_INTTOPTR
&& "Expected a G_INTTOPTR") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_INTTOPTR && \"Expected a G_INTTOPTR\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2052, __extension__
__PRETTY_FUNCTION__))
;
2053 Register DstReg = MI.getOperand(0).getReg();
2054 Builder.setInstr(MI);
2055 Builder.buildCopy(DstReg, Reg);
2056 MI.eraseFromParent();
2057}
2058
2059void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2060 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_PTRTOINT
&& "Expected a G_PTRTOINT") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_PTRTOINT && \"Expected a G_PTRTOINT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2060, __extension__
__PRETTY_FUNCTION__))
;
2061 Register DstReg = MI.getOperand(0).getReg();
2062 Builder.setInstr(MI);
2063 Builder.buildZExtOrTrunc(DstReg, Reg);
2064 MI.eraseFromParent();
2065}
2066
2067bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2068 MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2069 assert(MI.getOpcode() == TargetOpcode::G_ADD)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ADD
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_ADD"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2069, __extension__
__PRETTY_FUNCTION__))
;
2070 Register LHS = MI.getOperand(1).getReg();
2071 Register RHS = MI.getOperand(2).getReg();
2072 LLT IntTy = MRI.getType(LHS);
2073
2074 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2075 // instruction.
2076 PtrReg.second = false;
2077 for (Register SrcReg : {LHS, RHS}) {
2078 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2079 // Don't handle cases where the integer is implicitly converted to the
2080 // pointer width.
2081 LLT PtrTy = MRI.getType(PtrReg.first);
2082 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2083 return true;
2084 }
2085
2086 PtrReg.second = true;
2087 }
2088
2089 return false;
2090}
2091
2092void CombinerHelper::applyCombineAddP2IToPtrAdd(
2093 MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2094 Register Dst = MI.getOperand(0).getReg();
2095 Register LHS = MI.getOperand(1).getReg();
2096 Register RHS = MI.getOperand(2).getReg();
2097
2098 const bool DoCommute = PtrReg.second;
2099 if (DoCommute)
2100 std::swap(LHS, RHS);
2101 LHS = PtrReg.first;
2102
2103 LLT PtrTy = MRI.getType(LHS);
2104
2105 Builder.setInstrAndDebugLoc(MI);
2106 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2107 Builder.buildPtrToInt(Dst, PtrAdd);
2108 MI.eraseFromParent();
2109}
2110
2111bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2112 APInt &NewCst) {
2113 auto &PtrAdd = cast<GPtrAdd>(MI);
2114 Register LHS = PtrAdd.getBaseReg();
2115 Register RHS = PtrAdd.getOffsetReg();
2116 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2117
2118 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
2119 APInt Cst;
2120 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2121 auto DstTy = MRI.getType(PtrAdd.getReg(0));
2122 // G_INTTOPTR uses zero-extension
2123 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
2124 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
2125 return true;
2126 }
2127 }
2128
2129 return false;
2130}
2131
2132void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2133 APInt &NewCst) {
2134 auto &PtrAdd = cast<GPtrAdd>(MI);
2135 Register Dst = PtrAdd.getReg(0);
2136
2137 Builder.setInstrAndDebugLoc(MI);
2138 Builder.buildConstant(Dst, NewCst);
2139 PtrAdd.eraseFromParent();
2140}
2141
2142bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2143 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ANYEXT
&& "Expected a G_ANYEXT") ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_ANYEXT && \"Expected a G_ANYEXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2143, __extension__
__PRETTY_FUNCTION__))
;
2144 Register DstReg = MI.getOperand(0).getReg();
2145 Register SrcReg = MI.getOperand(1).getReg();
2146 LLT DstTy = MRI.getType(DstReg);
2147 return mi_match(SrcReg, MRI,
2148 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2149}
2150
2151bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2152 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ZEXT
&& "Expected a G_ZEXT") ? void (0) : __assert_fail (
"MI.getOpcode() == TargetOpcode::G_ZEXT && \"Expected a G_ZEXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2152, __extension__
__PRETTY_FUNCTION__))
;
2153 Register DstReg = MI.getOperand(0).getReg();
2154 Register SrcReg = MI.getOperand(1).getReg();
2155 LLT DstTy = MRI.getType(DstReg);
2156 if (mi_match(SrcReg, MRI,
2157 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2158 unsigned DstSize = DstTy.getScalarSizeInBits();
2159 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2160 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2161 }
2162 return false;
2163}
2164
2165bool CombinerHelper::matchCombineExtOfExt(
2166 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2167 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_ANYEXT
|| MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() ==
TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT") ? void
(0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && \"Expected a G_[ASZ]EXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2170, __extension__
__PRETTY_FUNCTION__))
2168 MI.getOpcode() == TargetOpcode::G_SEXT ||(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_ANYEXT
|| MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() ==
TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT") ? void
(0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && \"Expected a G_[ASZ]EXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2170, __extension__
__PRETTY_FUNCTION__))
2169 MI.getOpcode() == TargetOpcode::G_ZEXT) &&(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_ANYEXT
|| MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() ==
TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT") ? void
(0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && \"Expected a G_[ASZ]EXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2170, __extension__
__PRETTY_FUNCTION__))
2170 "Expected a G_[ASZ]EXT")(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_ANYEXT
|| MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() ==
TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT") ? void
(0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && \"Expected a G_[ASZ]EXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2170, __extension__
__PRETTY_FUNCTION__))
;
2171 Register SrcReg = MI.getOperand(1).getReg();
2172 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2173 // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2174 unsigned Opc = MI.getOpcode();
2175 unsigned SrcOpc = SrcMI->getOpcode();
2176 if (Opc == SrcOpc ||
2177 (Opc == TargetOpcode::G_ANYEXT &&
2178 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2179 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2180 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2181 return true;
2182 }
2183 return false;
2184}
2185
2186void CombinerHelper::applyCombineExtOfExt(
2187 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2188 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_ANYEXT
|| MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() ==
TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT") ? void
(0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && \"Expected a G_[ASZ]EXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2191, __extension__
__PRETTY_FUNCTION__))
2189 MI.getOpcode() == TargetOpcode::G_SEXT ||(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_ANYEXT
|| MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() ==
TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT") ? void
(0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && \"Expected a G_[ASZ]EXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2191, __extension__
__PRETTY_FUNCTION__))
2190 MI.getOpcode() == TargetOpcode::G_ZEXT) &&(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_ANYEXT
|| MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() ==
TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT") ? void
(0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && \"Expected a G_[ASZ]EXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2191, __extension__
__PRETTY_FUNCTION__))
2191 "Expected a G_[ASZ]EXT")(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_ANYEXT
|| MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() ==
TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT") ? void
(0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && \"Expected a G_[ASZ]EXT\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2191, __extension__
__PRETTY_FUNCTION__))
;
2192
2193 Register Reg = std::get<0>(MatchInfo);
2194 unsigned SrcExtOp = std::get<1>(MatchInfo);
2195
2196 // Combine exts with the same opcode.
2197 if (MI.getOpcode() == SrcExtOp) {
2198 Observer.changingInstr(MI);
2199 MI.getOperand(1).setReg(Reg);
2200 Observer.changedInstr(MI);
2201 return;
2202 }
2203
2204 // Combine:
2205 // - anyext([sz]ext x) to [sz]ext x
2206 // - sext(zext x) to zext x
2207 if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2208 (MI.getOpcode() == TargetOpcode::G_SEXT &&
2209 SrcExtOp == TargetOpcode::G_ZEXT)) {
2210 Register DstReg = MI.getOperand(0).getReg();
2211 Builder.setInstrAndDebugLoc(MI);
2212 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2213 MI.eraseFromParent();
2214 }
2215}
2216
2217void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2218 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_MUL
&& "Expected a G_MUL") ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_MUL && \"Expected a G_MUL\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2218, __extension__
__PRETTY_FUNCTION__))
;
2219 Register DstReg = MI.getOperand(0).getReg();
2220 Register SrcReg = MI.getOperand(1).getReg();
2221 LLT DstTy = MRI.getType(DstReg);
2222
2223 Builder.setInstrAndDebugLoc(MI);
2224 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2225 MI.getFlags());
2226 MI.eraseFromParent();
2227}
2228
2229bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI,
2230 BuildFnTy &MatchInfo) {
2231 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_FABS
&& "Expected a G_FABS") ? void (0) : __assert_fail (
"MI.getOpcode() == TargetOpcode::G_FABS && \"Expected a G_FABS\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2231, __extension__
__PRETTY_FUNCTION__))
;
2232 Register Src = MI.getOperand(1).getReg();
2233 Register NegSrc;
2234
2235 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc))))
2236 return false;
2237
2238 MatchInfo = [=, &MI](MachineIRBuilder &B) {
2239 Observer.changingInstr(MI);
2240 MI.getOperand(1).setReg(NegSrc);
2241 Observer.changedInstr(MI);
2242 };
2243 return true;
2244}
2245
2246bool CombinerHelper::matchCombineTruncOfExt(
2247 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2248 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_TRUNC
&& "Expected a G_TRUNC") ? void (0) : __assert_fail (
"MI.getOpcode() == TargetOpcode::G_TRUNC && \"Expected a G_TRUNC\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2248, __extension__
__PRETTY_FUNCTION__))
;
2249 Register SrcReg = MI.getOperand(1).getReg();
2250 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2251 unsigned SrcOpc = SrcMI->getOpcode();
2252 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2253 SrcOpc == TargetOpcode::G_ZEXT) {
2254 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2255 return true;
2256 }
2257 return false;
2258}
2259
2260void CombinerHelper::applyCombineTruncOfExt(
2261 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2262 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_TRUNC
&& "Expected a G_TRUNC") ? void (0) : __assert_fail (
"MI.getOpcode() == TargetOpcode::G_TRUNC && \"Expected a G_TRUNC\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2262, __extension__
__PRETTY_FUNCTION__))
;
2263 Register SrcReg = MatchInfo.first;
2264 unsigned SrcExtOp = MatchInfo.second;
2265 Register DstReg = MI.getOperand(0).getReg();
2266 LLT SrcTy = MRI.getType(SrcReg);
2267 LLT DstTy = MRI.getType(DstReg);
2268 if (SrcTy == DstTy) {
2269 MI.eraseFromParent();
2270 replaceRegWith(MRI, DstReg, SrcReg);
2271 return;
2272 }
2273 Builder.setInstrAndDebugLoc(MI);
2274 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2275 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2276 else
2277 Builder.buildTrunc(DstReg, SrcReg);
2278 MI.eraseFromParent();
2279}
2280
2281static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) {
2282 const unsigned ShiftSize = ShiftTy.getScalarSizeInBits();
2283 const unsigned TruncSize = TruncTy.getScalarSizeInBits();
2284
2285 // ShiftTy > 32 > TruncTy -> 32
2286 if (ShiftSize > 32 && TruncSize < 32)
2287 return ShiftTy.changeElementSize(32);
2288
2289 // TODO: We could also reduce to 16 bits, but that's more target-dependent.
2290 // Some targets like it, some don't, some only like it under certain
2291 // conditions/processor versions, etc.
2292 // A TL hook might be needed for this.
2293
2294 // Don't combine
2295 return ShiftTy;
2296}
2297
2298bool CombinerHelper::matchCombineTruncOfShift(
2299 MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
2300 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_TRUNC
&& "Expected a G_TRUNC") ? void (0) : __assert_fail (
"MI.getOpcode() == TargetOpcode::G_TRUNC && \"Expected a G_TRUNC\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2300, __extension__
__PRETTY_FUNCTION__))
;
2301 Register DstReg = MI.getOperand(0).getReg();
2302 Register SrcReg = MI.getOperand(1).getReg();
2303
2304 if (!MRI.hasOneNonDBGUse(SrcReg))
2305 return false;
2306
2307 LLT SrcTy = MRI.getType(SrcReg);
2308 LLT DstTy = MRI.getType(DstReg);
2309
2310 MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI);
2311 const auto &TL = getTargetLowering();
2312
2313 LLT NewShiftTy;
2314 switch (SrcMI->getOpcode()) {
2315 default:
2316 return false;
2317 case TargetOpcode::G_SHL: {
2318 NewShiftTy = DstTy;
2319
2320 // Make sure new shift amount is legal.
2321 KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
2322 if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits()))
2323 return false;
2324 break;
2325 }
2326 case TargetOpcode::G_LSHR:
2327 case TargetOpcode::G_ASHR: {
2328 // For right shifts, we conservatively do not do the transform if the TRUNC
2329 // has any STORE users. The reason is that if we change the type of the
2330 // shift, we may break the truncstore combine.
2331 //
2332 // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)).
2333 for (auto &User : MRI.use_instructions(DstReg))
2334 if (User.getOpcode() == TargetOpcode::G_STORE)
2335 return false;
2336
2337 NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy);
2338 if (NewShiftTy == SrcTy)
2339 return false;
2340
2341 // Make sure we won't lose information by truncating the high bits.
2342 KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
2343 if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() -
2344 DstTy.getScalarSizeInBits()))
2345 return false;
2346 break;
2347 }
2348 }
2349
2350 if (!isLegalOrBeforeLegalizer(
2351 {SrcMI->getOpcode(),
2352 {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}}))
2353 return false;
2354
2355 MatchInfo = std::make_pair(SrcMI, NewShiftTy);
2356 return true;
2357}
2358
2359void CombinerHelper::applyCombineTruncOfShift(
2360 MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
2361 Builder.setInstrAndDebugLoc(MI);
2362
2363 MachineInstr *ShiftMI = MatchInfo.first;
2364 LLT NewShiftTy = MatchInfo.second;
2365
2366 Register Dst = MI.getOperand(0).getReg();
2367 LLT DstTy = MRI.getType(Dst);
2368
2369 Register ShiftAmt = ShiftMI->getOperand(2).getReg();
2370 Register ShiftSrc = ShiftMI->getOperand(1).getReg();
2371 ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0);
2372
2373 Register NewShift =
2374 Builder
2375 .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt})
2376 .getReg(0);
2377
2378 if (NewShiftTy == DstTy)
2379 replaceRegWith(MRI, Dst, NewShift);
2380 else
2381 Builder.buildTrunc(Dst, NewShift);
2382
2383 eraseInst(MI);
2384}
2385
2386bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2387 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2388 return MO.isReg() &&
2389 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2390 });
2391}
2392
2393bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2394 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2395 return !MO.isReg() ||
2396 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2397 });
2398}
2399
2400bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2401 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2401, __extension__
__PRETTY_FUNCTION__))
;
2402 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2403 return all_of(Mask, [](int Elt) { return Elt < 0; });
2404}
2405
2406bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2407 assert(MI.getOpcode() == TargetOpcode::G_STORE)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_STORE
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_STORE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2407, __extension__
__PRETTY_FUNCTION__))
;
2408 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2409 MRI);
2410}
2411
2412bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2413 assert(MI.getOpcode() == TargetOpcode::G_SELECT)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SELECT
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SELECT"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2413, __extension__
__PRETTY_FUNCTION__))
;
2414 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2415 MRI);
2416}
2417
2418bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) {
2419 assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT ||(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT
|| MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&
"Expected an insert/extract element op") ? void (0) : __assert_fail
("(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT || MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) && \"Expected an insert/extract element op\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2421, __extension__
__PRETTY_FUNCTION__))
2420 MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT
|| MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&
"Expected an insert/extract element op") ? void (0) : __assert_fail
("(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT || MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) && \"Expected an insert/extract element op\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2421, __extension__
__PRETTY_FUNCTION__))
2421 "Expected an insert/extract element op")(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT
|| MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&
"Expected an insert/extract element op") ? void (0) : __assert_fail
("(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT || MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) && \"Expected an insert/extract element op\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2421, __extension__
__PRETTY_FUNCTION__))
;
2422 LLT VecTy = MRI.getType(MI.getOperand(1).getReg());
2423 unsigned IdxIdx =
2424 MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
2425 auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI);
2426 if (!Idx)
2427 return false;
2428 return Idx->getZExtValue() >= VecTy.getNumElements();
2429}
2430
2431bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2432 GSelect &SelMI = cast<GSelect>(MI);
2433 auto Cst =
2434 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
2435 if (!Cst)
2436 return false;
2437 OpIdx = Cst->isZero() ? 3 : 2;
2438 return true;
2439}
2440
2441bool CombinerHelper::eraseInst(MachineInstr &MI) {
2442 MI.eraseFromParent();
2443 return true;
2444}
2445
2446bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2447 const MachineOperand &MOP2) {
2448 if (!MOP1.isReg() || !MOP2.isReg())
2449 return false;
2450 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
2451 if (!InstAndDef1)
2452 return false;
2453 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
2454 if (!InstAndDef2)
2455 return false;
2456 MachineInstr *I1 = InstAndDef1->MI;
2457 MachineInstr *I2 = InstAndDef2->MI;
2458
2459 // Handle a case like this:
2460 //
2461 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2462 //
2463 // Even though %0 and %1 are produced by the same instruction they are not
2464 // the same values.
2465 if (I1 == I2)
2466 return MOP1.getReg() == MOP2.getReg();
2467
2468 // If we have an instruction which loads or stores, we can't guarantee that
2469 // it is identical.
2470 //
2471 // For example, we may have
2472 //
2473 // %x1 = G_LOAD %addr (load N from @somewhere)
2474 // ...
2475 // call @foo
2476 // ...
2477 // %x2 = G_LOAD %addr (load N from @somewhere)
2478 // ...
2479 // %or = G_OR %x1, %x2
2480 //
2481 // It's possible that @foo will modify whatever lives at the address we're
2482 // loading from. To be safe, let's just assume that all loads and stores
2483 // are different (unless we have something which is guaranteed to not
2484 // change.)
2485 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad())
2486 return false;
2487
2488 // If both instructions are loads or stores, they are equal only if both
2489 // are dereferenceable invariant loads with the same number of bits.
2490 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
2491 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
2492 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
2493 if (!LS1 || !LS2)
2494 return false;
2495
2496 if (!I2->isDereferenceableInvariantLoad() ||
2497 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
2498 return false;
2499 }
2500
2501 // Check for physical registers on the instructions first to avoid cases
2502 // like this:
2503 //
2504 // %a = COPY $physreg
2505 // ...
2506 // SOMETHING implicit-def $physreg
2507 // ...
2508 // %b = COPY $physreg
2509 //
2510 // These copies are not equivalent.
2511 if (any_of(I1->uses(), [](const MachineOperand &MO) {
2512 return MO.isReg() && MO.getReg().isPhysical();
2513 })) {
2514 // Check if we have a case like this:
2515 //
2516 // %a = COPY $physreg
2517 // %b = COPY %a
2518 //
2519 // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2520 // From that, we know that they must have the same value, since they must
2521 // have come from the same COPY.
2522 return I1->isIdenticalTo(*I2);
2523 }
2524
2525 // We don't have any physical registers, so we don't necessarily need the
2526 // same vreg defs.
2527 //
2528 // On the off-chance that there's some target instruction feeding into the
2529 // instruction, let's use produceSameValue instead of isIdenticalTo.
2530 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
2531 // Handle instructions with multiple defs that produce same values. Values
2532 // are same for operands with same index.
2533 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2534 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2535 // I1 and I2 are different instructions but produce same values,
2536 // %1 and %6 are same, %1 and %7 are not the same value.
2537 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) ==
2538 I2->findRegisterDefOperandIdx(InstAndDef2->Reg);
2539 }
2540 return false;
2541}
2542
2543bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2544 if (!MOP.isReg())
2545 return false;
2546 auto *MI = MRI.getVRegDef(MOP.getReg());
2547 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
2548 return MaybeCst && MaybeCst->getBitWidth() <= 64 &&
2549 MaybeCst->getSExtValue() == C;
2550}
2551
2552bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2553 unsigned OpIdx) {
2554 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?")(static_cast <bool> (MI.getNumExplicitDefs() == 1 &&
"Expected one explicit def?") ? void (0) : __assert_fail ("MI.getNumExplicitDefs() == 1 && \"Expected one explicit def?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2554, __extension__
__PRETTY_FUNCTION__))
;
2555 Register OldReg = MI.getOperand(0).getReg();
2556 Register Replacement = MI.getOperand(OpIdx).getReg();
2557 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?")(static_cast <bool> (canReplaceReg(OldReg, Replacement,
MRI) && "Cannot replace register?") ? void (0) : __assert_fail
("canReplaceReg(OldReg, Replacement, MRI) && \"Cannot replace register?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2557, __extension__
__PRETTY_FUNCTION__))
;
2558 MI.eraseFromParent();
2559 replaceRegWith(MRI, OldReg, Replacement);
2560 return true;
2561}
2562
2563bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2564 Register Replacement) {
2565 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?")(static_cast <bool> (MI.getNumExplicitDefs() == 1 &&
"Expected one explicit def?") ? void (0) : __assert_fail ("MI.getNumExplicitDefs() == 1 && \"Expected one explicit def?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2565, __extension__
__PRETTY_FUNCTION__))
;
2566 Register OldReg = MI.getOperand(0).getReg();
2567 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?")(static_cast <bool> (canReplaceReg(OldReg, Replacement,
MRI) && "Cannot replace register?") ? void (0) : __assert_fail
("canReplaceReg(OldReg, Replacement, MRI) && \"Cannot replace register?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2567, __extension__
__PRETTY_FUNCTION__))
;
2568 MI.eraseFromParent();
2569 replaceRegWith(MRI, OldReg, Replacement);
2570 return true;
2571}
2572
2573bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2574 assert(MI.getOpcode() == TargetOpcode::G_SELECT)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SELECT
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SELECT"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2574, __extension__
__PRETTY_FUNCTION__))
;
2575 // Match (cond ? x : x)
2576 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2577 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2578 MRI);
2579}
2580
2581bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2582 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2583 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2584 MRI);
2585}
2586
2587bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2588 return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2589 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2590 MRI);
2591}
2592
2593bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2594 MachineOperand &MO = MI.getOperand(OpIdx);
2595 return MO.isReg() &&
2596 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2597}
2598
2599bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2600 unsigned OpIdx) {
2601 MachineOperand &MO = MI.getOperand(OpIdx);
2602 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2603}
2604
2605bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2606 assert(MI.getNumDefs() == 1 && "Expected only one def?")(static_cast <bool> (MI.getNumDefs() == 1 && "Expected only one def?"
) ? void (0) : __assert_fail ("MI.getNumDefs() == 1 && \"Expected only one def?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2606, __extension__
__PRETTY_FUNCTION__))
;
2607 Builder.setInstr(MI);
2608 Builder.buildFConstant(MI.getOperand(0), C);
2609 MI.eraseFromParent();
2610 return true;
2611}
2612
2613bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2614 assert(MI.getNumDefs() == 1 && "Expected only one def?")(static_cast <bool> (MI.getNumDefs() == 1 && "Expected only one def?"
) ? void (0) : __assert_fail ("MI.getNumDefs() == 1 && \"Expected only one def?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2614, __extension__
__PRETTY_FUNCTION__))
;
2615 Builder.setInstr(MI);
2616 Builder.buildConstant(MI.getOperand(0), C);
2617 MI.eraseFromParent();
2618 return true;
2619}
2620
2621bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2622 assert(MI.getNumDefs() == 1 && "Expected only one def?")(static_cast <bool> (MI.getNumDefs() == 1 && "Expected only one def?"
) ? void (0) : __assert_fail ("MI.getNumDefs() == 1 && \"Expected only one def?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2622, __extension__
__PRETTY_FUNCTION__))
;
2623 Builder.setInstr(MI);
2624 Builder.buildConstant(MI.getOperand(0), C);
2625 MI.eraseFromParent();
2626 return true;
2627}
2628
2629bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2630 assert(MI.getNumDefs() == 1 && "Expected only one def?")(static_cast <bool> (MI.getNumDefs() == 1 && "Expected only one def?"
) ? void (0) : __assert_fail ("MI.getNumDefs() == 1 && \"Expected only one def?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2630, __extension__
__PRETTY_FUNCTION__))
;
2631 Builder.setInstr(MI);
2632 Builder.buildUndef(MI.getOperand(0));
2633 MI.eraseFromParent();
2634 return true;
2635}
2636
2637bool CombinerHelper::matchSimplifyAddToSub(
2638 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2639 Register LHS = MI.getOperand(1).getReg();
2640 Register RHS = MI.getOperand(2).getReg();
2641 Register &NewLHS = std::get<0>(MatchInfo);
2642 Register &NewRHS = std::get<1>(MatchInfo);
2643
2644 // Helper lambda to check for opportunities for
2645 // ((0-A) + B) -> B - A
2646 // (A + (0-B)) -> A - B
2647 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2648 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2649 return false;
2650 NewLHS = MaybeNewLHS;
2651 return true;
2652 };
2653
2654 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2655}
2656
2657bool CombinerHelper::matchCombineInsertVecElts(
2658 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2659 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT
&& "Invalid opcode") ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && \"Invalid opcode\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2660, __extension__
__PRETTY_FUNCTION__))
2660 "Invalid opcode")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT
&& "Invalid opcode") ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && \"Invalid opcode\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2660, __extension__
__PRETTY_FUNCTION__))
;
2661 Register DstReg = MI.getOperand(0).getReg();
2662 LLT DstTy = MRI.getType(DstReg);
2663 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?")(static_cast <bool> (DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"
) ? void (0) : __assert_fail ("DstTy.isVector() && \"Invalid G_INSERT_VECTOR_ELT?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2663, __extension__
__PRETTY_FUNCTION__))
;
2664 unsigned NumElts = DstTy.getNumElements();
2665 // If this MI is part of a sequence of insert_vec_elts, then
2666 // don't do the combine in the middle of the sequence.
2667 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2668 TargetOpcode::G_INSERT_VECTOR_ELT)
2669 return false;
2670 MachineInstr *CurrInst = &MI;
2671 MachineInstr *TmpInst;
2672 int64_t IntImm;
2673 Register TmpReg;
2674 MatchInfo.resize(NumElts);
2675 while (mi_match(
2676 CurrInst->getOperand(0).getReg(), MRI,
2677 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2678 if (IntImm >= NumElts || IntImm < 0)
2679 return false;
2680 if (!MatchInfo[IntImm])
2681 MatchInfo[IntImm] = TmpReg;
2682 CurrInst = TmpInst;
2683 }
2684 // Variable index.
2685 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2686 return false;
2687 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2688 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2689 if (!MatchInfo[I - 1].isValid())
2690 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2691 }
2692 return true;
2693 }
2694 // If we didn't end in a G_IMPLICIT_DEF, bail out.
2695 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2696}
2697
2698void CombinerHelper::applyCombineInsertVecElts(
2699 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2700 Builder.setInstr(MI);
2701 Register UndefReg;
2702 auto GetUndef = [&]() {
2703 if (UndefReg)
2704 return UndefReg;
2705 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2706 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2707 return UndefReg;
2708 };
2709 for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2710 if (!MatchInfo[I])
2711 MatchInfo[I] = GetUndef();
2712 }
2713 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2714 MI.eraseFromParent();
2715}
2716
2717void CombinerHelper::applySimplifyAddToSub(
2718 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2719 Builder.setInstr(MI);
2720 Register SubLHS, SubRHS;
2721 std::tie(SubLHS, SubRHS) = MatchInfo;
2722 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2723 MI.eraseFromParent();
2724}
2725
2726bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2727 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2728 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2729 //
2730 // Creates the new hand + logic instruction (but does not insert them.)
2731 //
2732 // On success, MatchInfo is populated with the new instructions. These are
2733 // inserted in applyHoistLogicOpWithSameOpcodeHands.
2734 unsigned LogicOpcode = MI.getOpcode();
2735 assert(LogicOpcode == TargetOpcode::G_AND ||(static_cast <bool> (LogicOpcode == TargetOpcode::G_AND
|| LogicOpcode == TargetOpcode::G_OR || LogicOpcode == TargetOpcode
::G_XOR) ? void (0) : __assert_fail ("LogicOpcode == TargetOpcode::G_AND || LogicOpcode == TargetOpcode::G_OR || LogicOpcode == TargetOpcode::G_XOR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2737, __extension__
__PRETTY_FUNCTION__))
2736 LogicOpcode == TargetOpcode::G_OR ||(static_cast <bool> (LogicOpcode == TargetOpcode::G_AND
|| LogicOpcode == TargetOpcode::G_OR || LogicOpcode == TargetOpcode
::G_XOR) ? void (0) : __assert_fail ("LogicOpcode == TargetOpcode::G_AND || LogicOpcode == TargetOpcode::G_OR || LogicOpcode == TargetOpcode::G_XOR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2737, __extension__
__PRETTY_FUNCTION__))
2737 LogicOpcode == TargetOpcode::G_XOR)(static_cast <bool> (LogicOpcode == TargetOpcode::G_AND
|| LogicOpcode == TargetOpcode::G_OR || LogicOpcode == TargetOpcode
::G_XOR) ? void (0) : __assert_fail ("LogicOpcode == TargetOpcode::G_AND || LogicOpcode == TargetOpcode::G_OR || LogicOpcode == TargetOpcode::G_XOR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2737, __extension__
__PRETTY_FUNCTION__))
;
2738 MachineIRBuilder MIB(MI);
2739 Register Dst = MI.getOperand(0).getReg();
2740 Register LHSReg = MI.getOperand(1).getReg();
2741 Register RHSReg = MI.getOperand(2).getReg();
2742
2743 // Don't recompute anything.
2744 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2745 return false;
2746
2747 // Make sure we have (hand x, ...), (hand y, ...)
2748 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2749 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2750 if (!LeftHandInst || !RightHandInst)
2751 return false;
2752 unsigned HandOpcode = LeftHandInst->getOpcode();
2753 if (HandOpcode != RightHandInst->getOpcode())
2754 return false;
2755 if (!LeftHandInst->getOperand(1).isReg() ||
2756 !RightHandInst->getOperand(1).isReg())
2757 return false;
2758
2759 // Make sure the types match up, and if we're doing this post-legalization,
2760 // we end up with legal types.
2761 Register X = LeftHandInst->getOperand(1).getReg();
2762 Register Y = RightHandInst->getOperand(1).getReg();
2763 LLT XTy = MRI.getType(X);
2764 LLT YTy = MRI.getType(Y);
2765 if (!XTy.isValid() || XTy != YTy)
2766 return false;
2767
2768 // Optional extra source register.
2769 Register ExtraHandOpSrcReg;
2770 switch (HandOpcode) {
2771 default:
2772 return false;
2773 case TargetOpcode::G_ANYEXT:
2774 case TargetOpcode::G_SEXT:
2775 case TargetOpcode::G_ZEXT: {
2776 // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
2777 break;
2778 }
2779 case TargetOpcode::G_AND:
2780 case TargetOpcode::G_ASHR:
2781 case TargetOpcode::G_LSHR:
2782 case TargetOpcode::G_SHL: {
2783 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
2784 MachineOperand &ZOp = LeftHandInst->getOperand(2);
2785 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
2786 return false;
2787 ExtraHandOpSrcReg = ZOp.getReg();
2788 break;
2789 }
2790 }
2791
2792 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
2793 return false;
2794
2795 // Record the steps to build the new instructions.
2796 //
2797 // Steps to build (logic x, y)
2798 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
2799 OperandBuildSteps LogicBuildSteps = {
2800 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
2801 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
2802 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
2803 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
2804
2805 // Steps to build hand (logic x, y), ...z
2806 OperandBuildSteps HandBuildSteps = {
2807 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
2808 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
2809 if (ExtraHandOpSrcReg.isValid())
2810 HandBuildSteps.push_back(
2811 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
2812 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
2813
2814 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
2815 return true;
2816}
2817
2818void CombinerHelper::applyBuildInstructionSteps(
2819 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2820 assert(MatchInfo.InstrsToBuild.size() &&(static_cast <bool> (MatchInfo.InstrsToBuild.size() &&
"Expected at least one instr to build?") ? void (0) : __assert_fail
("MatchInfo.InstrsToBuild.size() && \"Expected at least one instr to build?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2821, __extension__
__PRETTY_FUNCTION__))
2821 "Expected at least one instr to build?")(static_cast <bool> (MatchInfo.InstrsToBuild.size() &&
"Expected at least one instr to build?") ? void (0) : __assert_fail
("MatchInfo.InstrsToBuild.size() && \"Expected at least one instr to build?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2821, __extension__
__PRETTY_FUNCTION__))
;
2822 Builder.setInstr(MI);
2823 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
2824 assert(InstrToBuild.Opcode && "Expected a valid opcode?")(static_cast <bool> (InstrToBuild.Opcode && "Expected a valid opcode?"
) ? void (0) : __assert_fail ("InstrToBuild.Opcode && \"Expected a valid opcode?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2824, __extension__
__PRETTY_FUNCTION__))
;
2825 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?")(static_cast <bool> (InstrToBuild.OperandFns.size() &&
"Expected at least one operand?") ? void (0) : __assert_fail
("InstrToBuild.OperandFns.size() && \"Expected at least one operand?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2825, __extension__
__PRETTY_FUNCTION__))
;
2826 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
2827 for (auto &OperandFn : InstrToBuild.OperandFns)
2828 OperandFn(Instr);
2829 }
2830 MI.eraseFromParent();
2831}
2832
2833bool CombinerHelper::matchAshrShlToSextInreg(
2834 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2835 assert(MI.getOpcode() == TargetOpcode::G_ASHR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ASHR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_ASHR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2835, __extension__
__PRETTY_FUNCTION__))
;
2836 int64_t ShlCst, AshrCst;
2837 Register Src;
2838 if (!mi_match(MI.getOperand(0).getReg(), MRI,
2839 m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)),
2840 m_ICstOrSplat(AshrCst))))
2841 return false;
2842 if (ShlCst != AshrCst)
2843 return false;
2844 if (!isLegalOrBeforeLegalizer(
2845 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
2846 return false;
2847 MatchInfo = std::make_tuple(Src, ShlCst);
2848 return true;
2849}
2850
2851void CombinerHelper::applyAshShlToSextInreg(
2852 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2853 assert(MI.getOpcode() == TargetOpcode::G_ASHR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ASHR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_ASHR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2853, __extension__
__PRETTY_FUNCTION__))
;
2854 Register Src;
2855 int64_t ShiftAmt;
2856 std::tie(Src, ShiftAmt) = MatchInfo;
2857 unsigned Size = MRI.getType(Src).getScalarSizeInBits();
2858 Builder.setInstrAndDebugLoc(MI);
2859 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
2860 MI.eraseFromParent();
2861}
2862
2863/// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
2864bool CombinerHelper::matchOverlappingAnd(
2865 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
2866 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_AND
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_AND"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2866, __extension__
__PRETTY_FUNCTION__))
;
2867
2868 Register Dst = MI.getOperand(0).getReg();
2869 LLT Ty = MRI.getType(Dst);
2870
2871 Register R;
2872 int64_t C1;
2873 int64_t C2;
2874 if (!mi_match(
2875 Dst, MRI,
2876 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
2877 return false;
2878
2879 MatchInfo = [=](MachineIRBuilder &B) {
2880 if (C1 & C2) {
2881 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
2882 return;
2883 }
2884 auto Zero = B.buildConstant(Ty, 0);
2885 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
2886 };
2887 return true;
2888}
2889
2890bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
2891 Register &Replacement) {
2892 // Given
2893 //
2894 // %y:_(sN) = G_SOMETHING
2895 // %x:_(sN) = G_SOMETHING
2896 // %res:_(sN) = G_AND %x, %y
2897 //
2898 // Eliminate the G_AND when it is known that x & y == x or x & y == y.
2899 //
2900 // Patterns like this can appear as a result of legalization. E.g.
2901 //
2902 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
2903 // %one:_(s32) = G_CONSTANT i32 1
2904 // %and:_(s32) = G_AND %cmp, %one
2905 //
2906 // In this case, G_ICMP only produces a single bit, so x & 1 == x.
2907 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_AND
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_AND"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2907, __extension__
__PRETTY_FUNCTION__))
;
2908 if (!KB)
2909 return false;
2910
2911 Register AndDst = MI.getOperand(0).getReg();
2912 Register LHS = MI.getOperand(1).getReg();
2913 Register RHS = MI.getOperand(2).getReg();
2914 KnownBits LHSBits = KB->getKnownBits(LHS);
2915 KnownBits RHSBits = KB->getKnownBits(RHS);
2916
2917 // Check that x & Mask == x.
2918 // x & 1 == x, always
2919 // x & 0 == x, only if x is also 0
2920 // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
2921 //
2922 // Check if we can replace AndDst with the LHS of the G_AND
2923 if (canReplaceReg(AndDst, LHS, MRI) &&
2924 (LHSBits.Zero | RHSBits.One).isAllOnes()) {
2925 Replacement = LHS;
2926 return true;
2927 }
2928
2929 // Check if we can replace AndDst with the RHS of the G_AND
2930 if (canReplaceReg(AndDst, RHS, MRI) &&
2931 (LHSBits.One | RHSBits.Zero).isAllOnes()) {
2932 Replacement = RHS;
2933 return true;
2934 }
2935
2936 return false;
2937}
2938
2939bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
2940 // Given
2941 //
2942 // %y:_(sN) = G_SOMETHING
2943 // %x:_(sN) = G_SOMETHING
2944 // %res:_(sN) = G_OR %x, %y
2945 //
2946 // Eliminate the G_OR when it is known that x | y == x or x | y == y.
2947 assert(MI.getOpcode() == TargetOpcode::G_OR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_OR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_OR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2947, __extension__
__PRETTY_FUNCTION__))
;
2948 if (!KB)
2949 return false;
2950
2951 Register OrDst = MI.getOperand(0).getReg();
2952 Register LHS = MI.getOperand(1).getReg();
2953 Register RHS = MI.getOperand(2).getReg();
2954 KnownBits LHSBits = KB->getKnownBits(LHS);
2955 KnownBits RHSBits = KB->getKnownBits(RHS);
2956
2957 // Check that x | Mask == x.
2958 // x | 0 == x, always
2959 // x | 1 == x, only if x is also 1
2960 // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
2961 //
2962 // Check if we can replace OrDst with the LHS of the G_OR
2963 if (canReplaceReg(OrDst, LHS, MRI) &&
2964 (LHSBits.One | RHSBits.Zero).isAllOnes()) {
2965 Replacement = LHS;
2966 return true;
2967 }
2968
2969 // Check if we can replace OrDst with the RHS of the G_OR
2970 if (canReplaceReg(OrDst, RHS, MRI) &&
2971 (LHSBits.Zero | RHSBits.One).isAllOnes()) {
2972 Replacement = RHS;
2973 return true;
2974 }
2975
2976 return false;
2977}
2978
2979bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
2980 // If the input is already sign extended, just drop the extension.
2981 Register Src = MI.getOperand(1).getReg();
2982 unsigned ExtBits = MI.getOperand(2).getImm();
2983 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
2984 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
2985}
2986
2987static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
2988 int64_t Cst, bool IsVector, bool IsFP) {
2989 // For i1, Cst will always be -1 regardless of boolean contents.
2990 return (ScalarSizeBits == 1 && Cst == -1) ||
2991 isConstTrueVal(TLI, Cst, IsVector, IsFP);
2992}
2993
2994bool CombinerHelper::matchNotCmp(MachineInstr &MI,
2995 SmallVectorImpl<Register> &RegsToNegate) {
2996 assert(MI.getOpcode() == TargetOpcode::G_XOR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_XOR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_XOR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 2996, __extension__
__PRETTY_FUNCTION__))
;
2997 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2998 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
2999 Register XorSrc;
3000 Register CstReg;
3001 // We match xor(src, true) here.
3002 if (!mi_match(MI.getOperand(0).getReg(), MRI,
3003 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
3004 return false;
3005
3006 if (!MRI.hasOneNonDBGUse(XorSrc))
3007 return false;
3008
3009 // Check that XorSrc is the root of a tree of comparisons combined with ANDs
3010 // and ORs. The suffix of RegsToNegate starting from index I is used a work
3011 // list of tree nodes to visit.
3012 RegsToNegate.push_back(XorSrc);
3013 // Remember whether the comparisons are all integer or all floating point.
3014 bool IsInt = false;
3015 bool IsFP = false;
3016 for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
3017 Register Reg = RegsToNegate[I];
3018 if (!MRI.hasOneNonDBGUse(Reg))
3019 return false;
3020 MachineInstr *Def = MRI.getVRegDef(Reg);
3021 switch (Def->getOpcode()) {
3022 default:
3023 // Don't match if the tree contains anything other than ANDs, ORs and
3024 // comparisons.
3025 return false;
3026 case TargetOpcode::G_ICMP:
3027 if (IsFP)
3028 return false;
3029 IsInt = true;
3030 // When we apply the combine we will invert the predicate.
3031 break;
3032 case TargetOpcode::G_FCMP:
3033 if (IsInt)
3034 return false;
3035 IsFP = true;
3036 // When we apply the combine we will invert the predicate.
3037 break;
3038 case TargetOpcode::G_AND:
3039 case TargetOpcode::G_OR:
3040 // Implement De Morgan's laws:
3041 // ~(x & y) -> ~x | ~y
3042 // ~(x | y) -> ~x & ~y
3043 // When we apply the combine we will change the opcode and recursively
3044 // negate the operands.
3045 RegsToNegate.push_back(Def->getOperand(1).getReg());
3046 RegsToNegate.push_back(Def->getOperand(2).getReg());
3047 break;
3048 }
3049 }
3050
3051 // Now we know whether the comparisons are integer or floating point, check
3052 // the constant in the xor.
3053 int64_t Cst;
3054 if (Ty.isVector()) {
3055 MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3056 auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI);
3057 if (!MaybeCst)
3058 return false;
3059 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3060 return false;
3061 } else {
3062 if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3063 return false;
3064 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3065 return false;
3066 }
3067
3068 return true;
3069}
3070
3071void CombinerHelper::applyNotCmp(MachineInstr &MI,
3072 SmallVectorImpl<Register> &RegsToNegate) {
3073 for (Register Reg : RegsToNegate) {
3074 MachineInstr *Def = MRI.getVRegDef(Reg);
3075 Observer.changingInstr(*Def);
3076 // For each comparison, invert the opcode. For each AND and OR, change the
3077 // opcode.
3078 switch (Def->getOpcode()) {
3079 default:
3080 llvm_unreachable("Unexpected opcode")::llvm::llvm_unreachable_internal("Unexpected opcode", "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp"
, 3080)
;
3081 case TargetOpcode::G_ICMP:
3082 case TargetOpcode::G_FCMP: {
3083 MachineOperand &PredOp = Def->getOperand(1);
3084 CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3085 (CmpInst::Predicate)PredOp.getPredicate());
3086 PredOp.setPredicate(NewP);
3087 break;
3088 }
3089 case TargetOpcode::G_AND:
3090 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3091 break;
3092 case TargetOpcode::G_OR:
3093 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3094 break;
3095 }
3096 Observer.changedInstr(*Def);
3097 }
3098
3099 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3100 MI.eraseFromParent();
3101}
3102
3103bool CombinerHelper::matchXorOfAndWithSameReg(
3104 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3105 // Match (xor (and x, y), y) (or any of its commuted cases)
3106 assert(MI.getOpcode() == TargetOpcode::G_XOR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_XOR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_XOR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3106, __extension__
__PRETTY_FUNCTION__))
;
3107 Register &X = MatchInfo.first;
3108 Register &Y = MatchInfo.second;
3109 Register AndReg = MI.getOperand(1).getReg();
3110 Register SharedReg = MI.getOperand(2).getReg();
3111
3112 // Find a G_AND on either side of the G_XOR.
3113 // Look for one of
3114 //
3115 // (xor (and x, y), SharedReg)
3116 // (xor SharedReg, (and x, y))
3117 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3118 std::swap(AndReg, SharedReg);
3119 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3120 return false;
3121 }
3122
3123 // Only do this if we'll eliminate the G_AND.
3124 if (!MRI.hasOneNonDBGUse(AndReg))
3125 return false;
3126
3127 // We can combine if SharedReg is the same as either the LHS or RHS of the
3128 // G_AND.
3129 if (Y != SharedReg)
3130 std::swap(X, Y);
3131 return Y == SharedReg;
3132}
3133
3134void CombinerHelper::applyXorOfAndWithSameReg(
3135 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3136 // Fold (xor (and x, y), y) -> (and (not x), y)
3137 Builder.setInstrAndDebugLoc(MI);
3138 Register X, Y;
3139 std::tie(X, Y) = MatchInfo;
3140 auto Not = Builder.buildNot(MRI.getType(X), X);
3141 Observer.changingInstr(MI);
3142 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3143 MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3144 MI.getOperand(2).setReg(Y);
3145 Observer.changedInstr(MI);
3146}
3147
3148bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3149 auto &PtrAdd = cast<GPtrAdd>(MI);
3150 Register DstReg = PtrAdd.getReg(0);
3151 LLT Ty = MRI.getType(DstReg);
3152 const DataLayout &DL = Builder.getMF().getDataLayout();
3153
3154 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3155 return false;
3156
3157 if (Ty.isPointer()) {
3158 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
3159 return ConstVal && *ConstVal == 0;
3160 }
3161
3162 assert(Ty.isVector() && "Expecting a vector type")(static_cast <bool> (Ty.isVector() && "Expecting a vector type"
) ? void (0) : __assert_fail ("Ty.isVector() && \"Expecting a vector type\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3162, __extension__
__PRETTY_FUNCTION__))
;
3163 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
3164 return isBuildVectorAllZeros(*VecMI, MRI);
3165}
3166
3167void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3168 auto &PtrAdd = cast<GPtrAdd>(MI);
3169 Builder.setInstrAndDebugLoc(PtrAdd);
3170 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
3171 PtrAdd.eraseFromParent();
3172}
3173
3174/// The second source operand is known to be a power of 2.
3175void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3176 Register DstReg = MI.getOperand(0).getReg();
3177 Register Src0 = MI.getOperand(1).getReg();
3178 Register Pow2Src1 = MI.getOperand(2).getReg();
3179 LLT Ty = MRI.getType(DstReg);
3180 Builder.setInstrAndDebugLoc(MI);
3181
3182 // Fold (urem x, pow2) -> (and x, pow2-1)
3183 auto NegOne = Builder.buildConstant(Ty, -1);
3184 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3185 Builder.buildAnd(DstReg, Src0, Add);
3186 MI.eraseFromParent();
3187}
3188
3189bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
3190 unsigned &SelectOpNo) {
3191 Register LHS = MI.getOperand(1).getReg();
3192 Register RHS = MI.getOperand(2).getReg();
3193
3194 Register OtherOperandReg = RHS;
3195 SelectOpNo = 1;
3196 MachineInstr *Select = MRI.getVRegDef(LHS);
3197
3198 // Don't do this unless the old select is going away. We want to eliminate the
3199 // binary operator, not replace a binop with a select.
3200 if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3201 !MRI.hasOneNonDBGUse(LHS)) {
3202 OtherOperandReg = LHS;
3203 SelectOpNo = 2;
3204 Select = MRI.getVRegDef(RHS);
3205 if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3206 !MRI.hasOneNonDBGUse(RHS))
3207 return false;
3208 }
3209
3210 MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
3211 MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
3212
3213 if (!isConstantOrConstantVector(*SelectLHS, MRI,
3214 /*AllowFP*/ true,
3215 /*AllowOpaqueConstants*/ false))
3216 return false;
3217 if (!isConstantOrConstantVector(*SelectRHS, MRI,
3218 /*AllowFP*/ true,
3219 /*AllowOpaqueConstants*/ false))
3220 return false;
3221
3222 unsigned BinOpcode = MI.getOpcode();
3223
3224 // We know know one of the operands is a select of constants. Now verify that
3225 // the other binary operator operand is either a constant, or we can handle a
3226 // variable.
3227 bool CanFoldNonConst =
3228 (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
3229 (isNullOrNullSplat(*SelectLHS, MRI) ||
3230 isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
3231 (isNullOrNullSplat(*SelectRHS, MRI) ||
3232 isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
3233 if (CanFoldNonConst)
3234 return true;
3235
3236 return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
3237 /*AllowFP*/ true,
3238 /*AllowOpaqueConstants*/ false);
3239}
3240
3241/// \p SelectOperand is the operand in binary operator \p MI that is the select
3242/// to fold.
3243bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI,
3244 const unsigned &SelectOperand) {
3245 Builder.setInstrAndDebugLoc(MI);
3246
3247 Register Dst = MI.getOperand(0).getReg();
3248 Register LHS = MI.getOperand(1).getReg();
3249 Register RHS = MI.getOperand(2).getReg();
3250 MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
3251
3252 Register SelectCond = Select->getOperand(1).getReg();
3253 Register SelectTrue = Select->getOperand(2).getReg();
3254 Register SelectFalse = Select->getOperand(3).getReg();
3255
3256 LLT Ty = MRI.getType(Dst);
3257 unsigned BinOpcode = MI.getOpcode();
3258
3259 Register FoldTrue, FoldFalse;
3260
3261 // We have a select-of-constants followed by a binary operator with a
3262 // constant. Eliminate the binop by pulling the constant math into the select.
3263 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
3264 if (SelectOperand == 1) {
3265 // TODO: SelectionDAG verifies this actually constant folds before
3266 // committing to the combine.
3267
3268 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
3269 FoldFalse =
3270 Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
3271 } else {
3272 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
3273 FoldFalse =
3274 Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
3275 }
3276
3277 Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
3278 MI.eraseFromParent();
3279
3280 return true;
3281}
3282
3283std::optional<SmallVector<Register, 8>>
3284CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3285 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!")(static_cast <bool> (Root->getOpcode() == TargetOpcode
::G_OR && "Expected G_OR only!") ? void (0) : __assert_fail
("Root->getOpcode() == TargetOpcode::G_OR && \"Expected G_OR only!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3285, __extension__
__PRETTY_FUNCTION__))
;
3286 // We want to detect if Root is part of a tree which represents a bunch
3287 // of loads being merged into a larger load. We'll try to recognize patterns
3288 // like, for example:
3289 //
3290 // Reg Reg
3291 // \ /
3292 // OR_1 Reg
3293 // \ /
3294 // OR_2
3295 // \ Reg
3296 // .. /
3297 // Root
3298 //
3299 // Reg Reg Reg Reg
3300 // \ / \ /
3301 // OR_1 OR_2
3302 // \ /
3303 // \ /
3304 // ...
3305 // Root
3306 //
3307 // Each "Reg" may have been produced by a load + some arithmetic. This
3308 // function will save each of them.
3309 SmallVector<Register, 8> RegsToVisit;
3310 SmallVector<const MachineInstr *, 7> Ors = {Root};
3311
3312 // In the "worst" case, we're dealing with a load for each byte. So, there
3313 // are at most #bytes - 1 ORs.
3314 const unsigned MaxIter =
3315 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3316 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3317 if (Ors.empty())
3318 break;
3319 const MachineInstr *Curr = Ors.pop_back_val();
3320 Register OrLHS = Curr->getOperand(1).getReg();
3321 Register OrRHS = Curr->getOperand(2).getReg();
3322
3323 // In the combine, we want to elimate the entire tree.
3324 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3325 return std::nullopt;
3326
3327 // If it's a G_OR, save it and continue to walk. If it's not, then it's
3328 // something that may be a load + arithmetic.
3329 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3330 Ors.push_back(Or);
3331 else
3332 RegsToVisit.push_back(OrLHS);
3333 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3334 Ors.push_back(Or);
3335 else
3336 RegsToVisit.push_back(OrRHS);
3337 }
3338
3339 // We're going to try and merge each register into a wider power-of-2 type,
3340 // so we ought to have an even number of registers.
3341 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3342 return std::nullopt;
3343 return RegsToVisit;
3344}
3345
3346/// Helper function for findLoadOffsetsForLoadOrCombine.
3347///
3348/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3349/// and then moving that value into a specific byte offset.
3350///
3351/// e.g. x[i] << 24
3352///
3353/// \returns The load instruction and the byte offset it is moved into.
3354static std::optional<std::pair<GZExtLoad *, int64_t>>
3355matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3356 const MachineRegisterInfo &MRI) {
3357 assert(MRI.hasOneNonDBGUse(Reg) &&(static_cast <bool> (MRI.hasOneNonDBGUse(Reg) &&
"Expected Reg to only have one non-debug use?") ? void (0) :
__assert_fail ("MRI.hasOneNonDBGUse(Reg) && \"Expected Reg to only have one non-debug use?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3358, __extension__
__PRETTY_FUNCTION__))
3358 "Expected Reg to only have one non-debug use?")(static_cast <bool> (MRI.hasOneNonDBGUse(Reg) &&
"Expected Reg to only have one non-debug use?") ? void (0) :
__assert_fail ("MRI.hasOneNonDBGUse(Reg) && \"Expected Reg to only have one non-debug use?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3358, __extension__
__PRETTY_FUNCTION__))
;
3359 Register MaybeLoad;
3360 int64_t Shift;
3361 if (!mi_match(Reg, MRI,
3362 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3363 Shift = 0;
3364 MaybeLoad = Reg;
3365 }
3366
3367 if (Shift % MemSizeInBits != 0)
3368 return std::nullopt;
3369
3370 // TODO: Handle other types of loads.
3371 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3372 if (!Load)
3373 return std::nullopt;
3374
3375 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3376 return std::nullopt;
3377
3378 return std::make_pair(Load, Shift / MemSizeInBits);
3379}
3380
3381std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
3382CombinerHelper::findLoadOffsetsForLoadOrCombine(
3383 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3384 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3385
3386 // Each load found for the pattern. There should be one for each RegsToVisit.
3387 SmallSetVector<const MachineInstr *, 8> Loads;
3388
3389 // The lowest index used in any load. (The lowest "i" for each x[i].)
3390 int64_t LowestIdx = INT64_MAX(9223372036854775807L);
3391
3392 // The load which uses the lowest index.
3393 GZExtLoad *LowestIdxLoad = nullptr;
3394
3395 // Keeps track of the load indices we see. We shouldn't see any indices twice.
3396 SmallSet<int64_t, 8> SeenIdx;
3397
3398 // Ensure each load is in the same MBB.
3399 // TODO: Support multiple MachineBasicBlocks.
3400 MachineBasicBlock *MBB = nullptr;
3401 const MachineMemOperand *MMO = nullptr;
3402
3403 // Earliest instruction-order load in the pattern.
3404 GZExtLoad *EarliestLoad = nullptr;
3405
3406 // Latest instruction-order load in the pattern.
3407 GZExtLoad *LatestLoad = nullptr;
3408
3409 // Base pointer which every load should share.
3410 Register BasePtr;
3411
3412 // We want to find a load for each register. Each load should have some
3413 // appropriate bit twiddling arithmetic. During this loop, we will also keep
3414 // track of the load which uses the lowest index. Later, we will check if we
3415 // can use its pointer in the final, combined load.
3416 for (auto Reg : RegsToVisit) {
3417 // Find the load, and find the position that it will end up in (e.g. a
3418 // shifted) value.
3419 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3420 if (!LoadAndPos)
3421 return std::nullopt;
3422 GZExtLoad *Load;
3423 int64_t DstPos;
3424 std::tie(Load, DstPos) = *LoadAndPos;
3425
3426 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3427 // it is difficult to check for stores/calls/etc between loads.
3428 MachineBasicBlock *LoadMBB = Load->getParent();
3429 if (!MBB)
3430 MBB = LoadMBB;
3431 if (LoadMBB != MBB)
3432 return std::nullopt;
3433
3434 // Make sure that the MachineMemOperands of every seen load are compatible.
3435 auto &LoadMMO = Load->getMMO();
3436 if (!MMO)
3437 MMO = &LoadMMO;
3438 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3439 return std::nullopt;
3440
3441 // Find out what the base pointer and index for the load is.
3442 Register LoadPtr;
3443 int64_t Idx;
3444 if (!mi_match(Load->getOperand(1).getReg(), MRI,
3445 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3446 LoadPtr = Load->getOperand(1).getReg();
3447 Idx = 0;
3448 }
3449
3450 // Don't combine things like a[i], a[i] -> a bigger load.
3451 if (!SeenIdx.insert(Idx).second)
3452 return std::nullopt;
3453
3454 // Every load must share the same base pointer; don't combine things like:
3455 //
3456 // a[i], b[i + 1] -> a bigger load.
3457 if (!BasePtr.isValid())
3458 BasePtr = LoadPtr;
3459 if (BasePtr != LoadPtr)
3460 return std::nullopt;
3461
3462 if (Idx < LowestIdx) {
3463 LowestIdx = Idx;
3464 LowestIdxLoad = Load;
3465 }
3466
3467 // Keep track of the byte offset that this load ends up at. If we have seen
3468 // the byte offset, then stop here. We do not want to combine:
3469 //
3470 // a[i] << 16, a[i + k] << 16 -> a bigger load.
3471 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3472 return std::nullopt;
3473 Loads.insert(Load);
3474
3475 // Keep track of the position of the earliest/latest loads in the pattern.
3476 // We will check that there are no load fold barriers between them later
3477 // on.
3478 //
3479 // FIXME: Is there a better way to check for load fold barriers?
3480 if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3481 EarliestLoad = Load;
3482 if (!LatestLoad || dominates(*LatestLoad, *Load))
3483 LatestLoad = Load;
3484 }
3485
3486 // We found a load for each register. Let's check if each load satisfies the
3487 // pattern.
3488 assert(Loads.size() == RegsToVisit.size() &&(static_cast <bool> (Loads.size() == RegsToVisit.size()
&& "Expected to find a load for each register?") ? void
(0) : __assert_fail ("Loads.size() == RegsToVisit.size() && \"Expected to find a load for each register?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3489, __extension__
__PRETTY_FUNCTION__))
3489 "Expected to find a load for each register?")(static_cast <bool> (Loads.size() == RegsToVisit.size()
&& "Expected to find a load for each register?") ? void
(0) : __assert_fail ("Loads.size() == RegsToVisit.size() && \"Expected to find a load for each register?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3489, __extension__
__PRETTY_FUNCTION__))
;
3490 assert(EarliestLoad != LatestLoad && EarliestLoad &&(static_cast <bool> (EarliestLoad != LatestLoad &&
EarliestLoad && LatestLoad && "Expected at least two loads?"
) ? void (0) : __assert_fail ("EarliestLoad != LatestLoad && EarliestLoad && LatestLoad && \"Expected at least two loads?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3491, __extension__
__PRETTY_FUNCTION__))
3491 LatestLoad && "Expected at least two loads?")(static_cast <bool> (EarliestLoad != LatestLoad &&
EarliestLoad && LatestLoad && "Expected at least two loads?"
) ? void (0) : __assert_fail ("EarliestLoad != LatestLoad && EarliestLoad && LatestLoad && \"Expected at least two loads?\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3491, __extension__
__PRETTY_FUNCTION__))
;
3492
3493 // Check if there are any stores, calls, etc. between any of the loads. If
3494 // there are, then we can't safely perform the combine.
3495 //
3496 // MaxIter is chosen based off the (worst case) number of iterations it
3497 // typically takes to succeed in the LLVM test suite plus some padding.
3498 //
3499 // FIXME: Is there a better way to check for load fold barriers?
3500 const unsigned MaxIter = 20;
3501 unsigned Iter = 0;
3502 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3503 LatestLoad->getIterator())) {
3504 if (Loads.count(&MI))
3505 continue;
3506 if (MI.isLoadFoldBarrier())
3507 return std::nullopt;
3508 if (Iter++ == MaxIter)
3509 return std::nullopt;
3510 }
3511
3512 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3513}
3514
3515bool CombinerHelper::matchLoadOrCombine(
3516 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3517 assert(MI.getOpcode() == TargetOpcode::G_OR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_OR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_OR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3517, __extension__
__PRETTY_FUNCTION__))
;
3518 MachineFunction &MF = *MI.getMF();
3519 // Assuming a little-endian target, transform:
3520 // s8 *a = ...
3521 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3522 // =>
3523 // s32 val = *((i32)a)
3524 //
3525 // s8 *a = ...
3526 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3527 // =>
3528 // s32 val = BSWAP(*((s32)a))
3529 Register Dst = MI.getOperand(0).getReg();
3530 LLT Ty = MRI.getType(Dst);
3531 if (Ty.isVector())
3532 return false;
3533
3534 // We need to combine at least two loads into this type. Since the smallest
3535 // possible load is into a byte, we need at least a 16-bit wide type.
3536 const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3537 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3538 return false;
3539
3540 // Match a collection of non-OR instructions in the pattern.
3541 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3542 if (!RegsToVisit)
3543 return false;
3544
3545 // We have a collection of non-OR instructions. Figure out how wide each of
3546 // the small loads should be based off of the number of potential loads we
3547 // found.
3548 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3549 if (NarrowMemSizeInBits % 8 != 0)
3550 return false;
3551
3552 // Check if each register feeding into each OR is a load from the same
3553 // base pointer + some arithmetic.
3554 //
3555 // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3556 //
3557 // Also verify that each of these ends up putting a[i] into the same memory
3558 // offset as a load into a wide type would.
3559 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3560 GZExtLoad *LowestIdxLoad, *LatestLoad;
3561 int64_t LowestIdx;
3562 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3563 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3564 if (!MaybeLoadInfo)
3565 return false;
3566 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3567
3568 // We have a bunch of loads being OR'd together. Using the addresses + offsets
3569 // we found before, check if this corresponds to a big or little endian byte
3570 // pattern. If it does, then we can represent it using a load + possibly a
3571 // BSWAP.
3572 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3573 std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3574 if (!IsBigEndian)
3575 return false;
3576 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3577 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3578 return false;
3579
3580 // Make sure that the load from the lowest index produces offset 0 in the
3581 // final value.
3582 //
3583 // This ensures that we won't combine something like this:
3584 //
3585 // load x[i] -> byte 2
3586 // load x[i+1] -> byte 0 ---> wide_load x[i]
3587 // load x[i+2] -> byte 1
3588 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3589 const unsigned ZeroByteOffset =
3590 *IsBigEndian
3591 ? bigEndianByteAt(NumLoadsInTy, 0)
3592 : littleEndianByteAt(NumLoadsInTy, 0);
3593 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3594 if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3595 ZeroOffsetIdx->second != LowestIdx)
3596 return false;
3597
3598 // We wil reuse the pointer from the load which ends up at byte offset 0. It
3599 // may not use index 0.
3600 Register Ptr = LowestIdxLoad->getPointerReg();
3601 const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3602 LegalityQuery::MemDesc MMDesc(MMO);
3603 MMDesc.MemoryTy = Ty;
3604 if (!isLegalOrBeforeLegalizer(
3605 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3606 return false;
3607 auto PtrInfo = MMO.getPointerInfo();
3608 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3609
3610 // Load must be allowed and fast on the target.
3611 LLVMContext &C = MF.getFunction().getContext();
3612 auto &DL = MF.getDataLayout();
3613 unsigned Fast = 0;
3614 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3615 !Fast)
3616 return false;
3617
3618 MatchInfo = [=](MachineIRBuilder &MIB) {
3619 MIB.setInstrAndDebugLoc(*LatestLoad);
3620 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3621 MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3622 if (NeedsBSwap)
3623 MIB.buildBSwap(Dst, LoadDst);
3624 };
3625 return true;
3626}
3627
3628/// Check if the store \p Store is a truncstore that can be merged. That is,
3629/// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty
3630/// Register then it does not need to match and SrcVal is set to the source
3631/// value found.
3632/// On match, returns the start byte offset of the \p SrcVal that is being
3633/// stored.
3634static std::optional<int64_t>
3635getTruncStoreByteOffset(GStore &Store, Register &SrcVal,
3636 MachineRegisterInfo &MRI) {
3637 Register TruncVal;
3638 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal))))
3639 return std::nullopt;
3640
3641 // The shift amount must be a constant multiple of the narrow type.
3642 // It is translated to the offset address in the wide source value "y".
3643 //
3644 // x = G_LSHR y, ShiftAmtC
3645 // s8 z = G_TRUNC x
3646 // store z, ...
3647 Register FoundSrcVal;
3648 int64_t ShiftAmt;
3649 if (!mi_match(TruncVal, MRI,
3650 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)),
3651 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) {
3652 if (!SrcVal.isValid() || TruncVal == SrcVal) {
3653 if (!SrcVal.isValid())
3654 SrcVal = TruncVal;
3655 return 0; // If it's the lowest index store.
3656 }
3657 return std::nullopt;
3658 }
3659
3660 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits();
3661 if (ShiftAmt % NarrowBits!= 0)
3662 return std::nullopt;
3663 const unsigned Offset = ShiftAmt / NarrowBits;
3664
3665 if (SrcVal.isValid() && FoundSrcVal != SrcVal)
3666 return std::nullopt;
3667
3668 if (!SrcVal.isValid())
3669 SrcVal = FoundSrcVal;
3670 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal))
3671 return std::nullopt;
3672 return Offset;
3673}
3674
3675/// Match a pattern where a wide type scalar value is stored by several narrow
3676/// stores. Fold it into a single store or a BSWAP and a store if the targets
3677/// supports it.
3678///
3679/// Assuming little endian target:
3680/// i8 *p = ...
3681/// i32 val = ...
3682/// p[0] = (val >> 0) & 0xFF;
3683/// p[1] = (val >> 8) & 0xFF;
3684/// p[2] = (val >> 16) & 0xFF;
3685/// p[3] = (val >> 24) & 0xFF;
3686/// =>
3687/// *((i32)p) = val;
3688///
3689/// i8 *p = ...
3690/// i32 val = ...
3691/// p[0] = (val >> 24) & 0xFF;
3692/// p[1] = (val >> 16) & 0xFF;
3693/// p[2] = (val >> 8) & 0xFF;
3694/// p[3] = (val >> 0) & 0xFF;
3695/// =>
3696/// *((i32)p) = BSWAP(val);
3697bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI,
3698 MergeTruncStoresInfo &MatchInfo) {
3699 auto &StoreMI = cast<GStore>(MI);
3700 LLT MemTy = StoreMI.getMMO().getMemoryType();
3701
3702 // We only handle merging simple stores of 1-4 bytes.
3703 if (!MemTy.isScalar())
3704 return false;
3705 switch (MemTy.getSizeInBits()) {
3706 case 8:
3707 case 16:
3708 case 32:
3709 break;
3710 default:
3711 return false;
3712 }
3713 if (!StoreMI.isSimple())
3714 return false;
3715
3716 // We do a simple search for mergeable stores prior to this one.
3717 // Any potential alias hazard along the way terminates the search.
3718 SmallVector<GStore *> FoundStores;
3719
3720 // We're looking for:
3721 // 1) a (store(trunc(...)))
3722 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get
3723 // the partial value stored.
3724 // 3) where the offsets form either a little or big-endian sequence.
3725
3726 auto &LastStore = StoreMI;
3727
3728 // The single base pointer that all stores must use.
3729 Register BaseReg;
3730 int64_t LastOffset;
3731 if (!mi_match(LastStore.getPointerReg(), MRI,
3732 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) {
3733 BaseReg = LastStore.getPointerReg();
3734 LastOffset = 0;
3735 }
3736
3737 GStore *LowestIdxStore = &LastStore;
3738 int64_t LowestIdxOffset = LastOffset;
3739
3740 Register WideSrcVal;
3741 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI);
3742 if (!LowestShiftAmt)
3743 return false; // Didn't match a trunc.
3744 assert(WideSrcVal.isValid())(static_cast <bool> (WideSrcVal.isValid()) ? void (0) :
__assert_fail ("WideSrcVal.isValid()", "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp"
, 3744, __extension__ __PRETTY_FUNCTION__))
;
3745
3746 LLT WideStoreTy = MRI.getType(WideSrcVal);
3747 // The wide type might not be a multiple of the memory type, e.g. s48 and s32.
3748 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0)
3749 return false;
3750 const unsigned NumStoresRequired =
3751 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits();
3752
3753 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX(9223372036854775807L));
3754 OffsetMap[*LowestShiftAmt] = LastOffset;
3755 FoundStores.emplace_back(&LastStore);
3756
3757 // Search the block up for more stores.
3758 // We use a search threshold of 10 instructions here because the combiner
3759 // works top-down within a block, and we don't want to search an unbounded
3760 // number of predecessor instructions trying to find matching stores.
3761 // If we moved this optimization into a separate pass then we could probably
3762 // use a more efficient search without having a hard-coded threshold.
3763 const int MaxInstsToCheck = 10;
3764 int NumInstsChecked = 0;
3765 for (auto II = ++LastStore.getReverseIterator();
3766 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck;
3767 ++II) {
3768 NumInstsChecked++;
3769 GStore *NewStore;
3770 if ((NewStore = dyn_cast<GStore>(&*II))) {
3771 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple())
3772 break;
3773 } else if (II->isLoadFoldBarrier() || II->mayLoad()) {
3774 break;
3775 } else {
3776 continue; // This is a safe instruction we can look past.
3777 }
3778
3779 Register NewBaseReg;
3780 int64_t MemOffset;
3781 // Check we're storing to the same base + some offset.
3782 if (!mi_match(NewStore->getPointerReg(), MRI,
3783 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) {
3784 NewBaseReg = NewStore->getPointerReg();
3785 MemOffset = 0;
3786 }
3787 if (BaseReg != NewBaseReg)
3788 break;
3789
3790 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI);
3791 if (!ShiftByteOffset)
3792 break;
3793 if (MemOffset < LowestIdxOffset) {
3794 LowestIdxOffset = MemOffset;
3795 LowestIdxStore = NewStore;
3796 }
3797
3798 // Map the offset in the store and the offset in the combined value, and
3799 // early return if it has been set before.
3800 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired ||
3801 OffsetMap[*ShiftByteOffset] != INT64_MAX(9223372036854775807L))
3802 break;
3803 OffsetMap[*ShiftByteOffset] = MemOffset;
3804
3805 FoundStores.emplace_back(NewStore);
3806 // Reset counter since we've found a matching inst.
3807 NumInstsChecked = 0;
3808 if (FoundStores.size() == NumStoresRequired)
3809 break;
3810 }
3811
3812 if (FoundStores.size() != NumStoresRequired) {
3813 return false;
3814 }
3815
3816 const auto &DL = LastStore.getMF()->getDataLayout();
3817 auto &C = LastStore.getMF()->getFunction().getContext();
3818 // Check that a store of the wide type is both allowed and fast on the target
3819 unsigned Fast = 0;
3820 bool Allowed = getTargetLowering().allowsMemoryAccess(
3821 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast);
3822 if (!Allowed || !Fast)
3823 return false;
3824
3825 // Check if the pieces of the value are going to the expected places in memory
3826 // to merge the stores.
3827 unsigned NarrowBits = MemTy.getScalarSizeInBits();
3828 auto checkOffsets = [&](bool MatchLittleEndian) {
3829 if (MatchLittleEndian) {
3830 for (unsigned i = 0; i != NumStoresRequired; ++i)
3831 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset)
3832 return false;
3833 } else { // MatchBigEndian by reversing loop counter.
3834 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired;
3835 ++i, --j)
3836 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset)
3837 return false;
3838 }
3839 return true;
3840 };
3841
3842 // Check if the offsets line up for the native data layout of this target.
3843 bool NeedBswap = false;
3844 bool NeedRotate = false;
3845 if (!checkOffsets(DL.isLittleEndian())) {
3846 // Special-case: check if byte offsets line up for the opposite endian.
3847 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian()))
3848 NeedBswap = true;
3849 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian()))
3850 NeedRotate = true;
3851 else
3852 return false;
3853 }
3854
3855 if (NeedBswap &&
3856 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}))
3857 return false;
3858 if (NeedRotate &&
3859 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}}))
3860 return false;
3861
3862 MatchInfo.NeedBSwap = NeedBswap;
3863 MatchInfo.NeedRotate = NeedRotate;
3864 MatchInfo.LowestIdxStore = LowestIdxStore;
3865 MatchInfo.WideSrcVal = WideSrcVal;
3866 MatchInfo.FoundStores = std::move(FoundStores);
3867 return true;
3868}
3869
3870void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI,
3871 MergeTruncStoresInfo &MatchInfo) {
3872
3873 Builder.setInstrAndDebugLoc(MI);
3874 Register WideSrcVal = MatchInfo.WideSrcVal;
3875 LLT WideStoreTy = MRI.getType(WideSrcVal);
3876
3877 if (MatchInfo.NeedBSwap) {
3878 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0);
3879 } else if (MatchInfo.NeedRotate) {
3880 assert(WideStoreTy.getSizeInBits() % 2 == 0 &&(static_cast <bool> (WideStoreTy.getSizeInBits() % 2 ==
0 && "Unexpected type for rotate") ? void (0) : __assert_fail
("WideStoreTy.getSizeInBits() % 2 == 0 && \"Unexpected type for rotate\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3881, __extension__
__PRETTY_FUNCTION__))
3881 "Unexpected type for rotate")(static_cast <bool> (WideStoreTy.getSizeInBits() % 2 ==
0 && "Unexpected type for rotate") ? void (0) : __assert_fail
("WideStoreTy.getSizeInBits() % 2 == 0 && \"Unexpected type for rotate\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3881, __extension__
__PRETTY_FUNCTION__))
;
3882 auto RotAmt =
3883 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2);
3884 WideSrcVal =
3885 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0);
3886 }
3887
3888 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(),
3889 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(),
3890 MatchInfo.LowestIdxStore->getMMO().getAlign());
3891
3892 // Erase the old stores.
3893 for (auto *ST : MatchInfo.FoundStores)
3894 ST->eraseFromParent();
3895}
3896
3897bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
3898 MachineInstr *&ExtMI) {
3899 assert(MI.getOpcode() == TargetOpcode::G_PHI)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_PHI
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_PHI"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3899, __extension__
__PRETTY_FUNCTION__))
;
3900
3901 Register DstReg = MI.getOperand(0).getReg();
3902
3903 // TODO: Extending a vector may be expensive, don't do this until heuristics
3904 // are better.
3905 if (MRI.getType(DstReg).isVector())
3906 return false;
3907
3908 // Try to match a phi, whose only use is an extend.
3909 if (!MRI.hasOneNonDBGUse(DstReg))
3910 return false;
3911 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
3912 switch (ExtMI->getOpcode()) {
3913 case TargetOpcode::G_ANYEXT:
3914 return true; // G_ANYEXT is usually free.
3915 case TargetOpcode::G_ZEXT:
3916 case TargetOpcode::G_SEXT:
3917 break;
3918 default:
3919 return false;
3920 }
3921
3922 // If the target is likely to fold this extend away, don't propagate.
3923 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
3924 return false;
3925
3926 // We don't want to propagate the extends unless there's a good chance that
3927 // they'll be optimized in some way.
3928 // Collect the unique incoming values.
3929 SmallPtrSet<MachineInstr *, 4> InSrcs;
3930 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
3931 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
3932 switch (DefMI->getOpcode()) {
3933 case TargetOpcode::G_LOAD:
3934 case TargetOpcode::G_TRUNC:
3935 case TargetOpcode::G_SEXT:
3936 case TargetOpcode::G_ZEXT:
3937 case TargetOpcode::G_ANYEXT:
3938 case TargetOpcode::G_CONSTANT:
3939 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
3940 // Don't try to propagate if there are too many places to create new
3941 // extends, chances are it'll increase code size.
3942 if (InSrcs.size() > 2)
3943 return false;
3944 break;
3945 default:
3946 return false;
3947 }
3948 }
3949 return true;
3950}
3951
3952void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
3953 MachineInstr *&ExtMI) {
3954 assert(MI.getOpcode() == TargetOpcode::G_PHI)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_PHI
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_PHI"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3954, __extension__
__PRETTY_FUNCTION__))
;
3955 Register DstReg = ExtMI->getOperand(0).getReg();
3956 LLT ExtTy = MRI.getType(DstReg);
3957
3958 // Propagate the extension into the block of each incoming reg's block.
3959 // Use a SetVector here because PHIs can have duplicate edges, and we want
3960 // deterministic iteration order.
3961 SmallSetVector<MachineInstr *, 8> SrcMIs;
3962 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
3963 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
3964 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
3965 if (!SrcMIs.insert(SrcMI))
3966 continue;
3967
3968 // Build an extend after each src inst.
3969 auto *MBB = SrcMI->getParent();
3970 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
3971 if (InsertPt != MBB->end() && InsertPt->isPHI())
3972 InsertPt = MBB->getFirstNonPHI();
3973
3974 Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
3975 Builder.setDebugLoc(MI.getDebugLoc());
3976 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
3977 SrcMI->getOperand(0).getReg());
3978 OldToNewSrcMap[SrcMI] = NewExt;
3979 }
3980
3981 // Create a new phi with the extended inputs.
3982 Builder.setInstrAndDebugLoc(MI);
3983 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
3984 NewPhi.addDef(DstReg);
3985 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
3986 if (!MO.isReg()) {
3987 NewPhi.addMBB(MO.getMBB());
3988 continue;
3989 }
3990 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
3991 NewPhi.addUse(NewSrc->getOperand(0).getReg());
3992 }
3993 Builder.insertInstr(NewPhi);
3994 ExtMI->eraseFromParent();
3995}
3996
3997bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
3998 Register &Reg) {
3999 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 3999, __extension__
__PRETTY_FUNCTION__))
;
4000 // If we have a constant index, look for a G_BUILD_VECTOR source
4001 // and find the source register that the index maps to.
4002 Register SrcVec = MI.getOperand(1).getReg();
4003 LLT SrcTy = MRI.getType(SrcVec);
4004
4005 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
4006 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
4007 return false;
4008
4009 unsigned VecIdx = Cst->Value.getZExtValue();
4010
4011 // Check if we have a build_vector or build_vector_trunc with an optional
4012 // trunc in front.
4013 MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec);
4014 if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) {
4015 SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg());
4016 }
4017
4018 if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
4019 SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC)
4020 return false;
4021
4022 EVT Ty(getMVTForLLT(SrcTy));
4023 if (!MRI.hasOneNonDBGUse(SrcVec) &&
4024 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
4025 return false;
4026
4027 Reg = SrcVecMI->getOperand(VecIdx + 1).getReg();
4028 return true;
4029}
4030
4031void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
4032 Register &Reg) {
4033 // Check the type of the register, since it may have come from a
4034 // G_BUILD_VECTOR_TRUNC.
4035 LLT ScalarTy = MRI.getType(Reg);
4036 Register DstReg = MI.getOperand(0).getReg();
4037 LLT DstTy = MRI.getType(DstReg);
4038
4039 Builder.setInstrAndDebugLoc(MI);
4040 if (ScalarTy != DstTy) {
4041 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits())(static_cast <bool> (ScalarTy.getSizeInBits() > DstTy
.getSizeInBits()) ? void (0) : __assert_fail ("ScalarTy.getSizeInBits() > DstTy.getSizeInBits()"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4041, __extension__
__PRETTY_FUNCTION__))
;
4042 Builder.buildTrunc(DstReg, Reg);
4043 MI.eraseFromParent();
4044 return;
4045 }
4046 replaceSingleDefInstWithReg(MI, Reg);
4047}
4048
4049bool CombinerHelper::matchExtractAllEltsFromBuildVector(
4050 MachineInstr &MI,
4051 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4052 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4052, __extension__
__PRETTY_FUNCTION__))
;
4053 // This combine tries to find build_vector's which have every source element
4054 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
4055 // the masked load scalarization is run late in the pipeline. There's already
4056 // a combine for a similar pattern starting from the extract, but that
4057 // doesn't attempt to do it if there are multiple uses of the build_vector,
4058 // which in this case is true. Starting the combine from the build_vector
4059 // feels more natural than trying to find sibling nodes of extracts.
4060 // E.g.
4061 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
4062 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
4063 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
4064 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
4065 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
4066 // ==>
4067 // replace ext{1,2,3,4} with %s{1,2,3,4}
4068
4069 Register DstReg = MI.getOperand(0).getReg();
4070 LLT DstTy = MRI.getType(DstReg);
4071 unsigned NumElts = DstTy.getNumElements();
4072
4073 SmallBitVector ExtractedElts(NumElts);
4074 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
4075 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
4076 return false;
4077 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
4078 if (!Cst)
4079 return false;
4080 unsigned Idx = Cst->getZExtValue();
4081 if (Idx >= NumElts)
4082 return false; // Out of range.
4083 ExtractedElts.set(Idx);
4084 SrcDstPairs.emplace_back(
4085 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
4086 }
4087 // Match if every element was extracted.
4088 return ExtractedElts.all();
4089}
4090
4091void CombinerHelper::applyExtractAllEltsFromBuildVector(
4092 MachineInstr &MI,
4093 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4094 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4094, __extension__
__PRETTY_FUNCTION__))
;
4095 for (auto &Pair : SrcDstPairs) {
4096 auto *ExtMI = Pair.second;
4097 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
4098 ExtMI->eraseFromParent();
4099 }
4100 MI.eraseFromParent();
4101}
4102
4103void CombinerHelper::applyBuildFn(
4104 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4105 Builder.setInstrAndDebugLoc(MI);
4106 MatchInfo(Builder);
4107 MI.eraseFromParent();
4108}
4109
4110void CombinerHelper::applyBuildFnNoErase(
4111 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4112 Builder.setInstrAndDebugLoc(MI);
4113 MatchInfo(Builder);
4114}
4115
4116bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
4117 BuildFnTy &MatchInfo) {
4118 assert(MI.getOpcode() == TargetOpcode::G_OR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_OR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_OR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4118, __extension__
__PRETTY_FUNCTION__))
;
4119
4120 Register Dst = MI.getOperand(0).getReg();
4121 LLT Ty = MRI.getType(Dst);
4122 unsigned BitWidth = Ty.getScalarSizeInBits();
4123
4124 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
4125 unsigned FshOpc = 0;
4126
4127 // Match (or (shl ...), (lshr ...)).
4128 if (!mi_match(Dst, MRI,
4129 // m_GOr() handles the commuted version as well.
4130 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
4131 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
4132 return false;
4133
4134 // Given constants C0 and C1 such that C0 + C1 is bit-width:
4135 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
4136 int64_t CstShlAmt, CstLShrAmt;
4137 if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) &&
4138 mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) &&
4139 CstShlAmt + CstLShrAmt == BitWidth) {
4140 FshOpc = TargetOpcode::G_FSHR;
4141 Amt = LShrAmt;
4142
4143 } else if (mi_match(LShrAmt, MRI,
4144 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4145 ShlAmt == Amt) {
4146 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
4147 FshOpc = TargetOpcode::G_FSHL;
4148
4149 } else if (mi_match(ShlAmt, MRI,
4150 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4151 LShrAmt == Amt) {
4152 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
4153 FshOpc = TargetOpcode::G_FSHR;
4154
4155 } else {
4156 return false;
4157 }
4158
4159 LLT AmtTy = MRI.getType(Amt);
4160 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
4161 return false;
4162
4163 MatchInfo = [=](MachineIRBuilder &B) {
4164 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
4165 };
4166 return true;
4167}
4168
4169/// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
4170bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
4171 unsigned Opc = MI.getOpcode();
4172 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR)(static_cast <bool> (Opc == TargetOpcode::G_FSHL || Opc
== TargetOpcode::G_FSHR) ? void (0) : __assert_fail ("Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4172, __extension__
__PRETTY_FUNCTION__))
;
4173 Register X = MI.getOperand(1).getReg();
4174 Register Y = MI.getOperand(2).getReg();
4175 if (X != Y)
4176 return false;
4177 unsigned RotateOpc =
4178 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
4179 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
4180}
4181
4182void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
4183 unsigned Opc = MI.getOpcode();
4184 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR)(static_cast <bool> (Opc == TargetOpcode::G_FSHL || Opc
== TargetOpcode::G_FSHR) ? void (0) : __assert_fail ("Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4184, __extension__
__PRETTY_FUNCTION__))
;
4185 bool IsFSHL = Opc == TargetOpcode::G_FSHL;
4186 Observer.changingInstr(MI);
4187 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
4188 : TargetOpcode::G_ROTR));
4189 MI.removeOperand(2);
4190 Observer.changedInstr(MI);
4191}
4192
4193// Fold (rot x, c) -> (rot x, c % BitSize)
4194bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
4195 assert(MI.getOpcode() == TargetOpcode::G_ROTL ||(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ROTL
|| MI.getOpcode() == TargetOpcode::G_ROTR) ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_ROTL || MI.getOpcode() == TargetOpcode::G_ROTR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4196, __extension__
__PRETTY_FUNCTION__))
4196 MI.getOpcode() == TargetOpcode::G_ROTR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ROTL
|| MI.getOpcode() == TargetOpcode::G_ROTR) ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_ROTL || MI.getOpcode() == TargetOpcode::G_ROTR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4196, __extension__
__PRETTY_FUNCTION__))
;
4197 unsigned Bitsize =
4198 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4199 Register AmtReg = MI.getOperand(2).getReg();
4200 bool OutOfRange = false;
4201 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
4202 if (auto *CI = dyn_cast<ConstantInt>(C))
4203 OutOfRange |= CI->getValue().uge(Bitsize);
4204 return true;
4205 };
4206 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
4207}
4208
4209void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
4210 assert(MI.getOpcode() == TargetOpcode::G_ROTL ||(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ROTL
|| MI.getOpcode() == TargetOpcode::G_ROTR) ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_ROTL || MI.getOpcode() == TargetOpcode::G_ROTR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4211, __extension__
__PRETTY_FUNCTION__))
4211 MI.getOpcode() == TargetOpcode::G_ROTR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ROTL
|| MI.getOpcode() == TargetOpcode::G_ROTR) ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_ROTL || MI.getOpcode() == TargetOpcode::G_ROTR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4211, __extension__
__PRETTY_FUNCTION__))
;
4212 unsigned Bitsize =
4213 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4214 Builder.setInstrAndDebugLoc(MI);
4215 Register Amt = MI.getOperand(2).getReg();
4216 LLT AmtTy = MRI.getType(Amt);
4217 auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4218 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4219 Observer.changingInstr(MI);
4220 MI.getOperand(2).setReg(Amt);
4221 Observer.changedInstr(MI);
4222}
4223
4224bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4225 int64_t &MatchInfo) {
4226 assert(MI.getOpcode() == TargetOpcode::G_ICMP)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ICMP
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_ICMP"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4226, __extension__
__PRETTY_FUNCTION__))
;
4227 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4228 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4229 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4230 std::optional<bool> KnownVal;
4231 switch (Pred) {
4232 default:
4233 llvm_unreachable("Unexpected G_ICMP predicate?")::llvm::llvm_unreachable_internal("Unexpected G_ICMP predicate?"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4233)
;
4234 case CmpInst::ICMP_EQ:
4235 KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4236 break;
4237 case CmpInst::ICMP_NE:
4238 KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4239 break;
4240 case CmpInst::ICMP_SGE:
4241 KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4242 break;
4243 case CmpInst::ICMP_SGT:
4244 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4245 break;
4246 case CmpInst::ICMP_SLE:
4247 KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4248 break;
4249 case CmpInst::ICMP_SLT:
4250 KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4251 break;
4252 case CmpInst::ICMP_UGE:
4253 KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4254 break;
4255 case CmpInst::ICMP_UGT:
4256 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4257 break;
4258 case CmpInst::ICMP_ULE:
4259 KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4260 break;
4261 case CmpInst::ICMP_ULT:
4262 KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4263 break;
4264 }
4265 if (!KnownVal)
4266 return false;
4267 MatchInfo =
4268 *KnownVal
4269 ? getICmpTrueVal(getTargetLowering(),
4270 /*IsVector = */
4271 MRI.getType(MI.getOperand(0).getReg()).isVector(),
4272 /* IsFP = */ false)
4273 : 0;
4274 return true;
4275}
4276
4277bool CombinerHelper::matchICmpToLHSKnownBits(
4278 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4279 assert(MI.getOpcode() == TargetOpcode::G_ICMP)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_ICMP
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_ICMP"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4279, __extension__
__PRETTY_FUNCTION__))
;
4280 // Given:
4281 //
4282 // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4283 // %cmp = G_ICMP ne %x, 0
4284 //
4285 // Or:
4286 //
4287 // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4288 // %cmp = G_ICMP eq %x, 1
4289 //
4290 // We can replace %cmp with %x assuming true is 1 on the target.
4291 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4292 if (!CmpInst::isEquality(Pred))
4293 return false;
4294 Register Dst = MI.getOperand(0).getReg();
4295 LLT DstTy = MRI.getType(Dst);
4296 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
4297 /* IsFP = */ false) != 1)
4298 return false;
4299 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
4300 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
4301 return false;
4302 Register LHS = MI.getOperand(2).getReg();
4303 auto KnownLHS = KB->getKnownBits(LHS);
4304 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
4305 return false;
4306 // Make sure replacing Dst with the LHS is a legal operation.
4307 LLT LHSTy = MRI.getType(LHS);
4308 unsigned LHSSize = LHSTy.getSizeInBits();
4309 unsigned DstSize = DstTy.getSizeInBits();
4310 unsigned Op = TargetOpcode::COPY;
4311 if (DstSize != LHSSize)
4312 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
4313 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
4314 return false;
4315 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
4316 return true;
4317}
4318
4319// Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
4320bool CombinerHelper::matchAndOrDisjointMask(
4321 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4322 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_AND
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_AND"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4322, __extension__
__PRETTY_FUNCTION__))
;
4323
4324 // Ignore vector types to simplify matching the two constants.
4325 // TODO: do this for vectors and scalars via a demanded bits analysis.
4326 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
4327 if (Ty.isVector())
4328 return false;
4329
4330 Register Src;
4331 Register AndMaskReg;
4332 int64_t AndMaskBits;
4333 int64_t OrMaskBits;
4334 if (!mi_match(MI, MRI,
4335 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)),
4336 m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg)))))
4337 return false;
4338
4339 // Check if OrMask could turn on any bits in Src.
4340 if (AndMaskBits & OrMaskBits)
4341 return false;
4342
4343 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4344 Observer.changingInstr(MI);
4345 // Canonicalize the result to have the constant on the RHS.
4346 if (MI.getOperand(1).getReg() == AndMaskReg)
4347 MI.getOperand(2).setReg(AndMaskReg);
4348 MI.getOperand(1).setReg(Src);
4349 Observer.changedInstr(MI);
4350 };
4351 return true;
4352}
4353
4354/// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
4355bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4356 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4357 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SEXT_INREG
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SEXT_INREG"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4357, __extension__
__PRETTY_FUNCTION__))
;
4358 Register Dst = MI.getOperand(0).getReg();
4359 Register Src = MI.getOperand(1).getReg();
4360 LLT Ty = MRI.getType(Src);
4361 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4362 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4363 return false;
4364 int64_t Width = MI.getOperand(2).getImm();
4365 Register ShiftSrc;
4366 int64_t ShiftImm;
4367 if (!mi_match(
4368 Src, MRI,
4369 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4370 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4371 return false;
4372 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4373 return false;
4374
4375 MatchInfo = [=](MachineIRBuilder &B) {
4376 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4377 auto Cst2 = B.buildConstant(ExtractTy, Width);
4378 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4379 };
4380 return true;
4381}
4382
4383/// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
4384bool CombinerHelper::matchBitfieldExtractFromAnd(
4385 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4386 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_AND
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_AND"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4386, __extension__
__PRETTY_FUNCTION__))
;
4387 Register Dst = MI.getOperand(0).getReg();
4388 LLT Ty = MRI.getType(Dst);
4389 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4390 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
4391 TargetOpcode::G_UBFX, Ty, ExtractTy))
4392 return false;
4393
4394 int64_t AndImm, LSBImm;
4395 Register ShiftSrc;
4396 const unsigned Size = Ty.getScalarSizeInBits();
4397 if (!mi_match(MI.getOperand(0).getReg(), MRI,
4398 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4399 m_ICst(AndImm))))
4400 return false;
4401
4402 // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4403 auto MaybeMask = static_cast<uint64_t>(AndImm);
4404 if (MaybeMask & (MaybeMask + 1))
4405 return false;
4406
4407 // LSB must fit within the register.
4408 if (static_cast<uint64_t>(LSBImm) >= Size)
4409 return false;
4410
4411 uint64_t Width = APInt(Size, AndImm).countr_one();
4412 MatchInfo = [=](MachineIRBuilder &B) {
4413 auto WidthCst = B.buildConstant(ExtractTy, Width);
4414 auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4415 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4416 };
4417 return true;
4418}
4419
4420bool CombinerHelper::matchBitfieldExtractFromShr(
4421 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4422 const unsigned Opcode = MI.getOpcode();
4423 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR)(static_cast <bool> (Opcode == TargetOpcode::G_ASHR || Opcode
== TargetOpcode::G_LSHR) ? void (0) : __assert_fail ("Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4423, __extension__
__PRETTY_FUNCTION__))
;
4424
4425 const Register Dst = MI.getOperand(0).getReg();
4426
4427 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
4428 ? TargetOpcode::G_SBFX
4429 : TargetOpcode::G_UBFX;
4430
4431 // Check if the type we would use for the extract is legal
4432 LLT Ty = MRI.getType(Dst);
4433 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4434 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
4435 return false;
4436
4437 Register ShlSrc;
4438 int64_t ShrAmt;
4439 int64_t ShlAmt;
4440 const unsigned Size = Ty.getScalarSizeInBits();
4441
4442 // Try to match shr (shl x, c1), c2
4443 if (!mi_match(Dst, MRI,
4444 m_BinOp(Opcode,
4445 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
4446 m_ICst(ShrAmt))))
4447 return false;
4448
4449 // Make sure that the shift sizes can fit a bitfield extract
4450 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
4451 return false;
4452
4453 // Skip this combine if the G_SEXT_INREG combine could handle it
4454 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
4455 return false;
4456
4457 // Calculate start position and width of the extract
4458 const int64_t Pos = ShrAmt - ShlAmt;
4459 const int64_t Width = Size - ShrAmt;
4460
4461 MatchInfo = [=](MachineIRBuilder &B) {
4462 auto WidthCst = B.buildConstant(ExtractTy, Width);
4463 auto PosCst = B.buildConstant(ExtractTy, Pos);
4464 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
4465 };
4466 return true;
4467}
4468
4469bool CombinerHelper::matchBitfieldExtractFromShrAnd(
4470 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4471 const unsigned Opcode = MI.getOpcode();
4472 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR)(static_cast <bool> (Opcode == TargetOpcode::G_LSHR || Opcode
== TargetOpcode::G_ASHR) ? void (0) : __assert_fail ("Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4472, __extension__
__PRETTY_FUNCTION__))
;
4473
4474 const Register Dst = MI.getOperand(0).getReg();
4475 LLT Ty = MRI.getType(Dst);
4476 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4477 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
4478 TargetOpcode::G_UBFX, Ty, ExtractTy))
4479 return false;
4480
4481 // Try to match shr (and x, c1), c2
4482 Register AndSrc;
4483 int64_t ShrAmt;
4484 int64_t SMask;
4485 if (!mi_match(Dst, MRI,
4486 m_BinOp(Opcode,
4487 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
4488 m_ICst(ShrAmt))))
4489 return false;
4490
4491 const unsigned Size = Ty.getScalarSizeInBits();
4492 if (ShrAmt < 0 || ShrAmt >= Size)
4493 return false;
4494
4495 // If the shift subsumes the mask, emit the 0 directly.
4496 if (0 == (SMask >> ShrAmt)) {
4497 MatchInfo = [=](MachineIRBuilder &B) {
4498 B.buildConstant(Dst, 0);
4499 };
4500 return true;
4501 }
4502
4503 // Check that ubfx can do the extraction, with no holes in the mask.
4504 uint64_t UMask = SMask;
4505 UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
4506 UMask &= maskTrailingOnes<uint64_t>(Size);
4507 if (!isMask_64(UMask))
4508 return false;
4509
4510 // Calculate start position and width of the extract.
4511 const int64_t Pos = ShrAmt;
4512 const int64_t Width = llvm::countr_one(UMask) - ShrAmt;
4513
4514 // It's preferable to keep the shift, rather than form G_SBFX.
4515 // TODO: remove the G_AND via demanded bits analysis.
4516 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
4517 return false;
4518
4519 MatchInfo = [=](MachineIRBuilder &B) {
4520 auto WidthCst = B.buildConstant(ExtractTy, Width);
4521 auto PosCst = B.buildConstant(ExtractTy, Pos);
4522 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
4523 };
4524 return true;
4525}
4526
4527bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4528 MachineInstr &PtrAdd) {
4529 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD)(static_cast <bool> (PtrAdd.getOpcode() == TargetOpcode
::G_PTR_ADD) ? void (0) : __assert_fail ("PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4529, __extension__
__PRETTY_FUNCTION__))
;
4530
4531 Register Src1Reg = PtrAdd.getOperand(1).getReg();
4532 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
4533 if (!Src1Def)
4534 return false;
4535
4536 Register Src2Reg = PtrAdd.getOperand(2).getReg();
4537
4538 if (MRI.hasOneNonDBGUse(Src1Reg))
4539 return false;
4540
4541 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
4542 if (!C1)
4543 return false;
4544 auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4545 if (!C2)
4546 return false;
4547
4548 const APInt &C1APIntVal = *C1;
4549 const APInt &C2APIntVal = *C2;
4550 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4551
4552 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
4553 // This combine may end up running before ptrtoint/inttoptr combines
4554 // manage to eliminate redundant conversions, so try to look through them.
4555 MachineInstr *ConvUseMI = &UseMI;
4556 unsigned ConvUseOpc = ConvUseMI->getOpcode();
4557 while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4558 ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4559 Register DefReg = ConvUseMI->getOperand(0).getReg();
4560 if (!MRI.hasOneNonDBGUse(DefReg))
4561 break;
4562 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4563 ConvUseOpc = ConvUseMI->getOpcode();
4564 }
4565 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
4566 ConvUseOpc == TargetOpcode::G_STORE;
4567 if (!LoadStore)
4568 continue;
4569 // Is x[offset2] already not a legal addressing mode? If so then
4570 // reassociating the constants breaks nothing (we test offset2 because
4571 // that's the one we hope to fold into the load or store).
4572 TargetLoweringBase::AddrMode AM;
4573 AM.HasBaseReg = true;
4574 AM.BaseOffs = C2APIntVal.getSExtValue();
4575 unsigned AS =
4576 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
4577 Type *AccessTy =
4578 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
4579 PtrAdd.getMF()->getFunction().getContext());
4580 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4581 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4582 AccessTy, AS))
4583 continue;
4584
4585 // Would x[offset1+offset2] still be a legal addressing mode?
4586 AM.BaseOffs = CombinedValue;
4587 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4588 AccessTy, AS))
4589 return true;
4590 }
4591
4592 return false;
4593}
4594
4595bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
4596 MachineInstr *RHS,
4597 BuildFnTy &MatchInfo) {
4598 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4599 Register Src1Reg = MI.getOperand(1).getReg();
4600 if (RHS->getOpcode() != TargetOpcode::G_ADD)
4601 return false;
4602 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4603 if (!C2)
4604 return false;
4605
4606 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4607 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4608
4609 auto NewBase =
4610 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4611 Observer.changingInstr(MI);
4612 MI.getOperand(1).setReg(NewBase.getReg(0));
4613 MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4614 Observer.changedInstr(MI);
4615 };
4616 return !reassociationCanBreakAddressingModePattern(MI);
4617}
4618
4619bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
4620 MachineInstr *LHS,
4621 MachineInstr *RHS,
4622 BuildFnTy &MatchInfo) {
4623 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
4624 // if and only if (G_PTR_ADD X, C) has one use.
4625 Register LHSBase;
4626 std::optional<ValueAndVReg> LHSCstOff;
4627 if (!mi_match(MI.getBaseReg(), MRI,
4628 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
4629 return false;
4630
4631 auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
4632 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4633 // When we change LHSPtrAdd's offset register we might cause it to use a reg
4634 // before its def. Sink the instruction so the outer PTR_ADD to ensure this
4635 // doesn't happen.
4636 LHSPtrAdd->moveBefore(&MI);
4637 Register RHSReg = MI.getOffsetReg();
4638 // set VReg will cause type mismatch if it comes from extend/trunc
4639 auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value);
4640 Observer.changingInstr(MI);
4641 MI.getOperand(2).setReg(NewCst.getReg(0));
4642 Observer.changedInstr(MI);
4643 Observer.changingInstr(*LHSPtrAdd);
4644 LHSPtrAdd->getOperand(2).setReg(RHSReg);
4645 Observer.changedInstr(*LHSPtrAdd);
4646 };
4647 return !reassociationCanBreakAddressingModePattern(MI);
4648}
4649
4650bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI,
4651 MachineInstr *LHS,
4652 MachineInstr *RHS,
4653 BuildFnTy &MatchInfo) {
4654 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4655 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
4656 if (!LHSPtrAdd)
4657 return false;
4658
4659 Register Src2Reg = MI.getOperand(2).getReg();
4660 Register LHSSrc1 = LHSPtrAdd->getBaseReg();
4661 Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
4662 auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
4663 if (!C1)
4664 return false;
4665 auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4666 if (!C2)
4667 return false;
4668
4669 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4670 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4671 Observer.changingInstr(MI);
4672 MI.getOperand(1).setReg(LHSSrc1);
4673 MI.getOperand(2).setReg(NewCst.getReg(0));
4674 Observer.changedInstr(MI);
4675 };
4676 return !reassociationCanBreakAddressingModePattern(MI);
4677}
4678
4679bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
4680 BuildFnTy &MatchInfo) {
4681 auto &PtrAdd = cast<GPtrAdd>(MI);
4682 // We're trying to match a few pointer computation patterns here for
4683 // re-association opportunities.
4684 // 1) Isolating a constant operand to be on the RHS, e.g.:
4685 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4686 //
4687 // 2) Folding two constants in each sub-tree as long as such folding
4688 // doesn't break a legal addressing mode.
4689 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4690 //
4691 // 3) Move a constant from the LHS of an inner op to the RHS of the outer.
4692 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
4693 // iif (G_PTR_ADD X, C) has one use.
4694 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
4695 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
4696
4697 // Try to match example 2.
4698 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
4699 return true;
4700
4701 // Try to match example 3.
4702 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
4703 return true;
4704
4705 // Try to match example 1.
4706 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
4707 return true;
4708
4709 return false;
4710}
4711
4712bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
4713 Register Op1 = MI.getOperand(1).getReg();
4714 Register Op2 = MI.getOperand(2).getReg();
4715 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4716 if (!MaybeCst)
4717 return false;
4718 MatchInfo = *MaybeCst;
4719 return true;
4720}
4721
4722bool CombinerHelper::matchNarrowBinopFeedingAnd(
4723 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4724 // Look for a binop feeding into an AND with a mask:
4725 //
4726 // %add = G_ADD %lhs, %rhs
4727 // %and = G_AND %add, 000...11111111
4728 //
4729 // Check if it's possible to perform the binop at a narrower width and zext
4730 // back to the original width like so:
4731 //
4732 // %narrow_lhs = G_TRUNC %lhs
4733 // %narrow_rhs = G_TRUNC %rhs
4734 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
4735 // %new_add = G_ZEXT %narrow_add
4736 // %and = G_AND %new_add, 000...11111111
4737 //
4738 // This can allow later combines to eliminate the G_AND if it turns out
4739 // that the mask is irrelevant.
4740 assert(MI.getOpcode() == TargetOpcode::G_AND)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_AND
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_AND"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4740, __extension__
__PRETTY_FUNCTION__))
;
4741 Register Dst = MI.getOperand(0).getReg();
4742 Register AndLHS = MI.getOperand(1).getReg();
4743 Register AndRHS = MI.getOperand(2).getReg();
4744 LLT WideTy = MRI.getType(Dst);
4745
4746 // If the potential binop has more than one use, then it's possible that one
4747 // of those uses will need its full width.
4748 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
4749 return false;
4750
4751 // Check if the LHS feeding the AND is impacted by the high bits that we're
4752 // masking out.
4753 //
4754 // e.g. for 64-bit x, y:
4755 //
4756 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
4757 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
4758 if (!LHSInst)
4759 return false;
4760 unsigned LHSOpc = LHSInst->getOpcode();
4761 switch (LHSOpc) {
4762 default:
4763 return false;
4764 case TargetOpcode::G_ADD:
4765 case TargetOpcode::G_SUB:
4766 case TargetOpcode::G_MUL:
4767 case TargetOpcode::G_AND:
4768 case TargetOpcode::G_OR:
4769 case TargetOpcode::G_XOR:
4770 break;
4771 }
4772
4773 // Find the mask on the RHS.
4774 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
4775 if (!Cst)
4776 return false;
4777 auto Mask = Cst->Value;
4778 if (!Mask.isMask())
4779 return false;
4780
4781 // No point in combining if there's nothing to truncate.
4782 unsigned NarrowWidth = Mask.countr_one();
4783 if (NarrowWidth == WideTy.getSizeInBits())
4784 return false;
4785 LLT NarrowTy = LLT::scalar(NarrowWidth);
4786
4787 // Check if adding the zext + truncates could be harmful.
4788 auto &MF = *MI.getMF();
4789 const auto &TLI = getTargetLowering();
4790 LLVMContext &Ctx = MF.getFunction().getContext();
4791 auto &DL = MF.getDataLayout();
4792 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
4793 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
4794 return false;
4795 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
4796 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
4797 return false;
4798 Register BinOpLHS = LHSInst->getOperand(1).getReg();
4799 Register BinOpRHS = LHSInst->getOperand(2).getReg();
4800 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4801 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
4802 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
4803 auto NarrowBinOp =
4804 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
4805 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
4806 Observer.changingInstr(MI);
4807 MI.getOperand(1).setReg(Ext.getReg(0));
4808 Observer.changedInstr(MI);
4809 };
4810 return true;
4811}
4812
4813bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) {
4814 unsigned Opc = MI.getOpcode();
4815 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO)(static_cast <bool> (Opc == TargetOpcode::G_UMULO || Opc
== TargetOpcode::G_SMULO) ? void (0) : __assert_fail ("Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4815, __extension__
__PRETTY_FUNCTION__))
;
4816
4817 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
4818 return false;
4819
4820 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4821 Observer.changingInstr(MI);
4822 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
4823 : TargetOpcode::G_SADDO;
4824 MI.setDesc(Builder.getTII().get(NewOpc));
4825 MI.getOperand(3).setReg(MI.getOperand(2).getReg());
4826 Observer.changedInstr(MI);
4827 };
4828 return true;
4829}
4830
4831bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4832 // (G_*MULO x, 0) -> 0 + no carry out
4833 assert(MI.getOpcode() == TargetOpcode::G_UMULO ||(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UMULO
|| MI.getOpcode() == TargetOpcode::G_SMULO) ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UMULO || MI.getOpcode() == TargetOpcode::G_SMULO"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4834, __extension__
__PRETTY_FUNCTION__))
4834 MI.getOpcode() == TargetOpcode::G_SMULO)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UMULO
|| MI.getOpcode() == TargetOpcode::G_SMULO) ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UMULO || MI.getOpcode() == TargetOpcode::G_SMULO"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4834, __extension__
__PRETTY_FUNCTION__))
;
4835 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4836 return false;
4837 Register Dst = MI.getOperand(0).getReg();
4838 Register Carry = MI.getOperand(1).getReg();
4839 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
4840 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4841 return false;
4842 MatchInfo = [=](MachineIRBuilder &B) {
4843 B.buildConstant(Dst, 0);
4844 B.buildConstant(Carry, 0);
4845 };
4846 return true;
4847}
4848
4849bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4850 // (G_*ADDO x, 0) -> x + no carry out
4851 assert(MI.getOpcode() == TargetOpcode::G_UADDO ||(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UADDO
|| MI.getOpcode() == TargetOpcode::G_SADDO) ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UADDO || MI.getOpcode() == TargetOpcode::G_SADDO"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4852, __extension__
__PRETTY_FUNCTION__))
4852 MI.getOpcode() == TargetOpcode::G_SADDO)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UADDO
|| MI.getOpcode() == TargetOpcode::G_SADDO) ? void (0) : __assert_fail
("MI.getOpcode() == TargetOpcode::G_UADDO || MI.getOpcode() == TargetOpcode::G_SADDO"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4852, __extension__
__PRETTY_FUNCTION__))
;
4853 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4854 return false;
4855 Register Carry = MI.getOperand(1).getReg();
4856 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4857 return false;
4858 Register Dst = MI.getOperand(0).getReg();
4859 Register LHS = MI.getOperand(2).getReg();
4860 MatchInfo = [=](MachineIRBuilder &B) {
4861 B.buildCopy(Dst, LHS);
4862 B.buildConstant(Carry, 0);
4863 };
4864 return true;
4865}
4866
4867bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) {
4868 // (G_*ADDE x, y, 0) -> (G_*ADDO x, y)
4869 // (G_*SUBE x, y, 0) -> (G_*SUBO x, y)
4870 assert(MI.getOpcode() == TargetOpcode::G_UADDE ||(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UADDE
|| MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode()
== TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::
G_SSUBE) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_UADDE || MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode() == TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::G_SSUBE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4873, __extension__
__PRETTY_FUNCTION__))
4871 MI.getOpcode() == TargetOpcode::G_SADDE ||(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UADDE
|| MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode()
== TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::
G_SSUBE) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_UADDE || MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode() == TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::G_SSUBE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4873, __extension__
__PRETTY_FUNCTION__))
4872 MI.getOpcode() == TargetOpcode::G_USUBE ||(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UADDE
|| MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode()
== TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::
G_SSUBE) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_UADDE || MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode() == TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::G_SSUBE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4873, __extension__
__PRETTY_FUNCTION__))
4873 MI.getOpcode() == TargetOpcode::G_SSUBE)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UADDE
|| MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode()
== TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::
G_SSUBE) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_UADDE || MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode() == TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::G_SSUBE"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4873, __extension__
__PRETTY_FUNCTION__))
;
4874 if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0)))
4875 return false;
4876 MatchInfo = [&](MachineIRBuilder &B) {
4877 unsigned NewOpcode;
1
'NewOpcode' declared without an initial value
4878 switch (MI.getOpcode()) {
2
'Default' branch taken. Execution continues on line 4892
4879 case TargetOpcode::G_UADDE:
4880 NewOpcode = TargetOpcode::G_UADDO;
4881 break;
4882 case TargetOpcode::G_SADDE:
4883 NewOpcode = TargetOpcode::G_SADDO;
4884 break;
4885 case TargetOpcode::G_USUBE:
4886 NewOpcode = TargetOpcode::G_USUBO;
4887 break;
4888 case TargetOpcode::G_SSUBE:
4889 NewOpcode = TargetOpcode::G_SSUBO;
4890 break;
4891 }
4892 Observer.changingInstr(MI);
4893 MI.setDesc(B.getTII().get(NewOpcode));
3
1st function call argument is an uninitialized value
4894 MI.removeOperand(4);
4895 Observer.changedInstr(MI);
4896 };
4897 return true;
4898}
4899
4900bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI,
4901 BuildFnTy &MatchInfo) {
4902 assert(MI.getOpcode() == TargetOpcode::G_SUB)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SUB
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SUB"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4902, __extension__
__PRETTY_FUNCTION__))
;
4903 Register Dst = MI.getOperand(0).getReg();
4904 // (x + y) - z -> x (if y == z)
4905 // (x + y) - z -> y (if x == z)
4906 Register X, Y, Z;
4907 if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) {
4908 Register ReplaceReg;
4909 int64_t CstX, CstY;
4910 if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) &&
4911 mi_match(Z, MRI, m_SpecificICstOrSplat(CstY))))
4912 ReplaceReg = X;
4913 else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
4914 mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
4915 ReplaceReg = Y;
4916 if (ReplaceReg) {
4917 MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); };
4918 return true;
4919 }
4920 }
4921
4922 // x - (y + z) -> 0 - y (if x == z)
4923 // x - (y + z) -> 0 - z (if x == y)
4924 if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) {
4925 Register ReplaceReg;
4926 int64_t CstX;
4927 if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
4928 mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
4929 ReplaceReg = Y;
4930 else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
4931 mi_match(Y, MRI, m_SpecificICstOrSplat(CstX))))
4932 ReplaceReg = Z;
4933 if (ReplaceReg) {
4934 MatchInfo = [=](MachineIRBuilder &B) {
4935 auto Zero = B.buildConstant(MRI.getType(Dst), 0);
4936 B.buildSub(Dst, Zero, ReplaceReg);
4937 };
4938 return true;
4939 }
4940 }
4941 return false;
4942}
4943
4944MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) {
4945 assert(MI.getOpcode() == TargetOpcode::G_UDIV)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UDIV
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_UDIV"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4945, __extension__
__PRETTY_FUNCTION__))
;
4946 auto &UDiv = cast<GenericMachineInstr>(MI);
4947 Register Dst = UDiv.getReg(0);
4948 Register LHS = UDiv.getReg(1);
4949 Register RHS = UDiv.getReg(2);
4950 LLT Ty = MRI.getType(Dst);
4951 LLT ScalarTy = Ty.getScalarType();
4952 const unsigned EltBits = ScalarTy.getScalarSizeInBits();
4953 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4954 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
4955 auto &MIB = Builder;
4956 MIB.setInstrAndDebugLoc(MI);
4957
4958 bool UseNPQ = false;
4959 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4960
4961 auto BuildUDIVPattern = [&](const Constant *C) {
4962 auto *CI = cast<ConstantInt>(C);
4963 const APInt &Divisor = CI->getValue();
4964
4965 bool SelNPQ = false;
4966 APInt Magic(Divisor.getBitWidth(), 0);
4967 unsigned PreShift = 0, PostShift = 0;
4968
4969 // Magic algorithm doesn't work for division by 1. We need to emit a select
4970 // at the end.
4971 // TODO: Use undef values for divisor of 1.
4972 if (!Divisor.isOne()) {
4973 UnsignedDivisionByConstantInfo magics =
4974 UnsignedDivisionByConstantInfo::get(Divisor);
4975
4976 Magic = std::move(magics.Magic);
4977
4978 assert(magics.PreShift < Divisor.getBitWidth() &&(static_cast <bool> (magics.PreShift < Divisor.getBitWidth
() && "We shouldn't generate an undefined shift!") ? void
(0) : __assert_fail ("magics.PreShift < Divisor.getBitWidth() && \"We shouldn't generate an undefined shift!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4979, __extension__
__PRETTY_FUNCTION__))
4979 "We shouldn't generate an undefined shift!")(static_cast <bool> (magics.PreShift < Divisor.getBitWidth
() && "We shouldn't generate an undefined shift!") ? void
(0) : __assert_fail ("magics.PreShift < Divisor.getBitWidth() && \"We shouldn't generate an undefined shift!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4979, __extension__
__PRETTY_FUNCTION__))
;
4980 assert(magics.PostShift < Divisor.getBitWidth() &&(static_cast <bool> (magics.PostShift < Divisor.getBitWidth
() && "We shouldn't generate an undefined shift!") ? void
(0) : __assert_fail ("magics.PostShift < Divisor.getBitWidth() && \"We shouldn't generate an undefined shift!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4981, __extension__
__PRETTY_FUNCTION__))
4981 "We shouldn't generate an undefined shift!")(static_cast <bool> (magics.PostShift < Divisor.getBitWidth
() && "We shouldn't generate an undefined shift!") ? void
(0) : __assert_fail ("magics.PostShift < Divisor.getBitWidth() && \"We shouldn't generate an undefined shift!\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4981, __extension__
__PRETTY_FUNCTION__))
;
4982 assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift")(static_cast <bool> ((!magics.IsAdd || magics.PreShift ==
0) && "Unexpected pre-shift") ? void (0) : __assert_fail
("(!magics.IsAdd || magics.PreShift == 0) && \"Unexpected pre-shift\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 4982, __extension__
__PRETTY_FUNCTION__))
;
4983 PreShift = magics.PreShift;
4984 PostShift = magics.PostShift;
4985 SelNPQ = magics.IsAdd;
4986 }
4987
4988 PreShifts.push_back(
4989 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
4990 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0));
4991 NPQFactors.push_back(
4992 MIB.buildConstant(ScalarTy,
4993 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4994 : APInt::getZero(EltBits))
4995 .getReg(0));
4996 PostShifts.push_back(
4997 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
4998 UseNPQ |= SelNPQ;
4999 return true;
5000 };
5001
5002 // Collect the shifts/magic values from each element.
5003 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
5004 (void)Matched;
5005 assert(Matched && "Expected unary predicate match to succeed")(static_cast <bool> (Matched && "Expected unary predicate match to succeed"
) ? void (0) : __assert_fail ("Matched && \"Expected unary predicate match to succeed\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5005, __extension__
__PRETTY_FUNCTION__))
;
5006
5007 Register PreShift, PostShift, MagicFactor, NPQFactor;
5008 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
5009 if (RHSDef) {
5010 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
5011 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
5012 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
5013 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
5014 } else {
5015 assert(MRI.getType(RHS).isScalar() &&(static_cast <bool> (MRI.getType(RHS).isScalar() &&
"Non-build_vector operation should have been a scalar") ? void
(0) : __assert_fail ("MRI.getType(RHS).isScalar() && \"Non-build_vector operation should have been a scalar\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5016, __extension__
__PRETTY_FUNCTION__))
5016 "Non-build_vector operation should have been a scalar")(static_cast <bool> (MRI.getType(RHS).isScalar() &&
"Non-build_vector operation should have been a scalar") ? void
(0) : __assert_fail ("MRI.getType(RHS).isScalar() && \"Non-build_vector operation should have been a scalar\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5016, __extension__
__PRETTY_FUNCTION__))
;
5017 PreShift = PreShifts[0];
5018 MagicFactor = MagicFactors[0];
5019 PostShift = PostShifts[0];
5020 }
5021
5022 Register Q = LHS;
5023 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
5024
5025 // Multiply the numerator (operand 0) by the magic value.
5026 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
5027
5028 if (UseNPQ) {
5029 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
5030
5031 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5032 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
5033 if (Ty.isVector())
5034 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
5035 else
5036 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
5037
5038 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
5039 }
5040
5041 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
5042 auto One = MIB.buildConstant(Ty, 1);
5043 auto IsOne = MIB.buildICmp(
5044 CmpInst::Predicate::ICMP_EQ,
5045 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
5046 return MIB.buildSelect(Ty, IsOne, LHS, Q);
5047}
5048
5049bool CombinerHelper::matchUDivByConst(MachineInstr &MI) {
5050 assert(MI.getOpcode() == TargetOpcode::G_UDIV)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UDIV
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_UDIV"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5050, __extension__
__PRETTY_FUNCTION__))
;
5051 Register Dst = MI.getOperand(0).getReg();
5052 Register RHS = MI.getOperand(2).getReg();
5053 LLT DstTy = MRI.getType(Dst);
5054 auto *RHSDef = MRI.getVRegDef(RHS);
5055 if (!isConstantOrConstantVector(*RHSDef, MRI))
5056 return false;
5057
5058 auto &MF = *MI.getMF();
5059 AttributeList Attr = MF.getFunction().getAttributes();
5060 const auto &TLI = getTargetLowering();
5061 LLVMContext &Ctx = MF.getFunction().getContext();
5062 auto &DL = MF.getDataLayout();
5063 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
5064 return false;
5065
5066 // Don't do this for minsize because the instruction sequence is usually
5067 // larger.
5068 if (MF.getFunction().hasMinSize())
5069 return false;
5070
5071 // Don't do this if the types are not going to be legal.
5072 if (LI) {
5073 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
5074 return false;
5075 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
5076 return false;
5077 if (!isLegalOrBeforeLegalizer(
5078 {TargetOpcode::G_ICMP,
5079 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
5080 DstTy}}))
5081 return false;
5082 }
5083
5084 auto CheckEltValue = [&](const Constant *C) {
5085 if (auto *CI = dyn_cast_or_null<ConstantInt>(C))
5086 return !CI->isZero();
5087 return false;
5088 };
5089 return matchUnaryPredicate(MRI, RHS, CheckEltValue);
5090}
5091
5092void CombinerHelper::applyUDivByConst(MachineInstr &MI) {
5093 auto *NewMI = buildUDivUsingMul(MI);
5094 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
5095}
5096
5097bool CombinerHelper::matchSDivByConst(MachineInstr &MI) {
5098 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SDIV
&& "Expected SDIV") ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SDIV && \"Expected SDIV\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5098, __extension__
__PRETTY_FUNCTION__))
;
5099 Register Dst = MI.getOperand(0).getReg();
5100 Register RHS = MI.getOperand(2).getReg();
5101 LLT DstTy = MRI.getType(Dst);
5102
5103 auto &MF = *MI.getMF();
5104 AttributeList Attr = MF.getFunction().getAttributes();
5105 const auto &TLI = getTargetLowering();
5106 LLVMContext &Ctx = MF.getFunction().getContext();
5107 auto &DL = MF.getDataLayout();
5108 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
5109 return false;
5110
5111 // Don't do this for minsize because the instruction sequence is usually
5112 // larger.
5113 if (MF.getFunction().hasMinSize())
5114 return false;
5115
5116 // If the sdiv has an 'exact' flag we can use a simpler lowering.
5117 if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
5118 return matchUnaryPredicate(
5119 MRI, RHS, [](const Constant *C) { return C && !C->isZeroValue(); });
5120 }
5121
5122 // Don't support the general case for now.
5123 return false;
5124}
5125
5126void CombinerHelper::applySDivByConst(MachineInstr &MI) {
5127 auto *NewMI = buildSDivUsingMul(MI);
5128 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
5129}
5130
5131MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) {
5132 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV")(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SDIV
&& "Expected SDIV") ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SDIV && \"Expected SDIV\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5132, __extension__
__PRETTY_FUNCTION__))
;
5133 auto &SDiv = cast<GenericMachineInstr>(MI);
5134 Register Dst = SDiv.getReg(0);
5135 Register LHS = SDiv.getReg(1);
5136 Register RHS = SDiv.getReg(2);
5137 LLT Ty = MRI.getType(Dst);
5138 LLT ScalarTy = Ty.getScalarType();
5139 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5140 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
5141 auto &MIB = Builder;
5142 MIB.setInstrAndDebugLoc(MI);
5143
5144 bool UseSRA = false;
5145 SmallVector<Register, 16> Shifts, Factors;
5146
5147 auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI));
5148 bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value();
5149
5150 auto BuildSDIVPattern = [&](const Constant *C) {
5151 // Don't recompute inverses for each splat element.
5152 if (IsSplat && !Factors.empty()) {
5153 Shifts.push_back(Shifts[0]);
5154 Factors.push_back(Factors[0]);
5155 return true;
5156 }
5157
5158 auto *CI = cast<ConstantInt>(C);
5159 APInt Divisor = CI->getValue();
5160 unsigned Shift = Divisor.countr_zero();
5161 if (Shift) {
5162 Divisor.ashrInPlace(Shift);
5163 UseSRA = true;
5164 }
5165
5166 // Calculate the multiplicative inverse modulo BW.
5167 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5168 unsigned W = Divisor.getBitWidth();
5169 APInt Factor = Divisor.zext(W + 1)
5170 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5171 .trunc(W);
5172 Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
5173 Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
5174 return true;
5175 };
5176
5177 // Collect all magic values from the build vector.
5178 bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern);
5179 (void)Matched;
5180 assert(Matched && "Expected unary predicate match to succeed")(static_cast <bool> (Matched && "Expected unary predicate match to succeed"
) ? void (0) : __assert_fail ("Matched && \"Expected unary predicate match to succeed\""
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5180, __extension__
__PRETTY_FUNCTION__))
;
5181
5182 Register Shift, Factor;
5183 if (Ty.isVector()) {
5184 Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0);
5185 Factor = MIB.buildBuildVector(Ty, Factors).getReg(0);
5186 } else {
5187 Shift = Shifts[0];
5188 Factor = Factors[0];
5189 }
5190
5191 Register Res = LHS;
5192
5193 if (UseSRA)
5194 Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0);
5195
5196 return MIB.buildMul(Ty, Res, Factor);
5197}
5198
5199bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) {
5200 assert(MI.getOpcode() == TargetOpcode::G_UMULH)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UMULH
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_UMULH"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5200, __extension__
__PRETTY_FUNCTION__))
;
5201 Register RHS = MI.getOperand(2).getReg();
5202 Register Dst = MI.getOperand(0).getReg();
5203 LLT Ty = MRI.getType(Dst);
5204 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5205 auto MatchPow2ExceptOne = [&](const Constant *C) {
5206 if (auto *CI = dyn_cast<ConstantInt>(C))
5207 return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
5208 return false;
5209 };
5210 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
5211 return false;
5212 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}});
5213}
5214
5215void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) {
5216 Register LHS = MI.getOperand(1).getReg();
5217 Register RHS = MI.getOperand(2).getReg();
5218 Register Dst = MI.getOperand(0).getReg();
5219 LLT Ty = MRI.getType(Dst);
5220 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5221 unsigned NumEltBits = Ty.getScalarSizeInBits();
5222
5223 Builder.setInstrAndDebugLoc(MI);
5224 auto LogBase2 = buildLogBase2(RHS, Builder);
5225 auto ShiftAmt =
5226 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
5227 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
5228 Builder.buildLShr(Dst, LHS, Trunc);
5229 MI.eraseFromParent();
5230}
5231
5232bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
5233 BuildFnTy &MatchInfo) {
5234 unsigned Opc = MI.getOpcode();
5235 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||(static_cast <bool> (Opc == TargetOpcode::G_FADD || Opc
== TargetOpcode::G_FSUB || Opc == TargetOpcode::G_FMUL || Opc
== TargetOpcode::G_FDIV || Opc == TargetOpcode::G_FMAD || Opc
== TargetOpcode::G_FMA) ? void (0) : __assert_fail ("Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5237, __extension__
__PRETTY_FUNCTION__))
5236 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||(static_cast <bool> (Opc == TargetOpcode::G_FADD || Opc
== TargetOpcode::G_FSUB || Opc == TargetOpcode::G_FMUL || Opc
== TargetOpcode::G_FDIV || Opc == TargetOpcode::G_FMAD || Opc
== TargetOpcode::G_FMA) ? void (0) : __assert_fail ("Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5237, __extension__
__PRETTY_FUNCTION__))
5237 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA)(static_cast <bool> (Opc == TargetOpcode::G_FADD || Opc
== TargetOpcode::G_FSUB || Opc == TargetOpcode::G_FMUL || Opc
== TargetOpcode::G_FDIV || Opc == TargetOpcode::G_FMAD || Opc
== TargetOpcode::G_FMA) ? void (0) : __assert_fail ("Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5237, __extension__
__PRETTY_FUNCTION__))
;
5238
5239 Register Dst = MI.getOperand(0).getReg();
5240 Register X = MI.getOperand(1).getReg();
5241 Register Y = MI.getOperand(2).getReg();
5242 LLT Type = MRI.getType(Dst);
5243
5244 // fold (fadd x, fneg(y)) -> (fsub x, y)
5245 // fold (fadd fneg(y), x) -> (fsub x, y)
5246 // G_ADD is commutative so both cases are checked by m_GFAdd
5247 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
5248 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
5249 Opc = TargetOpcode::G_FSUB;
5250 }
5251 /// fold (fsub x, fneg(y)) -> (fadd x, y)
5252 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
5253 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
5254 Opc = TargetOpcode::G_FADD;
5255 }
5256 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
5257 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
5258 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
5259 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
5260 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
5261 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
5262 mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
5263 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
5264 // no opcode change
5265 } else
5266 return false;
5267
5268 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5269 Observer.changingInstr(MI);
5270 MI.setDesc(B.getTII().get(Opc));
5271 MI.getOperand(1).setReg(X);
5272 MI.getOperand(2).setReg(Y);
5273 Observer.changedInstr(MI);
5274 };
5275 return true;
5276}
5277
5278bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
5279 assert(MI.getOpcode() == TargetOpcode::G_FSUB)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_FSUB
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_FSUB"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5279, __extension__
__PRETTY_FUNCTION__))
;
5280
5281 Register LHS = MI.getOperand(1).getReg();
5282 MatchInfo = MI.getOperand(2).getReg();
5283 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
5284
5285 const auto LHSCst = Ty.isVector()
5286 ? getFConstantSplat(LHS, MRI, /* allowUndef */ true)
5287 : getFConstantVRegValWithLookThrough(LHS, MRI);
5288 if (!LHSCst)
5289 return false;
5290
5291 // -0.0 is always allowed
5292 if (LHSCst->Value.isNegZero())
5293 return true;
5294
5295 // +0.0 is only allowed if nsz is set.
5296 if (LHSCst->Value.isPosZero())
5297 return MI.getFlag(MachineInstr::FmNsz);
5298
5299 return false;
5300}
5301
5302void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
5303 Builder.setInstrAndDebugLoc(MI);
5304 Register Dst = MI.getOperand(0).getReg();
5305 Builder.buildFNeg(
5306 Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0));
5307 eraseInst(MI);
5308}
5309
5310/// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
5311/// due to global flags or MachineInstr flags.
5312static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
5313 if (MI.getOpcode() != TargetOpcode::G_FMUL)
5314 return false;
5315 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
5316}
5317
5318static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
5319 const MachineRegisterInfo &MRI) {
5320 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
5321 MRI.use_instr_nodbg_end()) >
5322 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
5323 MRI.use_instr_nodbg_end());
5324}
5325
5326bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
5327 bool &AllowFusionGlobally,
5328 bool &HasFMAD, bool &Aggressive,
5329 bool CanReassociate) {
5330
5331 auto *MF = MI.getMF();
5332 const auto &TLI = *MF->getSubtarget().getTargetLowering();
5333 const TargetOptions &Options = MF->getTarget().Options;
5334 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5335
5336 if (CanReassociate &&
5337 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
5338 return false;
5339
5340 // Floating-point multiply-add with intermediate rounding.
5341 HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType));
5342 // Floating-point multiply-add without intermediate rounding.
5343 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
5344 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
5345 // No valid opcode, do not combine.
5346 if (!HasFMAD && !HasFMA)
5347 return false;
5348
5349 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
5350 Options.UnsafeFPMath || HasFMAD;
5351 // If the addition is not contractable, do not combine.
5352 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
5353 return false;
5354
5355 Aggressive = TLI.enableAggressiveFMAFusion(DstType);
5356 return true;
5357}
5358
5359bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
5360 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5361 assert(MI.getOpcode() == TargetOpcode::G_FADD)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_FADD
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_FADD"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5361, __extension__
__PRETTY_FUNCTION__))
;
5362
5363 bool AllowFusionGlobally, HasFMAD, Aggressive;
5364 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5365 return false;
5366
5367 Register Op1 = MI.getOperand(1).getReg();
5368 Register Op2 = MI.getOperand(2).getReg();
5369 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5370 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5371 unsigned PreferredFusedOpcode =
5372 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5373
5374 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5375 // prefer to fold the multiply with fewer uses.
5376 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5377 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5378 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5379 std::swap(LHS, RHS);
5380 }
5381
5382 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5383 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5384 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
5385 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5386 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5387 {LHS.MI->getOperand(1).getReg(),
5388 LHS.MI->getOperand(2).getReg(), RHS.Reg});
5389 };
5390 return true;
5391 }
5392
5393 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5394 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5395 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
5396 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5397 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5398 {RHS.MI->getOperand(1).getReg(),
5399 RHS.MI->getOperand(2).getReg(), LHS.Reg});
5400 };
5401 return true;
5402 }
5403
5404 return false;
5405}
5406
5407bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
5408 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5409 assert(MI.getOpcode() == TargetOpcode::G_FADD)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_FADD
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_FADD"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5409, __extension__
__PRETTY_FUNCTION__))
;
5410
5411 bool AllowFusionGlobally, HasFMAD, Aggressive;
5412 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5413 return false;
5414
5415 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5416 Register Op1 = MI.getOperand(1).getReg();
5417 Register Op2 = MI.getOperand(2).getReg();
5418 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5419 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5420 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5421
5422 unsigned PreferredFusedOpcode =
5423 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5424
5425 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5426 // prefer to fold the multiply with fewer uses.
5427 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5428 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5429 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5430 std::swap(LHS, RHS);
5431 }
5432
5433 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
5434 MachineInstr *FpExtSrc;
5435 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5436 isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5437 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5438 MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5439 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5440 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5441 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5442 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5443 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
5444 };
5445 return true;
5446 }
5447
5448 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
5449 // Note: Commutes FADD operands.
5450 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5451 isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5452 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5453 MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5454 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5455 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5456 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5457 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5458 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
5459 };
5460 return true;
5461 }
5462
5463 return false;
5464}
5465
5466bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
5467 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5468 assert(MI.getOpcode() == TargetOpcode::G_FADD)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_FADD
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_FADD"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5468, __extension__
__PRETTY_FUNCTION__))
;
5469
5470 bool AllowFusionGlobally, HasFMAD, Aggressive;
5471 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
5472 return false;
5473
5474 Register Op1 = MI.getOperand(1).getReg();
5475 Register Op2 = MI.getOperand(2).getReg();
5476 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5477 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5478 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5479
5480 unsigned PreferredFusedOpcode =
5481 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5482
5483 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5484 // prefer to fold the multiply with fewer uses.
5485 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5486 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5487 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5488 std::swap(LHS, RHS);
5489 }
5490
5491 MachineInstr *FMA = nullptr;
5492 Register Z;
5493 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
5494 if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5495 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
5496 TargetOpcode::G_FMUL) &&
5497 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
5498 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
5499 FMA = LHS.MI;
5500 Z = RHS.Reg;
5501 }
5502 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
5503 else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5504 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
5505 TargetOpcode::G_FMUL) &&
5506 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
5507 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
5508 Z = LHS.Reg;
5509 FMA = RHS.MI;
5510 }
5511
5512 if (FMA) {
5513 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
5514 Register X = FMA->getOperand(1).getReg();
5515 Register Y = FMA->getOperand(2).getReg();
5516 Register U = FMulMI->getOperand(1).getReg();
5517 Register V = FMulMI->getOperand(2).getReg();
5518
5519 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5520 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
5521 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
5522 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5523 {X, Y, InnerFMA});
5524 };
5525 return true;
5526 }
5527
5528 return false;
5529}
5530
5531bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
5532 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5533 assert(MI.getOpcode() == TargetOpcode::G_FADD)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_FADD
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_FADD"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5533, __extension__
__PRETTY_FUNCTION__))
;
5534
5535 bool AllowFusionGlobally, HasFMAD, Aggressive;
5536 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5537 return false;
5538
5539 if (!Aggressive)
5540 return false;
5541
5542 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5543 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5544 Register Op1 = MI.getOperand(1).getReg();
5545 Register Op2 = MI.getOperand(2).getReg();
5546 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5547 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5548
5549 unsigned PreferredFusedOpcode =
5550 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5551
5552 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5553 // prefer to fold the multiply with fewer uses.
5554 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5555 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5556 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5557 std::swap(LHS, RHS);
5558 }
5559
5560 // Builds: (fma x, y, (fma (fpext u), (fpext v), z))
5561 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
5562 Register Y, MachineIRBuilder &B) {
5563 Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
5564 Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
5565 Register InnerFMA =
5566 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
5567 .getReg(0);
5568 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5569 {X, Y, InnerFMA});
5570 };
5571
5572 MachineInstr *FMulMI, *FMAMI;
5573 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
5574 // -> (fma x, y, (fma (fpext u), (fpext v), z))
5575 if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5576 mi_match(LHS.MI->getOperand(3).getReg(), MRI,
5577 m_GFPExt(m_MInstr(FMulMI))) &&
5578 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5579 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5580 MRI.getType(FMulMI->getOperand(0).getReg()))) {
5581 MatchInfo = [=](MachineIRBuilder &B) {
5582 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5583 FMulMI->getOperand(2).getReg(), RHS.Reg,
5584 LHS.MI->getOperand(1).getReg(),
5585 LHS.MI->getOperand(2).getReg(), B);
5586 };
5587 return true;
5588 }
5589
5590 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
5591 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5592 // FIXME: This turns two single-precision and one double-precision
5593 // operation into two double-precision operations, which might not be
5594 // interesting for all targets, especially GPUs.
5595 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5596 FMAMI->getOpcode() == PreferredFusedOpcode) {
5597 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5598 if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5599 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5600 MRI.getType(FMAMI->getOperand(0).getReg()))) {
5601 MatchInfo = [=](MachineIRBuilder &B) {
5602 Register X = FMAMI->getOperand(1).getReg();
5603 Register Y = FMAMI->getOperand(2).getReg();
5604 X = B.buildFPExt(DstType, X).getReg(0);
5605 Y = B.buildFPExt(DstType, Y).getReg(0);
5606 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5607 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
5608 };
5609
5610 return true;
5611 }
5612 }
5613
5614 // fold (fadd z, (fma x, y, (fpext (fmul u, v)))
5615 // -> (fma x, y, (fma (fpext u), (fpext v), z))
5616 if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5617 mi_match(RHS.MI->getOperand(3).getReg(), MRI,
5618 m_GFPExt(m_MInstr(FMulMI))) &&
5619 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5620 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5621 MRI.getType(FMulMI->getOperand(0).getReg()))) {
5622 MatchInfo = [=](MachineIRBuilder &B) {
5623 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5624 FMulMI->getOperand(2).getReg(), LHS.Reg,
5625 RHS.MI->getOperand(1).getReg(),
5626 RHS.MI->getOperand(2).getReg(), B);
5627 };
5628 return true;
5629 }
5630
5631 // fold (fadd z, (fpext (fma x, y, (fmul u, v)))
5632 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5633 // FIXME: This turns two single-precision and one double-precision
5634 // operation into two double-precision operations, which might not be
5635 // interesting for all targets, especially GPUs.
5636 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5637 FMAMI->getOpcode() == PreferredFusedOpcode) {
5638 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5639 if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5640 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5641 MRI.getType(FMAMI->getOperand(0).getReg()))) {
5642 MatchInfo = [=](MachineIRBuilder &B) {
5643 Register X = FMAMI->getOperand(1).getReg();
5644 Register Y = FMAMI->getOperand(2).getReg();
5645 X = B.buildFPExt(DstType, X).getReg(0);
5646 Y = B.buildFPExt(DstType, Y).getReg(0);
5647 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5648 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
5649 };
5650 return true;
5651 }
5652 }
5653
5654 return false;
5655}
5656
5657bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
5658 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5659 assert(MI.getOpcode() == TargetOpcode::G_FSUB)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_FSUB
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_FSUB"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5659, __extension__
__PRETTY_FUNCTION__))
;
5660
5661 bool AllowFusionGlobally, HasFMAD, Aggressive;
5662 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5663 return false;
5664
5665 Register Op1 = MI.getOperand(1).getReg();
5666 Register Op2 = MI.getOperand(2).getReg();
5667 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5668 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5669 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5670
5671 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5672 // prefer to fold the multiply with fewer uses.
5673 int FirstMulHasFewerUses = true;
5674 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5675 isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5676 hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5677 FirstMulHasFewerUses = false;
5678
5679 unsigned PreferredFusedOpcode =
5680 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5681
5682 // fold (fsub (fmul x, y), z) -> (fma x, y, -z)
5683 if (FirstMulHasFewerUses &&
5684 (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5685 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
5686 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5687 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
5688 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5689 {LHS.MI->getOperand(1).getReg(),
5690 LHS.MI->getOperand(2).getReg(), NegZ});
5691 };
5692 return true;
5693 }
5694 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
5695 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5696 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
5697 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5698 Register NegY =
5699 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
5700 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5701 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
5702 };
5703 return true;
5704 }
5705
5706 return false;
5707}
5708
5709bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
5710 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5711 assert(MI.getOpcode() == TargetOpcode::G_FSUB)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_FSUB
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_FSUB"
, "llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp", 5711, __extension__
__PRETTY_FUNCTION__))
;
5712
5713 bool AllowFusionGlobally, HasFMAD, Aggressive;
5714 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5715 return false;
5716
5717 Register LHSReg = MI.getOperand(1).getReg();
5718 Register RHSReg = MI.getOperand(2).getReg();
5719 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5720
5721 unsigned PreferredFusedOpcode =
5722 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5723
5724 MachineInstr *FMulMI;
5725 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
5726 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5727 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
5728 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5729 isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5730 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5731 Register NegX =
5732 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5733 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5734 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5735 {NegX, FMulMI->getOperand(2).getReg(), NegZ});
5736 };
5737 return true;
5738 }
5739
5740 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
5741 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5742 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
5743 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5744 isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5745 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5746 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},