Bug Summary

File:llvm/include/llvm/CodeGen/SelectionDAGNodes.h
Warning:line 1110, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name DAGCombiner.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/CodeGen/SelectionDAG -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/CodeGen/SelectionDAG -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-14-063029-18377-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp

1//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10// both before and after the DAG is legalized.
11//
12// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13// primarily intended to handle simplification opportunities that are implicit
14// in the LLVM IR and exposed by the various codegen lowering phases.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/APFloat.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/IntervalMap.h"
23#include "llvm/ADT/None.h"
24#include "llvm/ADT/Optional.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallBitVector.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/MemoryLocation.h"
34#include "llvm/Analysis/TargetLibraryInfo.h"
35#include "llvm/Analysis/VectorUtils.h"
36#include "llvm/CodeGen/DAGCombine.h"
37#include "llvm/CodeGen/ISDOpcodes.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineMemOperand.h"
41#include "llvm/CodeGen/RuntimeLibcalls.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
44#include "llvm/CodeGen/SelectionDAGNodes.h"
45#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
46#include "llvm/CodeGen/TargetLowering.h"
47#include "llvm/CodeGen/TargetRegisterInfo.h"
48#include "llvm/CodeGen/TargetSubtargetInfo.h"
49#include "llvm/CodeGen/ValueTypes.h"
50#include "llvm/IR/Attributes.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/DerivedTypes.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CodeGen.h"
59#include "llvm/Support/CommandLine.h"
60#include "llvm/Support/Compiler.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Support/KnownBits.h"
64#include "llvm/Support/MachineValueType.h"
65#include "llvm/Support/MathExtras.h"
66#include "llvm/Support/raw_ostream.h"
67#include "llvm/Target/TargetMachine.h"
68#include "llvm/Target/TargetOptions.h"
69#include <algorithm>
70#include <cassert>
71#include <cstdint>
72#include <functional>
73#include <iterator>
74#include <string>
75#include <tuple>
76#include <utility>
77
78using namespace llvm;
79
80#define DEBUG_TYPE"dagcombine" "dagcombine"
81
82STATISTIC(NodesCombined , "Number of dag nodes combined")static llvm::Statistic NodesCombined = {"dagcombine", "NodesCombined"
, "Number of dag nodes combined"}
;
83STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created")static llvm::Statistic PreIndexedNodes = {"dagcombine", "PreIndexedNodes"
, "Number of pre-indexed nodes created"}
;
84STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created")static llvm::Statistic PostIndexedNodes = {"dagcombine", "PostIndexedNodes"
, "Number of post-indexed nodes created"}
;
85STATISTIC(OpsNarrowed , "Number of load/op/store narrowed")static llvm::Statistic OpsNarrowed = {"dagcombine", "OpsNarrowed"
, "Number of load/op/store narrowed"}
;
86STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int")static llvm::Statistic LdStFP2Int = {"dagcombine", "LdStFP2Int"
, "Number of fp load/store pairs transformed to int"}
;
87STATISTIC(SlicedLoads, "Number of load sliced")static llvm::Statistic SlicedLoads = {"dagcombine", "SlicedLoads"
, "Number of load sliced"}
;
88STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops")static llvm::Statistic NumFPLogicOpsConv = {"dagcombine", "NumFPLogicOpsConv"
, "Number of logic ops converted to fp ops"}
;
89
90static cl::opt<bool>
91CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
92 cl::desc("Enable DAG combiner's use of IR alias analysis"));
93
94static cl::opt<bool>
95UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
96 cl::desc("Enable DAG combiner's use of TBAA"));
97
98#ifndef NDEBUG
99static cl::opt<std::string>
100CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
101 cl::desc("Only use DAG-combiner alias analysis in this"
102 " function"));
103#endif
104
105/// Hidden option to stress test load slicing, i.e., when this option
106/// is enabled, load slicing bypasses most of its profitability guards.
107static cl::opt<bool>
108StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
109 cl::desc("Bypass the profitability model of load slicing"),
110 cl::init(false));
111
112static cl::opt<bool>
113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
114 cl::desc("DAG combiner may split indexing from loads"));
115
116static cl::opt<bool>
117 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
118 cl::desc("DAG combiner enable merging multiple stores "
119 "into a wider store"));
120
121static cl::opt<unsigned> TokenFactorInlineLimit(
122 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
123 cl::desc("Limit the number of operands to inline for Token Factors"));
124
125static cl::opt<unsigned> StoreMergeDependenceLimit(
126 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
127 cl::desc("Limit the number of times for the same StoreNode and RootNode "
128 "to bail out in store merging dependence check"));
129
130static cl::opt<bool> EnableReduceLoadOpStoreWidth(
131 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true),
132 cl::desc("DAG cominber enable reducing the width of load/op/store "
133 "sequence"));
134
135static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore(
136 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true),
137 cl::desc("DAG cominber enable load/<replace bytes>/store with "
138 "a narrower store"));
139
140namespace {
141
142 class DAGCombiner {
143 SelectionDAG &DAG;
144 const TargetLowering &TLI;
145 const SelectionDAGTargetInfo *STI;
146 CombineLevel Level;
147 CodeGenOpt::Level OptLevel;
148 bool LegalDAG = false;
149 bool LegalOperations = false;
150 bool LegalTypes = false;
151 bool ForCodeSize;
152 bool DisableGenericCombines;
153
154 /// Worklist of all of the nodes that need to be simplified.
155 ///
156 /// This must behave as a stack -- new nodes to process are pushed onto the
157 /// back and when processing we pop off of the back.
158 ///
159 /// The worklist will not contain duplicates but may contain null entries
160 /// due to nodes being deleted from the underlying DAG.
161 SmallVector<SDNode *, 64> Worklist;
162
163 /// Mapping from an SDNode to its position on the worklist.
164 ///
165 /// This is used to find and remove nodes from the worklist (by nulling
166 /// them) when they are deleted from the underlying DAG. It relies on
167 /// stable indices of nodes within the worklist.
168 DenseMap<SDNode *, unsigned> WorklistMap;
169 /// This records all nodes attempted to add to the worklist since we
170 /// considered a new worklist entry. As we keep do not add duplicate nodes
171 /// in the worklist, this is different from the tail of the worklist.
172 SmallSetVector<SDNode *, 32> PruningList;
173
174 /// Set of nodes which have been combined (at least once).
175 ///
176 /// This is used to allow us to reliably add any operands of a DAG node
177 /// which have not yet been combined to the worklist.
178 SmallPtrSet<SDNode *, 32> CombinedNodes;
179
180 /// Map from candidate StoreNode to the pair of RootNode and count.
181 /// The count is used to track how many times we have seen the StoreNode
182 /// with the same RootNode bail out in dependence check. If we have seen
183 /// the bail out for the same pair many times over a limit, we won't
184 /// consider the StoreNode with the same RootNode as store merging
185 /// candidate again.
186 DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
187
188 // AA - Used for DAG load/store alias analysis.
189 AliasAnalysis *AA;
190
191 /// When an instruction is simplified, add all users of the instruction to
192 /// the work lists because they might get more simplified now.
193 void AddUsersToWorklist(SDNode *N) {
194 for (SDNode *Node : N->uses())
195 AddToWorklist(Node);
196 }
197
198 /// Convenient shorthand to add a node and all of its user to the worklist.
199 void AddToWorklistWithUsers(SDNode *N) {
200 AddUsersToWorklist(N);
201 AddToWorklist(N);
202 }
203
204 // Prune potentially dangling nodes. This is called after
205 // any visit to a node, but should also be called during a visit after any
206 // failed combine which may have created a DAG node.
207 void clearAddedDanglingWorklistEntries() {
208 // Check any nodes added to the worklist to see if they are prunable.
209 while (!PruningList.empty()) {
210 auto *N = PruningList.pop_back_val();
211 if (N->use_empty())
212 recursivelyDeleteUnusedNodes(N);
213 }
214 }
215
216 SDNode *getNextWorklistEntry() {
217 // Before we do any work, remove nodes that are not in use.
218 clearAddedDanglingWorklistEntries();
219 SDNode *N = nullptr;
220 // The Worklist holds the SDNodes in order, but it may contain null
221 // entries.
222 while (!N && !Worklist.empty()) {
223 N = Worklist.pop_back_val();
224 }
225
226 if (N) {
227 bool GoodWorklistEntry = WorklistMap.erase(N);
228 (void)GoodWorklistEntry;
229 assert(GoodWorklistEntry &&((GoodWorklistEntry && "Found a worklist entry without a corresponding map entry!"
) ? static_cast<void> (0) : __assert_fail ("GoodWorklistEntry && \"Found a worklist entry without a corresponding map entry!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 230, __PRETTY_FUNCTION__))
230 "Found a worklist entry without a corresponding map entry!")((GoodWorklistEntry && "Found a worklist entry without a corresponding map entry!"
) ? static_cast<void> (0) : __assert_fail ("GoodWorklistEntry && \"Found a worklist entry without a corresponding map entry!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 230, __PRETTY_FUNCTION__))
;
231 }
232 return N;
233 }
234
235 /// Call the node-specific routine that folds each particular type of node.
236 SDValue visit(SDNode *N);
237
238 public:
239 DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
240 : DAG(D), TLI(D.getTargetLoweringInfo()),
241 STI(D.getSubtarget().getSelectionDAGInfo()),
242 Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) {
243 ForCodeSize = DAG.shouldOptForSize();
244 DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel);
245
246 MaximumLegalStoreInBits = 0;
247 // We use the minimum store size here, since that's all we can guarantee
248 // for the scalable vector types.
249 for (MVT VT : MVT::all_valuetypes())
250 if (EVT(VT).isSimple() && VT != MVT::Other &&
251 TLI.isTypeLegal(EVT(VT)) &&
252 VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits)
253 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize();
254 }
255
256 void ConsiderForPruning(SDNode *N) {
257 // Mark this for potential pruning.
258 PruningList.insert(N);
259 }
260
261 /// Add to the worklist making sure its instance is at the back (next to be
262 /// processed.)
263 void AddToWorklist(SDNode *N) {
264 assert(N->getOpcode() != ISD::DELETED_NODE &&((N->getOpcode() != ISD::DELETED_NODE && "Deleted Node added to Worklist"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() != ISD::DELETED_NODE && \"Deleted Node added to Worklist\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 265, __PRETTY_FUNCTION__))
265 "Deleted Node added to Worklist")((N->getOpcode() != ISD::DELETED_NODE && "Deleted Node added to Worklist"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() != ISD::DELETED_NODE && \"Deleted Node added to Worklist\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 265, __PRETTY_FUNCTION__))
;
266
267 // Skip handle nodes as they can't usefully be combined and confuse the
268 // zero-use deletion strategy.
269 if (N->getOpcode() == ISD::HANDLENODE)
270 return;
271
272 ConsiderForPruning(N);
273
274 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
275 Worklist.push_back(N);
276 }
277
278 /// Remove all instances of N from the worklist.
279 void removeFromWorklist(SDNode *N) {
280 CombinedNodes.erase(N);
281 PruningList.remove(N);
282 StoreRootCountMap.erase(N);
283
284 auto It = WorklistMap.find(N);
285 if (It == WorklistMap.end())
286 return; // Not in the worklist.
287
288 // Null out the entry rather than erasing it to avoid a linear operation.
289 Worklist[It->second] = nullptr;
290 WorklistMap.erase(It);
291 }
292
293 void deleteAndRecombine(SDNode *N);
294 bool recursivelyDeleteUnusedNodes(SDNode *N);
295
296 /// Replaces all uses of the results of one DAG node with new values.
297 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
298 bool AddTo = true);
299
300 /// Replaces all uses of the results of one DAG node with new values.
301 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
302 return CombineTo(N, &Res, 1, AddTo);
303 }
304
305 /// Replaces all uses of the results of one DAG node with new values.
306 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
307 bool AddTo = true) {
308 SDValue To[] = { Res0, Res1 };
309 return CombineTo(N, To, 2, AddTo);
310 }
311
312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
313
314 private:
315 unsigned MaximumLegalStoreInBits;
316
317 /// Check the specified integer node value to see if it can be simplified or
318 /// if things it uses can be simplified by bit propagation.
319 /// If so, return true.
320 bool SimplifyDemandedBits(SDValue Op) {
321 unsigned BitWidth = Op.getScalarValueSizeInBits();
322 APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
323 return SimplifyDemandedBits(Op, DemandedBits);
324 }
325
326 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
327 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
328 KnownBits Known;
329 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false))
330 return false;
331
332 // Revisit the node.
333 AddToWorklist(Op.getNode());
334
335 CommitTargetLoweringOpt(TLO);
336 return true;
337 }
338
339 /// Check the specified vector node value to see if it can be simplified or
340 /// if things it uses can be simplified as it only uses some of the
341 /// elements. If so, return true.
342 bool SimplifyDemandedVectorElts(SDValue Op) {
343 // TODO: For now just pretend it cannot be simplified.
344 if (Op.getValueType().isScalableVector())
345 return false;
346
347 unsigned NumElts = Op.getValueType().getVectorNumElements();
348 APInt DemandedElts = APInt::getAllOnesValue(NumElts);
349 return SimplifyDemandedVectorElts(Op, DemandedElts);
350 }
351
352 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
353 const APInt &DemandedElts,
354 bool AssumeSingleUse = false);
355 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
356 bool AssumeSingleUse = false);
357
358 bool CombineToPreIndexedLoadStore(SDNode *N);
359 bool CombineToPostIndexedLoadStore(SDNode *N);
360 SDValue SplitIndexingFromLoad(LoadSDNode *LD);
361 bool SliceUpLoad(SDNode *N);
362
363 // Scalars have size 0 to distinguish from singleton vectors.
364 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
365 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
366 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
367
368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
369 /// load.
370 ///
371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
373 /// \param EltNo index of the vector element to load.
374 /// \param OriginalLoad load that EVE came from to be replaced.
375 /// \returns EVE on success SDValue() on failure.
376 SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
377 SDValue EltNo,
378 LoadSDNode *OriginalLoad);
379 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
380 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
381 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
382 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
383 SDValue PromoteIntBinOp(SDValue Op);
384 SDValue PromoteIntShiftOp(SDValue Op);
385 SDValue PromoteExtend(SDValue Op);
386 bool PromoteLoad(SDValue Op);
387
388 /// Call the node-specific routine that knows how to fold each
389 /// particular type of node. If that doesn't do anything, try the
390 /// target-specific DAG combines.
391 SDValue combine(SDNode *N);
392
393 // Visitation implementation - Implement dag node combining for different
394 // node types. The semantics are as follows:
395 // Return Value:
396 // SDValue.getNode() == 0 - No change was made
397 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
398 // otherwise - N should be replaced by the returned Operand.
399 //
400 SDValue visitTokenFactor(SDNode *N);
401 SDValue visitMERGE_VALUES(SDNode *N);
402 SDValue visitADD(SDNode *N);
403 SDValue visitADDLike(SDNode *N);
404 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
405 SDValue visitSUB(SDNode *N);
406 SDValue visitADDSAT(SDNode *N);
407 SDValue visitSUBSAT(SDNode *N);
408 SDValue visitADDC(SDNode *N);
409 SDValue visitADDO(SDNode *N);
410 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
411 SDValue visitSUBC(SDNode *N);
412 SDValue visitSUBO(SDNode *N);
413 SDValue visitADDE(SDNode *N);
414 SDValue visitADDCARRY(SDNode *N);
415 SDValue visitSADDO_CARRY(SDNode *N);
416 SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
417 SDValue visitSUBE(SDNode *N);
418 SDValue visitSUBCARRY(SDNode *N);
419 SDValue visitSSUBO_CARRY(SDNode *N);
420 SDValue visitMUL(SDNode *N);
421 SDValue visitMULFIX(SDNode *N);
422 SDValue useDivRem(SDNode *N);
423 SDValue visitSDIV(SDNode *N);
424 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
425 SDValue visitUDIV(SDNode *N);
426 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
427 SDValue visitREM(SDNode *N);
428 SDValue visitMULHU(SDNode *N);
429 SDValue visitMULHS(SDNode *N);
430 SDValue visitSMUL_LOHI(SDNode *N);
431 SDValue visitUMUL_LOHI(SDNode *N);
432 SDValue visitMULO(SDNode *N);
433 SDValue visitIMINMAX(SDNode *N);
434 SDValue visitAND(SDNode *N);
435 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
436 SDValue visitOR(SDNode *N);
437 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
438 SDValue visitXOR(SDNode *N);
439 SDValue SimplifyVBinOp(SDNode *N);
440 SDValue visitSHL(SDNode *N);
441 SDValue visitSRA(SDNode *N);
442 SDValue visitSRL(SDNode *N);
443 SDValue visitFunnelShift(SDNode *N);
444 SDValue visitRotate(SDNode *N);
445 SDValue visitABS(SDNode *N);
446 SDValue visitBSWAP(SDNode *N);
447 SDValue visitBITREVERSE(SDNode *N);
448 SDValue visitCTLZ(SDNode *N);
449 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
450 SDValue visitCTTZ(SDNode *N);
451 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
452 SDValue visitCTPOP(SDNode *N);
453 SDValue visitSELECT(SDNode *N);
454 SDValue visitVSELECT(SDNode *N);
455 SDValue visitSELECT_CC(SDNode *N);
456 SDValue visitSETCC(SDNode *N);
457 SDValue visitSETCCCARRY(SDNode *N);
458 SDValue visitSIGN_EXTEND(SDNode *N);
459 SDValue visitZERO_EXTEND(SDNode *N);
460 SDValue visitANY_EXTEND(SDNode *N);
461 SDValue visitAssertExt(SDNode *N);
462 SDValue visitAssertAlign(SDNode *N);
463 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
464 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
465 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N);
466 SDValue visitTRUNCATE(SDNode *N);
467 SDValue visitBITCAST(SDNode *N);
468 SDValue visitFREEZE(SDNode *N);
469 SDValue visitBUILD_PAIR(SDNode *N);
470 SDValue visitFADD(SDNode *N);
471 SDValue visitSTRICT_FADD(SDNode *N);
472 SDValue visitFSUB(SDNode *N);
473 SDValue visitFMUL(SDNode *N);
474 SDValue visitFMA(SDNode *N);
475 SDValue visitFDIV(SDNode *N);
476 SDValue visitFREM(SDNode *N);
477 SDValue visitFSQRT(SDNode *N);
478 SDValue visitFCOPYSIGN(SDNode *N);
479 SDValue visitFPOW(SDNode *N);
480 SDValue visitSINT_TO_FP(SDNode *N);
481 SDValue visitUINT_TO_FP(SDNode *N);
482 SDValue visitFP_TO_SINT(SDNode *N);
483 SDValue visitFP_TO_UINT(SDNode *N);
484 SDValue visitFP_ROUND(SDNode *N);
485 SDValue visitFP_EXTEND(SDNode *N);
486 SDValue visitFNEG(SDNode *N);
487 SDValue visitFABS(SDNode *N);
488 SDValue visitFCEIL(SDNode *N);
489 SDValue visitFTRUNC(SDNode *N);
490 SDValue visitFFLOOR(SDNode *N);
491 SDValue visitFMINNUM(SDNode *N);
492 SDValue visitFMAXNUM(SDNode *N);
493 SDValue visitFMINIMUM(SDNode *N);
494 SDValue visitFMAXIMUM(SDNode *N);
495 SDValue visitBRCOND(SDNode *N);
496 SDValue visitBR_CC(SDNode *N);
497 SDValue visitLOAD(SDNode *N);
498
499 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
500 SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
501
502 SDValue visitSTORE(SDNode *N);
503 SDValue visitLIFETIME_END(SDNode *N);
504 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
505 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
506 SDValue visitBUILD_VECTOR(SDNode *N);
507 SDValue visitCONCAT_VECTORS(SDNode *N);
508 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
509 SDValue visitVECTOR_SHUFFLE(SDNode *N);
510 SDValue visitSCALAR_TO_VECTOR(SDNode *N);
511 SDValue visitINSERT_SUBVECTOR(SDNode *N);
512 SDValue visitMLOAD(SDNode *N);
513 SDValue visitMSTORE(SDNode *N);
514 SDValue visitMGATHER(SDNode *N);
515 SDValue visitMSCATTER(SDNode *N);
516 SDValue visitFP_TO_FP16(SDNode *N);
517 SDValue visitFP16_TO_FP(SDNode *N);
518 SDValue visitVECREDUCE(SDNode *N);
519
520 SDValue visitFADDForFMACombine(SDNode *N);
521 SDValue visitFSUBForFMACombine(SDNode *N);
522 SDValue visitFMULForFMADistributiveCombine(SDNode *N);
523
524 SDValue XformToShuffleWithZero(SDNode *N);
525 bool reassociationCanBreakAddressingModePattern(unsigned Opc,
526 const SDLoc &DL, SDValue N0,
527 SDValue N1);
528 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
529 SDValue N1);
530 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
531 SDValue N1, SDNodeFlags Flags);
532
533 SDValue visitShiftByConstant(SDNode *N);
534
535 SDValue foldSelectOfConstants(SDNode *N);
536 SDValue foldVSelectOfConstants(SDNode *N);
537 SDValue foldBinOpIntoSelect(SDNode *BO);
538 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
539 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
540 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
541 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
542 SDValue N2, SDValue N3, ISD::CondCode CC,
543 bool NotExtCompare = false);
544 SDValue convertSelectOfFPConstantsToLoadOffset(
545 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
546 ISD::CondCode CC);
547 SDValue foldSignChangeInBitcast(SDNode *N);
548 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
549 SDValue N2, SDValue N3, ISD::CondCode CC);
550 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
551 const SDLoc &DL);
552 SDValue foldSubToUSubSat(EVT DstVT, SDNode *N);
553 SDValue unfoldMaskedMerge(SDNode *N);
554 SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
555 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
556 const SDLoc &DL, bool foldBooleans);
557 SDValue rebuildSetCC(SDValue N);
558
559 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
560 SDValue &CC, bool MatchStrict = false) const;
561 bool isOneUseSetCC(SDValue N) const;
562
563 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
564 unsigned HiOp);
565 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
566 SDValue CombineExtLoad(SDNode *N);
567 SDValue CombineZExtLogicopShiftLoad(SDNode *N);
568 SDValue combineRepeatedFPDivisors(SDNode *N);
569 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
570 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
571 SDValue BuildSDIV(SDNode *N);
572 SDValue BuildSDIVPow2(SDNode *N);
573 SDValue BuildUDIV(SDNode *N);
574 SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
575 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
576 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
577 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
578 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
579 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
580 SDNodeFlags Flags, bool Reciprocal);
581 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
582 SDNodeFlags Flags, bool Reciprocal);
583 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
584 bool DemandHighBits = true);
585 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
586 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
587 SDValue InnerPos, SDValue InnerNeg,
588 unsigned PosOpcode, unsigned NegOpcode,
589 const SDLoc &DL);
590 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg,
591 SDValue InnerPos, SDValue InnerNeg,
592 unsigned PosOpcode, unsigned NegOpcode,
593 const SDLoc &DL);
594 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
595 SDValue MatchLoadCombine(SDNode *N);
596 SDValue mergeTruncStores(StoreSDNode *N);
597 SDValue ReduceLoadWidth(SDNode *N);
598 SDValue ReduceLoadOpStoreWidth(SDNode *N);
599 SDValue splitMergedValStore(StoreSDNode *ST);
600 SDValue TransformFPLoadStorePair(SDNode *N);
601 SDValue convertBuildVecZextToZext(SDNode *N);
602 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
603 SDValue reduceBuildVecTruncToBitCast(SDNode *N);
604 SDValue reduceBuildVecToShuffle(SDNode *N);
605 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
606 ArrayRef<int> VectorMask, SDValue VecIn1,
607 SDValue VecIn2, unsigned LeftIdx,
608 bool DidSplitVec);
609 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
610
611 /// Walk up chain skipping non-aliasing memory nodes,
612 /// looking for aliasing nodes and adding them to the Aliases vector.
613 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
614 SmallVectorImpl<SDValue> &Aliases);
615
616 /// Return true if there is any possibility that the two addresses overlap.
617 bool isAlias(SDNode *Op0, SDNode *Op1) const;
618
619 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
620 /// chain (aliasing node.)
621 SDValue FindBetterChain(SDNode *N, SDValue Chain);
622
623 /// Try to replace a store and any possibly adjacent stores on
624 /// consecutive chains with better chains. Return true only if St is
625 /// replaced.
626 ///
627 /// Notice that other chains may still be replaced even if the function
628 /// returns false.
629 bool findBetterNeighborChains(StoreSDNode *St);
630
631 // Helper for findBetterNeighborChains. Walk up store chain add additional
632 // chained stores that do not overlap and can be parallelized.
633 bool parallelizeChainedStores(StoreSDNode *St);
634
635 /// Holds a pointer to an LSBaseSDNode as well as information on where it
636 /// is located in a sequence of memory operations connected by a chain.
637 struct MemOpLink {
638 // Ptr to the mem node.
639 LSBaseSDNode *MemNode;
640
641 // Offset from the base ptr.
642 int64_t OffsetFromBase;
643
644 MemOpLink(LSBaseSDNode *N, int64_t Offset)
645 : MemNode(N), OffsetFromBase(Offset) {}
646 };
647
648 // Classify the origin of a stored value.
649 enum class StoreSource { Unknown, Constant, Extract, Load };
650 StoreSource getStoreSource(SDValue StoreVal) {
651 switch (StoreVal.getOpcode()) {
652 case ISD::Constant:
653 case ISD::ConstantFP:
654 return StoreSource::Constant;
655 case ISD::EXTRACT_VECTOR_ELT:
656 case ISD::EXTRACT_SUBVECTOR:
657 return StoreSource::Extract;
658 case ISD::LOAD:
659 return StoreSource::Load;
660 default:
661 return StoreSource::Unknown;
662 }
663 }
664
665 /// This is a helper function for visitMUL to check the profitability
666 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
667 /// MulNode is the original multiply, AddNode is (add x, c1),
668 /// and ConstNode is c2.
669 bool isMulAddWithConstProfitable(SDNode *MulNode,
670 SDValue &AddNode,
671 SDValue &ConstNode);
672
673 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
674 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
675 /// the type of the loaded value to be extended.
676 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
677 EVT LoadResultTy, EVT &ExtVT);
678
679 /// Helper function to calculate whether the given Load/Store can have its
680 /// width reduced to ExtVT.
681 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
682 EVT &MemVT, unsigned ShAmt = 0);
683
684 /// Used by BackwardsPropagateMask to find suitable loads.
685 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
686 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
687 ConstantSDNode *Mask, SDNode *&NodeToMask);
688 /// Attempt to propagate a given AND node back to load leaves so that they
689 /// can be combined into narrow loads.
690 bool BackwardsPropagateMask(SDNode *N);
691
692 /// Helper function for mergeConsecutiveStores which merges the component
693 /// store chains.
694 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
695 unsigned NumStores);
696
697 /// This is a helper function for mergeConsecutiveStores. When the source
698 /// elements of the consecutive stores are all constants or all extracted
699 /// vector elements, try to merge them into one larger store introducing
700 /// bitcasts if necessary. \return True if a merged store was created.
701 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
702 EVT MemVT, unsigned NumStores,
703 bool IsConstantSrc, bool UseVector,
704 bool UseTrunc);
705
706 /// This is a helper function for mergeConsecutiveStores. Stores that
707 /// potentially may be merged with St are placed in StoreNodes. RootNode is
708 /// a chain predecessor to all store candidates.
709 void getStoreMergeCandidates(StoreSDNode *St,
710 SmallVectorImpl<MemOpLink> &StoreNodes,
711 SDNode *&Root);
712
713 /// Helper function for mergeConsecutiveStores. Checks if candidate stores
714 /// have indirect dependency through their operands. RootNode is the
715 /// predecessor to all stores calculated by getStoreMergeCandidates and is
716 /// used to prune the dependency check. \return True if safe to merge.
717 bool checkMergeStoreCandidatesForDependencies(
718 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
719 SDNode *RootNode);
720
721 /// This is a helper function for mergeConsecutiveStores. Given a list of
722 /// store candidates, find the first N that are consecutive in memory.
723 /// Returns 0 if there are not at least 2 consecutive stores to try merging.
724 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
725 int64_t ElementSizeBytes) const;
726
727 /// This is a helper function for mergeConsecutiveStores. It is used for
728 /// store chains that are composed entirely of constant values.
729 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes,
730 unsigned NumConsecutiveStores,
731 EVT MemVT, SDNode *Root, bool AllowVectors);
732
733 /// This is a helper function for mergeConsecutiveStores. It is used for
734 /// store chains that are composed entirely of extracted vector elements.
735 /// When extracting multiple vector elements, try to store them in one
736 /// vector store rather than a sequence of scalar stores.
737 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes,
738 unsigned NumConsecutiveStores, EVT MemVT,
739 SDNode *Root);
740
741 /// This is a helper function for mergeConsecutiveStores. It is used for
742 /// store chains that are composed entirely of loaded values.
743 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
744 unsigned NumConsecutiveStores, EVT MemVT,
745 SDNode *Root, bool AllowVectors,
746 bool IsNonTemporalStore, bool IsNonTemporalLoad);
747
748 /// Merge consecutive store operations into a wide store.
749 /// This optimization uses wide integers or vectors when possible.
750 /// \return true if stores were merged.
751 bool mergeConsecutiveStores(StoreSDNode *St);
752
753 /// Try to transform a truncation where C is a constant:
754 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
755 ///
756 /// \p N needs to be a truncation and its first operand an AND. Other
757 /// requirements are checked by the function (e.g. that trunc is
758 /// single-use) and if missed an empty SDValue is returned.
759 SDValue distributeTruncateThroughAnd(SDNode *N);
760
761 /// Helper function to determine whether the target supports operation
762 /// given by \p Opcode for type \p VT, that is, whether the operation
763 /// is legal or custom before legalizing operations, and whether is
764 /// legal (but not custom) after legalization.
765 bool hasOperation(unsigned Opcode, EVT VT) {
766 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations);
767 }
768
769 public:
770 /// Runs the dag combiner on all nodes in the work list
771 void Run(CombineLevel AtLevel);
772
773 SelectionDAG &getDAG() const { return DAG; }
774
775 /// Returns a type large enough to hold any valid shift amount - before type
776 /// legalization these can be huge.
777 EVT getShiftAmountTy(EVT LHSTy) {
778 assert(LHSTy.isInteger() && "Shift amount is not an integer type!")((LHSTy.isInteger() && "Shift amount is not an integer type!"
) ? static_cast<void> (0) : __assert_fail ("LHSTy.isInteger() && \"Shift amount is not an integer type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 778, __PRETTY_FUNCTION__))
;
779 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
780 }
781
782 /// This method returns true if we are running before type legalization or
783 /// if the specified VT is legal.
784 bool isTypeLegal(const EVT &VT) {
785 if (!LegalTypes) return true;
786 return TLI.isTypeLegal(VT);
787 }
788
789 /// Convenience wrapper around TargetLowering::getSetCCResultType
790 EVT getSetCCResultType(EVT VT) const {
791 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
792 }
793
794 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
795 SDValue OrigLoad, SDValue ExtLoad,
796 ISD::NodeType ExtType);
797 };
798
799/// This class is a DAGUpdateListener that removes any deleted
800/// nodes from the worklist.
801class WorklistRemover : public SelectionDAG::DAGUpdateListener {
802 DAGCombiner &DC;
803
804public:
805 explicit WorklistRemover(DAGCombiner &dc)
806 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
807
808 void NodeDeleted(SDNode *N, SDNode *E) override {
809 DC.removeFromWorklist(N);
810 }
811};
812
813class WorklistInserter : public SelectionDAG::DAGUpdateListener {
814 DAGCombiner &DC;
815
816public:
817 explicit WorklistInserter(DAGCombiner &dc)
818 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
819
820 // FIXME: Ideally we could add N to the worklist, but this causes exponential
821 // compile time costs in large DAGs, e.g. Halide.
822 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
823};
824
825} // end anonymous namespace
826
827//===----------------------------------------------------------------------===//
828// TargetLowering::DAGCombinerInfo implementation
829//===----------------------------------------------------------------------===//
830
831void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
832 ((DAGCombiner*)DC)->AddToWorklist(N);
833}
834
835SDValue TargetLowering::DAGCombinerInfo::
836CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
837 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
838}
839
840SDValue TargetLowering::DAGCombinerInfo::
841CombineTo(SDNode *N, SDValue Res, bool AddTo) {
842 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
843}
844
845SDValue TargetLowering::DAGCombinerInfo::
846CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
847 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
848}
849
850bool TargetLowering::DAGCombinerInfo::
851recursivelyDeleteUnusedNodes(SDNode *N) {
852 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
853}
854
855void TargetLowering::DAGCombinerInfo::
856CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
857 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
858}
859
860//===----------------------------------------------------------------------===//
861// Helper Functions
862//===----------------------------------------------------------------------===//
863
864void DAGCombiner::deleteAndRecombine(SDNode *N) {
865 removeFromWorklist(N);
866
867 // If the operands of this node are only used by the node, they will now be
868 // dead. Make sure to re-visit them and recursively delete dead nodes.
869 for (const SDValue &Op : N->ops())
870 // For an operand generating multiple values, one of the values may
871 // become dead allowing further simplification (e.g. split index
872 // arithmetic from an indexed load).
873 if (Op->hasOneUse() || Op->getNumValues() > 1)
874 AddToWorklist(Op.getNode());
875
876 DAG.DeleteNode(N);
877}
878
879// APInts must be the same size for most operations, this helper
880// function zero extends the shorter of the pair so that they match.
881// We provide an Offset so that we can create bitwidths that won't overflow.
882static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
883 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
884 LHS = LHS.zextOrSelf(Bits);
885 RHS = RHS.zextOrSelf(Bits);
886}
887
888// Return true if this node is a setcc, or is a select_cc
889// that selects between the target values used for true and false, making it
890// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
891// the appropriate nodes based on the type of node we are checking. This
892// simplifies life a bit for the callers.
893bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
894 SDValue &CC, bool MatchStrict) const {
895 if (N.getOpcode() == ISD::SETCC) {
896 LHS = N.getOperand(0);
897 RHS = N.getOperand(1);
898 CC = N.getOperand(2);
899 return true;
900 }
901
902 if (MatchStrict &&
903 (N.getOpcode() == ISD::STRICT_FSETCC ||
904 N.getOpcode() == ISD::STRICT_FSETCCS)) {
905 LHS = N.getOperand(1);
906 RHS = N.getOperand(2);
907 CC = N.getOperand(3);
908 return true;
909 }
910
911 if (N.getOpcode() != ISD::SELECT_CC ||
912 !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
913 !TLI.isConstFalseVal(N.getOperand(3).getNode()))
914 return false;
915
916 if (TLI.getBooleanContents(N.getValueType()) ==
917 TargetLowering::UndefinedBooleanContent)
918 return false;
919
920 LHS = N.getOperand(0);
921 RHS = N.getOperand(1);
922 CC = N.getOperand(4);
923 return true;
924}
925
926/// Return true if this is a SetCC-equivalent operation with only one use.
927/// If this is true, it allows the users to invert the operation for free when
928/// it is profitable to do so.
929bool DAGCombiner::isOneUseSetCC(SDValue N) const {
930 SDValue N0, N1, N2;
931 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
932 return true;
933 return false;
934}
935
936static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) {
937 if (!ScalarTy.isSimple())
938 return false;
939
940 uint64_t MaskForTy = 0ULL;
941 switch (ScalarTy.getSimpleVT().SimpleTy) {
942 case MVT::i8:
943 MaskForTy = 0xFFULL;
944 break;
945 case MVT::i16:
946 MaskForTy = 0xFFFFULL;
947 break;
948 case MVT::i32:
949 MaskForTy = 0xFFFFFFFFULL;
950 break;
951 default:
952 return false;
953 break;
954 }
955
956 APInt Val;
957 if (ISD::isConstantSplatVector(N, Val))
958 return Val.getLimitedValue() == MaskForTy;
959
960 return false;
961}
962
963// Determines if it is a constant integer or a splat/build vector of constant
964// integers (and undefs).
965// Do not permit build vector implicit truncation.
966static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
967 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
968 return !(Const->isOpaque() && NoOpaques);
969 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR)
970 return false;
971 unsigned BitWidth = N.getScalarValueSizeInBits();
972 for (const SDValue &Op : N->op_values()) {
973 if (Op.isUndef())
974 continue;
975 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
976 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
977 (Const->isOpaque() && NoOpaques))
978 return false;
979 }
980 return true;
981}
982
983// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
984// undef's.
985static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
986 if (V.getOpcode() != ISD::BUILD_VECTOR)
987 return false;
988 return isConstantOrConstantVector(V, NoOpaques) ||
989 ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
990}
991
992// Determine if this an indexed load with an opaque target constant index.
993static bool canSplitIdx(LoadSDNode *LD) {
994 return MaySplitLoadIndex &&
995 (LD->getOperand(2).getOpcode() != ISD::TargetConstant ||
996 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque());
997}
998
999bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
1000 const SDLoc &DL,
1001 SDValue N0,
1002 SDValue N1) {
1003 // Currently this only tries to ensure we don't undo the GEP splits done by
1004 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1005 // we check if the following transformation would be problematic:
1006 // (load/store (add, (add, x, offset1), offset2)) ->
1007 // (load/store (add, x, offset1+offset2)).
1008
1009 if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
1010 return false;
1011
1012 if (N0.hasOneUse())
1013 return false;
1014
1015 auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1016 auto *C2 = dyn_cast<ConstantSDNode>(N1);
1017 if (!C1 || !C2)
1018 return false;
1019
1020 const APInt &C1APIntVal = C1->getAPIntValue();
1021 const APInt &C2APIntVal = C2->getAPIntValue();
1022 if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64)
1023 return false;
1024
1025 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
1026 if (CombinedValueIntVal.getBitWidth() > 64)
1027 return false;
1028 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
1029
1030 for (SDNode *Node : N0->uses()) {
1031 auto LoadStore = dyn_cast<MemSDNode>(Node);
1032 if (LoadStore) {
1033 // Is x[offset2] already not a legal addressing mode? If so then
1034 // reassociating the constants breaks nothing (we test offset2 because
1035 // that's the one we hope to fold into the load or store).
1036 TargetLoweringBase::AddrMode AM;
1037 AM.HasBaseReg = true;
1038 AM.BaseOffs = C2APIntVal.getSExtValue();
1039 EVT VT = LoadStore->getMemoryVT();
1040 unsigned AS = LoadStore->getAddressSpace();
1041 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1042 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1043 continue;
1044
1045 // Would x[offset1+offset2] still be a legal addressing mode?
1046 AM.BaseOffs = CombinedValue;
1047 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1048 return true;
1049 }
1050 }
1051
1052 return false;
1053}
1054
1055// Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1056// such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1057SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
1058 SDValue N0, SDValue N1) {
1059 EVT VT = N0.getValueType();
1060
1061 if (N0.getOpcode() != Opc)
1062 return SDValue();
1063
1064 if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
1065 if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
1066 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1067 if (SDValue OpNode =
1068 DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1}))
1069 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
1070 return SDValue();
1071 }
1072 if (N0.hasOneUse()) {
1073 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1074 // iff (op x, c1) has one use
1075 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
1076 if (!OpNode.getNode())
1077 return SDValue();
1078 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
1079 }
1080 }
1081 return SDValue();
1082}
1083
1084// Try to reassociate commutative binops.
1085SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
1086 SDValue N1, SDNodeFlags Flags) {
1087 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.")((TLI.isCommutativeBinOp(Opc) && "Operation not commutative."
) ? static_cast<void> (0) : __assert_fail ("TLI.isCommutativeBinOp(Opc) && \"Operation not commutative.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1087, __PRETTY_FUNCTION__))
;
1088
1089 // Floating-point reassociation is not allowed without loose FP math.
1090 if (N0.getValueType().isFloatingPoint() ||
1091 N1.getValueType().isFloatingPoint())
1092 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
1093 return SDValue();
1094
1095 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
1096 return Combined;
1097 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
1098 return Combined;
1099 return SDValue();
1100}
1101
1102SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
1103 bool AddTo) {
1104 assert(N->getNumValues() == NumTo && "Broken CombineTo call!")((N->getNumValues() == NumTo && "Broken CombineTo call!"
) ? static_cast<void> (0) : __assert_fail ("N->getNumValues() == NumTo && \"Broken CombineTo call!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1104, __PRETTY_FUNCTION__))
;
1105 ++NodesCombined;
1106 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.1 "; N->dump
(&DAG); dbgs() << "\nWith: "; To[0].getNode()->dump
(&DAG); dbgs() << " and " << NumTo - 1 <<
" other values\n"; } } while (false)
1107 To[0].getNode()->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.1 "; N->dump
(&DAG); dbgs() << "\nWith: "; To[0].getNode()->dump
(&DAG); dbgs() << " and " << NumTo - 1 <<
" other values\n"; } } while (false)
1108 dbgs() << " and " << NumTo - 1 << " other values\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.1 "; N->dump
(&DAG); dbgs() << "\nWith: "; To[0].getNode()->dump
(&DAG); dbgs() << " and " << NumTo - 1 <<
" other values\n"; } } while (false)
;
1109 for (unsigned i = 0, e = NumTo; i != e; ++i)
1110 assert((!To[i].getNode() ||(((!To[i].getNode() || N->getValueType(i) == To[i].getValueType
()) && "Cannot combine value to value of different type!"
) ? static_cast<void> (0) : __assert_fail ("(!To[i].getNode() || N->getValueType(i) == To[i].getValueType()) && \"Cannot combine value to value of different type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1112, __PRETTY_FUNCTION__))
1111 N->getValueType(i) == To[i].getValueType()) &&(((!To[i].getNode() || N->getValueType(i) == To[i].getValueType
()) && "Cannot combine value to value of different type!"
) ? static_cast<void> (0) : __assert_fail ("(!To[i].getNode() || N->getValueType(i) == To[i].getValueType()) && \"Cannot combine value to value of different type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1112, __PRETTY_FUNCTION__))
1112 "Cannot combine value to value of different type!")(((!To[i].getNode() || N->getValueType(i) == To[i].getValueType
()) && "Cannot combine value to value of different type!"
) ? static_cast<void> (0) : __assert_fail ("(!To[i].getNode() || N->getValueType(i) == To[i].getValueType()) && \"Cannot combine value to value of different type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1112, __PRETTY_FUNCTION__))
;
1113
1114 WorklistRemover DeadNodes(*this);
1115 DAG.ReplaceAllUsesWith(N, To);
1116 if (AddTo) {
1117 // Push the new nodes and any users onto the worklist
1118 for (unsigned i = 0, e = NumTo; i != e; ++i) {
1119 if (To[i].getNode()) {
1120 AddToWorklist(To[i].getNode());
1121 AddUsersToWorklist(To[i].getNode());
1122 }
1123 }
1124 }
1125
1126 // Finally, if the node is now dead, remove it from the graph. The node
1127 // may not be dead if the replacement process recursively simplified to
1128 // something else needing this node.
1129 if (N->use_empty())
1130 deleteAndRecombine(N);
1131 return SDValue(N, 0);
1132}
1133
1134void DAGCombiner::
1135CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
1136 // Replace the old value with the new one.
1137 ++NodesCombined;
1138 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.2 "; TLO.Old.getNode
()->dump(&DAG); dbgs() << "\nWith: "; TLO.New.getNode
()->dump(&DAG); dbgs() << '\n'; } } while (false
)
1139 dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.2 "; TLO.Old.getNode
()->dump(&DAG); dbgs() << "\nWith: "; TLO.New.getNode
()->dump(&DAG); dbgs() << '\n'; } } while (false
)
1140 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.2 "; TLO.Old.getNode
()->dump(&DAG); dbgs() << "\nWith: "; TLO.New.getNode
()->dump(&DAG); dbgs() << '\n'; } } while (false
)
;
1141
1142 // Replace all uses. If any nodes become isomorphic to other nodes and
1143 // are deleted, make sure to remove them from our worklist.
1144 WorklistRemover DeadNodes(*this);
1145 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
1146
1147 // Push the new node and any (possibly new) users onto the worklist.
1148 AddToWorklistWithUsers(TLO.New.getNode());
1149
1150 // Finally, if the node is now dead, remove it from the graph. The node
1151 // may not be dead if the replacement process recursively simplified to
1152 // something else needing this node.
1153 if (TLO.Old.getNode()->use_empty())
1154 deleteAndRecombine(TLO.Old.getNode());
1155}
1156
1157/// Check the specified integer node value to see if it can be simplified or if
1158/// things it uses can be simplified by bit propagation. If so, return true.
1159bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
1160 const APInt &DemandedElts,
1161 bool AssumeSingleUse) {
1162 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1163 KnownBits Known;
1164 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0,
1165 AssumeSingleUse))
1166 return false;
1167
1168 // Revisit the node.
1169 AddToWorklist(Op.getNode());
1170
1171 CommitTargetLoweringOpt(TLO);
1172 return true;
1173}
1174
1175/// Check the specified vector node value to see if it can be simplified or
1176/// if things it uses can be simplified as it only uses some of the elements.
1177/// If so, return true.
1178bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
1179 const APInt &DemandedElts,
1180 bool AssumeSingleUse) {
1181 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1182 APInt KnownUndef, KnownZero;
1183 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
1184 TLO, 0, AssumeSingleUse))
1185 return false;
1186
1187 // Revisit the node.
1188 AddToWorklist(Op.getNode());
1189
1190 CommitTargetLoweringOpt(TLO);
1191 return true;
1192}
1193
1194void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
1195 SDLoc DL(Load);
1196 EVT VT = Load->getValueType(0);
1197 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
1198
1199 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.9 "; Load->
dump(&DAG); dbgs() << "\nWith: "; Trunc.getNode()->
dump(&DAG); dbgs() << '\n'; } } while (false)
1200 Trunc.getNode()->dump(&DAG); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.9 "; Load->
dump(&DAG); dbgs() << "\nWith: "; Trunc.getNode()->
dump(&DAG); dbgs() << '\n'; } } while (false)
;
1201 WorklistRemover DeadNodes(*this);
1202 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
1203 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
1204 deleteAndRecombine(Load);
1205 AddToWorklist(Trunc.getNode());
1206}
1207
1208SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
1209 Replace = false;
1210 SDLoc DL(Op);
1211 if (ISD::isUNINDEXEDLoad(Op.getNode())) {
1212 LoadSDNode *LD = cast<LoadSDNode>(Op);
1213 EVT MemVT = LD->getMemoryVT();
1214 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1215 : LD->getExtensionType();
1216 Replace = true;
1217 return DAG.getExtLoad(ExtType, DL, PVT,
1218 LD->getChain(), LD->getBasePtr(),
1219 MemVT, LD->getMemOperand());
1220 }
1221
1222 unsigned Opc = Op.getOpcode();
1223 switch (Opc) {
1224 default: break;
1225 case ISD::AssertSext:
1226 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
1227 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
1228 break;
1229 case ISD::AssertZext:
1230 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
1231 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
1232 break;
1233 case ISD::Constant: {
1234 unsigned ExtOpc =
1235 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1236 return DAG.getNode(ExtOpc, DL, PVT, Op);
1237 }
1238 }
1239
1240 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1241 return SDValue();
1242 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1243}
1244
1245SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1246 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1247 return SDValue();
1248 EVT OldVT = Op.getValueType();
1249 SDLoc DL(Op);
1250 bool Replace = false;
1251 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1252 if (!NewOp.getNode())
1253 return SDValue();
1254 AddToWorklist(NewOp.getNode());
1255
1256 if (Replace)
1257 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1258 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1259 DAG.getValueType(OldVT));
1260}
1261
1262SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1263 EVT OldVT = Op.getValueType();
1264 SDLoc DL(Op);
1265 bool Replace = false;
1266 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1267 if (!NewOp.getNode())
1268 return SDValue();
1269 AddToWorklist(NewOp.getNode());
1270
1271 if (Replace)
1272 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1273 return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1274}
1275
1276/// Promote the specified integer binary operation if the target indicates it is
1277/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1278/// i32 since i16 instructions are longer.
1279SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1280 if (!LegalOperations)
1281 return SDValue();
1282
1283 EVT VT = Op.getValueType();
1284 if (VT.isVector() || !VT.isInteger())
1285 return SDValue();
1286
1287 // If operation type is 'undesirable', e.g. i16 on x86, consider
1288 // promoting it.
1289 unsigned Opc = Op.getOpcode();
1290 if (TLI.isTypeDesirableForOp(Opc, VT))
1291 return SDValue();
1292
1293 EVT PVT = VT;
1294 // Consult target whether it is a good idea to promote this operation and
1295 // what's the right type to promote it to.
1296 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1297 assert(PVT != VT && "Don't know what type to promote to!")((PVT != VT && "Don't know what type to promote to!")
? static_cast<void> (0) : __assert_fail ("PVT != VT && \"Don't know what type to promote to!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1297, __PRETTY_FUNCTION__))
;
1298
1299 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nPromoting "; Op.getNode(
)->dump(&DAG); } } while (false)
;
1300
1301 bool Replace0 = false;
1302 SDValue N0 = Op.getOperand(0);
1303 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1304
1305 bool Replace1 = false;
1306 SDValue N1 = Op.getOperand(1);
1307 SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
1308 SDLoc DL(Op);
1309
1310 SDValue RV =
1311 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
1312
1313 // We are always replacing N0/N1's use in N and only need additional
1314 // replacements if there are additional uses.
1315 // Note: We are checking uses of the *nodes* (SDNode) rather than values
1316 // (SDValue) here because the node may reference multiple values
1317 // (for example, the chain value of a load node).
1318 Replace0 &= !N0->hasOneUse();
1319 Replace1 &= (N0 != N1) && !N1->hasOneUse();
1320
1321 // Combine Op here so it is preserved past replacements.
1322 CombineTo(Op.getNode(), RV);
1323
1324 // If operands have a use ordering, make sure we deal with
1325 // predecessor first.
1326 if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
1327 std::swap(N0, N1);
1328 std::swap(NN0, NN1);
1329 }
1330
1331 if (Replace0) {
1332 AddToWorklist(NN0.getNode());
1333 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1334 }
1335 if (Replace1) {
1336 AddToWorklist(NN1.getNode());
1337 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1338 }
1339 return Op;
1340 }
1341 return SDValue();
1342}
1343
1344/// Promote the specified integer shift operation if the target indicates it is
1345/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1346/// i32 since i16 instructions are longer.
1347SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1348 if (!LegalOperations)
1349 return SDValue();
1350
1351 EVT VT = Op.getValueType();
1352 if (VT.isVector() || !VT.isInteger())
1353 return SDValue();
1354
1355 // If operation type is 'undesirable', e.g. i16 on x86, consider
1356 // promoting it.
1357 unsigned Opc = Op.getOpcode();
1358 if (TLI.isTypeDesirableForOp(Opc, VT))
1359 return SDValue();
1360
1361 EVT PVT = VT;
1362 // Consult target whether it is a good idea to promote this operation and
1363 // what's the right type to promote it to.
1364 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1365 assert(PVT != VT && "Don't know what type to promote to!")((PVT != VT && "Don't know what type to promote to!")
? static_cast<void> (0) : __assert_fail ("PVT != VT && \"Don't know what type to promote to!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1365, __PRETTY_FUNCTION__))
;
1366
1367 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nPromoting "; Op.getNode(
)->dump(&DAG); } } while (false)
;
1368
1369 bool Replace = false;
1370 SDValue N0 = Op.getOperand(0);
1371 SDValue N1 = Op.getOperand(1);
1372 if (Opc == ISD::SRA)
1373 N0 = SExtPromoteOperand(N0, PVT);
1374 else if (Opc == ISD::SRL)
1375 N0 = ZExtPromoteOperand(N0, PVT);
1376 else
1377 N0 = PromoteOperand(N0, PVT, Replace);
1378
1379 if (!N0.getNode())
1380 return SDValue();
1381
1382 SDLoc DL(Op);
1383 SDValue RV =
1384 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
1385
1386 if (Replace)
1387 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1388
1389 // Deal with Op being deleted.
1390 if (Op && Op.getOpcode() != ISD::DELETED_NODE)
1391 return RV;
1392 }
1393 return SDValue();
1394}
1395
1396SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1397 if (!LegalOperations)
1398 return SDValue();
1399
1400 EVT VT = Op.getValueType();
1401 if (VT.isVector() || !VT.isInteger())
1402 return SDValue();
1403
1404 // If operation type is 'undesirable', e.g. i16 on x86, consider
1405 // promoting it.
1406 unsigned Opc = Op.getOpcode();
1407 if (TLI.isTypeDesirableForOp(Opc, VT))
1408 return SDValue();
1409
1410 EVT PVT = VT;
1411 // Consult target whether it is a good idea to promote this operation and
1412 // what's the right type to promote it to.
1413 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1414 assert(PVT != VT && "Don't know what type to promote to!")((PVT != VT && "Don't know what type to promote to!")
? static_cast<void> (0) : __assert_fail ("PVT != VT && \"Don't know what type to promote to!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1414, __PRETTY_FUNCTION__))
;
1415 // fold (aext (aext x)) -> (aext x)
1416 // fold (aext (zext x)) -> (zext x)
1417 // fold (aext (sext x)) -> (sext x)
1418 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nPromoting "; Op.getNode(
)->dump(&DAG); } } while (false)
;
1419 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1420 }
1421 return SDValue();
1422}
1423
1424bool DAGCombiner::PromoteLoad(SDValue Op) {
1425 if (!LegalOperations)
1426 return false;
1427
1428 if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1429 return false;
1430
1431 EVT VT = Op.getValueType();
1432 if (VT.isVector() || !VT.isInteger())
1433 return false;
1434
1435 // If operation type is 'undesirable', e.g. i16 on x86, consider
1436 // promoting it.
1437 unsigned Opc = Op.getOpcode();
1438 if (TLI.isTypeDesirableForOp(Opc, VT))
1439 return false;
1440
1441 EVT PVT = VT;
1442 // Consult target whether it is a good idea to promote this operation and
1443 // what's the right type to promote it to.
1444 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1445 assert(PVT != VT && "Don't know what type to promote to!")((PVT != VT && "Don't know what type to promote to!")
? static_cast<void> (0) : __assert_fail ("PVT != VT && \"Don't know what type to promote to!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1445, __PRETTY_FUNCTION__))
;
1446
1447 SDLoc DL(Op);
1448 SDNode *N = Op.getNode();
1449 LoadSDNode *LD = cast<LoadSDNode>(N);
1450 EVT MemVT = LD->getMemoryVT();
1451 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
1452 : LD->getExtensionType();
1453 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1454 LD->getChain(), LD->getBasePtr(),
1455 MemVT, LD->getMemOperand());
1456 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1457
1458 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nPromoting "; N->dump(
&DAG); dbgs() << "\nTo: "; Result.getNode()->dump
(&DAG); dbgs() << '\n'; } } while (false)
1459 Result.getNode()->dump(&DAG); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nPromoting "; N->dump(
&DAG); dbgs() << "\nTo: "; Result.getNode()->dump
(&DAG); dbgs() << '\n'; } } while (false)
;
1460 WorklistRemover DeadNodes(*this);
1461 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1462 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1463 deleteAndRecombine(N);
1464 AddToWorklist(Result.getNode());
1465 return true;
1466 }
1467 return false;
1468}
1469
1470/// Recursively delete a node which has no uses and any operands for
1471/// which it is the only use.
1472///
1473/// Note that this both deletes the nodes and removes them from the worklist.
1474/// It also adds any nodes who have had a user deleted to the worklist as they
1475/// may now have only one use and subject to other combines.
1476bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1477 if (!N->use_empty())
1478 return false;
1479
1480 SmallSetVector<SDNode *, 16> Nodes;
1481 Nodes.insert(N);
1482 do {
1483 N = Nodes.pop_back_val();
1484 if (!N)
1485 continue;
1486
1487 if (N->use_empty()) {
1488 for (const SDValue &ChildN : N->op_values())
1489 Nodes.insert(ChildN.getNode());
1490
1491 removeFromWorklist(N);
1492 DAG.DeleteNode(N);
1493 } else {
1494 AddToWorklist(N);
1495 }
1496 } while (!Nodes.empty());
1497 return true;
1498}
1499
1500//===----------------------------------------------------------------------===//
1501// Main DAG Combiner implementation
1502//===----------------------------------------------------------------------===//
1503
1504void DAGCombiner::Run(CombineLevel AtLevel) {
1505 // set the instance variables, so that the various visit routines may use it.
1506 Level = AtLevel;
1507 LegalDAG = Level >= AfterLegalizeDAG;
1508 LegalOperations = Level >= AfterLegalizeVectorOps;
1509 LegalTypes = Level >= AfterLegalizeTypes;
1510
1511 WorklistInserter AddNodes(*this);
1512
1513 // Add all the dag nodes to the worklist.
1514 for (SDNode &Node : DAG.allnodes())
1515 AddToWorklist(&Node);
1516
1517 // Create a dummy node (which is not added to allnodes), that adds a reference
1518 // to the root node, preventing it from being deleted, and tracking any
1519 // changes of the root.
1520 HandleSDNode Dummy(DAG.getRoot());
1521
1522 // While we have a valid worklist entry node, try to combine it.
1523 while (SDNode *N = getNextWorklistEntry()) {
1524 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1525 // N is deleted from the DAG, since they too may now be dead or may have a
1526 // reduced number of uses, allowing other xforms.
1527 if (recursivelyDeleteUnusedNodes(N))
1528 continue;
1529
1530 WorklistRemover DeadNodes(*this);
1531
1532 // If this combine is running after legalizing the DAG, re-legalize any
1533 // nodes pulled off the worklist.
1534 if (LegalDAG) {
1535 SmallSetVector<SDNode *, 16> UpdatedNodes;
1536 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1537
1538 for (SDNode *LN : UpdatedNodes)
1539 AddToWorklistWithUsers(LN);
1540
1541 if (!NIsValid)
1542 continue;
1543 }
1544
1545 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nCombining: "; N->dump
(&DAG); } } while (false)
;
1546
1547 // Add any operands of the new node which have not yet been combined to the
1548 // worklist as well. Because the worklist uniques things already, this
1549 // won't repeatedly process the same operand.
1550 CombinedNodes.insert(N);
1551 for (const SDValue &ChildN : N->op_values())
1552 if (!CombinedNodes.count(ChildN.getNode()))
1553 AddToWorklist(ChildN.getNode());
1554
1555 SDValue RV = combine(N);
1556
1557 if (!RV.getNode())
1558 continue;
1559
1560 ++NodesCombined;
1561
1562 // If we get back the same node we passed in, rather than a new node or
1563 // zero, we know that the node must have defined multiple values and
1564 // CombineTo was used. Since CombineTo takes care of the worklist
1565 // mechanics for us, we have no work to do in this case.
1566 if (RV.getNode() == N)
1567 continue;
1568
1569 assert(N->getOpcode() != ISD::DELETED_NODE &&((N->getOpcode() != ISD::DELETED_NODE && RV.getOpcode
() != ISD::DELETED_NODE && "Node was deleted but visit returned new node!"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() != ISD::DELETED_NODE && RV.getOpcode() != ISD::DELETED_NODE && \"Node was deleted but visit returned new node!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1571, __PRETTY_FUNCTION__))
1570 RV.getOpcode() != ISD::DELETED_NODE &&((N->getOpcode() != ISD::DELETED_NODE && RV.getOpcode
() != ISD::DELETED_NODE && "Node was deleted but visit returned new node!"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() != ISD::DELETED_NODE && RV.getOpcode() != ISD::DELETED_NODE && \"Node was deleted but visit returned new node!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1571, __PRETTY_FUNCTION__))
1571 "Node was deleted but visit returned new node!")((N->getOpcode() != ISD::DELETED_NODE && RV.getOpcode
() != ISD::DELETED_NODE && "Node was deleted but visit returned new node!"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() != ISD::DELETED_NODE && RV.getOpcode() != ISD::DELETED_NODE && \"Node was deleted but visit returned new node!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1571, __PRETTY_FUNCTION__))
;
1572
1573 LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << " ... into: "; RV.getNode()
->dump(&DAG); } } while (false)
;
1574
1575 if (N->getNumValues() == RV.getNode()->getNumValues())
1576 DAG.ReplaceAllUsesWith(N, RV.getNode());
1577 else {
1578 assert(N->getValueType(0) == RV.getValueType() &&((N->getValueType(0) == RV.getValueType() && N->
getNumValues() == 1 && "Type mismatch") ? static_cast
<void> (0) : __assert_fail ("N->getValueType(0) == RV.getValueType() && N->getNumValues() == 1 && \"Type mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1579, __PRETTY_FUNCTION__))
1579 N->getNumValues() == 1 && "Type mismatch")((N->getValueType(0) == RV.getValueType() && N->
getNumValues() == 1 && "Type mismatch") ? static_cast
<void> (0) : __assert_fail ("N->getValueType(0) == RV.getValueType() && N->getNumValues() == 1 && \"Type mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1579, __PRETTY_FUNCTION__))
;
1580 DAG.ReplaceAllUsesWith(N, &RV);
1581 }
1582
1583 // Push the new node and any users onto the worklist. Omit this if the
1584 // new node is the EntryToken (e.g. if a store managed to get optimized
1585 // out), because re-visiting the EntryToken and its users will not uncover
1586 // any additional opportunities, but there may be a large number of such
1587 // users, potentially causing compile time explosion.
1588 if (RV.getOpcode() != ISD::EntryToken) {
1589 AddToWorklist(RV.getNode());
1590 AddUsersToWorklist(RV.getNode());
1591 }
1592
1593 // Finally, if the node is now dead, remove it from the graph. The node
1594 // may not be dead if the replacement process recursively simplified to
1595 // something else needing this node. This will also take care of adding any
1596 // operands which have lost a user to the worklist.
1597 recursivelyDeleteUnusedNodes(N);
1598 }
1599
1600 // If the root changed (e.g. it was a dead load, update the root).
1601 DAG.setRoot(Dummy.getValue());
1602 DAG.RemoveDeadNodes();
1603}
1604
1605SDValue DAGCombiner::visit(SDNode *N) {
1606 switch (N->getOpcode()) {
1607 default: break;
1608 case ISD::TokenFactor: return visitTokenFactor(N);
1609 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1610 case ISD::ADD: return visitADD(N);
1611 case ISD::SUB: return visitSUB(N);
1612 case ISD::SADDSAT:
1613 case ISD::UADDSAT: return visitADDSAT(N);
1614 case ISD::SSUBSAT:
1615 case ISD::USUBSAT: return visitSUBSAT(N);
1616 case ISD::ADDC: return visitADDC(N);
1617 case ISD::SADDO:
1618 case ISD::UADDO: return visitADDO(N);
1619 case ISD::SUBC: return visitSUBC(N);
1620 case ISD::SSUBO:
1621 case ISD::USUBO: return visitSUBO(N);
1622 case ISD::ADDE: return visitADDE(N);
1623 case ISD::ADDCARRY: return visitADDCARRY(N);
1624 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N);
1625 case ISD::SUBE: return visitSUBE(N);
1626 case ISD::SUBCARRY: return visitSUBCARRY(N);
1627 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N);
1628 case ISD::SMULFIX:
1629 case ISD::SMULFIXSAT:
1630 case ISD::UMULFIX:
1631 case ISD::UMULFIXSAT: return visitMULFIX(N);
1632 case ISD::MUL: return visitMUL(N);
1633 case ISD::SDIV: return visitSDIV(N);
1634 case ISD::UDIV: return visitUDIV(N);
1635 case ISD::SREM:
1636 case ISD::UREM: return visitREM(N);
1637 case ISD::MULHU: return visitMULHU(N);
1638 case ISD::MULHS: return visitMULHS(N);
1639 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1640 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1641 case ISD::SMULO:
1642 case ISD::UMULO: return visitMULO(N);
1643 case ISD::SMIN:
1644 case ISD::SMAX:
1645 case ISD::UMIN:
1646 case ISD::UMAX: return visitIMINMAX(N);
1647 case ISD::AND: return visitAND(N);
1648 case ISD::OR: return visitOR(N);
1649 case ISD::XOR: return visitXOR(N);
1650 case ISD::SHL: return visitSHL(N);
1651 case ISD::SRA: return visitSRA(N);
1652 case ISD::SRL: return visitSRL(N);
1653 case ISD::ROTR:
1654 case ISD::ROTL: return visitRotate(N);
1655 case ISD::FSHL:
1656 case ISD::FSHR: return visitFunnelShift(N);
1657 case ISD::ABS: return visitABS(N);
1658 case ISD::BSWAP: return visitBSWAP(N);
1659 case ISD::BITREVERSE: return visitBITREVERSE(N);
1660 case ISD::CTLZ: return visitCTLZ(N);
1661 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1662 case ISD::CTTZ: return visitCTTZ(N);
1663 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1664 case ISD::CTPOP: return visitCTPOP(N);
1665 case ISD::SELECT: return visitSELECT(N);
1666 case ISD::VSELECT: return visitVSELECT(N);
1667 case ISD::SELECT_CC: return visitSELECT_CC(N);
1668 case ISD::SETCC: return visitSETCC(N);
1669 case ISD::SETCCCARRY: return visitSETCCCARRY(N);
1670 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1671 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1672 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1673 case ISD::AssertSext:
1674 case ISD::AssertZext: return visitAssertExt(N);
1675 case ISD::AssertAlign: return visitAssertAlign(N);
1676 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1677 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
1678 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N);
1679 case ISD::TRUNCATE: return visitTRUNCATE(N);
1680 case ISD::BITCAST: return visitBITCAST(N);
1681 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1682 case ISD::FADD: return visitFADD(N);
1683 case ISD::STRICT_FADD: return visitSTRICT_FADD(N);
1684 case ISD::FSUB: return visitFSUB(N);
1685 case ISD::FMUL: return visitFMUL(N);
1686 case ISD::FMA: return visitFMA(N);
1687 case ISD::FDIV: return visitFDIV(N);
1688 case ISD::FREM: return visitFREM(N);
1689 case ISD::FSQRT: return visitFSQRT(N);
1690 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1691 case ISD::FPOW: return visitFPOW(N);
1692 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
1693 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
1694 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
1695 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
1696 case ISD::FP_ROUND: return visitFP_ROUND(N);
1697 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
1698 case ISD::FNEG: return visitFNEG(N);
1699 case ISD::FABS: return visitFABS(N);
1700 case ISD::FFLOOR: return visitFFLOOR(N);
1701 case ISD::FMINNUM: return visitFMINNUM(N);
1702 case ISD::FMAXNUM: return visitFMAXNUM(N);
1703 case ISD::FMINIMUM: return visitFMINIMUM(N);
1704 case ISD::FMAXIMUM: return visitFMAXIMUM(N);
1705 case ISD::FCEIL: return visitFCEIL(N);
1706 case ISD::FTRUNC: return visitFTRUNC(N);
1707 case ISD::BRCOND: return visitBRCOND(N);
1708 case ISD::BR_CC: return visitBR_CC(N);
1709 case ISD::LOAD: return visitLOAD(N);
1710 case ISD::STORE: return visitSTORE(N);
1711 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
1712 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1713 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
1714 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
1715 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
1716 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
1717 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
1718 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
1719 case ISD::MGATHER: return visitMGATHER(N);
1720 case ISD::MLOAD: return visitMLOAD(N);
1721 case ISD::MSCATTER: return visitMSCATTER(N);
1722 case ISD::MSTORE: return visitMSTORE(N);
1723 case ISD::LIFETIME_END: return visitLIFETIME_END(N);
1724 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
1725 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
1726 case ISD::FREEZE: return visitFREEZE(N);
1727 case ISD::VECREDUCE_FADD:
1728 case ISD::VECREDUCE_FMUL:
1729 case ISD::VECREDUCE_ADD:
1730 case ISD::VECREDUCE_MUL:
1731 case ISD::VECREDUCE_AND:
1732 case ISD::VECREDUCE_OR:
1733 case ISD::VECREDUCE_XOR:
1734 case ISD::VECREDUCE_SMAX:
1735 case ISD::VECREDUCE_SMIN:
1736 case ISD::VECREDUCE_UMAX:
1737 case ISD::VECREDUCE_UMIN:
1738 case ISD::VECREDUCE_FMAX:
1739 case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N);
1740 }
1741 return SDValue();
1742}
1743
1744SDValue DAGCombiner::combine(SDNode *N) {
1745 SDValue RV;
1746 if (!DisableGenericCombines)
1747 RV = visit(N);
1748
1749 // If nothing happened, try a target-specific DAG combine.
1750 if (!RV.getNode()) {
1751 assert(N->getOpcode() != ISD::DELETED_NODE &&((N->getOpcode() != ISD::DELETED_NODE && "Node was deleted but visit returned NULL!"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() != ISD::DELETED_NODE && \"Node was deleted but visit returned NULL!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1752, __PRETTY_FUNCTION__))
1752 "Node was deleted but visit returned NULL!")((N->getOpcode() != ISD::DELETED_NODE && "Node was deleted but visit returned NULL!"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() != ISD::DELETED_NODE && \"Node was deleted but visit returned NULL!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1752, __PRETTY_FUNCTION__))
;
1753
1754 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1755 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1756
1757 // Expose the DAG combiner to the target combiner impls.
1758 TargetLowering::DAGCombinerInfo
1759 DagCombineInfo(DAG, Level, false, this);
1760
1761 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1762 }
1763 }
1764
1765 // If nothing happened still, try promoting the operation.
1766 if (!RV.getNode()) {
1767 switch (N->getOpcode()) {
1768 default: break;
1769 case ISD::ADD:
1770 case ISD::SUB:
1771 case ISD::MUL:
1772 case ISD::AND:
1773 case ISD::OR:
1774 case ISD::XOR:
1775 RV = PromoteIntBinOp(SDValue(N, 0));
1776 break;
1777 case ISD::SHL:
1778 case ISD::SRA:
1779 case ISD::SRL:
1780 RV = PromoteIntShiftOp(SDValue(N, 0));
1781 break;
1782 case ISD::SIGN_EXTEND:
1783 case ISD::ZERO_EXTEND:
1784 case ISD::ANY_EXTEND:
1785 RV = PromoteExtend(SDValue(N, 0));
1786 break;
1787 case ISD::LOAD:
1788 if (PromoteLoad(SDValue(N, 0)))
1789 RV = SDValue(N, 0);
1790 break;
1791 }
1792 }
1793
1794 // If N is a commutative binary node, try to eliminate it if the commuted
1795 // version is already present in the DAG.
1796 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
1797 N->getNumValues() == 1) {
1798 SDValue N0 = N->getOperand(0);
1799 SDValue N1 = N->getOperand(1);
1800
1801 // Constant operands are canonicalized to RHS.
1802 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
1803 SDValue Ops[] = {N1, N0};
1804 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1805 N->getFlags());
1806 if (CSENode)
1807 return SDValue(CSENode, 0);
1808 }
1809 }
1810
1811 return RV;
1812}
1813
1814/// Given a node, return its input chain if it has one, otherwise return a null
1815/// sd operand.
1816static SDValue getInputChainForNode(SDNode *N) {
1817 if (unsigned NumOps = N->getNumOperands()) {
1818 if (N->getOperand(0).getValueType() == MVT::Other)
1819 return N->getOperand(0);
1820 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1821 return N->getOperand(NumOps-1);
1822 for (unsigned i = 1; i < NumOps-1; ++i)
1823 if (N->getOperand(i).getValueType() == MVT::Other)
1824 return N->getOperand(i);
1825 }
1826 return SDValue();
1827}
1828
1829SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1830 // If N has two operands, where one has an input chain equal to the other,
1831 // the 'other' chain is redundant.
1832 if (N->getNumOperands() == 2) {
1833 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1834 return N->getOperand(0);
1835 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1836 return N->getOperand(1);
1837 }
1838
1839 // Don't simplify token factors if optnone.
1840 if (OptLevel == CodeGenOpt::None)
1841 return SDValue();
1842
1843 // Don't simplify the token factor if the node itself has too many operands.
1844 if (N->getNumOperands() > TokenFactorInlineLimit)
1845 return SDValue();
1846
1847 // If the sole user is a token factor, we should make sure we have a
1848 // chance to merge them together. This prevents TF chains from inhibiting
1849 // optimizations.
1850 if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
1851 AddToWorklist(*(N->use_begin()));
1852
1853 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
1854 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
1855 SmallPtrSet<SDNode*, 16> SeenOps;
1856 bool Changed = false; // If we should replace this token factor.
1857
1858 // Start out with this token factor.
1859 TFs.push_back(N);
1860
1861 // Iterate through token factors. The TFs grows when new token factors are
1862 // encountered.
1863 for (unsigned i = 0; i < TFs.size(); ++i) {
1864 // Limit number of nodes to inline, to avoid quadratic compile times.
1865 // We have to add the outstanding Token Factors to Ops, otherwise we might
1866 // drop Ops from the resulting Token Factors.
1867 if (Ops.size() > TokenFactorInlineLimit) {
1868 for (unsigned j = i; j < TFs.size(); j++)
1869 Ops.emplace_back(TFs[j], 0);
1870 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1871 // combiner worklist later.
1872 TFs.resize(i);
1873 break;
1874 }
1875
1876 SDNode *TF = TFs[i];
1877 // Check each of the operands.
1878 for (const SDValue &Op : TF->op_values()) {
1879 switch (Op.getOpcode()) {
1880 case ISD::EntryToken:
1881 // Entry tokens don't need to be added to the list. They are
1882 // redundant.
1883 Changed = true;
1884 break;
1885
1886 case ISD::TokenFactor:
1887 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
1888 // Queue up for processing.
1889 TFs.push_back(Op.getNode());
1890 Changed = true;
1891 break;
1892 }
1893 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1894
1895 default:
1896 // Only add if it isn't already in the list.
1897 if (SeenOps.insert(Op.getNode()).second)
1898 Ops.push_back(Op);
1899 else
1900 Changed = true;
1901 break;
1902 }
1903 }
1904 }
1905
1906 // Re-visit inlined Token Factors, to clean them up in case they have been
1907 // removed. Skip the first Token Factor, as this is the current node.
1908 for (unsigned i = 1, e = TFs.size(); i < e; i++)
1909 AddToWorklist(TFs[i]);
1910
1911 // Remove Nodes that are chained to another node in the list. Do so
1912 // by walking up chains breath-first stopping when we've seen
1913 // another operand. In general we must climb to the EntryNode, but we can exit
1914 // early if we find all remaining work is associated with just one operand as
1915 // no further pruning is possible.
1916
1917 // List of nodes to search through and original Ops from which they originate.
1918 SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
1919 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
1920 SmallPtrSet<SDNode *, 16> SeenChains;
1921 bool DidPruneOps = false;
1922
1923 unsigned NumLeftToConsider = 0;
1924 for (const SDValue &Op : Ops) {
1925 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
1926 OpWorkCount.push_back(1);
1927 }
1928
1929 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
1930 // If this is an Op, we can remove the op from the list. Remark any
1931 // search associated with it as from the current OpNumber.
1932 if (SeenOps.contains(Op)) {
1933 Changed = true;
1934 DidPruneOps = true;
1935 unsigned OrigOpNumber = 0;
1936 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
1937 OrigOpNumber++;
1938 assert((OrigOpNumber != Ops.size()) &&(((OrigOpNumber != Ops.size()) && "expected to find TokenFactor Operand"
) ? static_cast<void> (0) : __assert_fail ("(OrigOpNumber != Ops.size()) && \"expected to find TokenFactor Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1939, __PRETTY_FUNCTION__))
1939 "expected to find TokenFactor Operand")(((OrigOpNumber != Ops.size()) && "expected to find TokenFactor Operand"
) ? static_cast<void> (0) : __assert_fail ("(OrigOpNumber != Ops.size()) && \"expected to find TokenFactor Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1939, __PRETTY_FUNCTION__))
;
1940 // Re-mark worklist from OrigOpNumber to OpNumber
1941 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
1942 if (Worklist[i].second == OrigOpNumber) {
1943 Worklist[i].second = OpNumber;
1944 }
1945 }
1946 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
1947 OpWorkCount[OrigOpNumber] = 0;
1948 NumLeftToConsider--;
1949 }
1950 // Add if it's a new chain
1951 if (SeenChains.insert(Op).second) {
1952 OpWorkCount[OpNumber]++;
1953 Worklist.push_back(std::make_pair(Op, OpNumber));
1954 }
1955 };
1956
1957 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
1958 // We need at least be consider at least 2 Ops to prune.
1959 if (NumLeftToConsider <= 1)
1960 break;
1961 auto CurNode = Worklist[i].first;
1962 auto CurOpNumber = Worklist[i].second;
1963 assert((OpWorkCount[CurOpNumber] > 0) &&(((OpWorkCount[CurOpNumber] > 0) && "Node should not appear in worklist"
) ? static_cast<void> (0) : __assert_fail ("(OpWorkCount[CurOpNumber] > 0) && \"Node should not appear in worklist\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1964, __PRETTY_FUNCTION__))
1964 "Node should not appear in worklist")(((OpWorkCount[CurOpNumber] > 0) && "Node should not appear in worklist"
) ? static_cast<void> (0) : __assert_fail ("(OpWorkCount[CurOpNumber] > 0) && \"Node should not appear in worklist\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 1964, __PRETTY_FUNCTION__))
;
1965 switch (CurNode->getOpcode()) {
1966 case ISD::EntryToken:
1967 // Hitting EntryToken is the only way for the search to terminate without
1968 // hitting
1969 // another operand's search. Prevent us from marking this operand
1970 // considered.
1971 NumLeftToConsider++;
1972 break;
1973 case ISD::TokenFactor:
1974 for (const SDValue &Op : CurNode->op_values())
1975 AddToWorklist(i, Op.getNode(), CurOpNumber);
1976 break;
1977 case ISD::LIFETIME_START:
1978 case ISD::LIFETIME_END:
1979 case ISD::CopyFromReg:
1980 case ISD::CopyToReg:
1981 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
1982 break;
1983 default:
1984 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
1985 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
1986 break;
1987 }
1988 OpWorkCount[CurOpNumber]--;
1989 if (OpWorkCount[CurOpNumber] == 0)
1990 NumLeftToConsider--;
1991 }
1992
1993 // If we've changed things around then replace token factor.
1994 if (Changed) {
1995 SDValue Result;
1996 if (Ops.empty()) {
1997 // The entry token is the only possible outcome.
1998 Result = DAG.getEntryNode();
1999 } else {
2000 if (DidPruneOps) {
2001 SmallVector<SDValue, 8> PrunedOps;
2002 //
2003 for (const SDValue &Op : Ops) {
2004 if (SeenChains.count(Op.getNode()) == 0)
2005 PrunedOps.push_back(Op);
2006 }
2007 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
2008 } else {
2009 Result = DAG.getTokenFactor(SDLoc(N), Ops);
2010 }
2011 }
2012 return Result;
2013 }
2014 return SDValue();
2015}
2016
2017/// MERGE_VALUES can always be eliminated.
2018SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
2019 WorklistRemover DeadNodes(*this);
2020 // Replacing results may cause a different MERGE_VALUES to suddenly
2021 // be CSE'd with N, and carry its uses with it. Iterate until no
2022 // uses remain, to ensure that the node can be safely deleted.
2023 // First add the users of this node to the work list so that they
2024 // can be tried again once they have new operands.
2025 AddUsersToWorklist(N);
2026 do {
2027 // Do as a single replacement to avoid rewalking use lists.
2028 SmallVector<SDValue, 8> Ops;
2029 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2030 Ops.push_back(N->getOperand(i));
2031 DAG.ReplaceAllUsesWith(N, Ops.data());
2032 } while (!N->use_empty());
2033 deleteAndRecombine(N);
2034 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2035}
2036
2037/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2038/// ConstantSDNode pointer else nullptr.
2039static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
2040 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
2041 return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
2042}
2043
2044/// Return true if 'Use' is a load or a store that uses N as its base pointer
2045/// and that N may be folded in the load / store addressing mode.
2046static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG,
2047 const TargetLowering &TLI) {
2048 EVT VT;
2049 unsigned AS;
2050
2051 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
2052 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
2053 return false;
2054 VT = LD->getMemoryVT();
2055 AS = LD->getAddressSpace();
2056 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
2057 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
2058 return false;
2059 VT = ST->getMemoryVT();
2060 AS = ST->getAddressSpace();
2061 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) {
2062 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
2063 return false;
2064 VT = LD->getMemoryVT();
2065 AS = LD->getAddressSpace();
2066 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) {
2067 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
2068 return false;
2069 VT = ST->getMemoryVT();
2070 AS = ST->getAddressSpace();
2071 } else
2072 return false;
2073
2074 TargetLowering::AddrMode AM;
2075 if (N->getOpcode() == ISD::ADD) {
2076 AM.HasBaseReg = true;
2077 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2078 if (Offset)
2079 // [reg +/- imm]
2080 AM.BaseOffs = Offset->getSExtValue();
2081 else
2082 // [reg +/- reg]
2083 AM.Scale = 1;
2084 } else if (N->getOpcode() == ISD::SUB) {
2085 AM.HasBaseReg = true;
2086 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2087 if (Offset)
2088 // [reg +/- imm]
2089 AM.BaseOffs = -Offset->getSExtValue();
2090 else
2091 // [reg +/- reg]
2092 AM.Scale = 1;
2093 } else
2094 return false;
2095
2096 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
2097 VT.getTypeForEVT(*DAG.getContext()), AS);
2098}
2099
2100SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
2101 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&((TLI.isBinOp(BO->getOpcode()) && BO->getNumValues
() == 1 && "Unexpected binary operator") ? static_cast
<void> (0) : __assert_fail ("TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && \"Unexpected binary operator\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 2102, __PRETTY_FUNCTION__))
2102 "Unexpected binary operator")((TLI.isBinOp(BO->getOpcode()) && BO->getNumValues
() == 1 && "Unexpected binary operator") ? static_cast
<void> (0) : __assert_fail ("TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && \"Unexpected binary operator\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 2102, __PRETTY_FUNCTION__))
;
2103
2104 // Don't do this unless the old select is going away. We want to eliminate the
2105 // binary operator, not replace a binop with a select.
2106 // TODO: Handle ISD::SELECT_CC.
2107 unsigned SelOpNo = 0;
2108 SDValue Sel = BO->getOperand(0);
2109 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
2110 SelOpNo = 1;
2111 Sel = BO->getOperand(1);
2112 }
2113
2114 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
2115 return SDValue();
2116
2117 SDValue CT = Sel.getOperand(1);
2118 if (!isConstantOrConstantVector(CT, true) &&
2119 !DAG.isConstantFPBuildVectorOrConstantFP(CT))
2120 return SDValue();
2121
2122 SDValue CF = Sel.getOperand(2);
2123 if (!isConstantOrConstantVector(CF, true) &&
2124 !DAG.isConstantFPBuildVectorOrConstantFP(CF))
2125 return SDValue();
2126
2127 // Bail out if any constants are opaque because we can't constant fold those.
2128 // The exception is "and" and "or" with either 0 or -1 in which case we can
2129 // propagate non constant operands into select. I.e.:
2130 // and (select Cond, 0, -1), X --> select Cond, 0, X
2131 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2132 auto BinOpcode = BO->getOpcode();
2133 bool CanFoldNonConst =
2134 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
2135 (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
2136 (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
2137
2138 SDValue CBO = BO->getOperand(SelOpNo ^ 1);
2139 if (!CanFoldNonConst &&
2140 !isConstantOrConstantVector(CBO, true) &&
2141 !DAG.isConstantFPBuildVectorOrConstantFP(CBO))
2142 return SDValue();
2143
2144 EVT VT = BO->getValueType(0);
2145
2146 // We have a select-of-constants followed by a binary operator with a
2147 // constant. Eliminate the binop by pulling the constant math into the select.
2148 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2149 SDLoc DL(Sel);
2150 SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
2151 : DAG.getNode(BinOpcode, DL, VT, CT, CBO);
2152 if (!CanFoldNonConst && !NewCT.isUndef() &&
2153 !isConstantOrConstantVector(NewCT, true) &&
2154 !DAG.isConstantFPBuildVectorOrConstantFP(NewCT))
2155 return SDValue();
2156
2157 SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
2158 : DAG.getNode(BinOpcode, DL, VT, CF, CBO);
2159 if (!CanFoldNonConst && !NewCF.isUndef() &&
2160 !isConstantOrConstantVector(NewCF, true) &&
2161 !DAG.isConstantFPBuildVectorOrConstantFP(NewCF))
2162 return SDValue();
2163
2164 SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
2165 SelectOp->setFlags(BO->getFlags());
2166 return SelectOp;
2167}
2168
2169static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
2170 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&(((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::
SUB) && "Expecting add or sub") ? static_cast<void
> (0) : __assert_fail ("(N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && \"Expecting add or sub\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 2171, __PRETTY_FUNCTION__))
2171 "Expecting add or sub")(((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::
SUB) && "Expecting add or sub") ? static_cast<void
> (0) : __assert_fail ("(N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && \"Expecting add or sub\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 2171, __PRETTY_FUNCTION__))
;
2172
2173 // Match a constant operand and a zext operand for the math instruction:
2174 // add Z, C
2175 // sub C, Z
2176 bool IsAdd = N->getOpcode() == ISD::ADD;
2177 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
2178 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
2179 auto *CN = dyn_cast<ConstantSDNode>(C);
2180 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
2181 return SDValue();
2182
2183 // Match the zext operand as a setcc of a boolean.
2184 if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
2185 Z.getOperand(0).getValueType() != MVT::i1)
2186 return SDValue();
2187
2188 // Match the compare as: setcc (X & 1), 0, eq.
2189 SDValue SetCC = Z.getOperand(0);
2190 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
2191 if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
2192 SetCC.getOperand(0).getOpcode() != ISD::AND ||
2193 !isOneConstant(SetCC.getOperand(0).getOperand(1)))
2194 return SDValue();
2195
2196 // We are adding/subtracting a constant and an inverted low bit. Turn that
2197 // into a subtract/add of the low bit with incremented/decremented constant:
2198 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2199 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2200 EVT VT = C.getValueType();
2201 SDLoc DL(N);
2202 SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
2203 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
2204 DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
2205 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
2206}
2207
2208/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2209/// a shift and add with a different constant.
2210static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
2211 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&(((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::
SUB) && "Expecting add or sub") ? static_cast<void
> (0) : __assert_fail ("(N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && \"Expecting add or sub\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 2212, __PRETTY_FUNCTION__))
2212 "Expecting add or sub")(((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::
SUB) && "Expecting add or sub") ? static_cast<void
> (0) : __assert_fail ("(N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && \"Expecting add or sub\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 2212, __PRETTY_FUNCTION__))
;
2213
2214 // We need a constant operand for the add/sub, and the other operand is a
2215 // logical shift right: add (srl), C or sub C, (srl).
2216 bool IsAdd = N->getOpcode() == ISD::ADD;
2217 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
2218 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
2219 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) ||
2220 ShiftOp.getOpcode() != ISD::SRL)
2221 return SDValue();
2222
2223 // The shift must be of a 'not' value.
2224 SDValue Not = ShiftOp.getOperand(0);
2225 if (!Not.hasOneUse() || !isBitwiseNot(Not))
2226 return SDValue();
2227
2228 // The shift must be moving the sign bit to the least-significant-bit.
2229 EVT VT = ShiftOp.getValueType();
2230 SDValue ShAmt = ShiftOp.getOperand(1);
2231 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2232 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
2233 return SDValue();
2234
2235 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2236 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2237 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2238 SDLoc DL(N);
2239 auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
2240 SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
2241 if (SDValue NewC =
2242 DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT,
2243 {ConstantOp, DAG.getConstant(1, DL, VT)}))
2244 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC);
2245 return SDValue();
2246}
2247
2248/// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2249/// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2250/// are no common bits set in the operands).
2251SDValue DAGCombiner::visitADDLike(SDNode *N) {
2252 SDValue N0 = N->getOperand(0);
2253 SDValue N1 = N->getOperand(1);
2254 EVT VT = N0.getValueType();
2255 SDLoc DL(N);
2256
2257 // fold vector ops
2258 if (VT.isVector()) {
2259 if (SDValue FoldedVOp = SimplifyVBinOp(N))
2260 return FoldedVOp;
2261
2262 // fold (add x, 0) -> x, vector edition
2263 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2264 return N0;
2265 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2266 return N1;
2267 }
2268
2269 // fold (add x, undef) -> undef
2270 if (N0.isUndef())
2271 return N0;
2272
2273 if (N1.isUndef())
2274 return N1;
2275
2276 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2277 // canonicalize constant to RHS
2278 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2279 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
2280 // fold (add c1, c2) -> c1+c2
2281 return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1});
2282 }
2283
2284 // fold (add x, 0) -> x
2285 if (isNullConstant(N1))
2286 return N0;
2287
2288 if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
2289 // fold ((A-c1)+c2) -> (A+(c2-c1))
2290 if (N0.getOpcode() == ISD::SUB &&
2291 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
2292 SDValue Sub =
2293 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)});
2294 assert(Sub && "Constant folding failed")((Sub && "Constant folding failed") ? static_cast<
void> (0) : __assert_fail ("Sub && \"Constant folding failed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 2294, __PRETTY_FUNCTION__))
;
2295 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
2296 }
2297
2298 // fold ((c1-A)+c2) -> (c1+c2)-A
2299 if (N0.getOpcode() == ISD::SUB &&
2300 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
2301 SDValue Add =
2302 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)});
2303 assert(Add && "Constant folding failed")((Add && "Constant folding failed") ? static_cast<
void> (0) : __assert_fail ("Add && \"Constant folding failed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 2303, __PRETTY_FUNCTION__))
;
2304 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2305 }
2306
2307 // add (sext i1 X), 1 -> zext (not i1 X)
2308 // We don't transform this pattern:
2309 // add (zext i1 X), -1 -> sext (not i1 X)
2310 // because most (?) targets generate better code for the zext form.
2311 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
2312 isOneOrOneSplat(N1)) {
2313 SDValue X = N0.getOperand(0);
2314 if ((!LegalOperations ||
2315 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
2316 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
2317 X.getScalarValueSizeInBits() == 1) {
2318 SDValue Not = DAG.getNOT(DL, X, X.getValueType());
2319 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
2320 }
2321 }
2322
2323 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is
2324 // equivalent to (add x, c0).
2325 if (N0.getOpcode() == ISD::OR &&
2326 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) &&
2327 DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
2328 if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT,
2329 {N1, N0.getOperand(1)}))
2330 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
2331 }
2332 }
2333
2334 if (SDValue NewSel = foldBinOpIntoSelect(N))
2335 return NewSel;
2336
2337 // reassociate add
2338 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) {
2339 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
2340 return RADD;
2341 }
2342 // fold ((0-A) + B) -> B-A
2343 if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
2344 return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2345
2346 // fold (A + (0-B)) -> A-B
2347 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
2348 return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
2349
2350 // fold (A+(B-A)) -> B
2351 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
2352 return N1.getOperand(0);
2353
2354 // fold ((B-A)+A) -> B
2355 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
2356 return N0.getOperand(0);
2357
2358 // fold ((A-B)+(C-A)) -> (C-B)
2359 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2360 N0.getOperand(0) == N1.getOperand(1))
2361 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2362 N0.getOperand(1));
2363
2364 // fold ((A-B)+(B-C)) -> (A-C)
2365 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
2366 N0.getOperand(1) == N1.getOperand(0))
2367 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
2368 N1.getOperand(1));
2369
2370 // fold (A+(B-(A+C))) to (B-C)
2371 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2372 N0 == N1.getOperand(1).getOperand(0))
2373 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2374 N1.getOperand(1).getOperand(1));
2375
2376 // fold (A+(B-(C+A))) to (B-C)
2377 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
2378 N0 == N1.getOperand(1).getOperand(1))
2379 return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
2380 N1.getOperand(1).getOperand(0));
2381
2382 // fold (A+((B-A)+or-C)) to (B+or-C)
2383 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
2384 N1.getOperand(0).getOpcode() == ISD::SUB &&
2385 N0 == N1.getOperand(0).getOperand(1))
2386 return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
2387 N1.getOperand(1));
2388
2389 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2390 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
2391 SDValue N00 = N0.getOperand(0);
2392 SDValue N01 = N0.getOperand(1);
2393 SDValue N10 = N1.getOperand(0);
2394 SDValue N11 = N1.getOperand(1);
2395
2396 if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
2397 return DAG.getNode(ISD::SUB, DL, VT,
2398 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
2399 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
2400 }
2401
2402 // fold (add (umax X, C), -C) --> (usubsat X, C)
2403 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
2404 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
2405 return (!Max && !Op) ||
2406 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
2407 };
2408 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
2409 /*AllowUndefs*/ true))
2410 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
2411 N0.getOperand(1));
2412 }
2413
2414 if (SimplifyDemandedBits(SDValue(N, 0)))
2415 return SDValue(N, 0);
2416
2417 if (isOneOrOneSplat(N1)) {
2418 // fold (add (xor a, -1), 1) -> (sub 0, a)
2419 if (isBitwiseNot(N0))
2420 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
2421 N0.getOperand(0));
2422
2423 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2424 if (N0.getOpcode() == ISD::ADD ||
2425 N0.getOpcode() == ISD::UADDO ||
2426 N0.getOpcode() == ISD::SADDO) {
2427 SDValue A, Xor;
2428
2429 if (isBitwiseNot(N0.getOperand(0))) {
2430 A = N0.getOperand(1);
2431 Xor = N0.getOperand(0);
2432 } else if (isBitwiseNot(N0.getOperand(1))) {
2433 A = N0.getOperand(0);
2434 Xor = N0.getOperand(1);
2435 }
2436
2437 if (Xor)
2438 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
2439 }
2440
2441 // Look for:
2442 // add (add x, y), 1
2443 // And if the target does not like this form then turn into:
2444 // sub y, (xor x, -1)
2445 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2446 N0.getOpcode() == ISD::ADD) {
2447 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2448 DAG.getAllOnesConstant(DL, VT));
2449 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
2450 }
2451 }
2452
2453 // (x - y) + -1 -> add (xor y, -1), x
2454 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2455 isAllOnesOrAllOnesSplat(N1)) {
2456 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
2457 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
2458 }
2459
2460 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
2461 return Combined;
2462
2463 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
2464 return Combined;
2465
2466 return SDValue();
2467}
2468
2469SDValue DAGCombiner::visitADD(SDNode *N) {
2470 SDValue N0 = N->getOperand(0);
2471 SDValue N1 = N->getOperand(1);
2472 EVT VT = N0.getValueType();
2473 SDLoc DL(N);
2474
2475 if (SDValue Combined = visitADDLike(N))
2476 return Combined;
2477
2478 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
2479 return V;
2480
2481 if (SDValue V = foldAddSubOfSignBit(N, DAG))
2482 return V;
2483
2484 // fold (a+b) -> (a|b) iff a and b share no bits.
2485 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
2486 DAG.haveNoCommonBitsSet(N0, N1))
2487 return DAG.getNode(ISD::OR, DL, VT, N0, N1);
2488
2489 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
2490 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
2491 const APInt &C0 = N0->getConstantOperandAPInt(0);
2492 const APInt &C1 = N1->getConstantOperandAPInt(0);
2493 return DAG.getVScale(DL, VT, C0 + C1);
2494 }
2495
2496 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
2497 if ((N0.getOpcode() == ISD::ADD) &&
2498 (N0.getOperand(1).getOpcode() == ISD::VSCALE) &&
2499 (N1.getOpcode() == ISD::VSCALE)) {
2500 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0);
2501 const APInt &VS1 = N1->getConstantOperandAPInt(0);
2502 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1);
2503 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS);
2504 }
2505
2506 return SDValue();
2507}
2508
2509SDValue DAGCombiner::visitADDSAT(SDNode *N) {
2510 unsigned Opcode = N->getOpcode();
2511 SDValue N0 = N->getOperand(0);
2512 SDValue N1 = N->getOperand(1);
2513 EVT VT = N0.getValueType();
2514 SDLoc DL(N);
2515
2516 // fold vector ops
2517 if (VT.isVector()) {
2518 // TODO SimplifyVBinOp
2519
2520 // fold (add_sat x, 0) -> x, vector edition
2521 if (ISD::isBuildVectorAllZeros(N1.getNode()))
2522 return N0;
2523 if (ISD::isBuildVectorAllZeros(N0.getNode()))
2524 return N1;
2525 }
2526
2527 // fold (add_sat x, undef) -> -1
2528 if (N0.isUndef() || N1.isUndef())
2529 return DAG.getAllOnesConstant(DL, VT);
2530
2531 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
2532 // canonicalize constant to RHS
2533 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
2534 return DAG.getNode(Opcode, DL, VT, N1, N0);
2535 // fold (add_sat c1, c2) -> c3
2536 return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1});
2537 }
2538
2539 // fold (add_sat x, 0) -> x
2540 if (isNullConstant(N1))
2541 return N0;
2542
2543 // If it cannot overflow, transform into an add.
2544 if (Opcode == ISD::UADDSAT)
2545 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2546 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
2547
2548 return SDValue();
2549}
2550
2551static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
2552 bool Masked = false;
2553
2554 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2555 while (true) {
2556 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
2557 V = V.getOperand(0);
2558 continue;
2559 }
2560
2561 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
2562 Masked = true;
2563 V = V.getOperand(0);
2564 continue;
2565 }
2566
2567 break;
2568 }
2569
2570 // If this is not a carry, return.
2571 if (V.getResNo() != 1)
2572 return SDValue();
2573
2574 if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
2575 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
2576 return SDValue();
2577
2578 EVT VT = V.getNode()->getValueType(0);
2579 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
2580 return SDValue();
2581
2582 // If the result is masked, then no matter what kind of bool it is we can
2583 // return. If it isn't, then we need to make sure the bool type is either 0 or
2584 // 1 and not other values.
2585 if (Masked ||
2586 TLI.getBooleanContents(V.getValueType()) ==
2587 TargetLoweringBase::ZeroOrOneBooleanContent)
2588 return V;
2589
2590 return SDValue();
2591}
2592
2593/// Given the operands of an add/sub operation, see if the 2nd operand is a
2594/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2595/// the opcode and bypass the mask operation.
2596static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
2597 SelectionDAG &DAG, const SDLoc &DL) {
2598 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
2599 return SDValue();
2600
2601 EVT VT = N0.getValueType();
2602 if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
2603 return SDValue();
2604
2605 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2606 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2607 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
2608}
2609
2610/// Helper for doing combines based on N0 and N1 being added to each other.
2611SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
2612 SDNode *LocReference) {
2613 EVT VT = N0.getValueType();
2614 SDLoc DL(LocReference);
2615
2616 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2617 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
2618 isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
2619 return DAG.getNode(ISD::SUB, DL, VT, N0,
2620 DAG.getNode(ISD::SHL, DL, VT,
2621 N1.getOperand(0).getOperand(1),
2622 N1.getOperand(1)));
2623
2624 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
2625 return V;
2626
2627 // Look for:
2628 // add (add x, 1), y
2629 // And if the target does not like this form then turn into:
2630 // sub y, (xor x, -1)
2631 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
2632 N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) {
2633 SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
2634 DAG.getAllOnesConstant(DL, VT));
2635 return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
2636 }
2637
2638 // Hoist one-use subtraction by non-opaque constant:
2639 // (x - C) + y -> (x + y) - C
2640 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2641 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2642 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
2643 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
2644 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2645 }
2646 // Hoist one-use subtraction from non-opaque constant:
2647 // (C - x) + y -> (y - x) + C
2648 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
2649 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
2650 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
2651 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
2652 }
2653
2654 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2655 // rather than 'add 0/-1' (the zext should get folded).
2656 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2657 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
2658 N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
2659 TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
2660 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
2661 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
2662 }
2663
2664 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2665 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
2666 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
2667 if (TN->getVT() == MVT::i1) {
2668 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
2669 DAG.getConstant(1, DL, VT));
2670 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
2671 }
2672 }
2673
2674 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2675 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
2676 N1.getResNo() == 0)
2677 return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
2678 N0, N1.getOperand(0), N1.getOperand(2));
2679
2680 // (add X, Carry) -> (addcarry X, 0, Carry)
2681 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2682 if (SDValue Carry = getAsCarry(TLI, N1))
2683 return DAG.getNode(ISD::ADDCARRY, DL,
2684 DAG.getVTList(VT, Carry.getValueType()), N0,
2685 DAG.getConstant(0, DL, VT), Carry);
2686
2687 return SDValue();
2688}
2689
2690SDValue DAGCombiner::visitADDC(SDNode *N) {
2691 SDValue N0 = N->getOperand(0);
2692 SDValue N1 = N->getOperand(1);
2693 EVT VT = N0.getValueType();
2694 SDLoc DL(N);
2695
2696 // If the flag result is dead, turn this into an ADD.
2697 if (!N->hasAnyUseOfValue(1))
2698 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2699 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2700
2701 // canonicalize constant to RHS.
2702 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2703 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2704 if (N0C && !N1C)
2705 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
2706
2707 // fold (addc x, 0) -> x + no carry out
2708 if (isNullConstant(N1))
2709 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
2710 DL, MVT::Glue));
2711
2712 // If it cannot overflow, transform into an add.
2713 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2714 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2715 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
2716
2717 return SDValue();
2718}
2719
2720/**
2721 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2722 * then the flip also occurs if computing the inverse is the same cost.
2723 * This function returns an empty SDValue in case it cannot flip the boolean
2724 * without increasing the cost of the computation. If you want to flip a boolean
2725 * no matter what, use DAG.getLogicalNOT.
2726 */
2727static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
2728 const TargetLowering &TLI,
2729 bool Force) {
2730 if (Force && isa<ConstantSDNode>(V))
2731 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
2732
2733 if (V.getOpcode() != ISD::XOR)
2734 return SDValue();
2735
2736 ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
2737 if (!Const)
2738 return SDValue();
2739
2740 EVT VT = V.getValueType();
2741
2742 bool IsFlip = false;
2743 switch(TLI.getBooleanContents(VT)) {
2744 case TargetLowering::ZeroOrOneBooleanContent:
2745 IsFlip = Const->isOne();
2746 break;
2747 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2748 IsFlip = Const->isAllOnesValue();
2749 break;
2750 case TargetLowering::UndefinedBooleanContent:
2751 IsFlip = (Const->getAPIntValue() & 0x01) == 1;
2752 break;
2753 }
2754
2755 if (IsFlip)
2756 return V.getOperand(0);
2757 if (Force)
2758 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
2759 return SDValue();
2760}
2761
2762SDValue DAGCombiner::visitADDO(SDNode *N) {
2763 SDValue N0 = N->getOperand(0);
2764 SDValue N1 = N->getOperand(1);
2765 EVT VT = N0.getValueType();
2766 bool IsSigned = (ISD::SADDO == N->getOpcode());
2767
2768 EVT CarryVT = N->getValueType(1);
2769 SDLoc DL(N);
2770
2771 // If the flag result is dead, turn this into an ADD.
2772 if (!N->hasAnyUseOfValue(1))
2773 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2774 DAG.getUNDEF(CarryVT));
2775
2776 // canonicalize constant to RHS.
2777 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
2778 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
2779 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
2780
2781 // fold (addo x, 0) -> x + no carry out
2782 if (isNullOrNullSplat(N1))
2783 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
2784
2785 if (!IsSigned) {
2786 // If it cannot overflow, transform into an add.
2787 if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
2788 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
2789 DAG.getConstant(0, DL, CarryVT));
2790
2791 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2792 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
2793 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
2794 DAG.getConstant(0, DL, VT), N0.getOperand(0));
2795 return CombineTo(
2796 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
2797 }
2798
2799 if (SDValue Combined = visitUADDOLike(N0, N1, N))
2800 return Combined;
2801
2802 if (SDValue Combined = visitUADDOLike(N1, N0, N))
2803 return Combined;
2804 }
2805
2806 return SDValue();
2807}
2808
2809SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
2810 EVT VT = N0.getValueType();
2811 if (VT.isVector())
2812 return SDValue();
2813
2814 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2815 // If Y + 1 cannot overflow.
2816 if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
2817 SDValue Y = N1.getOperand(0);
2818 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
2819 if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
2820 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
2821 N1.getOperand(2));
2822 }
2823
2824 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2825 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
2826 if (SDValue Carry = getAsCarry(TLI, N1))
2827 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
2828 DAG.getConstant(0, SDLoc(N), VT), Carry);
2829
2830 return SDValue();
2831}
2832
2833SDValue DAGCombiner::visitADDE(SDNode *N) {
2834 SDValue N0 = N->getOperand(0);
2835 SDValue N1 = N->getOperand(1);
2836 SDValue CarryIn = N->getOperand(2);
2837
2838 // canonicalize constant to RHS
2839 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2840 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2841 if (N0C && !N1C)
2842 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
2843 N1, N0, CarryIn);
2844
2845 // fold (adde x, y, false) -> (addc x, y)
2846 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2847 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
2848
2849 return SDValue();
2850}
2851
2852SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
2853 SDValue N0 = N->getOperand(0);
2854 SDValue N1 = N->getOperand(1);
2855 SDValue CarryIn = N->getOperand(2);
2856 SDLoc DL(N);
2857
2858 // canonicalize constant to RHS
2859 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2860 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2861 if (N0C && !N1C)
1
Assuming 'N0C' is null
2862 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
2863
2864 // fold (addcarry x, y, false) -> (uaddo x, y)
2865 if (isNullConstant(CarryIn)) {
2
Assuming the condition is false
3
Taking false branch
2866 if (!LegalOperations ||
2867 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
2868 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
2869 }
2870
2871 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2872 if (isNullConstant(N0) && isNullConstant(N1)) {
4
Assuming the condition is false
2873 EVT VT = N0.getValueType();
2874 EVT CarryVT = CarryIn.getValueType();
2875 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
2876 AddToWorklist(CarryExt.getNode());
2877 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
2878 DAG.getConstant(1, DL, VT)),
2879 DAG.getConstant(0, DL, CarryVT));
2880 }
2881
2882 if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
5
Value assigned to 'N0.Node'
6
Calling 'DAGCombiner::visitADDCARRYLike'
2883 return Combined;
2884
2885 if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
2886 return Combined;
2887
2888 return SDValue();
2889}
2890
2891SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) {
2892 SDValue N0 = N->getOperand(0);
2893 SDValue N1 = N->getOperand(1);
2894 SDValue CarryIn = N->getOperand(2);
2895 SDLoc DL(N);
2896
2897 // canonicalize constant to RHS
2898 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2899 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2900 if (N0C && !N1C)
2901 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
2902
2903 // fold (saddo_carry x, y, false) -> (saddo x, y)
2904 if (isNullConstant(CarryIn)) {
2905 if (!LegalOperations ||
2906 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0)))
2907 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1);
2908 }
2909
2910 return SDValue();
2911}
2912
2913/**
2914 * If we are facing some sort of diamond carry propapagtion pattern try to
2915 * break it up to generate something like:
2916 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2917 *
2918 * The end result is usually an increase in operation required, but because the
2919 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2920 *
2921 * Patterns typically look something like
2922 * (uaddo A, B)
2923 * / \
2924 * Carry Sum
2925 * | \
2926 * | (addcarry *, 0, Z)
2927 * | /
2928 * \ Carry
2929 * | /
2930 * (addcarry X, *, *)
2931 *
2932 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2933 * produce a combine with a single path for carry propagation.
2934 */
2935static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
2936 SDValue X, SDValue Carry0, SDValue Carry1,
2937 SDNode *N) {
2938 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
2939 return SDValue();
2940 if (Carry1.getOpcode() != ISD::UADDO)
2941 return SDValue();
2942
2943 SDValue Z;
2944
2945 /**
2946 * First look for a suitable Z. It will present itself in the form of
2947 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2948 */
2949 if (Carry0.getOpcode() == ISD::ADDCARRY &&
2950 isNullConstant(Carry0.getOperand(1))) {
2951 Z = Carry0.getOperand(2);
2952 } else if (Carry0.getOpcode() == ISD::UADDO &&
2953 isOneConstant(Carry0.getOperand(1))) {
2954 EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
2955 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
2956 } else {
2957 // We couldn't find a suitable Z.
2958 return SDValue();
2959 }
2960
2961
2962 auto cancelDiamond = [&](SDValue A,SDValue B) {
2963 SDLoc DL(N);
2964 SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
2965 Combiner.AddToWorklist(NewY.getNode());
2966 return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
2967 DAG.getConstant(0, DL, X.getValueType()),
2968 NewY.getValue(1));
2969 };
2970
2971 /**
2972 * (uaddo A, B)
2973 * |
2974 * Sum
2975 * |
2976 * (addcarry *, 0, Z)
2977 */
2978 if (Carry0.getOperand(0) == Carry1.getValue(0)) {
2979 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
2980 }
2981
2982 /**
2983 * (addcarry A, 0, Z)
2984 * |
2985 * Sum
2986 * |
2987 * (uaddo *, B)
2988 */
2989 if (Carry1.getOperand(0) == Carry0.getValue(0)) {
2990 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
2991 }
2992
2993 if (Carry1.getOperand(1) == Carry0.getValue(0)) {
2994 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
2995 }
2996
2997 return SDValue();
2998}
2999
3000// If we are facing some sort of diamond carry/borrow in/out pattern try to
3001// match patterns like:
3002//
3003// (uaddo A, B) CarryIn
3004// | \ |
3005// | \ |
3006// PartialSum PartialCarryOutX /
3007// | | /
3008// | ____|____________/
3009// | / |
3010// (uaddo *, *) \________
3011// | \ \
3012// | \ |
3013// | PartialCarryOutY |
3014// | \ |
3015// | \ /
3016// AddCarrySum | ______/
3017// | /
3018// CarryOut = (or *, *)
3019//
3020// And generate ADDCARRY (or SUBCARRY) with two result values:
3021//
3022// {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn)
3023//
3024// Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with
3025// a single path for carry/borrow out propagation:
3026static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
3027 const TargetLowering &TLI, SDValue Carry0,
3028 SDValue Carry1, SDNode *N) {
3029 if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1)
3030 return SDValue();
3031 unsigned Opcode = Carry0.getOpcode();
3032 if (Opcode != Carry1.getOpcode())
3033 return SDValue();
3034 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO)
3035 return SDValue();
3036
3037 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the
3038 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in
3039 // the above ASCII art.)
3040 if (Carry1.getOperand(0) != Carry0.getValue(0) &&
3041 Carry1.getOperand(1) != Carry0.getValue(0))
3042 std::swap(Carry0, Carry1);
3043 if (Carry1.getOperand(0) != Carry0.getValue(0) &&
3044 Carry1.getOperand(1) != Carry0.getValue(0))
3045 return SDValue();
3046
3047 // The carry in value must be on the righthand side for subtraction.
3048 unsigned CarryInOperandNum =
3049 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0;
3050 if (Opcode == ISD::USUBO && CarryInOperandNum != 1)
3051 return SDValue();
3052 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum);
3053
3054 unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY;
3055 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType()))
3056 return SDValue();
3057
3058 // Verify that the carry/borrow in is plausibly a carry/borrow bit.
3059 // TODO: make getAsCarry() aware of how partial carries are merged.
3060 if (CarryIn.getOpcode() != ISD::ZERO_EXTEND)
3061 return SDValue();
3062 CarryIn = CarryIn.getOperand(0);
3063 if (CarryIn.getValueType() != MVT::i1)
3064 return SDValue();
3065
3066 SDLoc DL(N);
3067 SDValue Merged =
3068 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0),
3069 Carry0.getOperand(1), CarryIn);
3070
3071 // Please note that because we have proven that the result of the UADDO/USUBO
3072 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
3073 // therefore prove that if the first UADDO/USUBO overflows, the second
3074 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
3075 // maximum value.
3076 //
3077 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
3078 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
3079 //
3080 // This is important because it means that OR and XOR can be used to merge
3081 // carry flags; and that AND can return a constant zero.
3082 //
3083 // TODO: match other operations that can merge flags (ADD, etc)
3084 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0));
3085 if (N->getOpcode() == ISD::AND)
3086 return DAG.getConstant(0, DL, MVT::i1);
3087 return Merged.getValue(1);
3088}
3089
3090SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
3091 SDNode *N) {
3092 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
3093 if (isBitwiseNot(N0))
7
Assuming the condition is false
8
Taking false branch
3094 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
3095 SDLoc DL(N);
3096 SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
3097 N0.getOperand(0), NotC);
3098 return CombineTo(
3099 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
3100 }
3101
3102 // Iff the flag result is dead:
3103 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3104 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3105 // or the dependency between the instructions.
3106 if ((N0.getOpcode() == ISD::ADD ||
9
Calling 'SDValue::getOpcode'
3107 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
3108 N0.getValue(1) != CarryIn)) &&
3109 isNullConstant(N1) && !N->hasAnyUseOfValue(1))
3110 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
3111 N0.getOperand(0), N0.getOperand(1), CarryIn);
3112
3113 /**
3114 * When one of the addcarry argument is itself a carry, we may be facing
3115 * a diamond carry propagation. In which case we try to transform the DAG
3116 * to ensure linear carry propagation if that is possible.
3117 */
3118 if (auto Y = getAsCarry(TLI, N1)) {
3119 // Because both are carries, Y and Z can be swapped.
3120 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
3121 return R;
3122 if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
3123 return R;
3124 }
3125
3126 return SDValue();
3127}
3128
3129// Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
3130// clamp/truncation if necessary.
3131static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS,
3132 SDValue RHS, SelectionDAG &DAG,
3133 const SDLoc &DL) {
3134 assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() &&((DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits
() && "Illegal truncation") ? static_cast<void>
(0) : __assert_fail ("DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && \"Illegal truncation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3135, __PRETTY_FUNCTION__))
3135 "Illegal truncation")((DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits
() && "Illegal truncation") ? static_cast<void>
(0) : __assert_fail ("DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() && \"Illegal truncation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3135, __PRETTY_FUNCTION__))
;
3136
3137 if (DstVT == SrcVT)
3138 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
3139
3140 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
3141 // clamping RHS.
3142 APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(),
3143 DstVT.getScalarSizeInBits());
3144 if (!DAG.MaskedValueIsZero(LHS, UpperBits))
3145 return SDValue();
3146
3147 SDValue SatLimit =
3148 DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(),
3149 DstVT.getScalarSizeInBits()),
3150 DL, SrcVT);
3151 RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit);
3152 RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS);
3153 LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS);
3154 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
3155}
3156
3157// Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
3158// usubsat(a,b), optionally as a truncated type.
3159SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) {
3160 if (N->getOpcode() != ISD::SUB ||
3161 !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT)))
3162 return SDValue();
3163
3164 EVT SubVT = N->getValueType(0);
3165 SDValue Op0 = N->getOperand(0);
3166 SDValue Op1 = N->getOperand(1);
3167
3168 // Try to find umax(a,b) - b or a - umin(a,b) patterns
3169 // they may be converted to usubsat(a,b).
3170 if (Op0.getOpcode() == ISD::UMAX) {
3171 SDValue MaxLHS = Op0.getOperand(0);
3172 SDValue MaxRHS = Op0.getOperand(1);
3173 if (MaxLHS == Op1)
3174 return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N));
3175 if (MaxRHS == Op1)
3176 return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N));
3177 }
3178
3179 if (Op1.getOpcode() == ISD::UMIN) {
3180 SDValue MinLHS = Op1.getOperand(0);
3181 SDValue MinRHS = Op1.getOperand(1);
3182 if (MinLHS == Op0)
3183 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N));
3184 if (MinRHS == Op0)
3185 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N));
3186 }
3187
3188 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
3189 if (Op1.getOpcode() == ISD::TRUNCATE &&
3190 Op1.getOperand(0).getOpcode() == ISD::UMIN) {
3191 SDValue MinLHS = Op1.getOperand(0).getOperand(0);
3192 SDValue MinRHS = Op1.getOperand(0).getOperand(1);
3193 if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0)
3194 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS,
3195 DAG, SDLoc(N));
3196 if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0)
3197 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS,
3198 DAG, SDLoc(N));
3199 }
3200
3201 return SDValue();
3202}
3203
3204// Since it may not be valid to emit a fold to zero for vector initializers
3205// check if we can before folding.
3206static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
3207 SelectionDAG &DAG, bool LegalOperations) {
3208 if (!VT.isVector())
3209 return DAG.getConstant(0, DL, VT);
3210 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
3211 return DAG.getConstant(0, DL, VT);
3212 return SDValue();
3213}
3214
3215SDValue DAGCombiner::visitSUB(SDNode *N) {
3216 SDValue N0 = N->getOperand(0);
3217 SDValue N1 = N->getOperand(1);
3218 EVT VT = N0.getValueType();
3219 SDLoc DL(N);
3220
3221 // fold vector ops
3222 if (VT.isVector()) {
3223 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3224 return FoldedVOp;
3225
3226 // fold (sub x, 0) -> x, vector edition
3227 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3228 return N0;
3229 }
3230
3231 // fold (sub x, x) -> 0
3232 // FIXME: Refactor this and xor and other similar operations together.
3233 if (N0 == N1)
3234 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
3235
3236 // fold (sub c1, c2) -> c3
3237 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1}))
3238 return C;
3239
3240 if (SDValue NewSel = foldBinOpIntoSelect(N))
3241 return NewSel;
3242
3243 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3244
3245 // fold (sub x, c) -> (add x, -c)
3246 if (N1C) {
3247 return DAG.getNode(ISD::ADD, DL, VT, N0,
3248 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3249 }
3250
3251 if (isNullOrNullSplat(N0)) {
3252 unsigned BitWidth = VT.getScalarSizeInBits();
3253 // Right-shifting everything out but the sign bit followed by negation is
3254 // the same as flipping arithmetic/logical shift type without the negation:
3255 // -(X >>u 31) -> (X >>s 31)
3256 // -(X >>s 31) -> (X >>u 31)
3257 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
3258 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
3259 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
3260 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
3261 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
3262 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
3263 }
3264 }
3265
3266 // 0 - X --> 0 if the sub is NUW.
3267 if (N->getFlags().hasNoUnsignedWrap())
3268 return N0;
3269
3270 if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
3271 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3272 // N1 must be 0 because negating the minimum signed value is undefined.
3273 if (N->getFlags().hasNoSignedWrap())
3274 return N0;
3275
3276 // 0 - X --> X if X is 0 or the minimum signed value.
3277 return N1;
3278 }
3279
3280 // Convert 0 - abs(x).
3281 SDValue Result;
3282 if (N1->getOpcode() == ISD::ABS &&
3283 !TLI.isOperationLegalOrCustom(ISD::ABS, VT) &&
3284 TLI.expandABS(N1.getNode(), Result, DAG, true))
3285 return Result;
3286 }
3287
3288 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3289 if (isAllOnesOrAllOnesSplat(N0))
3290 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
3291
3292 // fold (A - (0-B)) -> A+B
3293 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
3294 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
3295
3296 // fold A-(A-B) -> B
3297 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
3298 return N1.getOperand(1);
3299
3300 // fold (A+B)-A -> B
3301 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
3302 return N0.getOperand(1);
3303
3304 // fold (A+B)-B -> A
3305 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
3306 return N0.getOperand(0);
3307
3308 // fold (A+C1)-C2 -> A+(C1-C2)
3309 if (N0.getOpcode() == ISD::ADD &&
3310 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3311 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3312 SDValue NewC =
3313 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1});
3314 assert(NewC && "Constant folding failed")((NewC && "Constant folding failed") ? static_cast<
void> (0) : __assert_fail ("NewC && \"Constant folding failed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3314, __PRETTY_FUNCTION__))
;
3315 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
3316 }
3317
3318 // fold C2-(A+C1) -> (C2-C1)-A
3319 if (N1.getOpcode() == ISD::ADD) {
3320 SDValue N11 = N1.getOperand(1);
3321 if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
3322 isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
3323 SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11});
3324 assert(NewC && "Constant folding failed")((NewC && "Constant folding failed") ? static_cast<
void> (0) : __assert_fail ("NewC && \"Constant folding failed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3324, __PRETTY_FUNCTION__))
;
3325 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
3326 }
3327 }
3328
3329 // fold (A-C1)-C2 -> A-(C1+C2)
3330 if (N0.getOpcode() == ISD::SUB &&
3331 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3332 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3333 SDValue NewC =
3334 DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1});
3335 assert(NewC && "Constant folding failed")((NewC && "Constant folding failed") ? static_cast<
void> (0) : __assert_fail ("NewC && \"Constant folding failed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3335, __PRETTY_FUNCTION__))
;
3336 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
3337 }
3338
3339 // fold (c1-A)-c2 -> (c1-c2)-A
3340 if (N0.getOpcode() == ISD::SUB &&
3341 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3342 isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) {
3343 SDValue NewC =
3344 DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1});
3345 assert(NewC && "Constant folding failed")((NewC && "Constant folding failed") ? static_cast<
void> (0) : __assert_fail ("NewC && \"Constant folding failed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3345, __PRETTY_FUNCTION__))
;
3346 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
3347 }
3348
3349 // fold ((A+(B+or-C))-B) -> A+or-C
3350 if (N0.getOpcode() == ISD::ADD &&
3351 (N0.getOperand(1).getOpcode() == ISD::SUB ||
3352 N0.getOperand(1).getOpcode() == ISD::ADD) &&
3353 N0.getOperand(1).getOperand(0) == N1)
3354 return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
3355 N0.getOperand(1).getOperand(1));
3356
3357 // fold ((A+(C+B))-B) -> A+C
3358 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
3359 N0.getOperand(1).getOperand(1) == N1)
3360 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
3361 N0.getOperand(1).getOperand(0));
3362
3363 // fold ((A-(B-C))-C) -> A-B
3364 if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
3365 N0.getOperand(1).getOperand(1) == N1)
3366 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
3367 N0.getOperand(1).getOperand(0));
3368
3369 // fold (A-(B-C)) -> A+(C-B)
3370 if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
3371 return DAG.getNode(ISD::ADD, DL, VT, N0,
3372 DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
3373 N1.getOperand(0)));
3374
3375 // A - (A & B) -> A & (~B)
3376 if (N1.getOpcode() == ISD::AND) {
3377 SDValue A = N1.getOperand(0);
3378 SDValue B = N1.getOperand(1);
3379 if (A != N0)
3380 std::swap(A, B);
3381 if (A == N0 &&
3382 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) {
3383 SDValue InvB =
3384 DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT));
3385 return DAG.getNode(ISD::AND, DL, VT, A, InvB);
3386 }
3387 }
3388
3389 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3390 if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
3391 if (N1.getOperand(0).getOpcode() == ISD::SUB &&
3392 isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
3393 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3394 N1.getOperand(0).getOperand(1),
3395 N1.getOperand(1));
3396 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3397 }
3398 if (N1.getOperand(1).getOpcode() == ISD::SUB &&
3399 isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
3400 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
3401 N1.getOperand(0),
3402 N1.getOperand(1).getOperand(1));
3403 return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
3404 }
3405 }
3406
3407 // If either operand of a sub is undef, the result is undef
3408 if (N0.isUndef())
3409 return N0;
3410 if (N1.isUndef())
3411 return N1;
3412
3413 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
3414 return V;
3415
3416 if (SDValue V = foldAddSubOfSignBit(N, DAG))
3417 return V;
3418
3419 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
3420 return V;
3421
3422 if (SDValue V = foldSubToUSubSat(VT, N))
3423 return V;
3424
3425 // (x - y) - 1 -> add (xor y, -1), x
3426 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) {
3427 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
3428 DAG.getAllOnesConstant(DL, VT));
3429 return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
3430 }
3431
3432 // Look for:
3433 // sub y, (xor x, -1)
3434 // And if the target does not like this form then turn into:
3435 // add (add x, y), 1
3436 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
3437 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
3438 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
3439 }
3440
3441 // Hoist one-use addition by non-opaque constant:
3442 // (x + C) - y -> (x - y) + C
3443 if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD &&
3444 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3445 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3446 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
3447 }
3448 // y - (x + C) -> (y - x) - C
3449 if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD &&
3450 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
3451 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
3452 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
3453 }
3454 // (x - C) - y -> (x - y) - C
3455 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3456 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3457 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3458 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
3459 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
3460 }
3461 // (C - x) - y -> C - (x + y)
3462 if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
3463 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
3464 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
3465 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
3466 }
3467
3468 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3469 // rather than 'sub 0/1' (the sext should get folded).
3470 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3471 if (N1.getOpcode() == ISD::ZERO_EXTEND &&
3472 N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
3473 TLI.getBooleanContents(VT) ==
3474 TargetLowering::ZeroOrNegativeOneBooleanContent) {
3475 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
3476 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
3477 }
3478
3479 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3480 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
3481 if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
3482 SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
3483 SDValue S0 = N1.getOperand(0);
3484 if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0))
3485 if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
3486 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
3487 return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
3488 }
3489 }
3490
3491 // If the relocation model supports it, consider symbol offsets.
3492 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
3493 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
3494 // fold (sub Sym, c) -> Sym-c
3495 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
3496 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
3497 GA->getOffset() -
3498 (uint64_t)N1C->getSExtValue());
3499 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3500 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
3501 if (GA->getGlobal() == GB->getGlobal())
3502 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
3503 DL, VT);
3504 }
3505
3506 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3507 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
3508 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
3509 if (TN->getVT() == MVT::i1) {
3510 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
3511 DAG.getConstant(1, DL, VT));
3512 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
3513 }
3514 }
3515
3516 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
3517 if (N1.getOpcode() == ISD::VSCALE) {
3518 const APInt &IntVal = N1.getConstantOperandAPInt(0);
3519 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal));
3520 }
3521
3522 // Prefer an add for more folding potential and possibly better codegen:
3523 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3524 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
3525 SDValue ShAmt = N1.getOperand(1);
3526 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
3527 if (ShAmtC &&
3528 ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
3529 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
3530 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
3531 }
3532 }
3533
3534 if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) {
3535 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
3536 if (SDValue Carry = getAsCarry(TLI, N0)) {
3537 SDValue X = N1;
3538 SDValue Zero = DAG.getConstant(0, DL, VT);
3539 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
3540 return DAG.getNode(ISD::ADDCARRY, DL,
3541 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
3542 Carry);
3543 }
3544 }
3545
3546 return SDValue();
3547}
3548
3549SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
3550 SDValue N0 = N->getOperand(0);
3551 SDValue N1 = N->getOperand(1);
3552 EVT VT = N0.getValueType();
3553 SDLoc DL(N);
3554
3555 // fold vector ops
3556 if (VT.isVector()) {
3557 // TODO SimplifyVBinOp
3558
3559 // fold (sub_sat x, 0) -> x, vector edition
3560 if (ISD::isBuildVectorAllZeros(N1.getNode()))
3561 return N0;
3562 }
3563
3564 // fold (sub_sat x, undef) -> 0
3565 if (N0.isUndef() || N1.isUndef())
3566 return DAG.getConstant(0, DL, VT);
3567
3568 // fold (sub_sat x, x) -> 0
3569 if (N0 == N1)
3570 return DAG.getConstant(0, DL, VT);
3571
3572 // fold (sub_sat c1, c2) -> c3
3573 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1}))
3574 return C;
3575
3576 // fold (sub_sat x, 0) -> x
3577 if (isNullConstant(N1))
3578 return N0;
3579
3580 return SDValue();
3581}
3582
3583SDValue DAGCombiner::visitSUBC(SDNode *N) {
3584 SDValue N0 = N->getOperand(0);
3585 SDValue N1 = N->getOperand(1);
3586 EVT VT = N0.getValueType();
3587 SDLoc DL(N);
3588
3589 // If the flag result is dead, turn this into an SUB.
3590 if (!N->hasAnyUseOfValue(1))
3591 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3592 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3593
3594 // fold (subc x, x) -> 0 + no borrow
3595 if (N0 == N1)
3596 return CombineTo(N, DAG.getConstant(0, DL, VT),
3597 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3598
3599 // fold (subc x, 0) -> x + no borrow
3600 if (isNullConstant(N1))
3601 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3602
3603 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3604 if (isAllOnesConstant(N0))
3605 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3606 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3607
3608 return SDValue();
3609}
3610
3611SDValue DAGCombiner::visitSUBO(SDNode *N) {
3612 SDValue N0 = N->getOperand(0);
3613 SDValue N1 = N->getOperand(1);
3614 EVT VT = N0.getValueType();
3615 bool IsSigned = (ISD::SSUBO == N->getOpcode());
3616
3617 EVT CarryVT = N->getValueType(1);
3618 SDLoc DL(N);
3619
3620 // If the flag result is dead, turn this into an SUB.
3621 if (!N->hasAnyUseOfValue(1))
3622 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
3623 DAG.getUNDEF(CarryVT));
3624
3625 // fold (subo x, x) -> 0 + no borrow
3626 if (N0 == N1)
3627 return CombineTo(N, DAG.getConstant(0, DL, VT),
3628 DAG.getConstant(0, DL, CarryVT));
3629
3630 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
3631
3632 // fold (subox, c) -> (addo x, -c)
3633 if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
3634 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
3635 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
3636 }
3637
3638 // fold (subo x, 0) -> x + no borrow
3639 if (isNullOrNullSplat(N1))
3640 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
3641
3642 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3643 if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
3644 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
3645 DAG.getConstant(0, DL, CarryVT));
3646
3647 return SDValue();
3648}
3649
3650SDValue DAGCombiner::visitSUBE(SDNode *N) {
3651 SDValue N0 = N->getOperand(0);
3652 SDValue N1 = N->getOperand(1);
3653 SDValue CarryIn = N->getOperand(2);
3654
3655 // fold (sube x, y, false) -> (subc x, y)
3656 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
3657 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
3658
3659 return SDValue();
3660}
3661
3662SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
3663 SDValue N0 = N->getOperand(0);
3664 SDValue N1 = N->getOperand(1);
3665 SDValue CarryIn = N->getOperand(2);
3666
3667 // fold (subcarry x, y, false) -> (usubo x, y)
3668 if (isNullConstant(CarryIn)) {
3669 if (!LegalOperations ||
3670 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
3671 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
3672 }
3673
3674 return SDValue();
3675}
3676
3677SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) {
3678 SDValue N0 = N->getOperand(0);
3679 SDValue N1 = N->getOperand(1);
3680 SDValue CarryIn = N->getOperand(2);
3681
3682 // fold (ssubo_carry x, y, false) -> (ssubo x, y)
3683 if (isNullConstant(CarryIn)) {
3684 if (!LegalOperations ||
3685 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0)))
3686 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1);
3687 }
3688
3689 return SDValue();
3690}
3691
3692// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
3693// UMULFIXSAT here.
3694SDValue DAGCombiner::visitMULFIX(SDNode *N) {
3695 SDValue N0 = N->getOperand(0);
3696 SDValue N1 = N->getOperand(1);
3697 SDValue Scale = N->getOperand(2);
3698 EVT VT = N0.getValueType();
3699
3700 // fold (mulfix x, undef, scale) -> 0
3701 if (N0.isUndef() || N1.isUndef())
3702 return DAG.getConstant(0, SDLoc(N), VT);
3703
3704 // Canonicalize constant to RHS (vector doesn't have to splat)
3705 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3706 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3707 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
3708
3709 // fold (mulfix x, 0, scale) -> 0
3710 if (isNullConstant(N1))
3711 return DAG.getConstant(0, SDLoc(N), VT);
3712
3713 return SDValue();
3714}
3715
3716SDValue DAGCombiner::visitMUL(SDNode *N) {
3717 SDValue N0 = N->getOperand(0);
3718 SDValue N1 = N->getOperand(1);
3719 EVT VT = N0.getValueType();
3720
3721 // fold (mul x, undef) -> 0
3722 if (N0.isUndef() || N1.isUndef())
3723 return DAG.getConstant(0, SDLoc(N), VT);
3724
3725 bool N1IsConst = false;
3726 bool N1IsOpaqueConst = false;
3727 APInt ConstValue1;
3728
3729 // fold vector ops
3730 if (VT.isVector()) {
3731 if (SDValue FoldedVOp = SimplifyVBinOp(N))
3732 return FoldedVOp;
3733
3734 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
3735 assert((!N1IsConst ||(((!N1IsConst || ConstValue1.getBitWidth() == VT.getScalarSizeInBits
()) && "Splat APInt should be element width") ? static_cast
<void> (0) : __assert_fail ("(!N1IsConst || ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && \"Splat APInt should be element width\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3737, __PRETTY_FUNCTION__))
3736 ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&(((!N1IsConst || ConstValue1.getBitWidth() == VT.getScalarSizeInBits
()) && "Splat APInt should be element width") ? static_cast
<void> (0) : __assert_fail ("(!N1IsConst || ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && \"Splat APInt should be element width\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3737, __PRETTY_FUNCTION__))
3737 "Splat APInt should be element width")(((!N1IsConst || ConstValue1.getBitWidth() == VT.getScalarSizeInBits
()) && "Splat APInt should be element width") ? static_cast
<void> (0) : __assert_fail ("(!N1IsConst || ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && \"Splat APInt should be element width\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3737, __PRETTY_FUNCTION__))
;
3738 } else {
3739 N1IsConst = isa<ConstantSDNode>(N1);
3740 if (N1IsConst) {
3741 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
3742 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
3743 }
3744 }
3745
3746 // fold (mul c1, c2) -> c1*c2
3747 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1}))
3748 return C;
3749
3750 // canonicalize constant to RHS (vector doesn't have to splat)
3751 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
3752 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
3753 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
3754
3755 // fold (mul x, 0) -> 0
3756 if (N1IsConst && ConstValue1.isNullValue())
3757 return N1;
3758
3759 // fold (mul x, 1) -> x
3760 if (N1IsConst && ConstValue1.isOneValue())
3761 return N0;
3762
3763 if (SDValue NewSel = foldBinOpIntoSelect(N))
3764 return NewSel;
3765
3766 // fold (mul x, -1) -> 0-x
3767 if (N1IsConst && ConstValue1.isAllOnesValue()) {
3768 SDLoc DL(N);
3769 return DAG.getNode(ISD::SUB, DL, VT,
3770 DAG.getConstant(0, DL, VT), N0);
3771 }
3772
3773 // fold (mul x, (1 << c)) -> x << c
3774 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
3775 DAG.isKnownToBeAPowerOfTwo(N1) &&
3776 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
3777 SDLoc DL(N);
3778 SDValue LogBase2 = BuildLogBase2(N1, DL);
3779 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
3780 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
3781 return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
3782 }
3783
3784 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3785 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
3786 unsigned Log2Val = (-ConstValue1).logBase2();
3787 SDLoc DL(N);
3788 // FIXME: If the input is something that is easily negated (e.g. a
3789 // single-use add), we should put the negate there.
3790 return DAG.getNode(ISD::SUB, DL, VT,
3791 DAG.getConstant(0, DL, VT),
3792 DAG.getNode(ISD::SHL, DL, VT, N0,
3793 DAG.getConstant(Log2Val, DL,
3794 getShiftAmountTy(N0.getValueType()))));
3795 }
3796
3797 // Try to transform:
3798 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3799 // mul x, (2^N + 1) --> add (shl x, N), x
3800 // mul x, (2^N - 1) --> sub (shl x, N), x
3801 // Examples: x * 33 --> (x << 5) + x
3802 // x * 15 --> (x << 4) - x
3803 // x * -33 --> -((x << 5) + x)
3804 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3805 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
3806 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
3807 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
3808 // Examples: x * 0x8800 --> (x << 15) + (x << 11)
3809 // x * 0xf800 --> (x << 16) - (x << 11)
3810 // x * -0x8800 --> -((x << 15) + (x << 11))
3811 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
3812 if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
3813 // TODO: We could handle more general decomposition of any constant by
3814 // having the target set a limit on number of ops and making a
3815 // callback to determine that sequence (similar to sqrt expansion).
3816 unsigned MathOp = ISD::DELETED_NODE;
3817 APInt MulC = ConstValue1.abs();
3818 // The constant `2` should be treated as (2^0 + 1).
3819 unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros();
3820 MulC.lshrInPlace(TZeros);
3821 if ((MulC - 1).isPowerOf2())
3822 MathOp = ISD::ADD;
3823 else if ((MulC + 1).isPowerOf2())
3824 MathOp = ISD::SUB;
3825
3826 if (MathOp != ISD::DELETED_NODE) {
3827 unsigned ShAmt =
3828 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
3829 ShAmt += TZeros;
3830 assert(ShAmt < VT.getScalarSizeInBits() &&((ShAmt < VT.getScalarSizeInBits() && "multiply-by-constant generated out of bounds shift"
) ? static_cast<void> (0) : __assert_fail ("ShAmt < VT.getScalarSizeInBits() && \"multiply-by-constant generated out of bounds shift\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3831, __PRETTY_FUNCTION__))
3831 "multiply-by-constant generated out of bounds shift")((ShAmt < VT.getScalarSizeInBits() && "multiply-by-constant generated out of bounds shift"
) ? static_cast<void> (0) : __assert_fail ("ShAmt < VT.getScalarSizeInBits() && \"multiply-by-constant generated out of bounds shift\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3831, __PRETTY_FUNCTION__))
;
3832 SDLoc DL(N);
3833 SDValue Shl =
3834 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
3835 SDValue R =
3836 TZeros ? DAG.getNode(MathOp, DL, VT, Shl,
3837 DAG.getNode(ISD::SHL, DL, VT, N0,
3838 DAG.getConstant(TZeros, DL, VT)))
3839 : DAG.getNode(MathOp, DL, VT, Shl, N0);
3840 if (ConstValue1.isNegative())
3841 R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
3842 return R;
3843 }
3844 }
3845
3846 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3847 if (N0.getOpcode() == ISD::SHL &&
3848 isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
3849 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
3850 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
3851 if (isConstantOrConstantVector(C3))
3852 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
3853 }
3854
3855 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3856 // use.
3857 {
3858 SDValue Sh(nullptr, 0), Y(nullptr, 0);
3859
3860 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3861 if (N0.getOpcode() == ISD::SHL &&
3862 isConstantOrConstantVector(N0.getOperand(1)) &&
3863 N0.getNode()->hasOneUse()) {
3864 Sh = N0; Y = N1;
3865 } else if (N1.getOpcode() == ISD::SHL &&
3866 isConstantOrConstantVector(N1.getOperand(1)) &&
3867 N1.getNode()->hasOneUse()) {
3868 Sh = N1; Y = N0;
3869 }
3870
3871 if (Sh.getNode()) {
3872 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
3873 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
3874 }
3875 }
3876
3877 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3878 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
3879 N0.getOpcode() == ISD::ADD &&
3880 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
3881 isMulAddWithConstProfitable(N, N0, N1))
3882 return DAG.getNode(ISD::ADD, SDLoc(N), VT,
3883 DAG.getNode(ISD::MUL, SDLoc(N0), VT,
3884 N0.getOperand(0), N1),
3885 DAG.getNode(ISD::MUL, SDLoc(N1), VT,
3886 N0.getOperand(1), N1));
3887
3888 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
3889 if (N0.getOpcode() == ISD::VSCALE)
3890 if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) {
3891 const APInt &C0 = N0.getConstantOperandAPInt(0);
3892 const APInt &C1 = NC1->getAPIntValue();
3893 return DAG.getVScale(SDLoc(N), VT, C0 * C1);
3894 }
3895
3896 // Fold ((mul x, 0/undef) -> 0,
3897 // (mul x, 1) -> x) -> x)
3898 // -> and(x, mask)
3899 // We can replace vectors with '0' and '1' factors with a clearing mask.
3900 if (VT.isFixedLengthVector()) {
3901 unsigned NumElts = VT.getVectorNumElements();
3902 SmallBitVector ClearMask;
3903 ClearMask.reserve(NumElts);
3904 auto IsClearMask = [&ClearMask](ConstantSDNode *V) {
3905 if (!V || V->isNullValue()) {
3906 ClearMask.push_back(true);
3907 return true;
3908 }
3909 ClearMask.push_back(false);
3910 return V->isOne();
3911 };
3912 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) &&
3913 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) {
3914 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector")((N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector"
) ? static_cast<void> (0) : __assert_fail ("N1.getOpcode() == ISD::BUILD_VECTOR && \"Unknown constant vector\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 3914, __PRETTY_FUNCTION__))
;
3915 SDLoc DL(N);
3916 EVT LegalSVT = N1.getOperand(0).getValueType();
3917 SDValue Zero = DAG.getConstant(0, DL, LegalSVT);
3918 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT);
3919 SmallVector<SDValue, 16> Mask(NumElts, AllOnes);
3920 for (unsigned I = 0; I != NumElts; ++I)
3921 if (ClearMask[I])
3922 Mask[I] = Zero;
3923 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask));
3924 }
3925 }
3926
3927 // reassociate mul
3928 if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
3929 return RMUL;
3930
3931 return SDValue();
3932}
3933
3934/// Return true if divmod libcall is available.
3935static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
3936 const TargetLowering &TLI) {
3937 RTLIB::Libcall LC;
3938 EVT NodeType = Node->getValueType(0);
3939 if (!NodeType.isSimple())
3940 return false;
3941 switch (NodeType.getSimpleVT().SimpleTy) {
3942 default: return false; // No libcall for vector types.
3943 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
3944 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
3945 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
3946 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
3947 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
3948 }
3949
3950 return TLI.getLibcallName(LC) != nullptr;
3951}
3952
3953/// Issue divrem if both quotient and remainder are needed.
3954SDValue DAGCombiner::useDivRem(SDNode *Node) {
3955 if (Node->use_empty())
3956 return SDValue(); // This is a dead node, leave it alone.
3957
3958 unsigned Opcode = Node->getOpcode();
3959 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
3960 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3961
3962 // DivMod lib calls can still work on non-legal types if using lib-calls.
3963 EVT VT = Node->getValueType(0);
3964 if (VT.isVector() || !VT.isInteger())
3965 return SDValue();
3966
3967 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
3968 return SDValue();
3969
3970 // If DIVREM is going to get expanded into a libcall,
3971 // but there is no libcall available, then don't combine.
3972 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
3973 !isDivRemLibcallAvailable(Node, isSigned, TLI))
3974 return SDValue();
3975
3976 // If div is legal, it's better to do the normal expansion
3977 unsigned OtherOpcode = 0;
3978 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
3979 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
3980 if (TLI.isOperationLegalOrCustom(Opcode, VT))
3981 return SDValue();
3982 } else {
3983 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
3984 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
3985 return SDValue();
3986 }
3987
3988 SDValue Op0 = Node->getOperand(0);
3989 SDValue Op1 = Node->getOperand(1);
3990 SDValue combined;
3991 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
3992 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
3993 SDNode *User = *UI;
3994 if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
3995 User->use_empty())
3996 continue;
3997 // Convert the other matching node(s), too;
3998 // otherwise, the DIVREM may get target-legalized into something
3999 // target-specific that we won't be able to recognize.
4000 unsigned UserOpc = User->getOpcode();
4001 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
4002 User->getOperand(0) == Op0 &&
4003 User->getOperand(1) == Op1) {
4004 if (!combined) {
4005 if (UserOpc == OtherOpcode) {
4006 SDVTList VTs = DAG.getVTList(VT, VT);
4007 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
4008 } else if (UserOpc == DivRemOpc) {
4009 combined = SDValue(User, 0);
4010 } else {
4011 assert(UserOpc == Opcode)((UserOpc == Opcode) ? static_cast<void> (0) : __assert_fail
("UserOpc == Opcode", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4011, __PRETTY_FUNCTION__))
;
4012 continue;
4013 }
4014 }
4015 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
4016 CombineTo(User, combined);
4017 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
4018 CombineTo(User, combined.getValue(1));
4019 }
4020 }
4021 return combined;
4022}
4023
4024static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
4025 SDValue N0 = N->getOperand(0);
4026 SDValue N1 = N->getOperand(1);
4027 EVT VT = N->getValueType(0);
4028 SDLoc DL(N);
4029
4030 unsigned Opc = N->getOpcode();
4031 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
4032 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4033
4034 // X / undef -> undef
4035 // X % undef -> undef
4036 // X / 0 -> undef
4037 // X % 0 -> undef
4038 // NOTE: This includes vectors where any divisor element is zero/undef.
4039 if (DAG.isUndef(Opc, {N0, N1}))
4040 return DAG.getUNDEF(VT);
4041
4042 // undef / X -> 0
4043 // undef % X -> 0
4044 if (N0.isUndef())
4045 return DAG.getConstant(0, DL, VT);
4046
4047 // 0 / X -> 0
4048 // 0 % X -> 0
4049 ConstantSDNode *N0C = isConstOrConstSplat(N0);
4050 if (N0C && N0C->isNullValue())
4051 return N0;
4052
4053 // X / X -> 1
4054 // X % X -> 0
4055 if (N0 == N1)
4056 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
4057
4058 // X / 1 -> X
4059 // X % 1 -> 0
4060 // If this is a boolean op (single-bit element type), we can't have
4061 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
4062 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
4063 // it's a 1.
4064 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
4065 return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
4066
4067 return SDValue();
4068}
4069
4070SDValue DAGCombiner::visitSDIV(SDNode *N) {
4071 SDValue N0 = N->getOperand(0);
4072 SDValue N1 = N->getOperand(1);
4073 EVT VT = N->getValueType(0);
4074 EVT CCVT = getSetCCResultType(VT);
4075
4076 // fold vector ops
4077 if (VT.isVector())
4078 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4079 return FoldedVOp;
4080
4081 SDLoc DL(N);
4082
4083 // fold (sdiv c1, c2) -> c1/c2
4084 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4085 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1}))
4086 return C;
4087
4088 // fold (sdiv X, -1) -> 0-X
4089 if (N1C && N1C->isAllOnesValue())
4090 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
4091
4092 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
4093 if (N1C && N1C->getAPIntValue().isMinSignedValue())
4094 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4095 DAG.getConstant(1, DL, VT),
4096 DAG.getConstant(0, DL, VT));
4097
4098 if (SDValue V = simplifyDivRem(N, DAG))
4099 return V;
4100
4101 if (SDValue NewSel = foldBinOpIntoSelect(N))
4102 return NewSel;
4103
4104 // If we know the sign bits of both operands are zero, strength reduce to a
4105 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
4106 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
4107 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
4108
4109 if (SDValue V = visitSDIVLike(N0, N1, N)) {
4110 // If the corresponding remainder node exists, update its users with
4111 // (Dividend - (Quotient * Divisor).
4112 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
4113 { N0, N1 })) {
4114 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
4115 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4116 AddToWorklist(Mul.getNode());
4117 AddToWorklist(Sub.getNode());
4118 CombineTo(RemNode, Sub);
4119 }
4120 return V;
4121 }
4122
4123 // sdiv, srem -> sdivrem
4124 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4125 // true. Otherwise, we break the simplification logic in visitREM().
4126 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4127 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
4128 if (SDValue DivRem = useDivRem(N))
4129 return DivRem;
4130
4131 return SDValue();
4132}
4133
4134SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
4135 SDLoc DL(N);
4136 EVT VT = N->getValueType(0);
4137 EVT CCVT = getSetCCResultType(VT);
4138 unsigned BitWidth = VT.getScalarSizeInBits();
4139
4140 // Helper for determining whether a value is a power-2 constant scalar or a
4141 // vector of such elements.
4142 auto IsPowerOfTwo = [](ConstantSDNode *C) {
4143 if (C->isNullValue() || C->isOpaque())
4144 return false;
4145 if (C->getAPIntValue().isPowerOf2())
4146 return true;
4147 if ((-C->getAPIntValue()).isPowerOf2())
4148 return true;
4149 return false;
4150 };
4151
4152 // fold (sdiv X, pow2) -> simple ops after legalize
4153 // FIXME: We check for the exact bit here because the generic lowering gives
4154 // better results in that case. The target-specific lowering should learn how
4155 // to handle exact sdivs efficiently.
4156 if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
4157 // Target-specific implementation of sdiv x, pow2.
4158 if (SDValue Res = BuildSDIVPow2(N))
4159 return Res;
4160
4161 // Create constants that are functions of the shift amount value.
4162 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
4163 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
4164 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
4165 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
4166 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
4167 if (!isConstantOrConstantVector(Inexact))
4168 return SDValue();
4169
4170 // Splat the sign bit into the register
4171 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
4172 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
4173 AddToWorklist(Sign.getNode());
4174
4175 // Add (N0 < 0) ? abs2 - 1 : 0;
4176 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
4177 AddToWorklist(Srl.getNode());
4178 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
4179 AddToWorklist(Add.getNode());
4180 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
4181 AddToWorklist(Sra.getNode());
4182
4183 // Special case: (sdiv X, 1) -> X
4184 // Special Case: (sdiv X, -1) -> 0-X
4185 SDValue One = DAG.getConstant(1, DL, VT);
4186 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
4187 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
4188 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
4189 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
4190 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
4191
4192 // If dividing by a positive value, we're done. Otherwise, the result must
4193 // be negated.
4194 SDValue Zero = DAG.getConstant(0, DL, VT);
4195 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
4196
4197 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
4198 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
4199 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
4200 return Res;
4201 }
4202
4203 // If integer divide is expensive and we satisfy the requirements, emit an
4204 // alternate sequence. Targets may check function attributes for size/speed
4205 // trade-offs.
4206 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4207 if (isConstantOrConstantVector(N1) &&
4208 !TLI.isIntDivCheap(N->getValueType(0), Attr))
4209 if (SDValue Op = BuildSDIV(N))
4210 return Op;
4211
4212 return SDValue();
4213}
4214
4215SDValue DAGCombiner::visitUDIV(SDNode *N) {
4216 SDValue N0 = N->getOperand(0);
4217 SDValue N1 = N->getOperand(1);
4218 EVT VT = N->getValueType(0);
4219 EVT CCVT = getSetCCResultType(VT);
4220
4221 // fold vector ops
4222 if (VT.isVector())
4223 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4224 return FoldedVOp;
4225
4226 SDLoc DL(N);
4227
4228 // fold (udiv c1, c2) -> c1/c2
4229 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4230 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1}))
4231 return C;
4232
4233 // fold (udiv X, -1) -> select(X == -1, 1, 0)
4234 if (N1C && N1C->getAPIntValue().isAllOnesValue())
4235 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4236 DAG.getConstant(1, DL, VT),
4237 DAG.getConstant(0, DL, VT));
4238
4239 if (SDValue V = simplifyDivRem(N, DAG))
4240 return V;
4241
4242 if (SDValue NewSel = foldBinOpIntoSelect(N))
4243 return NewSel;
4244
4245 if (SDValue V = visitUDIVLike(N0, N1, N)) {
4246 // If the corresponding remainder node exists, update its users with
4247 // (Dividend - (Quotient * Divisor).
4248 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
4249 { N0, N1 })) {
4250 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
4251 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4252 AddToWorklist(Mul.getNode());
4253 AddToWorklist(Sub.getNode());
4254 CombineTo(RemNode, Sub);
4255 }
4256 return V;
4257 }
4258
4259 // sdiv, srem -> sdivrem
4260 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4261 // true. Otherwise, we break the simplification logic in visitREM().
4262 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4263 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
4264 if (SDValue DivRem = useDivRem(N))
4265 return DivRem;
4266
4267 return SDValue();
4268}
4269
4270SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
4271 SDLoc DL(N);
4272 EVT VT = N->getValueType(0);
4273
4274 // fold (udiv x, (1 << c)) -> x >>u c
4275 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4276 DAG.isKnownToBeAPowerOfTwo(N1)) {
4277 SDValue LogBase2 = BuildLogBase2(N1, DL);
4278 AddToWorklist(LogBase2.getNode());
4279
4280 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4281 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
4282 AddToWorklist(Trunc.getNode());
4283 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4284 }
4285
4286 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4287 if (N1.getOpcode() == ISD::SHL) {
4288 SDValue N10 = N1.getOperand(0);
4289 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
4290 DAG.isKnownToBeAPowerOfTwo(N10)) {
4291 SDValue LogBase2 = BuildLogBase2(N10, DL);
4292 AddToWorklist(LogBase2.getNode());
4293
4294 EVT ADDVT = N1.getOperand(1).getValueType();
4295 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
4296 AddToWorklist(Trunc.getNode());
4297 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
4298 AddToWorklist(Add.getNode());
4299 return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
4300 }
4301 }
4302
4303 // fold (udiv x, c) -> alternate
4304 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4305 if (isConstantOrConstantVector(N1) &&
4306 !TLI.isIntDivCheap(N->getValueType(0), Attr))
4307 if (SDValue Op = BuildUDIV(N))
4308 return Op;
4309
4310 return SDValue();
4311}
4312
4313// handles ISD::SREM and ISD::UREM
4314SDValue DAGCombiner::visitREM(SDNode *N) {
4315 unsigned Opcode = N->getOpcode();
4316 SDValue N0 = N->getOperand(0);
4317 SDValue N1 = N->getOperand(1);
4318 EVT VT = N->getValueType(0);
4319 EVT CCVT = getSetCCResultType(VT);
4320
4321 bool isSigned = (Opcode == ISD::SREM);
4322 SDLoc DL(N);
4323
4324 // fold (rem c1, c2) -> c1%c2
4325 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4326 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
4327 return C;
4328
4329 // fold (urem X, -1) -> select(X == -1, 0, x)
4330 if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
4331 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
4332 DAG.getConstant(0, DL, VT), N0);
4333
4334 if (SDValue V = simplifyDivRem(N, DAG))
4335 return V;
4336
4337 if (SDValue NewSel = foldBinOpIntoSelect(N))
4338 return NewSel;
4339
4340 if (isSigned) {
4341 // If we know the sign bits of both operands are zero, strength reduce to a
4342 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4343 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
4344 return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
4345 } else {
4346 if (DAG.isKnownToBeAPowerOfTwo(N1)) {
4347 // fold (urem x, pow2) -> (and x, pow2-1)
4348 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
4349 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
4350 AddToWorklist(Add.getNode());
4351 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
4352 }
4353 if (N1.getOpcode() == ISD::SHL &&
4354 DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
4355 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4356 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
4357 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
4358 AddToWorklist(Add.getNode());
4359 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
4360 }
4361 }
4362
4363 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4364
4365 // If X/C can be simplified by the division-by-constant logic, lower
4366 // X%C to the equivalent of X-X/C*C.
4367 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4368 // speculative DIV must not cause a DIVREM conversion. We guard against this
4369 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
4370 // combine will not return a DIVREM. Regardless, checking cheapness here
4371 // makes sense since the simplification results in fatter code.
4372 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
4373 SDValue OptimizedDiv =
4374 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
4375 if (OptimizedDiv.getNode()) {
4376 // If the equivalent Div node also exists, update its users.
4377 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
4378 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
4379 { N0, N1 }))
4380 CombineTo(DivNode, OptimizedDiv);
4381 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
4382 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
4383 AddToWorklist(OptimizedDiv.getNode());
4384 AddToWorklist(Mul.getNode());
4385 return Sub;
4386 }
4387 }
4388
4389 // sdiv, srem -> sdivrem
4390 if (SDValue DivRem = useDivRem(N))
4391 return DivRem.getValue(1);
4392
4393 return SDValue();
4394}
4395
4396SDValue DAGCombiner::visitMULHS(SDNode *N) {
4397 SDValue N0 = N->getOperand(0);
4398 SDValue N1 = N->getOperand(1);
4399 EVT VT = N->getValueType(0);
4400 SDLoc DL(N);
4401
4402 if (VT.isVector()) {
4403 // fold (mulhs x, 0) -> 0
4404 // do not return N0/N1, because undef node may exist.
4405 if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
4406 ISD::isBuildVectorAllZeros(N1.getNode()))
4407 return DAG.getConstant(0, DL, VT);
4408 }
4409
4410 // fold (mulhs x, 0) -> 0
4411 if (isNullConstant(N1))
4412 return N1;
4413 // fold (mulhs x, 1) -> (sra x, size(x)-1)
4414 if (isOneConstant(N1))
4415 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
4416 DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL,
4417 getShiftAmountTy(N0.getValueType())));
4418
4419 // fold (mulhs x, undef) -> 0
4420 if (N0.isUndef() || N1.isUndef())
4421 return DAG.getConstant(0, DL, VT);
4422
4423 // If the type twice as wide is legal, transform the mulhs to a wider multiply
4424 // plus a shift.
4425 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() &&
4426 !VT.isVector()) {
4427 MVT Simple = VT.getSimpleVT();
4428 unsigned SimpleSize = Simple.getSizeInBits();
4429 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4430 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4431 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
4432 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
4433 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4434 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4435 DAG.getConstant(SimpleSize, DL,
4436 getShiftAmountTy(N1.getValueType())));
4437 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4438 }
4439 }
4440
4441 return SDValue();
4442}
4443
4444SDValue DAGCombiner::visitMULHU(SDNode *N) {
4445 SDValue N0 = N->getOperand(0);
4446 SDValue N1 = N->getOperand(1);
4447 EVT VT = N->getValueType(0);
4448 SDLoc DL(N);
4449
4450 if (VT.isVector()) {
4451 // fold (mulhu x, 0) -> 0
4452 // do not return N0/N1, because undef node may exist.
4453 if (ISD::isBuildVectorAllZeros(N0.getNode()) ||
4454 ISD::isBuildVectorAllZeros(N1.getNode()))
4455 return DAG.getConstant(0, DL, VT);
4456 }
4457
4458 // fold (mulhu x, 0) -> 0
4459 if (isNullConstant(N1))
4460 return N1;
4461 // fold (mulhu x, 1) -> 0
4462 if (isOneConstant(N1))
4463 return DAG.getConstant(0, DL, N0.getValueType());
4464 // fold (mulhu x, undef) -> 0
4465 if (N0.isUndef() || N1.isUndef())
4466 return DAG.getConstant(0, DL, VT);
4467
4468 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4469 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4470 DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
4471 unsigned NumEltBits = VT.getScalarSizeInBits();
4472 SDValue LogBase2 = BuildLogBase2(N1, DL);
4473 SDValue SRLAmt = DAG.getNode(
4474 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
4475 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4476 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
4477 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
4478 }
4479
4480 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4481 // plus a shift.
4482 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() &&
4483 !VT.isVector()) {
4484 MVT Simple = VT.getSimpleVT();
4485 unsigned SimpleSize = Simple.getSizeInBits();
4486 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4487 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4488 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
4489 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
4490 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
4491 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
4492 DAG.getConstant(SimpleSize, DL,
4493 getShiftAmountTy(N1.getValueType())));
4494 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
4495 }
4496 }
4497
4498 return SDValue();
4499}
4500
4501/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4502/// give the opcodes for the two computations that are being performed. Return
4503/// true if a simplification was made.
4504SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
4505 unsigned HiOp) {
4506 // If the high half is not needed, just compute the low half.
4507 bool HiExists = N->hasAnyUseOfValue(1);
4508 if (!HiExists && (!LegalOperations ||
4509 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
4510 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4511 return CombineTo(N, Res, Res);
4512 }
4513
4514 // If the low half is not needed, just compute the high half.
4515 bool LoExists = N->hasAnyUseOfValue(0);
4516 if (!LoExists && (!LegalOperations ||
4517 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
4518 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4519 return CombineTo(N, Res, Res);
4520 }
4521
4522 // If both halves are used, return as it is.
4523 if (LoExists && HiExists)
4524 return SDValue();
4525
4526 // If the two computed results can be simplified separately, separate them.
4527 if (LoExists) {
4528 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
4529 AddToWorklist(Lo.getNode());
4530 SDValue LoOpt = combine(Lo.getNode());
4531 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
4532 (!LegalOperations ||
4533 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
4534 return CombineTo(N, LoOpt, LoOpt);
4535 }
4536
4537 if (HiExists) {
4538 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
4539 AddToWorklist(Hi.getNode());
4540 SDValue HiOpt = combine(Hi.getNode());
4541 if (HiOpt.getNode() && HiOpt != Hi &&
4542 (!LegalOperations ||
4543 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
4544 return CombineTo(N, HiOpt, HiOpt);
4545 }
4546
4547 return SDValue();
4548}
4549
4550SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
4551 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
4552 return Res;
4553
4554 EVT VT = N->getValueType(0);
4555 SDLoc DL(N);
4556
4557 // If the type is twice as wide is legal, transform the mulhu to a wider
4558 // multiply plus a shift.
4559 if (VT.isSimple() && !VT.isVector()) {
4560 MVT Simple = VT.getSimpleVT();
4561 unsigned SimpleSize = Simple.getSizeInBits();
4562 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4563 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4564 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
4565 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
4566 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4567 // Compute the high part as N1.
4568 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4569 DAG.getConstant(SimpleSize, DL,
4570 getShiftAmountTy(Lo.getValueType())));
4571 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4572 // Compute the low part as N0.
4573 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4574 return CombineTo(N, Lo, Hi);
4575 }
4576 }
4577
4578 return SDValue();
4579}
4580
4581SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
4582 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
4583 return Res;
4584
4585 EVT VT = N->getValueType(0);
4586 SDLoc DL(N);
4587
4588 // (umul_lohi N0, 0) -> (0, 0)
4589 if (isNullConstant(N->getOperand(1))) {
4590 SDValue Zero = DAG.getConstant(0, DL, VT);
4591 return CombineTo(N, Zero, Zero);
4592 }
4593
4594 // (umul_lohi N0, 1) -> (N0, 0)
4595 if (isOneConstant(N->getOperand(1))) {
4596 SDValue Zero = DAG.getConstant(0, DL, VT);
4597 return CombineTo(N, N->getOperand(0), Zero);
4598 }
4599
4600 // If the type is twice as wide is legal, transform the mulhu to a wider
4601 // multiply plus a shift.
4602 if (VT.isSimple() && !VT.isVector()) {
4603 MVT Simple = VT.getSimpleVT();
4604 unsigned SimpleSize = Simple.getSizeInBits();
4605 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
4606 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
4607 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
4608 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
4609 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
4610 // Compute the high part as N1.
4611 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
4612 DAG.getConstant(SimpleSize, DL,
4613 getShiftAmountTy(Lo.getValueType())));
4614 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
4615 // Compute the low part as N0.
4616 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
4617 return CombineTo(N, Lo, Hi);
4618 }
4619 }
4620
4621 return SDValue();
4622}
4623
4624SDValue DAGCombiner::visitMULO(SDNode *N) {
4625 SDValue N0 = N->getOperand(0);
4626 SDValue N1 = N->getOperand(1);
4627 EVT VT = N0.getValueType();
4628 bool IsSigned = (ISD::SMULO == N->getOpcode());
4629
4630 EVT CarryVT = N->getValueType(1);
4631 SDLoc DL(N);
4632
4633 ConstantSDNode *N0C = isConstOrConstSplat(N0);
4634 ConstantSDNode *N1C = isConstOrConstSplat(N1);
4635
4636 // fold operation with constant operands.
4637 // TODO: Move this to FoldConstantArithmetic when it supports nodes with
4638 // multiple results.
4639 if (N0C && N1C) {
4640 bool Overflow;
4641 APInt Result =
4642 IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow)
4643 : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow);
4644 return CombineTo(N, DAG.getConstant(Result, DL, VT),
4645 DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT));
4646 }
4647
4648 // canonicalize constant to RHS.
4649 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4650 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4651 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
4652
4653 // fold (mulo x, 0) -> 0 + no carry out
4654 if (isNullOrNullSplat(N1))
4655 return CombineTo(N, DAG.getConstant(0, DL, VT),
4656 DAG.getConstant(0, DL, CarryVT));
4657
4658 // (mulo x, 2) -> (addo x, x)
4659 if (N1C && N1C->getAPIntValue() == 2)
4660 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
4661 N->getVTList(), N0, N0);
4662
4663 if (IsSigned) {
4664 // A 1 bit SMULO overflows if both inputs are 1.
4665 if (VT.getScalarSizeInBits() == 1) {
4666 SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1);
4667 return CombineTo(N, And,
4668 DAG.getSetCC(DL, CarryVT, And,
4669 DAG.getConstant(0, DL, VT), ISD::SETNE));
4670 }
4671
4672 // Multiplying n * m significant bits yields a result of n + m significant
4673 // bits. If the total number of significant bits does not exceed the
4674 // result bit width (minus 1), there is no overflow.
4675 unsigned SignBits = DAG.ComputeNumSignBits(N0);
4676 if (SignBits > 1)
4677 SignBits += DAG.ComputeNumSignBits(N1);
4678 if (SignBits > VT.getScalarSizeInBits() + 1)
4679 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
4680 DAG.getConstant(0, DL, CarryVT));
4681 } else {
4682 KnownBits N1Known = DAG.computeKnownBits(N1);
4683 KnownBits N0Known = DAG.computeKnownBits(N0);
4684 bool Overflow;
4685 (void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow);
4686 if (!Overflow)
4687 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
4688 DAG.getConstant(0, DL, CarryVT));
4689 }
4690
4691 return SDValue();
4692}
4693
4694SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
4695 SDValue N0 = N->getOperand(0);
4696 SDValue N1 = N->getOperand(1);
4697 EVT VT = N0.getValueType();
4698 unsigned Opcode = N->getOpcode();
4699
4700 // fold vector ops
4701 if (VT.isVector())
4702 if (SDValue FoldedVOp = SimplifyVBinOp(N))
4703 return FoldedVOp;
4704
4705 // fold operation with constant operands.
4706 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1}))
4707 return C;
4708
4709 // canonicalize constant to RHS
4710 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
4711 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
4712 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
4713
4714 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4715 // Only do this if the current op isn't legal and the flipped is.
4716 if (!TLI.isOperationLegal(Opcode, VT) &&
4717 (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
4718 (N1.isUndef() || DAG.SignBitIsZero(N1))) {
4719 unsigned AltOpcode;
4720 switch (Opcode) {
4721 case ISD::SMIN: AltOpcode = ISD::UMIN; break;
4722 case ISD::SMAX: AltOpcode = ISD::UMAX; break;
4723 case ISD::UMIN: AltOpcode = ISD::SMIN; break;
4724 case ISD::UMAX: AltOpcode = ISD::SMAX; break;
4725 default: llvm_unreachable("Unknown MINMAX opcode")::llvm::llvm_unreachable_internal("Unknown MINMAX opcode", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4725)
;
4726 }
4727 if (TLI.isOperationLegal(AltOpcode, VT))
4728 return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
4729 }
4730
4731 // Simplify the operands using demanded-bits information.
4732 if (SimplifyDemandedBits(SDValue(N, 0)))
4733 return SDValue(N, 0);
4734
4735 return SDValue();
4736}
4737
4738/// If this is a bitwise logic instruction and both operands have the same
4739/// opcode, try to sink the other opcode after the logic instruction.
4740SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
4741 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4742 EVT VT = N0.getValueType();
4743 unsigned LogicOpcode = N->getOpcode();
4744 unsigned HandOpcode = N0.getOpcode();
4745 assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||(((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || LogicOpcode
== ISD::XOR) && "Expected logic opcode") ? static_cast
<void> (0) : __assert_fail ("(LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || LogicOpcode == ISD::XOR) && \"Expected logic opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4746, __PRETTY_FUNCTION__))
4746 LogicOpcode == ISD::XOR) && "Expected logic opcode")(((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || LogicOpcode
== ISD::XOR) && "Expected logic opcode") ? static_cast
<void> (0) : __assert_fail ("(LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || LogicOpcode == ISD::XOR) && \"Expected logic opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4746, __PRETTY_FUNCTION__))
;
4747 assert(HandOpcode == N1.getOpcode() && "Bad input!")((HandOpcode == N1.getOpcode() && "Bad input!") ? static_cast
<void> (0) : __assert_fail ("HandOpcode == N1.getOpcode() && \"Bad input!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4747, __PRETTY_FUNCTION__))
;
4748
4749 // Bail early if none of these transforms apply.
4750 if (N0.getNumOperands() == 0)
4751 return SDValue();
4752
4753 // FIXME: We should check number of uses of the operands to not increase
4754 // the instruction count for all transforms.
4755
4756 // Handle size-changing casts.
4757 SDValue X = N0.getOperand(0);
4758 SDValue Y = N1.getOperand(0);
4759 EVT XVT = X.getValueType();
4760 SDLoc DL(N);
4761 if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
4762 HandOpcode == ISD::SIGN_EXTEND) {
4763 // If both operands have other uses, this transform would create extra
4764 // instructions without eliminating anything.
4765 if (!N0.hasOneUse() && !N1.hasOneUse())
4766 return SDValue();
4767 // We need matching integer source types.
4768 if (XVT != Y.getValueType())
4769 return SDValue();
4770 // Don't create an illegal op during or after legalization. Don't ever
4771 // create an unsupported vector op.
4772 if ((VT.isVector() || LegalOperations) &&
4773 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
4774 return SDValue();
4775 // Avoid infinite looping with PromoteIntBinOp.
4776 // TODO: Should we apply desirable/legal constraints to all opcodes?
4777 if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
4778 !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
4779 return SDValue();
4780 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4781 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4782 return DAG.getNode(HandOpcode, DL, VT, Logic);
4783 }
4784
4785 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4786 if (HandOpcode == ISD::TRUNCATE) {
4787 // If both operands have other uses, this transform would create extra
4788 // instructions without eliminating anything.
4789 if (!N0.hasOneUse() && !N1.hasOneUse())
4790 return SDValue();
4791 // We need matching source types.
4792 if (XVT != Y.getValueType())
4793 return SDValue();
4794 // Don't create an illegal op during or after legalization.
4795 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
4796 return SDValue();
4797 // Be extra careful sinking truncate. If it's free, there's no benefit in
4798 // widening a binop. Also, don't create a logic op on an illegal type.
4799 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
4800 return SDValue();
4801 if (!TLI.isTypeLegal(XVT))
4802 return SDValue();
4803 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4804 return DAG.getNode(HandOpcode, DL, VT, Logic);
4805 }
4806
4807 // For binops SHL/SRL/SRA/AND:
4808 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4809 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
4810 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
4811 N0.getOperand(1) == N1.getOperand(1)) {
4812 // If either operand has other uses, this transform is not an improvement.
4813 if (!N0.hasOneUse() || !N1.hasOneUse())
4814 return SDValue();
4815 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4816 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
4817 }
4818
4819 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4820 if (HandOpcode == ISD::BSWAP) {
4821 // If either operand has other uses, this transform is not an improvement.
4822 if (!N0.hasOneUse() || !N1.hasOneUse())
4823 return SDValue();
4824 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4825 return DAG.getNode(HandOpcode, DL, VT, Logic);
4826 }
4827
4828 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4829 // Only perform this optimization up until type legalization, before
4830 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4831 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4832 // we don't want to undo this promotion.
4833 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4834 // on scalars.
4835 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
4836 Level <= AfterLegalizeTypes) {
4837 // Input types must be integer and the same.
4838 if (XVT.isInteger() && XVT == Y.getValueType() &&
4839 !(VT.isVector() && TLI.isTypeLegal(VT) &&
4840 !XVT.isVector() && !TLI.isTypeLegal(XVT))) {
4841 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
4842 return DAG.getNode(HandOpcode, DL, VT, Logic);
4843 }
4844 }
4845
4846 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4847 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4848 // If both shuffles use the same mask, and both shuffle within a single
4849 // vector, then it is worthwhile to move the swizzle after the operation.
4850 // The type-legalizer generates this pattern when loading illegal
4851 // vector types from memory. In many cases this allows additional shuffle
4852 // optimizations.
4853 // There are other cases where moving the shuffle after the xor/and/or
4854 // is profitable even if shuffles don't perform a swizzle.
4855 // If both shuffles use the same mask, and both shuffles have the same first
4856 // or second operand, then it might still be profitable to move the shuffle
4857 // after the xor/and/or operation.
4858 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
4859 auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
4860 auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
4861 assert(X.getValueType() == Y.getValueType() &&((X.getValueType() == Y.getValueType() && "Inputs to shuffles are not the same type"
) ? static_cast<void> (0) : __assert_fail ("X.getValueType() == Y.getValueType() && \"Inputs to shuffles are not the same type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4862, __PRETTY_FUNCTION__))
4862 "Inputs to shuffles are not the same type")((X.getValueType() == Y.getValueType() && "Inputs to shuffles are not the same type"
) ? static_cast<void> (0) : __assert_fail ("X.getValueType() == Y.getValueType() && \"Inputs to shuffles are not the same type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4862, __PRETTY_FUNCTION__))
;
4863
4864 // Check that both shuffles use the same mask. The masks are known to be of
4865 // the same length because the result vector type is the same.
4866 // Check also that shuffles have only one use to avoid introducing extra
4867 // instructions.
4868 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
4869 !SVN0->getMask().equals(SVN1->getMask()))
4870 return SDValue();
4871
4872 // Don't try to fold this node if it requires introducing a
4873 // build vector of all zeros that might be illegal at this stage.
4874 SDValue ShOp = N0.getOperand(1);
4875 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4876 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4877
4878 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4879 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
4880 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
4881 N0.getOperand(0), N1.getOperand(0));
4882 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
4883 }
4884
4885 // Don't try to fold this node if it requires introducing a
4886 // build vector of all zeros that might be illegal at this stage.
4887 ShOp = N0.getOperand(0);
4888 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
4889 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4890
4891 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4892 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
4893 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
4894 N1.getOperand(1));
4895 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
4896 }
4897 }
4898
4899 return SDValue();
4900}
4901
4902/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4903SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
4904 const SDLoc &DL) {
4905 SDValue LL, LR, RL, RR, N0CC, N1CC;
4906 if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
4907 !isSetCCEquivalent(N1, RL, RR, N1CC))
4908 return SDValue();
4909
4910 assert(N0.getValueType() == N1.getValueType() &&((N0.getValueType() == N1.getValueType() && "Unexpected operand types for bitwise logic op"
) ? static_cast<void> (0) : __assert_fail ("N0.getValueType() == N1.getValueType() && \"Unexpected operand types for bitwise logic op\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4911, __PRETTY_FUNCTION__))
4911 "Unexpected operand types for bitwise logic op")((N0.getValueType() == N1.getValueType() && "Unexpected operand types for bitwise logic op"
) ? static_cast<void> (0) : __assert_fail ("N0.getValueType() == N1.getValueType() && \"Unexpected operand types for bitwise logic op\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4911, __PRETTY_FUNCTION__))
;
4912 assert(LL.getValueType() == LR.getValueType() &&((LL.getValueType() == LR.getValueType() && RL.getValueType
() == RR.getValueType() && "Unexpected operand types for setcc"
) ? static_cast<void> (0) : __assert_fail ("LL.getValueType() == LR.getValueType() && RL.getValueType() == RR.getValueType() && \"Unexpected operand types for setcc\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4914, __PRETTY_FUNCTION__))
4913 RL.getValueType() == RR.getValueType() &&((LL.getValueType() == LR.getValueType() && RL.getValueType
() == RR.getValueType() && "Unexpected operand types for setcc"
) ? static_cast<void> (0) : __assert_fail ("LL.getValueType() == LR.getValueType() && RL.getValueType() == RR.getValueType() && \"Unexpected operand types for setcc\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4914, __PRETTY_FUNCTION__))
4914 "Unexpected operand types for setcc")((LL.getValueType() == LR.getValueType() && RL.getValueType
() == RR.getValueType() && "Unexpected operand types for setcc"
) ? static_cast<void> (0) : __assert_fail ("LL.getValueType() == LR.getValueType() && RL.getValueType() == RR.getValueType() && \"Unexpected operand types for setcc\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 4914, __PRETTY_FUNCTION__))
;
4915
4916 // If we're here post-legalization or the logic op type is not i1, the logic
4917 // op type must match a setcc result type. Also, all folds require new
4918 // operations on the left and right operands, so those types must match.
4919 EVT VT = N0.getValueType();
4920 EVT OpVT = LL.getValueType();
4921 if (LegalOperations || VT.getScalarType() != MVT::i1)
4922 if (VT != getSetCCResultType(OpVT))
4923 return SDValue();
4924 if (OpVT != RL.getValueType())
4925 return SDValue();
4926
4927 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
4928 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
4929 bool IsInteger = OpVT.isInteger();
4930 if (LR == RR && CC0 == CC1 && IsInteger) {
4931 bool IsZero = isNullOrNullSplat(LR);
4932 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
4933
4934 // All bits clear?
4935 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
4936 // All sign bits clear?
4937 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
4938 // Any bits set?
4939 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
4940 // Any sign bits set?
4941 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
4942
4943 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
4944 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
4945 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
4946 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
4947 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
4948 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
4949 AddToWorklist(Or.getNode());
4950 return DAG.getSetCC(DL, VT, Or, LR, CC1);
4951 }
4952
4953 // All bits set?
4954 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
4955 // All sign bits set?
4956 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
4957 // Any bits clear?
4958 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
4959 // Any sign bits clear?
4960 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
4961
4962 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
4963 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
4964 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
4965 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
4966 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
4967 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
4968 AddToWorklist(And.getNode());
4969 return DAG.getSetCC(DL, VT, And, LR, CC1);
4970 }
4971 }
4972
4973 // TODO: What is the 'or' equivalent of this fold?
4974 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
4975 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
4976 IsInteger && CC0 == ISD::SETNE &&
4977 ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
4978 (isAllOnesConstant(LR) && isNullConstant(RR)))) {
4979 SDValue One = DAG.getConstant(1, DL, OpVT);
4980 SDValue Two = DAG.getConstant(2, DL, OpVT);
4981 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
4982 AddToWorklist(Add.getNode());
4983 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
4984 }
4985
4986 // Try more general transforms if the predicates match and the only user of
4987 // the compares is the 'and' or 'or'.
4988 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
4989 N0.hasOneUse() && N1.hasOneUse()) {
4990 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
4991 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
4992 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
4993 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
4994 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
4995 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
4996 SDValue Zero = DAG.getConstant(0, DL, OpVT);
4997 return DAG.getSetCC(DL, VT, Or, Zero, CC1);
4998 }
4999
5000 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
5001 // TODO - support non-uniform vector amounts.
5002 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
5003 // Match a shared variable operand and 2 non-opaque constant operands.
5004 ConstantSDNode *C0 = isConstOrConstSplat(LR);
5005 ConstantSDNode *C1 = isConstOrConstSplat(RR);
5006 if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
5007 const APInt &CMax =
5008 APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue());
5009 const APInt &CMin =
5010 APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue());
5011 // The difference of the constants must be a single bit.
5012 if ((CMax - CMin).isPowerOf2()) {
5013 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
5014 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
5015 SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR);
5016 SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR);
5017 SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min);
5018 SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min);
5019 SDValue Mask = DAG.getNOT(DL, Diff, OpVT);
5020 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask);
5021 SDValue Zero = DAG.getConstant(0, DL, OpVT);
5022 return DAG.getSetCC(DL, VT, And, Zero, CC0);
5023 }
5024 }
5025 }
5026 }
5027
5028 // Canonicalize equivalent operands to LL == RL.
5029 if (LL == RR && LR == RL) {
5030 CC1 = ISD::getSetCCSwappedOperands(CC1);
5031 std::swap(RL, RR);
5032 }
5033
5034 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5035 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5036 if (LL == RL && LR == RR) {
5037 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT)
5038 : ISD::getSetCCOrOperation(CC0, CC1, OpVT);
5039 if (NewCC != ISD::SETCC_INVALID &&
5040 (!LegalOperations ||
5041 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
5042 TLI.isOperationLegal(ISD::SETCC, OpVT))))
5043 return DAG.getSetCC(DL, VT, LL, LR, NewCC);
5044 }
5045
5046 return SDValue();
5047}
5048
5049/// This contains all DAGCombine rules which reduce two values combined by
5050/// an And operation to a single value. This makes them reusable in the context
5051/// of visitSELECT(). Rules involving constants are not included as
5052/// visitSELECT() already handles those cases.
5053SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
5054 EVT VT = N1.getValueType();
5055 SDLoc DL(N);
5056
5057 // fold (and x, undef) -> 0
5058 if (N0.isUndef() || N1.isUndef())
5059 return DAG.getConstant(0, DL, VT);
5060
5061 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
5062 return V;
5063
5064 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
5065 VT.getSizeInBits() <= 64) {
5066 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5067 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
5068 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
5069 // immediate for an add, but it is legal if its top c2 bits are set,
5070 // transform the ADD so the immediate doesn't need to be materialized
5071 // in a register.
5072 APInt ADDC = ADDI->getAPIntValue();
5073 APInt SRLC = SRLI->getAPIntValue();
5074 if (ADDC.getMinSignedBits() <= 64 &&
5075 SRLC.ult(VT.getSizeInBits()) &&
5076 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
5077 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
5078 SRLC.getZExtValue());
5079 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
5080 ADDC |= Mask;
5081 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
5082 SDLoc DL0(N0);
5083 SDValue NewAdd =
5084 DAG.getNode(ISD::ADD, DL0, VT,
5085 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
5086 CombineTo(N0.getNode(), NewAdd);
5087 // Return N so it doesn't get rechecked!
5088 return SDValue(N, 0);
5089 }
5090 }
5091 }
5092 }
5093 }
5094 }
5095
5096 // Reduce bit extract of low half of an integer to the narrower type.
5097 // (and (srl i64:x, K), KMask) ->
5098 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
5099 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5100 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
5101 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5102 unsigned Size = VT.getSizeInBits();
5103 const APInt &AndMask = CAnd->getAPIntValue();
5104 unsigned ShiftBits = CShift->getZExtValue();
5105
5106 // Bail out, this node will probably disappear anyway.
5107 if (ShiftBits == 0)
5108 return SDValue();
5109
5110 unsigned MaskBits = AndMask.countTrailingOnes();
5111 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
5112
5113 if (AndMask.isMask() &&
5114 // Required bits must not span the two halves of the integer and
5115 // must fit in the half size type.
5116 (ShiftBits + MaskBits <= Size / 2) &&
5117 TLI.isNarrowingProfitable(VT, HalfVT) &&
5118 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
5119 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
5120 TLI.isTruncateFree(VT, HalfVT) &&
5121 TLI.isZExtFree(HalfVT, VT)) {
5122 // The isNarrowingProfitable is to avoid regressions on PPC and
5123 // AArch64 which match a few 64-bit bit insert / bit extract patterns
5124 // on downstream users of this. Those patterns could probably be
5125 // extended to handle extensions mixed in.
5126
5127 SDValue SL(N0);
5128 assert(MaskBits <= Size)((MaskBits <= Size) ? static_cast<void> (0) : __assert_fail
("MaskBits <= Size", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 5128, __PRETTY_FUNCTION__))
;
5129
5130 // Extracting the highest bit of the low half.
5131 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
5132 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
5133 N0.getOperand(0));
5134
5135 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
5136 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
5137 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
5138 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
5139 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
5140 }
5141 }
5142 }
5143 }
5144
5145 return SDValue();
5146}
5147
5148bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
5149 EVT LoadResultTy, EVT &ExtVT) {
5150 if (!AndC->getAPIntValue().isMask())
5151 return false;
5152
5153 unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
5154
5155 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
5156 EVT LoadedVT = LoadN->getMemoryVT();
5157
5158 if (ExtVT == LoadedVT &&
5159 (!LegalOperations ||
5160 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
5161 // ZEXTLOAD will match without needing to change the size of the value being
5162 // loaded.
5163 return true;
5164 }
5165
5166 // Do not change the width of a volatile or atomic loads.
5167 if (!LoadN->isSimple())
5168 return false;
5169
5170 // Do not generate loads of non-round integer types since these can
5171 // be expensive (and would be wrong if the type is not byte sized).
5172 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
5173 return false;
5174
5175 if (LegalOperations &&
5176 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
5177 return false;
5178
5179 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
5180 return false;
5181
5182 return true;
5183}
5184
5185bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
5186 ISD::LoadExtType ExtType, EVT &MemVT,
5187 unsigned ShAmt) {
5188 if (!LDST)
5189 return false;
5190 // Only allow byte offsets.
5191 if (ShAmt % 8)
5192 return false;
5193
5194 // Do not generate loads of non-round integer types since these can
5195 // be expensive (and would be wrong if the type is not byte sized).
5196 if (!MemVT.isRound())
5197 return false;
5198
5199 // Don't change the width of a volatile or atomic loads.
5200 if (!LDST->isSimple())
5201 return false;
5202
5203 EVT LdStMemVT = LDST->getMemoryVT();
5204
5205 // Bail out when changing the scalable property, since we can't be sure that
5206 // we're actually narrowing here.
5207 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector())
5208 return false;
5209
5210 // Verify that we are actually reducing a load width here.
5211 if (LdStMemVT.bitsLT(MemVT))
5212 return false;
5213
5214 // Ensure that this isn't going to produce an unsupported memory access.
5215 if (ShAmt) {
5216 assert(ShAmt % 8 == 0 && "ShAmt is byte offset")((ShAmt % 8 == 0 && "ShAmt is byte offset") ? static_cast
<void> (0) : __assert_fail ("ShAmt % 8 == 0 && \"ShAmt is byte offset\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 5216, __PRETTY_FUNCTION__))
;
5217 const unsigned ByteShAmt = ShAmt / 8;
5218 const Align LDSTAlign = LDST->getAlign();
5219 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt);
5220 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
5221 LDST->getAddressSpace(), NarrowAlign,
5222 LDST->getMemOperand()->getFlags()))
5223 return false;
5224 }
5225
5226 // It's not possible to generate a constant of extended or untyped type.
5227 EVT PtrType = LDST->getBasePtr().getValueType();
5228 if (PtrType == MVT::Untyped || PtrType.isExtended())
5229 return false;
5230
5231 if (isa<LoadSDNode>(LDST)) {
5232 LoadSDNode *Load = cast<LoadSDNode>(LDST);
5233 // Don't transform one with multiple uses, this would require adding a new
5234 // load.
5235 if (!SDValue(Load, 0).hasOneUse())
5236 return false;
5237
5238 if (LegalOperations &&
5239 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
5240 return false;
5241
5242 // For the transform to be legal, the load must produce only two values
5243 // (the value loaded and the chain). Don't transform a pre-increment
5244 // load, for example, which produces an extra value. Otherwise the
5245 // transformation is not equivalent, and the downstream logic to replace
5246 // uses gets things wrong.
5247 if (Load->getNumValues() > 2)
5248 return false;
5249
5250 // If the load that we're shrinking is an extload and we're not just
5251 // discarding the extension we can't simply shrink the load. Bail.
5252 // TODO: It would be possible to merge the extensions in some cases.
5253 if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
5254 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
5255 return false;
5256
5257 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
5258 return false;
5259 } else {
5260 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode")((isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"
) ? static_cast<void> (0) : __assert_fail ("isa<StoreSDNode>(LDST) && \"It is not a Load nor a Store SDNode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 5260, __PRETTY_FUNCTION__))
;
5261 StoreSDNode *Store = cast<StoreSDNode>(LDST);
5262 // Can't write outside the original store
5263 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
5264 return false;
5265
5266 if (LegalOperations &&
5267 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
5268 return false;
5269 }
5270 return true;
5271}
5272
5273bool DAGCombiner::SearchForAndLoads(SDNode *N,
5274 SmallVectorImpl<LoadSDNode*> &Loads,
5275 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
5276 ConstantSDNode *Mask,
5277 SDNode *&NodeToMask) {
5278 // Recursively search for the operands, looking for loads which can be
5279 // narrowed.
5280 for (SDValue Op : N->op_values()) {
5281 if (Op.getValueType().isVector())
5282 return false;
5283
5284 // Some constants may need fixing up later if they are too large.
5285 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
5286 if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
5287 (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
5288 NodesWithConsts.insert(N);
5289 continue;
5290 }
5291
5292 if (!Op.hasOneUse())
5293 return false;
5294
5295 switch(Op.getOpcode()) {
5296 case ISD::LOAD: {
5297 auto *Load = cast<LoadSDNode>(Op);
5298 EVT ExtVT;
5299 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
5300 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
5301
5302 // ZEXTLOAD is already small enough.
5303 if (Load->getExtensionType() == ISD::ZEXTLOAD &&
5304 ExtVT.bitsGE(Load->getMemoryVT()))
5305 continue;
5306
5307 // Use LE to convert equal sized loads to zext.
5308 if (ExtVT.bitsLE(Load->getMemoryVT()))
5309 Loads.push_back(Load);
5310
5311 continue;
5312 }
5313 return false;
5314 }
5315 case ISD::ZERO_EXTEND:
5316 case ISD::AssertZext: {
5317 unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
5318 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
5319 EVT VT = Op.getOpcode() == ISD::AssertZext ?
5320 cast<VTSDNode>(Op.getOperand(1))->getVT() :
5321 Op.getOperand(0).getValueType();
5322
5323 // We can accept extending nodes if the mask is wider or an equal
5324 // width to the original type.
5325 if (ExtVT.bitsGE(VT))
5326 continue;
5327 break;
5328 }
5329 case ISD::OR:
5330 case ISD::XOR:
5331 case ISD::AND:
5332 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
5333 NodeToMask))
5334 return false;
5335 continue;
5336 }
5337
5338 // Allow one node which will masked along with any loads found.
5339 if (NodeToMask)
5340 return false;
5341
5342 // Also ensure that the node to be masked only produces one data result.
5343 NodeToMask = Op.getNode();
5344 if (NodeToMask->getNumValues() > 1) {
5345 bool HasValue = false;
5346 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
5347 MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
5348 if (VT != MVT::Glue && VT != MVT::Other) {
5349 if (HasValue) {
5350 NodeToMask = nullptr;
5351 return false;
5352 }
5353 HasValue = true;
5354 }
5355 }
5356 assert(HasValue && "Node to be masked has no data result?")((HasValue && "Node to be masked has no data result?"
) ? static_cast<void> (0) : __assert_fail ("HasValue && \"Node to be masked has no data result?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 5356, __PRETTY_FUNCTION__))
;
5357 }
5358 }
5359 return true;
5360}
5361
5362bool DAGCombiner::BackwardsPropagateMask(SDNode *N) {
5363 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
5364 if (!Mask)
5365 return false;
5366
5367 if (!Mask->getAPIntValue().isMask())
5368 return false;
5369
5370 // No need to do anything if the and directly uses a load.
5371 if (isa<LoadSDNode>(N->getOperand(0)))
5372 return false;
5373
5374 SmallVector<LoadSDNode*, 8> Loads;
5375 SmallPtrSet<SDNode*, 2> NodesWithConsts;
5376 SDNode *FixupNode = nullptr;
5377 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
5378 if (Loads.size() == 0)
5379 return false;
5380
5381 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "Backwards propagate AND: "
; N->dump(); } } while (false)
;
5382 SDValue MaskOp = N->getOperand(1);
5383
5384 // If it exists, fixup the single node we allow in the tree that needs
5385 // masking.
5386 if (FixupNode) {
5387 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "First, need to fix up: "; FixupNode
->dump(); } } while (false)
;
5388 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
5389 FixupNode->getValueType(0),
5390 SDValue(FixupNode, 0), MaskOp);
5391 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
5392 if (And.getOpcode() == ISD ::AND)
5393 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
5394 }
5395
5396 // Narrow any constants that need it.
5397 for (auto *LogicN : NodesWithConsts) {
5398 SDValue Op0 = LogicN->getOperand(0);
5399 SDValue Op1 = LogicN->getOperand(1);
5400
5401 if (isa<ConstantSDNode>(Op0))
5402 std::swap(Op0, Op1);
5403
5404 SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
5405 Op1, MaskOp);
5406
5407 DAG.UpdateNodeOperands(LogicN, Op0, And);
5408 }
5409
5410 // Create narrow loads.
5411 for (auto *Load : Loads) {
5412 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "Propagate AND back to: "; Load
->dump(); } } while (false)
;
5413 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
5414 SDValue(Load, 0), MaskOp);
5415 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
5416 if (And.getOpcode() == ISD ::AND)
5417 And = SDValue(
5418 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
5419 SDValue NewLoad = ReduceLoadWidth(And.getNode());
5420 assert(NewLoad &&((NewLoad && "Shouldn't be masking the load if it can't be narrowed"
) ? static_cast<void> (0) : __assert_fail ("NewLoad && \"Shouldn't be masking the load if it can't be narrowed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 5421, __PRETTY_FUNCTION__))
5421 "Shouldn't be masking the load if it can't be narrowed")((NewLoad && "Shouldn't be masking the load if it can't be narrowed"
) ? static_cast<void> (0) : __assert_fail ("NewLoad && \"Shouldn't be masking the load if it can't be narrowed\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 5421, __PRETTY_FUNCTION__))
;
5422 CombineTo(Load, NewLoad, NewLoad.getValue(1));
5423 }
5424 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
5425 return true;
5426 }
5427 return false;
5428}
5429
5430// Unfold
5431// x & (-1 'logical shift' y)
5432// To
5433// (x 'opposite logical shift' y) 'logical shift' y
5434// if it is better for performance.
5435SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
5436 assert(N->getOpcode() == ISD::AND)((N->getOpcode() == ISD::AND) ? static_cast<void> (0
) : __assert_fail ("N->getOpcode() == ISD::AND", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 5436, __PRETTY_FUNCTION__))
;
5437
5438 SDValue N0 = N->getOperand(0);
5439 SDValue N1 = N->getOperand(1);
5440
5441 // Do we actually prefer shifts over mask?
5442 if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
5443 return SDValue();
5444
5445 // Try to match (-1 '[outer] logical shift' y)
5446 unsigned OuterShift;
5447 unsigned InnerShift; // The opposite direction to the OuterShift.
5448 SDValue Y; // Shift amount.
5449 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
5450 if (!M.hasOneUse())
5451 return false;
5452 OuterShift = M->getOpcode();
5453 if (OuterShift == ISD::SHL)
5454 InnerShift = ISD::SRL;
5455 else if (OuterShift == ISD::SRL)
5456 InnerShift = ISD::SHL;
5457 else
5458 return false;
5459 if (!isAllOnesConstant(M->getOperand(0)))
5460 return false;
5461 Y = M->getOperand(1);
5462 return true;
5463 };
5464
5465 SDValue X;
5466 if (matchMask(N1))
5467 X = N0;
5468 else if (matchMask(N0))
5469 X = N1;
5470 else
5471 return SDValue();
5472
5473 SDLoc DL(N);
5474 EVT VT = N->getValueType(0);
5475
5476 // tmp = x 'opposite logical shift' y
5477 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
5478 // ret = tmp 'logical shift' y
5479 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
5480
5481 return T1;
5482}
5483
5484/// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
5485/// For a target with a bit test, this is expected to become test + set and save
5486/// at least 1 instruction.
5487static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
5488 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op")((And->getOpcode() == ISD::AND && "Expected an 'and' op"
) ? static_cast<void> (0) : __assert_fail ("And->getOpcode() == ISD::AND && \"Expected an 'and' op\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 5488, __PRETTY_FUNCTION__))
;
5489
5490 // This is probably not worthwhile without a supported type.
5491 EVT VT = And->getValueType(0);
5492 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5493 if (!TLI.isTypeLegal(VT))
5494 return SDValue();
5495
5496 // Look through an optional extension and find a 'not'.
5497 // TODO: Should we favor test+set even without the 'not' op?
5498 SDValue Not = And->getOperand(0), And1 = And->getOperand(1);
5499 if (Not.getOpcode() == ISD::ANY_EXTEND)
5500 Not = Not.getOperand(0);
5501 if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1))
5502 return SDValue();
5503
5504 // Look though an optional truncation. The source operand may not be the same
5505 // type as the original 'and', but that is ok because we are masking off
5506 // everything but the low bit.
5507 SDValue Srl = Not.getOperand(0);
5508 if (Srl.getOpcode() == ISD::TRUNCATE)
5509 Srl = Srl.getOperand(0);
5510
5511 // Match a shift-right by constant.
5512 if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() ||
5513 !isa<ConstantSDNode>(Srl.getOperand(1)))
5514 return SDValue();
5515
5516 // We might have looked through casts that make this transform invalid.
5517 // TODO: If the source type is wider than the result type, do the mask and
5518 // compare in the source type.
5519 const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1);
5520 unsigned VTBitWidth = VT.getSizeInBits();
5521 if (ShiftAmt.uge(VTBitWidth))
5522 return SDValue();
5523
5524 // Turn this into a bit-test pattern using mask op + setcc:
5525 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5526 SDLoc DL(And);
5527 SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT);
5528 EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5529 SDValue Mask = DAG.getConstant(
5530 APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT);
5531 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask);
5532 SDValue Zero = DAG.getConstant(0, DL, VT);
5533 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
5534 return DAG.getZExtOrTrunc(Setcc, DL, VT);
5535}
5536
5537SDValue DAGCombiner::visitAND(SDNode *N) {
5538 SDValue N0 = N->getOperand(0);
5539 SDValue N1 = N->getOperand(1);
5540 EVT VT = N1.getValueType();
5541
5542 // x & x --> x
5543 if (N0 == N1)
5544 return N0;
5545
5546 // fold vector ops
5547 if (VT.isVector()) {
5548 if (SDValue FoldedVOp = SimplifyVBinOp(N))
5549 return FoldedVOp;
5550
5551 // fold (and x, 0) -> 0, vector edition
5552 if (ISD::isBuildVectorAllZeros(N0.getNode()))
5553 // do not return N0, because undef node may exist in N0
5554 return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
5555 SDLoc(N), N0.getValueType());
5556 if (ISD::isBuildVectorAllZeros(N1.getNode()))
5557 // do not return N1, because undef node may exist in N1
5558 return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
5559 SDLoc(N), N1.getValueType());
5560
5561 // fold (and x, -1) -> x, vector edition
5562 if (ISD::isBuildVectorAllOnes(N0.getNode()))
5563 return N1;
5564 if (ISD::isBuildVectorAllOnes(N1.getNode()))
5565 return N0;
5566
5567 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load
5568 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0);
5569 auto *BVec = dyn_cast<BuildVectorSDNode>(N1);
5570 if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD &&
5571 N0.hasOneUse() && N1.hasOneUse()) {
5572 EVT LoadVT = MLoad->getMemoryVT();
5573 EVT ExtVT = VT;
5574 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) {
5575 // For this AND to be a zero extension of the masked load the elements
5576 // of the BuildVec must mask the bottom bits of the extended element
5577 // type
5578 if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) {
5579 uint64_t ElementSize =
5580 LoadVT.getVectorElementType().getScalarSizeInBits();
5581 if (Splat->getAPIntValue().isMask(ElementSize)) {
5582 return DAG.getMaskedLoad(
5583 ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(),
5584 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(),
5585 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(),
5586 ISD::ZEXTLOAD, MLoad->isExpandingLoad());
5587 }
5588 }
5589 }
5590 }
5591 }
5592
5593 // fold (and c1, c2) -> c1&c2
5594 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5595 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1}))
5596 return C;
5597
5598 // canonicalize constant to RHS
5599 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
5600 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
5601 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
5602
5603 // fold (and x, -1) -> x
5604 if (isAllOnesConstant(N1))
5605 return N0;
5606
5607 // if (and x, c) is known to be zero, return 0
5608 unsigned BitWidth = VT.getScalarSizeInBits();
5609 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
5610 APInt::getAllOnesValue(BitWidth)))
5611 return DAG.getConstant(0, SDLoc(N), VT);
5612
5613 if (SDValue NewSel = foldBinOpIntoSelect(N))
5614 return NewSel;
5615
5616 // reassociate and
5617 if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
5618 return RAND;
5619
5620 // Try to convert a constant mask AND into a shuffle clear mask.
5621 if (VT.isVector())
5622 if (SDValue Shuffle = XformToShuffleWithZero(N))
5623 return Shuffle;
5624
5625 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
5626 return Combined;
5627
5628 // fold (and (or x, C), D) -> D if (C & D) == D
5629 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
5630 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
5631 };
5632 if (N0.getOpcode() == ISD::OR &&
5633 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
5634 return N1;
5635 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5636 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
5637 SDValue N0Op0 = N0.getOperand(0);
5638 APInt Mask = ~N1C->getAPIntValue();
5639 Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
5640 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
5641 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
5642 N0.getValueType(), N0Op0);
5643
5644 // Replace uses of the AND with uses of the Zero extend node.
5645 CombineTo(N, Zext);
5646
5647 // We actually want to replace all uses of the any_extend with the
5648 // zero_extend, to avoid duplicating things. This will later cause this
5649 // AND to be folded.
5650 CombineTo(N0.getNode(), Zext);
5651 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5652 }
5653 }
5654
5655 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5656 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5657 // already be zero by virtue of the width of the base type of the load.
5658 //
5659 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5660 // more cases.
5661 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5662 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
5663 N0.getOperand(0).getOpcode() == ISD::LOAD &&
5664 N0.getOperand(0).getResNo() == 0) ||
5665 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
5666 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
5667 N0 : N0.getOperand(0) );
5668
5669 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5670 // This can be a pure constant or a vector splat, in which case we treat the
5671 // vector as a scalar and use the splat value.
5672 APInt Constant = APInt::getNullValue(1);
5673 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
5674 Constant = C->getAPIntValue();
5675 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
5676 APInt SplatValue, SplatUndef;
5677 unsigned SplatBitSize;
5678 bool HasAnyUndefs;
5679 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
5680 SplatBitSize, HasAnyUndefs);
5681 if (IsSplat) {
5682 // Undef bits can contribute to a possible optimisation if set, so
5683 // set them.
5684 SplatValue |= SplatUndef;
5685
5686 // The splat value may be something like "0x00FFFFFF", which means 0 for
5687 // the first vector value and FF for the rest, repeating. We need a mask
5688 // that will apply equally to all members of the vector, so AND all the
5689 // lanes of the constant together.
5690 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
5691
5692 // If the splat value has been compressed to a bitlength lower
5693 // than the size of the vector lane, we need to re-expand it to
5694 // the lane size.
5695 if (EltBitWidth > SplatBitSize)
5696 for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
5697 SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
5698 SplatValue |= SplatValue.shl(SplatBitSize);
5699
5700 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5701 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5702 if ((SplatBitSize % EltBitWidth) == 0) {
5703 Constant = APInt::getAllOnesValue(EltBitWidth);
5704 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
5705 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
5706 }
5707 }
5708 }
5709
5710 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5711 // actually legal and isn't going to get expanded, else this is a false
5712 // optimisation.
5713 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
5714 Load->getValueType(0),
5715 Load->getMemoryVT());
5716
5717 // Resize the constant to the same size as the original memory access before
5718 // extension. If it is still the AllOnesValue then this AND is completely
5719 // unneeded.
5720 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
5721
5722 bool B;
5723 switch (Load->getExtensionType()) {
5724 default: B = false; break;
5725 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
5726 case ISD::ZEXTLOAD:
5727 case ISD::NON_EXTLOAD: B = true; break;
5728 }
5729
5730 if (B && Constant.isAllOnesValue()) {
5731 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5732 // preserve semantics once we get rid of the AND.
5733 SDValue NewLoad(Load, 0);
5734
5735 // Fold the AND away. NewLoad may get replaced immediately.
5736 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
5737
5738 if (Load->getExtensionType() == ISD::EXTLOAD) {
5739 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
5740 Load->getValueType(0), SDLoc(Load),
5741 Load->getChain(), Load->getBasePtr(),
5742 Load->getOffset(), Load->getMemoryVT(),
5743 Load->getMemOperand());
5744 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5745 if (Load->getNumValues() == 3) {
5746 // PRE/POST_INC loads have 3 values.
5747 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
5748 NewLoad.getValue(2) };
5749 CombineTo(Load, To, 3, true);
5750 } else {
5751 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
5752 }
5753 }
5754
5755 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5756 }
5757 }
5758
5759 // fold (and (masked_gather x)) -> (zext_masked_gather x)
5760 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
5761 EVT MemVT = GN0->getMemoryVT();
5762 EVT ScalarVT = MemVT.getScalarType();
5763
5764 if (SDValue(GN0, 0).hasOneUse() &&
5765 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) &&
5766 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
5767 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
5768 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
5769
5770 SDValue ZExtLoad = DAG.getMaskedGather(
5771 DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops,
5772 GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD);
5773
5774 CombineTo(N, ZExtLoad);
5775 AddToWorklist(ZExtLoad.getNode());
5776 // Avoid recheck of N.
5777 return SDValue(N, 0);
5778 }
5779 }
5780
5781 // fold (and (load x), 255) -> (zextload x, i8)
5782 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5783 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5784 if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
5785 (N0.getOpcode() == ISD::ANY_EXTEND &&
5786 N0.getOperand(0).getOpcode() == ISD::LOAD))) {
5787 if (SDValue Res = ReduceLoadWidth(N)) {
5788 LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
5789 ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
5790 AddToWorklist(N);
5791 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
5792 return SDValue(N, 0);
5793 }
5794 }
5795
5796 if (LegalTypes) {
5797 // Attempt to propagate the AND back up to the leaves which, if they're
5798 // loads, can be combined to narrow loads and the AND node can be removed.
5799 // Perform after legalization so that extend nodes will already be
5800 // combined into the loads.
5801 if (BackwardsPropagateMask(N))
5802 return SDValue(N, 0);
5803 }
5804
5805 if (SDValue Combined = visitANDLike(N0, N1, N))
5806 return Combined;
5807
5808 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5809 if (N0.getOpcode() == N1.getOpcode())
5810 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
5811 return V;
5812
5813 // Masking the negated extension of a boolean is just the zero-extended
5814 // boolean:
5815 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5816 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5817 //
5818 // Note: the SimplifyDemandedBits fold below can make an information-losing
5819 // transform, and then we have no way to find this better fold.
5820 if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
5821 if (isNullOrNullSplat(N0.getOperand(0))) {
5822 SDValue SubRHS = N0.getOperand(1);
5823 if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
5824 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5825 return SubRHS;
5826 if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
5827 SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
5828 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
5829 }
5830 }
5831
5832 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5833 // fold (and (sra)) -> (and (srl)) when possible.
5834 if (SimplifyDemandedBits(SDValue(N, 0)))
5835 return SDValue(N, 0);
5836
5837 // fold (zext_inreg (extload x)) -> (zextload x)
5838 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5839 if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
5840 (ISD::isEXTLoad(N0.getNode()) ||
5841 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
5842 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5843 EVT MemVT = LN0->getMemoryVT();
5844 // If we zero all the possible extended bits, then we can turn this into
5845 // a zextload if we are running before legalize or the operation is legal.
5846 unsigned ExtBitSize = N1.getScalarValueSizeInBits();
5847 unsigned MemBitSize = MemVT.getScalarSizeInBits();
5848 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
5849 if (DAG.MaskedValueIsZero(N1, ExtBits) &&
5850 ((!LegalOperations && LN0->isSimple()) ||
5851 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
5852 SDValue ExtLoad =
5853 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
5854 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
5855 AddToWorklist(N);
5856 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5857 return SDValue(N, 0); // Return N so it doesn't get rechecked!
5858 }
5859 }
5860
5861 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5862 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
5863 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5864 N0.getOperand(1), false))
5865 return BSwap;
5866 }
5867
5868 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
5869 return Shifts;
5870
5871 if (TLI.hasBitTest(N0, N1))
5872 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
5873 return V;
5874
5875 // Recognize the following pattern:
5876 //
5877 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
5878 //
5879 // where bitmask is a mask that clears the upper bits of AndVT. The
5880 // number of bits in bitmask must be a power of two.
5881 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) {
5882 if (LHS->getOpcode() != ISD::SIGN_EXTEND)
5883 return false;
5884
5885 auto *C = dyn_cast<ConstantSDNode>(RHS);
5886 if (!C)
5887 return false;
5888
5889 if (!C->getAPIntValue().isMask(
5890 LHS.getOperand(0).getValueType().getFixedSizeInBits()))
5891 return false;
5892
5893 return true;
5894 };
5895
5896 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
5897 if (IsAndZeroExtMask(N0, N1))
5898 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0));
5899
5900 return SDValue();
5901}
5902
5903/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5904SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
5905 bool DemandHighBits) {
5906 if (!LegalOperations)
5907 return SDValue();
5908
5909 EVT VT = N->getValueType(0);
5910 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
5911 return SDValue();
5912 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
5913 return SDValue();
5914
5915 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
5916 bool LookPassAnd0 = false;
5917 bool LookPassAnd1 = false;
5918 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
5919 std::swap(N0, N1);
5920 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
5921 std::swap(N0, N1);
5922 if (N0.getOpcode() == ISD::AND) {
5923 if (!N0.getNode()->hasOneUse())
5924 return SDValue();
5925 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5926 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
5927 // This is needed for X86.
5928 if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
5929 N01C->getZExtValue() != 0xFFFF))
5930 return SDValue();
5931 N0 = N0.getOperand(0);
5932 LookPassAnd0 = true;
5933 }
5934
5935 if (N1.getOpcode() == ISD::AND) {
5936 if (!N1.getNode()->hasOneUse())
5937 return SDValue();
5938 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5939 if (!N11C || N11C->getZExtValue() != 0xFF)
5940 return SDValue();
5941 N1 = N1.getOperand(0);
5942 LookPassAnd1 = true;
5943 }
5944
5945 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
5946 std::swap(N0, N1);
5947 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
5948 return SDValue();
5949 if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
5950 return SDValue();
5951
5952 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5953 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5954 if (!N01C || !N11C)
5955 return SDValue();
5956 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
5957 return SDValue();
5958
5959 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
5960 SDValue N00 = N0->getOperand(0);
5961 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
5962 if (!N00.getNode()->hasOneUse())
5963 return SDValue();
5964 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
5965 if (!N001C || N001C->getZExtValue() != 0xFF)
5966 return SDValue();
5967 N00 = N00.getOperand(0);
5968 LookPassAnd0 = true;
5969 }
5970
5971 SDValue N10 = N1->getOperand(0);
5972 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
5973 if (!N10.getNode()->hasOneUse())
5974 return SDValue();
5975 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
5976 // Also allow 0xFFFF since the bits will be shifted out. This is needed
5977 // for X86.
5978 if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
5979 N101C->getZExtValue() != 0xFFFF))
5980 return SDValue();
5981 N10 = N10.getOperand(0);
5982 LookPassAnd1 = true;
5983 }
5984
5985 if (N00 != N10)
5986 return SDValue();
5987
5988 // Make sure everything beyond the low halfword gets set to zero since the SRL
5989 // 16 will clear the top bits.
5990 unsigned OpSizeInBits = VT.getSizeInBits();
5991 if (DemandHighBits && OpSizeInBits > 16) {
5992 // If the left-shift isn't masked out then the only way this is a bswap is
5993 // if all bits beyond the low 8 are 0. In that case the entire pattern
5994 // reduces to a left shift anyway: leave it for other parts of the combiner.
5995 if (!LookPassAnd0)
5996 return SDValue();
5997
5998 // However, if the right shift isn't masked out then it might be because
5999 // it's not needed. See if we can spot that too.
6000 if (!LookPassAnd1 &&
6001 !DAG.MaskedValueIsZero(
6002 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
6003 return SDValue();
6004 }
6005
6006 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
6007 if (OpSizeInBits > 16) {
6008 SDLoc DL(N);
6009 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
6010 DAG.getConstant(OpSizeInBits - 16, DL,
6011 getShiftAmountTy(VT)));
6012 }
6013 return Res;
6014}
6015
6016/// Return true if the specified node is an element that makes up a 32-bit
6017/// packed halfword byteswap.
6018/// ((x & 0x000000ff) << 8) |
6019/// ((x & 0x0000ff00) >> 8) |
6020/// ((x & 0x00ff0000) << 8) |
6021/// ((x & 0xff000000) >> 8)
6022static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
6023 if (!N.getNode()->hasOneUse())
6024 return false;
6025
6026 unsigned Opc = N.getOpcode();
6027 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
6028 return false;
6029
6030 SDValue N0 = N.getOperand(0);
6031 unsigned Opc0 = N0.getOpcode();
6032 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
6033 return false;
6034
6035 ConstantSDNode *N1C = nullptr;
6036 // SHL or SRL: look upstream for AND mask operand
6037 if (Opc == ISD::AND)
6038 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
6039 else if (Opc0 == ISD::AND)
6040 N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6041 if (!N1C)
6042 return false;
6043
6044 unsigned MaskByteOffset;
6045 switch (N1C->getZExtValue()) {
6046 default:
6047 return false;
6048 case 0xFF: MaskByteOffset = 0; break;
6049 case 0xFF00: MaskByteOffset = 1; break;
6050 case 0xFFFF:
6051 // In case demanded bits didn't clear the bits that will be shifted out.
6052 // This is needed for X86.
6053 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
6054 MaskByteOffset = 1;
6055 break;
6056 }
6057 return false;
6058 case 0xFF0000: MaskByteOffset = 2; break;
6059 case 0xFF000000: MaskByteOffset = 3; break;
6060 }
6061
6062 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
6063 if (Opc == ISD::AND) {
6064 if (MaskByteOffset == 0 || MaskByteOffset == 2) {
6065 // (x >> 8) & 0xff
6066 // (x >> 8) & 0xff0000
6067 if (Opc0 != ISD::SRL)
6068 return false;
6069 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6070 if (!C || C->getZExtValue() != 8)
6071 return false;
6072 } else {
6073 // (x << 8) & 0xff00
6074 // (x << 8) & 0xff000000
6075 if (Opc0 != ISD::SHL)
6076 return false;
6077 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6078 if (!C || C->getZExtValue() != 8)
6079 return false;
6080 }
6081 } else if (Opc == ISD::SHL) {
6082 // (x & 0xff) << 8
6083 // (x & 0xff0000) << 8
6084 if (MaskByteOffset != 0 && MaskByteOffset != 2)
6085 return false;
6086 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
6087 if (!C || C->getZExtValue() != 8)
6088 return false;
6089 } else { // Opc == ISD::SRL
6090 // (x & 0xff00) >> 8
6091 // (x & 0xff000000) >> 8
6092 if (MaskByteOffset != 1 && MaskByteOffset != 3)
6093 return false;
6094 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
6095 if (!C || C->getZExtValue() != 8)
6096 return false;
6097 }
6098
6099 if (Parts[MaskByteOffset])
6100 return false;
6101
6102 Parts[MaskByteOffset] = N0.getOperand(0).getNode();
6103 return true;
6104}
6105
6106// Match 2 elements of a packed halfword bswap.
6107static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) {
6108 if (N.getOpcode() == ISD::OR)
6109 return isBSwapHWordElement(N.getOperand(0), Parts) &&
6110 isBSwapHWordElement(N.getOperand(1), Parts);
6111
6112 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
6113 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
6114 if (!C || C->getAPIntValue() != 16)
6115 return false;
6116 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
6117 return true;
6118 }
6119
6120 return false;
6121}
6122
6123// Match this pattern:
6124// (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
6125// And rewrite this to:
6126// (rotr (bswap A), 16)
6127static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI,
6128 SelectionDAG &DAG, SDNode *N, SDValue N0,
6129 SDValue N1, EVT VT, EVT ShiftAmountTy) {
6130 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 &&((N->getOpcode() == ISD::OR && VT == MVT::i32 &&
"MatchBSwapHWordOrAndAnd: expecting i32") ? static_cast<void
> (0) : __assert_fail ("N->getOpcode() == ISD::OR && VT == MVT::i32 && \"MatchBSwapHWordOrAndAnd: expecting i32\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6131, __PRETTY_FUNCTION__))
6131 "MatchBSwapHWordOrAndAnd: expecting i32")((N->getOpcode() == ISD::OR && VT == MVT::i32 &&
"MatchBSwapHWordOrAndAnd: expecting i32") ? static_cast<void
> (0) : __assert_fail ("N->getOpcode() == ISD::OR && VT == MVT::i32 && \"MatchBSwapHWordOrAndAnd: expecting i32\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6131, __PRETTY_FUNCTION__))
;
6132 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
6133 return SDValue();
6134 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
6135 return SDValue();
6136 // TODO: this is too restrictive; lifting this restriction requires more tests
6137 if (!N0->hasOneUse() || !N1->hasOneUse())
6138 return SDValue();
6139 ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1));
6140 ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1));
6141 if (!Mask0 || !Mask1)
6142 return SDValue();
6143 if (Mask0->getAPIntValue() != 0xff00ff00 ||
6144 Mask1->getAPIntValue() != 0x00ff00ff)
6145 return SDValue();
6146 SDValue Shift0 = N0.getOperand(0);
6147 SDValue Shift1 = N1.getOperand(0);
6148 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL)
6149 return SDValue();
6150 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1));
6151 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1));
6152 if (!ShiftAmt0 || !ShiftAmt1)
6153 return SDValue();
6154 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8)
6155 return SDValue();
6156 if (Shift0.getOperand(0) != Shift1.getOperand(0))
6157 return SDValue();
6158
6159 SDLoc DL(N);
6160 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0));
6161 SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy);
6162 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
6163}
6164
6165/// Match a 32-bit packed halfword bswap. That is
6166/// ((x & 0x000000ff) << 8) |
6167/// ((x & 0x0000ff00) >> 8) |
6168/// ((x & 0x00ff0000) << 8) |
6169/// ((x & 0xff000000) >> 8)
6170/// => (rotl (bswap x), 16)
6171SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
6172 if (!LegalOperations)
6173 return SDValue();
6174
6175 EVT VT = N->getValueType(0);
6176 if (VT != MVT::i32)
6177 return SDValue();
6178 if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
6179 return SDValue();
6180
6181 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT,
6182 getShiftAmountTy(VT)))
6183 return BSwap;
6184
6185 // Try again with commuted operands.
6186 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT,
6187 getShiftAmountTy(VT)))
6188 return BSwap;
6189
6190
6191 // Look for either
6192 // (or (bswaphpair), (bswaphpair))
6193 // (or (or (bswaphpair), (and)), (and))
6194 // (or (or (and), (bswaphpair)), (and))
6195 SDNode *Parts[4] = {};
6196
6197 if (isBSwapHWordPair(N0, Parts)) {
6198 // (or (or (and), (and)), (or (and), (and)))
6199 if (!isBSwapHWordPair(N1, Parts))
6200 return SDValue();
6201 } else if (N0.getOpcode() == ISD::OR) {
6202 // (or (or (or (and), (and)), (and)), (and))
6203 if (!isBSwapHWordElement(N1, Parts))
6204 return SDValue();
6205 SDValue N00 = N0.getOperand(0);
6206 SDValue N01 = N0.getOperand(1);
6207 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
6208 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
6209 return SDValue();
6210 } else
6211 return SDValue();
6212
6213 // Make sure the parts are all coming from the same node.
6214 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
6215 return SDValue();
6216
6217 SDLoc DL(N);
6218 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
6219 SDValue(Parts[0], 0));
6220
6221 // Result of the bswap should be rotated by 16. If it's not legal, then
6222 // do (x << 16) | (x >> 16).
6223 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
6224 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
6225 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
6226 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
6227 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
6228 return DAG.getNode(ISD::OR, DL, VT,
6229 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
6230 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
6231}
6232
6233/// This contains all DAGCombine rules which reduce two values combined by
6234/// an Or operation to a single value \see visitANDLike().
6235SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
6236 EVT VT = N1.getValueType();
6237 SDLoc DL(N);
6238
6239 // fold (or x, undef) -> -1
6240 if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
6241 return DAG.getAllOnesConstant(DL, VT);
6242
6243 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
6244 return V;
6245
6246 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
6247 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
6248 // Don't increase # computations.
6249 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
6250 // We can only do this xform if we know that bits from X that are set in C2
6251 // but not in C1 are already zero. Likewise for Y.
6252 if (const ConstantSDNode *N0O1C =
6253 getAsNonOpaqueConstant(N0.getOperand(1))) {
6254 if (const ConstantSDNode *N1O1C =
6255 getAsNonOpaqueConstant(N1.getOperand(1))) {
6256 // We can only do this xform if we know that bits from X that are set in
6257 // C2 but not in C1 are already zero. Likewise for Y.
6258 const APInt &LHSMask = N0O1C->getAPIntValue();
6259 const APInt &RHSMask = N1O1C->getAPIntValue();
6260
6261 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
6262 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
6263 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
6264 N0.getOperand(0), N1.getOperand(0));
6265 return DAG.getNode(ISD::AND, DL, VT, X,
6266 DAG.getConstant(LHSMask | RHSMask, DL, VT));
6267 }
6268 }
6269 }
6270 }
6271
6272 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
6273 if (N0.getOpcode() == ISD::AND &&
6274 N1.getOpcode() == ISD::AND &&
6275 N0.getOperand(0) == N1.getOperand(0) &&
6276 // Don't increase # computations.
6277 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
6278 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
6279 N0.getOperand(1), N1.getOperand(1));
6280 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
6281 }
6282
6283 return SDValue();
6284}
6285
6286/// OR combines for which the commuted variant will be tried as well.
6287static SDValue visitORCommutative(
6288 SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) {
6289 EVT VT = N0.getValueType();
6290 if (N0.getOpcode() == ISD::AND) {
6291 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
6292 if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1)
6293 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1);
6294
6295 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
6296 if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1)
6297 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1);
6298 }
6299
6300 return SDValue();
6301}
6302
6303SDValue DAGCombiner::visitOR(SDNode *N) {
6304 SDValue N0 = N->getOperand(0);
6305 SDValue N1 = N->getOperand(1);
6306 EVT VT = N1.getValueType();
6307
6308 // x | x --> x
6309 if (N0 == N1)
6310 return N0;
6311
6312 // fold vector ops
6313 if (VT.isVector()) {
6314 if (SDValue FoldedVOp = SimplifyVBinOp(N))
6315 return FoldedVOp;
6316
6317 // fold (or x, 0) -> x, vector edition
6318 if (ISD::isBuildVectorAllZeros(N0.getNode()))
6319 return N1;
6320 if (ISD::isBuildVectorAllZeros(N1.getNode()))
6321 return N0;
6322
6323 // fold (or x, -1) -> -1, vector edition
6324 if (ISD::isBuildVectorAllOnes(N0.getNode()))
6325 // do not return N0, because undef node may exist in N0
6326 return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
6327 if (ISD::isBuildVectorAllOnes(N1.getNode()))
6328 // do not return N1, because undef node may exist in N1
6329 return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
6330
6331 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
6332 // Do this only if the resulting shuffle is legal.
6333 if (isa<ShuffleVectorSDNode>(N0) &&
6334 isa<ShuffleVectorSDNode>(N1) &&
6335 // Avoid folding a node with illegal type.
6336 TLI.isTypeLegal(VT)) {
6337 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
6338 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
6339 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
6340 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
6341 // Ensure both shuffles have a zero input.
6342 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
6343 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!")(((!ZeroN00 || !ZeroN01) && "Both inputs zero!") ? static_cast
<void> (0) : __assert_fail ("(!ZeroN00 || !ZeroN01) && \"Both inputs zero!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6343, __PRETTY_FUNCTION__))
;
6344 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!")(((!ZeroN10 || !ZeroN11) && "Both inputs zero!") ? static_cast
<void> (0) : __assert_fail ("(!ZeroN10 || !ZeroN11) && \"Both inputs zero!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6344, __PRETTY_FUNCTION__))
;
6345 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
6346 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
6347 bool CanFold = true;
6348 int NumElts = VT.getVectorNumElements();
6349 SmallVector<int, 4> Mask(NumElts);
6350
6351 for (int i = 0; i != NumElts; ++i) {
6352 int M0 = SV0->getMaskElt(i);
6353 int M1 = SV1->getMaskElt(i);
6354
6355 // Determine if either index is pointing to a zero vector.
6356 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
6357 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
6358
6359 // If one element is zero and the otherside is undef, keep undef.
6360 // This also handles the case that both are undef.
6361 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
6362 Mask[i] = -1;
6363 continue;
6364 }
6365
6366 // Make sure only one of the elements is zero.
6367 if (M0Zero == M1Zero) {
6368 CanFold = false;
6369 break;
6370 }
6371
6372 assert((M0 >= 0 || M1 >= 0) && "Undef index!")(((M0 >= 0 || M1 >= 0) && "Undef index!") ? static_cast
<void> (0) : __assert_fail ("(M0 >= 0 || M1 >= 0) && \"Undef index!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6372, __PRETTY_FUNCTION__))
;
6373
6374 // We have a zero and non-zero element. If the non-zero came from
6375 // SV0 make the index a LHS index. If it came from SV1, make it
6376 // a RHS index. We need to mod by NumElts because we don't care
6377 // which operand it came from in the original shuffles.
6378 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
6379 }
6380
6381 if (CanFold) {
6382 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
6383 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
6384
6385 SDValue LegalShuffle =
6386 TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS,
6387 Mask, DAG);
6388 if (LegalShuffle)
6389 return LegalShuffle;
6390 }
6391 }
6392 }
6393 }
6394
6395 // fold (or c1, c2) -> c1|c2
6396 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6397 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1}))
6398 return C;
6399
6400 // canonicalize constant to RHS
6401 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
6402 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
6403 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
6404
6405 // fold (or x, 0) -> x
6406 if (isNullConstant(N1))
6407 return N0;
6408
6409 // fold (or x, -1) -> -1
6410 if (isAllOnesConstant(N1))
6411 return N1;
6412
6413 if (SDValue NewSel = foldBinOpIntoSelect(N))
6414 return NewSel;
6415
6416 // fold (or x, c) -> c iff (x & ~c) == 0
6417 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
6418 return N1;
6419
6420 if (SDValue Combined = visitORLike(N0, N1, N))
6421 return Combined;
6422
6423 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
6424 return Combined;
6425
6426 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
6427 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
6428 return BSwap;
6429 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
6430 return BSwap;
6431
6432 // reassociate or
6433 if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
6434 return ROR;
6435
6436 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
6437 // iff (c1 & c2) != 0 or c1/c2 are undef.
6438 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
6439 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
6440 };
6441 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
6442 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
6443 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
6444 {N1, N0.getOperand(1)})) {
6445 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
6446 AddToWorklist(IOR.getNode());
6447 return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
6448 }
6449 }
6450
6451 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
6452 return Combined;
6453 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
6454 return Combined;
6455
6456 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
6457 if (N0.getOpcode() == N1.getOpcode())
6458 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
6459 return V;
6460
6461 // See if this is some rotate idiom.
6462 if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N)))
6463 return Rot;
6464
6465 if (SDValue Load = MatchLoadCombine(N))
6466 return Load;
6467
6468 // Simplify the operands using demanded-bits information.
6469 if (SimplifyDemandedBits(SDValue(N, 0)))
6470 return SDValue(N, 0);
6471
6472 // If OR can be rewritten into ADD, try combines based on ADD.
6473 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
6474 DAG.haveNoCommonBitsSet(N0, N1))
6475 if (SDValue Combined = visitADDLike(N))
6476 return Combined;
6477
6478 return SDValue();
6479}
6480
6481static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
6482 if (Op.getOpcode() == ISD::AND &&
6483 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
6484 Mask = Op.getOperand(1);
6485 return Op.getOperand(0);
6486 }
6487 return Op;
6488}
6489
6490/// Match "(X shl/srl V1) & V2" where V2 may not be present.
6491static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
6492 SDValue &Mask) {
6493 Op = stripConstantMask(DAG, Op, Mask);
6494 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
6495 Shift = Op;
6496 return true;
6497 }
6498 return false;
6499}
6500
6501/// Helper function for visitOR to extract the needed side of a rotate idiom
6502/// from a shl/srl/mul/udiv. This is meant to handle cases where
6503/// InstCombine merged some outside op with one of the shifts from
6504/// the rotate pattern.
6505/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
6506/// Otherwise, returns an expansion of \p ExtractFrom based on the following
6507/// patterns:
6508///
6509/// (or (add v v) (shrl v bitwidth-1)):
6510/// expands (add v v) -> (shl v 1)
6511///
6512/// (or (mul v c0) (shrl (mul v c1) c2)):
6513/// expands (mul v c0) -> (shl (mul v c1) c3)
6514///
6515/// (or (udiv v c0) (shl (udiv v c1) c2)):
6516/// expands (udiv v c0) -> (shrl (udiv v c1) c3)
6517///
6518/// (or (shl v c0) (shrl (shl v c1) c2)):
6519/// expands (shl v c0) -> (shl (shl v c1) c3)
6520///
6521/// (or (shrl v c0) (shl (shrl v c1) c2)):
6522/// expands (shrl v c0) -> (shrl (shrl v c1) c3)
6523///
6524/// Such that in all cases, c3+c2==bitwidth(op v c1).
6525static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
6526 SDValue ExtractFrom, SDValue &Mask,
6527 const SDLoc &DL) {
6528 assert(OppShift && ExtractFrom && "Empty SDValue")((OppShift && ExtractFrom && "Empty SDValue")
? static_cast<void> (0) : __assert_fail ("OppShift && ExtractFrom && \"Empty SDValue\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6528, __PRETTY_FUNCTION__))
;
6529 assert((((OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() ==
ISD::SRL) && "Existing shift must be valid as a rotate half"
) ? static_cast<void> (0) : __assert_fail ("(OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && \"Existing shift must be valid as a rotate half\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6531, __PRETTY_FUNCTION__))
6530 (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&(((OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() ==
ISD::SRL) && "Existing shift must be valid as a rotate half"
) ? static_cast<void> (0) : __assert_fail ("(OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && \"Existing shift must be valid as a rotate half\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6531, __PRETTY_FUNCTION__))
6531 "Existing shift must be valid as a rotate half")(((OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() ==
ISD::SRL) && "Existing shift must be valid as a rotate half"
) ? static_cast<void> (0) : __assert_fail ("(OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && \"Existing shift must be valid as a rotate half\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6531, __PRETTY_FUNCTION__))
;
6532
6533 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
6534
6535 // Value and Type of the shift.
6536 SDValue OppShiftLHS = OppShift.getOperand(0);
6537 EVT ShiftedVT = OppShiftLHS.getValueType();
6538
6539 // Amount of the existing shift.
6540 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
6541
6542 // (add v v) -> (shl v 1)
6543 // TODO: Should this be a general DAG canonicalization?
6544 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
6545 ExtractFrom.getOpcode() == ISD::ADD &&
6546 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
6547 ExtractFrom.getOperand(0) == OppShiftLHS &&
6548 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
6549 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
6550 DAG.getShiftAmountConstant(1, ShiftedVT, DL));
6551
6552 // Preconditions:
6553 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
6554 //
6555 // Find opcode of the needed shift to be extracted from (op0 v c0).
6556 unsigned Opcode = ISD::DELETED_NODE;
6557 bool IsMulOrDiv = false;
6558 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
6559 // opcode or its arithmetic (mul or udiv) variant.
6560 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
6561 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
6562 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
6563 return false;
6564 Opcode = NeededShift;
6565 return true;
6566 };
6567 // op0 must be either the needed shift opcode or the mul/udiv equivalent
6568 // that the needed shift can be extracted from.
6569 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
6570 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
6571 return SDValue();
6572
6573 // op0 must be the same opcode on both sides, have the same LHS argument,
6574 // and produce the same value type.
6575 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
6576 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
6577 ShiftedVT != ExtractFrom.getValueType())
6578 return SDValue();
6579
6580 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6581 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
6582 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6583 ConstantSDNode *ExtractFromCst =
6584 isConstOrConstSplat(ExtractFrom.getOperand(1));
6585 // TODO: We should be able to handle non-uniform constant vectors for these values
6586 // Check that we have constant values.
6587 if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
6588 !OppLHSCst || !OppLHSCst->getAPIntValue() ||
6589 !ExtractFromCst || !ExtractFromCst->getAPIntValue())
6590 return SDValue();
6591
6592 // Compute the shift amount we need to extract to complete the rotate.
6593 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
6594 if (OppShiftCst->getAPIntValue().ugt(VTWidth))
6595 return SDValue();
6596 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
6597 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6598 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
6599 APInt OppLHSAmt = OppLHSCst->getAPIntValue();
6600 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
6601
6602 // Now try extract the needed shift from the ExtractFrom op and see if the
6603 // result matches up with the existing shift's LHS op.
6604 if (IsMulOrDiv) {
6605 // Op to extract from is a mul or udiv by a constant.
6606 // Check:
6607 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6608 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6609 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
6610 NeededShiftAmt.getZExtValue());
6611 APInt ResultAmt;
6612 APInt Rem;
6613 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
6614 if (Rem != 0 || ResultAmt != OppLHSAmt)
6615 return SDValue();
6616 } else {
6617 // Op to extract from is a shift by a constant.
6618 // Check:
6619 // c2 - (bitwidth(op0 v c0) - c1) == c0
6620 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
6621 ExtractFromAmt.getBitWidth()))
6622 return SDValue();
6623 }
6624
6625 // Return the expanded shift op that should allow a rotate to be formed.
6626 EVT ShiftVT = OppShift.getOperand(1).getValueType();
6627 EVT ResVT = ExtractFrom.getValueType();
6628 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
6629 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
6630}
6631
6632// Return true if we can prove that, whenever Neg and Pos are both in the
6633// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
6634// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6635//
6636// (or (shift1 X, Neg), (shift2 X, Pos))
6637//
6638// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6639// in direction shift1 by Neg. The range [0, EltSize) means that we only need
6640// to consider shift amounts with defined behavior.
6641//
6642// The IsRotate flag should be set when the LHS of both shifts is the same.
6643// Otherwise if matching a general funnel shift, it should be clear.
6644static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
6645 SelectionDAG &DAG, bool IsRotate) {
6646 // If EltSize is a power of 2 then:
6647 //
6648 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6649 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6650 //
6651 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6652 // for the stronger condition:
6653 //
6654 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6655 //
6656 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6657 // we can just replace Neg with Neg' for the rest of the function.
6658 //
6659 // In other cases we check for the even stronger condition:
6660 //
6661 // Neg == EltSize - Pos [B]
6662 //
6663 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6664 // behavior if Pos == 0 (and consequently Neg == EltSize).
6665 //
6666 // We could actually use [A] whenever EltSize is a power of 2, but the
6667 // only extra cases that it would match are those uninteresting ones
6668 // where Neg and Pos are never in range at the same time. E.g. for
6669 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6670 // as well as (sub 32, Pos), but:
6671 //
6672 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6673 //
6674 // always invokes undefined behavior for 32-bit X.
6675 //
6676 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6677 //
6678 // NOTE: We can only do this when matching an AND and not a general
6679 // funnel shift.
6680 unsigned MaskLoBits = 0;
6681 if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
6682 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
6683 KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
6684 unsigned Bits = Log2_64(EltSize);
6685 if (NegC->getAPIntValue().getActiveBits() <= Bits &&
6686 ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
6687 Neg = Neg.getOperand(0);
6688 MaskLoBits = Bits;
6689 }
6690 }
6691 }
6692
6693 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6694 if (Neg.getOpcode() != ISD::SUB)
6695 return false;
6696 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
6697 if (!NegC)
6698 return false;
6699 SDValue NegOp1 = Neg.getOperand(1);
6700
6701 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6702 // Pos'. The truncation is redundant for the purpose of the equality.
6703 if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
6704 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
6705 KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
6706 if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
6707 ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
6708 MaskLoBits))
6709 Pos = Pos.getOperand(0);
6710 }
6711 }
6712
6713 // The condition we need is now:
6714 //
6715 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6716 //
6717 // If NegOp1 == Pos then we need:
6718 //
6719 // EltSize & Mask == NegC & Mask
6720 //
6721 // (because "x & Mask" is a truncation and distributes through subtraction).
6722 //
6723 // We also need to account for a potential truncation of NegOp1 if the amount
6724 // has already been legalized to a shift amount type.
6725 APInt Width;
6726 if ((Pos == NegOp1) ||
6727 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0)))
6728 Width = NegC->getAPIntValue();
6729
6730 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6731 // Then the condition we want to prove becomes:
6732 //
6733 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6734 //
6735 // which, again because "x & Mask" is a truncation, becomes:
6736 //
6737 // NegC & Mask == (EltSize - PosC) & Mask
6738 // EltSize & Mask == (NegC + PosC) & Mask
6739 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
6740 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
6741 Width = PosC->getAPIntValue() + NegC->getAPIntValue();
6742 else
6743 return false;
6744 } else
6745 return false;
6746
6747 // Now we just need to check that EltSize & Mask == Width & Mask.
6748 if (MaskLoBits)
6749 // EltSize & Mask is 0 since Mask is EltSize - 1.
6750 return Width.getLoBits(MaskLoBits) == 0;
6751 return Width == EltSize;
6752}
6753
6754// A subroutine of MatchRotate used once we have found an OR of two opposite
6755// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6756// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6757// former being preferred if supported. InnerPos and InnerNeg are Pos and
6758// Neg with outer conversions stripped away.
6759SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
6760 SDValue Neg, SDValue InnerPos,
6761 SDValue InnerNeg, unsigned PosOpcode,
6762 unsigned NegOpcode, const SDLoc &DL) {
6763 // fold (or (shl x, (*ext y)),
6764 // (srl x, (*ext (sub 32, y)))) ->
6765 // (rotl x, y) or (rotr x, (sub 32, y))
6766 //
6767 // fold (or (shl x, (*ext (sub 32, y))),
6768 // (srl x, (*ext y))) ->
6769 // (rotr x, y) or (rotl x, (sub 32, y))
6770 EVT VT = Shifted.getValueType();
6771 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG,
6772 /*IsRotate*/ true)) {
6773 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
6774 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
6775 HasPos ? Pos : Neg);
6776 }
6777
6778 return SDValue();
6779}
6780
6781// A subroutine of MatchRotate used once we have found an OR of two opposite
6782// shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
6783// to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
6784// former being preferred if supported. InnerPos and InnerNeg are Pos and
6785// Neg with outer conversions stripped away.
6786// TODO: Merge with MatchRotatePosNeg.
6787SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos,
6788 SDValue Neg, SDValue InnerPos,
6789 SDValue InnerNeg, unsigned PosOpcode,
6790 unsigned NegOpcode, const SDLoc &DL) {
6791 EVT VT = N0.getValueType();
6792 unsigned EltBits = VT.getScalarSizeInBits();
6793
6794 // fold (or (shl x0, (*ext y)),
6795 // (srl x1, (*ext (sub 32, y)))) ->
6796 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
6797 //
6798 // fold (or (shl x0, (*ext (sub 32, y))),
6799 // (srl x1, (*ext y))) ->
6800 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
6801 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) {
6802 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
6803 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1,
6804 HasPos ? Pos : Neg);
6805 }
6806
6807 // Matching the shift+xor cases, we can't easily use the xor'd shift amount
6808 // so for now just use the PosOpcode case if its legal.
6809 // TODO: When can we use the NegOpcode case?
6810 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) {
6811 auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) {
6812 if (Op.getOpcode() != BinOpc)
6813 return false;
6814 ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1));
6815 return Cst && (Cst->getAPIntValue() == Imm);
6816 };
6817
6818 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
6819 // -> (fshl x0, x1, y)
6820 if (IsBinOpImm(N1, ISD::SRL, 1) &&
6821 IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) &&
6822 InnerPos == InnerNeg.getOperand(0) &&
6823 TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) {
6824 return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos);
6825 }
6826
6827 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
6828 // -> (fshr x0, x1, y)
6829 if (IsBinOpImm(N0, ISD::SHL, 1) &&
6830 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
6831 InnerNeg == InnerPos.getOperand(0) &&
6832 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
6833 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
6834 }
6835
6836 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y))
6837 // -> (fshr x0, x1, y)
6838 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
6839 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) &&
6840 IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
6841 InnerNeg == InnerPos.getOperand(0) &&
6842 TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
6843 return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
6844 }
6845 }
6846
6847 return SDValue();
6848}
6849
6850// MatchRotate - Handle an 'or' of two operands. If this is one of the many
6851// idioms for rotate, and if the target supports rotation instructions, generate
6852// a rot[lr]. This also matches funnel shift patterns, similar to rotation but
6853// with different shifted sources.
6854SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
6855 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6856 EVT VT = LHS.getValueType();
6857 if (!TLI.isTypeLegal(VT))
6858 return SDValue();
6859
6860 // The target must have at least one rotate/funnel flavor.
6861 bool HasROTL = hasOperation(ISD::ROTL, VT);
6862 bool HasROTR = hasOperation(ISD::ROTR, VT);
6863 bool HasFSHL = hasOperation(ISD::FSHL, VT);
6864 bool HasFSHR = hasOperation(ISD::FSHR, VT);
6865 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
6866 return SDValue();
6867
6868 // Check for truncated rotate.
6869 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
6870 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
6871 assert(LHS.getValueType() == RHS.getValueType())((LHS.getValueType() == RHS.getValueType()) ? static_cast<
void> (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 6871, __PRETTY_FUNCTION__))
;
6872 if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
6873 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
6874 }
6875 }
6876
6877 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6878 SDValue LHSShift; // The shift.
6879 SDValue LHSMask; // AND value if any.
6880 matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
6881
6882 SDValue RHSShift; // The shift.
6883 SDValue RHSMask; // AND value if any.
6884 matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
6885
6886 // If neither side matched a rotate half, bail
6887 if (!LHSShift && !RHSShift)
6888 return SDValue();
6889
6890 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6891 // side of the rotate, so try to handle that here. In all cases we need to
6892 // pass the matched shift from the opposite side to compute the opcode and
6893 // needed shift amount to extract. We still want to do this if both sides
6894 // matched a rotate half because one half may be a potential overshift that
6895 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6896 // single one).
6897
6898 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6899 if (LHSShift)
6900 if (SDValue NewRHSShift =
6901 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
6902 RHSShift = NewRHSShift;
6903 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6904 if (RHSShift)
6905 if (SDValue NewLHSShift =
6906 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
6907 LHSShift = NewLHSShift;
6908
6909 // If a side is still missing, nothing else we can do.
6910 if (!RHSShift || !LHSShift)
6911 return SDValue();
6912
6913 // At this point we've matched or extracted a shift op on each side.
6914
6915 if (LHSShift.getOpcode() == RHSShift.getOpcode())
6916 return SDValue(); // Shifts must disagree.
6917
6918 bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0);
6919 if (!IsRotate && !(HasFSHL || HasFSHR))
6920 return SDValue(); // Requires funnel shift support.
6921
6922 // Canonicalize shl to left side in a shl/srl pair.
6923 if (RHSShift.getOpcode() == ISD::SHL) {
6924 std::swap(LHS, RHS);
6925 std::swap(LHSShift, RHSShift);
6926 std::swap(LHSMask, RHSMask);
6927 }
6928
6929 unsigned EltSizeInBits = VT.getScalarSizeInBits();
6930 SDValue LHSShiftArg = LHSShift.getOperand(0);
6931 SDValue LHSShiftAmt = LHSShift.getOperand(1);
6932 SDValue RHSShiftArg = RHSShift.getOperand(0);
6933 SDValue RHSShiftAmt = RHSShift.getOperand(1);
6934
6935 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
6936 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
6937 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
6938 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
6939 // iff C1+C2 == EltSizeInBits
6940 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
6941 ConstantSDNode *RHS) {
6942 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
6943 };
6944 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
6945 SDValue Res;
6946 if (IsRotate && (HasROTL || HasROTR))
6947 Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
6948 HasROTL ? LHSShiftAmt : RHSShiftAmt);
6949 else
6950 Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg,
6951 RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt);
6952
6953 // If there is an AND of either shifted operand, apply it to the result.
6954 if (LHSMask.getNode() || RHSMask.getNode()) {
6955 SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
6956 SDValue Mask = AllOnes;
6957
6958 if (LHSMask.getNode()) {
6959 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
6960 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
6961 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
6962 }
6963 if (RHSMask.getNode()) {
6964 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
6965 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
6966 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
6967 }
6968
6969 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask);
6970 }
6971
6972 return Res;
6973 }
6974
6975 // If there is a mask here, and we have a variable shift, we can't be sure
6976 // that we're masking out the right stuff.
6977 if (LHSMask.getNode() || RHSMask.getNode())
6978 return SDValue();
6979
6980 // If the shift amount is sign/zext/any-extended just peel it off.
6981 SDValue LExtOp0 = LHSShiftAmt;
6982 SDValue RExtOp0 = RHSShiftAmt;
6983 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
6984 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
6985 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
6986 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
6987 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
6988 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
6989 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
6990 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
6991 LExtOp0 = LHSShiftAmt.getOperand(0);
6992 RExtOp0 = RHSShiftAmt.getOperand(0);
6993 }
6994
6995 if (IsRotate && (HasROTL || HasROTR)) {
6996 SDValue TryL =
6997 MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0,
6998 RExtOp0, ISD::ROTL, ISD::ROTR, DL);
6999 if (TryL)
7000 return TryL;
7001
7002 SDValue TryR =
7003 MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0,
7004 LExtOp0, ISD::ROTR, ISD::ROTL, DL);
7005 if (TryR)
7006 return TryR;
7007 }
7008
7009 SDValue TryL =
7010 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt,
7011 LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL);
7012 if (TryL)
7013 return TryL;
7014
7015 SDValue TryR =
7016 MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
7017 RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL);
7018 if (TryR)
7019 return TryR;
7020
7021 return SDValue();
7022}
7023
7024namespace {
7025
7026/// Represents known origin of an individual byte in load combine pattern. The
7027/// value of the byte is either constant zero or comes from memory.
7028struct ByteProvider {
7029 // For constant zero providers Load is set to nullptr. For memory providers
7030 // Load represents the node which loads the byte from memory.
7031 // ByteOffset is the offset of the byte in the value produced by the load.
7032 LoadSDNode *Load = nullptr;
7033 unsigned ByteOffset = 0;
7034
7035 ByteProvider() = default;
7036
7037 static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
7038 return ByteProvider(Load, ByteOffset);
7039 }
7040
7041 static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
7042
7043 bool isConstantZero() const { return !Load; }
7044 bool isMemory() const { return Load; }
7045
7046 bool operator==(const ByteProvider &Other) const {
7047 return Other.Load == Load && Other.ByteOffset == ByteOffset;
7048 }
7049
7050private:
7051 ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
7052 : Load(Load), ByteOffset(ByteOffset) {}
7053};
7054
7055} // end anonymous namespace
7056
7057/// Recursively traverses the expression calculating the origin of the requested
7058/// byte of the given value. Returns None if the provider can't be calculated.
7059///
7060/// For all the values except the root of the expression verifies that the value
7061/// has exactly one use and if it's not true return None. This way if the origin
7062/// of the byte is returned it's guaranteed that the values which contribute to
7063/// the byte are not used outside of this expression.
7064///
7065/// Because the parts of the expression are not allowed to have more than one
7066/// use this function iterates over trees, not DAGs. So it never visits the same
7067/// node more than once.
7068static const Optional<ByteProvider>
7069calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
7070 bool Root = false) {
7071 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
7072 if (Depth == 10)
7073 return None;
7074
7075 if (!Root && !Op.hasOneUse())
7076 return None;
7077
7078 assert(Op.getValueType().isScalarInteger() && "can't handle other types")((Op.getValueType().isScalarInteger() && "can't handle other types"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType().isScalarInteger() && \"can't handle other types\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7078, __PRETTY_FUNCTION__))
;
7079 unsigned BitWidth = Op.getValueSizeInBits();
7080 if (BitWidth % 8 != 0)
7081 return None;
7082 unsigned ByteWidth = BitWidth / 8;
7083 assert(Index < ByteWidth && "invalid index requested")((Index < ByteWidth && "invalid index requested") ?
static_cast<void> (0) : __assert_fail ("Index < ByteWidth && \"invalid index requested\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7083, __PRETTY_FUNCTION__))
;
7084 (void) ByteWidth;
7085
7086 switch (Op.getOpcode()) {
7087 case ISD::OR: {
7088 auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
7089 if (!LHS)
7090 return None;
7091 auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
7092 if (!RHS)
7093 return None;
7094
7095 if (LHS->isConstantZero())
7096 return RHS;
7097 if (RHS->isConstantZero())
7098 return LHS;
7099 return None;
7100 }
7101 case ISD::SHL: {
7102 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
7103 if (!ShiftOp)
7104 return None;
7105
7106 uint64_t BitShift = ShiftOp->getZExtValue();
7107 if (BitShift % 8 != 0)
7108 return None;
7109 uint64_t ByteShift = BitShift / 8;
7110
7111 return Index < ByteShift
7112 ? ByteProvider::getConstantZero()
7113 : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
7114 Depth + 1);
7115 }
7116 case ISD::ANY_EXTEND:
7117 case ISD::SIGN_EXTEND:
7118 case ISD::ZERO_EXTEND: {
7119 SDValue NarrowOp = Op->getOperand(0);
7120 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
7121 if (NarrowBitWidth % 8 != 0)
7122 return None;
7123 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
7124
7125 if (Index >= NarrowByteWidth)
7126 return Op.getOpcode() == ISD::ZERO_EXTEND
7127 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
7128 : None;
7129 return calculateByteProvider(NarrowOp, Index, Depth + 1);
7130 }
7131 case ISD::BSWAP:
7132 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
7133 Depth + 1);
7134 case ISD::LOAD: {
7135 auto L = cast<LoadSDNode>(Op.getNode());
7136 if (!L->isSimple() || L->isIndexed())
7137 return None;
7138
7139 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
7140 if (NarrowBitWidth % 8 != 0)
7141 return None;
7142 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
7143
7144 if (Index >= NarrowByteWidth)
7145 return L->getExtensionType() == ISD::ZEXTLOAD
7146 ? Optional<ByteProvider>(ByteProvider::getConstantZero())
7147 : None;
7148 return ByteProvider::getMemory(L, Index);
7149 }
7150 }
7151
7152 return None;
7153}
7154
7155static unsigned littleEndianByteAt(unsigned BW, unsigned i) {
7156 return i;
7157}
7158
7159static unsigned bigEndianByteAt(unsigned BW, unsigned i) {
7160 return BW - i - 1;
7161}
7162
7163// Check if the bytes offsets we are looking at match with either big or
7164// little endian value loaded. Return true for big endian, false for little
7165// endian, and None if match failed.
7166static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets,
7167 int64_t FirstOffset) {
7168 // The endian can be decided only when it is 2 bytes at least.
7169 unsigned Width = ByteOffsets.size();
7170 if (Width < 2)
7171 return None;
7172
7173 bool BigEndian = true, LittleEndian = true;
7174 for (unsigned i = 0; i < Width; i++) {
7175 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
7176 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i);
7177 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i);
7178 if (!BigEndian && !LittleEndian)
7179 return None;
7180 }
7181
7182 assert((BigEndian != LittleEndian) && "It should be either big endian or"(((BigEndian != LittleEndian) && "It should be either big endian or"
"little endian") ? static_cast<void> (0) : __assert_fail
("(BigEndian != LittleEndian) && \"It should be either big endian or\" \"little endian\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7183, __PRETTY_FUNCTION__))
7183 "little endian")(((BigEndian != LittleEndian) && "It should be either big endian or"
"little endian") ? static_cast<void> (0) : __assert_fail
("(BigEndian != LittleEndian) && \"It should be either big endian or\" \"little endian\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7183, __PRETTY_FUNCTION__))
;
7184 return BigEndian;
7185}
7186
7187static SDValue stripTruncAndExt(SDValue Value) {
7188 switch (Value.getOpcode()) {
7189 case ISD::TRUNCATE:
7190 case ISD::ZERO_EXTEND:
7191 case ISD::SIGN_EXTEND:
7192 case ISD::ANY_EXTEND:
7193 return stripTruncAndExt(Value.getOperand(0));
7194 }
7195 return Value;
7196}
7197
7198/// Match a pattern where a wide type scalar value is stored by several narrow
7199/// stores. Fold it into a single store or a BSWAP and a store if the targets
7200/// supports it.
7201///
7202/// Assuming little endian target:
7203/// i8 *p = ...
7204/// i32 val = ...
7205/// p[0] = (val >> 0) & 0xFF;
7206/// p[1] = (val >> 8) & 0xFF;
7207/// p[2] = (val >> 16) & 0xFF;
7208/// p[3] = (val >> 24) & 0xFF;
7209/// =>
7210/// *((i32)p) = val;
7211///
7212/// i8 *p = ...
7213/// i32 val = ...
7214/// p[0] = (val >> 24) & 0xFF;
7215/// p[1] = (val >> 16) & 0xFF;
7216/// p[2] = (val >> 8) & 0xFF;
7217/// p[3] = (val >> 0) & 0xFF;
7218/// =>
7219/// *((i32)p) = BSWAP(val);
7220SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) {
7221 // The matching looks for "store (trunc x)" patterns that appear early but are
7222 // likely to be replaced by truncating store nodes during combining.
7223 // TODO: If there is evidence that running this later would help, this
7224 // limitation could be removed. Legality checks may need to be added
7225 // for the created store and optional bswap/rotate.
7226 if (LegalOperations)
7227 return SDValue();
7228
7229 // Collect all the stores in the chain.
7230 SDValue Chain;
7231 SmallVector<StoreSDNode *, 8> Stores;
7232 for (StoreSDNode *Store = N; Store; Store = dyn_cast<StoreSDNode>(Chain)) {
7233 // TODO: Allow unordered atomics when wider type is legal (see D66309)
7234 EVT MemVT = Store->getMemoryVT();
7235 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) ||
7236 !Store->isSimple() || Store->isIndexed())
7237 return SDValue();
7238 Stores.push_back(Store);
7239 Chain = Store->getChain();
7240 }
7241 // There is no reason to continue if we do not have at least a pair of stores.
7242 if (Stores.size() < 2)
7243 return SDValue();
7244
7245 // Handle simple types only.
7246 LLVMContext &Context = *DAG.getContext();
7247 unsigned NumStores = Stores.size();
7248 unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits();
7249 unsigned WideNumBits = NumStores * NarrowNumBits;
7250 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits);
7251 if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64)
7252 return SDValue();
7253
7254 // Check if all bytes of the source value that we are looking at are stored
7255 // to the same base address. Collect offsets from Base address into OffsetMap.
7256 SDValue SourceValue;
7257 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX(9223372036854775807L));
7258 int64_t FirstOffset = INT64_MAX(9223372036854775807L);
7259 StoreSDNode *FirstStore = nullptr;
7260 Optional<BaseIndexOffset> Base;
7261 for (auto Store : Stores) {
7262 // All the stores store different parts of the CombinedValue. A truncate is
7263 // required to get the partial value.
7264 SDValue Trunc = Store->getValue();
7265 if (Trunc.getOpcode() != ISD::TRUNCATE)
7266 return SDValue();
7267 // Other than the first/last part, a shift operation is required to get the
7268 // offset.
7269 int64_t Offset = 0;
7270 SDValue WideVal = Trunc.getOperand(0);
7271 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) &&
7272 isa<ConstantSDNode>(WideVal.getOperand(1))) {
7273 // The shift amount must be a constant multiple of the narrow type.
7274 // It is translated to the offset address in the wide source value "y".
7275 //
7276 // x = srl y, ShiftAmtC
7277 // i8 z = trunc x
7278 // store z, ...
7279 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1);
7280 if (ShiftAmtC % NarrowNumBits != 0)
7281 return SDValue();
7282
7283 Offset = ShiftAmtC / NarrowNumBits;
7284 WideVal = WideVal.getOperand(0);
7285 }
7286
7287 // Stores must share the same source value with different offsets.
7288 // Truncate and extends should be stripped to get the single source value.
7289 if (!SourceValue)
7290 SourceValue = WideVal;
7291 else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal))
7292 return SDValue();
7293 else if (SourceValue.getValueType() != WideVT) {
7294 if (WideVal.getValueType() == WideVT ||
7295 WideVal.getScalarValueSizeInBits() >
7296 SourceValue.getScalarValueSizeInBits())
7297 SourceValue = WideVal;
7298 // Give up if the source value type is smaller than the store size.
7299 if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits())
7300 return SDValue();
7301 }
7302
7303 // Stores must share the same base address.
7304 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
7305 int64_t ByteOffsetFromBase = 0;
7306 if (!Base)
7307 Base = Ptr;
7308 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
7309 return SDValue();
7310
7311 // Remember the first store.
7312 if (ByteOffsetFromBase < FirstOffset) {
7313 FirstStore = Store;
7314 FirstOffset = ByteOffsetFromBase;
7315 }
7316 // Map the offset in the store and the offset in the combined value, and
7317 // early return if it has been set before.
7318 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX(9223372036854775807L))
7319 return SDValue();
7320 OffsetMap[Offset] = ByteOffsetFromBase;
7321 }
7322
7323 assert(FirstOffset != INT64_MAX && "First byte offset must be set")((FirstOffset != (9223372036854775807L) && "First byte offset must be set"
) ? static_cast<void> (0) : __assert_fail ("FirstOffset != INT64_MAX && \"First byte offset must be set\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7323, __PRETTY_FUNCTION__))
;
7324 assert(FirstStore && "First store must be set")((FirstStore && "First store must be set") ? static_cast
<void> (0) : __assert_fail ("FirstStore && \"First store must be set\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7324, __PRETTY_FUNCTION__))
;
7325
7326 // Check that a store of the wide type is both allowed and fast on the target
7327 const DataLayout &Layout = DAG.getDataLayout();
7328 bool Fast = false;
7329 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT,
7330 *FirstStore->getMemOperand(), &Fast);
7331 if (!Allowed || !Fast)
7332 return SDValue();
7333
7334 // Check if the pieces of the value are going to the expected places in memory
7335 // to merge the stores.
7336 auto checkOffsets = [&](bool MatchLittleEndian) {
7337 if (MatchLittleEndian) {
7338 for (unsigned i = 0; i != NumStores; ++i)
7339 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset)
7340 return false;
7341 } else { // MatchBigEndian by reversing loop counter.
7342 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j)
7343 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset)
7344 return false;
7345 }
7346 return true;
7347 };
7348
7349 // Check if the offsets line up for the native data layout of this target.
7350 bool NeedBswap = false;
7351 bool NeedRotate = false;
7352 if (!checkOffsets(Layout.isLittleEndian())) {
7353 // Special-case: check if byte offsets line up for the opposite endian.
7354 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian()))
7355 NeedBswap = true;
7356 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian()))
7357 NeedRotate = true;
7358 else
7359 return SDValue();
7360 }
7361
7362 SDLoc DL(N);
7363 if (WideVT != SourceValue.getValueType()) {
7364 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits &&((SourceValue.getValueType().getScalarSizeInBits() > WideNumBits
&& "Unexpected store value to merge") ? static_cast<
void> (0) : __assert_fail ("SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && \"Unexpected store value to merge\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7365, __PRETTY_FUNCTION__))
7365 "Unexpected store value to merge")((SourceValue.getValueType().getScalarSizeInBits() > WideNumBits
&& "Unexpected store value to merge") ? static_cast<
void> (0) : __assert_fail ("SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && \"Unexpected store value to merge\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7365, __PRETTY_FUNCTION__))
;
7366 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue);
7367 }
7368
7369 // Before legalize we can introduce illegal bswaps/rotates which will be later
7370 // converted to an explicit bswap sequence. This way we end up with a single
7371 // store and byte shuffling instead of several stores and byte shuffling.
7372 if (NeedBswap) {
7373 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue);
7374 } else if (NeedRotate) {
7375 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate")((WideNumBits % 2 == 0 && "Unexpected type for rotate"
) ? static_cast<void> (0) : __assert_fail ("WideNumBits % 2 == 0 && \"Unexpected type for rotate\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7375, __PRETTY_FUNCTION__))
;
7376 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT);
7377 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt);
7378 }
7379
7380 SDValue NewStore =
7381 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(),
7382 FirstStore->getPointerInfo(), FirstStore->getAlign());
7383
7384 // Rely on other DAG combine rules to remove the other individual stores.
7385 DAG.ReplaceAllUsesWith(N, NewStore.getNode());
7386 return NewStore;
7387}
7388
7389/// Match a pattern where a wide type scalar value is loaded by several narrow
7390/// loads and combined by shifts and ors. Fold it into a single load or a load
7391/// and a BSWAP if the targets supports it.
7392///
7393/// Assuming little endian target:
7394/// i8 *a = ...
7395/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
7396/// =>
7397/// i32 val = *((i32)a)
7398///
7399/// i8 *a = ...
7400/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
7401/// =>
7402/// i32 val = BSWAP(*((i32)a))
7403///
7404/// TODO: This rule matches complex patterns with OR node roots and doesn't
7405/// interact well with the worklist mechanism. When a part of the pattern is
7406/// updated (e.g. one of the loads) its direct users are put into the worklist,
7407/// but the root node of the pattern which triggers the load combine is not
7408/// necessarily a direct user of the changed node. For example, once the address
7409/// of t28 load is reassociated load combine won't be triggered:
7410/// t25: i32 = add t4, Constant:i32<2>
7411/// t26: i64 = sign_extend t25
7412/// t27: i64 = add t2, t26
7413/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
7414/// t29: i32 = zero_extend t28
7415/// t32: i32 = shl t29, Constant:i8<8>
7416/// t33: i32 = or t23, t32
7417/// As a possible fix visitLoad can check if the load can be a part of a load
7418/// combine pattern and add corresponding OR roots to the worklist.
7419SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
7420 assert(N->getOpcode() == ISD::OR &&((N->getOpcode() == ISD::OR && "Can only match load combining against OR nodes"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::OR && \"Can only match load combining against OR nodes\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7421, __PRETTY_FUNCTION__))
7421 "Can only match load combining against OR nodes")((N->getOpcode() == ISD::OR && "Can only match load combining against OR nodes"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::OR && \"Can only match load combining against OR nodes\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7421, __PRETTY_FUNCTION__))
;
7422
7423 // Handles simple types only
7424 EVT VT = N->getValueType(0);
7425 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
7426 return SDValue();
7427 unsigned ByteWidth = VT.getSizeInBits() / 8;
7428
7429 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
7430 auto MemoryByteOffset = [&] (ByteProvider P) {
7431 assert(P.isMemory() && "Must be a memory byte provider")((P.isMemory() && "Must be a memory byte provider") ?
static_cast<void> (0) : __assert_fail ("P.isMemory() && \"Must be a memory byte provider\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7431, __PRETTY_FUNCTION__))
;
7432 unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
7433 assert(LoadBitWidth % 8 == 0 &&((LoadBitWidth % 8 == 0 && "can only analyze providers for individual bytes not bit"
) ? static_cast<void> (0) : __assert_fail ("LoadBitWidth % 8 == 0 && \"can only analyze providers for individual bytes not bit\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7434, __PRETTY_FUNCTION__))
7434 "can only analyze providers for individual bytes not bit")((LoadBitWidth % 8 == 0 && "can only analyze providers for individual bytes not bit"
) ? static_cast<void> (0) : __assert_fail ("LoadBitWidth % 8 == 0 && \"can only analyze providers for individual bytes not bit\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7434, __PRETTY_FUNCTION__))
;
7435 unsigned LoadByteWidth = LoadBitWidth / 8;
7436 return IsBigEndianTarget
7437 ? bigEndianByteAt(LoadByteWidth, P.ByteOffset)
7438 : littleEndianByteAt(LoadByteWidth, P.ByteOffset);
7439 };
7440
7441 Optional<BaseIndexOffset> Base;
7442 SDValue Chain;
7443
7444 SmallPtrSet<LoadSDNode *, 8> Loads;
7445 Optional<ByteProvider> FirstByteProvider;
7446 int64_t FirstOffset = INT64_MAX(9223372036854775807L);
7447
7448 // Check if all the bytes of the OR we are looking at are loaded from the same
7449 // base address. Collect bytes offsets from Base address in ByteOffsets.
7450 SmallVector<int64_t, 8> ByteOffsets(ByteWidth);
7451 unsigned ZeroExtendedBytes = 0;
7452 for (int i = ByteWidth - 1; i >= 0; --i) {
7453 auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
7454 if (!P)
7455 return SDValue();
7456
7457 if (P->isConstantZero()) {
7458 // It's OK for the N most significant bytes to be 0, we can just
7459 // zero-extend the load.
7460 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i)))
7461 return SDValue();
7462 continue;
7463 }
7464 assert(P->isMemory() && "provenance should either be memory or zero")((P->isMemory() && "provenance should either be memory or zero"
) ? static_cast<void> (0) : __assert_fail ("P->isMemory() && \"provenance should either be memory or zero\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7464, __PRETTY_FUNCTION__))
;
7465
7466 LoadSDNode *L = P->Load;
7467 assert(L->hasNUsesOfValue(1, 0) && L->isSimple() &&((L->hasNUsesOfValue(1, 0) && L->isSimple() &&
!L->isIndexed() && "Must be enforced by calculateByteProvider"
) ? static_cast<void> (0) : __assert_fail ("L->hasNUsesOfValue(1, 0) && L->isSimple() && !L->isIndexed() && \"Must be enforced by calculateByteProvider\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7469, __PRETTY_FUNCTION__))
7468 !L->isIndexed() &&((L->hasNUsesOfValue(1, 0) && L->isSimple() &&
!L->isIndexed() && "Must be enforced by calculateByteProvider"
) ? static_cast<void> (0) : __assert_fail ("L->hasNUsesOfValue(1, 0) && L->isSimple() && !L->isIndexed() && \"Must be enforced by calculateByteProvider\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7469, __PRETTY_FUNCTION__))
7469 "Must be enforced by calculateByteProvider")((L->hasNUsesOfValue(1, 0) && L->isSimple() &&
!L->isIndexed() && "Must be enforced by calculateByteProvider"
) ? static_cast<void> (0) : __assert_fail ("L->hasNUsesOfValue(1, 0) && L->isSimple() && !L->isIndexed() && \"Must be enforced by calculateByteProvider\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7469, __PRETTY_FUNCTION__))
;
7470 assert(L->getOffset().isUndef() && "Unindexed load must have undef offset")((L->getOffset().isUndef() && "Unindexed load must have undef offset"
) ? static_cast<void> (0) : __assert_fail ("L->getOffset().isUndef() && \"Unindexed load must have undef offset\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7470, __PRETTY_FUNCTION__))
;
7471
7472 // All loads must share the same chain
7473 SDValue LChain = L->getChain();
7474 if (!Chain)
7475 Chain = LChain;
7476 else if (Chain != LChain)
7477 return SDValue();
7478
7479 // Loads must share the same base address
7480 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
7481 int64_t ByteOffsetFromBase = 0;
7482 if (!Base)
7483 Base = Ptr;
7484 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
7485 return SDValue();
7486
7487 // Calculate the offset of the current byte from the base address
7488 ByteOffsetFromBase += MemoryByteOffset(*P);
7489 ByteOffsets[i] = ByteOffsetFromBase;
7490
7491 // Remember the first byte load
7492 if (ByteOffsetFromBase < FirstOffset) {
7493 FirstByteProvider = P;
7494 FirstOffset = ByteOffsetFromBase;
7495 }
7496
7497 Loads.insert(L);
7498 }
7499 assert(!Loads.empty() && "All the bytes of the value must be loaded from "((!Loads.empty() && "All the bytes of the value must be loaded from "
"memory, so there must be at least one load which produces the value"
) ? static_cast<void> (0) : __assert_fail ("!Loads.empty() && \"All the bytes of the value must be loaded from \" \"memory, so there must be at least one load which produces the value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7500, __PRETTY_FUNCTION__))
7500 "memory, so there must be at least one load which produces the value")((!Loads.empty() && "All the bytes of the value must be loaded from "
"memory, so there must be at least one load which produces the value"
) ? static_cast<void> (0) : __assert_fail ("!Loads.empty() && \"All the bytes of the value must be loaded from \" \"memory, so there must be at least one load which produces the value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7500, __PRETTY_FUNCTION__))
;
7501 assert(Base && "Base address of the accessed memory location must be set")((Base && "Base address of the accessed memory location must be set"
) ? static_cast<void> (0) : __assert_fail ("Base && \"Base address of the accessed memory location must be set\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7501, __PRETTY_FUNCTION__))
;
7502 assert(FirstOffset != INT64_MAX && "First byte offset must be set")((FirstOffset != (9223372036854775807L) && "First byte offset must be set"
) ? static_cast<void> (0) : __assert_fail ("FirstOffset != INT64_MAX && \"First byte offset must be set\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7502, __PRETTY_FUNCTION__))
;
7503
7504 bool NeedsZext = ZeroExtendedBytes > 0;
7505
7506 EVT MemVT =
7507 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8);
7508
7509 if (!MemVT.isSimple())
7510 return SDValue();
7511
7512 // Before legalize we can introduce too wide illegal loads which will be later
7513 // split into legal sized loads. This enables us to combine i64 load by i8
7514 // patterns to a couple of i32 loads on 32 bit targets.
7515 if (LegalOperations &&
7516 !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD,
7517 MemVT))
7518 return SDValue();
7519
7520 // Check if the bytes of the OR we are looking at match with either big or
7521 // little endian value load
7522 Optional<bool> IsBigEndian = isBigEndian(
7523 makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset);
7524 if (!IsBigEndian.hasValue())
7525 return SDValue();
7526
7527 assert(FirstByteProvider && "must be set")((FirstByteProvider && "must be set") ? static_cast<
void> (0) : __assert_fail ("FirstByteProvider && \"must be set\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7527, __PRETTY_FUNCTION__))
;
7528
7529 // Ensure that the first byte is loaded from zero offset of the first load.
7530 // So the combined value can be loaded from the first load address.
7531 if (MemoryByteOffset(*FirstByteProvider) != 0)
7532 return SDValue();
7533 LoadSDNode *FirstLoad = FirstByteProvider->Load;
7534
7535 // The node we are looking at matches with the pattern, check if we can
7536 // replace it with a single (possibly zero-extended) load and bswap + shift if
7537 // needed.
7538
7539 // If the load needs byte swap check if the target supports it
7540 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
7541
7542 // Before legalize we can introduce illegal bswaps which will be later
7543 // converted to an explicit bswap sequence. This way we end up with a single
7544 // load and byte shuffling instead of several loads and byte shuffling.
7545 // We do not introduce illegal bswaps when zero-extending as this tends to
7546 // introduce too many arithmetic instructions.
7547 if (NeedsBswap && (LegalOperations || NeedsZext) &&
7548 !TLI.isOperationLegal(ISD::BSWAP, VT))
7549 return SDValue();
7550
7551 // If we need to bswap and zero extend, we have to insert a shift. Check that
7552 // it is legal.
7553 if (NeedsBswap && NeedsZext && LegalOperations &&
7554 !TLI.isOperationLegal(ISD::SHL, VT))
7555 return SDValue();
7556
7557 // Check that a load of the wide type is both allowed and fast on the target
7558 bool Fast = false;
7559 bool Allowed =
7560 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
7561 *FirstLoad->getMemOperand(), &Fast);
7562 if (!Allowed || !Fast)
7563 return SDValue();
7564
7565 SDValue NewLoad =
7566 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT,
7567 Chain, FirstLoad->getBasePtr(),
7568 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign());
7569
7570 // Transfer chain users from old loads to the new load.
7571 for (LoadSDNode *L : Loads)
7572 DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
7573
7574 if (!NeedsBswap)
7575 return NewLoad;
7576
7577 SDValue ShiftedLoad =
7578 NeedsZext
7579 ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad,
7580 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT,
7581 SDLoc(N), LegalOperations))
7582 : NewLoad;
7583 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad);
7584}
7585
7586// If the target has andn, bsl, or a similar bit-select instruction,
7587// we want to unfold masked merge, with canonical pattern of:
7588// | A | |B|
7589// ((x ^ y) & m) ^ y
7590// | D |
7591// Into:
7592// (x & m) | (y & ~m)
7593// If y is a constant, and the 'andn' does not work with immediates,
7594// we unfold into a different pattern:
7595// ~(~x & m) & (m | y)
7596// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
7597// the very least that breaks andnpd / andnps patterns, and because those
7598// patterns are simplified in IR and shouldn't be created in the DAG
7599SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
7600 assert(N->getOpcode() == ISD::XOR)((N->getOpcode() == ISD::XOR) ? static_cast<void> (0
) : __assert_fail ("N->getOpcode() == ISD::XOR", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7600, __PRETTY_FUNCTION__))
;
7601
7602 // Don't touch 'not' (i.e. where y = -1).
7603 if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
7604 return SDValue();
7605
7606 EVT VT = N->getValueType(0);
7607
7608 // There are 3 commutable operators in the pattern,
7609 // so we have to deal with 8 possible variants of the basic pattern.
7610 SDValue X, Y, M;
7611 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
7612 if (And.getOpcode() != ISD::AND || !And.hasOneUse())
7613 return false;
7614 SDValue Xor = And.getOperand(XorIdx);
7615 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
7616 return false;
7617 SDValue Xor0 = Xor.getOperand(0);
7618 SDValue Xor1 = Xor.getOperand(1);
7619 // Don't touch 'not' (i.e. where y = -1).
7620 if (isAllOnesOrAllOnesSplat(Xor1))
7621 return false;
7622 if (Other == Xor0)
7623 std::swap(Xor0, Xor1);
7624 if (Other != Xor1)
7625 return false;
7626 X = Xor0;
7627 Y = Xor1;
7628 M = And.getOperand(XorIdx ? 0 : 1);
7629 return true;
7630 };
7631
7632 SDValue N0 = N->getOperand(0);
7633 SDValue N1 = N->getOperand(1);
7634 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
7635 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
7636 return SDValue();
7637
7638 // Don't do anything if the mask is constant. This should not be reachable.
7639 // InstCombine should have already unfolded this pattern, and DAGCombiner
7640 // probably shouldn't produce it, too.
7641 if (isa<ConstantSDNode>(M.getNode()))
7642 return SDValue();
7643
7644 // We can transform if the target has AndNot
7645 if (!TLI.hasAndNot(M))
7646 return SDValue();
7647
7648 SDLoc DL(N);
7649
7650 // If Y is a constant, check that 'andn' works with immediates.
7651 if (!TLI.hasAndNot(Y)) {
7652 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.")((TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."
) ? static_cast<void> (0) : __assert_fail ("TLI.hasAndNot(X) && \"Only mask is a variable? Unreachable.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7652, __PRETTY_FUNCTION__))
;
7653 // If not, we need to do a bit more work to make sure andn is still used.
7654 SDValue NotX = DAG.getNOT(DL, X, VT);
7655 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
7656 SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
7657 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
7658 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
7659 }
7660
7661 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
7662 SDValue NotM = DAG.getNOT(DL, M, VT);
7663 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
7664
7665 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
7666}
7667
7668SDValue DAGCombiner::visitXOR(SDNode *N) {
7669 SDValue N0 = N->getOperand(0);
7670 SDValue N1 = N->getOperand(1);
7671 EVT VT = N0.getValueType();
7672
7673 // fold vector ops
7674 if (VT.isVector()) {
7675 if (SDValue FoldedVOp = SimplifyVBinOp(N))
7676 return FoldedVOp;
7677
7678 // fold (xor x, 0) -> x, vector edition
7679 if (ISD::isBuildVectorAllZeros(N0.getNode()))
7680 return N1;
7681 if (ISD::isBuildVectorAllZeros(N1.getNode()))
7682 return N0;
7683 }
7684
7685 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
7686 SDLoc DL(N);
7687 if (N0.isUndef() && N1.isUndef())
7688 return DAG.getConstant(0, DL, VT);
7689
7690 // fold (xor x, undef) -> undef
7691 if (N0.isUndef())
7692 return N0;
7693 if (N1.isUndef())
7694 return N1;
7695
7696 // fold (xor c1, c2) -> c1^c2
7697 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1}))
7698 return C;
7699
7700 // canonicalize constant to RHS
7701 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
7702 !DAG.isConstantIntBuildVectorOrConstantInt(N1))
7703 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
7704
7705 // fold (xor x, 0) -> x
7706 if (isNullConstant(N1))
7707 return N0;
7708
7709 if (SDValue NewSel = foldBinOpIntoSelect(N))
7710 return NewSel;
7711
7712 // reassociate xor
7713 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
7714 return RXOR;
7715
7716 // fold !(x cc y) -> (x !cc y)
7717 unsigned N0Opcode = N0.getOpcode();
7718 SDValue LHS, RHS, CC;
7719 if (TLI.isConstTrueVal(N1.getNode()) &&
7720 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) {
7721 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
7722 LHS.getValueType());
7723 if (!LegalOperations ||
7724 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
7725 switch (N0Opcode) {
7726 default:
7727 llvm_unreachable("Unhandled SetCC Equivalent!")::llvm::llvm_unreachable_internal("Unhandled SetCC Equivalent!"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7727)
;
7728 case ISD::SETCC:
7729 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
7730 case ISD::SELECT_CC:
7731 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
7732 N0.getOperand(3), NotCC);
7733 case ISD::STRICT_FSETCC:
7734 case ISD::STRICT_FSETCCS: {
7735 if (N0.hasOneUse()) {
7736 // FIXME Can we handle multiple uses? Could we token factor the chain
7737 // results from the new/old setcc?
7738 SDValue SetCC =
7739 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC,
7740 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS);
7741 CombineTo(N, SetCC);
7742 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1));
7743 recursivelyDeleteUnusedNodes(N0.getNode());
7744 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7745 }
7746 break;
7747 }
7748 }
7749 }
7750 }
7751
7752 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
7753 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
7754 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
7755 SDValue V = N0.getOperand(0);
7756 SDLoc DL0(N0);
7757 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
7758 DAG.getConstant(1, DL0, V.getValueType()));
7759 AddToWorklist(V.getNode());
7760 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
7761 }
7762
7763 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
7764 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
7765 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
7766 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
7767 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
7768 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
7769 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
7770 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
7771 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
7772 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
7773 }
7774 }
7775 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
7776 if (isAllOnesConstant(N1) && N0.hasOneUse() &&
7777 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
7778 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
7779 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
7780 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
7781 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
7782 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
7783 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
7784 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
7785 }
7786 }
7787
7788 // fold (not (neg x)) -> (add X, -1)
7789 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
7790 // Y is a constant or the subtract has a single use.
7791 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
7792 isNullConstant(N0.getOperand(0))) {
7793 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
7794 DAG.getAllOnesConstant(DL, VT));
7795 }
7796
7797 // fold (not (add X, -1)) -> (neg X)
7798 if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD &&
7799 isAllOnesOrAllOnesSplat(N0.getOperand(1))) {
7800 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
7801 N0.getOperand(0));
7802 }
7803
7804 // fold (xor (and x, y), y) -> (and (not x), y)
7805 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
7806 SDValue X = N0.getOperand(0);
7807 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
7808 AddToWorklist(NotX.getNode());
7809 return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
7810 }
7811
7812 if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
7813 ConstantSDNode *XorC = isConstOrConstSplat(N1);
7814 ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
7815 unsigned BitWidth = VT.getScalarSizeInBits();
7816 if (XorC && ShiftC) {
7817 // Don't crash on an oversized shift. We can not guarantee that a bogus
7818 // shift has been simplified to undef.
7819 uint64_t ShiftAmt = ShiftC->getLimitedValue();
7820 if (ShiftAmt < BitWidth) {
7821 APInt Ones = APInt::getAllOnesValue(BitWidth);
7822 Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
7823 if (XorC->getAPIntValue() == Ones) {
7824 // If the xor constant is a shifted -1, do a 'not' before the shift:
7825 // xor (X << ShiftC), XorC --> (not X) << ShiftC
7826 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
7827 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
7828 return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
7829 }
7830 }
7831 }
7832 }
7833
7834 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
7835 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
7836 SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
7837 SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
7838 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
7839 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
7840 SDValue S0 = S.getOperand(0);
7841 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0))
7842 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
7843 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
7844 return DAG.getNode(ISD::ABS, DL, VT, S0);
7845 }
7846 }
7847
7848 // fold (xor x, x) -> 0
7849 if (N0 == N1)
7850 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
7851
7852 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7853 // Here is a concrete example of this equivalence:
7854 // i16 x == 14
7855 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7856 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7857 //
7858 // =>
7859 //
7860 // i16 ~1 == 0b1111111111111110
7861 // i16 rol(~1, 14) == 0b1011111111111111
7862 //
7863 // Some additional tips to help conceptualize this transform:
7864 // - Try to see the operation as placing a single zero in a value of all ones.
7865 // - There exists no value for x which would allow the result to contain zero.
7866 // - Values of x larger than the bitwidth are undefined and do not require a
7867 // consistent result.
7868 // - Pushing the zero left requires shifting one bits in from the right.
7869 // A rotate left of ~1 is a nice way of achieving the desired result.
7870 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
7871 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
7872 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
7873 N0.getOperand(1));
7874 }
7875
7876 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7877 if (N0Opcode == N1.getOpcode())
7878 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
7879 return V;
7880
7881 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7882 if (SDValue MM = unfoldMaskedMerge(N))
7883 return MM;
7884
7885 // Simplify the expression using non-local knowledge.
7886 if (SimplifyDemandedBits(SDValue(N, 0)))
7887 return SDValue(N, 0);
7888
7889 if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
7890 return Combined;
7891
7892 return SDValue();
7893}
7894
7895/// If we have a shift-by-constant of a bitwise logic op that itself has a
7896/// shift-by-constant operand with identical opcode, we may be able to convert
7897/// that into 2 independent shifts followed by the logic op. This is a
7898/// throughput improvement.
7899static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
7900 // Match a one-use bitwise logic op.
7901 SDValue LogicOp = Shift->getOperand(0);
7902 if (!LogicOp.hasOneUse())
7903 return SDValue();
7904
7905 unsigned LogicOpcode = LogicOp.getOpcode();
7906 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
7907 LogicOpcode != ISD::XOR)
7908 return SDValue();
7909
7910 // Find a matching one-use shift by constant.
7911 unsigned ShiftOpcode = Shift->getOpcode();
7912 SDValue C1 = Shift->getOperand(1);
7913 ConstantSDNode *C1Node = isConstOrConstSplat(C1);
7914 assert(C1Node && "Expected a shift with constant operand")((C1Node && "Expected a shift with constant operand")
? static_cast<void> (0) : __assert_fail ("C1Node && \"Expected a shift with constant operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7914, __PRETTY_FUNCTION__))
;
7915 const APInt &C1Val = C1Node->getAPIntValue();
7916 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
7917 const APInt *&ShiftAmtVal) {
7918 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
7919 return false;
7920
7921 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
7922 if (!ShiftCNode)
7923 return false;
7924
7925 // Capture the shifted operand and shift amount value.
7926 ShiftOp = V.getOperand(0);
7927 ShiftAmtVal = &ShiftCNode->getAPIntValue();
7928
7929 // Shift amount types do not have to match their operand type, so check that
7930 // the constants are the same width.
7931 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
7932 return false;
7933
7934 // The fold is not valid if the sum of the shift values exceeds bitwidth.
7935 if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits()))
7936 return false;
7937
7938 return true;
7939 };
7940
7941 // Logic ops are commutative, so check each operand for a match.
7942 SDValue X, Y;
7943 const APInt *C0Val;
7944 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
7945 Y = LogicOp.getOperand(1);
7946 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
7947 Y = LogicOp.getOperand(0);
7948 else
7949 return SDValue();
7950
7951 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
7952 SDLoc DL(Shift);
7953 EVT VT = Shift->getValueType(0);
7954 EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
7955 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
7956 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
7957 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
7958 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2);
7959}
7960
7961/// Handle transforms common to the three shifts, when the shift amount is a
7962/// constant.
7963/// We are looking for: (shift being one of shl/sra/srl)
7964/// shift (binop X, C0), C1
7965/// And want to transform into:
7966/// binop (shift X, C1), (shift C0, C1)
7967SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
7968 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand")((isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"
) ? static_cast<void> (0) : __assert_fail ("isConstOrConstSplat(N->getOperand(1)) && \"Expected constant operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 7968, __PRETTY_FUNCTION__))
;
7969
7970 // Do not turn a 'not' into a regular xor.
7971 if (isBitwiseNot(N->getOperand(0)))
7972 return SDValue();
7973
7974 // The inner binop must be one-use, since we want to replace it.
7975 SDValue LHS = N->getOperand(0);
7976 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
7977 return SDValue();
7978
7979 // TODO: This is limited to early combining because it may reveal regressions
7980 // otherwise. But since we just checked a target hook to see if this is
7981 // desirable, that should have filtered out cases where this interferes
7982 // with some other pattern matching.
7983 if (!LegalTypes)
7984 if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
7985 return R;
7986
7987 // We want to pull some binops through shifts, so that we have (and (shift))
7988 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
7989 // thing happens with address calculations, so it's important to canonicalize
7990 // it.
7991 switch (LHS.getOpcode()) {
7992 default:
7993 return SDValue();
7994 case ISD::OR:
7995 case ISD::XOR:
7996 case ISD::AND:
7997 break;
7998 case ISD::ADD:
7999 if (N->getOpcode() != ISD::SHL)
8000 return SDValue(); // only shl(add) not sr[al](add).
8001 break;
8002 }
8003
8004 // We require the RHS of the binop to be a constant and not opaque as well.
8005 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1));
8006 if (!BinOpCst)
8007 return SDValue();
8008
8009 // FIXME: disable this unless the input to the binop is a shift by a constant
8010 // or is copy/select. Enable this in other cases when figure out it's exactly
8011 // profitable.
8012 SDValue BinOpLHSVal = LHS.getOperand(0);
8013 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
8014 BinOpLHSVal.getOpcode() == ISD::SRA ||
8015 BinOpLHSVal.getOpcode() == ISD::SRL) &&
8016 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
8017 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
8018 BinOpLHSVal.getOpcode() == ISD::SELECT;
8019
8020 if (!IsShiftByConstant && !IsCopyOrSelect)
8021 return SDValue();
8022
8023 if (IsCopyOrSelect && N->hasOneUse())
8024 return SDValue();
8025
8026 // Fold the constants, shifting the binop RHS by the shift amount.
8027 SDLoc DL(N);
8028 EVT VT = N->getValueType(0);
8029 SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1),
8030 N->getOperand(1));
8031 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!")((isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"
) ? static_cast<void> (0) : __assert_fail ("isa<ConstantSDNode>(NewRHS) && \"Folding was not successful!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 8031, __PRETTY_FUNCTION__))
;
8032
8033 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
8034 N->getOperand(1));
8035 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
8036}
8037
8038SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
8039 assert(N->getOpcode() == ISD::TRUNCATE)((N->getOpcode() == ISD::TRUNCATE) ? static_cast<void>
(0) : __assert_fail ("N->getOpcode() == ISD::TRUNCATE", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 8039, __PRETTY_FUNCTION__))
;
8040 assert(N->getOperand(0).getOpcode() == ISD::AND)((N->getOperand(0).getOpcode() == ISD::AND) ? static_cast<
void> (0) : __assert_fail ("N->getOperand(0).getOpcode() == ISD::AND"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 8040, __PRETTY_FUNCTION__))
;
8041
8042 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
8043 EVT TruncVT = N->getValueType(0);
8044 if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
8045 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
8046 SDValue N01 = N->getOperand(0).getOperand(1);
8047 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
8048 SDLoc DL(N);
8049 SDValue N00 = N->getOperand(0).getOperand(0);
8050 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
8051 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
8052 AddToWorklist(Trunc00.getNode());
8053 AddToWorklist(Trunc01.getNode());
8054 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
8055 }
8056 }
8057
8058 return SDValue();
8059}
8060
8061SDValue DAGCombiner::visitRotate(SDNode *N) {
8062 SDLoc dl(N);
8063 SDValue N0 = N->getOperand(0);
8064 SDValue N1 = N->getOperand(1);
8065 EVT VT = N->getValueType(0);
8066 unsigned Bitsize = VT.getScalarSizeInBits();
8067
8068 // fold (rot x, 0) -> x
8069 if (isNullOrNullSplat(N1))
8070 return N0;
8071
8072 // fold (rot x, c) -> x iff (c % BitSize) == 0
8073 if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
8074 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
8075 if (DAG.MaskedValueIsZero(N1, ModuloMask))
8076 return N0;
8077 }
8078
8079 // fold (rot x, c) -> (rot x, c % BitSize)
8080 bool OutOfRange = false;
8081 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) {
8082 OutOfRange |= C->getAPIntValue().uge(Bitsize);
8083 return true;
8084 };
8085 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) {
8086 EVT AmtVT = N1.getValueType();
8087 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT);
8088 if (SDValue Amt =
8089 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits}))
8090 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt);
8091 }
8092
8093 // rot i16 X, 8 --> bswap X
8094 auto *RotAmtC = isConstOrConstSplat(N1);
8095 if (RotAmtC && RotAmtC->getAPIntValue() == 8 &&
8096 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT))
8097 return DAG.getNode(ISD::BSWAP, dl, VT, N0);
8098
8099 // Simplify the operands using demanded-bits information.
8100 if (SimplifyDemandedBits(SDValue(N, 0)))
8101 return SDValue(N, 0);
8102
8103 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
8104 if (N1.getOpcode() == ISD::TRUNCATE &&
8105 N1.getOperand(0).getOpcode() == ISD::AND) {
8106 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8107 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
8108 }
8109
8110 unsigned NextOp = N0.getOpcode();
8111 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
8112 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
8113 SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
8114 SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
8115 if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
8116 EVT ShiftVT = C1->getValueType(0);
8117 bool SameSide = (N->getOpcode() == NextOp);
8118 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
8119 if (SDValue CombinedShift = DAG.FoldConstantArithmetic(
8120 CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) {
8121 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
8122 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
8123 ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC});
8124 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
8125 CombinedShiftNorm);
8126 }
8127 }
8128 }
8129 return SDValue();
8130}
8131
8132SDValue DAGCombiner::visitSHL(SDNode *N) {
8133 SDValue N0 = N->getOperand(0);
8134 SDValue N1 = N->getOperand(1);
8135 if (SDValue V = DAG.simplifyShift(N0, N1))
8136 return V;
8137
8138 EVT VT = N0.getValueType();
8139 EVT ShiftVT = N1.getValueType();
8140 unsigned OpSizeInBits = VT.getScalarSizeInBits();
8141
8142 // fold vector ops
8143 if (VT.isVector()) {
8144 if (SDValue FoldedVOp = SimplifyVBinOp(N))
8145 return FoldedVOp;
8146
8147 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
8148 // If setcc produces all-one true value then:
8149 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
8150 if (N1CV && N1CV->isConstant()) {
8151 if (N0.getOpcode() == ISD::AND) {
8152 SDValue N00 = N0->getOperand(0);
8153 SDValue N01 = N0->getOperand(1);
8154 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
8155
8156 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
8157 TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
8158 TargetLowering::ZeroOrNegativeOneBooleanContent) {
8159 if (SDValue C =
8160 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1}))
8161 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
8162 }
8163 }
8164 }
8165 }
8166
8167 ConstantSDNode *N1C = isConstOrConstSplat(N1);
8168
8169 // fold (shl c1, c2) -> c1<<c2
8170 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1}))
8171 return C;
8172
8173 if (SDValue NewSel = foldBinOpIntoSelect(N))
8174 return NewSel;
8175
8176 // if (shl x, c) is known to be zero, return 0
8177 if (DAG.MaskedValueIsZero(SDValue(N, 0),
8178 APInt::getAllOnesValue(OpSizeInBits)))
8179 return DAG.getConstant(0, SDLoc(N), VT);
8180
8181 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
8182 if (N1.getOpcode() == ISD::TRUNCATE &&
8183 N1.getOperand(0).getOpcode() == ISD::AND) {
8184 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8185 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
8186 }
8187
8188 if (SimplifyDemandedBits(SDValue(N, 0)))
8189 return SDValue(N, 0);
8190
8191 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
8192 if (N0.getOpcode() == ISD::SHL) {
8193 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
8194 ConstantSDNode *RHS) {
8195 APInt c1 = LHS->getAPIntValue();
8196 APInt c2 = RHS->getAPIntValue();
8197 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8198 return (c1 + c2).uge(OpSizeInBits);
8199 };
8200 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
8201 return DAG.getConstant(0, SDLoc(N), VT);
8202
8203 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
8204 ConstantSDNode *RHS) {
8205 APInt c1 = LHS->getAPIntValue();
8206 APInt c2 = RHS->getAPIntValue();
8207 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8208 return (c1 + c2).ult(OpSizeInBits);
8209 };
8210 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
8211 SDLoc DL(N);
8212 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
8213 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
8214 }
8215 }
8216
8217 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
8218 // For this to be valid, the second form must not preserve any of the bits
8219 // that are shifted out by the inner shift in the first form. This means
8220 // the outer shift size must be >= the number of bits added by the ext.
8221 // As a corollary, we don't care what kind of ext it is.
8222 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
8223 N0.getOpcode() == ISD::ANY_EXTEND ||
8224 N0.getOpcode() == ISD::SIGN_EXTEND) &&
8225 N0.getOperand(0).getOpcode() == ISD::SHL) {
8226 SDValue N0Op0 = N0.getOperand(0);
8227 SDValue InnerShiftAmt = N0Op0.getOperand(1);
8228 EVT InnerVT = N0Op0.getValueType();
8229 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
8230
8231 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
8232 ConstantSDNode *RHS) {
8233 APInt c1 = LHS->getAPIntValue();
8234 APInt c2 = RHS->getAPIntValue();
8235 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8236 return c2.uge(OpSizeInBits - InnerBitwidth) &&
8237 (c1 + c2).uge(OpSizeInBits);
8238 };
8239 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
8240 /*AllowUndefs*/ false,
8241 /*AllowTypeMismatch*/ true))
8242 return DAG.getConstant(0, SDLoc(N), VT);
8243
8244 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
8245 ConstantSDNode *RHS) {
8246 APInt c1 = LHS->getAPIntValue();
8247 APInt c2 = RHS->getAPIntValue();
8248 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8249 return c2.uge(OpSizeInBits - InnerBitwidth) &&
8250 (c1 + c2).ult(OpSizeInBits);
8251 };
8252 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
8253 /*AllowUndefs*/ false,
8254 /*AllowTypeMismatch*/ true)) {
8255 SDLoc DL(N);
8256 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
8257 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
8258 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
8259 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
8260 }
8261 }
8262
8263 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
8264 // Only fold this if the inner zext has no other uses to avoid increasing
8265 // the total number of instructions.
8266 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
8267 N0.getOperand(0).getOpcode() == ISD::SRL) {
8268 SDValue N0Op0 = N0.getOperand(0);
8269 SDValue InnerShiftAmt = N0Op0.getOperand(1);
8270
8271 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
8272 APInt c1 = LHS->getAPIntValue();
8273 APInt c2 = RHS->getAPIntValue();
8274 zeroExtendToMatch(c1, c2);
8275 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
8276 };
8277 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
8278 /*AllowUndefs*/ false,
8279 /*AllowTypeMismatch*/ true)) {
8280 SDLoc DL(N);
8281 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
8282 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
8283 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
8284 AddToWorklist(NewSHL.getNode());
8285 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
8286 }
8287 }
8288
8289 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
8290 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
8291 // TODO - support non-uniform vector shift amounts.
8292 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
8293 N0->getFlags().hasExact()) {
8294 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
8295 uint64_t C1 = N0C1->getZExtValue();
8296 uint64_t C2 = N1C->getZExtValue();
8297 SDLoc DL(N);
8298 if (C1 <= C2)
8299 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
8300 DAG.getConstant(C2 - C1, DL, ShiftVT));
8301 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
8302 DAG.getConstant(C1 - C2, DL, ShiftVT));
8303 }
8304 }
8305
8306 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
8307 // (and (srl x, (sub c1, c2), MASK)
8308 // Only fold this if the inner shift has no other uses -- if it does, folding
8309 // this will increase the total number of instructions.
8310 // TODO - drop hasOneUse requirement if c1 == c2?
8311 // TODO - support non-uniform vector shift amounts.
8312 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
8313 TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
8314 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
8315 if (N0C1->getAPIntValue().ult(OpSizeInBits)) {
8316 uint64_t c1 = N0C1->getZExtValue();
8317 uint64_t c2 = N1C->getZExtValue();
8318 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
8319 SDValue Shift;
8320 if (c2 > c1) {
8321 Mask <<= c2 - c1;
8322 SDLoc DL(N);
8323 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
8324 DAG.getConstant(c2 - c1, DL, ShiftVT));
8325 } else {
8326 Mask.lshrInPlace(c1 - c2);
8327 SDLoc DL(N);
8328 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
8329 DAG.getConstant(c1 - c2, DL, ShiftVT));
8330 }
8331 SDLoc DL(N0);
8332 return DAG.getNode(ISD::AND, DL, VT, Shift,
8333 DAG.getConstant(Mask, DL, VT));
8334 }
8335 }
8336 }
8337
8338 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
8339 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
8340 isConstantOrConstantVector(N1, /* No Opaques */ true)) {
8341 SDLoc DL(N);
8342 SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
8343 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
8344 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
8345 }
8346
8347 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8348 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8349 // Variant of version done on multiply, except mul by a power of 2 is turned
8350 // into a shift.
8351 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
8352 N0.getNode()->hasOneUse() &&
8353 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
8354 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
8355 TLI.isDesirableToCommuteWithShift(N, Level)) {
8356 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
8357 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
8358 AddToWorklist(Shl0.getNode());
8359 AddToWorklist(Shl1.getNode());
8360 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
8361 }
8362
8363 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
8364 if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
8365 isConstantOrConstantVector(N1, /* No Opaques */ true) &&
8366 isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
8367 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
8368 if (isConstantOrConstantVector(Shl))
8369 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
8370 }
8371
8372 if (N1C && !N1C->isOpaque())
8373 if (SDValue NewSHL = visitShiftByConstant(N))
8374 return NewSHL;
8375
8376 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
8377 if (N0.getOpcode() == ISD::VSCALE)
8378 if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) {
8379 const APInt &C0 = N0.getConstantOperandAPInt(0);
8380 const APInt &C1 = NC1->getAPIntValue();
8381 return DAG.getVScale(SDLoc(N), VT, C0 << C1);
8382 }
8383
8384 return SDValue();
8385}
8386
8387// Transform a right shift of a multiply into a multiply-high.
8388// Examples:
8389// (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
8390// (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
8391static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG,
8392 const TargetLowering &TLI) {
8393 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&(((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::
SRA) && "SRL or SRA node is required here!") ? static_cast
<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && \"SRL or SRA node is required here!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 8394, __PRETTY_FUNCTION__))
8394 "SRL or SRA node is required here!")(((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::
SRA) && "SRL or SRA node is required here!") ? static_cast
<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && \"SRL or SRA node is required here!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 8394, __PRETTY_FUNCTION__))
;
8395
8396 // Check the shift amount. Proceed with the transformation if the shift
8397 // amount is constant.
8398 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1));
8399 if (!ShiftAmtSrc)
8400 return SDValue();
8401
8402 SDLoc DL(N);
8403
8404 // The operation feeding into the shift must be a multiply.
8405 SDValue ShiftOperand = N->getOperand(0);
8406 if (ShiftOperand.getOpcode() != ISD::MUL)
8407 return SDValue();
8408
8409 // Both operands must be equivalent extend nodes.
8410 SDValue LeftOp = ShiftOperand.getOperand(0);
8411 SDValue RightOp = ShiftOperand.getOperand(1);
8412 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND;
8413 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND;
8414
8415 if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode())
8416 return SDValue();
8417
8418 EVT WideVT1 = LeftOp.getValueType();
8419 EVT WideVT2 = RightOp.getValueType();
8420 (void)WideVT2;
8421 // Proceed with the transformation if the wide types match.
8422 assert((WideVT1 == WideVT2) &&(((WideVT1 == WideVT2) && "Cannot have a multiply node with two different operand types."
) ? static_cast<void> (0) : __assert_fail ("(WideVT1 == WideVT2) && \"Cannot have a multiply node with two different operand types.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 8423, __PRETTY_FUNCTION__))
8423 "Cannot have a multiply node with two different operand types.")(((WideVT1 == WideVT2) && "Cannot have a multiply node with two different operand types."
) ? static_cast<void> (0) : __assert_fail ("(WideVT1 == WideVT2) && \"Cannot have a multiply node with two different operand types.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 8423, __PRETTY_FUNCTION__))
;
8424
8425 EVT NarrowVT = LeftOp.getOperand(0).getValueType();
8426 // Check that the two extend nodes are the same type.
8427 if (NarrowVT != RightOp.getOperand(0).getValueType())
8428 return SDValue();
8429
8430 // Proceed with the transformation if the wide type is twice as large
8431 // as the narrow type.
8432 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits();
8433 if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize)
8434 return SDValue();
8435
8436 // Check the shift amount with the narrow type size.
8437 // Proceed with the transformation if the shift amount is the width
8438 // of the narrow type.
8439 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue();
8440 if (ShiftAmt != NarrowVTSize)
8441 return SDValue();
8442
8443 // If the operation feeding into the MUL is a sign extend (sext),
8444 // we use mulhs. Othewise, zero extends (zext) use mulhu.
8445 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU;
8446
8447 // Combine to mulh if mulh is legal/custom for the narrow type on the target.
8448 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT))
8449 return SDValue();
8450
8451 SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0),
8452 RightOp.getOperand(0));
8453 return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1)
8454 : DAG.getZExtOrTrunc(Result, DL, WideVT1));
8455}
8456
8457SDValue DAGCombiner::visitSRA(SDNode *N) {
8458 SDValue N0 = N->getOperand(0);
8459 SDValue N1 = N->getOperand(1);
8460 if (SDValue V = DAG.simplifyShift(N0, N1))
8461 return V;
8462
8463 EVT VT = N0.getValueType();
8464 unsigned OpSizeInBits = VT.getScalarSizeInBits();
8465
8466 // Arithmetic shifting an all-sign-bit value is a no-op.
8467 // fold (sra 0, x) -> 0
8468 // fold (sra -1, x) -> -1
8469 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
8470 return N0;
8471
8472 // fold vector ops
8473 if (VT.isVector())
8474 if (SDValue FoldedVOp = SimplifyVBinOp(N))
8475 return FoldedVOp;
8476
8477 ConstantSDNode *N1C = isConstOrConstSplat(N1);
8478
8479 // fold (sra c1, c2) -> (sra c1, c2)
8480 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1}))
8481 return C;
8482
8483 if (SDValue NewSel = foldBinOpIntoSelect(N))
8484 return NewSel;
8485
8486 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
8487 // sext_inreg.
8488 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
8489 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
8490 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
8491 if (VT.isVector())
8492 ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT,
8493 VT.getVectorElementCount());
8494 if (!LegalOperations ||
8495 TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) ==
8496 TargetLowering::Legal)
8497 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
8498 N0.getOperand(0), DAG.getValueType(ExtVT));
8499 // Even if we can't convert to sext_inreg, we might be able to remove
8500 // this shift pair if the input is already sign extended.
8501 if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue())
8502 return N0.getOperand(0);
8503 }
8504
8505 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
8506 // clamp (add c1, c2) to max shift.
8507 if (N0.getOpcode() == ISD::SRA) {
8508 SDLoc DL(N);
8509 EVT ShiftVT = N1.getValueType();
8510 EVT ShiftSVT = ShiftVT.getScalarType();
8511 SmallVector<SDValue, 16> ShiftValues;
8512
8513 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
8514 APInt c1 = LHS->getAPIntValue();
8515 APInt c2 = RHS->getAPIntValue();
8516 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8517 APInt Sum = c1 + c2;
8518 unsigned ShiftSum =
8519 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
8520 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
8521 return true;
8522 };
8523 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
8524 SDValue ShiftValue;
8525 if (VT.isVector())
8526 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
8527 else
8528 ShiftValue = ShiftValues[0];
8529 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
8530 }
8531 }
8532
8533 // fold (sra (shl X, m), (sub result_size, n))
8534 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
8535 // result_size - n != m.
8536 // If truncate is free for the target sext(shl) is likely to result in better
8537 // code.
8538 if (N0.getOpcode() == ISD::SHL && N1C) {
8539 // Get the two constanst of the shifts, CN0 = m, CN = n.
8540 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
8541 if (N01C) {
8542 LLVMContext &Ctx = *DAG.getContext();
8543 // Determine what the truncate's result bitsize and type would be.
8544 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
8545
8546 if (VT.isVector())
8547 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
8548
8549 // Determine the residual right-shift amount.
8550 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
8551
8552 // If the shift is not a no-op (in which case this should be just a sign
8553 // extend already), the truncated to type is legal, sign_extend is legal
8554 // on that type, and the truncate to that type is both legal and free,
8555 // perform the transform.
8556 if ((ShiftAmt > 0) &&
8557 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
8558 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
8559 TLI.isTruncateFree(VT, TruncVT)) {
8560 SDLoc DL(N);
8561 SDValue Amt = DAG.getConstant(ShiftAmt, DL,
8562 getShiftAmountTy(N0.getOperand(0).getValueType()));
8563 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
8564 N0.getOperand(0), Amt);
8565 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
8566 Shift);
8567 return DAG.getNode(ISD::SIGN_EXTEND, DL,
8568 N->getValueType(0), Trunc);
8569 }
8570 }
8571 }
8572
8573 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
8574 // sra (add (shl X, N1C), AddC), N1C -->
8575 // sext (add (trunc X to (width - N1C)), AddC')
8576 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C &&
8577 N0.getOperand(0).getOpcode() == ISD::SHL &&
8578 N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) {
8579 if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) {
8580 SDValue Shl = N0.getOperand(0);
8581 // Determine what the truncate's type would be and ask the target if that
8582 // is a free operation.
8583 LLVMContext &Ctx = *DAG.getContext();
8584 unsigned ShiftAmt = N1C->getZExtValue();
8585 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
8586 if (VT.isVector())
8587 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
8588
8589 // TODO: The simple type check probably belongs in the default hook
8590 // implementation and/or target-specific overrides (because
8591 // non-simple types likely require masking when legalized), but that
8592 // restriction may conflict with other transforms.
8593 if (TruncVT.isSimple() && isTypeLegal(TruncVT) &&
8594 TLI.isTruncateFree(VT, TruncVT)) {
8595 SDLoc DL(N);
8596 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
8597 SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).
8598 trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT);
8599 SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
8600 return DAG.getSExtOrTrunc(Add, DL, VT);
8601 }
8602 }
8603 }
8604
8605 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
8606 if (N1.getOpcode() == ISD::TRUNCATE &&
8607 N1.getOperand(0).getOpcode() == ISD::AND) {
8608 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8609 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
8610 }
8611
8612 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
8613 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
8614 // if c1 is equal to the number of bits the trunc removes
8615 // TODO - support non-uniform vector shift amounts.
8616 if (N0.getOpcode() == ISD::TRUNCATE &&
8617 (N0.getOperand(0).getOpcode() == ISD::SRL ||
8618 N0.getOperand(0).getOpcode() == ISD::SRA) &&
8619 N0.getOperand(0).hasOneUse() &&
8620 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
8621 SDValue N0Op0 = N0.getOperand(0);
8622 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
8623 EVT LargeVT = N0Op0.getValueType();
8624 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
8625 if (LargeShift->getAPIntValue() == TruncBits) {
8626 SDLoc DL(N);
8627 SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL,
8628 getShiftAmountTy(LargeVT));
8629 SDValue SRA =
8630 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
8631 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
8632 }
8633 }
8634 }
8635
8636 // Simplify, based on bits shifted out of the LHS.
8637 if (SimplifyDemandedBits(SDValue(N, 0)))
8638 return SDValue(N, 0);
8639
8640 // If the sign bit is known to be zero, switch this to a SRL.
8641 if (DAG.SignBitIsZero(N0))
8642 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
8643
8644 if (N1C && !N1C->isOpaque())
8645 if (SDValue NewSRA = visitShiftByConstant(N))
8646 return NewSRA;
8647
8648 // Try to transform this shift into a multiply-high if
8649 // it matches the appropriate pattern detected in combineShiftToMULH.
8650 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
8651 return MULH;
8652
8653 return SDValue();
8654}
8655
8656SDValue DAGCombiner::visitSRL(SDNode *N) {
8657 SDValue N0 = N->getOperand(0);
8658 SDValue N1 = N->getOperand(1);
8659 if (SDValue V = DAG.simplifyShift(N0, N1))
8660 return V;
8661
8662 EVT VT = N0.getValueType();
8663 unsigned OpSizeInBits = VT.getScalarSizeInBits();
8664
8665 // fold vector ops
8666 if (VT.isVector())
8667 if (SDValue FoldedVOp = SimplifyVBinOp(N))
8668 return FoldedVOp;
8669
8670 ConstantSDNode *N1C = isConstOrConstSplat(N1);
8671
8672 // fold (srl c1, c2) -> c1 >>u c2
8673 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1}))
8674 return C;
8675
8676 if (SDValue NewSel = foldBinOpIntoSelect(N))
8677 return NewSel;
8678
8679 // if (srl x, c) is known to be zero, return 0
8680 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
8681 APInt::getAllOnesValue(OpSizeInBits)))
8682 return DAG.getConstant(0, SDLoc(N), VT);
8683
8684 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
8685 if (N0.getOpcode() == ISD::SRL) {
8686 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
8687 ConstantSDNode *RHS) {
8688 APInt c1 = LHS->getAPIntValue();
8689 APInt c2 = RHS->getAPIntValue();
8690 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8691 return (c1 + c2).uge(OpSizeInBits);
8692 };
8693 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
8694 return DAG.getConstant(0, SDLoc(N), VT);
8695
8696 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
8697 ConstantSDNode *RHS) {
8698 APInt c1 = LHS->getAPIntValue();
8699 APInt c2 = RHS->getAPIntValue();
8700 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
8701 return (c1 + c2).ult(OpSizeInBits);
8702 };
8703 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
8704 SDLoc DL(N);
8705 EVT ShiftVT = N1.getValueType();
8706 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
8707 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
8708 }
8709 }
8710
8711 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
8712 N0.getOperand(0).getOpcode() == ISD::SRL) {
8713 SDValue InnerShift = N0.getOperand(0);
8714 // TODO - support non-uniform vector shift amounts.
8715 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) {
8716 uint64_t c1 = N001C->getZExtValue();
8717 uint64_t c2 = N1C->getZExtValue();
8718 EVT InnerShiftVT = InnerShift.getValueType();
8719 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType();
8720 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
8721 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
8722 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
8723 if (c1 + OpSizeInBits == InnerShiftSize) {
8724 SDLoc DL(N);
8725 if (c1 + c2 >= InnerShiftSize)
8726 return DAG.getConstant(0, DL, VT);
8727 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
8728 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
8729 InnerShift.getOperand(0), NewShiftAmt);
8730 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift);
8731 }
8732 // In the more general case, we can clear the high bits after the shift:
8733 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
8734 if (N0.hasOneUse() && InnerShift.hasOneUse() &&
8735 c1 + c2 < InnerShiftSize) {
8736 SDLoc DL(N);
8737 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
8738 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
8739 InnerShift.getOperand(0), NewShiftAmt);
8740 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize,
8741 OpSizeInBits - c2),
8742 DL, InnerShiftVT);
8743 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask);
8744 return DAG.getNode(ISD::TRUNCATE, DL, VT, And);
8745 }
8746 }
8747 }
8748
8749 // fold (srl (shl x, c), c) -> (and x, cst2)
8750 // TODO - (srl (shl x, c1), c2).
8751 if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
8752 isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
8753 SDLoc DL(N);
8754 SDValue Mask =
8755 DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
8756 AddToWorklist(Mask.getNode());
8757 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
8758 }
8759
8760 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
8761 // TODO - support non-uniform vector shift amounts.
8762 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
8763 // Shifting in all undef bits?
8764 EVT SmallVT = N0.getOperand(0).getValueType();
8765 unsigned BitSize = SmallVT.getScalarSizeInBits();
8766 if (N1C->getAPIntValue().uge(BitSize))
8767 return DAG.getUNDEF(VT);
8768
8769 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
8770 uint64_t ShiftAmt = N1C->getZExtValue();
8771 SDLoc DL0(N0);
8772 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
8773 N0.getOperand(0),
8774 DAG.getConstant(ShiftAmt, DL0,
8775 getShiftAmountTy(SmallVT)));
8776 AddToWorklist(SmallShift.getNode());
8777 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
8778 SDLoc DL(N);
8779 return DAG.getNode(ISD::AND, DL, VT,
8780 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
8781 DAG.getConstant(Mask, DL, VT));
8782 }
8783 }
8784
8785 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
8786 // bit, which is unmodified by sra.
8787 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
8788 if (N0.getOpcode() == ISD::SRA)
8789 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
8790 }
8791
8792 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
8793 if (N1C && N0.getOpcode() == ISD::CTLZ &&
8794 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
8795 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
8796
8797 // If any of the input bits are KnownOne, then the input couldn't be all
8798 // zeros, thus the result of the srl will always be zero.
8799 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
8800
8801 // If all of the bits input the to ctlz node are known to be zero, then
8802 // the result of the ctlz is "32" and the result of the shift is one.
8803 APInt UnknownBits = ~Known.Zero;
8804 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
8805
8806 // Otherwise, check to see if there is exactly one bit input to the ctlz.
8807 if (UnknownBits.isPowerOf2()) {
8808 // Okay, we know that only that the single bit specified by UnknownBits
8809 // could be set on input to the CTLZ node. If this bit is set, the SRL
8810 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
8811 // to an SRL/XOR pair, which is likely to simplify more.
8812 unsigned ShAmt = UnknownBits.countTrailingZeros();
8813 SDValue Op = N0.getOperand(0);
8814
8815 if (ShAmt) {
8816 SDLoc DL(N0);
8817 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
8818 DAG.getConstant(ShAmt, DL,
8819 getShiftAmountTy(Op.getValueType())));
8820 AddToWorklist(Op.getNode());
8821 }
8822
8823 SDLoc DL(N);
8824 return DAG.getNode(ISD::XOR, DL, VT,
8825 Op, DAG.getConstant(1, DL, VT));
8826 }
8827 }
8828
8829 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
8830 if (N1.getOpcode() == ISD::TRUNCATE &&
8831 N1.getOperand(0).getOpcode() == ISD::AND) {
8832 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
8833 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
8834 }
8835
8836 // fold operands of srl based on knowledge that the low bits are not
8837 // demanded.
8838 if (SimplifyDemandedBits(SDValue(N, 0)))
8839 return SDValue(N, 0);
8840
8841 if (N1C && !N1C->isOpaque())
8842 if (SDValue NewSRL = visitShiftByConstant(N))
8843 return NewSRL;
8844
8845 // Attempt to convert a srl of a load into a narrower zero-extending load.
8846 if (SDValue NarrowLoad = ReduceLoadWidth(N))
8847 return NarrowLoad;
8848
8849 // Here is a common situation. We want to optimize:
8850 //
8851 // %a = ...
8852 // %b = and i32 %a, 2
8853 // %c = srl i32 %b, 1
8854 // brcond i32 %c ...
8855 //
8856 // into
8857 //
8858 // %a = ...
8859 // %b = and %a, 2
8860 // %c = setcc eq %b, 0
8861 // brcond %c ...
8862 //
8863 // However when after the source operand of SRL is optimized into AND, the SRL
8864 // itself may not be optimized further. Look for it and add the BRCOND into
8865 // the worklist.
8866 if (N->hasOneUse()) {
8867 SDNode *Use = *N->use_begin();
8868 if (Use->getOpcode() == ISD::BRCOND)
8869 AddToWorklist(Use);
8870 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
8871 // Also look pass the truncate.
8872 Use = *Use->use_begin();
8873 if (Use->getOpcode() == ISD::BRCOND)
8874 AddToWorklist(Use);
8875 }
8876 }
8877
8878 // Try to transform this shift into a multiply-high if
8879 // it matches the appropriate pattern detected in combineShiftToMULH.
8880 if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
8881 return MULH;
8882
8883 return SDValue();
8884}
8885
8886SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
8887 EVT VT = N->getValueType(0);
8888 SDValue N0 = N->getOperand(0);
8889 SDValue N1 = N->getOperand(1);
8890 SDValue N2 = N->getOperand(2);
8891 bool IsFSHL = N->getOpcode() == ISD::FSHL;
8892 unsigned BitWidth = VT.getScalarSizeInBits();
8893
8894 // fold (fshl N0, N1, 0) -> N0
8895 // fold (fshr N0, N1, 0) -> N1
8896 if (isPowerOf2_32(BitWidth))
8897 if (DAG.MaskedValueIsZero(
8898 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
8899 return IsFSHL ? N0 : N1;
8900
8901 auto IsUndefOrZero = [](SDValue V) {
8902 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
8903 };
8904
8905 // TODO - support non-uniform vector shift amounts.
8906 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
8907 EVT ShAmtTy = N2.getValueType();
8908
8909 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
8910 if (Cst->getAPIntValue().uge(BitWidth)) {
8911 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
8912 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
8913 DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
8914 }
8915
8916 unsigned ShAmt = Cst->getZExtValue();
8917 if (ShAmt == 0)
8918 return IsFSHL ? N0 : N1;
8919
8920 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
8921 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
8922 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
8923 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
8924 if (IsUndefOrZero(N0))
8925 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
8926 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
8927 SDLoc(N), ShAmtTy));
8928 if (IsUndefOrZero(N1))
8929 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
8930 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
8931 SDLoc(N), ShAmtTy));
8932
8933 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
8934 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
8935 // TODO - bigendian support once we have test coverage.
8936 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
8937 // TODO - permit LHS EXTLOAD if extensions are shifted out.
8938 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() &&
8939 !DAG.getDataLayout().isBigEndian()) {
8940 auto *LHS = dyn_cast<LoadSDNode>(N0);
8941 auto *RHS = dyn_cast<LoadSDNode>(N1);
8942 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() &&
8943 LHS->getAddressSpace() == RHS->getAddressSpace() &&
8944 (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) &&
8945 ISD::isNON_EXTLoad(LHS)) {
8946 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) {
8947 SDLoc DL(RHS);
8948 uint64_t PtrOff =
8949 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8);
8950 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff);
8951 bool Fast = false;
8952 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
8953 RHS->getAddressSpace(), NewAlign,
8954 RHS->getMemOperand()->getFlags(), &Fast) &&
8955 Fast) {
8956 SDValue NewPtr = DAG.getMemBasePlusOffset(
8957 RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL);
8958 AddToWorklist(NewPtr.getNode());
8959 SDValue Load = DAG.getLoad(
8960 VT, DL, RHS->getChain(), NewPtr,
8961 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign,
8962 RHS->getMemOperand()->getFlags(), RHS->getAAInfo());
8963 // Replace the old load's chain with the new load's chain.
8964 WorklistRemover DeadNodes(*this);
8965 DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1));
8966 return Load;
8967 }
8968 }
8969 }
8970 }
8971 }
8972
8973 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
8974 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
8975 // iff We know the shift amount is in range.
8976 // TODO: when is it worth doing SUB(BW, N2) as well?
8977 if (isPowerOf2_32(BitWidth)) {
8978 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
8979 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
8980 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
8981 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
8982 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
8983 }
8984
8985 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
8986 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
8987 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
8988 // is legal as well we might be better off avoiding non-constant (BW - N2).
8989 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
8990 if (N0 == N1 && hasOperation(RotOpc, VT))
8991 return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
8992
8993 // Simplify, based on bits shifted out of N0/N1.
8994 if (SimplifyDemandedBits(SDValue(N, 0)))
8995 return SDValue(N, 0);
8996
8997 return SDValue();
8998}
8999
9000SDValue DAGCombiner::visitABS(SDNode *N) {
9001 SDValue N0 = N->getOperand(0);
9002 EVT VT = N->getValueType(0);
9003
9004 // fold (abs c1) -> c2
9005 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9006 return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
9007 // fold (abs (abs x)) -> (abs x)
9008 if (N0.getOpcode() == ISD::ABS)
9009 return N0;
9010 // fold (abs x) -> x iff not-negative
9011 if (DAG.SignBitIsZero(N0))
9012 return N0;
9013 return SDValue();
9014}
9015
9016SDValue DAGCombiner::visitBSWAP(SDNode *N) {
9017 SDValue N0 = N->getOperand(0);
9018 EVT VT = N->getValueType(0);
9019
9020 // fold (bswap c1) -> c2
9021 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9022 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
9023 // fold (bswap (bswap x)) -> x
9024 if (N0.getOpcode() == ISD::BSWAP)
9025 return N0->getOperand(0);
9026 return SDValue();
9027}
9028
9029SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
9030 SDValue N0 = N->getOperand(0);
9031 EVT VT = N->getValueType(0);
9032
9033 // fold (bitreverse c1) -> c2
9034 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9035 return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
9036 // fold (bitreverse (bitreverse x)) -> x
9037 if (N0.getOpcode() == ISD::BITREVERSE)
9038 return N0.getOperand(0);
9039 return SDValue();
9040}
9041
9042SDValue DAGCombiner::visitCTLZ(SDNode *N) {
9043 SDValue N0 = N->getOperand(0);
9044 EVT VT = N->getValueType(0);
9045
9046 // fold (ctlz c1) -> c2
9047 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9048 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
9049
9050 // If the value is known never to be zero, switch to the undef version.
9051 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
9052 if (DAG.isKnownNeverZero(N0))
9053 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
9054 }
9055
9056 return SDValue();
9057}
9058
9059SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
9060 SDValue N0 = N->getOperand(0);
9061 EVT VT = N->getValueType(0);
9062
9063 // fold (ctlz_zero_undef c1) -> c2
9064 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9065 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
9066 return SDValue();
9067}
9068
9069SDValue DAGCombiner::visitCTTZ(SDNode *N) {
9070 SDValue N0 = N->getOperand(0);
9071 EVT VT = N->getValueType(0);
9072
9073 // fold (cttz c1) -> c2
9074 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9075 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
9076
9077 // If the value is known never to be zero, switch to the undef version.
9078 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
9079 if (DAG.isKnownNeverZero(N0))
9080 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
9081 }
9082
9083 return SDValue();
9084}
9085
9086SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
9087 SDValue N0 = N->getOperand(0);
9088 EVT VT = N->getValueType(0);
9089
9090 // fold (cttz_zero_undef c1) -> c2
9091 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9092 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
9093 return SDValue();
9094}
9095
9096SDValue DAGCombiner::visitCTPOP(SDNode *N) {
9097 SDValue N0 = N->getOperand(0);
9098 EVT VT = N->getValueType(0);
9099
9100 // fold (ctpop c1) -> c2
9101 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
9102 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
9103 return SDValue();
9104}
9105
9106// FIXME: This should be checking for no signed zeros on individual operands, as
9107// well as no nans.
9108static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
9109 SDValue RHS,
9110 const TargetLowering &TLI) {
9111 const TargetOptions &Options = DAG.getTarget().Options;
9112 EVT VT = LHS.getValueType();
9113
9114 return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
9115 TLI.isProfitableToCombineMinNumMaxNum(VT) &&
9116 DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
9117}
9118
9119/// Generate Min/Max node
9120static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
9121 SDValue RHS, SDValue True, SDValue False,
9122 ISD::CondCode CC, const TargetLowering &TLI,
9123 SelectionDAG &DAG) {
9124 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
9125 return SDValue();
9126
9127 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
9128 switch (CC) {
9129 case ISD::SETOLT:
9130 case ISD::SETOLE:
9131 case ISD::SETLT:
9132 case ISD::SETLE:
9133 case ISD::SETULT:
9134 case ISD::SETULE: {
9135 // Since it's known never nan to get here already, either fminnum or
9136 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
9137 // expanded in terms of it.
9138 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
9139 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
9140 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
9141
9142 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
9143 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
9144 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
9145 return SDValue();
9146 }
9147 case ISD::SETOGT:
9148 case ISD::SETOGE:
9149 case ISD::SETGT:
9150 case ISD::SETGE:
9151 case ISD::SETUGT:
9152 case ISD::SETUGE: {
9153 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
9154 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
9155 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
9156
9157 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
9158 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
9159 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
9160 return SDValue();
9161 }
9162 default:
9163 return SDValue();
9164 }
9165}
9166
9167/// If a (v)select has a condition value that is a sign-bit test, try to smear
9168/// the condition operand sign-bit across the value width and use it as a mask.
9169static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) {
9170 SDValue Cond = N->getOperand(0);
9171 SDValue C1 = N->getOperand(1);
9172 SDValue C2 = N->getOperand(2);
9173 assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) &&((isConstantOrConstantVector(C1) && isConstantOrConstantVector
(C2) && "Expected select-of-constants") ? static_cast
<void> (0) : __assert_fail ("isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && \"Expected select-of-constants\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9174, __PRETTY_FUNCTION__))
9174 "Expected select-of-constants")((isConstantOrConstantVector(C1) && isConstantOrConstantVector
(C2) && "Expected select-of-constants") ? static_cast
<void> (0) : __assert_fail ("isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && \"Expected select-of-constants\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9174, __PRETTY_FUNCTION__))
;
9175
9176 EVT VT = N->getValueType(0);
9177 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
9178 VT != Cond.getOperand(0).getValueType())
9179 return SDValue();
9180
9181 // The inverted-condition + commuted-select variants of these patterns are
9182 // canonicalized to these forms in IR.
9183 SDValue X = Cond.getOperand(0);
9184 SDValue CondC = Cond.getOperand(1);
9185 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9186 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
9187 isAllOnesOrAllOnesSplat(C2)) {
9188 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
9189 SDLoc DL(N);
9190 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
9191 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
9192 return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
9193 }
9194 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
9195 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
9196 SDLoc DL(N);
9197 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
9198 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
9199 return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
9200 }
9201 return SDValue();
9202}
9203
9204SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
9205 SDValue Cond = N->getOperand(0);
9206 SDValue N1 = N->getOperand(1);
9207 SDValue N2 = N->getOperand(2);
9208 EVT VT = N->getValueType(0);
9209 EVT CondVT = Cond.getValueType();
9210 SDLoc DL(N);
9211
9212 if (!VT.isInteger())
9213 return SDValue();
9214
9215 auto *C1 = dyn_cast<ConstantSDNode>(N1);
9216 auto *C2 = dyn_cast<ConstantSDNode>(N2);
9217 if (!C1 || !C2)
9218 return SDValue();
9219
9220 // Only do this before legalization to avoid conflicting with target-specific
9221 // transforms in the other direction (create a select from a zext/sext). There
9222 // is also a target-independent combine here in DAGCombiner in the other
9223 // direction for (select Cond, -1, 0) when the condition is not i1.
9224 if (CondVT == MVT::i1 && !LegalOperations) {
9225 if (C1->isNullValue() && C2->isOne()) {
9226 // select Cond, 0, 1 --> zext (!Cond)
9227 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
9228 if (VT != MVT::i1)
9229 NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
9230 return NotCond;
9231 }
9232 if (C1->isNullValue() && C2->isAllOnesValue()) {
9233 // select Cond, 0, -1 --> sext (!Cond)
9234 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
9235 if (VT != MVT::i1)
9236 NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
9237 return NotCond;
9238 }
9239 if (C1->isOne() && C2->isNullValue()) {
9240 // select Cond, 1, 0 --> zext (Cond)
9241 if (VT != MVT::i1)
9242 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
9243 return Cond;
9244 }
9245 if (C1->isAllOnesValue() && C2->isNullValue()) {
9246 // select Cond, -1, 0 --> sext (Cond)
9247 if (VT != MVT::i1)
9248 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
9249 return Cond;
9250 }
9251
9252 // Use a target hook because some targets may prefer to transform in the
9253 // other direction.
9254 if (TLI.convertSelectOfConstantsToMath(VT)) {
9255 // For any constants that differ by 1, we can transform the select into an
9256 // extend and add.
9257 const APInt &C1Val = C1->getAPIntValue();
9258 const APInt &C2Val = C2->getAPIntValue();
9259 if (C1Val - 1 == C2Val) {
9260 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
9261 if (VT != MVT::i1)
9262 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
9263 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
9264 }
9265 if (C1Val + 1 == C2Val) {
9266 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
9267 if (VT != MVT::i1)
9268 Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
9269 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
9270 }
9271
9272 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
9273 if (C1Val.isPowerOf2() && C2Val.isNullValue()) {
9274 if (VT != MVT::i1)
9275 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
9276 SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT);
9277 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
9278 }
9279
9280 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
9281 return V;
9282 }
9283
9284 return SDValue();
9285 }
9286
9287 // fold (select Cond, 0, 1) -> (xor Cond, 1)
9288 // We can't do this reliably if integer based booleans have different contents
9289 // to floating point based booleans. This is because we can't tell whether we
9290 // have an integer-based boolean or a floating-point-based boolean unless we
9291 // can find the SETCC that produced it and inspect its operands. This is
9292 // fairly easy if C is the SETCC node, but it can potentially be
9293 // undiscoverable (or not reasonably discoverable). For example, it could be
9294 // in another basic block or it could require searching a complicated
9295 // expression.
9296 if (CondVT.isInteger() &&
9297 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
9298 TargetLowering::ZeroOrOneBooleanContent &&
9299 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
9300 TargetLowering::ZeroOrOneBooleanContent &&
9301 C1->isNullValue() && C2->isOne()) {
9302 SDValue NotCond =
9303 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
9304 if (VT.bitsEq(CondVT))
9305 return NotCond;
9306 return DAG.getZExtOrTrunc(NotCond, DL, VT);
9307 }
9308
9309 return SDValue();
9310}
9311
9312static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) {
9313 assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) &&(((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD
::VSELECT) && "Expected a (v)select") ? static_cast<
void> (0) : __assert_fail ("(N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) && \"Expected a (v)select\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9314, __PRETTY_FUNCTION__))
9314 "Expected a (v)select")(((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD
::VSELECT) && "Expected a (v)select") ? static_cast<
void> (0) : __assert_fail ("(N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) && \"Expected a (v)select\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9314, __PRETTY_FUNCTION__))
;
9315 SDValue Cond = N->getOperand(0);
9316 SDValue T = N->getOperand(1), F = N->getOperand(2);
9317 EVT VT = N->getValueType(0);
9318 if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1)
9319 return SDValue();
9320
9321 // select Cond, Cond, F --> or Cond, F
9322 // select Cond, 1, F --> or Cond, F
9323 if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true))
9324 return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F);
9325
9326 // select Cond, T, Cond --> and Cond, T
9327 // select Cond, T, 0 --> and Cond, T
9328 if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true))
9329 return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T);
9330
9331 // select Cond, T, 1 --> or (not Cond), T
9332 if (isOneOrOneSplat(F, /* AllowUndefs */ true)) {
9333 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT);
9334 return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T);
9335 }
9336
9337 // select Cond, 0, F --> and (not Cond), F
9338 if (isNullOrNullSplat(T, /* AllowUndefs */ true)) {
9339 SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT);
9340 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F);
9341 }
9342
9343 return SDValue();
9344}
9345
9346SDValue DAGCombiner::visitSELECT(SDNode *N) {
9347 SDValue N0 = N->getOperand(0);
9348 SDValue N1 = N->getOperand(1);
9349 SDValue N2 = N->getOperand(2);
9350 EVT VT = N->getValueType(0);
9351 EVT VT0 = N0.getValueType();
9352 SDLoc DL(N);
9353 SDNodeFlags Flags = N->getFlags();
9354
9355 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
9356 return V;
9357
9358 if (SDValue V = foldSelectOfConstants(N))
9359 return V;
9360
9361 if (SDValue V = foldBoolSelectToLogic(N, DAG))
9362 return V;
9363
9364 // If we can fold this based on the true/false value, do so.
9365 if (SimplifySelectOps(N, N1, N2))
9366 return SDValue(N, 0); // Don't revisit N.
9367
9368 if (VT0 == MVT::i1) {
9369 // The code in this block deals with the following 2 equivalences:
9370 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
9371 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
9372 // The target can specify its preferred form with the
9373 // shouldNormalizeToSelectSequence() callback. However we always transform
9374 // to the right anyway if we find the inner select exists in the DAG anyway
9375 // and we always transform to the left side if we know that we can further
9376 // optimize the combination of the conditions.
9377 bool normalizeToSequence =
9378 TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
9379 // select (and Cond0, Cond1), X, Y
9380 // -> select Cond0, (select Cond1, X, Y), Y
9381 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
9382 SDValue Cond0 = N0->getOperand(0);
9383 SDValue Cond1 = N0->getOperand(1);
9384 SDValue InnerSelect =
9385 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
9386 if (normalizeToSequence || !InnerSelect.use_empty())
9387 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
9388 InnerSelect, N2, Flags);
9389 // Cleanup on failure.
9390 if (InnerSelect.use_empty())
9391 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
9392 }
9393 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
9394 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
9395 SDValue Cond0 = N0->getOperand(0);
9396 SDValue Cond1 = N0->getOperand(1);
9397 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
9398 Cond1, N1, N2, Flags);
9399 if (normalizeToSequence || !InnerSelect.use_empty())
9400 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
9401 InnerSelect, Flags);
9402 // Cleanup on failure.
9403 if (InnerSelect.use_empty())
9404 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
9405 }
9406
9407 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
9408 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
9409 SDValue N1_0 = N1->getOperand(0);
9410 SDValue N1_1 = N1->getOperand(1);
9411 SDValue N1_2 = N1->getOperand(2);
9412 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
9413 // Create the actual and node if we can generate good code for it.
9414 if (!normalizeToSequence) {
9415 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
9416 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
9417 N2, Flags);
9418 }
9419 // Otherwise see if we can optimize the "and" to a better pattern.
9420 if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
9421 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
9422 N2, Flags);
9423 }
9424 }
9425 }
9426 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
9427 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
9428 SDValue N2_0 = N2->getOperand(0);
9429 SDValue N2_1 = N2->getOperand(1);
9430 SDValue N2_2 = N2->getOperand(2);
9431 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
9432 // Create the actual or node if we can generate good code for it.
9433 if (!normalizeToSequence) {
9434 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
9435 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
9436 N2_2, Flags);
9437 }
9438 // Otherwise see if we can optimize to a better pattern.
9439 if (SDValue Combined = visitORLike(N0, N2_0, N))
9440 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
9441 N2_2, Flags);
9442 }
9443 }
9444 }
9445
9446 // select (not Cond), N1, N2 -> select Cond, N2, N1
9447 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
9448 SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
9449 SelectOp->setFlags(Flags);
9450 return SelectOp;
9451 }
9452
9453 // Fold selects based on a setcc into other things, such as min/max/abs.
9454 if (N0.getOpcode() == ISD::SETCC) {
9455 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
9456 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
9457
9458 // select (fcmp lt x, y), x, y -> fminnum x, y
9459 // select (fcmp gt x, y), x, y -> fmaxnum x, y
9460 //
9461 // This is OK if we don't care what happens if either operand is a NaN.
9462 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
9463 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
9464 CC, TLI, DAG))
9465 return FMinMax;
9466
9467 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
9468 // This is conservatively limited to pre-legal-operations to give targets
9469 // a chance to reverse the transform if they want to do that. Also, it is
9470 // unlikely that the pattern would be formed late, so it's probably not
9471 // worth going through the other checks.
9472 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
9473 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
9474 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
9475 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
9476 auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
9477 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
9478 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
9479 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
9480 //
9481 // The IR equivalent of this transform would have this form:
9482 // %a = add %x, C
9483 // %c = icmp ugt %x, ~C
9484 // %r = select %c, -1, %a
9485 // =>
9486 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
9487 // %u0 = extractvalue %u, 0
9488 // %u1 = extractvalue %u, 1
9489 // %r = select %u1, -1, %u0
9490 SDVTList VTs = DAG.getVTList(VT, VT0);
9491 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
9492 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
9493 }
9494 }
9495
9496 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
9497 (!LegalOperations &&
9498 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
9499 // Any flags available in a select/setcc fold will be on the setcc as they
9500 // migrated from fcmp
9501 Flags = N0.getNode()->getFlags();
9502 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
9503 N2, N0.getOperand(2));
9504 SelectNode->setFlags(Flags);
9505 return SelectNode;
9506 }
9507
9508 return SimplifySelect(DL, N0, N1, N2);
9509 }
9510
9511 return SDValue();
9512}
9513
9514// This function assumes all the vselect's arguments are CONCAT_VECTOR
9515// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
9516static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
9517 SDLoc DL(N);
9518 SDValue Cond = N->getOperand(0);
9519 SDValue LHS = N->getOperand(1);
9520 SDValue RHS = N->getOperand(2);
9521 EVT VT = N->getValueType(0);
9522 int NumElems = VT.getVectorNumElements();
9523 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&((LHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getOpcode
() == ISD::CONCAT_VECTORS && Cond.getOpcode() == ISD::
BUILD_VECTOR) ? static_cast<void> (0) : __assert_fail (
"LHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getOpcode() == ISD::CONCAT_VECTORS && Cond.getOpcode() == ISD::BUILD_VECTOR"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9525, __PRETTY_FUNCTION__))
9524 RHS.getOpcode() == ISD::CONCAT_VECTORS &&((LHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getOpcode
() == ISD::CONCAT_VECTORS && Cond.getOpcode() == ISD::
BUILD_VECTOR) ? static_cast<void> (0) : __assert_fail (
"LHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getOpcode() == ISD::CONCAT_VECTORS && Cond.getOpcode() == ISD::BUILD_VECTOR"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9525, __PRETTY_FUNCTION__))
9525 Cond.getOpcode() == ISD::BUILD_VECTOR)((LHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getOpcode
() == ISD::CONCAT_VECTORS && Cond.getOpcode() == ISD::
BUILD_VECTOR) ? static_cast<void> (0) : __assert_fail (
"LHS.getOpcode() == ISD::CONCAT_VECTORS && RHS.getOpcode() == ISD::CONCAT_VECTORS && Cond.getOpcode() == ISD::BUILD_VECTOR"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9525, __PRETTY_FUNCTION__))
;
9526
9527 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
9528 // binary ones here.
9529 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
9530 return SDValue();
9531
9532 // We're sure we have an even number of elements due to the
9533 // concat_vectors we have as arguments to vselect.
9534 // Skip BV elements until we find one that's not an UNDEF
9535 // After we find an UNDEF element, keep looping until we get to half the
9536 // length of the BV and see if all the non-undef nodes are the same.
9537 ConstantSDNode *BottomHalf = nullptr;
9538 for (int i = 0; i < NumElems / 2; ++i) {
9539 if (Cond->getOperand(i)->isUndef())
9540 continue;
9541
9542 if (BottomHalf == nullptr)
9543 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
9544 else if (Cond->getOperand(i).getNode() != BottomHalf)
9545 return SDValue();
9546 }
9547
9548 // Do the same for the second half of the BuildVector
9549 ConstantSDNode *TopHalf = nullptr;
9550 for (int i = NumElems / 2; i < NumElems; ++i) {
9551 if (Cond->getOperand(i)->isUndef())
9552 continue;
9553
9554 if (TopHalf == nullptr)
9555 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
9556 else if (Cond->getOperand(i).getNode() != TopHalf)
9557 return SDValue();
9558 }
9559
9560 assert(TopHalf && BottomHalf &&((TopHalf && BottomHalf && "One half of the selector was all UNDEFs and the other was all the "
"same value. This should have been addressed before this function."
) ? static_cast<void> (0) : __assert_fail ("TopHalf && BottomHalf && \"One half of the selector was all UNDEFs and the other was all the \" \"same value. This should have been addressed before this function.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9562, __PRETTY_FUNCTION__))
9561 "One half of the selector was all UNDEFs and the other was all the "((TopHalf && BottomHalf && "One half of the selector was all UNDEFs and the other was all the "
"same value. This should have been addressed before this function."
) ? static_cast<void> (0) : __assert_fail ("TopHalf && BottomHalf && \"One half of the selector was all UNDEFs and the other was all the \" \"same value. This should have been addressed before this function.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9562, __PRETTY_FUNCTION__))
9562 "same value. This should have been addressed before this function.")((TopHalf && BottomHalf && "One half of the selector was all UNDEFs and the other was all the "
"same value. This should have been addressed before this function."
) ? static_cast<void> (0) : __assert_fail ("TopHalf && BottomHalf && \"One half of the selector was all UNDEFs and the other was all the \" \"same value. This should have been addressed before this function.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 9562, __PRETTY_FUNCTION__))
;
9563 return DAG.getNode(
9564 ISD::CONCAT_VECTORS, DL, VT,
9565 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
9566 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
9567}
9568
9569bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) {
9570 if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD)
9571 return false;
9572
9573 // For now we check only the LHS of the add.
9574 SDValue LHS = Index.getOperand(0);
9575 SDValue SplatVal = DAG.getSplatValue(LHS);
9576 if (!SplatVal)
9577 return false;
9578
9579 BasePtr = SplatVal;
9580 Index = Index.getOperand(1);
9581 return true;
9582}
9583
9584// Fold sext/zext of index into index type.
9585bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index,
9586 bool Scaled, SelectionDAG &DAG) {
9587 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9588
9589 if (Index.getOpcode() == ISD::ZERO_EXTEND) {
9590 SDValue Op = Index.getOperand(0);
9591 MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED);
9592 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) {
9593 Index = Op;
9594 return true;
9595 }
9596 }
9597
9598 if (Index.getOpcode() == ISD::SIGN_EXTEND) {
9599 SDValue Op = Index.getOperand(0);
9600 MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED);
9601 if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) {
9602 Index = Op;
9603 return true;
9604 }
9605 }
9606
9607 return false;
9608}
9609
9610SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
9611 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
9612 SDValue Mask = MSC->getMask();
9613 SDValue Chain = MSC->getChain();
9614 SDValue Index = MSC->getIndex();
9615 SDValue Scale = MSC->getScale();
9616 SDValue StoreVal = MSC->getValue();
9617 SDValue BasePtr = MSC->getBasePtr();
9618 SDLoc DL(N);
9619
9620 // Zap scatters with a zero mask.
9621 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
9622 return Chain;
9623
9624 if (refineUniformBase(BasePtr, Index, DAG)) {
9625 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
9626 return DAG.getMaskedScatter(
9627 DAG.getVTList(MVT::Other), StoreVal.getValueType(), DL, Ops,
9628 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore());
9629 }
9630
9631 if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) {
9632 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
9633 return DAG.getMaskedScatter(
9634 DAG.getVTList(MVT::Other), StoreVal.getValueType(), DL, Ops,
9635 MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore());
9636 }
9637
9638 return SDValue();
9639}
9640
9641SDValue DAGCombiner::visitMSTORE(SDNode *N) {
9642 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
9643 SDValue Mask = MST->getMask();
9644 SDValue Chain = MST->getChain();
9645 SDLoc DL(N);
9646
9647 // Zap masked stores with a zero mask.
9648 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
9649 return Chain;
9650
9651 // If this is a masked load with an all ones mask, we can use a unmasked load.
9652 // FIXME: Can we do this for indexed, compressing, or truncating stores?
9653 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) &&
9654 MST->isUnindexed() && !MST->isCompressingStore() &&
9655 !MST->isTruncatingStore())
9656 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(),
9657 MST->getBasePtr(), MST->getMemOperand());
9658
9659 // Try transforming N to an indexed store.
9660 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9661 return SDValue(N, 0);
9662
9663 return SDValue();
9664}
9665
9666SDValue DAGCombiner::visitMGATHER(SDNode *N) {
9667 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
9668 SDValue Mask = MGT->getMask();
9669 SDValue Chain = MGT->getChain();
9670 SDValue Index = MGT->getIndex();
9671 SDValue Scale = MGT->getScale();
9672 SDValue PassThru = MGT->getPassThru();
9673 SDValue BasePtr = MGT->getBasePtr();
9674 SDLoc DL(N);
9675
9676 // Zap gathers with a zero mask.
9677 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
9678 return CombineTo(N, PassThru, MGT->getChain());
9679
9680 if (refineUniformBase(BasePtr, Index, DAG)) {
9681 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
9682 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other),
9683 PassThru.getValueType(), DL, Ops,
9684 MGT->getMemOperand(), MGT->getIndexType(),
9685 MGT->getExtensionType());
9686 }
9687
9688 if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) {
9689 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
9690 return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other),
9691 PassThru.getValueType(), DL, Ops,
9692 MGT->getMemOperand(), MGT->getIndexType(),
9693 MGT->getExtensionType());
9694 }
9695
9696 return SDValue();
9697}
9698
9699SDValue DAGCombiner::visitMLOAD(SDNode *N) {
9700 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
9701 SDValue Mask = MLD->getMask();
9702 SDLoc DL(N);
9703
9704 // Zap masked loads with a zero mask.
9705 if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
9706 return CombineTo(N, MLD->getPassThru(), MLD->getChain());
9707
9708 // If this is a masked load with an all ones mask, we can use a unmasked load.
9709 // FIXME: Can we do this for indexed, expanding, or extending loads?
9710 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) &&
9711 MLD->isUnindexed() && !MLD->isExpandingLoad() &&
9712 MLD->getExtensionType() == ISD::NON_EXTLOAD) {
9713 SDValue NewLd = DAG.getLoad(N->getValueType(0), SDLoc(N), MLD->getChain(),
9714 MLD->getBasePtr(), MLD->getMemOperand());
9715 return CombineTo(N, NewLd, NewLd.getValue(1));
9716 }
9717
9718 // Try transforming N to an indexed load.
9719 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9720 return SDValue(N, 0);
9721
9722 return SDValue();
9723}
9724
9725/// A vector select of 2 constant vectors can be simplified to math/logic to
9726/// avoid a variable select instruction and possibly avoid constant loads.
9727SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
9728 SDValue Cond = N->getOperand(0);
9729 SDValue N1 = N->getOperand(1);
9730 SDValue N2 = N->getOperand(2);
9731 EVT VT = N->getValueType(0);
9732 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
9733 !TLI.convertSelectOfConstantsToMath(VT) ||
9734 !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
9735 !ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
9736 return SDValue();
9737
9738 // Check if we can use the condition value to increment/decrement a single
9739 // constant value. This simplifies a select to an add and removes a constant
9740 // load/materialization from the general case.
9741 bool AllAddOne = true;
9742 bool AllSubOne = true;
9743 unsigned Elts = VT.getVectorNumElements();
9744 for (unsigned i = 0; i != Elts; ++i) {
9745 SDValue N1Elt = N1.getOperand(i);
9746 SDValue N2Elt = N2.getOperand(i);
9747 if (N1Elt.isUndef() || N2Elt.isUndef())
9748 continue;
9749 if (N1Elt.getValueType() != N2Elt.getValueType())
9750 continue;
9751
9752 const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
9753 const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
9754 if (C1 != C2 + 1)
9755 AllAddOne = false;
9756 if (C1 != C2 - 1)
9757 AllSubOne = false;
9758 }
9759
9760 // Further simplifications for the extra-special cases where the constants are
9761 // all 0 or all -1 should be implemented as folds of these patterns.
9762 SDLoc DL(N);
9763 if (AllAddOne || AllSubOne) {
9764 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
9765 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
9766 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
9767 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
9768 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
9769 }
9770
9771 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
9772 APInt Pow2C;
9773 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
9774 isNullOrNullSplat(N2)) {
9775 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
9776 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
9777 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
9778 }
9779
9780 if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
9781 return V;
9782
9783 // The general case for select-of-constants:
9784 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
9785 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
9786 // leave that to a machine-specific pass.
9787 return SDValue();
9788}
9789
9790SDValue DAGCombiner::visitVSELECT(SDNode *N) {
9791 SDValue N0 = N->getOperand(0);
9792 SDValue N1 = N->getOperand(1);
9793 SDValue N2 = N->getOperand(2);
9794 EVT VT = N->getValueType(0);
9795 SDLoc DL(N);
9796
9797 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
9798 return V;
9799
9800 if (SDValue V = foldBoolSelectToLogic(N, DAG))
9801 return V;
9802
9803 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
9804 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
9805 return DAG.getSelect(DL, VT, F, N2, N1);
9806
9807 // Canonicalize integer abs.
9808 // vselect (setg[te] X, 0), X, -X ->
9809 // vselect (setgt X, -1), X, -X ->
9810 // vselect (setl[te] X, 0), -X, X ->
9811 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9812 if (N0.getOpcode() == ISD::SETCC) {
9813 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
9814 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
9815 bool isAbs = false;
9816 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
9817
9818 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9819 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
9820 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
9821 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
9822 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
9823 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
9824 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
9825
9826 if (isAbs) {
9827 if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
9828 return DAG.getNode(ISD::ABS, DL, VT, LHS);
9829
9830 SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS,
9831 DAG.getConstant(VT.getScalarSizeInBits() - 1,
9832 DL, getShiftAmountTy(VT)));
9833 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
9834 AddToWorklist(Shift.getNode());
9835 AddToWorklist(Add.getNode());
9836 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
9837 }
9838
9839 // vselect x, y (fcmp lt x, y) -> fminnum x, y
9840 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
9841 //
9842 // This is OK if we don't care about what happens if either operand is a
9843 // NaN.
9844 //
9845 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) {
9846 if (SDValue FMinMax =
9847 combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG))
9848 return FMinMax;
9849 }
9850
9851 // If this select has a condition (setcc) with narrower operands than the
9852 // select, try to widen the compare to match the select width.
9853 // TODO: This should be extended to handle any constant.
9854 // TODO: This could be extended to handle non-loading patterns, but that
9855 // requires thorough testing to avoid regressions.
9856 if (isNullOrNullSplat(RHS)) {
9857 EVT NarrowVT = LHS.getValueType();
9858 EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
9859 EVT SetCCVT = getSetCCResultType(LHS.getValueType());
9860 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
9861 unsigned WideWidth = WideVT.getScalarSizeInBits();
9862 bool IsSigned = isSignedIntSetCC(CC);
9863 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
9864 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
9865 SetCCWidth != 1 && SetCCWidth < WideWidth &&
9866 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
9867 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
9868 // Both compare operands can be widened for free. The LHS can use an
9869 // extended load, and the RHS is a constant:
9870 // vselect (ext (setcc load(X), C)), N1, N2 -->
9871 // vselect (setcc extload(X), C'), N1, N2
9872 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9873 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
9874 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
9875 EVT WideSetCCVT = getSetCCResultType(WideVT);
9876 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
9877 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
9878 }
9879 }
9880
9881 // Match VSELECTs into add with unsigned saturation.
9882 if (hasOperation(ISD::UADDSAT, VT)) {
9883 // Check if one of the arms of the VSELECT is vector with all bits set.
9884 // If it's on the left side invert the predicate to simplify logic below.
9885 SDValue Other;
9886 ISD::CondCode SatCC = CC;
9887 if (ISD::isBuildVectorAllOnes(N1.getNode())) {
9888 Other = N2;
9889 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
9890 } else if (ISD::isBuildVectorAllOnes(N2.getNode())) {
9891 Other = N1;
9892 }
9893
9894 if (Other && Other.getOpcode() == ISD::ADD) {
9895 SDValue CondLHS = LHS, CondRHS = RHS;
9896 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
9897
9898 // Canonicalize condition operands.
9899 if (SatCC == ISD::SETUGE) {
9900 std::swap(CondLHS, CondRHS);
9901 SatCC = ISD::SETULE;
9902 }
9903
9904 // We can test against either of the addition operands.
9905 // x <= x+y ? x+y : ~0 --> uaddsat x, y
9906 // x+y >= x ? x+y : ~0 --> uaddsat x, y
9907 if (SatCC == ISD::SETULE && Other == CondRHS &&
9908 (OpLHS == CondLHS || OpRHS == CondLHS))
9909 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
9910
9911 if (isa<BuildVectorSDNode>(OpRHS) && isa<BuildVectorSDNode>(CondRHS) &&
9912 CondLHS == OpLHS) {
9913 // If the RHS is a constant we have to reverse the const
9914 // canonicalization.
9915 // x >= ~C ? x+C : ~0 --> uaddsat x, C
9916 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
9917 return Cond->getAPIntValue() == ~Op->getAPIntValue();
9918 };
9919 if (SatCC == ISD::SETULE &&
9920 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT))
9921 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
9922 }
9923 }
9924 }
9925
9926 // Match VSELECTs into sub with unsigned saturation.
9927 if (hasOperation(ISD::USUBSAT, VT)) {
9928 // Check if one of the arms of the VSELECT is a zero vector. If it's on
9929 // the left side invert the predicate to simplify logic below.
9930 SDValue Other;
9931 ISD::CondCode SatCC = CC;
9932 if (ISD::isBuildVectorAllZeros(N1.getNode())) {
9933 Other = N2;
9934 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
9935 } else if (ISD::isBuildVectorAllZeros(N2.getNode())) {
9936 Other = N1;
9937 }
9938
9939 if (Other && Other.getNumOperands() == 2) {
9940 SDValue CondRHS = RHS;
9941 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
9942
9943 if (Other.getOpcode() == ISD::SUB &&
9944 LHS.getOpcode() == ISD::ZERO_EXTEND && LHS.getOperand(0) == OpLHS &&
9945 OpRHS.getOpcode() == ISD::TRUNCATE && OpRHS.getOperand(0) == RHS) {
9946 // Look for a general sub with unsigned saturation first.
9947 // zext(x) >= y ? x - trunc(y) : 0
9948 // --> usubsat(x,trunc(umin(y,SatLimit)))
9949 // zext(x) > y ? x - trunc(y) : 0
9950 // --> usubsat(x,trunc(umin(y,SatLimit)))
9951 if (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT)
9952 return getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, DAG,
9953 DL);
9954 }
9955
9956 if (OpLHS == LHS) {
9957 // Look for a general sub with unsigned saturation first.
9958 // x >= y ? x-y : 0 --> usubsat x, y
9959 // x > y ? x-y : 0 --> usubsat x, y
9960 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) &&
9961 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS)
9962 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
9963
9964 if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) {
9965 if (isa<BuildVectorSDNode>(CondRHS)) {
9966 // If the RHS is a constant we have to reverse the const
9967 // canonicalization.
9968 // x > C-1 ? x+-C : 0 --> usubsat x, C
9969 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
9970 return (!Op && !Cond) ||
9971 (Op && Cond &&
9972 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1));
9973 };
9974 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD &&
9975 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT,
9976 /*AllowUndefs*/ true)) {
9977 OpRHS = DAG.getNode(ISD::SUB, DL, VT,
9978 DAG.getConstant(0, DL, VT), OpRHS);
9979 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
9980 }
9981
9982 // Another special case: If C was a sign bit, the sub has been
9983 // canonicalized into a xor.
9984 // FIXME: Would it be better to use computeKnownBits to determine
9985 // whether it's safe to decanonicalize the xor?
9986 // x s< 0 ? x^C : 0 --> usubsat x, C
9987 if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
9988 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
9989 ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
9990 OpRHSConst->getAPIntValue().isSignMask()) {
9991 // Note that we have to rebuild the RHS constant here to
9992 // ensure we don't rely on particular values of undef lanes.
9993 OpRHS = DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT);
9994 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
9995 }
9996 }
9997 }
9998 }
9999 }
10000 }
10001 }
10002 }
10003
10004 if (SimplifySelectOps(N, N1, N2))
10005 return SDValue(N, 0); // Don't revisit N.
10006
10007 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
10008 if (ISD::isBuildVectorAllOnes(N0.getNode()))
10009 return N1;
10010 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
10011 if (ISD::isBuildVectorAllZeros(N0.getNode()))
10012 return N2;
10013
10014 // The ConvertSelectToConcatVector function is assuming both the above
10015 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
10016 // and addressed.
10017 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10018 N2.getOpcode() == ISD::CONCAT_VECTORS &&
10019 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
10020 if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
10021 return CV;
10022 }
10023
10024 if (SDValue V = foldVSelectOfConstants(N))
10025 return V;
10026
10027 return SDValue();
10028}
10029
10030SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
10031 SDValue N0 = N->getOperand(0);
10032 SDValue N1 = N->getOperand(1);
10033 SDValue N2 = N->getOperand(2);
10034 SDValue N3 = N->getOperand(3);
10035 SDValue N4 = N->getOperand(4);
10036 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
10037
10038 // fold select_cc lhs, rhs, x, x, cc -> x
10039 if (N2 == N3)
10040 return N2;
10041
10042 // Determine if the condition we're dealing with is constant
10043 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
10044 CC, SDLoc(N), false)) {
10045 AddToWorklist(SCC.getNode());
10046
10047 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
10048 if (!SCCC->isNullValue())
10049 return N2; // cond always true -> true val
10050 else
10051 return N3; // cond always false -> false val
10052 } else if (SCC->isUndef()) {
10053 // When the condition is UNDEF, just return the first operand. This is
10054 // coherent the DAG creation, no setcc node is created in this case
10055 return N2;
10056 } else if (SCC.getOpcode() == ISD::SETCC) {
10057 // Fold to a simpler select_cc
10058 SDValue SelectOp = DAG.getNode(
10059 ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
10060 SCC.getOperand(1), N2, N3, SCC.getOperand(2));
10061 SelectOp->setFlags(SCC->getFlags());
10062 return SelectOp;
10063 }
10064 }
10065
10066 // If we can fold this based on the true/false value, do so.
10067 if (SimplifySelectOps(N, N2, N3))
10068 return SDValue(N, 0); // Don't revisit N.
10069
10070 // fold select_cc into other things, such as min/max/abs
10071 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
10072}
10073
10074SDValue DAGCombiner::visitSETCC(SDNode *N) {
10075 // setcc is very commonly used as an argument to brcond. This pattern
10076 // also lend itself to numerous combines and, as a result, it is desired
10077 // we keep the argument to a brcond as a setcc as much as possible.
10078 bool PreferSetCC =
10079 N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
10080
10081 SDValue Combined = SimplifySetCC(
10082 N->getValueType(0), N->getOperand(0), N->getOperand(1),
10083 cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC);
10084
10085 if (!Combined)
10086 return SDValue();
10087
10088 // If we prefer to have a setcc, and we don't, we'll try our best to
10089 // recreate one using rebuildSetCC.
10090 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
10091 SDValue NewSetCC = rebuildSetCC(Combined);
10092
10093 // We don't have anything interesting to combine to.
10094 if (NewSetCC.getNode() == N)
10095 return SDValue();
10096
10097 if (NewSetCC)
10098 return NewSetCC;
10099 }
10100
10101 return Combined;
10102}
10103
10104SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
10105 SDValue LHS = N->getOperand(0);
10106 SDValue RHS = N->getOperand(1);
10107 SDValue Carry = N->getOperand(2);
10108 SDValue Cond = N->getOperand(3);
10109
10110 // If Carry is false, fold to a regular SETCC.
10111 if (isNullConstant(Carry))
10112 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
10113
10114 return SDValue();
10115}
10116
10117/// Check if N satisfies:
10118/// N is used once.
10119/// N is a Load.
10120/// The load is compatible with ExtOpcode. It means
10121/// If load has explicit zero/sign extension, ExpOpcode must have the same
10122/// extension.
10123/// Otherwise returns true.
10124static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) {
10125 if (!N.hasOneUse())
10126 return false;
10127
10128 if (!isa<LoadSDNode>(N))
10129 return false;
10130
10131 LoadSDNode *Load = cast<LoadSDNode>(N);
10132 ISD::LoadExtType LoadExt = Load->getExtensionType();
10133 if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD)
10134 return true;
10135
10136 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
10137 // extension.
10138 if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) ||
10139 (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND))
10140 return false;
10141
10142 return true;
10143}
10144
10145/// Fold
10146/// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
10147/// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
10148/// (aext (select c, load x, load y)) -> (select c, extload x, extload y)
10149/// This function is called by the DAGCombiner when visiting sext/zext/aext
10150/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10151static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI,
10152 SelectionDAG &DAG) {
10153 unsigned Opcode = N->getOpcode();
10154 SDValue N0 = N->getOperand(0);
10155 EVT VT = N->getValueType(0);
10156 SDLoc DL(N);
10157
10158 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||(((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND) && "Expected EXTEND dag node in input!"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND) && \"Expected EXTEND dag node in input!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10160, __PRETTY_FUNCTION__))
10159 Opcode == ISD::ANY_EXTEND) &&(((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND) && "Expected EXTEND dag node in input!"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND) && \"Expected EXTEND dag node in input!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10160, __PRETTY_FUNCTION__))
10160 "Expected EXTEND dag node in input!")(((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND) && "Expected EXTEND dag node in input!"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND) && \"Expected EXTEND dag node in input!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10160, __PRETTY_FUNCTION__))
;
10161
10162 if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) ||
10163 !N0.hasOneUse())
10164 return SDValue();
10165
10166 SDValue Op1 = N0->getOperand(1);
10167 SDValue Op2 = N0->getOperand(2);
10168 if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode))
10169 return SDValue();
10170
10171 auto ExtLoadOpcode = ISD::EXTLOAD;
10172 if (Opcode == ISD::SIGN_EXTEND)
10173 ExtLoadOpcode = ISD::SEXTLOAD;
10174 else if (Opcode == ISD::ZERO_EXTEND)
10175 ExtLoadOpcode = ISD::ZEXTLOAD;
10176
10177 LoadSDNode *Load1 = cast<LoadSDNode>(Op1);
10178 LoadSDNode *Load2 = cast<LoadSDNode>(Op2);
10179 if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) ||
10180 !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT()))
10181 return SDValue();
10182
10183 SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1);
10184 SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2);
10185 return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2);
10186}
10187
10188/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
10189/// a build_vector of constants.
10190/// This function is called by the DAGCombiner when visiting sext/zext/aext
10191/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10192/// Vector extends are not folded if operations are legal; this is to
10193/// avoid introducing illegal build_vector dag nodes.
10194static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
10195 SelectionDAG &DAG, bool LegalTypes) {
10196 unsigned Opcode = N->getOpcode();
10197 SDValue N0 = N->getOperand(0);
10198 EVT VT = N->getValueType(0);
10199 SDLoc DL(N);
10200
10201 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||(((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG
|| Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) && "Expected EXTEND dag node in input!"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) && \"Expected EXTEND dag node in input!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10204, __PRETTY_FUNCTION__))
10202 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||(((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG
|| Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) && "Expected EXTEND dag node in input!"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) && \"Expected EXTEND dag node in input!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10204, __PRETTY_FUNCTION__))
10203 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)(((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG
|| Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) && "Expected EXTEND dag node in input!"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) && \"Expected EXTEND dag node in input!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10204, __PRETTY_FUNCTION__))
10204 && "Expected EXTEND dag node in input!")(((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG
|| Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) && "Expected EXTEND dag node in input!"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) && \"Expected EXTEND dag node in input!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10204, __PRETTY_FUNCTION__))
;
10205
10206 // fold (sext c1) -> c1
10207 // fold (zext c1) -> c1
10208 // fold (aext c1) -> c1
10209 if (isa<ConstantSDNode>(N0))
10210 return DAG.getNode(Opcode, DL, VT, N0);
10211
10212 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10213 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
10214 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10215 if (N0->getOpcode() == ISD::SELECT) {
10216 SDValue Op1 = N0->getOperand(1);
10217 SDValue Op2 = N0->getOperand(2);
10218 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
10219 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
10220 // For any_extend, choose sign extension of the constants to allow a
10221 // possible further transform to sign_extend_inreg.i.e.
10222 //
10223 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
10224 // t2: i64 = any_extend t1
10225 // -->
10226 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
10227 // -->
10228 // t4: i64 = sign_extend_inreg t3
10229 unsigned FoldOpc = Opcode;
10230 if (FoldOpc == ISD::ANY_EXTEND)
10231 FoldOpc = ISD::SIGN_EXTEND;
10232 return DAG.getSelect(DL, VT, N0->getOperand(0),
10233 DAG.getNode(FoldOpc, DL, VT, Op1),
10234 DAG.getNode(FoldOpc, DL, VT, Op2));
10235 }
10236 }
10237
10238 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
10239 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
10240 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
10241 EVT SVT = VT.getScalarType();
10242 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
10243 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
10244 return SDValue();
10245
10246 // We can fold this node into a build_vector.
10247 unsigned VTBits = SVT.getSizeInBits();
10248 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
10249 SmallVector<SDValue, 8> Elts;
10250 unsigned NumElts = VT.getVectorNumElements();
10251
10252 // For zero-extensions, UNDEF elements still guarantee to have the upper
10253 // bits set to zero.
10254 bool IsZext =
10255 Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
10256
10257 for (unsigned i = 0; i != NumElts; ++i) {
10258 SDValue Op = N0.getOperand(i);
10259 if (Op.isUndef()) {
10260 Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
10261 continue;
10262 }
10263
10264 SDLoc DL(Op);
10265 // Get the constant value and if needed trunc it to the size of the type.
10266 // Nodes like build_vector might have constants wider than the scalar type.
10267 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
10268 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
10269 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
10270 else
10271 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
10272 }
10273
10274 return DAG.getBuildVector(VT, DL, Elts);
10275}
10276
10277// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
10278// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
10279// transformation. Returns true if extension are possible and the above
10280// mentioned transformation is profitable.
10281static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
10282 unsigned ExtOpc,
10283 SmallVectorImpl<SDNode *> &ExtendNodes,
10284 const TargetLowering &TLI) {
10285 bool HasCopyToRegUses = false;
10286 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
10287 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
10288 UE = N0.getNode()->use_end();
10289 UI != UE; ++UI) {
10290 SDNode *User = *UI;
10291 if (User == N)
10292 continue;
10293 if (UI.getUse().getResNo() != N0.getResNo())
10294 continue;
10295 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
10296 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
10297 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
10298 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
10299 // Sign bits will be lost after a zext.
10300 return false;
10301 bool Add = false;
10302 for (unsigned i = 0; i != 2; ++i) {
10303 SDValue UseOp = User->getOperand(i);
10304 if (UseOp == N0)
10305 continue;
10306 if (!isa<ConstantSDNode>(UseOp))
10307 return false;
10308 Add = true;
10309 }
10310 if (Add)
10311 ExtendNodes.push_back(User);
10312 continue;
10313 }
10314 // If truncates aren't free and there are users we can't
10315 // extend, it isn't worthwhile.
10316 if (!isTruncFree)
10317 return false;
10318 // Remember if this value is live-out.
10319 if (User->getOpcode() == ISD::CopyToReg)
10320 HasCopyToRegUses = true;
10321 }
10322
10323 if (HasCopyToRegUses) {
10324 bool BothLiveOut = false;
10325 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
10326 UI != UE; ++UI) {
10327 SDUse &Use = UI.getUse();
10328 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
10329 BothLiveOut = true;
10330 break;
10331 }
10332 }
10333 if (BothLiveOut)
10334 // Both unextended and extended values are live out. There had better be
10335 // a good reason for the transformation.
10336 return ExtendNodes.size();
10337 }
10338 return true;
10339}
10340
10341void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
10342 SDValue OrigLoad, SDValue ExtLoad,
10343 ISD::NodeType ExtType) {
10344 // Extend SetCC uses if necessary.
10345 SDLoc DL(ExtLoad);
10346 for (SDNode *SetCC : SetCCs) {
10347 SmallVector<SDValue, 4> Ops;
10348
10349 for (unsigned j = 0; j != 2; ++j) {
10350 SDValue SOp = SetCC->getOperand(j);
10351 if (SOp == OrigLoad)
10352 Ops.push_back(ExtLoad);
10353 else
10354 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
10355 }
10356
10357 Ops.push_back(SetCC->getOperand(2));
10358 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
10359 }
10360}
10361
10362// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
10363SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
10364 SDValue N0 = N->getOperand(0);
10365 EVT DstVT = N->getValueType(0);
10366 EVT SrcVT = N0.getValueType();
10367
10368 assert((N->getOpcode() == ISD::SIGN_EXTEND ||(((N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode()
== ISD::ZERO_EXTEND) && "Unexpected node type (not an extend)!"
) ? static_cast<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) && \"Unexpected node type (not an extend)!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10370, __PRETTY_FUNCTION__))
10369 N->getOpcode() == ISD::ZERO_EXTEND) &&(((N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode()
== ISD::ZERO_EXTEND) && "Unexpected node type (not an extend)!"
) ? static_cast<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) && \"Unexpected node type (not an extend)!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10370, __PRETTY_FUNCTION__))
10370 "Unexpected node type (not an extend)!")(((N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode()
== ISD::ZERO_EXTEND) && "Unexpected node type (not an extend)!"
) ? static_cast<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) && \"Unexpected node type (not an extend)!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10370, __PRETTY_FUNCTION__))
;
10371
10372 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
10373 // For example, on a target with legal v4i32, but illegal v8i32, turn:
10374 // (v8i32 (sext (v8i16 (load x))))
10375 // into:
10376 // (v8i32 (concat_vectors (v4i32 (sextload x)),
10377 // (v4i32 (sextload (x + 16)))))
10378 // Where uses of the original load, i.e.:
10379 // (v8i16 (load x))
10380 // are replaced with:
10381 // (v8i16 (truncate
10382 // (v8i32 (concat_vectors (v4i32 (sextload x)),
10383 // (v4i32 (sextload (x + 16)))))))
10384 //
10385 // This combine is only applicable to illegal, but splittable, vectors.
10386 // All legal types, and illegal non-vector types, are handled elsewhere.
10387 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
10388 //
10389 if (N0->getOpcode() != ISD::LOAD)
10390 return SDValue();
10391
10392 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10393
10394 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
10395 !N0.hasOneUse() || !LN0->isSimple() ||
10396 !DstVT.isVector() || !DstVT.isPow2VectorType() ||
10397 !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
10398 return SDValue();
10399
10400 SmallVector<SDNode *, 4> SetCCs;
10401 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
10402 return SDValue();
10403
10404 ISD::LoadExtType ExtType =
10405 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
10406
10407 // Try to split the vector types to get down to legal types.
10408 EVT SplitSrcVT = SrcVT;
10409 EVT SplitDstVT = DstVT;
10410 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
10411 SplitSrcVT.getVectorNumElements() > 1) {
10412 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
10413 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
10414 }
10415
10416 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
10417 return SDValue();
10418
10419 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type")((!DstVT.isScalableVector() && "Unexpected scalable vector type"
) ? static_cast<void> (0) : __assert_fail ("!DstVT.isScalableVector() && \"Unexpected scalable vector type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10419, __PRETTY_FUNCTION__))
;
10420
10421 SDLoc DL(N);
10422 const unsigned NumSplits =
10423 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
10424 const unsigned Stride = SplitSrcVT.getStoreSize();
10425 SmallVector<SDValue, 4> Loads;
10426 SmallVector<SDValue, 4> Chains;
10427
10428 SDValue BasePtr = LN0->getBasePtr();
10429 for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
10430 const unsigned Offset = Idx * Stride;
10431 const Align Align = commonAlignment(LN0->getAlign(), Offset);
10432
10433 SDValue SplitLoad = DAG.getExtLoad(
10434 ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
10435 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
10436 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
10437
10438 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL);
10439
10440 Loads.push_back(SplitLoad.getValue(0));
10441 Chains.push_back(SplitLoad.getValue(1));
10442 }
10443
10444 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
10445 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
10446
10447 // Simplify TF.
10448 AddToWorklist(NewChain.getNode());
10449
10450 CombineTo(N, NewValue);
10451
10452 // Replace uses of the original load (before extension)
10453 // with a truncate of the concatenated sextloaded vectors.
10454 SDValue Trunc =
10455 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
10456 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
10457 CombineTo(N0.getNode(), Trunc, NewChain);
10458 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10459}
10460
10461// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
10462// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
10463SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
10464 assert(N->getOpcode() == ISD::ZERO_EXTEND)((N->getOpcode() == ISD::ZERO_EXTEND) ? static_cast<void
> (0) : __assert_fail ("N->getOpcode() == ISD::ZERO_EXTEND"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10464, __PRETTY_FUNCTION__))
;
10465 EVT VT = N->getValueType(0);
10466 EVT OrigVT = N->getOperand(0).getValueType();
10467 if (TLI.isZExtFree(OrigVT, VT))
10468 return SDValue();
10469
10470 // and/or/xor
10471 SDValue N0 = N->getOperand(0);
10472 if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
10473 N0.getOpcode() == ISD::XOR) ||
10474 N0.getOperand(1).getOpcode() != ISD::Constant ||
10475 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
10476 return SDValue();
10477
10478 // shl/shr
10479 SDValue N1 = N0->getOperand(0);
10480 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
10481 N1.getOperand(1).getOpcode() != ISD::Constant ||
10482 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
10483 return SDValue();
10484
10485 // load
10486 if (!isa<LoadSDNode>(N1.getOperand(0)))
10487 return SDValue();
10488 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
10489 EVT MemVT = Load->getMemoryVT();
10490 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
10491 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
10492 return SDValue();
10493
10494
10495 // If the shift op is SHL, the logic op must be AND, otherwise the result
10496 // will be wrong.
10497 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
10498 return SDValue();
10499
10500 if (!N0.hasOneUse() || !N1.hasOneUse())
10501 return SDValue();
10502
10503 SmallVector<SDNode*, 4> SetCCs;
10504 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
10505 ISD::ZERO_EXTEND, SetCCs, TLI))
10506 return SDValue();
10507
10508 // Actually do the transformation.
10509 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
10510 Load->getChain(), Load->getBasePtr(),
10511 Load->getMemoryVT(), Load->getMemOperand());
10512
10513 SDLoc DL1(N1);
10514 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
10515 N1.getOperand(1));
10516
10517 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
10518 SDLoc DL0(N0);
10519 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
10520 DAG.getConstant(Mask, DL0, VT));
10521
10522 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
10523 CombineTo(N, And);
10524 if (SDValue(Load, 0).hasOneUse()) {
10525 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
10526 } else {
10527 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
10528 Load->getValueType(0), ExtLoad);
10529 CombineTo(Load, Trunc, ExtLoad.getValue(1));
10530 }
10531
10532 // N0 is dead at this point.
10533 recursivelyDeleteUnusedNodes(N0.getNode());
10534
10535 return SDValue(N,0); // Return N so it doesn't get rechecked!
10536}
10537
10538/// If we're narrowing or widening the result of a vector select and the final
10539/// size is the same size as a setcc (compare) feeding the select, then try to
10540/// apply the cast operation to the select's operands because matching vector
10541/// sizes for a select condition and other operands should be more efficient.
10542SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
10543 unsigned CastOpcode = Cast->getOpcode();
10544 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||(((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND
|| CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND
|| CastOpcode == ISD::FP_ROUND) && "Unexpected opcode for vector select narrowing/widening"
) ? static_cast<void> (0) : __assert_fail ("(CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || CastOpcode == ISD::FP_ROUND) && \"Unexpected opcode for vector select narrowing/widening\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10547, __PRETTY_FUNCTION__))
10545 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||(((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND
|| CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND
|| CastOpcode == ISD::FP_ROUND) && "Unexpected opcode for vector select narrowing/widening"
) ? static_cast<void> (0) : __assert_fail ("(CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || CastOpcode == ISD::FP_ROUND) && \"Unexpected opcode for vector select narrowing/widening\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10547, __PRETTY_FUNCTION__))
10546 CastOpcode == ISD::FP_ROUND) &&(((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND
|| CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND
|| CastOpcode == ISD::FP_ROUND) && "Unexpected opcode for vector select narrowing/widening"
) ? static_cast<void> (0) : __assert_fail ("(CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || CastOpcode == ISD::FP_ROUND) && \"Unexpected opcode for vector select narrowing/widening\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10547, __PRETTY_FUNCTION__))
10547 "Unexpected opcode for vector select narrowing/widening")(((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND
|| CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND
|| CastOpcode == ISD::FP_ROUND) && "Unexpected opcode for vector select narrowing/widening"
) ? static_cast<void> (0) : __assert_fail ("(CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || CastOpcode == ISD::FP_ROUND) && \"Unexpected opcode for vector select narrowing/widening\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10547, __PRETTY_FUNCTION__))
;
10548
10549 // We only do this transform before legal ops because the pattern may be
10550 // obfuscated by target-specific operations after legalization. Do not create
10551 // an illegal select op, however, because that may be difficult to lower.
10552 EVT VT = Cast->getValueType(0);
10553 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
10554 return SDValue();
10555
10556 SDValue VSel = Cast->getOperand(0);
10557 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
10558 VSel.getOperand(0).getOpcode() != ISD::SETCC)
10559 return SDValue();
10560
10561 // Does the setcc have the same vector size as the casted select?
10562 SDValue SetCC = VSel.getOperand(0);
10563 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
10564 if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
10565 return SDValue();
10566
10567 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
10568 SDValue A = VSel.getOperand(1);
10569 SDValue B = VSel.getOperand(2);
10570 SDValue CastA, CastB;
10571 SDLoc DL(Cast);
10572 if (CastOpcode == ISD::FP_ROUND) {
10573 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
10574 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
10575 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
10576 } else {
10577 CastA = DAG.getNode(CastOpcode, DL, VT, A);
10578 CastB = DAG.getNode(CastOpcode, DL, VT, B);
10579 }
10580 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
10581}
10582
10583// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10584// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10585static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
10586 const TargetLowering &TLI, EVT VT,
10587 bool LegalOperations, SDNode *N,
10588 SDValue N0, ISD::LoadExtType ExtLoadType) {
10589 SDNode *N0Node = N0.getNode();
10590 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
10591 : ISD::isZEXTLoad(N0Node);
10592 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
10593 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
10594 return SDValue();
10595
10596 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10597 EVT MemVT = LN0->getMemoryVT();
10598 if ((LegalOperations || !LN0->isSimple() ||
10599 VT.isVector()) &&
10600 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
10601 return SDValue();
10602
10603 SDValue ExtLoad =
10604 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
10605 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
10606 Combiner.CombineTo(N, ExtLoad);
10607 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
10608 if (LN0->use_empty())
10609 Combiner.recursivelyDeleteUnusedNodes(LN0);
10610 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10611}
10612
10613// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10614// Only generate vector extloads when 1) they're legal, and 2) they are
10615// deemed desirable by the target.
10616static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
10617 const TargetLowering &TLI, EVT VT,
10618 bool LegalOperations, SDNode *N, SDValue N0,
10619 ISD::LoadExtType ExtLoadType,
10620 ISD::NodeType ExtOpc) {
10621 if (!ISD::isNON_EXTLoad(N0.getNode()) ||
10622 !ISD::isUNINDEXEDLoad(N0.getNode()) ||
10623 ((LegalOperations || VT.isVector() ||
10624 !cast<LoadSDNode>(N0)->isSimple()) &&
10625 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
10626 return {};
10627
10628 bool DoXform = true;
10629 SmallVector<SDNode *, 4> SetCCs;
10630 if (!N0.hasOneUse())
10631 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
10632 if (VT.isVector())
10633 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
10634 if (!DoXform)
10635 return {};
10636
10637 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
10638 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
10639 LN0->getBasePtr(), N0.getValueType(),
10640 LN0->getMemOperand());
10641 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
10642 // If the load value is used only by N, replace it via CombineTo N.
10643 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
10644 Combiner.CombineTo(N, ExtLoad);
10645 if (NoReplaceTrunc) {
10646 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
10647 Combiner.recursivelyDeleteUnusedNodes(LN0);
10648 } else {
10649 SDValue Trunc =
10650 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
10651 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
10652 }
10653 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10654}
10655
10656static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG,
10657 const TargetLowering &TLI, EVT VT,
10658 SDNode *N, SDValue N0,
10659 ISD::LoadExtType ExtLoadType,
10660 ISD::NodeType ExtOpc) {
10661 if (!N0.hasOneUse())
10662 return SDValue();
10663
10664 MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0);
10665 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
10666 return SDValue();
10667
10668 if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0)))
10669 return SDValue();
10670
10671 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
10672 return SDValue();
10673
10674 SDLoc dl(Ld);
10675 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
10676 SDValue NewLoad = DAG.getMaskedLoad(
10677 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(),
10678 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(),
10679 ExtLoadType, Ld->isExpandingLoad());
10680 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
10681 return NewLoad;
10682}
10683
10684static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
10685 bool LegalOperations) {
10686 assert((N->getOpcode() == ISD::SIGN_EXTEND ||(((N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode()
== ISD::ZERO_EXTEND) && "Expected sext or zext") ? static_cast
<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) && \"Expected sext or zext\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10687, __PRETTY_FUNCTION__))
10687 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext")(((N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode()
== ISD::ZERO_EXTEND) && "Expected sext or zext") ? static_cast
<void> (0) : __assert_fail ("(N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) && \"Expected sext or zext\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10687, __PRETTY_FUNCTION__))
;
10688
10689 SDValue SetCC = N->getOperand(0);
10690 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
10691 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
10692 return SDValue();
10693
10694 SDValue X = SetCC.getOperand(0);
10695 SDValue Ones = SetCC.getOperand(1);
10696 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
10697 EVT VT = N->getValueType(0);
10698 EVT XVT = X.getValueType();
10699 // setge X, C is canonicalized to setgt, so we do not need to match that
10700 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
10701 // not require the 'not' op.
10702 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
10703 // Invert and smear/shift the sign bit:
10704 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
10705 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
10706 SDLoc DL(N);
10707 unsigned ShCt = VT.getSizeInBits() - 1;
10708 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10709 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
10710 SDValue NotX = DAG.getNOT(DL, X, VT);
10711 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT);
10712 auto ShiftOpcode =
10713 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
10714 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
10715 }
10716 }
10717 return SDValue();
10718}
10719
10720SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
10721 SDValue N0 = N->getOperand(0);
10722 EVT VT = N->getValueType(0);
10723 SDLoc DL(N);
10724
10725 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
10726 return Res;
10727
10728 // fold (sext (sext x)) -> (sext x)
10729 // fold (sext (aext x)) -> (sext x)
10730 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
10731 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
10732
10733 if (N0.getOpcode() == ISD::TRUNCATE) {
10734 // fold (sext (truncate (load x))) -> (sext (smaller load x))
10735 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
10736 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
10737 SDNode *oye = N0.getOperand(0).getNode();
10738 if (NarrowLoad.getNode() != N0.getNode()) {
10739 CombineTo(N0.getNode(), NarrowLoad);
10740 // CombineTo deleted the truncate, if needed, but not what's under it.
10741 AddToWorklist(oye);
10742 }
10743 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10744 }
10745
10746 // See if the value being truncated is already sign extended. If so, just
10747 // eliminate the trunc/sext pair.
10748 SDValue Op = N0.getOperand(0);
10749 unsigned OpBits = Op.getScalarValueSizeInBits();
10750 unsigned MidBits = N0.getScalarValueSizeInBits();
10751 unsigned DestBits = VT.getScalarSizeInBits();
10752 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
10753
10754 if (OpBits == DestBits) {
10755 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
10756 // bits, it is already ready.
10757 if (NumSignBits > DestBits-MidBits)
10758 return Op;
10759 } else if (OpBits < DestBits) {
10760 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
10761 // bits, just sext from i32.
10762 if (NumSignBits > OpBits-MidBits)
10763 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
10764 } else {
10765 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
10766 // bits, just truncate to i32.
10767 if (NumSignBits > OpBits-MidBits)
10768 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
10769 }
10770
10771 // fold (sext (truncate x)) -> (sextinreg x).
10772 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
10773 N0.getValueType())) {
10774 if (OpBits < DestBits)
10775 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
10776 else if (OpBits > DestBits)
10777 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
10778 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
10779 DAG.getValueType(N0.getValueType()));
10780 }
10781 }
10782
10783 // Try to simplify (sext (load x)).
10784 if (SDValue foldedExt =
10785 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
10786 ISD::SEXTLOAD, ISD::SIGN_EXTEND))
10787 return foldedExt;
10788
10789 if (SDValue foldedExt =
10790 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD,
10791 ISD::SIGN_EXTEND))
10792 return foldedExt;
10793
10794 // fold (sext (load x)) to multiple smaller sextloads.
10795 // Only on illegal but splittable vectors.
10796 if (SDValue ExtLoad = CombineExtLoad(N))
10797 return ExtLoad;
10798
10799 // Try to simplify (sext (sextload x)).
10800 if (SDValue foldedExt = tryToFoldExtOfExtload(
10801 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
10802 return foldedExt;
10803
10804 // fold (sext (and/or/xor (load x), cst)) ->
10805 // (and/or/xor (sextload x), (sext cst))
10806 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
10807 N0.getOpcode() == ISD::XOR) &&
10808 isa<LoadSDNode>(N0.getOperand(0)) &&
10809 N0.getOperand(1).getOpcode() == ISD::Constant &&
10810 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
10811 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
10812 EVT MemVT = LN00->getMemoryVT();
10813 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
10814 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
10815 SmallVector<SDNode*, 4> SetCCs;
10816 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
10817 ISD::SIGN_EXTEND, SetCCs, TLI);
10818 if (DoXform) {
10819 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
10820 LN00->getChain(), LN00->getBasePtr(),
10821 LN00->getMemoryVT(),
10822 LN00->getMemOperand());
10823 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits());
10824 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
10825 ExtLoad, DAG.getConstant(Mask, DL, VT));
10826 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
10827 bool NoReplaceTruncAnd = !N0.hasOneUse();
10828 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
10829 CombineTo(N, And);
10830 // If N0 has multiple uses, change other uses as well.
10831 if (NoReplaceTruncAnd) {
10832 SDValue TruncAnd =
10833 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
10834 CombineTo(N0.getNode(), TruncAnd);
10835 }
10836 if (NoReplaceTrunc) {
10837 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
10838 } else {
10839 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
10840 LN00->getValueType(0), ExtLoad);
10841 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
10842 }
10843 return SDValue(N,0); // Return N so it doesn't get rechecked!
10844 }
10845 }
10846 }
10847
10848 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
10849 return V;
10850
10851 if (N0.getOpcode() == ISD::SETCC) {
10852 SDValue N00 = N0.getOperand(0);
10853 SDValue N01 = N0.getOperand(1);
10854 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
10855 EVT N00VT = N00.getValueType();
10856
10857 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
10858 // Only do this before legalize for now.
10859 if (VT.isVector() && !LegalOperations &&
10860 TLI.getBooleanContents(N00VT) ==
10861 TargetLowering::ZeroOrNegativeOneBooleanContent) {
10862 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
10863 // of the same size as the compared operands. Only optimize sext(setcc())
10864 // if this is the case.
10865 EVT SVT = getSetCCResultType(N00VT);
10866
10867 // If we already have the desired type, don't change it.
10868 if (SVT != N0.getValueType()) {
10869 // We know that the # elements of the results is the same as the
10870 // # elements of the compare (and the # elements of the compare result
10871 // for that matter). Check to see that they are the same size. If so,
10872 // we know that the element size of the sext'd result matches the
10873 // element size of the compare operands.
10874 if (VT.getSizeInBits() == SVT.getSizeInBits())
10875 return DAG.getSetCC(DL, VT, N00, N01, CC);
10876
10877 // If the desired elements are smaller or larger than the source
10878 // elements, we can use a matching integer vector type and then
10879 // truncate/sign extend.
10880 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
10881 if (SVT == MatchingVecType) {
10882 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
10883 return DAG.getSExtOrTrunc(VsetCC, DL, VT);
10884 }
10885 }
10886 }
10887
10888 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
10889 // Here, T can be 1 or -1, depending on the type of the setcc and
10890 // getBooleanContents().
10891 unsigned SetCCWidth = N0.getScalarValueSizeInBits();
10892
10893 // To determine the "true" side of the select, we need to know the high bit
10894 // of the value returned by the setcc if it evaluates to true.
10895 // If the type of the setcc is i1, then the true case of the select is just
10896 // sext(i1 1), that is, -1.
10897 // If the type of the setcc is larger (say, i8) then the value of the high
10898 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
10899 // of the appropriate width.
10900 SDValue ExtTrueVal = (SetCCWidth == 1)
10901 ? DAG.getAllOnesConstant(DL, VT)
10902 : DAG.getBoolConstant(true, DL, VT, N00VT);
10903 SDValue Zero = DAG.getConstant(0, DL, VT);
10904 if (SDValue SCC =
10905 SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
10906 return SCC;
10907
10908 if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
10909 EVT SetCCVT = getSetCCResultType(N00VT);
10910 // Don't do this transform for i1 because there's a select transform
10911 // that would reverse it.
10912 // TODO: We should not do this transform at all without a target hook
10913 // because a sext is likely cheaper than a select?
10914 if (SetCCVT.getScalarSizeInBits() != 1 &&
10915 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
10916 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
10917 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
10918 }
10919 }
10920 }
10921
10922 // fold (sext x) -> (zext x) if the sign bit is known zero.
10923 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
10924 DAG.SignBitIsZero(N0))
10925 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
10926
10927 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
10928 return NewVSel;
10929
10930 // Eliminate this sign extend by doing a negation in the destination type:
10931 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
10932 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
10933 isNullOrNullSplat(N0.getOperand(0)) &&
10934 N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
10935 TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
10936 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
10937 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext);
10938 }
10939 // Eliminate this sign extend by doing a decrement in the destination type:
10940 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
10941 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
10942 isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
10943 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
10944 TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
10945 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
10946 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
10947 }
10948
10949 // fold sext (not i1 X) -> add (zext i1 X), -1
10950 // TODO: This could be extended to handle bool vectors.
10951 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() &&
10952 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) &&
10953 TLI.isOperationLegal(ISD::ADD, VT)))) {
10954 // If we can eliminate the 'not', the sext form should be better
10955 if (SDValue NewXor = visitXOR(N0.getNode())) {
10956 // Returning N0 is a form of in-visit replacement that may have
10957 // invalidated N0.
10958 if (NewXor.getNode() == N0.getNode()) {
10959 // Return SDValue here as the xor should have already been replaced in
10960 // this sext.
10961 return SDValue();
10962 } else {
10963 // Return a new sext with the new xor.
10964 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor);
10965 }
10966 }
10967
10968 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
10969 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
10970 }
10971
10972 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
10973 return Res;
10974
10975 return SDValue();
10976}
10977
10978// isTruncateOf - If N is a truncate of some other value, return true, record
10979// the value being truncated in Op and which of Op's bits are zero/one in Known.
10980// This function computes KnownBits to avoid a duplicated call to
10981// computeKnownBits in the caller.
10982static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
10983 KnownBits &Known) {
10984 if (N->getOpcode() == ISD::TRUNCATE) {
10985 Op = N->getOperand(0);
10986 Known = DAG.computeKnownBits(Op);
10987 return true;
10988 }
10989
10990 if (N.getOpcode() != ISD::SETCC ||
10991 N.getValueType().getScalarType() != MVT::i1 ||
10992 cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
10993 return false;
10994
10995 SDValue Op0 = N->getOperand(0);
10996 SDValue Op1 = N->getOperand(1);
10997 assert(Op0.getValueType() == Op1.getValueType())((Op0.getValueType() == Op1.getValueType()) ? static_cast<
void> (0) : __assert_fail ("Op0.getValueType() == Op1.getValueType()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 10997, __PRETTY_FUNCTION__))
;
10998
10999 if (isNullOrNullSplat(Op0))
11000 Op = Op1;
11001 else if (isNullOrNullSplat(Op1))
11002 Op = Op0;
11003 else
11004 return false;
11005
11006 Known = DAG.computeKnownBits(Op);
11007
11008 return (Known.Zero | 1).isAllOnesValue();
11009}
11010
11011/// Given an extending node with a pop-count operand, if the target does not
11012/// support a pop-count in the narrow source type but does support it in the
11013/// destination type, widen the pop-count to the destination type.
11014static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) {
11015 assert((Extend->getOpcode() == ISD::ZERO_EXTEND ||(((Extend->getOpcode() == ISD::ZERO_EXTEND || Extend->getOpcode
() == ISD::ANY_EXTEND) && "Expected extend op") ? static_cast
<void> (0) : __assert_fail ("(Extend->getOpcode() == ISD::ZERO_EXTEND || Extend->getOpcode() == ISD::ANY_EXTEND) && \"Expected extend op\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 11016, __PRETTY_FUNCTION__))
11016 Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op")(((Extend->getOpcode() == ISD::ZERO_EXTEND || Extend->getOpcode
() == ISD::ANY_EXTEND) && "Expected extend op") ? static_cast
<void> (0) : __assert_fail ("(Extend->getOpcode() == ISD::ZERO_EXTEND || Extend->getOpcode() == ISD::ANY_EXTEND) && \"Expected extend op\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 11016, __PRETTY_FUNCTION__))
;
11017
11018 SDValue CtPop = Extend->getOperand(0);
11019 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse())
11020 return SDValue();
11021
11022 EVT VT = Extend->getValueType(0);
11023 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11024 if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) ||
11025 !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT))
11026 return SDValue();
11027
11028 // zext (ctpop X) --> ctpop (zext X)
11029 SDLoc DL(Extend);
11030 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT);
11031 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext);
11032}
11033
11034SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
11035 SDValue N0 = N->getOperand(0);
11036 EVT VT = N->getValueType(0);
11037
11038 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
11039 return Res;
11040
11041 // fold (zext (zext x)) -> (zext x)
11042 // fold (zext (aext x)) -> (zext x)
11043 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
11044 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
11045 N0.getOperand(0));
11046
11047 // fold (zext (truncate x)) -> (zext x) or
11048 // (zext (truncate x)) -> (truncate x)
11049 // This is valid when the truncated bits of x are already zero.
11050 SDValue Op;
11051 KnownBits Known;
11052 if (isTruncateOf(DAG, N0, Op, Known)) {
11053 APInt TruncatedBits =
11054 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
11055 APInt(Op.getScalarValueSizeInBits(), 0) :
11056 APInt::getBitsSet(Op.getScalarValueSizeInBits(),
11057 N0.getScalarValueSizeInBits(),
11058 std::min(Op.getScalarValueSizeInBits(),
11059 VT.getScalarSizeInBits()));
11060 if (TruncatedBits.isSubsetOf(Known.Zero))
11061 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
11062 }
11063
11064 // fold (zext (truncate x)) -> (and x, mask)
11065 if (N0.getOpcode() == ISD::TRUNCATE) {
11066 // fold (zext (truncate (load x))) -> (zext (smaller load x))
11067 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
11068 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
11069 SDNode *oye = N0.getOperand(0).getNode();
11070 if (NarrowLoad.getNode() != N0.getNode()) {
11071 CombineTo(N0.getNode(), NarrowLoad);
11072 // CombineTo deleted the truncate, if needed, but not what's under it.
11073 AddToWorklist(oye);
11074 }
11075 return SDValue(N, 0); // Return N so it doesn't get rechecked!
11076 }
11077
11078 EVT SrcVT = N0.getOperand(0).getValueType();
11079 EVT MinVT = N0.getValueType();
11080
11081 // Try to mask before the extension to avoid having to generate a larger mask,
11082 // possibly over several sub-vectors.
11083 if (SrcVT.bitsLT(VT) && VT.isVector()) {
11084 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
11085 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
11086 SDValue Op = N0.getOperand(0);
11087 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
11088 AddToWorklist(Op.getNode());
11089 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
11090 // Transfer the debug info; the new node is equivalent to N0.
11091 DAG.transferDbgValues(N0, ZExtOrTrunc);
11092 return ZExtOrTrunc;
11093 }
11094 }
11095
11096 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
11097 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
11098 AddToWorklist(Op.getNode());
11099 SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
11100 // We may safely transfer the debug info describing the truncate node over
11101 // to the equivalent and operation.
11102 DAG.transferDbgValues(N0, And);
11103 return And;
11104 }
11105 }
11106
11107 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
11108 // if either of the casts is not free.
11109 if (N0.getOpcode() == ISD::AND &&
11110 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
11111 N0.getOperand(1).getOpcode() == ISD::Constant &&
11112 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
11113 N0.getValueType()) ||
11114 !TLI.isZExtFree(N0.getValueType(), VT))) {
11115 SDValue X = N0.getOperand(0).getOperand(0);
11116 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
11117 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
11118 SDLoc DL(N);
11119 return DAG.getNode(ISD::AND, DL, VT,
11120 X, DAG.getConstant(Mask, DL, VT));
11121 }
11122
11123 // Try to simplify (zext (load x)).
11124 if (SDValue foldedExt =
11125 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
11126 ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
11127 return foldedExt;
11128
11129 if (SDValue foldedExt =
11130 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD,
11131 ISD::ZERO_EXTEND))
11132 return foldedExt;
11133
11134 // fold (zext (load x)) to multiple smaller zextloads.
11135 // Only on illegal but splittable vectors.
11136 if (SDValue ExtLoad = CombineExtLoad(N))
11137 return ExtLoad;
11138
11139 // fold (zext (and/or/xor (load x), cst)) ->
11140 // (and/or/xor (zextload x), (zext cst))
11141 // Unless (and (load x) cst) will match as a zextload already and has
11142 // additional users.
11143 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
11144 N0.getOpcode() == ISD::XOR) &&
11145 isa<LoadSDNode>(N0.getOperand(0)) &&
11146 N0.getOperand(1).getOpcode() == ISD::Constant &&
11147 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
11148 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
11149 EVT MemVT = LN00->getMemoryVT();
11150 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
11151 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
11152 bool DoXform = true;
11153 SmallVector<SDNode*, 4> SetCCs;
11154 if (!N0.hasOneUse()) {
11155 if (N0.getOpcode() == ISD::AND) {
11156 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
11157 EVT LoadResultTy = AndC->getValueType(0);
11158 EVT ExtVT;
11159 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
11160 DoXform = false;
11161 }
11162 }
11163 if (DoXform)
11164 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
11165 ISD::ZERO_EXTEND, SetCCs, TLI);
11166 if (DoXform) {
11167 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
11168 LN00->getChain(), LN00->getBasePtr(),
11169 LN00->getMemoryVT(),
11170 LN00->getMemOperand());
11171 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
11172 SDLoc DL(N);
11173 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
11174 ExtLoad, DAG.getConstant(Mask, DL, VT));
11175 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
11176 bool NoReplaceTruncAnd = !N0.hasOneUse();
11177 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
11178 CombineTo(N, And);
11179 // If N0 has multiple uses, change other uses as well.
11180 if (NoReplaceTruncAnd) {
11181 SDValue TruncAnd =
11182 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
11183 CombineTo(N0.getNode(), TruncAnd);
11184 }
11185 if (NoReplaceTrunc) {
11186 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
11187 } else {
11188 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
11189 LN00->getValueType(0), ExtLoad);
11190 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
11191 }
11192 return SDValue(N,0); // Return N so it doesn't get rechecked!
11193 }
11194 }
11195 }
11196
11197 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
11198 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
11199 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
11200 return ZExtLoad;
11201
11202 // Try to simplify (zext (zextload x)).
11203 if (SDValue foldedExt = tryToFoldExtOfExtload(
11204 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
11205 return foldedExt;
11206
11207 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
11208 return V;
11209
11210 if (N0.getOpcode() == ISD::SETCC) {
11211 // Only do this before legalize for now.
11212 if (!LegalOperations && VT.isVector() &&
11213 N0.getValueType().getVectorElementType() == MVT::i1) {
11214 EVT N00VT = N0.getOperand(0).getValueType();
11215 if (getSetCCResultType(N00VT) == N0.getValueType())
11216 return SDValue();
11217
11218 // We know that the # elements of the results is the same as the #
11219 // elements of the compare (and the # elements of the compare result for
11220 // that matter). Check to see that they are the same size. If so, we know
11221 // that the element size of the sext'd result matches the element size of
11222 // the compare operands.
11223 SDLoc DL(N);
11224 if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
11225 // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
11226 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
11227 N0.getOperand(1), N0.getOperand(2));
11228 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType());
11229 }
11230
11231 // If the desired elements are smaller or larger than the source
11232 // elements we can use a matching integer vector type and then
11233 // truncate/any extend followed by zext_in_reg.
11234 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
11235 SDValue VsetCC =
11236 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
11237 N0.getOperand(1), N0.getOperand(2));
11238 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL,
11239 N0.getValueType());
11240 }
11241
11242 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
11243 SDLoc DL(N);
11244 EVT N0VT = N0.getValueType();
11245 EVT N00VT = N0.getOperand(0).getValueType();
11246 if (SDValue SCC = SimplifySelectCC(
11247 DL, N0.getOperand(0), N0.getOperand(1),
11248 DAG.getBoolConstant(true, DL, N0VT, N00VT),
11249 DAG.getBoolConstant(false, DL, N0VT, N00VT),
11250 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
11251 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC);
11252 }
11253
11254 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
11255 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
11256 isa<ConstantSDNode>(N0.getOperand(1)) &&
11257 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
11258 N0.hasOneUse()) {
11259 SDValue ShAmt = N0.getOperand(1);
11260 if (N0.getOpcode() == ISD::SHL) {
11261 SDValue InnerZExt = N0.getOperand(0);
11262 // If the original shl may be shifting out bits, do not perform this
11263 // transformation.
11264 unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
11265 InnerZExt.getOperand(0).getValueSizeInBits();
11266 if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
11267 return SDValue();
11268 }
11269
11270 SDLoc DL(N);
11271
11272 // Ensure that the shift amount is wide enough for the shifted value.
11273 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits())
11274 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
11275
11276 return DAG.getNode(N0.getOpcode(), DL, VT,
11277 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
11278 ShAmt);
11279 }
11280
11281 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
11282 return NewVSel;
11283
11284 if (SDValue NewCtPop = widenCtPop(N, DAG))
11285 return NewCtPop;
11286
11287 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
11288 return Res;
11289
11290 return SDValue();
11291}
11292
11293SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
11294 SDValue N0 = N->getOperand(0);
11295 EVT VT = N->getValueType(0);
11296
11297 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
11298 return Res;
11299
11300 // fold (aext (aext x)) -> (aext x)
11301 // fold (aext (zext x)) -> (zext x)
11302 // fold (aext (sext x)) -> (sext x)
11303 if (N0.getOpcode() == ISD::ANY_EXTEND ||
11304 N0.getOpcode() == ISD::ZERO_EXTEND ||
11305 N0.getOpcode() == ISD::SIGN_EXTEND)
11306 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
11307
11308 // fold (aext (truncate (load x))) -> (aext (smaller load x))
11309 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
11310 if (N0.getOpcode() == ISD::TRUNCATE) {
11311 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
11312 SDNode *oye = N0.getOperand(0).getNode();
11313 if (NarrowLoad.getNode() != N0.getNode()) {
11314 CombineTo(N0.getNode(), NarrowLoad);
11315 // CombineTo deleted the truncate, if needed, but not what's under it.
11316 AddToWorklist(oye);
11317 }
11318 return SDValue(N, 0); // Return N so it doesn't get rechecked!
11319 }
11320 }
11321
11322 // fold (aext (truncate x))
11323 if (N0.getOpcode() == ISD::TRUNCATE)
11324 return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
11325
11326 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
11327 // if the trunc is not free.
11328 if (N0.getOpcode() == ISD::AND &&
11329 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
11330 N0.getOperand(1).getOpcode() == ISD::Constant &&
11331 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
11332 N0.getValueType())) {
11333 SDLoc DL(N);
11334 SDValue X = N0.getOperand(0).getOperand(0);
11335 X = DAG.getAnyExtOrTrunc(X, DL, VT);
11336 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
11337 return DAG.getNode(ISD::AND, DL, VT,
11338 X, DAG.getConstant(Mask, DL, VT));
11339 }
11340
11341 // fold (aext (load x)) -> (aext (truncate (extload x)))
11342 // None of the supported targets knows how to perform load and any_ext
11343 // on vectors in one instruction, so attempt to fold to zext instead.
11344 if (VT.isVector()) {
11345 // Try to simplify (zext (load x)).
11346 if (SDValue foldedExt =
11347 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
11348 ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
11349 return foldedExt;
11350 } else if (ISD::isNON_EXTLoad(N0.getNode()) &&
11351 ISD::isUNINDEXEDLoad(N0.getNode()) &&
11352 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
11353 bool DoXform = true;
11354 SmallVector<SDNode *, 4> SetCCs;
11355 if (!N0.hasOneUse())
11356 DoXform =
11357 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
11358 if (DoXform) {
11359 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11360 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
11361 LN0->getChain(), LN0->getBasePtr(),
11362 N0.getValueType(), LN0->getMemOperand());
11363 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
11364 // If the load value is used only by N, replace it via CombineTo N.
11365 bool NoReplaceTrunc = N0.hasOneUse();
11366 CombineTo(N, ExtLoad);
11367 if (NoReplaceTrunc) {
11368 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
11369 recursivelyDeleteUnusedNodes(LN0);
11370 } else {
11371 SDValue Trunc =
11372 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
11373 CombineTo(LN0, Trunc, ExtLoad.getValue(1));
11374 }
11375 return SDValue(N, 0); // Return N so it doesn't get rechecked!
11376 }
11377 }
11378
11379 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
11380 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
11381 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
11382 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
11383 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
11384 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11385 ISD::LoadExtType ExtType = LN0->getExtensionType();
11386 EVT MemVT = LN0->getMemoryVT();
11387 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
11388 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
11389 VT, LN0->getChain(), LN0->getBasePtr(),
11390 MemVT, LN0->getMemOperand());
11391 CombineTo(N, ExtLoad);
11392 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
11393 recursivelyDeleteUnusedNodes(LN0);
11394 return SDValue(N, 0); // Return N so it doesn't get rechecked!
11395 }
11396 }
11397
11398 if (N0.getOpcode() == ISD::SETCC) {
11399 // For vectors:
11400 // aext(setcc) -> vsetcc
11401 // aext(setcc) -> truncate(vsetcc)
11402 // aext(setcc) -> aext(vsetcc)
11403 // Only do this before legalize for now.
11404 if (VT.isVector() && !LegalOperations) {
11405 EVT N00VT = N0.getOperand(0).getValueType();
11406 if (getSetCCResultType(N00VT) == N0.getValueType())
11407 return SDValue();
11408
11409 // We know that the # elements of the results is the same as the
11410 // # elements of the compare (and the # elements of the compare result
11411 // for that matter). Check to see that they are the same size. If so,
11412 // we know that the element size of the sext'd result matches the
11413 // element size of the compare operands.
11414 if (VT.getSizeInBits() == N00VT.getSizeInBits())
11415 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
11416 N0.getOperand(1),
11417 cast<CondCodeSDNode>(N0.getOperand(2))->get());
11418
11419 // If the desired elements are smaller or larger than the source
11420 // elements we can use a matching integer vector type and then
11421 // truncate/any extend
11422 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
11423 SDValue VsetCC =
11424 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
11425 N0.getOperand(1),
11426 cast<CondCodeSDNode>(N0.getOperand(2))->get());
11427 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
11428 }
11429
11430 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
11431 SDLoc DL(N);
11432 if (SDValue SCC = SimplifySelectCC(
11433 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
11434 DAG.getConstant(0, DL, VT),
11435 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
11436 return SCC;
11437 }
11438
11439 if (SDValue NewCtPop = widenCtPop(N, DAG))
11440 return NewCtPop;
11441
11442 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
11443 return Res;
11444
11445 return SDValue();
11446}
11447
11448SDValue DAGCombiner::visitAssertExt(SDNode *N) {
11449 unsigned Opcode = N->getOpcode();
11450 SDValue N0 = N->getOperand(0);
11451 SDValue N1 = N->getOperand(1);
11452 EVT AssertVT = cast<VTSDNode>(N1)->getVT();
11453
11454 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
11455 if (N0.getOpcode() == Opcode &&
11456 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
11457 return N0;
11458
11459 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
11460 N0.getOperand(0).getOpcode() == Opcode) {
11461 // We have an assert, truncate, assert sandwich. Make one stronger assert
11462 // by asserting on the smallest asserted type to the larger source type.
11463 // This eliminates the later assert:
11464 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
11465 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
11466 SDValue BigA = N0.getOperand(0);
11467 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
11468 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&((BigA_AssertVT.bitsLE(N0.getValueType()) && "Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information") ? static_cast
<void> (0) : __assert_fail ("BigA_AssertVT.bitsLE(N0.getValueType()) && \"Asserting zero/sign-extended bits to a type larger than the \" \"truncated destination does not provide information\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 11470, __PRETTY_FUNCTION__))
11469 "Asserting zero/sign-extended bits to a type larger than the "((BigA_AssertVT.bitsLE(N0.getValueType()) && "Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information") ? static_cast
<void> (0) : __assert_fail ("BigA_AssertVT.bitsLE(N0.getValueType()) && \"Asserting zero/sign-extended bits to a type larger than the \" \"truncated destination does not provide information\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 11470, __PRETTY_FUNCTION__))
11470 "truncated destination does not provide information")((BigA_AssertVT.bitsLE(N0.getValueType()) && "Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information") ? static_cast
<void> (0) : __assert_fail ("BigA_AssertVT.bitsLE(N0.getValueType()) && \"Asserting zero/sign-extended bits to a type larger than the \" \"truncated destination does not provide information\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 11470, __PRETTY_FUNCTION__))
;
11471
11472 SDLoc DL(N);
11473 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
11474 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
11475 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
11476 BigA.getOperand(0), MinAssertVTVal);
11477 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
11478 }
11479
11480 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
11481 // than X. Just move the AssertZext in front of the truncate and drop the
11482 // AssertSExt.
11483 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
11484 N0.getOperand(0).getOpcode() == ISD::AssertSext &&
11485 Opcode == ISD::AssertZext) {
11486 SDValue BigA = N0.getOperand(0);
11487 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
11488 assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&((BigA_AssertVT.bitsLE(N0.getValueType()) && "Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information") ? static_cast
<void> (0) : __assert_fail ("BigA_AssertVT.bitsLE(N0.getValueType()) && \"Asserting zero/sign-extended bits to a type larger than the \" \"truncated destination does not provide information\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 11490, __PRETTY_FUNCTION__))
11489 "Asserting zero/sign-extended bits to a type larger than the "((BigA_AssertVT.bitsLE(N0.getValueType()) && "Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information") ? static_cast
<void> (0) : __assert_fail ("BigA_AssertVT.bitsLE(N0.getValueType()) && \"Asserting zero/sign-extended bits to a type larger than the \" \"truncated destination does not provide information\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 11490, __PRETTY_FUNCTION__))
11490 "truncated destination does not provide information")((BigA_AssertVT.bitsLE(N0.getValueType()) && "Asserting zero/sign-extended bits to a type larger than the "
"truncated destination does not provide information") ? static_cast
<void> (0) : __assert_fail ("BigA_AssertVT.bitsLE(N0.getValueType()) && \"Asserting zero/sign-extended bits to a type larger than the \" \"truncated destination does not provide information\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 11490, __PRETTY_FUNCTION__))
;
11491
11492 if (AssertVT.bitsLT(BigA_AssertVT)) {
11493 SDLoc DL(N);
11494 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
11495 BigA.getOperand(0), N1);
11496 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
11497 }
11498 }
11499
11500 return SDValue();
11501}
11502
11503SDValue DAGCombiner::visitAssertAlign(SDNode *N) {
11504 SDLoc DL(N);
11505
11506 Align AL = cast<AssertAlignSDNode>(N)->getAlign();
11507 SDValue N0 = N->getOperand(0);
11508
11509 // Fold (assertalign (assertalign x, AL0), AL1) ->
11510 // (assertalign x, max(AL0, AL1))
11511 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0))
11512 return DAG.getAssertAlign(DL, N0.getOperand(0),
11513 std::max(AL, AAN->getAlign()));
11514
11515 // In rare cases, there are trivial arithmetic ops in source operands. Sink
11516 // this assert down to source operands so that those arithmetic ops could be
11517 // exposed to the DAG combining.
11518 switch (N0.getOpcode()) {
11519 default:
11520 break;
11521 case ISD::ADD:
11522 case ISD::SUB: {
11523 unsigned AlignShift = Log2(AL);
11524 SDValue LHS = N0.getOperand(0);
11525 SDValue RHS = N0.getOperand(1);
11526 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros();
11527 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros();
11528 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) {
11529 if (LHSAlignShift < AlignShift)
11530 LHS = DAG.getAssertAlign(DL, LHS, AL);
11531 if (RHSAlignShift < AlignShift)
11532 RHS = DAG.getAssertAlign(DL, RHS, AL);
11533 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS);
11534 }
11535 break;
11536 }
11537 }
11538
11539 return SDValue();
11540}
11541
11542/// If the result of a wider load is shifted to right of N bits and then
11543/// truncated to a narrower type and where N is a multiple of number of bits of
11544/// the narrower type, transform it to a narrower load from address + N / num of
11545/// bits of new type. Also narrow the load if the result is masked with an AND
11546/// to effectively produce a smaller type. If the result is to be extended, also
11547/// fold the extension to form a extending load.
11548SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
11549 unsigned Opc = N->getOpcode();
11550
11551 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
11552 SDValue N0 = N->getOperand(0);
11553 EVT VT = N->getValueType(0);
11554 EVT ExtVT = VT;
11555
11556 // This transformation isn't valid for vector loads.
11557 if (VT.isVector())
11558 return SDValue();
11559
11560 unsigned ShAmt = 0;
11561 bool HasShiftedOffset = false;
11562 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
11563 // extended to VT.
11564 if (Opc == ISD::SIGN_EXTEND_INREG) {
11565 ExtType = ISD::SEXTLOAD;
11566 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
11567 } else if (Opc == ISD::SRL) {
11568 // Another special-case: SRL is basically zero-extending a narrower value,
11569 // or it maybe shifting a higher subword, half or byte into the lowest
11570 // bits.
11571 ExtType = ISD::ZEXTLOAD;
11572 N0 = SDValue(N, 0);
11573
11574 auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
11575 auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11576 if (!N01 || !LN0)
11577 return SDValue();
11578
11579 uint64_t ShiftAmt = N01->getZExtValue();
11580 uint64_t MemoryWidth = LN0->getMemoryVT().getScalarSizeInBits();
11581 if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
11582 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
11583 else
11584 ExtVT = EVT::getIntegerVT(*DAG.getContext(),
11585 VT.getScalarSizeInBits() - ShiftAmt);
11586 } else if (Opc == ISD::AND) {
11587 // An AND with a constant mask is the same as a truncate + zero-extend.
11588 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
11589 if (!AndC)
11590 return SDValue();
11591
11592 const APInt &Mask = AndC->getAPIntValue();
11593 unsigned ActiveBits = 0;
11594 if (Mask.isMask()) {
11595 ActiveBits = Mask.countTrailingOnes();
11596 } else if (Mask.isShiftedMask()) {
11597 ShAmt = Mask.countTrailingZeros();
11598 APInt ShiftedMask = Mask.lshr(ShAmt);
11599 ActiveBits = ShiftedMask.countTrailingOnes();
11600 HasShiftedOffset = true;
11601 } else
11602 return SDValue();
11603
11604 ExtType = ISD::ZEXTLOAD;
11605 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
11606 }
11607
11608 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
11609 SDValue SRL = N0;
11610 if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
11611 ShAmt = ConstShift->getZExtValue();
11612 unsigned EVTBits = ExtVT.getScalarSizeInBits();
11613 // Is the shift amount a multiple of size of VT?
11614 if ((ShAmt & (EVTBits-1)) == 0) {
11615 N0 = N0.getOperand(0);
11616 // Is the load width a multiple of size of VT?
11617 if ((N0.getScalarValueSizeInBits() & (EVTBits - 1)) != 0)
11618 return SDValue();
11619 }
11620
11621 // At this point, we must have a load or else we can't do the transform.
11622 auto *LN0 = dyn_cast<LoadSDNode>(N0);
11623 if (!LN0) return SDValue();
11624
11625 // Because a SRL must be assumed to *need* to zero-extend the high bits
11626 // (as opposed to anyext the high bits), we can't combine the zextload
11627 // lowering of SRL and an sextload.
11628 if (LN0->getExtensionType() == ISD::SEXTLOAD)
11629 return SDValue();
11630
11631 // If the shift amount is larger than the input type then we're not
11632 // accessing any of the loaded bytes. If the load was a zextload/extload
11633 // then the result of the shift+trunc is zero/undef (handled elsewhere).
11634 if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
11635 return SDValue();
11636
11637 // If the SRL is only used by a masking AND, we may be able to adjust
11638 // the ExtVT to make the AND redundant.
11639 SDNode *Mask = *(SRL->use_begin());
11640 if (Mask->getOpcode() == ISD::AND &&
11641 isa<ConstantSDNode>(Mask->getOperand(1))) {
11642 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1);
11643 if (ShiftMask.isMask()) {
11644 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
11645 ShiftMask.countTrailingOnes());
11646 // If the mask is smaller, recompute the type.
11647 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) &&
11648 TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
11649 ExtVT = MaskedVT;
11650 }
11651 }
11652 }
11653 }
11654
11655 // If the load is shifted left (and the result isn't shifted back right),
11656 // we can fold the truncate through the shift.
11657 unsigned ShLeftAmt = 0;
11658 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
11659 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
11660 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
11661 ShLeftAmt = N01->getZExtValue();
11662 N0 = N0.getOperand(0);
11663 }
11664 }
11665
11666 // If we haven't found a load, we can't narrow it.
11667 if (!isa<LoadSDNode>(N0))
11668 return SDValue();
11669
11670 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11671 // Reducing the width of a volatile load is illegal. For atomics, we may be
11672 // able to reduce the width provided we never widen again. (see D66309)
11673 if (!LN0->isSimple() ||
11674 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
11675 return SDValue();
11676
11677 auto AdjustBigEndianShift = [&](unsigned ShAmt) {
11678 unsigned LVTStoreBits =
11679 LN0->getMemoryVT().getStoreSizeInBits().getFixedSize();
11680 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize();
11681 return LVTStoreBits - EVTStoreBits - ShAmt;
11682 };
11683
11684 // For big endian targets, we need to adjust the offset to the pointer to
11685 // load the correct bytes.
11686 if (DAG.getDataLayout().isBigEndian())
11687 ShAmt = AdjustBigEndianShift(ShAmt);
11688
11689 uint64_t PtrOff = ShAmt / 8;
11690 Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff);
11691 SDLoc DL(LN0);
11692 // The original load itself didn't wrap, so an offset within it doesn't.
11693 SDNodeFlags Flags;
11694 Flags.setNoUnsignedWrap(true);
11695 SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(),
11696 TypeSize::Fixed(PtrOff), DL, Flags);
11697 AddToWorklist(NewPtr.getNode());
11698
11699 SDValue Load;
11700 if (ExtType == ISD::NON_EXTLOAD)
11701 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
11702 LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
11703 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
11704 else
11705 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
11706 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
11707 NewAlign, LN0->getMemOperand()->getFlags(),
11708 LN0->getAAInfo());
11709
11710 // Replace the old load's chain with the new load's chain.
11711 WorklistRemover DeadNodes(*this);
11712 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
11713
11714 // Shift the result left, if we've swallowed a left shift.
11715 SDValue Result = Load;
11716 if (ShLeftAmt != 0) {
11717 EVT ShImmTy = getShiftAmountTy(Result.getValueType());
11718 if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt))
11719 ShImmTy = VT;
11720 // If the shift amount is as large as the result size (but, presumably,
11721 // no larger than the source) then the useful bits of the result are
11722 // zero; we can't simply return the shortened shift, because the result
11723 // of that operation is undefined.
11724 if (ShLeftAmt >= VT.getScalarSizeInBits())
11725 Result = DAG.getConstant(0, DL, VT);
11726 else
11727 Result = DAG.getNode(ISD::SHL, DL, VT,
11728 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
11729 }
11730
11731 if (HasShiftedOffset) {
11732 // Recalculate the shift amount after it has been altered to calculate
11733 // the offset.
11734 if (DAG.getDataLayout().isBigEndian())
11735 ShAmt = AdjustBigEndianShift(ShAmt);
11736
11737 // We're using a shifted mask, so the load now has an offset. This means
11738 // that data has been loaded into the lower bytes than it would have been
11739 // before, so we need to shl the loaded data into the correct position in the
11740 // register.
11741 SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
11742 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
11743 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
11744 }
11745
11746 // Return the new loaded value.
11747 return Result;
11748}
11749
11750SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
11751 SDValue N0 = N->getOperand(0);
11752 SDValue N1 = N->getOperand(1);
11753 EVT VT = N->getValueType(0);
11754 EVT ExtVT = cast<VTSDNode>(N1)->getVT();
11755 unsigned VTBits = VT.getScalarSizeInBits();
11756 unsigned ExtVTBits = ExtVT.getScalarSizeInBits();
11757
11758 // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
11759 if (N0.isUndef())
11760 return DAG.getConstant(0, SDLoc(N), VT);
11761
11762 // fold (sext_in_reg c1) -> c1
11763 if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
11764 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
11765
11766 // If the input is already sign extended, just drop the extension.
11767 if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1))
11768 return N0;
11769
11770 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
11771 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
11772 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
11773 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0),
11774 N1);
11775
11776 // fold (sext_in_reg (sext x)) -> (sext x)
11777 // fold (sext_in_reg (aext x)) -> (sext x)
11778 // if x is small enough or if we know that x has more than 1 sign bit and the
11779 // sign_extend_inreg is extending from one of them.
11780 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
11781 SDValue N00 = N0.getOperand(0);
11782 unsigned N00Bits = N00.getScalarValueSizeInBits();
11783 if ((N00Bits <= ExtVTBits ||
11784 (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) &&
11785 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
11786 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
11787 }
11788
11789 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
11790 // if x is small enough or if we know that x has more than 1 sign bit and the
11791 // sign_extend_inreg is extending from one of them.
11792 if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
11793 N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
11794 N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
11795 SDValue N00 = N0.getOperand(0);
11796 unsigned N00Bits = N00.getScalarValueSizeInBits();
11797 unsigned DstElts = N0.getValueType().getVectorMinNumElements();
11798 unsigned SrcElts = N00.getValueType().getVectorMinNumElements();
11799 bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
11800 APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts);
11801 if ((N00Bits == ExtVTBits ||
11802 (!IsZext && (N00Bits < ExtVTBits ||
11803 (N00Bits - DAG.ComputeNumSignBits(N00, DemandedSrcElts)) <
11804 ExtVTBits))) &&
11805 (!LegalOperations ||
11806 TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)))
11807 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00);
11808 }
11809
11810 // fold (sext_in_reg (zext x)) -> (sext x)
11811 // iff we are extending the source sign bit.
11812 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
11813 SDValue N00 = N0.getOperand(0);
11814 if (N00.getScalarValueSizeInBits() == ExtVTBits &&
11815 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
11816 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
11817 }
11818
11819 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
11820 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1)))
11821 return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT);
11822
11823 // fold operands of sext_in_reg based on knowledge that the top bits are not
11824 // demanded.
11825 if (SimplifyDemandedBits(SDValue(N, 0)))
11826 return SDValue(N, 0);
11827
11828 // fold (sext_in_reg (load x)) -> (smaller sextload x)
11829 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
11830 if (SDValue NarrowLoad = ReduceLoadWidth(N))
11831 return NarrowLoad;
11832
11833 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
11834 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
11835 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
11836 if (N0.getOpcode() == ISD::SRL) {
11837 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
11838 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) {
11839 // We can turn this into an SRA iff the input to the SRL is already sign
11840 // extended enough.
11841 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
11842 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits)
11843 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
11844 N0.getOperand(1));
11845 }
11846 }
11847
11848 // fold (sext_inreg (extload x)) -> (sextload x)
11849 // If sextload is not supported by target, we can only do the combine when
11850 // load has one use. Doing otherwise can block folding the extload with other
11851 // extends that the target does support.
11852 if (ISD::isEXTLoad(N0.getNode()) &&
11853 ISD::isUNINDEXEDLoad(N0.getNode()) &&
11854 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
11855 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
11856 N0.hasOneUse()) ||
11857 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
11858 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11859 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
11860 LN0->getChain(),
11861 LN0->getBasePtr(), ExtVT,
11862 LN0->getMemOperand());
11863 CombineTo(N, ExtLoad);
11864 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
11865 AddToWorklist(ExtLoad.getNode());
11866 return SDValue(N, 0); // Return N so it doesn't get rechecked!
11867 }
11868 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
11869 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
11870 N0.hasOneUse() &&
11871 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
11872 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
11873 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
11874 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
11875 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
11876 LN0->getChain(),
11877 LN0->getBasePtr(), ExtVT,
11878 LN0->getMemOperand());
11879 CombineTo(N, ExtLoad);
11880 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
11881 return SDValue(N, 0); // Return N so it doesn't get rechecked!
11882 }
11883
11884 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
11885 // ignore it if the masked load is already sign extended
11886 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) {
11887 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() &&
11888 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD &&
11889 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) {
11890 SDValue ExtMaskedLoad = DAG.getMaskedLoad(
11891 VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(),
11892 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(),
11893 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad());
11894 CombineTo(N, ExtMaskedLoad);
11895 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1));
11896 return SDValue(N, 0); // Return N so it doesn't get rechecked!
11897 }
11898 }
11899
11900 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
11901 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
11902 if (SDValue(GN0, 0).hasOneUse() &&
11903 ExtVT == GN0->getMemoryVT() &&
11904 TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
11905 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
11906 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
11907
11908 SDValue ExtLoad = DAG.getMaskedGather(
11909 DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops,
11910 GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD);
11911
11912 CombineTo(N, ExtLoad);
11913 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
11914 AddToWorklist(ExtLoad.getNode());
11915 return SDValue(N, 0); // Return N so it doesn't get rechecked!
11916 }
11917 }
11918
11919 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
11920 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) {
11921 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
11922 N0.getOperand(1), false))
11923 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1);
11924 }
11925
11926 return SDValue();
11927}
11928
11929SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
11930 SDValue N0 = N->getOperand(0);
11931 EVT VT = N->getValueType(0);
11932
11933 // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
11934 if (N0.isUndef())
11935 return DAG.getConstant(0, SDLoc(N), VT);
11936
11937 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
11938 return Res;
11939
11940 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
11941 return SDValue(N, 0);
11942
11943 return SDValue();
11944}
11945
11946SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) {
11947 SDValue N0 = N->getOperand(0);
11948 EVT VT = N->getValueType(0);
11949
11950 // zext_vector_inreg(undef) = 0 because the top bits will be zero.
11951 if (N0.isUndef())
11952 return DAG.getConstant(0, SDLoc(N), VT);
11953
11954 if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
11955 return Res;
11956
11957 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
11958 return SDValue(N, 0);
11959
11960 return SDValue();
11961}
11962
11963SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
11964 SDValue N0 = N->getOperand(0);
11965 EVT VT = N->getValueType(0);
11966 EVT SrcVT = N0.getValueType();
11967 bool isLE = DAG.getDataLayout().isLittleEndian();
11968
11969 // noop truncate
11970 if (SrcVT == VT)
11971 return N0;
11972
11973 // fold (truncate (truncate x)) -> (truncate x)
11974 if (N0.getOpcode() == ISD::TRUNCATE)
11975 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
11976
11977 // fold (truncate c1) -> c1
11978 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
11979 SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
11980 if (C.getNode() != N)
11981 return C;
11982 }
11983
11984 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
11985 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
11986 N0.getOpcode() == ISD::SIGN_EXTEND ||
11987 N0.getOpcode() == ISD::ANY_EXTEND) {
11988 // if the source is smaller than the dest, we still need an extend.
11989 if (N0.getOperand(0).getValueType().bitsLT(VT))
11990 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
11991 // if the source is larger than the dest, than we just need the truncate.
11992 if (N0.getOperand(0).getValueType().bitsGT(VT))
11993 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
11994 // if the source and dest are the same type, we can drop both the extend
11995 // and the truncate.
11996 return N0.getOperand(0);
11997 }
11998
11999 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
12000 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
12001 return SDValue();
12002
12003 // Fold extract-and-trunc into a narrow extract. For example:
12004 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
12005 // i32 y = TRUNCATE(i64 x)
12006 // -- becomes --
12007 // v16i8 b = BITCAST (v2i64 val)
12008 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
12009 //
12010 // Note: We only run this optimization after type legalization (which often
12011 // creates this pattern) and before operation legalization after which
12012 // we need to be more careful about the vector instructions that we generate.
12013 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
12014 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
12015 EVT VecTy = N0.getOperand(0).getValueType();
12016 EVT ExTy = N0.getValueType();
12017 EVT TrTy = N->getValueType(0);
12018
12019 auto EltCnt = VecTy.getVectorElementCount();
12020 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
12021 auto NewEltCnt = EltCnt * SizeRatio;
12022
12023 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt);
12024 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size")((NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"
) ? static_cast<void> (0) : __assert_fail ("NVT.getSizeInBits() == VecTy.getSizeInBits() && \"Invalid Size\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12024, __PRETTY_FUNCTION__))
;
12025
12026 SDValue EltNo = N0->getOperand(1);
12027 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
12028 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12029 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
12030
12031 SDLoc DL(N);
12032 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
12033 DAG.getBitcast(NVT, N0.getOperand(0)),
12034 DAG.getVectorIdxConstant(Index, DL));
12035 }
12036 }
12037
12038 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
12039 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
12040 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
12041 TLI.isTruncateFree(SrcVT, VT)) {
12042 SDLoc SL(N0);
12043 SDValue Cond = N0.getOperand(0);
12044 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
12045 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
12046 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
12047 }
12048 }
12049
12050 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
12051 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
12052 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
12053 TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
12054 SDValue Amt = N0.getOperand(1);
12055 KnownBits Known = DAG.computeKnownBits(Amt);
12056 unsigned Size = VT.getScalarSizeInBits();
12057 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
12058 SDLoc SL(N);
12059 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
12060
12061 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
12062 if (AmtVT != Amt.getValueType()) {
12063 Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
12064 AddToWorklist(Amt.getNode());
12065 }
12066 return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
12067 }
12068 }
12069
12070 if (SDValue V = foldSubToUSubSat(VT, N0.getNode()))
12071 return V;
12072
12073 // Attempt to pre-truncate BUILD_VECTOR sources.
12074 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
12075 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) &&
12076 // Avoid creating illegal types if running after type legalizer.
12077 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) {
12078 SDLoc DL(N);
12079 EVT SVT = VT.getScalarType();
12080 SmallVector<SDValue, 8> TruncOps;
12081 for (const SDValue &Op : N0->op_values()) {
12082 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
12083 TruncOps.push_back(TruncOp);
12084 }
12085 return DAG.getBuildVector(VT, DL, TruncOps);
12086 }
12087
12088 // Fold a series of buildvector, bitcast, and truncate if possible.
12089 // For example fold
12090 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
12091 // (2xi32 (buildvector x, y)).
12092 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
12093 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
12094 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
12095 N0.getOperand(0).hasOneUse()) {
12096 SDValue BuildVect = N0.getOperand(0);
12097 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
12098 EVT TruncVecEltTy = VT.getVectorElementType();
12099
12100 // Check that the element types match.
12101 if (BuildVectEltTy == TruncVecEltTy) {
12102 // Now we only need to compute the offset of the truncated elements.
12103 unsigned BuildVecNumElts = BuildVect.getNumOperands();
12104 unsigned TruncVecNumElts = VT.getVectorNumElements();
12105 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
12106
12107 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&(((BuildVecNumElts % TruncVecNumElts) == 0 && "Invalid number of elements"
) ? static_cast<void> (0) : __assert_fail ("(BuildVecNumElts % TruncVecNumElts) == 0 && \"Invalid number of elements\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12108, __PRETTY_FUNCTION__))
12108 "Invalid number of elements")(((BuildVecNumElts % TruncVecNumElts) == 0 && "Invalid number of elements"
) ? static_cast<void> (0) : __assert_fail ("(BuildVecNumElts % TruncVecNumElts) == 0 && \"Invalid number of elements\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12108, __PRETTY_FUNCTION__))
;
12109
12110 SmallVector<SDValue, 8> Opnds;
12111 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
12112 Opnds.push_back(BuildVect.getOperand(i));
12113
12114 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
12115 }
12116 }
12117
12118 // See if we can simplify the input to this truncate through knowledge that
12119 // only the low bits are being used.
12120 // For example "trunc (or (shl x, 8), y)" // -> trunc y
12121 // Currently we only perform this optimization on scalars because vectors
12122 // may have different active low bits.
12123 if (!VT.isVector()) {
12124 APInt Mask =
12125 APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
12126 if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
12127 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
12128 }
12129
12130 // fold (truncate (load x)) -> (smaller load x)
12131 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
12132 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
12133 if (SDValue Reduced = ReduceLoadWidth(N))
12134 return Reduced;
12135
12136 // Handle the case where the load remains an extending load even
12137 // after truncation.
12138 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
12139 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
12140 if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) {
12141 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
12142 VT, LN0->getChain(), LN0->getBasePtr(),
12143 LN0->getMemoryVT(),
12144 LN0->getMemOperand());
12145 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
12146 return NewLoad;
12147 }
12148 }
12149 }
12150
12151 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
12152 // where ... are all 'undef'.
12153 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
12154 SmallVector<EVT, 8> VTs;
12155 SDValue V;
12156 unsigned Idx = 0;
12157 unsigned NumDefs = 0;
12158
12159 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
12160 SDValue X = N0.getOperand(i);
12161 if (!X.isUndef()) {
12162 V = X;
12163 Idx = i;
12164 NumDefs++;
12165 }
12166 // Stop if more than one members are non-undef.
12167 if (NumDefs > 1)
12168 break;
12169
12170 VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
12171 VT.getVectorElementType(),
12172 X.getValueType().getVectorElementCount()));
12173 }
12174
12175 if (NumDefs == 0)
12176 return DAG.getUNDEF(VT);
12177
12178 if (NumDefs == 1) {
12179 assert(V.getNode() && "The single defined operand is empty!")((V.getNode() && "The single defined operand is empty!"
) ? static_cast<void> (0) : __assert_fail ("V.getNode() && \"The single defined operand is empty!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12179, __PRETTY_FUNCTION__))
;
12180 SmallVector<SDValue, 8> Opnds;
12181 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
12182 if (i != Idx) {
12183 Opnds.push_back(DAG.getUNDEF(VTs[i]));
12184 continue;
12185 }
12186 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
12187 AddToWorklist(NV.getNode());
12188 Opnds.push_back(NV);
12189 }
12190 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
12191 }
12192 }
12193
12194 // Fold truncate of a bitcast of a vector to an extract of the low vector
12195 // element.
12196 //
12197 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
12198 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
12199 SDValue VecSrc = N0.getOperand(0);
12200 EVT VecSrcVT = VecSrc.getValueType();
12201 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT &&
12202 (!LegalOperations ||
12203 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) {
12204 SDLoc SL(N);
12205
12206 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1;
12207 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc,
12208 DAG.getVectorIdxConstant(Idx, SL));
12209 }
12210 }
12211
12212 // Simplify the operands using demanded-bits information.
12213 if (SimplifyDemandedBits(SDValue(N, 0)))
12214 return SDValue(N, 0);
12215
12216 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
12217 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
12218 // When the adde's carry is not used.
12219 if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
12220 N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
12221 // We only do for addcarry before legalize operation
12222 ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
12223 TLI.isOperationLegal(N0.getOpcode(), VT))) {
12224 SDLoc SL(N);
12225 auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
12226 auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
12227 auto VTs = DAG.getVTList(VT, N0->getValueType(1));
12228 return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
12229 }
12230
12231 // fold (truncate (extract_subvector(ext x))) ->
12232 // (extract_subvector x)
12233 // TODO: This can be generalized to cover cases where the truncate and extract
12234 // do not fully cancel each other out.
12235 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
12236 SDValue N00 = N0.getOperand(0);
12237 if (N00.getOpcode() == ISD::SIGN_EXTEND ||
12238 N00.getOpcode() == ISD::ZERO_EXTEND ||
12239 N00.getOpcode() == ISD::ANY_EXTEND) {
12240 if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
12241 VT.getVectorElementType())
12242 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
12243 N00.getOperand(0), N0.getOperand(1));
12244 }
12245 }
12246
12247 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
12248 return NewVSel;
12249
12250 // Narrow a suitable binary operation with a non-opaque constant operand by
12251 // moving it ahead of the truncate. This is limited to pre-legalization
12252 // because targets may prefer a wider type during later combines and invert
12253 // this transform.
12254 switch (N0.getOpcode()) {
12255 case ISD::ADD:
12256 case ISD::SUB:
12257 case ISD::MUL:
12258 case ISD::AND:
12259 case ISD::OR:
12260 case ISD::XOR:
12261 if (!LegalOperations && N0.hasOneUse() &&
12262 (isConstantOrConstantVector(N0.getOperand(0), true) ||
12263 isConstantOrConstantVector(N0.getOperand(1), true))) {
12264 // TODO: We already restricted this to pre-legalization, but for vectors
12265 // we are extra cautious to not create an unsupported operation.
12266 // Target-specific changes are likely needed to avoid regressions here.
12267 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
12268 SDLoc DL(N);
12269 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
12270 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
12271 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
12272 }
12273 }
12274 break;
12275 case ISD::USUBSAT:
12276 // Truncate the USUBSAT only if LHS is a known zero-extension, its not
12277 // enough to know that the upper bits are zero we must ensure that we don't
12278 // introduce an extra truncate.
12279 if (!LegalOperations && N0.hasOneUse() &&
12280 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
12281 N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <=
12282 VT.getScalarSizeInBits() &&
12283 hasOperation(N0.getOpcode(), VT)) {
12284 return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1),
12285 DAG, SDLoc(N));
12286 }
12287 break;
12288 }
12289
12290 return SDValue();
12291}
12292
12293static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
12294 SDValue Elt = N->getOperand(i);
12295 if (Elt.getOpcode() != ISD::MERGE_VALUES)
12296 return Elt.getNode();
12297 return Elt.getOperand(Elt.getResNo()).getNode();
12298}
12299
12300/// build_pair (load, load) -> load
12301/// if load locations are consecutive.
12302SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
12303 assert(N->getOpcode() == ISD::BUILD_PAIR)((N->getOpcode() == ISD::BUILD_PAIR) ? static_cast<void
> (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_PAIR"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12303, __PRETTY_FUNCTION__))
;
12304
12305 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
12306 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
12307
12308 // A BUILD_PAIR is always having the least significant part in elt 0 and the
12309 // most significant part in elt 1. So when combining into one large load, we
12310 // need to consider the endianness.
12311 if (DAG.getDataLayout().isBigEndian())
12312 std::swap(LD1, LD2);
12313
12314 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
12315 LD1->getAddressSpace() != LD2->getAddressSpace())
12316 return SDValue();
12317 EVT LD1VT = LD1->getValueType(0);
12318 unsigned LD1Bytes = LD1VT.getStoreSize();
12319 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
12320 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
12321 Align Alignment = LD1->getAlign();
12322 Align NewAlign = DAG.getDataLayout().getABITypeAlign(
12323 VT.getTypeForEVT(*DAG.getContext()));
12324
12325 if (NewAlign <= Alignment &&
12326 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
12327 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
12328 LD1->getPointerInfo(), Alignment);
12329 }
12330
12331 return SDValue();
12332}
12333
12334static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
12335 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
12336 // and Lo parts; on big-endian machines it doesn't.
12337 return DAG.getDataLayout().isBigEndian() ? 1 : 0;
12338}
12339
12340static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
12341 const TargetLowering &TLI) {
12342 // If this is not a bitcast to an FP type or if the target doesn't have
12343 // IEEE754-compliant FP logic, we're done.
12344 EVT VT = N->getValueType(0);
12345 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
12346 return SDValue();
12347
12348 // TODO: Handle cases where the integer constant is a different scalar
12349 // bitwidth to the FP.
12350 SDValue N0 = N->getOperand(0);
12351 EVT SourceVT = N0.getValueType();
12352 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
12353 return SDValue();
12354
12355 unsigned FPOpcode;
12356 APInt SignMask;
12357 switch (N0.getOpcode()) {
12358 case ISD::AND:
12359 FPOpcode = ISD::FABS;
12360 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
12361 break;
12362 case ISD::XOR:
12363 FPOpcode = ISD::FNEG;
12364 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
12365 break;
12366 case ISD::OR:
12367 FPOpcode = ISD::FABS;
12368 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
12369 break;
12370 default:
12371 return SDValue();
12372 }
12373
12374 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
12375 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
12376 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
12377 // fneg (fabs X)
12378 SDValue LogicOp0 = N0.getOperand(0);
12379 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
12380 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
12381 LogicOp0.getOpcode() == ISD::BITCAST &&
12382 LogicOp0.getOperand(0).getValueType() == VT) {
12383 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
12384 NumFPLogicOpsConv++;
12385 if (N0.getOpcode() == ISD::OR)
12386 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
12387 return FPOp;
12388 }
12389
12390 return SDValue();
12391}
12392
12393SDValue DAGCombiner::visitBITCAST(SDNode *N) {
12394 SDValue N0 = N->getOperand(0);
12395 EVT VT = N->getValueType(0);
12396
12397 if (N0.isUndef())
12398 return DAG.getUNDEF(VT);
12399
12400 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
12401 // Only do this before legalize types, unless both types are integer and the
12402 // scalar type is legal. Only do this before legalize ops, since the target
12403 // maybe depending on the bitcast.
12404 // First check to see if this is all constant.
12405 // TODO: Support FP bitcasts after legalize types.
12406 if (VT.isVector() &&
12407 (!LegalTypes ||
12408 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
12409 TLI.isTypeLegal(VT.getVectorElementType()))) &&
12410 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
12411 cast<BuildVectorSDNode>(N0)->isConstant())
12412 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
12413 VT.getVectorElementType());
12414
12415 // If the input is a constant, let getNode fold it.
12416 if (isIntOrFPConstant(N0)) {
12417 // If we can't allow illegal operations, we need to check that this is just
12418 // a fp -> int or int -> conversion and that the resulting operation will
12419 // be legal.
12420 if (!LegalOperations ||
12421 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
12422 TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
12423 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
12424 TLI.isOperationLegal(ISD::Constant, VT))) {
12425 SDValue C = DAG.getBitcast(VT, N0);
12426 if (C.getNode() != N)
12427 return C;
12428 }
12429 }
12430
12431 // (conv (conv x, t1), t2) -> (conv x, t2)
12432 if (N0.getOpcode() == ISD::BITCAST)
12433 return DAG.getBitcast(VT, N0.getOperand(0));
12434
12435 // fold (conv (load x)) -> (load (conv*)x)
12436 // If the resultant load doesn't need a higher alignment than the original!
12437 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
12438 // Do not remove the cast if the types differ in endian layout.
12439 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
12440 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
12441 // If the load is volatile, we only want to change the load type if the
12442 // resulting load is legal. Otherwise we might increase the number of
12443 // memory accesses. We don't care if the original type was legal or not
12444 // as we assume software couldn't rely on the number of accesses of an
12445 // illegal type.
12446 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
12447 TLI.isOperationLegal(ISD::LOAD, VT))) {
12448 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
12449
12450 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
12451 *LN0->getMemOperand())) {
12452 SDValue Load =
12453 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
12454 LN0->getPointerInfo(), LN0->getAlign(),
12455 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
12456 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
12457 return Load;
12458 }
12459 }
12460
12461 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
12462 return V;
12463
12464 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
12465 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
12466 //
12467 // For ppc_fp128:
12468 // fold (bitcast (fneg x)) ->
12469 // flipbit = signbit
12470 // (xor (bitcast x) (build_pair flipbit, flipbit))
12471 //
12472 // fold (bitcast (fabs x)) ->
12473 // flipbit = (and (extract_element (bitcast x), 0), signbit)
12474 // (xor (bitcast x) (build_pair flipbit, flipbit))
12475 // This often reduces constant pool loads.
12476 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
12477 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
12478 N0.getNode()->hasOneUse() && VT.isInteger() &&
12479 !VT.isVector() && !N0.getValueType().isVector()) {
12480 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
12481 AddToWorklist(NewConv.getNode());
12482
12483 SDLoc DL(N);
12484 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
12485 assert(VT.getSizeInBits() == 128)((VT.getSizeInBits() == 128) ? static_cast<void> (0) : __assert_fail
("VT.getSizeInBits() == 128", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12485, __PRETTY_FUNCTION__))
;
12486 SDValue SignBit = DAG.getConstant(
12487 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
12488 SDValue FlipBit;
12489 if (N0.getOpcode() == ISD::FNEG) {
12490 FlipBit = SignBit;
12491 AddToWorklist(FlipBit.getNode());
12492 } else {
12493 assert(N0.getOpcode() == ISD::FABS)((N0.getOpcode() == ISD::FABS) ? static_cast<void> (0) :
__assert_fail ("N0.getOpcode() == ISD::FABS", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12493, __PRETTY_FUNCTION__))
;
12494 SDValue Hi =
12495 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
12496 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
12497 SDLoc(NewConv)));
12498 AddToWorklist(Hi.getNode());
12499 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
12500 AddToWorklist(FlipBit.getNode());
12501 }
12502 SDValue FlipBits =
12503 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
12504 AddToWorklist(FlipBits.getNode());
12505 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
12506 }
12507 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
12508 if (N0.getOpcode() == ISD::FNEG)
12509 return DAG.getNode(ISD::XOR, DL, VT,
12510 NewConv, DAG.getConstant(SignBit, DL, VT));
12511 assert(N0.getOpcode() == ISD::FABS)((N0.getOpcode() == ISD::FABS) ? static_cast<void> (0) :
__assert_fail ("N0.getOpcode() == ISD::FABS", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12511, __PRETTY_FUNCTION__))
;
12512 return DAG.getNode(ISD::AND, DL, VT,
12513 NewConv, DAG.getConstant(~SignBit, DL, VT));
12514 }
12515
12516 // fold (bitconvert (fcopysign cst, x)) ->
12517 // (or (and (bitconvert x), sign), (and cst, (not sign)))
12518 // Note that we don't handle (copysign x, cst) because this can always be
12519 // folded to an fneg or fabs.
12520 //
12521 // For ppc_fp128:
12522 // fold (bitcast (fcopysign cst, x)) ->
12523 // flipbit = (and (extract_element
12524 // (xor (bitcast cst), (bitcast x)), 0),
12525 // signbit)
12526 // (xor (bitcast cst) (build_pair flipbit, flipbit))
12527 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
12528 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
12529 VT.isInteger() && !VT.isVector()) {
12530 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
12531 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
12532 if (isTypeLegal(IntXVT)) {
12533 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
12534 AddToWorklist(X.getNode());
12535
12536 // If X has a different width than the result/lhs, sext it or truncate it.
12537 unsigned VTWidth = VT.getSizeInBits();
12538 if (OrigXWidth < VTWidth) {
12539 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
12540 AddToWorklist(X.getNode());
12541 } else if (OrigXWidth > VTWidth) {
12542 // To get the sign bit in the right place, we have to shift it right
12543 // before truncating.
12544 SDLoc DL(X);
12545 X = DAG.getNode(ISD::SRL, DL,
12546 X.getValueType(), X,
12547 DAG.getConstant(OrigXWidth-VTWidth, DL,
12548 X.getValueType()));
12549 AddToWorklist(X.getNode());
12550 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
12551 AddToWorklist(X.getNode());
12552 }
12553
12554 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
12555 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
12556 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
12557 AddToWorklist(Cst.getNode());
12558 SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
12559 AddToWorklist(X.getNode());
12560 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
12561 AddToWorklist(XorResult.getNode());
12562 SDValue XorResult64 = DAG.getNode(
12563 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
12564 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
12565 SDLoc(XorResult)));
12566 AddToWorklist(XorResult64.getNode());
12567 SDValue FlipBit =
12568 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
12569 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
12570 AddToWorklist(FlipBit.getNode());
12571 SDValue FlipBits =
12572 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
12573 AddToWorklist(FlipBits.getNode());
12574 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
12575 }
12576 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
12577 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
12578 X, DAG.getConstant(SignBit, SDLoc(X), VT));
12579 AddToWorklist(X.getNode());
12580
12581 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
12582 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
12583 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
12584 AddToWorklist(Cst.getNode());
12585
12586 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
12587 }
12588 }
12589
12590 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
12591 if (N0.getOpcode() == ISD::BUILD_PAIR)
12592 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
12593 return CombineLD;
12594
12595 // Remove double bitcasts from shuffles - this is often a legacy of
12596 // XformToShuffleWithZero being used to combine bitmaskings (of
12597 // float vectors bitcast to integer vectors) into shuffles.
12598 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
12599 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
12600 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
12601 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
12602 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
12603 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
12604
12605 // If operands are a bitcast, peek through if it casts the original VT.
12606 // If operands are a constant, just bitcast back to original VT.
12607 auto PeekThroughBitcast = [&](SDValue Op) {
12608 if (Op.getOpcode() == ISD::BITCAST &&
12609 Op.getOperand(0).getValueType() == VT)
12610 return SDValue(Op.getOperand(0));
12611 if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
12612 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
12613 return DAG.getBitcast(VT, Op);
12614 return SDValue();
12615 };
12616
12617 // FIXME: If either input vector is bitcast, try to convert the shuffle to
12618 // the result type of this bitcast. This would eliminate at least one
12619 // bitcast. See the transform in InstCombine.
12620 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
12621 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
12622 if (!(SV0 && SV1))
12623 return SDValue();
12624
12625 int MaskScale =
12626 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
12627 SmallVector<int, 8> NewMask;
12628 for (int M : SVN->getMask())
12629 for (int i = 0; i != MaskScale; ++i)
12630 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
12631
12632 SDValue LegalShuffle =
12633 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
12634 if (LegalShuffle)
12635 return LegalShuffle;
12636 }
12637
12638 return SDValue();
12639}
12640
12641SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
12642 EVT VT = N->getValueType(0);
12643 return CombineConsecutiveLoads(N, VT);
12644}
12645
12646SDValue DAGCombiner::visitFREEZE(SDNode *N) {
12647 SDValue N0 = N->getOperand(0);
12648
12649 // (freeze (freeze x)) -> (freeze x)
12650 if (N0.getOpcode() == ISD::FREEZE)
12651 return N0;
12652
12653 // If the input is a constant, return it.
12654 if (isIntOrFPConstant(N0))
12655 return N0;
12656
12657 return SDValue();
12658}
12659
12660/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
12661/// operands. DstEltVT indicates the destination element value type.
12662SDValue DAGCombiner::
12663ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
12664 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
12665
12666 // If this is already the right type, we're done.
12667 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
12668
12669 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
12670 unsigned DstBitSize = DstEltVT.getSizeInBits();
12671
12672 // If this is a conversion of N elements of one type to N elements of another
12673 // type, convert each element. This handles FP<->INT cases.
12674 if (SrcBitSize == DstBitSize) {
12675 SmallVector<SDValue, 8> Ops;
12676 for (SDValue Op : BV->op_values()) {
12677 // If the vector element type is not legal, the BUILD_VECTOR operands
12678 // are promoted and implicitly truncated. Make that explicit here.
12679 if (Op.getValueType() != SrcEltVT)
12680 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
12681 Ops.push_back(DAG.getBitcast(DstEltVT, Op));
12682 AddToWorklist(Ops.back().getNode());
12683 }
12684 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
12685 BV->getValueType(0).getVectorNumElements());
12686 return DAG.getBuildVector(VT, SDLoc(BV), Ops);
12687 }
12688
12689 // Otherwise, we're growing or shrinking the elements. To avoid having to
12690 // handle annoying details of growing/shrinking FP values, we convert them to
12691 // int first.
12692 if (SrcEltVT.isFloatingPoint()) {
12693 // Convert the input float vector to a int vector where the elements are the
12694 // same sizes.
12695 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
12696 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
12697 SrcEltVT = IntVT;
12698 }
12699
12700 // Now we know the input is an integer vector. If the output is a FP type,
12701 // convert to integer first, then to FP of the right size.
12702 if (DstEltVT.isFloatingPoint()) {
12703 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
12704 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
12705
12706 // Next, convert to FP elements of the same size.
12707 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
12708 }
12709
12710 SDLoc DL(BV);
12711
12712 // Okay, we know the src/dst types are both integers of differing types.
12713 // Handling growing first.
12714 assert(SrcEltVT.isInteger() && DstEltVT.isInteger())((SrcEltVT.isInteger() && DstEltVT.isInteger()) ? static_cast
<void> (0) : __assert_fail ("SrcEltVT.isInteger() && DstEltVT.isInteger()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 12714, __PRETTY_FUNCTION__))
;
12715 if (SrcBitSize < DstBitSize) {
12716 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
12717
12718 SmallVector<SDValue, 8> Ops;
12719 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
12720 i += NumInputsPerOutput) {
12721 bool isLE = DAG.getDataLayout().isLittleEndian();
12722 APInt NewBits = APInt(DstBitSize, 0);
12723 bool EltIsUndef = true;
12724 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
12725 // Shift the previously computed bits over.
12726 NewBits <<= SrcBitSize;
12727 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
12728 if (Op.isUndef()) continue;
12729 EltIsUndef = false;
12730
12731 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
12732 zextOrTrunc(SrcBitSize).zext(DstBitSize);
12733 }
12734
12735 if (EltIsUndef)
12736 Ops.push_back(DAG.getUNDEF(DstEltVT));
12737 else
12738 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
12739 }
12740
12741 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
12742 return DAG.getBuildVector(VT, DL, Ops);
12743 }
12744
12745 // Finally, this must be the case where we are shrinking elements: each input
12746 // turns into multiple outputs.
12747 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
12748 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
12749 NumOutputsPerInput*BV->getNumOperands());
12750 SmallVector<SDValue, 8> Ops;
12751
12752 for (const SDValue &Op : BV->op_values()) {
12753 if (Op.isUndef()) {
12754 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
12755 continue;
12756 }
12757
12758 APInt OpVal = cast<ConstantSDNode>(Op)->
12759 getAPIntValue().zextOrTrunc(SrcBitSize);
12760
12761 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
12762 APInt ThisVal = OpVal.trunc(DstBitSize);
12763 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
12764 OpVal.lshrInPlace(DstBitSize);
12765 }
12766
12767 // For big endian targets, swap the order of the pieces of each element.
12768 if (DAG.getDataLayout().isBigEndian())
12769 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
12770 }
12771
12772 return DAG.getBuildVector(VT, DL, Ops);
12773}
12774
12775static bool isContractable(SDNode *N) {
12776 SDNodeFlags F = N->getFlags();
12777 return F.hasAllowContract() || F.hasAllowReassociation();
12778}
12779
12780/// Try to perform FMA combining on a given FADD node.
12781SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
12782 SDValue N0 = N->getOperand(0);
12783 SDValue N1 = N->getOperand(1);
12784 EVT VT = N->getValueType(0);
12785 SDLoc SL(N);
12786
12787 const TargetOptions &Options = DAG.getTarget().Options;
12788
12789 // Floating-point multiply-add with intermediate rounding.
12790 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));
12791
12792 // Floating-point multiply-add without intermediate rounding.
12793 bool HasFMA =
12794 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
12795 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
12796
12797 // No valid opcode, do not combine.
12798 if (!HasFMAD && !HasFMA)
12799 return SDValue();
12800
12801 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
12802 bool CanReassociate =
12803 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
12804 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
12805 CanFuse || HasFMAD);
12806 // If the addition is not contractable, do not combine.
12807 if (!AllowFusionGlobally && !isContractable(N))
12808 return SDValue();
12809
12810 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
12811 return SDValue();
12812
12813 // Always prefer FMAD to FMA for precision.
12814 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
12815 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
12816
12817 // Is the node an FMUL and contractable either due to global flags or
12818 // SDNodeFlags.
12819 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
12820 if (N.getOpcode() != ISD::FMUL)
12821 return false;
12822 return AllowFusionGlobally || isContractable(N.getNode());
12823 };
12824 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
12825 // prefer to fold the multiply with fewer uses.
12826 if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
12827 if (N0.getNode()->use_size() > N1.getNode()->use_size())
12828 std::swap(N0, N1);
12829 }
12830
12831 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
12832 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
12833 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
12834 N0.getOperand(1), N1);
12835 }
12836
12837 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
12838 // Note: Commutes FADD operands.
12839 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
12840 return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0),
12841 N1.getOperand(1), N0);
12842 }
12843
12844 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
12845 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
12846 // This requires reassociation because it changes the order of operations.
12847 SDValue FMA, E;
12848 if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode &&
12849 N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() &&
12850 N0.getOperand(2).hasOneUse()) {
12851 FMA = N0;
12852 E = N1;
12853 } else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode &&
12854 N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() &&
12855 N1.getOperand(2).hasOneUse()) {
12856 FMA = N1;
12857 E = N0;
12858 }
12859 if (FMA && E) {
12860 SDValue A = FMA.getOperand(0);
12861 SDValue B = FMA.getOperand(1);
12862 SDValue C = FMA.getOperand(2).getOperand(0);
12863 SDValue D = FMA.getOperand(2).getOperand(1);
12864 SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E);
12865 return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE);
12866 }
12867
12868 // Look through FP_EXTEND nodes to do more combining.
12869
12870 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
12871 if (N0.getOpcode() == ISD::FP_EXTEND) {
12872 SDValue N00 = N0.getOperand(0);
12873 if (isContractableFMUL(N00) &&
12874 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
12875 N00.getValueType())) {
12876 return DAG.getNode(PreferredFusedOpcode, SL, VT,
12877 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
12878 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
12879 N1);
12880 }
12881 }
12882
12883 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
12884 // Note: Commutes FADD operands.
12885 if (N1.getOpcode() == ISD::FP_EXTEND) {
12886 SDValue N10 = N1.getOperand(0);
12887 if (isContractableFMUL(N10) &&
12888 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
12889 N10.getValueType())) {
12890 return DAG.getNode(PreferredFusedOpcode, SL, VT,
12891 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)),
12892 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)),
12893 N0);
12894 }
12895 }
12896
12897 // More folding opportunities when target permits.
12898 if (Aggressive) {
12899 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
12900 // -> (fma x, y, (fma (fpext u), (fpext v), z))
12901 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
12902 SDValue Z) {
12903 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
12904 DAG.getNode(PreferredFusedOpcode, SL, VT,
12905 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
12906 DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
12907 Z));
12908 };
12909 if (N0.getOpcode() == PreferredFusedOpcode) {
12910 SDValue N02 = N0.getOperand(2);
12911 if (N02.getOpcode() == ISD::FP_EXTEND) {
12912 SDValue N020 = N02.getOperand(0);
12913 if (isContractableFMUL(N020) &&
12914 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
12915 N020.getValueType())) {
12916 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
12917 N020.getOperand(0), N020.getOperand(1),
12918 N1);
12919 }
12920 }
12921 }
12922
12923 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
12924 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
12925 // FIXME: This turns two single-precision and one double-precision
12926 // operation into two double-precision operations, which might not be
12927 // interesting for all targets, especially GPUs.
12928 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
12929 SDValue Z) {
12930 return DAG.getNode(
12931 PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
12932 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
12933 DAG.getNode(PreferredFusedOpcode, SL, VT,
12934 DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
12935 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
12936 };
12937 if (N0.getOpcode() == ISD::FP_EXTEND) {
12938 SDValue N00 = N0.getOperand(0);
12939 if (N00.getOpcode() == PreferredFusedOpcode) {
12940 SDValue N002 = N00.getOperand(2);
12941 if (isContractableFMUL(N002) &&
12942 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
12943 N00.getValueType())) {
12944 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
12945 N002.getOperand(0), N002.getOperand(1),
12946 N1);
12947 }
12948 }
12949 }
12950
12951 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
12952 // -> (fma y, z, (fma (fpext u), (fpext v), x))
12953 if (N1.getOpcode() == PreferredFusedOpcode) {
12954 SDValue N12 = N1.getOperand(2);
12955 if (N12.getOpcode() == ISD::FP_EXTEND) {
12956 SDValue N120 = N12.getOperand(0);
12957 if (isContractableFMUL(N120) &&
12958 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
12959 N120.getValueType())) {
12960 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
12961 N120.getOperand(0), N120.getOperand(1),
12962 N0);
12963 }
12964 }
12965 }
12966
12967 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
12968 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
12969 // FIXME: This turns two single-precision and one double-precision
12970 // operation into two double-precision operations, which might not be
12971 // interesting for all targets, especially GPUs.
12972 if (N1.getOpcode() == ISD::FP_EXTEND) {
12973 SDValue N10 = N1.getOperand(0);
12974 if (N10.getOpcode() == PreferredFusedOpcode) {
12975 SDValue N102 = N10.getOperand(2);
12976 if (isContractableFMUL(N102) &&
12977 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
12978 N10.getValueType())) {
12979 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
12980 N102.getOperand(0), N102.getOperand(1),
12981 N0);
12982 }
12983 }
12984 }
12985 }
12986
12987 return SDValue();
12988}
12989
12990/// Try to perform FMA combining on a given FSUB node.
12991SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
12992 SDValue N0 = N->getOperand(0);
12993 SDValue N1 = N->getOperand(1);
12994 EVT VT = N->getValueType(0);
12995 SDLoc SL(N);
12996
12997 const TargetOptions &Options = DAG.getTarget().Options;
12998 // Floating-point multiply-add with intermediate rounding.
12999 bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));
13000
13001 // Floating-point multiply-add without intermediate rounding.
13002 bool HasFMA =
13003 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
13004 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
13005
13006 // No valid opcode, do not combine.
13007 if (!HasFMAD && !HasFMA)
13008 return SDValue();
13009
13010 const SDNodeFlags Flags = N->getFlags();
13011 bool CanFuse = Options.UnsafeFPMath || isContractable(N);
13012 bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
13013 CanFuse || HasFMAD);
13014
13015 // If the subtraction is not contractable, do not combine.
13016 if (!AllowFusionGlobally && !isContractable(N))
13017 return SDValue();
13018
13019 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
13020 return SDValue();
13021
13022 // Always prefer FMAD to FMA for precision.
13023 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
13024 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
13025 bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros();
13026
13027 // Is the node an FMUL and contractable either due to global flags or
13028 // SDNodeFlags.
13029 auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
13030 if (N.getOpcode() != ISD::FMUL)
13031 return false;
13032 return AllowFusionGlobally || isContractable(N.getNode());
13033 };
13034
13035 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13036 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) {
13037 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) {
13038 return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0),
13039 XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z));
13040 }
13041 return SDValue();
13042 };
13043
13044 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13045 // Note: Commutes FSUB operands.
13046 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) {
13047 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) {
13048 return DAG.getNode(PreferredFusedOpcode, SL, VT,
13049 DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)),
13050 YZ.getOperand(1), X);
13051 }
13052 return SDValue();
13053 };
13054
13055 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
13056 // prefer to fold the multiply with fewer uses.
13057 if (isContractableFMUL(N0) && isContractableFMUL(N1) &&
13058 (N0.getNode()->use_size() > N1.getNode()->use_size())) {
13059 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
13060 if (SDValue V = tryToFoldXSubYZ(N0, N1))
13061 return V;
13062 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
13063 if (SDValue V = tryToFoldXYSubZ(N0, N1))
13064 return V;
13065 } else {
13066 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13067 if (SDValue V = tryToFoldXYSubZ(N0, N1))
13068 return V;
13069 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13070 if (SDValue V = tryToFoldXSubYZ(N0, N1))
13071 return V;
13072 }
13073
13074 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
13075 if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
13076 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
13077 SDValue N00 = N0.getOperand(0).getOperand(0);
13078 SDValue N01 = N0.getOperand(0).getOperand(1);
13079 return DAG.getNode(PreferredFusedOpcode, SL, VT,
13080 DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
13081 DAG.getNode(ISD::FNEG, SL, VT, N1));
13082 }
13083
13084 // Look through FP_EXTEND nodes to do more combining.
13085
13086 // fold (fsub (fpext (fmul x, y)), z)
13087 // -> (fma (fpext x), (fpext y), (fneg z))
13088 if (N0.getOpcode() == ISD::FP_EXTEND) {
13089 SDValue N00 = N0.getOperand(0);
13090 if (isContractableFMUL(N00) &&
13091 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13092 N00.getValueType())) {
13093 return DAG.getNode(PreferredFusedOpcode, SL, VT,
13094 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
13095 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
13096 DAG.getNode(ISD::FNEG, SL, VT, N1));
13097 }
13098 }
13099
13100 // fold (fsub x, (fpext (fmul y, z)))
13101 // -> (fma (fneg (fpext y)), (fpext z), x)
13102 // Note: Commutes FSUB operands.
13103 if (N1.getOpcode() == ISD::FP_EXTEND) {
13104 SDValue N10 = N1.getOperand(0);
13105 if (isContractableFMUL(N10) &&
13106 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13107 N10.getValueType())) {
13108 return DAG.getNode(
13109 PreferredFusedOpcode, SL, VT,
13110 DAG.getNode(ISD::FNEG, SL, VT,
13111 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))),
13112 DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
13113 }
13114 }
13115
13116 // fold (fsub (fpext (fneg (fmul, x, y))), z)
13117 // -> (fneg (fma (fpext x), (fpext y), z))
13118 // Note: This could be removed with appropriate canonicalization of the
13119 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13120 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13121 // from implementing the canonicalization in visitFSUB.
13122 if (N0.getOpcode() == ISD::FP_EXTEND) {
13123 SDValue N00 = N0.getOperand(0);
13124 if (N00.getOpcode() == ISD::FNEG) {
13125 SDValue N000 = N00.getOperand(0);
13126 if (isContractableFMUL(N000) &&
13127 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13128 N00.getValueType())) {
13129 return DAG.getNode(
13130 ISD::FNEG, SL, VT,
13131 DAG.getNode(PreferredFusedOpcode, SL, VT,
13132 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
13133 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
13134 N1));
13135 }
13136 }
13137 }
13138
13139 // fold (fsub (fneg (fpext (fmul, x, y))), z)
13140 // -> (fneg (fma (fpext x)), (fpext y), z)
13141 // Note: This could be removed with appropriate canonicalization of the
13142 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13143 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13144 // from implementing the canonicalization in visitFSUB.
13145 if (N0.getOpcode() == ISD::FNEG) {
13146 SDValue N00 = N0.getOperand(0);
13147 if (N00.getOpcode() == ISD::FP_EXTEND) {
13148 SDValue N000 = N00.getOperand(0);
13149 if (isContractableFMUL(N000) &&
13150 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13151 N000.getValueType())) {
13152 return DAG.getNode(
13153 ISD::FNEG, SL, VT,
13154 DAG.getNode(PreferredFusedOpcode, SL, VT,
13155 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
13156 DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
13157 N1));
13158 }
13159 }
13160 }
13161
13162 // More folding opportunities when target permits.
13163 if (Aggressive) {
13164 // fold (fsub (fma x, y, (fmul u, v)), z)
13165 // -> (fma x, y (fma u, v, (fneg z)))
13166 if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
13167 isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() &&
13168 N0.getOperand(2)->hasOneUse()) {
13169 return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
13170 N0.getOperand(1),
13171 DAG.getNode(PreferredFusedOpcode, SL, VT,
13172 N0.getOperand(2).getOperand(0),
13173 N0.getOperand(2).getOperand(1),
13174 DAG.getNode(ISD::FNEG, SL, VT, N1)));
13175 }
13176
13177 // fold (fsub x, (fma y, z, (fmul u, v)))
13178 // -> (fma (fneg y), z, (fma (fneg u), v, x))
13179 if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
13180 isContractableFMUL(N1.getOperand(2)) &&
13181 N1->hasOneUse() && NoSignedZero) {
13182 SDValue N20 = N1.getOperand(2).getOperand(0);
13183 SDValue N21 = N1.getOperand(2).getOperand(1);
13184 return DAG.getNode(
13185 PreferredFusedOpcode, SL, VT,
13186 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
13187 DAG.getNode(PreferredFusedOpcode, SL, VT,
13188 DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0));
13189 }
13190
13191
13192 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
13193 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
13194 if (N0.getOpcode() == PreferredFusedOpcode &&
13195 N0->hasOneUse()) {
13196 SDValue N02 = N0.getOperand(2);
13197 if (N02.getOpcode() == ISD::FP_EXTEND) {
13198 SDValue N020 = N02.getOperand(0);
13199 if (isContractableFMUL(N020) &&
13200 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13201 N020.getValueType())) {
13202 return DAG.getNode(
13203 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
13204 DAG.getNode(
13205 PreferredFusedOpcode, SL, VT,
13206 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)),
13207 DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)),
13208 DAG.getNode(ISD::FNEG, SL, VT, N1)));
13209 }
13210 }
13211 }
13212
13213 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
13214 // -> (fma (fpext x), (fpext y),
13215 // (fma (fpext u), (fpext v), (fneg z)))
13216 // FIXME: This turns two single-precision and one double-precision
13217 // operation into two double-precision operations, which might not be
13218 // interesting for all targets, especially GPUs.
13219 if (N0.getOpcode() == ISD::FP_EXTEND) {
13220 SDValue N00 = N0.getOperand(0);
13221 if (N00.getOpcode() == PreferredFusedOpcode) {
13222 SDValue N002 = N00.getOperand(2);
13223 if (isContractableFMUL(N002) &&
13224 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13225 N00.getValueType())) {
13226 return DAG.getNode(
13227 PreferredFusedOpcode, SL, VT,
13228 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
13229 DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
13230 DAG.getNode(
13231 PreferredFusedOpcode, SL, VT,
13232 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)),
13233 DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)),
13234 DAG.getNode(ISD::FNEG, SL, VT, N1)));
13235 }
13236 }
13237 }
13238
13239 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
13240 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
13241 if (N1.getOpcode() == PreferredFusedOpcode &&
13242 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND &&
13243 N1->hasOneUse()) {
13244 SDValue N120 = N1.getOperand(2).getOperand(0);
13245 if (isContractableFMUL(N120) &&
13246 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13247 N120.getValueType())) {
13248 SDValue N1200 = N120.getOperand(0);
13249 SDValue N1201 = N120.getOperand(1);
13250 return DAG.getNode(
13251 PreferredFusedOpcode, SL, VT,
13252 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
13253 DAG.getNode(PreferredFusedOpcode, SL, VT,
13254 DAG.getNode(ISD::FNEG, SL, VT,
13255 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)),
13256 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0));
13257 }
13258 }
13259
13260 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
13261 // -> (fma (fneg (fpext y)), (fpext z),
13262 // (fma (fneg (fpext u)), (fpext v), x))
13263 // FIXME: This turns two single-precision and one double-precision
13264 // operation into two double-precision operations, which might not be
13265 // interesting for all targets, especially GPUs.
13266 if (N1.getOpcode() == ISD::FP_EXTEND &&
13267 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
13268 SDValue CvtSrc = N1.getOperand(0);
13269 SDValue N100 = CvtSrc.getOperand(0);
13270 SDValue N101 = CvtSrc.getOperand(1);
13271 SDValue N102 = CvtSrc.getOperand(2);
13272 if (isContractableFMUL(N102) &&
13273 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
13274 CvtSrc.getValueType())) {
13275 SDValue N1020 = N102.getOperand(0);
13276 SDValue N1021 = N102.getOperand(1);
13277 return DAG.getNode(
13278 PreferredFusedOpcode, SL, VT,
13279 DAG.getNode(ISD::FNEG, SL, VT,
13280 DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)),
13281 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
13282 DAG.getNode(PreferredFusedOpcode, SL, VT,
13283 DAG.getNode(ISD::FNEG, SL, VT,
13284 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)),
13285 DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0));
13286 }
13287 }
13288 }
13289
13290 return SDValue();
13291}
13292
13293/// Try to perform FMA combining on a given FMUL node based on the distributive
13294/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
13295/// subtraction instead of addition).
13296SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
13297 SDValue N0 = N->getOperand(0);
13298 SDValue N1 = N->getOperand(1);
13299 EVT VT = N->getValueType(0);
13300 SDLoc SL(N);
13301
13302 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation")((N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::FMUL && \"Expected FMUL Operation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 13302, __PRETTY_FUNCTION__))
;
13303
13304 const TargetOptions &Options = DAG.getTarget().Options;
13305
13306 // The transforms below are incorrect when x == 0 and y == inf, because the
13307 // intermediate multiplication produces a nan.
13308 if (!Options.NoInfsFPMath)
13309 return SDValue();
13310
13311 // Floating-point multiply-add without intermediate rounding.
13312 bool HasFMA =
13313 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
13314 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
13315 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
13316
13317 // Floating-point multiply-add with intermediate rounding. This can result
13318 // in a less precise result due to the changed rounding order.
13319 bool HasFMAD = Options.UnsafeFPMath &&
13320 (LegalOperations && TLI.isFMADLegal(DAG, N));
13321
13322 // No valid opcode, do not combine.
13323 if (!HasFMAD && !HasFMA)
13324 return SDValue();
13325
13326 // Always prefer FMAD to FMA for precision.
13327 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
13328 bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
13329
13330 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
13331 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
13332 auto FuseFADD = [&](SDValue X, SDValue Y) {
13333 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
13334 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
13335 if (C->isExactlyValue(+1.0))
13336 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
13337 Y);
13338 if (C->isExactlyValue(-1.0))
13339 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
13340 DAG.getNode(ISD::FNEG, SL, VT, Y));
13341 }
13342 }
13343 return SDValue();
13344 };
13345
13346 if (SDValue FMA = FuseFADD(N0, N1))
13347 return FMA;
13348 if (SDValue FMA = FuseFADD(N1, N0))
13349 return FMA;
13350
13351 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
13352 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
13353 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
13354 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
13355 auto FuseFSUB = [&](SDValue X, SDValue Y) {
13356 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
13357 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
13358 if (C0->isExactlyValue(+1.0))
13359 return DAG.getNode(PreferredFusedOpcode, SL, VT,
13360 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
13361 Y);
13362 if (C0->isExactlyValue(-1.0))
13363 return DAG.getNode(PreferredFusedOpcode, SL, VT,
13364 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
13365 DAG.getNode(ISD::FNEG, SL, VT, Y));
13366 }
13367 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
13368 if (C1->isExactlyValue(+1.0))
13369 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
13370 DAG.getNode(ISD::FNEG, SL, VT, Y));
13371 if (C1->isExactlyValue(-1.0))
13372 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
13373 Y);
13374 }
13375 }
13376 return SDValue();
13377 };
13378
13379 if (SDValue FMA = FuseFSUB(N0, N1))
13380 return FMA;
13381 if (SDValue FMA = FuseFSUB(N1, N0))
13382 return FMA;
13383
13384 return SDValue();
13385}
13386
13387SDValue DAGCombiner::visitFADD(SDNode *N) {
13388 SDValue N0 = N->getOperand(0);
13389 SDValue N1 = N->getOperand(1);
13390 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
13391 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
13392 EVT VT = N->getValueType(0);
13393 SDLoc DL(N);
13394 const TargetOptions &Options = DAG.getTarget().Options;
13395 SDNodeFlags Flags = N->getFlags();
13396 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13397
13398 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
13399 return R;
13400
13401 // fold vector ops
13402 if (VT.isVector())
13403 if (SDValue FoldedVOp = SimplifyVBinOp(N))
13404 return FoldedVOp;
13405
13406 // fold (fadd c1, c2) -> c1 + c2
13407 if (N0CFP && N1CFP)
13408 return DAG.getNode(ISD::FADD, DL, VT, N0, N1);
13409
13410 // canonicalize constant to RHS
13411 if (N0CFP && !N1CFP)
13412 return DAG.getNode(ISD::FADD, DL, VT, N1, N0);
13413
13414 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
13415 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
13416 if (N1C && N1C->isZero())
13417 if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
13418 return N0;
13419
13420 if (SDValue NewSel = foldBinOpIntoSelect(N))
13421 return NewSel;
13422
13423 // fold (fadd A, (fneg B)) -> (fsub A, B)
13424 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
13425 if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
13426 N1, DAG, LegalOperations, ForCodeSize))
13427 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1);
13428
13429 // fold (fadd (fneg A), B) -> (fsub B, A)
13430 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
13431 if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
13432 N0, DAG, LegalOperations, ForCodeSize))
13433 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0);
13434
13435 auto isFMulNegTwo = [](SDValue FMul) {
13436 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
13437 return false;
13438 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
13439 return C && C->isExactlyValue(-2.0);
13440 };
13441
13442 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
13443 if (isFMulNegTwo(N0)) {
13444 SDValue B = N0.getOperand(0);
13445 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
13446 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add);
13447 }
13448 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
13449 if (isFMulNegTwo(N1)) {
13450 SDValue B = N1.getOperand(0);
13451 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
13452 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add);
13453 }
13454
13455 // No FP constant should be created after legalization as Instruction
13456 // Selection pass has a hard time dealing with FP constants.
13457 bool AllowNewConst = (Level < AfterLegalizeDAG);
13458
13459 // If nnan is enabled, fold lots of things.
13460 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
13461 // If allowed, fold (fadd (fneg x), x) -> 0.0
13462 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
13463 return DAG.getConstantFP(0.0, DL, VT);
13464
13465 // If allowed, fold (fadd x, (fneg x)) -> 0.0
13466 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
13467 return DAG.getConstantFP(0.0, DL, VT);
13468 }
13469
13470 // If 'unsafe math' or reassoc and nsz, fold lots of things.
13471 // TODO: break out portions of the transformations below for which Unsafe is
13472 // considered and which do not require both nsz and reassoc
13473 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
13474 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
13475 AllowNewConst) {
13476 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
13477 if (N1CFP && N0.getOpcode() == ISD::FADD &&
13478 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
13479 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1);
13480 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC);
13481 }
13482
13483 // We can fold chains of FADD's of the same value into multiplications.
13484 // This transform is not safe in general because we are reducing the number
13485 // of rounding steps.
13486 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
13487 if (N0.getOpcode() == ISD::FMUL) {
13488 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
13489 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
13490
13491 // (fadd (fmul x, c), x) -> (fmul x, c+1)
13492 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
13493 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
13494 DAG.getConstantFP(1.0, DL, VT));
13495 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP);
13496 }
13497
13498 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
13499 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
13500 N1.getOperand(0) == N1.getOperand(1) &&
13501 N0.getOperand(0) == N1.getOperand(0)) {
13502 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
13503 DAG.getConstantFP(2.0, DL, VT));
13504 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP);
13505 }
13506 }
13507
13508 if (N1.getOpcode() == ISD::FMUL) {
13509 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
13510 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
13511
13512 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
13513 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
13514 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
13515 DAG.getConstantFP(1.0, DL, VT));
13516 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP);
13517 }
13518
13519 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
13520 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
13521 N0.getOperand(0) == N0.getOperand(1) &&
13522 N1.getOperand(0) == N0.getOperand(0)) {
13523 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
13524 DAG.getConstantFP(2.0, DL, VT));
13525 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP);
13526 }
13527 }
13528
13529 if (N0.getOpcode() == ISD::FADD) {
13530 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
13531 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
13532 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
13533 (N0.getOperand(0) == N1)) {
13534 return DAG.getNode(ISD::FMUL, DL, VT, N1,
13535 DAG.getConstantFP(3.0, DL, VT));
13536 }
13537 }
13538
13539 if (N1.getOpcode() == ISD::FADD) {
13540 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
13541 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
13542 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
13543 N1.getOperand(0) == N0) {
13544 return DAG.getNode(ISD::FMUL, DL, VT, N0,
13545 DAG.getConstantFP(3.0, DL, VT));
13546 }
13547 }
13548
13549 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
13550 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
13551 N0.getOperand(0) == N0.getOperand(1) &&
13552 N1.getOperand(0) == N1.getOperand(1) &&
13553 N0.getOperand(0) == N1.getOperand(0)) {
13554 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
13555 DAG.getConstantFP(4.0, DL, VT));
13556 }
13557 }
13558 } // enable-unsafe-fp-math
13559
13560 // FADD -> FMA combines:
13561 if (SDValue Fused = visitFADDForFMACombine(N)) {
13562 AddToWorklist(Fused.getNode());
13563 return Fused;
13564 }
13565 return SDValue();
13566}
13567
13568SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) {
13569 SDValue Chain = N->getOperand(0);
13570 SDValue N0 = N->getOperand(1);
13571 SDValue N1 = N->getOperand(2);
13572 EVT VT = N->getValueType(0);
13573 EVT ChainVT = N->getValueType(1);
13574 SDLoc DL(N);
13575 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13576
13577 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
13578 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
13579 if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
13580 N1, DAG, LegalOperations, ForCodeSize)) {
13581 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
13582 {Chain, N0, NegN1});
13583 }
13584
13585 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
13586 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
13587 if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
13588 N0, DAG, LegalOperations, ForCodeSize)) {
13589 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
13590 {Chain, N1, NegN0});
13591 }
13592 return SDValue();
13593}
13594
13595SDValue DAGCombiner::visitFSUB(SDNode *N) {
13596 SDValue N0 = N->getOperand(0);
13597 SDValue N1 = N->getOperand(1);
13598 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
13599 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
13600 EVT VT = N->getValueType(0);
13601 SDLoc DL(N);
13602 const TargetOptions &Options = DAG.getTarget().Options;
13603 const SDNodeFlags Flags = N->getFlags();
13604 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13605
13606 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
13607 return R;
13608
13609 // fold vector ops
13610 if (VT.isVector())
13611 if (SDValue FoldedVOp = SimplifyVBinOp(N))
13612 return FoldedVOp;
13613
13614 // fold (fsub c1, c2) -> c1-c2
13615 if (N0CFP && N1CFP)
13616 return DAG.getNode(ISD::FSUB, DL, VT, N0, N1);
13617
13618 if (SDValue NewSel = foldBinOpIntoSelect(N))
13619 return NewSel;
13620
13621 // (fsub A, 0) -> A
13622 if (N1CFP && N1CFP->isZero()) {
13623 if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
13624 Flags.hasNoSignedZeros()) {
13625 return N0;
13626 }
13627 }
13628
13629 if (N0 == N1) {
13630 // (fsub x, x) -> 0.0
13631 if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
13632 return DAG.getConstantFP(0.0f, DL, VT);
13633 }
13634
13635 // (fsub -0.0, N1) -> -N1
13636 if (N0CFP && N0CFP->isZero()) {
13637 if (N0CFP->isNegative() ||
13638 (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
13639 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
13640 // flushed to zero, unless all users treat denorms as zero (DAZ).
13641 // FIXME: This transform will change the sign of a NaN and the behavior
13642 // of a signaling NaN. It is only valid when a NoNaN flag is present.
13643 DenormalMode DenormMode = DAG.getDenormalMode(VT);
13644 if (DenormMode == DenormalMode::getIEEE()) {
13645 if (SDValue NegN1 =
13646 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
13647 return NegN1;
13648 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
13649 return DAG.getNode(ISD::FNEG, DL, VT, N1);
13650 }
13651 }
13652 }
13653
13654 if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
13655 (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
13656 N1.getOpcode() == ISD::FADD) {
13657 // X - (X + Y) -> -Y
13658 if (N0 == N1->getOperand(0))
13659 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1));
13660 // X - (Y + X) -> -Y
13661 if (N0 == N1->getOperand(1))
13662 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0));
13663 }
13664
13665 // fold (fsub A, (fneg B)) -> (fadd A, B)
13666 if (SDValue NegN1 =
13667 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
13668 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1);
13669
13670 // FSUB -> FMA combines:
13671 if (SDValue Fused = visitFSUBForFMACombine(N)) {
13672 AddToWorklist(Fused.getNode());
13673 return Fused;
13674 }
13675
13676 return SDValue();
13677}
13678
13679SDValue DAGCombiner::visitFMUL(SDNode *N) {
13680 SDValue N0 = N->getOperand(0);
13681 SDValue N1 = N->getOperand(1);
13682 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
13683 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
13684 EVT VT = N->getValueType(0);
13685 SDLoc DL(N);
13686 const TargetOptions &Options = DAG.getTarget().Options;
13687 const SDNodeFlags Flags = N->getFlags();
13688 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13689
13690 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
13691 return R;
13692
13693 // fold vector ops
13694 if (VT.isVector()) {
13695 // This just handles C1 * C2 for vectors. Other vector folds are below.
13696 if (SDValue FoldedVOp = SimplifyVBinOp(N))
13697 return FoldedVOp;
13698 }
13699
13700 // fold (fmul c1, c2) -> c1*c2
13701 if (N0CFP && N1CFP)
13702 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1);
13703
13704 // canonicalize constant to RHS
13705 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
13706 !DAG.isConstantFPBuildVectorOrConstantFP(N1))
13707 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0);
13708
13709 if (SDValue NewSel = foldBinOpIntoSelect(N))
13710 return NewSel;
13711
13712 if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
13713 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
13714 if (DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
13715 N0.getOpcode() == ISD::FMUL) {
13716 SDValue N00 = N0.getOperand(0);
13717 SDValue N01 = N0.getOperand(1);
13718 // Avoid an infinite loop by making sure that N00 is not a constant
13719 // (the inner multiply has not been constant folded yet).
13720 if (DAG.isConstantFPBuildVectorOrConstantFP(N01) &&
13721 !DAG.isConstantFPBuildVectorOrConstantFP(N00)) {
13722 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1);
13723 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts);
13724 }
13725 }
13726
13727 // Match a special-case: we convert X * 2.0 into fadd.
13728 // fmul (fadd X, X), C -> fmul X, 2.0 * C
13729 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
13730 N0.getOperand(0) == N0.getOperand(1)) {
13731 const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
13732 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1);
13733 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts);
13734 }
13735 }
13736
13737 // fold (fmul X, 2.0) -> (fadd X, X)
13738 if (N1CFP && N1CFP->isExactlyValue(+2.0))
13739 return DAG.getNode(ISD::FADD, DL, VT, N0, N0);
13740
13741 // fold (fmul X, -1.0) -> (fneg X)
13742 if (N1CFP && N1CFP->isExactlyValue(-1.0))
13743 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
13744 return DAG.getNode(ISD::FNEG, DL, VT, N0);
13745
13746 // -N0 * -N1 --> N0 * N1
13747 TargetLowering::NegatibleCost CostN0 =
13748 TargetLowering::NegatibleCost::Expensive;
13749 TargetLowering::NegatibleCost CostN1 =
13750 TargetLowering::NegatibleCost::Expensive;
13751 SDValue NegN0 =
13752 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
13753 SDValue NegN1 =
13754 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
13755 if (NegN0 && NegN1 &&
13756 (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
13757 CostN1 == TargetLowering::NegatibleCost::Cheaper))
13758 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1);
13759
13760 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
13761 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
13762 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
13763 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
13764 TLI.isOperationLegal(ISD::FABS, VT)) {
13765 SDValue Select = N0, X = N1;
13766 if (Select.getOpcode() != ISD::SELECT)
13767 std::swap(Select, X);
13768
13769 SDValue Cond = Select.getOperand(0);
13770 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
13771 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
13772
13773 if (TrueOpnd && FalseOpnd &&
13774 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
13775 isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
13776 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
13777 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13778 switch (CC) {
13779 default: break;
13780 case ISD::SETOLT:
13781 case ISD::SETULT:
13782 case ISD::SETOLE:
13783 case ISD::SETULE:
13784 case ISD::SETLT:
13785 case ISD::SETLE:
13786 std::swap(TrueOpnd, FalseOpnd);
13787 LLVM_FALLTHROUGH[[gnu::fallthrough]];
13788 case ISD::SETOGT:
13789 case ISD::SETUGT:
13790 case ISD::SETOGE:
13791 case ISD::SETUGE:
13792 case ISD::SETGT:
13793 case ISD::SETGE:
13794 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
13795 TLI.isOperationLegal(ISD::FNEG, VT))
13796 return DAG.getNode(ISD::FNEG, DL, VT,
13797 DAG.getNode(ISD::FABS, DL, VT, X));
13798 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
13799 return DAG.getNode(ISD::FABS, DL, VT, X);
13800
13801 break;
13802 }
13803 }
13804 }
13805
13806 // FMUL -> FMA combines:
13807 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
13808 AddToWorklist(Fused.getNode());
13809 return Fused;
13810 }
13811
13812 return SDValue();
13813}
13814
13815SDValue DAGCombiner::visitFMA(SDNode *N) {
13816 SDValue N0 = N->getOperand(0);
13817 SDValue N1 = N->getOperand(1);
13818 SDValue N2 = N->getOperand(2);
13819 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
13820 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
13821 EVT VT = N->getValueType(0);
13822 SDLoc DL(N);
13823 const TargetOptions &Options = DAG.getTarget().Options;
13824 // FMA nodes have flags that propagate to the created nodes.
13825 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
13826
13827 bool UnsafeFPMath =
13828 Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
13829
13830 // Constant fold FMA.
13831 if (isa<ConstantFPSDNode>(N0) &&
13832 isa<ConstantFPSDNode>(N1) &&
13833 isa<ConstantFPSDNode>(N2)) {
13834 return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
13835 }
13836
13837 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
13838 TargetLowering::NegatibleCost CostN0 =
13839 TargetLowering::NegatibleCost::Expensive;
13840 TargetLowering::NegatibleCost CostN1 =
13841 TargetLowering::NegatibleCost::Expensive;
13842 SDValue NegN0 =
13843 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
13844 SDValue NegN1 =
13845 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
13846 if (NegN0 && NegN1 &&
13847 (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
13848 CostN1 == TargetLowering::NegatibleCost::Cheaper))
13849 return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2);
13850
13851 if (UnsafeFPMath) {
13852 if (N0CFP && N0CFP->isZero())
13853 return N2;
13854 if (N1CFP && N1CFP->isZero())
13855 return N2;
13856 }
13857
13858 if (N0CFP && N0CFP->isExactlyValue(1.0))
13859 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
13860 if (N1CFP && N1CFP->isExactlyValue(1.0))
13861 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
13862
13863 // Canonicalize (fma c, x, y) -> (fma x, c, y)
13864 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
13865 !DAG.isConstantFPBuildVectorOrConstantFP(N1))
13866 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
13867
13868 if (UnsafeFPMath) {
13869 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
13870 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
13871 DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
13872 DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
13873 return DAG.getNode(ISD::FMUL, DL, VT, N0,
13874 DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1)));
13875 }
13876
13877 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
13878 if (N0.getOpcode() == ISD::FMUL &&
13879 DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
13880 DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
13881 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
13882 DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)),
13883 N2);
13884 }
13885 }
13886
13887 // (fma x, -1, y) -> (fadd (fneg x), y)
13888 if (N1CFP) {
13889 if (N1CFP->isExactlyValue(1.0))
13890 return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
13891
13892 if (N1CFP->isExactlyValue(-1.0) &&
13893 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
13894 SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
13895 AddToWorklist(RHSNeg.getNode());
13896 return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
13897 }
13898
13899 // fma (fneg x), K, y -> fma x -K, y
13900 if (N0.getOpcode() == ISD::FNEG &&
13901 (TLI.isOperationLegal(ISD::ConstantFP, VT) ||
13902 (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
13903 ForCodeSize)))) {
13904 return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
13905 DAG.getNode(ISD::FNEG, DL, VT, N1), N2);
13906 }
13907 }
13908
13909 if (UnsafeFPMath) {
13910 // (fma x, c, x) -> (fmul x, (c+1))
13911 if (N1CFP && N0 == N2) {
13912 return DAG.getNode(
13913 ISD::FMUL, DL, VT, N0,
13914 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT)));
13915 }
13916
13917 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
13918 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
13919 return DAG.getNode(
13920 ISD::FMUL, DL, VT, N0,
13921 DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT)));
13922 }
13923 }
13924
13925 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
13926 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
13927 if (!TLI.isFNegFree(VT))
13928 if (SDValue Neg = TLI.getCheaperNegatedExpression(
13929 SDValue(N, 0), DAG, LegalOperations, ForCodeSize))
13930 return DAG.getNode(ISD::FNEG, DL, VT, Neg);
13931 return SDValue();
13932}
13933
13934// Combine multiple FDIVs with the same divisor into multiple FMULs by the
13935// reciprocal.
13936// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
13937// Notice that this is not always beneficial. One reason is different targets
13938// may have different costs for FDIV and FMUL, so sometimes the cost of two
13939// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
13940// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
13941SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
13942 // TODO: Limit this transform based on optsize/minsize - it always creates at
13943 // least 1 extra instruction. But the perf win may be substantial enough
13944 // that only minsize should restrict this.
13945 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
13946 const SDNodeFlags Flags = N->getFlags();
13947 if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal()))
13948 return SDValue();
13949
13950 // Skip if current node is a reciprocal/fneg-reciprocal.
13951 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
13952 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
13953 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
13954 return SDValue();
13955
13956 // Exit early if the target does not want this transform or if there can't
13957 // possibly be enough uses of the divisor to make the transform worthwhile.
13958 unsigned MinUses = TLI.combineRepeatedFPDivisors();
13959
13960 // For splat vectors, scale the number of uses by the splat factor. If we can
13961 // convert the division into a scalar op, that will likely be much faster.
13962 unsigned NumElts = 1;
13963 EVT VT = N->getValueType(0);
13964 if (VT.isVector() && DAG.isSplatValue(N1))
13965 NumElts = VT.getVectorNumElements();
13966
13967 if (!MinUses || (N1->use_size() * NumElts) < MinUses)
13968 return SDValue();
13969
13970 // Find all FDIV users of the same divisor.
13971 // Use a set because duplicates may be present in the user list.
13972 SetVector<SDNode *> Users;
13973 for (auto *U : N1->uses()) {
13974 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
13975 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
13976 if (U->getOperand(1).getOpcode() == ISD::FSQRT &&
13977 U->getOperand(0) == U->getOperand(1).getOperand(0) &&
13978 U->getFlags().hasAllowReassociation() &&
13979 U->getFlags().hasNoSignedZeros())
13980 continue;
13981
13982 // This division is eligible for optimization only if global unsafe math
13983 // is enabled or if this division allows reciprocal formation.
13984 if (UnsafeMath || U->getFlags().hasAllowReciprocal())
13985 Users.insert(U);
13986 }
13987 }
13988
13989 // Now that we have the actual number of divisor uses, make sure it meets
13990 // the minimum threshold specified by the target.
13991 if ((Users.size() * NumElts) < MinUses)
13992 return SDValue();
13993
13994 SDLoc DL(N);
13995 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
13996 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
13997
13998 // Dividend / Divisor -> Dividend * Reciprocal
13999 for (auto *U : Users) {
14000 SDValue Dividend = U->getOperand(0);
14001 if (Dividend != FPOne) {
14002 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
14003 Reciprocal, Flags);
14004 CombineTo(U, NewNode);
14005 } else if (U != Reciprocal.getNode()) {
14006 // In the absence of fast-math-flags, this user node is always the
14007 // same node as Reciprocal, but with FMF they may be different nodes.
14008 CombineTo(U, Reciprocal);
14009 }
14010 }
14011 return SDValue(N, 0); // N was replaced.
14012}
14013
14014SDValue DAGCombiner::visitFDIV(SDNode *N) {
14015 SDValue N0 = N->getOperand(0);
14016 SDValue N1 = N->getOperand(1);
14017 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
14018 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
14019 EVT VT = N->getValueType(0);
14020 SDLoc DL(N);
14021 const TargetOptions &Options = DAG.getTarget().Options;
14022 SDNodeFlags Flags = N->getFlags();
14023 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14024
14025 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
14026 return R;
14027
14028 // fold vector ops
14029 if (VT.isVector())
14030 if (SDValue FoldedVOp = SimplifyVBinOp(N))
14031 return FoldedVOp;
14032
14033 // fold (fdiv c1, c2) -> c1/c2
14034 if (N0CFP && N1CFP)
14035 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
14036
14037 if (SDValue NewSel = foldBinOpIntoSelect(N))
14038 return NewSel;
14039
14040 if (SDValue V = combineRepeatedFPDivisors(N))
14041 return V;
14042
14043 if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
14044 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
14045 if (N1CFP) {
14046 // Compute the reciprocal 1.0 / c2.
14047 const APFloat &N1APF = N1CFP->getValueAPF();
14048 APFloat Recip(N1APF.getSemantics(), 1); // 1.0
14049 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
14050 // Only do the transform if the reciprocal is a legal fp immediate that
14051 // isn't too nasty (eg NaN, denormal, ...).
14052 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
14053 (!LegalOperations ||
14054 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
14055 // backend)... we should handle this gracefully after Legalize.
14056 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
14057 TLI.isOperationLegal(ISD::ConstantFP, VT) ||
14058 TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
14059 return DAG.getNode(ISD::FMUL, DL, VT, N0,
14060 DAG.getConstantFP(Recip, DL, VT));
14061 }
14062
14063 // If this FDIV is part of a reciprocal square root, it may be folded
14064 // into a target-specific square root estimate instruction.
14065 if (N1.getOpcode() == ISD::FSQRT) {
14066 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
14067 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
14068 } else if (N1.getOpcode() == ISD::FP_EXTEND &&
14069 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
14070 if (SDValue RV =
14071 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
14072 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
14073 AddToWorklist(RV.getNode());
14074 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
14075 }
14076 } else if (N1.getOpcode() == ISD::FP_ROUND &&
14077 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
14078 if (SDValue RV =
14079 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
14080 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
14081 AddToWorklist(RV.getNode());
14082 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
14083 }
14084 } else if (N1.getOpcode() == ISD::FMUL) {
14085 // Look through an FMUL. Even though this won't remove the FDIV directly,
14086 // it's still worthwhile to get rid of the FSQRT if possible.
14087 SDValue Sqrt, Y;
14088 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
14089 Sqrt = N1.getOperand(0);
14090 Y = N1.getOperand(1);
14091 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
14092 Sqrt = N1.getOperand(1);
14093 Y = N1.getOperand(0);
14094 }
14095 if (Sqrt.getNode()) {
14096 // If the other multiply operand is known positive, pull it into the
14097 // sqrt. That will eliminate the division if we convert to an estimate.
14098 if (Flags.hasAllowReassociation() && N1.hasOneUse() &&
14099 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) {
14100 SDValue A;
14101 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse())
14102 A = Y.getOperand(0);
14103 else if (Y == Sqrt.getOperand(0))
14104 A = Y;
14105 if (A) {
14106 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
14107 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
14108 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A);
14109 SDValue AAZ =
14110 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0));
14111 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags))
14112 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt);
14113
14114 // Estimate creation failed. Clean up speculatively created nodes.
14115 recursivelyDeleteUnusedNodes(AAZ.getNode());
14116 }
14117 }
14118
14119 // We found a FSQRT, so try to make this fold:
14120 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
14121 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) {
14122 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y);
14123 AddToWorklist(Div.getNode());
14124 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div);
14125 }
14126 }
14127 }
14128
14129 // Fold into a reciprocal estimate and multiply instead of a real divide.
14130 if (Options.NoInfsFPMath || Flags.hasNoInfs())
14131 if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
14132 return RV;
14133 }
14134
14135 // Fold X/Sqrt(X) -> Sqrt(X)
14136 if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
14137 (Options.UnsafeFPMath || Flags.hasAllowReassociation()))
14138 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0))
14139 return N1;
14140
14141 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
14142 TargetLowering::NegatibleCost CostN0 =
14143 TargetLowering::NegatibleCost::Expensive;
14144 TargetLowering::NegatibleCost CostN1 =
14145 TargetLowering::NegatibleCost::Expensive;
14146 SDValue NegN0 =
14147 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
14148 SDValue NegN1 =
14149 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
14150 if (NegN0 && NegN1 &&
14151 (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
14152 CostN1 == TargetLowering::NegatibleCost::Cheaper))
14153 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1);
14154
14155 return SDValue();
14156}
14157
14158SDValue DAGCombiner::visitFREM(SDNode *N) {
14159 SDValue N0 = N->getOperand(0);
14160 SDValue N1 = N->getOperand(1);
14161 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
14162 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
14163 EVT VT = N->getValueType(0);
14164 SDNodeFlags Flags = N->getFlags();
14165 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14166
14167 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
14168 return R;
14169
14170 // fold (frem c1, c2) -> fmod(c1,c2)
14171 if (N0CFP && N1CFP)
14172 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
14173
14174 if (SDValue NewSel = foldBinOpIntoSelect(N))
14175 return NewSel;
14176
14177 return SDValue();
14178}
14179
14180SDValue DAGCombiner::visitFSQRT(SDNode *N) {
14181 SDNodeFlags Flags = N->getFlags();
14182 const TargetOptions &Options = DAG.getTarget().Options;
14183
14184 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
14185 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
14186 if (!Flags.hasApproximateFuncs() ||
14187 (!Options.NoInfsFPMath && !Flags.hasNoInfs()))
14188 return SDValue();
14189
14190 SDValue N0 = N->getOperand(0);
14191 if (TLI.isFsqrtCheap(N0, DAG))
14192 return SDValue();
14193
14194 // FSQRT nodes have flags that propagate to the created nodes.
14195 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
14196 // transform the fdiv, we may produce a sub-optimal estimate sequence
14197 // because the reciprocal calculation may not have to filter out a
14198 // 0.0 input.
14199 return buildSqrtEstimate(N0, Flags);
14200}
14201
14202/// copysign(x, fp_extend(y)) -> copysign(x, y)
14203/// copysign(x, fp_round(y)) -> copysign(x, y)
14204static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
14205 SDValue N1 = N->getOperand(1);
14206 if ((N1.getOpcode() == ISD::FP_EXTEND ||
14207 N1.getOpcode() == ISD::FP_ROUND)) {
14208 EVT N1VT = N1->getValueType(0);
14209 EVT N1Op0VT = N1->getOperand(0).getValueType();
14210
14211 // Always fold no-op FP casts.
14212 if (N1VT == N1Op0VT)
14213 return true;
14214
14215 // Do not optimize out type conversion of f128 type yet.
14216 // For some targets like x86_64, configuration is changed to keep one f128
14217 // value in one SSE register, but instruction selection cannot handle
14218 // FCOPYSIGN on SSE registers yet.
14219 if (N1Op0VT == MVT::f128)
14220 return false;
14221
14222 // Avoid mismatched vector operand types, for better instruction selection.
14223 if (N1Op0VT.isVector())
14224 return false;
14225
14226 return true;
14227 }
14228 return false;
14229}
14230
14231SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
14232 SDValue N0 = N->getOperand(0);
14233 SDValue N1 = N->getOperand(1);
14234 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
14235 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
14236 EVT VT = N->getValueType(0);
14237
14238 if (N0CFP && N1CFP) // Constant fold
14239 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
14240
14241 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
14242 const APFloat &V = N1C->getValueAPF();
14243 // copysign(x, c1) -> fabs(x) iff ispos(c1)
14244 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
14245 if (!V.isNegative()) {
14246 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
14247 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
14248 } else {
14249 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
14250 return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
14251 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
14252 }
14253 }
14254
14255 // copysign(fabs(x), y) -> copysign(x, y)
14256 // copysign(fneg(x), y) -> copysign(x, y)
14257 // copysign(copysign(x,z), y) -> copysign(x, y)
14258 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
14259 N0.getOpcode() == ISD::FCOPYSIGN)
14260 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
14261
14262 // copysign(x, abs(y)) -> abs(x)
14263 if (N1.getOpcode() == ISD::FABS)
14264 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
14265
14266 // copysign(x, copysign(y,z)) -> copysign(x, z)
14267 if (N1.getOpcode() == ISD::FCOPYSIGN)
14268 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
14269
14270 // copysign(x, fp_extend(y)) -> copysign(x, y)
14271 // copysign(x, fp_round(y)) -> copysign(x, y)
14272 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
14273 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
14274
14275 return SDValue();
14276}
14277
14278SDValue DAGCombiner::visitFPOW(SDNode *N) {
14279 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
14280 if (!ExponentC)
14281 return SDValue();
14282 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14283
14284 // Try to convert x ** (1/3) into cube root.
14285 // TODO: Handle the various flavors of long double.
14286 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
14287 // Some range near 1/3 should be fine.
14288 EVT VT = N->getValueType(0);
14289 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
14290 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
14291 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
14292 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
14293 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
14294 // For regular numbers, rounding may cause the results to differ.
14295 // Therefore, we require { nsz ninf nnan afn } for this transform.
14296 // TODO: We could select out the special cases if we don't have nsz/ninf.
14297 SDNodeFlags Flags = N->getFlags();
14298 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
14299 !Flags.hasApproximateFuncs())
14300 return SDValue();
14301
14302 // Do not create a cbrt() libcall if the target does not have it, and do not
14303 // turn a pow that has lowering support into a cbrt() libcall.
14304 if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
14305 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
14306 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
14307 return SDValue();
14308
14309 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0));
14310 }
14311
14312 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
14313 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
14314 // TODO: This could be extended (using a target hook) to handle smaller
14315 // power-of-2 fractional exponents.
14316 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
14317 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
14318 if (ExponentIs025 || ExponentIs075) {
14319 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
14320 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
14321 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
14322 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
14323 // For regular numbers, rounding may cause the results to differ.
14324 // Therefore, we require { nsz ninf afn } for this transform.
14325 // TODO: We could select out the special cases if we don't have nsz/ninf.
14326 SDNodeFlags Flags = N->getFlags();
14327
14328 // We only need no signed zeros for the 0.25 case.
14329 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
14330 !Flags.hasApproximateFuncs())
14331 return SDValue();
14332
14333 // Don't double the number of libcalls. We are trying to inline fast code.
14334 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
14335 return SDValue();
14336
14337 // Assume that libcalls are the smallest code.
14338 // TODO: This restriction should probably be lifted for vectors.
14339 if (ForCodeSize)
14340 return SDValue();
14341
14342 // pow(X, 0.25) --> sqrt(sqrt(X))
14343 SDLoc DL(N);
14344 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0));
14345 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt);
14346 if (ExponentIs025)
14347 return SqrtSqrt;
14348 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
14349 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt);
14350 }
14351
14352 return SDValue();
14353}
14354
14355static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
14356 const TargetLowering &TLI) {
14357 // This optimization is guarded by a function attribute because it may produce
14358 // unexpected results. Ie, programs may be relying on the platform-specific
14359 // undefined behavior when the float-to-int conversion overflows.
14360 const Function &F = DAG.getMachineFunction().getFunction();
14361 Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
14362 if (StrictOverflow.getValueAsString().equals("false"))
14363 return SDValue();
14364
14365 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
14366 // replacing casts with a libcall. We also must be allowed to ignore -0.0
14367 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
14368 // conversions would return +0.0.
14369 // FIXME: We should be able to use node-level FMF here.
14370 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
14371 EVT VT = N->getValueType(0);
14372 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
14373 !DAG.getTarget().Options.NoSignedZerosFPMath)
14374 return SDValue();
14375
14376 // fptosi/fptoui round towards zero, so converting from FP to integer and
14377 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
14378 SDValue N0 = N->getOperand(0);
14379 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
14380 N0.getOperand(0).getValueType() == VT)
14381 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
14382
14383 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
14384 N0.getOperand(0).getValueType() == VT)
14385 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
14386
14387 return SDValue();
14388}
14389
14390SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
14391 SDValue N0 = N->getOperand(0);
14392 EVT VT = N->getValueType(0);
14393 EVT OpVT = N0.getValueType();
14394
14395 // [us]itofp(undef) = 0, because the result value is bounded.
14396 if (N0.isUndef())
14397 return DAG.getConstantFP(0.0, SDLoc(N), VT);
14398
14399 // fold (sint_to_fp c1) -> c1fp
14400 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
14401 // ...but only if the target supports immediate floating-point values
14402 (!LegalOperations ||
14403 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
14404 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
14405
14406 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
14407 // but UINT_TO_FP is legal on this target, try to convert.
14408 if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
14409 hasOperation(ISD::UINT_TO_FP, OpVT)) {
14410 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
14411 if (DAG.SignBitIsZero(N0))
14412 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
14413 }
14414
14415 // The next optimizations are desirable only if SELECT_CC can be lowered.
14416 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
14417 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
14418 !VT.isVector() &&
14419 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
14420 SDLoc DL(N);
14421 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT),
14422 DAG.getConstantFP(0.0, DL, VT));
14423 }
14424
14425 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
14426 // (select (setcc x, y, cc), 1.0, 0.0)
14427 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
14428 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() &&
14429 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
14430 SDLoc DL(N);
14431 return DAG.getSelect(DL, VT, N0.getOperand(0),
14432 DAG.getConstantFP(1.0, DL, VT),
14433 DAG.getConstantFP(0.0, DL, VT));
14434 }
14435
14436 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
14437 return FTrunc;
14438
14439 return SDValue();
14440}
14441
14442SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
14443 SDValue N0 = N->getOperand(0);
14444 EVT VT = N->getValueType(0);
14445 EVT OpVT = N0.getValueType();
14446
14447 // [us]itofp(undef) = 0, because the result value is bounded.
14448 if (N0.isUndef())
14449 return DAG.getConstantFP(0.0, SDLoc(N), VT);
14450
14451 // fold (uint_to_fp c1) -> c1fp
14452 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
14453 // ...but only if the target supports immediate floating-point values
14454 (!LegalOperations ||
14455 TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
14456 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
14457
14458 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
14459 // but SINT_TO_FP is legal on this target, try to convert.
14460 if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
14461 hasOperation(ISD::SINT_TO_FP, OpVT)) {
14462 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
14463 if (DAG.SignBitIsZero(N0))
14464 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
14465 }
14466
14467 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
14468 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
14469 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
14470 SDLoc DL(N);
14471 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT),
14472 DAG.getConstantFP(0.0, DL, VT));
14473 }
14474
14475 if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
14476 return FTrunc;
14477
14478 return SDValue();
14479}
14480
14481// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
14482static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
14483 SDValue N0 = N->getOperand(0);
14484 EVT VT = N->getValueType(0);
14485
14486 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
14487 return SDValue();
14488
14489 SDValue Src = N0.getOperand(0);
14490 EVT SrcVT = Src.getValueType();
14491 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
14492 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
14493
14494 // We can safely assume the conversion won't overflow the output range,
14495 // because (for example) (uint8_t)18293.f is undefined behavior.
14496
14497 // Since we can assume the conversion won't overflow, our decision as to
14498 // whether the input will fit in the float should depend on the minimum
14499 // of the input range and output range.
14500
14501 // This means this is also safe for a signed input and unsigned output, since
14502 // a negative input would lead to undefined behavior.
14503 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
14504 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
14505 unsigned ActualSize = std::min(InputSize, OutputSize);
14506 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
14507
14508 // We can only fold away the float conversion if the input range can be
14509 // represented exactly in the float range.
14510 if (APFloat::semanticsPrecision(sem) >= ActualSize) {
14511 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
14512 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
14513 : ISD::ZERO_EXTEND;
14514 return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
14515 }
14516 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
14517 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
14518 return DAG.getBitcast(VT, Src);
14519 }
14520 return SDValue();
14521}
14522
14523SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
14524 SDValue N0 = N->getOperand(0);
14525 EVT VT = N->getValueType(0);
14526
14527 // fold (fp_to_sint undef) -> undef
14528 if (N0.isUndef())
14529 return DAG.getUNDEF(VT);
14530
14531 // fold (fp_to_sint c1fp) -> c1
14532 if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14533 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
14534
14535 return FoldIntToFPToInt(N, DAG);
14536}
14537
14538SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
14539 SDValue N0 = N->getOperand(0);
14540 EVT VT = N->getValueType(0);
14541
14542 // fold (fp_to_uint undef) -> undef
14543 if (N0.isUndef())
14544 return DAG.getUNDEF(VT);
14545
14546 // fold (fp_to_uint c1fp) -> c1
14547 if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14548 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
14549
14550 return FoldIntToFPToInt(N, DAG);
14551}
14552
14553SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
14554 SDValue N0 = N->getOperand(0);
14555 SDValue N1 = N->getOperand(1);
14556 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
14557 EVT VT = N->getValueType(0);
14558
14559 // fold (fp_round c1fp) -> c1fp
14560 if (N0CFP)
14561 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
14562
14563 // fold (fp_round (fp_extend x)) -> x
14564 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
14565 return N0.getOperand(0);
14566
14567 // fold (fp_round (fp_round x)) -> (fp_round x)
14568 if (N0.getOpcode() == ISD::FP_ROUND) {
14569 const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
14570 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
14571
14572 // Skip this folding if it results in an fp_round from f80 to f16.
14573 //
14574 // f80 to f16 always generates an expensive (and as yet, unimplemented)
14575 // libcall to __truncxfhf2 instead of selecting native f16 conversion
14576 // instructions from f32 or f64. Moreover, the first (value-preserving)
14577 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
14578 // x86.
14579 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
14580 return SDValue();
14581
14582 // If the first fp_round isn't a value preserving truncation, it might
14583 // introduce a tie in the second fp_round, that wouldn't occur in the
14584 // single-step fp_round we want to fold to.
14585 // In other words, double rounding isn't the same as rounding.
14586 // Also, this is a value preserving truncation iff both fp_round's are.
14587 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
14588 SDLoc DL(N);
14589 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
14590 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
14591 }
14592 }
14593
14594 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
14595 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
14596 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
14597 N0.getOperand(0), N1);
14598 AddToWorklist(Tmp.getNode());
14599 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
14600 Tmp, N0.getOperand(1));
14601 }
14602
14603 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
14604 return NewVSel;
14605
14606 return SDValue();
14607}
14608
14609SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
14610 SDValue N0 = N->getOperand(0);
14611 EVT VT = N->getValueType(0);
14612
14613 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
14614 if (N->hasOneUse() &&
14615 N->use_begin()->getOpcode() == ISD::FP_ROUND)
14616 return SDValue();
14617
14618 // fold (fp_extend c1fp) -> c1fp
14619 if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14620 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
14621
14622 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
14623 if (N0.getOpcode() == ISD::FP16_TO_FP &&
14624 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
14625 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
14626
14627 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
14628 // value of X.
14629 if (N0.getOpcode() == ISD::FP_ROUND
14630 && N0.getConstantOperandVal(1) == 1) {
14631 SDValue In = N0.getOperand(0);
14632 if (In.getValueType() == VT) return In;
14633 if (VT.bitsLT(In.getValueType()))
14634 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
14635 In, N0.getOperand(1));
14636 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
14637 }
14638
14639 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
14640 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
14641 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
14642 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14643 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
14644 LN0->getChain(),
14645 LN0->getBasePtr(), N0.getValueType(),
14646 LN0->getMemOperand());
14647 CombineTo(N, ExtLoad);
14648 CombineTo(N0.getNode(),
14649 DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
14650 N0.getValueType(), ExtLoad,
14651 DAG.getIntPtrConstant(1, SDLoc(N0))),
14652 ExtLoad.getValue(1));
14653 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14654 }
14655
14656 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
14657 return NewVSel;
14658
14659 return SDValue();
14660}
14661
14662SDValue DAGCombiner::visitFCEIL(SDNode *N) {
14663 SDValue N0 = N->getOperand(0);
14664 EVT VT = N->getValueType(0);
14665
14666 // fold (fceil c1) -> fceil(c1)
14667 if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14668 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
14669
14670 return SDValue();
14671}
14672
14673SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
14674 SDValue N0 = N->getOperand(0);
14675 EVT VT = N->getValueType(0);
14676
14677 // fold (ftrunc c1) -> ftrunc(c1)
14678 if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14679 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
14680
14681 // fold ftrunc (known rounded int x) -> x
14682 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
14683 // likely to be generated to extract integer from a rounded floating value.
14684 switch (N0.getOpcode()) {
14685 default: break;
14686 case ISD::FRINT:
14687 case ISD::FTRUNC:
14688 case ISD::FNEARBYINT:
14689 case ISD::FFLOOR:
14690 case ISD::FCEIL:
14691 return N0;
14692 }
14693
14694 return SDValue();
14695}
14696
14697SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
14698 SDValue N0 = N->getOperand(0);
14699 EVT VT = N->getValueType(0);
14700
14701 // fold (ffloor c1) -> ffloor(c1)
14702 if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14703 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
14704
14705 return SDValue();
14706}
14707
14708SDValue DAGCombiner::visitFNEG(SDNode *N) {
14709 SDValue N0 = N->getOperand(0);
14710 EVT VT = N->getValueType(0);
14711 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14712
14713 // Constant fold FNEG.
14714 if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14715 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
14716
14717 if (SDValue NegN0 =
14718 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize))
14719 return NegN0;
14720
14721 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
14722 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
14723 // know it was called from a context with a nsz flag if the input fsub does
14724 // not.
14725 if (N0.getOpcode() == ISD::FSUB &&
14726 (DAG.getTarget().Options.NoSignedZerosFPMath ||
14727 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) {
14728 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1),
14729 N0.getOperand(0));
14730 }
14731
14732 if (SDValue Cast = foldSignChangeInBitcast(N))
14733 return Cast;
14734
14735 return SDValue();
14736}
14737
14738static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
14739 APFloat (*Op)(const APFloat &, const APFloat &)) {
14740 SDValue N0 = N->getOperand(0);
14741 SDValue N1 = N->getOperand(1);
14742 EVT VT = N->getValueType(0);
14743 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
14744 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
14745 const SDNodeFlags Flags = N->getFlags();
14746 unsigned Opc = N->getOpcode();
14747 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM;
14748 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM;
14749 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
14750
14751 if (N0CFP && N1CFP) {
14752 const APFloat &C0 = N0CFP->getValueAPF();
14753 const APFloat &C1 = N1CFP->getValueAPF();
14754 return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
14755 }
14756
14757 // Canonicalize to constant on RHS.
14758 if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
14759 !DAG.isConstantFPBuildVectorOrConstantFP(N1))
14760 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
14761
14762 if (N1CFP) {
14763 const APFloat &AF = N1CFP->getValueAPF();
14764
14765 // minnum(X, nan) -> X
14766 // maxnum(X, nan) -> X
14767 // minimum(X, nan) -> nan
14768 // maximum(X, nan) -> nan
14769 if (AF.isNaN())
14770 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0);
14771
14772 // In the following folds, inf can be replaced with the largest finite
14773 // float, if the ninf flag is set.
14774 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) {
14775 // minnum(X, -inf) -> -inf
14776 // maxnum(X, +inf) -> +inf
14777 // minimum(X, -inf) -> -inf if nnan
14778 // maximum(X, +inf) -> +inf if nnan
14779 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs()))
14780 return N->getOperand(1);
14781
14782 // minnum(X, +inf) -> X if nnan
14783 // maxnum(X, -inf) -> X if nnan
14784 // minimum(X, +inf) -> X
14785 // maximum(X, -inf) -> X
14786 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs()))
14787 return N->getOperand(0);
14788 }
14789 }
14790
14791 return SDValue();
14792}
14793
14794SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
14795 return visitFMinMax(DAG, N, minnum);
14796}
14797
14798SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
14799 return visitFMinMax(DAG, N, maxnum);
14800}
14801
14802SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
14803 return visitFMinMax(DAG, N, minimum);
14804}
14805
14806SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
14807 return visitFMinMax(DAG, N, maximum);
14808}
14809
14810SDValue DAGCombiner::visitFABS(SDNode *N) {
14811 SDValue N0 = N->getOperand(0);
14812 EVT VT = N->getValueType(0);
14813
14814 // fold (fabs c1) -> fabs(c1)
14815 if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
14816 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
14817
14818 // fold (fabs (fabs x)) -> (fabs x)
14819 if (N0.getOpcode() == ISD::FABS)
14820 return N->getOperand(0);
14821
14822 // fold (fabs (fneg x)) -> (fabs x)
14823 // fold (fabs (fcopysign x, y)) -> (fabs x)
14824 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
14825 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
14826
14827 if (SDValue Cast = foldSignChangeInBitcast(N))
14828 return Cast;
14829
14830 return SDValue();
14831}
14832
14833SDValue DAGCombiner::visitBRCOND(SDNode *N) {
14834 SDValue Chain = N->getOperand(0);
14835 SDValue N1 = N->getOperand(1);
14836 SDValue N2 = N->getOperand(2);
14837
14838 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
14839 // nondeterministic jumps).
14840 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) {
14841 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain,
14842 N1->getOperand(0), N2);
14843 }
14844
14845 // If N is a constant we could fold this into a fallthrough or unconditional
14846 // branch. However that doesn't happen very often in normal code, because
14847 // Instcombine/SimplifyCFG should have handled the available opportunities.
14848 // If we did this folding here, it would be necessary to update the
14849 // MachineBasicBlock CFG, which is awkward.
14850
14851 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
14852 // on the target.
14853 if (N1.getOpcode() == ISD::SETCC &&
14854 TLI.isOperationLegalOrCustom(ISD::BR_CC,
14855 N1.getOperand(0).getValueType())) {
14856 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
14857 Chain, N1.getOperand(2),
14858 N1.getOperand(0), N1.getOperand(1), N2);
14859 }
14860
14861 if (N1.hasOneUse()) {
14862 // rebuildSetCC calls visitXor which may change the Chain when there is a
14863 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
14864 HandleSDNode ChainHandle(Chain);
14865 if (SDValue NewN1 = rebuildSetCC(N1))
14866 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other,
14867 ChainHandle.getValue(), NewN1, N2);
14868 }
14869
14870 return SDValue();
14871}
14872
14873SDValue DAGCombiner::rebuildSetCC(SDValue N) {
14874 if (N.getOpcode() == ISD::SRL ||
14875 (N.getOpcode() == ISD::TRUNCATE &&
14876 (N.getOperand(0).hasOneUse() &&
14877 N.getOperand(0).getOpcode() == ISD::SRL))) {
14878 // Look pass the truncate.
14879 if (N.getOpcode() == ISD::TRUNCATE)
14880 N = N.getOperand(0);
14881
14882 // Match this pattern so that we can generate simpler code:
14883 //
14884 // %a = ...
14885 // %b = and i32 %a, 2
14886 // %c = srl i32 %b, 1
14887 // brcond i32 %c ...
14888 //
14889 // into
14890 //
14891 // %a = ...
14892 // %b = and i32 %a, 2
14893 // %c = setcc eq %b, 0
14894 // brcond %c ...
14895 //
14896 // This applies only when the AND constant value has one bit set and the
14897 // SRL constant is equal to the log2 of the AND constant. The back-end is
14898 // smart enough to convert the result into a TEST/JMP sequence.
14899 SDValue Op0 = N.getOperand(0);
14900 SDValue Op1 = N.getOperand(1);
14901
14902 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
14903 SDValue AndOp1 = Op0.getOperand(1);
14904
14905 if (AndOp1.getOpcode() == ISD::Constant) {
14906 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
14907
14908 if (AndConst.isPowerOf2() &&
14909 cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
14910 SDLoc DL(N);
14911 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
14912 Op0, DAG.getConstant(0, DL, Op0.getValueType()),
14913 ISD::SETNE);
14914 }
14915 }
14916 }
14917 }
14918
14919 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
14920 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
14921 if (N.getOpcode() == ISD::XOR) {
14922 // Because we may call this on a speculatively constructed
14923 // SimplifiedSetCC Node, we need to simplify this node first.
14924 // Ideally this should be folded into SimplifySetCC and not
14925 // here. For now, grab a handle to N so we don't lose it from
14926 // replacements interal to the visit.
14927 HandleSDNode XORHandle(N);
14928 while (N.getOpcode() == ISD::XOR) {
14929 SDValue Tmp = visitXOR(N.getNode());
14930 // No simplification done.
14931 if (!Tmp.getNode())
14932 break;
14933 // Returning N is form in-visit replacement that may invalidated
14934 // N. Grab value from Handle.
14935 if (Tmp.getNode() == N.getNode())
14936 N = XORHandle.getValue();
14937 else // Node simplified. Try simplifying again.
14938 N = Tmp;
14939 }
14940
14941 if (N.getOpcode() != ISD::XOR)
14942 return N;
14943
14944 SDValue Op0 = N->getOperand(0);
14945 SDValue Op1 = N->getOperand(1);
14946
14947 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
14948 bool Equal = false;
14949 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
14950 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR &&
14951 Op0.getValueType() == MVT::i1) {
14952 N = Op0;
14953 Op0 = N->getOperand(0);
14954 Op1 = N->getOperand(1);
14955 Equal = true;
14956 }
14957
14958 EVT SetCCVT = N.getValueType();
14959 if (LegalTypes)
14960 SetCCVT = getSetCCResultType(SetCCVT);
14961 // Replace the uses of XOR with SETCC
14962 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1,
14963 Equal ? ISD::SETEQ : ISD::SETNE);
14964 }
14965 }
14966
14967 return SDValue();
14968}
14969
14970// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
14971//
14972SDValue DAGCombiner::visitBR_CC(SDNode *N) {
14973 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
14974 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
14975
14976 // If N is a constant we could fold this into a fallthrough or unconditional
14977 // branch. However that doesn't happen very often in normal code, because
14978 // Instcombine/SimplifyCFG should have handled the available opportunities.
14979 // If we did this folding here, it would be necessary to update the
14980 // MachineBasicBlock CFG, which is awkward.
14981
14982 // Use SimplifySetCC to simplify SETCC's.
14983 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
14984 CondLHS, CondRHS, CC->get(), SDLoc(N),
14985 false);
14986 if (Simp.getNode()) AddToWorklist(Simp.getNode());
14987
14988 // fold to a simpler setcc
14989 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
14990 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
14991 N->getOperand(0), Simp.getOperand(2),
14992 Simp.getOperand(0), Simp.getOperand(1),
14993 N->getOperand(4));
14994
14995 return SDValue();
14996}
14997
14998static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec,
14999 bool &IsLoad, bool &IsMasked, SDValue &Ptr,
15000 const TargetLowering &TLI) {
15001 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
15002 if (LD->isIndexed())
15003 return false;
15004 EVT VT = LD->getMemoryVT();
15005 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT))
15006 return false;
15007 Ptr = LD->getBasePtr();
15008 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
15009 if (ST->isIndexed())
15010 return false;
15011 EVT VT = ST->getMemoryVT();
15012 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT))
15013 return false;
15014 Ptr = ST->getBasePtr();
15015 IsLoad = false;
15016 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
15017 if (LD->isIndexed())
15018 return false;
15019 EVT VT = LD->getMemoryVT();
15020 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) &&
15021 !TLI.isIndexedMaskedLoadLegal(Dec, VT))
15022 return false;
15023 Ptr = LD->getBasePtr();
15024 IsMasked = true;
15025 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
15026 if (ST->isIndexed())
15027 return false;
15028 EVT VT = ST->getMemoryVT();
15029 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) &&
15030 !TLI.isIndexedMaskedStoreLegal(Dec, VT))
15031 return false;
15032 Ptr = ST->getBasePtr();
15033 IsLoad = false;
15034 IsMasked = true;
15035 } else {
15036 return false;
15037 }
15038 return true;
15039}
15040
15041/// Try turning a load/store into a pre-indexed load/store when the base
15042/// pointer is an add or subtract and it has other uses besides the load/store.
15043/// After the transformation, the new indexed load/store has effectively folded
15044/// the add/subtract in and all of its other uses are redirected to the
15045/// new load/store.
15046bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
15047 if (Level < AfterLegalizeDAG)
15048 return false;
15049
15050 bool IsLoad = true;
15051 bool IsMasked = false;
15052 SDValue Ptr;
15053 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked,
15054 Ptr, TLI))
15055 return false;
15056
15057 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
15058 // out. There is no reason to make this a preinc/predec.
15059 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
15060 Ptr.getNode()->hasOneUse())
15061 return false;
15062
15063 // Ask the target to do addressing mode selection.
15064 SDValue BasePtr;
15065 SDValue Offset;
15066 ISD::MemIndexedMode AM = ISD::UNINDEXED;
15067 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
15068 return false;
15069
15070 // Backends without true r+i pre-indexed forms may need to pass a
15071 // constant base with a variable offset so that constant coercion
15072 // will work with the patterns in canonical form.
15073 bool Swapped = false;
15074 if (isa<ConstantSDNode>(BasePtr)) {
15075 std::swap(BasePtr, Offset);
15076 Swapped = true;
15077 }
15078
15079 // Don't create a indexed load / store with zero offset.
15080 if (isNullConstant(Offset))
15081 return false;
15082
15083 // Try turning it into a pre-indexed load / store except when:
15084 // 1) The new base ptr is a frame index.
15085 // 2) If N is a store and the new base ptr is either the same as or is a
15086 // predecessor of the value being stored.
15087 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
15088 // that would create a cycle.
15089 // 4) All uses are load / store ops that use it as old base ptr.
15090
15091 // Check #1. Preinc'ing a frame index would require copying the stack pointer
15092 // (plus the implicit offset) to a register to preinc anyway.
15093 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
15094 return false;
15095
15096 // Check #2.
15097 if (!IsLoad) {
15098 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue()
15099 : cast<StoreSDNode>(N)->getValue();
15100
15101 // Would require a copy.
15102 if (Val == BasePtr)
15103 return false;
15104
15105 // Would create a cycle.
15106 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
15107 return false;
15108 }
15109
15110 // Caches for hasPredecessorHelper.
15111 SmallPtrSet<const SDNode *, 32> Visited;
15112 SmallVector<const SDNode *, 16> Worklist;
15113 Worklist.push_back(N);
15114
15115 // If the offset is a constant, there may be other adds of constants that
15116 // can be folded with this one. We should do this to avoid having to keep
15117 // a copy of the original base pointer.
15118 SmallVector<SDNode *, 16> OtherUses;
15119 if (isa<ConstantSDNode>(Offset))
15120 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
15121 UE = BasePtr.getNode()->use_end();
15122 UI != UE; ++UI) {
15123 SDUse &Use = UI.getUse();
15124 // Skip the use that is Ptr and uses of other results from BasePtr's
15125 // node (important for nodes that return multiple results).
15126 if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
15127 continue;
15128
15129 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
15130 continue;
15131
15132 if (Use.getUser()->getOpcode() != ISD::ADD &&
15133 Use.getUser()->getOpcode() != ISD::SUB) {
15134 OtherUses.clear();
15135 break;
15136 }
15137
15138 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
15139 if (!isa<ConstantSDNode>(Op1)) {
15140 OtherUses.clear();
15141 break;
15142 }
15143
15144 // FIXME: In some cases, we can be smarter about this.
15145 if (Op1.getValueType() != Offset.getValueType()) {
15146 OtherUses.clear();
15147 break;
15148 }
15149
15150 OtherUses.push_back(Use.getUser());
15151 }
15152
15153 if (Swapped)
15154 std::swap(BasePtr, Offset);
15155
15156 // Now check for #3 and #4.
15157 bool RealUse = false;
15158
15159 for (SDNode *Use : Ptr.getNode()->uses()) {
15160 if (Use == N)
15161 continue;
15162 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
15163 return false;
15164
15165 // If Ptr may be folded in addressing mode of other use, then it's
15166 // not profitable to do this transformation.
15167 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
15168 RealUse = true;
15169 }
15170
15171 if (!RealUse)
15172 return false;
15173
15174 SDValue Result;
15175 if (!IsMasked) {
15176 if (IsLoad)
15177 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
15178 else
15179 Result =
15180 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
15181 } else {
15182 if (IsLoad)
15183 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
15184 Offset, AM);
15185 else
15186 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr,
15187 Offset, AM);
15188 }
15189 ++PreIndexedNodes;
15190 ++NodesCombined;
15191 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.4 "; N->dump
(&DAG); dbgs() << "\nWith: "; Result.getNode()->
dump(&DAG); dbgs() << '\n'; } } while (false)
15192 Result.getNode()->dump(&DAG); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.4 "; N->dump
(&DAG); dbgs() << "\nWith: "; Result.getNode()->
dump(&DAG); dbgs() << '\n'; } } while (false)
;
15193 WorklistRemover DeadNodes(*this);
15194 if (IsLoad) {
15195 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
15196 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
15197 } else {
15198 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
15199 }
15200
15201 // Finally, since the node is now dead, remove it from the graph.
15202 deleteAndRecombine(N);
15203
15204 if (Swapped)
15205 std::swap(BasePtr, Offset);
15206
15207 // Replace other uses of BasePtr that can be updated to use Ptr
15208 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
15209 unsigned OffsetIdx = 1;
15210 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
15211 OffsetIdx = 0;
15212 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==((OtherUses[i]->getOperand(!OffsetIdx).getNode() == BasePtr
.getNode() && "Expected BasePtr operand") ? static_cast
<void> (0) : __assert_fail ("OtherUses[i]->getOperand(!OffsetIdx).getNode() == BasePtr.getNode() && \"Expected BasePtr operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15213, __PRETTY_FUNCTION__))
15213 BasePtr.getNode() && "Expected BasePtr operand")((OtherUses[i]->getOperand(!OffsetIdx).getNode() == BasePtr
.getNode() && "Expected BasePtr operand") ? static_cast
<void> (0) : __assert_fail ("OtherUses[i]->getOperand(!OffsetIdx).getNode() == BasePtr.getNode() && \"Expected BasePtr operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15213, __PRETTY_FUNCTION__))
;
15214
15215 // We need to replace ptr0 in the following expression:
15216 // x0 * offset0 + y0 * ptr0 = t0
15217 // knowing that
15218 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
15219 //
15220 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
15221 // indexed load/store and the expression that needs to be re-written.
15222 //
15223 // Therefore, we have:
15224 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
15225
15226 auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
15227 const APInt &Offset0 = CN->getAPIntValue();
15228 const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
15229 int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
15230 int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
15231 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
15232 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
15233
15234 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
15235
15236 APInt CNV = Offset0;
15237 if (X0 < 0) CNV = -CNV;
15238 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
15239 else CNV = CNV - Offset1;
15240
15241 SDLoc DL(OtherUses[i]);
15242
15243 // We can now generate the new expression.
15244 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
15245 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0);
15246
15247 SDValue NewUse = DAG.getNode(Opcode,
15248 DL,
15249 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
15250 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
15251 deleteAndRecombine(OtherUses[i]);
15252 }
15253
15254 // Replace the uses of Ptr with uses of the updated base value.
15255 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0));
15256 deleteAndRecombine(Ptr.getNode());
15257 AddToWorklist(Result.getNode());
15258
15259 return true;
15260}
15261
15262static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse,
15263 SDValue &BasePtr, SDValue &Offset,
15264 ISD::MemIndexedMode &AM,
15265 SelectionDAG &DAG,
15266 const TargetLowering &TLI) {
15267 if (PtrUse == N ||
15268 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB))
15269 return false;
15270
15271 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG))
15272 return false;
15273
15274 // Don't create a indexed load / store with zero offset.
15275 if (isNullConstant(Offset))
15276 return false;
15277
15278 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
15279 return false;
15280
15281 SmallPtrSet<const SDNode *, 32> Visited;
15282 for (SDNode *Use : BasePtr.getNode()->uses()) {
15283 if (Use == Ptr.getNode())
15284 continue;
15285
15286 // No if there's a later user which could perform the index instead.
15287 if (isa<MemSDNode>(Use)) {
15288 bool IsLoad = true;
15289 bool IsMasked = false;
15290 SDValue OtherPtr;
15291 if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad,
15292 IsMasked, OtherPtr, TLI)) {
15293 SmallVector<const SDNode *, 2> Worklist;
15294 Worklist.push_back(Use);
15295 if (SDNode::hasPredecessorHelper(N, Visited, Worklist))
15296 return false;
15297 }
15298 }
15299
15300 // If all the uses are load / store addresses, then don't do the
15301 // transformation.
15302 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) {
15303 for (SDNode *UseUse : Use->uses())
15304 if (canFoldInAddressingMode(Use, UseUse, DAG, TLI))
15305 return false;
15306 }
15307 }
15308 return true;
15309}
15310
15311static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad,
15312 bool &IsMasked, SDValue &Ptr,
15313 SDValue &BasePtr, SDValue &Offset,
15314 ISD::MemIndexedMode &AM,
15315 SelectionDAG &DAG,
15316 const TargetLowering &TLI) {
15317 if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad,
15318 IsMasked, Ptr, TLI) ||
15319 Ptr.getNode()->hasOneUse())
15320 return nullptr;
15321
15322 // Try turning it into a post-indexed load / store except when
15323 // 1) All uses are load / store ops that use it as base ptr (and
15324 // it may be folded as addressing mmode).
15325 // 2) Op must be independent of N, i.e. Op is neither a predecessor
15326 // nor a successor of N. Otherwise, if Op is folded that would
15327 // create a cycle.
15328 for (SDNode *Op : Ptr->uses()) {
15329 // Check for #1.
15330 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI))
15331 continue;
15332
15333 // Check for #2.
15334 SmallPtrSet<const SDNode *, 32> Visited;
15335 SmallVector<const SDNode *, 8> Worklist;
15336 // Ptr is predecessor to both N and Op.
15337 Visited.insert(Ptr.getNode());
15338 Worklist.push_back(N);
15339 Worklist.push_back(Op);
15340 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
15341 !SDNode::hasPredecessorHelper(Op, Visited, Worklist))
15342 return Op;
15343 }
15344 return nullptr;
15345}
15346
15347/// Try to combine a load/store with a add/sub of the base pointer node into a
15348/// post-indexed load/store. The transformation folded the add/subtract into the
15349/// new indexed load/store effectively and all of its uses are redirected to the
15350/// new load/store.
15351bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
15352 if (Level < AfterLegalizeDAG)
15353 return false;
15354
15355 bool IsLoad = true;
15356 bool IsMasked = false;
15357 SDValue Ptr;
15358 SDValue BasePtr;
15359 SDValue Offset;
15360 ISD::MemIndexedMode AM = ISD::UNINDEXED;
15361 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr,
15362 Offset, AM, DAG, TLI);
15363 if (!Op)
15364 return false;
15365
15366 SDValue Result;
15367 if (!IsMasked)
15368 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
15369 Offset, AM)
15370 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N),
15371 BasePtr, Offset, AM);
15372 else
15373 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N),
15374 BasePtr, Offset, AM)
15375 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N),
15376 BasePtr, Offset, AM);
15377 ++PostIndexedNodes;
15378 ++NodesCombined;
15379 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.5 "; N->dump
(&DAG); dbgs() << "\nWith: "; Result.getNode()->
dump(&DAG); dbgs() << '\n'; } } while (false)
15380 dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.5 "; N->dump
(&DAG); dbgs() << "\nWith: "; Result.getNode()->
dump(&DAG); dbgs() << '\n'; } } while (false)
15381 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.5 "; N->dump
(&DAG); dbgs() << "\nWith: "; Result.getNode()->
dump(&DAG); dbgs() << '\n'; } } while (false)
;
15382 WorklistRemover DeadNodes(*this);
15383 if (IsLoad) {
15384 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
15385 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
15386 } else {
15387 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
15388 }
15389
15390 // Finally, since the node is now dead, remove it from the graph.
15391 deleteAndRecombine(N);
15392
15393 // Replace the uses of Use with uses of the updated base value.
15394 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
15395 Result.getValue(IsLoad ? 1 : 0));
15396 deleteAndRecombine(Op);
15397 return true;
15398}
15399
15400/// Return the base-pointer arithmetic from an indexed \p LD.
15401SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
15402 ISD::MemIndexedMode AM = LD->getAddressingMode();
15403 assert(AM != ISD::UNINDEXED)((AM != ISD::UNINDEXED) ? static_cast<void> (0) : __assert_fail
("AM != ISD::UNINDEXED", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15403, __PRETTY_FUNCTION__))
;
15404 SDValue BP = LD->getOperand(1);
15405 SDValue Inc = LD->getOperand(2);
15406
15407 // Some backends use TargetConstants for load offsets, but don't expect
15408 // TargetConstants in general ADD nodes. We can convert these constants into
15409 // regular Constants (if the constant is not opaque).
15410 assert((Inc.getOpcode() != ISD::TargetConstant ||(((Inc.getOpcode() != ISD::TargetConstant || !cast<ConstantSDNode
>(Inc)->isOpaque()) && "Cannot split out indexing using opaque target constants"
) ? static_cast<void> (0) : __assert_fail ("(Inc.getOpcode() != ISD::TargetConstant || !cast<ConstantSDNode>(Inc)->isOpaque()) && \"Cannot split out indexing using opaque target constants\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15412, __PRETTY_FUNCTION__))
15411 !cast<ConstantSDNode>(Inc)->isOpaque()) &&(((Inc.getOpcode() != ISD::TargetConstant || !cast<ConstantSDNode
>(Inc)->isOpaque()) && "Cannot split out indexing using opaque target constants"
) ? static_cast<void> (0) : __assert_fail ("(Inc.getOpcode() != ISD::TargetConstant || !cast<ConstantSDNode>(Inc)->isOpaque()) && \"Cannot split out indexing using opaque target constants\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15412, __PRETTY_FUNCTION__))
15412 "Cannot split out indexing using opaque target constants")(((Inc.getOpcode() != ISD::TargetConstant || !cast<ConstantSDNode
>(Inc)->isOpaque()) && "Cannot split out indexing using opaque target constants"
) ? static_cast<void> (0) : __assert_fail ("(Inc.getOpcode() != ISD::TargetConstant || !cast<ConstantSDNode>(Inc)->isOpaque()) && \"Cannot split out indexing using opaque target constants\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15412, __PRETTY_FUNCTION__))
;
15413 if (Inc.getOpcode() == ISD::TargetConstant) {
15414 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
15415 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
15416 ConstInc->getValueType(0));
15417 }
15418
15419 unsigned Opc =
15420 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
15421 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
15422}
15423
15424static inline ElementCount numVectorEltsOrZero(EVT T) {
15425 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0);
15426}
15427
15428bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
15429 Val = ST->getValue();
15430 EVT STType = Val.getValueType();
15431 EVT STMemType = ST->getMemoryVT();
15432 if (STType == STMemType)
15433 return true;
15434 if (isTypeLegal(STMemType))
15435 return false; // fail.
15436 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
15437 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
15438 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
15439 return true;
15440 }
15441 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
15442 STType.isInteger() && STMemType.isInteger()) {
15443 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
15444 return true;
15445 }
15446 if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
15447 Val = DAG.getBitcast(STMemType, Val);
15448 return true;
15449 }
15450 return false; // fail.
15451}
15452
15453bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
15454 EVT LDMemType = LD->getMemoryVT();
15455 EVT LDType = LD->getValueType(0);
15456 assert(Val.getValueType() == LDMemType &&((Val.getValueType() == LDMemType && "Attempting to extend value of non-matching type"
) ? static_cast<void> (0) : __assert_fail ("Val.getValueType() == LDMemType && \"Attempting to extend value of non-matching type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15457, __PRETTY_FUNCTION__))
15457 "Attempting to extend value of non-matching type")((Val.getValueType() == LDMemType && "Attempting to extend value of non-matching type"
) ? static_cast<void> (0) : __assert_fail ("Val.getValueType() == LDMemType && \"Attempting to extend value of non-matching type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15457, __PRETTY_FUNCTION__))
;
15458 if (LDType == LDMemType)
15459 return true;
15460 if (LDMemType.isInteger() && LDType.isInteger()) {
15461 switch (LD->getExtensionType()) {
15462 case ISD::NON_EXTLOAD:
15463 Val = DAG.getBitcast(LDType, Val);
15464 return true;
15465 case ISD::EXTLOAD:
15466 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
15467 return true;
15468 case ISD::SEXTLOAD:
15469 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
15470 return true;
15471 case ISD::ZEXTLOAD:
15472 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
15473 return true;
15474 }
15475 }
15476 return false;
15477}
15478
15479SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
15480 if (OptLevel == CodeGenOpt::None || !LD->isSimple())
15481 return SDValue();
15482 SDValue Chain = LD->getOperand(0);
15483 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
15484 // TODO: Relax this restriction for unordered atomics (see D66309)
15485 if (!ST || !ST->isSimple())
15486 return SDValue();
15487
15488 EVT LDType = LD->getValueType(0);
15489 EVT LDMemType = LD->getMemoryVT();
15490 EVT STMemType = ST->getMemoryVT();
15491 EVT STType = ST->getValue().getValueType();
15492
15493 // There are two cases to consider here:
15494 // 1. The store is fixed width and the load is scalable. In this case we
15495 // don't know at compile time if the store completely envelops the load
15496 // so we abandon the optimisation.
15497 // 2. The store is scalable and the load is fixed width. We could
15498 // potentially support a limited number of cases here, but there has been
15499 // no cost-benefit analysis to prove it's worth it.
15500 bool LdStScalable = LDMemType.isScalableVector();
15501 if (LdStScalable != STMemType.isScalableVector())
15502 return SDValue();
15503
15504 // If we are dealing with scalable vectors on a big endian platform the
15505 // calculation of offsets below becomes trickier, since we do not know at
15506 // compile time the absolute size of the vector. Until we've done more
15507 // analysis on big-endian platforms it seems better to bail out for now.
15508 if (LdStScalable && DAG.getDataLayout().isBigEndian())
15509 return SDValue();
15510
15511 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
15512 BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
15513 int64_t Offset;
15514 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
15515 return SDValue();
15516
15517 // Normalize for Endianness. After this Offset=0 will denote that the least
15518 // significant bit in the loaded value maps to the least significant bit in
15519 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
15520 // n:th least significant byte of the stored value.
15521 if (DAG.getDataLayout().isBigEndian())
15522 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() -
15523 (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) /
15524 8 -
15525 Offset;
15526
15527 // Check that the stored value cover all bits that are loaded.
15528 bool STCoversLD;
15529
15530 TypeSize LdMemSize = LDMemType.getSizeInBits();
15531 TypeSize StMemSize = STMemType.getSizeInBits();
15532 if (LdStScalable)
15533 STCoversLD = (Offset == 0) && LdMemSize == StMemSize;
15534 else
15535 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <=
15536 StMemSize.getFixedSize());
15537
15538 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
15539 if (LD->isIndexed()) {
15540 // Cannot handle opaque target constants and we must respect the user's
15541 // request not to split indexes from loads.
15542 if (!canSplitIdx(LD))
15543 return SDValue();
15544 SDValue Idx = SplitIndexingFromLoad(LD);
15545 SDValue Ops[] = {Val, Idx, Chain};
15546 return CombineTo(LD, Ops, 3);
15547 }
15548 return CombineTo(LD, Val, Chain);
15549 };
15550
15551 if (!STCoversLD)
15552 return SDValue();
15553
15554 // Memory as copy space (potentially masked).
15555 if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
15556 // Simple case: Direct non-truncating forwarding
15557 if (LDType.getSizeInBits() == LdMemSize)
15558 return ReplaceLd(LD, ST->getValue(), Chain);
15559 // Can we model the truncate and extension with an and mask?
15560 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
15561 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
15562 // Mask to size of LDMemType
15563 auto Mask =
15564 DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(),
15565 StMemSize.getFixedSize()),
15566 SDLoc(ST), STType);
15567 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
15568 return ReplaceLd(LD, Val, Chain);
15569 }
15570 }
15571
15572 // TODO: Deal with nonzero offset.
15573 if (LD->getBasePtr().isUndef() || Offset != 0)
15574 return SDValue();
15575 // Model necessary truncations / extenstions.
15576 SDValue Val;
15577 // Truncate Value To Stored Memory Size.
15578 do {
15579 if (!getTruncatedStoreValue(ST, Val))
15580 continue;
15581 if (!isTypeLegal(LDMemType))
15582 continue;
15583 if (STMemType != LDMemType) {
15584 // TODO: Support vectors? This requires extract_subvector/bitcast.
15585 if (!STMemType.isVector() && !LDMemType.isVector() &&
15586 STMemType.isInteger() && LDMemType.isInteger())
15587 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
15588 else
15589 continue;
15590 }
15591 if (!extendLoadedValueToExtension(LD, Val))
15592 continue;
15593 return ReplaceLd(LD, Val, Chain);
15594 } while (false);
15595
15596 // On failure, cleanup dead nodes we may have created.
15597 if (Val->use_empty())
15598 deleteAndRecombine(Val.getNode());
15599 return SDValue();
15600}
15601
15602SDValue DAGCombiner::visitLOAD(SDNode *N) {
15603 LoadSDNode *LD = cast<LoadSDNode>(N);
15604 SDValue Chain = LD->getChain();
15605 SDValue Ptr = LD->getBasePtr();
15606
15607 // If load is not volatile and there are no uses of the loaded value (and
15608 // the updated indexed value in case of indexed loads), change uses of the
15609 // chain value into uses of the chain input (i.e. delete the dead load).
15610 // TODO: Allow this for unordered atomics (see D66309)
15611 if (LD->isSimple()) {
15612 if (N->getValueType(1) == MVT::Other) {
15613 // Unindexed loads.
15614 if (!N->hasAnyUseOfValue(0)) {
15615 // It's not safe to use the two value CombineTo variant here. e.g.
15616 // v1, chain2 = load chain1, loc
15617 // v2, chain3 = load chain2, loc
15618 // v3 = add v2, c
15619 // Now we replace use of chain2 with chain1. This makes the second load
15620 // isomorphic to the one we are deleting, and thus makes this load live.
15621 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.6 "; N->dump
(&DAG); dbgs() << "\nWith chain: "; Chain.getNode()
->dump(&DAG); dbgs() << "\n"; } } while (false)
15622 dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.6 "; N->dump
(&DAG); dbgs() << "\nWith chain: "; Chain.getNode()
->dump(&DAG); dbgs() << "\n"; } } while (false)
15623 dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.6 "; N->dump
(&DAG); dbgs() << "\nWith chain: "; Chain.getNode()
->dump(&DAG); dbgs() << "\n"; } } while (false)
;
15624 WorklistRemover DeadNodes(*this);
15625 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
15626 AddUsersToWorklist(Chain.getNode());
15627 if (N->use_empty())
15628 deleteAndRecombine(N);
15629
15630 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15631 }
15632 } else {
15633 // Indexed loads.
15634 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?")((N->getValueType(2) == MVT::Other && "Malformed indexed loads?"
) ? static_cast<void> (0) : __assert_fail ("N->getValueType(2) == MVT::Other && \"Malformed indexed loads?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15634, __PRETTY_FUNCTION__))
;
15635
15636 // If this load has an opaque TargetConstant offset, then we cannot split
15637 // the indexing into an add/sub directly (that TargetConstant may not be
15638 // valid for a different type of node, and we cannot convert an opaque
15639 // target constant into a regular constant).
15640 bool CanSplitIdx = canSplitIdx(LD);
15641
15642 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) {
15643 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
15644 SDValue Index;
15645 if (N->hasAnyUseOfValue(1) && CanSplitIdx) {
15646 Index = SplitIndexingFromLoad(LD);
15647 // Try to fold the base pointer arithmetic into subsequent loads and
15648 // stores.
15649 AddUsersToWorklist(N);
15650 } else
15651 Index = DAG.getUNDEF(N->getValueType(1));
15652 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.7 "; N->dump
(&DAG); dbgs() << "\nWith: "; Undef.getNode()->dump
(&DAG); dbgs() << " and 2 other values\n"; } } while
(false)
15653 dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.7 "; N->dump
(&DAG); dbgs() << "\nWith: "; Undef.getNode()->dump
(&DAG); dbgs() << " and 2 other values\n"; } } while
(false)
15654 dbgs() << " and 2 other values\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nReplacing.7 "; N->dump
(&DAG); dbgs() << "\nWith: "; Undef.getNode()->dump
(&DAG); dbgs() << " and 2 other values\n"; } } while
(false)
;
15655 WorklistRemover DeadNodes(*this);
15656 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
15657 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
15658 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
15659 deleteAndRecombine(N);
15660 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15661 }
15662 }
15663 }
15664
15665 // If this load is directly stored, replace the load value with the stored
15666 // value.
15667 if (auto V = ForwardStoreValueToDirectLoad(LD))
15668 return V;
15669
15670 // Try to infer better alignment information than the load already has.
15671 if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) {
15672 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
15673 if (*Alignment > LD->getAlign() &&
15674 isAligned(*Alignment, LD->getSrcValueOffset())) {
15675 SDValue NewLoad = DAG.getExtLoad(
15676 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
15677 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment,
15678 LD->getMemOperand()->getFlags(), LD->getAAInfo());
15679 // NewLoad will always be N as we are only refining the alignment
15680 assert(NewLoad.getNode() == N)((NewLoad.getNode() == N) ? static_cast<void> (0) : __assert_fail
("NewLoad.getNode() == N", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15680, __PRETTY_FUNCTION__))
;
15681 (void)NewLoad;
15682 }
15683 }
15684 }
15685
15686 if (LD->isUnindexed()) {
15687 // Walk up chain skipping non-aliasing memory nodes.
15688 SDValue BetterChain = FindBetterChain(LD, Chain);
15689
15690 // If there is a better chain.
15691 if (Chain != BetterChain) {
15692 SDValue ReplLoad;
15693
15694 // Replace the chain to void dependency.
15695 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
15696 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
15697 BetterChain, Ptr, LD->getMemOperand());
15698 } else {
15699 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
15700 LD->getValueType(0),
15701 BetterChain, Ptr, LD->getMemoryVT(),
15702 LD->getMemOperand());
15703 }
15704
15705 // Create token factor to keep old chain connected.
15706 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
15707 MVT::Other, Chain, ReplLoad.getValue(1));
15708
15709 // Replace uses with load result and token factor
15710 return CombineTo(N, ReplLoad.getValue(0), Token);
15711 }
15712 }
15713
15714 // Try transforming N to an indexed load.
15715 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
15716 return SDValue(N, 0);
15717
15718 // Try to slice up N to more direct loads if the slices are mapped to
15719 // different register banks or pairing can take place.
15720 if (SliceUpLoad(N))
15721 return SDValue(N, 0);
15722
15723 return SDValue();
15724}
15725
15726namespace {
15727
15728/// Helper structure used to slice a load in smaller loads.
15729/// Basically a slice is obtained from the following sequence:
15730/// Origin = load Ty1, Base
15731/// Shift = srl Ty1 Origin, CstTy Amount
15732/// Inst = trunc Shift to Ty2
15733///
15734/// Then, it will be rewritten into:
15735/// Slice = load SliceTy, Base + SliceOffset
15736/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
15737///
15738/// SliceTy is deduced from the number of bits that are actually used to
15739/// build Inst.
15740struct LoadedSlice {
15741 /// Helper structure used to compute the cost of a slice.
15742 struct Cost {
15743 /// Are we optimizing for code size.
15744 bool ForCodeSize = false;
15745
15746 /// Various cost.
15747 unsigned Loads = 0;
15748 unsigned Truncates = 0;
15749 unsigned CrossRegisterBanksCopies = 0;
15750 unsigned ZExts = 0;
15751 unsigned Shift = 0;
15752
15753 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
15754
15755 /// Get the cost of one isolated slice.
15756 Cost(const LoadedSlice &LS, bool ForCodeSize)
15757 : ForCodeSize(ForCodeSize), Loads(1) {
15758 EVT TruncType = LS.Inst->getValueType(0);
15759 EVT LoadedType = LS.getLoadedType();
15760 if (TruncType != LoadedType &&
15761 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
15762 ZExts = 1;
15763 }
15764
15765 /// Account for slicing gain in the current cost.
15766 /// Slicing provide a few gains like removing a shift or a
15767 /// truncate. This method allows to grow the cost of the original
15768 /// load with the gain from this slice.
15769 void addSliceGain(const LoadedSlice &LS) {
15770 // Each slice saves a truncate.
15771 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
15772 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
15773 LS.Inst->getValueType(0)))
15774 ++Truncates;
15775 // If there is a shift amount, this slice gets rid of it.
15776 if (LS.Shift)
15777 ++Shift;
15778 // If this slice can merge a cross register bank copy, account for it.
15779 if (LS.canMergeExpensiveCrossRegisterBankCopy())
15780 ++CrossRegisterBanksCopies;
15781 }
15782
15783 Cost &operator+=(const Cost &RHS) {
15784 Loads += RHS.Loads;
15785 Truncates += RHS.Truncates;
15786 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
15787 ZExts += RHS.ZExts;
15788 Shift += RHS.Shift;
15789 return *this;
15790 }
15791
15792 bool operator==(const Cost &RHS) const {
15793 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
15794 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
15795 ZExts == RHS.ZExts && Shift == RHS.Shift;
15796 }
15797
15798 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
15799
15800 bool operator<(const Cost &RHS) const {
15801 // Assume cross register banks copies are as expensive as loads.
15802 // FIXME: Do we want some more target hooks?
15803 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
15804 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
15805 // Unless we are optimizing for code size, consider the
15806 // expensive operation first.
15807 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
15808 return ExpensiveOpsLHS < ExpensiveOpsRHS;
15809 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
15810 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
15811 }
15812
15813 bool operator>(const Cost &RHS) const { return RHS < *this; }
15814
15815 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
15816
15817 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
15818 };
15819
15820 // The last instruction that represent the slice. This should be a
15821 // truncate instruction.
15822 SDNode *Inst;
15823
15824 // The original load instruction.
15825 LoadSDNode *Origin;
15826
15827 // The right shift amount in bits from the original load.
15828 unsigned Shift;
15829
15830 // The DAG from which Origin came from.
15831 // This is used to get some contextual information about legal types, etc.
15832 SelectionDAG *DAG;
15833
15834 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
15835 unsigned Shift = 0, SelectionDAG *DAG = nullptr)
15836 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
15837
15838 /// Get the bits used in a chunk of bits \p BitWidth large.
15839 /// \return Result is \p BitWidth and has used bits set to 1 and
15840 /// not used bits set to 0.
15841 APInt getUsedBits() const {
15842 // Reproduce the trunc(lshr) sequence:
15843 // - Start from the truncated value.
15844 // - Zero extend to the desired bit width.
15845 // - Shift left.
15846 assert(Origin && "No original load to compare against.")((Origin && "No original load to compare against.") ?
static_cast<void> (0) : __assert_fail ("Origin && \"No original load to compare against.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15846, __PRETTY_FUNCTION__))
;
15847 unsigned BitWidth = Origin->getValueSizeInBits(0);
15848 assert(Inst && "This slice is not bound to an instruction")((Inst && "This slice is not bound to an instruction"
) ? static_cast<void> (0) : __assert_fail ("Inst && \"This slice is not bound to an instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15848, __PRETTY_FUNCTION__))
;
15849 assert(Inst->getValueSizeInBits(0) <= BitWidth &&((Inst->getValueSizeInBits(0) <= BitWidth && "Extracted slice is bigger than the whole type!"
) ? static_cast<void> (0) : __assert_fail ("Inst->getValueSizeInBits(0) <= BitWidth && \"Extracted slice is bigger than the whole type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15850, __PRETTY_FUNCTION__))
15850 "Extracted slice is bigger than the whole type!")((Inst->getValueSizeInBits(0) <= BitWidth && "Extracted slice is bigger than the whole type!"
) ? static_cast<void> (0) : __assert_fail ("Inst->getValueSizeInBits(0) <= BitWidth && \"Extracted slice is bigger than the whole type!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15850, __PRETTY_FUNCTION__))
;
15851 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
15852 UsedBits.setAllBits();
15853 UsedBits = UsedBits.zext(BitWidth);
15854 UsedBits <<= Shift;
15855 return UsedBits;
15856 }
15857
15858 /// Get the size of the slice to be loaded in bytes.
15859 unsigned getLoadedSize() const {
15860 unsigned SliceSize = getUsedBits().countPopulation();
15861 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.")((!(SliceSize & 0x7) && "Size is not a multiple of a byte."
) ? static_cast<void> (0) : __assert_fail ("!(SliceSize & 0x7) && \"Size is not a multiple of a byte.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15861, __PRETTY_FUNCTION__))
;
15862 return SliceSize / 8;
15863 }
15864
15865 /// Get the type that will be loaded for this slice.
15866 /// Note: This may not be the final type for the slice.
15867 EVT getLoadedType() const {
15868 assert(DAG && "Missing context")((DAG && "Missing context") ? static_cast<void>
(0) : __assert_fail ("DAG && \"Missing context\"", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15868, __PRETTY_FUNCTION__))
;
15869 LLVMContext &Ctxt = *DAG->getContext();
15870 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
15871 }
15872
15873 /// Get the alignment of the load used for this slice.
15874 Align getAlign() const {
15875 Align Alignment = Origin->getAlign();
15876 uint64_t Offset = getOffsetFromBase();
15877 if (Offset != 0)
15878 Alignment = commonAlignment(Alignment, Alignment.value() + Offset);
15879 return Alignment;
15880 }
15881
15882 /// Check if this slice can be rewritten with legal operations.
15883 bool isLegal() const {
15884 // An invalid slice is not legal.
15885 if (!Origin || !Inst || !DAG)
15886 return false;
15887
15888 // Offsets are for indexed load only, we do not handle that.
15889 if (!Origin->getOffset().isUndef())
15890 return false;
15891
15892 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
15893
15894 // Check that the type is legal.
15895 EVT SliceType = getLoadedType();
15896 if (!TLI.isTypeLegal(SliceType))
15897 return false;
15898
15899 // Check that the load is legal for this type.
15900 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
15901 return false;
15902
15903 // Check that the offset can be computed.
15904 // 1. Check its type.
15905 EVT PtrType = Origin->getBasePtr().getValueType();
15906 if (PtrType == MVT::Untyped || PtrType.isExtended())
15907 return false;
15908
15909 // 2. Check that it fits in the immediate.
15910 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
15911 return false;
15912
15913 // 3. Check that the computation is legal.
15914 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
15915 return false;
15916
15917 // Check that the zext is legal if it needs one.
15918 EVT TruncateType = Inst->getValueType(0);
15919 if (TruncateType != SliceType &&
15920 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
15921 return false;
15922
15923 return true;
15924 }
15925
15926 /// Get the offset in bytes of this slice in the original chunk of
15927 /// bits.
15928 /// \pre DAG != nullptr.
15929 uint64_t getOffsetFromBase() const {
15930 assert(DAG && "Missing context.")((DAG && "Missing context.") ? static_cast<void>
(0) : __assert_fail ("DAG && \"Missing context.\"", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15930, __PRETTY_FUNCTION__))
;
15931 bool IsBigEndian = DAG->getDataLayout().isBigEndian();
15932 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.")((!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."
) ? static_cast<void> (0) : __assert_fail ("!(Shift & 0x7) && \"Shifts not aligned on Bytes are not supported.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15932, __PRETTY_FUNCTION__))
;
15933 uint64_t Offset = Shift / 8;
15934 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
15935 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&((!(Origin->getValueSizeInBits(0) & 0x7) && "The size of the original loaded type is not a multiple of a"
" byte.") ? static_cast<void> (0) : __assert_fail ("!(Origin->getValueSizeInBits(0) & 0x7) && \"The size of the original loaded type is not a multiple of a\" \" byte.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15937, __PRETTY_FUNCTION__))
15936 "The size of the original loaded type is not a multiple of a"((!(Origin->getValueSizeInBits(0) & 0x7) && "The size of the original loaded type is not a multiple of a"
" byte.") ? static_cast<void> (0) : __assert_fail ("!(Origin->getValueSizeInBits(0) & 0x7) && \"The size of the original loaded type is not a multiple of a\" \" byte.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15937, __PRETTY_FUNCTION__))
15937 " byte.")((!(Origin->getValueSizeInBits(0) & 0x7) && "The size of the original loaded type is not a multiple of a"
" byte.") ? static_cast<void> (0) : __assert_fail ("!(Origin->getValueSizeInBits(0) & 0x7) && \"The size of the original loaded type is not a multiple of a\" \" byte.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15937, __PRETTY_FUNCTION__))
;
15938 // If Offset is bigger than TySizeInBytes, it means we are loading all
15939 // zeros. This should have been optimized before in the process.
15940 assert(TySizeInBytes > Offset &&((TySizeInBytes > Offset && "Invalid shift amount for given loaded size"
) ? static_cast<void> (0) : __assert_fail ("TySizeInBytes > Offset && \"Invalid shift amount for given loaded size\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15941, __PRETTY_FUNCTION__))
15941 "Invalid shift amount for given loaded size")((TySizeInBytes > Offset && "Invalid shift amount for given loaded size"
) ? static_cast<void> (0) : __assert_fail ("TySizeInBytes > Offset && \"Invalid shift amount for given loaded size\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15941, __PRETTY_FUNCTION__))
;
15942 if (IsBigEndian)
15943 Offset = TySizeInBytes - Offset - getLoadedSize();
15944 return Offset;
15945 }
15946
15947 /// Generate the sequence of instructions to load the slice
15948 /// represented by this object and redirect the uses of this slice to
15949 /// this new sequence of instructions.
15950 /// \pre this->Inst && this->Origin are valid Instructions and this
15951 /// object passed the legal check: LoadedSlice::isLegal returned true.
15952 /// \return The last instruction of the sequence used to load the slice.
15953 SDValue loadSlice() const {
15954 assert(Inst && Origin && "Unable to replace a non-existing slice.")((Inst && Origin && "Unable to replace a non-existing slice."
) ? static_cast<void> (0) : __assert_fail ("Inst && Origin && \"Unable to replace a non-existing slice.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15954, __PRETTY_FUNCTION__))
;
15955 const SDValue &OldBaseAddr = Origin->getBasePtr();
15956 SDValue BaseAddr = OldBaseAddr;
15957 // Get the offset in that chunk of bytes w.r.t. the endianness.
15958 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
15959 assert(Offset >= 0 && "Offset too big to fit in int64_t!")((Offset >= 0 && "Offset too big to fit in int64_t!"
) ? static_cast<void> (0) : __assert_fail ("Offset >= 0 && \"Offset too big to fit in int64_t!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15959, __PRETTY_FUNCTION__))
;
15960 if (Offset) {
15961 // BaseAddr = BaseAddr + Offset.
15962 EVT ArithType = BaseAddr.getValueType();
15963 SDLoc DL(Origin);
15964 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
15965 DAG->getConstant(Offset, DL, ArithType));
15966 }
15967
15968 // Create the type of the loaded slice according to its size.
15969 EVT SliceType = getLoadedType();
15970
15971 // Create the load for the slice.
15972 SDValue LastInst =
15973 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
15974 Origin->getPointerInfo().getWithOffset(Offset), getAlign(),
15975 Origin->getMemOperand()->getFlags());
15976 // If the final type is not the same as the loaded type, this means that
15977 // we have to pad with zero. Create a zero extend for that.
15978 EVT FinalType = Inst->getValueType(0);
15979 if (SliceType != FinalType)
15980 LastInst =
15981 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
15982 return LastInst;
15983 }
15984
15985 /// Check if this slice can be merged with an expensive cross register
15986 /// bank copy. E.g.,
15987 /// i = load i32
15988 /// f = bitcast i32 i to float
15989 bool canMergeExpensiveCrossRegisterBankCopy() const {
15990 if (!Inst || !Inst->hasOneUse())
15991 return false;
15992 SDNode *Use = *Inst->use_begin();
15993 if (Use->getOpcode() != ISD::BITCAST)
15994 return false;
15995 assert(DAG && "Missing context")((DAG && "Missing context") ? static_cast<void>
(0) : __assert_fail ("DAG && \"Missing context\"", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 15995, __PRETTY_FUNCTION__))
;
15996 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
15997 EVT ResVT = Use->getValueType(0);
15998 const TargetRegisterClass *ResRC =
15999 TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
16000 const TargetRegisterClass *ArgRC =
16001 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
16002 Use->getOperand(0)->isDivergent());
16003 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
16004 return false;
16005
16006 // At this point, we know that we perform a cross-register-bank copy.
16007 // Check if it is expensive.
16008 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
16009 // Assume bitcasts are cheap, unless both register classes do not
16010 // explicitly share a common sub class.
16011 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
16012 return false;
16013
16014 // Check if it will be merged with the load.
16015 // 1. Check the alignment constraint.
16016 Align RequiredAlignment = DAG->getDataLayout().getABITypeAlign(
16017 ResVT.getTypeForEVT(*DAG->getContext()));
16018
16019 if (RequiredAlignment > getAlign())
16020 return false;
16021
16022 // 2. Check that the load is a legal operation for that type.
16023 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
16024 return false;
16025
16026 // 3. Check that we do not have a zext in the way.
16027 if (Inst->getValueType(0) != getLoadedType())
16028 return false;
16029
16030 return true;
16031 }
16032};
16033
16034} // end anonymous namespace
16035
16036/// Check that all bits set in \p UsedBits form a dense region, i.e.,
16037/// \p UsedBits looks like 0..0 1..1 0..0.
16038static bool areUsedBitsDense(const APInt &UsedBits) {
16039 // If all the bits are one, this is dense!
16040 if (UsedBits.isAllOnesValue())
16041 return true;
16042
16043 // Get rid of the unused bits on the right.
16044 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
16045 // Get rid of the unused bits on the left.
16046 if (NarrowedUsedBits.countLeadingZeros())
16047 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
16048 // Check that the chunk of bits is completely used.
16049 return NarrowedUsedBits.isAllOnesValue();
16050}
16051
16052/// Check whether or not \p First and \p Second are next to each other
16053/// in memory. This means that there is no hole between the bits loaded
16054/// by \p First and the bits loaded by \p Second.
16055static bool areSlicesNextToEachOther(const LoadedSlice &First,
16056 const LoadedSlice &Second) {
16057 assert(First.Origin == Second.Origin && First.Origin &&((First.Origin == Second.Origin && First.Origin &&
"Unable to match different memory origins.") ? static_cast<
void> (0) : __assert_fail ("First.Origin == Second.Origin && First.Origin && \"Unable to match different memory origins.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16058, __PRETTY_FUNCTION__))
16058 "Unable to match different memory origins.")((First.Origin == Second.Origin && First.Origin &&
"Unable to match different memory origins.") ? static_cast<
void> (0) : __assert_fail ("First.Origin == Second.Origin && First.Origin && \"Unable to match different memory origins.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16058, __PRETTY_FUNCTION__))
;
16059 APInt UsedBits = First.getUsedBits();
16060 assert((UsedBits & Second.getUsedBits()) == 0 &&(((UsedBits & Second.getUsedBits()) == 0 && "Slices are not supposed to overlap."
) ? static_cast<void> (0) : __assert_fail ("(UsedBits & Second.getUsedBits()) == 0 && \"Slices are not supposed to overlap.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16061, __PRETTY_FUNCTION__))
16061 "Slices are not supposed to overlap.")(((UsedBits & Second.getUsedBits()) == 0 && "Slices are not supposed to overlap."
) ? static_cast<void> (0) : __assert_fail ("(UsedBits & Second.getUsedBits()) == 0 && \"Slices are not supposed to overlap.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16061, __PRETTY_FUNCTION__))
;
16062 UsedBits |= Second.getUsedBits();
16063 return areUsedBitsDense(UsedBits);
16064}
16065
16066/// Adjust the \p GlobalLSCost according to the target
16067/// paring capabilities and the layout of the slices.
16068/// \pre \p GlobalLSCost should account for at least as many loads as
16069/// there is in the slices in \p LoadedSlices.
16070static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
16071 LoadedSlice::Cost &GlobalLSCost) {
16072 unsigned NumberOfSlices = LoadedSlices.size();
16073 // If there is less than 2 elements, no pairing is possible.
16074 if (NumberOfSlices < 2)
16075 return;
16076
16077 // Sort the slices so that elements that are likely to be next to each
16078 // other in memory are next to each other in the list.
16079 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
16080 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.")((LHS.Origin == RHS.Origin && "Different bases not implemented."
) ? static_cast<void> (0) : __assert_fail ("LHS.Origin == RHS.Origin && \"Different bases not implemented.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16080, __PRETTY_FUNCTION__))
;
16081 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
16082 });
16083 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
16084 // First (resp. Second) is the first (resp. Second) potentially candidate
16085 // to be placed in a paired load.
16086 const LoadedSlice *First = nullptr;
16087 const LoadedSlice *Second = nullptr;
16088 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
16089 // Set the beginning of the pair.
16090 First = Second) {
16091 Second = &LoadedSlices[CurrSlice];
16092
16093 // If First is NULL, it means we start a new pair.
16094 // Get to the next slice.
16095 if (!First)
16096 continue;
16097
16098 EVT LoadedType = First->getLoadedType();
16099
16100 // If the types of the slices are different, we cannot pair them.
16101 if (LoadedType != Second->getLoadedType())
16102 continue;
16103
16104 // Check if the target supplies paired loads for this type.
16105 Align RequiredAlignment;
16106 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
16107 // move to the next pair, this type is hopeless.
16108 Second = nullptr;
16109 continue;
16110 }
16111 // Check if we meet the alignment requirement.
16112 if (First->getAlign() < RequiredAlignment)
16113 continue;
16114
16115 // Check that both loads are next to each other in memory.
16116 if (!areSlicesNextToEachOther(*First, *Second))
16117 continue;
16118
16119 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!")((GlobalLSCost.Loads > 0 && "We save more loads than we created!"
) ? static_cast<void> (0) : __assert_fail ("GlobalLSCost.Loads > 0 && \"We save more loads than we created!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16119, __PRETTY_FUNCTION__))
;
16120 --GlobalLSCost.Loads;
16121 // Move to the next pair.
16122 Second = nullptr;
16123 }
16124}
16125
16126/// Check the profitability of all involved LoadedSlice.
16127/// Currently, it is considered profitable if there is exactly two
16128/// involved slices (1) which are (2) next to each other in memory, and
16129/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
16130///
16131/// Note: The order of the elements in \p LoadedSlices may be modified, but not
16132/// the elements themselves.
16133///
16134/// FIXME: When the cost model will be mature enough, we can relax
16135/// constraints (1) and (2).
16136static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
16137 const APInt &UsedBits, bool ForCodeSize) {
16138 unsigned NumberOfSlices = LoadedSlices.size();
16139 if (StressLoadSlicing)
16140 return NumberOfSlices > 1;
16141
16142 // Check (1).
16143 if (NumberOfSlices != 2)
16144 return false;
16145
16146 // Check (2).
16147 if (!areUsedBitsDense(UsedBits))
16148 return false;
16149
16150 // Check (3).
16151 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
16152 // The original code has one big load.
16153 OrigCost.Loads = 1;
16154 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
16155 const LoadedSlice &LS = LoadedSlices[CurrSlice];
16156 // Accumulate the cost of all the slices.
16157 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
16158 GlobalSlicingCost += SliceCost;
16159
16160 // Account as cost in the original configuration the gain obtained
16161 // with the current slices.
16162 OrigCost.addSliceGain(LS);
16163 }
16164
16165 // If the target supports paired load, adjust the cost accordingly.
16166 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
16167 return OrigCost > GlobalSlicingCost;
16168}
16169
16170/// If the given load, \p LI, is used only by trunc or trunc(lshr)
16171/// operations, split it in the various pieces being extracted.
16172///
16173/// This sort of thing is introduced by SROA.
16174/// This slicing takes care not to insert overlapping loads.
16175/// \pre LI is a simple load (i.e., not an atomic or volatile load).
16176bool DAGCombiner::SliceUpLoad(SDNode *N) {
16177 if (Level < AfterLegalizeDAG)
16178 return false;
16179
16180 LoadSDNode *LD = cast<LoadSDNode>(N);
16181 if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
16182 !LD->getValueType(0).isInteger())
16183 return false;
16184
16185 // The algorithm to split up a load of a scalable vector into individual
16186 // elements currently requires knowing the length of the loaded type,
16187 // so will need adjusting to work on scalable vectors.
16188 if (LD->getValueType(0).isScalableVector())
16189 return false;
16190
16191 // Keep track of already used bits to detect overlapping values.
16192 // In that case, we will just abort the transformation.
16193 APInt UsedBits(LD->getValueSizeInBits(0), 0);
16194
16195 SmallVector<LoadedSlice, 4> LoadedSlices;
16196
16197 // Check if this load is used as several smaller chunks of bits.
16198 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
16199 // of computation for each trunc.
16200 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
16201 UI != UIEnd; ++UI) {
16202 // Skip the uses of the chain.
16203 if (UI.getUse().getResNo() != 0)
16204 continue;
16205
16206 SDNode *User = *UI;
16207 unsigned Shift = 0;
16208
16209 // Check if this is a trunc(lshr).
16210 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
16211 isa<ConstantSDNode>(User->getOperand(1))) {
16212 Shift = User->getConstantOperandVal(1);
16213 User = *User->use_begin();
16214 }
16215
16216 // At this point, User is a Truncate, iff we encountered, trunc or
16217 // trunc(lshr).
16218 if (User->getOpcode() != ISD::TRUNCATE)
16219 return false;
16220
16221 // The width of the type must be a power of 2 and greater than 8-bits.
16222 // Otherwise the load cannot be represented in LLVM IR.
16223 // Moreover, if we shifted with a non-8-bits multiple, the slice
16224 // will be across several bytes. We do not support that.
16225 unsigned Width = User->getValueSizeInBits(0);
16226 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
16227 return false;
16228
16229 // Build the slice for this chain of computations.
16230 LoadedSlice LS(User, LD, Shift, &DAG);
16231 APInt CurrentUsedBits = LS.getUsedBits();
16232
16233 // Check if this slice overlaps with another.
16234 if ((CurrentUsedBits & UsedBits) != 0)
16235 return false;
16236 // Update the bits used globally.
16237 UsedBits |= CurrentUsedBits;
16238
16239 // Check if the new slice would be legal.
16240 if (!LS.isLegal())
16241 return false;
16242
16243 // Record the slice.
16244 LoadedSlices.push_back(LS);
16245 }
16246
16247 // Abort slicing if it does not seem to be profitable.
16248 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
16249 return false;
16250
16251 ++SlicedLoads;
16252
16253 // Rewrite each chain to use an independent load.
16254 // By construction, each chain can be represented by a unique load.
16255
16256 // Prepare the argument for the new token factor for all the slices.
16257 SmallVector<SDValue, 8> ArgChains;
16258 for (const LoadedSlice &LS : LoadedSlices) {
16259 SDValue SliceInst = LS.loadSlice();
16260 CombineTo(LS.Inst, SliceInst, true);
16261 if (SliceInst.getOpcode() != ISD::LOAD)
16262 SliceInst = SliceInst.getOperand(0);
16263 assert(SliceInst->getOpcode() == ISD::LOAD &&((SliceInst->getOpcode() == ISD::LOAD && "It takes more than a zext to get to the loaded slice!!"
) ? static_cast<void> (0) : __assert_fail ("SliceInst->getOpcode() == ISD::LOAD && \"It takes more than a zext to get to the loaded slice!!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16264, __PRETTY_FUNCTION__))
16264 "It takes more than a zext to get to the loaded slice!!")((SliceInst->getOpcode() == ISD::LOAD && "It takes more than a zext to get to the loaded slice!!"
) ? static_cast<void> (0) : __assert_fail ("SliceInst->getOpcode() == ISD::LOAD && \"It takes more than a zext to get to the loaded slice!!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16264, __PRETTY_FUNCTION__))
;
16265 ArgChains.push_back(SliceInst.getValue(1));
16266 }
16267
16268 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
16269 ArgChains);
16270 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
16271 AddToWorklist(Chain.getNode());
16272 return true;
16273}
16274
16275/// Check to see if V is (and load (ptr), imm), where the load is having
16276/// specific bytes cleared out. If so, return the byte size being masked out
16277/// and the shift amount.
16278static std::pair<unsigned, unsigned>
16279CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
16280 std::pair<unsigned, unsigned> Result(0, 0);
16281
16282 // Check for the structure we're looking for.
16283 if (V->getOpcode() != ISD::AND ||
16284 !isa<ConstantSDNode>(V->getOperand(1)) ||
16285 !ISD::isNormalLoad(V->getOperand(0).getNode()))
16286 return Result;
16287
16288 // Check the chain and pointer.
16289 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
16290 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
16291
16292 // This only handles simple types.
16293 if (V.getValueType() != MVT::i16 &&
16294 V.getValueType() != MVT::i32 &&
16295 V.getValueType() != MVT::i64)
16296 return Result;
16297
16298 // Check the constant mask. Invert it so that the bits being masked out are
16299 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
16300 // follow the sign bit for uniformity.
16301 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
16302 unsigned NotMaskLZ = countLeadingZeros(NotMask);
16303 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
16304 unsigned NotMaskTZ = countTrailingZeros(NotMask);
16305 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
16306 if (NotMaskLZ == 64) return Result; // All zero mask.
16307
16308 // See if we have a continuous run of bits. If so, we have 0*1+0*
16309 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
16310 return Result;
16311
16312 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
16313 if (V.getValueType() != MVT::i64 && NotMaskLZ)
16314 NotMaskLZ -= 64-V.getValueSizeInBits();
16315
16316 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
16317 switch (MaskedBytes) {
16318 case 1:
16319 case 2:
16320 case 4: break;
16321 default: return Result; // All one mask, or 5-byte mask.
16322 }
16323
16324 // Verify that the first bit starts at a multiple of mask so that the access
16325 // is aligned the same as the access width.
16326 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
16327
16328 // For narrowing to be valid, it must be the case that the load the
16329 // immediately preceding memory operation before the store.
16330 if (LD == Chain.getNode())
16331 ; // ok.
16332 else if (Chain->getOpcode() == ISD::TokenFactor &&
16333 SDValue(LD, 1).hasOneUse()) {
16334 // LD has only 1 chain use so they are no indirect dependencies.
16335 if (!LD->isOperandOf(Chain.getNode()))
16336 return Result;
16337 } else
16338 return Result; // Fail.
16339
16340 Result.first = MaskedBytes;
16341 Result.second = NotMaskTZ/8;
16342 return Result;
16343}
16344
16345/// Check to see if IVal is something that provides a value as specified by
16346/// MaskInfo. If so, replace the specified store with a narrower store of
16347/// truncated IVal.
16348static SDValue
16349ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
16350 SDValue IVal, StoreSDNode *St,
16351 DAGCombiner *DC) {
16352 unsigned NumBytes = MaskInfo.first;
16353 unsigned ByteShift = MaskInfo.second;
16354 SelectionDAG &DAG = DC->getDAG();
16355
16356 // Check to see if IVal is all zeros in the part being masked in by the 'or'
16357 // that uses this. If not, this is not a replacement.
16358 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
16359 ByteShift*8, (ByteShift+NumBytes)*8);
16360 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
16361
16362 // Check that it is legal on the target to do this. It is legal if the new
16363 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
16364 // legalization (and the target doesn't explicitly think this is a bad idea).
16365 MVT VT = MVT::getIntegerVT(NumBytes * 8);
16366 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16367 if (!DC->isTypeLegal(VT))
16368 return SDValue();
16369 if (St->getMemOperand() &&
16370 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
16371 *St->getMemOperand()))
16372 return SDValue();
16373
16374 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
16375 // shifted by ByteShift and truncated down to NumBytes.
16376 if (ByteShift) {
16377 SDLoc DL(IVal);
16378 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
16379 DAG.getConstant(ByteShift*8, DL,
16380 DC->getShiftAmountTy(IVal.getValueType())));
16381 }
16382
16383 // Figure out the offset for the store and the alignment of the access.
16384 unsigned StOffset;
16385 if (DAG.getDataLayout().isLittleEndian())
16386 StOffset = ByteShift;
16387 else
16388 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
16389
16390 SDValue Ptr = St->getBasePtr();
16391 if (StOffset) {
16392 SDLoc DL(IVal);
16393 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL);
16394 }
16395
16396 // Truncate down to the new size.
16397 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
16398
16399 ++OpsNarrowed;
16400 return DAG
16401 .getStore(St->getChain(), SDLoc(St), IVal, Ptr,
16402 St->getPointerInfo().getWithOffset(StOffset),
16403 St->getOriginalAlign());
16404}
16405
16406/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
16407/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
16408/// narrowing the load and store if it would end up being a win for performance
16409/// or code size.
16410SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
16411 StoreSDNode *ST = cast<StoreSDNode>(N);
16412 if (!ST->isSimple())
16413 return SDValue();
16414
16415 SDValue Chain = ST->getChain();
16416 SDValue Value = ST->getValue();
16417 SDValue Ptr = ST->getBasePtr();
16418 EVT VT = Value.getValueType();
16419
16420 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
16421 return SDValue();
16422
16423 unsigned Opc = Value.getOpcode();
16424
16425 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
16426 // is a byte mask indicating a consecutive number of bytes, check to see if
16427 // Y is known to provide just those bytes. If so, we try to replace the
16428 // load + replace + store sequence with a single (narrower) store, which makes
16429 // the load dead.
16430 if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) {
16431 std::pair<unsigned, unsigned> MaskedLoad;
16432 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
16433 if (MaskedLoad.first)
16434 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
16435 Value.getOperand(1), ST,this))
16436 return NewST;
16437
16438 // Or is commutative, so try swapping X and Y.
16439 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
16440 if (MaskedLoad.first)
16441 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
16442 Value.getOperand(0), ST,this))
16443 return NewST;
16444 }
16445
16446 if (!EnableReduceLoadOpStoreWidth)
16447 return SDValue();
16448
16449 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
16450 Value.getOperand(1).getOpcode() != ISD::Constant)
16451 return SDValue();
16452
16453 SDValue N0 = Value.getOperand(0);
16454 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
16455 Chain == SDValue(N0.getNode(), 1)) {
16456 LoadSDNode *LD = cast<LoadSDNode>(N0);
16457 if (LD->getBasePtr() != Ptr ||
16458 LD->getPointerInfo().getAddrSpace() !=
16459 ST->getPointerInfo().getAddrSpace())
16460 return SDValue();
16461
16462 // Find the type to narrow it the load / op / store to.
16463 SDValue N1 = Value.getOperand(1);
16464 unsigned BitWidth = N1.getValueSizeInBits();
16465 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
16466 if (Opc == ISD::AND)
16467 Imm ^= APInt::getAllOnesValue(BitWidth);
16468 if (Imm == 0 || Imm.isAllOnesValue())
16469 return SDValue();
16470 unsigned ShAmt = Imm.countTrailingZeros();
16471 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
16472 unsigned NewBW = NextPowerOf2(MSB - ShAmt);
16473 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
16474 // The narrowing should be profitable, the load/store operation should be
16475 // legal (or custom) and the store size should be equal to the NewVT width.
16476 while (NewBW < BitWidth &&
16477 (NewVT.getStoreSizeInBits() != NewBW ||
16478 !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
16479 !TLI.isNarrowingProfitable(VT, NewVT))) {
16480 NewBW = NextPowerOf2(NewBW);
16481 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
16482 }
16483 if (NewBW >= BitWidth)
16484 return SDValue();
16485
16486 // If the lsb changed does not start at the type bitwidth boundary,
16487 // start at the previous one.
16488 if (ShAmt % NewBW)
16489 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
16490 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
16491 std::min(BitWidth, ShAmt + NewBW));
16492 if ((Imm & Mask) == Imm) {
16493 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
16494 if (Opc == ISD::AND)
16495 NewImm ^= APInt::getAllOnesValue(NewBW);
16496 uint64_t PtrOff = ShAmt / 8;
16497 // For big endian targets, we need to adjust the offset to the pointer to
16498 // load the correct bytes.
16499 if (DAG.getDataLayout().isBigEndian())
16500 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
16501
16502 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
16503 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
16504 if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy))
16505 return SDValue();
16506
16507 SDValue NewPtr =
16508 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD));
16509 SDValue NewLD =
16510 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
16511 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
16512 LD->getMemOperand()->getFlags(), LD->getAAInfo());
16513 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
16514 DAG.getConstant(NewImm, SDLoc(Value),
16515 NewVT));
16516 SDValue NewST =
16517 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
16518 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
16519
16520 AddToWorklist(NewPtr.getNode());
16521 AddToWorklist(NewLD.getNode());
16522 AddToWorklist(NewVal.getNode());
16523 WorklistRemover DeadNodes(*this);
16524 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
16525 ++OpsNarrowed;
16526 return NewST;
16527 }
16528 }
16529
16530 return SDValue();
16531}
16532
16533/// For a given floating point load / store pair, if the load value isn't used
16534/// by any other operations, then consider transforming the pair to integer
16535/// load / store operations if the target deems the transformation profitable.
16536SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
16537 StoreSDNode *ST = cast<StoreSDNode>(N);
16538 SDValue Value = ST->getValue();
16539 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
16540 Value.hasOneUse()) {
16541 LoadSDNode *LD = cast<LoadSDNode>(Value);
16542 EVT VT = LD->getMemoryVT();
16543 if (!VT.isFloatingPoint() ||
16544 VT != ST->getMemoryVT() ||
16545 LD->isNonTemporal() ||
16546 ST->isNonTemporal() ||
16547 LD->getPointerInfo().getAddrSpace() != 0 ||
16548 ST->getPointerInfo().getAddrSpace() != 0)
16549 return SDValue();
16550
16551 TypeSize VTSize = VT.getSizeInBits();
16552
16553 // We don't know the size of scalable types at compile time so we cannot
16554 // create an integer of the equivalent size.
16555 if (VTSize.isScalable())
16556 return SDValue();
16557
16558 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize());
16559 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
16560 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
16561 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
16562 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
16563 return SDValue();
16564
16565 Align LDAlign = LD->getAlign();
16566 Align STAlign = ST->getAlign();
16567 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
16568 Align ABIAlign = DAG.getDataLayout().getABITypeAlign(IntVTTy);
16569 if (LDAlign < ABIAlign || STAlign < ABIAlign)
16570 return SDValue();
16571
16572 SDValue NewLD =
16573 DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
16574 LD->getPointerInfo(), LDAlign);
16575
16576 SDValue NewST =
16577 DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
16578 ST->getPointerInfo(), STAlign);
16579
16580 AddToWorklist(NewLD.getNode());
16581 AddToWorklist(NewST.getNode());
16582 WorklistRemover DeadNodes(*this);
16583 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
16584 ++LdStFP2Int;
16585 return NewST;
16586 }
16587
16588 return SDValue();
16589}
16590
16591// This is a helper function for visitMUL to check the profitability
16592// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
16593// MulNode is the original multiply, AddNode is (add x, c1),
16594// and ConstNode is c2.
16595//
16596// If the (add x, c1) has multiple uses, we could increase
16597// the number of adds if we make this transformation.
16598// It would only be worth doing this if we can remove a
16599// multiply in the process. Check for that here.
16600// To illustrate:
16601// (A + c1) * c3
16602// (A + c2) * c3
16603// We're checking for cases where we have common "c3 * A" expressions.
16604bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
16605 SDValue &AddNode,
16606 SDValue &ConstNode) {
16607 APInt Val;
16608
16609 // If the add only has one use, this would be OK to do.
16610 if (AddNode.getNode()->hasOneUse())
16611 return true;
16612
16613 // Walk all the users of the constant with which we're multiplying.
16614 for (SDNode *Use : ConstNode->uses()) {
16615 if (Use == MulNode) // This use is the one we're on right now. Skip it.
16616 continue;
16617
16618 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
16619 SDNode *OtherOp;
16620 SDNode *MulVar = AddNode.getOperand(0).getNode();
16621
16622 // OtherOp is what we're multiplying against the constant.
16623 if (Use->getOperand(0) == ConstNode)
16624 OtherOp = Use->getOperand(1).getNode();
16625 else
16626 OtherOp = Use->getOperand(0).getNode();
16627
16628 // Check to see if multiply is with the same operand of our "add".
16629 //
16630 // ConstNode = CONST
16631 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
16632 // ...
16633 // AddNode = (A + c1) <-- MulVar is A.
16634 // = AddNode * ConstNode <-- current visiting instruction.
16635 //
16636 // If we make this transformation, we will have a common
16637 // multiply (ConstNode * A) that we can save.
16638 if (OtherOp == MulVar)
16639 return true;
16640
16641 // Now check to see if a future expansion will give us a common
16642 // multiply.
16643 //
16644 // ConstNode = CONST
16645 // AddNode = (A + c1)
16646 // ... = AddNode * ConstNode <-- current visiting instruction.
16647 // ...
16648 // OtherOp = (A + c2)
16649 // Use = OtherOp * ConstNode <-- visiting Use.
16650 //
16651 // If we make this transformation, we will have a common
16652 // multiply (CONST * A) after we also do the same transformation
16653 // to the "t2" instruction.
16654 if (OtherOp->getOpcode() == ISD::ADD &&
16655 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
16656 OtherOp->getOperand(0).getNode() == MulVar)
16657 return true;
16658 }
16659 }
16660
16661 // Didn't find a case where this would be profitable.
16662 return false;
16663}
16664
16665SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
16666 unsigned NumStores) {
16667 SmallVector<SDValue, 8> Chains;
16668 SmallPtrSet<const SDNode *, 8> Visited;
16669 SDLoc StoreDL(StoreNodes[0].MemNode);
16670
16671 for (unsigned i = 0; i < NumStores; ++i) {
16672 Visited.insert(StoreNodes[i].MemNode);
16673 }
16674
16675 // don't include nodes that are children or repeated nodes.
16676 for (unsigned i = 0; i < NumStores; ++i) {
16677 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
16678 Chains.push_back(StoreNodes[i].MemNode->getChain());
16679 }
16680
16681 assert(Chains.size() > 0 && "Chain should have generated a chain")((Chains.size() > 0 && "Chain should have generated a chain"
) ? static_cast<void> (0) : __assert_fail ("Chains.size() > 0 && \"Chain should have generated a chain\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16681, __PRETTY_FUNCTION__))
;
16682 return DAG.getTokenFactor(StoreDL, Chains);
16683}
16684
16685bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
16686 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
16687 bool IsConstantSrc, bool UseVector, bool UseTrunc) {
16688 // Make sure we have something to merge.
16689 if (NumStores < 2)
16690 return false;
16691
16692 // The latest Node in the DAG.
16693 SDLoc DL(StoreNodes[0].MemNode);
16694
16695 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits();
16696 unsigned SizeInBits = NumStores * ElementSizeBits;
16697 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
16698
16699 EVT StoreTy;
16700 if (UseVector) {
16701 unsigned Elts = NumStores * NumMemElts;
16702 // Get the type for the merged vector store.
16703 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
16704 } else
16705 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
16706
16707 SDValue StoredVal;
16708 if (UseVector) {
16709 if (IsConstantSrc) {
16710 SmallVector<SDValue, 8> BuildVector;
16711 for (unsigned I = 0; I != NumStores; ++I) {
16712 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
16713 SDValue Val = St->getValue();
16714 // If constant is of the wrong type, convert it now.
16715 if (MemVT != Val.getValueType()) {
16716 Val = peekThroughBitcasts(Val);
16717 // Deal with constants of wrong size.
16718 if (ElementSizeBits != Val.getValueSizeInBits()) {
16719 EVT IntMemVT =
16720 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
16721 if (isa<ConstantFPSDNode>(Val)) {
16722 // Not clear how to truncate FP values.
16723 return false;
16724 } else if (auto *C = dyn_cast<ConstantSDNode>(Val))
16725 Val = DAG.getConstant(C->getAPIntValue()
16726 .zextOrTrunc(Val.getValueSizeInBits())
16727 .zextOrTrunc(ElementSizeBits),
16728 SDLoc(C), IntMemVT);
16729 }
16730 // Make sure correctly size type is the correct type.
16731 Val = DAG.getBitcast(MemVT, Val);
16732 }
16733 BuildVector.push_back(Val);
16734 }
16735 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
16736 : ISD::BUILD_VECTOR,
16737 DL, StoreTy, BuildVector);
16738 } else {
16739 SmallVector<SDValue, 8> Ops;
16740 for (unsigned i = 0; i < NumStores; ++i) {
16741 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
16742 SDValue Val = peekThroughBitcasts(St->getValue());
16743 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
16744 // type MemVT. If the underlying value is not the correct
16745 // type, but it is an extraction of an appropriate vector we
16746 // can recast Val to be of the correct type. This may require
16747 // converting between EXTRACT_VECTOR_ELT and
16748 // EXTRACT_SUBVECTOR.
16749 if ((MemVT != Val.getValueType()) &&
16750 (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
16751 Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
16752 EVT MemVTScalarTy = MemVT.getScalarType();
16753 // We may need to add a bitcast here to get types to line up.
16754 if (MemVTScalarTy != Val.getValueType().getScalarType()) {
16755 Val = DAG.getBitcast(MemVT, Val);
16756 } else {
16757 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
16758 : ISD::EXTRACT_VECTOR_ELT;
16759 SDValue Vec = Val.getOperand(0);
16760 SDValue Idx = Val.getOperand(1);
16761 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
16762 }
16763 }
16764 Ops.push_back(Val);
16765 }
16766
16767 // Build the extracted vector elements back into a vector.
16768 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
16769 : ISD::BUILD_VECTOR,
16770 DL, StoreTy, Ops);
16771 }
16772 } else {
16773 // We should always use a vector store when merging extracted vector
16774 // elements, so this path implies a store of constants.
16775 assert(IsConstantSrc && "Merged vector elements should use vector store")((IsConstantSrc && "Merged vector elements should use vector store"
) ? static_cast<void> (0) : __assert_fail ("IsConstantSrc && \"Merged vector elements should use vector store\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16775, __PRETTY_FUNCTION__))
;
16776
16777 APInt StoreInt(SizeInBits, 0);
16778
16779 // Construct a single integer constant which is made of the smaller
16780 // constant inputs.
16781 bool IsLE = DAG.getDataLayout().isLittleEndian();
16782 for (unsigned i = 0; i < NumStores; ++i) {
16783 unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
16784 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
16785
16786 SDValue Val = St->getValue();
16787 Val = peekThroughBitcasts(Val);
16788 StoreInt <<= ElementSizeBits;
16789 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
16790 StoreInt |= C->getAPIntValue()
16791 .zextOrTrunc(ElementSizeBits)
16792 .zextOrTrunc(SizeInBits);
16793 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
16794 StoreInt |= C->getValueAPF()
16795 .bitcastToAPInt()
16796 .zextOrTrunc(ElementSizeBits)
16797 .zextOrTrunc(SizeInBits);
16798 // If fp truncation is necessary give up for now.
16799 if (MemVT.getSizeInBits() != ElementSizeBits)
16800 return false;
16801 } else {
16802 llvm_unreachable("Invalid constant element type")::llvm::llvm_unreachable_internal("Invalid constant element type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16802)
;
16803 }
16804 }
16805
16806 // Create the new Load and Store operations.
16807 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
16808 }
16809
16810 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
16811 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
16812
16813 // make sure we use trunc store if it's necessary to be legal.
16814 SDValue NewStore;
16815 if (!UseTrunc) {
16816 NewStore =
16817 DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
16818 FirstInChain->getPointerInfo(), FirstInChain->getAlign());
16819 } else { // Must be realized as a trunc store
16820 EVT LegalizedStoredValTy =
16821 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
16822 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
16823 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
16824 SDValue ExtendedStoreVal =
16825 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
16826 LegalizedStoredValTy);
16827 NewStore = DAG.getTruncStore(
16828 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
16829 FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
16830 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
16831 }
16832
16833 // Replace all merged stores with the new store.
16834 for (unsigned i = 0; i < NumStores; ++i)
16835 CombineTo(StoreNodes[i].MemNode, NewStore);
16836
16837 AddToWorklist(NewChain.getNode());
16838 return true;
16839}
16840
16841void DAGCombiner::getStoreMergeCandidates(
16842 StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
16843 SDNode *&RootNode) {
16844 // This holds the base pointer, index, and the offset in bytes from the base
16845 // pointer. We must have a base and an offset. Do not handle stores to undef
16846 // base pointers.
16847 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
16848 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef())
16849 return;
16850
16851 SDValue Val = peekThroughBitcasts(St->getValue());
16852 StoreSource StoreSrc = getStoreSource(Val);
16853 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store")((StoreSrc != StoreSource::Unknown && "Expected known source for store"
) ? static_cast<void> (0) : __assert_fail ("StoreSrc != StoreSource::Unknown && \"Expected known source for store\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16853, __PRETTY_FUNCTION__))
;
16854
16855 // Match on loadbaseptr if relevant.
16856 EVT MemVT = St->getMemoryVT();
16857 BaseIndexOffset LBasePtr;
16858 EVT LoadVT;
16859 if (StoreSrc == StoreSource::Load) {
16860 auto *Ld = cast<LoadSDNode>(Val);
16861 LBasePtr = BaseIndexOffset::match(Ld, DAG);
16862 LoadVT = Ld->getMemoryVT();
16863 // Load and store should be the same type.
16864 if (MemVT != LoadVT)
16865 return;
16866 // Loads must only have one use.
16867 if (!Ld->hasNUsesOfValue(1, 0))
16868 return;
16869 // The memory operands must not be volatile/indexed/atomic.
16870 // TODO: May be able to relax for unordered atomics (see D66309)
16871 if (!Ld->isSimple() || Ld->isIndexed())
16872 return;
16873 }
16874 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
16875 int64_t &Offset) -> bool {
16876 // The memory operands must not be volatile/indexed/atomic.
16877 // TODO: May be able to relax for unordered atomics (see D66309)
16878 if (!Other->isSimple() || Other->isIndexed())
16879 return false;
16880 // Don't mix temporal stores with non-temporal stores.
16881 if (St->isNonTemporal() != Other->isNonTemporal())
16882 return false;
16883 SDValue OtherBC = peekThroughBitcasts(Other->getValue());
16884 // Allow merging constants of different types as integers.
16885 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
16886 : Other->getMemoryVT() != MemVT;
16887 switch (StoreSrc) {
16888 case StoreSource::Load: {
16889 if (NoTypeMatch)
16890 return false;
16891 // The Load's Base Ptr must also match.
16892 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC);
16893 if (!OtherLd)
16894 return false;
16895 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
16896 if (LoadVT != OtherLd->getMemoryVT())
16897 return false;
16898 // Loads must only have one use.
16899 if (!OtherLd->hasNUsesOfValue(1, 0))
16900 return false;
16901 // The memory operands must not be volatile/indexed/atomic.
16902 // TODO: May be able to relax for unordered atomics (see D66309)
16903 if (!OtherLd->isSimple() || OtherLd->isIndexed())
16904 return false;
16905 // Don't mix temporal loads with non-temporal loads.
16906 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
16907 return false;
16908 if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
16909 return false;
16910 break;
16911 }
16912 case StoreSource::Constant:
16913 if (NoTypeMatch)
16914 return false;
16915 if (!isIntOrFPConstant(OtherBC))
16916 return false;
16917 break;
16918 case StoreSource::Extract:
16919 // Do not merge truncated stores here.
16920 if (Other->isTruncatingStore())
16921 return false;
16922 if (!MemVT.bitsEq(OtherBC.getValueType()))
16923 return false;
16924 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
16925 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
16926 return false;
16927 break;
16928 default:
16929 llvm_unreachable("Unhandled store source for merging")::llvm::llvm_unreachable_internal("Unhandled store source for merging"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 16929)
;
16930 }
16931 Ptr = BaseIndexOffset::match(Other, DAG);
16932 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
16933 };
16934
16935 // Check if the pair of StoreNode and the RootNode already bail out many
16936 // times which is over the limit in dependence check.
16937 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
16938 SDNode *RootNode) -> bool {
16939 auto RootCount = StoreRootCountMap.find(StoreNode);
16940 return RootCount != StoreRootCountMap.end() &&
16941 RootCount->second.first == RootNode &&
16942 RootCount->second.second > StoreMergeDependenceLimit;
16943 };
16944
16945 auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) {
16946 // This must be a chain use.
16947 if (UseIter.getOperandNo() != 0)
16948 return;
16949 if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) {
16950 BaseIndexOffset Ptr;
16951 int64_t PtrDiff;
16952 if (CandidateMatch(OtherStore, Ptr, PtrDiff) &&
16953 !OverLimitInDependenceCheck(OtherStore, RootNode))
16954 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff));
16955 }
16956 };
16957
16958 // We looking for a root node which is an ancestor to all mergable
16959 // stores. We search up through a load, to our root and then down
16960 // through all children. For instance we will find Store{1,2,3} if
16961 // St is Store1, Store2. or Store3 where the root is not a load
16962 // which always true for nonvolatile ops. TODO: Expand
16963 // the search to find all valid candidates through multiple layers of loads.
16964 //
16965 // Root
16966 // |-------|-------|
16967 // Load Load Store3
16968 // | |
16969 // Store1 Store2
16970 //
16971 // FIXME: We should be able to climb and
16972 // descend TokenFactors to find candidates as well.
16973
16974 RootNode = St->getChain().getNode();
16975
16976 unsigned NumNodesExplored = 0;
16977 const unsigned MaxSearchNodes = 1024;
16978 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
16979 RootNode = Ldn->getChain().getNode();
16980 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
16981 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) {
16982 if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain
16983 for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
16984 TryToAddCandidate(I2);
16985 }
16986 }
16987 } else {
16988 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
16989 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored)
16990 TryToAddCandidate(I);
16991 }
16992}
16993
16994// We need to check that merging these stores does not cause a loop in
16995// the DAG. Any store candidate may depend on another candidate
16996// indirectly through its operand (we already consider dependencies
16997// through the chain). Check in parallel by searching up from
16998// non-chain operands of candidates.
16999bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
17000 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
17001 SDNode *RootNode) {
17002 // FIXME: We should be able to truncate a full search of
17003 // predecessors by doing a BFS and keeping tabs the originating
17004 // stores from which worklist nodes come from in a similar way to
17005 // TokenFactor simplfication.
17006
17007 SmallPtrSet<const SDNode *, 32> Visited;
17008 SmallVector<const SDNode *, 8> Worklist;
17009
17010 // RootNode is a predecessor to all candidates so we need not search
17011 // past it. Add RootNode (peeking through TokenFactors). Do not count
17012 // these towards size check.
17013
17014 Worklist.push_back(RootNode);
17015 while (!Worklist.empty()) {
17016 auto N = Worklist.pop_back_val();
17017 if (!Visited.insert(N).second)
17018 continue; // Already present in Visited.
17019 if (N->getOpcode() == ISD::TokenFactor) {
17020 for (SDValue Op : N->ops())
17021 Worklist.push_back(Op.getNode());
17022 }
17023 }
17024
17025 // Don't count pruning nodes towards max.
17026 unsigned int Max = 1024 + Visited.size();
17027 // Search Ops of store candidates.
17028 for (unsigned i = 0; i < NumStores; ++i) {
17029 SDNode *N = StoreNodes[i].MemNode;
17030 // Of the 4 Store Operands:
17031 // * Chain (Op 0) -> We have already considered these
17032 // in candidate selection and can be
17033 // safely ignored
17034 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
17035 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
17036 // but aren't necessarily fromt the same base node, so
17037 // cycles possible (e.g. via indexed store).
17038 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
17039 // non-indexed stores). Not constant on all targets (e.g. ARM)
17040 // and so can participate in a cycle.
17041 for (unsigned j = 1; j < N->getNumOperands(); ++j)
17042 Worklist.push_back(N->getOperand(j).getNode());
17043 }
17044 // Search through DAG. We can stop early if we find a store node.
17045 for (unsigned i = 0; i < NumStores; ++i)
17046 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
17047 Max)) {
17048 // If the searching bail out, record the StoreNode and RootNode in the
17049 // StoreRootCountMap. If we have seen the pair many times over a limit,
17050 // we won't add the StoreNode into StoreNodes set again.
17051 if (Visited.size() >= Max) {
17052 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
17053 if (RootCount.first == RootNode)
17054 RootCount.second++;
17055 else
17056 RootCount = {RootNode, 1};
17057 }
17058 return false;
17059 }
17060 return true;
17061}
17062
17063unsigned
17064DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
17065 int64_t ElementSizeBytes) const {
17066 while (true) {
17067 // Find a store past the width of the first store.
17068 size_t StartIdx = 0;
17069 while ((StartIdx + 1 < StoreNodes.size()) &&
17070 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
17071 StoreNodes[StartIdx + 1].OffsetFromBase)
17072 ++StartIdx;
17073
17074 // Bail if we don't have enough candidates to merge.
17075 if (StartIdx + 1 >= StoreNodes.size())
17076 return 0;
17077
17078 // Trim stores that overlapped with the first store.
17079 if (StartIdx)
17080 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
17081
17082 // Scan the memory operations on the chain and find the first
17083 // non-consecutive store memory address.
17084 unsigned NumConsecutiveStores = 1;
17085 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
17086 // Check that the addresses are consecutive starting from the second
17087 // element in the list of stores.
17088 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
17089 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
17090 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
17091 break;
17092 NumConsecutiveStores = i + 1;
17093 }
17094 if (NumConsecutiveStores > 1)
17095 return NumConsecutiveStores;
17096
17097 // There are no consecutive stores at the start of the list.
17098 // Remove the first store and try again.
17099 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1);
17100 }
17101}
17102
17103bool DAGCombiner::tryStoreMergeOfConstants(
17104 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
17105 EVT MemVT, SDNode *RootNode, bool AllowVectors) {
17106 LLVMContext &Context = *DAG.getContext();
17107 const DataLayout &DL = DAG.getDataLayout();
17108 int64_t ElementSizeBytes = MemVT.getStoreSize();
17109 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
17110 bool MadeChange = false;
17111
17112 // Store the constants into memory as one consecutive store.
17113 while (NumConsecutiveStores >= 2) {
17114 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
17115 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
17116 unsigned FirstStoreAlign = FirstInChain->getAlignment();
17117 unsigned LastLegalType = 1;
17118 unsigned LastLegalVectorType = 1;
17119 bool LastIntegerTrunc = false;
17120 bool NonZero = false;
17121 unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
17122 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
17123 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
17124 SDValue StoredVal = ST->getValue();
17125 bool IsElementZero = false;
17126 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
17127 IsElementZero = C->isNullValue();
17128 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
17129 IsElementZero = C->getConstantFPValue()->isNullValue();
17130 if (IsElementZero) {
17131 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
17132 FirstZeroAfterNonZero = i;
17133 }
17134 NonZero |= !IsElementZero;
17135
17136 // Find a legal type for the constant store.
17137 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
17138 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
17139 bool IsFast = false;
17140
17141 // Break early when size is too large to be legal.
17142 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
17143 break;
17144
17145 if (TLI.isTypeLegal(StoreTy) &&
17146 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
17147 TLI.allowsMemoryAccess(Context, DL, StoreTy,
17148 *FirstInChain->getMemOperand(), &IsFast) &&
17149 IsFast) {
17150 LastIntegerTrunc = false;
17151 LastLegalType = i + 1;
17152 // Or check whether a truncstore is legal.
17153 } else if (TLI.getTypeAction(Context, StoreTy) ==
17154 TargetLowering::TypePromoteInteger) {
17155 EVT LegalizedStoredValTy =
17156 TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
17157 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
17158 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
17159 TLI.allowsMemoryAccess(Context, DL, StoreTy,
17160 *FirstInChain->getMemOperand(), &IsFast) &&
17161 IsFast) {
17162 LastIntegerTrunc = true;
17163 LastLegalType = i + 1;
17164 }
17165 }
17166
17167 // We only use vectors if the constant is known to be zero or the
17168 // target allows it and the function is not marked with the
17169 // noimplicitfloat attribute.
17170 if ((!NonZero ||
17171 TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
17172 AllowVectors) {
17173 // Find a legal type for the vector store.
17174 unsigned Elts = (i + 1) * NumMemElts;
17175 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
17176 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
17177 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
17178 TLI.allowsMemoryAccess(Context, DL, Ty,
17179 *FirstInChain->getMemOperand(), &IsFast) &&
17180 IsFast)
17181 LastLegalVectorType = i + 1;
17182 }
17183 }
17184
17185 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors;
17186 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
17187
17188 // Check if we found a legal integer type that creates a meaningful
17189 // merge.
17190 if (NumElem < 2) {
17191 // We know that candidate stores are in order and of correct
17192 // shape. While there is no mergeable sequence from the
17193 // beginning one may start later in the sequence. The only
17194 // reason a merge of size N could have failed where another of
17195 // the same size would not have, is if the alignment has
17196 // improved or we've dropped a non-zero value. Drop as many
17197 // candidates as we can here.
17198 unsigned NumSkip = 1;
17199 while ((NumSkip < NumConsecutiveStores) &&
17200 (NumSkip < FirstZeroAfterNonZero) &&
17201 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
17202 NumSkip++;
17203
17204 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
17205 NumConsecutiveStores -= NumSkip;
17206 continue;
17207 }
17208
17209 // Check that we can merge these candidates without causing a cycle.
17210 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
17211 RootNode)) {
17212 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
17213 NumConsecutiveStores -= NumElem;
17214 continue;
17215 }
17216
17217 MadeChange |= mergeStoresOfConstantsOrVecElts(
17218 StoreNodes, MemVT, NumElem, true, UseVector, LastIntegerTrunc);
17219
17220 // Remove merged stores for next iteration.
17221 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
17222 NumConsecutiveStores -= NumElem;
17223 }
17224 return MadeChange;
17225}
17226
17227bool DAGCombiner::tryStoreMergeOfExtracts(
17228 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
17229 EVT MemVT, SDNode *RootNode) {
17230 LLVMContext &Context = *DAG.getContext();
17231 const DataLayout &DL = DAG.getDataLayout();
17232 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
17233 bool MadeChange = false;
17234
17235 // Loop on Consecutive Stores on success.
17236 while (NumConsecutiveStores >= 2) {
17237 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
17238 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
17239 unsigned FirstStoreAlign = FirstInChain->getAlignment();
17240 unsigned NumStoresToMerge = 1;
17241 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
17242 // Find a legal type for the vector store.
17243 unsigned Elts = (i + 1) * NumMemElts;
17244 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
17245 bool IsFast = false;
17246
17247 // Break early when size is too large to be legal.
17248 if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
17249 break;
17250
17251 if (TLI.isTypeLegal(Ty) && TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
17252 TLI.allowsMemoryAccess(Context, DL, Ty,
17253 *FirstInChain->getMemOperand(), &IsFast) &&
17254 IsFast)
17255 NumStoresToMerge = i + 1;
17256 }
17257
17258 // Check if we found a legal integer type creating a meaningful
17259 // merge.
17260 if (NumStoresToMerge < 2) {
17261 // We know that candidate stores are in order and of correct
17262 // shape. While there is no mergeable sequence from the
17263 // beginning one may start later in the sequence. The only
17264 // reason a merge of size N could have failed where another of
17265 // the same size would not have, is if the alignment has
17266 // improved. Drop as many candidates as we can here.
17267 unsigned NumSkip = 1;
17268 while ((NumSkip < NumConsecutiveStores) &&
17269 (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
17270 NumSkip++;
17271
17272 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
17273 NumConsecutiveStores -= NumSkip;
17274 continue;
17275 }
17276
17277 // Check that we can merge these candidates without causing a cycle.
17278 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge,
17279 RootNode)) {
17280 StoreNodes.erase(StoreNodes.begin(),
17281 StoreNodes.begin() + NumStoresToMerge);
17282 NumConsecutiveStores -= NumStoresToMerge;
17283 continue;
17284 }
17285
17286 MadeChange |= mergeStoresOfConstantsOrVecElts(
17287 StoreNodes, MemVT, NumStoresToMerge, false, true, false);
17288
17289 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge);
17290 NumConsecutiveStores -= NumStoresToMerge;
17291 }
17292 return MadeChange;
17293}
17294
17295bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
17296 unsigned NumConsecutiveStores, EVT MemVT,
17297 SDNode *RootNode, bool AllowVectors,
17298 bool IsNonTemporalStore,
17299 bool IsNonTemporalLoad) {
17300 LLVMContext &Context = *DAG.getContext();
17301 const DataLayout &DL = DAG.getDataLayout();
17302 int64_t ElementSizeBytes = MemVT.getStoreSize();
17303 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
17304 bool MadeChange = false;
17305
17306 // Look for load nodes which are used by the stored values.
17307 SmallVector<MemOpLink, 8> LoadNodes;
17308
17309 // Find acceptable loads. Loads need to have the same chain (token factor),
17310 // must not be zext, volatile, indexed, and they must be consecutive.
17311 BaseIndexOffset LdBasePtr;
17312
17313 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
17314 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
17315 SDValue Val = peekThroughBitcasts(St->getValue());
17316 LoadSDNode *Ld = cast<LoadSDNode>(Val);
17317
17318 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
17319 // If this is not the first ptr that we check.
17320 int64_t LdOffset = 0;
17321 if (LdBasePtr.getBase().getNode()) {
17322 // The base ptr must be the same.
17323 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
17324 break;
17325 } else {
17326 // Check that all other base pointers are the same as this one.
17327 LdBasePtr = LdPtr;
17328 }
17329
17330 // We found a potential memory operand to merge.
17331 LoadNodes.push_back(MemOpLink(Ld, LdOffset));
17332 }
17333
17334 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
17335 Align RequiredAlignment;
17336 bool NeedRotate = false;
17337 if (LoadNodes.size() == 2) {
17338 // If we have load/store pair instructions and we only have two values,
17339 // don't bother merging.
17340 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
17341 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) {
17342 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
17343 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
17344 break;
17345 }
17346 // If the loads are reversed, see if we can rotate the halves into place.
17347 int64_t Offset0 = LoadNodes[0].OffsetFromBase;
17348 int64_t Offset1 = LoadNodes[1].OffsetFromBase;
17349 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2);
17350 if (Offset0 - Offset1 == ElementSizeBytes &&
17351 (hasOperation(ISD::ROTL, PairVT) ||
17352 hasOperation(ISD::ROTR, PairVT))) {
17353 std::swap(LoadNodes[0], LoadNodes[1]);
17354 NeedRotate = true;
17355 }
17356 }
17357 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
17358 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
17359 Align FirstStoreAlign = FirstInChain->getAlign();
17360 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
17361
17362 // Scan the memory operations on the chain and find the first
17363 // non-consecutive load memory address. These variables hold the index in
17364 // the store node array.
17365
17366 unsigned LastConsecutiveLoad = 1;
17367
17368 // This variable refers to the size and not index in the array.
17369 unsigned LastLegalVectorType = 1;
17370 unsigned LastLegalIntegerType = 1;
17371 bool isDereferenceable = true;
17372 bool DoIntegerTruncate = false;
17373 int64_t StartAddress = LoadNodes[0].OffsetFromBase;
17374 SDValue LoadChain = FirstLoad->getChain();
17375 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
17376 // All loads must share the same chain.
17377 if (LoadNodes[i].MemNode->getChain() != LoadChain)
17378 break;
17379
17380 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
17381 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
17382 break;
17383 LastConsecutiveLoad = i;
17384
17385 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
17386 isDereferenceable = false;
17387
17388 // Find a legal type for the vector store.
17389 unsigned Elts = (i + 1) * NumMemElts;
17390 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
17391
17392 // Break early when size is too large to be legal.
17393 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
17394 break;
17395
17396 bool IsFastSt = false;
17397 bool IsFastLd = false;
17398 if (TLI.isTypeLegal(StoreTy) &&
17399 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
17400 TLI.allowsMemoryAccess(Context, DL, StoreTy,
17401 *FirstInChain->getMemOperand(), &IsFastSt) &&
17402 IsFastSt &&
17403 TLI.allowsMemoryAccess(Context, DL, StoreTy,
17404 *FirstLoad->getMemOperand(), &IsFastLd) &&
17405 IsFastLd) {
17406 LastLegalVectorType = i + 1;
17407 }
17408
17409 // Find a legal type for the integer store.
17410 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
17411 StoreTy = EVT::getIntegerVT(Context, SizeInBits);
17412 if (TLI.isTypeLegal(StoreTy) &&
17413 TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
17414 TLI.allowsMemoryAccess(Context, DL, StoreTy,
17415 *FirstInChain->getMemOperand(), &IsFastSt) &&
17416 IsFastSt &&
17417 TLI.allowsMemoryAccess(Context, DL, StoreTy,
17418 *FirstLoad->getMemOperand(), &IsFastLd) &&
17419 IsFastLd) {
17420 LastLegalIntegerType = i + 1;
17421 DoIntegerTruncate = false;
17422 // Or check whether a truncstore and extload is legal.
17423 } else if (TLI.getTypeAction(Context, StoreTy) ==
17424 TargetLowering::TypePromoteInteger) {
17425 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
17426 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
17427 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
17428 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) &&
17429 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) &&
17430 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
17431 TLI.allowsMemoryAccess(Context, DL, StoreTy,
17432 *FirstInChain->getMemOperand(), &IsFastSt) &&
17433 IsFastSt &&
17434 TLI.allowsMemoryAccess(Context, DL, StoreTy,
17435 *FirstLoad->getMemOperand(), &IsFastLd) &&
17436 IsFastLd) {
17437 LastLegalIntegerType = i + 1;
17438 DoIntegerTruncate = true;
17439 }
17440 }
17441 }
17442
17443 // Only use vector types if the vector type is larger than the integer
17444 // type. If they are the same, use integers.
17445 bool UseVectorTy =
17446 LastLegalVectorType > LastLegalIntegerType && AllowVectors;
17447 unsigned LastLegalType =
17448 std::max(LastLegalVectorType, LastLegalIntegerType);
17449
17450 // We add +1 here because the LastXXX variables refer to location while
17451 // the NumElem refers to array/index size.
17452 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
17453 NumElem = std::min(LastLegalType, NumElem);
17454 Align FirstLoadAlign = FirstLoad->getAlign();
17455
17456 if (NumElem < 2) {
17457 // We know that candidate stores are in order and of correct
17458 // shape. While there is no mergeable sequence from the
17459 // beginning one may start later in the sequence. The only
17460 // reason a merge of size N could have failed where another of
17461 // the same size would not have is if the alignment or either
17462 // the load or store has improved. Drop as many candidates as we
17463 // can here.
17464 unsigned NumSkip = 1;
17465 while ((NumSkip < LoadNodes.size()) &&
17466 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) &&
17467 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
17468 NumSkip++;
17469 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
17470 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
17471 NumConsecutiveStores -= NumSkip;
17472 continue;
17473 }
17474
17475 // Check that we can merge these candidates without causing a cycle.
17476 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
17477 RootNode)) {
17478 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
17479 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
17480 NumConsecutiveStores -= NumElem;
17481 continue;
17482 }
17483
17484 // Find if it is better to use vectors or integers to load and store
17485 // to memory.
17486 EVT JointMemOpVT;
17487 if (UseVectorTy) {
17488 // Find a legal type for the vector store.
17489 unsigned Elts = NumElem * NumMemElts;
17490 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
17491 } else {
17492 unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
17493 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
17494 }
17495
17496 SDLoc LoadDL(LoadNodes[0].MemNode);
17497 SDLoc StoreDL(StoreNodes[0].MemNode);
17498
17499 // The merged loads are required to have the same incoming chain, so
17500 // using the first's chain is acceptable.
17501
17502 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
17503 AddToWorklist(NewStoreChain.getNode());
17504
17505 MachineMemOperand::Flags LdMMOFlags =
17506 isDereferenceable ? MachineMemOperand::MODereferenceable
17507 : MachineMemOperand::MONone;
17508 if (IsNonTemporalLoad)
17509 LdMMOFlags |= MachineMemOperand::MONonTemporal;
17510
17511 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore
17512 ? MachineMemOperand::MONonTemporal
17513 : MachineMemOperand::MONone;
17514
17515 SDValue NewLoad, NewStore;
17516 if (UseVectorTy || !DoIntegerTruncate) {
17517 NewLoad = DAG.getLoad(
17518 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
17519 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags);
17520 SDValue StoreOp = NewLoad;
17521 if (NeedRotate) {
17522 unsigned LoadWidth = ElementSizeBytes * 8 * 2;
17523 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&((JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&
"Unexpected type for rotate-able load pair") ? static_cast<
void> (0) : __assert_fail ("JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && \"Unexpected type for rotate-able load pair\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 17524, __PRETTY_FUNCTION__))
17524 "Unexpected type for rotate-able load pair")((JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&
"Unexpected type for rotate-able load pair") ? static_cast<
void> (0) : __assert_fail ("JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && \"Unexpected type for rotate-able load pair\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 17524, __PRETTY_FUNCTION__))
;
17525 SDValue RotAmt =
17526 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL);
17527 // Target can convert to the identical ROTR if it does not have ROTL.
17528 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt);
17529 }
17530 NewStore = DAG.getStore(
17531 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(),
17532 FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
17533 } else { // This must be the truncstore/extload case
17534 EVT ExtendedTy =
17535 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
17536 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
17537 FirstLoad->getChain(), FirstLoad->getBasePtr(),
17538 FirstLoad->getPointerInfo(), JointMemOpVT,
17539 FirstLoadAlign, LdMMOFlags);
17540 NewStore = DAG.getTruncStore(
17541 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
17542 FirstInChain->getPointerInfo(), JointMemOpVT,
17543 FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
17544 }
17545
17546 // Transfer chain users from old loads to the new load.
17547 for (unsigned i = 0; i < NumElem; ++i) {
17548 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
17549 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
17550 SDValue(NewLoad.getNode(), 1));
17551 }
17552
17553 // Replace all stores with the new store. Recursively remove corresponding
17554 // values if they are no longer used.
17555 for (unsigned i = 0; i < NumElem; ++i) {
17556 SDValue Val = StoreNodes[i].MemNode->getOperand(1);
17557 CombineTo(StoreNodes[i].MemNode, NewStore);
17558 if (Val.getNode()->use_empty())
17559 recursivelyDeleteUnusedNodes(Val.getNode());
17560 }
17561
17562 MadeChange = true;
17563 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
17564 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
17565 NumConsecutiveStores -= NumElem;
17566 }
17567 return MadeChange;
17568}
17569
17570bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) {
17571 if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
17572 return false;
17573
17574 // TODO: Extend this function to merge stores of scalable vectors.
17575 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
17576 // store since we know <vscale x 16 x i8> is exactly twice as large as
17577 // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
17578 EVT MemVT = St->getMemoryVT();
17579 if (MemVT.isScalableVector())
17580 return false;
17581 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
17582 return false;
17583
17584 // This function cannot currently deal with non-byte-sized memory sizes.
17585 int64_t ElementSizeBytes = MemVT.getStoreSize();
17586 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits())
17587 return false;
17588
17589 // Do not bother looking at stored values that are not constants, loads, or
17590 // extracted vector elements.
17591 SDValue StoredVal = peekThroughBitcasts(St->getValue());
17592 const StoreSource StoreSrc = getStoreSource(StoredVal);
17593 if (StoreSrc == StoreSource::Unknown)
17594 return false;
17595
17596 SmallVector<MemOpLink, 8> StoreNodes;
17597 SDNode *RootNode;
17598 // Find potential store merge candidates by searching through chain sub-DAG
17599 getStoreMergeCandidates(St, StoreNodes, RootNode);
17600
17601 // Check if there is anything to merge.
17602 if (StoreNodes.size() < 2)
17603 return false;
17604
17605 // Sort the memory operands according to their distance from the
17606 // base pointer.
17607 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
17608 return LHS.OffsetFromBase < RHS.OffsetFromBase;
17609 });
17610
17611 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute(
17612 Attribute::NoImplicitFloat);
17613 bool IsNonTemporalStore = St->isNonTemporal();
17614 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load &&
17615 cast<LoadSDNode>(StoredVal)->isNonTemporal();
17616
17617 // Store Merge attempts to merge the lowest stores. This generally
17618 // works out as if successful, as the remaining stores are checked
17619 // after the first collection of stores is merged. However, in the
17620 // case that a non-mergeable store is found first, e.g., {p[-2],
17621 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
17622 // mergeable cases. To prevent this, we prune such stores from the
17623 // front of StoreNodes here.
17624 bool MadeChange = false;
17625 while (StoreNodes.size() > 1) {
17626 unsigned NumConsecutiveStores =
17627 getConsecutiveStores(StoreNodes, ElementSizeBytes);
17628 // There are no more stores in the list to examine.
17629 if (NumConsecutiveStores == 0)
17630 return MadeChange;
17631
17632 // We have at least 2 consecutive stores. Try to merge them.
17633 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores")((NumConsecutiveStores >= 2 && "Expected at least 2 stores"
) ? static_cast<void> (0) : __assert_fail ("NumConsecutiveStores >= 2 && \"Expected at least 2 stores\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 17633, __PRETTY_FUNCTION__))
;
17634 switch (StoreSrc) {
17635 case StoreSource::Constant:
17636 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores,
17637 MemVT, RootNode, AllowVectors);
17638 break;
17639
17640 case StoreSource::Extract:
17641 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores,
17642 MemVT, RootNode);
17643 break;
17644
17645 case StoreSource::Load:
17646 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores,
17647 MemVT, RootNode, AllowVectors,
17648 IsNonTemporalStore, IsNonTemporalLoad);
17649 break;
17650
17651 default:
17652 llvm_unreachable("Unhandled store source type")::llvm::llvm_unreachable_internal("Unhandled store source type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 17652)
;
17653 }
17654 }
17655 return MadeChange;
17656}
17657
17658SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
17659 SDLoc SL(ST);
17660 SDValue ReplStore;
17661
17662 // Replace the chain to avoid dependency.
17663 if (ST->isTruncatingStore()) {
17664 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
17665 ST->getBasePtr(), ST->getMemoryVT(),
17666 ST->getMemOperand());
17667 } else {
17668 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
17669 ST->getMemOperand());
17670 }
17671
17672 // Create token to keep both nodes around.
17673 SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
17674 MVT::Other, ST->getChain(), ReplStore);
17675
17676 // Make sure the new and old chains are cleaned up.
17677 AddToWorklist(Token.getNode());
17678
17679 // Don't add users to work list.
17680 return CombineTo(ST, Token, false);
17681}
17682
17683SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
17684 SDValue Value = ST->getValue();
17685 if (Value.getOpcode() == ISD::TargetConstantFP)
17686 return SDValue();
17687
17688 if (!ISD::isNormalStore(ST))
17689 return SDValue();
17690
17691 SDLoc DL(ST);
17692
17693 SDValue Chain = ST->getChain();
17694 SDValue Ptr = ST->getBasePtr();
17695
17696 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
17697
17698 // NOTE: If the original store is volatile, this transform must not increase
17699 // the number of stores. For example, on x86-32 an f64 can be stored in one
17700 // processor operation but an i64 (which is not legal) requires two. So the
17701 // transform should not be done in this case.
17702
17703 SDValue Tmp;
17704 switch (CFP->getSimpleValueType(0).SimpleTy) {
17705 default:
17706 llvm_unreachable("Unknown FP type")::llvm::llvm_unreachable_internal("Unknown FP type", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 17706)
;
17707 case MVT::f16: // We don't do this for these yet.
17708 case MVT::f80:
17709 case MVT::f128:
17710 case MVT::ppcf128:
17711 return SDValue();
17712 case MVT::f32:
17713 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
17714 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
17715 ;
17716 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
17717 bitcastToAPInt().getZExtValue(), SDLoc(CFP),
17718 MVT::i32);
17719 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
17720 }
17721
17722 return SDValue();
17723 case MVT::f64:
17724 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
17725 ST->isSimple()) ||
17726 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
17727 ;
17728 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
17729 getZExtValue(), SDLoc(CFP), MVT::i64);
17730 return DAG.getStore(Chain, DL, Tmp,
17731 Ptr, ST->getMemOperand());
17732 }
17733
17734 if (ST->isSimple() &&
17735 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
17736 // Many FP stores are not made apparent until after legalize, e.g. for
17737 // argument passing. Since this is so common, custom legalize the
17738 // 64-bit integer store into two 32-bit stores.
17739 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
17740 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
17741 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
17742 if (DAG.getDataLayout().isBigEndian())
17743 std::swap(Lo, Hi);
17744
17745 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
17746 AAMDNodes AAInfo = ST->getAAInfo();
17747
17748 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
17749 ST->getOriginalAlign(), MMOFlags, AAInfo);
17750 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL);
17751 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
17752 ST->getPointerInfo().getWithOffset(4),
17753 ST->getOriginalAlign(), MMOFlags, AAInfo);
17754 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
17755 St0, St1);
17756 }
17757
17758 return SDValue();
17759 }
17760}
17761
17762SDValue DAGCombiner::visitSTORE(SDNode *N) {
17763 StoreSDNode *ST = cast<StoreSDNode>(N);
17764 SDValue Chain = ST->getChain();
17765 SDValue Value = ST->getValue();
17766 SDValue Ptr = ST->getBasePtr();
17767
17768 // If this is a store of a bit convert, store the input value if the
17769 // resultant store does not need a higher alignment than the original.
17770 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
17771 ST->isUnindexed()) {
17772 EVT SVT = Value.getOperand(0).getValueType();
17773 // If the store is volatile, we only want to change the store type if the
17774 // resulting store is legal. Otherwise we might increase the number of
17775 // memory accesses. We don't care if the original type was legal or not
17776 // as we assume software couldn't rely on the number of accesses of an
17777 // illegal type.
17778 // TODO: May be able to relax for unordered atomics (see D66309)
17779 if (((!LegalOperations && ST->isSimple()) ||
17780 TLI.isOperationLegal(ISD::STORE, SVT)) &&
17781 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
17782 DAG, *ST->getMemOperand())) {
17783 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
17784 ST->getMemOperand());
17785 }
17786 }
17787
17788 // Turn 'store undef, Ptr' -> nothing.
17789 if (Value.isUndef() && ST->isUnindexed())
17790 return Chain;
17791
17792 // Try to infer better alignment information than the store already has.
17793 if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) {
17794 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
17795 if (*Alignment > ST->getAlign() &&
17796 isAligned(*Alignment, ST->getSrcValueOffset())) {
17797 SDValue NewStore =
17798 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
17799 ST->getMemoryVT(), *Alignment,
17800 ST->getMemOperand()->getFlags(), ST->getAAInfo());
17801 // NewStore will always be N as we are only refining the alignment
17802 assert(NewStore.getNode() == N)((NewStore.getNode() == N) ? static_cast<void> (0) : __assert_fail
("NewStore.getNode() == N", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 17802, __PRETTY_FUNCTION__))
;
17803 (void)NewStore;
17804 }
17805 }
17806 }
17807
17808 // Try transforming a pair floating point load / store ops to integer
17809 // load / store ops.
17810 if (SDValue NewST = TransformFPLoadStorePair(N))
17811 return NewST;
17812
17813 // Try transforming several stores into STORE (BSWAP).
17814 if (SDValue Store = mergeTruncStores(ST))
17815 return Store;
17816
17817 if (ST->isUnindexed()) {
17818 // Walk up chain skipping non-aliasing memory nodes, on this store and any
17819 // adjacent stores.
17820 if (findBetterNeighborChains(ST)) {
17821 // replaceStoreChain uses CombineTo, which handled all of the worklist
17822 // manipulation. Return the original node to not do anything else.
17823 return SDValue(ST, 0);
17824 }
17825 Chain = ST->getChain();
17826 }
17827
17828 // FIXME: is there such a thing as a truncating indexed store?
17829 if (ST->isTruncatingStore() && ST->isUnindexed() &&
17830 Value.getValueType().isInteger() &&
17831 (!isa<ConstantSDNode>(Value) ||
17832 !cast<ConstantSDNode>(Value)->isOpaque())) {
17833 APInt TruncDemandedBits =
17834 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
17835 ST->getMemoryVT().getScalarSizeInBits());
17836
17837 // See if we can simplify the input to this truncstore with knowledge that
17838 // only the low bits are being used. For example:
17839 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
17840 AddToWorklist(Value.getNode());
17841 if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits))
17842 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
17843 ST->getMemOperand());
17844
17845 // Otherwise, see if we can simplify the operation with
17846 // SimplifyDemandedBits, which only works if the value has a single use.
17847 if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
17848 // Re-visit the store if anything changed and the store hasn't been merged
17849 // with another node (N is deleted) SimplifyDemandedBits will add Value's
17850 // node back to the worklist if necessary, but we also need to re-visit
17851 // the Store node itself.
17852 if (N->getOpcode() != ISD::DELETED_NODE)
17853 AddToWorklist(N);
17854 return SDValue(N, 0);
17855 }
17856 }
17857
17858 // If this is a load followed by a store to the same location, then the store
17859 // is dead/noop.
17860 // TODO: Can relax for unordered atomics (see D66309)
17861 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
17862 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
17863 ST->isUnindexed() && ST->isSimple() &&
17864 // There can't be any side effects between the load and store, such as
17865 // a call or store.
17866 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
17867 // The store is dead, remove it.
17868 return Chain;
17869 }
17870 }
17871
17872 // TODO: Can relax for unordered atomics (see D66309)
17873 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
17874 if (ST->isUnindexed() && ST->isSimple() &&
17875 ST1->isUnindexed() && ST1->isSimple()) {
17876 if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value &&
17877 ST->getMemoryVT() == ST1->getMemoryVT()) {
17878 // If this is a store followed by a store with the same value to the
17879 // same location, then the store is dead/noop.
17880 return Chain;
17881 }
17882
17883 if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
17884 !ST1->getBasePtr().isUndef() &&
17885 // BaseIndexOffset and the code below requires knowing the size
17886 // of a vector, so bail out if MemoryVT is scalable.
17887 !ST->getMemoryVT().isScalableVector() &&
17888 !ST1->getMemoryVT().isScalableVector()) {
17889 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
17890 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
17891 unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits();
17892 unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits();
17893 // If this is a store who's preceding store to a subset of the current
17894 // location and no one other node is chained to that store we can
17895 // effectively drop the store. Do not remove stores to undef as they may
17896 // be used as data sinks.
17897 if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
17898 CombineTo(ST1, ST1->getChain());
17899 return SDValue();
17900 }
17901 }
17902 }
17903 }
17904
17905 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
17906 // truncating store. We can do this even if this is already a truncstore.
17907 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
17908 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
17909 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
17910 ST->getMemoryVT())) {
17911 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
17912 Ptr, ST->getMemoryVT(), ST->getMemOperand());
17913 }
17914
17915 // Always perform this optimization before types are legal. If the target
17916 // prefers, also try this after legalization to catch stores that were created
17917 // by intrinsics or other nodes.
17918 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
17919 while (true) {
17920 // There can be multiple store sequences on the same chain.
17921 // Keep trying to merge store sequences until we are unable to do so
17922 // or until we merge the last store on the chain.
17923 bool Changed = mergeConsecutiveStores(ST);
17924 if (!Changed) break;
17925 // Return N as merge only uses CombineTo and no worklist clean
17926 // up is necessary.
17927 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
17928 return SDValue(N, 0);
17929 }
17930 }
17931
17932 // Try transforming N to an indexed store.
17933 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
17934 return SDValue(N, 0);
17935
17936 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
17937 //
17938 // Make sure to do this only after attempting to merge stores in order to
17939 // avoid changing the types of some subset of stores due to visit order,
17940 // preventing their merging.
17941 if (isa<ConstantFPSDNode>(ST->getValue())) {
17942 if (SDValue NewSt = replaceStoreOfFPConstant(ST))
17943 return NewSt;
17944 }
17945
17946 if (SDValue NewSt = splitMergedValStore(ST))
17947 return NewSt;
17948
17949 return ReduceLoadOpStoreWidth(N);
17950}
17951
17952SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
17953 const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
17954 if (!LifetimeEnd->hasOffset())
17955 return SDValue();
17956
17957 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
17958 LifetimeEnd->getOffset(), false);
17959
17960 // We walk up the chains to find stores.
17961 SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
17962 while (!Chains.empty()) {
17963 SDValue Chain = Chains.pop_back_val();
17964 if (!Chain.hasOneUse())
17965 continue;
17966 switch (Chain.getOpcode()) {
17967 case ISD::TokenFactor:
17968 for (unsigned Nops = Chain.getNumOperands(); Nops;)
17969 Chains.push_back(Chain.getOperand(--Nops));
17970 break;
17971 case ISD::LIFETIME_START:
17972 case ISD::LIFETIME_END:
17973 // We can forward past any lifetime start/end that can be proven not to
17974 // alias the node.
17975 if (!isAlias(Chain.getNode(), N))
17976 Chains.push_back(Chain.getOperand(0));
17977 break;
17978 case ISD::STORE: {
17979 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
17980 // TODO: Can relax for unordered atomics (see D66309)
17981 if (!ST->isSimple() || ST->isIndexed())
17982 continue;
17983 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize();
17984 // The bounds of a scalable store are not known until runtime, so this
17985 // store cannot be elided.
17986 if (StoreSize.isScalable())
17987 continue;
17988 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
17989 // If we store purely within object bounds just before its lifetime ends,
17990 // we can remove the store.
17991 if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
17992 StoreSize.getFixedSize() * 8)) {
17993 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nRemoving store:"; StoreBase
.dump(); dbgs() << "\nwithin LIFETIME_END of : "; LifetimeEndBase
.dump(); dbgs() << "\n"; } } while (false)
17994 dbgs() << "\nwithin LIFETIME_END of : ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nRemoving store:"; StoreBase
.dump(); dbgs() << "\nwithin LIFETIME_END of : "; LifetimeEndBase
.dump(); dbgs() << "\n"; } } while (false)
17995 LifetimeEndBase.dump(); dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dagcombine")) { dbgs() << "\nRemoving store:"; StoreBase
.dump(); dbgs() << "\nwithin LIFETIME_END of : "; LifetimeEndBase
.dump(); dbgs() << "\n"; } } while (false)
;
17996 CombineTo(ST, ST->getChain());
17997 return SDValue(N, 0);
17998 }
17999 }
18000 }
18001 }
18002 return SDValue();
18003}
18004
18005/// For the instruction sequence of store below, F and I values
18006/// are bundled together as an i64 value before being stored into memory.
18007/// Sometimes it is more efficent to generate separate stores for F and I,
18008/// which can remove the bitwise instructions or sink them to colder places.
18009///
18010/// (store (or (zext (bitcast F to i32) to i64),
18011/// (shl (zext I to i64), 32)), addr) -->
18012/// (store F, addr) and (store I, addr+4)
18013///
18014/// Similarly, splitting for other merged store can also be beneficial, like:
18015/// For pair of {i32, i32}, i64 store --> two i32 stores.
18016/// For pair of {i32, i16}, i64 store --> two i32 stores.
18017/// For pair of {i16, i16}, i32 store --> two i16 stores.
18018/// For pair of {i16, i8}, i32 store --> two i16 stores.
18019/// For pair of {i8, i8}, i16 store --> two i8 stores.
18020///
18021/// We allow each target to determine specifically which kind of splitting is
18022/// supported.
18023///
18024/// The store patterns are commonly seen from the simple code snippet below
18025/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
18026/// void goo(const std::pair<int, float> &);
18027/// hoo() {
18028/// ...
18029/// goo(std::make_pair(tmp, ftmp));
18030/// ...
18031/// }
18032///
18033SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
18034 if (OptLevel == CodeGenOpt::None)
18035 return SDValue();
18036
18037 // Can't change the number of memory accesses for a volatile store or break
18038 // atomicity for an atomic one.
18039 if (!ST->isSimple())
18040 return SDValue();
18041
18042 SDValue Val = ST->getValue();
18043 SDLoc DL(ST);
18044
18045 // Match OR operand.
18046 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
18047 return SDValue();
18048
18049 // Match SHL operand and get Lower and Higher parts of Val.
18050 SDValue Op1 = Val.getOperand(0);
18051 SDValue Op2 = Val.getOperand(1);
18052 SDValue Lo, Hi;
18053 if (Op1.getOpcode() != ISD::SHL) {
18054 std::swap(Op1, Op2);
18055 if (Op1.getOpcode() != ISD::SHL)
18056 return SDValue();
18057 }
18058 Lo = Op2;
18059 Hi = Op1.getOperand(0);
18060 if (!Op1.hasOneUse())
18061 return SDValue();
18062
18063 // Match shift amount to HalfValBitSize.
18064 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
18065 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
18066 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
18067 return SDValue();
18068
18069 // Lo and Hi are zero-extended from int with size less equal than 32
18070 // to i64.
18071 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
18072 !Lo.getOperand(0).getValueType().isScalarInteger() ||
18073 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
18074 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
18075 !Hi.getOperand(0).getValueType().isScalarInteger() ||
18076 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
18077 return SDValue();
18078
18079 // Use the EVT of low and high parts before bitcast as the input
18080 // of target query.
18081 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
18082 ? Lo.getOperand(0).getValueType()
18083 : Lo.getValueType();
18084 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
18085 ? Hi.getOperand(0).getValueType()
18086 : Hi.getValueType();
18087 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
18088 return SDValue();
18089
18090 // Start to split store.
18091 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
18092 AAMDNodes AAInfo = ST->getAAInfo();
18093
18094 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
18095 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
18096 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
18097 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
18098
18099 SDValue Chain = ST->getChain();
18100 SDValue Ptr = ST->getBasePtr();
18101 // Lower value store.
18102 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
18103 ST->getOriginalAlign(), MMOFlags, AAInfo);
18104 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL);
18105 // Higher value store.
18106 SDValue St1 = DAG.getStore(
18107 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
18108 ST->getOriginalAlign(), MMOFlags, AAInfo);
18109 return St1;
18110}
18111
18112/// Convert a disguised subvector insertion into a shuffle:
18113SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
18114 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&((N->getOpcode() == ISD::INSERT_VECTOR_ELT && "Expected extract_vector_elt"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::INSERT_VECTOR_ELT && \"Expected extract_vector_elt\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18115, __PRETTY_FUNCTION__))
18115 "Expected extract_vector_elt")((N->getOpcode() == ISD::INSERT_VECTOR_ELT && "Expected extract_vector_elt"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::INSERT_VECTOR_ELT && \"Expected extract_vector_elt\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18115, __PRETTY_FUNCTION__))
;
18116 SDValue InsertVal = N->getOperand(1);
18117 SDValue Vec = N->getOperand(0);
18118
18119 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
18120 // InsIndex)
18121 // --> (vector_shuffle X, Y) and variations where shuffle operands may be
18122 // CONCAT_VECTORS.
18123 if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() &&
18124 InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
18125 isa<ConstantSDNode>(InsertVal.getOperand(1))) {
18126 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode());
18127 ArrayRef<int> Mask = SVN->getMask();
18128
18129 SDValue X = Vec.getOperand(0);
18130 SDValue Y = Vec.getOperand(1);
18131
18132 // Vec's operand 0 is using indices from 0 to N-1 and
18133 // operand 1 from N to 2N - 1, where N is the number of
18134 // elements in the vectors.
18135 SDValue InsertVal0 = InsertVal.getOperand(0);
18136 int ElementOffset = -1;
18137
18138 // We explore the inputs of the shuffle in order to see if we find the
18139 // source of the extract_vector_elt. If so, we can use it to modify the
18140 // shuffle rather than perform an insert_vector_elt.
18141 SmallVector<std::pair<int, SDValue>, 8> ArgWorkList;
18142 ArgWorkList.emplace_back(Mask.size(), Y);
18143 ArgWorkList.emplace_back(0, X);
18144
18145 while (!ArgWorkList.empty()) {
18146 int ArgOffset;
18147 SDValue ArgVal;
18148 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val();
18149
18150 if (ArgVal == InsertVal0) {
18151 ElementOffset = ArgOffset;
18152 break;
18153 }
18154
18155 // Peek through concat_vector.
18156 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) {
18157 int CurrentArgOffset =
18158 ArgOffset + ArgVal.getValueType().getVectorNumElements();
18159 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements();
18160 for (SDValue Op : reverse(ArgVal->ops())) {
18161 CurrentArgOffset -= Step;
18162 ArgWorkList.emplace_back(CurrentArgOffset, Op);
18163 }
18164
18165 // Make sure we went through all the elements and did not screw up index
18166 // computation.
18167 assert(CurrentArgOffset == ArgOffset)((CurrentArgOffset == ArgOffset) ? static_cast<void> (0
) : __assert_fail ("CurrentArgOffset == ArgOffset", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18167, __PRETTY_FUNCTION__))
;
18168 }
18169 }
18170
18171 if (ElementOffset != -1) {
18172 SmallVector<int, 16> NewMask(Mask.begin(), Mask.end());
18173
18174 auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1));
18175 NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue();
18176 assert(NewMask[InsIndex] <((NewMask[InsIndex] < (int)(2 * Vec.getValueType().getVectorNumElements
()) && NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"
) ? static_cast<void> (0) : __assert_fail ("NewMask[InsIndex] < (int)(2 * Vec.getValueType().getVectorNumElements()) && NewMask[InsIndex] >= 0 && \"NewMask[InsIndex] is out of bound\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18178, __PRETTY_FUNCTION__))
18177 (int)(2 * Vec.getValueType().getVectorNumElements()) &&((NewMask[InsIndex] < (int)(2 * Vec.getValueType().getVectorNumElements
()) && NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"
) ? static_cast<void> (0) : __assert_fail ("NewMask[InsIndex] < (int)(2 * Vec.getValueType().getVectorNumElements()) && NewMask[InsIndex] >= 0 && \"NewMask[InsIndex] is out of bound\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18178, __PRETTY_FUNCTION__))
18178 NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound")((NewMask[InsIndex] < (int)(2 * Vec.getValueType().getVectorNumElements
()) && NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"
) ? static_cast<void> (0) : __assert_fail ("NewMask[InsIndex] < (int)(2 * Vec.getValueType().getVectorNumElements()) && NewMask[InsIndex] >= 0 && \"NewMask[InsIndex] is out of bound\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18178, __PRETTY_FUNCTION__))
;
18179
18180 SDValue LegalShuffle =
18181 TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X,
18182 Y, NewMask, DAG);
18183 if (LegalShuffle)
18184 return LegalShuffle;
18185 }
18186 }
18187
18188 // insert_vector_elt V, (bitcast X from vector type), IdxC -->
18189 // bitcast(shuffle (bitcast V), (extended X), Mask)
18190 // Note: We do not use an insert_subvector node because that requires a
18191 // legal subvector type.
18192 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
18193 !InsertVal.getOperand(0).getValueType().isVector())
18194 return SDValue();
18195
18196 SDValue SubVec = InsertVal.getOperand(0);
18197 SDValue DestVec = N->getOperand(0);
18198 EVT SubVecVT = SubVec.getValueType();
18199 EVT VT = DestVec.getValueType();
18200 unsigned NumSrcElts = SubVecVT.getVectorNumElements();
18201 // If the source only has a single vector element, the cost of creating adding
18202 // it to a vector is likely to exceed the cost of a insert_vector_elt.
18203 if (NumSrcElts == 1)
18204 return SDValue();
18205 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
18206 unsigned NumMaskVals = ExtendRatio * NumSrcElts;
18207
18208 // Step 1: Create a shuffle mask that implements this insert operation. The
18209 // vector that we are inserting into will be operand 0 of the shuffle, so
18210 // those elements are just 'i'. The inserted subvector is in the first
18211 // positions of operand 1 of the shuffle. Example:
18212 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
18213 SmallVector<int, 16> Mask(NumMaskVals);
18214 for (unsigned i = 0; i != NumMaskVals; ++i) {
18215 if (i / NumSrcElts == InsIndex)
18216 Mask[i] = (i % NumSrcElts) + NumMaskVals;
18217 else
18218 Mask[i] = i;
18219 }
18220
18221 // Bail out if the target can not handle the shuffle we want to create.
18222 EVT SubVecEltVT = SubVecVT.getVectorElementType();
18223 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
18224 if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
18225 return SDValue();
18226
18227 // Step 2: Create a wide vector from the inserted source vector by appending
18228 // undefined elements. This is the same size as our destination vector.
18229 SDLoc DL(N);
18230 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
18231 ConcatOps[0] = SubVec;
18232 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
18233
18234 // Step 3: Shuffle in the padded subvector.
18235 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
18236 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
18237 AddToWorklist(PaddedSubV.getNode());
18238 AddToWorklist(DestVecBC.getNode());
18239 AddToWorklist(Shuf.getNode());
18240 return DAG.getBitcast(VT, Shuf);
18241}
18242
18243SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
18244 SDValue InVec = N->getOperand(0);
18245 SDValue InVal = N->getOperand(1);
18246 SDValue EltNo = N->getOperand(2);
18247 SDLoc DL(N);
18248
18249 EVT VT = InVec.getValueType();
18250 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
18251
18252 // Insert into out-of-bounds element is undefined.
18253 if (IndexC && VT.isFixedLengthVector() &&
18254 IndexC->getZExtValue() >= VT.getVectorNumElements())
18255 return DAG.getUNDEF(VT);
18256
18257 // Remove redundant insertions:
18258 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
18259 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
18260 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
18261 return InVec;
18262
18263 if (!IndexC) {
18264 // If this is variable insert to undef vector, it might be better to splat:
18265 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
18266 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
18267 if (VT.isScalableVector())
18268 return DAG.getSplatVector(VT, DL, InVal);
18269 else {
18270 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal);
18271 return DAG.getBuildVector(VT, DL, Ops);
18272 }
18273 }
18274 return SDValue();
18275 }
18276
18277 if (VT.isScalableVector())
18278 return SDValue();
18279
18280 unsigned NumElts = VT.getVectorNumElements();
18281
18282 // We must know which element is being inserted for folds below here.
18283 unsigned Elt = IndexC->getZExtValue();
18284 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
18285 return Shuf;
18286
18287 // Canonicalize insert_vector_elt dag nodes.
18288 // Example:
18289 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
18290 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
18291 //
18292 // Do this only if the child insert_vector node has one use; also
18293 // do this only if indices are both constants and Idx1 < Idx0.
18294 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
18295 && isa<ConstantSDNode>(InVec.getOperand(2))) {
18296 unsigned OtherElt = InVec.getConstantOperandVal(2);
18297 if (Elt < OtherElt) {
18298 // Swap nodes.
18299 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
18300 InVec.getOperand(0), InVal, EltNo);
18301 AddToWorklist(NewOp.getNode());
18302 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
18303 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
18304 }
18305 }
18306
18307 // If we can't generate a legal BUILD_VECTOR, exit
18308 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
18309 return SDValue();
18310
18311 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
18312 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
18313 // vector elements.
18314 SmallVector<SDValue, 8> Ops;
18315 // Do not combine these two vectors if the output vector will not replace
18316 // the input vector.
18317 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
18318 Ops.append(InVec.getNode()->op_begin(),
18319 InVec.getNode()->op_end());
18320 } else if (InVec.isUndef()) {
18321 Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
18322 } else {
18323 return SDValue();
18324 }
18325 assert(Ops.size() == NumElts && "Unexpected vector size")((Ops.size() == NumElts && "Unexpected vector size") ?
static_cast<void> (0) : __assert_fail ("Ops.size() == NumElts && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18325, __PRETTY_FUNCTION__))
;
18326
18327 // Insert the element
18328 if (Elt < Ops.size()) {
18329 // All the operands of BUILD_VECTOR must have the same type;
18330 // we enforce that here.
18331 EVT OpVT = Ops[0].getValueType();
18332 Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
18333 }
18334
18335 // Return the new vector
18336 return DAG.getBuildVector(VT, DL, Ops);
18337}
18338
18339SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
18340 SDValue EltNo,
18341 LoadSDNode *OriginalLoad) {
18342 assert(OriginalLoad->isSimple())((OriginalLoad->isSimple()) ? static_cast<void> (0) :
__assert_fail ("OriginalLoad->isSimple()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18342, __PRETTY_FUNCTION__))
;
18343
18344 EVT ResultVT = EVE->getValueType(0);
18345 EVT VecEltVT = InVecVT.getVectorElementType();
18346
18347 // If the vector element type is not a multiple of a byte then we are unable
18348 // to correctly compute an address to load only the extracted element as a
18349 // scalar.
18350 if (!VecEltVT.isByteSized())
18351 return SDValue();
18352
18353 Align Alignment = OriginalLoad->getAlign();
18354 Align NewAlign = DAG.getDataLayout().getABITypeAlign(
18355 VecEltVT.getTypeForEVT(*DAG.getContext()));
18356
18357 if (NewAlign > Alignment ||
18358 !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
18359 return SDValue();
18360
18361 ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
18362 ISD::NON_EXTLOAD : ISD::EXTLOAD;
18363 if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
18364 return SDValue();
18365
18366 Alignment = NewAlign;
18367
18368 SDValue NewPtr = OriginalLoad->getBasePtr();
18369 SDValue Offset;
18370 EVT PtrType = NewPtr.getValueType();
18371 MachinePointerInfo MPI;
18372 SDLoc DL(EVE);
18373 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
18374 int Elt = ConstEltNo->getZExtValue();
18375 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
18376 Offset = DAG.getConstant(PtrOff, DL, PtrType);
18377 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
18378 } else {
18379 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
18380 Offset = DAG.getNode(
18381 ISD::MUL, DL, PtrType, Offset,
18382 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
18383 // Discard the pointer info except the address space because the memory
18384 // operand can't represent this new access since the offset is variable.
18385 MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
18386 }
18387 NewPtr = DAG.getMemBasePlusOffset(NewPtr, Offset, DL);
18388
18389 // The replacement we need to do here is a little tricky: we need to
18390 // replace an extractelement of a load with a load.
18391 // Use ReplaceAllUsesOfValuesWith to do the replacement.
18392 // Note that this replacement assumes that the extractvalue is the only
18393 // use of the load; that's okay because we don't want to perform this
18394 // transformation in other cases anyway.
18395 SDValue Load;
18396 SDValue Chain;
18397 if (ResultVT.bitsGT(VecEltVT)) {
18398 // If the result type of vextract is wider than the load, then issue an
18399 // extending load instead.
18400 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
18401 VecEltVT)
18402 ? ISD::ZEXTLOAD
18403 : ISD::EXTLOAD;
18404 Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
18405 OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
18406 Alignment, OriginalLoad->getMemOperand()->getFlags(),
18407 OriginalLoad->getAAInfo());
18408 Chain = Load.getValue(1);
18409 } else {
18410 Load = DAG.getLoad(
18411 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment,
18412 OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo());
18413 Chain = Load.getValue(1);
18414 if (ResultVT.bitsLT(VecEltVT))
18415 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
18416 else
18417 Load = DAG.getBitcast(ResultVT, Load);
18418 }
18419 WorklistRemover DeadNodes(*this);
18420 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
18421 SDValue To[] = { Load, Chain };
18422 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
18423 // Make sure to revisit this node to clean it up; it will usually be dead.
18424 AddToWorklist(EVE);
18425 // Since we're explicitly calling ReplaceAllUses, add the new node to the
18426 // worklist explicitly as well.
18427 AddToWorklistWithUsers(Load.getNode());
18428 ++OpsNarrowed;
18429 return SDValue(EVE, 0);
18430}
18431
18432/// Transform a vector binary operation into a scalar binary operation by moving
18433/// the math/logic after an extract element of a vector.
18434static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
18435 bool LegalOperations) {
18436 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18437 SDValue Vec = ExtElt->getOperand(0);
18438 SDValue Index = ExtElt->getOperand(1);
18439 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
18440 if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
18441 Vec.getNode()->getNumValues() != 1)
18442 return SDValue();
18443
18444 // Targets may want to avoid this to prevent an expensive register transfer.
18445 if (!TLI.shouldScalarizeBinop(Vec))
18446 return SDValue();
18447
18448 // Extracting an element of a vector constant is constant-folded, so this
18449 // transform is just replacing a vector op with a scalar op while moving the
18450 // extract.
18451 SDValue Op0 = Vec.getOperand(0);
18452 SDValue Op1 = Vec.getOperand(1);
18453 if (isAnyConstantBuildVector(Op0, true) ||
18454 isAnyConstantBuildVector(Op1, true)) {
18455 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
18456 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
18457 SDLoc DL(ExtElt);
18458 EVT VT = ExtElt->getValueType(0);
18459 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
18460 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
18461 return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
18462 }
18463
18464 return SDValue();
18465}
18466
18467SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
18468 SDValue VecOp = N->getOperand(0);
18469 SDValue Index = N->getOperand(1);
18470 EVT ScalarVT = N->getValueType(0);
18471 EVT VecVT = VecOp.getValueType();
18472 if (VecOp.isUndef())
18473 return DAG.getUNDEF(ScalarVT);
18474
18475 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
18476 //
18477 // This only really matters if the index is non-constant since other combines
18478 // on the constant elements already work.
18479 SDLoc DL(N);
18480 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
18481 Index == VecOp.getOperand(2)) {
18482 SDValue Elt = VecOp.getOperand(1);
18483 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
18484 }
18485
18486 // (vextract (scalar_to_vector val, 0) -> val
18487 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
18488 // Only 0'th element of SCALAR_TO_VECTOR is defined.
18489 if (DAG.isKnownNeverZero(Index))
18490 return DAG.getUNDEF(ScalarVT);
18491
18492 // Check if the result type doesn't match the inserted element type. A
18493 // SCALAR_TO_VECTOR may truncate the inserted element and the
18494 // EXTRACT_VECTOR_ELT may widen the extracted vector.
18495 SDValue InOp = VecOp.getOperand(0);
18496 if (InOp.getValueType() != ScalarVT) {
18497 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger())((InOp.getValueType().isInteger() && ScalarVT.isInteger
()) ? static_cast<void> (0) : __assert_fail ("InOp.getValueType().isInteger() && ScalarVT.isInteger()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18497, __PRETTY_FUNCTION__))
;
18498 return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
18499 }
18500 return InOp;
18501 }
18502
18503 // extract_vector_elt of out-of-bounds element -> UNDEF
18504 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
18505 if (IndexC && VecVT.isFixedLengthVector() &&
18506 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements()))
18507 return DAG.getUNDEF(ScalarVT);
18508
18509 // extract_vector_elt (build_vector x, y), 1 -> y
18510 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) ||
18511 VecOp.getOpcode() == ISD::SPLAT_VECTOR) &&
18512 TLI.isTypeLegal(VecVT) &&
18513 (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
18514 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR ||(((VecOp.getOpcode() != ISD::BUILD_VECTOR || VecVT.isFixedLengthVector
()) && "BUILD_VECTOR used for scalable vectors") ? static_cast
<void> (0) : __assert_fail ("(VecOp.getOpcode() != ISD::BUILD_VECTOR || VecVT.isFixedLengthVector()) && \"BUILD_VECTOR used for scalable vectors\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18516, __PRETTY_FUNCTION__))
18515 VecVT.isFixedLengthVector()) &&(((VecOp.getOpcode() != ISD::BUILD_VECTOR || VecVT.isFixedLengthVector
()) && "BUILD_VECTOR used for scalable vectors") ? static_cast
<void> (0) : __assert_fail ("(VecOp.getOpcode() != ISD::BUILD_VECTOR || VecVT.isFixedLengthVector()) && \"BUILD_VECTOR used for scalable vectors\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18516, __PRETTY_FUNCTION__))
18516 "BUILD_VECTOR used for scalable vectors")(((VecOp.getOpcode() != ISD::BUILD_VECTOR || VecVT.isFixedLengthVector
()) && "BUILD_VECTOR used for scalable vectors") ? static_cast
<void> (0) : __assert_fail ("(VecOp.getOpcode() != ISD::BUILD_VECTOR || VecVT.isFixedLengthVector()) && \"BUILD_VECTOR used for scalable vectors\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18516, __PRETTY_FUNCTION__))
;
18517 unsigned IndexVal =
18518 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0;
18519 SDValue Elt = VecOp.getOperand(IndexVal);
18520 EVT InEltVT = Elt.getValueType();
18521
18522 // Sometimes build_vector's scalar input types do not match result type.
18523 if (ScalarVT == InEltVT)
18524 return Elt;
18525
18526 // TODO: It may be useful to truncate if free if the build_vector implicitly
18527 // converts.
18528 }
18529
18530 if (VecVT.isScalableVector())
18531 return SDValue();
18532
18533 // All the code from this point onwards assumes fixed width vectors, but it's
18534 // possible that some of the combinations could be made to work for scalable
18535 // vectors too.
18536 unsigned NumElts = VecVT.getVectorNumElements();
18537 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
18538
18539 // TODO: These transforms should not require the 'hasOneUse' restriction, but
18540 // there are regressions on multiple targets without it. We can end up with a
18541 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
18542 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
18543 VecOp.hasOneUse()) {
18544 // The vector index of the LSBs of the source depend on the endian-ness.
18545 bool IsLE = DAG.getDataLayout().isLittleEndian();
18546 unsigned ExtractIndex = IndexC->getZExtValue();
18547 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
18548 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
18549 SDValue BCSrc = VecOp.getOperand(0);
18550 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
18551 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
18552
18553 if (LegalTypes && BCSrc.getValueType().isInteger() &&
18554 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
18555 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
18556 // trunc i64 X to i32
18557 SDValue X = BCSrc.getOperand(0);
18558 assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&((X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger
() && "Extract element and scalar to vector can't change element type "
"from FP to integer.") ? static_cast<void> (0) : __assert_fail
("X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && \"Extract element and scalar to vector can't change element type \" \"from FP to integer.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18560, __PRETTY_FUNCTION__))
18559 "Extract element and scalar to vector can't change element type "((X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger
() && "Extract element and scalar to vector can't change element type "
"from FP to integer.") ? static_cast<void> (0) : __assert_fail
("X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && \"Extract element and scalar to vector can't change element type \" \"from FP to integer.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18560, __PRETTY_FUNCTION__))
18560 "from FP to integer.")((X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger
() && "Extract element and scalar to vector can't change element type "
"from FP to integer.") ? static_cast<void> (0) : __assert_fail
("X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && \"Extract element and scalar to vector can't change element type \" \"from FP to integer.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18560, __PRETTY_FUNCTION__))
;
18561 unsigned XBitWidth = X.getValueSizeInBits();
18562 BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
18563
18564 // An extract element return value type can be wider than its vector
18565 // operand element type. In that case, the high bits are undefined, so
18566 // it's possible that we may need to extend rather than truncate.
18567 if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
18568 assert(XBitWidth % VecEltBitWidth == 0 &&((XBitWidth % VecEltBitWidth == 0 && "Scalar bitwidth must be a multiple of vector element bitwidth"
) ? static_cast<void> (0) : __assert_fail ("XBitWidth % VecEltBitWidth == 0 && \"Scalar bitwidth must be a multiple of vector element bitwidth\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18569, __PRETTY_FUNCTION__))
18569 "Scalar bitwidth must be a multiple of vector element bitwidth")((XBitWidth % VecEltBitWidth == 0 && "Scalar bitwidth must be a multiple of vector element bitwidth"
) ? static_cast<void> (0) : __assert_fail ("XBitWidth % VecEltBitWidth == 0 && \"Scalar bitwidth must be a multiple of vector element bitwidth\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18569, __PRETTY_FUNCTION__))
;
18570 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
18571 }
18572 }
18573 }
18574
18575 if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
18576 return BO;
18577
18578 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
18579 // We only perform this optimization before the op legalization phase because
18580 // we may introduce new vector instructions which are not backed by TD
18581 // patterns. For example on AVX, extracting elements from a wide vector
18582 // without using extract_subvector. However, if we can find an underlying
18583 // scalar value, then we can always use that.
18584 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
18585 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
18586 // Find the new index to extract from.
18587 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
18588
18589 // Extracting an undef index is undef.
18590 if (OrigElt == -1)
18591 return DAG.getUNDEF(ScalarVT);
18592
18593 // Select the right vector half to extract from.
18594 SDValue SVInVec;
18595 if (OrigElt < (int)NumElts) {
18596 SVInVec = VecOp.getOperand(0);
18597 } else {
18598 SVInVec = VecOp.getOperand(1);
18599 OrigElt -= NumElts;
18600 }
18601
18602 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
18603 SDValue InOp = SVInVec.getOperand(OrigElt);
18604 if (InOp.getValueType() != ScalarVT) {
18605 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger())((InOp.getValueType().isInteger() && ScalarVT.isInteger
()) ? static_cast<void> (0) : __assert_fail ("InOp.getValueType().isInteger() && ScalarVT.isInteger()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18605, __PRETTY_FUNCTION__))
;
18606 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
18607 }
18608
18609 return InOp;
18610 }
18611
18612 // FIXME: We should handle recursing on other vector shuffles and
18613 // scalar_to_vector here as well.
18614
18615 if (!LegalOperations ||
18616 // FIXME: Should really be just isOperationLegalOrCustom.
18617 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
18618 TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
18619 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
18620 DAG.getVectorIdxConstant(OrigElt, DL));
18621 }
18622 }
18623
18624 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
18625 // simplify it based on the (valid) extraction indices.
18626 if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
18627 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
18628 Use->getOperand(0) == VecOp &&
18629 isa<ConstantSDNode>(Use->getOperand(1));
18630 })) {
18631 APInt DemandedElts = APInt::getNullValue(NumElts);
18632 for (SDNode *Use : VecOp->uses()) {
18633 auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
18634 if (CstElt->getAPIntValue().ult(NumElts))
18635 DemandedElts.setBit(CstElt->getZExtValue());
18636 }
18637 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
18638 // We simplified the vector operand of this extract element. If this
18639 // extract is not dead, visit it again so it is folded properly.
18640 if (N->getOpcode() != ISD::DELETED_NODE)
18641 AddToWorklist(N);
18642 return SDValue(N, 0);
18643 }
18644 APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth);
18645 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) {
18646 // We simplified the vector operand of this extract element. If this
18647 // extract is not dead, visit it again so it is folded properly.
18648 if (N->getOpcode() != ISD::DELETED_NODE)
18649 AddToWorklist(N);
18650 return SDValue(N, 0);
18651 }
18652 }
18653
18654 // Everything under here is trying to match an extract of a loaded value.
18655 // If the result of load has to be truncated, then it's not necessarily
18656 // profitable.
18657 bool BCNumEltsChanged = false;
18658 EVT ExtVT = VecVT.getVectorElementType();
18659 EVT LVT = ExtVT;
18660 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
18661 return SDValue();
18662
18663 if (VecOp.getOpcode() == ISD::BITCAST) {
18664 // Don't duplicate a load with other uses.
18665 if (!VecOp.hasOneUse())
18666 return SDValue();
18667
18668 EVT BCVT = VecOp.getOperand(0).getValueType();
18669 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
18670 return SDValue();
18671 if (NumElts != BCVT.getVectorNumElements())
18672 BCNumEltsChanged = true;
18673 VecOp = VecOp.getOperand(0);
18674 ExtVT = BCVT.getVectorElementType();
18675 }
18676
18677 // extract (vector load $addr), i --> load $addr + i * size
18678 if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
18679 ISD::isNormalLoad(VecOp.getNode()) &&
18680 !Index->hasPredecessor(VecOp.getNode())) {
18681 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
18682 if (VecLoad && VecLoad->isSimple())
18683 return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
18684 }
18685
18686 // Perform only after legalization to ensure build_vector / vector_shuffle
18687 // optimizations have already been done.
18688 if (!LegalOperations || !IndexC)
18689 return SDValue();
18690
18691 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
18692 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
18693 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
18694 int Elt = IndexC->getZExtValue();
18695 LoadSDNode *LN0 = nullptr;
18696 if (ISD::isNormalLoad(VecOp.getNode())) {
18697 LN0 = cast<LoadSDNode>(VecOp);
18698 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
18699 VecOp.getOperand(0).getValueType() == ExtVT &&
18700 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
18701 // Don't duplicate a load with other uses.
18702 if (!VecOp.hasOneUse())
18703 return SDValue();
18704
18705 LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
18706 }
18707 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
18708 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
18709 // =>
18710 // (load $addr+1*size)
18711
18712 // Don't duplicate a load with other uses.
18713 if (!VecOp.hasOneUse())
18714 return SDValue();
18715
18716 // If the bit convert changed the number of elements, it is unsafe
18717 // to examine the mask.
18718 if (BCNumEltsChanged)
18719 return SDValue();
18720
18721 // Select the input vector, guarding against out of range extract vector.
18722 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
18723 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
18724
18725 if (VecOp.getOpcode() == ISD::BITCAST) {
18726 // Don't duplicate a load with other uses.
18727 if (!VecOp.hasOneUse())
18728 return SDValue();
18729
18730 VecOp = VecOp.getOperand(0);
18731 }
18732 if (ISD::isNormalLoad(VecOp.getNode())) {
18733 LN0 = cast<LoadSDNode>(VecOp);
18734 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
18735 Index = DAG.getConstant(Elt, DL, Index.getValueType());
18736 }
18737 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged &&
18738 VecVT.getVectorElementType() == ScalarVT &&
18739 (!LegalTypes ||
18740 TLI.isTypeLegal(
18741 VecOp.getOperand(0).getValueType().getVectorElementType()))) {
18742 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
18743 // -> extract_vector_elt a, 0
18744 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
18745 // -> extract_vector_elt a, 1
18746 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
18747 // -> extract_vector_elt b, 0
18748 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
18749 // -> extract_vector_elt b, 1
18750 SDLoc SL(N);
18751 EVT ConcatVT = VecOp.getOperand(0).getValueType();
18752 unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
18753 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL,
18754 Index.getValueType());
18755
18756 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts);
18757 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL,
18758 ConcatVT.getVectorElementType(),
18759 ConcatOp, NewIdx);
18760 return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt);
18761 }
18762
18763 // Make sure we found a non-volatile load and the extractelement is
18764 // the only use.
18765 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
18766 return SDValue();
18767
18768 // If Idx was -1 above, Elt is going to be -1, so just return undef.
18769 if (Elt == -1)
18770 return DAG.getUNDEF(LVT);
18771
18772 return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
18773}
18774
18775// Simplify (build_vec (ext )) to (bitcast (build_vec ))
18776SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
18777 // We perform this optimization post type-legalization because
18778 // the type-legalizer often scalarizes integer-promoted vectors.
18779 // Performing this optimization before may create bit-casts which
18780 // will be type-legalized to complex code sequences.
18781 // We perform this optimization only before the operation legalizer because we
18782 // may introduce illegal operations.
18783 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
18784 return SDValue();
18785
18786 unsigned NumInScalars = N->getNumOperands();
18787 SDLoc DL(N);
18788 EVT VT = N->getValueType(0);
18789
18790 // Check to see if this is a BUILD_VECTOR of a bunch of values
18791 // which come from any_extend or zero_extend nodes. If so, we can create
18792 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
18793 // optimizations. We do not handle sign-extend because we can't fill the sign
18794 // using shuffles.
18795 EVT SourceType = MVT::Other;
18796 bool AllAnyExt = true;
18797
18798 for (unsigned i = 0; i != NumInScalars; ++i) {
18799 SDValue In = N->getOperand(i);
18800 // Ignore undef inputs.
18801 if (In.isUndef()) continue;
18802
18803 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
18804 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
18805
18806 // Abort if the element is not an extension.
18807 if (!ZeroExt && !AnyExt) {
18808 SourceType = MVT::Other;
18809 break;
18810 }
18811
18812 // The input is a ZeroExt or AnyExt. Check the original type.
18813 EVT InTy = In.getOperand(0).getValueType();
18814
18815 // Check that all of the widened source types are the same.
18816 if (SourceType == MVT::Other)
18817 // First time.
18818 SourceType = InTy;
18819 else if (InTy != SourceType) {
18820 // Multiple income types. Abort.
18821 SourceType = MVT::Other;
18822 break;
18823 }
18824
18825 // Check if all of the extends are ANY_EXTENDs.
18826 AllAnyExt &= AnyExt;
18827 }
18828
18829 // In order to have valid types, all of the inputs must be extended from the
18830 // same source type and all of the inputs must be any or zero extend.
18831 // Scalar sizes must be a power of two.
18832 EVT OutScalarTy = VT.getScalarType();
18833 bool ValidTypes = SourceType != MVT::Other &&
18834 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
18835 isPowerOf2_32(SourceType.getSizeInBits());
18836
18837 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
18838 // turn into a single shuffle instruction.
18839 if (!ValidTypes)
18840 return SDValue();
18841
18842 // If we already have a splat buildvector, then don't fold it if it means
18843 // introducing zeros.
18844 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true))
18845 return SDValue();
18846
18847 bool isLE = DAG.getDataLayout().isLittleEndian();
18848 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
18849 assert(ElemRatio > 1 && "Invalid element size ratio")((ElemRatio > 1 && "Invalid element size ratio") ?
static_cast<void> (0) : __assert_fail ("ElemRatio > 1 && \"Invalid element size ratio\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18849, __PRETTY_FUNCTION__))
;
18850 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
18851 DAG.getConstant(0, DL, SourceType);
18852
18853 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
18854 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
18855
18856 // Populate the new build_vector
18857 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
18858 SDValue Cast = N->getOperand(i);
18859 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||(((Cast.getOpcode() == ISD::ANY_EXTEND || Cast.getOpcode() ==
ISD::ZERO_EXTEND || Cast.isUndef()) && "Invalid cast opcode"
) ? static_cast<void> (0) : __assert_fail ("(Cast.getOpcode() == ISD::ANY_EXTEND || Cast.getOpcode() == ISD::ZERO_EXTEND || Cast.isUndef()) && \"Invalid cast opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18861, __PRETTY_FUNCTION__))
18860 Cast.getOpcode() == ISD::ZERO_EXTEND ||(((Cast.getOpcode() == ISD::ANY_EXTEND || Cast.getOpcode() ==
ISD::ZERO_EXTEND || Cast.isUndef()) && "Invalid cast opcode"
) ? static_cast<void> (0) : __assert_fail ("(Cast.getOpcode() == ISD::ANY_EXTEND || Cast.getOpcode() == ISD::ZERO_EXTEND || Cast.isUndef()) && \"Invalid cast opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18861, __PRETTY_FUNCTION__))
18861 Cast.isUndef()) && "Invalid cast opcode")(((Cast.getOpcode() == ISD::ANY_EXTEND || Cast.getOpcode() ==
ISD::ZERO_EXTEND || Cast.isUndef()) && "Invalid cast opcode"
) ? static_cast<void> (0) : __assert_fail ("(Cast.getOpcode() == ISD::ANY_EXTEND || Cast.getOpcode() == ISD::ZERO_EXTEND || Cast.isUndef()) && \"Invalid cast opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18861, __PRETTY_FUNCTION__))
;
18862 SDValue In;
18863 if (Cast.isUndef())
18864 In = DAG.getUNDEF(SourceType);
18865 else
18866 In = Cast->getOperand(0);
18867 unsigned Index = isLE ? (i * ElemRatio) :
18868 (i * ElemRatio + (ElemRatio - 1));
18869
18870 assert(Index < Ops.size() && "Invalid index")((Index < Ops.size() && "Invalid index") ? static_cast
<void> (0) : __assert_fail ("Index < Ops.size() && \"Invalid index\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18870, __PRETTY_FUNCTION__))
;
18871 Ops[Index] = In;
18872 }
18873
18874 // The type of the new BUILD_VECTOR node.
18875 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
18876 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&((VecVT.getSizeInBits() == VT.getSizeInBits() && "Invalid vector size"
) ? static_cast<void> (0) : __assert_fail ("VecVT.getSizeInBits() == VT.getSizeInBits() && \"Invalid vector size\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18877, __PRETTY_FUNCTION__))
18877 "Invalid vector size")((VecVT.getSizeInBits() == VT.getSizeInBits() && "Invalid vector size"
) ? static_cast<void> (0) : __assert_fail ("VecVT.getSizeInBits() == VT.getSizeInBits() && \"Invalid vector size\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18877, __PRETTY_FUNCTION__))
;
18878 // Check if the new vector type is legal.
18879 if (!isTypeLegal(VecVT) ||
18880 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
18881 TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
18882 return SDValue();
18883
18884 // Make the new BUILD_VECTOR.
18885 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
18886
18887 // The new BUILD_VECTOR node has the potential to be further optimized.
18888 AddToWorklist(BV.getNode());
18889 // Bitcast to the desired type.
18890 return DAG.getBitcast(VT, BV);
18891}
18892
18893// Simplify (build_vec (trunc $1)
18894// (trunc (srl $1 half-width))
18895// (trunc (srl $1 (2 * half-width))) …)
18896// to (bitcast $1)
18897SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) {
18898 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector")((N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"Expected build vector\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18898, __PRETTY_FUNCTION__))
;
18899
18900 // Only for little endian
18901 if (!DAG.getDataLayout().isLittleEndian())
18902 return SDValue();
18903
18904 SDLoc DL(N);
18905 EVT VT = N->getValueType(0);
18906 EVT OutScalarTy = VT.getScalarType();
18907 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits();
18908
18909 // Only for power of two types to be sure that bitcast works well
18910 if (!isPowerOf2_64(ScalarTypeBitsize))
18911 return SDValue();
18912
18913 unsigned NumInScalars = N->getNumOperands();
18914
18915 // Look through bitcasts
18916 auto PeekThroughBitcast = [](SDValue Op) {
18917 if (Op.getOpcode() == ISD::BITCAST)
18918 return Op.getOperand(0);
18919 return Op;
18920 };
18921
18922 // The source value where all the parts are extracted.
18923 SDValue Src;
18924 for (unsigned i = 0; i != NumInScalars; ++i) {
18925 SDValue In = PeekThroughBitcast(N->getOperand(i));
18926 // Ignore undef inputs.
18927 if (In.isUndef()) continue;
18928
18929 if (In.getOpcode() != ISD::TRUNCATE)
18930 return SDValue();
18931
18932 In = PeekThroughBitcast(In.getOperand(0));
18933
18934 if (In.getOpcode() != ISD::SRL) {
18935 // For now only build_vec without shuffling, handle shifts here in the
18936 // future.
18937 if (i != 0)
18938 return SDValue();
18939
18940 Src = In;
18941 } else {
18942 // In is SRL
18943 SDValue part = PeekThroughBitcast(In.getOperand(0));
18944
18945 if (!Src) {
18946 Src = part;
18947 } else if (Src != part) {
18948 // Vector parts do not stem from the same variable
18949 return SDValue();
18950 }
18951
18952 SDValue ShiftAmtVal = In.getOperand(1);
18953 if (!isa<ConstantSDNode>(ShiftAmtVal))
18954 return SDValue();
18955
18956 uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1);
18957
18958 // The extracted value is not extracted at the right position
18959 if (ShiftAmt != i * ScalarTypeBitsize)
18960 return SDValue();
18961 }
18962 }
18963
18964 // Only cast if the size is the same
18965 if (Src.getValueType().getSizeInBits() != VT.getSizeInBits())
18966 return SDValue();
18967
18968 return DAG.getBitcast(VT, Src);
18969}
18970
18971SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
18972 ArrayRef<int> VectorMask,
18973 SDValue VecIn1, SDValue VecIn2,
18974 unsigned LeftIdx, bool DidSplitVec) {
18975 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
18976
18977 EVT VT = N->getValueType(0);
18978 EVT InVT1 = VecIn1.getValueType();
18979 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
18980
18981 unsigned NumElems = VT.getVectorNumElements();
18982 unsigned ShuffleNumElems = NumElems;
18983
18984 // If we artificially split a vector in two already, then the offsets in the
18985 // operands will all be based off of VecIn1, even those in VecIn2.
18986 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
18987
18988 uint64_t VTSize = VT.getFixedSizeInBits();
18989 uint64_t InVT1Size = InVT1.getFixedSizeInBits();
18990 uint64_t InVT2Size = InVT2.getFixedSizeInBits();
18991
18992 // We can't generate a shuffle node with mismatched input and output types.
18993 // Try to make the types match the type of the output.
18994 if (InVT1 != VT || InVT2 != VT) {
18995 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) {
18996 // If the output vector length is a multiple of both input lengths,
18997 // we can concatenate them and pad the rest with undefs.
18998 unsigned NumConcats = VTSize / InVT1Size;
18999 assert(NumConcats >= 2 && "Concat needs at least two inputs!")((NumConcats >= 2 && "Concat needs at least two inputs!"
) ? static_cast<void> (0) : __assert_fail ("NumConcats >= 2 && \"Concat needs at least two inputs!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 18999, __PRETTY_FUNCTION__))
;
19000 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
19001 ConcatOps[0] = VecIn1;
19002 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
19003 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
19004 VecIn2 = SDValue();
19005 } else if (InVT1Size == VTSize * 2) {
19006 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
19007 return SDValue();
19008
19009 if (!VecIn2.getNode()) {
19010 // If we only have one input vector, and it's twice the size of the
19011 // output, split it in two.
19012 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
19013 DAG.getVectorIdxConstant(NumElems, DL));
19014 VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
19015 // Since we now have shorter input vectors, adjust the offset of the
19016 // second vector's start.
19017 Vec2Offset = NumElems;
19018 } else if (InVT2Size <= InVT1Size) {
19019 // VecIn1 is wider than the output, and we have another, possibly
19020 // smaller input. Pad the smaller input with undefs, shuffle at the
19021 // input vector width, and extract the output.
19022 // The shuffle type is different than VT, so check legality again.
19023 if (LegalOperations &&
19024 !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
19025 return SDValue();
19026
19027 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
19028 // lower it back into a BUILD_VECTOR. So if the inserted type is
19029 // illegal, don't even try.
19030 if (InVT1 != InVT2) {
19031 if (!TLI.isTypeLegal(InVT2))
19032 return SDValue();
19033 VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
19034 DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
19035 }
19036 ShuffleNumElems = NumElems * 2;
19037 } else {
19038 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
19039 // than VecIn1. We can't handle this for now - this case will disappear
19040 // when we start sorting the vectors by type.
19041 return SDValue();
19042 }
19043 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) {
19044 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
19045 ConcatOps[0] = VecIn2;
19046 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
19047 } else {
19048 // TODO: Support cases where the length mismatch isn't exactly by a
19049 // factor of 2.
19050 // TODO: Move this check upwards, so that if we have bad type
19051 // mismatches, we don't create any DAG nodes.
19052 return SDValue();
19053 }
19054 }
19055
19056 // Initialize mask to undef.
19057 SmallVector<int, 8> Mask(ShuffleNumElems, -1);
19058
19059 // Only need to run up to the number of elements actually used, not the
19060 // total number of elements in the shuffle - if we are shuffling a wider
19061 // vector, the high lanes should be set to undef.
19062 for (unsigned i = 0; i != NumElems; ++i) {
19063 if (VectorMask[i] <= 0)
19064 continue;
19065
19066 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
19067 if (VectorMask[i] == (int)LeftIdx) {
19068 Mask[i] = ExtIndex;
19069 } else if (VectorMask[i] == (int)LeftIdx + 1) {
19070 Mask[i] = Vec2Offset + ExtIndex;
19071 }
19072 }
19073
19074 // The type the input vectors may have changed above.
19075 InVT1 = VecIn1.getValueType();
19076
19077 // If we already have a VecIn2, it should have the same type as VecIn1.
19078 // If we don't, get an undef/zero vector of the appropriate type.
19079 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
19080 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.")((InVT1 == VecIn2.getValueType() && "Unexpected second input type."
) ? static_cast<void> (0) : __assert_fail ("InVT1 == VecIn2.getValueType() && \"Unexpected second input type.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19080, __PRETTY_FUNCTION__))
;
19081
19082 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
19083 if (ShuffleNumElems > NumElems)
19084 Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
19085
19086 return Shuffle;
19087}
19088
19089static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
19090 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector")((BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"
) ? static_cast<void> (0) : __assert_fail ("BV->getOpcode() == ISD::BUILD_VECTOR && \"Expected build vector\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19090, __PRETTY_FUNCTION__))
;
19091
19092 // First, determine where the build vector is not undef.
19093 // TODO: We could extend this to handle zero elements as well as undefs.
19094 int NumBVOps = BV->getNumOperands();
19095 int ZextElt = -1;
19096 for (int i = 0; i != NumBVOps; ++i) {
19097 SDValue Op = BV->getOperand(i);
19098 if (Op.isUndef())
19099 continue;
19100 if (ZextElt == -1)
19101 ZextElt = i;
19102 else
19103 return SDValue();
19104 }
19105 // Bail out if there's no non-undef element.
19106 if (ZextElt == -1)
19107 return SDValue();
19108
19109 // The build vector contains some number of undef elements and exactly
19110 // one other element. That other element must be a zero-extended scalar
19111 // extracted from a vector at a constant index to turn this into a shuffle.
19112 // Also, require that the build vector does not implicitly truncate/extend
19113 // its elements.
19114 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
19115 EVT VT = BV->getValueType(0);
19116 SDValue Zext = BV->getOperand(ZextElt);
19117 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
19118 Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
19119 !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
19120 Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
19121 return SDValue();
19122
19123 // The zero-extend must be a multiple of the source size, and we must be
19124 // building a vector of the same size as the source of the extract element.
19125 SDValue Extract = Zext.getOperand(0);
19126 unsigned DestSize = Zext.getValueSizeInBits();
19127 unsigned SrcSize = Extract.getValueSizeInBits();
19128 if (DestSize % SrcSize != 0 ||
19129 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
19130 return SDValue();
19131
19132 // Create a shuffle mask that will combine the extracted element with zeros
19133 // and undefs.
19134 int ZextRatio = DestSize / SrcSize;
19135 int NumMaskElts = NumBVOps * ZextRatio;
19136 SmallVector<int, 32> ShufMask(NumMaskElts, -1);
19137 for (int i = 0; i != NumMaskElts; ++i) {
19138 if (i / ZextRatio == ZextElt) {
19139 // The low bits of the (potentially translated) extracted element map to
19140 // the source vector. The high bits map to zero. We will use a zero vector
19141 // as the 2nd source operand of the shuffle, so use the 1st element of
19142 // that vector (mask value is number-of-elements) for the high bits.
19143 if (i % ZextRatio == 0)
19144 ShufMask[i] = Extract.getConstantOperandVal(1);
19145 else
19146 ShufMask[i] = NumMaskElts;
19147 }
19148
19149 // Undef elements of the build vector remain undef because we initialize
19150 // the shuffle mask with -1.
19151 }
19152
19153 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
19154 // bitcast (shuffle V, ZeroVec, VectorMask)
19155 SDLoc DL(BV);
19156 EVT VecVT = Extract.getOperand(0).getValueType();
19157 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
19158 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19159 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
19160 ZeroVec, ShufMask, DAG);
19161 if (!Shuf)
19162 return SDValue();
19163 return DAG.getBitcast(VT, Shuf);
19164}
19165
19166// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
19167// operations. If the types of the vectors we're extracting from allow it,
19168// turn this into a vector_shuffle node.
19169SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
19170 SDLoc DL(N);
19171 EVT VT = N->getValueType(0);
19172
19173 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
19174 if (!isTypeLegal(VT))
19175 return SDValue();
19176
19177 if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
19178 return V;
19179
19180 // May only combine to shuffle after legalize if shuffle is legal.
19181 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
19182 return SDValue();
19183
19184 bool UsesZeroVector = false;
19185 unsigned NumElems = N->getNumOperands();
19186
19187 // Record, for each element of the newly built vector, which input vector
19188 // that element comes from. -1 stands for undef, 0 for the zero vector,
19189 // and positive values for the input vectors.
19190 // VectorMask maps each element to its vector number, and VecIn maps vector
19191 // numbers to their initial SDValues.
19192
19193 SmallVector<int, 8> VectorMask(NumElems, -1);
19194 SmallVector<SDValue, 8> VecIn;
19195 VecIn.push_back(SDValue());
19196
19197 for (unsigned i = 0; i != NumElems; ++i) {
19198 SDValue Op = N->getOperand(i);
19199
19200 if (Op.isUndef())
19201 continue;
19202
19203 // See if we can use a blend with a zero vector.
19204 // TODO: Should we generalize this to a blend with an arbitrary constant
19205 // vector?
19206 if (isNullConstant(Op) || isNullFPConstant(Op)) {
19207 UsesZeroVector = true;
19208 VectorMask[i] = 0;
19209 continue;
19210 }
19211
19212 // Not an undef or zero. If the input is something other than an
19213 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
19214 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
19215 !isa<ConstantSDNode>(Op.getOperand(1)))
19216 return SDValue();
19217 SDValue ExtractedFromVec = Op.getOperand(0);
19218
19219 if (ExtractedFromVec.getValueType().isScalableVector())
19220 return SDValue();
19221
19222 const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
19223 if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
19224 return SDValue();
19225
19226 // All inputs must have the same element type as the output.
19227 if (VT.getVectorElementType() !=
19228 ExtractedFromVec.getValueType().getVectorElementType())
19229 return SDValue();
19230
19231 // Have we seen this input vector before?
19232 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
19233 // a map back from SDValues to numbers isn't worth it.
19234 unsigned Idx = std::distance(VecIn.begin(), find(VecIn, ExtractedFromVec));
19235 if (Idx == VecIn.size())
19236 VecIn.push_back(ExtractedFromVec);
19237
19238 VectorMask[i] = Idx;
19239 }
19240
19241 // If we didn't find at least one input vector, bail out.
19242 if (VecIn.size() < 2)
19243 return SDValue();
19244
19245 // If all the Operands of BUILD_VECTOR extract from same
19246 // vector, then split the vector efficiently based on the maximum
19247 // vector access index and adjust the VectorMask and
19248 // VecIn accordingly.
19249 bool DidSplitVec = false;
19250 if (VecIn.size() == 2) {
19251 unsigned MaxIndex = 0;
19252 unsigned NearestPow2 = 0;
19253 SDValue Vec = VecIn.back();
19254 EVT InVT = Vec.getValueType();
19255 SmallVector<unsigned, 8> IndexVec(NumElems, 0);
19256
19257 for (unsigned i = 0; i < NumElems; i++) {
19258 if (VectorMask[i] <= 0)
19259 continue;
19260 unsigned Index = N->getOperand(i).getConstantOperandVal(1);
19261 IndexVec[i] = Index;
19262 MaxIndex = std::max(MaxIndex, Index);
19263 }
19264
19265 NearestPow2 = PowerOf2Ceil(MaxIndex);
19266 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
19267 NumElems * 2 < NearestPow2) {
19268 unsigned SplitSize = NearestPow2 / 2;
19269 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
19270 InVT.getVectorElementType(), SplitSize);
19271 if (TLI.isTypeLegal(SplitVT)) {
19272 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
19273 DAG.getVectorIdxConstant(SplitSize, DL));
19274 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
19275 DAG.getVectorIdxConstant(0, DL));
19276 VecIn.pop_back();
19277 VecIn.push_back(VecIn1);
19278 VecIn.push_back(VecIn2);
19279 DidSplitVec = true;
19280
19281 for (unsigned i = 0; i < NumElems; i++) {
19282 if (VectorMask[i] <= 0)
19283 continue;
19284 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
19285 }
19286 }
19287 }
19288 }
19289
19290 // TODO: We want to sort the vectors by descending length, so that adjacent
19291 // pairs have similar length, and the longer vector is always first in the
19292 // pair.
19293
19294 // TODO: Should this fire if some of the input vectors has illegal type (like
19295 // it does now), or should we let legalization run its course first?
19296
19297 // Shuffle phase:
19298 // Take pairs of vectors, and shuffle them so that the result has elements
19299 // from these vectors in the correct places.
19300 // For example, given:
19301 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
19302 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
19303 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
19304 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
19305 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
19306 // We will generate:
19307 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
19308 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
19309 SmallVector<SDValue, 4> Shuffles;
19310 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
19311 unsigned LeftIdx = 2 * In + 1;
19312 SDValue VecLeft = VecIn[LeftIdx];
19313 SDValue VecRight =
19314 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
19315
19316 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
19317 VecRight, LeftIdx, DidSplitVec))
19318 Shuffles.push_back(Shuffle);
19319 else
19320 return SDValue();
19321 }
19322
19323 // If we need the zero vector as an "ingredient" in the blend tree, add it
19324 // to the list of shuffles.
19325 if (UsesZeroVector)
19326 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
19327 : DAG.getConstantFP(0.0, DL, VT));
19328
19329 // If we only have one shuffle, we're done.
19330 if (Shuffles.size() == 1)
19331 return Shuffles[0];
19332
19333 // Update the vector mask to point to the post-shuffle vectors.
19334 for (int &Vec : VectorMask)
19335 if (Vec == 0)
19336 Vec = Shuffles.size() - 1;
19337 else
19338 Vec = (Vec - 1) / 2;
19339
19340 // More than one shuffle. Generate a binary tree of blends, e.g. if from
19341 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
19342 // generate:
19343 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
19344 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
19345 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
19346 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
19347 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
19348 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
19349 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
19350
19351 // Make sure the initial size of the shuffle list is even.
19352 if (Shuffles.size() % 2)
19353 Shuffles.push_back(DAG.getUNDEF(VT));
19354
19355 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
19356 if (CurSize % 2) {
19357 Shuffles[CurSize] = DAG.getUNDEF(VT);
19358 CurSize++;
19359 }
19360 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
19361 int Left = 2 * In;
19362 int Right = 2 * In + 1;
19363 SmallVector<int, 8> Mask(NumElems, -1);
19364 for (unsigned i = 0; i != NumElems; ++i) {
19365 if (VectorMask[i] == Left) {
19366 Mask[i] = i;
19367 VectorMask[i] = In;
19368 } else if (VectorMask[i] == Right) {
19369 Mask[i] = i + NumElems;
19370 VectorMask[i] = In;
19371 }
19372 }
19373
19374 Shuffles[In] =
19375 DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
19376 }
19377 }
19378 return Shuffles[0];
19379}
19380
19381// Try to turn a build vector of zero extends of extract vector elts into a
19382// a vector zero extend and possibly an extract subvector.
19383// TODO: Support sign extend?
19384// TODO: Allow undef elements?
19385SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
19386 if (LegalOperations)
19387 return SDValue();
19388
19389 EVT VT = N->getValueType(0);
19390
19391 bool FoundZeroExtend = false;
19392 SDValue Op0 = N->getOperand(0);
19393 auto checkElem = [&](SDValue Op) -> int64_t {
19394 unsigned Opc = Op.getOpcode();
19395 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
19396 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
19397 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
19398 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
19399 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
19400 return C->getZExtValue();
19401 return -1;
19402 };
19403
19404 // Make sure the first element matches
19405 // (zext (extract_vector_elt X, C))
19406 int64_t Offset = checkElem(Op0);
19407 if (Offset < 0)
19408 return SDValue();
19409
19410 unsigned NumElems = N->getNumOperands();
19411 SDValue In = Op0.getOperand(0).getOperand(0);
19412 EVT InSVT = In.getValueType().getScalarType();
19413 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
19414
19415 // Don't create an illegal input type after type legalization.
19416 if (LegalTypes && !TLI.isTypeLegal(InVT))
19417 return SDValue();
19418
19419 // Ensure all the elements come from the same vector and are adjacent.
19420 for (unsigned i = 1; i != NumElems; ++i) {
19421 if ((Offset + i) != checkElem(N->getOperand(i)))
19422 return SDValue();
19423 }
19424
19425 SDLoc DL(N);
19426 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
19427 Op0.getOperand(0).getOperand(1));
19428 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
19429 VT, In);
19430}
19431
19432SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
19433 EVT VT = N->getValueType(0);
19434
19435 // A vector built entirely of undefs is undef.
19436 if (ISD::allOperandsUndef(N))
19437 return DAG.getUNDEF(VT);
19438
19439 // If this is a splat of a bitcast from another vector, change to a
19440 // concat_vector.
19441 // For example:
19442 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
19443 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
19444 //
19445 // If X is a build_vector itself, the concat can become a larger build_vector.
19446 // TODO: Maybe this is useful for non-splat too?
19447 if (!LegalOperations) {
19448 if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
19449 Splat = peekThroughBitcasts(Splat);
19450 EVT SrcVT = Splat.getValueType();
19451 if (SrcVT.isVector()) {
19452 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
19453 EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
19454 SrcVT.getVectorElementType(), NumElts);
19455 if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
19456 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
19457 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
19458 NewVT, Ops);
19459 return DAG.getBitcast(VT, Concat);
19460 }
19461 }
19462 }
19463 }
19464
19465 // A splat of a single element is a SPLAT_VECTOR if supported on the target.
19466 if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand)
19467 if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) {
19468 assert(!V.isUndef() && "Splat of undef should have been handled earlier")((!V.isUndef() && "Splat of undef should have been handled earlier"
) ? static_cast<void> (0) : __assert_fail ("!V.isUndef() && \"Splat of undef should have been handled earlier\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19468, __PRETTY_FUNCTION__))
;
19469 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
19470 }
19471
19472 // Check if we can express BUILD VECTOR via subvector extract.
19473 if (!LegalTypes && (N->getNumOperands() > 1)) {
19474 SDValue Op0 = N->getOperand(0);
19475 auto checkElem = [&](SDValue Op) -> uint64_t {
19476 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
19477 (Op0.getOperand(0) == Op.getOperand(0)))
19478 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
19479 return CNode->getZExtValue();
19480 return -1;
19481 };
19482
19483 int Offset = checkElem(Op0);
19484 for (unsigned i = 0; i < N->getNumOperands(); ++i) {
19485 if (Offset + i != checkElem(N->getOperand(i))) {
19486 Offset = -1;
19487 break;
19488 }
19489 }
19490
19491 if ((Offset == 0) &&
19492 (Op0.getOperand(0).getValueType() == N->getValueType(0)))
19493 return Op0.getOperand(0);
19494 if ((Offset != -1) &&
19495 ((Offset % N->getValueType(0).getVectorNumElements()) ==
19496 0)) // IDX must be multiple of output size.
19497 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
19498 Op0.getOperand(0), Op0.getOperand(1));
19499 }
19500
19501 if (SDValue V = convertBuildVecZextToZext(N))
19502 return V;
19503
19504 if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
19505 return V;
19506
19507 if (SDValue V = reduceBuildVecTruncToBitCast(N))
19508 return V;
19509
19510 if (SDValue V = reduceBuildVecToShuffle(N))
19511 return V;
19512
19513 return SDValue();
19514}
19515
19516static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
19517 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19518 EVT OpVT = N->getOperand(0).getValueType();
19519
19520 // If the operands are legal vectors, leave them alone.
19521 if (TLI.isTypeLegal(OpVT))
19522 return SDValue();
19523
19524 SDLoc DL(N);
19525 EVT VT = N->getValueType(0);
19526 SmallVector<SDValue, 8> Ops;
19527
19528 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
19529 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
19530
19531 // Keep track of what we encounter.
19532 bool AnyInteger = false;
19533 bool AnyFP = false;
19534 for (const SDValue &Op : N->ops()) {
19535 if (ISD::BITCAST == Op.getOpcode() &&
19536 !Op.getOperand(0).getValueType().isVector())
19537 Ops.push_back(Op.getOperand(0));
19538 else if (ISD::UNDEF == Op.getOpcode())
19539 Ops.push_back(ScalarUndef);
19540 else
19541 return SDValue();
19542
19543 // Note whether we encounter an integer or floating point scalar.
19544 // If it's neither, bail out, it could be something weird like x86mmx.
19545 EVT LastOpVT = Ops.back().getValueType();
19546 if (LastOpVT.isFloatingPoint())
19547 AnyFP = true;
19548 else if (LastOpVT.isInteger())
19549 AnyInteger = true;
19550 else
19551 return SDValue();
19552 }
19553
19554 // If any of the operands is a floating point scalar bitcast to a vector,
19555 // use floating point types throughout, and bitcast everything.
19556 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
19557 if (AnyFP) {
19558 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
19559 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
19560 if (AnyInteger) {
19561 for (SDValue &Op : Ops) {
19562 if (Op.getValueType() == SVT)
19563 continue;
19564 if (Op.isUndef())
19565 Op = ScalarUndef;
19566 else
19567 Op = DAG.getBitcast(SVT, Op);
19568 }
19569 }
19570 }
19571
19572 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
19573 VT.getSizeInBits() / SVT.getSizeInBits());
19574 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
19575}
19576
19577// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
19578// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
19579// most two distinct vectors the same size as the result, attempt to turn this
19580// into a legal shuffle.
19581static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
19582 EVT VT = N->getValueType(0);
19583 EVT OpVT = N->getOperand(0).getValueType();
19584
19585 // We currently can't generate an appropriate shuffle for a scalable vector.
19586 if (VT.isScalableVector())
19587 return SDValue();
19588
19589 int NumElts = VT.getVectorNumElements();
19590 int NumOpElts = OpVT.getVectorNumElements();
19591
19592 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
19593 SmallVector<int, 8> Mask;
19594
19595 for (SDValue Op : N->ops()) {
19596 Op = peekThroughBitcasts(Op);
19597
19598 // UNDEF nodes convert to UNDEF shuffle mask values.
19599 if (Op.isUndef()) {
19600 Mask.append((unsigned)NumOpElts, -1);
19601 continue;
19602 }
19603
19604 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
19605 return SDValue();
19606
19607 // What vector are we extracting the subvector from and at what index?
19608 SDValue ExtVec = Op.getOperand(0);
19609 int ExtIdx = Op.getConstantOperandVal(1);
19610
19611 // We want the EVT of the original extraction to correctly scale the
19612 // extraction index.
19613 EVT ExtVT = ExtVec.getValueType();
19614 ExtVec = peekThroughBitcasts(ExtVec);
19615
19616 // UNDEF nodes convert to UNDEF shuffle mask values.
19617 if (ExtVec.isUndef()) {
19618 Mask.append((unsigned)NumOpElts, -1);
19619 continue;
19620 }
19621
19622 // Ensure that we are extracting a subvector from a vector the same
19623 // size as the result.
19624 if (ExtVT.getSizeInBits() != VT.getSizeInBits())
19625 return SDValue();
19626
19627 // Scale the subvector index to account for any bitcast.
19628 int NumExtElts = ExtVT.getVectorNumElements();
19629 if (0 == (NumExtElts % NumElts))
19630 ExtIdx /= (NumExtElts / NumElts);
19631 else if (0 == (NumElts % NumExtElts))
19632 ExtIdx *= (NumElts / NumExtElts);
19633 else
19634 return SDValue();
19635
19636 // At most we can reference 2 inputs in the final shuffle.
19637 if (SV0.isUndef() || SV0 == ExtVec) {
19638 SV0 = ExtVec;
19639 for (int i = 0; i != NumOpElts; ++i)
19640 Mask.push_back(i + ExtIdx);
19641 } else if (SV1.isUndef() || SV1 == ExtVec) {
19642 SV1 = ExtVec;
19643 for (int i = 0; i != NumOpElts; ++i)
19644 Mask.push_back(i + ExtIdx + NumElts);
19645 } else {
19646 return SDValue();
19647 }
19648 }
19649
19650 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19651 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
19652 DAG.getBitcast(VT, SV1), Mask, DAG);
19653}
19654
19655static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) {
19656 unsigned CastOpcode = N->getOperand(0).getOpcode();
19657 switch (CastOpcode) {
19658 case ISD::SINT_TO_FP:
19659 case ISD::UINT_TO_FP:
19660 case ISD::FP_TO_SINT:
19661 case ISD::FP_TO_UINT:
19662 // TODO: Allow more opcodes?
19663 // case ISD::BITCAST:
19664 // case ISD::TRUNCATE:
19665 // case ISD::ZERO_EXTEND:
19666 // case ISD::SIGN_EXTEND:
19667 // case ISD::FP_EXTEND:
19668 break;
19669 default:
19670 return SDValue();
19671 }
19672
19673 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType();
19674 if (!SrcVT.isVector())
19675 return SDValue();
19676
19677 // All operands of the concat must be the same kind of cast from the same
19678 // source type.
19679 SmallVector<SDValue, 4> SrcOps;
19680 for (SDValue Op : N->ops()) {
19681 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() ||
19682 Op.getOperand(0).getValueType() != SrcVT)
19683 return SDValue();
19684 SrcOps.push_back(Op.getOperand(0));
19685 }
19686
19687 // The wider cast must be supported by the target. This is unusual because
19688 // the operation support type parameter depends on the opcode. In addition,
19689 // check the other type in the cast to make sure this is really legal.
19690 EVT VT = N->getValueType(0);
19691 EVT SrcEltVT = SrcVT.getVectorElementType();
19692 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands();
19693 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts);
19694 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19695 switch (CastOpcode) {
19696 case ISD::SINT_TO_FP:
19697 case ISD::UINT_TO_FP:
19698 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) ||
19699 !TLI.isTypeLegal(VT))
19700 return SDValue();
19701 break;
19702 case ISD::FP_TO_SINT:
19703 case ISD::FP_TO_UINT:
19704 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) ||
19705 !TLI.isTypeLegal(ConcatSrcVT))
19706 return SDValue();
19707 break;
19708 default:
19709 llvm_unreachable("Unexpected cast opcode")::llvm::llvm_unreachable_internal("Unexpected cast opcode", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19709)
;
19710 }
19711
19712 // concat (cast X), (cast Y)... -> cast (concat X, Y...)
19713 SDLoc DL(N);
19714 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps);
19715 return DAG.getNode(CastOpcode, DL, VT, NewConcat);
19716}
19717
19718SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
19719 // If we only have one input vector, we don't need to do any concatenation.
19720 if (N->getNumOperands() == 1)
19721 return N->getOperand(0);
19722
19723 // Check if all of the operands are undefs.
19724 EVT VT = N->getValueType(0);
19725 if (ISD::allOperandsUndef(N))
19726 return DAG.getUNDEF(VT);
19727
19728 // Optimize concat_vectors where all but the first of the vectors are undef.
19729 if (all_of(drop_begin(N->ops()),
19730 [](const SDValue &Op) { return Op.isUndef(); })) {
19731 SDValue In = N->getOperand(0);
19732 assert(In.getValueType().isVector() && "Must concat vectors")((In.getValueType().isVector() && "Must concat vectors"
) ? static_cast<void> (0) : __assert_fail ("In.getValueType().isVector() && \"Must concat vectors\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19732, __PRETTY_FUNCTION__))
;
19733
19734 // If the input is a concat_vectors, just make a larger concat by padding
19735 // with smaller undefs.
19736 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
19737 unsigned NumOps = N->getNumOperands() * In.getNumOperands();
19738 SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
19739 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
19740 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
19741 }
19742
19743 SDValue Scalar = peekThroughOneUseBitcasts(In);
19744
19745 // concat_vectors(scalar_to_vector(scalar), undef) ->
19746 // scalar_to_vector(scalar)
19747 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
19748 Scalar.hasOneUse()) {
19749 EVT SVT = Scalar.getValueType().getVectorElementType();
19750 if (SVT == Scalar.getOperand(0).getValueType())
19751 Scalar = Scalar.getOperand(0);
19752 }
19753
19754 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
19755 if (!Scalar.getValueType().isVector()) {
19756 // If the bitcast type isn't legal, it might be a trunc of a legal type;
19757 // look through the trunc so we can still do the transform:
19758 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
19759 if (Scalar->getOpcode() == ISD::TRUNCATE &&
19760 !TLI.isTypeLegal(Scalar.getValueType()) &&
19761 TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
19762 Scalar = Scalar->getOperand(0);
19763
19764 EVT SclTy = Scalar.getValueType();
19765
19766 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
19767 return SDValue();
19768
19769 // Bail out if the vector size is not a multiple of the scalar size.
19770 if (VT.getSizeInBits() % SclTy.getSizeInBits())
19771 return SDValue();
19772
19773 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
19774 if (VNTNumElms < 2)
19775 return SDValue();
19776
19777 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
19778 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
19779 return SDValue();
19780
19781 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
19782 return DAG.getBitcast(VT, Res);
19783 }
19784 }
19785
19786 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
19787 // We have already tested above for an UNDEF only concatenation.
19788 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
19789 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
19790 auto IsBuildVectorOrUndef = [](const SDValue &Op) {
19791 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
19792 };
19793 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
19794 SmallVector<SDValue, 8> Opnds;
19795 EVT SVT = VT.getScalarType();
19796
19797 EVT MinVT = SVT;
19798 if (!SVT.isFloatingPoint()) {
19799 // If BUILD_VECTOR are from built from integer, they may have different
19800 // operand types. Get the smallest type and truncate all operands to it.
19801 bool FoundMinVT = false;
19802 for (const SDValue &Op : N->ops())
19803 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
19804 EVT OpSVT = Op.getOperand(0).getValueType();
19805 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
19806 FoundMinVT = true;
19807 }
19808 assert(FoundMinVT && "Concat vector type mismatch")((FoundMinVT && "Concat vector type mismatch") ? static_cast
<void> (0) : __assert_fail ("FoundMinVT && \"Concat vector type mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19808, __PRETTY_FUNCTION__))
;
19809 }
19810
19811 for (const SDValue &Op : N->ops()) {
19812 EVT OpVT = Op.getValueType();
19813 unsigned NumElts = OpVT.getVectorNumElements();
19814
19815 if (ISD::UNDEF == Op.getOpcode())
19816 Opnds.append(NumElts, DAG.getUNDEF(MinVT));
19817
19818 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
19819 if (SVT.isFloatingPoint()) {
19820 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch")((SVT == OpVT.getScalarType() && "Concat vector type mismatch"
) ? static_cast<void> (0) : __assert_fail ("SVT == OpVT.getScalarType() && \"Concat vector type mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19820, __PRETTY_FUNCTION__))
;
19821 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
19822 } else {
19823 for (unsigned i = 0; i != NumElts; ++i)
19824 Opnds.push_back(
19825 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
19826 }
19827 }
19828 }
19829
19830 assert(VT.getVectorNumElements() == Opnds.size() &&((VT.getVectorNumElements() == Opnds.size() && "Concat vector type mismatch"
) ? static_cast<void> (0) : __assert_fail ("VT.getVectorNumElements() == Opnds.size() && \"Concat vector type mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19831, __PRETTY_FUNCTION__))
19831 "Concat vector type mismatch")((VT.getVectorNumElements() == Opnds.size() && "Concat vector type mismatch"
) ? static_cast<void> (0) : __assert_fail ("VT.getVectorNumElements() == Opnds.size() && \"Concat vector type mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19831, __PRETTY_FUNCTION__))
;
19832 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
19833 }
19834
19835 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
19836 if (SDValue V = combineConcatVectorOfScalars(N, DAG))
19837 return V;
19838
19839 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
19840 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
19841 if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
19842 return V;
19843
19844 if (SDValue V = combineConcatVectorOfCasts(N, DAG))
19845 return V;
19846
19847 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
19848 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
19849 // operands and look for a CONCAT operations that place the incoming vectors
19850 // at the exact same location.
19851 //
19852 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
19853 SDValue SingleSource = SDValue();
19854 unsigned PartNumElem =
19855 N->getOperand(0).getValueType().getVectorMinNumElements();
19856
19857 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
19858 SDValue Op = N->getOperand(i);
19859
19860 if (Op.isUndef())
19861 continue;
19862
19863 // Check if this is the identity extract:
19864 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
19865 return SDValue();
19866
19867 // Find the single incoming vector for the extract_subvector.
19868 if (SingleSource.getNode()) {
19869 if (Op.getOperand(0) != SingleSource)
19870 return SDValue();
19871 } else {
19872 SingleSource = Op.getOperand(0);
19873
19874 // Check the source type is the same as the type of the result.
19875 // If not, this concat may extend the vector, so we can not
19876 // optimize it away.
19877 if (SingleSource.getValueType() != N->getValueType(0))
19878 return SDValue();
19879 }
19880
19881 // Check that we are reading from the identity index.
19882 unsigned IdentityIndex = i * PartNumElem;
19883 if (Op.getConstantOperandAPInt(1) != IdentityIndex)
19884 return SDValue();
19885 }
19886
19887 if (SingleSource.getNode())
19888 return SingleSource;
19889
19890 return SDValue();
19891}
19892
19893// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
19894// if the subvector can be sourced for free.
19895static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
19896 if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
19897 V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
19898 return V.getOperand(1);
19899 }
19900 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
19901 if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
19902 V.getOperand(0).getValueType() == SubVT &&
19903 (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) {
19904 uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements();
19905 return V.getOperand(SubIdx);
19906 }
19907 return SDValue();
19908}
19909
19910static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
19911 SelectionDAG &DAG,
19912 bool LegalOperations) {
19913 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19914 SDValue BinOp = Extract->getOperand(0);
19915 unsigned BinOpcode = BinOp.getOpcode();
19916 if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1)
19917 return SDValue();
19918
19919 EVT VecVT = BinOp.getValueType();
19920 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
19921 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
19922 return SDValue();
19923
19924 SDValue Index = Extract->getOperand(1);
19925 EVT SubVT = Extract->getValueType(0);
19926 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations))
19927 return SDValue();
19928
19929 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
19930 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
19931
19932 // TODO: We could handle the case where only 1 operand is being inserted by
19933 // creating an extract of the other operand, but that requires checking
19934 // number of uses and/or costs.
19935 if (!Sub0 || !Sub1)
19936 return SDValue();
19937
19938 // We are inserting both operands of the wide binop only to extract back
19939 // to the narrow vector size. Eliminate all of the insert/extract:
19940 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
19941 return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
19942 BinOp->getFlags());
19943}
19944
19945/// If we are extracting a subvector produced by a wide binary operator try
19946/// to use a narrow binary operator and/or avoid concatenation and extraction.
19947static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG,
19948 bool LegalOperations) {
19949 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
19950 // some of these bailouts with other transforms.
19951
19952 if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations))
19953 return V;
19954
19955 // The extract index must be a constant, so we can map it to a concat operand.
19956 auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
19957 if (!ExtractIndexC)
19958 return SDValue();
19959
19960 // We are looking for an optionally bitcasted wide vector binary operator
19961 // feeding an extract subvector.
19962 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
19963 SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
19964 unsigned BOpcode = BinOp.getOpcode();
19965 if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1)
19966 return SDValue();
19967
19968 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
19969 // reduced to the unary fneg when it is visited, and we probably want to deal
19970 // with fneg in a target-specific way.
19971 if (BOpcode == ISD::FSUB) {
19972 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true);
19973 if (C && C->getValueAPF().isNegZero())
19974 return SDValue();
19975 }
19976
19977 // The binop must be a vector type, so we can extract some fraction of it.
19978 EVT WideBVT = BinOp.getValueType();
19979 // The optimisations below currently assume we are dealing with fixed length
19980 // vectors. It is possible to add support for scalable vectors, but at the
19981 // moment we've done no analysis to prove whether they are profitable or not.
19982 if (!WideBVT.isFixedLengthVector())
19983 return SDValue();
19984
19985 EVT VT = Extract->getValueType(0);
19986 unsigned ExtractIndex = ExtractIndexC->getZExtValue();
19987 assert(ExtractIndex % VT.getVectorNumElements() == 0 &&((ExtractIndex % VT.getVectorNumElements() == 0 && "Extract index is not a multiple of the vector length."
) ? static_cast<void> (0) : __assert_fail ("ExtractIndex % VT.getVectorNumElements() == 0 && \"Extract index is not a multiple of the vector length.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19988, __PRETTY_FUNCTION__))
19988 "Extract index is not a multiple of the vector length.")((ExtractIndex % VT.getVectorNumElements() == 0 && "Extract index is not a multiple of the vector length."
) ? static_cast<void> (0) : __assert_fail ("ExtractIndex % VT.getVectorNumElements() == 0 && \"Extract index is not a multiple of the vector length.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 19988, __PRETTY_FUNCTION__))
;
19989
19990 // Bail out if this is not a proper multiple width extraction.
19991 unsigned WideWidth = WideBVT.getSizeInBits();
19992 unsigned NarrowWidth = VT.getSizeInBits();
19993 if (WideWidth % NarrowWidth != 0)
19994 return SDValue();
19995
19996 // Bail out if we are extracting a fraction of a single operation. This can
19997 // occur because we potentially looked through a bitcast of the binop.
19998 unsigned NarrowingRatio = WideWidth / NarrowWidth;
19999 unsigned WideNumElts = WideBVT.getVectorNumElements();
20000 if (WideNumElts % NarrowingRatio != 0)
20001 return SDValue();
20002
20003 // Bail out if the target does not support a narrower version of the binop.
20004 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
20005 WideNumElts / NarrowingRatio);
20006 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
20007 return SDValue();
20008
20009 // If extraction is cheap, we don't need to look at the binop operands
20010 // for concat ops. The narrow binop alone makes this transform profitable.
20011 // We can't just reuse the original extract index operand because we may have
20012 // bitcasted.
20013 unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
20014 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
20015 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
20016 BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
20017 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
20018 SDLoc DL(Extract);
20019 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL);
20020 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
20021 BinOp.getOperand(0), NewExtIndex);
20022 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
20023 BinOp.getOperand(1), NewExtIndex);
20024 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
20025 BinOp.getNode()->getFlags());
20026 return DAG.getBitcast(VT, NarrowBinOp);
20027 }
20028
20029 // Only handle the case where we are doubling and then halving. A larger ratio
20030 // may require more than two narrow binops to replace the wide binop.
20031 if (NarrowingRatio != 2)
20032 return SDValue();
20033
20034 // TODO: The motivating case for this transform is an x86 AVX1 target. That
20035 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
20036 // flavors, but no other 256-bit integer support. This could be extended to
20037 // handle any binop, but that may require fixing/adding other folds to avoid
20038 // codegen regressions.
20039 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
20040 return SDValue();
20041
20042 // We need at least one concatenation operation of a binop operand to make
20043 // this transform worthwhile. The concat must double the input vector sizes.
20044 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
20045 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
20046 return V.getOperand(ConcatOpNum);
20047 return SDValue();
20048 };
20049 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
20050 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
20051
20052 if (SubVecL || SubVecR) {
20053 // If a binop operand was not the result of a concat, we must extract a
20054 // half-sized operand for our new narrow binop:
20055 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
20056 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
20057 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
20058 SDLoc DL(Extract);
20059 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL);
20060 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
20061 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
20062 BinOp.getOperand(0), IndexC);
20063
20064 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
20065 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
20066 BinOp.getOperand(1), IndexC);
20067
20068 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
20069 return DAG.getBitcast(VT, NarrowBinOp);
20070 }
20071
20072 return SDValue();
20073}
20074
20075/// If we are extracting a subvector from a wide vector load, convert to a
20076/// narrow load to eliminate the extraction:
20077/// (extract_subvector (load wide vector)) --> (load narrow vector)
20078static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
20079 // TODO: Add support for big-endian. The offset calculation must be adjusted.
20080 if (DAG.getDataLayout().isBigEndian())
20081 return SDValue();
20082
20083 auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
20084 auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
20085 if (!Ld || Ld->getExtensionType() || !Ld->isSimple() ||
20086 !ExtIdx)
20087 return SDValue();
20088
20089 // Allow targets to opt-out.
20090 EVT VT = Extract->getValueType(0);
20091
20092 // We can only create byte sized loads.
20093 if (!VT.isByteSized())
20094 return SDValue();
20095
20096 unsigned Index = ExtIdx->getZExtValue();
20097 unsigned NumElts = VT.getVectorMinNumElements();
20098
20099 // The definition of EXTRACT_SUBVECTOR states that the index must be a
20100 // multiple of the minimum number of elements in the result type.
20101 assert(Index % NumElts == 0 && "The extract subvector index is not a "((Index % NumElts == 0 && "The extract subvector index is not a "
"multiple of the result's element count") ? static_cast<void
> (0) : __assert_fail ("Index % NumElts == 0 && \"The extract subvector index is not a \" \"multiple of the result's element count\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20102, __PRETTY_FUNCTION__))
20102 "multiple of the result's element count")((Index % NumElts == 0 && "The extract subvector index is not a "
"multiple of the result's element count") ? static_cast<void
> (0) : __assert_fail ("Index % NumElts == 0 && \"The extract subvector index is not a \" \"multiple of the result's element count\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20102, __PRETTY_FUNCTION__))
;
20103
20104 // It's fine to use TypeSize here as we know the offset will not be negative.
20105 TypeSize Offset = VT.getStoreSize() * (Index / NumElts);
20106
20107 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20108 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
20109 return SDValue();
20110
20111 // The narrow load will be offset from the base address of the old load if
20112 // we are extracting from something besides index 0 (little-endian).
20113 SDLoc DL(Extract);
20114
20115 // TODO: Use "BaseIndexOffset" to make this more effective.
20116 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL);
20117
20118 uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize());
20119 MachineFunction &MF = DAG.getMachineFunction();
20120 MachineMemOperand *MMO;
20121 if (Offset.isScalable()) {
20122 MachinePointerInfo MPI =
20123 MachinePointerInfo(Ld->getPointerInfo().getAddrSpace());
20124 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize);
20125 } else
20126 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(),
20127 StoreSize);
20128
20129 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
20130 DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
20131 return NewLd;
20132}
20133
20134SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
20135 EVT NVT = N->getValueType(0);
20136 SDValue V = N->getOperand(0);
20137 uint64_t ExtIdx = N->getConstantOperandVal(1);
20138
20139 // Extract from UNDEF is UNDEF.
20140 if (V.isUndef())
20141 return DAG.getUNDEF(NVT);
20142
20143 if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
20144 if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
20145 return NarrowLoad;
20146
20147 // Combine an extract of an extract into a single extract_subvector.
20148 // ext (ext X, C), 0 --> ext X, C
20149 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) {
20150 if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
20151 V.getConstantOperandVal(1)) &&
20152 TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
20153 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
20154 V.getOperand(1));
20155 }
20156 }
20157
20158 // Try to move vector bitcast after extract_subv by scaling extraction index:
20159 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
20160 if (V.getOpcode() == ISD::BITCAST &&
20161 V.getOperand(0).getValueType().isVector()) {
20162 SDValue SrcOp = V.getOperand(0);
20163 EVT SrcVT = SrcOp.getValueType();
20164 unsigned SrcNumElts = SrcVT.getVectorMinNumElements();
20165 unsigned DestNumElts = V.getValueType().getVectorMinNumElements();
20166 if ((SrcNumElts % DestNumElts) == 0) {
20167 unsigned SrcDestRatio = SrcNumElts / DestNumElts;
20168 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio;
20169 EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
20170 NewExtEC);
20171 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
20172 SDLoc DL(N);
20173 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL);
20174 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
20175 V.getOperand(0), NewIndex);
20176 return DAG.getBitcast(NVT, NewExtract);
20177 }
20178 }
20179 if ((DestNumElts % SrcNumElts) == 0) {
20180 unsigned DestSrcRatio = DestNumElts / SrcNumElts;
20181 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) {
20182 ElementCount NewExtEC =
20183 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio);
20184 EVT ScalarVT = SrcVT.getScalarType();
20185 if ((ExtIdx % DestSrcRatio) == 0) {
20186 SDLoc DL(N);
20187 unsigned IndexValScaled = ExtIdx / DestSrcRatio;
20188 EVT NewExtVT =
20189 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC);
20190 if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
20191 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
20192 SDValue NewExtract =
20193 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
20194 V.getOperand(0), NewIndex);
20195 return DAG.getBitcast(NVT, NewExtract);
20196 }
20197 if (NewExtEC.isScalar() &&
20198 TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) {
20199 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
20200 SDValue NewExtract =
20201 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT,
20202 V.getOperand(0), NewIndex);
20203 return DAG.getBitcast(NVT, NewExtract);
20204 }
20205 }
20206 }
20207 }
20208 }
20209
20210 if (V.getOpcode() == ISD::CONCAT_VECTORS) {
20211 unsigned ExtNumElts = NVT.getVectorMinNumElements();
20212 EVT ConcatSrcVT = V.getOperand(0).getValueType();
20213 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() &&((ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType
() && "Concat and extract subvector do not change element type"
) ? static_cast<void> (0) : __assert_fail ("ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && \"Concat and extract subvector do not change element type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20214, __PRETTY_FUNCTION__))
20214 "Concat and extract subvector do not change element type")((ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType
() && "Concat and extract subvector do not change element type"
) ? static_cast<void> (0) : __assert_fail ("ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && \"Concat and extract subvector do not change element type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20214, __PRETTY_FUNCTION__))
;
20215 assert((ExtIdx % ExtNumElts) == 0 &&(((ExtIdx % ExtNumElts) == 0 && "Extract index is not a multiple of the input vector length."
) ? static_cast<void> (0) : __assert_fail ("(ExtIdx % ExtNumElts) == 0 && \"Extract index is not a multiple of the input vector length.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20216, __PRETTY_FUNCTION__))
20216 "Extract index is not a multiple of the input vector length.")(((ExtIdx % ExtNumElts) == 0 && "Extract index is not a multiple of the input vector length."
) ? static_cast<void> (0) : __assert_fail ("(ExtIdx % ExtNumElts) == 0 && \"Extract index is not a multiple of the input vector length.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20216, __PRETTY_FUNCTION__))
;
20217
20218 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements();
20219 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts;
20220
20221 // If the concatenated source types match this extract, it's a direct
20222 // simplification:
20223 // extract_subvec (concat V1, V2, ...), i --> Vi
20224 if (ConcatSrcNumElts == ExtNumElts)
20225 return V.getOperand(ConcatOpIdx);
20226
20227 // If the concatenated source vectors are a multiple length of this extract,
20228 // then extract a fraction of one of those source vectors directly from a
20229 // concat operand. Example:
20230 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
20231 // v2i8 extract_subvec v8i8 Y, 6
20232 if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) {
20233 SDLoc DL(N);
20234 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts;
20235 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts &&((NewExtIdx + ExtNumElts <= ConcatSrcNumElts && "Trying to extract from >1 concat operand?"
) ? static_cast<void> (0) : __assert_fail ("NewExtIdx + ExtNumElts <= ConcatSrcNumElts && \"Trying to extract from >1 concat operand?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20236, __PRETTY_FUNCTION__))
20236 "Trying to extract from >1 concat operand?")((NewExtIdx + ExtNumElts <= ConcatSrcNumElts && "Trying to extract from >1 concat operand?"
) ? static_cast<void> (0) : __assert_fail ("NewExtIdx + ExtNumElts <= ConcatSrcNumElts && \"Trying to extract from >1 concat operand?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20236, __PRETTY_FUNCTION__))
;
20237 assert(NewExtIdx % ExtNumElts == 0 &&((NewExtIdx % ExtNumElts == 0 && "Extract index is not a multiple of the input vector length."
) ? static_cast<void> (0) : __assert_fail ("NewExtIdx % ExtNumElts == 0 && \"Extract index is not a multiple of the input vector length.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20238, __PRETTY_FUNCTION__))
20238 "Extract index is not a multiple of the input vector length.")((NewExtIdx % ExtNumElts == 0 && "Extract index is not a multiple of the input vector length."
) ? static_cast<void> (0) : __assert_fail ("NewExtIdx % ExtNumElts == 0 && \"Extract index is not a multiple of the input vector length.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20238, __PRETTY_FUNCTION__))
;
20239 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL);
20240 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT,
20241 V.getOperand(ConcatOpIdx), NewIndexC);
20242 }
20243 }
20244
20245 V = peekThroughBitcasts(V);
20246
20247 // If the input is a build vector. Try to make a smaller build vector.
20248 if (V.getOpcode() == ISD::BUILD_VECTOR) {
20249 EVT InVT = V.getValueType();
20250 unsigned ExtractSize = NVT.getSizeInBits();
20251 unsigned EltSize = InVT.getScalarSizeInBits();
20252 // Only do this if we won't split any elements.
20253 if (ExtractSize % EltSize == 0) {
20254 unsigned NumElems = ExtractSize / EltSize;
20255 EVT EltVT = InVT.getVectorElementType();
20256 EVT ExtractVT =
20257 NumElems == 1 ? EltVT
20258 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
20259 if ((Level < AfterLegalizeDAG ||
20260 (NumElems == 1 ||
20261 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
20262 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
20263 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize;
20264
20265 if (NumElems == 1) {
20266 SDValue Src = V->getOperand(IdxVal);
20267 if (EltVT != Src.getValueType())
20268 Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
20269 return DAG.getBitcast(NVT, Src);
20270 }
20271
20272 // Extract the pieces from the original build_vector.
20273 SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N),
20274 V->ops().slice(IdxVal, NumElems));
20275 return DAG.getBitcast(NVT, BuildVec);
20276 }
20277 }
20278 }
20279
20280 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
20281 // Handle only simple case where vector being inserted and vector
20282 // being extracted are of same size.
20283 EVT SmallVT = V.getOperand(1).getValueType();
20284 if (!NVT.bitsEq(SmallVT))
20285 return SDValue();
20286
20287 // Combine:
20288 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
20289 // Into:
20290 // indices are equal or bit offsets are equal => V1
20291 // otherwise => (extract_subvec V1, ExtIdx)
20292 uint64_t InsIdx = V.getConstantOperandVal(2);
20293 if (InsIdx * SmallVT.getScalarSizeInBits() ==
20294 ExtIdx * NVT.getScalarSizeInBits())
20295 return DAG.getBitcast(NVT, V.getOperand(1));
20296 return DAG.getNode(
20297 ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
20298 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
20299 N->getOperand(1));
20300 }
20301
20302 if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations))
20303 return NarrowBOp;
20304
20305 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
20306 return SDValue(N, 0);
20307
20308 return SDValue();
20309}
20310
20311/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
20312/// followed by concatenation. Narrow vector ops may have better performance
20313/// than wide ops, and this can unlock further narrowing of other vector ops.
20314/// Targets can invert this transform later if it is not profitable.
20315static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
20316 SelectionDAG &DAG) {
20317 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
20318 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
20319 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
20320 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
20321 return SDValue();
20322
20323 // Split the wide shuffle mask into halves. Any mask element that is accessing
20324 // operand 1 is offset down to account for narrowing of the vectors.
20325 ArrayRef<int> Mask = Shuf->getMask();
20326 EVT VT = Shuf->getValueType(0);
20327 unsigned NumElts = VT.getVectorNumElements();
20328 unsigned HalfNumElts = NumElts / 2;
20329 SmallVector<int, 16> Mask0(HalfNumElts, -1);
20330 SmallVector<int, 16> Mask1(HalfNumElts, -1);
20331 for (unsigned i = 0; i != NumElts; ++i) {
20332 if (Mask[i] == -1)
20333 continue;
20334 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
20335 if (i < HalfNumElts)
20336 Mask0[i] = M;
20337 else
20338 Mask1[i - HalfNumElts] = M;
20339 }
20340
20341 // Ask the target if this is a valid transform.
20342 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
20343 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
20344 HalfNumElts);
20345 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
20346 !TLI.isShuffleMaskLegal(Mask1, HalfVT))
20347 return SDValue();
20348
20349 // shuffle (concat X, undef), (concat Y, undef), Mask -->
20350 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
20351 SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
20352 SDLoc DL(Shuf);
20353 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
20354 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
20355 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
20356}
20357
20358// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
20359// or turn a shuffle of a single concat into simpler shuffle then concat.
20360static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
20361 EVT VT = N->getValueType(0);
20362 unsigned NumElts = VT.getVectorNumElements();
20363
20364 SDValue N0 = N->getOperand(0);
20365 SDValue N1 = N->getOperand(1);
20366 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
20367 ArrayRef<int> Mask = SVN->getMask();
20368
20369 SmallVector<SDValue, 4> Ops;
20370 EVT ConcatVT = N0.getOperand(0).getValueType();
20371 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
20372 unsigned NumConcats = NumElts / NumElemsPerConcat;
20373
20374 auto IsUndefMaskElt = [](int i) { return i == -1; };
20375
20376 // Special case: shuffle(concat(A,B)) can be more efficiently represented
20377 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
20378 // half vector elements.
20379 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
20380 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
20381 IsUndefMaskElt)) {
20382 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
20383 N0.getOperand(1),
20384 Mask.slice(0, NumElemsPerConcat));
20385 N1 = DAG.getUNDEF(ConcatVT);
20386 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
20387 }
20388
20389 // Look at every vector that's inserted. We're looking for exact
20390 // subvector-sized copies from a concatenated vector
20391 for (unsigned I = 0; I != NumConcats; ++I) {
20392 unsigned Begin = I * NumElemsPerConcat;
20393 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
20394
20395 // Make sure we're dealing with a copy.
20396 if (llvm::all_of(SubMask, IsUndefMaskElt)) {
20397 Ops.push_back(DAG.getUNDEF(ConcatVT));
20398 continue;
20399 }
20400
20401 int OpIdx = -1;
20402 for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
20403 if (IsUndefMaskElt(SubMask[i]))
20404 continue;
20405 if ((SubMask[i] % (int)NumElemsPerConcat) != i)
20406 return SDValue();
20407 int EltOpIdx = SubMask[i] / NumElemsPerConcat;
20408 if (0 <= OpIdx && EltOpIdx != OpIdx)
20409 return SDValue();
20410 OpIdx = EltOpIdx;
20411 }
20412 assert(0 <= OpIdx && "Unknown concat_vectors op")((0 <= OpIdx && "Unknown concat_vectors op") ? static_cast
<void> (0) : __assert_fail ("0 <= OpIdx && \"Unknown concat_vectors op\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20412, __PRETTY_FUNCTION__))
;
20413
20414 if (OpIdx < (int)N0.getNumOperands())
20415 Ops.push_back(N0.getOperand(OpIdx));
20416 else
20417 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
20418 }
20419
20420 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
20421}
20422
20423// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
20424// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
20425//
20426// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
20427// a simplification in some sense, but it isn't appropriate in general: some
20428// BUILD_VECTORs are substantially cheaper than others. The general case
20429// of a BUILD_VECTOR requires inserting each element individually (or
20430// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
20431// all constants is a single constant pool load. A BUILD_VECTOR where each
20432// element is identical is a splat. A BUILD_VECTOR where most of the operands
20433// are undef lowers to a small number of element insertions.
20434//
20435// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
20436// We don't fold shuffles where one side is a non-zero constant, and we don't
20437// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
20438// non-constant operands. This seems to work out reasonably well in practice.
20439static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
20440 SelectionDAG &DAG,
20441 const TargetLowering &TLI) {
20442 EVT VT = SVN->getValueType(0);
20443 unsigned NumElts = VT.getVectorNumElements();
20444 SDValue N0 = SVN->getOperand(0);
20445 SDValue N1 = SVN->getOperand(1);
20446
20447 if (!N0->hasOneUse())
20448 return SDValue();
20449
20450 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
20451 // discussed above.
20452 if (!N1.isUndef()) {
20453 if (!N1->hasOneUse())
20454 return SDValue();
20455
20456 bool N0AnyConst = isAnyConstantBuildVector(N0);
20457 bool N1AnyConst = isAnyConstantBuildVector(N1);
20458 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
20459 return SDValue();
20460 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
20461 return SDValue();
20462 }
20463
20464 // If both inputs are splats of the same value then we can safely merge this
20465 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
20466 bool IsSplat = false;
20467 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
20468 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
20469 if (BV0 && BV1)
20470 if (SDValue Splat0 = BV0->getSplatValue())
20471 IsSplat = (Splat0 == BV1->getSplatValue());
20472
20473 SmallVector<SDValue, 8> Ops;
20474 SmallSet<SDValue, 16> DuplicateOps;
20475 for (int M : SVN->getMask()) {
20476 SDValue Op = DAG.getUNDEF(VT.getScalarType());
20477 if (M >= 0) {
20478 int Idx = M < (int)NumElts ? M : M - NumElts;
20479 SDValue &S = (M < (int)NumElts ? N0 : N1);
20480 if (S.getOpcode() == ISD::BUILD_VECTOR) {
20481 Op = S.getOperand(Idx);
20482 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
20483 SDValue Op0 = S.getOperand(0);
20484 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
20485 } else {
20486 // Operand can't be combined - bail out.
20487 return SDValue();
20488 }
20489 }
20490
20491 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
20492 // generating a splat; semantically, this is fine, but it's likely to
20493 // generate low-quality code if the target can't reconstruct an appropriate
20494 // shuffle.
20495 if (!Op.isUndef() && !isIntOrFPConstant(Op))
20496 if (!IsSplat && !DuplicateOps.insert(Op).second)
20497 return SDValue();
20498
20499 Ops.push_back(Op);
20500 }
20501
20502 // BUILD_VECTOR requires all inputs to be of the same type, find the
20503 // maximum type and extend them all.
20504 EVT SVT = VT.getScalarType();
20505 if (SVT.isInteger())
20506 for (SDValue &Op : Ops)
20507 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
20508 if (SVT != VT.getScalarType())
20509 for (SDValue &Op : Ops)
20510 Op = TLI.isZExtFree(Op.getValueType(), SVT)
20511 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
20512 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
20513 return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
20514}
20515
20516// Match shuffles that can be converted to any_vector_extend_in_reg.
20517// This is often generated during legalization.
20518// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
20519// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
20520static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
20521 SelectionDAG &DAG,
20522 const TargetLowering &TLI,
20523 bool LegalOperations) {
20524 EVT VT = SVN->getValueType(0);
20525 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
20526
20527 // TODO Add support for big-endian when we have a test case.
20528 if (!VT.isInteger() || IsBigEndian)
20529 return SDValue();
20530
20531 unsigned NumElts = VT.getVectorNumElements();
20532 unsigned EltSizeInBits = VT.getScalarSizeInBits();
20533 ArrayRef<int> Mask = SVN->getMask();
20534 SDValue N0 = SVN->getOperand(0);
20535
20536 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
20537 auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
20538 for (unsigned i = 0; i != NumElts; ++i) {
20539 if (Mask[i] < 0)
20540 continue;
20541 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
20542 continue;
20543 return false;
20544 }
20545 return true;
20546 };
20547
20548 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
20549 // power-of-2 extensions as they are the most likely.
20550 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
20551 // Check for non power of 2 vector sizes
20552 if (NumElts % Scale != 0)
20553 continue;
20554 if (!isAnyExtend(Scale))
20555 continue;
20556
20557 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
20558 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
20559 // Never create an illegal type. Only create unsupported operations if we
20560 // are pre-legalization.
20561 if (TLI.isTypeLegal(OutVT))
20562 if (!LegalOperations ||
20563 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
20564 return DAG.getBitcast(VT,
20565 DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
20566 SDLoc(SVN), OutVT, N0));
20567 }
20568
20569 return SDValue();
20570}
20571
20572// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
20573// each source element of a large type into the lowest elements of a smaller
20574// destination type. This is often generated during legalization.
20575// If the source node itself was a '*_extend_vector_inreg' node then we should
20576// then be able to remove it.
20577static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
20578 SelectionDAG &DAG) {
20579 EVT VT = SVN->getValueType(0);
20580 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
20581
20582 // TODO Add support for big-endian when we have a test case.
20583 if (!VT.isInteger() || IsBigEndian)
20584 return SDValue();
20585
20586 SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
20587
20588 unsigned Opcode = N0.getOpcode();
20589 if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
20590 Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
20591 Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
20592 return SDValue();
20593
20594 SDValue N00 = N0.getOperand(0);
20595 ArrayRef<int> Mask = SVN->getMask();
20596 unsigned NumElts = VT.getVectorNumElements();
20597 unsigned EltSizeInBits = VT.getScalarSizeInBits();
20598 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
20599 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
20600
20601 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
20602 return SDValue();
20603 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
20604
20605 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
20606 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
20607 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
20608 auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
20609 for (unsigned i = 0; i != NumElts; ++i) {
20610 if (Mask[i] < 0)
20611 continue;
20612 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
20613 continue;
20614 return false;
20615 }
20616 return true;
20617 };
20618
20619 // At the moment we just handle the case where we've truncated back to the
20620 // same size as before the extension.
20621 // TODO: handle more extension/truncation cases as cases arise.
20622 if (EltSizeInBits != ExtSrcSizeInBits)
20623 return SDValue();
20624
20625 // We can remove *extend_vector_inreg only if the truncation happens at
20626 // the same scale as the extension.
20627 if (isTruncate(ExtScale))
20628 return DAG.getBitcast(VT, N00);
20629
20630 return SDValue();
20631}
20632
20633// Combine shuffles of splat-shuffles of the form:
20634// shuffle (shuffle V, undef, splat-mask), undef, M
20635// If splat-mask contains undef elements, we need to be careful about
20636// introducing undef's in the folded mask which are not the result of composing
20637// the masks of the shuffles.
20638static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
20639 SelectionDAG &DAG) {
20640 if (!Shuf->getOperand(1).isUndef())
20641 return SDValue();
20642 auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
20643 if (!Splat || !Splat->isSplat())
20644 return SDValue();
20645
20646 ArrayRef<int> ShufMask = Shuf->getMask();
20647 ArrayRef<int> SplatMask = Splat->getMask();
20648 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch")((ShufMask.size() == SplatMask.size() && "Mask length mismatch"
) ? static_cast<void> (0) : __assert_fail ("ShufMask.size() == SplatMask.size() && \"Mask length mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20648, __PRETTY_FUNCTION__))
;
20649
20650 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
20651 // every undef mask element in the splat-shuffle has a corresponding undef
20652 // element in the user-shuffle's mask or if the composition of mask elements
20653 // would result in undef.
20654 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
20655 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
20656 // In this case it is not legal to simplify to the splat-shuffle because we
20657 // may be exposing the users of the shuffle an undef element at index 1
20658 // which was not there before the combine.
20659 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
20660 // In this case the composition of masks yields SplatMask, so it's ok to
20661 // simplify to the splat-shuffle.
20662 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
20663 // In this case the composed mask includes all undef elements of SplatMask
20664 // and in addition sets element zero to undef. It is safe to simplify to
20665 // the splat-shuffle.
20666 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
20667 ArrayRef<int> SplatMask) {
20668 for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
20669 if (UserMask[i] != -1 && SplatMask[i] == -1 &&
20670 SplatMask[UserMask[i]] != -1)
20671 return false;
20672 return true;
20673 };
20674 if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
20675 return Shuf->getOperand(0);
20676
20677 // Create a new shuffle with a mask that is composed of the two shuffles'
20678 // masks.
20679 SmallVector<int, 32> NewMask;
20680 for (int Idx : ShufMask)
20681 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
20682
20683 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
20684 Splat->getOperand(0), Splat->getOperand(1),
20685 NewMask);
20686}
20687
20688/// Combine shuffle of shuffle of the form:
20689/// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
20690static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf,
20691 SelectionDAG &DAG) {
20692 if (!OuterShuf->getOperand(1).isUndef())
20693 return SDValue();
20694 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0));
20695 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef())
20696 return SDValue();
20697
20698 ArrayRef<int> OuterMask = OuterShuf->getMask();
20699 ArrayRef<int> InnerMask = InnerShuf->getMask();
20700 unsigned NumElts = OuterMask.size();
20701 assert(NumElts == InnerMask.size() && "Mask length mismatch")((NumElts == InnerMask.size() && "Mask length mismatch"
) ? static_cast<void> (0) : __assert_fail ("NumElts == InnerMask.size() && \"Mask length mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20701, __PRETTY_FUNCTION__))
;
20702 SmallVector<int, 32> CombinedMask(NumElts, -1);
20703 int SplatIndex = -1;
20704 for (unsigned i = 0; i != NumElts; ++i) {
20705 // Undef lanes remain undef.
20706 int OuterMaskElt = OuterMask[i];
20707 if (OuterMaskElt == -1)
20708 continue;
20709
20710 // Peek through the shuffle masks to get the underlying source element.
20711 int InnerMaskElt = InnerMask[OuterMaskElt];
20712 if (InnerMaskElt == -1)
20713 continue;
20714
20715 // Initialize the splatted element.
20716 if (SplatIndex == -1)
20717 SplatIndex = InnerMaskElt;
20718
20719 // Non-matching index - this is not a splat.
20720 if (SplatIndex != InnerMaskElt)
20721 return SDValue();
20722
20723 CombinedMask[i] = InnerMaskElt;
20724 }
20725 assert((all_of(CombinedMask, [](int M) { return M == -1; }) ||(((all_of(CombinedMask, [](int M) { return M == -1; }) || getSplatIndex
(CombinedMask) != -1) && "Expected a splat mask") ? static_cast
<void> (0) : __assert_fail ("(all_of(CombinedMask, [](int M) { return M == -1; }) || getSplatIndex(CombinedMask) != -1) && \"Expected a splat mask\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20727, __PRETTY_FUNCTION__))
20726 getSplatIndex(CombinedMask) != -1) &&(((all_of(CombinedMask, [](int M) { return M == -1; }) || getSplatIndex
(CombinedMask) != -1) && "Expected a splat mask") ? static_cast
<void> (0) : __assert_fail ("(all_of(CombinedMask, [](int M) { return M == -1; }) || getSplatIndex(CombinedMask) != -1) && \"Expected a splat mask\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20727, __PRETTY_FUNCTION__))
20727 "Expected a splat mask")(((all_of(CombinedMask, [](int M) { return M == -1; }) || getSplatIndex
(CombinedMask) != -1) && "Expected a splat mask") ? static_cast
<void> (0) : __assert_fail ("(all_of(CombinedMask, [](int M) { return M == -1; }) || getSplatIndex(CombinedMask) != -1) && \"Expected a splat mask\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20727, __PRETTY_FUNCTION__))
;
20728
20729 // TODO: The transform may be a win even if the mask is not legal.
20730 EVT VT = OuterShuf->getValueType(0);
20731 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types")((VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"
) ? static_cast<void> (0) : __assert_fail ("VT == InnerShuf->getValueType(0) && \"Expected matching shuffle types\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20731, __PRETTY_FUNCTION__))
;
20732 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT))
20733 return SDValue();
20734
20735 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0),
20736 InnerShuf->getOperand(1), CombinedMask);
20737}
20738
20739/// If the shuffle mask is taking exactly one element from the first vector
20740/// operand and passing through all other elements from the second vector
20741/// operand, return the index of the mask element that is choosing an element
20742/// from the first operand. Otherwise, return -1.
20743static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
20744 int MaskSize = Mask.size();
20745 int EltFromOp0 = -1;
20746 // TODO: This does not match if there are undef elements in the shuffle mask.
20747 // Should we ignore undefs in the shuffle mask instead? The trade-off is
20748 // removing an instruction (a shuffle), but losing the knowledge that some
20749 // vector lanes are not needed.
20750 for (int i = 0; i != MaskSize; ++i) {
20751 if (Mask[i] >= 0 && Mask[i] < MaskSize) {
20752 // We're looking for a shuffle of exactly one element from operand 0.
20753 if (EltFromOp0 != -1)
20754 return -1;
20755 EltFromOp0 = i;
20756 } else if (Mask[i] != i + MaskSize) {
20757 // Nothing from operand 1 can change lanes.
20758 return -1;
20759 }
20760 }
20761 return EltFromOp0;
20762}
20763
20764/// If a shuffle inserts exactly one element from a source vector operand into
20765/// another vector operand and we can access the specified element as a scalar,
20766/// then we can eliminate the shuffle.
20767static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
20768 SelectionDAG &DAG) {
20769 // First, check if we are taking one element of a vector and shuffling that
20770 // element into another vector.
20771 ArrayRef<int> Mask = Shuf->getMask();
20772 SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
20773 SDValue Op0 = Shuf->getOperand(0);
20774 SDValue Op1 = Shuf->getOperand(1);
20775 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
20776 if (ShufOp0Index == -1) {
20777 // Commute mask and check again.
20778 ShuffleVectorSDNode::commuteMask(CommutedMask);
20779 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
20780 if (ShufOp0Index == -1)
20781 return SDValue();
20782 // Commute operands to match the commuted shuffle mask.
20783 std::swap(Op0, Op1);
20784 Mask = CommutedMask;
20785 }
20786
20787 // The shuffle inserts exactly one element from operand 0 into operand 1.
20788 // Now see if we can access that element as a scalar via a real insert element
20789 // instruction.
20790 // TODO: We can try harder to locate the element as a scalar. Examples: it
20791 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
20792 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&((Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] <
(int)Mask.size() && "Shuffle mask value must be from operand 0"
) ? static_cast<void> (0) : __assert_fail ("Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && \"Shuffle mask value must be from operand 0\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20793, __PRETTY_FUNCTION__))
20793 "Shuffle mask value must be from operand 0")((Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] <
(int)Mask.size() && "Shuffle mask value must be from operand 0"
) ? static_cast<void> (0) : __assert_fail ("Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && \"Shuffle mask value must be from operand 0\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20793, __PRETTY_FUNCTION__))
;
20794 if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
20795 return SDValue();
20796
20797 auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
20798 if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
20799 return SDValue();
20800
20801 // There's an existing insertelement with constant insertion index, so we
20802 // don't need to check the legality/profitability of a replacement operation
20803 // that differs at most in the constant value. The target should be able to
20804 // lower any of those in a similar way. If not, legalization will expand this
20805 // to a scalar-to-vector plus shuffle.
20806 //
20807 // Note that the shuffle may move the scalar from the position that the insert
20808 // element used. Therefore, our new insert element occurs at the shuffle's
20809 // mask index value, not the insert's index value.
20810 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
20811 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
20812 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
20813 Op1, Op0.getOperand(1), NewInsIndex);
20814}
20815
20816/// If we have a unary shuffle of a shuffle, see if it can be folded away
20817/// completely. This has the potential to lose undef knowledge because the first
20818/// shuffle may not have an undef mask element where the second one does. So
20819/// only call this after doing simplifications based on demanded elements.
20820static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
20821 // shuf (shuf0 X, Y, Mask0), undef, Mask
20822 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
20823 if (!Shuf0 || !Shuf->getOperand(1).isUndef())
20824 return SDValue();
20825
20826 ArrayRef<int> Mask = Shuf->getMask();
20827 ArrayRef<int> Mask0 = Shuf0->getMask();
20828 for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
20829 // Ignore undef elements.
20830 if (Mask[i] == -1)
20831 continue;
20832 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value")((Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"
) ? static_cast<void> (0) : __assert_fail ("Mask[i] >= 0 && Mask[i] < e && \"Unexpected shuffle mask value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20832, __PRETTY_FUNCTION__))
;
20833
20834 // Is the element of the shuffle operand chosen by this shuffle the same as
20835 // the element chosen by the shuffle operand itself?
20836 if (Mask0[Mask[i]] != Mask0[i])
20837 return SDValue();
20838 }
20839 // Every element of this shuffle is identical to the result of the previous
20840 // shuffle, so we can replace this value.
20841 return Shuf->getOperand(0);
20842}
20843
20844SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
20845 EVT VT = N->getValueType(0);
20846 unsigned NumElts = VT.getVectorNumElements();
20847
20848 SDValue N0 = N->getOperand(0);
20849 SDValue N1 = N->getOperand(1);
20850
20851 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG")((N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"
) ? static_cast<void> (0) : __assert_fail ("N0.getValueType() == VT && \"Vector shuffle must be normalized in DAG\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20851, __PRETTY_FUNCTION__))
;
20852
20853 // Canonicalize shuffle undef, undef -> undef
20854 if (N0.isUndef() && N1.isUndef())
20855 return DAG.getUNDEF(VT);
20856
20857 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
20858
20859 // Canonicalize shuffle v, v -> v, undef
20860 if (N0 == N1) {
20861 SmallVector<int, 8> NewMask;
20862 for (unsigned i = 0; i != NumElts; ++i) {
20863 int Idx = SVN->getMaskElt(i);
20864 if (Idx >= (int)NumElts) Idx -= NumElts;
20865 NewMask.push_back(Idx);
20866 }
20867 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
20868 }
20869
20870 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
20871 if (N0.isUndef())
20872 return DAG.getCommutedVectorShuffle(*SVN);
20873
20874 // Remove references to rhs if it is undef
20875 if (N1.isUndef()) {
20876 bool Changed = false;
20877 SmallVector<int, 8> NewMask;
20878 for (unsigned i = 0; i != NumElts; ++i) {
20879 int Idx = SVN->getMaskElt(i);
20880 if (Idx >= (int)NumElts) {
20881 Idx = -1;
20882 Changed = true;
20883 }
20884 NewMask.push_back(Idx);
20885 }
20886 if (Changed)
20887 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
20888 }
20889
20890 if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
20891 return InsElt;
20892
20893 // A shuffle of a single vector that is a splatted value can always be folded.
20894 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
20895 return V;
20896
20897 if (SDValue V = formSplatFromShuffles(SVN, DAG))
20898 return V;
20899
20900 // If it is a splat, check if the argument vector is another splat or a
20901 // build_vector.
20902 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
20903 int SplatIndex = SVN->getSplatIndex();
20904 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
20905 TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) {
20906 // splat (vector_bo L, R), Index -->
20907 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
20908 SDValue L = N0.getOperand(0), R = N0.getOperand(1);
20909 SDLoc DL(N);
20910 EVT EltVT = VT.getScalarType();
20911 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL);
20912 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
20913 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
20914 SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR,
20915 N0.getNode()->getFlags());
20916 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
20917 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
20918 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
20919 }
20920
20921 // If this is a bit convert that changes the element type of the vector but
20922 // not the number of vector elements, look through it. Be careful not to
20923 // look though conversions that change things like v4f32 to v2f64.
20924 SDNode *V = N0.getNode();
20925 if (V->getOpcode() == ISD::BITCAST) {
20926 SDValue ConvInput = V->getOperand(0);
20927 if (ConvInput.getValueType().isVector() &&
20928 ConvInput.getValueType().getVectorNumElements() == NumElts)
20929 V = ConvInput.getNode();
20930 }
20931
20932 if (V->getOpcode() == ISD::BUILD_VECTOR) {
20933 assert(V->getNumOperands() == NumElts &&((V->getNumOperands() == NumElts && "BUILD_VECTOR has wrong number of operands"
) ? static_cast<void> (0) : __assert_fail ("V->getNumOperands() == NumElts && \"BUILD_VECTOR has wrong number of operands\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20934, __PRETTY_FUNCTION__))
20934 "BUILD_VECTOR has wrong number of operands")((V->getNumOperands() == NumElts && "BUILD_VECTOR has wrong number of operands"
) ? static_cast<void> (0) : __assert_fail ("V->getNumOperands() == NumElts && \"BUILD_VECTOR has wrong number of operands\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 20934, __PRETTY_FUNCTION__))
;
20935 SDValue Base;
20936 bool AllSame = true;
20937 for (unsigned i = 0; i != NumElts; ++i) {
20938 if (!V->getOperand(i).isUndef()) {
20939 Base = V->getOperand(i);
20940 break;
20941 }
20942 }
20943 // Splat of <u, u, u, u>, return <u, u, u, u>
20944 if (!Base.getNode())
20945 return N0;
20946 for (unsigned i = 0; i != NumElts; ++i) {
20947 if (V->getOperand(i) != Base) {
20948 AllSame = false;
20949 break;
20950 }
20951 }
20952 // Splat of <x, x, x, x>, return <x, x, x, x>
20953 if (AllSame)
20954 return N0;
20955
20956 // Canonicalize any other splat as a build_vector.
20957 SDValue Splatted = V->getOperand(SplatIndex);
20958 SmallVector<SDValue, 8> Ops(NumElts, Splatted);
20959 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
20960
20961 // We may have jumped through bitcasts, so the type of the
20962 // BUILD_VECTOR may not match the type of the shuffle.
20963 if (V->getValueType(0) != VT)
20964 NewBV = DAG.getBitcast(VT, NewBV);
20965 return NewBV;
20966 }
20967 }
20968
20969 // Simplify source operands based on shuffle mask.
20970 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
20971 return SDValue(N, 0);
20972
20973 // This is intentionally placed after demanded elements simplification because
20974 // it could eliminate knowledge of undef elements created by this shuffle.
20975 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
20976 return ShufOp;
20977
20978 // Match shuffles that can be converted to any_vector_extend_in_reg.
20979 if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
20980 return V;
20981
20982 // Combine "truncate_vector_in_reg" style shuffles.
20983 if (SDValue V = combineTruncationShuffle(SVN, DAG))
20984 return V;
20985
20986 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
20987 Level < AfterLegalizeVectorOps &&
20988 (N1.isUndef() ||
20989 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
20990 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
20991 if (SDValue V = partitionShuffleOfConcats(N, DAG))
20992 return V;
20993 }
20994
20995 // A shuffle of a concat of the same narrow vector can be reduced to use
20996 // only low-half elements of a concat with undef:
20997 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
20998 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() &&
20999 N0.getNumOperands() == 2 &&
21000 N0.getOperand(0) == N0.getOperand(1)) {
21001 int HalfNumElts = (int)NumElts / 2;
21002 SmallVector<int, 8> NewMask;
21003 for (unsigned i = 0; i != NumElts; ++i) {
21004 int Idx = SVN->getMaskElt(i);
21005 if (Idx >= HalfNumElts) {
21006 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op")((Idx < (int)NumElts && "Shuffle mask chooses undef op"
) ? static_cast<void> (0) : __assert_fail ("Idx < (int)NumElts && \"Shuffle mask chooses undef op\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21006, __PRETTY_FUNCTION__))
;
21007 Idx -= HalfNumElts;
21008 }
21009 NewMask.push_back(Idx);
21010 }
21011 if (TLI.isShuffleMaskLegal(NewMask, VT)) {
21012 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType());
21013 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
21014 N0.getOperand(0), UndefVec);
21015 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask);
21016 }
21017 }
21018
21019 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
21020 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
21021 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
21022 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
21023 return Res;
21024
21025 // If this shuffle only has a single input that is a bitcasted shuffle,
21026 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
21027 // back to their original types.
21028 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
21029 N1.isUndef() && Level < AfterLegalizeVectorOps &&
21030 TLI.isTypeLegal(VT)) {
21031
21032 SDValue BC0 = peekThroughOneUseBitcasts(N0);
21033 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
21034 EVT SVT = VT.getScalarType();
21035 EVT InnerVT = BC0->getValueType(0);
21036 EVT InnerSVT = InnerVT.getScalarType();
21037
21038 // Determine which shuffle works with the smaller scalar type.
21039 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
21040 EVT ScaleSVT = ScaleVT.getScalarType();
21041
21042 if (TLI.isTypeLegal(ScaleVT) &&
21043 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
21044 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
21045 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
21046 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
21047
21048 // Scale the shuffle masks to the smaller scalar type.
21049 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
21050 SmallVector<int, 8> InnerMask;
21051 SmallVector<int, 8> OuterMask;
21052 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask);
21053 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask);
21054
21055 // Merge the shuffle masks.
21056 SmallVector<int, 8> NewMask;
21057 for (int M : OuterMask)
21058 NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
21059
21060 // Test for shuffle mask legality over both commutations.
21061 SDValue SV0 = BC0->getOperand(0);
21062 SDValue SV1 = BC0->getOperand(1);
21063 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
21064 if (!LegalMask) {
21065 std::swap(SV0, SV1);
21066 ShuffleVectorSDNode::commuteMask(NewMask);
21067 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
21068 }
21069
21070 if (LegalMask) {
21071 SV0 = DAG.getBitcast(ScaleVT, SV0);
21072 SV1 = DAG.getBitcast(ScaleVT, SV1);
21073 return DAG.getBitcast(
21074 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
21075 }
21076 }
21077 }
21078 }
21079
21080 // Compute the combined shuffle mask for a shuffle with SV0 as the first
21081 // operand, and SV1 as the second operand.
21082 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
21083 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
21084 auto MergeInnerShuffle =
21085 [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN,
21086 ShuffleVectorSDNode *OtherSVN, SDValue N1,
21087 const TargetLowering &TLI, SDValue &SV0, SDValue &SV1,
21088 SmallVectorImpl<int> &Mask) -> bool {
21089 // Don't try to fold splats; they're likely to simplify somehow, or they
21090 // might be free.
21091 if (OtherSVN->isSplat())
21092 return false;
21093
21094 SV0 = SV1 = SDValue();
21095 Mask.clear();
21096
21097 for (unsigned i = 0; i != NumElts; ++i) {
21098 int Idx = SVN->getMaskElt(i);
21099 if (Idx < 0) {
21100 // Propagate Undef.
21101 Mask.push_back(Idx);
21102 continue;
21103 }
21104
21105 if (Commute)
21106 Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts);
21107
21108 SDValue CurrentVec;
21109 if (Idx < (int)NumElts) {
21110 // This shuffle index refers to the inner shuffle N0. Lookup the inner
21111 // shuffle mask to identify which vector is actually referenced.
21112 Idx = OtherSVN->getMaskElt(Idx);
21113 if (Idx < 0) {
21114 // Propagate Undef.
21115 Mask.push_back(Idx);
21116 continue;
21117 }
21118 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0)
21119 : OtherSVN->getOperand(1);
21120 } else {
21121 // This shuffle index references an element within N1.
21122 CurrentVec = N1;
21123 }
21124
21125 // Simple case where 'CurrentVec' is UNDEF.
21126 if (CurrentVec.isUndef()) {
21127 Mask.push_back(-1);
21128 continue;
21129 }
21130
21131 // Canonicalize the shuffle index. We don't know yet if CurrentVec
21132 // will be the first or second operand of the combined shuffle.
21133 Idx = Idx % NumElts;
21134 if (!SV0.getNode() || SV0 == CurrentVec) {
21135 // Ok. CurrentVec is the left hand side.
21136 // Update the mask accordingly.
21137 SV0 = CurrentVec;
21138 Mask.push_back(Idx);
21139 continue;
21140 }
21141 if (!SV1.getNode() || SV1 == CurrentVec) {
21142 // Ok. CurrentVec is the right hand side.
21143 // Update the mask accordingly.
21144 SV1 = CurrentVec;
21145 Mask.push_back(Idx + NumElts);
21146 continue;
21147 }
21148
21149 // Last chance - see if the vector is another shuffle and if it
21150 // uses one of the existing candidate shuffle ops.
21151 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) {
21152 int InnerIdx = CurrentSVN->getMaskElt(Idx);
21153 if (InnerIdx < 0) {
21154 Mask.push_back(-1);
21155 continue;
21156 }
21157 SDValue InnerVec = (InnerIdx < (int)NumElts)
21158 ? CurrentSVN->getOperand(0)
21159 : CurrentSVN->getOperand(1);
21160 if (InnerVec.isUndef()) {
21161 Mask.push_back(-1);
21162 continue;
21163 }
21164 InnerIdx %= NumElts;
21165 if (InnerVec == SV0) {
21166 Mask.push_back(InnerIdx);
21167 continue;
21168 }
21169 if (InnerVec == SV1) {
21170 Mask.push_back(InnerIdx + NumElts);
21171 continue;
21172 }
21173 }
21174
21175 // Bail out if we cannot convert the shuffle pair into a single shuffle.
21176 return false;
21177 }
21178
21179 if (llvm::all_of(Mask, [](int M) { return M < 0; }))
21180 return true;
21181
21182 // Avoid introducing shuffles with illegal mask.
21183 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
21184 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
21185 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
21186 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
21187 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
21188 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
21189 if (TLI.isShuffleMaskLegal(Mask, VT))
21190 return true;
21191
21192 std::swap(SV0, SV1);
21193 ShuffleVectorSDNode::commuteMask(Mask);
21194 return TLI.isShuffleMaskLegal(Mask, VT);
21195 };
21196
21197 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
21198 // Canonicalize shuffles according to rules:
21199 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
21200 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
21201 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
21202 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
21203 N0.getOpcode() != ISD::VECTOR_SHUFFLE) {
21204 // The incoming shuffle must be of the same type as the result of the
21205 // current shuffle.
21206 assert(N1->getOperand(0).getValueType() == VT &&((N1->getOperand(0).getValueType() == VT && "Shuffle types don't match"
) ? static_cast<void> (0) : __assert_fail ("N1->getOperand(0).getValueType() == VT && \"Shuffle types don't match\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21207, __PRETTY_FUNCTION__))
21207 "Shuffle types don't match")((N1->getOperand(0).getValueType() == VT && "Shuffle types don't match"
) ? static_cast<void> (0) : __assert_fail ("N1->getOperand(0).getValueType() == VT && \"Shuffle types don't match\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21207, __PRETTY_FUNCTION__))
;
21208
21209 SDValue SV0 = N1->getOperand(0);
21210 SDValue SV1 = N1->getOperand(1);
21211 bool HasSameOp0 = N0 == SV0;
21212 bool IsSV1Undef = SV1.isUndef();
21213 if (HasSameOp0 || IsSV1Undef || N0 == SV1)
21214 // Commute the operands of this shuffle so merging below will trigger.
21215 return DAG.getCommutedVectorShuffle(*SVN);
21216 }
21217
21218 // Canonicalize splat shuffles to the RHS to improve merging below.
21219 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
21220 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE &&
21221 N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
21222 cast<ShuffleVectorSDNode>(N0)->isSplat() &&
21223 !cast<ShuffleVectorSDNode>(N1)->isSplat()) {
21224 return DAG.getCommutedVectorShuffle(*SVN);
21225 }
21226
21227 // Try to fold according to rules:
21228 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
21229 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
21230 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
21231 // Don't try to fold shuffles with illegal type.
21232 // Only fold if this shuffle is the only user of the other shuffle.
21233 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
21234 for (int i = 0; i != 2; ++i) {
21235 if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE &&
21236 N->isOnlyUserOf(N->getOperand(i).getNode())) {
21237 // The incoming shuffle must be of the same type as the result of the
21238 // current shuffle.
21239 auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i));
21240 assert(OtherSV->getOperand(0).getValueType() == VT &&((OtherSV->getOperand(0).getValueType() == VT && "Shuffle types don't match"
) ? static_cast<void> (0) : __assert_fail ("OtherSV->getOperand(0).getValueType() == VT && \"Shuffle types don't match\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21241, __PRETTY_FUNCTION__))
21241 "Shuffle types don't match")((OtherSV->getOperand(0).getValueType() == VT && "Shuffle types don't match"
) ? static_cast<void> (0) : __assert_fail ("OtherSV->getOperand(0).getValueType() == VT && \"Shuffle types don't match\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21241, __PRETTY_FUNCTION__))
;
21242
21243 SDValue SV0, SV1;
21244 SmallVector<int, 4> Mask;
21245 if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI,
21246 SV0, SV1, Mask)) {
21247 // Check if all indices in Mask are Undef. In case, propagate Undef.
21248 if (llvm::all_of(Mask, [](int M) { return M < 0; }))
21249 return DAG.getUNDEF(VT);
21250
21251 return DAG.getVectorShuffle(VT, SDLoc(N),
21252 SV0 ? SV0 : DAG.getUNDEF(VT),
21253 SV1 ? SV1 : DAG.getUNDEF(VT), Mask);
21254 }
21255 }
21256 }
21257
21258 // Merge shuffles through binops if we are able to merge it with at least
21259 // one other shuffles.
21260 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
21261 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
21262 unsigned SrcOpcode = N0.getOpcode();
21263 if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) &&
21264 (N1.isUndef() ||
21265 (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) {
21266 // Get binop source ops, or just pass on the undef.
21267 SDValue Op00 = N0.getOperand(0);
21268 SDValue Op01 = N0.getOperand(1);
21269 SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0);
21270 SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1);
21271 // TODO: We might be able to relax the VT check but we don't currently
21272 // have any isBinOp() that has different result/ops VTs so play safe until
21273 // we have test coverage.
21274 if (Op00.getValueType() == VT && Op10.getValueType() == VT &&
21275 Op01.getValueType() == VT && Op11.getValueType() == VT &&
21276 (Op00.getOpcode() == ISD::VECTOR_SHUFFLE ||
21277 Op10.getOpcode() == ISD::VECTOR_SHUFFLE ||
21278 Op01.getOpcode() == ISD::VECTOR_SHUFFLE ||
21279 Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) {
21280 auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1,
21281 SmallVectorImpl<int> &Mask, bool LeftOp,
21282 bool Commute) {
21283 SDValue InnerN = Commute ? N1 : N0;
21284 SDValue Op0 = LeftOp ? Op00 : Op01;
21285 SDValue Op1 = LeftOp ? Op10 : Op11;
21286 if (Commute)
21287 std::swap(Op0, Op1);
21288 // Only accept the merged shuffle if we don't introduce undef elements,
21289 // or the inner shuffle already contained undef elements.
21290 auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0);
21291 return SVN0 && InnerN->isOnlyUserOf(SVN0) &&
21292 MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1,
21293 Mask) &&
21294 (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) ||
21295 llvm::none_of(Mask, [](int M) { return M < 0; }));
21296 };
21297
21298 // Ensure we don't increase the number of shuffles - we must merge a
21299 // shuffle from at least one of the LHS and RHS ops.
21300 bool MergedLeft = false;
21301 SDValue LeftSV0, LeftSV1;
21302 SmallVector<int, 4> LeftMask;
21303 if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) ||
21304 CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) {
21305 MergedLeft = true;
21306 } else {
21307 LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end());
21308 LeftSV0 = Op00, LeftSV1 = Op10;
21309 }
21310
21311 bool MergedRight = false;
21312 SDValue RightSV0, RightSV1;
21313 SmallVector<int, 4> RightMask;
21314 if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) ||
21315 CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) {
21316 MergedRight = true;
21317 } else {
21318 RightMask.assign(SVN->getMask().begin(), SVN->getMask().end());
21319 RightSV0 = Op01, RightSV1 = Op11;
21320 }
21321
21322 if (MergedLeft || MergedRight) {
21323 SDLoc DL(N);
21324 SDValue LHS = DAG.getVectorShuffle(
21325 VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT),
21326 LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask);
21327 SDValue RHS = DAG.getVectorShuffle(
21328 VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT),
21329 RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask);
21330 return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS);
21331 }
21332 }
21333 }
21334 }
21335
21336 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
21337 return V;
21338
21339 return SDValue();
21340}
21341
21342SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
21343 SDValue InVal = N->getOperand(0);
21344 EVT VT = N->getValueType(0);
21345
21346 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
21347 // with a VECTOR_SHUFFLE and possible truncate.
21348 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
21349 VT.isFixedLengthVector() &&
21350 InVal->getOperand(0).getValueType().isFixedLengthVector()) {
21351 SDValue InVec = InVal->getOperand(0);
21352 SDValue EltNo = InVal->getOperand(1);
21353 auto InVecT = InVec.getValueType();
21354 if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
21355 SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
21356 int Elt = C0->getZExtValue();
21357 NewMask[0] = Elt;
21358 // If we have an implict truncate do truncate here as long as it's legal.
21359 // if it's not legal, this should
21360 if (VT.getScalarType() != InVal.getValueType() &&
21361 InVal.getValueType().isScalarInteger() &&
21362 isTypeLegal(VT.getScalarType())) {
21363 SDValue Val =
21364 DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
21365 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
21366 }
21367 if (VT.getScalarType() == InVecT.getScalarType() &&
21368 VT.getVectorNumElements() <= InVecT.getVectorNumElements()) {
21369 SDValue LegalShuffle =
21370 TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec,
21371 DAG.getUNDEF(InVecT), NewMask, DAG);
21372 if (LegalShuffle) {
21373 // If the initial vector is the correct size this shuffle is a
21374 // valid result.
21375 if (VT == InVecT)
21376 return LegalShuffle;
21377 // If not we must truncate the vector.
21378 if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
21379 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N));
21380 EVT SubVT = EVT::getVectorVT(*DAG.getContext(),
21381 InVecT.getVectorElementType(),
21382 VT.getVectorNumElements());
21383 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT,
21384 LegalShuffle, ZeroIdx);
21385 }
21386 }
21387 }
21388 }
21389 }
21390
21391 return SDValue();
21392}
21393
21394SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
21395 EVT VT = N->getValueType(0);
21396 SDValue N0 = N->getOperand(0);
21397 SDValue N1 = N->getOperand(1);
21398 SDValue N2 = N->getOperand(2);
21399 uint64_t InsIdx = N->getConstantOperandVal(2);
21400
21401 // If inserting an UNDEF, just return the original vector.
21402 if (N1.isUndef())
21403 return N0;
21404
21405 // If this is an insert of an extracted vector into an undef vector, we can
21406 // just use the input to the extract.
21407 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
21408 N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
21409 return N1.getOperand(0);
21410
21411 // If we are inserting a bitcast value into an undef, with the same
21412 // number of elements, just use the bitcast input of the extract.
21413 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
21414 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
21415 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
21416 N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
21417 N1.getOperand(0).getOperand(1) == N2 &&
21418 N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() ==
21419 VT.getVectorElementCount() &&
21420 N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
21421 VT.getSizeInBits()) {
21422 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
21423 }
21424
21425 // If both N1 and N2 are bitcast values on which insert_subvector
21426 // would makes sense, pull the bitcast through.
21427 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
21428 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
21429 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
21430 SDValue CN0 = N0.getOperand(0);
21431 SDValue CN1 = N1.getOperand(0);
21432 EVT CN0VT = CN0.getValueType();
21433 EVT CN1VT = CN1.getValueType();
21434 if (CN0VT.isVector() && CN1VT.isVector() &&
21435 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
21436 CN0VT.getVectorElementCount() == VT.getVectorElementCount()) {
21437 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
21438 CN0.getValueType(), CN0, CN1, N2);
21439 return DAG.getBitcast(VT, NewINSERT);
21440 }
21441 }
21442
21443 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
21444 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
21445 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
21446 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
21447 N0.getOperand(1).getValueType() == N1.getValueType() &&
21448 N0.getOperand(2) == N2)
21449 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
21450 N1, N2);
21451
21452 // Eliminate an intermediate insert into an undef vector:
21453 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
21454 // insert_subvector undef, X, N2
21455 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
21456 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
21457 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
21458 N1.getOperand(1), N2);
21459
21460 // Push subvector bitcasts to the output, adjusting the index as we go.
21461 // insert_subvector(bitcast(v), bitcast(s), c1)
21462 // -> bitcast(insert_subvector(v, s, c2))
21463 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
21464 N1.getOpcode() == ISD::BITCAST) {
21465 SDValue N0Src = peekThroughBitcasts(N0);
21466 SDValue N1Src = peekThroughBitcasts(N1);
21467 EVT N0SrcSVT = N0Src.getValueType().getScalarType();
21468 EVT N1SrcSVT = N1Src.getValueType().getScalarType();
21469 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
21470 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
21471 EVT NewVT;
21472 SDLoc DL(N);
21473 SDValue NewIdx;
21474 LLVMContext &Ctx = *DAG.getContext();
21475 ElementCount NumElts = VT.getVectorElementCount();
21476 unsigned EltSizeInBits = VT.getScalarSizeInBits();
21477 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
21478 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
21479 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
21480 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL);
21481 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
21482 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
21483 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) {
21484 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT,
21485 NumElts.divideCoefficientBy(Scale));
21486 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL);
21487 }
21488 }
21489 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
21490 SDValue Res = DAG.getBitcast(NewVT, N0Src);
21491 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
21492 return DAG.getBitcast(VT, Res);
21493 }
21494 }
21495 }
21496
21497 // Canonicalize insert_subvector dag nodes.
21498 // Example:
21499 // (insert_subvector (insert_subvector A, Idx0), Idx1)
21500 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
21501 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
21502 N1.getValueType() == N0.getOperand(1).getValueType()) {
21503 unsigned OtherIdx = N0.getConstantOperandVal(2);
21504 if (InsIdx < OtherIdx) {
21505 // Swap nodes.
21506 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
21507 N0.getOperand(0), N1, N2);
21508 AddToWorklist(NewOp.getNode());
21509 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
21510 VT, NewOp, N0.getOperand(1), N0.getOperand(2));
21511 }
21512 }
21513
21514 // If the input vector is a concatenation, and the insert replaces
21515 // one of the pieces, we can optimize into a single concat_vectors.
21516 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
21517 N0.getOperand(0).getValueType() == N1.getValueType() &&
21518 N0.getOperand(0).getValueType().isScalableVector() ==
21519 N1.getValueType().isScalableVector()) {
21520 unsigned Factor = N1.getValueType().getVectorMinNumElements();
21521 SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
21522 Ops[InsIdx / Factor] = N1;
21523 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
21524 }
21525
21526 // Simplify source operands based on insertion.
21527 if (SimplifyDemandedVectorElts(SDValue(N, 0)))
21528 return SDValue(N, 0);
21529
21530 return SDValue();
21531}
21532
21533SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
21534 SDValue N0 = N->getOperand(0);
21535
21536 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
21537 if (N0->getOpcode() == ISD::FP16_TO_FP)
21538 return N0->getOperand(0);
21539
21540 return SDValue();
21541}
21542
21543SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
21544 SDValue N0 = N->getOperand(0);
21545
21546 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
21547 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) {
21548 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
21549 if (AndConst && AndConst->getAPIntValue() == 0xffff) {
21550 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
21551 N0.getOperand(0));
21552 }
21553 }
21554
21555 return SDValue();
21556}
21557
21558SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
21559 SDValue N0 = N->getOperand(0);
21560 EVT VT = N0.getValueType();
21561 unsigned Opcode = N->getOpcode();
21562
21563 // VECREDUCE over 1-element vector is just an extract.
21564 if (VT.getVectorElementCount().isScalar()) {
21565 SDLoc dl(N);
21566 SDValue Res =
21567 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
21568 DAG.getVectorIdxConstant(0, dl));
21569 if (Res.getValueType() != N->getValueType(0))
21570 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
21571 return Res;
21572 }
21573
21574 // On an boolean vector an and/or reduction is the same as a umin/umax
21575 // reduction. Convert them if the latter is legal while the former isn't.
21576 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
21577 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
21578 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
21579 if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
21580 TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
21581 DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
21582 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
21583 }
21584
21585 return SDValue();
21586}
21587
21588/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
21589/// with the destination vector and a zero vector.
21590/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
21591/// vector_shuffle V, Zero, <0, 4, 2, 4>
21592SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
21593 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!")((N->getOpcode() == ISD::AND && "Unexpected opcode!"
) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::AND && \"Unexpected opcode!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21593, __PRETTY_FUNCTION__))
;
21594
21595 EVT VT = N->getValueType(0);
21596 SDValue LHS = N->getOperand(0);
21597 SDValue RHS = peekThroughBitcasts(N->getOperand(1));
21598 SDLoc DL(N);
21599
21600 // Make sure we're not running after operation legalization where it
21601 // may have custom lowered the vector shuffles.
21602 if (LegalOperations)
21603 return SDValue();
21604
21605 if (RHS.getOpcode() != ISD::BUILD_VECTOR)
21606 return SDValue();
21607
21608 EVT RVT = RHS.getValueType();
21609 unsigned NumElts = RHS.getNumOperands();
21610
21611 // Attempt to create a valid clear mask, splitting the mask into
21612 // sub elements and checking to see if each is
21613 // all zeros or all ones - suitable for shuffle masking.
21614 auto BuildClearMask = [&](int Split) {
21615 int NumSubElts = NumElts * Split;
21616 int NumSubBits = RVT.getScalarSizeInBits() / Split;
21617
21618 SmallVector<int, 8> Indices;
21619 for (int i = 0; i != NumSubElts; ++i) {
21620 int EltIdx = i / Split;
21621 int SubIdx = i % Split;
21622 SDValue Elt = RHS.getOperand(EltIdx);
21623 // X & undef --> 0 (not undef). So this lane must be converted to choose
21624 // from the zero constant vector (same as if the element had all 0-bits).
21625 if (Elt.isUndef()) {
21626 Indices.push_back(i + NumSubElts);
21627 continue;
21628 }
21629
21630 APInt Bits;
21631 if (isa<ConstantSDNode>(Elt))
21632 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
21633 else if (isa<ConstantFPSDNode>(Elt))
21634 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
21635 else
21636 return SDValue();
21637
21638 // Extract the sub element from the constant bit mask.
21639 if (DAG.getDataLayout().isBigEndian())
21640 Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits);
21641 else
21642 Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits);
21643
21644 if (Bits.isAllOnesValue())
21645 Indices.push_back(i);
21646 else if (Bits == 0)
21647 Indices.push_back(i + NumSubElts);
21648 else
21649 return SDValue();
21650 }
21651
21652 // Let's see if the target supports this vector_shuffle.
21653 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
21654 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
21655 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
21656 return SDValue();
21657
21658 SDValue Zero = DAG.getConstant(0, DL, ClearVT);
21659 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
21660 DAG.getBitcast(ClearVT, LHS),
21661 Zero, Indices));
21662 };
21663
21664 // Determine maximum split level (byte level masking).
21665 int MaxSplit = 1;
21666 if (RVT.getScalarSizeInBits() % 8 == 0)
21667 MaxSplit = RVT.getScalarSizeInBits() / 8;
21668
21669 for (int Split = 1; Split <= MaxSplit; ++Split)
21670 if (RVT.getScalarSizeInBits() % Split == 0)
21671 if (SDValue S = BuildClearMask(Split))
21672 return S;
21673
21674 return SDValue();
21675}
21676
21677/// If a vector binop is performed on splat values, it may be profitable to
21678/// extract, scalarize, and insert/splat.
21679static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) {
21680 SDValue N0 = N->getOperand(0);
21681 SDValue N1 = N->getOperand(1);
21682 unsigned Opcode = N->getOpcode();
21683 EVT VT = N->getValueType(0);
21684 EVT EltVT = VT.getVectorElementType();
21685 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21686
21687 // TODO: Remove/replace the extract cost check? If the elements are available
21688 // as scalars, then there may be no extract cost. Should we ask if
21689 // inserting a scalar back into a vector is cheap instead?
21690 int Index0, Index1;
21691 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
21692 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
21693 if (!Src0 || !Src1 || Index0 != Index1 ||
21694 Src0.getValueType().getVectorElementType() != EltVT ||
21695 Src1.getValueType().getVectorElementType() != EltVT ||
21696 !TLI.isExtractVecEltCheap(VT, Index0) ||
21697 !TLI.isOperationLegalOrCustom(Opcode, EltVT))
21698 return SDValue();
21699
21700 SDLoc DL(N);
21701 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
21702 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC);
21703 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC);
21704 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
21705
21706 // If all lanes but 1 are undefined, no need to splat the scalar result.
21707 // TODO: Keep track of undefs and use that info in the general case.
21708 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
21709 count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
21710 count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
21711 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
21712 // build_vec ..undef, (bo X, Y), undef...
21713 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
21714 Ops[Index0] = ScalarBO;
21715 return DAG.getBuildVector(VT, DL, Ops);
21716 }
21717
21718 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
21719 SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
21720 return DAG.getBuildVector(VT, DL, Ops);
21721}
21722
21723/// Visit a binary vector operation, like ADD.
21724SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
21725 assert(N->getValueType(0).isVector() &&((N->getValueType(0).isVector() && "SimplifyVBinOp only works on vectors!"
) ? static_cast<void> (0) : __assert_fail ("N->getValueType(0).isVector() && \"SimplifyVBinOp only works on vectors!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21726, __PRETTY_FUNCTION__))
21726 "SimplifyVBinOp only works on vectors!")((N->getValueType(0).isVector() && "SimplifyVBinOp only works on vectors!"
) ? static_cast<void> (0) : __assert_fail ("N->getValueType(0).isVector() && \"SimplifyVBinOp only works on vectors!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21726, __PRETTY_FUNCTION__))
;
21727
21728 SDValue LHS = N->getOperand(0);
21729 SDValue RHS = N->getOperand(1);
21730 SDValue Ops[] = {LHS, RHS};
21731 EVT VT = N->getValueType(0);
21732 unsigned Opcode = N->getOpcode();
21733 SDNodeFlags Flags = N->getFlags();
21734
21735 // See if we can constant fold the vector operation.
21736 if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
21737 Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
21738 return Fold;
21739
21740 // Move unary shuffles with identical masks after a vector binop:
21741 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
21742 // --> shuffle (VBinOp A, B), Undef, Mask
21743 // This does not require type legality checks because we are creating the
21744 // same types of operations that are in the original sequence. We do have to
21745 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
21746 // though. This code is adapted from the identical transform in instcombine.
21747 if (Opcode != ISD::UDIV && Opcode != ISD::SDIV &&
21748 Opcode != ISD::UREM && Opcode != ISD::SREM &&
21749 Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) {
21750 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
21751 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
21752 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
21753 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
21754 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
21755 SDLoc DL(N);
21756 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
21757 RHS.getOperand(0), Flags);
21758 SDValue UndefV = LHS.getOperand(1);
21759 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
21760 }
21761
21762 // Try to sink a splat shuffle after a binop with a uniform constant.
21763 // This is limited to cases where neither the shuffle nor the constant have
21764 // undefined elements because that could be poison-unsafe or inhibit
21765 // demanded elements analysis. It is further limited to not change a splat
21766 // of an inserted scalar because that may be optimized better by
21767 // load-folding or other target-specific behaviors.
21768 if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) &&
21769 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() &&
21770 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
21771 // binop (splat X), (splat C) --> splat (binop X, C)
21772 SDLoc DL(N);
21773 SDValue X = Shuf0->getOperand(0);
21774 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags);
21775 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
21776 Shuf0->getMask());
21777 }
21778 if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) &&
21779 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() &&
21780 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
21781 // binop (splat C), (splat X) --> splat (binop C, X)
21782 SDLoc DL(N);
21783 SDValue X = Shuf1->getOperand(0);
21784 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags);
21785 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
21786 Shuf1->getMask());
21787 }
21788 }
21789
21790 // The following pattern is likely to emerge with vector reduction ops. Moving
21791 // the binary operation ahead of insertion may allow using a narrower vector
21792 // instruction that has better performance than the wide version of the op:
21793 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
21794 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
21795 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
21796 LHS.getOperand(2) == RHS.getOperand(2) &&
21797 (LHS.hasOneUse() || RHS.hasOneUse())) {
21798 SDValue X = LHS.getOperand(1);
21799 SDValue Y = RHS.getOperand(1);
21800 SDValue Z = LHS.getOperand(2);
21801 EVT NarrowVT = X.getValueType();
21802 if (NarrowVT == Y.getValueType() &&
21803 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT,
21804 LegalOperations)) {
21805 // (binop undef, undef) may not return undef, so compute that result.
21806 SDLoc DL(N);
21807 SDValue VecC =
21808 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
21809 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
21810 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
21811 }
21812 }
21813
21814 // Make sure all but the first op are undef or constant.
21815 auto ConcatWithConstantOrUndef = [](SDValue Concat) {
21816 return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
21817 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) {
21818 return Op.isUndef() ||
21819 ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
21820 });
21821 };
21822
21823 // The following pattern is likely to emerge with vector reduction ops. Moving
21824 // the binary operation ahead of the concat may allow using a narrower vector
21825 // instruction that has better performance than the wide version of the op:
21826 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
21827 // concat (VBinOp X, Y), VecC
21828 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
21829 (LHS.hasOneUse() || RHS.hasOneUse())) {
21830 EVT NarrowVT = LHS.getOperand(0).getValueType();
21831 if (NarrowVT == RHS.getOperand(0).getValueType() &&
21832 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
21833 SDLoc DL(N);
21834 unsigned NumOperands = LHS.getNumOperands();
21835 SmallVector<SDValue, 4> ConcatOps;
21836 for (unsigned i = 0; i != NumOperands; ++i) {
21837 // This constant fold for operands 1 and up.
21838 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
21839 RHS.getOperand(i)));
21840 }
21841
21842 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
21843 }
21844 }
21845
21846 if (SDValue V = scalarizeBinOpOfSplats(N, DAG))
21847 return V;
21848
21849 return SDValue();
21850}
21851
21852SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
21853 SDValue N2) {
21854 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!")((N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"
) ? static_cast<void> (0) : __assert_fail ("N0.getOpcode() ==ISD::SETCC && \"First argument must be a SetCC node!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 21854, __PRETTY_FUNCTION__))
;
21855
21856 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
21857 cast<CondCodeSDNode>(N0.getOperand(2))->get());
21858
21859 // If we got a simplified select_cc node back from SimplifySelectCC, then
21860 // break it down into a new SETCC node, and a new SELECT node, and then return
21861 // the SELECT node, since we were called with a SELECT node.
21862 if (SCC.getNode()) {
21863 // Check to see if we got a select_cc back (to turn into setcc/select).
21864 // Otherwise, just return whatever node we got back, like fabs.
21865 if (SCC.getOpcode() == ISD::SELECT_CC) {
21866 const SDNodeFlags Flags = N0.getNode()->getFlags();
21867 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
21868 N0.getValueType(),
21869 SCC.getOperand(0), SCC.getOperand(1),
21870 SCC.getOperand(4), Flags);
21871 AddToWorklist(SETCC.getNode());
21872 SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
21873 SCC.getOperand(2), SCC.getOperand(3));
21874 SelectNode->setFlags(Flags);
21875 return SelectNode;
21876 }
21877
21878 return SCC;
21879 }
21880 return SDValue();
21881}
21882
21883/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
21884/// being selected between, see if we can simplify the select. Callers of this
21885/// should assume that TheSelect is deleted if this returns true. As such, they
21886/// should return the appropriate thing (e.g. the node) back to the top-level of
21887/// the DAG combiner loop to avoid it being looked at.
21888bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
21889 SDValue RHS) {
21890 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
21891 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
21892 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
21893 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
21894 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
21895 SDValue Sqrt = RHS;
21896 ISD::CondCode CC;
21897 SDValue CmpLHS;
21898 const ConstantFPSDNode *Zero = nullptr;
21899
21900 if (TheSelect->getOpcode() == ISD::SELECT_CC) {
21901 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
21902 CmpLHS = TheSelect->getOperand(0);
21903 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
21904 } else {
21905 // SELECT or VSELECT
21906 SDValue Cmp = TheSelect->getOperand(0);
21907 if (Cmp.getOpcode() == ISD::SETCC) {
21908 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
21909 CmpLHS = Cmp.getOperand(0);
21910 Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
21911 }
21912 }
21913 if (Zero && Zero->isZero() &&
21914 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
21915 CC == ISD::SETULT || CC == ISD::SETLT)) {
21916 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
21917 CombineTo(TheSelect, Sqrt);
21918 return true;
21919 }
21920 }
21921 }
21922 // Cannot simplify select with vector condition
21923 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
21924
21925 // If this is a select from two identical things, try to pull the operation
21926 // through the select.
21927 if (LHS.getOpcode() != RHS.getOpcode() ||
21928 !LHS.hasOneUse() || !RHS.hasOneUse())
21929 return false;
21930
21931 // If this is a load and the token chain is identical, replace the select
21932 // of two loads with a load through a select of the address to load from.
21933 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
21934 // constants have been dropped into the constant pool.
21935 if (LHS.getOpcode() == ISD::LOAD) {
21936 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
21937 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
21938
21939 // Token chains must be identical.
21940 if (LHS.getOperand(0) != RHS.getOperand(0) ||
21941 // Do not let this transformation reduce the number of volatile loads.
21942 // Be conservative for atomics for the moment
21943 // TODO: This does appear to be legal for unordered atomics (see D66309)
21944 !LLD->isSimple() || !RLD->isSimple() ||
21945 // FIXME: If either is a pre/post inc/dec load,
21946 // we'd need to split out the address adjustment.
21947 LLD->isIndexed() || RLD->isIndexed() ||
21948 // If this is an EXTLOAD, the VT's must match.
21949 LLD->getMemoryVT() != RLD->getMemoryVT() ||
21950 // If this is an EXTLOAD, the kind of extension must match.
21951 (LLD->getExtensionType() != RLD->getExtensionType() &&
21952 // The only exception is if one of the extensions is anyext.
21953 LLD->getExtensionType() != ISD::EXTLOAD &&
21954 RLD->getExtensionType() != ISD::EXTLOAD) ||
21955 // FIXME: this discards src value information. This is
21956 // over-conservative. It would be beneficial to be able to remember
21957 // both potential memory locations. Since we are discarding
21958 // src value info, don't do the transformation if the memory
21959 // locations are not in the default address space.
21960 LLD->getPointerInfo().getAddrSpace() != 0 ||
21961 RLD->getPointerInfo().getAddrSpace() != 0 ||
21962 // We can't produce a CMOV of a TargetFrameIndex since we won't
21963 // generate the address generation required.
21964 LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
21965 RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
21966 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
21967 LLD->getBasePtr().getValueType()))
21968 return false;
21969
21970 // The loads must not depend on one another.
21971 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
21972 return false;
21973
21974 // Check that the select condition doesn't reach either load. If so,
21975 // folding this will induce a cycle into the DAG. If not, this is safe to
21976 // xform, so create a select of the addresses.
21977
21978 SmallPtrSet<const SDNode *, 32> Visited;
21979 SmallVector<const SDNode *, 16> Worklist;
21980
21981 // Always fail if LLD and RLD are not independent. TheSelect is a
21982 // predecessor to all Nodes in question so we need not search past it.
21983
21984 Visited.insert(TheSelect);
21985 Worklist.push_back(LLD);
21986 Worklist.push_back(RLD);
21987
21988 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
21989 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
21990 return false;
21991
21992 SDValue Addr;
21993 if (TheSelect->getOpcode() == ISD::SELECT) {
21994 // We cannot do this optimization if any pair of {RLD, LLD} is a
21995 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
21996 // Loads, we only need to check if CondNode is a successor to one of the
21997 // loads. We can further avoid this if there's no use of their chain
21998 // value.
21999 SDNode *CondNode = TheSelect->getOperand(0).getNode();
22000 Worklist.push_back(CondNode);
22001
22002 if ((LLD->hasAnyUseOfValue(1) &&
22003 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
22004 (RLD->hasAnyUseOfValue(1) &&
22005 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
22006 return false;
22007
22008 Addr = DAG.getSelect(SDLoc(TheSelect),
22009 LLD->getBasePtr().getValueType(),
22010 TheSelect->getOperand(0), LLD->getBasePtr(),
22011 RLD->getBasePtr());
22012 } else { // Otherwise SELECT_CC
22013 // We cannot do this optimization if any pair of {RLD, LLD} is a
22014 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
22015 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
22016 // one of the loads. We can further avoid this if there's no use of their
22017 // chain value.
22018
22019 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
22020 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
22021 Worklist.push_back(CondLHS);
22022 Worklist.push_back(CondRHS);
22023
22024 if ((LLD->hasAnyUseOfValue(1) &&
22025 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
22026 (RLD->hasAnyUseOfValue(1) &&
22027 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
22028 return false;
22029
22030 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
22031 LLD->getBasePtr().getValueType(),
22032 TheSelect->getOperand(0),
22033 TheSelect->getOperand(1),
22034 LLD->getBasePtr(), RLD->getBasePtr(),
22035 TheSelect->getOperand(4));
22036 }
22037
22038 SDValue Load;
22039 // It is safe to replace the two loads if they have different alignments,
22040 // but the new load must be the minimum (most restrictive) alignment of the
22041 // inputs.
22042 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign());
22043 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
22044 if (!RLD->isInvariant())
22045 MMOFlags &= ~MachineMemOperand::MOInvariant;
22046 if (!RLD->isDereferenceable())
22047 MMOFlags &= ~MachineMemOperand::MODereferenceable;
22048 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
22049 // FIXME: Discards pointer and AA info.
22050 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
22051 LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
22052 MMOFlags);
22053 } else {
22054 // FIXME: Discards pointer and AA info.
22055 Load = DAG.getExtLoad(
22056 LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
22057 : LLD->getExtensionType(),
22058 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
22059 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
22060 }
22061
22062 // Users of the select now use the result of the load.
22063 CombineTo(TheSelect, Load);
22064
22065 // Users of the old loads now use the new load's chain. We know the
22066 // old-load value is dead now.
22067 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
22068 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
22069 return true;
22070 }
22071
22072 return false;
22073}
22074
22075/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
22076/// bitwise 'and'.
22077SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
22078 SDValue N1, SDValue N2, SDValue N3,
22079 ISD::CondCode CC) {
22080 // If this is a select where the false operand is zero and the compare is a
22081 // check of the sign bit, see if we can perform the "gzip trick":
22082 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
22083 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
22084 EVT XType = N0.getValueType();
22085 EVT AType = N2.getValueType();
22086 if (!isNullConstant(N3) || !XType.bitsGE(AType))
22087 return SDValue();
22088
22089 // If the comparison is testing for a positive value, we have to invert
22090 // the sign bit mask, so only do that transform if the target has a bitwise
22091 // 'and not' instruction (the invert is free).
22092 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
22093 // (X > -1) ? A : 0
22094 // (X > 0) ? X : 0 <-- This is canonical signed max.
22095 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
22096 return SDValue();
22097 } else if (CC == ISD::SETLT) {
22098 // (X < 0) ? A : 0
22099 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
22100 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
22101 return SDValue();
22102 } else {
22103 return SDValue();
22104 }
22105
22106 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
22107 // constant.
22108 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
22109 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
22110 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
22111 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
22112 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) {
22113 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
22114 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
22115 AddToWorklist(Shift.getNode());
22116
22117 if (XType.bitsGT(AType)) {
22118 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
22119 AddToWorklist(Shift.getNode());
22120 }
22121
22122 if (CC == ISD::SETGT)
22123 Shift = DAG.getNOT(DL, Shift, AType);
22124
22125 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
22126 }
22127 }
22128
22129 unsigned ShCt = XType.getSizeInBits() - 1;
22130 if (TLI.shouldAvoidTransformToShift(XType, ShCt))
22131 return SDValue();
22132
22133 SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
22134 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
22135 AddToWorklist(Shift.getNode());
22136
22137 if (XType.bitsGT(AType)) {
22138 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
22139 AddToWorklist(Shift.getNode());
22140 }
22141
22142 if (CC == ISD::SETGT)
22143 Shift = DAG.getNOT(DL, Shift, AType);
22144
22145 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
22146}
22147
22148// Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
22149SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) {
22150 SDValue N0 = N->getOperand(0);
22151 EVT VT = N->getValueType(0);
22152 bool IsFabs = N->getOpcode() == ISD::FABS;
22153 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);
22154
22155 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse())
22156 return SDValue();
22157
22158 SDValue Int = N0.getOperand(0);
22159 EVT IntVT = Int.getValueType();
22160
22161 // The operand to cast should be integer.
22162 if (!IntVT.isInteger() || IntVT.isVector())
22163 return SDValue();
22164
22165 // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
22166 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
22167 APInt SignMask;
22168 if (N0.getValueType().isVector()) {
22169 // For vector, create a sign mask (0x80...) or its inverse (for fabs,
22170 // 0x7f...) per element and splat it.
22171 SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
22172 if (IsFabs)
22173 SignMask = ~SignMask;
22174 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
22175 } else {
22176 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
22177 SignMask = APInt::getSignMask(IntVT.getSizeInBits());
22178 if (IsFabs)
22179 SignMask = ~SignMask;
22180 }
22181 SDLoc DL(N0);
22182 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int,
22183 DAG.getConstant(SignMask, DL, IntVT));
22184 AddToWorklist(Int.getNode());
22185 return DAG.getBitcast(VT, Int);
22186}
22187
22188/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
22189/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
22190/// in it. This may be a win when the constant is not otherwise available
22191/// because it replaces two constant pool loads with one.
22192SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
22193 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
22194 ISD::CondCode CC) {
22195 if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType()))
22196 return SDValue();
22197
22198 // If we are before legalize types, we want the other legalization to happen
22199 // first (for example, to avoid messing with soft float).
22200 auto *TV = dyn_cast<ConstantFPSDNode>(N2);
22201 auto *FV = dyn_cast<ConstantFPSDNode>(N3);
22202 EVT VT = N2.getValueType();
22203 if (!TV || !FV || !TLI.isTypeLegal(VT))
22204 return SDValue();
22205
22206 // If a constant can be materialized without loads, this does not make sense.
22207 if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
22208 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
22209 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
22210 return SDValue();
22211
22212 // If both constants have multiple uses, then we won't need to do an extra
22213 // load. The values are likely around in registers for other users.
22214 if (!TV->hasOneUse() && !FV->hasOneUse())
22215 return SDValue();
22216
22217 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
22218 const_cast<ConstantFP*>(TV->getConstantFPValue()) };
22219 Type *FPTy = Elts[0]->getType();
22220 const DataLayout &TD = DAG.getDataLayout();
22221
22222 // Create a ConstantArray of the two constants.
22223 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
22224 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
22225 TD.getPrefTypeAlign(FPTy));
22226 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
22227
22228 // Get offsets to the 0 and 1 elements of the array, so we can select between
22229 // them.
22230 SDValue Zero = DAG.getIntPtrConstant(0, DL);
22231 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
22232 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
22233 SDValue Cond =
22234 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
22235 AddToWorklist(Cond.getNode());
22236 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
22237 AddToWorklist(CstOffset.getNode());
22238 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
22239 AddToWorklist(CPIdx.getNode());
22240 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
22241 MachinePointerInfo::getConstantPool(
22242 DAG.getMachineFunction()), Alignment);
22243}
22244
22245/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
22246/// where 'cond' is the comparison specified by CC.
22247SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
22248 SDValue N2, SDValue N3, ISD::CondCode CC,
22249 bool NotExtCompare) {
22250 // (x ? y : y) -> y.
22251 if (N2 == N3) return N2;
22252
22253 EVT CmpOpVT = N0.getValueType();
22254 EVT CmpResVT = getSetCCResultType(CmpOpVT);
22255 EVT VT = N2.getValueType();
22256 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
22257 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
22258 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
22259
22260 // Determine if the condition we're dealing with is constant.
22261 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
22262 AddToWorklist(SCC.getNode());
22263 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
22264 // fold select_cc true, x, y -> x
22265 // fold select_cc false, x, y -> y
22266 return !(SCCC->isNullValue()) ? N2 : N3;
22267 }
22268 }
22269
22270 if (SDValue V =
22271 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
22272 return V;
22273
22274 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
22275 return V;
22276
22277 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
22278 // where y is has a single bit set.
22279 // A plaintext description would be, we can turn the SELECT_CC into an AND
22280 // when the condition can be materialized as an all-ones register. Any
22281 // single bit-test can be materialized as an all-ones register with
22282 // shift-left and shift-right-arith.
22283 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
22284 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
22285 SDValue AndLHS = N0->getOperand(0);
22286 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
22287 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
22288 // Shift the tested bit over the sign bit.
22289 const APInt &AndMask = ConstAndRHS->getAPIntValue();
22290 unsigned ShCt = AndMask.getBitWidth() - 1;
22291 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
22292 SDValue ShlAmt =
22293 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
22294 getShiftAmountTy(AndLHS.getValueType()));
22295 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
22296
22297 // Now arithmetic right shift it all the way over, so the result is
22298 // either all-ones, or zero.
22299 SDValue ShrAmt =
22300 DAG.getConstant(ShCt, SDLoc(Shl),
22301 getShiftAmountTy(Shl.getValueType()));
22302 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
22303
22304 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
22305 }
22306 }
22307 }
22308
22309 // fold select C, 16, 0 -> shl C, 4
22310 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
22311 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
22312
22313 if ((Fold || Swap) &&
22314 TLI.getBooleanContents(CmpOpVT) ==
22315 TargetLowering::ZeroOrOneBooleanContent &&
22316 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
22317
22318 if (Swap) {
22319 CC = ISD::getSetCCInverse(CC, CmpOpVT);
22320 std::swap(N2C, N3C);
22321 }
22322
22323 // If the caller doesn't want us to simplify this into a zext of a compare,
22324 // don't do it.
22325 if (NotExtCompare && N2C->isOne())
22326 return SDValue();
22327
22328 SDValue Temp, SCC;
22329 // zext (setcc n0, n1)
22330 if (LegalTypes) {
22331 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
22332 if (VT.bitsLT(SCC.getValueType()))
22333 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
22334 else
22335 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
22336 } else {
22337 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
22338 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
22339 }
22340
22341 AddToWorklist(SCC.getNode());
22342 AddToWorklist(Temp.getNode());
22343
22344 if (N2C->isOne())
22345 return Temp;
22346
22347 unsigned ShCt = N2C->getAPIntValue().logBase2();
22348 if (TLI.shouldAvoidTransformToShift(VT, ShCt))
22349 return SDValue();
22350
22351 // shl setcc result by log2 n2c
22352 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
22353 DAG.getConstant(ShCt, SDLoc(Temp),
22354 getShiftAmountTy(Temp.getValueType())));
22355 }
22356
22357 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
22358 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
22359 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
22360 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
22361 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
22362 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
22363 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
22364 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
22365 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
22366 SDValue ValueOnZero = N2;
22367 SDValue Count = N3;
22368 // If the condition is NE instead of E, swap the operands.
22369 if (CC == ISD::SETNE)
22370 std::swap(ValueOnZero, Count);
22371 // Check if the value on zero is a constant equal to the bits in the type.
22372 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
22373 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
22374 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
22375 // legal, combine to just cttz.
22376 if ((Count.getOpcode() == ISD::CTTZ ||
22377 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
22378 N0 == Count.getOperand(0) &&
22379 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
22380 return DAG.getNode(ISD::CTTZ, DL, VT, N0);
22381 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
22382 // legal, combine to just ctlz.
22383 if ((Count.getOpcode() == ISD::CTLZ ||
22384 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
22385 N0 == Count.getOperand(0) &&
22386 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
22387 return DAG.getNode(ISD::CTLZ, DL, VT, N0);
22388 }
22389 }
22390 }
22391
22392 return SDValue();
22393}
22394
22395/// This is a stub for TargetLowering::SimplifySetCC.
22396SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
22397 ISD::CondCode Cond, const SDLoc &DL,
22398 bool foldBooleans) {
22399 TargetLowering::DAGCombinerInfo
22400 DagCombineInfo(DAG, Level, false, this);
22401 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
22402}
22403
22404/// Given an ISD::SDIV node expressing a divide by constant, return
22405/// a DAG expression to select that will generate the same value by multiplying
22406/// by a magic number.
22407/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
22408SDValue DAGCombiner::BuildSDIV(SDNode *N) {
22409 // when optimising for minimum size, we don't want to expand a div to a mul
22410 // and a shift.
22411 if (DAG.getMachineFunction().getFunction().hasMinSize())
22412 return SDValue();
22413
22414 SmallVector<SDNode *, 8> Built;
22415 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
22416 for (SDNode *N : Built)
22417 AddToWorklist(N);
22418 return S;
22419 }
22420
22421 return SDValue();
22422}
22423
22424/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
22425/// DAG expression that will generate the same value by right shifting.
22426SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
22427 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
22428 if (!C)
22429 return SDValue();
22430
22431 // Avoid division by zero.
22432 if (C->isNullValue())
22433 return SDValue();
22434
22435 SmallVector<SDNode *, 8> Built;
22436 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
22437 for (SDNode *N : Built)
22438 AddToWorklist(N);
22439 return S;
22440 }
22441
22442 return SDValue();
22443}
22444
22445/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
22446/// expression that will generate the same value by multiplying by a magic
22447/// number.
22448/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
22449SDValue DAGCombiner::BuildUDIV(SDNode *N) {
22450 // when optimising for minimum size, we don't want to expand a div to a mul
22451 // and a shift.
22452 if (DAG.getMachineFunction().getFunction().hasMinSize())
22453 return SDValue();
22454
22455 SmallVector<SDNode *, 8> Built;
22456 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
22457 for (SDNode *N : Built)
22458 AddToWorklist(N);
22459 return S;
22460 }
22461
22462 return SDValue();
22463}
22464
22465/// Determines the LogBase2 value for a non-null input value using the
22466/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
22467SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
22468 EVT VT = V.getValueType();
22469 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
22470 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
22471 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
22472 return LogBase2;
22473}
22474
22475/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22476/// For the reciprocal, we need to find the zero of the function:
22477/// F(X) = A X - 1 [which has a zero at X = 1/A]
22478/// =>
22479/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
22480/// does not require additional intermediate precision]
22481/// For the last iteration, put numerator N into it to gain more precision:
22482/// Result = N X_i + X_i (N - N A X_i)
22483SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
22484 SDNodeFlags Flags) {
22485 if (LegalDAG)
22486 return SDValue();
22487
22488 // TODO: Handle half and/or extended types?
22489 EVT VT = Op.getValueType();
22490 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
22491 return SDValue();
22492
22493 // If estimates are explicitly disabled for this function, we're done.
22494 MachineFunction &MF = DAG.getMachineFunction();
22495 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
22496 if (Enabled == TLI.ReciprocalEstimate::Disabled)
22497 return SDValue();
22498
22499 // Estimates may be explicitly enabled for this type with a custom number of
22500 // refinement steps.
22501 int Iterations = TLI.getDivRefinementSteps(VT, MF);
22502 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
22503 AddToWorklist(Est.getNode());
22504
22505 SDLoc DL(Op);
22506 if (Iterations) {
22507 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
22508
22509 // Newton iterations: Est = Est + Est (N - Arg * Est)
22510 // If this is the last iteration, also multiply by the numerator.
22511 for (int i = 0; i < Iterations; ++i) {
22512 SDValue MulEst = Est;
22513
22514 if (i == Iterations - 1) {
22515 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
22516 AddToWorklist(MulEst.getNode());
22517 }
22518
22519 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
22520 AddToWorklist(NewEst.getNode());
22521
22522 NewEst = DAG.getNode(ISD::FSUB, DL, VT,
22523 (i == Iterations - 1 ? N : FPOne), NewEst, Flags);
22524 AddToWorklist(NewEst.getNode());
22525
22526 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
22527 AddToWorklist(NewEst.getNode());
22528
22529 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
22530 AddToWorklist(Est.getNode());
22531 }
22532 } else {
22533 // If no iterations are available, multiply with N.
22534 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
22535 AddToWorklist(Est.getNode());
22536 }
22537
22538 return Est;
22539 }
22540
22541 return SDValue();
22542}
22543
22544/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22545/// For the reciprocal sqrt, we need to find the zero of the function:
22546/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
22547/// =>
22548/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
22549/// As a result, we precompute A/2 prior to the iteration loop.
22550SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
22551 unsigned Iterations,
22552 SDNodeFlags Flags, bool Reciprocal) {
22553 EVT VT = Arg.getValueType();
22554 SDLoc DL(Arg);
22555 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
22556
22557 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
22558 // this entire sequence requires only one FP constant.
22559 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
22560 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
22561
22562 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
22563 for (unsigned i = 0; i < Iterations; ++i) {
22564 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
22565 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
22566 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
22567 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
22568 }
22569
22570 // If non-reciprocal square root is requested, multiply the result by Arg.
22571 if (!Reciprocal)
22572 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
22573
22574 return Est;
22575}
22576
22577/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22578/// For the reciprocal sqrt, we need to find the zero of the function:
22579/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
22580/// =>
22581/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
22582SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
22583 unsigned Iterations,
22584 SDNodeFlags Flags, bool Reciprocal) {
22585 EVT VT = Arg.getValueType();
22586 SDLoc DL(Arg);
22587 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
22588 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
22589
22590 // This routine must enter the loop below to work correctly
22591 // when (Reciprocal == false).
22592 assert(Iterations > 0)((Iterations > 0) ? static_cast<void> (0) : __assert_fail
("Iterations > 0", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp"
, 22592, __PRETTY_FUNCTION__))
;
22593
22594 // Newton iterations for reciprocal square root:
22595 // E = (E * -0.5) * ((A * E) * E + -3.0)
22596 for (unsigned i = 0; i < Iterations; ++i) {
22597 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
22598 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
22599 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
22600
22601 // When calculating a square root at the last iteration build:
22602 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
22603 // (notice a common subexpression)
22604 SDValue LHS;
22605 if (Reciprocal || (i + 1) < Iterations) {
22606 // RSQRT: LHS = (E * -0.5)
22607 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
22608 } else {
22609 // SQRT: LHS = (A * E) * -0.5
22610 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
22611 }
22612
22613 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
22614 }
22615
22616 return Est;
22617}
22618
22619/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
22620/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
22621/// Op can be zero.
22622SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
22623 bool Reciprocal) {
22624 if (LegalDAG)
22625 return SDValue();
22626
22627 // TODO: Handle half and/or extended types?
22628 EVT VT = Op.getValueType();
22629 if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
22630 return SDValue();
22631
22632 // If estimates are explicitly disabled for this function, we're done.
22633 MachineFunction &MF = DAG.getMachineFunction();
22634 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
22635 if (Enabled == TLI.ReciprocalEstimate::Disabled)
22636 return SDValue();
22637
22638 // Estimates may be explicitly enabled for this type with a custom number of
22639 // refinement steps.
22640 int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
22641
22642 bool UseOneConstNR = false;
22643 if (SDValue Est =
22644 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
22645 Reciprocal)) {
22646 AddToWorklist(Est.getNode());
22647
22648 if (Iterations)
22649 Est = UseOneConstNR
22650 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
22651 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
22652 if (!Reciprocal) {
22653 SDLoc DL(Op);
22654 // Try the target specific test first.
22655 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT));
22656
22657 // The estimate is now completely wrong if the input was exactly 0.0 or
22658 // possibly a denormal. Force the answer to 0.0 or value provided by
22659 // target for those cases.
22660 Est = DAG.getNode(
22661 Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
22662 Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est);
22663 }
22664 return Est;
22665 }
22666
22667 return SDValue();
22668}
22669
22670SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
22671 return buildSqrtEstimateImpl(Op, Flags, true);
22672}
22673
22674SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
22675 return buildSqrtEstimateImpl(Op, Flags, false);
22676}
22677
22678/// Return true if there is any possibility that the two addresses overlap.
22679bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const {
22680
22681 struct MemUseCharacteristics {
22682 bool IsVolatile;
22683 bool IsAtomic;
22684 SDValue BasePtr;
22685 int64_t Offset;
22686 Optional<int64_t> NumBytes;
22687 MachineMemOperand *MMO;
22688 };
22689
22690 auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
22691 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
22692 int64_t Offset = 0;
22693 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
22694 Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
22695 ? C->getSExtValue()
22696 : (LSN->getAddressingMode() == ISD::PRE_DEC)
22697 ? -1 * C->getSExtValue()
22698 : 0;
22699 uint64_t Size =
22700 MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize());
22701 return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(),
22702 Offset /*base offset*/,
22703 Optional<int64_t>(Size),
22704 LSN->getMemOperand()};
22705 }
22706 if (const auto *LN = cast<LifetimeSDNode>(N))
22707 return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1),
22708 (LN->hasOffset()) ? LN->getOffset() : 0,
22709 (LN->hasOffset()) ? Optional<int64_t>(LN->getSize())
22710 : Optional<int64_t>(),
22711 (MachineMemOperand *)nullptr};
22712 // Default.
22713 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
22714 (int64_t)0 /*offset*/,
22715 Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr};
22716 };
22717
22718 MemUseCharacteristics MUC0 = getCharacteristics(Op0),
22719 MUC1 = getCharacteristics(Op1);
22720
22721 // If they are to the same address, then they must be aliases.
22722 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
22723 MUC0.Offset == MUC1.Offset)
22724 return true;
22725
22726 // If they are both volatile then they cannot be reordered.
22727 if (MUC0.IsVolatile && MUC1.IsVolatile)
22728 return true;
22729
22730 // Be conservative about atomics for the moment
22731 // TODO: This is way overconservative for unordered atomics (see D66309)
22732 if (MUC0.IsAtomic && MUC1.IsAtomic)
22733 return true;
22734
22735 if (MUC0.MMO && MUC1.MMO) {
22736 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
22737 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
22738 return false;
22739 }
22740
22741 // Try to prove that there is aliasing, or that there is no aliasing. Either
22742 // way, we can return now. If nothing can be proved, proceed with more tests.
22743 bool IsAlias;
22744 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
22745 DAG, IsAlias))
22746 return IsAlias;
22747
22748 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
22749 // either are not known.
22750 if (!MUC0.MMO || !MUC1.MMO)
22751 return true;
22752
22753 // If one operation reads from invariant memory, and the other may store, they
22754 // cannot alias. These should really be checking the equivalent of mayWrite,
22755 // but it only matters for memory nodes other than load /store.
22756 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
22757 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
22758 return false;
22759
22760 // If we know required SrcValue1 and SrcValue2 have relatively large
22761 // alignment compared to the size and offset of the access, we may be able
22762 // to prove they do not alias. This check is conservative for now to catch
22763 // cases created by splitting vector types, it only works when the offsets are
22764 // multiples of the size of the data.
22765 int64_t SrcValOffset0 = MUC0.MMO->getOffset();
22766 int64_t SrcValOffset1 = MUC1.MMO->getOffset();
22767 Align OrigAlignment0 = MUC0.MMO->getBaseAlign();
22768 Align OrigAlignment1 = MUC1.MMO->getBaseAlign();
22769 auto &Size0 = MUC0.NumBytes;
22770 auto &Size1 = MUC1.NumBytes;
22771 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
22772 Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 &&
22773 OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 &&
22774 SrcValOffset1 % *Size1 == 0) {
22775 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value();
22776 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value();
22777
22778 // There is no overlap between these relatively aligned accesses of
22779 // similar size. Return no alias.
22780 if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0)
22781 return false;
22782 }
22783
22784 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
22785 ? CombinerGlobalAA
22786 : DAG.getSubtarget().useAA();
22787#ifndef NDEBUG
22788 if (CombinerAAOnlyFunc.getNumOccurrences() &&
22789 CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
22790 UseAA = false;
22791#endif
22792
22793 if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
22794 Size0.hasValue() && Size1.hasValue()) {
22795 // Use alias analysis information.
22796 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
22797 int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset;
22798 int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset;
22799 if (AA->isNoAlias(
22800 MemoryLocation(MUC0.MMO->getValue(), Overlap0,
22801 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
22802 MemoryLocation(MUC1.MMO->getValue(), Overlap1,
22803 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())))
22804 return false;
22805 }
22806
22807 // Otherwise we have to assume they alias.
22808 return true;
22809}
22810
22811/// Walk up chain skipping non-aliasing memory nodes,
22812/// looking for aliasing nodes and adding them to the Aliases vector.
22813void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
22814 SmallVectorImpl<SDValue> &Aliases) {
22815 SmallVector<SDValue, 8> Chains; // List of chains to visit.
22816 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
22817
22818 // Get alias information for node.
22819 // TODO: relax aliasing for unordered atomics (see D66309)
22820 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
22821
22822 // Starting off.
22823 Chains.push_back(OriginalChain);
22824 unsigned Depth = 0;
22825
22826 // Attempt to improve chain by a single step
22827 std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool {
22828 switch (C.getOpcode()) {
22829 case ISD::EntryToken:
22830 // No need to mark EntryToken.
22831 C = SDValue();
22832 return true;
22833 case ISD::LOAD:
22834 case ISD::STORE: {
22835 // Get alias information for C.
22836 // TODO: Relax aliasing for unordered atomics (see D66309)
22837 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
22838 cast<LSBaseSDNode>(C.getNode())->isSimple();
22839 if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) {
22840 // Look further up the chain.
22841 C = C.getOperand(0);
22842 return true;
22843 }
22844 // Alias, so stop here.
22845 return false;
22846 }
22847
22848 case ISD::CopyFromReg:
22849 // Always forward past past CopyFromReg.
22850 C = C.getOperand(0);
22851 return true;
22852
22853 case ISD::LIFETIME_START:
22854 case ISD::LIFETIME_END: {
22855 // We can forward past any lifetime start/end that can be proven not to
22856 // alias the memory access.
22857 if (!isAlias(N, C.getNode())) {
22858 // Look further up the chain.
22859 C = C.getOperand(0);
22860 return true;
22861 }
22862 return false;
22863 }
22864 default:
22865 return false;
22866 }
22867 };
22868
22869 // Look at each chain and determine if it is an alias. If so, add it to the
22870 // aliases list. If not, then continue up the chain looking for the next
22871 // candidate.
22872 while (!Chains.empty()) {
22873 SDValue Chain = Chains.pop_back_val();
22874
22875 // Don't bother if we've seen Chain before.
22876 if (!Visited.insert(Chain.getNode()).second)
22877 continue;
22878
22879 // For TokenFactor nodes, look at each operand and only continue up the
22880 // chain until we reach the depth limit.
22881 //
22882 // FIXME: The depth check could be made to return the last non-aliasing
22883 // chain we found before we hit a tokenfactor rather than the original
22884 // chain.
22885 if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
22886 Aliases.clear();
22887 Aliases.push_back(OriginalChain);
22888 return;
22889 }
22890
22891 if (Chain.getOpcode() == ISD::TokenFactor) {
22892 // We have to check each of the operands of the token factor for "small"
22893 // token factors, so we queue them up. Adding the operands to the queue
22894 // (stack) in reverse order maintains the original order and increases the
22895 // likelihood that getNode will find a matching token factor (CSE.)
22896 if (Chain.getNumOperands() > 16) {
22897 Aliases.push_back(Chain);
22898 continue;
22899 }
22900 for (unsigned n = Chain.getNumOperands(); n;)
22901 Chains.push_back(Chain.getOperand(--n));
22902 ++Depth;
22903 continue;
22904 }
22905 // Everything else
22906 if (ImproveChain(Chain)) {
22907 // Updated Chain Found, Consider new chain if one exists.
22908 if (Chain.getNode())
22909 Chains.push_back(Chain);
22910 ++Depth;
22911 continue;
22912 }
22913 // No Improved Chain Possible, treat as Alias.
22914 Aliases.push_back(Chain);
22915 }
22916}
22917
22918/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
22919/// (aliasing node.)
22920SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
22921 if (OptLevel == CodeGenOpt::None)
22922 return OldChain;
22923
22924 // Ops for replacing token factor.
22925 SmallVector<SDValue, 8> Aliases;
22926
22927 // Accumulate all the aliases to this node.
22928 GatherAllAliases(N, OldChain, Aliases);
22929
22930 // If no operands then chain to entry token.
22931 if (Aliases.size() == 0)
22932 return DAG.getEntryNode();
22933
22934 // If a single operand then chain to it. We don't need to revisit it.
22935 if (Aliases.size() == 1)
22936 return Aliases[0];
22937
22938 // Construct a custom tailored token factor.
22939 return DAG.getTokenFactor(SDLoc(N), Aliases);
22940}
22941
22942namespace {
22943// TODO: Replace with with std::monostate when we move to C++17.
22944struct UnitT { } Unit;
22945bool operator==(const UnitT &, const UnitT &) { return true; }
22946bool operator!=(const UnitT &, const UnitT &) { return false; }
22947} // namespace
22948
22949// This function tries to collect a bunch of potentially interesting
22950// nodes to improve the chains of, all at once. This might seem
22951// redundant, as this function gets called when visiting every store
22952// node, so why not let the work be done on each store as it's visited?
22953//
22954// I believe this is mainly important because mergeConsecutiveStores
22955// is unable to deal with merging stores of different sizes, so unless
22956// we improve the chains of all the potential candidates up-front
22957// before running mergeConsecutiveStores, it might only see some of
22958// the nodes that will eventually be candidates, and then not be able
22959// to go from a partially-merged state to the desired final
22960// fully-merged state.
22961
22962bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
22963 SmallVector<StoreSDNode *, 8> ChainedStores;
22964 StoreSDNode *STChain = St;
22965 // Intervals records which offsets from BaseIndex have been covered. In
22966 // the common case, every store writes to the immediately previous address
22967 // space and thus merged with the previous interval at insertion time.
22968
22969 using IMap =
22970 llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
22971 IMap::Allocator A;
22972 IMap Intervals(A);
22973
22974 // This holds the base pointer, index, and the offset in bytes from the base
22975 // pointer.
22976 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
22977
22978 // We must have a base and an offset.
22979 if (!BasePtr.getBase().getNode())
22980 return false;
22981
22982 // Do not handle stores to undef base pointers.
22983 if (BasePtr.getBase().isUndef())
22984 return false;
22985
22986 // BaseIndexOffset assumes that offsets are fixed-size, which
22987 // is not valid for scalable vectors where the offsets are
22988 // scaled by `vscale`, so bail out early.
22989 if (St->getMemoryVT().isScalableVector())
22990 return false;
22991
22992 // Add ST's interval.
22993 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
22994
22995 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
22996 // If the chain has more than one use, then we can't reorder the mem ops.
22997 if (!SDValue(Chain, 0)->hasOneUse())
22998 break;
22999 // TODO: Relax for unordered atomics (see D66309)
23000 if (!Chain->isSimple() || Chain->isIndexed())
23001 break;
23002
23003 // Find the base pointer and offset for this memory node.
23004 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
23005 // Check that the base pointer is the same as the original one.
23006 int64_t Offset;
23007 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
23008 break;
23009 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
23010 // Make sure we don't overlap with other intervals by checking the ones to
23011 // the left or right before inserting.
23012 auto I = Intervals.find(Offset);
23013 // If there's a next interval, we should end before it.
23014 if (I != Intervals.end() && I.start() < (Offset + Length))
23015 break;
23016 // If there's a previous interval, we should start after it.
23017 if (I != Intervals.begin() && (--I).stop() <= Offset)
23018 break;
23019 Intervals.insert(Offset, Offset + Length, Unit);
23020
23021 ChainedStores.push_back(Chain);
23022 STChain = Chain;
23023 }
23024
23025 // If we didn't find a chained store, exit.
23026 if (ChainedStores.size() == 0)
23027 return false;
23028
23029 // Improve all chained stores (St and ChainedStores members) starting from
23030 // where the store chain ended and return single TokenFactor.
23031 SDValue NewChain = STChain->getChain();
23032 SmallVector<SDValue, 8> TFOps;
23033 for (unsigned I = ChainedStores.size(); I;) {
23034 StoreSDNode *S = ChainedStores[--I];
23035 SDValue BetterChain = FindBetterChain(S, NewChain);
23036 S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
23037 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
23038 TFOps.push_back(SDValue(S, 0));
23039 ChainedStores[I] = S;
23040 }
23041
23042 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
23043 SDValue BetterChain = FindBetterChain(St, NewChain);
23044 SDValue NewST;
23045 if (St->isTruncatingStore())
23046 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
23047 St->getBasePtr(), St->getMemoryVT(),
23048 St->getMemOperand());
23049 else
23050 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
23051 St->getBasePtr(), St->getMemOperand());
23052
23053 TFOps.push_back(NewST);
23054
23055 // If we improved every element of TFOps, then we've lost the dependence on
23056 // NewChain to successors of St and we need to add it back to TFOps. Do so at
23057 // the beginning to keep relative order consistent with FindBetterChains.
23058 auto hasImprovedChain = [&](SDValue ST) -> bool {
23059 return ST->getOperand(0) != NewChain;
23060 };
23061 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
23062 if (AddNewChain)
23063 TFOps.insert(TFOps.begin(), NewChain);
23064
23065 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
23066 CombineTo(St, TF);
23067
23068 // Add TF and its operands to the worklist.
23069 AddToWorklist(TF.getNode());
23070 for (const SDValue &Op : TF->ops())
23071 AddToWorklist(Op.getNode());
23072 AddToWorklist(STChain);
23073 return true;
23074}
23075
23076bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
23077 if (OptLevel == CodeGenOpt::None)
23078 return false;
23079
23080 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
23081
23082 // We must have a base and an offset.
23083 if (!BasePtr.getBase().getNode())
23084 return false;
23085
23086 // Do not handle stores to undef base pointers.
23087 if (BasePtr.getBase().isUndef())
23088 return false;
23089
23090 // Directly improve a chain of disjoint stores starting at St.
23091 if (parallelizeChainedStores(St))
23092 return true;
23093
23094 // Improve St's Chain..
23095 SDValue BetterChain = FindBetterChain(St, St->getChain());
23096 if (St->getChain() != BetterChain) {
23097 replaceStoreChain(St, BetterChain);
23098 return true;
23099 }
23100 return false;
23101}
23102
23103/// This is the entry point for the file.
23104void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
23105 CodeGenOpt::Level OptLevel) {
23106 /// This is the main entry point to this class.
23107 DAGCombiner(*this, AA, OptLevel).Run(Level);
23108}

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h

1//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/Register.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugLoc.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Metadata.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/Support/AlignOf.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Support/TypeSize.h"
47#include <algorithm>
48#include <cassert>
49#include <climits>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <iterator>
54#include <string>
55#include <tuple>
56
57namespace llvm {
58
59class APInt;
60class Constant;
61template <typename T> struct DenseMapInfo;
62class GlobalValue;
63class MachineBasicBlock;
64class MachineConstantPoolValue;
65class MCSymbol;
66class raw_ostream;
67class SDNode;
68class SelectionDAG;
69class Type;
70class Value;
71
72void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73 bool force = false);
74
75/// This represents a list of ValueType's that has been intern'd by
76/// a SelectionDAG. Instances of this simple value class are returned by
77/// SelectionDAG::getVTList(...).
78///
79struct SDVTList {
80 const EVT *VTs;
81 unsigned int NumVTs;
82};
83
84namespace ISD {
85
86 /// Node predicates
87
88/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89/// same constant or undefined, return true and return the constant value in
90/// \p SplatValue.
91bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92
93/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95/// true, it only checks BUILD_VECTOR.
96bool isConstantSplatVectorAllOnes(const SDNode *N,
97 bool BuildVectorOnly = false);
98
99/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101/// only checks BUILD_VECTOR.
102bool isConstantSplatVectorAllZeros(const SDNode *N,
103 bool BuildVectorOnly = false);
104
105/// Return true if the specified node is a BUILD_VECTOR where all of the
106/// elements are ~0 or undef.
107bool isBuildVectorAllOnes(const SDNode *N);
108
109/// Return true if the specified node is a BUILD_VECTOR where all of the
110/// elements are 0 or undef.
111bool isBuildVectorAllZeros(const SDNode *N);
112
113/// Return true if the specified node is a BUILD_VECTOR node of all
114/// ConstantSDNode or undef.
115bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116
117/// Return true if the specified node is a BUILD_VECTOR node of all
118/// ConstantFPSDNode or undef.
119bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120
121/// Return true if the node has at least one operand and all operands of the
122/// specified node are ISD::UNDEF.
123bool allOperandsUndef(const SDNode *N);
124
125} // end namespace ISD
126
127//===----------------------------------------------------------------------===//
128/// Unlike LLVM values, Selection DAG nodes may return multiple
129/// values as the result of a computation. Many nodes return multiple values,
130/// from loads (which define a token and a return value) to ADDC (which returns
131/// a result and a carry value), to calls (which may return an arbitrary number
132/// of values).
133///
134/// As such, each use of a SelectionDAG computation must indicate the node that
135/// computes it as well as which return value to use from that node. This pair
136/// of information is represented with the SDValue value type.
137///
138class SDValue {
139 friend struct DenseMapInfo<SDValue>;
140
141 SDNode *Node = nullptr; // The node defining the value we are using.
142 unsigned ResNo = 0; // Which return value of the node we are using.
143
144public:
145 SDValue() = default;
146 SDValue(SDNode *node, unsigned resno);
147
148 /// get the index which selects a specific result in the SDNode
149 unsigned getResNo() const { return ResNo; }
150
151 /// get the SDNode which holds the desired result
152 SDNode *getNode() const { return Node; }
153
154 /// set the SDNode
155 void setNode(SDNode *N) { Node = N; }
156
157 inline SDNode *operator->() const { return Node; }
158
159 bool operator==(const SDValue &O) const {
160 return Node == O.Node && ResNo == O.ResNo;
161 }
162 bool operator!=(const SDValue &O) const {
163 return !operator==(O);
164 }
165 bool operator<(const SDValue &O) const {
166 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
167 }
168 explicit operator bool() const {
169 return Node != nullptr;
170 }
171
172 SDValue getValue(unsigned R) const {
173 return SDValue(Node, R);
174 }
175
176 /// Return true if this node is an operand of N.
177 bool isOperandOf(const SDNode *N) const;
178
179 /// Return the ValueType of the referenced return value.
180 inline EVT getValueType() const;
181
182 /// Return the simple ValueType of the referenced return value.
183 MVT getSimpleValueType() const {
184 return getValueType().getSimpleVT();
185 }
186
187 /// Returns the size of the value in bits.
188 ///
189 /// If the value type is a scalable vector type, the scalable property will
190 /// be set and the runtime size will be a positive integer multiple of the
191 /// base size.
192 TypeSize getValueSizeInBits() const {
193 return getValueType().getSizeInBits();
194 }
195
196 uint64_t getScalarValueSizeInBits() const {
197 return getValueType().getScalarType().getFixedSizeInBits();
198 }
199
200 // Forwarding methods - These forward to the corresponding methods in SDNode.
201 inline unsigned getOpcode() const;
202 inline unsigned getNumOperands() const;
203 inline const SDValue &getOperand(unsigned i) const;
204 inline uint64_t getConstantOperandVal(unsigned i) const;
205 inline const APInt &getConstantOperandAPInt(unsigned i) const;
206 inline bool isTargetMemoryOpcode() const;
207 inline bool isTargetOpcode() const;
208 inline bool isMachineOpcode() const;
209 inline bool isUndef() const;
210 inline unsigned getMachineOpcode() const;
211 inline const DebugLoc &getDebugLoc() const;
212 inline void dump() const;
213 inline void dump(const SelectionDAG *G) const;
214 inline void dumpr() const;
215 inline void dumpr(const SelectionDAG *G) const;
216
217 /// Return true if this operand (which must be a chain) reaches the
218 /// specified operand without crossing any side-effecting instructions.
219 /// In practice, this looks through token factors and non-volatile loads.
220 /// In order to remain efficient, this only
221 /// looks a couple of nodes in, it does not do an exhaustive search.
222 bool reachesChainWithoutSideEffects(SDValue Dest,
223 unsigned Depth = 2) const;
224
225 /// Return true if there are no nodes using value ResNo of Node.
226 inline bool use_empty() const;
227
228 /// Return true if there is exactly one node using value ResNo of Node.
229 inline bool hasOneUse() const;
230};
231
232template<> struct DenseMapInfo<SDValue> {
233 static inline SDValue getEmptyKey() {
234 SDValue V;
235 V.ResNo = -1U;
236 return V;
237 }
238
239 static inline SDValue getTombstoneKey() {
240 SDValue V;
241 V.ResNo = -2U;
242 return V;
243 }
244
245 static unsigned getHashValue(const SDValue &Val) {
246 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
247 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
248 }
249
250 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
251 return LHS == RHS;
252 }
253};
254
255/// Allow casting operators to work directly on
256/// SDValues as if they were SDNode*'s.
257template<> struct simplify_type<SDValue> {
258 using SimpleType = SDNode *;
259
260 static SimpleType getSimplifiedValue(SDValue &Val) {
261 return Val.getNode();
262 }
263};
264template<> struct simplify_type<const SDValue> {
265 using SimpleType = /*const*/ SDNode *;
266
267 static SimpleType getSimplifiedValue(const SDValue &Val) {
268 return Val.getNode();
269 }
270};
271
272/// Represents a use of a SDNode. This class holds an SDValue,
273/// which records the SDNode being used and the result number, a
274/// pointer to the SDNode using the value, and Next and Prev pointers,
275/// which link together all the uses of an SDNode.
276///
277class SDUse {
278 /// Val - The value being used.
279 SDValue Val;
280 /// User - The user of this value.
281 SDNode *User = nullptr;
282 /// Prev, Next - Pointers to the uses list of the SDNode referred by
283 /// this operand.
284 SDUse **Prev = nullptr;
285 SDUse *Next = nullptr;
286
287public:
288 SDUse() = default;
289 SDUse(const SDUse &U) = delete;
290 SDUse &operator=(const SDUse &) = delete;
291
292 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
293 operator const SDValue&() const { return Val; }
294
295 /// If implicit conversion to SDValue doesn't work, the get() method returns
296 /// the SDValue.
297 const SDValue &get() const { return Val; }
298
299 /// This returns the SDNode that contains this Use.
300 SDNode *getUser() { return User; }
301
302 /// Get the next SDUse in the use list.
303 SDUse *getNext() const { return Next; }
304
305 /// Convenience function for get().getNode().
306 SDNode *getNode() const { return Val.getNode(); }
307 /// Convenience function for get().getResNo().
308 unsigned getResNo() const { return Val.getResNo(); }
309 /// Convenience function for get().getValueType().
310 EVT getValueType() const { return Val.getValueType(); }
311
312 /// Convenience function for get().operator==
313 bool operator==(const SDValue &V) const {
314 return Val == V;
315 }
316
317 /// Convenience function for get().operator!=
318 bool operator!=(const SDValue &V) const {
319 return Val != V;
320 }
321
322 /// Convenience function for get().operator<
323 bool operator<(const SDValue &V) const {
324 return Val < V;
325 }
326
327private:
328 friend class SelectionDAG;
329 friend class SDNode;
330 // TODO: unfriend HandleSDNode once we fix its operand handling.
331 friend class HandleSDNode;
332
333 void setUser(SDNode *p) { User = p; }
334
335 /// Remove this use from its existing use list, assign it the
336 /// given value, and add it to the new value's node's use list.
337 inline void set(const SDValue &V);
338 /// Like set, but only supports initializing a newly-allocated
339 /// SDUse with a non-null value.
340 inline void setInitial(const SDValue &V);
341 /// Like set, but only sets the Node portion of the value,
342 /// leaving the ResNo portion unmodified.
343 inline void setNode(SDNode *N);
344
345 void addToList(SDUse **List) {
346 Next = *List;
347 if (Next) Next->Prev = &Next;
348 Prev = List;
349 *List = this;
350 }
351
352 void removeFromList() {
353 *Prev = Next;
354 if (Next) Next->Prev = Prev;
355 }
356};
357
358/// simplify_type specializations - Allow casting operators to work directly on
359/// SDValues as if they were SDNode*'s.
360template<> struct simplify_type<SDUse> {
361 using SimpleType = SDNode *;
362
363 static SimpleType getSimplifiedValue(SDUse &Val) {
364 return Val.getNode();
365 }
366};
367
368/// These are IR-level optimization flags that may be propagated to SDNodes.
369/// TODO: This data structure should be shared by the IR optimizer and the
370/// the backend.
371struct SDNodeFlags {
372private:
373 bool NoUnsignedWrap : 1;
374 bool NoSignedWrap : 1;
375 bool Exact : 1;
376 bool NoNaNs : 1;
377 bool NoInfs : 1;
378 bool NoSignedZeros : 1;
379 bool AllowReciprocal : 1;
380 bool AllowContract : 1;
381 bool ApproximateFuncs : 1;
382 bool AllowReassociation : 1;
383
384 // We assume instructions do not raise floating-point exceptions by default,
385 // and only those marked explicitly may do so. We could choose to represent
386 // this via a positive "FPExcept" flags like on the MI level, but having a
387 // negative "NoFPExcept" flag here (that defaults to true) makes the flag
388 // intersection logic more straightforward.
389 bool NoFPExcept : 1;
390
391public:
392 /// Default constructor turns off all optimization flags.
393 SDNodeFlags()
394 : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
395 NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
396 AllowContract(false), ApproximateFuncs(false),
397 AllowReassociation(false), NoFPExcept(false) {}
398
399 /// Propagate the fast-math-flags from an IR FPMathOperator.
400 void copyFMF(const FPMathOperator &FPMO) {
401 setNoNaNs(FPMO.hasNoNaNs());
402 setNoInfs(FPMO.hasNoInfs());
403 setNoSignedZeros(FPMO.hasNoSignedZeros());
404 setAllowReciprocal(FPMO.hasAllowReciprocal());
405 setAllowContract(FPMO.hasAllowContract());
406 setApproximateFuncs(FPMO.hasApproxFunc());
407 setAllowReassociation(FPMO.hasAllowReassoc());
408 }
409
410 // These are mutators for each flag.
411 void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
412 void setNoSignedWrap(bool b) { NoSignedWrap = b; }
413 void setExact(bool b) { Exact = b; }
414 void setNoNaNs(bool b) { NoNaNs = b; }
415 void setNoInfs(bool b) { NoInfs = b; }
416 void setNoSignedZeros(bool b) { NoSignedZeros = b; }
417 void setAllowReciprocal(bool b) { AllowReciprocal = b; }
418 void setAllowContract(bool b) { AllowContract = b; }
419 void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
420 void setAllowReassociation(bool b) { AllowReassociation = b; }
421 void setNoFPExcept(bool b) { NoFPExcept = b; }
422
423 // These are accessors for each flag.
424 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
425 bool hasNoSignedWrap() const { return NoSignedWrap; }
426 bool hasExact() const { return Exact; }
427 bool hasNoNaNs() const { return NoNaNs; }
428 bool hasNoInfs() const { return NoInfs; }
429 bool hasNoSignedZeros() const { return NoSignedZeros; }
430 bool hasAllowReciprocal() const { return AllowReciprocal; }
431 bool hasAllowContract() const { return AllowContract; }
432 bool hasApproximateFuncs() const { return ApproximateFuncs; }
433 bool hasAllowReassociation() const { return AllowReassociation; }
434 bool hasNoFPExcept() const { return NoFPExcept; }
435
436 /// Clear any flags in this flag set that aren't also set in Flags. All
437 /// flags will be cleared if Flags are undefined.
438 void intersectWith(const SDNodeFlags Flags) {
439 NoUnsignedWrap &= Flags.NoUnsignedWrap;
440 NoSignedWrap &= Flags.NoSignedWrap;
441 Exact &= Flags.Exact;
442 NoNaNs &= Flags.NoNaNs;
443 NoInfs &= Flags.NoInfs;
444 NoSignedZeros &= Flags.NoSignedZeros;
445 AllowReciprocal &= Flags.AllowReciprocal;
446 AllowContract &= Flags.AllowContract;
447 ApproximateFuncs &= Flags.ApproximateFuncs;
448 AllowReassociation &= Flags.AllowReassociation;
449 NoFPExcept &= Flags.NoFPExcept;
450 }
451};
452
453/// Represents one node in the SelectionDAG.
454///
455class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
456private:
457 /// The operation that this node performs.
458 int16_t NodeType;
459
460protected:
461 // We define a set of mini-helper classes to help us interpret the bits in our
462 // SubclassData. These are designed to fit within a uint16_t so they pack
463 // with NodeType.
464
465#if defined(_AIX) && (!defined(__GNUC__4) || defined(__ibmxl__))
466// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
467// and give the `pack` pragma push semantics.
468#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")pack(2)
469#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")pack(pop)
470#else
471#define BEGIN_TWO_BYTE_PACK()
472#define END_TWO_BYTE_PACK()
473#endif
474
475BEGIN_TWO_BYTE_PACK()
476 class SDNodeBitfields {
477 friend class SDNode;
478 friend class MemIntrinsicSDNode;
479 friend class MemSDNode;
480 friend class SelectionDAG;
481
482 uint16_t HasDebugValue : 1;
483 uint16_t IsMemIntrinsic : 1;
484 uint16_t IsDivergent : 1;
485 };
486 enum { NumSDNodeBits = 3 };
487
488 class ConstantSDNodeBitfields {
489 friend class ConstantSDNode;
490
491 uint16_t : NumSDNodeBits;
492
493 uint16_t IsOpaque : 1;
494 };
495
496 class MemSDNodeBitfields {
497 friend class MemSDNode;
498 friend class MemIntrinsicSDNode;
499 friend class AtomicSDNode;
500
501 uint16_t : NumSDNodeBits;
502
503 uint16_t IsVolatile : 1;
504 uint16_t IsNonTemporal : 1;
505 uint16_t IsDereferenceable : 1;
506 uint16_t IsInvariant : 1;
507 };
508 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
509
510 class LSBaseSDNodeBitfields {
511 friend class LSBaseSDNode;
512 friend class MaskedLoadStoreSDNode;
513 friend class MaskedGatherScatterSDNode;
514
515 uint16_t : NumMemSDNodeBits;
516
517 // This storage is shared between disparate class hierarchies to hold an
518 // enumeration specific to the class hierarchy in use.
519 // LSBaseSDNode => enum ISD::MemIndexedMode
520 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
521 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
522 uint16_t AddressingMode : 3;
523 };
524 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
525
526 class LoadSDNodeBitfields {
527 friend class LoadSDNode;
528 friend class MaskedLoadSDNode;
529 friend class MaskedGatherSDNode;
530
531 uint16_t : NumLSBaseSDNodeBits;
532
533 uint16_t ExtTy : 2; // enum ISD::LoadExtType
534 uint16_t IsExpanding : 1;
535 };
536
537 class StoreSDNodeBitfields {
538 friend class StoreSDNode;
539 friend class MaskedStoreSDNode;
540 friend class MaskedScatterSDNode;
541
542 uint16_t : NumLSBaseSDNodeBits;
543
544 uint16_t IsTruncating : 1;
545 uint16_t IsCompressing : 1;
546 };
547
548 union {
549 char RawSDNodeBits[sizeof(uint16_t)];
550 SDNodeBitfields SDNodeBits;
551 ConstantSDNodeBitfields ConstantSDNodeBits;
552 MemSDNodeBitfields MemSDNodeBits;
553 LSBaseSDNodeBitfields LSBaseSDNodeBits;
554 LoadSDNodeBitfields LoadSDNodeBits;
555 StoreSDNodeBitfields StoreSDNodeBits;
556 };
557END_TWO_BYTE_PACK()
558#undef BEGIN_TWO_BYTE_PACK
559#undef END_TWO_BYTE_PACK
560
561 // RawSDNodeBits must cover the entirety of the union. This means that all of
562 // the union's members must have size <= RawSDNodeBits. We write the RHS as
563 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
564 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
565 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
566 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
567 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
568 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
569 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
570
571private:
572 friend class SelectionDAG;
573 // TODO: unfriend HandleSDNode once we fix its operand handling.
574 friend class HandleSDNode;
575
576 /// Unique id per SDNode in the DAG.
577 int NodeId = -1;
578
579 /// The values that are used by this operation.
580 SDUse *OperandList = nullptr;
581
582 /// The types of the values this node defines. SDNode's may
583 /// define multiple values simultaneously.
584 const EVT *ValueList;
585
586 /// List of uses for this SDNode.
587 SDUse *UseList = nullptr;
588
589 /// The number of entries in the Operand/Value list.
590 unsigned short NumOperands = 0;
591 unsigned short NumValues;
592
593 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
594 // original LLVM instructions.
595 // This is used for turning off scheduling, because we'll forgo
596 // the normal scheduling algorithms and output the instructions according to
597 // this ordering.
598 unsigned IROrder;
599
600 /// Source line information.
601 DebugLoc debugLoc;
602
603 /// Return a pointer to the specified value type.
604 static const EVT *getValueTypeList(EVT VT);
605
606 SDNodeFlags Flags;
607
608public:
609 /// Unique and persistent id per SDNode in the DAG.
610 /// Used for debug printing.
611 uint16_t PersistentId;
612
613 //===--------------------------------------------------------------------===//
614 // Accessors
615 //
616
617 /// Return the SelectionDAG opcode value for this node. For
618 /// pre-isel nodes (those for which isMachineOpcode returns false), these
619 /// are the opcode values in the ISD and <target>ISD namespaces. For
620 /// post-isel opcodes, see getMachineOpcode.
621 unsigned getOpcode() const { return (unsigned short)NodeType; }
622
623 /// Test if this node has a target-specific opcode (in the
624 /// \<target\>ISD namespace).
625 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
626
627 /// Test if this node has a target-specific opcode that may raise
628 /// FP exceptions (in the \<target\>ISD namespace and greater than
629 /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
630 /// opcode are currently automatically considered to possibly raise
631 /// FP exceptions as well.
632 bool isTargetStrictFPOpcode() const {
633 return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
634 }
635
636 /// Test if this node has a target-specific
637 /// memory-referencing opcode (in the \<target\>ISD namespace and
638 /// greater than FIRST_TARGET_MEMORY_OPCODE).
639 bool isTargetMemoryOpcode() const {
640 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
641 }
642
643 /// Return true if the type of the node type undefined.
644 bool isUndef() const { return NodeType == ISD::UNDEF; }
645
646 /// Test if this node is a memory intrinsic (with valid pointer information).
647 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
648 /// non-memory intrinsics (with chains) that are not really instances of
649 /// MemSDNode. For such nodes, we need some extra state to determine the
650 /// proper classof relationship.
651 bool isMemIntrinsic() const {
652 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
653 NodeType == ISD::INTRINSIC_VOID) &&
654 SDNodeBits.IsMemIntrinsic;
655 }
656
657 /// Test if this node is a strict floating point pseudo-op.
658 bool isStrictFPOpcode() {
659 switch (NodeType) {
660 default:
661 return false;
662 case ISD::STRICT_FP16_TO_FP:
663 case ISD::STRICT_FP_TO_FP16:
664#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
665 case ISD::STRICT_##DAGN:
666#include "llvm/IR/ConstrainedOps.def"
667 return true;
668 }
669 }
670
671 /// Test if this node has a post-isel opcode, directly
672 /// corresponding to a MachineInstr opcode.
673 bool isMachineOpcode() const { return NodeType < 0; }
674
675 /// This may only be called if isMachineOpcode returns
676 /// true. It returns the MachineInstr opcode value that the node's opcode
677 /// corresponds to.
678 unsigned getMachineOpcode() const {
679 assert(isMachineOpcode() && "Not a MachineInstr opcode!")((isMachineOpcode() && "Not a MachineInstr opcode!") ?
static_cast<void> (0) : __assert_fail ("isMachineOpcode() && \"Not a MachineInstr opcode!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 679, __PRETTY_FUNCTION__))
;
680 return ~NodeType;
681 }
682
683 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
684 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
685
686 bool isDivergent() const { return SDNodeBits.IsDivergent; }
687
688 /// Return true if there are no uses of this node.
689 bool use_empty() const { return UseList == nullptr; }
690
691 /// Return true if there is exactly one use of this node.
692 bool hasOneUse() const { return hasSingleElement(uses()); }
693
694 /// Return the number of uses of this node. This method takes
695 /// time proportional to the number of uses.
696 size_t use_size() const { return std::distance(use_begin(), use_end()); }
697
698 /// Return the unique node id.
699 int getNodeId() const { return NodeId; }
700
701 /// Set unique node id.
702 void setNodeId(int Id) { NodeId = Id; }
703
704 /// Return the node ordering.
705 unsigned getIROrder() const { return IROrder; }
706
707 /// Set the node ordering.
708 void setIROrder(unsigned Order) { IROrder = Order; }
709
710 /// Return the source location info.
711 const DebugLoc &getDebugLoc() const { return debugLoc; }
712
713 /// Set source location info. Try to avoid this, putting
714 /// it in the constructor is preferable.
715 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
716
717 /// This class provides iterator support for SDUse
718 /// operands that use a specific SDNode.
719 class use_iterator {
720 friend class SDNode;
721
722 SDUse *Op = nullptr;
723
724 explicit use_iterator(SDUse *op) : Op(op) {}
725
726 public:
727 using iterator_category = std::forward_iterator_tag;
728 using value_type = SDUse;
729 using difference_type = std::ptrdiff_t;
730 using pointer = value_type *;
731 using reference = value_type &;
732
733 use_iterator() = default;
734 use_iterator(const use_iterator &I) : Op(I.Op) {}
735
736 bool operator==(const use_iterator &x) const {
737 return Op == x.Op;
738 }
739 bool operator!=(const use_iterator &x) const {
740 return !operator==(x);
741 }
742
743 /// Return true if this iterator is at the end of uses list.
744 bool atEnd() const { return Op == nullptr; }
745
746 // Iterator traversal: forward iteration only.
747 use_iterator &operator++() { // Preincrement
748 assert(Op && "Cannot increment end iterator!")((Op && "Cannot increment end iterator!") ? static_cast
<void> (0) : __assert_fail ("Op && \"Cannot increment end iterator!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 748, __PRETTY_FUNCTION__))
;
749 Op = Op->getNext();
750 return *this;
751 }
752
753 use_iterator operator++(int) { // Postincrement
754 use_iterator tmp = *this; ++*this; return tmp;
755 }
756
757 /// Retrieve a pointer to the current user node.
758 SDNode *operator*() const {
759 assert(Op && "Cannot dereference end iterator!")((Op && "Cannot dereference end iterator!") ? static_cast
<void> (0) : __assert_fail ("Op && \"Cannot dereference end iterator!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 759, __PRETTY_FUNCTION__))
;
760 return Op->getUser();
761 }
762
763 SDNode *operator->() const { return operator*(); }
764
765 SDUse &getUse() const { return *Op; }
766
767 /// Retrieve the operand # of this use in its user.
768 unsigned getOperandNo() const {
769 assert(Op && "Cannot dereference end iterator!")((Op && "Cannot dereference end iterator!") ? static_cast
<void> (0) : __assert_fail ("Op && \"Cannot dereference end iterator!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 769, __PRETTY_FUNCTION__))
;
770 return (unsigned)(Op - Op->getUser()->OperandList);
771 }
772 };
773
774 /// Provide iteration support to walk over all uses of an SDNode.
775 use_iterator use_begin() const {
776 return use_iterator(UseList);
777 }
778
779 static use_iterator use_end() { return use_iterator(nullptr); }
780
781 inline iterator_range<use_iterator> uses() {
782 return make_range(use_begin(), use_end());
783 }
784 inline iterator_range<use_iterator> uses() const {
785 return make_range(use_begin(), use_end());
786 }
787
788 /// Return true if there are exactly NUSES uses of the indicated value.
789 /// This method ignores uses of other values defined by this operation.
790 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
791
792 /// Return true if there are any use of the indicated value.
793 /// This method ignores uses of other values defined by this operation.
794 bool hasAnyUseOfValue(unsigned Value) const;
795
796 /// Return true if this node is the only use of N.
797 bool isOnlyUserOf(const SDNode *N) const;
798
799 /// Return true if this node is an operand of N.
800 bool isOperandOf(const SDNode *N) const;
801
802 /// Return true if this node is a predecessor of N.
803 /// NOTE: Implemented on top of hasPredecessor and every bit as
804 /// expensive. Use carefully.
805 bool isPredecessorOf(const SDNode *N) const {
806 return N->hasPredecessor(this);
807 }
808
809 /// Return true if N is a predecessor of this node.
810 /// N is either an operand of this node, or can be reached by recursively
811 /// traversing up the operands.
812 /// NOTE: This is an expensive method. Use it carefully.
813 bool hasPredecessor(const SDNode *N) const;
814
815 /// Returns true if N is a predecessor of any node in Worklist. This
816 /// helper keeps Visited and Worklist sets externally to allow unions
817 /// searches to be performed in parallel, caching of results across
818 /// queries and incremental addition to Worklist. Stops early if N is
819 /// found but will resume. Remember to clear Visited and Worklists
820 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
821 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
822 /// topologically ordered (Operands have strictly smaller node id) and search
823 /// can be pruned leveraging this.
824 static bool hasPredecessorHelper(const SDNode *N,
825 SmallPtrSetImpl<const SDNode *> &Visited,
826 SmallVectorImpl<const SDNode *> &Worklist,
827 unsigned int MaxSteps = 0,
828 bool TopologicalPrune = false) {
829 SmallVector<const SDNode *, 8> DeferredNodes;
830 if (Visited.count(N))
831 return true;
832
833 // Node Id's are assigned in three places: As a topological
834 // ordering (> 0), during legalization (results in values set to
835 // 0), new nodes (set to -1). If N has a topolgical id then we
836 // know that all nodes with ids smaller than it cannot be
837 // successors and we need not check them. Filter out all node
838 // that can't be matches. We add them to the worklist before exit
839 // in case of multiple calls. Note that during selection the topological id
840 // may be violated if a node's predecessor is selected before it. We mark
841 // this at selection negating the id of unselected successors and
842 // restricting topological pruning to positive ids.
843
844 int NId = N->getNodeId();
845 // If we Invalidated the Id, reconstruct original NId.
846 if (NId < -1)
847 NId = -(NId + 1);
848
849 bool Found = false;
850 while (!Worklist.empty()) {
851 const SDNode *M = Worklist.pop_back_val();
852 int MId = M->getNodeId();
853 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
854 (MId > 0) && (MId < NId)) {
855 DeferredNodes.push_back(M);
856 continue;
857 }
858 for (const SDValue &OpV : M->op_values()) {
859 SDNode *Op = OpV.getNode();
860 if (Visited.insert(Op).second)
861 Worklist.push_back(Op);
862 if (Op == N)
863 Found = true;
864 }
865 if (Found)
866 break;
867 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
868 break;
869 }
870 // Push deferred nodes back on worklist.
871 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
872 // If we bailed early, conservatively return found.
873 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
874 return true;
875 return Found;
876 }
877
878 /// Return true if all the users of N are contained in Nodes.
879 /// NOTE: Requires at least one match, but doesn't require them all.
880 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
881
882 /// Return the number of values used by this operation.
883 unsigned getNumOperands() const { return NumOperands; }
884
885 /// Return the maximum number of operands that a SDNode can hold.
886 static constexpr size_t getMaxNumOperands() {
887 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
888 }
889
890 /// Helper method returns the integer value of a ConstantSDNode operand.
891 inline uint64_t getConstantOperandVal(unsigned Num) const;
892
893 /// Helper method returns the APInt of a ConstantSDNode operand.
894 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
895
896 const SDValue &getOperand(unsigned Num) const {
897 assert(Num < NumOperands && "Invalid child # of SDNode!")((Num < NumOperands && "Invalid child # of SDNode!"
) ? static_cast<void> (0) : __assert_fail ("Num < NumOperands && \"Invalid child # of SDNode!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 897, __PRETTY_FUNCTION__))
;
898 return OperandList[Num];
899 }
900
901 using op_iterator = SDUse *;
902
903 op_iterator op_begin() const { return OperandList; }
904 op_iterator op_end() const { return OperandList+NumOperands; }
905 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
906
907 /// Iterator for directly iterating over the operand SDValue's.
908 struct value_op_iterator
909 : iterator_adaptor_base<value_op_iterator, op_iterator,
910 std::random_access_iterator_tag, SDValue,
911 ptrdiff_t, value_op_iterator *,
912 value_op_iterator *> {
913 explicit value_op_iterator(SDUse *U = nullptr)
914 : iterator_adaptor_base(U) {}
915
916 const SDValue &operator*() const { return I->get(); }
917 };
918
919 iterator_range<value_op_iterator> op_values() const {
920 return make_range(value_op_iterator(op_begin()),
921 value_op_iterator(op_end()));
922 }
923
924 SDVTList getVTList() const {
925 SDVTList X = { ValueList, NumValues };
926 return X;
927 }
928
929 /// If this node has a glue operand, return the node
930 /// to which the glue operand points. Otherwise return NULL.
931 SDNode *getGluedNode() const {
932 if (getNumOperands() != 0 &&
933 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
934 return getOperand(getNumOperands()-1).getNode();
935 return nullptr;
936 }
937
938 /// If this node has a glue value with a user, return
939 /// the user (there is at most one). Otherwise return NULL.
940 SDNode *getGluedUser() const {
941 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
942 if (UI.getUse().get().getValueType() == MVT::Glue)
943 return *UI;
944 return nullptr;
945 }
946
947 SDNodeFlags getFlags() const { return Flags; }
948 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
949
950 /// Clear any flags in this node that aren't also set in Flags.
951 /// If Flags is not in a defined state then this has no effect.
952 void intersectFlagsWith(const SDNodeFlags Flags);
953
954 /// Return the number of values defined/returned by this operator.
955 unsigned getNumValues() const { return NumValues; }
956
957 /// Return the type of a specified result.
958 EVT getValueType(unsigned ResNo) const {
959 assert(ResNo < NumValues && "Illegal result number!")((ResNo < NumValues && "Illegal result number!") ?
static_cast<void> (0) : __assert_fail ("ResNo < NumValues && \"Illegal result number!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 959, __PRETTY_FUNCTION__))
;
960 return ValueList[ResNo];
961 }
962
963 /// Return the type of a specified result as a simple type.
964 MVT getSimpleValueType(unsigned ResNo) const {
965 return getValueType(ResNo).getSimpleVT();
966 }
967
968 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
969 ///
970 /// If the value type is a scalable vector type, the scalable property will
971 /// be set and the runtime size will be a positive integer multiple of the
972 /// base size.
973 TypeSize getValueSizeInBits(unsigned ResNo) const {
974 return getValueType(ResNo).getSizeInBits();
975 }
976
977 using value_iterator = const EVT *;
978
979 value_iterator value_begin() const { return ValueList; }
980 value_iterator value_end() const { return ValueList+NumValues; }
981 iterator_range<value_iterator> values() const {
982 return llvm::make_range(value_begin(), value_end());
983 }
984
985 /// Return the opcode of this operation for printing.
986 std::string getOperationName(const SelectionDAG *G = nullptr) const;
987 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
988 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
989 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
990 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
991 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
992
993 /// Print a SelectionDAG node and all children down to
994 /// the leaves. The given SelectionDAG allows target-specific nodes
995 /// to be printed in human-readable form. Unlike printr, this will
996 /// print the whole DAG, including children that appear multiple
997 /// times.
998 ///
999 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1000
1001 /// Print a SelectionDAG node and children up to
1002 /// depth "depth." The given SelectionDAG allows target-specific
1003 /// nodes to be printed in human-readable form. Unlike printr, this
1004 /// will print children that appear multiple times wherever they are
1005 /// used.
1006 ///
1007 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1008 unsigned depth = 100) const;
1009
1010 /// Dump this node, for debugging.
1011 void dump() const;
1012
1013 /// Dump (recursively) this node and its use-def subgraph.
1014 void dumpr() const;
1015
1016 /// Dump this node, for debugging.
1017 /// The given SelectionDAG allows target-specific nodes to be printed
1018 /// in human-readable form.
1019 void dump(const SelectionDAG *G) const;
1020
1021 /// Dump (recursively) this node and its use-def subgraph.
1022 /// The given SelectionDAG allows target-specific nodes to be printed
1023 /// in human-readable form.
1024 void dumpr(const SelectionDAG *G) const;
1025
1026 /// printrFull to dbgs(). The given SelectionDAG allows
1027 /// target-specific nodes to be printed in human-readable form.
1028 /// Unlike dumpr, this will print the whole DAG, including children
1029 /// that appear multiple times.
1030 void dumprFull(const SelectionDAG *G = nullptr) const;
1031
1032 /// printrWithDepth to dbgs(). The given
1033 /// SelectionDAG allows target-specific nodes to be printed in
1034 /// human-readable form. Unlike dumpr, this will print children
1035 /// that appear multiple times wherever they are used.
1036 ///
1037 void dumprWithDepth(const SelectionDAG *G = nullptr,
1038 unsigned depth = 100) const;
1039
1040 /// Gather unique data for the node.
1041 void Profile(FoldingSetNodeID &ID) const;
1042
1043 /// This method should only be used by the SDUse class.
1044 void addUse(SDUse &U) { U.addToList(&UseList); }
1045
1046protected:
1047 static SDVTList getSDVTList(EVT VT) {
1048 SDVTList Ret = { getValueTypeList(VT), 1 };
1049 return Ret;
1050 }
1051
1052 /// Create an SDNode.
1053 ///
1054 /// SDNodes are created without any operands, and never own the operand
1055 /// storage. To add operands, see SelectionDAG::createOperands.
1056 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1057 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1058 IROrder(Order), debugLoc(std::move(dl)) {
1059 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1060 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")((debugLoc.hasTrivialDestructor() && "Expected trivial destructor"
) ? static_cast<void> (0) : __assert_fail ("debugLoc.hasTrivialDestructor() && \"Expected trivial destructor\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1060, __PRETTY_FUNCTION__))
;
1061 assert(NumValues == VTs.NumVTs &&((NumValues == VTs.NumVTs && "NumValues wasn't wide enough for its operands!"
) ? static_cast<void> (0) : __assert_fail ("NumValues == VTs.NumVTs && \"NumValues wasn't wide enough for its operands!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1062, __PRETTY_FUNCTION__))
1062 "NumValues wasn't wide enough for its operands!")((NumValues == VTs.NumVTs && "NumValues wasn't wide enough for its operands!"
) ? static_cast<void> (0) : __assert_fail ("NumValues == VTs.NumVTs && \"NumValues wasn't wide enough for its operands!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1062, __PRETTY_FUNCTION__))
;
1063 }
1064
1065 /// Release the operands and set this node to have zero operands.
1066 void DropOperands();
1067};
1068
1069/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1070/// into SDNode creation functions.
1071/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1072/// from the original Instruction, and IROrder is the ordinal position of
1073/// the instruction.
1074/// When an SDNode is created after the DAG is being built, both DebugLoc and
1075/// the IROrder are propagated from the original SDNode.
1076/// So SDLoc class provides two constructors besides the default one, one to
1077/// be used by the DAGBuilder, the other to be used by others.
1078class SDLoc {
1079private:
1080 DebugLoc DL;
1081 int IROrder = 0;
1082
1083public:
1084 SDLoc() = default;
1085 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1086 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1087 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1088 assert(Order >= 0 && "bad IROrder")((Order >= 0 && "bad IROrder") ? static_cast<void
> (0) : __assert_fail ("Order >= 0 && \"bad IROrder\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1088, __PRETTY_FUNCTION__))
;
1089 if (I)
1090 DL = I->getDebugLoc();
1091 }
1092
1093 unsigned getIROrder() const { return IROrder; }
1094 const DebugLoc &getDebugLoc() const { return DL; }
1095};
1096
1097// Define inline functions from the SDValue class.
1098
1099inline SDValue::SDValue(SDNode *node, unsigned resno)
1100 : Node(node), ResNo(resno) {
1101 // Explicitly check for !ResNo to avoid use-after-free, because there are
1102 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1103 // combines.
1104 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&(((!Node || !ResNo || ResNo < Node->getNumValues()) &&
"Invalid result number for the given node!") ? static_cast<
void> (0) : __assert_fail ("(!Node || !ResNo || ResNo < Node->getNumValues()) && \"Invalid result number for the given node!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1105, __PRETTY_FUNCTION__))
1105 "Invalid result number for the given node!")(((!Node || !ResNo || ResNo < Node->getNumValues()) &&
"Invalid result number for the given node!") ? static_cast<
void> (0) : __assert_fail ("(!Node || !ResNo || ResNo < Node->getNumValues()) && \"Invalid result number for the given node!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1105, __PRETTY_FUNCTION__))
;
1106 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.")((ResNo < -2U && "Cannot use result numbers reserved for DenseMaps."
) ? static_cast<void> (0) : __assert_fail ("ResNo < -2U && \"Cannot use result numbers reserved for DenseMaps.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1106, __PRETTY_FUNCTION__))
;
1107}
1108
1109inline unsigned SDValue::getOpcode() const {
1110 return Node->getOpcode();
10
Called C++ object pointer is null
1111}
1112
1113inline EVT SDValue::getValueType() const {
1114 return Node->getValueType(ResNo);
1115}
1116
1117inline unsigned SDValue::getNumOperands() const {
1118 return Node->getNumOperands();
1119}
1120
1121inline const SDValue &SDValue::getOperand(unsigned i) const {
1122 return Node->getOperand(i);
1123}
1124
1125inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1126 return Node->getConstantOperandVal(i);
1127}
1128
1129inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1130 return Node->getConstantOperandAPInt(i);
1131}
1132
1133inline bool SDValue::isTargetOpcode() const {
1134 return Node->isTargetOpcode();
1135}
1136
1137inline bool SDValue::isTargetMemoryOpcode() const {
1138 return Node->isTargetMemoryOpcode();
1139}
1140
1141inline bool SDValue::isMachineOpcode() const {
1142 return Node->isMachineOpcode();
1143}
1144
1145inline unsigned SDValue::getMachineOpcode() const {
1146 return Node->getMachineOpcode();
1147}
1148
1149inline bool SDValue::isUndef() const {
1150 return Node->isUndef();
1151}
1152
1153inline bool SDValue::use_empty() const {
1154 return !Node->hasAnyUseOfValue(ResNo);
1155}
1156
1157inline bool SDValue::hasOneUse() const {
1158 return Node->hasNUsesOfValue(1, ResNo);
1159}
1160
1161inline const DebugLoc &SDValue::getDebugLoc() const {
1162 return Node->getDebugLoc();
1163}
1164
1165inline void SDValue::dump() const {
1166 return Node->dump();
1167}
1168
1169inline void SDValue::dump(const SelectionDAG *G) const {
1170 return Node->dump(G);
1171}
1172
1173inline void SDValue::dumpr() const {
1174 return Node->dumpr();
1175}
1176
1177inline void SDValue::dumpr(const SelectionDAG *G) const {
1178 return Node->dumpr(G);
1179}
1180
1181// Define inline functions from the SDUse class.
1182
1183inline void SDUse::set(const SDValue &V) {
1184 if (Val.getNode()) removeFromList();
1185 Val = V;
1186 if (V.getNode()) V.getNode()->addUse(*this);
1187}
1188
1189inline void SDUse::setInitial(const SDValue &V) {
1190 Val = V;
1191 V.getNode()->addUse(*this);
1192}
1193
1194inline void SDUse::setNode(SDNode *N) {
1195 if (Val.getNode()) removeFromList();
1196 Val.setNode(N);
1197 if (N) N->addUse(*this);
1198}
1199
1200/// This class is used to form a handle around another node that
1201/// is persistent and is updated across invocations of replaceAllUsesWith on its
1202/// operand. This node should be directly created by end-users and not added to
1203/// the AllNodes list.
1204class HandleSDNode : public SDNode {
1205 SDUse Op;
1206
1207public:
1208 explicit HandleSDNode(SDValue X)
1209 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1210 // HandleSDNodes are never inserted into the DAG, so they won't be
1211 // auto-numbered. Use ID 65535 as a sentinel.
1212 PersistentId = 0xffff;
1213
1214 // Manually set up the operand list. This node type is special in that it's
1215 // always stack allocated and SelectionDAG does not manage its operands.
1216 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1217 // be so special.
1218 Op.setUser(this);
1219 Op.setInitial(X);
1220 NumOperands = 1;
1221 OperandList = &Op;
1222 }
1223 ~HandleSDNode();
1224
1225 const SDValue &getValue() const { return Op; }
1226};
1227
1228class AddrSpaceCastSDNode : public SDNode {
1229private:
1230 unsigned SrcAddrSpace;
1231 unsigned DestAddrSpace;
1232
1233public:
1234 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1235 unsigned SrcAS, unsigned DestAS);
1236
1237 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1238 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1239
1240 static bool classof(const SDNode *N) {
1241 return N->getOpcode() == ISD::ADDRSPACECAST;
1242 }
1243};
1244
1245/// This is an abstract virtual class for memory operations.
1246class MemSDNode : public SDNode {
1247private:
1248 // VT of in-memory value.
1249 EVT MemoryVT;
1250
1251protected:
1252 /// Memory reference information.
1253 MachineMemOperand *MMO;
1254
1255public:
1256 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1257 EVT memvt, MachineMemOperand *MMO);
1258
1259 bool readMem() const { return MMO->isLoad(); }
1260 bool writeMem() const { return MMO->isStore(); }
1261
1262 /// Returns alignment and volatility of the memory access
1263 Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1264 Align getAlign() const { return MMO->getAlign(); }
1265 LLVM_ATTRIBUTE_DEPRECATED(unsigned getOriginalAlignment() const,[[deprecated("Use getOriginalAlign() instead")]] unsigned getOriginalAlignment
() const
1266 "Use getOriginalAlign() instead")[[deprecated("Use getOriginalAlign() instead")]] unsigned getOriginalAlignment
() const
{
1267 return MMO->getBaseAlign().value();
1268 }
1269 // FIXME: Remove once transition to getAlign is over.
1270 unsigned getAlignment() const { return MMO->getAlign().value(); }
1271
1272 /// Return the SubclassData value, without HasDebugValue. This contains an
1273 /// encoding of the volatile flag, as well as bits used by subclasses. This
1274 /// function should only be used to compute a FoldingSetNodeID value.
1275 /// The HasDebugValue bit is masked out because CSE map needs to match
1276 /// nodes with debug info with nodes without debug info. Same is about
1277 /// isDivergent bit.
1278 unsigned getRawSubclassData() const {
1279 uint16_t Data;
1280 union {
1281 char RawSDNodeBits[sizeof(uint16_t)];
1282 SDNodeBitfields SDNodeBits;
1283 };
1284 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1285 SDNodeBits.HasDebugValue = 0;
1286 SDNodeBits.IsDivergent = false;
1287 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1288 return Data;
1289 }
1290
1291 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1292 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1293 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1294 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1295
1296 // Returns the offset from the location of the access.
1297 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1298
1299 /// Returns the AA info that describes the dereference.
1300 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1301
1302 /// Returns the Ranges that describes the dereference.
1303 const MDNode *getRanges() const { return MMO->getRanges(); }
1304
1305 /// Returns the synchronization scope ID for this memory operation.
1306 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1307
1308 /// Return the atomic ordering requirements for this memory operation. For
1309 /// cmpxchg atomic operations, return the atomic ordering requirements when
1310 /// store occurs.
1311 AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
1312
1313 /// Return true if the memory operation ordering is Unordered or higher.
1314 bool isAtomic() const { return MMO->isAtomic(); }
1315
1316 /// Returns true if the memory operation doesn't imply any ordering
1317 /// constraints on surrounding memory operations beyond the normal memory
1318 /// aliasing rules.
1319 bool isUnordered() const { return MMO->isUnordered(); }
1320
1321 /// Returns true if the memory operation is neither atomic or volatile.
1322 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1323
1324 /// Return the type of the in-memory value.
1325 EVT getMemoryVT() const { return MemoryVT; }
1326
1327 /// Return a MachineMemOperand object describing the memory
1328 /// reference performed by operation.
1329 MachineMemOperand *getMemOperand() const { return MMO; }
1330
1331 const MachinePointerInfo &getPointerInfo() const {
1332 return MMO->getPointerInfo();
1333 }
1334
1335 /// Return the address space for the associated pointer
1336 unsigned getAddressSpace() const {
1337 return getPointerInfo().getAddrSpace();
1338 }
1339
1340 /// Update this MemSDNode's MachineMemOperand information
1341 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1342 /// This must only be used when the new alignment applies to all users of
1343 /// this MachineMemOperand.
1344 void refineAlignment(const MachineMemOperand *NewMMO) {
1345 MMO->refineAlignment(NewMMO);
1346 }
1347
1348 const SDValue &getChain() const { return getOperand(0); }
1349
1350 const SDValue &getBasePtr() const {
1351 switch (getOpcode()) {
1352 case ISD::STORE:
1353 case ISD::MSTORE:
1354 return getOperand(2);
1355 case ISD::MGATHER:
1356 case ISD::MSCATTER:
1357 return getOperand(3);
1358 default:
1359 return getOperand(1);
1360 }
1361 }
1362
1363 // Methods to support isa and dyn_cast
1364 static bool classof(const SDNode *N) {
1365 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1366 // with either an intrinsic or a target opcode.
1367 return N->getOpcode() == ISD::LOAD ||
1368 N->getOpcode() == ISD::STORE ||
1369 N->getOpcode() == ISD::PREFETCH ||
1370 N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1371 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1372 N->getOpcode() == ISD::ATOMIC_SWAP ||
1373 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1374 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1375 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1376 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1377 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1378 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1379 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1380 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1381 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1382 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1383 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1384 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1385 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1386 N->getOpcode() == ISD::ATOMIC_LOAD ||
1387 N->getOpcode() == ISD::ATOMIC_STORE ||
1388 N->getOpcode() == ISD::MLOAD ||
1389 N->getOpcode() == ISD::MSTORE ||
1390 N->getOpcode() == ISD::MGATHER ||
1391 N->getOpcode() == ISD::MSCATTER ||
1392 N->isMemIntrinsic() ||
1393 N->isTargetMemoryOpcode();
1394 }
1395};
1396
1397/// This is an SDNode representing atomic operations.
1398class AtomicSDNode : public MemSDNode {
1399public:
1400 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1401 EVT MemVT, MachineMemOperand *MMO)
1402 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1403 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||((((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE
) || MMO->isAtomic()) && "then why are we using an AtomicSDNode?"
) ? static_cast<void> (0) : __assert_fail ("((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && \"then why are we using an AtomicSDNode?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1404, __PRETTY_FUNCTION__))
1404 MMO->isAtomic()) && "then why are we using an AtomicSDNode?")((((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE
) || MMO->isAtomic()) && "then why are we using an AtomicSDNode?"
) ? static_cast<void> (0) : __assert_fail ("((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && \"then why are we using an AtomicSDNode?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1404, __PRETTY_FUNCTION__))
;
1405 }
1406
1407 const SDValue &getBasePtr() const { return getOperand(1); }
1408 const SDValue &getVal() const { return getOperand(2); }
1409
1410 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1411 /// otherwise.
1412 bool isCompareAndSwap() const {
1413 unsigned Op = getOpcode();
1414 return Op == ISD::ATOMIC_CMP_SWAP ||
1415 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1416 }
1417
1418 /// For cmpxchg atomic operations, return the atomic ordering requirements
1419 /// when store does not occur.
1420 AtomicOrdering getFailureOrdering() const {
1421 assert(isCompareAndSwap() && "Must be cmpxchg operation")((isCompareAndSwap() && "Must be cmpxchg operation") ?
static_cast<void> (0) : __assert_fail ("isCompareAndSwap() && \"Must be cmpxchg operation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1421, __PRETTY_FUNCTION__))
;
1422 return MMO->getFailureOrdering();
1423 }
1424
1425 // Methods to support isa and dyn_cast
1426 static bool classof(const SDNode *N) {
1427 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1428 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1429 N->getOpcode() == ISD::ATOMIC_SWAP ||
1430 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1431 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1432 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1433 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1434 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1435 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1436 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1437 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1438 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1439 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1440 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1441 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1442 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1443 N->getOpcode() == ISD::ATOMIC_LOAD ||
1444 N->getOpcode() == ISD::ATOMIC_STORE;
1445 }
1446};
1447
1448/// This SDNode is used for target intrinsics that touch
1449/// memory and need an associated MachineMemOperand. Its opcode may be
1450/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1451/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1452class MemIntrinsicSDNode : public MemSDNode {
1453public:
1454 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1455 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1456 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1457 SDNodeBits.IsMemIntrinsic = true;
1458 }
1459
1460 // Methods to support isa and dyn_cast
1461 static bool classof(const SDNode *N) {
1462 // We lower some target intrinsics to their target opcode
1463 // early a node with a target opcode can be of this class
1464 return N->isMemIntrinsic() ||
1465 N->getOpcode() == ISD::PREFETCH ||
1466 N->isTargetMemoryOpcode();
1467 }
1468};
1469
1470/// This SDNode is used to implement the code generator
1471/// support for the llvm IR shufflevector instruction. It combines elements
1472/// from two input vectors into a new input vector, with the selection and
1473/// ordering of elements determined by an array of integers, referred to as
1474/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1475/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1476/// An index of -1 is treated as undef, such that the code generator may put
1477/// any value in the corresponding element of the result.
1478class ShuffleVectorSDNode : public SDNode {
1479 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1480 // is freed when the SelectionDAG object is destroyed.
1481 const int *Mask;
1482
1483protected:
1484 friend class SelectionDAG;
1485
1486 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1487 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1488
1489public:
1490 ArrayRef<int> getMask() const {
1491 EVT VT = getValueType(0);
1492 return makeArrayRef(Mask, VT.getVectorNumElements());
1493 }
1494
1495 int getMaskElt(unsigned Idx) const {
1496 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!")((Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getValueType(0).getVectorNumElements() && \"Idx out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1496, __PRETTY_FUNCTION__))
;
1497 return Mask[Idx];
1498 }
1499
1500 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1501
1502 int getSplatIndex() const {
1503 assert(isSplat() && "Cannot get splat index for non-splat!")((isSplat() && "Cannot get splat index for non-splat!"
) ? static_cast<void> (0) : __assert_fail ("isSplat() && \"Cannot get splat index for non-splat!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1503, __PRETTY_FUNCTION__))
;
1504 EVT VT = getValueType(0);
1505 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1506 if (Mask[i] >= 0)
1507 return Mask[i];
1508
1509 // We can choose any index value here and be correct because all elements
1510 // are undefined. Return 0 for better potential for callers to simplify.
1511 return 0;
1512 }
1513
1514 static bool isSplatMask(const int *Mask, EVT VT);
1515
1516 /// Change values in a shuffle permute mask assuming
1517 /// the two vector operands have swapped position.
1518 static void commuteMask(MutableArrayRef<int> Mask) {
1519 unsigned NumElems = Mask.size();
1520 for (unsigned i = 0; i != NumElems; ++i) {
1521 int idx = Mask[i];
1522 if (idx < 0)
1523 continue;
1524 else if (idx < (int)NumElems)
1525 Mask[i] = idx + NumElems;
1526 else
1527 Mask[i] = idx - NumElems;
1528 }
1529 }
1530
1531 static bool classof(const SDNode *N) {
1532 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1533 }
1534};
1535
1536class ConstantSDNode : public SDNode {
1537 friend class SelectionDAG;
1538
1539 const ConstantInt *Value;
1540
1541 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1542 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1543 getSDVTList(VT)),
1544 Value(val) {
1545 ConstantSDNodeBits.IsOpaque = isOpaque;
1546 }
1547
1548public:
1549 const ConstantInt *getConstantIntValue() const { return Value; }
1550 const APInt &getAPIntValue() const { return Value->getValue(); }
1551 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1552 int64_t getSExtValue() const { return Value->getSExtValue(); }
1553 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) {
1554 return Value->getLimitedValue(Limit);
1555 }
1556 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1557 Align getAlignValue() const { return Value->getAlignValue(); }
1558
1559 bool isOne() const { return Value->isOne(); }
1560 bool isNullValue() const { return Value->isZero(); }
1561 bool isAllOnesValue() const { return Value->isMinusOne(); }
1562
1563 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1564
1565 static bool classof(const SDNode *N) {
1566 return N->getOpcode() == ISD::Constant ||
1567 N->getOpcode() == ISD::TargetConstant;
1568 }
1569};
1570
1571uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1572 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1573}
1574
1575const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1576 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1577}
1578
1579class ConstantFPSDNode : public SDNode {
1580 friend class SelectionDAG;
1581
1582 const ConstantFP *Value;
1583
1584 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1585 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1586 DebugLoc(), getSDVTList(VT)),
1587 Value(val) {}
1588
1589public:
1590 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1591 const ConstantFP *getConstantFPValue() const { return Value; }
1592
1593 /// Return true if the value is positive or negative zero.
1594 bool isZero() const { return Value->isZero(); }
1595
1596 /// Return true if the value is a NaN.
1597 bool isNaN() const { return Value->isNaN(); }
1598
1599 /// Return true if the value is an infinity
1600 bool isInfinity() const { return Value->isInfinity(); }
1601
1602 /// Return true if the value is negative.
1603 bool isNegative() const { return Value->isNegative(); }
1604
1605 /// We don't rely on operator== working on double values, as
1606 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1607 /// As such, this method can be used to do an exact bit-for-bit comparison of
1608 /// two floating point values.
1609
1610 /// We leave the version with the double argument here because it's just so
1611 /// convenient to write "2.0" and the like. Without this function we'd
1612 /// have to duplicate its logic everywhere it's called.
1613 bool isExactlyValue(double V) const {
1614 return Value->getValueAPF().isExactlyValue(V);
1615 }
1616 bool isExactlyValue(const APFloat& V) const;
1617
1618 static bool isValueValidForType(EVT VT, const APFloat& Val);
1619
1620 static bool classof(const SDNode *N) {
1621 return N->getOpcode() == ISD::ConstantFP ||
1622 N->getOpcode() == ISD::TargetConstantFP;
1623 }
1624};
1625
1626/// Returns true if \p V is a constant integer zero.
1627bool isNullConstant(SDValue V);
1628
1629/// Returns true if \p V is an FP constant with a value of positive zero.
1630bool isNullFPConstant(SDValue V);
1631
1632/// Returns true if \p V is an integer constant with all bits set.
1633bool isAllOnesConstant(SDValue V);
1634
1635/// Returns true if \p V is a constant integer one.
1636bool isOneConstant(SDValue V);
1637
1638/// Return the non-bitcasted source operand of \p V if it exists.
1639/// If \p V is not a bitcasted value, it is returned as-is.
1640SDValue peekThroughBitcasts(SDValue V);
1641
1642/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1643/// If \p V is not a bitcasted one-use value, it is returned as-is.
1644SDValue peekThroughOneUseBitcasts(SDValue V);
1645
1646/// Return the non-extracted vector source operand of \p V if it exists.
1647/// If \p V is not an extracted subvector, it is returned as-is.
1648SDValue peekThroughExtractSubvectors(SDValue V);
1649
1650/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1651/// constant is canonicalized to be operand 1.
1652bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1653
1654/// Returns the SDNode if it is a constant splat BuildVector or constant int.
1655ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1656 bool AllowTruncation = false);
1657
1658/// Returns the SDNode if it is a demanded constant splat BuildVector or
1659/// constant int.
1660ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1661 bool AllowUndefs = false,
1662 bool AllowTruncation = false);
1663
1664/// Returns the SDNode if it is a constant splat BuildVector or constant float.
1665ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1666
1667/// Returns the SDNode if it is a demanded constant splat BuildVector or
1668/// constant float.
1669ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1670 bool AllowUndefs = false);
1671
1672/// Return true if the value is a constant 0 integer or a splatted vector of
1673/// a constant 0 integer (with no undefs by default).
1674/// Build vector implicit truncation is not an issue for null values.
1675bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1676
1677/// Return true if the value is a constant 1 integer or a splatted vector of a
1678/// constant 1 integer (with no undefs).
1679/// Does not permit build vector implicit truncation.
1680bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1681
1682/// Return true if the value is a constant -1 integer or a splatted vector of a
1683/// constant -1 integer (with no undefs).
1684/// Does not permit build vector implicit truncation.
1685bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1686
1687/// Return true if \p V is either a integer or FP constant.
1688inline bool isIntOrFPConstant(SDValue V) {
1689 return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1690}
1691
1692class GlobalAddressSDNode : public SDNode {
1693 friend class SelectionDAG;
1694
1695 const GlobalValue *TheGlobal;
1696 int64_t Offset;
1697 unsigned TargetFlags;
1698
1699 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1700 const GlobalValue *GA, EVT VT, int64_t o,
1701 unsigned TF);
1702
1703public:
1704 const GlobalValue *getGlobal() const { return TheGlobal; }
1705 int64_t getOffset() const { return Offset; }
1706 unsigned getTargetFlags() const { return TargetFlags; }
1707 // Return the address space this GlobalAddress belongs to.
1708 unsigned getAddressSpace() const;
1709
1710 static bool classof(const SDNode *N) {
1711 return N->getOpcode() == ISD::GlobalAddress ||
1712 N->getOpcode() == ISD::TargetGlobalAddress ||
1713 N->getOpcode() == ISD::GlobalTLSAddress ||
1714 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1715 }
1716};
1717
1718class FrameIndexSDNode : public SDNode {
1719 friend class SelectionDAG;
1720
1721 int FI;
1722
1723 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1724 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1725 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1726 }
1727
1728public:
1729 int getIndex() const { return FI; }
1730
1731 static bool classof(const SDNode *N) {
1732 return N->getOpcode() == ISD::FrameIndex ||
1733 N->getOpcode() == ISD::TargetFrameIndex;
1734 }
1735};
1736
1737/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1738/// the offet and size that are started/ended in the underlying FrameIndex.
1739class LifetimeSDNode : public SDNode {
1740 friend class SelectionDAG;
1741 int64_t Size;
1742 int64_t Offset; // -1 if offset is unknown.
1743
1744 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1745 SDVTList VTs, int64_t Size, int64_t Offset)
1746 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1747public:
1748 int64_t getFrameIndex() const {
1749 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1750 }
1751
1752 bool hasOffset() const { return Offset >= 0; }
1753 int64_t getOffset() const {
1754 assert(hasOffset() && "offset is unknown")((hasOffset() && "offset is unknown") ? static_cast<
void> (0) : __assert_fail ("hasOffset() && \"offset is unknown\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1754, __PRETTY_FUNCTION__))
;
1755 return Offset;
1756 }
1757 int64_t getSize() const {
1758 assert(hasOffset() && "offset is unknown")((hasOffset() && "offset is unknown") ? static_cast<
void> (0) : __assert_fail ("hasOffset() && \"offset is unknown\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1758, __PRETTY_FUNCTION__))
;
1759 return Size;
1760 }
1761
1762 // Methods to support isa and dyn_cast
1763 static bool classof(const SDNode *N) {
1764 return N->getOpcode() == ISD::LIFETIME_START ||
1765 N->getOpcode() == ISD::LIFETIME_END;
1766 }
1767};
1768
1769/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1770/// the index of the basic block being probed. A pseudo probe serves as a place
1771/// holder and will be removed at the end of compilation. It does not have any
1772/// operand because we do not want the instruction selection to deal with any.
1773class PseudoProbeSDNode : public SDNode {
1774 friend class SelectionDAG;
1775 uint64_t Guid;
1776 uint64_t Index;
1777 uint32_t Attributes;
1778
1779 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1780 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1781 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1782 Attributes(Attr) {}
1783
1784public:
1785 uint64_t getGuid() const { return Guid; }
1786 uint64_t getIndex() const { return Index; }
1787 uint32_t getAttributes() const { return Attributes; }
1788
1789 // Methods to support isa and dyn_cast
1790 static bool classof(const SDNode *N) {
1791 return N->getOpcode() == ISD::PSEUDO_PROBE;
1792 }
1793};
1794
1795class JumpTableSDNode : public SDNode {
1796 friend class SelectionDAG;
1797
1798 int JTI;
1799 unsigned TargetFlags;
1800
1801 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1802 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1803 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1804 }
1805
1806public:
1807 int getIndex() const { return JTI; }
1808 unsigned getTargetFlags() const { return TargetFlags; }
1809
1810 static bool classof(const SDNode *N) {
1811 return N->getOpcode() == ISD::JumpTable ||
1812 N->getOpcode() == ISD::TargetJumpTable;
1813 }
1814};
1815
1816class ConstantPoolSDNode : public SDNode {
1817 friend class SelectionDAG;
1818
1819 union {
1820 const Constant *ConstVal;
1821 MachineConstantPoolValue *MachineCPVal;
1822 } Val;
1823 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1824 Align Alignment; // Minimum alignment requirement of CP.
1825 unsigned TargetFlags;
1826
1827 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1828 Align Alignment, unsigned TF)
1829 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1830 DebugLoc(), getSDVTList(VT)),
1831 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1832 assert(Offset >= 0 && "Offset is too large")((Offset >= 0 && "Offset is too large") ? static_cast
<void> (0) : __assert_fail ("Offset >= 0 && \"Offset is too large\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1832, __PRETTY_FUNCTION__))
;
1833 Val.ConstVal = c;
1834 }
1835
1836 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1837 Align Alignment, unsigned TF)
1838 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1839 DebugLoc(), getSDVTList(VT)),
1840 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1841 assert(Offset >= 0 && "Offset is too large")((Offset >= 0 && "Offset is too large") ? static_cast
<void> (0) : __assert_fail ("Offset >= 0 && \"Offset is too large\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1841, __PRETTY_FUNCTION__))
;
1842 Val.MachineCPVal = v;
1843 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT8-1);
1844 }
1845
1846public:
1847 bool isMachineConstantPoolEntry() const {
1848 return Offset < 0;
1849 }
1850
1851 const Constant *getConstVal() const {
1852 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type")((!isMachineConstantPoolEntry() && "Wrong constantpool type"
) ? static_cast<void> (0) : __assert_fail ("!isMachineConstantPoolEntry() && \"Wrong constantpool type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1852, __PRETTY_FUNCTION__))
;
1853 return Val.ConstVal;
1854 }
1855
1856 MachineConstantPoolValue *getMachineCPVal() const {
1857 assert(isMachineConstantPoolEntry() && "Wrong constantpool type")((isMachineConstantPoolEntry() && "Wrong constantpool type"
) ? static_cast<void> (0) : __assert_fail ("isMachineConstantPoolEntry() && \"Wrong constantpool type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1857, __PRETTY_FUNCTION__))
;
1858 return Val.MachineCPVal;
1859 }
1860
1861 int getOffset() const {
1862 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT8-1));
1863 }
1864
1865 // Return the alignment of this constant pool object, which is either 0 (for
1866 // default alignment) or the desired value.
1867 Align getAlign() const { return Alignment; }
1868 unsigned getTargetFlags() const { return TargetFlags; }
1869
1870 Type *getType() const;
1871
1872 static bool classof(const SDNode *N) {
1873 return N->getOpcode() == ISD::ConstantPool ||
1874 N->getOpcode() == ISD::TargetConstantPool;
1875 }
1876};
1877
1878/// Completely target-dependent object reference.
1879class TargetIndexSDNode : public SDNode {
1880 friend class SelectionDAG;
1881
1882 unsigned TargetFlags;
1883 int Index;
1884 int64_t Offset;
1885
1886public:
1887 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1888 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1889 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1890
1891 unsigned getTargetFlags() const { return TargetFlags; }
1892 int getIndex() const { return Index; }
1893 int64_t getOffset() const { return Offset; }
1894
1895 static bool classof(const SDNode *N) {
1896 return N->getOpcode() == ISD::TargetIndex;
1897 }
1898};
1899
1900class BasicBlockSDNode : public SDNode {
1901 friend class SelectionDAG;
1902
1903 MachineBasicBlock *MBB;
1904
1905 /// Debug info is meaningful and potentially useful here, but we create
1906 /// blocks out of order when they're jumped to, which makes it a bit
1907 /// harder. Let's see if we need it first.
1908 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1909 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1910 {}
1911
1912public:
1913 MachineBasicBlock *getBasicBlock() const { return MBB; }
1914
1915 static bool classof(const SDNode *N) {
1916 return N->getOpcode() == ISD::BasicBlock;
1917 }
1918};
1919
1920/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1921class BuildVectorSDNode : public SDNode {
1922public:
1923 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1924 explicit BuildVectorSDNode() = delete;
1925
1926 /// Check if this is a constant splat, and if so, find the
1927 /// smallest element size that splats the vector. If MinSplatBits is
1928 /// nonzero, the element size must be at least that large. Note that the
1929 /// splat element may be the entire vector (i.e., a one element vector).
1930 /// Returns the splat element value in SplatValue. Any undefined bits in
1931 /// that value are zero, and the corresponding bits in the SplatUndef mask
1932 /// are set. The SplatBitSize value is set to the splat element size in
1933 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1934 /// undefined. isBigEndian describes the endianness of the target.
1935 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1936 unsigned &SplatBitSize, bool &HasAnyUndefs,
1937 unsigned MinSplatBits = 0,
1938 bool isBigEndian = false) const;
1939
1940 /// Returns the demanded splatted value or a null value if this is not a
1941 /// splat.
1942 ///
1943 /// The DemandedElts mask indicates the elements that must be in the splat.
1944 /// If passed a non-null UndefElements bitvector, it will resize it to match
1945 /// the vector width and set the bits where elements are undef.
1946 SDValue getSplatValue(const APInt &DemandedElts,
1947 BitVector *UndefElements = nullptr) const;
1948
1949 /// Returns the splatted value or a null value if this is not a splat.
1950 ///
1951 /// If passed a non-null UndefElements bitvector, it will resize it to match
1952 /// the vector width and set the bits where elements are undef.
1953 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1954
1955 /// Find the shortest repeating sequence of values in the build vector.
1956 ///
1957 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1958 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1959 ///
1960 /// Currently this must be a power-of-2 build vector.
1961 /// The DemandedElts mask indicates the elements that must be present,
1962 /// undemanded elements in Sequence may be null (SDValue()). If passed a
1963 /// non-null UndefElements bitvector, it will resize it to match the original
1964 /// vector width and set the bits where elements are undef. If result is
1965 /// false, Sequence will be empty.
1966 bool getRepeatedSequence(const APInt &DemandedElts,
1967 SmallVectorImpl<SDValue> &Sequence,
1968 BitVector *UndefElements = nullptr) const;
1969
1970 /// Find the shortest repeating sequence of values in the build vector.
1971 ///
1972 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1973 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1974 ///
1975 /// Currently this must be a power-of-2 build vector.
1976 /// If passed a non-null UndefElements bitvector, it will resize it to match
1977 /// the original vector width and set the bits where elements are undef.
1978 /// If result is false, Sequence will be empty.
1979 bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
1980 BitVector *UndefElements = nullptr) const;
1981
1982 /// Returns the demanded splatted constant or null if this is not a constant
1983 /// splat.
1984 ///
1985 /// The DemandedElts mask indicates the elements that must be in the splat.
1986 /// If passed a non-null UndefElements bitvector, it will resize it to match
1987 /// the vector width and set the bits where elements are undef.
1988 ConstantSDNode *
1989 getConstantSplatNode(const APInt &DemandedElts,
1990 BitVector *UndefElements = nullptr) const;
1991
1992 /// Returns the splatted constant or null if this is not a constant
1993 /// splat.
1994 ///
1995 /// If passed a non-null UndefElements bitvector, it will resize it to match
1996 /// the vector width and set the bits where elements are undef.
1997 ConstantSDNode *
1998 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1999
2000 /// Returns the demanded splatted constant FP or null if this is not a
2001 /// constant FP splat.
2002 ///
2003 /// The DemandedElts mask indicates the elements that must be in the splat.
2004 /// If passed a non-null UndefElements bitvector, it will resize it to match
2005 /// the vector width and set the bits where elements are undef.
2006 ConstantFPSDNode *
2007 getConstantFPSplatNode(const APInt &DemandedElts,
2008 BitVector *UndefElements = nullptr) const;
2009
2010 /// Returns the splatted constant FP or null if this is not a constant
2011 /// FP splat.
2012 ///
2013 /// If passed a non-null UndefElements bitvector, it will resize it to match
2014 /// the vector width and set the bits where elements are undef.
2015 ConstantFPSDNode *
2016 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2017
2018 /// If this is a constant FP splat and the splatted constant FP is an
2019 /// exact power or 2, return the log base 2 integer value. Otherwise,
2020 /// return -1.
2021 ///
2022 /// The BitWidth specifies the necessary bit precision.
2023 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2024 uint32_t BitWidth) const;
2025
2026 bool isConstant() const;
2027
2028 static bool classof(const SDNode *N) {
2029 return N->getOpcode() == ISD::BUILD_VECTOR;
2030 }
2031};
2032
2033/// An SDNode that holds an arbitrary LLVM IR Value. This is
2034/// used when the SelectionDAG needs to make a simple reference to something
2035/// in the LLVM IR representation.
2036///
2037class SrcValueSDNode : public SDNode {
2038 friend class SelectionDAG;
2039
2040 const Value *V;
2041
2042 /// Create a SrcValue for a general value.
2043 explicit SrcValueSDNode(const Value *v)
2044 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2045
2046public:
2047 /// Return the contained Value.
2048 const Value *getValue() const { return V; }
2049
2050 static bool classof(const SDNode *N) {
2051 return N->getOpcode() == ISD::SRCVALUE;
2052 }
2053};
2054
2055class MDNodeSDNode : public SDNode {
2056 friend class SelectionDAG;
2057
2058 const MDNode *MD;
2059
2060 explicit MDNodeSDNode(const MDNode *md)
2061 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2062 {}
2063
2064public:
2065 const MDNode *getMD() const { return MD; }
2066
2067 static bool classof(const SDNode *N) {
2068 return N->getOpcode() == ISD::MDNODE_SDNODE;
2069 }
2070};
2071
2072class RegisterSDNode : public SDNode {
2073 friend class SelectionDAG;
2074
2075 Register Reg;
2076
2077 RegisterSDNode(Register reg, EVT VT)
2078 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2079
2080public:
2081 Register getReg() const { return Reg; }
2082
2083 static bool classof(const SDNode *N) {
2084 return N->getOpcode() == ISD::Register;
2085 }
2086};
2087
2088class RegisterMaskSDNode : public SDNode {
2089 friend class SelectionDAG;
2090
2091 // The memory for RegMask is not owned by the node.
2092 const uint32_t *RegMask;
2093
2094 RegisterMaskSDNode(const uint32_t *mask)
2095 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2096 RegMask(mask) {}
2097
2098public:
2099 const uint32_t *getRegMask() const { return RegMask; }
2100
2101 static bool classof(const SDNode *N) {
2102 return N->getOpcode() == ISD::RegisterMask;
2103 }
2104};
2105
2106class BlockAddressSDNode : public SDNode {
2107 friend class SelectionDAG;
2108
2109 const BlockAddress *BA;
2110 int64_t Offset;
2111 unsigned TargetFlags;
2112
2113 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2114 int64_t o, unsigned Flags)
2115 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2116 BA(ba), Offset(o), TargetFlags(Flags) {}
2117
2118public:
2119 const BlockAddress *getBlockAddress() const { return BA; }
2120 int64_t getOffset() const { return Offset; }
2121 unsigned getTargetFlags() const { return TargetFlags; }
2122
2123 static bool classof(const SDNode *N) {
2124 return N->getOpcode() == ISD::BlockAddress ||
2125 N->getOpcode() == ISD::TargetBlockAddress;
2126 }
2127};
2128
2129class LabelSDNode : public SDNode {
2130 friend class SelectionDAG;
2131
2132 MCSymbol *Label;
2133
2134 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2135 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2136 assert(LabelSDNode::classof(this) && "not a label opcode")((LabelSDNode::classof(this) && "not a label opcode")
? static_cast<void> (0) : __assert_fail ("LabelSDNode::classof(this) && \"not a label opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2136, __PRETTY_FUNCTION__))
;
2137 }
2138
2139public:
2140 MCSymbol *getLabel() const { return Label; }
2141
2142 static bool classof(const SDNode *N) {
2143 return N->getOpcode() == ISD::EH_LABEL ||
2144 N->getOpcode() == ISD::ANNOTATION_LABEL;
2145 }
2146};
2147
2148class ExternalSymbolSDNode : public SDNode {
2149 friend class SelectionDAG;
2150
2151 const char *Symbol;
2152 unsigned TargetFlags;
2153
2154 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2155 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2156 DebugLoc(), getSDVTList(VT)),
2157 Symbol(Sym), TargetFlags(TF) {}
2158
2159public:
2160 const char *getSymbol() const { return Symbol; }
2161 unsigned getTargetFlags() const { return TargetFlags; }
2162
2163 static bool classof(const SDNode *N) {
2164 return N->getOpcode() == ISD::ExternalSymbol ||
2165 N->getOpcode() == ISD::TargetExternalSymbol;
2166 }
2167};
2168
2169class MCSymbolSDNode : public SDNode {
2170 friend class SelectionDAG;
2171
2172 MCSymbol *Symbol;
2173
2174 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2175 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2176
2177public:
2178 MCSymbol *getMCSymbol() const { return Symbol; }
2179
2180 static bool classof(const SDNode *N) {
2181 return N->getOpcode() == ISD::MCSymbol;
2182 }
2183};
2184
2185class CondCodeSDNode : public SDNode {
2186 friend class SelectionDAG;
2187
2188 ISD::CondCode Condition;
2189
2190 explicit CondCodeSDNode(ISD::CondCode Cond)
2191 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2192 Condition(Cond) {}
2193
2194public:
2195 ISD::CondCode get() const { return Condition; }
2196
2197 static bool classof(const SDNode *N) {
2198 return N->getOpcode() == ISD::CONDCODE;
2199 }
2200};
2201
2202/// This class is used to represent EVT's, which are used
2203/// to parameterize some operations.
2204class VTSDNode : public SDNode {
2205 friend class SelectionDAG;
2206
2207 EVT ValueType;
2208
2209 explicit VTSDNode(EVT VT)
2210 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2211 ValueType(VT) {}
2212
2213public:
2214 EVT getVT() const { return ValueType; }
2215
2216 static bool classof(const SDNode *N) {
2217 return N->getOpcode() == ISD::VALUETYPE;
2218 }
2219};
2220
2221/// Base class for LoadSDNode and StoreSDNode
2222class LSBaseSDNode : public MemSDNode {
2223public:
2224 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2225 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2226 MachineMemOperand *MMO)
2227 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2228 LSBaseSDNodeBits.AddressingMode = AM;
2229 assert(getAddressingMode() == AM && "Value truncated")((getAddressingMode() == AM && "Value truncated") ? static_cast
<void> (0) : __assert_fail ("getAddressingMode() == AM && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2229, __PRETTY_FUNCTION__))
;
2230 }
2231
2232 const SDValue &getOffset() const {
2233 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2234 }
2235
2236 /// Return the addressing mode for this load or store:
2237 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2238 ISD::MemIndexedMode getAddressingMode() const {
2239 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2240 }
2241
2242 /// Return true if this is a pre/post inc/dec load/store.
2243 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2244
2245 /// Return true if this is NOT a pre/post inc/dec load/store.
2246 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2247
2248 static bool classof(const SDNode *N) {
2249 return N->getOpcode() == ISD::LOAD ||
2250 N->getOpcode() == ISD::STORE;
2251 }
2252};
2253
2254/// This class is used to represent ISD::LOAD nodes.
2255class LoadSDNode : public LSBaseSDNode {
2256 friend class SelectionDAG;
2257
2258 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2259 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2260 MachineMemOperand *MMO)
2261 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2262 LoadSDNodeBits.ExtTy = ETy;
2263 assert(readMem() && "Load MachineMemOperand is not a load!")((readMem() && "Load MachineMemOperand is not a load!"
) ? static_cast<void> (0) : __assert_fail ("readMem() && \"Load MachineMemOperand is not a load!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2263, __PRETTY_FUNCTION__))
;
2264 assert(!writeMem() && "Load MachineMemOperand is a store!")((!writeMem() && "Load MachineMemOperand is a store!"
) ? static_cast<void> (0) : __assert_fail ("!writeMem() && \"Load MachineMemOperand is a store!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2264, __PRETTY_FUNCTION__))
;
2265 }
2266
2267public:
2268 /// Return whether this is a plain node,
2269 /// or one of the varieties of value-extending loads.
2270 ISD::LoadExtType getExtensionType() const {
2271 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2272 }
2273
2274 const SDValue &getBasePtr() const { return getOperand(1); }
2275 const SDValue &getOffset() const { return getOperand(2); }
2276
2277 static bool classof(const SDNode *N) {
2278 return N->getOpcode() == ISD::LOAD;
2279 }
2280};
2281
2282/// This class is used to represent ISD::STORE nodes.
2283class StoreSDNode : public LSBaseSDNode {
2284 friend class SelectionDAG;
2285
2286 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2287 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2288 MachineMemOperand *MMO)
2289 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2290 StoreSDNodeBits.IsTruncating = isTrunc;
2291 assert(!readMem() && "Store MachineMemOperand is a load!")((!readMem() && "Store MachineMemOperand is a load!")
? static_cast<void> (0) : __assert_fail ("!readMem() && \"Store MachineMemOperand is a load!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2291, __PRETTY_FUNCTION__))
;
2292 assert(writeMem() && "Store MachineMemOperand is not a store!")((writeMem() && "Store MachineMemOperand is not a store!"
) ? static_cast<void> (0) : __assert_fail ("writeMem() && \"Store MachineMemOperand is not a store!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2292, __PRETTY_FUNCTION__))
;
2293 }
2294
2295public:
2296 /// Return true if the op does a truncation before store.
2297 /// For integers this is the same as doing a TRUNCATE and storing the result.
2298 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2299 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2300 void setTruncatingStore(bool Truncating) {
2301 StoreSDNodeBits.IsTruncating = Truncating;
2302 }
2303
2304 const SDValue &getValue() const { return getOperand(1); }
2305 const SDValue &getBasePtr() const { return getOperand(2); }
2306 const SDValue &getOffset() const { return getOperand(3); }
2307
2308 static bool classof(const SDNode *N) {
2309 return N->getOpcode() == ISD::STORE;
2310 }
2311};
2312
2313/// This base class is used to represent MLOAD and MSTORE nodes
2314class MaskedLoadStoreSDNode : public MemSDNode {
2315public:
2316 friend class SelectionDAG;
2317
2318 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2319 const DebugLoc &dl, SDVTList VTs,
2320 ISD::MemIndexedMode AM, EVT MemVT,
2321 MachineMemOperand *MMO)
2322 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2323 LSBaseSDNodeBits.AddressingMode = AM;
2324 assert(getAddressingMode() == AM && "Value truncated")((getAddressingMode() == AM && "Value truncated") ? static_cast
<void> (0) : __assert_fail ("getAddressingMode() == AM && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2324, __PRETTY_FUNCTION__))
;
2325 }
2326
2327 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2328 // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2329 // Mask is a vector of i1 elements
2330 const SDValue &getOffset() const {
2331 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2332 }
2333 const SDValue &getMask() const {
2334 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2335 }
2336
2337 /// Return the addressing mode for this load or store:
2338 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2339 ISD::MemIndexedMode getAddressingMode() const {
2340 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2341 }
2342
2343 /// Return true if this is a pre/post inc/dec load/store.
2344 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2345
2346 /// Return true if this is NOT a pre/post inc/dec load/store.
2347 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2348
2349 static bool classof(const SDNode *N) {
2350 return N->getOpcode() == ISD::MLOAD ||
2351 N->getOpcode() == ISD::MSTORE;
2352 }
2353};
2354
2355/// This class is used to represent an MLOAD node
2356class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2357public:
2358 friend class SelectionDAG;
2359
2360 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2361 ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2362 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2363 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2364 LoadSDNodeBits.ExtTy = ETy;
2365 LoadSDNodeBits.IsExpanding = IsExpanding;
2366 }
2367
2368 ISD::LoadExtType getExtensionType() const {
2369 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2370 }
2371
2372 const SDValue &getBasePtr() const { return getOperand(1); }
2373 const SDValue &getOffset() const { return getOperand(2); }
2374 const SDValue &getMask() const { return getOperand(3); }
2375 const SDValue &getPassThru() const { return getOperand(4); }
2376
2377 static bool classof(const SDNode *N) {
2378 return N->getOpcode() == ISD::MLOAD;
2379 }
2380
2381 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2382};
2383
2384/// This class is used to represent an MSTORE node
2385class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2386public:
2387 friend class SelectionDAG;
2388
2389 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2390 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2391 EVT MemVT, MachineMemOperand *MMO)
2392 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2393 StoreSDNodeBits.IsTruncating = isTrunc;
2394 StoreSDNodeBits.IsCompressing = isCompressing;
2395 }
2396
2397 /// Return true if the op does a truncation before store.
2398 /// For integers this is the same as doing a TRUNCATE and storing the result.
2399 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2400 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2401
2402 /// Returns true if the op does a compression to the vector before storing.
2403 /// The node contiguously stores the active elements (integers or floats)
2404 /// in src (those with their respective bit set in writemask k) to unaligned
2405 /// memory at base_addr.
2406 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2407
2408 const SDValue &getValue() const { return getOperand(1); }
2409 const SDValue &getBasePtr() const { return getOperand(2); }
2410 const SDValue &getOffset() const { return getOperand(3); }
2411 const SDValue &getMask() const { return getOperand(4); }
2412
2413 static bool classof(const SDNode *N) {
2414 return N->getOpcode() == ISD::MSTORE;
2415 }
2416};
2417
2418/// This is a base class used to represent
2419/// MGATHER and MSCATTER nodes
2420///
2421class MaskedGatherScatterSDNode : public MemSDNode {
2422public:
2423 friend class SelectionDAG;
2424
2425 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2426 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2427 MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2428 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2429 LSBaseSDNodeBits.AddressingMode = IndexType;
2430 assert(getIndexType() == IndexType && "Value truncated")((getIndexType() == IndexType && "Value truncated") ?
static_cast<void> (0) : __assert_fail ("getIndexType() == IndexType && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2430, __PRETTY_FUNCTION__))
;
2431 }
2432
2433 /// How is Index applied to BasePtr when computing addresses.
2434 ISD::MemIndexType getIndexType() const {
2435 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2436 }
2437 void setIndexType(ISD::MemIndexType IndexType) {
2438 LSBaseSDNodeBits.AddressingMode = IndexType;
2439 }
2440 bool isIndexScaled() const {
2441 return (getIndexType() == ISD::SIGNED_SCALED) ||
2442 (getIndexType() == ISD::UNSIGNED_SCALED);
2443 }
2444 bool isIndexSigned() const {
2445 return (getIndexType() == ISD::SIGNED_SCALED) ||
2446 (getIndexType() == ISD::SIGNED_UNSCALED);
2447 }
2448
2449 // In the both nodes address is Op1, mask is Op2:
2450 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2451 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2452 // Mask is a vector of i1 elements
2453 const SDValue &getBasePtr() const { return getOperand(3); }
2454 const SDValue &getIndex() const { return getOperand(4); }
2455 const SDValue &getMask() const { return getOperand(2); }
2456 const SDValue &getScale() const { return getOperand(5); }
2457
2458 static bool classof(const SDNode *N) {
2459 return N->getOpcode() == ISD::MGATHER ||
2460 N->getOpcode() == ISD::MSCATTER;
2461 }
2462};
2463
2464/// This class is used to represent an MGATHER node
2465///
2466class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2467public:
2468 friend class SelectionDAG;
2469
2470 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2471 EVT MemVT, MachineMemOperand *MMO,
2472 ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2473 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2474 IndexType) {
2475 LoadSDNodeBits.ExtTy = ETy;
2476 }
2477
2478 const SDValue &getPassThru() const { return getOperand(1); }
2479
2480 ISD::LoadExtType getExtensionType() const {
2481 return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2482 }
2483
2484 static bool classof(const SDNode *N) {
2485 return N->getOpcode() == ISD::MGATHER;
2486 }
2487};
2488
2489/// This class is used to represent an MSCATTER node
2490///
2491class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2492public:
2493 friend class SelectionDAG;
2494
2495 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2496 EVT MemVT, MachineMemOperand *MMO,
2497 ISD::MemIndexType IndexType, bool IsTrunc)
2498 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2499 IndexType) {
2500 StoreSDNodeBits.IsTruncating = IsTrunc;
2501 }
2502
2503 /// Return true if the op does a truncation before store.
2504 /// For integers this is the same as doing a TRUNCATE and storing the result.
2505 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2506 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2507
2508 const SDValue &getValue() const { return getOperand(1); }
2509
2510 static bool classof(const SDNode *N) {
2511 return N->getOpcode() == ISD::MSCATTER;
2512 }
2513};
2514
2515/// An SDNode that represents everything that will be needed
2516/// to construct a MachineInstr. These nodes are created during the
2517/// instruction selection proper phase.
2518///
2519/// Note that the only supported way to set the `memoperands` is by calling the
2520/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2521/// inside the DAG rather than in the node.
2522class MachineSDNode : public SDNode {
2523private:
2524 friend class SelectionDAG;
2525
2526 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2527 : SDNode(Opc, Order, DL, VTs) {}
2528
2529 // We use a pointer union between a single `MachineMemOperand` pointer and
2530 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2531 // the number of these is zero, the single pointer variant used when the
2532 // number is one, and the array is used for larger numbers.
2533 //
2534 // The array is allocated via the `SelectionDAG`'s allocator and so will
2535 // always live until the DAG is cleaned up and doesn't require ownership here.
2536 //
2537 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2538 // subclasses aren't managed in a conforming C++ manner. See the comments on
2539 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2540 // constraint here is that these don't manage memory with their constructor or
2541 // destructor and can be initialized to a good state even if they start off
2542 // uninitialized.
2543 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2544
2545 // Note that this could be folded into the above `MemRefs` member if doing so
2546 // is advantageous at some point. We don't need to store this in most cases.
2547 // However, at the moment this doesn't appear to make the allocation any
2548 // smaller and makes the code somewhat simpler to read.
2549 int NumMemRefs = 0;
2550
2551public:
2552 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2553
2554 ArrayRef<MachineMemOperand *> memoperands() const {
2555 // Special case the common cases.
2556 if (NumMemRefs == 0)
2557 return {};
2558 if (NumMemRefs == 1)
2559 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2560
2561 // Otherwise we have an actual array.
2562 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2563 }
2564 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2565 mmo_iterator memoperands_end() const { return memoperands().end(); }
2566 bool memoperands_empty() const { return memoperands().empty(); }
2567
2568 /// Clear out the memory reference descriptor list.
2569 void clearMemRefs() {
2570 MemRefs = nullptr;
2571 NumMemRefs = 0;
2572 }
2573
2574 static bool classof(const SDNode *N) {
2575 return N->isMachineOpcode();
2576 }
2577};
2578
2579/// An SDNode that records if a register contains a value that is guaranteed to
2580/// be aligned accordingly.
2581class AssertAlignSDNode : public SDNode {
2582 Align Alignment;
2583
2584public:
2585 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2586 : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2587
2588 Align getAlign() const { return Alignment; }
2589
2590 static bool classof(const SDNode *N) {
2591 return N->getOpcode() == ISD::AssertAlign;
2592 }
2593};
2594
2595class SDNodeIterator {
2596 const SDNode *Node;
2597 unsigned Operand;
2598
2599 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2600
2601public:
2602 using iterator_category = std::forward_iterator_tag;
2603 using value_type = SDNode;
2604 using difference_type = std::ptrdiff_t;
2605 using pointer = value_type *;
2606 using reference = value_type &;
2607
2608 bool operator==(const SDNodeIterator& x) const {
2609 return Operand == x.Operand;
2610 }
2611 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2612
2613 pointer operator*() const {
2614 return Node->getOperand(Operand).getNode();
2615 }
2616 pointer operator->() const { return operator*(); }
2617
2618 SDNodeIterator& operator++() { // Preincrement
2619 ++Operand;
2620 return *this;
2621 }
2622 SDNodeIterator operator++(int) { // Postincrement
2623 SDNodeIterator tmp = *this; ++*this; return tmp;
2624 }
2625 size_t operator-(SDNodeIterator Other) const {
2626 assert(Node == Other.Node &&((Node == Other.Node && "Cannot compare iterators of two different nodes!"
) ? static_cast<void> (0) : __assert_fail ("Node == Other.Node && \"Cannot compare iterators of two different nodes!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2627, __PRETTY_FUNCTION__))
2627 "Cannot compare iterators of two different nodes!")((Node == Other.Node && "Cannot compare iterators of two different nodes!"
) ? static_cast<void> (0) : __assert_fail ("Node == Other.Node && \"Cannot compare iterators of two different nodes!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2627, __PRETTY_FUNCTION__))
;
2628 return Operand - Other.Operand;
2629 }
2630
2631 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2632 static SDNodeIterator end (const SDNode *N) {
2633 return SDNodeIterator(N, N->getNumOperands());
2634 }
2635
2636 unsigned getOperand() const { return Operand; }
2637 const SDNode *getNode() const { return Node; }
2638};
2639
2640template <> struct GraphTraits<SDNode*> {
2641 using NodeRef = SDNode *;
2642 using ChildIteratorType = SDNodeIterator;
2643
2644 static NodeRef getEntryNode(SDNode *N) { return N; }
2645
2646 static ChildIteratorType child_begin(NodeRef N) {
2647 return SDNodeIterator::begin(N);
2648 }
2649
2650 static ChildIteratorType child_end(NodeRef N) {
2651 return SDNodeIterator::end(N);
2652 }
2653};
2654
2655/// A representation of the largest SDNode, for use in sizeof().
2656///
2657/// This needs to be a union because the largest node differs on 32 bit systems
2658/// with 4 and 8 byte pointer alignment, respectively.
2659using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2660 BlockAddressSDNode,
2661 GlobalAddressSDNode,
2662 PseudoProbeSDNode>;
2663
2664/// The SDNode class with the greatest alignment requirement.
2665using MostAlignedSDNode = GlobalAddressSDNode;
2666
2667namespace ISD {
2668
2669 /// Returns true if the specified node is a non-extending and unindexed load.
2670 inline bool isNormalLoad(const SDNode *N) {
2671 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2672 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2673 Ld->getAddressingMode() == ISD::UNINDEXED;
2674 }
2675
2676 /// Returns true if the specified node is a non-extending load.
2677 inline bool isNON_EXTLoad(const SDNode *N) {
2678 return isa<LoadSDNode>(N) &&
2679 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2680 }
2681
2682 /// Returns true if the specified node is a EXTLOAD.
2683 inline bool isEXTLoad(const SDNode *N) {
2684 return isa<LoadSDNode>(N) &&
2685 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2686 }
2687
2688 /// Returns true if the specified node is a SEXTLOAD.
2689 inline bool isSEXTLoad(const SDNode *N) {
2690 return isa<LoadSDNode>(N) &&
2691 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2692 }
2693
2694 /// Returns true if the specified node is a ZEXTLOAD.
2695 inline bool isZEXTLoad(const SDNode *N) {
2696 return isa<LoadSDNode>(N) &&
2697 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2698 }
2699
2700 /// Returns true if the specified node is an unindexed load.
2701 inline bool isUNINDEXEDLoad(const SDNode *N) {
2702 return isa<LoadSDNode>(N) &&
2703 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2704 }
2705
2706 /// Returns true if the specified node is a non-truncating
2707 /// and unindexed store.
2708 inline bool isNormalStore(const SDNode *N) {
2709 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2710 return St && !St->isTruncatingStore() &&
2711 St->getAddressingMode() == ISD::UNINDEXED;
2712 }
2713
2714 /// Returns true if the specified node is a non-truncating store.
2715 inline bool isNON_TRUNCStore(const SDNode *N) {
2716 return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2717 }
2718
2719 /// Returns true if the specified node is a truncating store.
2720 inline bool isTRUNCStore(const SDNode *N) {
2721 return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2722 }
2723
2724 /// Returns true if the specified node is an unindexed store.
2725 inline bool isUNINDEXEDStore(const SDNode *N) {
2726 return isa<StoreSDNode>(N) &&
2727 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2728 }
2729
2730 /// Attempt to match a unary predicate against a scalar/splat constant or
2731 /// every element of a constant BUILD_VECTOR.
2732 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2733 bool matchUnaryPredicate(SDValue Op,
2734 std::function<bool(ConstantSDNode *)> Match,
2735 bool AllowUndefs = false);
2736
2737 /// Attempt to match a binary predicate against a pair of scalar/splat
2738 /// constants or every element of a pair of constant BUILD_VECTORs.
2739 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2740 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2741 bool matchBinaryPredicate(
2742 SDValue LHS, SDValue RHS,
2743 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2744 bool AllowUndefs = false, bool AllowTypeMismatch = false);
2745
2746 /// Returns true if the specified value is the overflow result from one
2747 /// of the overflow intrinsic nodes.
2748 inline bool isOverflowIntrOpRes(SDValue Op) {
2749 unsigned Opc = Op.getOpcode();
2750 return (Op.getResNo() == 1 &&
2751 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2752 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2753 }
2754
2755} // end namespace ISD
2756
2757} // end namespace llvm
2758
2759#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H