Bug Summary

File:llvm/lib/Analysis/ConstantFolding.cpp
Warning:line 2598, column 35
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ConstantFolding.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Analysis -I /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis -I include -I /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-11-10-160236-22541-1 -x c++ /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp

/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp

1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/Analysis/TargetFolder.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Analysis/VectorUtils.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalValue.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/InstrTypes.h"
40#include "llvm/IR/Instruction.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/IntrinsicsAArch64.h"
45#include "llvm/IR/IntrinsicsAMDGPU.h"
46#include "llvm/IR/IntrinsicsARM.h"
47#include "llvm/IR/IntrinsicsWebAssembly.h"
48#include "llvm/IR/IntrinsicsX86.h"
49#include "llvm/IR/Operator.h"
50#include "llvm/IR/Type.h"
51#include "llvm/IR/Value.h"
52#include "llvm/Support/Casting.h"
53#include "llvm/Support/ErrorHandling.h"
54#include "llvm/Support/KnownBits.h"
55#include "llvm/Support/MathExtras.h"
56#include <cassert>
57#include <cerrno>
58#include <cfenv>
59#include <cmath>
60#include <cstddef>
61#include <cstdint>
62
63using namespace llvm;
64
65namespace {
66
67//===----------------------------------------------------------------------===//
68// Constant Folding internal helper functions
69//===----------------------------------------------------------------------===//
70
71static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72 Constant *C, Type *SrcEltTy,
73 unsigned NumSrcElts,
74 const DataLayout &DL) {
75 // Now that we know that the input value is a vector of integers, just shift
76 // and insert them into our result.
77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78 for (unsigned i = 0; i != NumSrcElts; ++i) {
79 Constant *Element;
80 if (DL.isLittleEndian())
81 Element = C->getAggregateElement(NumSrcElts - i - 1);
82 else
83 Element = C->getAggregateElement(i);
84
85 if (Element && isa<UndefValue>(Element)) {
86 Result <<= BitShift;
87 continue;
88 }
89
90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91 if (!ElementCI)
92 return ConstantExpr::getBitCast(C, DestTy);
93
94 Result <<= BitShift;
95 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
96 }
97
98 return nullptr;
99}
100
101/// Constant fold bitcast, symbolically evaluating it with DataLayout.
102/// This always returns a non-null constant, but it may be a
103/// ConstantExpr if unfoldable.
104Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&(static_cast <bool> (CastInst::castIsValid(Instruction::
BitCast, C, DestTy) && "Invalid constantexpr bitcast!"
) ? void (0) : __assert_fail ("CastInst::castIsValid(Instruction::BitCast, C, DestTy) && \"Invalid constantexpr bitcast!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 106, __extension__ __PRETTY_FUNCTION__))
106 "Invalid constantexpr bitcast!")(static_cast <bool> (CastInst::castIsValid(Instruction::
BitCast, C, DestTy) && "Invalid constantexpr bitcast!"
) ? void (0) : __assert_fail ("CastInst::castIsValid(Instruction::BitCast, C, DestTy) && \"Invalid constantexpr bitcast!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 106, __extension__ __PRETTY_FUNCTION__))
;
107
108 // Catch the obvious splat cases.
109 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
110 return Constant::getNullValue(DestTy);
111 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
112 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
113 return Constant::getAllOnesValue(DestTy);
114
115 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
116 // Handle a vector->scalar integer/fp cast.
117 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
118 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
119 Type *SrcEltTy = VTy->getElementType();
120
121 // If the vector is a vector of floating point, convert it to vector of int
122 // to simplify things.
123 if (SrcEltTy->isFloatingPointTy()) {
124 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
125 auto *SrcIVTy = FixedVectorType::get(
126 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
127 // Ask IR to do the conversion now that #elts line up.
128 C = ConstantExpr::getBitCast(C, SrcIVTy);
129 }
130
131 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
132 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
133 SrcEltTy, NumSrcElts, DL))
134 return CE;
135
136 if (isa<IntegerType>(DestTy))
137 return ConstantInt::get(DestTy, Result);
138
139 APFloat FP(DestTy->getFltSemantics(), Result);
140 return ConstantFP::get(DestTy->getContext(), FP);
141 }
142 }
143
144 // The code below only handles casts to vectors currently.
145 auto *DestVTy = dyn_cast<VectorType>(DestTy);
146 if (!DestVTy)
147 return ConstantExpr::getBitCast(C, DestTy);
148
149 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
150 // vector so the code below can handle it uniformly.
151 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
152 Constant *Ops = C; // don't take the address of C!
153 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
154 }
155
156 // If this is a bitcast from constant vector -> vector, fold it.
157 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
158 return ConstantExpr::getBitCast(C, DestTy);
159
160 // If the element types match, IR can fold it.
161 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
162 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
163 if (NumDstElt == NumSrcElt)
164 return ConstantExpr::getBitCast(C, DestTy);
165
166 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
167 Type *DstEltTy = DestVTy->getElementType();
168
169 // Otherwise, we're changing the number of elements in a vector, which
170 // requires endianness information to do the right thing. For example,
171 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
172 // folds to (little endian):
173 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
174 // and to (big endian):
175 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
176
177 // First thing is first. We only want to think about integer here, so if
178 // we have something in FP form, recast it as integer.
179 if (DstEltTy->isFloatingPointTy()) {
180 // Fold to an vector of integers with same size as our FP type.
181 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
182 auto *DestIVTy = FixedVectorType::get(
183 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
184 // Recursively handle this integer conversion, if possible.
185 C = FoldBitCast(C, DestIVTy, DL);
186
187 // Finally, IR can handle this now that #elts line up.
188 return ConstantExpr::getBitCast(C, DestTy);
189 }
190
191 // Okay, we know the destination is integer, if the input is FP, convert
192 // it to integer first.
193 if (SrcEltTy->isFloatingPointTy()) {
194 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
195 auto *SrcIVTy = FixedVectorType::get(
196 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
197 // Ask IR to do the conversion now that #elts line up.
198 C = ConstantExpr::getBitCast(C, SrcIVTy);
199 // If IR wasn't able to fold it, bail out.
200 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
201 !isa<ConstantDataVector>(C))
202 return C;
203 }
204
205 // Now we know that the input and output vectors are both integer vectors
206 // of the same size, and that their #elements is not the same. Do the
207 // conversion here, which depends on whether the input or output has
208 // more elements.
209 bool isLittleEndian = DL.isLittleEndian();
210
211 SmallVector<Constant*, 32> Result;
212 if (NumDstElt < NumSrcElt) {
213 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
214 Constant *Zero = Constant::getNullValue(DstEltTy);
215 unsigned Ratio = NumSrcElt/NumDstElt;
216 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
217 unsigned SrcElt = 0;
218 for (unsigned i = 0; i != NumDstElt; ++i) {
219 // Build each element of the result.
220 Constant *Elt = Zero;
221 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
222 for (unsigned j = 0; j != Ratio; ++j) {
223 Constant *Src = C->getAggregateElement(SrcElt++);
224 if (Src && isa<UndefValue>(Src))
225 Src = Constant::getNullValue(
226 cast<VectorType>(C->getType())->getElementType());
227 else
228 Src = dyn_cast_or_null<ConstantInt>(Src);
229 if (!Src) // Reject constantexpr elements.
230 return ConstantExpr::getBitCast(C, DestTy);
231
232 // Zero extend the element to the right size.
233 Src = ConstantExpr::getZExt(Src, Elt->getType());
234
235 // Shift it to the right place, depending on endianness.
236 Src = ConstantExpr::getShl(Src,
237 ConstantInt::get(Src->getType(), ShiftAmt));
238 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
239
240 // Mix it in.
241 Elt = ConstantExpr::getOr(Elt, Src);
242 }
243 Result.push_back(Elt);
244 }
245 return ConstantVector::get(Result);
246 }
247
248 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
249 unsigned Ratio = NumDstElt/NumSrcElt;
250 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
251
252 // Loop over each source value, expanding into multiple results.
253 for (unsigned i = 0; i != NumSrcElt; ++i) {
254 auto *Element = C->getAggregateElement(i);
255
256 if (!Element) // Reject constantexpr elements.
257 return ConstantExpr::getBitCast(C, DestTy);
258
259 if (isa<UndefValue>(Element)) {
260 // Correctly Propagate undef values.
261 Result.append(Ratio, UndefValue::get(DstEltTy));
262 continue;
263 }
264
265 auto *Src = dyn_cast<ConstantInt>(Element);
266 if (!Src)
267 return ConstantExpr::getBitCast(C, DestTy);
268
269 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
270 for (unsigned j = 0; j != Ratio; ++j) {
271 // Shift the piece of the value into the right place, depending on
272 // endianness.
273 Constant *Elt = ConstantExpr::getLShr(Src,
274 ConstantInt::get(Src->getType(), ShiftAmt));
275 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
276
277 // Truncate the element to an integer with the same pointer size and
278 // convert the element back to a pointer using a inttoptr.
279 if (DstEltTy->isPointerTy()) {
280 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
281 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
282 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
283 continue;
284 }
285
286 // Truncate and remember this piece.
287 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
288 }
289 }
290
291 return ConstantVector::get(Result);
292}
293
294} // end anonymous namespace
295
296/// If this constant is a constant offset from a global, return the global and
297/// the constant. Because of constantexprs, this function is recursive.
298bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
299 APInt &Offset, const DataLayout &DL,
300 DSOLocalEquivalent **DSOEquiv) {
301 if (DSOEquiv)
302 *DSOEquiv = nullptr;
303
304 // Trivial case, constant is the global.
305 if ((GV = dyn_cast<GlobalValue>(C))) {
306 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
307 Offset = APInt(BitWidth, 0);
308 return true;
309 }
310
311 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
312 if (DSOEquiv)
313 *DSOEquiv = FoundDSOEquiv;
314 GV = FoundDSOEquiv->getGlobalValue();
315 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
316 Offset = APInt(BitWidth, 0);
317 return true;
318 }
319
320 // Otherwise, if this isn't a constant expr, bail out.
321 auto *CE = dyn_cast<ConstantExpr>(C);
322 if (!CE) return false;
323
324 // Look through ptr->int and ptr->ptr casts.
325 if (CE->getOpcode() == Instruction::PtrToInt ||
326 CE->getOpcode() == Instruction::BitCast)
327 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
328 DSOEquiv);
329
330 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
331 auto *GEP = dyn_cast<GEPOperator>(CE);
332 if (!GEP)
333 return false;
334
335 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
336 APInt TmpOffset(BitWidth, 0);
337
338 // If the base isn't a global+constant, we aren't either.
339 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
340 DSOEquiv))
341 return false;
342
343 // Otherwise, add any offset that our operands provide.
344 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
345 return false;
346
347 Offset = TmpOffset;
348 return true;
349}
350
351Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
352 const DataLayout &DL) {
353 do {
354 Type *SrcTy = C->getType();
355 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
356 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
357 if (!TypeSize::isKnownGE(SrcSize, DestSize))
358 return nullptr;
359
360 // Catch the obvious splat cases (since all-zeros can coerce non-integral
361 // pointers legally).
362 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
363 return Constant::getNullValue(DestTy);
364 if (C->isAllOnesValue() &&
365 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
366 DestTy->isVectorTy()) &&
367 !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
368 !DestTy->isPtrOrPtrVectorTy())
369 // Get ones when the input is trivial, but
370 // only for supported types inside getAllOnesValue.
371 return Constant::getAllOnesValue(DestTy);
372
373 // If the type sizes are the same and a cast is legal, just directly
374 // cast the constant.
375 // But be careful not to coerce non-integral pointers illegally.
376 if (SrcSize == DestSize &&
377 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
378 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
379 Instruction::CastOps Cast = Instruction::BitCast;
380 // If we are going from a pointer to int or vice versa, we spell the cast
381 // differently.
382 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
383 Cast = Instruction::IntToPtr;
384 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
385 Cast = Instruction::PtrToInt;
386
387 if (CastInst::castIsValid(Cast, C, DestTy))
388 return ConstantExpr::getCast(Cast, C, DestTy);
389 }
390
391 // If this isn't an aggregate type, there is nothing we can do to drill down
392 // and find a bitcastable constant.
393 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
394 return nullptr;
395
396 // We're simulating a load through a pointer that was bitcast to point to
397 // a different type, so we can try to walk down through the initial
398 // elements of an aggregate to see if some part of the aggregate is
399 // castable to implement the "load" semantic model.
400 if (SrcTy->isStructTy()) {
401 // Struct types might have leading zero-length elements like [0 x i32],
402 // which are certainly not what we are looking for, so skip them.
403 unsigned Elem = 0;
404 Constant *ElemC;
405 do {
406 ElemC = C->getAggregateElement(Elem++);
407 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
408 C = ElemC;
409 } else {
410 C = C->getAggregateElement(0u);
411 }
412 } while (C);
413
414 return nullptr;
415}
416
417namespace {
418
419/// Recursive helper to read bits out of global. C is the constant being copied
420/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
421/// results into and BytesLeft is the number of bytes left in
422/// the CurPtr buffer. DL is the DataLayout.
423bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
424 unsigned BytesLeft, const DataLayout &DL) {
425 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&(static_cast <bool> (ByteOffset <= DL.getTypeAllocSize
(C->getType()) && "Out of range access") ? void (0
) : __assert_fail ("ByteOffset <= DL.getTypeAllocSize(C->getType()) && \"Out of range access\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 426, __extension__ __PRETTY_FUNCTION__))
426 "Out of range access")(static_cast <bool> (ByteOffset <= DL.getTypeAllocSize
(C->getType()) && "Out of range access") ? void (0
) : __assert_fail ("ByteOffset <= DL.getTypeAllocSize(C->getType()) && \"Out of range access\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 426, __extension__ __PRETTY_FUNCTION__))
;
427
428 // If this element is zero or undefined, we can just return since *CurPtr is
429 // zero initialized.
430 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
431 return true;
432
433 if (auto *CI = dyn_cast<ConstantInt>(C)) {
434 if (CI->getBitWidth() > 64 ||
435 (CI->getBitWidth() & 7) != 0)
436 return false;
437
438 uint64_t Val = CI->getZExtValue();
439 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
440
441 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
442 int n = ByteOffset;
443 if (!DL.isLittleEndian())
444 n = IntBytes - n - 1;
445 CurPtr[i] = (unsigned char)(Val >> (n * 8));
446 ++ByteOffset;
447 }
448 return true;
449 }
450
451 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
452 if (CFP->getType()->isDoubleTy()) {
453 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
454 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
455 }
456 if (CFP->getType()->isFloatTy()){
457 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
458 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
459 }
460 if (CFP->getType()->isHalfTy()){
461 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
462 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
463 }
464 return false;
465 }
466
467 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
468 const StructLayout *SL = DL.getStructLayout(CS->getType());
469 unsigned Index = SL->getElementContainingOffset(ByteOffset);
470 uint64_t CurEltOffset = SL->getElementOffset(Index);
471 ByteOffset -= CurEltOffset;
472
473 while (true) {
474 // If the element access is to the element itself and not to tail padding,
475 // read the bytes from the element.
476 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
477
478 if (ByteOffset < EltSize &&
479 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
480 BytesLeft, DL))
481 return false;
482
483 ++Index;
484
485 // Check to see if we read from the last struct element, if so we're done.
486 if (Index == CS->getType()->getNumElements())
487 return true;
488
489 // If we read all of the bytes we needed from this element we're done.
490 uint64_t NextEltOffset = SL->getElementOffset(Index);
491
492 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
493 return true;
494
495 // Move to the next element of the struct.
496 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
497 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
498 ByteOffset = 0;
499 CurEltOffset = NextEltOffset;
500 }
501 // not reached.
502 }
503
504 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
505 isa<ConstantDataSequential>(C)) {
506 uint64_t NumElts;
507 Type *EltTy;
508 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
509 NumElts = AT->getNumElements();
510 EltTy = AT->getElementType();
511 } else {
512 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
513 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
514 }
515 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
516 uint64_t Index = ByteOffset / EltSize;
517 uint64_t Offset = ByteOffset - Index * EltSize;
518
519 for (; Index != NumElts; ++Index) {
520 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
521 BytesLeft, DL))
522 return false;
523
524 uint64_t BytesWritten = EltSize - Offset;
525 assert(BytesWritten <= EltSize && "Not indexing into this element?")(static_cast <bool> (BytesWritten <= EltSize &&
"Not indexing into this element?") ? void (0) : __assert_fail
("BytesWritten <= EltSize && \"Not indexing into this element?\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 525, __extension__ __PRETTY_FUNCTION__))
;
526 if (BytesWritten >= BytesLeft)
527 return true;
528
529 Offset = 0;
530 BytesLeft -= BytesWritten;
531 CurPtr += BytesWritten;
532 }
533 return true;
534 }
535
536 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
537 if (CE->getOpcode() == Instruction::IntToPtr &&
538 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
539 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
540 BytesLeft, DL);
541 }
542 }
543
544 // Otherwise, unknown initializer type.
545 return false;
546}
547
548Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
549 int64_t Offset, const DataLayout &DL) {
550 // Bail out early. Not expect to load from scalable global variable.
551 if (isa<ScalableVectorType>(LoadTy))
552 return nullptr;
553
554 auto *IntType = dyn_cast<IntegerType>(LoadTy);
555
556 // If this isn't an integer load we can't fold it directly.
557 if (!IntType) {
558 // If this is a float/double load, we can try folding it as an int32/64 load
559 // and then bitcast the result. This can be useful for union cases. Note
560 // that address spaces don't matter here since we're not going to result in
561 // an actual new load.
562 Type *MapTy;
563 if (LoadTy->isHalfTy())
564 MapTy = Type::getInt16Ty(C->getContext());
565 else if (LoadTy->isFloatTy())
566 MapTy = Type::getInt32Ty(C->getContext());
567 else if (LoadTy->isDoubleTy())
568 MapTy = Type::getInt64Ty(C->getContext());
569 else if (LoadTy->isVectorTy()) {
570 MapTy = PointerType::getIntNTy(
571 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
572 } else
573 return nullptr;
574
575 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
576 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
577 !LoadTy->isX86_AMXTy())
578 // Materializing a zero can be done trivially without a bitcast
579 return Constant::getNullValue(LoadTy);
580 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
581 Res = FoldBitCast(Res, CastTy, DL);
582 if (LoadTy->isPtrOrPtrVectorTy()) {
583 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
584 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
585 !LoadTy->isX86_AMXTy())
586 return Constant::getNullValue(LoadTy);
587 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
588 // Be careful not to replace a load of an addrspace value with an inttoptr here
589 return nullptr;
590 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
591 }
592 return Res;
593 }
594 return nullptr;
595 }
596
597 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
598 if (BytesLoaded > 32 || BytesLoaded == 0)
599 return nullptr;
600
601 int64_t InitializerSize = DL.getTypeAllocSize(C->getType()).getFixedSize();
602
603 // If we're not accessing anything in this constant, the result is undefined.
604 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
605 return UndefValue::get(IntType);
606
607 // If we're not accessing anything in this constant, the result is undefined.
608 if (Offset >= InitializerSize)
609 return UndefValue::get(IntType);
610
611 unsigned char RawBytes[32] = {0};
612 unsigned char *CurPtr = RawBytes;
613 unsigned BytesLeft = BytesLoaded;
614
615 // If we're loading off the beginning of the global, some bytes may be valid.
616 if (Offset < 0) {
617 CurPtr += -Offset;
618 BytesLeft += Offset;
619 Offset = 0;
620 }
621
622 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
623 return nullptr;
624
625 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
626 if (DL.isLittleEndian()) {
627 ResultVal = RawBytes[BytesLoaded - 1];
628 for (unsigned i = 1; i != BytesLoaded; ++i) {
629 ResultVal <<= 8;
630 ResultVal |= RawBytes[BytesLoaded - 1 - i];
631 }
632 } else {
633 ResultVal = RawBytes[0];
634 for (unsigned i = 1; i != BytesLoaded; ++i) {
635 ResultVal <<= 8;
636 ResultVal |= RawBytes[i];
637 }
638 }
639
640 return ConstantInt::get(IntType->getContext(), ResultVal);
641}
642
643/// If this Offset points exactly to the start of an aggregate element, return
644/// that element, otherwise return nullptr.
645Constant *getConstantAtOffset(Constant *Base, APInt Offset,
646 const DataLayout &DL) {
647 if (Offset.isZero())
648 return Base;
649
650 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
651 return nullptr;
652
653 Type *ElemTy = Base->getType();
654 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
655 if (!Offset.isZero() || !Indices[0].isZero())
656 return nullptr;
657
658 Constant *C = Base;
659 for (const APInt &Index : drop_begin(Indices)) {
660 if (Index.isNegative() || Index.getActiveBits() >= 32)
661 return nullptr;
662
663 C = C->getAggregateElement(Index.getZExtValue());
664 if (!C)
665 return nullptr;
666 }
667
668 return C;
669}
670
671} // end anonymous namespace
672
673Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
674 const APInt &Offset,
675 const DataLayout &DL) {
676 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
677 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
678 return Result;
679
680 // Try hard to fold loads from bitcasted strange and non-type-safe things.
681 if (Offset.getMinSignedBits() <= 64)
682 return FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL);
683
684 return nullptr;
685}
686
687Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
688 const DataLayout &DL) {
689 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
690}
691
692Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
693 APInt Offset,
694 const DataLayout &DL) {
695 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
696 DL, Offset, /* AllowNonInbounds */ true));
697
698 if (auto *GV = dyn_cast<GlobalVariable>(C))
699 if (GV->isConstant() && GV->hasDefinitiveInitializer())
700 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
701 Offset, DL))
702 return Result;
703
704 // If this load comes from anywhere in a constant global, and if the global
705 // is all undef or zero, we know what it loads.
706 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
707 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
708 if (GV->getInitializer()->isNullValue())
709 return Constant::getNullValue(Ty);
710 if (isa<UndefValue>(GV->getInitializer()))
711 return UndefValue::get(Ty);
712 }
713 }
714
715 return nullptr;
716}
717
718Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
719 const DataLayout &DL) {
720 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
721 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
722}
723
724namespace {
725
726/// One of Op0/Op1 is a constant expression.
727/// Attempt to symbolically evaluate the result of a binary operator merging
728/// these together. If target data info is available, it is provided as DL,
729/// otherwise DL is null.
730Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
731 const DataLayout &DL) {
732 // SROA
733
734 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
735 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
736 // bits.
737
738 if (Opc == Instruction::And) {
739 KnownBits Known0 = computeKnownBits(Op0, DL);
740 KnownBits Known1 = computeKnownBits(Op1, DL);
741 if ((Known1.One | Known0.Zero).isAllOnes()) {
742 // All the bits of Op0 that the 'and' could be masking are already zero.
743 return Op0;
744 }
745 if ((Known0.One | Known1.Zero).isAllOnes()) {
746 // All the bits of Op1 that the 'and' could be masking are already zero.
747 return Op1;
748 }
749
750 Known0 &= Known1;
751 if (Known0.isConstant())
752 return ConstantInt::get(Op0->getType(), Known0.getConstant());
753 }
754
755 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
756 // constant. This happens frequently when iterating over a global array.
757 if (Opc == Instruction::Sub) {
758 GlobalValue *GV1, *GV2;
759 APInt Offs1, Offs2;
760
761 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
762 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
763 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
764
765 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
766 // PtrToInt may change the bitwidth so we have convert to the right size
767 // first.
768 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
769 Offs2.zextOrTrunc(OpSize));
770 }
771 }
772
773 return nullptr;
774}
775
776/// If array indices are not pointer-sized integers, explicitly cast them so
777/// that they aren't implicitly casted by the getelementptr.
778Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
779 Type *ResultTy, Optional<unsigned> InRangeIndex,
780 const DataLayout &DL, const TargetLibraryInfo *TLI) {
781 Type *IntIdxTy = DL.getIndexType(ResultTy);
782 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
783
784 bool Any = false;
785 SmallVector<Constant*, 32> NewIdxs;
786 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
787 if ((i == 1 ||
788 !isa<StructType>(GetElementPtrInst::getIndexedType(
789 SrcElemTy, Ops.slice(1, i - 1)))) &&
790 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
791 Any = true;
792 Type *NewType = Ops[i]->getType()->isVectorTy()
793 ? IntIdxTy
794 : IntIdxScalarTy;
795 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
796 true,
797 NewType,
798 true),
799 Ops[i], NewType));
800 } else
801 NewIdxs.push_back(Ops[i]);
802 }
803
804 if (!Any)
805 return nullptr;
806
807 Constant *C = ConstantExpr::getGetElementPtr(
808 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
809 return ConstantFoldConstant(C, DL, TLI);
810}
811
812/// Strip the pointer casts, but preserve the address space information.
813Constant *StripPtrCastKeepAS(Constant *Ptr) {
814 assert(Ptr->getType()->isPointerTy() && "Not a pointer type")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Not a pointer type") ? void (0) : __assert_fail
("Ptr->getType()->isPointerTy() && \"Not a pointer type\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 814, __extension__ __PRETTY_FUNCTION__))
;
815 auto *OldPtrTy = cast<PointerType>(Ptr->getType());
816 Ptr = cast<Constant>(Ptr->stripPointerCasts());
817 auto *NewPtrTy = cast<PointerType>(Ptr->getType());
818
819 // Preserve the address space number of the pointer.
820 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
821 Ptr = ConstantExpr::getPointerCast(
822 Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
823 OldPtrTy->getAddressSpace()));
824 }
825 return Ptr;
826}
827
828/// If we can symbolically evaluate the GEP constant expression, do so.
829Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
830 ArrayRef<Constant *> Ops,
831 const DataLayout &DL,
832 const TargetLibraryInfo *TLI) {
833 const GEPOperator *InnermostGEP = GEP;
834 bool InBounds = GEP->isInBounds();
835
836 Type *SrcElemTy = GEP->getSourceElementType();
837 Type *ResElemTy = GEP->getResultElementType();
838 Type *ResTy = GEP->getType();
839 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
840 return nullptr;
841
842 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
843 GEP->getInRangeIndex(), DL, TLI))
844 return C;
845
846 Constant *Ptr = Ops[0];
847 if (!Ptr->getType()->isPointerTy())
848 return nullptr;
849
850 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
851
852 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
853 // "inttoptr (sub (ptrtoint Ptr), V)"
854 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
855 auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
856 assert((!CE || CE->getType() == IntIdxTy) &&(static_cast <bool> ((!CE || CE->getType() == IntIdxTy
) && "CastGEPIndices didn't canonicalize index types!"
) ? void (0) : __assert_fail ("(!CE || CE->getType() == IntIdxTy) && \"CastGEPIndices didn't canonicalize index types!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 857, __extension__ __PRETTY_FUNCTION__))
857 "CastGEPIndices didn't canonicalize index types!")(static_cast <bool> ((!CE || CE->getType() == IntIdxTy
) && "CastGEPIndices didn't canonicalize index types!"
) ? void (0) : __assert_fail ("(!CE || CE->getType() == IntIdxTy) && \"CastGEPIndices didn't canonicalize index types!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 857, __extension__ __PRETTY_FUNCTION__))
;
858 if (CE && CE->getOpcode() == Instruction::Sub &&
859 CE->getOperand(0)->isNullValue()) {
860 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
861 Res = ConstantExpr::getSub(Res, CE->getOperand(1));
862 Res = ConstantExpr::getIntToPtr(Res, ResTy);
863 return ConstantFoldConstant(Res, DL, TLI);
864 }
865 }
866
867 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
868 if (!isa<ConstantInt>(Ops[i]))
869 return nullptr;
870
871 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
872 APInt Offset =
873 APInt(BitWidth,
874 DL.getIndexedOffsetInType(
875 SrcElemTy,
876 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
877 Ptr = StripPtrCastKeepAS(Ptr);
878
879 // If this is a GEP of a GEP, fold it all into a single GEP.
880 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
881 InnermostGEP = GEP;
882 InBounds &= GEP->isInBounds();
883
884 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
885
886 // Do not try the incorporate the sub-GEP if some index is not a number.
887 bool AllConstantInt = true;
888 for (Value *NestedOp : NestedOps)
889 if (!isa<ConstantInt>(NestedOp)) {
890 AllConstantInt = false;
891 break;
892 }
893 if (!AllConstantInt)
894 break;
895
896 Ptr = cast<Constant>(GEP->getOperand(0));
897 SrcElemTy = GEP->getSourceElementType();
898 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
899 Ptr = StripPtrCastKeepAS(Ptr);
900 }
901
902 // If the base value for this address is a literal integer value, fold the
903 // getelementptr to the resulting integer value casted to the pointer type.
904 APInt BasePtr(BitWidth, 0);
905 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
906 if (CE->getOpcode() == Instruction::IntToPtr) {
907 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
908 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
909 }
910 }
911
912 auto *PTy = cast<PointerType>(Ptr->getType());
913 if ((Ptr->isNullValue() || BasePtr != 0) &&
914 !DL.isNonIntegralPointerType(PTy)) {
915 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
916 return ConstantExpr::getIntToPtr(C, ResTy);
917 }
918
919 // Otherwise form a regular getelementptr. Recompute the indices so that
920 // we eliminate over-indexing of the notional static type array bounds.
921 // This makes it easy to determine if the getelementptr is "inbounds".
922 // Also, this helps GlobalOpt do SROA on GlobalVariables.
923
924 // For GEPs of GlobalValues, use the value type even for opaque pointers.
925 // Otherwise use an i8 GEP.
926 if (auto *GV = dyn_cast<GlobalValue>(Ptr))
927 SrcElemTy = GV->getValueType();
928 else if (!PTy->isOpaque())
929 SrcElemTy = PTy->getElementType();
930 else
931 SrcElemTy = Type::getInt8Ty(Ptr->getContext());
932
933 if (!SrcElemTy->isSized())
934 return nullptr;
935
936 Type *ElemTy = SrcElemTy;
937 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
938 if (Offset != 0)
939 return nullptr;
940
941 // Try to add additional zero indices to reach the desired result element
942 // type.
943 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
944 // we'll have to insert a bitcast anyway?
945 while (ElemTy != ResElemTy) {
946 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
947 if (!NextTy)
948 break;
949
950 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
951 ElemTy = NextTy;
952 }
953
954 SmallVector<Constant *, 32> NewIdxs;
955 for (const APInt &Index : Indices)
956 NewIdxs.push_back(ConstantInt::get(
957 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
958
959 // Preserve the inrange index from the innermost GEP if possible. We must
960 // have calculated the same indices up to and including the inrange index.
961 Optional<unsigned> InRangeIndex;
962 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
963 if (SrcElemTy == InnermostGEP->getSourceElementType() &&
964 NewIdxs.size() > *LastIRIndex) {
965 InRangeIndex = LastIRIndex;
966 for (unsigned I = 0; I <= *LastIRIndex; ++I)
967 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
968 return nullptr;
969 }
970
971 // Create a GEP.
972 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
973 InBounds, InRangeIndex);
974 assert((static_cast <bool> (cast<PointerType>(C->getType
())->isOpaqueOrPointeeTypeMatches(ElemTy) && "Computed GetElementPtr has unexpected type!"
) ? void (0) : __assert_fail ("cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && \"Computed GetElementPtr has unexpected type!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 976, __extension__ __PRETTY_FUNCTION__))
975 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&(static_cast <bool> (cast<PointerType>(C->getType
())->isOpaqueOrPointeeTypeMatches(ElemTy) && "Computed GetElementPtr has unexpected type!"
) ? void (0) : __assert_fail ("cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && \"Computed GetElementPtr has unexpected type!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 976, __extension__ __PRETTY_FUNCTION__))
976 "Computed GetElementPtr has unexpected type!")(static_cast <bool> (cast<PointerType>(C->getType
())->isOpaqueOrPointeeTypeMatches(ElemTy) && "Computed GetElementPtr has unexpected type!"
) ? void (0) : __assert_fail ("cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && \"Computed GetElementPtr has unexpected type!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 976, __extension__ __PRETTY_FUNCTION__))
;
977
978 // If we ended up indexing a member with a type that doesn't match
979 // the type of what the original indices indexed, add a cast.
980 if (C->getType() != ResTy)
981 C = FoldBitCast(C, ResTy, DL);
982
983 return C;
984}
985
986/// Attempt to constant fold an instruction with the
987/// specified opcode and operands. If successful, the constant result is
988/// returned, if not, null is returned. Note that this function can fail when
989/// attempting to fold instructions like loads and stores, which have no
990/// constant expression form.
991Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
992 ArrayRef<Constant *> Ops,
993 const DataLayout &DL,
994 const TargetLibraryInfo *TLI) {
995 Type *DestTy = InstOrCE->getType();
996
997 if (Instruction::isUnaryOp(Opcode))
998 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
999
1000 if (Instruction::isBinaryOp(Opcode))
1001 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1002
1003 if (Instruction::isCast(Opcode))
1004 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1005
1006 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1007 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1008 return C;
1009
1010 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1011 Ops.slice(1), GEP->isInBounds(),
1012 GEP->getInRangeIndex());
1013 }
1014
1015 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1016 return CE->getWithOperands(Ops);
1017
1018 switch (Opcode) {
1019 default: return nullptr;
1020 case Instruction::ICmp:
1021 case Instruction::FCmp: llvm_unreachable("Invalid for compares")::llvm::llvm_unreachable_internal("Invalid for compares", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1021)
;
1022 case Instruction::Freeze:
1023 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1024 case Instruction::Call:
1025 if (auto *F = dyn_cast<Function>(Ops.back())) {
1026 const auto *Call = cast<CallBase>(InstOrCE);
1027 if (canConstantFoldCallTo(Call, F))
1028 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1029 }
1030 return nullptr;
1031 case Instruction::Select:
1032 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1033 case Instruction::ExtractElement:
1034 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1035 case Instruction::ExtractValue:
1036 return ConstantExpr::getExtractValue(
1037 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1038 case Instruction::InsertElement:
1039 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1040 case Instruction::ShuffleVector:
1041 return ConstantExpr::getShuffleVector(
1042 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1043 }
1044}
1045
1046} // end anonymous namespace
1047
1048//===----------------------------------------------------------------------===//
1049// Constant Folding public APIs
1050//===----------------------------------------------------------------------===//
1051
1052namespace {
1053
1054Constant *
1055ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1056 const TargetLibraryInfo *TLI,
1057 SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1058 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1059 return const_cast<Constant *>(C);
1060
1061 SmallVector<Constant *, 8> Ops;
1062 for (const Use &OldU : C->operands()) {
1063 Constant *OldC = cast<Constant>(&OldU);
1064 Constant *NewC = OldC;
1065 // Recursively fold the ConstantExpr's operands. If we have already folded
1066 // a ConstantExpr, we don't have to process it again.
1067 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1068 auto It = FoldedOps.find(OldC);
1069 if (It == FoldedOps.end()) {
1070 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1071 FoldedOps.insert({OldC, NewC});
1072 } else {
1073 NewC = It->second;
1074 }
1075 }
1076 Ops.push_back(NewC);
1077 }
1078
1079 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1080 if (CE->isCompare())
1081 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1082 DL, TLI);
1083
1084 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1085 }
1086
1087 assert(isa<ConstantVector>(C))(static_cast <bool> (isa<ConstantVector>(C)) ? void
(0) : __assert_fail ("isa<ConstantVector>(C)", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1087, __extension__ __PRETTY_FUNCTION__))
;
1088 return ConstantVector::get(Ops);
1089}
1090
1091} // end anonymous namespace
1092
1093Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1094 const TargetLibraryInfo *TLI) {
1095 // Handle PHI nodes quickly here...
1096 if (auto *PN = dyn_cast<PHINode>(I)) {
1097 Constant *CommonValue = nullptr;
1098
1099 SmallDenseMap<Constant *, Constant *> FoldedOps;
1100 for (Value *Incoming : PN->incoming_values()) {
1101 // If the incoming value is undef then skip it. Note that while we could
1102 // skip the value if it is equal to the phi node itself we choose not to
1103 // because that would break the rule that constant folding only applies if
1104 // all operands are constants.
1105 if (isa<UndefValue>(Incoming))
1106 continue;
1107 // If the incoming value is not a constant, then give up.
1108 auto *C = dyn_cast<Constant>(Incoming);
1109 if (!C)
1110 return nullptr;
1111 // Fold the PHI's operands.
1112 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1113 // If the incoming value is a different constant to
1114 // the one we saw previously, then give up.
1115 if (CommonValue && C != CommonValue)
1116 return nullptr;
1117 CommonValue = C;
1118 }
1119
1120 // If we reach here, all incoming values are the same constant or undef.
1121 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1122 }
1123
1124 // Scan the operand list, checking to see if they are all constants, if so,
1125 // hand off to ConstantFoldInstOperandsImpl.
1126 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1127 return nullptr;
1128
1129 SmallDenseMap<Constant *, Constant *> FoldedOps;
1130 SmallVector<Constant *, 8> Ops;
1131 for (const Use &OpU : I->operands()) {
1132 auto *Op = cast<Constant>(&OpU);
1133 // Fold the Instruction's operands.
1134 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1135 Ops.push_back(Op);
1136 }
1137
1138 if (const auto *CI = dyn_cast<CmpInst>(I))
1139 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1140 DL, TLI);
1141
1142 if (const auto *LI = dyn_cast<LoadInst>(I)) {
1143 if (LI->isVolatile())
1144 return nullptr;
1145 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1146 }
1147
1148 if (auto *IVI = dyn_cast<InsertValueInst>(I))
1149 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
1150
1151 if (auto *EVI = dyn_cast<ExtractValueInst>(I))
1152 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
1153
1154 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1155}
1156
1157Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1158 const TargetLibraryInfo *TLI) {
1159 SmallDenseMap<Constant *, Constant *> FoldedOps;
1160 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1161}
1162
1163Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1164 ArrayRef<Constant *> Ops,
1165 const DataLayout &DL,
1166 const TargetLibraryInfo *TLI) {
1167 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1168}
1169
1170Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1171 Constant *Ops0, Constant *Ops1,
1172 const DataLayout &DL,
1173 const TargetLibraryInfo *TLI) {
1174 // fold: icmp (inttoptr x), null -> icmp x, 0
1175 // fold: icmp null, (inttoptr x) -> icmp 0, x
1176 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1177 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1178 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1179 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1180 //
1181 // FIXME: The following comment is out of data and the DataLayout is here now.
1182 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1183 // around to know if bit truncation is happening.
1184 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1185 if (Ops1->isNullValue()) {
1186 if (CE0->getOpcode() == Instruction::IntToPtr) {
1187 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1188 // Convert the integer value to the right size to ensure we get the
1189 // proper extension or truncation.
1190 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1191 IntPtrTy, false);
1192 Constant *Null = Constant::getNullValue(C->getType());
1193 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1194 }
1195
1196 // Only do this transformation if the int is intptrty in size, otherwise
1197 // there is a truncation or extension that we aren't modeling.
1198 if (CE0->getOpcode() == Instruction::PtrToInt) {
1199 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1200 if (CE0->getType() == IntPtrTy) {
1201 Constant *C = CE0->getOperand(0);
1202 Constant *Null = Constant::getNullValue(C->getType());
1203 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1204 }
1205 }
1206 }
1207
1208 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1209 if (CE0->getOpcode() == CE1->getOpcode()) {
1210 if (CE0->getOpcode() == Instruction::IntToPtr) {
1211 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1212
1213 // Convert the integer value to the right size to ensure we get the
1214 // proper extension or truncation.
1215 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1216 IntPtrTy, false);
1217 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1218 IntPtrTy, false);
1219 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1220 }
1221
1222 // Only do this transformation if the int is intptrty in size, otherwise
1223 // there is a truncation or extension that we aren't modeling.
1224 if (CE0->getOpcode() == Instruction::PtrToInt) {
1225 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1226 if (CE0->getType() == IntPtrTy &&
1227 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1228 return ConstantFoldCompareInstOperands(
1229 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1230 }
1231 }
1232 }
1233 }
1234
1235 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1236 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1237 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1238 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1239 Constant *LHS = ConstantFoldCompareInstOperands(
1240 Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1241 Constant *RHS = ConstantFoldCompareInstOperands(
1242 Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1243 unsigned OpC =
1244 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1245 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1246 }
1247 } else if (isa<ConstantExpr>(Ops1)) {
1248 // If RHS is a constant expression, but the left side isn't, swap the
1249 // operands and try again.
1250 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1251 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1252 }
1253
1254 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1255}
1256
1257Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1258 const DataLayout &DL) {
1259 assert(Instruction::isUnaryOp(Opcode))(static_cast <bool> (Instruction::isUnaryOp(Opcode)) ? void
(0) : __assert_fail ("Instruction::isUnaryOp(Opcode)", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1259, __extension__ __PRETTY_FUNCTION__))
;
1260
1261 return ConstantExpr::get(Opcode, Op);
1262}
1263
1264Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1265 Constant *RHS,
1266 const DataLayout &DL) {
1267 assert(Instruction::isBinaryOp(Opcode))(static_cast <bool> (Instruction::isBinaryOp(Opcode)) ?
void (0) : __assert_fail ("Instruction::isBinaryOp(Opcode)",
"/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1267, __extension__ __PRETTY_FUNCTION__))
;
1268 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1269 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1270 return C;
1271
1272 return ConstantExpr::get(Opcode, LHS, RHS);
1273}
1274
1275Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1276 Type *DestTy, const DataLayout &DL) {
1277 assert(Instruction::isCast(Opcode))(static_cast <bool> (Instruction::isCast(Opcode)) ? void
(0) : __assert_fail ("Instruction::isCast(Opcode)", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1277, __extension__ __PRETTY_FUNCTION__))
;
1278 switch (Opcode) {
1279 default:
1280 llvm_unreachable("Missing case")::llvm::llvm_unreachable_internal("Missing case", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1280)
;
1281 case Instruction::PtrToInt:
1282 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1283 Constant *FoldedValue = nullptr;
1284 // If the input is a inttoptr, eliminate the pair. This requires knowing
1285 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1286 if (CE->getOpcode() == Instruction::IntToPtr) {
1287 // zext/trunc the inttoptr to pointer size.
1288 FoldedValue = ConstantExpr::getIntegerCast(
1289 CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1290 /*IsSigned=*/false);
1291 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1292 // If we have GEP, we can perform the following folds:
1293 // (ptrtoint (gep null, x)) -> x
1294 // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1295 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1296 APInt BaseOffset(BitWidth, 0);
1297 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1298 DL, BaseOffset, /*AllowNonInbounds=*/true));
1299 if (Base->isNullValue()) {
1300 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1301 }
1302 }
1303 if (FoldedValue) {
1304 // Do a zext or trunc to get to the ptrtoint dest size.
1305 return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1306 /*IsSigned=*/false);
1307 }
1308 }
1309 return ConstantExpr::getCast(Opcode, C, DestTy);
1310 case Instruction::IntToPtr:
1311 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1312 // the int size is >= the ptr size and the address spaces are the same.
1313 // This requires knowing the width of a pointer, so it can't be done in
1314 // ConstantExpr::getCast.
1315 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1316 if (CE->getOpcode() == Instruction::PtrToInt) {
1317 Constant *SrcPtr = CE->getOperand(0);
1318 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1319 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1320
1321 if (MidIntSize >= SrcPtrSize) {
1322 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1323 if (SrcAS == DestTy->getPointerAddressSpace())
1324 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1325 }
1326 }
1327 }
1328
1329 return ConstantExpr::getCast(Opcode, C, DestTy);
1330 case Instruction::Trunc:
1331 case Instruction::ZExt:
1332 case Instruction::SExt:
1333 case Instruction::FPTrunc:
1334 case Instruction::FPExt:
1335 case Instruction::UIToFP:
1336 case Instruction::SIToFP:
1337 case Instruction::FPToUI:
1338 case Instruction::FPToSI:
1339 case Instruction::AddrSpaceCast:
1340 return ConstantExpr::getCast(Opcode, C, DestTy);
1341 case Instruction::BitCast:
1342 return FoldBitCast(C, DestTy, DL);
1343 }
1344}
1345
1346Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1347 ConstantExpr *CE,
1348 Type *Ty,
1349 const DataLayout &DL) {
1350 if (!CE->getOperand(1)->isNullValue())
1351 return nullptr; // Do not allow stepping over the value!
1352
1353 // Loop over all of the operands, tracking down which value we are
1354 // addressing.
1355 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1356 C = C->getAggregateElement(CE->getOperand(i));
1357 if (!C)
1358 return nullptr;
1359 }
1360 return ConstantFoldLoadThroughBitcast(C, Ty, DL);
1361}
1362
1363//===----------------------------------------------------------------------===//
1364// Constant Folding for Calls
1365//
1366
1367bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1368 if (Call->isNoBuiltin())
1369 return false;
1370 switch (F->getIntrinsicID()) {
1371 // Operations that do not operate floating-point numbers and do not depend on
1372 // FP environment can be folded even in strictfp functions.
1373 case Intrinsic::bswap:
1374 case Intrinsic::ctpop:
1375 case Intrinsic::ctlz:
1376 case Intrinsic::cttz:
1377 case Intrinsic::fshl:
1378 case Intrinsic::fshr:
1379 case Intrinsic::launder_invariant_group:
1380 case Intrinsic::strip_invariant_group:
1381 case Intrinsic::masked_load:
1382 case Intrinsic::get_active_lane_mask:
1383 case Intrinsic::abs:
1384 case Intrinsic::smax:
1385 case Intrinsic::smin:
1386 case Intrinsic::umax:
1387 case Intrinsic::umin:
1388 case Intrinsic::sadd_with_overflow:
1389 case Intrinsic::uadd_with_overflow:
1390 case Intrinsic::ssub_with_overflow:
1391 case Intrinsic::usub_with_overflow:
1392 case Intrinsic::smul_with_overflow:
1393 case Intrinsic::umul_with_overflow:
1394 case Intrinsic::sadd_sat:
1395 case Intrinsic::uadd_sat:
1396 case Intrinsic::ssub_sat:
1397 case Intrinsic::usub_sat:
1398 case Intrinsic::smul_fix:
1399 case Intrinsic::smul_fix_sat:
1400 case Intrinsic::bitreverse:
1401 case Intrinsic::is_constant:
1402 case Intrinsic::vector_reduce_add:
1403 case Intrinsic::vector_reduce_mul:
1404 case Intrinsic::vector_reduce_and:
1405 case Intrinsic::vector_reduce_or:
1406 case Intrinsic::vector_reduce_xor:
1407 case Intrinsic::vector_reduce_smin:
1408 case Intrinsic::vector_reduce_smax:
1409 case Intrinsic::vector_reduce_umin:
1410 case Intrinsic::vector_reduce_umax:
1411 // Target intrinsics
1412 case Intrinsic::amdgcn_perm:
1413 case Intrinsic::arm_mve_vctp8:
1414 case Intrinsic::arm_mve_vctp16:
1415 case Intrinsic::arm_mve_vctp32:
1416 case Intrinsic::arm_mve_vctp64:
1417 case Intrinsic::aarch64_sve_convert_from_svbool:
1418 // WebAssembly float semantics are always known
1419 case Intrinsic::wasm_trunc_signed:
1420 case Intrinsic::wasm_trunc_unsigned:
1421 return true;
1422
1423 // Floating point operations cannot be folded in strictfp functions in
1424 // general case. They can be folded if FP environment is known to compiler.
1425 case Intrinsic::minnum:
1426 case Intrinsic::maxnum:
1427 case Intrinsic::minimum:
1428 case Intrinsic::maximum:
1429 case Intrinsic::log:
1430 case Intrinsic::log2:
1431 case Intrinsic::log10:
1432 case Intrinsic::exp:
1433 case Intrinsic::exp2:
1434 case Intrinsic::sqrt:
1435 case Intrinsic::sin:
1436 case Intrinsic::cos:
1437 case Intrinsic::pow:
1438 case Intrinsic::powi:
1439 case Intrinsic::fma:
1440 case Intrinsic::fmuladd:
1441 case Intrinsic::fptoui_sat:
1442 case Intrinsic::fptosi_sat:
1443 case Intrinsic::convert_from_fp16:
1444 case Intrinsic::convert_to_fp16:
1445 case Intrinsic::amdgcn_cos:
1446 case Intrinsic::amdgcn_cubeid:
1447 case Intrinsic::amdgcn_cubema:
1448 case Intrinsic::amdgcn_cubesc:
1449 case Intrinsic::amdgcn_cubetc:
1450 case Intrinsic::amdgcn_fmul_legacy:
1451 case Intrinsic::amdgcn_fma_legacy:
1452 case Intrinsic::amdgcn_fract:
1453 case Intrinsic::amdgcn_ldexp:
1454 case Intrinsic::amdgcn_sin:
1455 // The intrinsics below depend on rounding mode in MXCSR.
1456 case Intrinsic::x86_sse_cvtss2si:
1457 case Intrinsic::x86_sse_cvtss2si64:
1458 case Intrinsic::x86_sse_cvttss2si:
1459 case Intrinsic::x86_sse_cvttss2si64:
1460 case Intrinsic::x86_sse2_cvtsd2si:
1461 case Intrinsic::x86_sse2_cvtsd2si64:
1462 case Intrinsic::x86_sse2_cvttsd2si:
1463 case Intrinsic::x86_sse2_cvttsd2si64:
1464 case Intrinsic::x86_avx512_vcvtss2si32:
1465 case Intrinsic::x86_avx512_vcvtss2si64:
1466 case Intrinsic::x86_avx512_cvttss2si:
1467 case Intrinsic::x86_avx512_cvttss2si64:
1468 case Intrinsic::x86_avx512_vcvtsd2si32:
1469 case Intrinsic::x86_avx512_vcvtsd2si64:
1470 case Intrinsic::x86_avx512_cvttsd2si:
1471 case Intrinsic::x86_avx512_cvttsd2si64:
1472 case Intrinsic::x86_avx512_vcvtss2usi32:
1473 case Intrinsic::x86_avx512_vcvtss2usi64:
1474 case Intrinsic::x86_avx512_cvttss2usi:
1475 case Intrinsic::x86_avx512_cvttss2usi64:
1476 case Intrinsic::x86_avx512_vcvtsd2usi32:
1477 case Intrinsic::x86_avx512_vcvtsd2usi64:
1478 case Intrinsic::x86_avx512_cvttsd2usi:
1479 case Intrinsic::x86_avx512_cvttsd2usi64:
1480 return !Call->isStrictFP();
1481
1482 // Sign operations are actually bitwise operations, they do not raise
1483 // exceptions even for SNANs.
1484 case Intrinsic::fabs:
1485 case Intrinsic::copysign:
1486 // Non-constrained variants of rounding operations means default FP
1487 // environment, they can be folded in any case.
1488 case Intrinsic::ceil:
1489 case Intrinsic::floor:
1490 case Intrinsic::round:
1491 case Intrinsic::roundeven:
1492 case Intrinsic::trunc:
1493 case Intrinsic::nearbyint:
1494 case Intrinsic::rint:
1495 // Constrained intrinsics can be folded if FP environment is known
1496 // to compiler.
1497 case Intrinsic::experimental_constrained_fma:
1498 case Intrinsic::experimental_constrained_fmuladd:
1499 case Intrinsic::experimental_constrained_fadd:
1500 case Intrinsic::experimental_constrained_fsub:
1501 case Intrinsic::experimental_constrained_fmul:
1502 case Intrinsic::experimental_constrained_fdiv:
1503 case Intrinsic::experimental_constrained_frem:
1504 case Intrinsic::experimental_constrained_ceil:
1505 case Intrinsic::experimental_constrained_floor:
1506 case Intrinsic::experimental_constrained_round:
1507 case Intrinsic::experimental_constrained_roundeven:
1508 case Intrinsic::experimental_constrained_trunc:
1509 case Intrinsic::experimental_constrained_nearbyint:
1510 case Intrinsic::experimental_constrained_rint:
1511 return true;
1512 default:
1513 return false;
1514 case Intrinsic::not_intrinsic: break;
1515 }
1516
1517 if (!F->hasName() || Call->isStrictFP())
1518 return false;
1519
1520 // In these cases, the check of the length is required. We don't want to
1521 // return true for a name like "cos\0blah" which strcmp would return equal to
1522 // "cos", but has length 8.
1523 StringRef Name = F->getName();
1524 switch (Name[0]) {
1525 default:
1526 return false;
1527 case 'a':
1528 return Name == "acos" || Name == "acosf" ||
1529 Name == "asin" || Name == "asinf" ||
1530 Name == "atan" || Name == "atanf" ||
1531 Name == "atan2" || Name == "atan2f";
1532 case 'c':
1533 return Name == "ceil" || Name == "ceilf" ||
1534 Name == "cos" || Name == "cosf" ||
1535 Name == "cosh" || Name == "coshf";
1536 case 'e':
1537 return Name == "exp" || Name == "expf" ||
1538 Name == "exp2" || Name == "exp2f";
1539 case 'f':
1540 return Name == "fabs" || Name == "fabsf" ||
1541 Name == "floor" || Name == "floorf" ||
1542 Name == "fmod" || Name == "fmodf";
1543 case 'l':
1544 return Name == "log" || Name == "logf" ||
1545 Name == "log2" || Name == "log2f" ||
1546 Name == "log10" || Name == "log10f";
1547 case 'n':
1548 return Name == "nearbyint" || Name == "nearbyintf";
1549 case 'p':
1550 return Name == "pow" || Name == "powf";
1551 case 'r':
1552 return Name == "remainder" || Name == "remainderf" ||
1553 Name == "rint" || Name == "rintf" ||
1554 Name == "round" || Name == "roundf";
1555 case 's':
1556 return Name == "sin" || Name == "sinf" ||
1557 Name == "sinh" || Name == "sinhf" ||
1558 Name == "sqrt" || Name == "sqrtf";
1559 case 't':
1560 return Name == "tan" || Name == "tanf" ||
1561 Name == "tanh" || Name == "tanhf" ||
1562 Name == "trunc" || Name == "truncf";
1563 case '_':
1564 // Check for various function names that get used for the math functions
1565 // when the header files are preprocessed with the macro
1566 // __FINITE_MATH_ONLY__ enabled.
1567 // The '12' here is the length of the shortest name that can match.
1568 // We need to check the size before looking at Name[1] and Name[2]
1569 // so we may as well check a limit that will eliminate mismatches.
1570 if (Name.size() < 12 || Name[1] != '_')
1571 return false;
1572 switch (Name[2]) {
1573 default:
1574 return false;
1575 case 'a':
1576 return Name == "__acos_finite" || Name == "__acosf_finite" ||
1577 Name == "__asin_finite" || Name == "__asinf_finite" ||
1578 Name == "__atan2_finite" || Name == "__atan2f_finite";
1579 case 'c':
1580 return Name == "__cosh_finite" || Name == "__coshf_finite";
1581 case 'e':
1582 return Name == "__exp_finite" || Name == "__expf_finite" ||
1583 Name == "__exp2_finite" || Name == "__exp2f_finite";
1584 case 'l':
1585 return Name == "__log_finite" || Name == "__logf_finite" ||
1586 Name == "__log10_finite" || Name == "__log10f_finite";
1587 case 'p':
1588 return Name == "__pow_finite" || Name == "__powf_finite";
1589 case 's':
1590 return Name == "__sinh_finite" || Name == "__sinhf_finite";
1591 }
1592 }
1593}
1594
1595namespace {
1596
1597Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1598 if (Ty->isHalfTy() || Ty->isFloatTy()) {
1599 APFloat APF(V);
1600 bool unused;
1601 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1602 return ConstantFP::get(Ty->getContext(), APF);
1603 }
1604 if (Ty->isDoubleTy())
1605 return ConstantFP::get(Ty->getContext(), APFloat(V));
1606 llvm_unreachable("Can only constant fold half/float/double")::llvm::llvm_unreachable_internal("Can only constant fold half/float/double"
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1606)
;
1607}
1608
1609/// Clear the floating-point exception state.
1610inline void llvm_fenv_clearexcept() {
1611#if defined(HAVE_FENV_H1) && HAVE_DECL_FE_ALL_EXCEPT1
1612 feclearexcept(FE_ALL_EXCEPT(0x20 | 0x04 | 0x10 | 0x08 | 0x01));
1613#endif
1614 errno(*__errno_location ()) = 0;
1615}
1616
1617/// Test if a floating-point exception was raised.
1618inline bool llvm_fenv_testexcept() {
1619 int errno_val = errno(*__errno_location ());
1620 if (errno_val == ERANGE34 || errno_val == EDOM33)
1621 return true;
1622#if defined(HAVE_FENV_H1) && HAVE_DECL_FE_ALL_EXCEPT1 && HAVE_DECL_FE_INEXACT1
1623 if (fetestexcept(FE_ALL_EXCEPT(0x20 | 0x04 | 0x10 | 0x08 | 0x01) & ~FE_INEXACT0x20))
1624 return true;
1625#endif
1626 return false;
1627}
1628
1629Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1630 Type *Ty) {
1631 llvm_fenv_clearexcept();
1632 double Result = NativeFP(V.convertToDouble());
1633 if (llvm_fenv_testexcept()) {
1634 llvm_fenv_clearexcept();
1635 return nullptr;
1636 }
1637
1638 return GetConstantFoldFPValue(Result, Ty);
1639}
1640
1641Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1642 const APFloat &V, const APFloat &W, Type *Ty) {
1643 llvm_fenv_clearexcept();
1644 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1645 if (llvm_fenv_testexcept()) {
1646 llvm_fenv_clearexcept();
1647 return nullptr;
1648 }
1649
1650 return GetConstantFoldFPValue(Result, Ty);
1651}
1652
1653Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1654 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1655 if (!VT)
1656 return nullptr;
1657
1658 // This isn't strictly necessary, but handle the special/common case of zero:
1659 // all integer reductions of a zero input produce zero.
1660 if (isa<ConstantAggregateZero>(Op))
1661 return ConstantInt::get(VT->getElementType(), 0);
1662
1663 // This is the same as the underlying binops - poison propagates.
1664 if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1665 return PoisonValue::get(VT->getElementType());
1666
1667 // TODO: Handle undef.
1668 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1669 return nullptr;
1670
1671 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1672 if (!EltC)
1673 return nullptr;
1674
1675 APInt Acc = EltC->getValue();
1676 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1677 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1678 return nullptr;
1679 const APInt &X = EltC->getValue();
1680 switch (IID) {
1681 case Intrinsic::vector_reduce_add:
1682 Acc = Acc + X;
1683 break;
1684 case Intrinsic::vector_reduce_mul:
1685 Acc = Acc * X;
1686 break;
1687 case Intrinsic::vector_reduce_and:
1688 Acc = Acc & X;
1689 break;
1690 case Intrinsic::vector_reduce_or:
1691 Acc = Acc | X;
1692 break;
1693 case Intrinsic::vector_reduce_xor:
1694 Acc = Acc ^ X;
1695 break;
1696 case Intrinsic::vector_reduce_smin:
1697 Acc = APIntOps::smin(Acc, X);
1698 break;
1699 case Intrinsic::vector_reduce_smax:
1700 Acc = APIntOps::smax(Acc, X);
1701 break;
1702 case Intrinsic::vector_reduce_umin:
1703 Acc = APIntOps::umin(Acc, X);
1704 break;
1705 case Intrinsic::vector_reduce_umax:
1706 Acc = APIntOps::umax(Acc, X);
1707 break;
1708 }
1709 }
1710
1711 return ConstantInt::get(Op->getContext(), Acc);
1712}
1713
1714/// Attempt to fold an SSE floating point to integer conversion of a constant
1715/// floating point. If roundTowardZero is false, the default IEEE rounding is
1716/// used (toward nearest, ties to even). This matches the behavior of the
1717/// non-truncating SSE instructions in the default rounding mode. The desired
1718/// integer type Ty is used to select how many bits are available for the
1719/// result. Returns null if the conversion cannot be performed, otherwise
1720/// returns the Constant value resulting from the conversion.
1721Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1722 Type *Ty, bool IsSigned) {
1723 // All of these conversion intrinsics form an integer of at most 64bits.
1724 unsigned ResultWidth = Ty->getIntegerBitWidth();
1725 assert(ResultWidth <= 64 &&(static_cast <bool> (ResultWidth <= 64 && "Can only constant fold conversions to 64 and 32 bit ints"
) ? void (0) : __assert_fail ("ResultWidth <= 64 && \"Can only constant fold conversions to 64 and 32 bit ints\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1726, __extension__ __PRETTY_FUNCTION__))
1726 "Can only constant fold conversions to 64 and 32 bit ints")(static_cast <bool> (ResultWidth <= 64 && "Can only constant fold conversions to 64 and 32 bit ints"
) ? void (0) : __assert_fail ("ResultWidth <= 64 && \"Can only constant fold conversions to 64 and 32 bit ints\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1726, __extension__ __PRETTY_FUNCTION__))
;
1727
1728 uint64_t UIntVal;
1729 bool isExact = false;
1730 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1731 : APFloat::rmNearestTiesToEven;
1732 APFloat::opStatus status =
1733 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1734 IsSigned, mode, &isExact);
1735 if (status != APFloat::opOK &&
1736 (!roundTowardZero || status != APFloat::opInexact))
1737 return nullptr;
1738 return ConstantInt::get(Ty, UIntVal, IsSigned);
1739}
1740
1741double getValueAsDouble(ConstantFP *Op) {
1742 Type *Ty = Op->getType();
1743
1744 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1745 return Op->getValueAPF().convertToDouble();
1746
1747 bool unused;
1748 APFloat APF = Op->getValueAPF();
1749 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1750 return APF.convertToDouble();
1751}
1752
1753static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1754 if (auto *CI
25.1
'CI' is null
33.1
'CI' is non-null
25.1
'CI' is null
33.1
'CI' is non-null
25.1
'CI' is null
33.1
'CI' is non-null
= dyn_cast<ConstantInt>(Op)) {
25
Assuming 'Op' is not a 'ConstantInt'
26
Taking false branch
33
Assuming 'Op' is a 'ConstantInt'
34
Taking true branch
1755 C = &CI->getValue();
1756 return true;
35
Returning the value 1, which participates in a condition later
1757 }
1758 if (isa<UndefValue>(Op)) {
27
Assuming 'Op' is a 'UndefValue'
28
Taking true branch
1759 C = nullptr;
29
Null pointer value stored to 'C0'
1760 return true;
30
Returning the value 1, which participates in a condition later
1761 }
1762 return false;
1763}
1764
1765/// Checks if the given intrinsic call, which evaluates to constant, is allowed
1766/// to be folded.
1767///
1768/// \param CI Constrained intrinsic call.
1769/// \param St Exception flags raised during constant evaluation.
1770static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1771 APFloat::opStatus St) {
1772 Optional<RoundingMode> ORM = CI->getRoundingMode();
1773 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1774
1775 // If the operation does not change exception status flags, it is safe
1776 // to fold.
1777 if (St == APFloat::opStatus::opOK) {
1778 // When FP exceptions are not ignored, intrinsic call will not be
1779 // eliminated, because it is considered as having side effect. But we
1780 // know that its evaluation does not raise exceptions, so side effect
1781 // is absent. To allow removing the call, mark it as not accessing memory.
1782 if (EB && *EB != fp::ExceptionBehavior::ebIgnore)
1783 CI->addFnAttr(Attribute::ReadNone);
1784 return true;
1785 }
1786
1787 // If evaluation raised FP exception, the result can depend on rounding
1788 // mode. If the latter is unknown, folding is not possible.
1789 if (!ORM || *ORM == RoundingMode::Dynamic)
1790 return false;
1791
1792 // If FP exceptions are ignored, fold the call, even if such exception is
1793 // raised.
1794 if (!EB || *EB != fp::ExceptionBehavior::ebStrict)
1795 return true;
1796
1797 // Leave the calculation for runtime so that exception flags be correctly set
1798 // in hardware.
1799 return false;
1800}
1801
1802/// Returns the rounding mode that should be used for constant evaluation.
1803static RoundingMode
1804getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1805 Optional<RoundingMode> ORM = CI->getRoundingMode();
1806 if (!ORM || *ORM == RoundingMode::Dynamic)
1807 // Even if the rounding mode is unknown, try evaluating the operation.
1808 // If it does not raise inexact exception, rounding was not applied,
1809 // so the result is exact and does not depend on rounding mode. Whether
1810 // other FP exceptions are raised, it does not depend on rounding mode.
1811 return RoundingMode::NearestTiesToEven;
1812 return *ORM;
1813}
1814
1815static Constant *ConstantFoldScalarCall1(StringRef Name,
1816 Intrinsic::ID IntrinsicID,
1817 Type *Ty,
1818 ArrayRef<Constant *> Operands,
1819 const TargetLibraryInfo *TLI,
1820 const CallBase *Call) {
1821 assert(Operands.size() == 1 && "Wrong number of operands.")(static_cast <bool> (Operands.size() == 1 && "Wrong number of operands."
) ? void (0) : __assert_fail ("Operands.size() == 1 && \"Wrong number of operands.\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 1821, __extension__ __PRETTY_FUNCTION__))
;
1822
1823 if (IntrinsicID == Intrinsic::is_constant) {
1824 // We know we have a "Constant" argument. But we want to only
1825 // return true for manifest constants, not those that depend on
1826 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1827 if (Operands[0]->isManifestConstant())
1828 return ConstantInt::getTrue(Ty->getContext());
1829 return nullptr;
1830 }
1831 if (isa<UndefValue>(Operands[0])) {
1832 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1833 // ctpop() is between 0 and bitwidth, pick 0 for undef.
1834 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1835 if (IntrinsicID == Intrinsic::cos ||
1836 IntrinsicID == Intrinsic::ctpop ||
1837 IntrinsicID == Intrinsic::fptoui_sat ||
1838 IntrinsicID == Intrinsic::fptosi_sat)
1839 return Constant::getNullValue(Ty);
1840 if (IntrinsicID == Intrinsic::bswap ||
1841 IntrinsicID == Intrinsic::bitreverse ||
1842 IntrinsicID == Intrinsic::launder_invariant_group ||
1843 IntrinsicID == Intrinsic::strip_invariant_group)
1844 return Operands[0];
1845 }
1846
1847 if (isa<ConstantPointerNull>(Operands[0])) {
1848 // launder(null) == null == strip(null) iff in addrspace 0
1849 if (IntrinsicID == Intrinsic::launder_invariant_group ||
1850 IntrinsicID == Intrinsic::strip_invariant_group) {
1851 // If instruction is not yet put in a basic block (e.g. when cloning
1852 // a function during inlining), Call's caller may not be available.
1853 // So check Call's BB first before querying Call->getCaller.
1854 const Function *Caller =
1855 Call->getParent() ? Call->getCaller() : nullptr;
1856 if (Caller &&
1857 !NullPointerIsDefined(
1858 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1859 return Operands[0];
1860 }
1861 return nullptr;
1862 }
1863 }
1864
1865 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1866 if (IntrinsicID == Intrinsic::convert_to_fp16) {
1867 APFloat Val(Op->getValueAPF());
1868
1869 bool lost = false;
1870 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1871
1872 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1873 }
1874
1875 APFloat U = Op->getValueAPF();
1876
1877 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
1878 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
1879 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
1880
1881 if (U.isNaN())
1882 return nullptr;
1883
1884 unsigned Width = Ty->getIntegerBitWidth();
1885 APSInt Int(Width, !Signed);
1886 bool IsExact = false;
1887 APFloat::opStatus Status =
1888 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1889
1890 if (Status == APFloat::opOK || Status == APFloat::opInexact)
1891 return ConstantInt::get(Ty, Int);
1892
1893 return nullptr;
1894 }
1895
1896 if (IntrinsicID == Intrinsic::fptoui_sat ||
1897 IntrinsicID == Intrinsic::fptosi_sat) {
1898 // convertToInteger() already has the desired saturation semantics.
1899 APSInt Int(Ty->getIntegerBitWidth(),
1900 IntrinsicID == Intrinsic::fptoui_sat);
1901 bool IsExact;
1902 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1903 return ConstantInt::get(Ty, Int);
1904 }
1905
1906 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1907 return nullptr;
1908
1909 // Use internal versions of these intrinsics.
1910
1911 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1912 U.roundToIntegral(APFloat::rmNearestTiesToEven);
1913 return ConstantFP::get(Ty->getContext(), U);
1914 }
1915
1916 if (IntrinsicID == Intrinsic::round) {
1917 U.roundToIntegral(APFloat::rmNearestTiesToAway);
1918 return ConstantFP::get(Ty->getContext(), U);
1919 }
1920
1921 if (IntrinsicID == Intrinsic::roundeven) {
1922 U.roundToIntegral(APFloat::rmNearestTiesToEven);
1923 return ConstantFP::get(Ty->getContext(), U);
1924 }
1925
1926 if (IntrinsicID == Intrinsic::ceil) {
1927 U.roundToIntegral(APFloat::rmTowardPositive);
1928 return ConstantFP::get(Ty->getContext(), U);
1929 }
1930
1931 if (IntrinsicID == Intrinsic::floor) {
1932 U.roundToIntegral(APFloat::rmTowardNegative);
1933 return ConstantFP::get(Ty->getContext(), U);
1934 }
1935
1936 if (IntrinsicID == Intrinsic::trunc) {
1937 U.roundToIntegral(APFloat::rmTowardZero);
1938 return ConstantFP::get(Ty->getContext(), U);
1939 }
1940
1941 if (IntrinsicID == Intrinsic::fabs) {
1942 U.clearSign();
1943 return ConstantFP::get(Ty->getContext(), U);
1944 }
1945
1946 if (IntrinsicID == Intrinsic::amdgcn_fract) {
1947 // The v_fract instruction behaves like the OpenCL spec, which defines
1948 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
1949 // there to prevent fract(-small) from returning 1.0. It returns the
1950 // largest positive floating-point number less than 1.0."
1951 APFloat FloorU(U);
1952 FloorU.roundToIntegral(APFloat::rmTowardNegative);
1953 APFloat FractU(U - FloorU);
1954 APFloat AlmostOne(U.getSemantics(), 1);
1955 AlmostOne.next(/*nextDown*/ true);
1956 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
1957 }
1958
1959 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
1960 // raise FP exceptions, unless the argument is signaling NaN.
1961
1962 Optional<APFloat::roundingMode> RM;
1963 switch (IntrinsicID) {
1964 default:
1965 break;
1966 case Intrinsic::experimental_constrained_nearbyint:
1967 case Intrinsic::experimental_constrained_rint: {
1968 auto CI = cast<ConstrainedFPIntrinsic>(Call);
1969 RM = CI->getRoundingMode();
1970 if (!RM || RM.getValue() == RoundingMode::Dynamic)
1971 return nullptr;
1972 break;
1973 }
1974 case Intrinsic::experimental_constrained_round:
1975 RM = APFloat::rmNearestTiesToAway;
1976 break;
1977 case Intrinsic::experimental_constrained_ceil:
1978 RM = APFloat::rmTowardPositive;
1979 break;
1980 case Intrinsic::experimental_constrained_floor:
1981 RM = APFloat::rmTowardNegative;
1982 break;
1983 case Intrinsic::experimental_constrained_trunc:
1984 RM = APFloat::rmTowardZero;
1985 break;
1986 }
1987 if (RM) {
1988 auto CI = cast<ConstrainedFPIntrinsic>(Call);
1989 if (U.isFinite()) {
1990 APFloat::opStatus St = U.roundToIntegral(*RM);
1991 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
1992 St == APFloat::opInexact) {
1993 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1994 if (EB && *EB == fp::ebStrict)
1995 return nullptr;
1996 }
1997 } else if (U.isSignaling()) {
1998 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1999 if (EB && *EB != fp::ebIgnore)
2000 return nullptr;
2001 U = APFloat::getQNaN(U.getSemantics());
2002 }
2003 return ConstantFP::get(Ty->getContext(), U);
2004 }
2005
2006 /// We only fold functions with finite arguments. Folding NaN and inf is
2007 /// likely to be aborted with an exception anyway, and some host libms
2008 /// have known errors raising exceptions.
2009 if (!U.isFinite())
2010 return nullptr;
2011
2012 /// Currently APFloat versions of these functions do not exist, so we use
2013 /// the host native double versions. Float versions are not called
2014 /// directly but for all these it is true (float)(f((double)arg)) ==
2015 /// f(arg). Long double not supported yet.
2016 const APFloat &APF = Op->getValueAPF();
2017
2018 switch (IntrinsicID) {
2019 default: break;
2020 case Intrinsic::log:
2021 return ConstantFoldFP(log, APF, Ty);
2022 case Intrinsic::log2:
2023 // TODO: What about hosts that lack a C99 library?
2024 return ConstantFoldFP(Log2, APF, Ty);
2025 case Intrinsic::log10:
2026 // TODO: What about hosts that lack a C99 library?
2027 return ConstantFoldFP(log10, APF, Ty);
2028 case Intrinsic::exp:
2029 return ConstantFoldFP(exp, APF, Ty);
2030 case Intrinsic::exp2:
2031 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2032 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2033 case Intrinsic::sin:
2034 return ConstantFoldFP(sin, APF, Ty);
2035 case Intrinsic::cos:
2036 return ConstantFoldFP(cos, APF, Ty);
2037 case Intrinsic::sqrt:
2038 return ConstantFoldFP(sqrt, APF, Ty);
2039 case Intrinsic::amdgcn_cos:
2040 case Intrinsic::amdgcn_sin: {
2041 double V = getValueAsDouble(Op);
2042 if (V < -256.0 || V > 256.0)
2043 // The gfx8 and gfx9 architectures handle arguments outside the range
2044 // [-256, 256] differently. This should be a rare case so bail out
2045 // rather than trying to handle the difference.
2046 return nullptr;
2047 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2048 double V4 = V * 4.0;
2049 if (V4 == floor(V4)) {
2050 // Force exact results for quarter-integer inputs.
2051 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2052 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2053 } else {
2054 if (IsCos)
2055 V = cos(V * 2.0 * numbers::pi);
2056 else
2057 V = sin(V * 2.0 * numbers::pi);
2058 }
2059 return GetConstantFoldFPValue(V, Ty);
2060 }
2061 }
2062
2063 if (!TLI)
2064 return nullptr;
2065
2066 LibFunc Func = NotLibFunc;
2067 if (!TLI->getLibFunc(Name, Func))
2068 return nullptr;
2069
2070 switch (Func) {
2071 default:
2072 break;
2073 case LibFunc_acos:
2074 case LibFunc_acosf:
2075 case LibFunc_acos_finite:
2076 case LibFunc_acosf_finite:
2077 if (TLI->has(Func))
2078 return ConstantFoldFP(acos, APF, Ty);
2079 break;
2080 case LibFunc_asin:
2081 case LibFunc_asinf:
2082 case LibFunc_asin_finite:
2083 case LibFunc_asinf_finite:
2084 if (TLI->has(Func))
2085 return ConstantFoldFP(asin, APF, Ty);
2086 break;
2087 case LibFunc_atan:
2088 case LibFunc_atanf:
2089 if (TLI->has(Func))
2090 return ConstantFoldFP(atan, APF, Ty);
2091 break;
2092 case LibFunc_ceil:
2093 case LibFunc_ceilf:
2094 if (TLI->has(Func)) {
2095 U.roundToIntegral(APFloat::rmTowardPositive);
2096 return ConstantFP::get(Ty->getContext(), U);
2097 }
2098 break;
2099 case LibFunc_cos:
2100 case LibFunc_cosf:
2101 if (TLI->has(Func))
2102 return ConstantFoldFP(cos, APF, Ty);
2103 break;
2104 case LibFunc_cosh:
2105 case LibFunc_coshf:
2106 case LibFunc_cosh_finite:
2107 case LibFunc_coshf_finite:
2108 if (TLI->has(Func))
2109 return ConstantFoldFP(cosh, APF, Ty);
2110 break;
2111 case LibFunc_exp:
2112 case LibFunc_expf:
2113 case LibFunc_exp_finite:
2114 case LibFunc_expf_finite:
2115 if (TLI->has(Func))
2116 return ConstantFoldFP(exp, APF, Ty);
2117 break;
2118 case LibFunc_exp2:
2119 case LibFunc_exp2f:
2120 case LibFunc_exp2_finite:
2121 case LibFunc_exp2f_finite:
2122 if (TLI->has(Func))
2123 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2124 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2125 break;
2126 case LibFunc_fabs:
2127 case LibFunc_fabsf:
2128 if (TLI->has(Func)) {
2129 U.clearSign();
2130 return ConstantFP::get(Ty->getContext(), U);
2131 }
2132 break;
2133 case LibFunc_floor:
2134 case LibFunc_floorf:
2135 if (TLI->has(Func)) {
2136 U.roundToIntegral(APFloat::rmTowardNegative);
2137 return ConstantFP::get(Ty->getContext(), U);
2138 }
2139 break;
2140 case LibFunc_log:
2141 case LibFunc_logf:
2142 case LibFunc_log_finite:
2143 case LibFunc_logf_finite:
2144 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2145 return ConstantFoldFP(log, APF, Ty);
2146 break;
2147 case LibFunc_log2:
2148 case LibFunc_log2f:
2149 case LibFunc_log2_finite:
2150 case LibFunc_log2f_finite:
2151 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2152 // TODO: What about hosts that lack a C99 library?
2153 return ConstantFoldFP(Log2, APF, Ty);
2154 break;
2155 case LibFunc_log10:
2156 case LibFunc_log10f:
2157 case LibFunc_log10_finite:
2158 case LibFunc_log10f_finite:
2159 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2160 // TODO: What about hosts that lack a C99 library?
2161 return ConstantFoldFP(log10, APF, Ty);
2162 break;
2163 case LibFunc_nearbyint:
2164 case LibFunc_nearbyintf:
2165 case LibFunc_rint:
2166 case LibFunc_rintf:
2167 if (TLI->has(Func)) {
2168 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2169 return ConstantFP::get(Ty->getContext(), U);
2170 }
2171 break;
2172 case LibFunc_round:
2173 case LibFunc_roundf:
2174 if (TLI->has(Func)) {
2175 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2176 return ConstantFP::get(Ty->getContext(), U);
2177 }
2178 break;
2179 case LibFunc_sin:
2180 case LibFunc_sinf:
2181 if (TLI->has(Func))
2182 return ConstantFoldFP(sin, APF, Ty);
2183 break;
2184 case LibFunc_sinh:
2185 case LibFunc_sinhf:
2186 case LibFunc_sinh_finite:
2187 case LibFunc_sinhf_finite:
2188 if (TLI->has(Func))
2189 return ConstantFoldFP(sinh, APF, Ty);
2190 break;
2191 case LibFunc_sqrt:
2192 case LibFunc_sqrtf:
2193 if (!APF.isNegative() && TLI->has(Func))
2194 return ConstantFoldFP(sqrt, APF, Ty);
2195 break;
2196 case LibFunc_tan:
2197 case LibFunc_tanf:
2198 if (TLI->has(Func))
2199 return ConstantFoldFP(tan, APF, Ty);
2200 break;
2201 case LibFunc_tanh:
2202 case LibFunc_tanhf:
2203 if (TLI->has(Func))
2204 return ConstantFoldFP(tanh, APF, Ty);
2205 break;
2206 case LibFunc_trunc:
2207 case LibFunc_truncf:
2208 if (TLI->has(Func)) {
2209 U.roundToIntegral(APFloat::rmTowardZero);
2210 return ConstantFP::get(Ty->getContext(), U);
2211 }
2212 break;
2213 }
2214 return nullptr;
2215 }
2216
2217 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2218 switch (IntrinsicID) {
2219 case Intrinsic::bswap:
2220 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2221 case Intrinsic::ctpop:
2222 return ConstantInt::get(Ty, Op->getValue().countPopulation());
2223 case Intrinsic::bitreverse:
2224 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2225 case Intrinsic::convert_from_fp16: {
2226 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2227
2228 bool lost = false;
2229 APFloat::opStatus status = Val.convert(
2230 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2231
2232 // Conversion is always precise.
2233 (void)status;
2234 assert(status == APFloat::opOK && !lost &&(static_cast <bool> (status == APFloat::opOK &&
!lost && "Precision lost during fp16 constfolding") ?
void (0) : __assert_fail ("status == APFloat::opOK && !lost && \"Precision lost during fp16 constfolding\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2235, __extension__ __PRETTY_FUNCTION__))
2235 "Precision lost during fp16 constfolding")(static_cast <bool> (status == APFloat::opOK &&
!lost && "Precision lost during fp16 constfolding") ?
void (0) : __assert_fail ("status == APFloat::opOK && !lost && \"Precision lost during fp16 constfolding\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2235, __extension__ __PRETTY_FUNCTION__))
;
2236
2237 return ConstantFP::get(Ty->getContext(), Val);
2238 }
2239 default:
2240 return nullptr;
2241 }
2242 }
2243
2244 switch (IntrinsicID) {
2245 default: break;
2246 case Intrinsic::vector_reduce_add:
2247 case Intrinsic::vector_reduce_mul:
2248 case Intrinsic::vector_reduce_and:
2249 case Intrinsic::vector_reduce_or:
2250 case Intrinsic::vector_reduce_xor:
2251 case Intrinsic::vector_reduce_smin:
2252 case Intrinsic::vector_reduce_smax:
2253 case Intrinsic::vector_reduce_umin:
2254 case Intrinsic::vector_reduce_umax:
2255 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2256 return C;
2257 break;
2258 }
2259
2260 // Support ConstantVector in case we have an Undef in the top.
2261 if (isa<ConstantVector>(Operands[0]) ||
2262 isa<ConstantDataVector>(Operands[0])) {
2263 auto *Op = cast<Constant>(Operands[0]);
2264 switch (IntrinsicID) {
2265 default: break;
2266 case Intrinsic::x86_sse_cvtss2si:
2267 case Intrinsic::x86_sse_cvtss2si64:
2268 case Intrinsic::x86_sse2_cvtsd2si:
2269 case Intrinsic::x86_sse2_cvtsd2si64:
2270 if (ConstantFP *FPOp =
2271 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2272 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2273 /*roundTowardZero=*/false, Ty,
2274 /*IsSigned*/true);
2275 break;
2276 case Intrinsic::x86_sse_cvttss2si:
2277 case Intrinsic::x86_sse_cvttss2si64:
2278 case Intrinsic::x86_sse2_cvttsd2si:
2279 case Intrinsic::x86_sse2_cvttsd2si64:
2280 if (ConstantFP *FPOp =
2281 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2282 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2283 /*roundTowardZero=*/true, Ty,
2284 /*IsSigned*/true);
2285 break;
2286 }
2287 }
2288
2289 return nullptr;
2290}
2291
2292static Constant *ConstantFoldScalarCall2(StringRef Name,
2293 Intrinsic::ID IntrinsicID,
2294 Type *Ty,
2295 ArrayRef<Constant *> Operands,
2296 const TargetLibraryInfo *TLI,
2297 const CallBase *Call) {
2298 assert(Operands.size() == 2 && "Wrong number of operands.")(static_cast <bool> (Operands.size() == 2 && "Wrong number of operands."
) ? void (0) : __assert_fail ("Operands.size() == 2 && \"Wrong number of operands.\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2298, __extension__ __PRETTY_FUNCTION__))
;
1
Assuming the condition is true
2
'?' condition is true
2299
2300 if (Ty->isFloatingPointTy()) {
3
Calling 'Type::isFloatingPointTy'
12
Returning from 'Type::isFloatingPointTy'
13
Taking false branch
2301 // TODO: We should have undef handling for all of the FP intrinsics that
2302 // are attempted to be folded in this function.
2303 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2304 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2305 switch (IntrinsicID) {
2306 case Intrinsic::maxnum:
2307 case Intrinsic::minnum:
2308 case Intrinsic::maximum:
2309 case Intrinsic::minimum:
2310 // If one argument is undef, return the other argument.
2311 if (IsOp0Undef)
2312 return Operands[1];
2313 if (IsOp1Undef)
2314 return Operands[0];
2315 break;
2316 }
2317 }
2318
2319 if (const auto *Op1
14.1
'Op1' is null
14.1
'Op1' is null
14.1
'Op1' is null
= dyn_cast<ConstantFP>(Operands[0])) {
14
Assuming the object is not a 'ConstantFP'
2320 if (!Ty->isFloatingPointTy())
2321 return nullptr;
2322 const APFloat &Op1V = Op1->getValueAPF();
2323
2324 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2325 if (Op2->getType() != Op1->getType())
2326 return nullptr;
2327 const APFloat &Op2V = Op2->getValueAPF();
2328
2329 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2330 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2331 APFloat Res = Op1V;
2332 APFloat::opStatus St;
2333 switch (IntrinsicID) {
2334 default:
2335 return nullptr;
2336 case Intrinsic::experimental_constrained_fadd:
2337 St = Res.add(Op2V, RM);
2338 break;
2339 case Intrinsic::experimental_constrained_fsub:
2340 St = Res.subtract(Op2V, RM);
2341 break;
2342 case Intrinsic::experimental_constrained_fmul:
2343 St = Res.multiply(Op2V, RM);
2344 break;
2345 case Intrinsic::experimental_constrained_fdiv:
2346 St = Res.divide(Op2V, RM);
2347 break;
2348 case Intrinsic::experimental_constrained_frem:
2349 St = Res.mod(Op2V);
2350 break;
2351 }
2352 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2353 St))
2354 return ConstantFP::get(Ty->getContext(), Res);
2355 return nullptr;
2356 }
2357
2358 switch (IntrinsicID) {
2359 default:
2360 break;
2361 case Intrinsic::copysign:
2362 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2363 case Intrinsic::minnum:
2364 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2365 case Intrinsic::maxnum:
2366 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2367 case Intrinsic::minimum:
2368 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2369 case Intrinsic::maximum:
2370 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2371 }
2372
2373 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2374 return nullptr;
2375
2376 switch (IntrinsicID) {
2377 default:
2378 break;
2379 case Intrinsic::pow:
2380 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2381 case Intrinsic::amdgcn_fmul_legacy:
2382 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2383 // NaN or infinity, gives +0.0.
2384 if (Op1V.isZero() || Op2V.isZero())
2385 return ConstantFP::getNullValue(Ty);
2386 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2387 }
2388
2389 if (!TLI)
2390 return nullptr;
2391
2392 LibFunc Func = NotLibFunc;
2393 if (!TLI->getLibFunc(Name, Func))
2394 return nullptr;
2395
2396 switch (Func) {
2397 default:
2398 break;
2399 case LibFunc_pow:
2400 case LibFunc_powf:
2401 case LibFunc_pow_finite:
2402 case LibFunc_powf_finite:
2403 if (TLI->has(Func))
2404 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2405 break;
2406 case LibFunc_fmod:
2407 case LibFunc_fmodf:
2408 if (TLI->has(Func)) {
2409 APFloat V = Op1->getValueAPF();
2410 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2411 return ConstantFP::get(Ty->getContext(), V);
2412 }
2413 break;
2414 case LibFunc_remainder:
2415 case LibFunc_remainderf:
2416 if (TLI->has(Func)) {
2417 APFloat V = Op1->getValueAPF();
2418 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2419 return ConstantFP::get(Ty->getContext(), V);
2420 }
2421 break;
2422 case LibFunc_atan2:
2423 case LibFunc_atan2f:
2424 case LibFunc_atan2_finite:
2425 case LibFunc_atan2f_finite:
2426 if (TLI->has(Func))
2427 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2428 break;
2429 }
2430 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2431 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2432 return nullptr;
2433 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2434 return ConstantFP::get(
2435 Ty->getContext(),
2436 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2437 (int)Op2C->getZExtValue())));
2438 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2439 return ConstantFP::get(
2440 Ty->getContext(),
2441 APFloat((float)std::pow((float)Op1V.convertToDouble(),
2442 (int)Op2C->getZExtValue())));
2443 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2444 return ConstantFP::get(
2445 Ty->getContext(),
2446 APFloat((double)std::pow(Op1V.convertToDouble(),
2447 (int)Op2C->getZExtValue())));
2448
2449 if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2450 // FIXME: Should flush denorms depending on FP mode, but that's ignored
2451 // everywhere else.
2452
2453 // scalbn is equivalent to ldexp with float radix 2
2454 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2455 APFloat::rmNearestTiesToEven);
2456 return ConstantFP::get(Ty->getContext(), Result);
2457 }
2458 }
2459 return nullptr;
2460 }
2461
2462 if (Operands[0]->getType()->isIntegerTy() &&
15
Calling 'Type::isIntegerTy'
18
Returning from 'Type::isIntegerTy'
23
Taking true branch
2463 Operands[1]->getType()->isIntegerTy()) {
19
Calling 'Type::isIntegerTy'
22
Returning from 'Type::isIntegerTy'
2464 const APInt *C0, *C1;
2465 if (!getConstIntOrUndef(Operands[0], C0) ||
24
Calling 'getConstIntOrUndef'
31
Returning from 'getConstIntOrUndef'
37
Taking false branch
2466 !getConstIntOrUndef(Operands[1], C1))
32
Calling 'getConstIntOrUndef'
36
Returning from 'getConstIntOrUndef'
2467 return nullptr;
2468
2469 unsigned BitWidth = Ty->getScalarSizeInBits();
2470 switch (IntrinsicID) {
38
Control jumps to 'case abs:' at line 2588
2471 default: break;
2472 case Intrinsic::smax:
2473 if (!C0 && !C1)
2474 return UndefValue::get(Ty);
2475 if (!C0 || !C1)
2476 return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
2477 return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
2478
2479 case Intrinsic::smin:
2480 if (!C0 && !C1)
2481 return UndefValue::get(Ty);
2482 if (!C0 || !C1)
2483 return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
2484 return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
2485
2486 case Intrinsic::umax:
2487 if (!C0 && !C1)
2488 return UndefValue::get(Ty);
2489 if (!C0 || !C1)
2490 return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
2491 return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
2492
2493 case Intrinsic::umin:
2494 if (!C0 && !C1)
2495 return UndefValue::get(Ty);
2496 if (!C0 || !C1)
2497 return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
2498 return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
2499
2500 case Intrinsic::usub_with_overflow:
2501 case Intrinsic::ssub_with_overflow:
2502 // X - undef -> { 0, false }
2503 // undef - X -> { 0, false }
2504 if (!C0 || !C1)
2505 return Constant::getNullValue(Ty);
2506 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2507 case Intrinsic::uadd_with_overflow:
2508 case Intrinsic::sadd_with_overflow:
2509 // X + undef -> { -1, false }
2510 // undef + x -> { -1, false }
2511 if (!C0 || !C1) {
2512 return ConstantStruct::get(
2513 cast<StructType>(Ty),
2514 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2515 Constant::getNullValue(Ty->getStructElementType(1))});
2516 }
2517 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2518 case Intrinsic::smul_with_overflow:
2519 case Intrinsic::umul_with_overflow: {
2520 // undef * X -> { 0, false }
2521 // X * undef -> { 0, false }
2522 if (!C0 || !C1)
2523 return Constant::getNullValue(Ty);
2524
2525 APInt Res;
2526 bool Overflow;
2527 switch (IntrinsicID) {
2528 default: llvm_unreachable("Invalid case")::llvm::llvm_unreachable_internal("Invalid case", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2528)
;
2529 case Intrinsic::sadd_with_overflow:
2530 Res = C0->sadd_ov(*C1, Overflow);
2531 break;
2532 case Intrinsic::uadd_with_overflow:
2533 Res = C0->uadd_ov(*C1, Overflow);
2534 break;
2535 case Intrinsic::ssub_with_overflow:
2536 Res = C0->ssub_ov(*C1, Overflow);
2537 break;
2538 case Intrinsic::usub_with_overflow:
2539 Res = C0->usub_ov(*C1, Overflow);
2540 break;
2541 case Intrinsic::smul_with_overflow:
2542 Res = C0->smul_ov(*C1, Overflow);
2543 break;
2544 case Intrinsic::umul_with_overflow:
2545 Res = C0->umul_ov(*C1, Overflow);
2546 break;
2547 }
2548 Constant *Ops[] = {
2549 ConstantInt::get(Ty->getContext(), Res),
2550 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2551 };
2552 return ConstantStruct::get(cast<StructType>(Ty), Ops);
2553 }
2554 case Intrinsic::uadd_sat:
2555 case Intrinsic::sadd_sat:
2556 if (!C0 && !C1)
2557 return UndefValue::get(Ty);
2558 if (!C0 || !C1)
2559 return Constant::getAllOnesValue(Ty);
2560 if (IntrinsicID == Intrinsic::uadd_sat)
2561 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2562 else
2563 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2564 case Intrinsic::usub_sat:
2565 case Intrinsic::ssub_sat:
2566 if (!C0 && !C1)
2567 return UndefValue::get(Ty);
2568 if (!C0 || !C1)
2569 return Constant::getNullValue(Ty);
2570 if (IntrinsicID == Intrinsic::usub_sat)
2571 return ConstantInt::get(Ty, C0->usub_sat(*C1));
2572 else
2573 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2574 case Intrinsic::cttz:
2575 case Intrinsic::ctlz:
2576 assert(C1 && "Must be constant int")(static_cast <bool> (C1 && "Must be constant int"
) ? void (0) : __assert_fail ("C1 && \"Must be constant int\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2576, __extension__ __PRETTY_FUNCTION__))
;
2577
2578 // cttz(0, 1) and ctlz(0, 1) are undef.
2579 if (C1->isOne() && (!C0 || C0->isZero()))
2580 return UndefValue::get(Ty);
2581 if (!C0)
2582 return Constant::getNullValue(Ty);
2583 if (IntrinsicID == Intrinsic::cttz)
2584 return ConstantInt::get(Ty, C0->countTrailingZeros());
2585 else
2586 return ConstantInt::get(Ty, C0->countLeadingZeros());
2587
2588 case Intrinsic::abs:
2589 // Undef or minimum val operand with poison min --> undef
2590 assert(C1 && "Must be constant int")(static_cast <bool> (C1 && "Must be constant int"
) ? void (0) : __assert_fail ("C1 && \"Must be constant int\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2590, __extension__ __PRETTY_FUNCTION__))
;
39
'?' condition is true
2591 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
40
Calling 'APInt::isOne'
48
Returning from 'APInt::isOne'
2592 return UndefValue::get(Ty);
2593
2594 // Undef operand with no poison min --> 0 (sign bit must be clear)
2595 if (C1->isZero() && !C0)
49
Calling 'APInt::isZero'
56
Returning from 'APInt::isZero'
2596 return Constant::getNullValue(Ty);
2597
2598 return ConstantInt::get(Ty, C0->abs());
57
Called C++ object pointer is null
2599 }
2600
2601 return nullptr;
2602 }
2603
2604 // Support ConstantVector in case we have an Undef in the top.
2605 if ((isa<ConstantVector>(Operands[0]) ||
2606 isa<ConstantDataVector>(Operands[0])) &&
2607 // Check for default rounding mode.
2608 // FIXME: Support other rounding modes?
2609 isa<ConstantInt>(Operands[1]) &&
2610 cast<ConstantInt>(Operands[1])->getValue() == 4) {
2611 auto *Op = cast<Constant>(Operands[0]);
2612 switch (IntrinsicID) {
2613 default: break;
2614 case Intrinsic::x86_avx512_vcvtss2si32:
2615 case Intrinsic::x86_avx512_vcvtss2si64:
2616 case Intrinsic::x86_avx512_vcvtsd2si32:
2617 case Intrinsic::x86_avx512_vcvtsd2si64:
2618 if (ConstantFP *FPOp =
2619 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2620 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2621 /*roundTowardZero=*/false, Ty,
2622 /*IsSigned*/true);
2623 break;
2624 case Intrinsic::x86_avx512_vcvtss2usi32:
2625 case Intrinsic::x86_avx512_vcvtss2usi64:
2626 case Intrinsic::x86_avx512_vcvtsd2usi32:
2627 case Intrinsic::x86_avx512_vcvtsd2usi64:
2628 if (ConstantFP *FPOp =
2629 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2630 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2631 /*roundTowardZero=*/false, Ty,
2632 /*IsSigned*/false);
2633 break;
2634 case Intrinsic::x86_avx512_cvttss2si:
2635 case Intrinsic::x86_avx512_cvttss2si64:
2636 case Intrinsic::x86_avx512_cvttsd2si:
2637 case Intrinsic::x86_avx512_cvttsd2si64:
2638 if (ConstantFP *FPOp =
2639 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2640 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2641 /*roundTowardZero=*/true, Ty,
2642 /*IsSigned*/true);
2643 break;
2644 case Intrinsic::x86_avx512_cvttss2usi:
2645 case Intrinsic::x86_avx512_cvttss2usi64:
2646 case Intrinsic::x86_avx512_cvttsd2usi:
2647 case Intrinsic::x86_avx512_cvttsd2usi64:
2648 if (ConstantFP *FPOp =
2649 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2650 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2651 /*roundTowardZero=*/true, Ty,
2652 /*IsSigned*/false);
2653 break;
2654 }
2655 }
2656 return nullptr;
2657}
2658
2659static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2660 const APFloat &S0,
2661 const APFloat &S1,
2662 const APFloat &S2) {
2663 unsigned ID;
2664 const fltSemantics &Sem = S0.getSemantics();
2665 APFloat MA(Sem), SC(Sem), TC(Sem);
2666 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2667 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2668 // S2 < 0
2669 ID = 5;
2670 SC = -S0;
2671 } else {
2672 ID = 4;
2673 SC = S0;
2674 }
2675 MA = S2;
2676 TC = -S1;
2677 } else if (abs(S1) >= abs(S0)) {
2678 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2679 // S1 < 0
2680 ID = 3;
2681 TC = -S2;
2682 } else {
2683 ID = 2;
2684 TC = S2;
2685 }
2686 MA = S1;
2687 SC = S0;
2688 } else {
2689 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2690 // S0 < 0
2691 ID = 1;
2692 SC = S2;
2693 } else {
2694 ID = 0;
2695 SC = -S2;
2696 }
2697 MA = S0;
2698 TC = -S1;
2699 }
2700 switch (IntrinsicID) {
2701 default:
2702 llvm_unreachable("unhandled amdgcn cube intrinsic")::llvm::llvm_unreachable_internal("unhandled amdgcn cube intrinsic"
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2702)
;
2703 case Intrinsic::amdgcn_cubeid:
2704 return APFloat(Sem, ID);
2705 case Intrinsic::amdgcn_cubema:
2706 return MA + MA;
2707 case Intrinsic::amdgcn_cubesc:
2708 return SC;
2709 case Intrinsic::amdgcn_cubetc:
2710 return TC;
2711 }
2712}
2713
2714static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2715 Type *Ty) {
2716 const APInt *C0, *C1, *C2;
2717 if (!getConstIntOrUndef(Operands[0], C0) ||
2718 !getConstIntOrUndef(Operands[1], C1) ||
2719 !getConstIntOrUndef(Operands[2], C2))
2720 return nullptr;
2721
2722 if (!C2)
2723 return UndefValue::get(Ty);
2724
2725 APInt Val(32, 0);
2726 unsigned NumUndefBytes = 0;
2727 for (unsigned I = 0; I < 32; I += 8) {
2728 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2729 unsigned B = 0;
2730
2731 if (Sel >= 13)
2732 B = 0xff;
2733 else if (Sel == 12)
2734 B = 0x00;
2735 else {
2736 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2737 if (!Src)
2738 ++NumUndefBytes;
2739 else if (Sel < 8)
2740 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2741 else
2742 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2743 }
2744
2745 Val.insertBits(B, I, 8);
2746 }
2747
2748 if (NumUndefBytes == 4)
2749 return UndefValue::get(Ty);
2750
2751 return ConstantInt::get(Ty, Val);
2752}
2753
2754static Constant *ConstantFoldScalarCall3(StringRef Name,
2755 Intrinsic::ID IntrinsicID,
2756 Type *Ty,
2757 ArrayRef<Constant *> Operands,
2758 const TargetLibraryInfo *TLI,
2759 const CallBase *Call) {
2760 assert(Operands.size() == 3 && "Wrong number of operands.")(static_cast <bool> (Operands.size() == 3 && "Wrong number of operands."
) ? void (0) : __assert_fail ("Operands.size() == 3 && \"Wrong number of operands.\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2760, __extension__ __PRETTY_FUNCTION__))
;
2761
2762 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2763 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2764 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2765 const APFloat &C1 = Op1->getValueAPF();
2766 const APFloat &C2 = Op2->getValueAPF();
2767 const APFloat &C3 = Op3->getValueAPF();
2768
2769 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2770 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2771 APFloat Res = C1;
2772 APFloat::opStatus St;
2773 switch (IntrinsicID) {
2774 default:
2775 return nullptr;
2776 case Intrinsic::experimental_constrained_fma:
2777 case Intrinsic::experimental_constrained_fmuladd:
2778 St = Res.fusedMultiplyAdd(C2, C3, RM);
2779 break;
2780 }
2781 if (mayFoldConstrained(
2782 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
2783 return ConstantFP::get(Ty->getContext(), Res);
2784 return nullptr;
2785 }
2786
2787 switch (IntrinsicID) {
2788 default: break;
2789 case Intrinsic::amdgcn_fma_legacy: {
2790 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2791 // NaN or infinity, gives +0.0.
2792 if (C1.isZero() || C2.isZero()) {
2793 // It's tempting to just return C3 here, but that would give the
2794 // wrong result if C3 was -0.0.
2795 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2796 }
2797 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2798 }
2799 case Intrinsic::fma:
2800 case Intrinsic::fmuladd: {
2801 APFloat V = C1;
2802 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
2803 return ConstantFP::get(Ty->getContext(), V);
2804 }
2805 case Intrinsic::amdgcn_cubeid:
2806 case Intrinsic::amdgcn_cubema:
2807 case Intrinsic::amdgcn_cubesc:
2808 case Intrinsic::amdgcn_cubetc: {
2809 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
2810 return ConstantFP::get(Ty->getContext(), V);
2811 }
2812 }
2813 }
2814 }
2815 }
2816
2817 if (IntrinsicID == Intrinsic::smul_fix ||
2818 IntrinsicID == Intrinsic::smul_fix_sat) {
2819 // poison * C -> poison
2820 // C * poison -> poison
2821 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2822 return PoisonValue::get(Ty);
2823
2824 const APInt *C0, *C1;
2825 if (!getConstIntOrUndef(Operands[0], C0) ||
2826 !getConstIntOrUndef(Operands[1], C1))
2827 return nullptr;
2828
2829 // undef * C -> 0
2830 // C * undef -> 0
2831 if (!C0 || !C1)
2832 return Constant::getNullValue(Ty);
2833
2834 // This code performs rounding towards negative infinity in case the result
2835 // cannot be represented exactly for the given scale. Targets that do care
2836 // about rounding should use a target hook for specifying how rounding
2837 // should be done, and provide their own folding to be consistent with
2838 // rounding. This is the same approach as used by
2839 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2840 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2841 unsigned Width = C0->getBitWidth();
2842 assert(Scale < Width && "Illegal scale.")(static_cast <bool> (Scale < Width && "Illegal scale."
) ? void (0) : __assert_fail ("Scale < Width && \"Illegal scale.\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/lib/Analysis/ConstantFolding.cpp"
, 2842, __extension__ __PRETTY_FUNCTION__))
;
2843 unsigned ExtendedWidth = Width * 2;
2844 APInt Product = (C0->sextOrSelf(ExtendedWidth) *
2845 C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
2846 if (IntrinsicID == Intrinsic::smul_fix_sat) {
2847 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2848 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2849 Product = APIntOps::smin(Product, Max);
2850 Product = APIntOps::smax(Product, Min);
2851 }
2852 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
2853 }
2854
2855 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2856 const APInt *C0, *C1, *C2;
2857 if (!getConstIntOrUndef(Operands[0], C0) ||
2858 !getConstIntOrUndef(Operands[1], C1) ||
2859 !getConstIntOrUndef(Operands[2], C2))
2860 return nullptr;
2861
2862 bool IsRight = IntrinsicID == Intrinsic::fshr;
2863 if (!C2)
2864 return Operands[IsRight ? 1 : 0];
2865 if (!C0 && !C1)
2866 return UndefValue::get(Ty);
2867
2868 // The shift amount is interpreted as modulo the bitwidth. If the shift
2869 // amount is effectively 0, avoid UB due to oversized inverse shift below.
2870 unsigned BitWidth = C2->getBitWidth();
2871 unsigned ShAmt = C2->urem(BitWidth);
2872 if (!ShAmt)
2873 return Operands[IsRight ? 1 : 0];
2874
2875 // (C0 << ShlAmt) | (C1 >> LshrAmt)
2876 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2877 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2878 if (!C0)
2879 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2880 if (!C1)
2881 return ConstantInt::get(Ty, C0->shl(ShlAmt));
2882 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2883 }
2884
2885 if (IntrinsicID == Intrinsic::amdgcn_perm)
2886 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
2887
2888 return nullptr;
2889}
2890
2891static Constant *ConstantFoldScalarCall(StringRef Name,
2892 Intrinsic::ID IntrinsicID,
2893 Type *Ty,
2894 ArrayRef<Constant *> Operands,
2895 const TargetLibraryInfo *TLI,
2896 const CallBase *Call) {
2897 if (Operands.size() == 1)
2898 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2899
2900 if (Operands.size() == 2)
2901 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2902
2903 if (Operands.size() == 3)
2904 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2905
2906 return nullptr;
2907}
2908
2909static Constant *ConstantFoldFixedVectorCall(
2910 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
2911 ArrayRef<Constant *> Operands, const DataLayout &DL,
2912 const TargetLibraryInfo *TLI, const CallBase *Call) {
2913 SmallVector<Constant *, 4> Result(FVTy->getNumElements());
2914 SmallVector<Constant *, 4> Lane(Operands.size());
2915 Type *Ty = FVTy->getElementType();
2916
2917 switch (IntrinsicID) {
2918 case Intrinsic::masked_load: {
2919 auto *SrcPtr = Operands[0];
2920 auto *Mask = Operands[2];
2921 auto *Passthru = Operands[3];
2922
2923 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
2924
2925 SmallVector<Constant *, 32> NewElements;
2926 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
2927 auto *MaskElt = Mask->getAggregateElement(I);
2928 if (!MaskElt)
2929 break;
2930 auto *PassthruElt = Passthru->getAggregateElement(I);
2931 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2932 if (isa<UndefValue>(MaskElt)) {
2933 if (PassthruElt)
2934 NewElements.push_back(PassthruElt);
2935 else if (VecElt)
2936 NewElements.push_back(VecElt);
2937 else
2938 return nullptr;
2939 }
2940 if (MaskElt->isNullValue()) {
2941 if (!PassthruElt)
2942 return nullptr;
2943 NewElements.push_back(PassthruElt);
2944 } else if (MaskElt->isOneValue()) {
2945 if (!VecElt)
2946 return nullptr;
2947 NewElements.push_back(VecElt);
2948 } else {
2949 return nullptr;
2950 }
2951 }
2952 if (NewElements.size() != FVTy->getNumElements())
2953 return nullptr;
2954 return ConstantVector::get(NewElements);
2955 }
2956 case Intrinsic::arm_mve_vctp8:
2957 case Intrinsic::arm_mve_vctp16:
2958 case Intrinsic::arm_mve_vctp32:
2959 case Intrinsic::arm_mve_vctp64: {
2960 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2961 unsigned Lanes = FVTy->getNumElements();
2962 uint64_t Limit = Op->getZExtValue();
2963 // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
2964 // sure we get the limit right in that case and set all relevant lanes.
2965 if (IntrinsicID == Intrinsic::arm_mve_vctp64)
2966 Limit *= 2;
2967
2968 SmallVector<Constant *, 16> NCs;
2969 for (unsigned i = 0; i < Lanes; i++) {
2970 if (i < Limit)
2971 NCs.push_back(ConstantInt::getTrue(Ty));
2972 else
2973 NCs.push_back(ConstantInt::getFalse(Ty));
2974 }
2975 return ConstantVector::get(NCs);
2976 }
2977 break;
2978 }
2979 case Intrinsic::get_active_lane_mask: {
2980 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
2981 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
2982 if (Op0 && Op1) {
2983 unsigned Lanes = FVTy->getNumElements();
2984 uint64_t Base = Op0->getZExtValue();
2985 uint64_t Limit = Op1->getZExtValue();
2986
2987 SmallVector<Constant *, 16> NCs;
2988 for (unsigned i = 0; i < Lanes; i++) {
2989 if (Base + i < Limit)
2990 NCs.push_back(ConstantInt::getTrue(Ty));
2991 else
2992 NCs.push_back(ConstantInt::getFalse(Ty));
2993 }
2994 return ConstantVector::get(NCs);
2995 }
2996 break;
2997 }
2998 default:
2999 break;
3000 }
3001
3002 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3003 // Gather a column of constants.
3004 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3005 // Some intrinsics use a scalar type for certain arguments.
3006 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
3007 Lane[J] = Operands[J];
3008 continue;
3009 }
3010
3011 Constant *Agg = Operands[J]->getAggregateElement(I);
3012 if (!Agg)
3013 return nullptr;
3014
3015 Lane[J] = Agg;
3016 }
3017
3018 // Use the regular scalar folding to simplify this column.
3019 Constant *Folded =
3020 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3021 if (!Folded)
3022 return nullptr;
3023 Result[I] = Folded;
3024 }
3025
3026 return ConstantVector::get(Result);
3027}
3028
3029static Constant *ConstantFoldScalableVectorCall(
3030 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3031 ArrayRef<Constant *> Operands, const DataLayout &DL,
3032 const TargetLibraryInfo *TLI, const CallBase *Call) {
3033 switch (IntrinsicID) {
3034 case Intrinsic::aarch64_sve_convert_from_svbool: {
3035 auto *Src = dyn_cast<Constant>(Operands[0]);
3036 if (!Src || !Src->isNullValue())
3037 break;
3038
3039 return ConstantInt::getFalse(SVTy);
3040 }
3041 default:
3042 break;
3043 }
3044 return nullptr;
3045}
3046
3047} // end anonymous namespace
3048
3049Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3050 ArrayRef<Constant *> Operands,
3051 const TargetLibraryInfo *TLI) {
3052 if (Call->isNoBuiltin())
3053 return nullptr;
3054 if (!F->hasName())
3055 return nullptr;
3056
3057 // If this is not an intrinsic and not recognized as a library call, bail out.
3058 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3059 if (!TLI)
3060 return nullptr;
3061 LibFunc LibF;
3062 if (!TLI->getLibFunc(*F, LibF))
3063 return nullptr;
3064 }
3065
3066 StringRef Name = F->getName();
3067 Type *Ty = F->getReturnType();
3068 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3069 return ConstantFoldFixedVectorCall(
3070 Name, F->getIntrinsicID(), FVTy, Operands,
3071 F->getParent()->getDataLayout(), TLI, Call);
3072
3073 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3074 return ConstantFoldScalableVectorCall(
3075 Name, F->getIntrinsicID(), SVTy, Operands,
3076 F->getParent()->getDataLayout(), TLI, Call);
3077
3078 // TODO: If this is a library function, we already discovered that above,
3079 // so we should pass the LibFunc, not the name (and it might be better
3080 // still to separate intrinsic handling from libcalls).
3081 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3082 Call);
3083}
3084
3085bool llvm::isMathLibCallNoop(const CallBase *Call,
3086 const TargetLibraryInfo *TLI) {
3087 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3088 // (and to some extent ConstantFoldScalarCall).
3089 if (Call->isNoBuiltin() || Call->isStrictFP())
3090 return false;
3091 Function *F = Call->getCalledFunction();
3092 if (!F)
3093 return false;
3094
3095 LibFunc Func;
3096 if (!TLI || !TLI->getLibFunc(*F, Func))
3097 return false;
3098
3099 if (Call->arg_size() == 1) {
3100 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3101 const APFloat &Op = OpC->getValueAPF();
3102 switch (Func) {
3103 case LibFunc_logl:
3104 case LibFunc_log:
3105 case LibFunc_logf:
3106 case LibFunc_log2l:
3107 case LibFunc_log2:
3108 case LibFunc_log2f:
3109 case LibFunc_log10l:
3110 case LibFunc_log10:
3111 case LibFunc_log10f:
3112 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3113
3114 case LibFunc_expl:
3115 case LibFunc_exp:
3116 case LibFunc_expf:
3117 // FIXME: These boundaries are slightly conservative.
3118 if (OpC->getType()->isDoubleTy())
3119 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3120 if (OpC->getType()->isFloatTy())
3121 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3122 break;
3123
3124 case LibFunc_exp2l:
3125 case LibFunc_exp2:
3126 case LibFunc_exp2f:
3127 // FIXME: These boundaries are slightly conservative.
3128 if (OpC->getType()->isDoubleTy())
3129 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3130 if (OpC->getType()->isFloatTy())
3131 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3132 break;
3133
3134 case LibFunc_sinl:
3135 case LibFunc_sin:
3136 case LibFunc_sinf:
3137 case LibFunc_cosl:
3138 case LibFunc_cos:
3139 case LibFunc_cosf:
3140 return !Op.isInfinity();
3141
3142 case LibFunc_tanl:
3143 case LibFunc_tan:
3144 case LibFunc_tanf: {
3145 // FIXME: Stop using the host math library.
3146 // FIXME: The computation isn't done in the right precision.
3147 Type *Ty = OpC->getType();
3148 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3149 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3150 break;
3151 }
3152
3153 case LibFunc_asinl:
3154 case LibFunc_asin:
3155 case LibFunc_asinf:
3156 case LibFunc_acosl:
3157 case LibFunc_acos:
3158 case LibFunc_acosf:
3159 return !(Op < APFloat(Op.getSemantics(), "-1") ||
3160 Op > APFloat(Op.getSemantics(), "1"));
3161
3162 case LibFunc_sinh:
3163 case LibFunc_cosh:
3164 case LibFunc_sinhf:
3165 case LibFunc_coshf:
3166 case LibFunc_sinhl:
3167 case LibFunc_coshl:
3168 // FIXME: These boundaries are slightly conservative.
3169 if (OpC->getType()->isDoubleTy())
3170 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3171 if (OpC->getType()->isFloatTy())
3172 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3173 break;
3174
3175 case LibFunc_sqrtl:
3176 case LibFunc_sqrt:
3177 case LibFunc_sqrtf:
3178 return Op.isNaN() || Op.isZero() || !Op.isNegative();
3179
3180 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3181 // maybe others?
3182 default:
3183 break;
3184 }
3185 }
3186 }
3187
3188 if (Call->arg_size() == 2) {
3189 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3190 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3191 if (Op0C && Op1C) {
3192 const APFloat &Op0 = Op0C->getValueAPF();
3193 const APFloat &Op1 = Op1C->getValueAPF();
3194
3195 switch (Func) {
3196 case LibFunc_powl:
3197 case LibFunc_pow:
3198 case LibFunc_powf: {
3199 // FIXME: Stop using the host math library.
3200 // FIXME: The computation isn't done in the right precision.
3201 Type *Ty = Op0C->getType();
3202 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3203 if (Ty == Op1C->getType())
3204 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3205 }
3206 break;
3207 }
3208
3209 case LibFunc_fmodl:
3210 case LibFunc_fmod:
3211 case LibFunc_fmodf:
3212 case LibFunc_remainderl:
3213 case LibFunc_remainder:
3214 case LibFunc_remainderf:
3215 return Op0.isNaN() || Op1.isNaN() ||
3216 (!Op0.isInfinity() && !Op1.isZero());
3217
3218 default:
3219 break;
3220 }
3221 }
3222 }
3223
3224 return false;
3225}
3226
3227void TargetFolder::anchor() {}

/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/IR/Type.h

1//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Type class. For more "Type"
10// stuff, look in DerivedTypes.h.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_TYPE_H
15#define LLVM_IR_TYPE_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/Support/CBindingWrapping.h"
20#include "llvm/Support/Casting.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/TypeSize.h"
24#include <cassert>
25#include <cstdint>
26#include <iterator>
27
28namespace llvm {
29
30class IntegerType;
31struct fltSemantics;
32class LLVMContext;
33class PointerType;
34class raw_ostream;
35class StringRef;
36
37/// The instances of the Type class are immutable: once they are created,
38/// they are never changed. Also note that only one instance of a particular
39/// type is ever created. Thus seeing if two types are equal is a matter of
40/// doing a trivial pointer comparison. To enforce that no two equal instances
41/// are created, Type instances can only be created via static factory methods
42/// in class Type and in derived classes. Once allocated, Types are never
43/// free'd.
44///
45class Type {
46public:
47 //===--------------------------------------------------------------------===//
48 /// Definitions of all of the base types for the Type system. Based on this
49 /// value, you can cast to a class defined in DerivedTypes.h.
50 /// Note: If you add an element to this, you need to add an element to the
51 /// Type::getPrimitiveType function, or else things will break!
52 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53 ///
54 enum TypeID {
55 // PrimitiveTypes
56 HalfTyID = 0, ///< 16-bit floating point type
57 BFloatTyID, ///< 16-bit floating point type (7-bit significand)
58 FloatTyID, ///< 32-bit floating point type
59 DoubleTyID, ///< 64-bit floating point type
60 X86_FP80TyID, ///< 80-bit floating point type (X87)
61 FP128TyID, ///< 128-bit floating point type (112-bit significand)
62 PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
63 VoidTyID, ///< type with no size
64 LabelTyID, ///< Labels
65 MetadataTyID, ///< Metadata
66 X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific)
67 X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific)
68 TokenTyID, ///< Tokens
69
70 // Derived types... see DerivedTypes.h file.
71 IntegerTyID, ///< Arbitrary bit width integers
72 FunctionTyID, ///< Functions
73 PointerTyID, ///< Pointers
74 StructTyID, ///< Structures
75 ArrayTyID, ///< Arrays
76 FixedVectorTyID, ///< Fixed width SIMD vector type
77 ScalableVectorTyID ///< Scalable SIMD vector type
78 };
79
80private:
81 /// This refers to the LLVMContext in which this type was uniqued.
82 LLVMContext &Context;
83
84 TypeID ID : 8; // The current base type of this type.
85 unsigned SubclassData : 24; // Space for subclasses to store data.
86 // Note that this should be synchronized with
87 // MAX_INT_BITS value in IntegerType class.
88
89protected:
90 friend class LLVMContextImpl;
91
92 explicit Type(LLVMContext &C, TypeID tid)
93 : Context(C), ID(tid), SubclassData(0) {}
94 ~Type() = default;
95
96 unsigned getSubclassData() const { return SubclassData; }
97
98 void setSubclassData(unsigned val) {
99 SubclassData = val;
100 // Ensure we don't have any accidental truncation.
101 assert(getSubclassData() == val && "Subclass data too large for field")(static_cast <bool> (getSubclassData() == val &&
"Subclass data too large for field") ? void (0) : __assert_fail
("getSubclassData() == val && \"Subclass data too large for field\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/IR/Type.h"
, 101, __extension__ __PRETTY_FUNCTION__))
;
102 }
103
104 /// Keeps track of how many Type*'s there are in the ContainedTys list.
105 unsigned NumContainedTys = 0;
106
107 /// A pointer to the array of Types contained by this Type. For example, this
108 /// includes the arguments of a function type, the elements of a structure,
109 /// the pointee of a pointer, the element type of an array, etc. This pointer
110 /// may be 0 for types that don't contain other types (Integer, Double,
111 /// Float).
112 Type * const *ContainedTys = nullptr;
113
114public:
115 /// Print the current type.
116 /// Omit the type details if \p NoDetails == true.
117 /// E.g., let %st = type { i32, i16 }
118 /// When \p NoDetails is true, we only print %st.
119 /// Put differently, \p NoDetails prints the type as if
120 /// inlined with the operands when printing an instruction.
121 void print(raw_ostream &O, bool IsForDebug = false,
122 bool NoDetails = false) const;
123
124 void dump() const;
125
126 /// Return the LLVMContext in which this type was uniqued.
127 LLVMContext &getContext() const { return Context; }
128
129 //===--------------------------------------------------------------------===//
130 // Accessors for working with types.
131 //
132
133 /// Return the type id for the type. This will return one of the TypeID enum
134 /// elements defined above.
135 TypeID getTypeID() const { return ID; }
136
137 /// Return true if this is 'void'.
138 bool isVoidTy() const { return getTypeID() == VoidTyID; }
139
140 /// Return true if this is 'half', a 16-bit IEEE fp type.
141 bool isHalfTy() const { return getTypeID() == HalfTyID; }
142
143 /// Return true if this is 'bfloat', a 16-bit bfloat type.
144 bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
145
146 /// Return true if this is 'float', a 32-bit IEEE fp type.
147 bool isFloatTy() const { return getTypeID() == FloatTyID; }
148
149 /// Return true if this is 'double', a 64-bit IEEE fp type.
150 bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
151
152 /// Return true if this is x86 long double.
153 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
154
155 /// Return true if this is 'fp128'.
156 bool isFP128Ty() const { return getTypeID() == FP128TyID; }
157
158 /// Return true if this is powerpc long double.
159 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
160
161 /// Return true if this is one of the six floating-point types
162 bool isFloatingPointTy() const {
163 return getTypeID() == HalfTyID || getTypeID() == BFloatTyID ||
4
Assuming the condition is false
5
Assuming the condition is false
11
Returning zero, which participates in a condition later
164 getTypeID() == FloatTyID || getTypeID() == DoubleTyID ||
6
Assuming the condition is false
7
Assuming the condition is false
165 getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
8
Assuming the condition is false
9
Assuming the condition is false
166 getTypeID() == PPC_FP128TyID;
10
Assuming the condition is false
167 }
168
169 const fltSemantics &getFltSemantics() const;
170
171 /// Return true if this is X86 MMX.
172 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
173
174 /// Return true if this is X86 AMX.
175 bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
176
177 /// Return true if this is a FP type or a vector of FP.
178 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
179
180 /// Return true if this is 'label'.
181 bool isLabelTy() const { return getTypeID() == LabelTyID; }
182
183 /// Return true if this is 'metadata'.
184 bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
185
186 /// Return true if this is 'token'.
187 bool isTokenTy() const { return getTypeID() == TokenTyID; }
188
189 /// True if this is an instance of IntegerType.
190 bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
16
Assuming the condition is true
17
Returning the value 1, which participates in a condition later
20
Assuming the condition is true
21
Returning the value 1, which participates in a condition later
191
192 /// Return true if this is an IntegerType of the given width.
193 bool isIntegerTy(unsigned Bitwidth) const;
194
195 /// Return true if this is an integer type or a vector of integer types.
196 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
197
198 /// Return true if this is an integer type or a vector of integer types of
199 /// the given width.
200 bool isIntOrIntVectorTy(unsigned BitWidth) const {
201 return getScalarType()->isIntegerTy(BitWidth);
202 }
203
204 /// Return true if this is an integer type or a pointer type.
205 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
206
207 /// True if this is an instance of FunctionType.
208 bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
209
210 /// True if this is an instance of StructType.
211 bool isStructTy() const { return getTypeID() == StructTyID; }
212
213 /// True if this is an instance of ArrayType.
214 bool isArrayTy() const { return getTypeID() == ArrayTyID; }
215
216 /// True if this is an instance of PointerType.
217 bool isPointerTy() const { return getTypeID() == PointerTyID; }
218
219 /// True if this is an instance of an opaque PointerType.
220 bool isOpaquePointerTy() const;
221
222 /// Return true if this is a pointer type or a vector of pointer types.
223 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
224
225 /// True if this is an instance of VectorType.
226 inline bool isVectorTy() const {
227 return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
228 }
229
230 /// Return true if this type could be converted with a lossless BitCast to
231 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
232 /// same size only where no re-interpretation of the bits is done.
233 /// Determine if this type could be losslessly bitcast to Ty
234 bool canLosslesslyBitCastTo(Type *Ty) const;
235
236 /// Return true if this type is empty, that is, it has no elements or all of
237 /// its elements are empty.
238 bool isEmptyTy() const;
239
240 /// Return true if the type is "first class", meaning it is a valid type for a
241 /// Value.
242 bool isFirstClassType() const {
243 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
244 }
245
246 /// Return true if the type is a valid type for a register in codegen. This
247 /// includes all first-class types except struct and array types.
248 bool isSingleValueType() const {
249 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
250 isPointerTy() || isVectorTy() || isX86_AMXTy();
251 }
252
253 /// Return true if the type is an aggregate type. This means it is valid as
254 /// the first operand of an insertvalue or extractvalue instruction. This
255 /// includes struct and array types, but does not include vector types.
256 bool isAggregateType() const {
257 return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
258 }
259
260 /// Return true if it makes sense to take the size of this type. To get the
261 /// actual size for a particular target, it is reasonable to use the
262 /// DataLayout subsystem to do this.
263 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
264 // If it's a primitive, it is always sized.
265 if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
266 getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID ||
267 getTypeID() == X86_AMXTyID)
268 return true;
269 // If it is not something that can have a size (e.g. a function or label),
270 // it doesn't have a size.
271 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy())
272 return false;
273 // Otherwise we have to try harder to decide.
274 return isSizedDerivedType(Visited);
275 }
276
277 /// Return the basic size of this type if it is a primitive type. These are
278 /// fixed by LLVM and are not target-dependent.
279 /// This will return zero if the type does not have a size or is not a
280 /// primitive type.
281 ///
282 /// If this is a scalable vector type, the scalable property will be set and
283 /// the runtime size will be a positive integer multiple of the base size.
284 ///
285 /// Note that this may not reflect the size of memory allocated for an
286 /// instance of the type or the number of bytes that are written when an
287 /// instance of the type is stored to memory. The DataLayout class provides
288 /// additional query functions to provide this information.
289 ///
290 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__));
291
292 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
293 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
294 /// type.
295 unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__));
296
297 /// Return the width of the mantissa of this type. This is only valid on
298 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
299 /// ppc long double), this method returns -1.
300 int getFPMantissaWidth() const;
301
302 /// Return whether the type is IEEE compatible, as defined by the eponymous
303 /// method in APFloat.
304 bool isIEEE() const;
305
306 /// If this is a vector type, return the element type, otherwise return
307 /// 'this'.
308 inline Type *getScalarType() const {
309 if (isVectorTy())
310 return getContainedType(0);
311 return const_cast<Type *>(this);
312 }
313
314 //===--------------------------------------------------------------------===//
315 // Type Iteration support.
316 //
317 using subtype_iterator = Type * const *;
318
319 subtype_iterator subtype_begin() const { return ContainedTys; }
320 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
321 ArrayRef<Type*> subtypes() const {
322 return makeArrayRef(subtype_begin(), subtype_end());
323 }
324
325 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
326
327 subtype_reverse_iterator subtype_rbegin() const {
328 return subtype_reverse_iterator(subtype_end());
329 }
330 subtype_reverse_iterator subtype_rend() const {
331 return subtype_reverse_iterator(subtype_begin());
332 }
333
334 /// This method is used to implement the type iterator (defined at the end of
335 /// the file). For derived types, this returns the types 'contained' in the
336 /// derived type.
337 Type *getContainedType(unsigned i) const {
338 assert(i < NumContainedTys && "Index out of range!")(static_cast <bool> (i < NumContainedTys && "Index out of range!"
) ? void (0) : __assert_fail ("i < NumContainedTys && \"Index out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/IR/Type.h"
, 338, __extension__ __PRETTY_FUNCTION__))
;
339 return ContainedTys[i];
340 }
341
342 /// Return the number of types in the derived type.
343 unsigned getNumContainedTypes() const { return NumContainedTys; }
344
345 //===--------------------------------------------------------------------===//
346 // Helper methods corresponding to subclass methods. This forces a cast to
347 // the specified subclass and calls its accessor. "getArrayNumElements" (for
348 // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is
349 // only intended to cover the core methods that are frequently used, helper
350 // methods should not be added here.
351
352 inline unsigned getIntegerBitWidth() const;
353
354 inline Type *getFunctionParamType(unsigned i) const;
355 inline unsigned getFunctionNumParams() const;
356 inline bool isFunctionVarArg() const;
357
358 inline StringRef getStructName() const;
359 inline unsigned getStructNumElements() const;
360 inline Type *getStructElementType(unsigned N) const;
361
362 inline uint64_t getArrayNumElements() const;
363
364 Type *getArrayElementType() const {
365 assert(getTypeID() == ArrayTyID)(static_cast <bool> (getTypeID() == ArrayTyID) ? void (
0) : __assert_fail ("getTypeID() == ArrayTyID", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/IR/Type.h"
, 365, __extension__ __PRETTY_FUNCTION__))
;
366 return ContainedTys[0];
367 }
368
369 Type *getPointerElementType() const {
370 assert(getTypeID() == PointerTyID)(static_cast <bool> (getTypeID() == PointerTyID) ? void
(0) : __assert_fail ("getTypeID() == PointerTyID", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/IR/Type.h"
, 370, __extension__ __PRETTY_FUNCTION__))
;
371 return ContainedTys[0];
372 }
373
374 /// Given vector type, change the element type,
375 /// whilst keeping the old number of elements.
376 /// For non-vectors simply returns \p EltTy.
377 inline Type *getWithNewType(Type *EltTy) const;
378
379 /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
380 /// whilst keeping the old number of lanes.
381 inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
382
383 /// Given scalar/vector integer type, returns a type with elements twice as
384 /// wide as in the original type. For vectors, preserves element count.
385 inline Type *getExtendedType() const;
386
387 /// Get the address space of this pointer or pointer vector type.
388 inline unsigned getPointerAddressSpace() const;
389
390 //===--------------------------------------------------------------------===//
391 // Static members exported by the Type class itself. Useful for getting
392 // instances of Type.
393 //
394
395 /// Return a type based on an identifier.
396 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
397
398 //===--------------------------------------------------------------------===//
399 // These are the builtin types that are always available.
400 //
401 static Type *getVoidTy(LLVMContext &C);
402 static Type *getLabelTy(LLVMContext &C);
403 static Type *getHalfTy(LLVMContext &C);
404 static Type *getBFloatTy(LLVMContext &C);
405 static Type *getFloatTy(LLVMContext &C);
406 static Type *getDoubleTy(LLVMContext &C);
407 static Type *getMetadataTy(LLVMContext &C);
408 static Type *getX86_FP80Ty(LLVMContext &C);
409 static Type *getFP128Ty(LLVMContext &C);
410 static Type *getPPC_FP128Ty(LLVMContext &C);
411 static Type *getX86_MMXTy(LLVMContext &C);
412 static Type *getX86_AMXTy(LLVMContext &C);
413 static Type *getTokenTy(LLVMContext &C);
414 static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
415 static IntegerType *getInt1Ty(LLVMContext &C);
416 static IntegerType *getInt8Ty(LLVMContext &C);
417 static IntegerType *getInt16Ty(LLVMContext &C);
418 static IntegerType *getInt32Ty(LLVMContext &C);
419 static IntegerType *getInt64Ty(LLVMContext &C);
420 static IntegerType *getInt128Ty(LLVMContext &C);
421 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
422 int noOfBits = sizeof(ScalarTy) * CHAR_BIT8;
423 if (std::is_integral<ScalarTy>::value) {
424 return (Type*) Type::getIntNTy(C, noOfBits);
425 } else if (std::is_floating_point<ScalarTy>::value) {
426 switch (noOfBits) {
427 case 32:
428 return Type::getFloatTy(C);
429 case 64:
430 return Type::getDoubleTy(C);
431 }
432 }
433 llvm_unreachable("Unsupported type in Type::getScalarTy")::llvm::llvm_unreachable_internal("Unsupported type in Type::getScalarTy"
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/IR/Type.h"
, 433)
;
434 }
435 static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S);
436
437 //===--------------------------------------------------------------------===//
438 // Convenience methods for getting pointer types with one of the above builtin
439 // types as pointee.
440 //
441 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
442 static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0);
443 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
444 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
445 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
446 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
447 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
448 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
449 static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0);
450 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
451 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
452 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
453 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
454 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
455 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
456
457 /// Return a pointer to the current type. This is equivalent to
458 /// PointerType::get(Foo, AddrSpace).
459 /// TODO: Remove this after opaque pointer transition is complete.
460 PointerType *getPointerTo(unsigned AddrSpace = 0) const;
461
462private:
463 /// Derived types like structures and arrays are sized iff all of the members
464 /// of the type are sized as well. Since asking for their size is relatively
465 /// uncommon, move this operation out-of-line.
466 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
467};
468
469// Printing of types.
470inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
471 T.print(OS);
472 return OS;
473}
474
475// allow isa<PointerType>(x) to work without DerivedTypes.h included.
476template <> struct isa_impl<PointerType, Type> {
477 static inline bool doit(const Type &Ty) {
478 return Ty.getTypeID() == Type::PointerTyID;
479 }
480};
481
482// Create wrappers for C Binding types (see CBindingWrapping.h).
483DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast<
Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return
reinterpret_cast<LLVMTypeRef>(const_cast<Type*>(
P)); } template<typename T> inline T *unwrap(LLVMTypeRef
P) { return cast<T>(unwrap(P)); }
484
485/* Specialized opaque type conversions.
486 */
487inline Type **unwrap(LLVMTypeRef* Tys) {
488 return reinterpret_cast<Type**>(Tys);
489}
490
491inline LLVMTypeRef *wrap(Type **Tys) {
492 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
493}
494
495} // end namespace llvm
496
497#endif // LLVM_IR_TYPE_H

/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <utility>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34template <typename T> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69/// * APInt supports zero-bit-width values, but operations that require bits
70/// are not defined on it (e.g. you cannot ask for the sign of a zero-bit
71/// integer). This means that operations like zero extension and logical
72/// shifts are defined, but sign extension and ashr is not. Zero bit values
73/// compare and hash equal to themselves, and countLeadingZeros returns 0.
74///
75class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
76public:
77 typedef uint64_t WordType;
78
79 /// This enum is used to hold the constants we needed for APInt.
80 enum : unsigned {
81 /// Byte size of a word.
82 APINT_WORD_SIZE = sizeof(WordType),
83 /// Bits in a word.
84 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
85 };
86
87 enum class Rounding {
88 DOWN,
89 TOWARD_ZERO,
90 UP,
91 };
92
93 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
94
95 /// \name Constructors
96 /// @{
97
98 /// Create a new APInt of numBits width, initialized as val.
99 ///
100 /// If isSigned is true then val is treated as if it were a signed value
101 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
102 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
103 /// the range of val are zero filled).
104 ///
105 /// \param numBits the bit width of the constructed APInt
106 /// \param val the initial value of the APInt
107 /// \param isSigned how to treat signedness of val
108 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
109 : BitWidth(numBits) {
110 if (isSingleWord()) {
111 U.VAL = val;
112 clearUnusedBits();
113 } else {
114 initSlowCase(val, isSigned);
115 }
116 }
117
118 /// Construct an APInt of numBits width, initialized as bigVal[].
119 ///
120 /// Note that bigVal.size() can be smaller or larger than the corresponding
121 /// bit width but any extraneous bits will be dropped.
122 ///
123 /// \param numBits the bit width of the constructed APInt
124 /// \param bigVal a sequence of words to form the initial value of the APInt
125 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
126
127 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
128 /// deprecated because this constructor is prone to ambiguity with the
129 /// APInt(unsigned, uint64_t, bool) constructor.
130 ///
131 /// If this overload is ever deleted, care should be taken to prevent calls
132 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
133 /// constructor.
134 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
135
136 /// Construct an APInt from a string representation.
137 ///
138 /// This constructor interprets the string \p str in the given radix. The
139 /// interpretation stops when the first character that is not suitable for the
140 /// radix is encountered, or the end of the string. Acceptable radix values
141 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
142 /// string to require more bits than numBits.
143 ///
144 /// \param numBits the bit width of the constructed APInt
145 /// \param str the string to be interpreted
146 /// \param radix the radix to use for the conversion
147 APInt(unsigned numBits, StringRef str, uint8_t radix);
148
149 /// Default constructor that creates an APInt with a 1-bit zero value.
150 explicit APInt() : BitWidth(1) { U.VAL = 0; }
151
152 /// Copy Constructor.
153 APInt(const APInt &that) : BitWidth(that.BitWidth) {
154 if (isSingleWord())
155 U.VAL = that.U.VAL;
156 else
157 initSlowCase(that);
158 }
159
160 /// Move Constructor.
161 APInt(APInt &&that) : BitWidth(that.BitWidth) {
162 memcpy(&U, &that.U, sizeof(U));
163 that.BitWidth = 0;
164 }
165
166 /// Destructor.
167 ~APInt() {
168 if (needsCleanup())
169 delete[] U.pVal;
170 }
171
172 /// @}
173 /// \name Value Generators
174 /// @{
175
176 /// Get the '0' value for the specified bit-width.
177 static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
178
179 /// NOTE: This is soft-deprecated. Please use `getZero()` instead.
180 static APInt getNullValue(unsigned numBits) { return getZero(numBits); }
181
182 /// Return an APInt zero bits wide.
183 static APInt getZeroWidth() { return getZero(0); }
184
185 /// Gets maximum unsigned value of APInt for specific bit width.
186 static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
187
188 /// Gets maximum signed value of APInt for a specific bit width.
189 static APInt getSignedMaxValue(unsigned numBits) {
190 APInt API = getAllOnes(numBits);
191 API.clearBit(numBits - 1);
192 return API;
193 }
194
195 /// Gets minimum unsigned value of APInt for a specific bit width.
196 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
197
198 /// Gets minimum signed value of APInt for a specific bit width.
199 static APInt getSignedMinValue(unsigned numBits) {
200 APInt API(numBits, 0);
201 API.setBit(numBits - 1);
202 return API;
203 }
204
205 /// Get the SignMask for a specific bit width.
206 ///
207 /// This is just a wrapper function of getSignedMinValue(), and it helps code
208 /// readability when we want to get a SignMask.
209 static APInt getSignMask(unsigned BitWidth) {
210 return getSignedMinValue(BitWidth);
211 }
212
213 /// Return an APInt of a specified width with all bits set.
214 static APInt getAllOnes(unsigned numBits) {
215 return APInt(numBits, WORDTYPE_MAX, true);
216 }
217
218 /// NOTE: This is soft-deprecated. Please use `getAllOnes()` instead.
219 static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); }
220
221 /// Return an APInt with exactly one bit set in the result.
222 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
223 APInt Res(numBits, 0);
224 Res.setBit(BitNo);
225 return Res;
226 }
227
228 /// Get a value with a block of bits set.
229 ///
230 /// Constructs an APInt value that has a contiguous range of bits set. The
231 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
232 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
233 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
234 /// \p hiBit.
235 ///
236 /// \param numBits the intended bit width of the result
237 /// \param loBit the index of the lowest bit set.
238 /// \param hiBit the index of the highest bit set.
239 ///
240 /// \returns An APInt value with the requested bits set.
241 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
242 APInt Res(numBits, 0);
243 Res.setBits(loBit, hiBit);
244 return Res;
245 }
246
247 /// Wrap version of getBitsSet.
248 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
249 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
250 /// with parameters (32, 28, 4), you would get 0xF000000F.
251 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
252 /// set.
253 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
254 unsigned hiBit) {
255 APInt Res(numBits, 0);
256 Res.setBitsWithWrap(loBit, hiBit);
257 return Res;
258 }
259
260 /// Constructs an APInt value that has a contiguous range of bits set. The
261 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
262 /// bits will be zero. For example, with parameters(32, 12) you would get
263 /// 0xFFFFF000.
264 ///
265 /// \param numBits the intended bit width of the result
266 /// \param loBit the index of the lowest bit to set.
267 ///
268 /// \returns An APInt value with the requested bits set.
269 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
270 APInt Res(numBits, 0);
271 Res.setBitsFrom(loBit);
272 return Res;
273 }
274
275 /// Constructs an APInt value that has the top hiBitsSet bits set.
276 ///
277 /// \param numBits the bitwidth of the result
278 /// \param hiBitsSet the number of high-order bits set in the result.
279 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
280 APInt Res(numBits, 0);
281 Res.setHighBits(hiBitsSet);
282 return Res;
283 }
284
285 /// Constructs an APInt value that has the bottom loBitsSet bits set.
286 ///
287 /// \param numBits the bitwidth of the result
288 /// \param loBitsSet the number of low-order bits set in the result.
289 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
290 APInt Res(numBits, 0);
291 Res.setLowBits(loBitsSet);
292 return Res;
293 }
294
295 /// Return a value containing V broadcasted over NewLen bits.
296 static APInt getSplat(unsigned NewLen, const APInt &V);
297
298 /// @}
299 /// \name Value Tests
300 /// @{
301
302 /// Determine if this APInt just has one word to store value.
303 ///
304 /// \returns true if the number of bits <= 64, false otherwise.
305 bool isSingleWord() const { return BitWidth
50.1
Field 'BitWidth' is > APINT_BITS_PER_WORD
50.1
Field 'BitWidth' is > APINT_BITS_PER_WORD
50.1
Field 'BitWidth' is > APINT_BITS_PER_WORD
<= APINT_BITS_PER_WORD
; }
42
Assuming field 'BitWidth' is > APINT_BITS_PER_WORD
43
Returning zero, which participates in a condition later
51
Returning zero, which participates in a condition later
306
307 /// Determine sign of this APInt.
308 ///
309 /// This tests the high bit of this APInt to determine if it is set.
310 ///
311 /// \returns true if this APInt is negative, false otherwise
312 bool isNegative() const { return (*this)[BitWidth - 1]; }
313
314 /// Determine if this APInt Value is non-negative (>= 0)
315 ///
316 /// This tests the high bit of the APInt to determine if it is unset.
317 bool isNonNegative() const { return !isNegative(); }
318
319 /// Determine if sign bit of this APInt is set.
320 ///
321 /// This tests the high bit of this APInt to determine if it is set.
322 ///
323 /// \returns true if this APInt has its sign bit set, false otherwise.
324 bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
325
326 /// Determine if sign bit of this APInt is clear.
327 ///
328 /// This tests the high bit of this APInt to determine if it is clear.
329 ///
330 /// \returns true if this APInt has its sign bit clear, false otherwise.
331 bool isSignBitClear() const { return !isSignBitSet(); }
332
333 /// Determine if this APInt Value is positive.
334 ///
335 /// This tests if the value of this APInt is positive (> 0). Note
336 /// that 0 is not a positive value.
337 ///
338 /// \returns true if this APInt is positive.
339 bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
340
341 /// Determine if this APInt Value is non-positive (<= 0).
342 ///
343 /// \returns true if this APInt is non-positive.
344 bool isNonPositive() const { return !isStrictlyPositive(); }
345
346 /// Determine if all bits are set. This is true for zero-width values.
347 bool isAllOnes() const {
348 if (BitWidth == 0)
349 return true;
350 if (isSingleWord())
351 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
352 return countTrailingOnesSlowCase() == BitWidth;
353 }
354
355 /// NOTE: This is soft-deprecated. Please use `isAllOnes()` instead.
356 bool isAllOnesValue() const { return isAllOnes(); }
357
358 /// Determine if this value is zero, i.e. all bits are clear.
359 bool isZero() const {
360 if (isSingleWord())
50
Calling 'APInt::isSingleWord'
52
Returning from 'APInt::isSingleWord'
53
Taking false branch
361 return U.VAL == 0;
362 return countLeadingZerosSlowCase() == BitWidth;
54
Assuming the condition is false
55
Returning zero, which participates in a condition later
363 }
364
365 /// NOTE: This is soft-deprecated. Please use `isZero()` instead.
366 bool isNullValue() const { return isZero(); }
367
368 /// Determine if this is a value of 1.
369 ///
370 /// This checks to see if the value of this APInt is one.
371 bool isOne() const {
372 if (isSingleWord())
41
Calling 'APInt::isSingleWord'
44
Returning from 'APInt::isSingleWord'
45
Taking false branch
373 return U.VAL == 1;
374 return countLeadingZerosSlowCase() == BitWidth - 1;
46
Assuming the condition is false
47
Returning zero, which participates in a condition later
375 }
376
377 /// NOTE: This is soft-deprecated. Please use `isOne()` instead.
378 bool isOneValue() const { return isOne(); }
379
380 /// Determine if this is the largest unsigned value.
381 ///
382 /// This checks to see if the value of this APInt is the maximum unsigned
383 /// value for the APInt's bit width.
384 bool isMaxValue() const { return isAllOnes(); }
385
386 /// Determine if this is the largest signed value.
387 ///
388 /// This checks to see if the value of this APInt is the maximum signed
389 /// value for the APInt's bit width.
390 bool isMaxSignedValue() const {
391 if (isSingleWord()) {
392 assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed"
) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 392, __extension__ __PRETTY_FUNCTION__))
;
393 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
394 }
395 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
396 }
397
398 /// Determine if this is the smallest unsigned value.
399 ///
400 /// This checks to see if the value of this APInt is the minimum unsigned
401 /// value for the APInt's bit width.
402 bool isMinValue() const { return isZero(); }
403
404 /// Determine if this is the smallest signed value.
405 ///
406 /// This checks to see if the value of this APInt is the minimum signed
407 /// value for the APInt's bit width.
408 bool isMinSignedValue() const {
409 if (isSingleWord()) {
410 assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed"
) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 410, __extension__ __PRETTY_FUNCTION__))
;
411 return U.VAL == (WordType(1) << (BitWidth - 1));
412 }
413 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
414 }
415
416 /// Check if this APInt has an N-bits unsigned integer value.
417 bool isIntN(unsigned N) const { return getActiveBits() <= N; }
418
419 /// Check if this APInt has an N-bits signed integer value.
420 bool isSignedIntN(unsigned N) const { return getMinSignedBits() <= N; }
421
422 /// Check if this APInt's value is a power of two greater than zero.
423 ///
424 /// \returns true if the argument APInt value is a power of two > 0.
425 bool isPowerOf2() const {
426 if (isSingleWord()) {
427 assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed"
) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 427, __extension__ __PRETTY_FUNCTION__))
;
428 return isPowerOf2_64(U.VAL);
429 }
430 return countPopulationSlowCase() == 1;
431 }
432
433 /// Check if this APInt's negated value is a power of two greater than zero.
434 bool isNegatedPowerOf2() const {
435 assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed"
) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 435, __extension__ __PRETTY_FUNCTION__))
;
436 if (isNonNegative())
437 return false;
438 // NegatedPowerOf2 - shifted mask in the top bits.
439 unsigned LO = countLeadingOnes();
440 unsigned TZ = countTrailingZeros();
441 return (LO + TZ) == BitWidth;
442 }
443
444 /// Check if the APInt's value is returned by getSignMask.
445 ///
446 /// \returns true if this is the value returned by getSignMask.
447 bool isSignMask() const { return isMinSignedValue(); }
448
449 /// Convert APInt to a boolean value.
450 ///
451 /// This converts the APInt to a boolean value as a test against zero.
452 bool getBoolValue() const { return !isZero(); }
453
454 /// If this value is smaller than the specified limit, return it, otherwise
455 /// return the limit value. This causes the value to saturate to the limit.
456 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
457 return ugt(Limit) ? Limit : getZExtValue();
458 }
459
460 /// Check if the APInt consists of a repeated bit pattern.
461 ///
462 /// e.g. 0x01010101 satisfies isSplat(8).
463 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
464 /// width without remainder.
465 bool isSplat(unsigned SplatSizeInBits) const;
466
467 /// \returns true if this APInt value is a sequence of \param numBits ones
468 /// starting at the least significant bit with the remainder zero.
469 bool isMask(unsigned numBits) const {
470 assert(numBits != 0 && "numBits must be non-zero")(static_cast <bool> (numBits != 0 && "numBits must be non-zero"
) ? void (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 470, __extension__ __PRETTY_FUNCTION__))
;
471 assert(numBits <= BitWidth && "numBits out of range")(static_cast <bool> (numBits <= BitWidth && "numBits out of range"
) ? void (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 471, __extension__ __PRETTY_FUNCTION__))
;
472 if (isSingleWord())
473 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
474 unsigned Ones = countTrailingOnesSlowCase();
475 return (numBits == Ones) &&
476 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
477 }
478
479 /// \returns true if this APInt is a non-empty sequence of ones starting at
480 /// the least significant bit with the remainder zero.
481 /// Ex. isMask(0x0000FFFFU) == true.
482 bool isMask() const {
483 if (isSingleWord())
484 return isMask_64(U.VAL);
485 unsigned Ones = countTrailingOnesSlowCase();
486 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
487 }
488
489 /// Return true if this APInt value contains a sequence of ones with
490 /// the remainder zero.
491 bool isShiftedMask() const {
492 if (isSingleWord())
493 return isShiftedMask_64(U.VAL);
494 unsigned Ones = countPopulationSlowCase();
495 unsigned LeadZ = countLeadingZerosSlowCase();
496 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
497 }
498
499 /// Compute an APInt containing numBits highbits from this APInt.
500 ///
501 /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
502 /// bits and right shift to the least significant bit.
503 ///
504 /// \returns the high "numBits" bits of this APInt.
505 APInt getHiBits(unsigned numBits) const;
506
507 /// Compute an APInt containing numBits lowbits from this APInt.
508 ///
509 /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
510 /// bits.
511 ///
512 /// \returns the low "numBits" bits of this APInt.
513 APInt getLoBits(unsigned numBits) const;
514
515 /// Determine if two APInts have the same value, after zero-extending
516 /// one of them (if needed!) to ensure that the bit-widths match.
517 static bool isSameValue(const APInt &I1, const APInt &I2) {
518 if (I1.getBitWidth() == I2.getBitWidth())
519 return I1 == I2;
520
521 if (I1.getBitWidth() > I2.getBitWidth())
522 return I1 == I2.zext(I1.getBitWidth());
523
524 return I1.zext(I2.getBitWidth()) == I2;
525 }
526
527 /// Overload to compute a hash_code for an APInt value.
528 friend hash_code hash_value(const APInt &Arg);
529
530 /// This function returns a pointer to the internal storage of the APInt.
531 /// This is useful for writing out the APInt in binary form without any
532 /// conversions.
533 const uint64_t *getRawData() const {
534 if (isSingleWord())
535 return &U.VAL;
536 return &U.pVal[0];
537 }
538
539 /// @}
540 /// \name Unary Operators
541 /// @{
542
543 /// Postfix increment operator. Increment *this by 1.
544 ///
545 /// \returns a new APInt value representing the original value of *this.
546 APInt operator++(int) {
547 APInt API(*this);
548 ++(*this);
549 return API;
550 }
551
552 /// Prefix increment operator.
553 ///
554 /// \returns *this incremented by one
555 APInt &operator++();
556
557 /// Postfix decrement operator. Decrement *this by 1.
558 ///
559 /// \returns a new APInt value representing the original value of *this.
560 APInt operator--(int) {
561 APInt API(*this);
562 --(*this);
563 return API;
564 }
565
566 /// Prefix decrement operator.
567 ///
568 /// \returns *this decremented by one.
569 APInt &operator--();
570
571 /// Logical negation operation on this APInt returns true if zero, like normal
572 /// integers.
573 bool operator!() const { return isZero(); }
574
575 /// @}
576 /// \name Assignment Operators
577 /// @{
578
579 /// Copy assignment operator.
580 ///
581 /// \returns *this after assignment of RHS.
582 APInt &operator=(const APInt &RHS) {
583 // The common case (both source or dest being inline) doesn't require
584 // allocation or deallocation.
585 if (isSingleWord() && RHS.isSingleWord()) {
586 U.VAL = RHS.U.VAL;
587 BitWidth = RHS.BitWidth;
588 return *this;
589 }
590
591 assignSlowCase(RHS);
592 return *this;
593 }
594
595 /// Move assignment operator.
596 APInt &operator=(APInt &&that) {
597#ifdef EXPENSIVE_CHECKS
598 // Some std::shuffle implementations still do self-assignment.
599 if (this == &that)
600 return *this;
601#endif
602 assert(this != &that && "Self-move not supported")(static_cast <bool> (this != &that && "Self-move not supported"
) ? void (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 602, __extension__ __PRETTY_FUNCTION__))
;
603 if (!isSingleWord())
604 delete[] U.pVal;
605
606 // Use memcpy so that type based alias analysis sees both VAL and pVal
607 // as modified.
608 memcpy(&U, &that.U, sizeof(U));
609
610 BitWidth = that.BitWidth;
611 that.BitWidth = 0;
612 return *this;
613 }
614
615 /// Assignment operator.
616 ///
617 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
618 /// the bit width, the excess bits are truncated. If the bit width is larger
619 /// than 64, the value is zero filled in the unspecified high order bits.
620 ///
621 /// \returns *this after assignment of RHS value.
622 APInt &operator=(uint64_t RHS) {
623 if (isSingleWord()) {
624 U.VAL = RHS;
625 return clearUnusedBits();
626 }
627 U.pVal[0] = RHS;
628 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
629 return *this;
630 }
631
632 /// Bitwise AND assignment operator.
633 ///
634 /// Performs a bitwise AND operation on this APInt and RHS. The result is
635 /// assigned to *this.
636 ///
637 /// \returns *this after ANDing with RHS.
638 APInt &operator&=(const APInt &RHS) {
639 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 639, __extension__ __PRETTY_FUNCTION__))
;
640 if (isSingleWord())
641 U.VAL &= RHS.U.VAL;
642 else
643 andAssignSlowCase(RHS);
644 return *this;
645 }
646
647 /// Bitwise AND assignment operator.
648 ///
649 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
650 /// logically zero-extended or truncated to match the bit-width of
651 /// the LHS.
652 APInt &operator&=(uint64_t RHS) {
653 if (isSingleWord()) {
654 U.VAL &= RHS;
655 return *this;
656 }
657 U.pVal[0] &= RHS;
658 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
659 return *this;
660 }
661
662 /// Bitwise OR assignment operator.
663 ///
664 /// Performs a bitwise OR operation on this APInt and RHS. The result is
665 /// assigned *this;
666 ///
667 /// \returns *this after ORing with RHS.
668 APInt &operator|=(const APInt &RHS) {
669 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 669, __extension__ __PRETTY_FUNCTION__))
;
670 if (isSingleWord())
671 U.VAL |= RHS.U.VAL;
672 else
673 orAssignSlowCase(RHS);
674 return *this;
675 }
676
677 /// Bitwise OR assignment operator.
678 ///
679 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
680 /// logically zero-extended or truncated to match the bit-width of
681 /// the LHS.
682 APInt &operator|=(uint64_t RHS) {
683 if (isSingleWord()) {
684 U.VAL |= RHS;
685 return clearUnusedBits();
686 }
687 U.pVal[0] |= RHS;
688 return *this;
689 }
690
691 /// Bitwise XOR assignment operator.
692 ///
693 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
694 /// assigned to *this.
695 ///
696 /// \returns *this after XORing with RHS.
697 APInt &operator^=(const APInt &RHS) {
698 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 698, __extension__ __PRETTY_FUNCTION__))
;
699 if (isSingleWord())
700 U.VAL ^= RHS.U.VAL;
701 else
702 xorAssignSlowCase(RHS);
703 return *this;
704 }
705
706 /// Bitwise XOR assignment operator.
707 ///
708 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
709 /// logically zero-extended or truncated to match the bit-width of
710 /// the LHS.
711 APInt &operator^=(uint64_t RHS) {
712 if (isSingleWord()) {
713 U.VAL ^= RHS;
714 return clearUnusedBits();
715 }
716 U.pVal[0] ^= RHS;
717 return *this;
718 }
719
720 /// Multiplication assignment operator.
721 ///
722 /// Multiplies this APInt by RHS and assigns the result to *this.
723 ///
724 /// \returns *this
725 APInt &operator*=(const APInt &RHS);
726 APInt &operator*=(uint64_t RHS);
727
728 /// Addition assignment operator.
729 ///
730 /// Adds RHS to *this and assigns the result to *this.
731 ///
732 /// \returns *this
733 APInt &operator+=(const APInt &RHS);
734 APInt &operator+=(uint64_t RHS);
735
736 /// Subtraction assignment operator.
737 ///
738 /// Subtracts RHS from *this and assigns the result to *this.
739 ///
740 /// \returns *this
741 APInt &operator-=(const APInt &RHS);
742 APInt &operator-=(uint64_t RHS);
743
744 /// Left-shift assignment function.
745 ///
746 /// Shifts *this left by shiftAmt and assigns the result to *this.
747 ///
748 /// \returns *this after shifting left by ShiftAmt
749 APInt &operator<<=(unsigned ShiftAmt) {
750 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 750, __extension__ __PRETTY_FUNCTION__))
;
751 if (isSingleWord()) {
752 if (ShiftAmt == BitWidth)
753 U.VAL = 0;
754 else
755 U.VAL <<= ShiftAmt;
756 return clearUnusedBits();
757 }
758 shlSlowCase(ShiftAmt);
759 return *this;
760 }
761
762 /// Left-shift assignment function.
763 ///
764 /// Shifts *this left by shiftAmt and assigns the result to *this.
765 ///
766 /// \returns *this after shifting left by ShiftAmt
767 APInt &operator<<=(const APInt &ShiftAmt);
768
769 /// @}
770 /// \name Binary Operators
771 /// @{
772
773 /// Multiplication operator.
774 ///
775 /// Multiplies this APInt by RHS and returns the result.
776 APInt operator*(const APInt &RHS) const;
777
778 /// Left logical shift operator.
779 ///
780 /// Shifts this APInt left by \p Bits and returns the result.
781 APInt operator<<(unsigned Bits) const { return shl(Bits); }
782
783 /// Left logical shift operator.
784 ///
785 /// Shifts this APInt left by \p Bits and returns the result.
786 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
787
788 /// Arithmetic right-shift function.
789 ///
790 /// Arithmetic right-shift this APInt by shiftAmt.
791 APInt ashr(unsigned ShiftAmt) const {
792 APInt R(*this);
793 R.ashrInPlace(ShiftAmt);
794 return R;
795 }
796
797 /// Arithmetic right-shift this APInt by ShiftAmt in place.
798 void ashrInPlace(unsigned ShiftAmt) {
799 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 799, __extension__ __PRETTY_FUNCTION__))
;
800 if (isSingleWord()) {
801 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
802 if (ShiftAmt == BitWidth)
803 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
804 else
805 U.VAL = SExtVAL >> ShiftAmt;
806 clearUnusedBits();
807 return;
808 }
809 ashrSlowCase(ShiftAmt);
810 }
811
812 /// Logical right-shift function.
813 ///
814 /// Logical right-shift this APInt by shiftAmt.
815 APInt lshr(unsigned shiftAmt) const {
816 APInt R(*this);
817 R.lshrInPlace(shiftAmt);
818 return R;
819 }
820
821 /// Logical right-shift this APInt by ShiftAmt in place.
822 void lshrInPlace(unsigned ShiftAmt) {
823 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 823, __extension__ __PRETTY_FUNCTION__))
;
824 if (isSingleWord()) {
825 if (ShiftAmt == BitWidth)
826 U.VAL = 0;
827 else
828 U.VAL >>= ShiftAmt;
829 return;
830 }
831 lshrSlowCase(ShiftAmt);
832 }
833
834 /// Left-shift function.
835 ///
836 /// Left-shift this APInt by shiftAmt.
837 APInt shl(unsigned shiftAmt) const {
838 APInt R(*this);
839 R <<= shiftAmt;
840 return R;
841 }
842
843 /// Rotate left by rotateAmt.
844 APInt rotl(unsigned rotateAmt) const;
845
846 /// Rotate right by rotateAmt.
847 APInt rotr(unsigned rotateAmt) const;
848
849 /// Arithmetic right-shift function.
850 ///
851 /// Arithmetic right-shift this APInt by shiftAmt.
852 APInt ashr(const APInt &ShiftAmt) const {
853 APInt R(*this);
854 R.ashrInPlace(ShiftAmt);
855 return R;
856 }
857
858 /// Arithmetic right-shift this APInt by shiftAmt in place.
859 void ashrInPlace(const APInt &shiftAmt);
860
861 /// Logical right-shift function.
862 ///
863 /// Logical right-shift this APInt by shiftAmt.
864 APInt lshr(const APInt &ShiftAmt) const {
865 APInt R(*this);
866 R.lshrInPlace(ShiftAmt);
867 return R;
868 }
869
870 /// Logical right-shift this APInt by ShiftAmt in place.
871 void lshrInPlace(const APInt &ShiftAmt);
872
873 /// Left-shift function.
874 ///
875 /// Left-shift this APInt by shiftAmt.
876 APInt shl(const APInt &ShiftAmt) const {
877 APInt R(*this);
878 R <<= ShiftAmt;
879 return R;
880 }
881
882 /// Rotate left by rotateAmt.
883 APInt rotl(const APInt &rotateAmt) const;
884
885 /// Rotate right by rotateAmt.
886 APInt rotr(const APInt &rotateAmt) const;
887
888 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
889 /// equivalent to:
890 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
891 APInt concat(const APInt &NewLSB) const {
892 /// If the result will be small, then both the merged values are small.
893 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
894 if (NewWidth <= APINT_BITS_PER_WORD)
895 return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
896 return concatSlowCase(NewLSB);
897 }
898
899 /// Unsigned division operation.
900 ///
901 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
902 /// RHS are treated as unsigned quantities for purposes of this division.
903 ///
904 /// \returns a new APInt value containing the division result, rounded towards
905 /// zero.
906 APInt udiv(const APInt &RHS) const;
907 APInt udiv(uint64_t RHS) const;
908
909 /// Signed division function for APInt.
910 ///
911 /// Signed divide this APInt by APInt RHS.
912 ///
913 /// The result is rounded towards zero.
914 APInt sdiv(const APInt &RHS) const;
915 APInt sdiv(int64_t RHS) const;
916
917 /// Unsigned remainder operation.
918 ///
919 /// Perform an unsigned remainder operation on this APInt with RHS being the
920 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
921 /// of this operation. Note that this is a true remainder operation and not a
922 /// modulo operation because the sign follows the sign of the dividend which
923 /// is *this.
924 ///
925 /// \returns a new APInt value containing the remainder result
926 APInt urem(const APInt &RHS) const;
927 uint64_t urem(uint64_t RHS) const;
928
929 /// Function for signed remainder operation.
930 ///
931 /// Signed remainder operation on APInt.
932 APInt srem(const APInt &RHS) const;
933 int64_t srem(int64_t RHS) const;
934
935 /// Dual division/remainder interface.
936 ///
937 /// Sometimes it is convenient to divide two APInt values and obtain both the
938 /// quotient and remainder. This function does both operations in the same
939 /// computation making it a little more efficient. The pair of input arguments
940 /// may overlap with the pair of output arguments. It is safe to call
941 /// udivrem(X, Y, X, Y), for example.
942 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
943 APInt &Remainder);
944 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
945 uint64_t &Remainder);
946
947 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
948 APInt &Remainder);
949 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
950 int64_t &Remainder);
951
952 // Operations that return overflow indicators.
953 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
954 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
955 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
956 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
957 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
958 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
959 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
960 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
961 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
962
963 // Operations that saturate
964 APInt sadd_sat(const APInt &RHS) const;
965 APInt uadd_sat(const APInt &RHS) const;
966 APInt ssub_sat(const APInt &RHS) const;
967 APInt usub_sat(const APInt &RHS) const;
968 APInt smul_sat(const APInt &RHS) const;
969 APInt umul_sat(const APInt &RHS) const;
970 APInt sshl_sat(const APInt &RHS) const;
971 APInt ushl_sat(const APInt &RHS) const;
972
973 /// Array-indexing support.
974 ///
975 /// \returns the bit value at bitPosition
976 bool operator[](unsigned bitPosition) const {
977 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")(static_cast <bool> (bitPosition < getBitWidth() &&
"Bit position out of bounds!") ? void (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 977, __extension__ __PRETTY_FUNCTION__))
;
978 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
979 }
980
981 /// @}
982 /// \name Comparison Operators
983 /// @{
984
985 /// Equality operator.
986 ///
987 /// Compares this APInt with RHS for the validity of the equality
988 /// relationship.
989 bool operator==(const APInt &RHS) const {
990 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Comparison requires equal bit widths") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 990, __extension__ __PRETTY_FUNCTION__))
;
991 if (isSingleWord())
992 return U.VAL == RHS.U.VAL;
993 return equalSlowCase(RHS);
994 }
995
996 /// Equality operator.
997 ///
998 /// Compares this APInt with a uint64_t for the validity of the equality
999 /// relationship.
1000 ///
1001 /// \returns true if *this == Val
1002 bool operator==(uint64_t Val) const {
1003 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1004 }
1005
1006 /// Equality comparison.
1007 ///
1008 /// Compares this APInt with RHS for the validity of the equality
1009 /// relationship.
1010 ///
1011 /// \returns true if *this == Val
1012 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1013
1014 /// Inequality operator.
1015 ///
1016 /// Compares this APInt with RHS for the validity of the inequality
1017 /// relationship.
1018 ///
1019 /// \returns true if *this != Val
1020 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1021
1022 /// Inequality operator.
1023 ///
1024 /// Compares this APInt with a uint64_t for the validity of the inequality
1025 /// relationship.
1026 ///
1027 /// \returns true if *this != Val
1028 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1029
1030 /// Inequality comparison
1031 ///
1032 /// Compares this APInt with RHS for the validity of the inequality
1033 /// relationship.
1034 ///
1035 /// \returns true if *this != Val
1036 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1037
1038 /// Unsigned less than comparison
1039 ///
1040 /// Regards both *this and RHS as unsigned quantities and compares them for
1041 /// the validity of the less-than relationship.
1042 ///
1043 /// \returns true if *this < RHS when both are considered unsigned.
1044 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1045
1046 /// Unsigned less than comparison
1047 ///
1048 /// Regards both *this as an unsigned quantity and compares it with RHS for
1049 /// the validity of the less-than relationship.
1050 ///
1051 /// \returns true if *this < RHS when considered unsigned.
1052 bool ult(uint64_t RHS) const {
1053 // Only need to check active bits if not a single word.
1054 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1055 }
1056
1057 /// Signed less than comparison
1058 ///
1059 /// Regards both *this and RHS as signed quantities and compares them for
1060 /// validity of the less-than relationship.
1061 ///
1062 /// \returns true if *this < RHS when both are considered signed.
1063 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1064
1065 /// Signed less than comparison
1066 ///
1067 /// Regards both *this as a signed quantity and compares it with RHS for
1068 /// the validity of the less-than relationship.
1069 ///
1070 /// \returns true if *this < RHS when considered signed.
1071 bool slt(int64_t RHS) const {
1072 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1073 : getSExtValue() < RHS;
1074 }
1075
1076 /// Unsigned less or equal comparison
1077 ///
1078 /// Regards both *this and RHS as unsigned quantities and compares them for
1079 /// validity of the less-or-equal relationship.
1080 ///
1081 /// \returns true if *this <= RHS when both are considered unsigned.
1082 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1083
1084 /// Unsigned less or equal comparison
1085 ///
1086 /// Regards both *this as an unsigned quantity and compares it with RHS for
1087 /// the validity of the less-or-equal relationship.
1088 ///
1089 /// \returns true if *this <= RHS when considered unsigned.
1090 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1091
1092 /// Signed less or equal comparison
1093 ///
1094 /// Regards both *this and RHS as signed quantities and compares them for
1095 /// validity of the less-or-equal relationship.
1096 ///
1097 /// \returns true if *this <= RHS when both are considered signed.
1098 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1099
1100 /// Signed less or equal comparison
1101 ///
1102 /// Regards both *this as a signed quantity and compares it with RHS for the
1103 /// validity of the less-or-equal relationship.
1104 ///
1105 /// \returns true if *this <= RHS when considered signed.
1106 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1107
1108 /// Unsigned greater than comparison
1109 ///
1110 /// Regards both *this and RHS as unsigned quantities and compares them for
1111 /// the validity of the greater-than relationship.
1112 ///
1113 /// \returns true if *this > RHS when both are considered unsigned.
1114 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1115
1116 /// Unsigned greater than comparison
1117 ///
1118 /// Regards both *this as an unsigned quantity and compares it with RHS for
1119 /// the validity of the greater-than relationship.
1120 ///
1121 /// \returns true if *this > RHS when considered unsigned.
1122 bool ugt(uint64_t RHS) const {
1123 // Only need to check active bits if not a single word.
1124 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1125 }
1126
1127 /// Signed greater than comparison
1128 ///
1129 /// Regards both *this and RHS as signed quantities and compares them for the
1130 /// validity of the greater-than relationship.
1131 ///
1132 /// \returns true if *this > RHS when both are considered signed.
1133 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1134
1135 /// Signed greater than comparison
1136 ///
1137 /// Regards both *this as a signed quantity and compares it with RHS for
1138 /// the validity of the greater-than relationship.
1139 ///
1140 /// \returns true if *this > RHS when considered signed.
1141 bool sgt(int64_t RHS) const {
1142 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1143 : getSExtValue() > RHS;
1144 }
1145
1146 /// Unsigned greater or equal comparison
1147 ///
1148 /// Regards both *this and RHS as unsigned quantities and compares them for
1149 /// validity of the greater-or-equal relationship.
1150 ///
1151 /// \returns true if *this >= RHS when both are considered unsigned.
1152 bool uge(const APInt &RHS) const { return !ult(RHS); }
1153
1154 /// Unsigned greater or equal comparison
1155 ///
1156 /// Regards both *this as an unsigned quantity and compares it with RHS for
1157 /// the validity of the greater-or-equal relationship.
1158 ///
1159 /// \returns true if *this >= RHS when considered unsigned.
1160 bool uge(uint64_t RHS) const { return !ult(RHS); }
1161
1162 /// Signed greater or equal comparison
1163 ///
1164 /// Regards both *this and RHS as signed quantities and compares them for
1165 /// validity of the greater-or-equal relationship.
1166 ///
1167 /// \returns true if *this >= RHS when both are considered signed.
1168 bool sge(const APInt &RHS) const { return !slt(RHS); }
1169
1170 /// Signed greater or equal comparison
1171 ///
1172 /// Regards both *this as a signed quantity and compares it with RHS for
1173 /// the validity of the greater-or-equal relationship.
1174 ///
1175 /// \returns true if *this >= RHS when considered signed.
1176 bool sge(int64_t RHS) const { return !slt(RHS); }
1177
1178 /// This operation tests if there are any pairs of corresponding bits
1179 /// between this APInt and RHS that are both set.
1180 bool intersects(const APInt &RHS) const {
1181 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1181, __extension__ __PRETTY_FUNCTION__))
;
1182 if (isSingleWord())
1183 return (U.VAL & RHS.U.VAL) != 0;
1184 return intersectsSlowCase(RHS);
1185 }
1186
1187 /// This operation checks that all bits set in this APInt are also set in RHS.
1188 bool isSubsetOf(const APInt &RHS) const {
1189 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1189, __extension__ __PRETTY_FUNCTION__))
;
1190 if (isSingleWord())
1191 return (U.VAL & ~RHS.U.VAL) == 0;
1192 return isSubsetOfSlowCase(RHS);
1193 }
1194
1195 /// @}
1196 /// \name Resizing Operators
1197 /// @{
1198
1199 /// Truncate to new width.
1200 ///
1201 /// Truncate the APInt to a specified width. It is an error to specify a width
1202 /// that is greater than or equal to the current width.
1203 APInt trunc(unsigned width) const;
1204
1205 /// Truncate to new width with unsigned saturation.
1206 ///
1207 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1208 /// the new bitwidth, then return truncated APInt. Else, return max value.
1209 APInt truncUSat(unsigned width) const;
1210
1211 /// Truncate to new width with signed saturation.
1212 ///
1213 /// If this APInt, treated as signed integer, can be losslessly truncated to
1214 /// the new bitwidth, then return truncated APInt. Else, return either
1215 /// signed min value if the APInt was negative, or signed max value.
1216 APInt truncSSat(unsigned width) const;
1217
1218 /// Sign extend to a new width.
1219 ///
1220 /// This operation sign extends the APInt to a new width. If the high order
1221 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1222 /// It is an error to specify a width that is less than or equal to the
1223 /// current width.
1224 APInt sext(unsigned width) const;
1225
1226 /// Zero extend to a new width.
1227 ///
1228 /// This operation zero extends the APInt to a new width. The high order bits
1229 /// are filled with 0 bits. It is an error to specify a width that is less
1230 /// than or equal to the current width.
1231 APInt zext(unsigned width) const;
1232
1233 /// Sign extend or truncate to width
1234 ///
1235 /// Make this APInt have the bit width given by \p width. The value is sign
1236 /// extended, truncated, or left alone to make it that width.
1237 APInt sextOrTrunc(unsigned width) const;
1238
1239 /// Zero extend or truncate to width
1240 ///
1241 /// Make this APInt have the bit width given by \p width. The value is zero
1242 /// extended, truncated, or left alone to make it that width.
1243 APInt zextOrTrunc(unsigned width) const;
1244
1245 /// Truncate to width
1246 ///
1247 /// Make this APInt have the bit width given by \p width. The value is
1248 /// truncated or left alone to make it that width.
1249 APInt truncOrSelf(unsigned width) const;
1250
1251 /// Sign extend or truncate to width
1252 ///
1253 /// Make this APInt have the bit width given by \p width. The value is sign
1254 /// extended, or left alone to make it that width.
1255 APInt sextOrSelf(unsigned width) const;
1256
1257 /// Zero extend or truncate to width
1258 ///
1259 /// Make this APInt have the bit width given by \p width. The value is zero
1260 /// extended, or left alone to make it that width.
1261 APInt zextOrSelf(unsigned width) const;
1262
1263 /// @}
1264 /// \name Bit Manipulation Operators
1265 /// @{
1266
1267 /// Set every bit to 1.
1268 void setAllBits() {
1269 if (isSingleWord())
1270 U.VAL = WORDTYPE_MAX;
1271 else
1272 // Set all the bits in all the words.
1273 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1274 // Clear the unused ones
1275 clearUnusedBits();
1276 }
1277
1278 /// Set the given bit to 1 whose position is given as "bitPosition".
1279 void setBit(unsigned BitPosition) {
1280 assert(BitPosition < BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition < BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1280, __extension__ __PRETTY_FUNCTION__))
;
1281 WordType Mask = maskBit(BitPosition);
1282 if (isSingleWord())
1283 U.VAL |= Mask;
1284 else
1285 U.pVal[whichWord(BitPosition)] |= Mask;
1286 }
1287
1288 /// Set the sign bit to 1.
1289 void setSignBit() { setBit(BitWidth - 1); }
1290
1291 /// Set a given bit to a given value.
1292 void setBitVal(unsigned BitPosition, bool BitValue) {
1293 if (BitValue)
1294 setBit(BitPosition);
1295 else
1296 clearBit(BitPosition);
1297 }
1298
1299 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1300 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1301 /// setBits when \p loBit < \p hiBit.
1302 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1303 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1304 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1304, __extension__ __PRETTY_FUNCTION__))
;
1305 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1305, __extension__ __PRETTY_FUNCTION__))
;
1306 if (loBit < hiBit) {
1307 setBits(loBit, hiBit);
1308 return;
1309 }
1310 setLowBits(hiBit);
1311 setHighBits(BitWidth - loBit);
1312 }
1313
1314 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1315 /// This function handles case when \p loBit <= \p hiBit.
1316 void setBits(unsigned loBit, unsigned hiBit) {
1317 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1317, __extension__ __PRETTY_FUNCTION__))
;
1318 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1318, __extension__ __PRETTY_FUNCTION__))
;
1319 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1319, __extension__ __PRETTY_FUNCTION__))
;
1320 if (loBit == hiBit)
1321 return;
1322 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1323 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1324 mask <<= loBit;
1325 if (isSingleWord())
1326 U.VAL |= mask;
1327 else
1328 U.pVal[0] |= mask;
1329 } else {
1330 setBitsSlowCase(loBit, hiBit);
1331 }
1332 }
1333
1334 /// Set the top bits starting from loBit.
1335 void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1336
1337 /// Set the bottom loBits bits.
1338 void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1339
1340 /// Set the top hiBits bits.
1341 void setHighBits(unsigned hiBits) {
1342 return setBits(BitWidth - hiBits, BitWidth);
1343 }
1344
1345 /// Set every bit to 0.
1346 void clearAllBits() {
1347 if (isSingleWord())
1348 U.VAL = 0;
1349 else
1350 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1351 }
1352
1353 /// Set a given bit to 0.
1354 ///
1355 /// Set the given bit to 0 whose position is given as "bitPosition".
1356 void clearBit(unsigned BitPosition) {
1357 assert(BitPosition < BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition < BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1357, __extension__ __PRETTY_FUNCTION__))
;
1358 WordType Mask = ~maskBit(BitPosition);
1359 if (isSingleWord())
1360 U.VAL &= Mask;
1361 else
1362 U.pVal[whichWord(BitPosition)] &= Mask;
1363 }
1364
1365 /// Set bottom loBits bits to 0.
1366 void clearLowBits(unsigned loBits) {
1367 assert(loBits <= BitWidth && "More bits than bitwidth")(static_cast <bool> (loBits <= BitWidth && "More bits than bitwidth"
) ? void (0) : __assert_fail ("loBits <= BitWidth && \"More bits than bitwidth\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1367, __extension__ __PRETTY_FUNCTION__))
;
1368 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1369 *this &= Keep;
1370 }
1371
1372 /// Set the sign bit to 0.
1373 void clearSignBit() { clearBit(BitWidth - 1); }
1374
1375 /// Toggle every bit to its opposite value.
1376 void flipAllBits() {
1377 if (isSingleWord()) {
1378 U.VAL ^= WORDTYPE_MAX;
1379 clearUnusedBits();
1380 } else {
1381 flipAllBitsSlowCase();
1382 }
1383 }
1384
1385 /// Toggles a given bit to its opposite value.
1386 ///
1387 /// Toggle a given bit to its opposite value whose position is given
1388 /// as "bitPosition".
1389 void flipBit(unsigned bitPosition);
1390
1391 /// Negate this APInt in place.
1392 void negate() {
1393 flipAllBits();
1394 ++(*this);
1395 }
1396
1397 /// Insert the bits from a smaller APInt starting at bitPosition.
1398 void insertBits(const APInt &SubBits, unsigned bitPosition);
1399 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1400
1401 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1402 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1403 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1404
1405 /// @}
1406 /// \name Value Characterization Functions
1407 /// @{
1408
1409 /// Return the number of bits in the APInt.
1410 unsigned getBitWidth() const { return BitWidth; }
1411
1412 /// Get the number of words.
1413 ///
1414 /// Here one word's bitwidth equals to that of uint64_t.
1415 ///
1416 /// \returns the number of words to hold the integer value of this APInt.
1417 unsigned getNumWords() const { return getNumWords(BitWidth); }
1418
1419 /// Get the number of words.
1420 ///
1421 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1422 ///
1423 /// \returns the number of words to hold the integer value with a given bit
1424 /// width.
1425 static unsigned getNumWords(unsigned BitWidth) {
1426 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1427 }
1428
1429 /// Compute the number of active bits in the value
1430 ///
1431 /// This function returns the number of active bits which is defined as the
1432 /// bit width minus the number of leading zeros. This is used in several
1433 /// computations to see how "wide" the value is.
1434 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1435
1436 /// Compute the number of active words in the value of this APInt.
1437 ///
1438 /// This is used in conjunction with getActiveData to extract the raw value of
1439 /// the APInt.
1440 unsigned getActiveWords() const {
1441 unsigned numActiveBits = getActiveBits();
1442 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1443 }
1444
1445 /// Get the minimum bit size for this signed APInt
1446 ///
1447 /// Computes the minimum bit width for this APInt while considering it to be a
1448 /// signed (and probably negative) value. If the value is not negative, this
1449 /// function returns the same value as getActiveBits()+1. Otherwise, it
1450 /// returns the smallest bit width that will retain the negative value. For
1451 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1452 /// for -1, this function will always return 1.
1453 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
1454
1455 /// Get zero extended value
1456 ///
1457 /// This method attempts to return the value of this APInt as a zero extended
1458 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1459 /// uint64_t. Otherwise an assertion will result.
1460 uint64_t getZExtValue() const {
1461 if (isSingleWord()) {
1462 assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed"
) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1462, __extension__ __PRETTY_FUNCTION__))
;
1463 return U.VAL;
1464 }
1465 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")(static_cast <bool> (getActiveBits() <= 64 &&
"Too many bits for uint64_t") ? void (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1465, __extension__ __PRETTY_FUNCTION__))
;
1466 return U.pVal[0];
1467 }
1468
1469 /// Get sign extended value
1470 ///
1471 /// This method attempts to return the value of this APInt as a sign extended
1472 /// int64_t. The bit width must be <= 64 or the value must fit within an
1473 /// int64_t. Otherwise an assertion will result.
1474 int64_t getSExtValue() const {
1475 if (isSingleWord())
1476 return SignExtend64(U.VAL, BitWidth);
1477 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")(static_cast <bool> (getMinSignedBits() <= 64 &&
"Too many bits for int64_t") ? void (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include/llvm/ADT/APInt.h"
, 1477, __extension__ __PRETTY_FUNCTION__))
;
1478 return int64_t(U.pVal[0]);
1479 }
1480
1481 /// Get bits required for string value.
1482 ///
1483 /// This method determines how many bits are required to hold the APInt
1484 /// equivalent of the string given by \p str.
1485 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1486
1487 /// The APInt version of the countLeadingZeros functions in
1488 /// MathExtras.h.
1489 ///
1490 /// It counts the number of zeros from the most significant bit to the first
1491 /// one bit.
1492 ///
1493 /// \returns BitWidth if the value is zero, otherwise returns the number of
1494 /// zeros from the most significant bit to the first one bits.
1495 unsigned countLeadingZeros() const {
1496 if (isSingleWord()) {
1497 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1498 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1499 }
1500 return countLeadingZerosSlowCase();
1501 }
1502
1503 /// Count the number of leading one bits.
1504 ///
1505 /// This function is an APInt version of the countLeadingOnes
1506 /// functions in MathExtras.h. It counts the number of ones from the most
1507 /// significant bit to the first zero bit.
1508 ///
1509 /// \returns 0 if the high order bit is not set, otherwise returns the number
1510 /// of 1 bits from the most significant to the least
1511 unsigned countLeadingOnes() const {
1512 if (isSingleWord()) {
1513 if (LLVM_UNLIKELY(BitWidth == 0)__builtin_expect((bool)(BitWidth == 0), false))
1514 return 0;
1515 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1516 }
1517 return countLeadingOnesSlowCase();
1518 }
1519
1520 /// Computes the number of leading bits of this APInt that are equal to its
1521 /// sign bit.
1522 unsigned getNumSignBits() const {
1523 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1524 }
1525
1526 /// Count the number of trailing zero bits.
1527 ///
1528 /// This function is an APInt version of the countTrailingZeros
1529 /// functions in MathExtras.h. It counts the number of zeros from the least
1530 /// significant bit to the first set bit.
1531 ///
1532 /// \returns BitWidth if the value is zero, otherwise returns the number of
1533 /// zeros from the least significant bit to the first one bit.
1534 unsigned countTrailingZeros() const {
1535 if (isSingleWord()) {
1536 unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
1537 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1538 }
1539 return countTrailingZerosSlowCase();
1540 }
1541
1542 /// Count the number of trailing one bits.
1543 ///
1544 /// This function is an APInt version of the countTrailingOnes
1545 /// functions in MathExtras.h. It counts the number of ones from the least
1546 /// significant bit to the first zero bit.
1547 ///
1548 /// \returns BitWidth if the value is all ones, otherwise returns the number
1549 /// of ones from the least significant bit to the first zero bit.
1550 unsigned countTrailingOnes() const {
1551 if (isSingleWord())
1552 return llvm::countTrailingOnes(U.VAL);
1553 return countTrailingOnesSlowCase();
1554 }
1555
1556 /// Count the number of bits set.
1557 ///
1558 /// This function is an APInt version of the countPopulation functions
1559 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1560 ///
1561 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1562 unsigned countPopulation() const {
1563 if (isSingleWord())
1564 return llvm::countPopulation(U.VAL);
1565 return countPopulationSlowCase();
1566 }
1567
1568 /// @}
1569 /// \name Conversion Functions
1570 /// @{
1571 void print(raw_ostream &OS, bool isSigned) const;
1572
1573 /// Converts an APInt to a string and append it to Str. Str is commonly a
1574 /// SmallString.
1575 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1576 bool formatAsCLiteral = false) const;
1577
1578 /// Considers the APInt to be unsigned and converts it into a string in the
1579 /// radix given. The radix can be 2, 8, 10 16, or 36.
1580 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1581 toString(Str, Radix, false, false);
1582 }
1583
1584 /// Considers the APInt to be signed and converts it into a string in the
1585 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1586 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1587 toString(Str, Radix, true, false);
1588 }
1589
1590 /// \returns a byte-swapped representation of this APInt Value.
1591 APInt byteSwap() const;
1592
1593 /// \returns the value with the bit representation reversed of this APInt
1594 /// Value.
1595 APInt reverseBits() const;
1596
1597 /// Converts this APInt to a double value.
1598 double roundToDouble(bool isSigned) const;
1599
1600 /// Converts this unsigned APInt to a double value.
1601 double roundToDouble() const { return roundToDouble(false); }
1602
1603 /// Converts this signed APInt to a double value.
1604 double signedRoundToDouble() const { return roundToDouble(true); }
1605
1606 /// Converts APInt bits to a double
1607 ///
1608 /// The conversion does not do a translation from integer to double, it just
1609 /// re-interprets the bits as a double. Note that it is valid to do this on
1610 /// any bit width. Exactly 64 bits will be translated.
1611 double bitsToDouble() const { return BitsToDouble(getWord(0)); }
1612
1613 /// Converts APInt bits to a float
1614 ///
1615 /// The conversion does not do a translation from integer to float, it just
1616 /// re-interprets the bits as a float. Note that it is valid to do this on
1617 /// any bit width. Exactly 32 bits will be translated.
1618 float bitsToFloat() const {
1619 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1620 }
1621
1622 /// Converts a double to APInt bits.
1623 ///
1624 /// The conversion does not do a translation from double to integer, it just
1625 /// re-interprets the bits of the double.
1626 static APInt doubleToBits(double V) {
1627 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1628 }
1629
1630 /// Converts a float to APInt bits.
1631 ///
1632 /// The conversion does not do a translation from float to integer, it just
1633 /// re-interprets the bits of the float.
1634 static APInt floatToBits(float V) {
1635 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1636 }
1637
1638 /// @}
1639 /// \name Mathematics Operations
1640 /// @{
1641
1642 /// \returns the floor log base 2 of this APInt.
1643 unsigned logBase2() const { return getActiveBits() - 1; }
1644
1645 /// \returns the ceil log base 2 of this APInt.
1646 unsigned ceilLogBase2() const {
1647 APInt temp(*this);
1648 --temp;
1649 return temp.getActiveBits();
1650 }
1651
1652 /// \returns the nearest log base 2 of this APInt. Ties round up.
1653 ///
1654 /// NOTE: When we have a BitWidth of 1, we define:
1655 ///
1656 /// log2(0) = UINT32_MAX
1657 /// log2(1) = 0
1658 ///
1659 /// to get around any mathematical concerns resulting from
1660 /// referencing 2 in a space where 2 does no exist.
1661 unsigned nearestLogBase2() const;
1662
1663 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1664 /// otherwise
1665 int32_t exactLogBase2() const {
1666 if (!isPowerOf2())
1667 return -1;
1668 return logBase2();
1669 }
1670
1671 /// Compute the square root.
1672 APInt sqrt() const;
1673
1674 /// Get the absolute value. If *this is < 0 then return -(*this), otherwise
1675 /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit
1676 /// wide APInt) is unchanged due to how negation works.
1677 APInt abs() const {
1678 if (isNegative())
1679 return -(*this);
1680 return *this;
1681 }
1682
1683 /// \returns the multiplicative inverse for a given modulo.
1684 APInt multiplicativeInverse(const APInt &modulo) const;
1685
1686 /// @}
1687 /// \name Building-block Operations for APInt and APFloat
1688 /// @{
1689
1690 // These building block operations operate on a representation of arbitrary
1691 // precision, two's-complement, bignum integer values. They should be
1692 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1693 // generally a pointer to the base of an array of integer parts, representing
1694 // an unsigned bignum, and a count of how many parts there are.
1695
1696 /// Sets the least significant part of a bignum to the input value, and zeroes
1697 /// out higher parts.
1698 static void tcSet(WordType *, WordType, unsigned);
1699
1700 /// Assign one bignum to another.
1701 static void tcAssign(WordType *, const WordType *, unsigned);
1702
1703 /// Returns true if a bignum is zero, false otherwise.
1704 static bool tcIsZero(const WordType *, unsigned);
1705
1706 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1707 static int tcExtractBit(const WordType *, unsigned bit);
1708
1709 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1710 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1711 /// significant bit of DST. All high bits above srcBITS in DST are
1712 /// zero-filled.
1713 static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1714 unsigned srcBits, unsigned srcLSB);
1715
1716 /// Set the given bit of a bignum. Zero-based.
1717 static void tcSetBit(WordType *, unsigned bit);
1718
1719 /// Clear the given bit of a bignum. Zero-based.
1720 static void tcClearBit(WordType *, unsigned bit);
1721
1722 /// Returns the bit number of the least or most significant set bit of a
1723 /// number. If the input number has no bits set -1U is returned.
1724 static unsigned tcLSB(const WordType *, unsigned n);
1725 static unsigned tcMSB(const WordType *parts, unsigned n);
1726
1727 /// Negate a bignum in-place.
1728 static void tcNegate(WordType *, unsigned);
1729
1730 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1731 static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1732 /// DST += RHS. Returns the carry flag.
1733 static WordType tcAddPart(WordType *, WordType, unsigned);
1734
1735 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1736 static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1737 unsigned);
1738 /// DST -= RHS. Returns the carry flag.
1739 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1740
1741 /// DST += SRC * MULTIPLIER + PART if add is true
1742 /// DST = SRC * MULTIPLIER + PART if add is false
1743 ///
1744 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1745 /// start at the same point, i.e. DST == SRC.
1746 ///
1747 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1748 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1749 /// result, and if all of the omitted higher parts were zero return zero,
1750 /// otherwise overflow occurred and return one.
1751 static int tcMultiplyPart(WordType *dst, const WordType *src,
1752 WordType multiplier, WordType carry,
1753 unsigned srcParts, unsigned dstParts, bool add);
1754
1755 /// DST = LHS * RHS, where DST has the same width as the operands and is
1756 /// filled with the least significant parts of the result. Returns one if
1757 /// overflow occurred, otherwise zero. DST must be disjoint from both
1758 /// operands.
1759 static int tcMultiply(WordType *, const WordType *, const WordType *,
1760 unsigned);
1761
1762 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1763 /// operands. No overflow occurs. DST must be disjoint from both operands.
1764 static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1765 unsigned, unsigned);
1766
1767 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1768 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1769 /// REMAINDER to the remainder, return zero. i.e.
1770 ///
1771 /// OLD_LHS = RHS * LHS + REMAINDER
1772 ///
1773 /// SCRATCH is a bignum of the same size as the operands and result for use by
1774 /// the routine; its contents need not be initialized and are destroyed. LHS,
1775 /// REMAINDER and SCRATCH must be distinct.
1776 static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1777 WordType *scratch, unsigned parts);
1778
1779 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1780 /// restrictions on Count.
1781 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1782
1783 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1784 /// restrictions on Count.
1785 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1786
1787 /// Comparison (unsigned) of two bignums.
1788 static int tcCompare(const WordType *, const WordType *, unsigned);
1789
1790 /// Increment a bignum in-place. Return the carry flag.
1791 static WordType tcIncrement(WordType *dst, unsigned parts) {
1792 return tcAddPart(dst, 1, parts);
1793 }
1794
1795 /// Decrement a bignum in-place. Return the borrow flag.
1796 static WordType tcDecrement(WordType *dst, unsigned parts) {
1797 return tcSubtractPart(dst, 1, parts);
1798 }
1799
1800 /// Used to insert APInt objects, or objects that contain APInt objects, into
1801 /// FoldingSets.
1802 void Profile(FoldingSetNodeID &id) const;
1803
1804 /// debug method
1805 void dump() const;
1806
1807 /// Returns whether this instance allocated memory.
1808 bool needsCleanup() const { return !isSingleWord(); }
1809
1810private:
1811 /// This union is used to store the integer value. When the
1812 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1813 union {
1814 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1815 uint64_t *pVal; ///< Used to store the >64 bits integer value.
1816 } U;
1817
1818 unsigned BitWidth; ///< The number of bits in this APInt.
1819
1820 friend struct DenseMapInfo<APInt>;
1821 friend class APSInt;
1822
1823 /// This constructor is used only internally for speed of construction of
1824 /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1825 /// is not public.
1826 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1827
1828 /// Determine which word a bit is in.
1829 ///
1830 /// \returns the word position for the specified bit position.
1831 static unsigned whichWord(unsigned bitPosition) {
1832 return bitPosition / APINT_BITS_PER_WORD;
1833 }
1834
1835 /// Determine which bit in a word the specified bit position is in.
1836 static unsigned whichBit(unsigned bitPosition) {
1837 return bitPosition % APINT_BITS_PER_WORD;
1838 }
1839
1840 /// Get a single bit mask.
1841 ///
1842 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1843 /// This method generates and returns a uint64_t (word) mask for a single
1844 /// bit at a specific bit position. This is used to mask the bit in the
1845 /// corresponding word.
1846 static uint64_t maskBit(unsigned bitPosition) {
1847 return 1ULL << whichBit(bitPosition);
1848 }
1849
1850 /// Clear unused high order bits
1851 ///
1852 /// This method is used internally to clear the top "N" bits in the high order
1853 /// word that are not used by the APInt. This is needed after the most
1854 /// significant word is assigned a value to ensure that those bits are
1855 /// zero'd out.
1856 APInt &clearUnusedBits() {
1857 // Compute how many bits are used in the final word.
1858 unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1859
1860 // Mask out the high bits.
1861 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1862 if (LLVM_UNLIKELY(BitWidth == 0)__builtin_expect((bool)(BitWidth == 0), false))
1863 mask = 0;
1864
1865 if (isSingleWord())
1866 U.VAL &= mask;
1867 else
1868 U.pVal[getNumWords() - 1] &= mask;
1869 return *this;
1870 }
1871
1872 /// Get the word corresponding to a bit position
1873 /// \returns the corresponding word for the specified bit position.
1874 uint64_t getWord(unsigned bitPosition) const {
1875 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1876 }
1877
1878 /// Utility method to change the bit width of this APInt to new bit width,
1879 /// allocating and/or deallocating as necessary. There is no guarantee on the
1880 /// value of any bits upon return. Caller should populate the bits after.
1881 void reallocate(unsigned NewBitWidth);
1882
1883 /// Convert a char array into an APInt
1884 ///
1885 /// \param radix 2, 8, 10, 16, or 36
1886 /// Converts a string into a number. The string must be non-empty
1887 /// and well-formed as a number of the given base. The bit-width
1888 /// must be sufficient to hold the result.
1889 ///
1890 /// This is used by the constructors that take string arguments.
1891 ///
1892 /// StringRef::getAsInteger is superficially similar but (1) does
1893 /// not assume that the string is well-formed and (2) grows the
1894 /// result to hold the input.
1895 void fromString(unsigned numBits, StringRef str, uint8_t radix);
1896
1897 /// An internal division function for dividing APInts.
1898 ///
1899 /// This is used by the toString method to divide by the radix. It simply
1900 /// provides a more convenient form of divide for internal use since KnuthDiv
1901 /// has specific constraints on its inputs. If those constraints are not met
1902 /// then it provides a simpler form of divide.
1903 static void divide(const WordType *LHS, unsigned lhsWords,
1904 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1905 WordType *Remainder);
1906
1907 /// out-of-line slow case for inline constructor
1908 void initSlowCase(uint64_t val, bool isSigned);
1909
1910 /// shared code between two array constructors
1911 void initFromArray(ArrayRef<uint64_t> array);
1912
1913 /// out-of-line slow case for inline copy constructor
1914 void initSlowCase(const APInt &that);
1915
1916 /// out-of-line slow case for shl
1917 void shlSlowCase(unsigned ShiftAmt);
1918
1919 /// out-of-line slow case for lshr.
1920 void lshrSlowCase(unsigned ShiftAmt);
1921
1922 /// out-of-line slow case for ashr.
1923 void ashrSlowCase(unsigned ShiftAmt);
1924
1925 /// out-of-line slow case for operator=
1926 void assignSlowCase(const APInt &RHS);
1927
1928 /// out-of-line slow case for operator==
1929 bool equalSlowCase(