Bug Summary

File:build/source/llvm/lib/Analysis/ConstantFolding.cpp
Warning:line 1102, column 9
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ConstantFolding.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I lib/Analysis -I /build/source/llvm/lib/Analysis -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1677881322 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-04-000721-16503-1 -x c++ /build/source/llvm/lib/Analysis/ConstantFolding.cpp

/build/source/llvm/lib/Analysis/ConstantFolding.cpp

1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/Analysis/TargetFolder.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Analysis/VectorUtils.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/ConstantFold.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsWebAssembly.h"
49#include "llvm/IR/IntrinsicsX86.h"
50#include "llvm/IR/Operator.h"
51#include "llvm/IR/Type.h"
52#include "llvm/IR/Value.h"
53#include "llvm/Support/Casting.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/KnownBits.h"
56#include "llvm/Support/MathExtras.h"
57#include <cassert>
58#include <cerrno>
59#include <cfenv>
60#include <cmath>
61#include <cstdint>
62
63using namespace llvm;
64
65namespace {
66
67//===----------------------------------------------------------------------===//
68// Constant Folding internal helper functions
69//===----------------------------------------------------------------------===//
70
71static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72 Constant *C, Type *SrcEltTy,
73 unsigned NumSrcElts,
74 const DataLayout &DL) {
75 // Now that we know that the input value is a vector of integers, just shift
76 // and insert them into our result.
77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78 for (unsigned i = 0; i != NumSrcElts; ++i) {
79 Constant *Element;
80 if (DL.isLittleEndian())
81 Element = C->getAggregateElement(NumSrcElts - i - 1);
82 else
83 Element = C->getAggregateElement(i);
84
85 if (Element && isa<UndefValue>(Element)) {
86 Result <<= BitShift;
87 continue;
88 }
89
90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91 if (!ElementCI)
92 return ConstantExpr::getBitCast(C, DestTy);
93
94 Result <<= BitShift;
95 Result |= ElementCI->getValue().zext(Result.getBitWidth());
96 }
97
98 return nullptr;
99}
100
101/// Constant fold bitcast, symbolically evaluating it with DataLayout.
102/// This always returns a non-null constant, but it may be a
103/// ConstantExpr if unfoldable.
104Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&(static_cast <bool> (CastInst::castIsValid(Instruction::
BitCast, C, DestTy) && "Invalid constantexpr bitcast!"
) ? void (0) : __assert_fail ("CastInst::castIsValid(Instruction::BitCast, C, DestTy) && \"Invalid constantexpr bitcast!\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 106, __extension__
__PRETTY_FUNCTION__))
106 "Invalid constantexpr bitcast!")(static_cast <bool> (CastInst::castIsValid(Instruction::
BitCast, C, DestTy) && "Invalid constantexpr bitcast!"
) ? void (0) : __assert_fail ("CastInst::castIsValid(Instruction::BitCast, C, DestTy) && \"Invalid constantexpr bitcast!\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 106, __extension__
__PRETTY_FUNCTION__))
;
107
108 // Catch the obvious splat cases.
109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
110 return Res;
111
112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113 // Handle a vector->scalar integer/fp cast.
114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116 Type *SrcEltTy = VTy->getElementType();
117
118 // If the vector is a vector of floating point, convert it to vector of int
119 // to simplify things.
120 if (SrcEltTy->isFloatingPointTy()) {
121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122 auto *SrcIVTy = FixedVectorType::get(
123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124 // Ask IR to do the conversion now that #elts line up.
125 C = ConstantExpr::getBitCast(C, SrcIVTy);
126 }
127
128 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130 SrcEltTy, NumSrcElts, DL))
131 return CE;
132
133 if (isa<IntegerType>(DestTy))
134 return ConstantInt::get(DestTy, Result);
135
136 APFloat FP(DestTy->getFltSemantics(), Result);
137 return ConstantFP::get(DestTy->getContext(), FP);
138 }
139 }
140
141 // The code below only handles casts to vectors currently.
142 auto *DestVTy = dyn_cast<VectorType>(DestTy);
143 if (!DestVTy)
144 return ConstantExpr::getBitCast(C, DestTy);
145
146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147 // vector so the code below can handle it uniformly.
148 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149 Constant *Ops = C; // don't take the address of C!
150 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151 }
152
153 // If this is a bitcast from constant vector -> vector, fold it.
154 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155 return ConstantExpr::getBitCast(C, DestTy);
156
157 // If the element types match, IR can fold it.
158 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160 if (NumDstElt == NumSrcElt)
161 return ConstantExpr::getBitCast(C, DestTy);
162
163 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164 Type *DstEltTy = DestVTy->getElementType();
165
166 // Otherwise, we're changing the number of elements in a vector, which
167 // requires endianness information to do the right thing. For example,
168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169 // folds to (little endian):
170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171 // and to (big endian):
172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173
174 // First thing is first. We only want to think about integer here, so if
175 // we have something in FP form, recast it as integer.
176 if (DstEltTy->isFloatingPointTy()) {
177 // Fold to an vector of integers with same size as our FP type.
178 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179 auto *DestIVTy = FixedVectorType::get(
180 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181 // Recursively handle this integer conversion, if possible.
182 C = FoldBitCast(C, DestIVTy, DL);
183
184 // Finally, IR can handle this now that #elts line up.
185 return ConstantExpr::getBitCast(C, DestTy);
186 }
187
188 // Okay, we know the destination is integer, if the input is FP, convert
189 // it to integer first.
190 if (SrcEltTy->isFloatingPointTy()) {
191 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192 auto *SrcIVTy = FixedVectorType::get(
193 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194 // Ask IR to do the conversion now that #elts line up.
195 C = ConstantExpr::getBitCast(C, SrcIVTy);
196 // If IR wasn't able to fold it, bail out.
197 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
198 !isa<ConstantDataVector>(C))
199 return C;
200 }
201
202 // Now we know that the input and output vectors are both integer vectors
203 // of the same size, and that their #elements is not the same. Do the
204 // conversion here, which depends on whether the input or output has
205 // more elements.
206 bool isLittleEndian = DL.isLittleEndian();
207
208 SmallVector<Constant*, 32> Result;
209 if (NumDstElt < NumSrcElt) {
210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211 Constant *Zero = Constant::getNullValue(DstEltTy);
212 unsigned Ratio = NumSrcElt/NumDstElt;
213 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214 unsigned SrcElt = 0;
215 for (unsigned i = 0; i != NumDstElt; ++i) {
216 // Build each element of the result.
217 Constant *Elt = Zero;
218 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219 for (unsigned j = 0; j != Ratio; ++j) {
220 Constant *Src = C->getAggregateElement(SrcElt++);
221 if (Src && isa<UndefValue>(Src))
222 Src = Constant::getNullValue(
223 cast<VectorType>(C->getType())->getElementType());
224 else
225 Src = dyn_cast_or_null<ConstantInt>(Src);
226 if (!Src) // Reject constantexpr elements.
227 return ConstantExpr::getBitCast(C, DestTy);
228
229 // Zero extend the element to the right size.
230 Src = ConstantExpr::getZExt(Src, Elt->getType());
231
232 // Shift it to the right place, depending on endianness.
233 Src = ConstantExpr::getShl(Src,
234 ConstantInt::get(Src->getType(), ShiftAmt));
235 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
236
237 // Mix it in.
238 Elt = ConstantExpr::getOr(Elt, Src);
239 }
240 Result.push_back(Elt);
241 }
242 return ConstantVector::get(Result);
243 }
244
245 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
246 unsigned Ratio = NumDstElt/NumSrcElt;
247 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
248
249 // Loop over each source value, expanding into multiple results.
250 for (unsigned i = 0; i != NumSrcElt; ++i) {
251 auto *Element = C->getAggregateElement(i);
252
253 if (!Element) // Reject constantexpr elements.
254 return ConstantExpr::getBitCast(C, DestTy);
255
256 if (isa<UndefValue>(Element)) {
257 // Correctly Propagate undef values.
258 Result.append(Ratio, UndefValue::get(DstEltTy));
259 continue;
260 }
261
262 auto *Src = dyn_cast<ConstantInt>(Element);
263 if (!Src)
264 return ConstantExpr::getBitCast(C, DestTy);
265
266 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
267 for (unsigned j = 0; j != Ratio; ++j) {
268 // Shift the piece of the value into the right place, depending on
269 // endianness.
270 Constant *Elt = ConstantExpr::getLShr(Src,
271 ConstantInt::get(Src->getType(), ShiftAmt));
272 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
273
274 // Truncate the element to an integer with the same pointer size and
275 // convert the element back to a pointer using a inttoptr.
276 if (DstEltTy->isPointerTy()) {
277 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
278 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
279 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
280 continue;
281 }
282
283 // Truncate and remember this piece.
284 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
285 }
286 }
287
288 return ConstantVector::get(Result);
289}
290
291} // end anonymous namespace
292
293/// If this constant is a constant offset from a global, return the global and
294/// the constant. Because of constantexprs, this function is recursive.
295bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
296 APInt &Offset, const DataLayout &DL,
297 DSOLocalEquivalent **DSOEquiv) {
298 if (DSOEquiv)
299 *DSOEquiv = nullptr;
300
301 // Trivial case, constant is the global.
302 if ((GV = dyn_cast<GlobalValue>(C))) {
303 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
304 Offset = APInt(BitWidth, 0);
305 return true;
306 }
307
308 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
309 if (DSOEquiv)
310 *DSOEquiv = FoundDSOEquiv;
311 GV = FoundDSOEquiv->getGlobalValue();
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 // Otherwise, if this isn't a constant expr, bail out.
318 auto *CE = dyn_cast<ConstantExpr>(C);
319 if (!CE) return false;
320
321 // Look through ptr->int and ptr->ptr casts.
322 if (CE->getOpcode() == Instruction::PtrToInt ||
323 CE->getOpcode() == Instruction::BitCast)
324 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
325 DSOEquiv);
326
327 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
328 auto *GEP = dyn_cast<GEPOperator>(CE);
329 if (!GEP)
330 return false;
331
332 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
333 APInt TmpOffset(BitWidth, 0);
334
335 // If the base isn't a global+constant, we aren't either.
336 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
337 DSOEquiv))
338 return false;
339
340 // Otherwise, add any offset that our operands provide.
341 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
342 return false;
343
344 Offset = TmpOffset;
345 return true;
346}
347
348Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
349 const DataLayout &DL) {
350 do {
351 Type *SrcTy = C->getType();
352 if (SrcTy == DestTy)
353 return C;
354
355 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
356 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
357 if (!TypeSize::isKnownGE(SrcSize, DestSize))
358 return nullptr;
359
360 // Catch the obvious splat cases (since all-zeros can coerce non-integral
361 // pointers legally).
362 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
363 return Res;
364
365 // If the type sizes are the same and a cast is legal, just directly
366 // cast the constant.
367 // But be careful not to coerce non-integral pointers illegally.
368 if (SrcSize == DestSize &&
369 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
370 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
371 Instruction::CastOps Cast = Instruction::BitCast;
372 // If we are going from a pointer to int or vice versa, we spell the cast
373 // differently.
374 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
375 Cast = Instruction::IntToPtr;
376 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
377 Cast = Instruction::PtrToInt;
378
379 if (CastInst::castIsValid(Cast, C, DestTy))
380 return ConstantExpr::getCast(Cast, C, DestTy);
381 }
382
383 // If this isn't an aggregate type, there is nothing we can do to drill down
384 // and find a bitcastable constant.
385 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
386 return nullptr;
387
388 // We're simulating a load through a pointer that was bitcast to point to
389 // a different type, so we can try to walk down through the initial
390 // elements of an aggregate to see if some part of the aggregate is
391 // castable to implement the "load" semantic model.
392 if (SrcTy->isStructTy()) {
393 // Struct types might have leading zero-length elements like [0 x i32],
394 // which are certainly not what we are looking for, so skip them.
395 unsigned Elem = 0;
396 Constant *ElemC;
397 do {
398 ElemC = C->getAggregateElement(Elem++);
399 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
400 C = ElemC;
401 } else {
402 // For non-byte-sized vector elements, the first element is not
403 // necessarily located at the vector base address.
404 if (auto *VT = dyn_cast<VectorType>(SrcTy))
405 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
406 return nullptr;
407
408 C = C->getAggregateElement(0u);
409 }
410 } while (C);
411
412 return nullptr;
413}
414
415namespace {
416
417/// Recursive helper to read bits out of global. C is the constant being copied
418/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
419/// results into and BytesLeft is the number of bytes left in
420/// the CurPtr buffer. DL is the DataLayout.
421bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
422 unsigned BytesLeft, const DataLayout &DL) {
423 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&(static_cast <bool> (ByteOffset <= DL.getTypeAllocSize
(C->getType()) && "Out of range access") ? void (0
) : __assert_fail ("ByteOffset <= DL.getTypeAllocSize(C->getType()) && \"Out of range access\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 424, __extension__
__PRETTY_FUNCTION__))
424 "Out of range access")(static_cast <bool> (ByteOffset <= DL.getTypeAllocSize
(C->getType()) && "Out of range access") ? void (0
) : __assert_fail ("ByteOffset <= DL.getTypeAllocSize(C->getType()) && \"Out of range access\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 424, __extension__
__PRETTY_FUNCTION__))
;
425
426 // If this element is zero or undefined, we can just return since *CurPtr is
427 // zero initialized.
428 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
429 return true;
430
431 if (auto *CI = dyn_cast<ConstantInt>(C)) {
432 if (CI->getBitWidth() > 64 ||
433 (CI->getBitWidth() & 7) != 0)
434 return false;
435
436 uint64_t Val = CI->getZExtValue();
437 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
438
439 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
440 int n = ByteOffset;
441 if (!DL.isLittleEndian())
442 n = IntBytes - n - 1;
443 CurPtr[i] = (unsigned char)(Val >> (n * 8));
444 ++ByteOffset;
445 }
446 return true;
447 }
448
449 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
450 if (CFP->getType()->isDoubleTy()) {
451 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
452 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
453 }
454 if (CFP->getType()->isFloatTy()){
455 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
456 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
457 }
458 if (CFP->getType()->isHalfTy()){
459 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
460 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
461 }
462 return false;
463 }
464
465 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
466 const StructLayout *SL = DL.getStructLayout(CS->getType());
467 unsigned Index = SL->getElementContainingOffset(ByteOffset);
468 uint64_t CurEltOffset = SL->getElementOffset(Index);
469 ByteOffset -= CurEltOffset;
470
471 while (true) {
472 // If the element access is to the element itself and not to tail padding,
473 // read the bytes from the element.
474 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
475
476 if (ByteOffset < EltSize &&
477 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
478 BytesLeft, DL))
479 return false;
480
481 ++Index;
482
483 // Check to see if we read from the last struct element, if so we're done.
484 if (Index == CS->getType()->getNumElements())
485 return true;
486
487 // If we read all of the bytes we needed from this element we're done.
488 uint64_t NextEltOffset = SL->getElementOffset(Index);
489
490 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
491 return true;
492
493 // Move to the next element of the struct.
494 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
495 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
496 ByteOffset = 0;
497 CurEltOffset = NextEltOffset;
498 }
499 // not reached.
500 }
501
502 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
503 isa<ConstantDataSequential>(C)) {
504 uint64_t NumElts;
505 Type *EltTy;
506 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
507 NumElts = AT->getNumElements();
508 EltTy = AT->getElementType();
509 } else {
510 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
511 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
512 }
513 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
514 uint64_t Index = ByteOffset / EltSize;
515 uint64_t Offset = ByteOffset - Index * EltSize;
516
517 for (; Index != NumElts; ++Index) {
518 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
519 BytesLeft, DL))
520 return false;
521
522 uint64_t BytesWritten = EltSize - Offset;
523 assert(BytesWritten <= EltSize && "Not indexing into this element?")(static_cast <bool> (BytesWritten <= EltSize &&
"Not indexing into this element?") ? void (0) : __assert_fail
("BytesWritten <= EltSize && \"Not indexing into this element?\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 523, __extension__
__PRETTY_FUNCTION__))
;
524 if (BytesWritten >= BytesLeft)
525 return true;
526
527 Offset = 0;
528 BytesLeft -= BytesWritten;
529 CurPtr += BytesWritten;
530 }
531 return true;
532 }
533
534 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
535 if (CE->getOpcode() == Instruction::IntToPtr &&
536 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
537 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
538 BytesLeft, DL);
539 }
540 }
541
542 // Otherwise, unknown initializer type.
543 return false;
544}
545
546Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
547 int64_t Offset, const DataLayout &DL) {
548 // Bail out early. Not expect to load from scalable global variable.
549 if (isa<ScalableVectorType>(LoadTy))
550 return nullptr;
551
552 auto *IntType = dyn_cast<IntegerType>(LoadTy);
553
554 // If this isn't an integer load we can't fold it directly.
555 if (!IntType) {
556 // If this is a non-integer load, we can try folding it as an int load and
557 // then bitcast the result. This can be useful for union cases. Note
558 // that address spaces don't matter here since we're not going to result in
559 // an actual new load.
560 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
561 !LoadTy->isVectorTy())
562 return nullptr;
563
564 Type *MapTy = Type::getIntNTy(C->getContext(),
565 DL.getTypeSizeInBits(LoadTy).getFixedValue());
566 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
567 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
568 !LoadTy->isX86_AMXTy())
569 // Materializing a zero can be done trivially without a bitcast
570 return Constant::getNullValue(LoadTy);
571 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
572 Res = FoldBitCast(Res, CastTy, DL);
573 if (LoadTy->isPtrOrPtrVectorTy()) {
574 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
576 !LoadTy->isX86_AMXTy())
577 return Constant::getNullValue(LoadTy);
578 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
579 // Be careful not to replace a load of an addrspace value with an inttoptr here
580 return nullptr;
581 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
582 }
583 return Res;
584 }
585 return nullptr;
586 }
587
588 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
589 if (BytesLoaded > 32 || BytesLoaded == 0)
590 return nullptr;
591
592 // If we're not accessing anything in this constant, the result is undefined.
593 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
594 return PoisonValue::get(IntType);
595
596 // TODO: We should be able to support scalable types.
597 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
598 if (InitializerSize.isScalable())
599 return nullptr;
600
601 // If we're not accessing anything in this constant, the result is undefined.
602 if (Offset >= (int64_t)InitializerSize.getFixedValue())
603 return PoisonValue::get(IntType);
604
605 unsigned char RawBytes[32] = {0};
606 unsigned char *CurPtr = RawBytes;
607 unsigned BytesLeft = BytesLoaded;
608
609 // If we're loading off the beginning of the global, some bytes may be valid.
610 if (Offset < 0) {
611 CurPtr += -Offset;
612 BytesLeft += Offset;
613 Offset = 0;
614 }
615
616 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
617 return nullptr;
618
619 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620 if (DL.isLittleEndian()) {
621 ResultVal = RawBytes[BytesLoaded - 1];
622 for (unsigned i = 1; i != BytesLoaded; ++i) {
623 ResultVal <<= 8;
624 ResultVal |= RawBytes[BytesLoaded - 1 - i];
625 }
626 } else {
627 ResultVal = RawBytes[0];
628 for (unsigned i = 1; i != BytesLoaded; ++i) {
629 ResultVal <<= 8;
630 ResultVal |= RawBytes[i];
631 }
632 }
633
634 return ConstantInt::get(IntType->getContext(), ResultVal);
635}
636
637} // anonymous namespace
638
639// If GV is a constant with an initializer read its representation starting
640// at Offset and return it as a constant array of unsigned char. Otherwise
641// return null.
642Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
643 uint64_t Offset) {
644 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
645 return nullptr;
646
647 const DataLayout &DL = GV->getParent()->getDataLayout();
648 Constant *Init = const_cast<Constant *>(GV->getInitializer());
649 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
650 if (InitSize < Offset)
651 return nullptr;
652
653 uint64_t NBytes = InitSize - Offset;
654 if (NBytes > UINT16_MAX(65535))
655 // Bail for large initializers in excess of 64K to avoid allocating
656 // too much memory.
657 // Offset is assumed to be less than or equal than InitSize (this
658 // is enforced in ReadDataFromGlobal).
659 return nullptr;
660
661 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
662 unsigned char *CurPtr = RawBytes.data();
663
664 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
665 return nullptr;
666
667 return ConstantDataArray::get(GV->getContext(), RawBytes);
668}
669
670/// If this Offset points exactly to the start of an aggregate element, return
671/// that element, otherwise return nullptr.
672Constant *getConstantAtOffset(Constant *Base, APInt Offset,
673 const DataLayout &DL) {
674 if (Offset.isZero())
675 return Base;
676
677 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
678 return nullptr;
679
680 Type *ElemTy = Base->getType();
681 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
682 if (!Offset.isZero() || !Indices[0].isZero())
683 return nullptr;
684
685 Constant *C = Base;
686 for (const APInt &Index : drop_begin(Indices)) {
687 if (Index.isNegative() || Index.getActiveBits() >= 32)
688 return nullptr;
689
690 C = C->getAggregateElement(Index.getZExtValue());
691 if (!C)
692 return nullptr;
693 }
694
695 return C;
696}
697
698Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
699 const APInt &Offset,
700 const DataLayout &DL) {
701 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
702 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
703 return Result;
704
705 // Explicitly check for out-of-bounds access, so we return poison even if the
706 // constant is a uniform value.
707 TypeSize Size = DL.getTypeAllocSize(C->getType());
708 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
709 return PoisonValue::get(Ty);
710
711 // Try an offset-independent fold of a uniform value.
712 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
713 return Result;
714
715 // Try hard to fold loads from bitcasted strange and non-type-safe things.
716 if (Offset.getSignificantBits() <= 64)
717 if (Constant *Result =
718 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
719 return Result;
720
721 return nullptr;
722}
723
724Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
725 const DataLayout &DL) {
726 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
727}
728
729Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
730 APInt Offset,
731 const DataLayout &DL) {
732 // We can only fold loads from constant globals with a definitive initializer.
733 // Check this upfront, to skip expensive offset calculations.
734 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
735 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
736 return nullptr;
737
738 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
739 DL, Offset, /* AllowNonInbounds */ true));
740
741 if (C == GV)
742 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
743 Offset, DL))
744 return Result;
745
746 // If this load comes from anywhere in a uniform constant global, the value
747 // is always the same, regardless of the loaded offset.
748 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty);
749}
750
751Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
752 const DataLayout &DL) {
753 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
754 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
755}
756
757Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
758 if (isa<PoisonValue>(C))
759 return PoisonValue::get(Ty);
760 if (isa<UndefValue>(C))
761 return UndefValue::get(Ty);
762 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
763 return Constant::getNullValue(Ty);
764 if (C->isAllOnesValue() &&
765 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
766 return Constant::getAllOnesValue(Ty);
767 return nullptr;
768}
769
770namespace {
771
772/// One of Op0/Op1 is a constant expression.
773/// Attempt to symbolically evaluate the result of a binary operator merging
774/// these together. If target data info is available, it is provided as DL,
775/// otherwise DL is null.
776Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
777 const DataLayout &DL) {
778 // SROA
779
780 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
781 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
782 // bits.
783
784 if (Opc == Instruction::And) {
785 KnownBits Known0 = computeKnownBits(Op0, DL);
786 KnownBits Known1 = computeKnownBits(Op1, DL);
787 if ((Known1.One | Known0.Zero).isAllOnes()) {
788 // All the bits of Op0 that the 'and' could be masking are already zero.
789 return Op0;
790 }
791 if ((Known0.One | Known1.Zero).isAllOnes()) {
792 // All the bits of Op1 that the 'and' could be masking are already zero.
793 return Op1;
794 }
795
796 Known0 &= Known1;
797 if (Known0.isConstant())
798 return ConstantInt::get(Op0->getType(), Known0.getConstant());
799 }
800
801 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
802 // constant. This happens frequently when iterating over a global array.
803 if (Opc == Instruction::Sub) {
804 GlobalValue *GV1, *GV2;
805 APInt Offs1, Offs2;
806
807 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
808 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
809 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
810
811 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
812 // PtrToInt may change the bitwidth so we have convert to the right size
813 // first.
814 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
815 Offs2.zextOrTrunc(OpSize));
816 }
817 }
818
819 return nullptr;
820}
821
822/// If array indices are not pointer-sized integers, explicitly cast them so
823/// that they aren't implicitly casted by the getelementptr.
824Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
825 Type *ResultTy, std::optional<unsigned> InRangeIndex,
826 const DataLayout &DL, const TargetLibraryInfo *TLI) {
827 Type *IntIdxTy = DL.getIndexType(ResultTy);
828 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
829
830 bool Any = false;
831 SmallVector<Constant*, 32> NewIdxs;
832 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
833 if ((i == 1 ||
834 !isa<StructType>(GetElementPtrInst::getIndexedType(
835 SrcElemTy, Ops.slice(1, i - 1)))) &&
836 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
837 Any = true;
838 Type *NewType = Ops[i]->getType()->isVectorTy()
839 ? IntIdxTy
840 : IntIdxScalarTy;
841 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
842 true,
843 NewType,
844 true),
845 Ops[i], NewType));
846 } else
847 NewIdxs.push_back(Ops[i]);
848 }
849
850 if (!Any)
851 return nullptr;
852
853 Constant *C = ConstantExpr::getGetElementPtr(
854 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
855 return ConstantFoldConstant(C, DL, TLI);
856}
857
858/// Strip the pointer casts, but preserve the address space information.
859Constant *StripPtrCastKeepAS(Constant *Ptr) {
860 assert(Ptr->getType()->isPointerTy() && "Not a pointer type")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Not a pointer type") ? void (0) : __assert_fail
("Ptr->getType()->isPointerTy() && \"Not a pointer type\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 860, __extension__
__PRETTY_FUNCTION__))
;
861 auto *OldPtrTy = cast<PointerType>(Ptr->getType());
862 Ptr = cast<Constant>(Ptr->stripPointerCasts());
863 auto *NewPtrTy = cast<PointerType>(Ptr->getType());
864
865 // Preserve the address space number of the pointer.
866 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
867 Ptr = ConstantExpr::getPointerCast(
868 Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
869 OldPtrTy->getAddressSpace()));
870 }
871 return Ptr;
872}
873
874/// If we can symbolically evaluate the GEP constant expression, do so.
875Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
876 ArrayRef<Constant *> Ops,
877 const DataLayout &DL,
878 const TargetLibraryInfo *TLI) {
879 const GEPOperator *InnermostGEP = GEP;
880 bool InBounds = GEP->isInBounds();
881
882 Type *SrcElemTy = GEP->getSourceElementType();
883 Type *ResElemTy = GEP->getResultElementType();
884 Type *ResTy = GEP->getType();
885 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
886 return nullptr;
887
888 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
889 GEP->getInRangeIndex(), DL, TLI))
890 return C;
891
892 Constant *Ptr = Ops[0];
893 if (!Ptr->getType()->isPointerTy())
894 return nullptr;
895
896 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
897
898 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
899 if (!isa<ConstantInt>(Ops[i]))
900 return nullptr;
901
902 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
903 APInt Offset = APInt(
904 BitWidth,
905 DL.getIndexedOffsetInType(
906 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
907 Ptr = StripPtrCastKeepAS(Ptr);
908
909 // If this is a GEP of a GEP, fold it all into a single GEP.
910 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
911 InnermostGEP = GEP;
912 InBounds &= GEP->isInBounds();
913
914 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
915
916 // Do not try the incorporate the sub-GEP if some index is not a number.
917 bool AllConstantInt = true;
918 for (Value *NestedOp : NestedOps)
919 if (!isa<ConstantInt>(NestedOp)) {
920 AllConstantInt = false;
921 break;
922 }
923 if (!AllConstantInt)
924 break;
925
926 Ptr = cast<Constant>(GEP->getOperand(0));
927 SrcElemTy = GEP->getSourceElementType();
928 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
929 Ptr = StripPtrCastKeepAS(Ptr);
930 }
931
932 // If the base value for this address is a literal integer value, fold the
933 // getelementptr to the resulting integer value casted to the pointer type.
934 APInt BasePtr(BitWidth, 0);
935 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
936 if (CE->getOpcode() == Instruction::IntToPtr) {
937 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
938 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
939 }
940 }
941
942 auto *PTy = cast<PointerType>(Ptr->getType());
943 if ((Ptr->isNullValue() || BasePtr != 0) &&
944 !DL.isNonIntegralPointerType(PTy)) {
945 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
946 return ConstantExpr::getIntToPtr(C, ResTy);
947 }
948
949 // Otherwise form a regular getelementptr. Recompute the indices so that
950 // we eliminate over-indexing of the notional static type array bounds.
951 // This makes it easy to determine if the getelementptr is "inbounds".
952 // Also, this helps GlobalOpt do SROA on GlobalVariables.
953
954 // For GEPs of GlobalValues, use the value type even for opaque pointers.
955 // Otherwise use an i8 GEP.
956 if (auto *GV = dyn_cast<GlobalValue>(Ptr))
957 SrcElemTy = GV->getValueType();
958 else if (!PTy->isOpaque())
959 SrcElemTy = PTy->getNonOpaquePointerElementType();
960 else
961 SrcElemTy = Type::getInt8Ty(Ptr->getContext());
962
963 if (!SrcElemTy->isSized())
964 return nullptr;
965
966 Type *ElemTy = SrcElemTy;
967 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
968 if (Offset != 0)
969 return nullptr;
970
971 // Try to add additional zero indices to reach the desired result element
972 // type.
973 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
974 // we'll have to insert a bitcast anyway?
975 while (ElemTy != ResElemTy) {
976 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
977 if (!NextTy)
978 break;
979
980 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
981 ElemTy = NextTy;
982 }
983
984 SmallVector<Constant *, 32> NewIdxs;
985 for (const APInt &Index : Indices)
986 NewIdxs.push_back(ConstantInt::get(
987 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
988
989 // Preserve the inrange index from the innermost GEP if possible. We must
990 // have calculated the same indices up to and including the inrange index.
991 std::optional<unsigned> InRangeIndex;
992 if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
993 if (SrcElemTy == InnermostGEP->getSourceElementType() &&
994 NewIdxs.size() > *LastIRIndex) {
995 InRangeIndex = LastIRIndex;
996 for (unsigned I = 0; I <= *LastIRIndex; ++I)
997 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
998 return nullptr;
999 }
1000
1001 // Create a GEP.
1002 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1003 InBounds, InRangeIndex);
1004 assert((static_cast <bool> (cast<PointerType>(C->getType
())->isOpaqueOrPointeeTypeMatches(ElemTy) && "Computed GetElementPtr has unexpected type!"
) ? void (0) : __assert_fail ("cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && \"Computed GetElementPtr has unexpected type!\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 1006, __extension__
__PRETTY_FUNCTION__))
1005 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&(static_cast <bool> (cast<PointerType>(C->getType
())->isOpaqueOrPointeeTypeMatches(ElemTy) && "Computed GetElementPtr has unexpected type!"
) ? void (0) : __assert_fail ("cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && \"Computed GetElementPtr has unexpected type!\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 1006, __extension__
__PRETTY_FUNCTION__))
1006 "Computed GetElementPtr has unexpected type!")(static_cast <bool> (cast<PointerType>(C->getType
())->isOpaqueOrPointeeTypeMatches(ElemTy) && "Computed GetElementPtr has unexpected type!"
) ? void (0) : __assert_fail ("cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && \"Computed GetElementPtr has unexpected type!\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 1006, __extension__
__PRETTY_FUNCTION__))
;
1007
1008 // If we ended up indexing a member with a type that doesn't match
1009 // the type of what the original indices indexed, add a cast.
1010 if (C->getType() != ResTy)
1011 C = FoldBitCast(C, ResTy, DL);
1012
1013 return C;
1014}
1015
1016/// Attempt to constant fold an instruction with the
1017/// specified opcode and operands. If successful, the constant result is
1018/// returned, if not, null is returned. Note that this function can fail when
1019/// attempting to fold instructions like loads and stores, which have no
1020/// constant expression form.
1021Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1022 ArrayRef<Constant *> Ops,
1023 const DataLayout &DL,
1024 const TargetLibraryInfo *TLI) {
1025 Type *DestTy = InstOrCE->getType();
1026
1027 if (Instruction::isUnaryOp(Opcode))
9
Calling 'Instruction::isUnaryOp'
12
Returning from 'Instruction::isUnaryOp'
13
Taking false branch
1028 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1029
1030 if (Instruction::isBinaryOp(Opcode)) {
14
Calling 'Instruction::isBinaryOp'
16
Returning from 'Instruction::isBinaryOp'
17
Taking false branch
1031 switch (Opcode) {
1032 default:
1033 break;
1034 case Instruction::FAdd:
1035 case Instruction::FSub:
1036 case Instruction::FMul:
1037 case Instruction::FDiv:
1038 case Instruction::FRem:
1039 // Handle floating point instructions separately to account for denormals
1040 // TODO: If a constant expression is being folded rather than an
1041 // instruction, denormals will not be flushed/treated as zero
1042 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1043 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
1044 }
1045 }
1046 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1047 }
1048
1049 if (Instruction::isCast(Opcode))
18
Calling 'Instruction::isCast'
20
Returning from 'Instruction::isCast'
21
Taking false branch
1050 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1051
1052 if (auto *GEP
22.1
'GEP' is null
22.1
'GEP' is null
= dyn_cast<GEPOperator>(InstOrCE)) {
22
Assuming 'InstOrCE' is not a 'CastReturnType'
23
Taking false branch
1053 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1054 return C;
1055
1056 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1057 Ops.slice(1), GEP->isInBounds(),
1058 GEP->getInRangeIndex());
1059 }
1060
1061 if (auto *CE
24.1
'CE' is null
24.1
'CE' is null
= dyn_cast<ConstantExpr>(InstOrCE)) {
24
Assuming 'InstOrCE' is not a 'CastReturnType'
25
Taking false branch
1062 if (CE->isCompare())
1063 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1064 DL, TLI);
1065 return CE->getWithOperands(Ops);
1066 }
1067
1068 switch (Opcode) {
26
Control jumps to 'case Load:' at line 1100
1069 default: return nullptr;
1070 case Instruction::ICmp:
1071 case Instruction::FCmp: {
1072 auto *C = cast<CmpInst>(InstOrCE);
1073 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1074 DL, TLI, C);
1075 }
1076 case Instruction::Freeze:
1077 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1078 case Instruction::Call:
1079 if (auto *F = dyn_cast<Function>(Ops.back())) {
1080 const auto *Call = cast<CallBase>(InstOrCE);
1081 if (canConstantFoldCallTo(Call, F))
1082 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1083 }
1084 return nullptr;
1085 case Instruction::Select:
1086 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1087 case Instruction::ExtractElement:
1088 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1089 case Instruction::ExtractValue:
1090 return ConstantFoldExtractValueInstruction(
1091 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1092 case Instruction::InsertElement:
1093 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1094 case Instruction::InsertValue:
1095 return ConstantFoldInsertValueInstruction(
1096 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1097 case Instruction::ShuffleVector:
1098 return ConstantExpr::getShuffleVector(
1099 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1100 case Instruction::Load: {
1101 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
27
Assuming 'InstOrCE' is not a 'CastReturnType'
28
'LI' initialized to a null pointer value
1102 if (LI->isVolatile())
29
Called C++ object pointer is null
1103 return nullptr;
1104 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1105 }
1106 }
1107}
1108
1109} // end anonymous namespace
1110
1111//===----------------------------------------------------------------------===//
1112// Constant Folding public APIs
1113//===----------------------------------------------------------------------===//
1114
1115namespace {
1116
1117Constant *
1118ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1119 const TargetLibraryInfo *TLI,
1120 SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1121 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
2
Assuming 'C' is not a 'ConstantVector'
3
Assuming 'C' is a 'class llvm::ConstantExpr &'
4
Taking false branch
1122 return const_cast<Constant *>(C);
1123
1124 SmallVector<Constant *, 8> Ops;
1125 for (const Use &OldU : C->operands()) {
5
Assuming '__begin1' is equal to '__end1'
1126 Constant *OldC = cast<Constant>(&OldU);
1127 Constant *NewC = OldC;
1128 // Recursively fold the ConstantExpr's operands. If we have already folded
1129 // a ConstantExpr, we don't have to process it again.
1130 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1131 auto It = FoldedOps.find(OldC);
1132 if (It == FoldedOps.end()) {
1133 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1134 FoldedOps.insert({OldC, NewC});
1135 } else {
1136 NewC = It->second;
1137 }
1138 }
1139 Ops.push_back(NewC);
1140 }
1141
1142 if (auto *CE
6.1
'CE' is non-null
6.1
'CE' is non-null
= dyn_cast<ConstantExpr>(C)) {
6
'C' is a 'ConstantExpr'
7
Taking true branch
1143 if (Constant *Res =
1144 ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
8
Calling 'ConstantFoldInstOperandsImpl'
1145 return Res;
1146 return const_cast<Constant *>(C);
1147 }
1148
1149 assert(isa<ConstantVector>(C))(static_cast <bool> (isa<ConstantVector>(C)) ? void
(0) : __assert_fail ("isa<ConstantVector>(C)", "llvm/lib/Analysis/ConstantFolding.cpp"
, 1149, __extension__ __PRETTY_FUNCTION__))
;
1150 return ConstantVector::get(Ops);
1151}
1152
1153} // end anonymous namespace
1154
1155Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1156 const TargetLibraryInfo *TLI) {
1157 // Handle PHI nodes quickly here...
1158 if (auto *PN = dyn_cast<PHINode>(I)) {
1159 Constant *CommonValue = nullptr;
1160
1161 SmallDenseMap<Constant *, Constant *> FoldedOps;
1162 for (Value *Incoming : PN->incoming_values()) {
1163 // If the incoming value is undef then skip it. Note that while we could
1164 // skip the value if it is equal to the phi node itself we choose not to
1165 // because that would break the rule that constant folding only applies if
1166 // all operands are constants.
1167 if (isa<UndefValue>(Incoming))
1168 continue;
1169 // If the incoming value is not a constant, then give up.
1170 auto *C = dyn_cast<Constant>(Incoming);
1171 if (!C)
1172 return nullptr;
1173 // Fold the PHI's operands.
1174 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1175 // If the incoming value is a different constant to
1176 // the one we saw previously, then give up.
1177 if (CommonValue && C != CommonValue)
1178 return nullptr;
1179 CommonValue = C;
1180 }
1181
1182 // If we reach here, all incoming values are the same constant or undef.
1183 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1184 }
1185
1186 // Scan the operand list, checking to see if they are all constants, if so,
1187 // hand off to ConstantFoldInstOperandsImpl.
1188 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1189 return nullptr;
1190
1191 SmallDenseMap<Constant *, Constant *> FoldedOps;
1192 SmallVector<Constant *, 8> Ops;
1193 for (const Use &OpU : I->operands()) {
1194 auto *Op = cast<Constant>(&OpU);
1195 // Fold the Instruction's operands.
1196 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1197 Ops.push_back(Op);
1198 }
1199
1200 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1201}
1202
1203Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1204 const TargetLibraryInfo *TLI) {
1205 SmallDenseMap<Constant *, Constant *> FoldedOps;
1206 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1
Calling 'ConstantFoldConstantImpl'
1207}
1208
1209Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1210 ArrayRef<Constant *> Ops,
1211 const DataLayout &DL,
1212 const TargetLibraryInfo *TLI) {
1213 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1214}
1215
1216Constant *llvm::ConstantFoldCompareInstOperands(
1217 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1218 const TargetLibraryInfo *TLI, const Instruction *I) {
1219 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1220 // fold: icmp (inttoptr x), null -> icmp x, 0
1221 // fold: icmp null, (inttoptr x) -> icmp 0, x
1222 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1223 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1224 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1225 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1226 //
1227 // FIXME: The following comment is out of data and the DataLayout is here now.
1228 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1229 // around to know if bit truncation is happening.
1230 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1231 if (Ops1->isNullValue()) {
1232 if (CE0->getOpcode() == Instruction::IntToPtr) {
1233 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1234 // Convert the integer value to the right size to ensure we get the
1235 // proper extension or truncation.
1236 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1237 IntPtrTy, false);
1238 Constant *Null = Constant::getNullValue(C->getType());
1239 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1240 }
1241
1242 // Only do this transformation if the int is intptrty in size, otherwise
1243 // there is a truncation or extension that we aren't modeling.
1244 if (CE0->getOpcode() == Instruction::PtrToInt) {
1245 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1246 if (CE0->getType() == IntPtrTy) {
1247 Constant *C = CE0->getOperand(0);
1248 Constant *Null = Constant::getNullValue(C->getType());
1249 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1250 }
1251 }
1252 }
1253
1254 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1255 if (CE0->getOpcode() == CE1->getOpcode()) {
1256 if (CE0->getOpcode() == Instruction::IntToPtr) {
1257 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1258
1259 // Convert the integer value to the right size to ensure we get the
1260 // proper extension or truncation.
1261 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1262 IntPtrTy, false);
1263 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1264 IntPtrTy, false);
1265 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1266 }
1267
1268 // Only do this transformation if the int is intptrty in size, otherwise
1269 // there is a truncation or extension that we aren't modeling.
1270 if (CE0->getOpcode() == Instruction::PtrToInt) {
1271 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1272 if (CE0->getType() == IntPtrTy &&
1273 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1274 return ConstantFoldCompareInstOperands(
1275 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1276 }
1277 }
1278 }
1279 }
1280
1281 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1282 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1283 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1284 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1285 Constant *LHS = ConstantFoldCompareInstOperands(
1286 Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1287 Constant *RHS = ConstantFoldCompareInstOperands(
1288 Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1289 unsigned OpC =
1290 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1291 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1292 }
1293
1294 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1295 // offset1 pred offset2, for the case where the offset is inbounds. This
1296 // only works for equality and unsigned comparison, as inbounds permits
1297 // crossing the sign boundary. However, the offset comparison itself is
1298 // signed.
1299 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1300 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1301 APInt Offset0(IndexWidth, 0);
1302 Value *Stripped0 =
1303 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1304 APInt Offset1(IndexWidth, 0);
1305 Value *Stripped1 =
1306 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1307 if (Stripped0 == Stripped1)
1308 return ConstantExpr::getCompare(
1309 ICmpInst::getSignedPredicate(Predicate),
1310 ConstantInt::get(CE0->getContext(), Offset0),
1311 ConstantInt::get(CE0->getContext(), Offset1));
1312 }
1313 } else if (isa<ConstantExpr>(Ops1)) {
1314 // If RHS is a constant expression, but the left side isn't, swap the
1315 // operands and try again.
1316 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1317 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1318 }
1319
1320 // Flush any denormal constant float input according to denormal handling
1321 // mode.
1322 Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1323 Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1324
1325 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1326}
1327
1328Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1329 const DataLayout &DL) {
1330 assert(Instruction::isUnaryOp(Opcode))(static_cast <bool> (Instruction::isUnaryOp(Opcode)) ? void
(0) : __assert_fail ("Instruction::isUnaryOp(Opcode)", "llvm/lib/Analysis/ConstantFolding.cpp"
, 1330, __extension__ __PRETTY_FUNCTION__))
;
1331
1332 return ConstantFoldUnaryInstruction(Opcode, Op);
1333}
1334
1335Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1336 Constant *RHS,
1337 const DataLayout &DL) {
1338 assert(Instruction::isBinaryOp(Opcode))(static_cast <bool> (Instruction::isBinaryOp(Opcode)) ?
void (0) : __assert_fail ("Instruction::isBinaryOp(Opcode)",
"llvm/lib/Analysis/ConstantFolding.cpp", 1338, __extension__
__PRETTY_FUNCTION__))
;
1339 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1340 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1341 return C;
1342
1343 if (ConstantExpr::isDesirableBinOp(Opcode))
1344 return ConstantExpr::get(Opcode, LHS, RHS);
1345 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1346}
1347
1348Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1349 bool IsOutput) {
1350 if (!I || !I->getParent() || !I->getFunction())
1351 return Operand;
1352
1353 ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1354 if (!CFP)
1355 return Operand;
1356
1357 const APFloat &APF = CFP->getValueAPF();
1358 Type *Ty = CFP->getType();
1359 DenormalMode DenormMode =
1360 I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1361 DenormalMode::DenormalModeKind Mode =
1362 IsOutput ? DenormMode.Output : DenormMode.Input;
1363 switch (Mode) {
1364 default:
1365 llvm_unreachable("unknown denormal mode")::llvm::llvm_unreachable_internal("unknown denormal mode", "llvm/lib/Analysis/ConstantFolding.cpp"
, 1365)
;
1366 return Operand;
1367 case DenormalMode::IEEE:
1368 return Operand;
1369 case DenormalMode::PreserveSign:
1370 if (APF.isDenormal()) {
1371 return ConstantFP::get(
1372 Ty->getContext(),
1373 APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1374 }
1375 return Operand;
1376 case DenormalMode::PositiveZero:
1377 if (APF.isDenormal()) {
1378 return ConstantFP::get(Ty->getContext(),
1379 APFloat::getZero(Ty->getFltSemantics(), false));
1380 }
1381 return Operand;
1382 }
1383 return Operand;
1384}
1385
1386Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1387 Constant *RHS, const DataLayout &DL,
1388 const Instruction *I) {
1389 if (Instruction::isBinaryOp(Opcode)) {
1390 // Flush denormal inputs if needed.
1391 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1392 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1393
1394 // Calculate constant result.
1395 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1396 if (!C)
1397 return nullptr;
1398
1399 // Flush denormal output if needed.
1400 return FlushFPConstant(C, I, /* IsOutput */ true);
1401 }
1402 // If instruction lacks a parent/function and the denormal mode cannot be
1403 // determined, use the default (IEEE).
1404 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1405}
1406
1407Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1408 Type *DestTy, const DataLayout &DL) {
1409 assert(Instruction::isCast(Opcode))(static_cast <bool> (Instruction::isCast(Opcode)) ? void
(0) : __assert_fail ("Instruction::isCast(Opcode)", "llvm/lib/Analysis/ConstantFolding.cpp"
, 1409, __extension__ __PRETTY_FUNCTION__))
;
1410 switch (Opcode) {
1411 default:
1412 llvm_unreachable("Missing case")::llvm::llvm_unreachable_internal("Missing case", "llvm/lib/Analysis/ConstantFolding.cpp"
, 1412)
;
1413 case Instruction::PtrToInt:
1414 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1415 Constant *FoldedValue = nullptr;
1416 // If the input is a inttoptr, eliminate the pair. This requires knowing
1417 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1418 if (CE->getOpcode() == Instruction::IntToPtr) {
1419 // zext/trunc the inttoptr to pointer size.
1420 FoldedValue = ConstantExpr::getIntegerCast(
1421 CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1422 /*IsSigned=*/false);
1423 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1424 // If we have GEP, we can perform the following folds:
1425 // (ptrtoint (gep null, x)) -> x
1426 // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1427 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1428 APInt BaseOffset(BitWidth, 0);
1429 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1430 DL, BaseOffset, /*AllowNonInbounds=*/true));
1431 if (Base->isNullValue()) {
1432 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1433 } else {
1434 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1435 if (GEP->getNumIndices() == 1 &&
1436 GEP->getSourceElementType()->isIntegerTy(8)) {
1437 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1438 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1439 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1440 if (Sub && Sub->getType() == IntIdxTy &&
1441 Sub->getOpcode() == Instruction::Sub &&
1442 Sub->getOperand(0)->isNullValue())
1443 FoldedValue = ConstantExpr::getSub(
1444 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1445 }
1446 }
1447 }
1448 if (FoldedValue) {
1449 // Do a zext or trunc to get to the ptrtoint dest size.
1450 return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1451 /*IsSigned=*/false);
1452 }
1453 }
1454 return ConstantExpr::getCast(Opcode, C, DestTy);
1455 case Instruction::IntToPtr:
1456 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1457 // the int size is >= the ptr size and the address spaces are the same.
1458 // This requires knowing the width of a pointer, so it can't be done in
1459 // ConstantExpr::getCast.
1460 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1461 if (CE->getOpcode() == Instruction::PtrToInt) {
1462 Constant *SrcPtr = CE->getOperand(0);
1463 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1464 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1465
1466 if (MidIntSize >= SrcPtrSize) {
1467 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1468 if (SrcAS == DestTy->getPointerAddressSpace())
1469 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1470 }
1471 }
1472 }
1473
1474 return ConstantExpr::getCast(Opcode, C, DestTy);
1475 case Instruction::Trunc:
1476 case Instruction::ZExt:
1477 case Instruction::SExt:
1478 case Instruction::FPTrunc:
1479 case Instruction::FPExt:
1480 case Instruction::UIToFP:
1481 case Instruction::SIToFP:
1482 case Instruction::FPToUI:
1483 case Instruction::FPToSI:
1484 case Instruction::AddrSpaceCast:
1485 return ConstantExpr::getCast(Opcode, C, DestTy);
1486 case Instruction::BitCast:
1487 return FoldBitCast(C, DestTy, DL);
1488 }
1489}
1490
1491//===----------------------------------------------------------------------===//
1492// Constant Folding for Calls
1493//
1494
1495bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1496 if (Call->isNoBuiltin())
1497 return false;
1498 if (Call->getFunctionType() != F->getFunctionType())
1499 return false;
1500 switch (F->getIntrinsicID()) {
1501 // Operations that do not operate floating-point numbers and do not depend on
1502 // FP environment can be folded even in strictfp functions.
1503 case Intrinsic::bswap:
1504 case Intrinsic::ctpop:
1505 case Intrinsic::ctlz:
1506 case Intrinsic::cttz:
1507 case Intrinsic::fshl:
1508 case Intrinsic::fshr:
1509 case Intrinsic::launder_invariant_group:
1510 case Intrinsic::strip_invariant_group:
1511 case Intrinsic::masked_load:
1512 case Intrinsic::get_active_lane_mask:
1513 case Intrinsic::abs:
1514 case Intrinsic::smax:
1515 case Intrinsic::smin:
1516 case Intrinsic::umax:
1517 case Intrinsic::umin:
1518 case Intrinsic::sadd_with_overflow:
1519 case Intrinsic::uadd_with_overflow:
1520 case Intrinsic::ssub_with_overflow:
1521 case Intrinsic::usub_with_overflow:
1522 case Intrinsic::smul_with_overflow:
1523 case Intrinsic::umul_with_overflow:
1524 case Intrinsic::sadd_sat:
1525 case Intrinsic::uadd_sat:
1526 case Intrinsic::ssub_sat:
1527 case Intrinsic::usub_sat:
1528 case Intrinsic::smul_fix:
1529 case Intrinsic::smul_fix_sat:
1530 case Intrinsic::bitreverse:
1531 case Intrinsic::is_constant:
1532 case Intrinsic::vector_reduce_add:
1533 case Intrinsic::vector_reduce_mul:
1534 case Intrinsic::vector_reduce_and:
1535 case Intrinsic::vector_reduce_or:
1536 case Intrinsic::vector_reduce_xor:
1537 case Intrinsic::vector_reduce_smin:
1538 case Intrinsic::vector_reduce_smax:
1539 case Intrinsic::vector_reduce_umin:
1540 case Intrinsic::vector_reduce_umax:
1541 // Target intrinsics
1542 case Intrinsic::amdgcn_perm:
1543 case Intrinsic::arm_mve_vctp8:
1544 case Intrinsic::arm_mve_vctp16:
1545 case Intrinsic::arm_mve_vctp32:
1546 case Intrinsic::arm_mve_vctp64:
1547 case Intrinsic::aarch64_sve_convert_from_svbool:
1548 // WebAssembly float semantics are always known
1549 case Intrinsic::wasm_trunc_signed:
1550 case Intrinsic::wasm_trunc_unsigned:
1551 return true;
1552
1553 // Floating point operations cannot be folded in strictfp functions in
1554 // general case. They can be folded if FP environment is known to compiler.
1555 case Intrinsic::minnum:
1556 case Intrinsic::maxnum:
1557 case Intrinsic::minimum:
1558 case Intrinsic::maximum:
1559 case Intrinsic::log:
1560 case Intrinsic::log2:
1561 case Intrinsic::log10:
1562 case Intrinsic::exp:
1563 case Intrinsic::exp2:
1564 case Intrinsic::sqrt:
1565 case Intrinsic::sin:
1566 case Intrinsic::cos:
1567 case Intrinsic::pow:
1568 case Intrinsic::powi:
1569 case Intrinsic::fma:
1570 case Intrinsic::fmuladd:
1571 case Intrinsic::fptoui_sat:
1572 case Intrinsic::fptosi_sat:
1573 case Intrinsic::convert_from_fp16:
1574 case Intrinsic::convert_to_fp16:
1575 case Intrinsic::amdgcn_cos:
1576 case Intrinsic::amdgcn_cubeid:
1577 case Intrinsic::amdgcn_cubema:
1578 case Intrinsic::amdgcn_cubesc:
1579 case Intrinsic::amdgcn_cubetc:
1580 case Intrinsic::amdgcn_fmul_legacy:
1581 case Intrinsic::amdgcn_fma_legacy:
1582 case Intrinsic::amdgcn_fract:
1583 case Intrinsic::amdgcn_ldexp:
1584 case Intrinsic::amdgcn_sin:
1585 // The intrinsics below depend on rounding mode in MXCSR.
1586 case Intrinsic::x86_sse_cvtss2si:
1587 case Intrinsic::x86_sse_cvtss2si64:
1588 case Intrinsic::x86_sse_cvttss2si:
1589 case Intrinsic::x86_sse_cvttss2si64:
1590 case Intrinsic::x86_sse2_cvtsd2si:
1591 case Intrinsic::x86_sse2_cvtsd2si64:
1592 case Intrinsic::x86_sse2_cvttsd2si:
1593 case Intrinsic::x86_sse2_cvttsd2si64:
1594 case Intrinsic::x86_avx512_vcvtss2si32:
1595 case Intrinsic::x86_avx512_vcvtss2si64:
1596 case Intrinsic::x86_avx512_cvttss2si:
1597 case Intrinsic::x86_avx512_cvttss2si64:
1598 case Intrinsic::x86_avx512_vcvtsd2si32:
1599 case Intrinsic::x86_avx512_vcvtsd2si64:
1600 case Intrinsic::x86_avx512_cvttsd2si:
1601 case Intrinsic::x86_avx512_cvttsd2si64:
1602 case Intrinsic::x86_avx512_vcvtss2usi32:
1603 case Intrinsic::x86_avx512_vcvtss2usi64:
1604 case Intrinsic::x86_avx512_cvttss2usi:
1605 case Intrinsic::x86_avx512_cvttss2usi64:
1606 case Intrinsic::x86_avx512_vcvtsd2usi32:
1607 case Intrinsic::x86_avx512_vcvtsd2usi64:
1608 case Intrinsic::x86_avx512_cvttsd2usi:
1609 case Intrinsic::x86_avx512_cvttsd2usi64:
1610 return !Call->isStrictFP();
1611
1612 // Sign operations are actually bitwise operations, they do not raise
1613 // exceptions even for SNANs.
1614 case Intrinsic::fabs:
1615 case Intrinsic::copysign:
1616 case Intrinsic::is_fpclass:
1617 // Non-constrained variants of rounding operations means default FP
1618 // environment, they can be folded in any case.
1619 case Intrinsic::ceil:
1620 case Intrinsic::floor:
1621 case Intrinsic::round:
1622 case Intrinsic::roundeven:
1623 case Intrinsic::trunc:
1624 case Intrinsic::nearbyint:
1625 case Intrinsic::rint:
1626 case Intrinsic::canonicalize:
1627 // Constrained intrinsics can be folded if FP environment is known
1628 // to compiler.
1629 case Intrinsic::experimental_constrained_fma:
1630 case Intrinsic::experimental_constrained_fmuladd:
1631 case Intrinsic::experimental_constrained_fadd:
1632 case Intrinsic::experimental_constrained_fsub:
1633 case Intrinsic::experimental_constrained_fmul:
1634 case Intrinsic::experimental_constrained_fdiv:
1635 case Intrinsic::experimental_constrained_frem:
1636 case Intrinsic::experimental_constrained_ceil:
1637 case Intrinsic::experimental_constrained_floor:
1638 case Intrinsic::experimental_constrained_round:
1639 case Intrinsic::experimental_constrained_roundeven:
1640 case Intrinsic::experimental_constrained_trunc:
1641 case Intrinsic::experimental_constrained_nearbyint:
1642 case Intrinsic::experimental_constrained_rint:
1643 case Intrinsic::experimental_constrained_fcmp:
1644 case Intrinsic::experimental_constrained_fcmps:
1645 return true;
1646 default:
1647 return false;
1648 case Intrinsic::not_intrinsic: break;
1649 }
1650
1651 if (!F->hasName() || Call->isStrictFP())
1652 return false;
1653
1654 // In these cases, the check of the length is required. We don't want to
1655 // return true for a name like "cos\0blah" which strcmp would return equal to
1656 // "cos", but has length 8.
1657 StringRef Name = F->getName();
1658 switch (Name[0]) {
1659 default:
1660 return false;
1661 case 'a':
1662 return Name == "acos" || Name == "acosf" ||
1663 Name == "asin" || Name == "asinf" ||
1664 Name == "atan" || Name == "atanf" ||
1665 Name == "atan2" || Name == "atan2f";
1666 case 'c':
1667 return Name == "ceil" || Name == "ceilf" ||
1668 Name == "cos" || Name == "cosf" ||
1669 Name == "cosh" || Name == "coshf";
1670 case 'e':
1671 return Name == "exp" || Name == "expf" ||
1672 Name == "exp2" || Name == "exp2f";
1673 case 'f':
1674 return Name == "fabs" || Name == "fabsf" ||
1675 Name == "floor" || Name == "floorf" ||
1676 Name == "fmod" || Name == "fmodf";
1677 case 'l':
1678 return Name == "log" || Name == "logf" ||
1679 Name == "log2" || Name == "log2f" ||
1680 Name == "log10" || Name == "log10f";
1681 case 'n':
1682 return Name == "nearbyint" || Name == "nearbyintf";
1683 case 'p':
1684 return Name == "pow" || Name == "powf";
1685 case 'r':
1686 return Name == "remainder" || Name == "remainderf" ||
1687 Name == "rint" || Name == "rintf" ||
1688 Name == "round" || Name == "roundf";
1689 case 's':
1690 return Name == "sin" || Name == "sinf" ||
1691 Name == "sinh" || Name == "sinhf" ||
1692 Name == "sqrt" || Name == "sqrtf";
1693 case 't':
1694 return Name == "tan" || Name == "tanf" ||
1695 Name == "tanh" || Name == "tanhf" ||
1696 Name == "trunc" || Name == "truncf";
1697 case '_':
1698 // Check for various function names that get used for the math functions
1699 // when the header files are preprocessed with the macro
1700 // __FINITE_MATH_ONLY__ enabled.
1701 // The '12' here is the length of the shortest name that can match.
1702 // We need to check the size before looking at Name[1] and Name[2]
1703 // so we may as well check a limit that will eliminate mismatches.
1704 if (Name.size() < 12 || Name[1] != '_')
1705 return false;
1706 switch (Name[2]) {
1707 default:
1708 return false;
1709 case 'a':
1710 return Name == "__acos_finite" || Name == "__acosf_finite" ||
1711 Name == "__asin_finite" || Name == "__asinf_finite" ||
1712 Name == "__atan2_finite" || Name == "__atan2f_finite";
1713 case 'c':
1714 return Name == "__cosh_finite" || Name == "__coshf_finite";
1715 case 'e':
1716 return Name == "__exp_finite" || Name == "__expf_finite" ||
1717 Name == "__exp2_finite" || Name == "__exp2f_finite";
1718 case 'l':
1719 return Name == "__log_finite" || Name == "__logf_finite" ||
1720 Name == "__log10_finite" || Name == "__log10f_finite";
1721 case 'p':
1722 return Name == "__pow_finite" || Name == "__powf_finite";
1723 case 's':
1724 return Name == "__sinh_finite" || Name == "__sinhf_finite";
1725 }
1726 }
1727}
1728
1729namespace {
1730
1731Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1732 if (Ty->isHalfTy() || Ty->isFloatTy()) {
1733 APFloat APF(V);
1734 bool unused;
1735 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1736 return ConstantFP::get(Ty->getContext(), APF);
1737 }
1738 if (Ty->isDoubleTy())
1739 return ConstantFP::get(Ty->getContext(), APFloat(V));
1740 llvm_unreachable("Can only constant fold half/float/double")::llvm::llvm_unreachable_internal("Can only constant fold half/float/double"
, "llvm/lib/Analysis/ConstantFolding.cpp", 1740)
;
1741}
1742
1743/// Clear the floating-point exception state.
1744inline void llvm_fenv_clearexcept() {
1745#if defined(HAVE_FENV_H1) && HAVE_DECL_FE_ALL_EXCEPT1
1746 feclearexcept(FE_ALL_EXCEPT(0x20 | 0x04 | 0x10 | 0x08 | 0x01));
1747#endif
1748 errno(*__errno_location ()) = 0;
1749}
1750
1751/// Test if a floating-point exception was raised.
1752inline bool llvm_fenv_testexcept() {
1753 int errno_val = errno(*__errno_location ());
1754 if (errno_val == ERANGE34 || errno_val == EDOM33)
1755 return true;
1756#if defined(HAVE_FENV_H1) && HAVE_DECL_FE_ALL_EXCEPT1 && HAVE_DECL_FE_INEXACT1
1757 if (fetestexcept(FE_ALL_EXCEPT(0x20 | 0x04 | 0x10 | 0x08 | 0x01) & ~FE_INEXACT0x20))
1758 return true;
1759#endif
1760 return false;
1761}
1762
1763Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1764 Type *Ty) {
1765 llvm_fenv_clearexcept();
1766 double Result = NativeFP(V.convertToDouble());
1767 if (llvm_fenv_testexcept()) {
1768 llvm_fenv_clearexcept();
1769 return nullptr;
1770 }
1771
1772 return GetConstantFoldFPValue(Result, Ty);
1773}
1774
1775Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1776 const APFloat &V, const APFloat &W, Type *Ty) {
1777 llvm_fenv_clearexcept();
1778 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1779 if (llvm_fenv_testexcept()) {
1780 llvm_fenv_clearexcept();
1781 return nullptr;
1782 }
1783
1784 return GetConstantFoldFPValue(Result, Ty);
1785}
1786
1787Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1788 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1789 if (!VT)
1790 return nullptr;
1791
1792 // This isn't strictly necessary, but handle the special/common case of zero:
1793 // all integer reductions of a zero input produce zero.
1794 if (isa<ConstantAggregateZero>(Op))
1795 return ConstantInt::get(VT->getElementType(), 0);
1796
1797 // This is the same as the underlying binops - poison propagates.
1798 if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1799 return PoisonValue::get(VT->getElementType());
1800
1801 // TODO: Handle undef.
1802 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1803 return nullptr;
1804
1805 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1806 if (!EltC)
1807 return nullptr;
1808
1809 APInt Acc = EltC->getValue();
1810 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1811 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1812 return nullptr;
1813 const APInt &X = EltC->getValue();
1814 switch (IID) {
1815 case Intrinsic::vector_reduce_add:
1816 Acc = Acc + X;
1817 break;
1818 case Intrinsic::vector_reduce_mul:
1819 Acc = Acc * X;
1820 break;
1821 case Intrinsic::vector_reduce_and:
1822 Acc = Acc & X;
1823 break;
1824 case Intrinsic::vector_reduce_or:
1825 Acc = Acc | X;
1826 break;
1827 case Intrinsic::vector_reduce_xor:
1828 Acc = Acc ^ X;
1829 break;
1830 case Intrinsic::vector_reduce_smin:
1831 Acc = APIntOps::smin(Acc, X);
1832 break;
1833 case Intrinsic::vector_reduce_smax:
1834 Acc = APIntOps::smax(Acc, X);
1835 break;
1836 case Intrinsic::vector_reduce_umin:
1837 Acc = APIntOps::umin(Acc, X);
1838 break;
1839 case Intrinsic::vector_reduce_umax:
1840 Acc = APIntOps::umax(Acc, X);
1841 break;
1842 }
1843 }
1844
1845 return ConstantInt::get(Op->getContext(), Acc);
1846}
1847
1848/// Attempt to fold an SSE floating point to integer conversion of a constant
1849/// floating point. If roundTowardZero is false, the default IEEE rounding is
1850/// used (toward nearest, ties to even). This matches the behavior of the
1851/// non-truncating SSE instructions in the default rounding mode. The desired
1852/// integer type Ty is used to select how many bits are available for the
1853/// result. Returns null if the conversion cannot be performed, otherwise
1854/// returns the Constant value resulting from the conversion.
1855Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1856 Type *Ty, bool IsSigned) {
1857 // All of these conversion intrinsics form an integer of at most 64bits.
1858 unsigned ResultWidth = Ty->getIntegerBitWidth();
1859 assert(ResultWidth <= 64 &&(static_cast <bool> (ResultWidth <= 64 && "Can only constant fold conversions to 64 and 32 bit ints"
) ? void (0) : __assert_fail ("ResultWidth <= 64 && \"Can only constant fold conversions to 64 and 32 bit ints\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 1860, __extension__
__PRETTY_FUNCTION__))
1860 "Can only constant fold conversions to 64 and 32 bit ints")(static_cast <bool> (ResultWidth <= 64 && "Can only constant fold conversions to 64 and 32 bit ints"
) ? void (0) : __assert_fail ("ResultWidth <= 64 && \"Can only constant fold conversions to 64 and 32 bit ints\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 1860, __extension__
__PRETTY_FUNCTION__))
;
1861
1862 uint64_t UIntVal;
1863 bool isExact = false;
1864 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1865 : APFloat::rmNearestTiesToEven;
1866 APFloat::opStatus status =
1867 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1868 IsSigned, mode, &isExact);
1869 if (status != APFloat::opOK &&
1870 (!roundTowardZero || status != APFloat::opInexact))
1871 return nullptr;
1872 return ConstantInt::get(Ty, UIntVal, IsSigned);
1873}
1874
1875double getValueAsDouble(ConstantFP *Op) {
1876 Type *Ty = Op->getType();
1877
1878 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1879 return Op->getValueAPF().convertToDouble();
1880
1881 bool unused;
1882 APFloat APF = Op->getValueAPF();
1883 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1884 return APF.convertToDouble();
1885}
1886
1887static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1888 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1889 C = &CI->getValue();
1890 return true;
1891 }
1892 if (isa<UndefValue>(Op)) {
1893 C = nullptr;
1894 return true;
1895 }
1896 return false;
1897}
1898
1899/// Checks if the given intrinsic call, which evaluates to constant, is allowed
1900/// to be folded.
1901///
1902/// \param CI Constrained intrinsic call.
1903/// \param St Exception flags raised during constant evaluation.
1904static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1905 APFloat::opStatus St) {
1906 std::optional<RoundingMode> ORM = CI->getRoundingMode();
1907 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1908
1909 // If the operation does not change exception status flags, it is safe
1910 // to fold.
1911 if (St == APFloat::opStatus::opOK)
1912 return true;
1913
1914 // If evaluation raised FP exception, the result can depend on rounding
1915 // mode. If the latter is unknown, folding is not possible.
1916 if (ORM && *ORM == RoundingMode::Dynamic)
1917 return false;
1918
1919 // If FP exceptions are ignored, fold the call, even if such exception is
1920 // raised.
1921 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1922 return true;
1923
1924 // Leave the calculation for runtime so that exception flags be correctly set
1925 // in hardware.
1926 return false;
1927}
1928
1929/// Returns the rounding mode that should be used for constant evaluation.
1930static RoundingMode
1931getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1932 std::optional<RoundingMode> ORM = CI->getRoundingMode();
1933 if (!ORM || *ORM == RoundingMode::Dynamic)
1934 // Even if the rounding mode is unknown, try evaluating the operation.
1935 // If it does not raise inexact exception, rounding was not applied,
1936 // so the result is exact and does not depend on rounding mode. Whether
1937 // other FP exceptions are raised, it does not depend on rounding mode.
1938 return RoundingMode::NearestTiesToEven;
1939 return *ORM;
1940}
1941
1942/// Try to constant fold llvm.canonicalize for the given caller and value.
1943static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1944 const APFloat &Src) {
1945 // Zero, positive and negative, is always OK to fold.
1946 if (Src.isZero()) {
1947 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1948 return ConstantFP::get(
1949 CI->getContext(),
1950 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1951 }
1952
1953 if (!Ty->isIEEELikeFPTy())
1954 return nullptr;
1955
1956 // Zero is always canonical and the sign must be preserved.
1957 //
1958 // Denorms and nans may have special encodings, but it should be OK to fold a
1959 // totally average number.
1960 if (Src.isNormal() || Src.isInfinity())
1961 return ConstantFP::get(CI->getContext(), Src);
1962
1963 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1964 DenormalMode DenormMode =
1965 CI->getFunction()->getDenormalMode(Src.getSemantics());
1966 if (DenormMode == DenormalMode::getIEEE())
1967 return nullptr;
1968
1969 bool IsPositive =
1970 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
1971 (DenormMode.Output == DenormalMode::PositiveZero &&
1972 DenormMode.Input == DenormalMode::IEEE));
1973 return ConstantFP::get(CI->getContext(),
1974 APFloat::getZero(Src.getSemantics(), !IsPositive));
1975 }
1976
1977 return nullptr;
1978}
1979
1980static Constant *ConstantFoldScalarCall1(StringRef Name,
1981 Intrinsic::ID IntrinsicID,
1982 Type *Ty,
1983 ArrayRef<Constant *> Operands,
1984 const TargetLibraryInfo *TLI,
1985 const CallBase *Call) {
1986 assert(Operands.size() == 1 && "Wrong number of operands.")(static_cast <bool> (Operands.size() == 1 && "Wrong number of operands."
) ? void (0) : __assert_fail ("Operands.size() == 1 && \"Wrong number of operands.\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 1986, __extension__
__PRETTY_FUNCTION__))
;
1987
1988 if (IntrinsicID == Intrinsic::is_constant) {
1989 // We know we have a "Constant" argument. But we want to only
1990 // return true for manifest constants, not those that depend on
1991 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1992 if (Operands[0]->isManifestConstant())
1993 return ConstantInt::getTrue(Ty->getContext());
1994 return nullptr;
1995 }
1996
1997 if (isa<PoisonValue>(Operands[0])) {
1998 // TODO: All of these operations should probably propagate poison.
1999 if (IntrinsicID == Intrinsic::canonicalize)
2000 return PoisonValue::get(Ty);
2001 }
2002
2003 if (isa<UndefValue>(Operands[0])) {
2004 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2005 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2006 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2007 if (IntrinsicID == Intrinsic::cos ||
2008 IntrinsicID == Intrinsic::ctpop ||
2009 IntrinsicID == Intrinsic::fptoui_sat ||
2010 IntrinsicID == Intrinsic::fptosi_sat ||
2011 IntrinsicID == Intrinsic::canonicalize)
2012 return Constant::getNullValue(Ty);
2013 if (IntrinsicID == Intrinsic::bswap ||
2014 IntrinsicID == Intrinsic::bitreverse ||
2015 IntrinsicID == Intrinsic::launder_invariant_group ||
2016 IntrinsicID == Intrinsic::strip_invariant_group)
2017 return Operands[0];
2018 }
2019
2020 if (isa<ConstantPointerNull>(Operands[0])) {
2021 // launder(null) == null == strip(null) iff in addrspace 0
2022 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2023 IntrinsicID == Intrinsic::strip_invariant_group) {
2024 // If instruction is not yet put in a basic block (e.g. when cloning
2025 // a function during inlining), Call's caller may not be available.
2026 // So check Call's BB first before querying Call->getCaller.
2027 const Function *Caller =
2028 Call->getParent() ? Call->getCaller() : nullptr;
2029 if (Caller &&
2030 !NullPointerIsDefined(
2031 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2032 return Operands[0];
2033 }
2034 return nullptr;
2035 }
2036 }
2037
2038 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2039 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2040 APFloat Val(Op->getValueAPF());
2041
2042 bool lost = false;
2043 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2044
2045 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2046 }
2047
2048 APFloat U = Op->getValueAPF();
2049
2050 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2051 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2052 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2053
2054 if (U.isNaN())
2055 return nullptr;
2056
2057 unsigned Width = Ty->getIntegerBitWidth();
2058 APSInt Int(Width, !Signed);
2059 bool IsExact = false;
2060 APFloat::opStatus Status =
2061 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2062
2063 if (Status == APFloat::opOK || Status == APFloat::opInexact)
2064 return ConstantInt::get(Ty, Int);
2065
2066 return nullptr;
2067 }
2068
2069 if (IntrinsicID == Intrinsic::fptoui_sat ||
2070 IntrinsicID == Intrinsic::fptosi_sat) {
2071 // convertToInteger() already has the desired saturation semantics.
2072 APSInt Int(Ty->getIntegerBitWidth(),
2073 IntrinsicID == Intrinsic::fptoui_sat);
2074 bool IsExact;
2075 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2076 return ConstantInt::get(Ty, Int);
2077 }
2078
2079 if (IntrinsicID == Intrinsic::canonicalize)
2080 return constantFoldCanonicalize(Ty, Call, U);
2081
2082 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2083 return nullptr;
2084
2085 // Use internal versions of these intrinsics.
2086
2087 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2088 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2089 return ConstantFP::get(Ty->getContext(), U);
2090 }
2091
2092 if (IntrinsicID == Intrinsic::round) {
2093 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2094 return ConstantFP::get(Ty->getContext(), U);
2095 }
2096
2097 if (IntrinsicID == Intrinsic::roundeven) {
2098 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2099 return ConstantFP::get(Ty->getContext(), U);
2100 }
2101
2102 if (IntrinsicID == Intrinsic::ceil) {
2103 U.roundToIntegral(APFloat::rmTowardPositive);
2104 return ConstantFP::get(Ty->getContext(), U);
2105 }
2106
2107 if (IntrinsicID == Intrinsic::floor) {
2108 U.roundToIntegral(APFloat::rmTowardNegative);
2109 return ConstantFP::get(Ty->getContext(), U);
2110 }
2111
2112 if (IntrinsicID == Intrinsic::trunc) {
2113 U.roundToIntegral(APFloat::rmTowardZero);
2114 return ConstantFP::get(Ty->getContext(), U);
2115 }
2116
2117 if (IntrinsicID == Intrinsic::fabs) {
2118 U.clearSign();
2119 return ConstantFP::get(Ty->getContext(), U);
2120 }
2121
2122 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2123 // The v_fract instruction behaves like the OpenCL spec, which defines
2124 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2125 // there to prevent fract(-small) from returning 1.0. It returns the
2126 // largest positive floating-point number less than 1.0."
2127 APFloat FloorU(U);
2128 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2129 APFloat FractU(U - FloorU);
2130 APFloat AlmostOne(U.getSemantics(), 1);
2131 AlmostOne.next(/*nextDown*/ true);
2132 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2133 }
2134
2135 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2136 // raise FP exceptions, unless the argument is signaling NaN.
2137
2138 std::optional<APFloat::roundingMode> RM;
2139 switch (IntrinsicID) {
2140 default:
2141 break;
2142 case Intrinsic::experimental_constrained_nearbyint:
2143 case Intrinsic::experimental_constrained_rint: {
2144 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2145 RM = CI->getRoundingMode();
2146 if (!RM || *RM == RoundingMode::Dynamic)
2147 return nullptr;
2148 break;
2149 }
2150 case Intrinsic::experimental_constrained_round:
2151 RM = APFloat::rmNearestTiesToAway;
2152 break;
2153 case Intrinsic::experimental_constrained_ceil:
2154 RM = APFloat::rmTowardPositive;
2155 break;
2156 case Intrinsic::experimental_constrained_floor:
2157 RM = APFloat::rmTowardNegative;
2158 break;
2159 case Intrinsic::experimental_constrained_trunc:
2160 RM = APFloat::rmTowardZero;
2161 break;
2162 }
2163 if (RM) {
2164 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2165 if (U.isFinite()) {
2166 APFloat::opStatus St = U.roundToIntegral(*RM);
2167 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2168 St == APFloat::opInexact) {
2169 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2170 if (EB && *EB == fp::ebStrict)
2171 return nullptr;
2172 }
2173 } else if (U.isSignaling()) {
2174 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2175 if (EB && *EB != fp::ebIgnore)
2176 return nullptr;
2177 U = APFloat::getQNaN(U.getSemantics());
2178 }
2179 return ConstantFP::get(Ty->getContext(), U);
2180 }
2181
2182 /// We only fold functions with finite arguments. Folding NaN and inf is
2183 /// likely to be aborted with an exception anyway, and some host libms
2184 /// have known errors raising exceptions.
2185 if (!U.isFinite())
2186 return nullptr;
2187
2188 /// Currently APFloat versions of these functions do not exist, so we use
2189 /// the host native double versions. Float versions are not called
2190 /// directly but for all these it is true (float)(f((double)arg)) ==
2191 /// f(arg). Long double not supported yet.
2192 const APFloat &APF = Op->getValueAPF();
2193
2194 switch (IntrinsicID) {
2195 default: break;
2196 case Intrinsic::log:
2197 return ConstantFoldFP(log, APF, Ty);
2198 case Intrinsic::log2:
2199 // TODO: What about hosts that lack a C99 library?
2200 return ConstantFoldFP(log2, APF, Ty);
2201 case Intrinsic::log10:
2202 // TODO: What about hosts that lack a C99 library?
2203 return ConstantFoldFP(log10, APF, Ty);
2204 case Intrinsic::exp:
2205 return ConstantFoldFP(exp, APF, Ty);
2206 case Intrinsic::exp2:
2207 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2208 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2209 case Intrinsic::sin:
2210 return ConstantFoldFP(sin, APF, Ty);
2211 case Intrinsic::cos:
2212 return ConstantFoldFP(cos, APF, Ty);
2213 case Intrinsic::sqrt:
2214 return ConstantFoldFP(sqrt, APF, Ty);
2215 case Intrinsic::amdgcn_cos:
2216 case Intrinsic::amdgcn_sin: {
2217 double V = getValueAsDouble(Op);
2218 if (V < -256.0 || V > 256.0)
2219 // The gfx8 and gfx9 architectures handle arguments outside the range
2220 // [-256, 256] differently. This should be a rare case so bail out
2221 // rather than trying to handle the difference.
2222 return nullptr;
2223 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2224 double V4 = V * 4.0;
2225 if (V4 == floor(V4)) {
2226 // Force exact results for quarter-integer inputs.
2227 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2228 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2229 } else {
2230 if (IsCos)
2231 V = cos(V * 2.0 * numbers::pi);
2232 else
2233 V = sin(V * 2.0 * numbers::pi);
2234 }
2235 return GetConstantFoldFPValue(V, Ty);
2236 }
2237 }
2238
2239 if (!TLI)
2240 return nullptr;
2241
2242 LibFunc Func = NotLibFunc;
2243 if (!TLI->getLibFunc(Name, Func))
2244 return nullptr;
2245
2246 switch (Func) {
2247 default:
2248 break;
2249 case LibFunc_acos:
2250 case LibFunc_acosf:
2251 case LibFunc_acos_finite:
2252 case LibFunc_acosf_finite:
2253 if (TLI->has(Func))
2254 return ConstantFoldFP(acos, APF, Ty);
2255 break;
2256 case LibFunc_asin:
2257 case LibFunc_asinf:
2258 case LibFunc_asin_finite:
2259 case LibFunc_asinf_finite:
2260 if (TLI->has(Func))
2261 return ConstantFoldFP(asin, APF, Ty);
2262 break;
2263 case LibFunc_atan:
2264 case LibFunc_atanf:
2265 if (TLI->has(Func))
2266 return ConstantFoldFP(atan, APF, Ty);
2267 break;
2268 case LibFunc_ceil:
2269 case LibFunc_ceilf:
2270 if (TLI->has(Func)) {
2271 U.roundToIntegral(APFloat::rmTowardPositive);
2272 return ConstantFP::get(Ty->getContext(), U);
2273 }
2274 break;
2275 case LibFunc_cos:
2276 case LibFunc_cosf:
2277 if (TLI->has(Func))
2278 return ConstantFoldFP(cos, APF, Ty);
2279 break;
2280 case LibFunc_cosh:
2281 case LibFunc_coshf:
2282 case LibFunc_cosh_finite:
2283 case LibFunc_coshf_finite:
2284 if (TLI->has(Func))
2285 return ConstantFoldFP(cosh, APF, Ty);
2286 break;
2287 case LibFunc_exp:
2288 case LibFunc_expf:
2289 case LibFunc_exp_finite:
2290 case LibFunc_expf_finite:
2291 if (TLI->has(Func))
2292 return ConstantFoldFP(exp, APF, Ty);
2293 break;
2294 case LibFunc_exp2:
2295 case LibFunc_exp2f:
2296 case LibFunc_exp2_finite:
2297 case LibFunc_exp2f_finite:
2298 if (TLI->has(Func))
2299 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2300 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2301 break;
2302 case LibFunc_fabs:
2303 case LibFunc_fabsf:
2304 if (TLI->has(Func)) {
2305 U.clearSign();
2306 return ConstantFP::get(Ty->getContext(), U);
2307 }
2308 break;
2309 case LibFunc_floor:
2310 case LibFunc_floorf:
2311 if (TLI->has(Func)) {
2312 U.roundToIntegral(APFloat::rmTowardNegative);
2313 return ConstantFP::get(Ty->getContext(), U);
2314 }
2315 break;
2316 case LibFunc_log:
2317 case LibFunc_logf:
2318 case LibFunc_log_finite:
2319 case LibFunc_logf_finite:
2320 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2321 return ConstantFoldFP(log, APF, Ty);
2322 break;
2323 case LibFunc_log2:
2324 case LibFunc_log2f:
2325 case LibFunc_log2_finite:
2326 case LibFunc_log2f_finite:
2327 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2328 // TODO: What about hosts that lack a C99 library?
2329 return ConstantFoldFP(log2, APF, Ty);
2330 break;
2331 case LibFunc_log10:
2332 case LibFunc_log10f:
2333 case LibFunc_log10_finite:
2334 case LibFunc_log10f_finite:
2335 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2336 // TODO: What about hosts that lack a C99 library?
2337 return ConstantFoldFP(log10, APF, Ty);
2338 break;
2339 case LibFunc_nearbyint:
2340 case LibFunc_nearbyintf:
2341 case LibFunc_rint:
2342 case LibFunc_rintf:
2343 if (TLI->has(Func)) {
2344 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2345 return ConstantFP::get(Ty->getContext(), U);
2346 }
2347 break;
2348 case LibFunc_round:
2349 case LibFunc_roundf:
2350 if (TLI->has(Func)) {
2351 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2352 return ConstantFP::get(Ty->getContext(), U);
2353 }
2354 break;
2355 case LibFunc_sin:
2356 case LibFunc_sinf:
2357 if (TLI->has(Func))
2358 return ConstantFoldFP(sin, APF, Ty);
2359 break;
2360 case LibFunc_sinh:
2361 case LibFunc_sinhf:
2362 case LibFunc_sinh_finite:
2363 case LibFunc_sinhf_finite:
2364 if (TLI->has(Func))
2365 return ConstantFoldFP(sinh, APF, Ty);
2366 break;
2367 case LibFunc_sqrt:
2368 case LibFunc_sqrtf:
2369 if (!APF.isNegative() && TLI->has(Func))
2370 return ConstantFoldFP(sqrt, APF, Ty);
2371 break;
2372 case LibFunc_tan:
2373 case LibFunc_tanf:
2374 if (TLI->has(Func))
2375 return ConstantFoldFP(tan, APF, Ty);
2376 break;
2377 case LibFunc_tanh:
2378 case LibFunc_tanhf:
2379 if (TLI->has(Func))
2380 return ConstantFoldFP(tanh, APF, Ty);
2381 break;
2382 case LibFunc_trunc:
2383 case LibFunc_truncf:
2384 if (TLI->has(Func)) {
2385 U.roundToIntegral(APFloat::rmTowardZero);
2386 return ConstantFP::get(Ty->getContext(), U);
2387 }
2388 break;
2389 }
2390 return nullptr;
2391 }
2392
2393 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2394 switch (IntrinsicID) {
2395 case Intrinsic::bswap:
2396 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2397 case Intrinsic::ctpop:
2398 return ConstantInt::get(Ty, Op->getValue().popcount());
2399 case Intrinsic::bitreverse:
2400 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2401 case Intrinsic::convert_from_fp16: {
2402 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2403
2404 bool lost = false;
2405 APFloat::opStatus status = Val.convert(
2406 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2407
2408 // Conversion is always precise.
2409 (void)status;
2410 assert(status != APFloat::opInexact && !lost &&(static_cast <bool> (status != APFloat::opInexact &&
!lost && "Precision lost during fp16 constfolding") ?
void (0) : __assert_fail ("status != APFloat::opInexact && !lost && \"Precision lost during fp16 constfolding\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 2411, __extension__
__PRETTY_FUNCTION__))
2411 "Precision lost during fp16 constfolding")(static_cast <bool> (status != APFloat::opInexact &&
!lost && "Precision lost during fp16 constfolding") ?
void (0) : __assert_fail ("status != APFloat::opInexact && !lost && \"Precision lost during fp16 constfolding\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 2411, __extension__
__PRETTY_FUNCTION__))
;
2412
2413 return ConstantFP::get(Ty->getContext(), Val);
2414 }
2415 default:
2416 return nullptr;
2417 }
2418 }
2419
2420 switch (IntrinsicID) {
2421 default: break;
2422 case Intrinsic::vector_reduce_add:
2423 case Intrinsic::vector_reduce_mul:
2424 case Intrinsic::vector_reduce_and:
2425 case Intrinsic::vector_reduce_or:
2426 case Intrinsic::vector_reduce_xor:
2427 case Intrinsic::vector_reduce_smin:
2428 case Intrinsic::vector_reduce_smax:
2429 case Intrinsic::vector_reduce_umin:
2430 case Intrinsic::vector_reduce_umax:
2431 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2432 return C;
2433 break;
2434 }
2435
2436 // Support ConstantVector in case we have an Undef in the top.
2437 if (isa<ConstantVector>(Operands[0]) ||
2438 isa<ConstantDataVector>(Operands[0])) {
2439 auto *Op = cast<Constant>(Operands[0]);
2440 switch (IntrinsicID) {
2441 default: break;
2442 case Intrinsic::x86_sse_cvtss2si:
2443 case Intrinsic::x86_sse_cvtss2si64:
2444 case Intrinsic::x86_sse2_cvtsd2si:
2445 case Intrinsic::x86_sse2_cvtsd2si64:
2446 if (ConstantFP *FPOp =
2447 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2448 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2449 /*roundTowardZero=*/false, Ty,
2450 /*IsSigned*/true);
2451 break;
2452 case Intrinsic::x86_sse_cvttss2si:
2453 case Intrinsic::x86_sse_cvttss2si64:
2454 case Intrinsic::x86_sse2_cvttsd2si:
2455 case Intrinsic::x86_sse2_cvttsd2si64:
2456 if (ConstantFP *FPOp =
2457 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2458 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2459 /*roundTowardZero=*/true, Ty,
2460 /*IsSigned*/true);
2461 break;
2462 }
2463 }
2464
2465 return nullptr;
2466}
2467
2468static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2469 const ConstrainedFPIntrinsic *Call) {
2470 APFloat::opStatus St = APFloat::opOK;
2471 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2472 FCmpInst::Predicate Cond = FCmp->getPredicate();
2473 if (FCmp->isSignaling()) {
2474 if (Op1.isNaN() || Op2.isNaN())
2475 St = APFloat::opInvalidOp;
2476 } else {
2477 if (Op1.isSignaling() || Op2.isSignaling())
2478 St = APFloat::opInvalidOp;
2479 }
2480 bool Result = FCmpInst::compare(Op1, Op2, Cond);
2481 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2482 return ConstantInt::get(Call->getType()->getScalarType(), Result);
2483 return nullptr;
2484}
2485
2486static Constant *ConstantFoldScalarCall2(StringRef Name,
2487 Intrinsic::ID IntrinsicID,
2488 Type *Ty,
2489 ArrayRef<Constant *> Operands,
2490 const TargetLibraryInfo *TLI,
2491 const CallBase *Call) {
2492 assert(Operands.size() == 2 && "Wrong number of operands.")(static_cast <bool> (Operands.size() == 2 && "Wrong number of operands."
) ? void (0) : __assert_fail ("Operands.size() == 2 && \"Wrong number of operands.\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 2492, __extension__
__PRETTY_FUNCTION__))
;
2493
2494 if (Ty->isFloatingPointTy()) {
2495 // TODO: We should have undef handling for all of the FP intrinsics that
2496 // are attempted to be folded in this function.
2497 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2498 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2499 switch (IntrinsicID) {
2500 case Intrinsic::maxnum:
2501 case Intrinsic::minnum:
2502 case Intrinsic::maximum:
2503 case Intrinsic::minimum:
2504 // If one argument is undef, return the other argument.
2505 if (IsOp0Undef)
2506 return Operands[1];
2507 if (IsOp1Undef)
2508 return Operands[0];
2509 break;
2510 }
2511 }
2512
2513 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2514 const APFloat &Op1V = Op1->getValueAPF();
2515
2516 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2517 if (Op2->getType() != Op1->getType())
2518 return nullptr;
2519 const APFloat &Op2V = Op2->getValueAPF();
2520
2521 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2522 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2523 APFloat Res = Op1V;
2524 APFloat::opStatus St;
2525 switch (IntrinsicID) {
2526 default:
2527 return nullptr;
2528 case Intrinsic::experimental_constrained_fadd:
2529 St = Res.add(Op2V, RM);
2530 break;
2531 case Intrinsic::experimental_constrained_fsub:
2532 St = Res.subtract(Op2V, RM);
2533 break;
2534 case Intrinsic::experimental_constrained_fmul:
2535 St = Res.multiply(Op2V, RM);
2536 break;
2537 case Intrinsic::experimental_constrained_fdiv:
2538 St = Res.divide(Op2V, RM);
2539 break;
2540 case Intrinsic::experimental_constrained_frem:
2541 St = Res.mod(Op2V);
2542 break;
2543 case Intrinsic::experimental_constrained_fcmp:
2544 case Intrinsic::experimental_constrained_fcmps:
2545 return evaluateCompare(Op1V, Op2V, ConstrIntr);
2546 }
2547 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2548 St))
2549 return ConstantFP::get(Ty->getContext(), Res);
2550 return nullptr;
2551 }
2552
2553 switch (IntrinsicID) {
2554 default:
2555 break;
2556 case Intrinsic::copysign:
2557 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2558 case Intrinsic::minnum:
2559 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2560 case Intrinsic::maxnum:
2561 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2562 case Intrinsic::minimum:
2563 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2564 case Intrinsic::maximum:
2565 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2566 }
2567
2568 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2569 return nullptr;
2570
2571 switch (IntrinsicID) {
2572 default:
2573 break;
2574 case Intrinsic::pow:
2575 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2576 case Intrinsic::amdgcn_fmul_legacy:
2577 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2578 // NaN or infinity, gives +0.0.
2579 if (Op1V.isZero() || Op2V.isZero())
2580 return ConstantFP::getNullValue(Ty);
2581 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2582 }
2583
2584 if (!TLI)
2585 return nullptr;
2586
2587 LibFunc Func = NotLibFunc;
2588 if (!TLI->getLibFunc(Name, Func))
2589 return nullptr;
2590
2591 switch (Func) {
2592 default:
2593 break;
2594 case LibFunc_pow:
2595 case LibFunc_powf:
2596 case LibFunc_pow_finite:
2597 case LibFunc_powf_finite:
2598 if (TLI->has(Func))
2599 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2600 break;
2601 case LibFunc_fmod:
2602 case LibFunc_fmodf:
2603 if (TLI->has(Func)) {
2604 APFloat V = Op1->getValueAPF();
2605 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2606 return ConstantFP::get(Ty->getContext(), V);
2607 }
2608 break;
2609 case LibFunc_remainder:
2610 case LibFunc_remainderf:
2611 if (TLI->has(Func)) {
2612 APFloat V = Op1->getValueAPF();
2613 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2614 return ConstantFP::get(Ty->getContext(), V);
2615 }
2616 break;
2617 case LibFunc_atan2:
2618 case LibFunc_atan2f:
2619 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2620 // (Solaris), so we do not assume a known result for that.
2621 if (Op1V.isZero() && Op2V.isZero())
2622 return nullptr;
2623 [[fallthrough]];
2624 case LibFunc_atan2_finite:
2625 case LibFunc_atan2f_finite:
2626 if (TLI->has(Func))
2627 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2628 break;
2629 }
2630 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2631 switch (IntrinsicID) {
2632 case Intrinsic::is_fpclass: {
2633 uint32_t Mask = Op2C->getZExtValue();
2634 bool Result =
2635 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2636 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2637 ((Mask & fcNegInf) && Op1V.isInfinity() && Op1V.isNegative()) ||
2638 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2639 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2640 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2641 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2642 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2643 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2644 ((Mask & fcPosInf) && Op1V.isInfinity() && !Op1V.isNegative());
2645 return ConstantInt::get(Ty, Result);
2646 }
2647 default:
2648 break;
2649 }
2650
2651 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2652 return nullptr;
2653 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2654 return ConstantFP::get(
2655 Ty->getContext(),
2656 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2657 (int)Op2C->getZExtValue())));
2658 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2659 return ConstantFP::get(
2660 Ty->getContext(),
2661 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2662 (int)Op2C->getZExtValue())));
2663 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2664 return ConstantFP::get(
2665 Ty->getContext(),
2666 APFloat((double)std::pow(Op1V.convertToDouble(),
2667 (int)Op2C->getZExtValue())));
2668
2669 if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2670 // FIXME: Should flush denorms depending on FP mode, but that's ignored
2671 // everywhere else.
2672
2673 // scalbn is equivalent to ldexp with float radix 2
2674 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2675 APFloat::rmNearestTiesToEven);
2676 return ConstantFP::get(Ty->getContext(), Result);
2677 }
2678 }
2679 return nullptr;
2680 }
2681
2682 if (Operands[0]->getType()->isIntegerTy() &&
2683 Operands[1]->getType()->isIntegerTy()) {
2684 const APInt *C0, *C1;
2685 if (!getConstIntOrUndef(Operands[0], C0) ||
2686 !getConstIntOrUndef(Operands[1], C1))
2687 return nullptr;
2688
2689 switch (IntrinsicID) {
2690 default: break;
2691 case Intrinsic::smax:
2692 case Intrinsic::smin:
2693 case Intrinsic::umax:
2694 case Intrinsic::umin:
2695 // This is the same as for binary ops - poison propagates.
2696 // TODO: Poison handling should be consolidated.
2697 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2698 return PoisonValue::get(Ty);
2699
2700 if (!C0 && !C1)
2701 return UndefValue::get(Ty);
2702 if (!C0 || !C1)
2703 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2704 return ConstantInt::get(
2705 Ty, ICmpInst::compare(*C0, *C1,
2706 MinMaxIntrinsic::getPredicate(IntrinsicID))
2707 ? *C0
2708 : *C1);
2709
2710 case Intrinsic::usub_with_overflow:
2711 case Intrinsic::ssub_with_overflow:
2712 // X - undef -> { 0, false }
2713 // undef - X -> { 0, false }
2714 if (!C0 || !C1)
2715 return Constant::getNullValue(Ty);
2716 [[fallthrough]];
2717 case Intrinsic::uadd_with_overflow:
2718 case Intrinsic::sadd_with_overflow:
2719 // X + undef -> { -1, false }
2720 // undef + x -> { -1, false }
2721 if (!C0 || !C1) {
2722 return ConstantStruct::get(
2723 cast<StructType>(Ty),
2724 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2725 Constant::getNullValue(Ty->getStructElementType(1))});
2726 }
2727 [[fallthrough]];
2728 case Intrinsic::smul_with_overflow:
2729 case Intrinsic::umul_with_overflow: {
2730 // undef * X -> { 0, false }
2731 // X * undef -> { 0, false }
2732 if (!C0 || !C1)
2733 return Constant::getNullValue(Ty);
2734
2735 APInt Res;
2736 bool Overflow;
2737 switch (IntrinsicID) {
2738 default: llvm_unreachable("Invalid case")::llvm::llvm_unreachable_internal("Invalid case", "llvm/lib/Analysis/ConstantFolding.cpp"
, 2738)
;
2739 case Intrinsic::sadd_with_overflow:
2740 Res = C0->sadd_ov(*C1, Overflow);
2741 break;
2742 case Intrinsic::uadd_with_overflow:
2743 Res = C0->uadd_ov(*C1, Overflow);
2744 break;
2745 case Intrinsic::ssub_with_overflow:
2746 Res = C0->ssub_ov(*C1, Overflow);
2747 break;
2748 case Intrinsic::usub_with_overflow:
2749 Res = C0->usub_ov(*C1, Overflow);
2750 break;
2751 case Intrinsic::smul_with_overflow:
2752 Res = C0->smul_ov(*C1, Overflow);
2753 break;
2754 case Intrinsic::umul_with_overflow:
2755 Res = C0->umul_ov(*C1, Overflow);
2756 break;
2757 }
2758 Constant *Ops[] = {
2759 ConstantInt::get(Ty->getContext(), Res),
2760 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2761 };
2762 return ConstantStruct::get(cast<StructType>(Ty), Ops);
2763 }
2764 case Intrinsic::uadd_sat:
2765 case Intrinsic::sadd_sat:
2766 // This is the same as for binary ops - poison propagates.
2767 // TODO: Poison handling should be consolidated.
2768 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2769 return PoisonValue::get(Ty);
2770
2771 if (!C0 && !C1)
2772 return UndefValue::get(Ty);
2773 if (!C0 || !C1)
2774 return Constant::getAllOnesValue(Ty);
2775 if (IntrinsicID == Intrinsic::uadd_sat)
2776 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2777 else
2778 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2779 case Intrinsic::usub_sat:
2780 case Intrinsic::ssub_sat:
2781 // This is the same as for binary ops - poison propagates.
2782 // TODO: Poison handling should be consolidated.
2783 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2784 return PoisonValue::get(Ty);
2785
2786 if (!C0 && !C1)
2787 return UndefValue::get(Ty);
2788 if (!C0 || !C1)
2789 return Constant::getNullValue(Ty);
2790 if (IntrinsicID == Intrinsic::usub_sat)
2791 return ConstantInt::get(Ty, C0->usub_sat(*C1));
2792 else
2793 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2794 case Intrinsic::cttz:
2795 case Intrinsic::ctlz:
2796 assert(C1 && "Must be constant int")(static_cast <bool> (C1 && "Must be constant int"
) ? void (0) : __assert_fail ("C1 && \"Must be constant int\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 2796, __extension__
__PRETTY_FUNCTION__))
;
2797
2798 // cttz(0, 1) and ctlz(0, 1) are poison.
2799 if (C1->isOne() && (!C0 || C0->isZero()))
2800 return PoisonValue::get(Ty);
2801 if (!C0)
2802 return Constant::getNullValue(Ty);
2803 if (IntrinsicID == Intrinsic::cttz)
2804 return ConstantInt::get(Ty, C0->countr_zero());
2805 else
2806 return ConstantInt::get(Ty, C0->countl_zero());
2807
2808 case Intrinsic::abs:
2809 assert(C1 && "Must be constant int")(static_cast <bool> (C1 && "Must be constant int"
) ? void (0) : __assert_fail ("C1 && \"Must be constant int\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 2809, __extension__
__PRETTY_FUNCTION__))
;
2810 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1")(static_cast <bool> ((C1->isOne() || C1->isZero()
) && "Must be 0 or 1") ? void (0) : __assert_fail ("(C1->isOne() || C1->isZero()) && \"Must be 0 or 1\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 2810, __extension__
__PRETTY_FUNCTION__))
;
2811
2812 // Undef or minimum val operand with poison min --> undef
2813 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2814 return UndefValue::get(Ty);
2815
2816 // Undef operand with no poison min --> 0 (sign bit must be clear)
2817 if (!C0)
2818 return Constant::getNullValue(Ty);
2819
2820 return ConstantInt::get(Ty, C0->abs());
2821 }
2822
2823 return nullptr;
2824 }
2825
2826 // Support ConstantVector in case we have an Undef in the top.
2827 if ((isa<ConstantVector>(Operands[0]) ||
2828 isa<ConstantDataVector>(Operands[0])) &&
2829 // Check for default rounding mode.
2830 // FIXME: Support other rounding modes?
2831 isa<ConstantInt>(Operands[1]) &&
2832 cast<ConstantInt>(Operands[1])->getValue() == 4) {
2833 auto *Op = cast<Constant>(Operands[0]);
2834 switch (IntrinsicID) {
2835 default: break;
2836 case Intrinsic::x86_avx512_vcvtss2si32:
2837 case Intrinsic::x86_avx512_vcvtss2si64:
2838 case Intrinsic::x86_avx512_vcvtsd2si32:
2839 case Intrinsic::x86_avx512_vcvtsd2si64:
2840 if (ConstantFP *FPOp =
2841 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2842 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2843 /*roundTowardZero=*/false, Ty,
2844 /*IsSigned*/true);
2845 break;
2846 case Intrinsic::x86_avx512_vcvtss2usi32:
2847 case Intrinsic::x86_avx512_vcvtss2usi64:
2848 case Intrinsic::x86_avx512_vcvtsd2usi32:
2849 case Intrinsic::x86_avx512_vcvtsd2usi64:
2850 if (ConstantFP *FPOp =
2851 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2852 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2853 /*roundTowardZero=*/false, Ty,
2854 /*IsSigned*/false);
2855 break;
2856 case Intrinsic::x86_avx512_cvttss2si:
2857 case Intrinsic::x86_avx512_cvttss2si64:
2858 case Intrinsic::x86_avx512_cvttsd2si:
2859 case Intrinsic::x86_avx512_cvttsd2si64:
2860 if (ConstantFP *FPOp =
2861 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2862 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2863 /*roundTowardZero=*/true, Ty,
2864 /*IsSigned*/true);
2865 break;
2866 case Intrinsic::x86_avx512_cvttss2usi:
2867 case Intrinsic::x86_avx512_cvttss2usi64:
2868 case Intrinsic::x86_avx512_cvttsd2usi:
2869 case Intrinsic::x86_avx512_cvttsd2usi64:
2870 if (ConstantFP *FPOp =
2871 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2872 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2873 /*roundTowardZero=*/true, Ty,
2874 /*IsSigned*/false);
2875 break;
2876 }
2877 }
2878 return nullptr;
2879}
2880
2881static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2882 const APFloat &S0,
2883 const APFloat &S1,
2884 const APFloat &S2) {
2885 unsigned ID;
2886 const fltSemantics &Sem = S0.getSemantics();
2887 APFloat MA(Sem), SC(Sem), TC(Sem);
2888 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2889 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2890 // S2 < 0
2891 ID = 5;
2892 SC = -S0;
2893 } else {
2894 ID = 4;
2895 SC = S0;
2896 }
2897 MA = S2;
2898 TC = -S1;
2899 } else if (abs(S1) >= abs(S0)) {
2900 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2901 // S1 < 0
2902 ID = 3;
2903 TC = -S2;
2904 } else {
2905 ID = 2;
2906 TC = S2;
2907 }
2908 MA = S1;
2909 SC = S0;
2910 } else {
2911 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2912 // S0 < 0
2913 ID = 1;
2914 SC = S2;
2915 } else {
2916 ID = 0;
2917 SC = -S2;
2918 }
2919 MA = S0;
2920 TC = -S1;
2921 }
2922 switch (IntrinsicID) {
2923 default:
2924 llvm_unreachable("unhandled amdgcn cube intrinsic")::llvm::llvm_unreachable_internal("unhandled amdgcn cube intrinsic"
, "llvm/lib/Analysis/ConstantFolding.cpp", 2924)
;
2925 case Intrinsic::amdgcn_cubeid:
2926 return APFloat(Sem, ID);
2927 case Intrinsic::amdgcn_cubema:
2928 return MA + MA;
2929 case Intrinsic::amdgcn_cubesc:
2930 return SC;
2931 case Intrinsic::amdgcn_cubetc:
2932 return TC;
2933 }
2934}
2935
2936static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2937 Type *Ty) {
2938 const APInt *C0, *C1, *C2;
2939 if (!getConstIntOrUndef(Operands[0], C0) ||
2940 !getConstIntOrUndef(Operands[1], C1) ||
2941 !getConstIntOrUndef(Operands[2], C2))
2942 return nullptr;
2943
2944 if (!C2)
2945 return UndefValue::get(Ty);
2946
2947 APInt Val(32, 0);
2948 unsigned NumUndefBytes = 0;
2949 for (unsigned I = 0; I < 32; I += 8) {
2950 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2951 unsigned B = 0;
2952
2953 if (Sel >= 13)
2954 B = 0xff;
2955 else if (Sel == 12)
2956 B = 0x00;
2957 else {
2958 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2959 if (!Src)
2960 ++NumUndefBytes;
2961 else if (Sel < 8)
2962 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2963 else
2964 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2965 }
2966
2967 Val.insertBits(B, I, 8);
2968 }
2969
2970 if (NumUndefBytes == 4)
2971 return UndefValue::get(Ty);
2972
2973 return ConstantInt::get(Ty, Val);
2974}
2975
2976static Constant *ConstantFoldScalarCall3(StringRef Name,
2977 Intrinsic::ID IntrinsicID,
2978 Type *Ty,
2979 ArrayRef<Constant *> Operands,
2980 const TargetLibraryInfo *TLI,
2981 const CallBase *Call) {
2982 assert(Operands.size() == 3 && "Wrong number of operands.")(static_cast <bool> (Operands.size() == 3 && "Wrong number of operands."
) ? void (0) : __assert_fail ("Operands.size() == 3 && \"Wrong number of operands.\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 2982, __extension__
__PRETTY_FUNCTION__))
;
2983
2984 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2985 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2986 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2987 const APFloat &C1 = Op1->getValueAPF();
2988 const APFloat &C2 = Op2->getValueAPF();
2989 const APFloat &C3 = Op3->getValueAPF();
2990
2991 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2992 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2993 APFloat Res = C1;
2994 APFloat::opStatus St;
2995 switch (IntrinsicID) {
2996 default:
2997 return nullptr;
2998 case Intrinsic::experimental_constrained_fma:
2999 case Intrinsic::experimental_constrained_fmuladd:
3000 St = Res.fusedMultiplyAdd(C2, C3, RM);
3001 break;
3002 }
3003 if (mayFoldConstrained(
3004 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3005 return ConstantFP::get(Ty->getContext(), Res);
3006 return nullptr;
3007 }
3008
3009 switch (IntrinsicID) {
3010 default: break;
3011 case Intrinsic::amdgcn_fma_legacy: {
3012 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3013 // NaN or infinity, gives +0.0.
3014 if (C1.isZero() || C2.isZero()) {
3015 // It's tempting to just return C3 here, but that would give the
3016 // wrong result if C3 was -0.0.
3017 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3018 }
3019 [[fallthrough]];
3020 }
3021 case Intrinsic::fma:
3022 case Intrinsic::fmuladd: {
3023 APFloat V = C1;
3024 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3025 return ConstantFP::get(Ty->getContext(), V);
3026 }
3027 case Intrinsic::amdgcn_cubeid:
3028 case Intrinsic::amdgcn_cubema:
3029 case Intrinsic::amdgcn_cubesc:
3030 case Intrinsic::amdgcn_cubetc: {
3031 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3032 return ConstantFP::get(Ty->getContext(), V);
3033 }
3034 }
3035 }
3036 }
3037 }
3038
3039 if (IntrinsicID == Intrinsic::smul_fix ||
3040 IntrinsicID == Intrinsic::smul_fix_sat) {
3041 // poison * C -> poison
3042 // C * poison -> poison
3043 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3044 return PoisonValue::get(Ty);
3045
3046 const APInt *C0, *C1;
3047 if (!getConstIntOrUndef(Operands[0], C0) ||
3048 !getConstIntOrUndef(Operands[1], C1))
3049 return nullptr;
3050
3051 // undef * C -> 0
3052 // C * undef -> 0
3053 if (!C0 || !C1)
3054 return Constant::getNullValue(Ty);
3055
3056 // This code performs rounding towards negative infinity in case the result
3057 // cannot be represented exactly for the given scale. Targets that do care
3058 // about rounding should use a target hook for specifying how rounding
3059 // should be done, and provide their own folding to be consistent with
3060 // rounding. This is the same approach as used by
3061 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3062 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3063 unsigned Width = C0->getBitWidth();
3064 assert(Scale < Width && "Illegal scale.")(static_cast <bool> (Scale < Width && "Illegal scale."
) ? void (0) : __assert_fail ("Scale < Width && \"Illegal scale.\""
, "llvm/lib/Analysis/ConstantFolding.cpp", 3064, __extension__
__PRETTY_FUNCTION__))
;
3065 unsigned ExtendedWidth = Width * 2;
3066 APInt Product =
3067 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3068 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3069 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3070 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3071 Product = APIntOps::smin(Product, Max);
3072 Product = APIntOps::smax(Product, Min);
3073 }
3074 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3075 }
3076
3077 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3078 const APInt *C0, *C1, *C2;
3079 if (!getConstIntOrUndef(Operands[0], C0) ||
3080 !getConstIntOrUndef(Operands[1], C1) ||
3081 !getConstIntOrUndef(Operands[2], C2))
3082 return nullptr;
3083
3084 bool IsRight = IntrinsicID == Intrinsic::fshr;
3085 if (!C2)
3086 return Operands[IsRight ? 1 : 0];
3087 if (!C0 && !C1)
3088 return UndefValue::get(Ty);
3089
3090 // The shift amount is interpreted as modulo the bitwidth. If the shift
3091 // amount is effectively 0, avoid UB due to oversized inverse shift below.
3092 unsigned BitWidth = C2->getBitWidth();
3093 unsigned ShAmt = C2->urem(BitWidth);
3094 if (!ShAmt)
3095 return Operands[IsRight ? 1 : 0];
3096
3097 // (C0 << ShlAmt) | (C1 >> LshrAmt)
3098 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3099 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3100 if (!C0)
3101 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3102 if (!C1)
3103 return ConstantInt::get(Ty, C0->shl(ShlAmt));
3104 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3105 }
3106
3107 if (IntrinsicID == Intrinsic::amdgcn_perm)
3108 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3109
3110 return nullptr;
3111}
3112
3113static Constant *ConstantFoldScalarCall(StringRef Name,
3114 Intrinsic::ID IntrinsicID,
3115 Type *Ty,
3116 ArrayRef<Constant *> Operands,
3117 const TargetLibraryInfo *TLI,
3118 const CallBase *Call) {
3119 if (Operands.size() == 1)
3120 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3121
3122 if (Operands.size() == 2)
3123 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
3124
3125 if (Operands.size() == 3)
3126 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3127
3128 return nullptr;
3129}
3130
3131static Constant *ConstantFoldFixedVectorCall(
3132 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3133 ArrayRef<Constant *> Operands, const DataLayout &DL,
3134 const TargetLibraryInfo *TLI, const CallBase *Call) {
3135 SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3136 SmallVector<Constant *, 4> Lane(Operands.size());
3137 Type *Ty = FVTy->getElementType();
3138
3139 switch (IntrinsicID) {
3140 case Intrinsic::masked_load: {
3141 auto *SrcPtr = Operands[0];
3142 auto *Mask = Operands[2];
3143 auto *Passthru = Operands[3];
3144
3145 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3146
3147 SmallVector<Constant *, 32> NewElements;
3148 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3149 auto *MaskElt = Mask->getAggregateElement(I);
3150 if (!MaskElt)
3151 break;
3152 auto *PassthruElt = Passthru->getAggregateElement(I);
3153 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3154 if (isa<UndefValue>(MaskElt)) {
3155 if (PassthruElt)
3156 NewElements.push_back(PassthruElt);
3157 else if (VecElt)
3158 NewElements.push_back(VecElt);
3159 else
3160 return nullptr;
3161 }
3162 if (MaskElt->isNullValue()) {
3163 if (!PassthruElt)
3164 return nullptr;
3165 NewElements.push_back(PassthruElt);
3166 } else if (MaskElt->isOneValue()) {
3167 if (!VecElt)
3168 return nullptr;
3169 NewElements.push_back(VecElt);
3170 } else {
3171 return nullptr;
3172 }
3173 }
3174 if (NewElements.size() != FVTy->getNumElements())
3175 return nullptr;
3176 return ConstantVector::get(NewElements);
3177 }
3178 case Intrinsic::arm_mve_vctp8:
3179 case Intrinsic::arm_mve_vctp16:
3180 case Intrinsic::arm_mve_vctp32:
3181 case Intrinsic::arm_mve_vctp64: {
3182 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3183 unsigned Lanes = FVTy->getNumElements();
3184 uint64_t Limit = Op->getZExtValue();
3185
3186 SmallVector<Constant *, 16> NCs;
3187 for (unsigned i = 0; i < Lanes; i++) {
3188 if (i < Limit)
3189 NCs.push_back(ConstantInt::getTrue(Ty));
3190 else
3191 NCs.push_back(ConstantInt::getFalse(Ty));
3192 }
3193 return ConstantVector::get(NCs);
3194 }
3195 return nullptr;
3196 }
3197 case Intrinsic::get_active_lane_mask: {
3198 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3199 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3200 if (Op0 && Op1) {
3201 unsigned Lanes = FVTy->getNumElements();
3202 uint64_t Base = Op0->getZExtValue();
3203 uint64_t Limit = Op1->getZExtValue();
3204
3205 SmallVector<Constant *, 16> NCs;
3206 for (unsigned i = 0; i < Lanes; i++) {
3207 if (Base + i < Limit)
3208 NCs.push_back(ConstantInt::getTrue(Ty));
3209 else
3210 NCs.push_back(ConstantInt::getFalse(Ty));
3211 }
3212 return ConstantVector::get(NCs);
3213 }
3214 return nullptr;
3215 }
3216 default:
3217 break;
3218 }
3219
3220 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3221 // Gather a column of constants.
3222 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3223 // Some intrinsics use a scalar type for certain arguments.
3224 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3225 Lane[J] = Operands[J];
3226 continue;
3227 }
3228
3229 Constant *Agg = Operands[J]->getAggregateElement(I);
3230 if (!Agg)
3231 return nullptr;
3232
3233 Lane[J] = Agg;
3234 }
3235
3236 // Use the regular scalar folding to simplify this column.
3237 Constant *Folded =
3238 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3239 if (!Folded)
3240 return nullptr;
3241 Result[I] = Folded;
3242 }
3243
3244 return ConstantVector::get(Result);
3245}
3246
3247static Constant *ConstantFoldScalableVectorCall(
3248 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3249 ArrayRef<Constant *> Operands, const DataLayout &DL,
3250 const TargetLibraryInfo *TLI, const CallBase *Call) {
3251 switch (IntrinsicID) {
3252 case Intrinsic::aarch64_sve_convert_from_svbool: {
3253 auto *Src = dyn_cast<Constant>(Operands[0]);
3254 if (!Src || !Src->isNullValue())
3255 break;
3256
3257 return ConstantInt::getFalse(SVTy);
3258 }
3259 default:
3260 break;
3261 }
3262 return nullptr;
3263}
3264
3265} // end anonymous namespace
3266
3267Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3268 ArrayRef<Constant *> Operands,
3269 const TargetLibraryInfo *TLI) {
3270 if (Call->isNoBuiltin())
3271 return nullptr;
3272 if (!F->hasName())
3273 return nullptr;
3274
3275 // If this is not an intrinsic and not recognized as a library call, bail out.
3276 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3277 if (!TLI)
3278 return nullptr;
3279 LibFunc LibF;
3280 if (!TLI->getLibFunc(*F, LibF))
3281 return nullptr;
3282 }
3283
3284 StringRef Name = F->getName();
3285 Type *Ty = F->getReturnType();
3286 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3287 return ConstantFoldFixedVectorCall(
3288 Name, F->getIntrinsicID(), FVTy, Operands,
3289 F->getParent()->getDataLayout(), TLI, Call);
3290
3291 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3292 return ConstantFoldScalableVectorCall(
3293 Name, F->getIntrinsicID(), SVTy, Operands,
3294 F->getParent()->getDataLayout(), TLI, Call);
3295
3296 // TODO: If this is a library function, we already discovered that above,
3297 // so we should pass the LibFunc, not the name (and it might be better
3298 // still to separate intrinsic handling from libcalls).
3299 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3300 Call);
3301}
3302
3303bool llvm::isMathLibCallNoop(const CallBase *Call,
3304 const TargetLibraryInfo *TLI) {
3305 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3306 // (and to some extent ConstantFoldScalarCall).
3307 if (Call->isNoBuiltin() || Call->isStrictFP())
3308 return false;
3309 Function *F = Call->getCalledFunction();
3310 if (!F)
3311 return false;
3312
3313 LibFunc Func;
3314 if (!TLI || !TLI->getLibFunc(*F, Func))
3315 return false;
3316
3317 if (Call->arg_size() == 1) {
3318 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3319 const APFloat &Op = OpC->getValueAPF();
3320 switch (Func) {
3321 case LibFunc_logl:
3322 case LibFunc_log:
3323 case LibFunc_logf:
3324 case LibFunc_log2l:
3325 case LibFunc_log2:
3326 case LibFunc_log2f:
3327 case LibFunc_log10l:
3328 case LibFunc_log10:
3329 case LibFunc_log10f:
3330 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3331
3332 case LibFunc_expl:
3333 case LibFunc_exp:
3334 case LibFunc_expf:
3335 // FIXME: These boundaries are slightly conservative.
3336 if (OpC->getType()->isDoubleTy())
3337 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3338 if (OpC->getType()->isFloatTy())
3339 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3340 break;
3341
3342 case LibFunc_exp2l:
3343 case LibFunc_exp2:
3344 case LibFunc_exp2f:
3345 // FIXME: These boundaries are slightly conservative.
3346 if (OpC->getType()->isDoubleTy())
3347 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3348 if (OpC->getType()->isFloatTy())
3349 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3350 break;
3351
3352 case LibFunc_sinl:
3353 case LibFunc_sin:
3354 case LibFunc_sinf:
3355 case LibFunc_cosl:
3356 case LibFunc_cos:
3357 case LibFunc_cosf:
3358 return !Op.isInfinity();
3359
3360 case LibFunc_tanl:
3361 case LibFunc_tan:
3362 case LibFunc_tanf: {
3363 // FIXME: Stop using the host math library.
3364 // FIXME: The computation isn't done in the right precision.
3365 Type *Ty = OpC->getType();
3366 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3367 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3368 break;
3369 }
3370
3371 case LibFunc_atan:
3372 case LibFunc_atanf:
3373 case LibFunc_atanl:
3374 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3375 return true;
3376
3377
3378 case LibFunc_asinl:
3379 case LibFunc_asin:
3380 case LibFunc_asinf:
3381 case LibFunc_acosl:
3382 case LibFunc_acos:
3383 case LibFunc_acosf:
3384 return !(Op < APFloat(Op.getSemantics(), "-1") ||
3385 Op > APFloat(Op.getSemantics(), "1"));
3386
3387 case LibFunc_sinh:
3388 case LibFunc_cosh:
3389 case LibFunc_sinhf:
3390 case LibFunc_coshf:
3391 case LibFunc_sinhl:
3392 case LibFunc_coshl:
3393 // FIXME: These boundaries are slightly conservative.
3394 if (OpC->getType()->isDoubleTy())
3395 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3396 if (OpC->getType()->isFloatTy())
3397 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3398 break;
3399
3400 case LibFunc_sqrtl:
3401 case LibFunc_sqrt:
3402 case LibFunc_sqrtf:
3403 return Op.isNaN() || Op.isZero() || !Op.isNegative();
3404
3405 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3406 // maybe others?
3407 default:
3408 break;
3409 }
3410 }
3411 }
3412
3413 if (Call->arg_size() == 2) {
3414 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3415 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3416 if (Op0C && Op1C) {
3417 const APFloat &Op0 = Op0C->getValueAPF();
3418 const APFloat &Op1 = Op1C->getValueAPF();
3419
3420 switch (Func) {
3421 case LibFunc_powl:
3422 case LibFunc_pow:
3423 case LibFunc_powf: {
3424 // FIXME: Stop using the host math library.
3425 // FIXME: The computation isn't done in the right precision.
3426 Type *Ty = Op0C->getType();
3427 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3428 if (Ty == Op1C->getType())
3429 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3430 }
3431 break;
3432 }
3433
3434 case LibFunc_fmodl:
3435 case LibFunc_fmod:
3436 case LibFunc_fmodf:
3437 case LibFunc_remainderl:
3438 case LibFunc_remainder:
3439 case LibFunc_remainderf:
3440 return Op0.isNaN() || Op1.isNaN() ||
3441 (!Op0.isInfinity() && !Op1.isZero());
3442
3443 case LibFunc_atan2:
3444 case LibFunc_atan2f:
3445 case LibFunc_atan2l:
3446 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3447 // GLIBC and MSVC do not appear to raise an error on those, we
3448 // cannot rely on that behavior. POSIX and C11 say that a domain error
3449 // may occur, so allow for that possibility.
3450 return !Op0.isZero() || !Op1.isZero();
3451
3452 default:
3453 break;
3454 }
3455 }
3456 }
3457
3458 return false;
3459}
3460
3461void TargetFolder::anchor() {}

/build/source/llvm/include/llvm/IR/Instruction.h

1//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Instruction class, which is the
10// base class for all of the LLVM instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_INSTRUCTION_H
15#define LLVM_IR_INSTRUCTION_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/Bitfields.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/ilist_node.h"
21#include "llvm/IR/DebugLoc.h"
22#include "llvm/IR/SymbolTableListTraits.h"
23#include "llvm/IR/User.h"
24#include "llvm/IR/Value.h"
25#include "llvm/Support/AtomicOrdering.h"
26#include <cstdint>
27#include <utility>
28
29namespace llvm {
30
31class BasicBlock;
32class FastMathFlags;
33class MDNode;
34class Module;
35struct AAMDNodes;
36
37template <> struct ilist_alloc_traits<Instruction> {
38 static inline void deleteNode(Instruction *V);
39};
40
41class Instruction : public User,
42 public ilist_node_with_parent<Instruction, BasicBlock> {
43 BasicBlock *Parent;
44 DebugLoc DbgLoc; // 'dbg' Metadata cache.
45
46 /// Relative order of this instruction in its parent basic block. Used for
47 /// O(1) local dominance checks between instructions.
48 mutable unsigned Order = 0;
49
50protected:
51 // The 15 first bits of `Value::SubclassData` are available for subclasses of
52 // `Instruction` to use.
53 using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
54
55 // Template alias so that all Instruction storing alignment use the same
56 // definiton.
57 // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
58 // 2^32. We store them as Log2(Alignment), so we need 6 bits to encode the 33
59 // possible values.
60 template <unsigned Offset>
61 using AlignmentBitfieldElementT =
62 typename Bitfield::Element<unsigned, Offset, 6,
63 Value::MaxAlignmentExponent>;
64
65 template <unsigned Offset>
66 using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
67
68 template <unsigned Offset>
69 using AtomicOrderingBitfieldElementT =
70 typename Bitfield::Element<AtomicOrdering, Offset, 3,
71 AtomicOrdering::LAST>;
72
73private:
74 // The last bit is used to store whether the instruction has metadata attached
75 // or not.
76 using HasMetadataField = Bitfield::Element<bool, 15, 1>;
77
78protected:
79 ~Instruction(); // Use deleteValue() to delete a generic Instruction.
80
81public:
82 Instruction(const Instruction &) = delete;
83 Instruction &operator=(const Instruction &) = delete;
84
85 /// Specialize the methods defined in Value, as we know that an instruction
86 /// can only be used by other instructions.
87 Instruction *user_back() { return cast<Instruction>(*user_begin());}
88 const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
89
90 inline const BasicBlock *getParent() const { return Parent; }
91 inline BasicBlock *getParent() { return Parent; }
92
93 /// Return the module owning the function this instruction belongs to
94 /// or nullptr it the function does not have a module.
95 ///
96 /// Note: this is undefined behavior if the instruction does not have a
97 /// parent, or the parent basic block does not have a parent function.
98 const Module *getModule() const;
99 Module *getModule() {
100 return const_cast<Module *>(
101 static_cast<const Instruction *>(this)->getModule());
102 }
103
104 /// Return the function this instruction belongs to.
105 ///
106 /// Note: it is undefined behavior to call this on an instruction not
107 /// currently inserted into a function.
108 const Function *getFunction() const;
109 Function *getFunction() {
110 return const_cast<Function *>(
111 static_cast<const Instruction *>(this)->getFunction());
112 }
113
114 /// This method unlinks 'this' from the containing basic block, but does not
115 /// delete it.
116 void removeFromParent();
117
118 /// This method unlinks 'this' from the containing basic block and deletes it.
119 ///
120 /// \returns an iterator pointing to the element after the erased one
121 SymbolTableList<Instruction>::iterator eraseFromParent();
122
123 /// Insert an unlinked instruction into a basic block immediately before
124 /// the specified instruction.
125 void insertBefore(Instruction *InsertPos);
126
127 /// Insert an unlinked instruction into a basic block immediately after the
128 /// specified instruction.
129 void insertAfter(Instruction *InsertPos);
130
131 /// Inserts an unlinked instruction into \p ParentBB at position \p It and
132 /// returns the iterator of the inserted instruction.
133 SymbolTableList<Instruction>::iterator
134 insertInto(BasicBlock *ParentBB, SymbolTableList<Instruction>::iterator It);
135
136 /// Unlink this instruction from its current basic block and insert it into
137 /// the basic block that MovePos lives in, right before MovePos.
138 void moveBefore(Instruction *MovePos);
139
140 /// Unlink this instruction and insert into BB before I.
141 ///
142 /// \pre I is a valid iterator into BB.
143 void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
144
145 /// Unlink this instruction from its current basic block and insert it into
146 /// the basic block that MovePos lives in, right after MovePos.
147 void moveAfter(Instruction *MovePos);
148
149 /// Given an instruction Other in the same basic block as this instruction,
150 /// return true if this instruction comes before Other. In this worst case,
151 /// this takes linear time in the number of instructions in the block. The
152 /// results are cached, so in common cases when the block remains unmodified,
153 /// it takes constant time.
154 bool comesBefore(const Instruction *Other) const;
155
156 /// Get the first insertion point at which the result of this instruction
157 /// is defined. This is *not* the directly following instruction in a number
158 /// of cases, e.g. phi nodes or terminators that return values. This function
159 /// may return null if the insertion after the definition is not possible,
160 /// e.g. due to a catchswitch terminator.
161 Instruction *getInsertionPointAfterDef();
162
163 //===--------------------------------------------------------------------===//
164 // Subclass classification.
165 //===--------------------------------------------------------------------===//
166
167 /// Returns a member of one of the enums like Instruction::Add.
168 unsigned getOpcode() const { return getValueID() - InstructionVal; }
169
170 const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
171 bool isTerminator() const { return isTerminator(getOpcode()); }
172 bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
173 bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
174 bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
175 bool isShift() const { return isShift(getOpcode()); }
176 bool isCast() const { return isCast(getOpcode()); }
177 bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
178 bool isExceptionalTerminator() const {
179 return isExceptionalTerminator(getOpcode());
180 }
181
182 /// It checks if this instruction is the only user of at least one of
183 /// its operands.
184 bool isOnlyUserOfAnyOperand();
185
186 static const char *getOpcodeName(unsigned Opcode);
187
188 static inline bool isTerminator(unsigned Opcode) {
189 return Opcode >= TermOpsBegin && Opcode < TermOpsEnd;
190 }
191
192 static inline bool isUnaryOp(unsigned Opcode) {
193 return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
10
Assuming 'Opcode' is >= UnaryOpsBegin, which participates in a condition later
11
Assuming 'Opcode' is >= UnaryOpsEnd, which participates in a condition later
194 }
195 static inline bool isBinaryOp(unsigned Opcode) {
196 return Opcode
14.1
'Opcode' is >= BinaryOpsBegin, which participates in a condition later
14.1
'Opcode' is >= BinaryOpsBegin, which participates in a condition later
>= BinaryOpsBegin && Opcode < BinaryOpsEnd;
15
Assuming 'Opcode' is >= BinaryOpsEnd, which participates in a condition later
197 }
198
199 static inline bool isIntDivRem(unsigned Opcode) {
200 return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
201 }
202
203 /// Determine if the Opcode is one of the shift instructions.
204 static inline bool isShift(unsigned Opcode) {
205 return Opcode >= Shl && Opcode <= AShr;
206 }
207
208 /// Return true if this is a logical shift left or a logical shift right.
209 inline bool isLogicalShift() const {
210 return getOpcode() == Shl || getOpcode() == LShr;
211 }
212
213 /// Return true if this is an arithmetic shift right.
214 inline bool isArithmeticShift() const {
215 return getOpcode() == AShr;
216 }
217
218 /// Determine if the Opcode is and/or/xor.
219 static inline bool isBitwiseLogicOp(unsigned Opcode) {
220 return Opcode == And || Opcode == Or || Opcode == Xor;
221 }
222
223 /// Return true if this is and/or/xor.
224 inline bool isBitwiseLogicOp() const {
225 return isBitwiseLogicOp(getOpcode());
226 }
227
228 /// Determine if the Opcode is one of the CastInst instructions.
229 static inline bool isCast(unsigned Opcode) {
230 return Opcode >= CastOpsBegin && Opcode < CastOpsEnd;
19
Assuming 'Opcode' is < CastOpsBegin, which participates in a condition later
231 }
232
233 /// Determine if the Opcode is one of the FuncletPadInst instructions.
234 static inline bool isFuncletPad(unsigned Opcode) {
235 return Opcode >= FuncletPadOpsBegin && Opcode < FuncletPadOpsEnd;
236 }
237
238 /// Returns true if the Opcode is a terminator related to exception handling.
239 static inline bool isExceptionalTerminator(unsigned Opcode) {
240 switch (Opcode) {
241 case Instruction::CatchSwitch:
242 case Instruction::CatchRet:
243 case Instruction::CleanupRet:
244 case Instruction::Invoke:
245 case Instruction::Resume:
246 return true;
247 default:
248 return false;
249 }
250 }
251
252 //===--------------------------------------------------------------------===//
253 // Metadata manipulation.
254 //===--------------------------------------------------------------------===//
255
256 /// Return true if this instruction has any metadata attached to it.
257 bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); }
258
259 /// Return true if this instruction has metadata attached to it other than a
260 /// debug location.
261 bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); }
262
263 /// Return true if this instruction has the given type of metadata attached.
264 bool hasMetadata(unsigned KindID) const {
265 return getMetadata(KindID) != nullptr;
266 }
267
268 /// Return true if this instruction has the given type of metadata attached.
269 bool hasMetadata(StringRef Kind) const {
270 return getMetadata(Kind) != nullptr;
271 }
272
273 /// Get the metadata of given kind attached to this Instruction.
274 /// If the metadata is not found then return null.
275 MDNode *getMetadata(unsigned KindID) const {
276 if (!hasMetadata()) return nullptr;
277 return getMetadataImpl(KindID);
278 }
279
280 /// Get the metadata of given kind attached to this Instruction.
281 /// If the metadata is not found then return null.
282 MDNode *getMetadata(StringRef Kind) const {
283 if (!hasMetadata()) return nullptr;
284 return getMetadataImpl(Kind);
285 }
286
287 /// Get all metadata attached to this Instruction. The first element of each
288 /// pair returned is the KindID, the second element is the metadata value.
289 /// This list is returned sorted by the KindID.
290 void
291 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
292 if (hasMetadata())
293 getAllMetadataImpl(MDs);
294 }
295
296 /// This does the same thing as getAllMetadata, except that it filters out the
297 /// debug location.
298 void getAllMetadataOtherThanDebugLoc(
299 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
300 Value::getAllMetadata(MDs);
301 }
302
303 /// Set the metadata of the specified kind to the specified node. This updates
304 /// or replaces metadata if already present, or removes it if Node is null.
305 void setMetadata(unsigned KindID, MDNode *Node);
306 void setMetadata(StringRef Kind, MDNode *Node);
307
308 /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
309 /// specifies the list of meta data that needs to be copied. If \p WL is
310 /// empty, all meta data will be copied.
311 void copyMetadata(const Instruction &SrcInst,
312 ArrayRef<unsigned> WL = ArrayRef<unsigned>());
313
314 /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
315 /// has three operands (including name string), swap the order of the
316 /// metadata.
317 void swapProfMetadata();
318
319 /// Drop all unknown metadata except for debug locations.
320 /// @{
321 /// Passes are required to drop metadata they don't understand. This is a
322 /// convenience method for passes to do so.
323 /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of
324 /// this API if the Instruction being modified is a call.
325 void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
326 void dropUnknownNonDebugMetadata() {
327 return dropUnknownNonDebugMetadata(std::nullopt);
328 }
329 void dropUnknownNonDebugMetadata(unsigned ID1) {
330 return dropUnknownNonDebugMetadata(ArrayRef(ID1));
331 }
332 void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
333 unsigned IDs[] = {ID1, ID2};
334 return dropUnknownNonDebugMetadata(IDs);
335 }
336 /// @}
337
338 /// Adds an !annotation metadata node with \p Annotation to this instruction.
339 /// If this instruction already has !annotation metadata, append \p Annotation
340 /// to the existing node.
341 void addAnnotationMetadata(StringRef Annotation);
342
343 /// Returns the AA metadata for this instruction.
344 AAMDNodes getAAMetadata() const;
345
346 /// Sets the AA metadata on this instruction from the AAMDNodes structure.
347 void setAAMetadata(const AAMDNodes &N);
348
349 /// Retrieve total raw weight values of a branch.
350 /// Returns true on success with profile total weights filled in.
351 /// Returns false if no metadata was found.
352 bool extractProfTotalWeight(uint64_t &TotalVal) const;
353
354 /// Set the debug location information for this instruction.
355 void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
356
357 /// Return the debug location for this node as a DebugLoc.
358 const DebugLoc &getDebugLoc() const { return DbgLoc; }
359
360 /// Set or clear the nuw flag on this instruction, which must be an operator
361 /// which supports this flag. See LangRef.html for the meaning of this flag.
362 void setHasNoUnsignedWrap(bool b = true);
363
364 /// Set or clear the nsw flag on this instruction, which must be an operator
365 /// which supports this flag. See LangRef.html for the meaning of this flag.
366 void setHasNoSignedWrap(bool b = true);
367
368 /// Set or clear the exact flag on this instruction, which must be an operator
369 /// which supports this flag. See LangRef.html for the meaning of this flag.
370 void setIsExact(bool b = true);
371
372 /// Determine whether the no unsigned wrap flag is set.
373 bool hasNoUnsignedWrap() const LLVM_READONLY__attribute__((__pure__));
374
375 /// Determine whether the no signed wrap flag is set.
376 bool hasNoSignedWrap() const LLVM_READONLY__attribute__((__pure__));
377
378 /// Return true if this operator has flags which may cause this instruction
379 /// to evaluate to poison despite having non-poison inputs.
380 bool hasPoisonGeneratingFlags() const LLVM_READONLY__attribute__((__pure__));
381
382 /// Drops flags that may cause this instruction to evaluate to poison despite
383 /// having non-poison inputs.
384 void dropPoisonGeneratingFlags();
385
386 /// Return true if this instruction has poison-generating metadata.
387 bool hasPoisonGeneratingMetadata() const LLVM_READONLY__attribute__((__pure__));
388
389 /// Drops metadata that may generate poison.
390 void dropPoisonGeneratingMetadata();
391
392 /// Return true if this instruction has poison-generating flags or metadata.
393 bool hasPoisonGeneratingFlagsOrMetadata() const {
394 return hasPoisonGeneratingFlags() || hasPoisonGeneratingMetadata();
395 }
396
397 /// Drops flags and metadata that may generate poison.
398 void dropPoisonGeneratingFlagsAndMetadata() {
399 dropPoisonGeneratingFlags();
400 dropPoisonGeneratingMetadata();
401 }
402
403 /// This function drops non-debug unknown metadata (through
404 /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and
405 /// return attributes that can cause undefined behaviour. Both of these should
406 /// be done by passes which move instructions in IR.
407 void
408 dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {});
409
410 /// Determine whether the exact flag is set.
411 bool isExact() const LLVM_READONLY__attribute__((__pure__));
412
413 /// Set or clear all fast-math-flags on this instruction, which must be an
414 /// operator which supports this flag. See LangRef.html for the meaning of
415 /// this flag.
416 void setFast(bool B);
417
418 /// Set or clear the reassociation flag on this instruction, which must be
419 /// an operator which supports this flag. See LangRef.html for the meaning of
420 /// this flag.
421 void setHasAllowReassoc(bool B);
422
423 /// Set or clear the no-nans flag on this instruction, which must be an
424 /// operator which supports this flag. See LangRef.html for the meaning of
425 /// this flag.
426 void setHasNoNaNs(bool B);
427
428 /// Set or clear the no-infs flag on this instruction, which must be an
429 /// operator which supports this flag. See LangRef.html for the meaning of
430 /// this flag.
431 void setHasNoInfs(bool B);
432
433 /// Set or clear the no-signed-zeros flag on this instruction, which must be
434 /// an operator which supports this flag. See LangRef.html for the meaning of
435 /// this flag.
436 void setHasNoSignedZeros(bool B);
437
438 /// Set or clear the allow-reciprocal flag on this instruction, which must be
439 /// an operator which supports this flag. See LangRef.html for the meaning of
440 /// this flag.
441 void setHasAllowReciprocal(bool B);
442
443 /// Set or clear the allow-contract flag on this instruction, which must be
444 /// an operator which supports this flag. See LangRef.html for the meaning of
445 /// this flag.
446 void setHasAllowContract(bool B);
447
448 /// Set or clear the approximate-math-functions flag on this instruction,
449 /// which must be an operator which supports this flag. See LangRef.html for
450 /// the meaning of this flag.
451 void setHasApproxFunc(bool B);
452
453 /// Convenience function for setting multiple fast-math flags on this
454 /// instruction, which must be an operator which supports these flags. See
455 /// LangRef.html for the meaning of these flags.
456 void setFastMathFlags(FastMathFlags FMF);
457
458 /// Convenience function for transferring all fast-math flag values to this
459 /// instruction, which must be an operator which supports these flags. See
460 /// LangRef.html for the meaning of these flags.
461 void copyFastMathFlags(FastMathFlags FMF);
462
463 /// Determine whether all fast-math-flags are set.
464 bool isFast() const LLVM_READONLY__attribute__((__pure__));
465
466 /// Determine whether the allow-reassociation flag is set.
467 bool hasAllowReassoc() const LLVM_READONLY__attribute__((__pure__));
468
469 /// Determine whether the no-NaNs flag is set.
470 bool hasNoNaNs() const LLVM_READONLY__attribute__((__pure__));
471
472 /// Determine whether the no-infs flag is set.
473 bool hasNoInfs() const LLVM_READONLY__attribute__((__pure__));
474
475 /// Determine whether the no-signed-zeros flag is set.
476 bool hasNoSignedZeros() const LLVM_READONLY__attribute__((__pure__));
477
478 /// Determine whether the allow-reciprocal flag is set.
479 bool hasAllowReciprocal() const LLVM_READONLY__attribute__((__pure__));
480
481 /// Determine whether the allow-contract flag is set.
482 bool hasAllowContract() const LLVM_READONLY__attribute__((__pure__));
483
484 /// Determine whether the approximate-math-functions flag is set.
485 bool hasApproxFunc() const LLVM_READONLY__attribute__((__pure__));
486
487 /// Convenience function for getting all the fast-math flags, which must be an
488 /// operator which supports these flags. See LangRef.html for the meaning of
489 /// these flags.
490 FastMathFlags getFastMathFlags() const LLVM_READONLY__attribute__((__pure__));
491
492 /// Copy I's fast-math flags
493 void copyFastMathFlags(const Instruction *I);
494
495 /// Convenience method to copy supported exact, fast-math, and (optionally)
496 /// wrapping flags from V to this instruction.
497 void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
498
499 /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
500 /// V and this instruction.
501 void andIRFlags(const Value *V);
502
503 /// Merge 2 debug locations and apply it to the Instruction. If the
504 /// instruction is a CallIns, we need to traverse the inline chain to find
505 /// the common scope. This is not efficient for N-way merging as each time
506 /// you merge 2 iterations, you need to rebuild the hashmap to find the
507 /// common scope. However, we still choose this API because:
508 /// 1) Simplicity: it takes 2 locations instead of a list of locations.
509 /// 2) In worst case, it increases the complexity from O(N*I) to
510 /// O(2*N*I), where N is # of Instructions to merge, and I is the
511 /// maximum level of inline stack. So it is still linear.
512 /// 3) Merging of call instructions should be extremely rare in real
513 /// applications, thus the N-way merging should be in code path.
514 /// The DebugLoc attached to this instruction will be overwritten by the
515 /// merged DebugLoc.
516 void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
517
518 /// Updates the debug location given that the instruction has been hoisted
519 /// from a block to a predecessor of that block.
520 /// Note: it is undefined behavior to call this on an instruction not
521 /// currently inserted into a function.
522 void updateLocationAfterHoist();
523
524 /// Drop the instruction's debug location. This does not guarantee removal
525 /// of the !dbg source location attachment, as it must set a line 0 location
526 /// with scope information attached on call instructions. To guarantee
527 /// removal of the !dbg attachment, use the \ref setDebugLoc() API.
528 /// Note: it is undefined behavior to call this on an instruction not
529 /// currently inserted into a function.
530 void dropLocation();
531
532 /// Merge the DIAssignID metadata from this instruction and those attached to
533 /// instructions in \p SourceInstructions. This process performs a RAUW on
534 /// the MetadataAsValue uses of the merged DIAssignID nodes. Not every
535 /// instruction in \p SourceInstructions needs to have DIAssignID
536 /// metadata. If none of them do then nothing happens. If this instruction
537 /// does not have a DIAssignID attachment but at least one in \p
538 /// SourceInstructions does then the merged one will be attached to
539 /// it. However, instructions without attachments in \p SourceInstructions
540 /// are not modified.
541 void mergeDIAssignID(ArrayRef<const Instruction *> SourceInstructions);
542
543private:
544 // These are all implemented in Metadata.cpp.
545 MDNode *getMetadataImpl(unsigned KindID) const;
546 MDNode *getMetadataImpl(StringRef Kind) const;
547 void
548 getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
549
550 /// Update the LLVMContext ID-to-Instruction(s) mapping. If \p ID is nullptr
551 /// then clear the mapping for this instruction.
552 void updateDIAssignIDMapping(DIAssignID *ID);
553
554public:
555 //===--------------------------------------------------------------------===//
556 // Predicates and helper methods.
557 //===--------------------------------------------------------------------===//
558
559 /// Return true if the instruction is associative:
560 ///
561 /// Associative operators satisfy: x op (y op z) === (x op y) op z
562 ///
563 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
564 ///
565 bool isAssociative() const LLVM_READONLY__attribute__((__pure__));
566 static bool isAssociative(unsigned Opcode) {
567 return Opcode == And || Opcode == Or || Opcode == Xor ||
568 Opcode == Add || Opcode == Mul;
569 }
570
571 /// Return true if the instruction is commutative:
572 ///
573 /// Commutative operators satisfy: (x op y) === (y op x)
574 ///
575 /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
576 /// applied to any type.
577 ///
578 bool isCommutative() const LLVM_READONLY__attribute__((__pure__));
579 static bool isCommutative(unsigned Opcode) {
580 switch (Opcode) {
581 case Add: case FAdd:
582 case Mul: case FMul:
583 case And: case Or: case Xor:
584 return true;
585 default:
586 return false;
587 }
588 }
589
590 /// Return true if the instruction is idempotent:
591 ///
592 /// Idempotent operators satisfy: x op x === x
593 ///
594 /// In LLVM, the And and Or operators are idempotent.
595 ///
596 bool isIdempotent() const { return isIdempotent(getOpcode()); }
597 static bool isIdempotent(unsigned Opcode) {
598 return Opcode == And || Opcode == Or;
599 }
600
601 /// Return true if the instruction is nilpotent:
602 ///
603 /// Nilpotent operators satisfy: x op x === Id,
604 ///
605 /// where Id is the identity for the operator, i.e. a constant such that
606 /// x op Id === x and Id op x === x for all x.
607 ///
608 /// In LLVM, the Xor operator is nilpotent.
609 ///
610 bool isNilpotent() const { return isNilpotent(getOpcode()); }
611 static bool isNilpotent(unsigned Opcode) {
612 return Opcode == Xor;
613 }
614
615 /// Return true if this instruction may modify memory.
616 bool mayWriteToMemory() const LLVM_READONLY__attribute__((__pure__));
617
618 /// Return true if this instruction may read memory.
619 bool mayReadFromMemory() const LLVM_READONLY__attribute__((__pure__));
620
621 /// Return true if this instruction may read or write memory.
622 bool mayReadOrWriteMemory() const {
623 return mayReadFromMemory() || mayWriteToMemory();
624 }
625
626 /// Return true if this instruction has an AtomicOrdering of unordered or
627 /// higher.
628 bool isAtomic() const LLVM_READONLY__attribute__((__pure__));
629
630 /// Return true if this atomic instruction loads from memory.
631 bool hasAtomicLoad() const LLVM_READONLY__attribute__((__pure__));
632
633 /// Return true if this atomic instruction stores to memory.
634 bool hasAtomicStore() const LLVM_READONLY__attribute__((__pure__));
635
636 /// Return true if this instruction has a volatile memory access.
637 bool isVolatile() const LLVM_READONLY__attribute__((__pure__));
638
639 /// Return true if this instruction may throw an exception.
640 bool mayThrow() const LLVM_READONLY__attribute__((__pure__));
641
642 /// Return true if this instruction behaves like a memory fence: it can load
643 /// or store to memory location without being given a memory location.
644 bool isFenceLike() const {
645 switch (getOpcode()) {
646 default:
647 return false;
648 // This list should be kept in sync with the list in mayWriteToMemory for
649 // all opcodes which don't have a memory location.
650 case Instruction::Fence:
651 case Instruction::CatchPad:
652 case Instruction::CatchRet:
653 case Instruction::Call:
654 case Instruction::Invoke:
655 return true;
656 }
657 }
658
659 /// Return true if the instruction may have side effects.
660 ///
661 /// Side effects are:
662 /// * Writing to memory.
663 /// * Unwinding.
664 /// * Not returning (e.g. an infinite loop).
665 ///
666 /// Note that this does not consider malloc and alloca to have side
667 /// effects because the newly allocated memory is completely invisible to
668 /// instructions which don't use the returned value. For cases where this
669 /// matters, isSafeToSpeculativelyExecute may be more appropriate.
670 bool mayHaveSideEffects() const LLVM_READONLY__attribute__((__pure__));
671
672 /// Return true if the instruction can be removed if the result is unused.
673 ///
674 /// When constant folding some instructions cannot be removed even if their
675 /// results are unused. Specifically terminator instructions and calls that
676 /// may have side effects cannot be removed without semantically changing the
677 /// generated program.
678 bool isSafeToRemove() const LLVM_READONLY__attribute__((__pure__));
679
680 /// Return true if the instruction will return (unwinding is considered as
681 /// a form of returning control flow here).
682 bool willReturn() const LLVM_READONLY__attribute__((__pure__));
683
684 /// Return true if the instruction is a variety of EH-block.
685 bool isEHPad() const {
686 switch (getOpcode()) {
687 case Instruction::CatchSwitch:
688 case Instruction::CatchPad:
689 case Instruction::CleanupPad:
690 case Instruction::LandingPad:
691 return true;
692 default:
693 return false;
694 }
695 }
696
697 /// Return true if the instruction is a llvm.lifetime.start or
698 /// llvm.lifetime.end marker.
699 bool isLifetimeStartOrEnd() const LLVM_READONLY__attribute__((__pure__));
700
701 /// Return true if the instruction is a llvm.launder.invariant.group or
702 /// llvm.strip.invariant.group.
703 bool isLaunderOrStripInvariantGroup() const LLVM_READONLY__attribute__((__pure__));
704
705 /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
706 bool isDebugOrPseudoInst() const LLVM_READONLY__attribute__((__pure__));
707
708 /// Return a pointer to the next non-debug instruction in the same basic
709 /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
710 /// operations if \c SkipPseudoOp is true.
711 const Instruction *
712 getNextNonDebugInstruction(bool SkipPseudoOp = false) const;
713 Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) {
714 return const_cast<Instruction *>(
715 static_cast<const Instruction *>(this)->getNextNonDebugInstruction(
716 SkipPseudoOp));
717 }
718
719 /// Return a pointer to the previous non-debug instruction in the same basic
720 /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
721 /// operations if \c SkipPseudoOp is true.
722 const Instruction *
723 getPrevNonDebugInstruction(bool SkipPseudoOp = false) const;
724 Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) {
725 return const_cast<Instruction *>(
726 static_cast<const Instruction *>(this)->getPrevNonDebugInstruction(
727 SkipPseudoOp));
728 }
729
730 /// Create a copy of 'this' instruction that is identical in all ways except
731 /// the following:
732 /// * The instruction has no parent
733 /// * The instruction has no name
734 ///
735 Instruction *clone() const;
736
737 /// Return true if the specified instruction is exactly identical to the
738 /// current one. This means that all operands match and any extra information
739 /// (e.g. load is volatile) agree.
740 bool isIdenticalTo(const Instruction *I) const LLVM_READONLY__attribute__((__pure__));
741
742 /// This is like isIdenticalTo, except that it ignores the
743 /// SubclassOptionalData flags, which may specify conditions under which the
744 /// instruction's result is undefined.
745 bool isIdenticalToWhenDefined(const Instruction *I) const LLVM_READONLY__attribute__((__pure__));
746
747 /// When checking for operation equivalence (using isSameOperationAs) it is
748 /// sometimes useful to ignore certain attributes.
749 enum OperationEquivalenceFlags {
750 /// Check for equivalence ignoring load/store alignment.
751 CompareIgnoringAlignment = 1<<0,
752 /// Check for equivalence treating a type and a vector of that type
753 /// as equivalent.
754 CompareUsingScalarTypes = 1<<1
755 };
756
757 /// This function determines if the specified instruction executes the same
758 /// operation as the current one. This means that the opcodes, type, operand
759 /// types and any other factors affecting the operation must be the same. This
760 /// is similar to isIdenticalTo except the operands themselves don't have to
761 /// be identical.
762 /// @returns true if the specified instruction is the same operation as
763 /// the current one.
764 /// Determine if one instruction is the same operation as another.
765 bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const LLVM_READONLY__attribute__((__pure__));
766
767 /// Return true if there are any uses of this instruction in blocks other than
768 /// the specified block. Note that PHI nodes are considered to evaluate their
769 /// operands in the corresponding predecessor block.
770 bool isUsedOutsideOfBlock(const BasicBlock *BB) const LLVM_READONLY__attribute__((__pure__));
771
772 /// Return the number of successors that this instruction has. The instruction
773 /// must be a terminator.
774 unsigned getNumSuccessors() const LLVM_READONLY__attribute__((__pure__));
775
776 /// Return the specified successor. This instruction must be a terminator.
777 BasicBlock *getSuccessor(unsigned Idx) const LLVM_READONLY__attribute__((__pure__));
778
779 /// Update the specified successor to point at the provided block. This
780 /// instruction must be a terminator.
781 void setSuccessor(unsigned Idx, BasicBlock *BB);
782
783 /// Replace specified successor OldBB to point at the provided block.
784 /// This instruction must be a terminator.
785 void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
786
787 /// Methods for support type inquiry through isa, cast, and dyn_cast:
788 static bool classof(const Value *V) {
789 return V->getValueID() >= Value::InstructionVal;
790 }
791
792 //----------------------------------------------------------------------
793 // Exported enumerations.
794 //
795 enum TermOps { // These terminate basic blocks
796#define FIRST_TERM_INST(N) TermOpsBegin = N,
797#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
798#define LAST_TERM_INST(N) TermOpsEnd = N+1
799#include "llvm/IR/Instruction.def"
800 };
801
802 enum UnaryOps {
803#define FIRST_UNARY_INST(N) UnaryOpsBegin = N,
804#define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
805#define LAST_UNARY_INST(N) UnaryOpsEnd = N+1
806#include "llvm/IR/Instruction.def"
807 };
808
809 enum BinaryOps {
810#define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
811#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
812#define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
813#include "llvm/IR/Instruction.def"
814 };
815
816 enum MemoryOps {
817#define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
818#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
819#define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
820#include "llvm/IR/Instruction.def"
821 };
822
823 enum CastOps {
824#define FIRST_CAST_INST(N) CastOpsBegin = N,
825#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
826#define LAST_CAST_INST(N) CastOpsEnd = N+1
827#include "llvm/IR/Instruction.def"
828 };
829
830 enum FuncletPadOps {
831#define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
832#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
833#define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
834#include "llvm/IR/Instruction.def"
835 };
836
837 enum OtherOps {
838#define FIRST_OTHER_INST(N) OtherOpsBegin = N,
839#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
840#define LAST_OTHER_INST(N) OtherOpsEnd = N+1
841#include "llvm/IR/Instruction.def"
842 };
843
844private:
845 friend class SymbolTableListTraits<Instruction>;
846 friend class BasicBlock; // For renumbering.
847
848 // Shadow Value::setValueSubclassData with a private forwarding method so that
849 // subclasses cannot accidentally use it.
850 void setValueSubclassData(unsigned short D) {
851 Value::setValueSubclassData(D);
852 }
853
854 unsigned short getSubclassDataFromValue() const {
855 return Value::getSubclassDataFromValue();
856 }
857
858 void setParent(BasicBlock *P);
859
860protected:
861 // Instruction subclasses can stick up to 15 bits of stuff into the
862 // SubclassData field of instruction with these members.
863
864 template <typename BitfieldElement>
865 typename BitfieldElement::Type getSubclassData() const {
866 static_assert(
867 std::is_same<BitfieldElement, HasMetadataField>::value ||
868 !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
869 "Must not overlap with the metadata bit");
870 return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
871 }
872
873 template <typename BitfieldElement>
874 void setSubclassData(typename BitfieldElement::Type Value) {
875 static_assert(
876 std::is_same<BitfieldElement, HasMetadataField>::value ||
877 !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
878 "Must not overlap with the metadata bit");
879 auto Storage = getSubclassDataFromValue();
880 Bitfield::set<BitfieldElement>(Storage, Value);
881 setValueSubclassData(Storage);
882 }
883
884 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
885 Instruction *InsertBefore = nullptr);
886 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
887 BasicBlock *InsertAtEnd);
888
889private:
890 /// Create a copy of this instruction.
891 Instruction *cloneImpl() const;
892};
893
894inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
895 V->deleteValue();
896}
897
898} // end namespace llvm
899
900#endif // LLVM_IR_INSTRUCTION_H