Bug Summary

File:lib/IR/ConstantRange.cpp
Warning:line 323, column 34
Assigned value is garbage or undefined

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ConstantRange.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/IR -I /build/llvm-toolchain-snapshot-7~svn329677/lib/IR -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/IR -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp

/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp

1//===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Represent a range of possible values that may occur when the program is run
11// for an integral value. This keeps track of a lower and upper bound for the
12// constant, which MAY wrap around the end of the numeric range. To do this, it
13// keeps track of a [lower, upper) bound, which specifies an interval just like
14// STL iterators. When used with boolean values, the following are important
15// ranges (other integral ranges use min/max values for special range values):
16//
17// [F, F) = {} = Empty set
18// [T, F) = {T}
19// [F, T) = {F}
20// [T, T) = {F, T} = Full set
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/ADT/APInt.h"
25#include "llvm/IR/ConstantRange.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/InstrTypes.h"
28#include "llvm/IR/Instruction.h"
29#include "llvm/IR/Metadata.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cassert>
37#include <cstdint>
38
39using namespace llvm;
40
41ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
42 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
43 Upper(Lower) {}
44
45ConstantRange::ConstantRange(APInt V)
46 : Lower(std::move(V)), Upper(Lower + 1) {}
47
48ConstantRange::ConstantRange(APInt L, APInt U)
49 : Lower(std::move(L)), Upper(std::move(U)) {
50 assert(Lower.getBitWidth() == Upper.getBitWidth() &&(static_cast <bool> (Lower.getBitWidth() == Upper.getBitWidth
() && "ConstantRange with unequal bit widths") ? void
(0) : __assert_fail ("Lower.getBitWidth() == Upper.getBitWidth() && \"ConstantRange with unequal bit widths\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 51, __extension__ __PRETTY_FUNCTION__))
51 "ConstantRange with unequal bit widths")(static_cast <bool> (Lower.getBitWidth() == Upper.getBitWidth
() && "ConstantRange with unequal bit widths") ? void
(0) : __assert_fail ("Lower.getBitWidth() == Upper.getBitWidth() && \"ConstantRange with unequal bit widths\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 51, __extension__ __PRETTY_FUNCTION__))
;
52 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&(static_cast <bool> ((Lower != Upper || (Lower.isMaxValue
() || Lower.isMinValue())) && "Lower == Upper, but they aren't min or max value!"
) ? void (0) : __assert_fail ("(Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && \"Lower == Upper, but they aren't min or max value!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 53, __extension__ __PRETTY_FUNCTION__))
53 "Lower == Upper, but they aren't min or max value!")(static_cast <bool> ((Lower != Upper || (Lower.isMaxValue
() || Lower.isMinValue())) && "Lower == Upper, but they aren't min or max value!"
) ? void (0) : __assert_fail ("(Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && \"Lower == Upper, but they aren't min or max value!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 53, __extension__ __PRETTY_FUNCTION__))
;
54}
55
56ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
57 const ConstantRange &CR) {
58 if (CR.isEmptySet())
59 return CR;
60
61 uint32_t W = CR.getBitWidth();
62 switch (Pred) {
63 default:
64 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()")::llvm::llvm_unreachable_internal("Invalid ICmp predicate to makeAllowedICmpRegion()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 64)
;
65 case CmpInst::ICMP_EQ:
66 return CR;
67 case CmpInst::ICMP_NE:
68 if (CR.isSingleElement())
69 return ConstantRange(CR.getUpper(), CR.getLower());
70 return ConstantRange(W);
71 case CmpInst::ICMP_ULT: {
72 APInt UMax(CR.getUnsignedMax());
73 if (UMax.isMinValue())
74 return ConstantRange(W, /* empty */ false);
75 return ConstantRange(APInt::getMinValue(W), std::move(UMax));
76 }
77 case CmpInst::ICMP_SLT: {
78 APInt SMax(CR.getSignedMax());
79 if (SMax.isMinSignedValue())
80 return ConstantRange(W, /* empty */ false);
81 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
82 }
83 case CmpInst::ICMP_ULE: {
84 APInt UMax(CR.getUnsignedMax());
85 if (UMax.isMaxValue())
86 return ConstantRange(W);
87 return ConstantRange(APInt::getMinValue(W), std::move(UMax) + 1);
88 }
89 case CmpInst::ICMP_SLE: {
90 APInt SMax(CR.getSignedMax());
91 if (SMax.isMaxSignedValue())
92 return ConstantRange(W);
93 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax) + 1);
94 }
95 case CmpInst::ICMP_UGT: {
96 APInt UMin(CR.getUnsignedMin());
97 if (UMin.isMaxValue())
98 return ConstantRange(W, /* empty */ false);
99 return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
100 }
101 case CmpInst::ICMP_SGT: {
102 APInt SMin(CR.getSignedMin());
103 if (SMin.isMaxSignedValue())
104 return ConstantRange(W, /* empty */ false);
105 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
106 }
107 case CmpInst::ICMP_UGE: {
108 APInt UMin(CR.getUnsignedMin());
109 if (UMin.isMinValue())
110 return ConstantRange(W);
111 return ConstantRange(std::move(UMin), APInt::getNullValue(W));
112 }
113 case CmpInst::ICMP_SGE: {
114 APInt SMin(CR.getSignedMin());
115 if (SMin.isMinSignedValue())
116 return ConstantRange(W);
117 return ConstantRange(std::move(SMin), APInt::getSignedMinValue(W));
118 }
119 }
120}
121
122ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
123 const ConstantRange &CR) {
124 // Follows from De-Morgan's laws:
125 //
126 // ~(~A union ~B) == A intersect B.
127 //
128 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
129 .inverse();
130}
131
132ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
133 const APInt &C) {
134 // Computes the exact range that is equal to both the constant ranges returned
135 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
136 // when RHS is a singleton such as an APInt and so the assert is valid.
137 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
138 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
139 //
140 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C))(static_cast <bool> (makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion
(Pred, C)) ? void (0) : __assert_fail ("makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 140, __extension__ __PRETTY_FUNCTION__))
;
141 return makeAllowedICmpRegion(Pred, C);
142}
143
144bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
145 APInt &RHS) const {
146 bool Success = false;
147
148 if (isFullSet() || isEmptySet()) {
149 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
150 RHS = APInt(getBitWidth(), 0);
151 Success = true;
152 } else if (auto *OnlyElt = getSingleElement()) {
153 Pred = CmpInst::ICMP_EQ;
154 RHS = *OnlyElt;
155 Success = true;
156 } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
157 Pred = CmpInst::ICMP_NE;
158 RHS = *OnlyMissingElt;
159 Success = true;
160 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
161 Pred =
162 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
163 RHS = getUpper();
164 Success = true;
165 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
166 Pred =
167 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
168 RHS = getLower();
169 Success = true;
170 }
171
172 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&(static_cast <bool> ((!Success || ConstantRange::makeExactICmpRegion
(Pred, RHS) == *this) && "Bad result!") ? void (0) : __assert_fail
("(!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && \"Bad result!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 173, __extension__ __PRETTY_FUNCTION__))
173 "Bad result!")(static_cast <bool> ((!Success || ConstantRange::makeExactICmpRegion
(Pred, RHS) == *this) && "Bad result!") ? void (0) : __assert_fail
("(!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && \"Bad result!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 173, __extension__ __PRETTY_FUNCTION__))
;
174
175 return Success;
176}
177
178ConstantRange
179ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
180 const ConstantRange &Other,
181 unsigned NoWrapKind) {
182 using OBO = OverflowingBinaryOperator;
183
184 // Computes the intersection of CR0 and CR1. It is different from
185 // intersectWith in that the ConstantRange returned will only contain elements
186 // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
187 // not, of both X and Y).
188 auto SubsetIntersect =
189 [](const ConstantRange &CR0, const ConstantRange &CR1) {
190 return CR0.inverse().unionWith(CR1.inverse()).inverse();
191 };
192
193 assert(BinOp >= Instruction::BinaryOpsBegin &&(static_cast <bool> (BinOp >= Instruction::BinaryOpsBegin
&& BinOp < Instruction::BinaryOpsEnd && "Binary operators only!"
) ? void (0) : __assert_fail ("BinOp >= Instruction::BinaryOpsBegin && BinOp < Instruction::BinaryOpsEnd && \"Binary operators only!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 194, __extension__ __PRETTY_FUNCTION__))
194 BinOp < Instruction::BinaryOpsEnd && "Binary operators only!")(static_cast <bool> (BinOp >= Instruction::BinaryOpsBegin
&& BinOp < Instruction::BinaryOpsEnd && "Binary operators only!"
) ? void (0) : __assert_fail ("BinOp >= Instruction::BinaryOpsBegin && BinOp < Instruction::BinaryOpsEnd && \"Binary operators only!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 194, __extension__ __PRETTY_FUNCTION__))
;
195
196 assert((NoWrapKind == OBO::NoSignedWrap ||(static_cast <bool> ((NoWrapKind == OBO::NoSignedWrap ||
NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap
| OBO::NoSignedWrap)) && "NoWrapKind invalid!") ? void
(0) : __assert_fail ("(NoWrapKind == OBO::NoSignedWrap || NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && \"NoWrapKind invalid!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 199, __extension__ __PRETTY_FUNCTION__))
197 NoWrapKind == OBO::NoUnsignedWrap ||(static_cast <bool> ((NoWrapKind == OBO::NoSignedWrap ||
NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap
| OBO::NoSignedWrap)) && "NoWrapKind invalid!") ? void
(0) : __assert_fail ("(NoWrapKind == OBO::NoSignedWrap || NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && \"NoWrapKind invalid!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 199, __extension__ __PRETTY_FUNCTION__))
198 NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&(static_cast <bool> ((NoWrapKind == OBO::NoSignedWrap ||
NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap
| OBO::NoSignedWrap)) && "NoWrapKind invalid!") ? void
(0) : __assert_fail ("(NoWrapKind == OBO::NoSignedWrap || NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && \"NoWrapKind invalid!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 199, __extension__ __PRETTY_FUNCTION__))
199 "NoWrapKind invalid!")(static_cast <bool> ((NoWrapKind == OBO::NoSignedWrap ||
NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap
| OBO::NoSignedWrap)) && "NoWrapKind invalid!") ? void
(0) : __assert_fail ("(NoWrapKind == OBO::NoSignedWrap || NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && \"NoWrapKind invalid!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 199, __extension__ __PRETTY_FUNCTION__))
;
200
201 unsigned BitWidth = Other.getBitWidth();
202 ConstantRange Result(BitWidth);
203
204 switch (BinOp) {
205 default:
206 // Conservative answer: empty set
207 return ConstantRange(BitWidth, false);
208
209 case Instruction::Add:
210 if (auto *C = Other.getSingleElement())
211 if (C->isNullValue())
212 // Full set: nothing signed / unsigned wraps when added to 0.
213 return ConstantRange(BitWidth);
214 if (NoWrapKind & OBO::NoUnsignedWrap)
215 Result =
216 SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
217 -Other.getUnsignedMax()));
218 if (NoWrapKind & OBO::NoSignedWrap) {
219 const APInt &SignedMin = Other.getSignedMin();
220 const APInt &SignedMax = Other.getSignedMax();
221 if (SignedMax.isStrictlyPositive())
222 Result = SubsetIntersect(
223 Result,
224 ConstantRange(APInt::getSignedMinValue(BitWidth),
225 APInt::getSignedMinValue(BitWidth) - SignedMax));
226 if (SignedMin.isNegative())
227 Result = SubsetIntersect(
228 Result,
229 ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
230 APInt::getSignedMinValue(BitWidth)));
231 }
232 return Result;
233
234 case Instruction::Sub:
235 if (auto *C = Other.getSingleElement())
236 if (C->isNullValue())
237 // Full set: nothing signed / unsigned wraps when subtracting 0.
238 return ConstantRange(BitWidth);
239 if (NoWrapKind & OBO::NoUnsignedWrap)
240 Result =
241 SubsetIntersect(Result, ConstantRange(Other.getUnsignedMax(),
242 APInt::getMinValue(BitWidth)));
243 if (NoWrapKind & OBO::NoSignedWrap) {
244 const APInt &SignedMin = Other.getSignedMin();
245 const APInt &SignedMax = Other.getSignedMax();
246 if (SignedMax.isStrictlyPositive())
247 Result = SubsetIntersect(
248 Result,
249 ConstantRange(APInt::getSignedMinValue(BitWidth) + SignedMax,
250 APInt::getSignedMinValue(BitWidth)));
251 if (SignedMin.isNegative())
252 Result = SubsetIntersect(
253 Result,
254 ConstantRange(APInt::getSignedMinValue(BitWidth),
255 APInt::getSignedMinValue(BitWidth) + SignedMin));
256 }
257 return Result;
258 }
259}
260
261bool ConstantRange::isFullSet() const {
262 return Lower == Upper && Lower.isMaxValue();
263}
264
265bool ConstantRange::isEmptySet() const {
266 return Lower == Upper && Lower.isMinValue();
267}
268
269bool ConstantRange::isWrappedSet() const {
270 return Lower.ugt(Upper);
271}
272
273bool ConstantRange::isSignWrappedSet() const {
274 return contains(APInt::getSignedMaxValue(getBitWidth())) &&
275 contains(APInt::getSignedMinValue(getBitWidth()));
276}
277
278APInt ConstantRange::getSetSize() const {
279 if (isFullSet())
280 return APInt::getOneBitSet(getBitWidth()+1, getBitWidth());
281
282 // This is also correct for wrapped sets.
283 return (Upper - Lower).zext(getBitWidth()+1);
284}
285
286bool
287ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
288 assert(getBitWidth() == Other.getBitWidth())(static_cast <bool> (getBitWidth() == Other.getBitWidth
()) ? void (0) : __assert_fail ("getBitWidth() == Other.getBitWidth()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 288, __extension__ __PRETTY_FUNCTION__))
;
289 if (isFullSet())
290 return false;
291 if (Other.isFullSet())
292 return true;
293 return (Upper - Lower).ult(Other.Upper - Other.Lower);
294}
295
296bool
297ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
298 assert(MaxSize && "MaxSize can't be 0.")(static_cast <bool> (MaxSize && "MaxSize can't be 0."
) ? void (0) : __assert_fail ("MaxSize && \"MaxSize can't be 0.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 298, __extension__ __PRETTY_FUNCTION__))
;
299 // If this a full set, we need special handling to avoid needing an extra bit
300 // to represent the size.
301 if (isFullSet())
302 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
303
304 return (Upper - Lower).ugt(MaxSize);
305}
306
307APInt ConstantRange::getUnsignedMax() const {
308 if (isFullSet() || isWrappedSet())
309 return APInt::getMaxValue(getBitWidth());
310 return getUpper() - 1;
311}
312
313APInt ConstantRange::getUnsignedMin() const {
314 if (isFullSet() || (isWrappedSet() && !getUpper().isNullValue()))
315 return APInt::getMinValue(getBitWidth());
316 return getLower();
317}
318
319APInt ConstantRange::getSignedMax() const {
320 if (isFullSet() || Lower.sgt(Upper))
321 return APInt::getSignedMaxValue(getBitWidth());
322 return getUpper() - 1;
323}
324
325APInt ConstantRange::getSignedMin() const {
326 if (isFullSet() || (Lower.sgt(Upper) && !getUpper().isMinSignedValue()))
327 return APInt::getSignedMinValue(getBitWidth());
328 return getLower();
329}
330
331bool ConstantRange::contains(const APInt &V) const {
332 if (Lower == Upper)
333 return isFullSet();
334
335 if (!isWrappedSet())
336 return Lower.ule(V) && V.ult(Upper);
337 return Lower.ule(V) || V.ult(Upper);
338}
339
340bool ConstantRange::contains(const ConstantRange &Other) const {
341 if (isFullSet() || Other.isEmptySet()) return true;
342 if (isEmptySet() || Other.isFullSet()) return false;
343
344 if (!isWrappedSet()) {
345 if (Other.isWrappedSet())
346 return false;
347
348 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
349 }
350
351 if (!Other.isWrappedSet())
352 return Other.getUpper().ule(Upper) ||
353 Lower.ule(Other.getLower());
354
355 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
356}
357
358ConstantRange ConstantRange::subtract(const APInt &Val) const {
359 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width")(static_cast <bool> (Val.getBitWidth() == getBitWidth()
&& "Wrong bit width") ? void (0) : __assert_fail ("Val.getBitWidth() == getBitWidth() && \"Wrong bit width\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 359, __extension__ __PRETTY_FUNCTION__))
;
360 // If the set is empty or full, don't modify the endpoints.
361 if (Lower == Upper)
362 return *this;
363 return ConstantRange(Lower - Val, Upper - Val);
364}
365
366ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
367 return intersectWith(CR.inverse());
368}
369
370ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
371 assert(getBitWidth() == CR.getBitWidth() &&(static_cast <bool> (getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!") ? void (0) : __assert_fail
("getBitWidth() == CR.getBitWidth() && \"ConstantRange types don't agree!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 372, __extension__ __PRETTY_FUNCTION__))
372 "ConstantRange types don't agree!")(static_cast <bool> (getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!") ? void (0) : __assert_fail
("getBitWidth() == CR.getBitWidth() && \"ConstantRange types don't agree!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 372, __extension__ __PRETTY_FUNCTION__))
;
373
374 // Handle common cases.
375 if ( isEmptySet() || CR.isFullSet()) return *this;
376 if (CR.isEmptySet() || isFullSet()) return CR;
377
378 if (!isWrappedSet() && CR.isWrappedSet())
379 return CR.intersectWith(*this);
380
381 if (!isWrappedSet() && !CR.isWrappedSet()) {
382 if (Lower.ult(CR.Lower)) {
383 if (Upper.ule(CR.Lower))
384 return ConstantRange(getBitWidth(), false);
385
386 if (Upper.ult(CR.Upper))
387 return ConstantRange(CR.Lower, Upper);
388
389 return CR;
390 }
391 if (Upper.ult(CR.Upper))
392 return *this;
393
394 if (Lower.ult(CR.Upper))
395 return ConstantRange(Lower, CR.Upper);
396
397 return ConstantRange(getBitWidth(), false);
398 }
399
400 if (isWrappedSet() && !CR.isWrappedSet()) {
401 if (CR.Lower.ult(Upper)) {
402 if (CR.Upper.ult(Upper))
403 return CR;
404
405 if (CR.Upper.ule(Lower))
406 return ConstantRange(CR.Lower, Upper);
407
408 if (isSizeStrictlySmallerThan(CR))
409 return *this;
410 return CR;
411 }
412 if (CR.Lower.ult(Lower)) {
413 if (CR.Upper.ule(Lower))
414 return ConstantRange(getBitWidth(), false);
415
416 return ConstantRange(Lower, CR.Upper);
417 }
418 return CR;
419 }
420
421 if (CR.Upper.ult(Upper)) {
422 if (CR.Lower.ult(Upper)) {
423 if (isSizeStrictlySmallerThan(CR))
424 return *this;
425 return CR;
426 }
427
428 if (CR.Lower.ult(Lower))
429 return ConstantRange(Lower, CR.Upper);
430
431 return CR;
432 }
433 if (CR.Upper.ule(Lower)) {
434 if (CR.Lower.ult(Lower))
435 return *this;
436
437 return ConstantRange(CR.Lower, Upper);
438 }
439 if (isSizeStrictlySmallerThan(CR))
440 return *this;
441 return CR;
442}
443
444ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
445 assert(getBitWidth() == CR.getBitWidth() &&(static_cast <bool> (getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!") ? void (0) : __assert_fail
("getBitWidth() == CR.getBitWidth() && \"ConstantRange types don't agree!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 446, __extension__ __PRETTY_FUNCTION__))
446 "ConstantRange types don't agree!")(static_cast <bool> (getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!") ? void (0) : __assert_fail
("getBitWidth() == CR.getBitWidth() && \"ConstantRange types don't agree!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 446, __extension__ __PRETTY_FUNCTION__))
;
447
448 if ( isFullSet() || CR.isEmptySet()) return *this;
4
Taking false branch
8
Taking false branch
12
Taking false branch
449 if (CR.isFullSet() || isEmptySet()) return CR;
5
Taking false branch
9
Taking false branch
13
Taking false branch
450
451 if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
6
Taking true branch
7
Calling 'ConstantRange::unionWith'
10
Taking true branch
11
Calling 'ConstantRange::unionWith'
452
453 if (!isWrappedSet() && !CR.isWrappedSet()) {
454 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
455 // If the two ranges are disjoint, find the smaller gap and bridge it.
456 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
457 if (d1.ult(d2))
458 return ConstantRange(Lower, CR.Upper);
459 return ConstantRange(CR.Lower, Upper);
460 }
461
462 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
463 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
464
465 if (L.isNullValue() && U.isNullValue())
466 return ConstantRange(getBitWidth());
467
468 return ConstantRange(std::move(L), std::move(U));
469 }
470
471 if (!CR.isWrappedSet()) {
14
Taking false branch
472 // ------U L----- and ------U L----- : this
473 // L--U L--U : CR
474 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
475 return *this;
476
477 // ------U L----- : this
478 // L---------U : CR
479 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
480 return ConstantRange(getBitWidth());
481
482 // ----U L---- : this
483 // L---U : CR
484 // <d1> <d2>
485 if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
486 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
487 if (d1.ult(d2))
488 return ConstantRange(Lower, CR.Upper);
489 return ConstantRange(CR.Lower, Upper);
490 }
491
492 // ----U L----- : this
493 // L----U : CR
494 if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
495 return ConstantRange(CR.Lower, Upper);
496
497 // ------U L---- : this
498 // L-----U : CR
499 assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&(static_cast <bool> (CR.Lower.ult(Upper) && CR.
Upper.ult(Lower) && "ConstantRange::unionWith missed a case with one range wrapped"
) ? void (0) : __assert_fail ("CR.Lower.ult(Upper) && CR.Upper.ult(Lower) && \"ConstantRange::unionWith missed a case with one range wrapped\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 500, __extension__ __PRETTY_FUNCTION__))
500 "ConstantRange::unionWith missed a case with one range wrapped")(static_cast <bool> (CR.Lower.ult(Upper) && CR.
Upper.ult(Lower) && "ConstantRange::unionWith missed a case with one range wrapped"
) ? void (0) : __assert_fail ("CR.Lower.ult(Upper) && CR.Upper.ult(Lower) && \"ConstantRange::unionWith missed a case with one range wrapped\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 500, __extension__ __PRETTY_FUNCTION__))
;
501 return ConstantRange(Lower, CR.Upper);
502 }
503
504 // ------U L---- and ------U L---- : this
505 // -U L----------- and ------------U L : CR
506 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
507 return ConstantRange(getBitWidth());
15
Calling implicit move constructor for 'ConstantRange'
16
Calling move constructor for 'APInt'
508
509 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
510 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
511
512 return ConstantRange(std::move(L), std::move(U));
513}
514
515ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
516 uint32_t ResultBitWidth) const {
517 switch (CastOp) {
518 default:
519 llvm_unreachable("unsupported cast type")::llvm::llvm_unreachable_internal("unsupported cast type", "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 519)
;
520 case Instruction::Trunc:
521 return truncate(ResultBitWidth);
522 case Instruction::SExt:
523 return signExtend(ResultBitWidth);
524 case Instruction::ZExt:
525 return zeroExtend(ResultBitWidth);
526 case Instruction::BitCast:
527 return *this;
528 case Instruction::FPToUI:
529 case Instruction::FPToSI:
530 if (getBitWidth() == ResultBitWidth)
531 return *this;
532 else
533 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
534 case Instruction::UIToFP: {
535 // TODO: use input range if available
536 auto BW = getBitWidth();
537 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
538 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
539 return ConstantRange(std::move(Min), std::move(Max));
540 }
541 case Instruction::SIToFP: {
542 // TODO: use input range if available
543 auto BW = getBitWidth();
544 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
545 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
546 return ConstantRange(std::move(SMin), std::move(SMax));
547 }
548 case Instruction::FPTrunc:
549 case Instruction::FPExt:
550 case Instruction::IntToPtr:
551 case Instruction::PtrToInt:
552 case Instruction::AddrSpaceCast:
553 // Conservatively return full set.
554 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
555 };
556}
557
558ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
559 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
560
561 unsigned SrcTySize = getBitWidth();
562 assert(SrcTySize < DstTySize && "Not a value extension")(static_cast <bool> (SrcTySize < DstTySize &&
"Not a value extension") ? void (0) : __assert_fail ("SrcTySize < DstTySize && \"Not a value extension\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 562, __extension__ __PRETTY_FUNCTION__))
;
563 if (isFullSet() || isWrappedSet()) {
564 // Change into [0, 1 << src bit width)
565 APInt LowerExt(DstTySize, 0);
566 if (!Upper) // special case: [X, 0) -- not really wrapping around
567 LowerExt = Lower.zext(DstTySize);
568 return ConstantRange(std::move(LowerExt),
569 APInt::getOneBitSet(DstTySize, SrcTySize));
570 }
571
572 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
573}
574
575ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
576 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
577
578 unsigned SrcTySize = getBitWidth();
579 assert(SrcTySize < DstTySize && "Not a value extension")(static_cast <bool> (SrcTySize < DstTySize &&
"Not a value extension") ? void (0) : __assert_fail ("SrcTySize < DstTySize && \"Not a value extension\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 579, __extension__ __PRETTY_FUNCTION__))
;
580
581 // special case: [X, INT_MIN) -- not really wrapping around
582 if (Upper.isMinSignedValue())
583 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
584
585 if (isFullSet() || isSignWrappedSet()) {
586 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
587 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
588 }
589
590 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
591}
592
593ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
594 assert(getBitWidth() > DstTySize && "Not a value truncation")(static_cast <bool> (getBitWidth() > DstTySize &&
"Not a value truncation") ? void (0) : __assert_fail ("getBitWidth() > DstTySize && \"Not a value truncation\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 594, __extension__ __PRETTY_FUNCTION__))
;
595 if (isEmptySet())
596 return ConstantRange(DstTySize, /*isFullSet=*/false);
597 if (isFullSet())
598 return ConstantRange(DstTySize, /*isFullSet=*/true);
599
600 APInt LowerDiv(Lower), UpperDiv(Upper);
601 ConstantRange Union(DstTySize, /*isFullSet=*/false);
602
603 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
604 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
605 // then we do the union with [MaxValue, Upper)
606 if (isWrappedSet()) {
607 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
608 // truncated range.
609 if (Upper.getActiveBits() > DstTySize ||
610 Upper.countTrailingOnes() == DstTySize)
611 return ConstantRange(DstTySize, /*isFullSet=*/true);
612
613 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
614 UpperDiv.setAllBits();
615
616 // Union covers the MaxValue case, so return if the remaining range is just
617 // MaxValue(DstTy).
618 if (LowerDiv == UpperDiv)
619 return Union;
620 }
621
622 // Chop off the most significant bits that are past the destination bitwidth.
623 if (LowerDiv.getActiveBits() > DstTySize) {
624 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
625 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
626 LowerDiv -= Adjust;
627 UpperDiv -= Adjust;
628 }
629
630 unsigned UpperDivWidth = UpperDiv.getActiveBits();
631 if (UpperDivWidth <= DstTySize)
632 return ConstantRange(LowerDiv.trunc(DstTySize),
633 UpperDiv.trunc(DstTySize)).unionWith(Union);
634
635 // The truncated value wraps around. Check if we can do better than fullset.
636 if (UpperDivWidth == DstTySize + 1) {
637 // Clear the MSB so that UpperDiv wraps around.
638 UpperDiv.clearBit(DstTySize);
639 if (UpperDiv.ult(LowerDiv))
640 return ConstantRange(LowerDiv.trunc(DstTySize),
641 UpperDiv.trunc(DstTySize)).unionWith(Union);
642 }
643
644 return ConstantRange(DstTySize, /*isFullSet=*/true);
645}
646
647ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
648 unsigned SrcTySize = getBitWidth();
649 if (SrcTySize > DstTySize)
650 return truncate(DstTySize);
651 if (SrcTySize < DstTySize)
652 return zeroExtend(DstTySize);
653 return *this;
654}
655
656ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
657 unsigned SrcTySize = getBitWidth();
658 if (SrcTySize > DstTySize)
659 return truncate(DstTySize);
660 if (SrcTySize < DstTySize)
661 return signExtend(DstTySize);
662 return *this;
663}
664
665ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
666 const ConstantRange &Other) const {
667 assert(BinOp >= Instruction::BinaryOpsBegin &&(static_cast <bool> (BinOp >= Instruction::BinaryOpsBegin
&& BinOp < Instruction::BinaryOpsEnd && "Binary operators only!"
) ? void (0) : __assert_fail ("BinOp >= Instruction::BinaryOpsBegin && BinOp < Instruction::BinaryOpsEnd && \"Binary operators only!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 668, __extension__ __PRETTY_FUNCTION__))
668 BinOp < Instruction::BinaryOpsEnd && "Binary operators only!")(static_cast <bool> (BinOp >= Instruction::BinaryOpsBegin
&& BinOp < Instruction::BinaryOpsEnd && "Binary operators only!"
) ? void (0) : __assert_fail ("BinOp >= Instruction::BinaryOpsBegin && BinOp < Instruction::BinaryOpsEnd && \"Binary operators only!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 668, __extension__ __PRETTY_FUNCTION__))
;
669
670 switch (BinOp) {
671 case Instruction::Add:
672 return add(Other);
673 case Instruction::Sub:
674 return sub(Other);
675 case Instruction::Mul:
676 return multiply(Other);
677 case Instruction::UDiv:
678 return udiv(Other);
679 case Instruction::Shl:
680 return shl(Other);
681 case Instruction::LShr:
682 return lshr(Other);
683 case Instruction::AShr:
684 return ashr(Other);
685 case Instruction::And:
686 return binaryAnd(Other);
687 case Instruction::Or:
688 return binaryOr(Other);
689 // Note: floating point operations applied to abstract ranges are just
690 // ideal integer operations with a lossy representation
691 case Instruction::FAdd:
692 return add(Other);
693 case Instruction::FSub:
694 return sub(Other);
695 case Instruction::FMul:
696 return multiply(Other);
697 default:
698 // Conservatively return full set.
699 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
700 }
701}
702
703ConstantRange
704ConstantRange::add(const ConstantRange &Other) const {
705 if (isEmptySet() || Other.isEmptySet())
706 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
707 if (isFullSet() || Other.isFullSet())
708 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
709
710 APInt NewLower = getLower() + Other.getLower();
711 APInt NewUpper = getUpper() + Other.getUpper() - 1;
712 if (NewLower == NewUpper)
713 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
714
715 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
716 if (X.isSizeStrictlySmallerThan(*this) ||
717 X.isSizeStrictlySmallerThan(Other))
718 // We've wrapped, therefore, full set.
719 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
720 return X;
721}
722
723ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const {
724 // Calculate the subset of this range such that "X + Other" is
725 // guaranteed not to wrap (overflow) for all X in this subset.
726 // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are
727 // passing a single element range.
728 auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add,
729 ConstantRange(Other),
730 OverflowingBinaryOperator::NoSignedWrap);
731 auto NSWConstrainedRange = intersectWith(NSWRange);
732
733 return NSWConstrainedRange.add(ConstantRange(Other));
734}
735
736ConstantRange
737ConstantRange::sub(const ConstantRange &Other) const {
738 if (isEmptySet() || Other.isEmptySet())
739 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
740 if (isFullSet() || Other.isFullSet())
741 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
742
743 APInt NewLower = getLower() - Other.getUpper() + 1;
744 APInt NewUpper = getUpper() - Other.getLower();
745 if (NewLower == NewUpper)
746 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
747
748 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
749 if (X.isSizeStrictlySmallerThan(*this) ||
750 X.isSizeStrictlySmallerThan(Other))
751 // We've wrapped, therefore, full set.
752 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
753 return X;
754}
755
756ConstantRange
757ConstantRange::multiply(const ConstantRange &Other) const {
758 // TODO: If either operand is a single element and the multiply is known to
759 // be non-wrapping, round the result min and max value to the appropriate
760 // multiple of that element. If wrapping is possible, at least adjust the
761 // range according to the greatest power-of-two factor of the single element.
762
763 if (isEmptySet() || Other.isEmptySet())
764 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
765
766 // Multiplication is signedness-independent. However different ranges can be
767 // obtained depending on how the input ranges are treated. These different
768 // ranges are all conservatively correct, but one might be better than the
769 // other. We calculate two ranges; one treating the inputs as unsigned
770 // and the other signed, then return the smallest of these ranges.
771
772 // Unsigned range first.
773 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
774 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
775 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
776 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
777
778 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
779 this_max * Other_max + 1);
780 ConstantRange UR = Result_zext.truncate(getBitWidth());
781
782 // If the unsigned range doesn't wrap, and isn't negative then it's a range
783 // from one positive number to another which is as good as we can generate.
784 // In this case, skip the extra work of generating signed ranges which aren't
785 // going to be better than this range.
786 if (!UR.isWrappedSet() &&
787 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
788 return UR;
789
790 // Now the signed range. Because we could be dealing with negative numbers
791 // here, the lower bound is the smallest of the cartesian product of the
792 // lower and upper ranges; for example:
793 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
794 // Similarly for the upper bound, swapping min for max.
795
796 this_min = getSignedMin().sext(getBitWidth() * 2);
797 this_max = getSignedMax().sext(getBitWidth() * 2);
798 Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
799 Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
800
801 auto L = {this_min * Other_min, this_min * Other_max,
802 this_max * Other_min, this_max * Other_max};
803 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
804 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
805 ConstantRange SR = Result_sext.truncate(getBitWidth());
806
807 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
808}
809
810ConstantRange
811ConstantRange::smax(const ConstantRange &Other) const {
812 // X smax Y is: range(smax(X_smin, Y_smin),
813 // smax(X_smax, Y_smax))
814 if (isEmptySet() || Other.isEmptySet())
815 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
816 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
817 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
818 if (NewU == NewL)
819 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
820 return ConstantRange(std::move(NewL), std::move(NewU));
821}
822
823ConstantRange
824ConstantRange::umax(const ConstantRange &Other) const {
825 // X umax Y is: range(umax(X_umin, Y_umin),
826 // umax(X_umax, Y_umax))
827 if (isEmptySet() || Other.isEmptySet())
828 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
829 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
830 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
831 if (NewU == NewL)
832 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
833 return ConstantRange(std::move(NewL), std::move(NewU));
834}
835
836ConstantRange
837ConstantRange::smin(const ConstantRange &Other) const {
838 // X smin Y is: range(smin(X_smin, Y_smin),
839 // smin(X_smax, Y_smax))
840 if (isEmptySet() || Other.isEmptySet())
841 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
842 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
843 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
844 if (NewU == NewL)
845 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
846 return ConstantRange(std::move(NewL), std::move(NewU));
847}
848
849ConstantRange
850ConstantRange::umin(const ConstantRange &Other) const {
851 // X umin Y is: range(umin(X_umin, Y_umin),
852 // umin(X_umax, Y_umax))
853 if (isEmptySet() || Other.isEmptySet())
854 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
855 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
856 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
857 if (NewU == NewL)
858 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
859 return ConstantRange(std::move(NewL), std::move(NewU));
860}
861
862ConstantRange
863ConstantRange::udiv(const ConstantRange &RHS) const {
864 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
865 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
866 if (RHS.isFullSet())
867 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
868
869 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
870
871 APInt RHS_umin = RHS.getUnsignedMin();
872 if (RHS_umin.isNullValue()) {
873 // We want the lowest value in RHS excluding zero. Usually that would be 1
874 // except for a range in the form of [X, 1) in which case it would be X.
875 if (RHS.getUpper() == 1)
876 RHS_umin = RHS.getLower();
877 else
878 RHS_umin = 1;
879 }
880
881 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
882
883 // If the LHS is Full and the RHS is a wrapped interval containing 1 then
884 // this could occur.
885 if (Lower == Upper)
886 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
887
888 return ConstantRange(std::move(Lower), std::move(Upper));
889}
890
891ConstantRange
892ConstantRange::binaryAnd(const ConstantRange &Other) const {
893 if (isEmptySet() || Other.isEmptySet())
894 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
895
896 // TODO: replace this with something less conservative
897
898 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
899 if (umin.isAllOnesValue())
900 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
901 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
902}
903
904ConstantRange
905ConstantRange::binaryOr(const ConstantRange &Other) const {
906 if (isEmptySet() || Other.isEmptySet())
907 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
908
909 // TODO: replace this with something less conservative
910
911 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
912 if (umax.isNullValue())
913 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
914 return ConstantRange(std::move(umax), APInt::getNullValue(getBitWidth()));
915}
916
917ConstantRange
918ConstantRange::shl(const ConstantRange &Other) const {
919 if (isEmptySet() || Other.isEmptySet())
920 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
921
922 APInt max = getUnsignedMax();
923 APInt Other_umax = Other.getUnsignedMax();
924
925 // there's overflow!
926 if (Other_umax.uge(max.countLeadingZeros()))
927 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
928
929 // FIXME: implement the other tricky cases
930
931 APInt min = getUnsignedMin();
932 min <<= Other.getUnsignedMin();
933 max <<= Other_umax;
934
935 return ConstantRange(std::move(min), std::move(max) + 1);
936}
937
938ConstantRange
939ConstantRange::lshr(const ConstantRange &Other) const {
940 if (isEmptySet() || Other.isEmptySet())
941 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
942
943 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
944 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
945 if (min == max)
946 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
947
948 return ConstantRange(std::move(min), std::move(max));
949}
950
951ConstantRange
952ConstantRange::ashr(const ConstantRange &Other) const {
953 if (isEmptySet() || Other.isEmptySet())
954 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
955
956 // May straddle zero, so handle both positive and negative cases.
957 // 'PosMax' is the upper bound of the result of the ashr
958 // operation, when Upper of the LHS of ashr is a non-negative.
959 // number. Since ashr of a non-negative number will result in a
960 // smaller number, the Upper value of LHS is shifted right with
961 // the minimum value of 'Other' instead of the maximum value.
962 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
963
964 // 'PosMin' is the lower bound of the result of the ashr
965 // operation, when Lower of the LHS is a non-negative number.
966 // Since ashr of a non-negative number will result in a smaller
967 // number, the Lower value of LHS is shifted right with the
968 // maximum value of 'Other'.
969 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
970
971 // 'NegMax' is the upper bound of the result of the ashr
972 // operation, when Upper of the LHS of ashr is a negative number.
973 // Since 'ashr' of a negative number will result in a bigger
974 // number, the Upper value of LHS is shifted right with the
975 // maximum value of 'Other'.
976 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
977
978 // 'NegMin' is the lower bound of the result of the ashr
979 // operation, when Lower of the LHS of ashr is a negative number.
980 // Since 'ashr' of a negative number will result in a bigger
981 // number, the Lower value of LHS is shifted right with the
982 // minimum value of 'Other'.
983 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
984
985 APInt max, min;
986 if (getSignedMin().isNonNegative()) {
987 // Upper and Lower of LHS are non-negative.
988 min = PosMin;
989 max = PosMax;
990 } else if (getSignedMax().isNegative()) {
991 // Upper and Lower of LHS are negative.
992 min = NegMin;
993 max = NegMax;
994 } else {
995 // Upper is non-negative and Lower is negative.
996 min = NegMin;
997 max = PosMax;
998 }
999 if (min == max)
1000 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
1001
1002 return ConstantRange(std::move(min), std::move(max));
1003}
1004
1005ConstantRange ConstantRange::inverse() const {
1006 if (isFullSet())
1007 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
1008 if (isEmptySet())
1009 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
1010 return ConstantRange(Upper, Lower);
1011}
1012
1013void ConstantRange::print(raw_ostream &OS) const {
1014 if (isFullSet())
1015 OS << "full-set";
1016 else if (isEmptySet())
1017 OS << "empty-set";
1018 else
1019 OS << "[" << Lower << "," << Upper << ")";
1020}
1021
1022#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1023LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void ConstantRange::dump() const {
1024 print(dbgs());
1025}
1026#endif
1027
1028ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1029 const unsigned NumRanges = Ranges.getNumOperands() / 2;
1030 assert(NumRanges >= 1 && "Must have at least one range!")(static_cast <bool> (NumRanges >= 1 && "Must have at least one range!"
) ? void (0) : __assert_fail ("NumRanges >= 1 && \"Must have at least one range!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 1030, __extension__ __PRETTY_FUNCTION__))
;
1031 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs")(static_cast <bool> (Ranges.getNumOperands() % 2 == 0 &&
"Must be a sequence of pairs") ? void (0) : __assert_fail ("Ranges.getNumOperands() % 2 == 0 && \"Must be a sequence of pairs\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/IR/ConstantRange.cpp"
, 1031, __extension__ __PRETTY_FUNCTION__))
;
1032
1033 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1034 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1035
1036 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1037
1038 for (unsigned i = 1; i < NumRanges; ++i) {
1
Assuming 'i' is < 'NumRanges'
2
Loop condition is true. Entering loop body
1039 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1040 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1041
1042 // Note: unionWith will potentially create a range that contains values not
1043 // contained in any of the original N ranges.
1044 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3
Calling 'ConstantRange::unionWith'
1045 }
1046
1047 return CR;
1048}

/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34
35class APInt;
36
37inline APInt operator-(APInt);
38
39//===----------------------------------------------------------------------===//
40// APInt Class
41//===----------------------------------------------------------------------===//
42
43/// \brief Class for arbitrary precision integers.
44///
45/// APInt is a functional replacement for common case unsigned integer type like
46/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49/// and methods to manipulate integer values of any bit-width. It supports both
50/// the typical integer arithmetic and comparison operations as well as bitwise
51/// manipulation.
52///
53/// The class has several invariants worth noting:
54/// * All bit, byte, and word positions are zero-based.
55/// * Once the bit width is set, it doesn't change except by the Truncate,
56/// SignExtend, or ZeroExtend operations.
57/// * All binary operators must be on APInt instances of the same bit width.
58/// Attempting to use these operators on instances with different bit
59/// widths will yield an assertion.
60/// * The value is stored canonically as an unsigned value. For operations
61/// where it makes a difference, there are both signed and unsigned variants
62/// of the operation. For example, sdiv and udiv. However, because the bit
63/// widths must be the same, operations such as Mul and Add produce the same
64/// results regardless of whether the values are interpreted as signed or
65/// not.
66/// * In general, the class tries to follow the style of computation that LLVM
67/// uses in its IR. This simplifies its use for LLVM.
68///
69class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
70public:
71 typedef uint64_t WordType;
72
73 /// This enum is used to hold the constants we needed for APInt.
74 enum : unsigned {
75 /// Byte size of a word.
76 APINT_WORD_SIZE = sizeof(WordType),
77 /// Bits in a word.
78 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
79 };
80
81 static const WordType WORD_MAX = ~WordType(0);
82
83private:
84 /// This union is used to store the integer value. When the
85 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
86 union {
87 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
88 uint64_t *pVal; ///< Used to store the >64 bits integer value.
89 } U;
90
91 unsigned BitWidth; ///< The number of bits in this APInt.
92
93 friend struct DenseMapAPIntKeyInfo;
94
95 friend class APSInt;
96
97 /// \brief Fast internal constructor
98 ///
99 /// This constructor is used only internally for speed of construction of
100 /// temporaries. It is unsafe for general use so it is not public.
101 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
102 U.pVal = val;
103 }
104
105 /// \brief Determine if this APInt just has one word to store value.
106 ///
107 /// \returns true if the number of bits <= 64, false otherwise.
108 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
109
110 /// \brief Determine which word a bit is in.
111 ///
112 /// \returns the word position for the specified bit position.
113 static unsigned whichWord(unsigned bitPosition) {
114 return bitPosition / APINT_BITS_PER_WORD;
115 }
116
117 /// \brief Determine which bit in a word a bit is in.
118 ///
119 /// \returns the bit position in a word for the specified bit position
120 /// in the APInt.
121 static unsigned whichBit(unsigned bitPosition) {
122 return bitPosition % APINT_BITS_PER_WORD;
123 }
124
125 /// \brief Get a single bit mask.
126 ///
127 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
128 /// This method generates and returns a uint64_t (word) mask for a single
129 /// bit at a specific bit position. This is used to mask the bit in the
130 /// corresponding word.
131 static uint64_t maskBit(unsigned bitPosition) {
132 return 1ULL << whichBit(bitPosition);
133 }
134
135 /// \brief Clear unused high order bits
136 ///
137 /// This method is used internally to clear the top "N" bits in the high order
138 /// word that are not used by the APInt. This is needed after the most
139 /// significant word is assigned a value to ensure that those bits are
140 /// zero'd out.
141 APInt &clearUnusedBits() {
142 // Compute how many bits are used in the final word
143 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
144
145 // Mask out the high bits.
146 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
147 if (isSingleWord())
148 U.VAL &= mask;
149 else
150 U.pVal[getNumWords() - 1] &= mask;
151 return *this;
152 }
153
154 /// \brief Get the word corresponding to a bit position
155 /// \returns the corresponding word for the specified bit position.
156 uint64_t getWord(unsigned bitPosition) const {
157 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
158 }
159
160 /// Utility method to change the bit width of this APInt to new bit width,
161 /// allocating and/or deallocating as necessary. There is no guarantee on the
162 /// value of any bits upon return. Caller should populate the bits after.
163 void reallocate(unsigned NewBitWidth);
164
165 /// \brief Convert a char array into an APInt
166 ///
167 /// \param radix 2, 8, 10, 16, or 36
168 /// Converts a string into a number. The string must be non-empty
169 /// and well-formed as a number of the given base. The bit-width
170 /// must be sufficient to hold the result.
171 ///
172 /// This is used by the constructors that take string arguments.
173 ///
174 /// StringRef::getAsInteger is superficially similar but (1) does
175 /// not assume that the string is well-formed and (2) grows the
176 /// result to hold the input.
177 void fromString(unsigned numBits, StringRef str, uint8_t radix);
178
179 /// \brief An internal division function for dividing APInts.
180 ///
181 /// This is used by the toString method to divide by the radix. It simply
182 /// provides a more convenient form of divide for internal use since KnuthDiv
183 /// has specific constraints on its inputs. If those constraints are not met
184 /// then it provides a simpler form of divide.
185 static void divide(const WordType *LHS, unsigned lhsWords,
186 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
187 WordType *Remainder);
188
189 /// out-of-line slow case for inline constructor
190 void initSlowCase(uint64_t val, bool isSigned);
191
192 /// shared code between two array constructors
193 void initFromArray(ArrayRef<uint64_t> array);
194
195 /// out-of-line slow case for inline copy constructor
196 void initSlowCase(const APInt &that);
197
198 /// out-of-line slow case for shl
199 void shlSlowCase(unsigned ShiftAmt);
200
201 /// out-of-line slow case for lshr.
202 void lshrSlowCase(unsigned ShiftAmt);
203
204 /// out-of-line slow case for ashr.
205 void ashrSlowCase(unsigned ShiftAmt);
206
207 /// out-of-line slow case for operator=
208 void AssignSlowCase(const APInt &RHS);
209
210 /// out-of-line slow case for operator==
211 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
212
213 /// out-of-line slow case for countLeadingZeros
214 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
215
216 /// out-of-line slow case for countLeadingOnes.
217 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
218
219 /// out-of-line slow case for countTrailingZeros.
220 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
221
222 /// out-of-line slow case for countTrailingOnes
223 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
224
225 /// out-of-line slow case for countPopulation
226 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
227
228 /// out-of-line slow case for intersects.
229 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
230
231 /// out-of-line slow case for isSubsetOf.
232 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
233
234 /// out-of-line slow case for setBits.
235 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
236
237 /// out-of-line slow case for flipAllBits.
238 void flipAllBitsSlowCase();
239
240 /// out-of-line slow case for operator&=.
241 void AndAssignSlowCase(const APInt& RHS);
242
243 /// out-of-line slow case for operator|=.
244 void OrAssignSlowCase(const APInt& RHS);
245
246 /// out-of-line slow case for operator^=.
247 void XorAssignSlowCase(const APInt& RHS);
248
249 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
250 /// to, or greater than RHS.
251 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
252
253 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
254 /// to, or greater than RHS.
255 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
256
257public:
258 /// \name Constructors
259 /// @{
260
261 /// \brief Create a new APInt of numBits width, initialized as val.
262 ///
263 /// If isSigned is true then val is treated as if it were a signed value
264 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
265 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
266 /// the range of val are zero filled).
267 ///
268 /// \param numBits the bit width of the constructed APInt
269 /// \param val the initial value of the APInt
270 /// \param isSigned how to treat signedness of val
271 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
272 : BitWidth(numBits) {
273 assert(BitWidth && "bitwidth too small")(static_cast <bool> (BitWidth && "bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 273, __extension__ __PRETTY_FUNCTION__))
;
274 if (isSingleWord()) {
275 U.VAL = val;
276 clearUnusedBits();
277 } else {
278 initSlowCase(val, isSigned);
279 }
280 }
281
282 /// \brief Construct an APInt of numBits width, initialized as bigVal[].
283 ///
284 /// Note that bigVal.size() can be smaller or larger than the corresponding
285 /// bit width but any extraneous bits will be dropped.
286 ///
287 /// \param numBits the bit width of the constructed APInt
288 /// \param bigVal a sequence of words to form the initial value of the APInt
289 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
290
291 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
292 /// deprecated because this constructor is prone to ambiguity with the
293 /// APInt(unsigned, uint64_t, bool) constructor.
294 ///
295 /// If this overload is ever deleted, care should be taken to prevent calls
296 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
297 /// constructor.
298 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
299
300 /// \brief Construct an APInt from a string representation.
301 ///
302 /// This constructor interprets the string \p str in the given radix. The
303 /// interpretation stops when the first character that is not suitable for the
304 /// radix is encountered, or the end of the string. Acceptable radix values
305 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
306 /// string to require more bits than numBits.
307 ///
308 /// \param numBits the bit width of the constructed APInt
309 /// \param str the string to be interpreted
310 /// \param radix the radix to use for the conversion
311 APInt(unsigned numBits, StringRef str, uint8_t radix);
312
313 /// Simply makes *this a copy of that.
314 /// @brief Copy Constructor.
315 APInt(const APInt &that) : BitWidth(that.BitWidth) {
316 if (isSingleWord())
317 U.VAL = that.U.VAL;
318 else
319 initSlowCase(that);
320 }
321
322 /// \brief Move Constructor.
323 APInt(APInt &&that) : BitWidth(that.BitWidth) {
17
Assigned value is garbage or undefined
324 memcpy(&U, &that.U, sizeof(U));
325 that.BitWidth = 0;
326 }
327
328 /// \brief Destructor.
329 ~APInt() {
330 if (needsCleanup())
331 delete[] U.pVal;
332 }
333
334 /// \brief Default constructor that creates an uninteresting APInt
335 /// representing a 1-bit zero value.
336 ///
337 /// This is useful for object deserialization (pair this with the static
338 /// method Read).
339 explicit APInt() : BitWidth(1) { U.VAL = 0; }
340
341 /// \brief Returns whether this instance allocated memory.
342 bool needsCleanup() const { return !isSingleWord(); }
343
344 /// Used to insert APInt objects, or objects that contain APInt objects, into
345 /// FoldingSets.
346 void Profile(FoldingSetNodeID &id) const;
347
348 /// @}
349 /// \name Value Tests
350 /// @{
351
352 /// \brief Determine sign of this APInt.
353 ///
354 /// This tests the high bit of this APInt to determine if it is set.
355 ///
356 /// \returns true if this APInt is negative, false otherwise
357 bool isNegative() const { return (*this)[BitWidth - 1]; }
358
359 /// \brief Determine if this APInt Value is non-negative (>= 0)
360 ///
361 /// This tests the high bit of the APInt to determine if it is unset.
362 bool isNonNegative() const { return !isNegative(); }
363
364 /// \brief Determine if sign bit of this APInt is set.
365 ///
366 /// This tests the high bit of this APInt to determine if it is set.
367 ///
368 /// \returns true if this APInt has its sign bit set, false otherwise.
369 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
370
371 /// \brief Determine if sign bit of this APInt is clear.
372 ///
373 /// This tests the high bit of this APInt to determine if it is clear.
374 ///
375 /// \returns true if this APInt has its sign bit clear, false otherwise.
376 bool isSignBitClear() const { return !isSignBitSet(); }
377
378 /// \brief Determine if this APInt Value is positive.
379 ///
380 /// This tests if the value of this APInt is positive (> 0). Note
381 /// that 0 is not a positive value.
382 ///
383 /// \returns true if this APInt is positive.
384 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
385
386 /// \brief Determine if all bits are set
387 ///
388 /// This checks to see if the value has all bits of the APInt are set or not.
389 bool isAllOnesValue() const {
390 if (isSingleWord())
391 return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
392 return countTrailingOnesSlowCase() == BitWidth;
393 }
394
395 /// \brief Determine if all bits are clear
396 ///
397 /// This checks to see if the value has all bits of the APInt are clear or
398 /// not.
399 bool isNullValue() const { return !*this; }
400
401 /// \brief Determine if this is a value of 1.
402 ///
403 /// This checks to see if the value of this APInt is one.
404 bool isOneValue() const {
405 if (isSingleWord())
406 return U.VAL == 1;
407 return countLeadingZerosSlowCase() == BitWidth - 1;
408 }
409
410 /// \brief Determine if this is the largest unsigned value.
411 ///
412 /// This checks to see if the value of this APInt is the maximum unsigned
413 /// value for the APInt's bit width.
414 bool isMaxValue() const { return isAllOnesValue(); }
415
416 /// \brief Determine if this is the largest signed value.
417 ///
418 /// This checks to see if the value of this APInt is the maximum signed
419 /// value for the APInt's bit width.
420 bool isMaxSignedValue() const {
421 if (isSingleWord())
422 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
423 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
424 }
425
426 /// \brief Determine if this is the smallest unsigned value.
427 ///
428 /// This checks to see if the value of this APInt is the minimum unsigned
429 /// value for the APInt's bit width.
430 bool isMinValue() const { return isNullValue(); }
431
432 /// \brief Determine if this is the smallest signed value.
433 ///
434 /// This checks to see if the value of this APInt is the minimum signed
435 /// value for the APInt's bit width.
436 bool isMinSignedValue() const {
437 if (isSingleWord())
438 return U.VAL == (WordType(1) << (BitWidth - 1));
439 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
440 }
441
442 /// \brief Check if this APInt has an N-bits unsigned integer value.
443 bool isIntN(unsigned N) const {
444 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 444, __extension__ __PRETTY_FUNCTION__))
;
445 return getActiveBits() <= N;
446 }
447
448 /// \brief Check if this APInt has an N-bits signed integer value.
449 bool isSignedIntN(unsigned N) const {
450 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 450, __extension__ __PRETTY_FUNCTION__))
;
451 return getMinSignedBits() <= N;
452 }
453
454 /// \brief Check if this APInt's value is a power of two greater than zero.
455 ///
456 /// \returns true if the argument APInt value is a power of two > 0.
457 bool isPowerOf2() const {
458 if (isSingleWord())
459 return isPowerOf2_64(U.VAL);
460 return countPopulationSlowCase() == 1;
461 }
462
463 /// \brief Check if the APInt's value is returned by getSignMask.
464 ///
465 /// \returns true if this is the value returned by getSignMask.
466 bool isSignMask() const { return isMinSignedValue(); }
467
468 /// \brief Convert APInt to a boolean value.
469 ///
470 /// This converts the APInt to a boolean value as a test against zero.
471 bool getBoolValue() const { return !!*this; }
472
473 /// If this value is smaller than the specified limit, return it, otherwise
474 /// return the limit value. This causes the value to saturate to the limit.
475 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
476 return ugt(Limit) ? Limit : getZExtValue();
477 }
478
479 /// \brief Check if the APInt consists of a repeated bit pattern.
480 ///
481 /// e.g. 0x01010101 satisfies isSplat(8).
482 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483 /// width without remainder.
484 bool isSplat(unsigned SplatSizeInBits) const;
485
486 /// \returns true if this APInt value is a sequence of \param numBits ones
487 /// starting at the least significant bit with the remainder zero.
488 bool isMask(unsigned numBits) const {
489 assert(numBits != 0 && "numBits must be non-zero")(static_cast <bool> (numBits != 0 && "numBits must be non-zero"
) ? void (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 489, __extension__ __PRETTY_FUNCTION__))
;
490 assert(numBits <= BitWidth && "numBits out of range")(static_cast <bool> (numBits <= BitWidth && "numBits out of range"
) ? void (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 if (isSingleWord())
492 return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
493 unsigned Ones = countTrailingOnesSlowCase();
494 return (numBits == Ones) &&
495 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
496 }
497
498 /// \returns true if this APInt is a non-empty sequence of ones starting at
499 /// the least significant bit with the remainder zero.
500 /// Ex. isMask(0x0000FFFFU) == true.
501 bool isMask() const {
502 if (isSingleWord())
503 return isMask_64(U.VAL);
504 unsigned Ones = countTrailingOnesSlowCase();
505 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
506 }
507
508 /// \brief Return true if this APInt value contains a sequence of ones with
509 /// the remainder zero.
510 bool isShiftedMask() const {
511 if (isSingleWord())
512 return isShiftedMask_64(U.VAL);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
516 }
517
518 /// @}
519 /// \name Value Generators
520 /// @{
521
522 /// \brief Gets maximum unsigned value of APInt for specific bit width.
523 static APInt getMaxValue(unsigned numBits) {
524 return getAllOnesValue(numBits);
525 }
526
527 /// \brief Gets maximum signed value of APInt for a specific bit width.
528 static APInt getSignedMaxValue(unsigned numBits) {
529 APInt API = getAllOnesValue(numBits);
530 API.clearBit(numBits - 1);
531 return API;
532 }
533
534 /// \brief Gets minimum unsigned value of APInt for a specific bit width.
535 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
536
537 /// \brief Gets minimum signed value of APInt for a specific bit width.
538 static APInt getSignedMinValue(unsigned numBits) {
539 APInt API(numBits, 0);
540 API.setBit(numBits - 1);
541 return API;
542 }
543
544 /// \brief Get the SignMask for a specific bit width.
545 ///
546 /// This is just a wrapper function of getSignedMinValue(), and it helps code
547 /// readability when we want to get a SignMask.
548 static APInt getSignMask(unsigned BitWidth) {
549 return getSignedMinValue(BitWidth);
550 }
551
552 /// \brief Get the all-ones value.
553 ///
554 /// \returns the all-ones value for an APInt of the specified bit-width.
555 static APInt getAllOnesValue(unsigned numBits) {
556 return APInt(numBits, WORD_MAX, true);
557 }
558
559 /// \brief Get the '0' value.
560 ///
561 /// \returns the '0' value for an APInt of the specified bit-width.
562 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
563
564 /// \brief Compute an APInt containing numBits highbits from this APInt.
565 ///
566 /// Get an APInt with the same BitWidth as this APInt, just zero mask
567 /// the low bits and right shift to the least significant bit.
568 ///
569 /// \returns the high "numBits" bits of this APInt.
570 APInt getHiBits(unsigned numBits) const;
571
572 /// \brief Compute an APInt containing numBits lowbits from this APInt.
573 ///
574 /// Get an APInt with the same BitWidth as this APInt, just zero mask
575 /// the high bits.
576 ///
577 /// \returns the low "numBits" bits of this APInt.
578 APInt getLoBits(unsigned numBits) const;
579
580 /// \brief Return an APInt with exactly one bit set in the result.
581 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
582 APInt Res(numBits, 0);
583 Res.setBit(BitNo);
584 return Res;
585 }
586
587 /// \brief Get a value with a block of bits set.
588 ///
589 /// Constructs an APInt value that has a contiguous range of bits set. The
590 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
591 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
592 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
593 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
594 ///
595 /// \param numBits the intended bit width of the result
596 /// \param loBit the index of the lowest bit set.
597 /// \param hiBit the index of the highest bit set.
598 ///
599 /// \returns An APInt value with the requested bits set.
600 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
601 APInt Res(numBits, 0);
602 Res.setBits(loBit, hiBit);
603 return Res;
604 }
605
606 /// \brief Get a value with upper bits starting at loBit set.
607 ///
608 /// Constructs an APInt value that has a contiguous range of bits set. The
609 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
610 /// bits will be zero. For example, with parameters(32, 12) you would get
611 /// 0xFFFFF000.
612 ///
613 /// \param numBits the intended bit width of the result
614 /// \param loBit the index of the lowest bit to set.
615 ///
616 /// \returns An APInt value with the requested bits set.
617 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
618 APInt Res(numBits, 0);
619 Res.setBitsFrom(loBit);
620 return Res;
621 }
622
623 /// \brief Get a value with high bits set
624 ///
625 /// Constructs an APInt value that has the top hiBitsSet bits set.
626 ///
627 /// \param numBits the bitwidth of the result
628 /// \param hiBitsSet the number of high-order bits set in the result.
629 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
630 APInt Res(numBits, 0);
631 Res.setHighBits(hiBitsSet);
632 return Res;
633 }
634
635 /// \brief Get a value with low bits set
636 ///
637 /// Constructs an APInt value that has the bottom loBitsSet bits set.
638 ///
639 /// \param numBits the bitwidth of the result
640 /// \param loBitsSet the number of low-order bits set in the result.
641 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
642 APInt Res(numBits, 0);
643 Res.setLowBits(loBitsSet);
644 return Res;
645 }
646
647 /// \brief Return a value containing V broadcasted over NewLen bits.
648 static APInt getSplat(unsigned NewLen, const APInt &V);
649
650 /// \brief Determine if two APInts have the same value, after zero-extending
651 /// one of them (if needed!) to ensure that the bit-widths match.
652 static bool isSameValue(const APInt &I1, const APInt &I2) {
653 if (I1.getBitWidth() == I2.getBitWidth())
654 return I1 == I2;
655
656 if (I1.getBitWidth() > I2.getBitWidth())
657 return I1 == I2.zext(I1.getBitWidth());
658
659 return I1.zext(I2.getBitWidth()) == I2;
660 }
661
662 /// \brief Overload to compute a hash_code for an APInt value.
663 friend hash_code hash_value(const APInt &Arg);
664
665 /// This function returns a pointer to the internal storage of the APInt.
666 /// This is useful for writing out the APInt in binary form without any
667 /// conversions.
668 const uint64_t *getRawData() const {
669 if (isSingleWord())
670 return &U.VAL;
671 return &U.pVal[0];
672 }
673
674 /// @}
675 /// \name Unary Operators
676 /// @{
677
678 /// \brief Postfix increment operator.
679 ///
680 /// Increments *this by 1.
681 ///
682 /// \returns a new APInt value representing the original value of *this.
683 const APInt operator++(int) {
684 APInt API(*this);
685 ++(*this);
686 return API;
687 }
688
689 /// \brief Prefix increment operator.
690 ///
691 /// \returns *this incremented by one
692 APInt &operator++();
693
694 /// \brief Postfix decrement operator.
695 ///
696 /// Decrements *this by 1.
697 ///
698 /// \returns a new APInt value representing the original value of *this.
699 const APInt operator--(int) {
700 APInt API(*this);
701 --(*this);
702 return API;
703 }
704
705 /// \brief Prefix decrement operator.
706 ///
707 /// \returns *this decremented by one.
708 APInt &operator--();
709
710 /// \brief Logical negation operator.
711 ///
712 /// Performs logical negation operation on this APInt.
713 ///
714 /// \returns true if *this is zero, false otherwise.
715 bool operator!() const {
716 if (isSingleWord())
717 return U.VAL == 0;
718 return countLeadingZerosSlowCase() == BitWidth;
719 }
720
721 /// @}
722 /// \name Assignment Operators
723 /// @{
724
725 /// \brief Copy assignment operator.
726 ///
727 /// \returns *this after assignment of RHS.
728 APInt &operator=(const APInt &RHS) {
729 // If the bitwidths are the same, we can avoid mucking with memory
730 if (isSingleWord() && RHS.isSingleWord()) {
731 U.VAL = RHS.U.VAL;
732 BitWidth = RHS.BitWidth;
733 return clearUnusedBits();
734 }
735
736 AssignSlowCase(RHS);
737 return *this;
738 }
739
740 /// @brief Move assignment operator.
741 APInt &operator=(APInt &&that) {
742 assert(this != &that && "Self-move not supported")(static_cast <bool> (this != &that && "Self-move not supported"
) ? void (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 742, __extension__ __PRETTY_FUNCTION__))
;
743 if (!isSingleWord())
744 delete[] U.pVal;
745
746 // Use memcpy so that type based alias analysis sees both VAL and pVal
747 // as modified.
748 memcpy(&U, &that.U, sizeof(U));
749
750 BitWidth = that.BitWidth;
751 that.BitWidth = 0;
752
753 return *this;
754 }
755
756 /// \brief Assignment operator.
757 ///
758 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
759 /// the bit width, the excess bits are truncated. If the bit width is larger
760 /// than 64, the value is zero filled in the unspecified high order bits.
761 ///
762 /// \returns *this after assignment of RHS value.
763 APInt &operator=(uint64_t RHS) {
764 if (isSingleWord()) {
765 U.VAL = RHS;
766 clearUnusedBits();
767 } else {
768 U.pVal[0] = RHS;
769 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
770 }
771 return *this;
772 }
773
774 /// \brief Bitwise AND assignment operator.
775 ///
776 /// Performs a bitwise AND operation on this APInt and RHS. The result is
777 /// assigned to *this.
778 ///
779 /// \returns *this after ANDing with RHS.
780 APInt &operator&=(const APInt &RHS) {
781 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 781, __extension__ __PRETTY_FUNCTION__))
;
782 if (isSingleWord())
783 U.VAL &= RHS.U.VAL;
784 else
785 AndAssignSlowCase(RHS);
786 return *this;
787 }
788
789 /// \brief Bitwise AND assignment operator.
790 ///
791 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
792 /// logically zero-extended or truncated to match the bit-width of
793 /// the LHS.
794 APInt &operator&=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL &= RHS;
797 return *this;
798 }
799 U.pVal[0] &= RHS;
800 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// \brief Bitwise OR assignment operator.
805 ///
806 /// Performs a bitwise OR operation on this APInt and RHS. The result is
807 /// assigned *this;
808 ///
809 /// \returns *this after ORing with RHS.
810 APInt &operator|=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 811, __extension__ __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL |= RHS.U.VAL;
814 else
815 OrAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// \brief Bitwise OR assignment operator.
820 ///
821 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator|=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL |= RHS;
827 clearUnusedBits();
828 } else {
829 U.pVal[0] |= RHS;
830 }
831 return *this;
832 }
833
834 /// \brief Bitwise XOR assignment operator.
835 ///
836 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
837 /// assigned to *this.
838 ///
839 /// \returns *this after XORing with RHS.
840 APInt &operator^=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 841, __extension__ __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL ^= RHS.U.VAL;
844 else
845 XorAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// \brief Bitwise XOR assignment operator.
850 ///
851 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator^=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL ^= RHS;
857 clearUnusedBits();
858 } else {
859 U.pVal[0] ^= RHS;
860 }
861 return *this;
862 }
863
864 /// \brief Multiplication assignment operator.
865 ///
866 /// Multiplies this APInt by RHS and assigns the result to *this.
867 ///
868 /// \returns *this
869 APInt &operator*=(const APInt &RHS);
870 APInt &operator*=(uint64_t RHS);
871
872 /// \brief Addition assignment operator.
873 ///
874 /// Adds RHS to *this and assigns the result to *this.
875 ///
876 /// \returns *this
877 APInt &operator+=(const APInt &RHS);
878 APInt &operator+=(uint64_t RHS);
879
880 /// \brief Subtraction assignment operator.
881 ///
882 /// Subtracts RHS from *this and assigns the result to *this.
883 ///
884 /// \returns *this
885 APInt &operator-=(const APInt &RHS);
886 APInt &operator-=(uint64_t RHS);
887
888 /// \brief Left-shift assignment function.
889 ///
890 /// Shifts *this left by shiftAmt and assigns the result to *this.
891 ///
892 /// \returns *this after shifting left by ShiftAmt
893 APInt &operator<<=(unsigned ShiftAmt) {
894 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 894, __extension__ __PRETTY_FUNCTION__))
;
895 if (isSingleWord()) {
896 if (ShiftAmt == BitWidth)
897 U.VAL = 0;
898 else
899 U.VAL <<= ShiftAmt;
900 return clearUnusedBits();
901 }
902 shlSlowCase(ShiftAmt);
903 return *this;
904 }
905
906 /// \brief Left-shift assignment function.
907 ///
908 /// Shifts *this left by shiftAmt and assigns the result to *this.
909 ///
910 /// \returns *this after shifting left by ShiftAmt
911 APInt &operator<<=(const APInt &ShiftAmt);
912
913 /// @}
914 /// \name Binary Operators
915 /// @{
916
917 /// \brief Multiplication operator.
918 ///
919 /// Multiplies this APInt by RHS and returns the result.
920 APInt operator*(const APInt &RHS) const;
921
922 /// \brief Left logical shift operator.
923 ///
924 /// Shifts this APInt left by \p Bits and returns the result.
925 APInt operator<<(unsigned Bits) const { return shl(Bits); }
926
927 /// \brief Left logical shift operator.
928 ///
929 /// Shifts this APInt left by \p Bits and returns the result.
930 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
931
932 /// \brief Arithmetic right-shift function.
933 ///
934 /// Arithmetic right-shift this APInt by shiftAmt.
935 APInt ashr(unsigned ShiftAmt) const {
936 APInt R(*this);
937 R.ashrInPlace(ShiftAmt);
938 return R;
939 }
940
941 /// Arithmetic right-shift this APInt by ShiftAmt in place.
942 void ashrInPlace(unsigned ShiftAmt) {
943 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 943, __extension__ __PRETTY_FUNCTION__))
;
944 if (isSingleWord()) {
945 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
946 if (ShiftAmt == BitWidth)
947 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
948 else
949 U.VAL = SExtVAL >> ShiftAmt;
950 clearUnusedBits();
951 return;
952 }
953 ashrSlowCase(ShiftAmt);
954 }
955
956 /// \brief Logical right-shift function.
957 ///
958 /// Logical right-shift this APInt by shiftAmt.
959 APInt lshr(unsigned shiftAmt) const {
960 APInt R(*this);
961 R.lshrInPlace(shiftAmt);
962 return R;
963 }
964
965 /// Logical right-shift this APInt by ShiftAmt in place.
966 void lshrInPlace(unsigned ShiftAmt) {
967 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 967, __extension__ __PRETTY_FUNCTION__))
;
968 if (isSingleWord()) {
969 if (ShiftAmt == BitWidth)
970 U.VAL = 0;
971 else
972 U.VAL >>= ShiftAmt;
973 return;
974 }
975 lshrSlowCase(ShiftAmt);
976 }
977
978 /// \brief Left-shift function.
979 ///
980 /// Left-shift this APInt by shiftAmt.
981 APInt shl(unsigned shiftAmt) const {
982 APInt R(*this);
983 R <<= shiftAmt;
984 return R;
985 }
986
987 /// \brief Rotate left by rotateAmt.
988 APInt rotl(unsigned rotateAmt) const;
989
990 /// \brief Rotate right by rotateAmt.
991 APInt rotr(unsigned rotateAmt) const;
992
993 /// \brief Arithmetic right-shift function.
994 ///
995 /// Arithmetic right-shift this APInt by shiftAmt.
996 APInt ashr(const APInt &ShiftAmt) const {
997 APInt R(*this);
998 R.ashrInPlace(ShiftAmt);
999 return R;
1000 }
1001
1002 /// Arithmetic right-shift this APInt by shiftAmt in place.
1003 void ashrInPlace(const APInt &shiftAmt);
1004
1005 /// \brief Logical right-shift function.
1006 ///
1007 /// Logical right-shift this APInt by shiftAmt.
1008 APInt lshr(const APInt &ShiftAmt) const {
1009 APInt R(*this);
1010 R.lshrInPlace(ShiftAmt);
1011 return R;
1012 }
1013
1014 /// Logical right-shift this APInt by ShiftAmt in place.
1015 void lshrInPlace(const APInt &ShiftAmt);
1016
1017 /// \brief Left-shift function.
1018 ///
1019 /// Left-shift this APInt by shiftAmt.
1020 APInt shl(const APInt &ShiftAmt) const {
1021 APInt R(*this);
1022 R <<= ShiftAmt;
1023 return R;
1024 }
1025
1026 /// \brief Rotate left by rotateAmt.
1027 APInt rotl(const APInt &rotateAmt) const;
1028
1029 /// \brief Rotate right by rotateAmt.
1030 APInt rotr(const APInt &rotateAmt) const;
1031
1032 /// \brief Unsigned division operation.
1033 ///
1034 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1035 /// RHS are treated as unsigned quantities for purposes of this division.
1036 ///
1037 /// \returns a new APInt value containing the division result
1038 APInt udiv(const APInt &RHS) const;
1039 APInt udiv(uint64_t RHS) const;
1040
1041 /// \brief Signed division function for APInt.
1042 ///
1043 /// Signed divide this APInt by APInt RHS.
1044 APInt sdiv(const APInt &RHS) const;
1045 APInt sdiv(int64_t RHS) const;
1046
1047 /// \brief Unsigned remainder operation.
1048 ///
1049 /// Perform an unsigned remainder operation on this APInt with RHS being the
1050 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1051 /// of this operation. Note that this is a true remainder operation and not a
1052 /// modulo operation because the sign follows the sign of the dividend which
1053 /// is *this.
1054 ///
1055 /// \returns a new APInt value containing the remainder result
1056 APInt urem(const APInt &RHS) const;
1057 uint64_t urem(uint64_t RHS) const;
1058
1059 /// \brief Function for signed remainder operation.
1060 ///
1061 /// Signed remainder operation on APInt.
1062 APInt srem(const APInt &RHS) const;
1063 int64_t srem(int64_t RHS) const;
1064
1065 /// \brief Dual division/remainder interface.
1066 ///
1067 /// Sometimes it is convenient to divide two APInt values and obtain both the
1068 /// quotient and remainder. This function does both operations in the same
1069 /// computation making it a little more efficient. The pair of input arguments
1070 /// may overlap with the pair of output arguments. It is safe to call
1071 /// udivrem(X, Y, X, Y), for example.
1072 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1073 APInt &Remainder);
1074 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1075 uint64_t &Remainder);
1076
1077 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1078 APInt &Remainder);
1079 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1080 int64_t &Remainder);
1081
1082 // Operations that return overflow indicators.
1083 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1084 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1085 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1086 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1087 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1088 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1089 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1090 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1091 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1092
1093 /// \brief Array-indexing support.
1094 ///
1095 /// \returns the bit value at bitPosition
1096 bool operator[](unsigned bitPosition) const {
1097 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")(static_cast <bool> (bitPosition < getBitWidth() &&
"Bit position out of bounds!") ? void (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1097, __extension__ __PRETTY_FUNCTION__))
;
1098 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1099 }
1100
1101 /// @}
1102 /// \name Comparison Operators
1103 /// @{
1104
1105 /// \brief Equality operator.
1106 ///
1107 /// Compares this APInt with RHS for the validity of the equality
1108 /// relationship.
1109 bool operator==(const APInt &RHS) const {
1110 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Comparison requires equal bit widths") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1110, __extension__ __PRETTY_FUNCTION__))
;
1111 if (isSingleWord())
1112 return U.VAL == RHS.U.VAL;
1113 return EqualSlowCase(RHS);
1114 }
1115
1116 /// \brief Equality operator.
1117 ///
1118 /// Compares this APInt with a uint64_t for the validity of the equality
1119 /// relationship.
1120 ///
1121 /// \returns true if *this == Val
1122 bool operator==(uint64_t Val) const {
1123 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1124 }
1125
1126 /// \brief Equality comparison.
1127 ///
1128 /// Compares this APInt with RHS for the validity of the equality
1129 /// relationship.
1130 ///
1131 /// \returns true if *this == Val
1132 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1133
1134 /// \brief Inequality operator.
1135 ///
1136 /// Compares this APInt with RHS for the validity of the inequality
1137 /// relationship.
1138 ///
1139 /// \returns true if *this != Val
1140 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1141
1142 /// \brief Inequality operator.
1143 ///
1144 /// Compares this APInt with a uint64_t for the validity of the inequality
1145 /// relationship.
1146 ///
1147 /// \returns true if *this != Val
1148 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1149
1150 /// \brief Inequality comparison
1151 ///
1152 /// Compares this APInt with RHS for the validity of the inequality
1153 /// relationship.
1154 ///
1155 /// \returns true if *this != Val
1156 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1157
1158 /// \brief Unsigned less than comparison
1159 ///
1160 /// Regards both *this and RHS as unsigned quantities and compares them for
1161 /// the validity of the less-than relationship.
1162 ///
1163 /// \returns true if *this < RHS when both are considered unsigned.
1164 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1165
1166 /// \brief Unsigned less than comparison
1167 ///
1168 /// Regards both *this as an unsigned quantity and compares it with RHS for
1169 /// the validity of the less-than relationship.
1170 ///
1171 /// \returns true if *this < RHS when considered unsigned.
1172 bool ult(uint64_t RHS) const {
1173 // Only need to check active bits if not a single word.
1174 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1175 }
1176
1177 /// \brief Signed less than comparison
1178 ///
1179 /// Regards both *this and RHS as signed quantities and compares them for
1180 /// validity of the less-than relationship.
1181 ///
1182 /// \returns true if *this < RHS when both are considered signed.
1183 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1184
1185 /// \brief Signed less than comparison
1186 ///
1187 /// Regards both *this as a signed quantity and compares it with RHS for
1188 /// the validity of the less-than relationship.
1189 ///
1190 /// \returns true if *this < RHS when considered signed.
1191 bool slt(int64_t RHS) const {
1192 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1193 : getSExtValue() < RHS;
1194 }
1195
1196 /// \brief Unsigned less or equal comparison
1197 ///
1198 /// Regards both *this and RHS as unsigned quantities and compares them for
1199 /// validity of the less-or-equal relationship.
1200 ///
1201 /// \returns true if *this <= RHS when both are considered unsigned.
1202 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1203
1204 /// \brief Unsigned less or equal comparison
1205 ///
1206 /// Regards both *this as an unsigned quantity and compares it with RHS for
1207 /// the validity of the less-or-equal relationship.
1208 ///
1209 /// \returns true if *this <= RHS when considered unsigned.
1210 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1211
1212 /// \brief Signed less or equal comparison
1213 ///
1214 /// Regards both *this and RHS as signed quantities and compares them for
1215 /// validity of the less-or-equal relationship.
1216 ///
1217 /// \returns true if *this <= RHS when both are considered signed.
1218 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1219
1220 /// \brief Signed less or equal comparison
1221 ///
1222 /// Regards both *this as a signed quantity and compares it with RHS for the
1223 /// validity of the less-or-equal relationship.
1224 ///
1225 /// \returns true if *this <= RHS when considered signed.
1226 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1227
1228 /// \brief Unsigned greather than comparison
1229 ///
1230 /// Regards both *this and RHS as unsigned quantities and compares them for
1231 /// the validity of the greater-than relationship.
1232 ///
1233 /// \returns true if *this > RHS when both are considered unsigned.
1234 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1235
1236 /// \brief Unsigned greater than comparison
1237 ///
1238 /// Regards both *this as an unsigned quantity and compares it with RHS for
1239 /// the validity of the greater-than relationship.
1240 ///
1241 /// \returns true if *this > RHS when considered unsigned.
1242 bool ugt(uint64_t RHS) const {
1243 // Only need to check active bits if not a single word.
1244 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1245 }
1246
1247 /// \brief Signed greather than comparison
1248 ///
1249 /// Regards both *this and RHS as signed quantities and compares them for the
1250 /// validity of the greater-than relationship.
1251 ///
1252 /// \returns true if *this > RHS when both are considered signed.
1253 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1254
1255 /// \brief Signed greater than comparison
1256 ///
1257 /// Regards both *this as a signed quantity and compares it with RHS for
1258 /// the validity of the greater-than relationship.
1259 ///
1260 /// \returns true if *this > RHS when considered signed.
1261 bool sgt(int64_t RHS) const {
1262 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1263 : getSExtValue() > RHS;
1264 }
1265
1266 /// \brief Unsigned greater or equal comparison
1267 ///
1268 /// Regards both *this and RHS as unsigned quantities and compares them for
1269 /// validity of the greater-or-equal relationship.
1270 ///
1271 /// \returns true if *this >= RHS when both are considered unsigned.
1272 bool uge(const APInt &RHS) const { return !ult(RHS); }
1273
1274 /// \brief Unsigned greater or equal comparison
1275 ///
1276 /// Regards both *this as an unsigned quantity and compares it with RHS for
1277 /// the validity of the greater-or-equal relationship.
1278 ///
1279 /// \returns true if *this >= RHS when considered unsigned.
1280 bool uge(uint64_t RHS) const { return !ult(RHS); }
1281
1282 /// \brief Signed greater or equal comparison
1283 ///
1284 /// Regards both *this and RHS as signed quantities and compares them for
1285 /// validity of the greater-or-equal relationship.
1286 ///
1287 /// \returns true if *this >= RHS when both are considered signed.
1288 bool sge(const APInt &RHS) const { return !slt(RHS); }
1289
1290 /// \brief Signed greater or equal comparison
1291 ///
1292 /// Regards both *this as a signed quantity and compares it with RHS for
1293 /// the validity of the greater-or-equal relationship.
1294 ///
1295 /// \returns true if *this >= RHS when considered signed.
1296 bool sge(int64_t RHS) const { return !slt(RHS); }
1297
1298 /// This operation tests if there are any pairs of corresponding bits
1299 /// between this APInt and RHS that are both set.
1300 bool intersects(const APInt &RHS) const {
1301 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1301, __extension__ __PRETTY_FUNCTION__))
;
1302 if (isSingleWord())
1303 return (U.VAL & RHS.U.VAL) != 0;
1304 return intersectsSlowCase(RHS);
1305 }
1306
1307 /// This operation checks that all bits set in this APInt are also set in RHS.
1308 bool isSubsetOf(const APInt &RHS) const {
1309 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1309, __extension__ __PRETTY_FUNCTION__))
;
1310 if (isSingleWord())
1311 return (U.VAL & ~RHS.U.VAL) == 0;
1312 return isSubsetOfSlowCase(RHS);
1313 }
1314
1315 /// @}
1316 /// \name Resizing Operators
1317 /// @{
1318
1319 /// \brief Truncate to new width.
1320 ///
1321 /// Truncate the APInt to a specified width. It is an error to specify a width
1322 /// that is greater than or equal to the current width.
1323 APInt trunc(unsigned width) const;
1324
1325 /// \brief Sign extend to a new width.
1326 ///
1327 /// This operation sign extends the APInt to a new width. If the high order
1328 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1329 /// It is an error to specify a width that is less than or equal to the
1330 /// current width.
1331 APInt sext(unsigned width) const;
1332
1333 /// \brief Zero extend to a new width.
1334 ///
1335 /// This operation zero extends the APInt to a new width. The high order bits
1336 /// are filled with 0 bits. It is an error to specify a width that is less
1337 /// than or equal to the current width.
1338 APInt zext(unsigned width) const;
1339
1340 /// \brief Sign extend or truncate to width
1341 ///
1342 /// Make this APInt have the bit width given by \p width. The value is sign
1343 /// extended, truncated, or left alone to make it that width.
1344 APInt sextOrTrunc(unsigned width) const;
1345
1346 /// \brief Zero extend or truncate to width
1347 ///
1348 /// Make this APInt have the bit width given by \p width. The value is zero
1349 /// extended, truncated, or left alone to make it that width.
1350 APInt zextOrTrunc(unsigned width) const;
1351
1352 /// \brief Sign extend or truncate to width
1353 ///
1354 /// Make this APInt have the bit width given by \p width. The value is sign
1355 /// extended, or left alone to make it that width.
1356 APInt sextOrSelf(unsigned width) const;
1357
1358 /// \brief Zero extend or truncate to width
1359 ///
1360 /// Make this APInt have the bit width given by \p width. The value is zero
1361 /// extended, or left alone to make it that width.
1362 APInt zextOrSelf(unsigned width) const;
1363
1364 /// @}
1365 /// \name Bit Manipulation Operators
1366 /// @{
1367
1368 /// \brief Set every bit to 1.
1369 void setAllBits() {
1370 if (isSingleWord())
1371 U.VAL = WORD_MAX;
1372 else
1373 // Set all the bits in all the words.
1374 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1375 // Clear the unused ones
1376 clearUnusedBits();
1377 }
1378
1379 /// \brief Set a given bit to 1.
1380 ///
1381 /// Set the given bit to 1 whose position is given as "bitPosition".
1382 void setBit(unsigned BitPosition) {
1383 assert(BitPosition <= BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition <= BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1383, __extension__ __PRETTY_FUNCTION__))
;
1384 WordType Mask = maskBit(BitPosition);
1385 if (isSingleWord())
1386 U.VAL |= Mask;
1387 else
1388 U.pVal[whichWord(BitPosition)] |= Mask;
1389 }
1390
1391 /// Set the sign bit to 1.
1392 void setSignBit() {
1393 setBit(BitWidth - 1);
1394 }
1395
1396 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1397 void setBits(unsigned loBit, unsigned hiBit) {
1398 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1398, __extension__ __PRETTY_FUNCTION__))
;
1399 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1399, __extension__ __PRETTY_FUNCTION__))
;
1400 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1400, __extension__ __PRETTY_FUNCTION__))
;
1401 if (loBit == hiBit)
1402 return;
1403 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1404 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1405 mask <<= loBit;
1406 if (isSingleWord())
1407 U.VAL |= mask;
1408 else
1409 U.pVal[0] |= mask;
1410 } else {
1411 setBitsSlowCase(loBit, hiBit);
1412 }
1413 }
1414
1415 /// Set the top bits starting from loBit.
1416 void setBitsFrom(unsigned loBit) {
1417 return setBits(loBit, BitWidth);
1418 }
1419
1420 /// Set the bottom loBits bits.
1421 void setLowBits(unsigned loBits) {
1422 return setBits(0, loBits);
1423 }
1424
1425 /// Set the top hiBits bits.
1426 void setHighBits(unsigned hiBits) {
1427 return setBits(BitWidth - hiBits, BitWidth);
1428 }
1429
1430 /// \brief Set every bit to 0.
1431 void clearAllBits() {
1432 if (isSingleWord())
1433 U.VAL = 0;
1434 else
1435 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1436 }
1437
1438 /// \brief Set a given bit to 0.
1439 ///
1440 /// Set the given bit to 0 whose position is given as "bitPosition".
1441 void clearBit(unsigned BitPosition) {
1442 assert(BitPosition <= BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition <= BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1442, __extension__ __PRETTY_FUNCTION__))
;
1443 WordType Mask = ~maskBit(BitPosition);
1444 if (isSingleWord())
1445 U.VAL &= Mask;
1446 else
1447 U.pVal[whichWord(BitPosition)] &= Mask;
1448 }
1449
1450 /// Set the sign bit to 0.
1451 void clearSignBit() {
1452 clearBit(BitWidth - 1);
1453 }
1454
1455 /// \brief Toggle every bit to its opposite value.
1456 void flipAllBits() {
1457 if (isSingleWord()) {
1458 U.VAL ^= WORD_MAX;
1459 clearUnusedBits();
1460 } else {
1461 flipAllBitsSlowCase();
1462 }
1463 }
1464
1465 /// \brief Toggles a given bit to its opposite value.
1466 ///
1467 /// Toggle a given bit to its opposite value whose position is given
1468 /// as "bitPosition".
1469 void flipBit(unsigned bitPosition);
1470
1471 /// Negate this APInt in place.
1472 void negate() {
1473 flipAllBits();
1474 ++(*this);
1475 }
1476
1477 /// Insert the bits from a smaller APInt starting at bitPosition.
1478 void insertBits(const APInt &SubBits, unsigned bitPosition);
1479
1480 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1481 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1482
1483 /// @}
1484 /// \name Value Characterization Functions
1485 /// @{
1486
1487 /// \brief Return the number of bits in the APInt.
1488 unsigned getBitWidth() const { return BitWidth; }
1489
1490 /// \brief Get the number of words.
1491 ///
1492 /// Here one word's bitwidth equals to that of uint64_t.
1493 ///
1494 /// \returns the number of words to hold the integer value of this APInt.
1495 unsigned getNumWords() const { return getNumWords(BitWidth); }
1496
1497 /// \brief Get the number of words.
1498 ///
1499 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1500 ///
1501 /// \returns the number of words to hold the integer value with a given bit
1502 /// width.
1503 static unsigned getNumWords(unsigned BitWidth) {
1504 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1505 }
1506
1507 /// \brief Compute the number of active bits in the value
1508 ///
1509 /// This function returns the number of active bits which is defined as the
1510 /// bit width minus the number of leading zeros. This is used in several
1511 /// computations to see how "wide" the value is.
1512 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1513
1514 /// \brief Compute the number of active words in the value of this APInt.
1515 ///
1516 /// This is used in conjunction with getActiveData to extract the raw value of
1517 /// the APInt.
1518 unsigned getActiveWords() const {
1519 unsigned numActiveBits = getActiveBits();
1520 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1521 }
1522
1523 /// \brief Get the minimum bit size for this signed APInt
1524 ///
1525 /// Computes the minimum bit width for this APInt while considering it to be a
1526 /// signed (and probably negative) value. If the value is not negative, this
1527 /// function returns the same value as getActiveBits()+1. Otherwise, it
1528 /// returns the smallest bit width that will retain the negative value. For
1529 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1530 /// for -1, this function will always return 1.
1531 unsigned getMinSignedBits() const {
1532 if (isNegative())
1533 return BitWidth - countLeadingOnes() + 1;
1534 return getActiveBits() + 1;
1535 }
1536
1537 /// \brief Get zero extended value
1538 ///
1539 /// This method attempts to return the value of this APInt as a zero extended
1540 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1541 /// uint64_t. Otherwise an assertion will result.
1542 uint64_t getZExtValue() const {
1543 if (isSingleWord())
1544 return U.VAL;
1545 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")(static_cast <bool> (getActiveBits() <= 64 &&
"Too many bits for uint64_t") ? void (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1545, __extension__ __PRETTY_FUNCTION__))
;
1546 return U.pVal[0];
1547 }
1548
1549 /// \brief Get sign extended value
1550 ///
1551 /// This method attempts to return the value of this APInt as a sign extended
1552 /// int64_t. The bit width must be <= 64 or the value must fit within an
1553 /// int64_t. Otherwise an assertion will result.
1554 int64_t getSExtValue() const {
1555 if (isSingleWord())
1556 return SignExtend64(U.VAL, BitWidth);
1557 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")(static_cast <bool> (getMinSignedBits() <= 64 &&
"Too many bits for int64_t") ? void (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1557, __extension__ __PRETTY_FUNCTION__))
;
1558 return int64_t(U.pVal[0]);
1559 }
1560
1561 /// \brief Get bits required for string value.
1562 ///
1563 /// This method determines how many bits are required to hold the APInt
1564 /// equivalent of the string given by \p str.
1565 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1566
1567 /// \brief The APInt version of the countLeadingZeros functions in
1568 /// MathExtras.h.
1569 ///
1570 /// It counts the number of zeros from the most significant bit to the first
1571 /// one bit.
1572 ///
1573 /// \returns BitWidth if the value is zero, otherwise returns the number of
1574 /// zeros from the most significant bit to the first one bits.
1575 unsigned countLeadingZeros() const {
1576 if (isSingleWord()) {
1577 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1578 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1579 }
1580 return countLeadingZerosSlowCase();
1581 }
1582
1583 /// \brief Count the number of leading one bits.
1584 ///
1585 /// This function is an APInt version of the countLeadingOnes
1586 /// functions in MathExtras.h. It counts the number of ones from the most
1587 /// significant bit to the first zero bit.
1588 ///
1589 /// \returns 0 if the high order bit is not set, otherwise returns the number
1590 /// of 1 bits from the most significant to the least
1591 unsigned countLeadingOnes() const {
1592 if (isSingleWord())
1593 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1594 return countLeadingOnesSlowCase();
1595 }
1596
1597 /// Computes the number of leading bits of this APInt that are equal to its
1598 /// sign bit.
1599 unsigned getNumSignBits() const {
1600 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1601 }
1602
1603 /// \brief Count the number of trailing zero bits.
1604 ///
1605 /// This function is an APInt version of the countTrailingZeros
1606 /// functions in MathExtras.h. It counts the number of zeros from the least
1607 /// significant bit to the first set bit.
1608 ///
1609 /// \returns BitWidth if the value is zero, otherwise returns the number of
1610 /// zeros from the least significant bit to the first one bit.
1611 unsigned countTrailingZeros() const {
1612 if (isSingleWord())
1613 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1614 return countTrailingZerosSlowCase();
1615 }
1616
1617 /// \brief Count the number of trailing one bits.
1618 ///
1619 /// This function is an APInt version of the countTrailingOnes
1620 /// functions in MathExtras.h. It counts the number of ones from the least
1621 /// significant bit to the first zero bit.
1622 ///
1623 /// \returns BitWidth if the value is all ones, otherwise returns the number
1624 /// of ones from the least significant bit to the first zero bit.
1625 unsigned countTrailingOnes() const {
1626 if (isSingleWord())
1627 return llvm::countTrailingOnes(U.VAL);
1628 return countTrailingOnesSlowCase();
1629 }
1630
1631 /// \brief Count the number of bits set.
1632 ///
1633 /// This function is an APInt version of the countPopulation functions
1634 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1635 ///
1636 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1637 unsigned countPopulation() const {
1638 if (isSingleWord())
1639 return llvm::countPopulation(U.VAL);
1640 return countPopulationSlowCase();
1641 }
1642
1643 /// @}
1644 /// \name Conversion Functions
1645 /// @{
1646 void print(raw_ostream &OS, bool isSigned) const;
1647
1648 /// Converts an APInt to a string and append it to Str. Str is commonly a
1649 /// SmallString.
1650 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1651 bool formatAsCLiteral = false) const;
1652
1653 /// Considers the APInt to be unsigned and converts it into a string in the
1654 /// radix given. The radix can be 2, 8, 10 16, or 36.
1655 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656 toString(Str, Radix, false, false);
1657 }
1658
1659 /// Considers the APInt to be signed and converts it into a string in the
1660 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1661 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1662 toString(Str, Radix, true, false);
1663 }
1664
1665 /// \brief Return the APInt as a std::string.
1666 ///
1667 /// Note that this is an inefficient method. It is better to pass in a
1668 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1669 /// for the string.
1670 std::string toString(unsigned Radix, bool Signed) const;
1671
1672 /// \returns a byte-swapped representation of this APInt Value.
1673 APInt byteSwap() const;
1674
1675 /// \returns the value with the bit representation reversed of this APInt
1676 /// Value.
1677 APInt reverseBits() const;
1678
1679 /// \brief Converts this APInt to a double value.
1680 double roundToDouble(bool isSigned) const;
1681
1682 /// \brief Converts this unsigned APInt to a double value.
1683 double roundToDouble() const { return roundToDouble(false); }
1684
1685 /// \brief Converts this signed APInt to a double value.
1686 double signedRoundToDouble() const { return roundToDouble(true); }
1687
1688 /// \brief Converts APInt bits to a double
1689 ///
1690 /// The conversion does not do a translation from integer to double, it just
1691 /// re-interprets the bits as a double. Note that it is valid to do this on
1692 /// any bit width. Exactly 64 bits will be translated.
1693 double bitsToDouble() const {
1694 return BitsToDouble(getWord(0));
1695 }
1696
1697 /// \brief Converts APInt bits to a double
1698 ///
1699 /// The conversion does not do a translation from integer to float, it just
1700 /// re-interprets the bits as a float. Note that it is valid to do this on
1701 /// any bit width. Exactly 32 bits will be translated.
1702 float bitsToFloat() const {
1703 return BitsToFloat(getWord(0));
1704 }
1705
1706 /// \brief Converts a double to APInt bits.
1707 ///
1708 /// The conversion does not do a translation from double to integer, it just
1709 /// re-interprets the bits of the double.
1710 static APInt doubleToBits(double V) {
1711 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1712 }
1713
1714 /// \brief Converts a float to APInt bits.
1715 ///
1716 /// The conversion does not do a translation from float to integer, it just
1717 /// re-interprets the bits of the float.
1718 static APInt floatToBits(float V) {
1719 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1720 }
1721
1722 /// @}
1723 /// \name Mathematics Operations
1724 /// @{
1725
1726 /// \returns the floor log base 2 of this APInt.
1727 unsigned logBase2() const { return getActiveBits() - 1; }
1728
1729 /// \returns the ceil log base 2 of this APInt.
1730 unsigned ceilLogBase2() const {
1731 APInt temp(*this);
1732 --temp;
1733 return temp.getActiveBits();
1734 }
1735
1736 /// \returns the nearest log base 2 of this APInt. Ties round up.
1737 ///
1738 /// NOTE: When we have a BitWidth of 1, we define:
1739 ///
1740 /// log2(0) = UINT32_MAX
1741 /// log2(1) = 0
1742 ///
1743 /// to get around any mathematical concerns resulting from
1744 /// referencing 2 in a space where 2 does no exist.
1745 unsigned nearestLogBase2() const {
1746 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1747 // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1748 // UINT32_MAX.
1749 if (BitWidth == 1)
1750 return U.VAL - 1;
1751
1752 // Handle the zero case.
1753 if (isNullValue())
1754 return UINT32_MAX(4294967295U);
1755
1756 // The non-zero case is handled by computing:
1757 //
1758 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1759 //
1760 // where x[i] is referring to the value of the ith bit of x.
1761 unsigned lg = logBase2();
1762 return lg + unsigned((*this)[lg - 1]);
1763 }
1764
1765 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1766 /// otherwise
1767 int32_t exactLogBase2() const {
1768 if (!isPowerOf2())
1769 return -1;
1770 return logBase2();
1771 }
1772
1773 /// \brief Compute the square root
1774 APInt sqrt() const;
1775
1776 /// \brief Get the absolute value;
1777 ///
1778 /// If *this is < 0 then return -(*this), otherwise *this;
1779 APInt abs() const {
1780 if (isNegative())
1781 return -(*this);
1782 return *this;
1783 }
1784
1785 /// \returns the multiplicative inverse for a given modulo.
1786 APInt multiplicativeInverse(const APInt &modulo) const;
1787
1788 /// @}
1789 /// \name Support for division by constant
1790 /// @{
1791
1792 /// Calculate the magic number for signed division by a constant.
1793 struct ms;
1794 ms magic() const;
1795
1796 /// Calculate the magic number for unsigned division by a constant.
1797 struct mu;
1798 mu magicu(unsigned LeadingZeros = 0) const;
1799
1800 /// @}
1801 /// \name Building-block Operations for APInt and APFloat
1802 /// @{
1803
1804 // These building block operations operate on a representation of arbitrary
1805 // precision, two's-complement, bignum integer values. They should be
1806 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1807 // generally a pointer to the base of an array of integer parts, representing
1808 // an unsigned bignum, and a count of how many parts there are.
1809
1810 /// Sets the least significant part of a bignum to the input value, and zeroes
1811 /// out higher parts.
1812 static void tcSet(WordType *, WordType, unsigned);
1813
1814 /// Assign one bignum to another.
1815 static void tcAssign(WordType *, const WordType *, unsigned);
1816
1817 /// Returns true if a bignum is zero, false otherwise.
1818 static bool tcIsZero(const WordType *, unsigned);
1819
1820 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1821 static int tcExtractBit(const WordType *, unsigned bit);
1822
1823 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1824 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1825 /// significant bit of DST. All high bits above srcBITS in DST are
1826 /// zero-filled.
1827 static void tcExtract(WordType *, unsigned dstCount,
1828 const WordType *, unsigned srcBits,
1829 unsigned srcLSB);
1830
1831 /// Set the given bit of a bignum. Zero-based.
1832 static void tcSetBit(WordType *, unsigned bit);
1833
1834 /// Clear the given bit of a bignum. Zero-based.
1835 static void tcClearBit(WordType *, unsigned bit);
1836
1837 /// Returns the bit number of the least or most significant set bit of a
1838 /// number. If the input number has no bits set -1U is returned.
1839 static unsigned tcLSB(const WordType *, unsigned n);
1840 static unsigned tcMSB(const WordType *parts, unsigned n);
1841
1842 /// Negate a bignum in-place.
1843 static void tcNegate(WordType *, unsigned);
1844
1845 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1846 static WordType tcAdd(WordType *, const WordType *,
1847 WordType carry, unsigned);
1848 /// DST += RHS. Returns the carry flag.
1849 static WordType tcAddPart(WordType *, WordType, unsigned);
1850
1851 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1852 static WordType tcSubtract(WordType *, const WordType *,
1853 WordType carry, unsigned);
1854 /// DST -= RHS. Returns the carry flag.
1855 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1856
1857 /// DST += SRC * MULTIPLIER + PART if add is true
1858 /// DST = SRC * MULTIPLIER + PART if add is false
1859 ///
1860 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1861 /// start at the same point, i.e. DST == SRC.
1862 ///
1863 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1864 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1865 /// result, and if all of the omitted higher parts were zero return zero,
1866 /// otherwise overflow occurred and return one.
1867 static int tcMultiplyPart(WordType *dst, const WordType *src,
1868 WordType multiplier, WordType carry,
1869 unsigned srcParts, unsigned dstParts,
1870 bool add);
1871
1872 /// DST = LHS * RHS, where DST has the same width as the operands and is
1873 /// filled with the least significant parts of the result. Returns one if
1874 /// overflow occurred, otherwise zero. DST must be disjoint from both
1875 /// operands.
1876 static int tcMultiply(WordType *, const WordType *, const WordType *,
1877 unsigned);
1878
1879 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1880 /// operands. No overflow occurs. DST must be disjoint from both operands.
1881 static void tcFullMultiply(WordType *, const WordType *,
1882 const WordType *, unsigned, unsigned);
1883
1884 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1885 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1886 /// REMAINDER to the remainder, return zero. i.e.
1887 ///
1888 /// OLD_LHS = RHS * LHS + REMAINDER
1889 ///
1890 /// SCRATCH is a bignum of the same size as the operands and result for use by
1891 /// the routine; its contents need not be initialized and are destroyed. LHS,
1892 /// REMAINDER and SCRATCH must be distinct.
1893 static int tcDivide(WordType *lhs, const WordType *rhs,
1894 WordType *remainder, WordType *scratch,
1895 unsigned parts);
1896
1897 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1898 /// restrictions on Count.
1899 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1900
1901 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1902 /// restrictions on Count.
1903 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1904
1905 /// The obvious AND, OR and XOR and complement operations.
1906 static void tcAnd(WordType *, const WordType *, unsigned);
1907 static void tcOr(WordType *, const WordType *, unsigned);
1908 static void tcXor(WordType *, const WordType *, unsigned);
1909 static void tcComplement(WordType *, unsigned);
1910
1911 /// Comparison (unsigned) of two bignums.
1912 static int tcCompare(const WordType *, const WordType *, unsigned);
1913
1914 /// Increment a bignum in-place. Return the carry flag.
1915 static WordType tcIncrement(WordType *dst, unsigned parts) {
1916 return tcAddPart(dst, 1, parts);
1917 }
1918
1919 /// Decrement a bignum in-place. Return the borrow flag.
1920 static WordType tcDecrement(WordType *dst, unsigned parts) {
1921 return tcSubtractPart(dst, 1, parts);
1922 }
1923
1924 /// Set the least significant BITS and clear the rest.
1925 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1926
1927 /// \brief debug method
1928 void dump() const;
1929
1930 /// @}
1931};
1932
1933/// Magic data for optimising signed division by a constant.
1934struct APInt::ms {
1935 APInt m; ///< magic number
1936 unsigned s; ///< shift amount
1937};
1938
1939/// Magic data for optimising unsigned division by a constant.
1940struct APInt::mu {
1941 APInt m; ///< magic number
1942 bool a; ///< add indicator
1943 unsigned s; ///< shift amount
1944};
1945
1946inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1947
1948inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1949
1950/// \brief Unary bitwise complement operator.
1951///
1952/// \returns an APInt that is the bitwise complement of \p v.
1953inline APInt operator~(APInt v) {
1954 v.flipAllBits();
1955 return v;
1956}
1957
1958inline APInt operator&(APInt a, const APInt &b) {
1959 a &= b;
1960 return a;
1961}
1962
1963inline APInt operator&(const APInt &a, APInt &&b) {
1964 b &= a;
1965 return std::move(b);
1966}
1967
1968inline APInt operator&(APInt a, uint64_t RHS) {
1969 a &= RHS;
1970 return a;
1971}
1972
1973inline APInt operator&(uint64_t LHS, APInt b) {
1974 b &= LHS;
1975 return b;
1976}
1977
1978inline APInt operator|(APInt a, const APInt &b) {
1979 a |= b;
1980 return a;
1981}
1982
1983inline APInt operator|(const APInt &a, APInt &&b) {
1984 b |= a;
1985 return std::move(b);
1986}
1987
1988inline APInt operator|(APInt a, uint64_t RHS) {
1989 a |= RHS;
1990 return a;
1991}
1992
1993inline APInt operator|(uint64_t LHS, APInt b) {
1994 b |= LHS;
1995 return b;
1996}
1997
1998inline APInt operator^(APInt a, const APInt &b) {
1999 a ^= b;
2000 return a;
2001}
2002
2003inline APInt operator^(const APInt &a, APInt &&b) {
2004 b ^= a;
2005 return std::move(b);
2006}
2007
2008inline APInt operator^(APInt a, uint64_t RHS) {
2009 a ^= RHS;
2010 return a;
2011}
2012
2013inline APInt operator^(uint64_t LHS, APInt b) {
2014 b ^= LHS;
2015 return b;
2016}
2017
2018inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2019 I.print(OS, true);
2020 return OS;
2021}
2022
2023inline APInt operator-(APInt v) {
2024 v.negate();
2025 return v;
2026}
2027
2028inline APInt operator+(APInt a, const APInt &b) {
2029 a += b;
2030 return a;
2031}
2032
2033inline APInt operator+(const APInt &a, APInt &&b) {
2034 b += a;
2035 return std::move(b);
2036}
2037
2038inline APInt operator+(APInt a, uint64_t RHS) {
2039 a += RHS;
2040 return a;
2041}
2042
2043inline APInt operator+(uint64_t LHS, APInt b) {
2044 b += LHS;
2045 return b;
2046}
2047
2048inline APInt operator-(APInt a, const APInt &b) {
2049 a -= b;
2050 return a;
2051}
2052
2053inline APInt operator-(const APInt &a, APInt &&b) {
2054 b.negate();
2055 b += a;
2056 return std::move(b);
2057}
2058
2059inline APInt operator-(APInt a, uint64_t RHS) {
2060 a -= RHS;
2061 return a;
2062}
2063
2064inline APInt operator-(uint64_t LHS, APInt b) {
2065 b.negate();
2066 b += LHS;
2067 return b;
2068}
2069
2070inline APInt operator*(APInt a, uint64_t RHS) {
2071 a *= RHS;
2072 return a;
2073}
2074
2075inline APInt operator*(uint64_t LHS, APInt b) {
2076 b *= LHS;
2077 return b;
2078}
2079
2080
2081namespace APIntOps {
2082
2083/// \brief Determine the smaller of two APInts considered to be signed.
2084inline const APInt &smin(const APInt &A, const APInt &B) {
2085 return A.slt(B) ? A : B;
2086}
2087
2088/// \brief Determine the larger of two APInts considered to be signed.
2089inline const APInt &smax(const APInt &A, const APInt &B) {
2090 return A.sgt(B) ? A : B;
2091}
2092
2093/// \brief Determine the smaller of two APInts considered to be signed.
2094inline const APInt &umin(const APInt &A, const APInt &B) {
2095 return A.ult(B) ? A : B;
2096}
2097
2098/// \brief Determine the larger of two APInts considered to be unsigned.
2099inline const APInt &umax(const APInt &A, const APInt &B) {
2100 return A.ugt(B) ? A : B;
2101}
2102
2103/// \brief Compute GCD of two unsigned APInt values.
2104///
2105/// This function returns the greatest common divisor of the two APInt values
2106/// using Stein's algorithm.
2107///
2108/// \returns the greatest common divisor of A and B.
2109APInt GreatestCommonDivisor(APInt A, APInt B);
2110
2111/// \brief Converts the given APInt to a double value.
2112///
2113/// Treats the APInt as an unsigned value for conversion purposes.
2114inline double RoundAPIntToDouble(const APInt &APIVal) {
2115 return APIVal.roundToDouble();
2116}
2117
2118/// \brief Converts the given APInt to a double value.
2119///
2120/// Treats the APInt as a signed value for conversion purposes.
2121inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2122 return APIVal.signedRoundToDouble();
2123}
2124
2125/// \brief Converts the given APInt to a float vlalue.
2126inline float RoundAPIntToFloat(const APInt &APIVal) {
2127 return float(RoundAPIntToDouble(APIVal));
2128}
2129
2130/// \brief Converts the given APInt to a float value.
2131///
2132/// Treast the APInt as a signed value for conversion purposes.
2133inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2134 return float(APIVal.signedRoundToDouble());
2135}
2136
2137/// \brief Converts the given double value into a APInt.
2138///
2139/// This function convert a double value to an APInt value.
2140APInt RoundDoubleToAPInt(double Double, unsigned width);
2141
2142/// \brief Converts a float value into a APInt.
2143///
2144/// Converts a float value into an APInt value.
2145inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2146 return RoundDoubleToAPInt(double(Float), width);
2147}
2148
2149} // End of APIntOps namespace
2150
2151// See friend declaration above. This additional declaration is required in
2152// order to compile LLVM with IBM xlC compiler.
2153hash_code hash_value(const APInt &Arg);
2154} // End of llvm namespace
2155
2156#endif