Bug Summary

File:include/llvm/Support/Error.h
Warning:line 200, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name DWARFContext.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/DebugInfo/DWARF -I /build/llvm-toolchain-snapshot-9~svn362543/lib/DebugInfo/DWARF -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/DebugInfo/DWARF -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/DebugInfo/DWARF/DWARFContext.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/lib/DebugInfo/DWARF/DWARFContext.cpp

1//===- DWARFContext.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/DebugInfo/DWARF/DWARFContext.h"
10#include "llvm/ADT/STLExtras.h"
11#include "llvm/ADT/SmallString.h"
12#include "llvm/ADT/SmallVector.h"
13#include "llvm/ADT/StringRef.h"
14#include "llvm/ADT/StringSwitch.h"
15#include "llvm/BinaryFormat/Dwarf.h"
16#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
17#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
18#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
19#include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h"
20#include "llvm/DebugInfo/DWARF/DWARFDebugArangeSet.h"
21#include "llvm/DebugInfo/DWARF/DWARFDebugAranges.h"
22#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
23#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
24#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
25#include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
26#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
27#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
28#include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
29#include "llvm/DebugInfo/DWARF/DWARFDie.h"
30#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
31#include "llvm/DebugInfo/DWARF/DWARFGdbIndex.h"
32#include "llvm/DebugInfo/DWARF/DWARFSection.h"
33#include "llvm/DebugInfo/DWARF/DWARFUnitIndex.h"
34#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
35#include "llvm/MC/MCRegisterInfo.h"
36#include "llvm/Object/Decompressor.h"
37#include "llvm/Object/MachO.h"
38#include "llvm/Object/ObjectFile.h"
39#include "llvm/Object/RelocationResolver.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/DataExtractor.h"
42#include "llvm/Support/Error.h"
43#include "llvm/Support/Format.h"
44#include "llvm/Support/MemoryBuffer.h"
45#include "llvm/Support/Path.h"
46#include "llvm/Support/TargetRegistry.h"
47#include "llvm/Support/WithColor.h"
48#include "llvm/Support/raw_ostream.h"
49#include <algorithm>
50#include <cstdint>
51#include <deque>
52#include <map>
53#include <string>
54#include <utility>
55#include <vector>
56
57using namespace llvm;
58using namespace dwarf;
59using namespace object;
60
61#define DEBUG_TYPE"dwarf" "dwarf"
62
63using DWARFLineTable = DWARFDebugLine::LineTable;
64using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind;
65using FunctionNameKind = DILineInfoSpecifier::FunctionNameKind;
66
67DWARFContext::DWARFContext(std::unique_ptr<const DWARFObject> DObj,
68 std::string DWPName)
69 : DIContext(CK_DWARF), DWPName(std::move(DWPName)), DObj(std::move(DObj)) {}
70
71DWARFContext::~DWARFContext() = default;
72
73/// Dump the UUID load command.
74static void dumpUUID(raw_ostream &OS, const ObjectFile &Obj) {
75 auto *MachO = dyn_cast<MachOObjectFile>(&Obj);
76 if (!MachO)
77 return;
78 for (auto LC : MachO->load_commands()) {
79 raw_ostream::uuid_t UUID;
80 if (LC.C.cmd == MachO::LC_UUID) {
81 if (LC.C.cmdsize < sizeof(UUID) + sizeof(LC.C)) {
82 OS << "error: UUID load command is too short.\n";
83 return;
84 }
85 OS << "UUID: ";
86 memcpy(&UUID, LC.Ptr+sizeof(LC.C), sizeof(UUID));
87 OS.write_uuid(UUID);
88 Triple T = MachO->getArchTriple();
89 OS << " (" << T.getArchName() << ')';
90 OS << ' ' << MachO->getFileName() << '\n';
91 }
92 }
93}
94
95using ContributionCollection =
96 std::vector<Optional<StrOffsetsContributionDescriptor>>;
97
98// Collect all the contributions to the string offsets table from all units,
99// sort them by their starting offsets and remove duplicates.
100static ContributionCollection
101collectContributionData(DWARFContext::unit_iterator_range Units) {
102 ContributionCollection Contributions;
103 for (const auto &U : Units)
104 if (const auto &C = U->getStringOffsetsTableContribution())
105 Contributions.push_back(C);
106 // Sort the contributions so that any invalid ones are placed at
107 // the start of the contributions vector. This way they are reported
108 // first.
109 llvm::sort(Contributions,
110 [](const Optional<StrOffsetsContributionDescriptor> &L,
111 const Optional<StrOffsetsContributionDescriptor> &R) {
112 if (L && R)
113 return L->Base < R->Base;
114 return R.hasValue();
115 });
116
117 // Uniquify contributions, as it is possible that units (specifically
118 // type units in dwo or dwp files) share contributions. We don't want
119 // to report them more than once.
120 Contributions.erase(
121 std::unique(Contributions.begin(), Contributions.end(),
122 [](const Optional<StrOffsetsContributionDescriptor> &L,
123 const Optional<StrOffsetsContributionDescriptor> &R) {
124 if (L && R)
125 return L->Base == R->Base && L->Size == R->Size;
126 return false;
127 }),
128 Contributions.end());
129 return Contributions;
130}
131
132static void dumpDWARFv5StringOffsetsSection(
133 raw_ostream &OS, StringRef SectionName, const DWARFObject &Obj,
134 const DWARFSection &StringOffsetsSection, StringRef StringSection,
135 DWARFContext::unit_iterator_range Units, bool LittleEndian) {
136 auto Contributions = collectContributionData(Units);
137 DWARFDataExtractor StrOffsetExt(Obj, StringOffsetsSection, LittleEndian, 0);
138 DataExtractor StrData(StringSection, LittleEndian, 0);
139 uint64_t SectionSize = StringOffsetsSection.Data.size();
140 uint32_t Offset = 0;
141 for (auto &Contribution : Contributions) {
142 // Report an ill-formed contribution.
143 if (!Contribution) {
144 OS << "error: invalid contribution to string offsets table in section ."
145 << SectionName << ".\n";
146 return;
147 }
148
149 dwarf::DwarfFormat Format = Contribution->getFormat();
150 uint16_t Version = Contribution->getVersion();
151 uint64_t ContributionHeader = Contribution->Base;
152 // In DWARF v5 there is a contribution header that immediately precedes
153 // the string offsets base (the location we have previously retrieved from
154 // the CU DIE's DW_AT_str_offsets attribute). The header is located either
155 // 8 or 16 bytes before the base, depending on the contribution's format.
156 if (Version >= 5)
157 ContributionHeader -= Format == DWARF32 ? 8 : 16;
158
159 // Detect overlapping contributions.
160 if (Offset > ContributionHeader) {
161 WithColor::error()
162 << "overlapping contributions to string offsets table in section ."
163 << SectionName << ".\n";
164 return;
165 }
166 // Report a gap in the table.
167 if (Offset < ContributionHeader) {
168 OS << format("0x%8.8x: Gap, length = ", Offset);
169 OS << (ContributionHeader - Offset) << "\n";
170 }
171 OS << format("0x%8.8x: ", (uint32_t)ContributionHeader);
172 // In DWARF v5 the contribution size in the descriptor does not equal
173 // the originally encoded length (it does not contain the length of the
174 // version field and the padding, a total of 4 bytes). Add them back in
175 // for reporting.
176 OS << "Contribution size = " << (Contribution->Size + (Version < 5 ? 0 : 4))
177 << ", Format = " << (Format == DWARF32 ? "DWARF32" : "DWARF64")
178 << ", Version = " << Version << "\n";
179
180 Offset = Contribution->Base;
181 unsigned EntrySize = Contribution->getDwarfOffsetByteSize();
182 while (Offset - Contribution->Base < Contribution->Size) {
183 OS << format("0x%8.8x: ", Offset);
184 // FIXME: We can only extract strings if the offset fits in 32 bits.
185 uint64_t StringOffset =
186 StrOffsetExt.getRelocatedValue(EntrySize, &Offset);
187 // Extract the string if we can and display it. Otherwise just report
188 // the offset.
189 if (StringOffset <= std::numeric_limits<uint32_t>::max()) {
190 uint32_t StringOffset32 = (uint32_t)StringOffset;
191 OS << format("%8.8x ", StringOffset32);
192 const char *S = StrData.getCStr(&StringOffset32);
193 if (S)
194 OS << format("\"%s\"", S);
195 } else
196 OS << format("%16.16" PRIx64"l" "x" " ", StringOffset);
197 OS << "\n";
198 }
199 }
200 // Report a gap at the end of the table.
201 if (Offset < SectionSize) {
202 OS << format("0x%8.8x: Gap, length = ", Offset);
203 OS << (SectionSize - Offset) << "\n";
204 }
205}
206
207// Dump a DWARF string offsets section. This may be a DWARF v5 formatted
208// string offsets section, where each compile or type unit contributes a
209// number of entries (string offsets), with each contribution preceded by
210// a header containing size and version number. Alternatively, it may be a
211// monolithic series of string offsets, as generated by the pre-DWARF v5
212// implementation of split DWARF.
213static void dumpStringOffsetsSection(raw_ostream &OS, StringRef SectionName,
214 const DWARFObject &Obj,
215 const DWARFSection &StringOffsetsSection,
216 StringRef StringSection,
217 DWARFContext::unit_iterator_range Units,
218 bool LittleEndian, unsigned MaxVersion) {
219 // If we have at least one (compile or type) unit with DWARF v5 or greater,
220 // we assume that the section is formatted like a DWARF v5 string offsets
221 // section.
222 if (MaxVersion >= 5)
223 dumpDWARFv5StringOffsetsSection(OS, SectionName, Obj, StringOffsetsSection,
224 StringSection, Units, LittleEndian);
225 else {
226 DataExtractor strOffsetExt(StringOffsetsSection.Data, LittleEndian, 0);
227 uint32_t offset = 0;
228 uint64_t size = StringOffsetsSection.Data.size();
229 // Ensure that size is a multiple of the size of an entry.
230 if (size & ((uint64_t)(sizeof(uint32_t) - 1))) {
231 OS << "error: size of ." << SectionName << " is not a multiple of "
232 << sizeof(uint32_t) << ".\n";
233 size &= -(uint64_t)sizeof(uint32_t);
234 }
235 DataExtractor StrData(StringSection, LittleEndian, 0);
236 while (offset < size) {
237 OS << format("0x%8.8x: ", offset);
238 uint32_t StringOffset = strOffsetExt.getU32(&offset);
239 OS << format("%8.8x ", StringOffset);
240 const char *S = StrData.getCStr(&StringOffset);
241 if (S)
242 OS << format("\"%s\"", S);
243 OS << "\n";
244 }
245 }
246}
247
248// Dump the .debug_addr section.
249static void dumpAddrSection(raw_ostream &OS, DWARFDataExtractor &AddrData,
250 DIDumpOptions DumpOpts, uint16_t Version,
251 uint8_t AddrSize) {
252 uint32_t Offset = 0;
253 while (AddrData.isValidOffset(Offset)) {
254 DWARFDebugAddrTable AddrTable;
255 uint32_t TableOffset = Offset;
256 if (Error Err = AddrTable.extract(AddrData, &Offset, Version, AddrSize,
257 DWARFContext::dumpWarning)) {
258 WithColor::error() << toString(std::move(Err)) << '\n';
259 // Keep going after an error, if we can, assuming that the length field
260 // could be read. If it couldn't, stop reading the section.
261 if (!AddrTable.hasValidLength())
262 break;
263 uint64_t Length = AddrTable.getLength();
264 Offset = TableOffset + Length;
265 } else {
266 AddrTable.dump(OS, DumpOpts);
267 }
268 }
269}
270
271// Dump the .debug_rnglists or .debug_rnglists.dwo section (DWARF v5).
272static void dumpRnglistsSection(
273 raw_ostream &OS, DWARFDataExtractor &rnglistData,
274 llvm::function_ref<Optional<object::SectionedAddress>(uint32_t)>
275 LookupPooledAddress,
276 DIDumpOptions DumpOpts) {
277 uint32_t Offset = 0;
278 while (rnglistData.isValidOffset(Offset)) {
279 llvm::DWARFDebugRnglistTable Rnglists;
280 uint32_t TableOffset = Offset;
281 if (Error Err = Rnglists.extract(rnglistData, &Offset)) {
282 WithColor::error() << toString(std::move(Err)) << '\n';
283 uint64_t Length = Rnglists.length();
284 // Keep going after an error, if we can, assuming that the length field
285 // could be read. If it couldn't, stop reading the section.
286 if (Length == 0)
287 break;
288 Offset = TableOffset + Length;
289 } else {
290 Rnglists.dump(OS, LookupPooledAddress, DumpOpts);
291 }
292 }
293}
294
295static void dumpLoclistsSection(raw_ostream &OS, DIDumpOptions DumpOpts,
296 DWARFDataExtractor Data,
297 const MCRegisterInfo *MRI,
298 Optional<uint64_t> DumpOffset) {
299 uint32_t Offset = 0;
300 DWARFDebugLoclists Loclists;
301
302 DWARFListTableHeader Header(".debug_loclists", "locations");
303 if (Error E = Header.extract(Data, &Offset)) {
304 WithColor::error() << toString(std::move(E)) << '\n';
305 return;
306 }
307
308 Header.dump(OS, DumpOpts);
309 DataExtractor LocData(Data.getData().drop_front(Offset),
310 Data.isLittleEndian(), Header.getAddrSize());
311
312 Loclists.parse(LocData, Header.getVersion());
313 Loclists.dump(OS, 0, MRI, DumpOffset);
314}
315
316void DWARFContext::dump(
317 raw_ostream &OS, DIDumpOptions DumpOpts,
318 std::array<Optional<uint64_t>, DIDT_ID_Count> DumpOffsets) {
319
320 uint64_t DumpType = DumpOpts.DumpType;
321
322 StringRef Extension = sys::path::extension(DObj->getFileName());
323 bool IsDWO = (Extension == ".dwo") || (Extension == ".dwp");
324
325 // Print UUID header.
326 const auto *ObjFile = DObj->getFile();
327 if (DumpType & DIDT_UUID)
328 dumpUUID(OS, *ObjFile);
329
330 // Print a header for each explicitly-requested section.
331 // Otherwise just print one for non-empty sections.
332 // Only print empty .dwo section headers when dumping a .dwo file.
333 bool Explicit = DumpType != DIDT_All && !IsDWO;
334 bool ExplicitDWO = Explicit && IsDWO;
335 auto shouldDump = [&](bool Explicit, const char *Name, unsigned ID,
336 StringRef Section) -> Optional<uint64_t> * {
337 unsigned Mask = 1U << ID;
338 bool Should = (DumpType & Mask) && (Explicit || !Section.empty());
339 if (!Should)
340 return nullptr;
341 OS << "\n" << Name << " contents:\n";
342 return &DumpOffsets[ID];
343 };
344
345 // Dump individual sections.
346 if (shouldDump(Explicit, ".debug_abbrev", DIDT_ID_DebugAbbrev,
347 DObj->getAbbrevSection()))
348 getDebugAbbrev()->dump(OS);
349 if (shouldDump(ExplicitDWO, ".debug_abbrev.dwo", DIDT_ID_DebugAbbrev,
350 DObj->getAbbrevDWOSection()))
351 getDebugAbbrevDWO()->dump(OS);
352
353 auto dumpDebugInfo = [&](const char *Name, unit_iterator_range Units) {
354 OS << '\n' << Name << " contents:\n";
355 if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugInfo])
356 for (const auto &U : Units)
357 U->getDIEForOffset(DumpOffset.getValue())
358 .dump(OS, 0, DumpOpts.noImplicitRecursion());
359 else
360 for (const auto &U : Units)
361 U->dump(OS, DumpOpts);
362 };
363 if ((DumpType & DIDT_DebugInfo)) {
364 if (Explicit || getNumCompileUnits())
365 dumpDebugInfo(".debug_info", info_section_units());
366 if (ExplicitDWO || getNumDWOCompileUnits())
367 dumpDebugInfo(".debug_info.dwo", dwo_info_section_units());
368 }
369
370 auto dumpDebugType = [&](const char *Name, unit_iterator_range Units) {
371 OS << '\n' << Name << " contents:\n";
372 for (const auto &U : Units)
373 if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugTypes])
374 U->getDIEForOffset(*DumpOffset)
375 .dump(OS, 0, DumpOpts.noImplicitRecursion());
376 else
377 U->dump(OS, DumpOpts);
378 };
379 if ((DumpType & DIDT_DebugTypes)) {
380 if (Explicit || getNumTypeUnits())
381 dumpDebugType(".debug_types", types_section_units());
382 if (ExplicitDWO || getNumDWOTypeUnits())
383 dumpDebugType(".debug_types.dwo", dwo_types_section_units());
384 }
385
386 if (const auto *Off = shouldDump(Explicit, ".debug_loc", DIDT_ID_DebugLoc,
387 DObj->getLocSection().Data)) {
388 getDebugLoc()->dump(OS, getRegisterInfo(), *Off);
389 }
390 if (const auto *Off =
391 shouldDump(Explicit, ".debug_loclists", DIDT_ID_DebugLoclists,
392 DObj->getLoclistsSection().Data)) {
393 DWARFDataExtractor Data(*DObj, DObj->getLoclistsSection(), isLittleEndian(),
394 0);
395 dumpLoclistsSection(OS, DumpOpts, Data, getRegisterInfo(), *Off);
396 }
397 if (const auto *Off =
398 shouldDump(ExplicitDWO, ".debug_loc.dwo", DIDT_ID_DebugLoc,
399 DObj->getLocDWOSection().Data)) {
400 getDebugLocDWO()->dump(OS, 0, getRegisterInfo(), *Off);
401 }
402
403 if (const auto *Off = shouldDump(Explicit, ".debug_frame", DIDT_ID_DebugFrame,
404 DObj->getDebugFrameSection()))
405 getDebugFrame()->dump(OS, getRegisterInfo(), *Off);
406
407 if (const auto *Off = shouldDump(Explicit, ".eh_frame", DIDT_ID_DebugFrame,
408 DObj->getEHFrameSection()))
409 getEHFrame()->dump(OS, getRegisterInfo(), *Off);
410
411 if (DumpType & DIDT_DebugMacro) {
412 if (Explicit || !getDebugMacro()->empty()) {
413 OS << "\n.debug_macinfo contents:\n";
414 getDebugMacro()->dump(OS);
415 }
416 }
417
418 if (shouldDump(Explicit, ".debug_aranges", DIDT_ID_DebugAranges,
419 DObj->getARangeSection())) {
420 uint32_t offset = 0;
421 DataExtractor arangesData(DObj->getARangeSection(), isLittleEndian(), 0);
422 DWARFDebugArangeSet set;
423 while (set.extract(arangesData, &offset))
424 set.dump(OS);
425 }
426
427 auto DumpLineSection = [&](DWARFDebugLine::SectionParser Parser,
428 DIDumpOptions DumpOpts,
429 Optional<uint64_t> DumpOffset) {
430 while (!Parser.done()) {
431 if (DumpOffset && Parser.getOffset() != *DumpOffset) {
432 Parser.skip(dumpWarning);
433 continue;
434 }
435 OS << "debug_line[" << format("0x%8.8x", Parser.getOffset()) << "]\n";
436 if (DumpOpts.Verbose) {
437 Parser.parseNext(dumpWarning, dumpWarning, &OS);
438 } else {
439 DWARFDebugLine::LineTable LineTable =
440 Parser.parseNext(dumpWarning, dumpWarning);
441 LineTable.dump(OS, DumpOpts);
442 }
443 }
444 };
445
446 if (const auto *Off = shouldDump(Explicit, ".debug_line", DIDT_ID_DebugLine,
447 DObj->getLineSection().Data)) {
448 DWARFDataExtractor LineData(*DObj, DObj->getLineSection(), isLittleEndian(),
449 0);
450 DWARFDebugLine::SectionParser Parser(LineData, *this, compile_units(),
451 type_units());
452 DumpLineSection(Parser, DumpOpts, *Off);
453 }
454
455 if (const auto *Off =
456 shouldDump(ExplicitDWO, ".debug_line.dwo", DIDT_ID_DebugLine,
457 DObj->getLineDWOSection().Data)) {
458 DWARFDataExtractor LineData(*DObj, DObj->getLineDWOSection(),
459 isLittleEndian(), 0);
460 DWARFDebugLine::SectionParser Parser(LineData, *this, dwo_compile_units(),
461 dwo_type_units());
462 DumpLineSection(Parser, DumpOpts, *Off);
463 }
464
465 if (shouldDump(Explicit, ".debug_cu_index", DIDT_ID_DebugCUIndex,
466 DObj->getCUIndexSection())) {
467 getCUIndex().dump(OS);
468 }
469
470 if (shouldDump(Explicit, ".debug_tu_index", DIDT_ID_DebugTUIndex,
471 DObj->getTUIndexSection())) {
472 getTUIndex().dump(OS);
473 }
474
475 if (shouldDump(Explicit, ".debug_str", DIDT_ID_DebugStr,
476 DObj->getStringSection())) {
477 DataExtractor strData(DObj->getStringSection(), isLittleEndian(), 0);
478 uint32_t offset = 0;
479 uint32_t strOffset = 0;
480 while (const char *s = strData.getCStr(&offset)) {
481 OS << format("0x%8.8x: \"%s\"\n", strOffset, s);
482 strOffset = offset;
483 }
484 }
485 if (shouldDump(ExplicitDWO, ".debug_str.dwo", DIDT_ID_DebugStr,
486 DObj->getStringDWOSection())) {
487 DataExtractor strDWOData(DObj->getStringDWOSection(), isLittleEndian(), 0);
488 uint32_t offset = 0;
489 uint32_t strDWOOffset = 0;
490 while (const char *s = strDWOData.getCStr(&offset)) {
491 OS << format("0x%8.8x: \"%s\"\n", strDWOOffset, s);
492 strDWOOffset = offset;
493 }
494 }
495 if (shouldDump(Explicit, ".debug_line_str", DIDT_ID_DebugLineStr,
496 DObj->getLineStringSection())) {
497 DataExtractor strData(DObj->getLineStringSection(), isLittleEndian(), 0);
498 uint32_t offset = 0;
499 uint32_t strOffset = 0;
500 while (const char *s = strData.getCStr(&offset)) {
501 OS << format("0x%8.8x: \"", strOffset);
502 OS.write_escaped(s);
503 OS << "\"\n";
504 strOffset = offset;
505 }
506 }
507
508 if (shouldDump(Explicit, ".debug_addr", DIDT_ID_DebugAddr,
509 DObj->getAddrSection().Data)) {
510 DWARFDataExtractor AddrData(*DObj, DObj->getAddrSection(),
511 isLittleEndian(), 0);
512 dumpAddrSection(OS, AddrData, DumpOpts, getMaxVersion(), getCUAddrSize());
513 }
514
515 if (shouldDump(Explicit, ".debug_ranges", DIDT_ID_DebugRanges,
516 DObj->getRangeSection().Data)) {
517 uint8_t savedAddressByteSize = getCUAddrSize();
518 DWARFDataExtractor rangesData(*DObj, DObj->getRangeSection(),
519 isLittleEndian(), savedAddressByteSize);
520 uint32_t offset = 0;
521 DWARFDebugRangeList rangeList;
522 while (rangesData.isValidOffset(offset)) {
523 if (Error E = rangeList.extract(rangesData, &offset)) {
524 WithColor::error() << toString(std::move(E)) << '\n';
525 break;
526 }
527 rangeList.dump(OS);
528 }
529 }
530
531 auto LookupPooledAddress = [&](uint32_t Index) -> Optional<SectionedAddress> {
532 const auto &CUs = compile_units();
533 auto I = CUs.begin();
534 if (I == CUs.end())
535 return None;
536 return (*I)->getAddrOffsetSectionItem(Index);
537 };
538
539 if (shouldDump(Explicit, ".debug_rnglists", DIDT_ID_DebugRnglists,
540 DObj->getRnglistsSection().Data)) {
541 DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsSection(),
542 isLittleEndian(), 0);
543 dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts);
544 }
545
546 if (shouldDump(ExplicitDWO, ".debug_rnglists.dwo", DIDT_ID_DebugRnglists,
547 DObj->getRnglistsDWOSection().Data)) {
548 DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsDWOSection(),
549 isLittleEndian(), 0);
550 dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts);
551 }
552
553 if (shouldDump(Explicit, ".debug_pubnames", DIDT_ID_DebugPubnames,
554 DObj->getPubNamesSection().Data))
555 DWARFDebugPubTable(*DObj, DObj->getPubNamesSection(), isLittleEndian(), false)
556 .dump(OS);
557
558 if (shouldDump(Explicit, ".debug_pubtypes", DIDT_ID_DebugPubtypes,
559 DObj->getPubTypesSection().Data))
560 DWARFDebugPubTable(*DObj, DObj->getPubTypesSection(), isLittleEndian(), false)
561 .dump(OS);
562
563 if (shouldDump(Explicit, ".debug_gnu_pubnames", DIDT_ID_DebugGnuPubnames,
564 DObj->getGnuPubNamesSection().Data))
565 DWARFDebugPubTable(*DObj, DObj->getGnuPubNamesSection(), isLittleEndian(),
566 true /* GnuStyle */)
567 .dump(OS);
568
569 if (shouldDump(Explicit, ".debug_gnu_pubtypes", DIDT_ID_DebugGnuPubtypes,
570 DObj->getGnuPubTypesSection().Data))
571 DWARFDebugPubTable(*DObj, DObj->getGnuPubTypesSection(), isLittleEndian(),
572 true /* GnuStyle */)
573 .dump(OS);
574
575 if (shouldDump(Explicit, ".debug_str_offsets", DIDT_ID_DebugStrOffsets,
576 DObj->getStringOffsetSection().Data))
577 dumpStringOffsetsSection(OS, "debug_str_offsets", *DObj,
578 DObj->getStringOffsetSection(),
579 DObj->getStringSection(), normal_units(),
580 isLittleEndian(), getMaxVersion());
581 if (shouldDump(ExplicitDWO, ".debug_str_offsets.dwo", DIDT_ID_DebugStrOffsets,
582 DObj->getStringOffsetDWOSection().Data))
583 dumpStringOffsetsSection(OS, "debug_str_offsets.dwo", *DObj,
584 DObj->getStringOffsetDWOSection(),
585 DObj->getStringDWOSection(), dwo_units(),
586 isLittleEndian(), getMaxDWOVersion());
587
588 if (shouldDump(Explicit, ".gdb_index", DIDT_ID_GdbIndex,
589 DObj->getGdbIndexSection())) {
590 getGdbIndex().dump(OS);
591 }
592
593 if (shouldDump(Explicit, ".apple_names", DIDT_ID_AppleNames,
594 DObj->getAppleNamesSection().Data))
595 getAppleNames().dump(OS);
596
597 if (shouldDump(Explicit, ".apple_types", DIDT_ID_AppleTypes,
598 DObj->getAppleTypesSection().Data))
599 getAppleTypes().dump(OS);
600
601 if (shouldDump(Explicit, ".apple_namespaces", DIDT_ID_AppleNamespaces,
602 DObj->getAppleNamespacesSection().Data))
603 getAppleNamespaces().dump(OS);
604
605 if (shouldDump(Explicit, ".apple_objc", DIDT_ID_AppleObjC,
606 DObj->getAppleObjCSection().Data))
607 getAppleObjC().dump(OS);
608 if (shouldDump(Explicit, ".debug_names", DIDT_ID_DebugNames,
609 DObj->getDebugNamesSection().Data))
610 getDebugNames().dump(OS);
611}
612
613DWARFCompileUnit *DWARFContext::getDWOCompileUnitForHash(uint64_t Hash) {
614 parseDWOUnits(LazyParse);
615
616 if (const auto &CUI = getCUIndex()) {
617 if (const auto *R = CUI.getFromHash(Hash))
618 return dyn_cast_or_null<DWARFCompileUnit>(
619 DWOUnits.getUnitForIndexEntry(*R));
620 return nullptr;
621 }
622
623 // If there's no index, just search through the CUs in the DWO - there's
624 // probably only one unless this is something like LTO - though an in-process
625 // built/cached lookup table could be used in that case to improve repeated
626 // lookups of different CUs in the DWO.
627 for (const auto &DWOCU : dwo_compile_units()) {
628 // Might not have parsed DWO ID yet.
629 if (!DWOCU->getDWOId()) {
630 if (Optional<uint64_t> DWOId =
631 toUnsigned(DWOCU->getUnitDIE().find(DW_AT_GNU_dwo_id)))
632 DWOCU->setDWOId(*DWOId);
633 else
634 // No DWO ID?
635 continue;
636 }
637 if (DWOCU->getDWOId() == Hash)
638 return dyn_cast<DWARFCompileUnit>(DWOCU.get());
639 }
640 return nullptr;
641}
642
643DWARFDie DWARFContext::getDIEForOffset(uint32_t Offset) {
644 parseNormalUnits();
645 if (auto *CU = NormalUnits.getUnitForOffset(Offset))
646 return CU->getDIEForOffset(Offset);
647 return DWARFDie();
648}
649
650bool DWARFContext::verify(raw_ostream &OS, DIDumpOptions DumpOpts) {
651 bool Success = true;
652 DWARFVerifier verifier(OS, *this, DumpOpts);
653
654 Success &= verifier.handleDebugAbbrev();
655 if (DumpOpts.DumpType & DIDT_DebugInfo)
656 Success &= verifier.handleDebugInfo();
657 if (DumpOpts.DumpType & DIDT_DebugLine)
658 Success &= verifier.handleDebugLine();
659 Success &= verifier.handleAccelTables();
660 return Success;
661}
662
663const DWARFUnitIndex &DWARFContext::getCUIndex() {
664 if (CUIndex)
665 return *CUIndex;
666
667 DataExtractor CUIndexData(DObj->getCUIndexSection(), isLittleEndian(), 0);
668
669 CUIndex = llvm::make_unique<DWARFUnitIndex>(DW_SECT_INFO);
670 CUIndex->parse(CUIndexData);
671 return *CUIndex;
672}
673
674const DWARFUnitIndex &DWARFContext::getTUIndex() {
675 if (TUIndex)
676 return *TUIndex;
677
678 DataExtractor TUIndexData(DObj->getTUIndexSection(), isLittleEndian(), 0);
679
680 TUIndex = llvm::make_unique<DWARFUnitIndex>(DW_SECT_TYPES);
681 TUIndex->parse(TUIndexData);
682 return *TUIndex;
683}
684
685DWARFGdbIndex &DWARFContext::getGdbIndex() {
686 if (GdbIndex)
687 return *GdbIndex;
688
689 DataExtractor GdbIndexData(DObj->getGdbIndexSection(), true /*LE*/, 0);
690 GdbIndex = llvm::make_unique<DWARFGdbIndex>();
691 GdbIndex->parse(GdbIndexData);
692 return *GdbIndex;
693}
694
695const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() {
696 if (Abbrev)
697 return Abbrev.get();
698
699 DataExtractor abbrData(DObj->getAbbrevSection(), isLittleEndian(), 0);
700
701 Abbrev.reset(new DWARFDebugAbbrev());
702 Abbrev->extract(abbrData);
703 return Abbrev.get();
704}
705
706const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() {
707 if (AbbrevDWO)
708 return AbbrevDWO.get();
709
710 DataExtractor abbrData(DObj->getAbbrevDWOSection(), isLittleEndian(), 0);
711 AbbrevDWO.reset(new DWARFDebugAbbrev());
712 AbbrevDWO->extract(abbrData);
713 return AbbrevDWO.get();
714}
715
716const DWARFDebugLoc *DWARFContext::getDebugLoc() {
717 if (Loc)
718 return Loc.get();
719
720 Loc.reset(new DWARFDebugLoc);
721 // Assume all units have the same address byte size.
722 if (getNumCompileUnits()) {
723 DWARFDataExtractor LocData(*DObj, DObj->getLocSection(), isLittleEndian(),
724 getUnitAtIndex(0)->getAddressByteSize());
725 Loc->parse(LocData);
726 }
727 return Loc.get();
728}
729
730const DWARFDebugLoclists *DWARFContext::getDebugLocDWO() {
731 if (LocDWO)
732 return LocDWO.get();
733
734 LocDWO.reset(new DWARFDebugLoclists());
735 // Assume all compile units have the same address byte size.
736 // FIXME: We don't need AddressSize for split DWARF since relocatable
737 // addresses cannot appear there. At the moment DWARFExpression requires it.
738 DataExtractor LocData(DObj->getLocDWOSection().Data, isLittleEndian(), 4);
739 // Use version 4. DWO does not support the DWARF v5 .debug_loclists yet and
740 // that means we are parsing the new style .debug_loc (pre-standatized version
741 // of the .debug_loclists).
742 LocDWO->parse(LocData, 4 /* Version */);
743 return LocDWO.get();
744}
745
746const DWARFDebugAranges *DWARFContext::getDebugAranges() {
747 if (Aranges)
748 return Aranges.get();
749
750 Aranges.reset(new DWARFDebugAranges());
751 Aranges->generate(this);
752 return Aranges.get();
753}
754
755const DWARFDebugFrame *DWARFContext::getDebugFrame() {
756 if (DebugFrame)
757 return DebugFrame.get();
758
759 // There's a "bug" in the DWARFv3 standard with respect to the target address
760 // size within debug frame sections. While DWARF is supposed to be independent
761 // of its container, FDEs have fields with size being "target address size",
762 // which isn't specified in DWARF in general. It's only specified for CUs, but
763 // .eh_frame can appear without a .debug_info section. Follow the example of
764 // other tools (libdwarf) and extract this from the container (ObjectFile
765 // provides this information). This problem is fixed in DWARFv4
766 // See this dwarf-discuss discussion for more details:
767 // http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html
768 DWARFDataExtractor debugFrameData(DObj->getDebugFrameSection(),
769 isLittleEndian(), DObj->getAddressSize());
770 DebugFrame.reset(new DWARFDebugFrame(getArch(), false /* IsEH */));
771 DebugFrame->parse(debugFrameData);
772 return DebugFrame.get();
773}
774
775const DWARFDebugFrame *DWARFContext::getEHFrame() {
776 if (EHFrame)
777 return EHFrame.get();
778
779 DWARFDataExtractor debugFrameData(DObj->getEHFrameSection(), isLittleEndian(),
780 DObj->getAddressSize());
781 DebugFrame.reset(new DWARFDebugFrame(getArch(), true /* IsEH */));
782 DebugFrame->parse(debugFrameData);
783 return DebugFrame.get();
784}
785
786const DWARFDebugMacro *DWARFContext::getDebugMacro() {
787 if (Macro)
788 return Macro.get();
789
790 DataExtractor MacinfoData(DObj->getMacinfoSection(), isLittleEndian(), 0);
791 Macro.reset(new DWARFDebugMacro());
792 Macro->parse(MacinfoData);
793 return Macro.get();
794}
795
796template <typename T>
797static T &getAccelTable(std::unique_ptr<T> &Cache, const DWARFObject &Obj,
798 const DWARFSection &Section, StringRef StringSection,
799 bool IsLittleEndian) {
800 if (Cache)
801 return *Cache;
802 DWARFDataExtractor AccelSection(Obj, Section, IsLittleEndian, 0);
803 DataExtractor StrData(StringSection, IsLittleEndian, 0);
804 Cache.reset(new T(AccelSection, StrData));
805 if (Error E = Cache->extract())
806 llvm::consumeError(std::move(E));
807 return *Cache;
808}
809
810const DWARFDebugNames &DWARFContext::getDebugNames() {
811 return getAccelTable(Names, *DObj, DObj->getDebugNamesSection(),
812 DObj->getStringSection(), isLittleEndian());
813}
814
815const AppleAcceleratorTable &DWARFContext::getAppleNames() {
816 return getAccelTable(AppleNames, *DObj, DObj->getAppleNamesSection(),
817 DObj->getStringSection(), isLittleEndian());
818}
819
820const AppleAcceleratorTable &DWARFContext::getAppleTypes() {
821 return getAccelTable(AppleTypes, *DObj, DObj->getAppleTypesSection(),
822 DObj->getStringSection(), isLittleEndian());
823}
824
825const AppleAcceleratorTable &DWARFContext::getAppleNamespaces() {
826 return getAccelTable(AppleNamespaces, *DObj,
827 DObj->getAppleNamespacesSection(),
828 DObj->getStringSection(), isLittleEndian());
829}
830
831const AppleAcceleratorTable &DWARFContext::getAppleObjC() {
832 return getAccelTable(AppleObjC, *DObj, DObj->getAppleObjCSection(),
833 DObj->getStringSection(), isLittleEndian());
834}
835
836const DWARFDebugLine::LineTable *
837DWARFContext::getLineTableForUnit(DWARFUnit *U) {
838 Expected<const DWARFDebugLine::LineTable *> ExpectedLineTable =
839 getLineTableForUnit(U, dumpWarning);
840 if (!ExpectedLineTable) {
841 dumpWarning(ExpectedLineTable.takeError());
842 return nullptr;
843 }
844 return *ExpectedLineTable;
845}
846
847Expected<const DWARFDebugLine::LineTable *> DWARFContext::getLineTableForUnit(
848 DWARFUnit *U, std::function<void(Error)> RecoverableErrorCallback) {
849 if (!Line)
850 Line.reset(new DWARFDebugLine);
851
852 auto UnitDIE = U->getUnitDIE();
853 if (!UnitDIE)
854 return nullptr;
855
856 auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list));
857 if (!Offset)
858 return nullptr; // No line table for this compile unit.
859
860 uint32_t stmtOffset = *Offset + U->getLineTableOffset();
861 // See if the line table is cached.
862 if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset))
863 return lt;
864
865 // Make sure the offset is good before we try to parse.
866 if (stmtOffset >= U->getLineSection().Data.size())
867 return nullptr;
868
869 // We have to parse it first.
870 DWARFDataExtractor lineData(*DObj, U->getLineSection(), isLittleEndian(),
871 U->getAddressByteSize());
872 return Line->getOrParseLineTable(lineData, stmtOffset, *this, U,
873 RecoverableErrorCallback);
874}
875
876void DWARFContext::parseNormalUnits() {
877 if (!NormalUnits.empty())
878 return;
879 DObj->forEachInfoSections([&](const DWARFSection &S) {
880 NormalUnits.addUnitsForSection(*this, S, DW_SECT_INFO);
881 });
882 NormalUnits.finishedInfoUnits();
883 DObj->forEachTypesSections([&](const DWARFSection &S) {
884 NormalUnits.addUnitsForSection(*this, S, DW_SECT_TYPES);
885 });
886}
887
888void DWARFContext::parseDWOUnits(bool Lazy) {
889 if (!DWOUnits.empty())
890 return;
891 DObj->forEachInfoDWOSections([&](const DWARFSection &S) {
892 DWOUnits.addUnitsForDWOSection(*this, S, DW_SECT_INFO, Lazy);
893 });
894 DWOUnits.finishedInfoUnits();
895 DObj->forEachTypesDWOSections([&](const DWARFSection &S) {
896 DWOUnits.addUnitsForDWOSection(*this, S, DW_SECT_TYPES, Lazy);
897 });
898}
899
900DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint32_t Offset) {
901 parseNormalUnits();
902 return dyn_cast_or_null<DWARFCompileUnit>(
903 NormalUnits.getUnitForOffset(Offset));
904}
905
906DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) {
907 // First, get the offset of the compile unit.
908 uint32_t CUOffset = getDebugAranges()->findAddress(Address);
909 // Retrieve the compile unit.
910 return getCompileUnitForOffset(CUOffset);
911}
912
913DWARFContext::DIEsForAddress DWARFContext::getDIEsForAddress(uint64_t Address) {
914 DIEsForAddress Result;
915
916 DWARFCompileUnit *CU = getCompileUnitForAddress(Address);
917 if (!CU)
918 return Result;
919
920 Result.CompileUnit = CU;
921 Result.FunctionDIE = CU->getSubroutineForAddress(Address);
922
923 std::vector<DWARFDie> Worklist;
924 Worklist.push_back(Result.FunctionDIE);
925 while (!Worklist.empty()) {
926 DWARFDie DIE = Worklist.back();
927 Worklist.pop_back();
928
929 if (!DIE.isValid())
930 continue;
931
932 if (DIE.getTag() == DW_TAG_lexical_block &&
933 DIE.addressRangeContainsAddress(Address)) {
934 Result.BlockDIE = DIE;
935 break;
936 }
937
938 for (auto Child : DIE)
939 Worklist.push_back(Child);
940 }
941
942 return Result;
943}
944
945/// TODO: change input parameter from "uint64_t Address"
946/// into "SectionedAddress Address"
947static bool getFunctionNameAndStartLineForAddress(DWARFCompileUnit *CU,
948 uint64_t Address,
949 FunctionNameKind Kind,
950 std::string &FunctionName,
951 uint32_t &StartLine) {
952 // The address may correspond to instruction in some inlined function,
953 // so we have to build the chain of inlined functions and take the
954 // name of the topmost function in it.
955 SmallVector<DWARFDie, 4> InlinedChain;
956 CU->getInlinedChainForAddress(Address, InlinedChain);
957 if (InlinedChain.empty())
958 return false;
959
960 const DWARFDie &DIE = InlinedChain[0];
961 bool FoundResult = false;
962 const char *Name = nullptr;
963 if (Kind != FunctionNameKind::None && (Name = DIE.getSubroutineName(Kind))) {
964 FunctionName = Name;
965 FoundResult = true;
966 }
967 if (auto DeclLineResult = DIE.getDeclLine()) {
968 StartLine = DeclLineResult;
969 FoundResult = true;
970 }
971
972 return FoundResult;
973}
974
975DILineInfo DWARFContext::getLineInfoForAddress(object::SectionedAddress Address,
976 DILineInfoSpecifier Spec) {
977 DILineInfo Result;
978
979 DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
980 if (!CU)
981 return Result;
982
983 getFunctionNameAndStartLineForAddress(CU, Address.Address, Spec.FNKind,
984 Result.FunctionName, Result.StartLine);
985 if (Spec.FLIKind != FileLineInfoKind::None) {
986 if (const DWARFLineTable *LineTable = getLineTableForUnit(CU)) {
987 LineTable->getFileLineInfoForAddress(
988 {Address.Address, Address.SectionIndex}, CU->getCompilationDir(),
989 Spec.FLIKind, Result);
990 }
991 }
992 return Result;
993}
994
995DILineInfoTable DWARFContext::getLineInfoForAddressRange(
996 object::SectionedAddress Address, uint64_t Size, DILineInfoSpecifier Spec) {
997 DILineInfoTable Lines;
998 DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
999 if (!CU)
1000 return Lines;
1001
1002 std::string FunctionName = "<invalid>";
1003 uint32_t StartLine = 0;
1004 getFunctionNameAndStartLineForAddress(CU, Address.Address, Spec.FNKind,
1005 FunctionName, StartLine);
1006
1007 // If the Specifier says we don't need FileLineInfo, just
1008 // return the top-most function at the starting address.
1009 if (Spec.FLIKind == FileLineInfoKind::None) {
1010 DILineInfo Result;
1011 Result.FunctionName = FunctionName;
1012 Result.StartLine = StartLine;
1013 Lines.push_back(std::make_pair(Address.Address, Result));
1014 return Lines;
1015 }
1016
1017 const DWARFLineTable *LineTable = getLineTableForUnit(CU);
1018
1019 // Get the index of row we're looking for in the line table.
1020 std::vector<uint32_t> RowVector;
1021 if (!LineTable->lookupAddressRange({Address.Address, Address.SectionIndex},
1022 Size, RowVector)) {
1023 return Lines;
1024 }
1025
1026 for (uint32_t RowIndex : RowVector) {
1027 // Take file number and line/column from the row.
1028 const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
1029 DILineInfo Result;
1030 LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(),
1031 Spec.FLIKind, Result.FileName);
1032 Result.FunctionName = FunctionName;
1033 Result.Line = Row.Line;
1034 Result.Column = Row.Column;
1035 Result.StartLine = StartLine;
1036 Lines.push_back(std::make_pair(Row.Address.Address, Result));
1037 }
1038
1039 return Lines;
1040}
1041
1042DIInliningInfo
1043DWARFContext::getInliningInfoForAddress(object::SectionedAddress Address,
1044 DILineInfoSpecifier Spec) {
1045 DIInliningInfo InliningInfo;
1046
1047 DWARFCompileUnit *CU = getCompileUnitForAddress(Address.Address);
1048 if (!CU)
1049 return InliningInfo;
1050
1051 const DWARFLineTable *LineTable = nullptr;
1052 SmallVector<DWARFDie, 4> InlinedChain;
1053 CU->getInlinedChainForAddress(Address.Address, InlinedChain);
1054 if (InlinedChain.size() == 0) {
1055 // If there is no DIE for address (e.g. it is in unavailable .dwo file),
1056 // try to at least get file/line info from symbol table.
1057 if (Spec.FLIKind != FileLineInfoKind::None) {
1058 DILineInfo Frame;
1059 LineTable = getLineTableForUnit(CU);
1060 if (LineTable && LineTable->getFileLineInfoForAddress(
1061 {Address.Address, Address.SectionIndex},
1062 CU->getCompilationDir(), Spec.FLIKind, Frame))
1063 InliningInfo.addFrame(Frame);
1064 }
1065 return InliningInfo;
1066 }
1067
1068 uint32_t CallFile = 0, CallLine = 0, CallColumn = 0, CallDiscriminator = 0;
1069 for (uint32_t i = 0, n = InlinedChain.size(); i != n; i++) {
1070 DWARFDie &FunctionDIE = InlinedChain[i];
1071 DILineInfo Frame;
1072 // Get function name if necessary.
1073 if (const char *Name = FunctionDIE.getSubroutineName(Spec.FNKind))
1074 Frame.FunctionName = Name;
1075 if (auto DeclLineResult = FunctionDIE.getDeclLine())
1076 Frame.StartLine = DeclLineResult;
1077 if (Spec.FLIKind != FileLineInfoKind::None) {
1078 if (i == 0) {
1079 // For the topmost frame, initialize the line table of this
1080 // compile unit and fetch file/line info from it.
1081 LineTable = getLineTableForUnit(CU);
1082 // For the topmost routine, get file/line info from line table.
1083 if (LineTable)
1084 LineTable->getFileLineInfoForAddress(
1085 {Address.Address, Address.SectionIndex}, CU->getCompilationDir(),
1086 Spec.FLIKind, Frame);
1087 } else {
1088 // Otherwise, use call file, call line and call column from
1089 // previous DIE in inlined chain.
1090 if (LineTable)
1091 LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(),
1092 Spec.FLIKind, Frame.FileName);
1093 Frame.Line = CallLine;
1094 Frame.Column = CallColumn;
1095 Frame.Discriminator = CallDiscriminator;
1096 }
1097 // Get call file/line/column of a current DIE.
1098 if (i + 1 < n) {
1099 FunctionDIE.getCallerFrame(CallFile, CallLine, CallColumn,
1100 CallDiscriminator);
1101 }
1102 }
1103 InliningInfo.addFrame(Frame);
1104 }
1105 return InliningInfo;
1106}
1107
1108std::shared_ptr<DWARFContext>
1109DWARFContext::getDWOContext(StringRef AbsolutePath) {
1110 if (auto S = DWP.lock()) {
1111 DWARFContext *Ctxt = S->Context.get();
1112 return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
1113 }
1114
1115 std::weak_ptr<DWOFile> *Entry = &DWOFiles[AbsolutePath];
1116
1117 if (auto S = Entry->lock()) {
1118 DWARFContext *Ctxt = S->Context.get();
1119 return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
1120 }
1121
1122 Expected<OwningBinary<ObjectFile>> Obj = [&] {
1123 if (!CheckedForDWP) {
1124 SmallString<128> DWPName;
1125 auto Obj = object::ObjectFile::createObjectFile(
1126 this->DWPName.empty()
1127 ? (DObj->getFileName() + ".dwp").toStringRef(DWPName)
1128 : StringRef(this->DWPName));
1129 if (Obj) {
1130 Entry = &DWP;
1131 return Obj;
1132 } else {
1133 CheckedForDWP = true;
1134 // TODO: Should this error be handled (maybe in a high verbosity mode)
1135 // before falling back to .dwo files?
1136 consumeError(Obj.takeError());
1137 }
1138 }
1139
1140 return object::ObjectFile::createObjectFile(AbsolutePath);
1141 }();
1142
1143 if (!Obj) {
1144 // TODO: Actually report errors helpfully.
1145 consumeError(Obj.takeError());
1146 return nullptr;
1147 }
1148
1149 auto S = std::make_shared<DWOFile>();
1150 S->File = std::move(Obj.get());
1151 S->Context = DWARFContext::create(*S->File.getBinary());
1152 *Entry = S;
1153 auto *Ctxt = S->Context.get();
1154 return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
1155}
1156
1157static Error createError(const Twine &Reason, llvm::Error E) {
1158 return make_error<StringError>(Reason + toString(std::move(E)),
12
Calling 'make_error<llvm::StringError, llvm::Twine, std::error_code>'
1159 inconvertibleErrorCode());
1160}
1161
1162/// SymInfo contains information about symbol: it's address
1163/// and section index which is -1LL for absolute symbols.
1164struct SymInfo {
1165 uint64_t Address;
1166 uint64_t SectionIndex;
1167};
1168
1169/// Returns the address of symbol relocation used against and a section index.
1170/// Used for futher relocations computation. Symbol's section load address is
1171static Expected<SymInfo> getSymbolInfo(const object::ObjectFile &Obj,
1172 const RelocationRef &Reloc,
1173 const LoadedObjectInfo *L,
1174 std::map<SymbolRef, SymInfo> &Cache) {
1175 SymInfo Ret = {0, (uint64_t)-1LL};
1176 object::section_iterator RSec = Obj.section_end();
1177 object::symbol_iterator Sym = Reloc.getSymbol();
1178
1179 std::map<SymbolRef, SymInfo>::iterator CacheIt = Cache.end();
1180 // First calculate the address of the symbol or section as it appears
1181 // in the object file
1182 if (Sym != Obj.symbol_end()) {
1183 bool New;
1184 std::tie(CacheIt, New) = Cache.insert({*Sym, {0, 0}});
1185 if (!New)
1186 return CacheIt->second;
1187
1188 Expected<uint64_t> SymAddrOrErr = Sym->getAddress();
1189 if (!SymAddrOrErr)
1190 return createError("failed to compute symbol address: ",
1191 SymAddrOrErr.takeError());
1192
1193 // Also remember what section this symbol is in for later
1194 auto SectOrErr = Sym->getSection();
1195 if (!SectOrErr)
1196 return createError("failed to get symbol section: ",
1197 SectOrErr.takeError());
1198
1199 RSec = *SectOrErr;
1200 Ret.Address = *SymAddrOrErr;
1201 } else if (auto *MObj = dyn_cast<MachOObjectFile>(&Obj)) {
1202 RSec = MObj->getRelocationSection(Reloc.getRawDataRefImpl());
1203 Ret.Address = RSec->getAddress();
1204 }
1205
1206 if (RSec != Obj.section_end())
1207 Ret.SectionIndex = RSec->getIndex();
1208
1209 // If we are given load addresses for the sections, we need to adjust:
1210 // SymAddr = (Address of Symbol Or Section in File) -
1211 // (Address of Section in File) +
1212 // (Load Address of Section)
1213 // RSec is now either the section being targeted or the section
1214 // containing the symbol being targeted. In either case,
1215 // we need to perform the same computation.
1216 if (L && RSec != Obj.section_end())
1217 if (uint64_t SectionLoadAddress = L->getSectionLoadAddress(*RSec))
1218 Ret.Address += SectionLoadAddress - RSec->getAddress();
1219
1220 if (CacheIt != Cache.end())
1221 CacheIt->second = Ret;
1222
1223 return Ret;
1224}
1225
1226static bool isRelocScattered(const object::ObjectFile &Obj,
1227 const RelocationRef &Reloc) {
1228 const MachOObjectFile *MachObj = dyn_cast<MachOObjectFile>(&Obj);
1229 if (!MachObj)
1230 return false;
1231 // MachO also has relocations that point to sections and
1232 // scattered relocations.
1233 auto RelocInfo = MachObj->getRelocation(Reloc.getRawDataRefImpl());
1234 return MachObj->isRelocationScattered(RelocInfo);
1235}
1236
1237ErrorPolicy DWARFContext::defaultErrorHandler(Error E) {
1238 WithColor::error() << toString(std::move(E)) << '\n';
1239 return ErrorPolicy::Continue;
1240}
1241
1242namespace {
1243struct DWARFSectionMap final : public DWARFSection {
1244 RelocAddrMap Relocs;
1245};
1246
1247class DWARFObjInMemory final : public DWARFObject {
1248 bool IsLittleEndian;
1249 uint8_t AddressSize;
1250 StringRef FileName;
1251 const object::ObjectFile *Obj = nullptr;
1252 std::vector<SectionName> SectionNames;
1253
1254 using InfoSectionMap = MapVector<object::SectionRef, DWARFSectionMap,
1255 std::map<object::SectionRef, unsigned>>;
1256
1257 InfoSectionMap InfoSections;
1258 InfoSectionMap TypesSections;
1259 InfoSectionMap InfoDWOSections;
1260 InfoSectionMap TypesDWOSections;
1261
1262 DWARFSectionMap LocSection;
1263 DWARFSectionMap LocListsSection;
1264 DWARFSectionMap LineSection;
1265 DWARFSectionMap RangeSection;
1266 DWARFSectionMap RnglistsSection;
1267 DWARFSectionMap StringOffsetSection;
1268 DWARFSectionMap LineDWOSection;
1269 DWARFSectionMap LocDWOSection;
1270 DWARFSectionMap StringOffsetDWOSection;
1271 DWARFSectionMap RangeDWOSection;
1272 DWARFSectionMap RnglistsDWOSection;
1273 DWARFSectionMap AddrSection;
1274 DWARFSectionMap AppleNamesSection;
1275 DWARFSectionMap AppleTypesSection;
1276 DWARFSectionMap AppleNamespacesSection;
1277 DWARFSectionMap AppleObjCSection;
1278 DWARFSectionMap DebugNamesSection;
1279 DWARFSectionMap PubNamesSection;
1280 DWARFSectionMap PubTypesSection;
1281 DWARFSectionMap GnuPubNamesSection;
1282 DWARFSectionMap GnuPubTypesSection;
1283
1284 DWARFSectionMap *mapNameToDWARFSection(StringRef Name) {
1285 return StringSwitch<DWARFSectionMap *>(Name)
1286 .Case("debug_loc", &LocSection)
1287 .Case("debug_loclists", &LocListsSection)
1288 .Case("debug_line", &LineSection)
1289 .Case("debug_str_offsets", &StringOffsetSection)
1290 .Case("debug_ranges", &RangeSection)
1291 .Case("debug_rnglists", &RnglistsSection)
1292 .Case("debug_loc.dwo", &LocDWOSection)
1293 .Case("debug_line.dwo", &LineDWOSection)
1294 .Case("debug_names", &DebugNamesSection)
1295 .Case("debug_rnglists.dwo", &RnglistsDWOSection)
1296 .Case("debug_str_offsets.dwo", &StringOffsetDWOSection)
1297 .Case("debug_addr", &AddrSection)
1298 .Case("apple_names", &AppleNamesSection)
1299 .Case("debug_pubnames", &PubNamesSection)
1300 .Case("debug_pubtypes", &PubTypesSection)
1301 .Case("debug_gnu_pubnames", &GnuPubNamesSection)
1302 .Case("debug_gnu_pubtypes", &GnuPubTypesSection)
1303 .Case("apple_types", &AppleTypesSection)
1304 .Case("apple_namespaces", &AppleNamespacesSection)
1305 .Case("apple_namespac", &AppleNamespacesSection)
1306 .Case("apple_objc", &AppleObjCSection)
1307 .Default(nullptr);
1308 }
1309
1310 StringRef AbbrevSection;
1311 StringRef ARangeSection;
1312 StringRef DebugFrameSection;
1313 StringRef EHFrameSection;
1314 StringRef StringSection;
1315 StringRef MacinfoSection;
1316 StringRef AbbrevDWOSection;
1317 StringRef StringDWOSection;
1318 StringRef CUIndexSection;
1319 StringRef GdbIndexSection;
1320 StringRef TUIndexSection;
1321 StringRef LineStringSection;
1322
1323 // A deque holding section data whose iterators are not invalidated when
1324 // new decompressed sections are inserted at the end.
1325 std::deque<SmallString<0>> UncompressedSections;
1326
1327 StringRef *mapSectionToMember(StringRef Name) {
1328 if (DWARFSection *Sec = mapNameToDWARFSection(Name))
1329 return &Sec->Data;
1330 return StringSwitch<StringRef *>(Name)
1331 .Case("debug_abbrev", &AbbrevSection)
1332 .Case("debug_aranges", &ARangeSection)
1333 .Case("debug_frame", &DebugFrameSection)
1334 .Case("eh_frame", &EHFrameSection)
1335 .Case("debug_str", &StringSection)
1336 .Case("debug_macinfo", &MacinfoSection)
1337 .Case("debug_abbrev.dwo", &AbbrevDWOSection)
1338 .Case("debug_str.dwo", &StringDWOSection)
1339 .Case("debug_cu_index", &CUIndexSection)
1340 .Case("debug_tu_index", &TUIndexSection)
1341 .Case("gdb_index", &GdbIndexSection)
1342 .Case("debug_line_str", &LineStringSection)
1343 // Any more debug info sections go here.
1344 .Default(nullptr);
1345 }
1346
1347 /// If Sec is compressed section, decompresses and updates its contents
1348 /// provided by Data. Otherwise leaves it unchanged.
1349 Error maybeDecompress(const object::SectionRef &Sec, StringRef Name,
1350 StringRef &Data) {
1351 if (!Decompressor::isCompressed(Sec))
1352 return Error::success();
1353
1354 Expected<Decompressor> Decompressor =
1355 Decompressor::create(Name, Data, IsLittleEndian, AddressSize == 8);
1356 if (!Decompressor)
1357 return Decompressor.takeError();
1358
1359 SmallString<0> Out;
1360 if (auto Err = Decompressor->resizeAndDecompress(Out))
1361 return Err;
1362
1363 UncompressedSections.push_back(std::move(Out));
1364 Data = UncompressedSections.back();
1365
1366 return Error::success();
1367 }
1368
1369public:
1370 DWARFObjInMemory(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
1371 uint8_t AddrSize, bool IsLittleEndian)
1372 : IsLittleEndian(IsLittleEndian) {
1373 for (const auto &SecIt : Sections) {
1374 if (StringRef *SectionData = mapSectionToMember(SecIt.first()))
1375 *SectionData = SecIt.second->getBuffer();
1376 else if (SecIt.first() == "debug_info")
1377 // Find debug_info and debug_types data by section rather than name as
1378 // there are multiple, comdat grouped, of these sections.
1379 InfoSections[SectionRef()].Data = SecIt.second->getBuffer();
1380 else if (SecIt.first() == "debug_info.dwo")
1381 InfoDWOSections[SectionRef()].Data = SecIt.second->getBuffer();
1382 else if (SecIt.first() == "debug_types")
1383 TypesSections[SectionRef()].Data = SecIt.second->getBuffer();
1384 else if (SecIt.first() == "debug_types.dwo")
1385 TypesDWOSections[SectionRef()].Data = SecIt.second->getBuffer();
1386 }
1387 }
1388 DWARFObjInMemory(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
1389 function_ref<ErrorPolicy(Error)> HandleError)
1390 : IsLittleEndian(Obj.isLittleEndian()),
1391 AddressSize(Obj.getBytesInAddress()), FileName(Obj.getFileName()),
1392 Obj(&Obj) {
1393
1394 StringMap<unsigned> SectionAmountMap;
1395 for (const SectionRef &Section : Obj.sections()) {
1396 StringRef Name;
1397 Section.getName(Name);
1398 ++SectionAmountMap[Name];
1399 SectionNames.push_back({ Name, true });
1400
1401 // Skip BSS and Virtual sections, they aren't interesting.
1402 if (Section.isBSS() || Section.isVirtual())
1
Assuming the condition is false
2
Assuming the condition is false
3
Taking false branch
1403 continue;
1404
1405 // Skip sections stripped by dsymutil.
1406 if (Section.isStripped())
4
Assuming the condition is false
5
Taking false branch
1407 continue;
1408
1409 StringRef Data;
1410 section_iterator RelocatedSection = Section.getRelocatedSection();
1411 // Try to obtain an already relocated version of this section.
1412 // Else use the unrelocated section from the object file. We'll have to
1413 // apply relocations ourselves later.
1414 if (!L || !L->getLoadedSectionContents(*RelocatedSection, Data)) {
6
Assuming 'L' is non-null
7
Assuming the condition is false
8
Taking false branch
1415 Expected<StringRef> E = Section.getContents();
1416 if (E)
1417 Data = *E;
1418 else
1419 // maybeDecompress below will error.
1420 consumeError(E.takeError());
1421 }
1422
1423 if (auto Err = maybeDecompress(Section, Name, Data)) {
9
Assuming the condition is true
10
Taking true branch
1424 ErrorPolicy EP = HandleError(createError(
11
Calling 'createError'
1425 "failed to decompress '" + Name + "', ", std::move(Err)));
1426 if (EP == ErrorPolicy::Halt)
1427 return;
1428 continue;
1429 }
1430
1431 // Compressed sections names in GNU style starts from ".z",
1432 // at this point section is decompressed and we drop compression prefix.
1433 Name = Name.substr(
1434 Name.find_first_not_of("._z")); // Skip ".", "z" and "_" prefixes.
1435
1436 // Map platform specific debug section names to DWARF standard section
1437 // names.
1438 Name = Obj.mapDebugSectionName(Name);
1439
1440 if (StringRef *SectionData = mapSectionToMember(Name)) {
1441 *SectionData = Data;
1442 if (Name == "debug_ranges") {
1443 // FIXME: Use the other dwo range section when we emit it.
1444 RangeDWOSection.Data = Data;
1445 }
1446 } else if (Name == "debug_info") {
1447 // Find debug_info and debug_types data by section rather than name as
1448 // there are multiple, comdat grouped, of these sections.
1449 InfoSections[Section].Data = Data;
1450 } else if (Name == "debug_info.dwo") {
1451 InfoDWOSections[Section].Data = Data;
1452 } else if (Name == "debug_types") {
1453 TypesSections[Section].Data = Data;
1454 } else if (Name == "debug_types.dwo") {
1455 TypesDWOSections[Section].Data = Data;
1456 }
1457
1458 if (RelocatedSection == Obj.section_end())
1459 continue;
1460
1461 StringRef RelSecName;
1462 StringRef RelSecData;
1463 RelocatedSection->getName(RelSecName);
1464
1465 // If the section we're relocating was relocated already by the JIT,
1466 // then we used the relocated version above, so we do not need to process
1467 // relocations for it now.
1468 if (L && L->getLoadedSectionContents(*RelocatedSection, RelSecData))
1469 continue;
1470
1471 // In Mach-o files, the relocations do not need to be applied if
1472 // there is no load offset to apply. The value read at the
1473 // relocation point already factors in the section address
1474 // (actually applying the relocations will produce wrong results
1475 // as the section address will be added twice).
1476 if (!L && isa<MachOObjectFile>(&Obj))
1477 continue;
1478
1479 RelSecName = RelSecName.substr(
1480 RelSecName.find_first_not_of("._z")); // Skip . and _ prefixes.
1481
1482 // TODO: Add support for relocations in other sections as needed.
1483 // Record relocations for the debug_info and debug_line sections.
1484 DWARFSectionMap *Sec = mapNameToDWARFSection(RelSecName);
1485 RelocAddrMap *Map = Sec ? &Sec->Relocs : nullptr;
1486 if (!Map) {
1487 // Find debug_info and debug_types relocs by section rather than name
1488 // as there are multiple, comdat grouped, of these sections.
1489 if (RelSecName == "debug_info")
1490 Map = &static_cast<DWARFSectionMap &>(InfoSections[*RelocatedSection])
1491 .Relocs;
1492 else if (RelSecName == "debug_info.dwo")
1493 Map = &static_cast<DWARFSectionMap &>(
1494 InfoDWOSections[*RelocatedSection])
1495 .Relocs;
1496 else if (RelSecName == "debug_types")
1497 Map =
1498 &static_cast<DWARFSectionMap &>(TypesSections[*RelocatedSection])
1499 .Relocs;
1500 else if (RelSecName == "debug_types.dwo")
1501 Map = &static_cast<DWARFSectionMap &>(
1502 TypesDWOSections[*RelocatedSection])
1503 .Relocs;
1504 else
1505 continue;
1506 }
1507
1508 if (Section.relocation_begin() == Section.relocation_end())
1509 continue;
1510
1511 // Symbol to [address, section index] cache mapping.
1512 std::map<SymbolRef, SymInfo> AddrCache;
1513 bool (*Supports)(uint64_t);
1514 RelocationResolver Resolver;
1515 std::tie(Supports, Resolver) = getRelocationResolver(Obj);
1516 for (const RelocationRef &Reloc : Section.relocations()) {
1517 // FIXME: it's not clear how to correctly handle scattered
1518 // relocations.
1519 if (isRelocScattered(Obj, Reloc))
1520 continue;
1521
1522 Expected<SymInfo> SymInfoOrErr =
1523 getSymbolInfo(Obj, Reloc, L, AddrCache);
1524 if (!SymInfoOrErr) {
1525 if (HandleError(SymInfoOrErr.takeError()) == ErrorPolicy::Halt)
1526 return;
1527 continue;
1528 }
1529
1530 // Check if Resolver can handle this relocation type early so as not to
1531 // handle invalid cases in DWARFDataExtractor.
1532 //
1533 // TODO Don't store Resolver in every RelocAddrEntry.
1534 if (Supports && Supports(Reloc.getType())) {
1535 Map->try_emplace(Reloc.getOffset(),
1536 RelocAddrEntry{SymInfoOrErr->SectionIndex, Reloc,
1537 Resolver, SymInfoOrErr->Address});
1538 } else {
1539 SmallString<32> Type;
1540 Reloc.getTypeName(Type);
1541 ErrorPolicy EP = HandleError(
1542 createError("failed to compute relocation: " + Type + ", ",
1543 errorCodeToError(object_error::parse_failed)));
1544 if (EP == ErrorPolicy::Halt)
1545 return;
1546 }
1547 }
1548 }
1549
1550 for (SectionName &S : SectionNames)
1551 if (SectionAmountMap[S.Name] > 1)
1552 S.IsNameUnique = false;
1553 }
1554
1555 Optional<RelocAddrEntry> find(const DWARFSection &S,
1556 uint64_t Pos) const override {
1557 auto &Sec = static_cast<const DWARFSectionMap &>(S);
1558 RelocAddrMap::const_iterator AI = Sec.Relocs.find(Pos);
1559 if (AI == Sec.Relocs.end())
1560 return None;
1561 return AI->second;
1562 }
1563
1564 const object::ObjectFile *getFile() const override { return Obj; }
1565
1566 ArrayRef<SectionName> getSectionNames() const override {
1567 return SectionNames;
1568 }
1569
1570 bool isLittleEndian() const override { return IsLittleEndian; }
1571 StringRef getAbbrevDWOSection() const override { return AbbrevDWOSection; }
1572 const DWARFSection &getLineDWOSection() const override {
1573 return LineDWOSection;
1574 }
1575 const DWARFSection &getLocDWOSection() const override {
1576 return LocDWOSection;
1577 }
1578 StringRef getStringDWOSection() const override { return StringDWOSection; }
1579 const DWARFSection &getStringOffsetDWOSection() const override {
1580 return StringOffsetDWOSection;
1581 }
1582 const DWARFSection &getRangeDWOSection() const override {
1583 return RangeDWOSection;
1584 }
1585 const DWARFSection &getRnglistsDWOSection() const override {
1586 return RnglistsDWOSection;
1587 }
1588 const DWARFSection &getAddrSection() const override { return AddrSection; }
1589 StringRef getCUIndexSection() const override { return CUIndexSection; }
1590 StringRef getGdbIndexSection() const override { return GdbIndexSection; }
1591 StringRef getTUIndexSection() const override { return TUIndexSection; }
1592
1593 // DWARF v5
1594 const DWARFSection &getStringOffsetSection() const override {
1595 return StringOffsetSection;
1596 }
1597 StringRef getLineStringSection() const override { return LineStringSection; }
1598
1599 // Sections for DWARF5 split dwarf proposal.
1600 void forEachInfoDWOSections(
1601 function_ref<void(const DWARFSection &)> F) const override {
1602 for (auto &P : InfoDWOSections)
1603 F(P.second);
1604 }
1605 void forEachTypesDWOSections(
1606 function_ref<void(const DWARFSection &)> F) const override {
1607 for (auto &P : TypesDWOSections)
1608 F(P.second);
1609 }
1610
1611 StringRef getAbbrevSection() const override { return AbbrevSection; }
1612 const DWARFSection &getLocSection() const override { return LocSection; }
1613 const DWARFSection &getLoclistsSection() const override { return LocListsSection; }
1614 StringRef getARangeSection() const override { return ARangeSection; }
1615 StringRef getDebugFrameSection() const override { return DebugFrameSection; }
1616 StringRef getEHFrameSection() const override { return EHFrameSection; }
1617 const DWARFSection &getLineSection() const override { return LineSection; }
1618 StringRef getStringSection() const override { return StringSection; }
1619 const DWARFSection &getRangeSection() const override { return RangeSection; }
1620 const DWARFSection &getRnglistsSection() const override {
1621 return RnglistsSection;
1622 }
1623 StringRef getMacinfoSection() const override { return MacinfoSection; }
1624 const DWARFSection &getPubNamesSection() const override { return PubNamesSection; }
1625 const DWARFSection &getPubTypesSection() const override { return PubTypesSection; }
1626 const DWARFSection &getGnuPubNamesSection() const override {
1627 return GnuPubNamesSection;
1628 }
1629 const DWARFSection &getGnuPubTypesSection() const override {
1630 return GnuPubTypesSection;
1631 }
1632 const DWARFSection &getAppleNamesSection() const override {
1633 return AppleNamesSection;
1634 }
1635 const DWARFSection &getAppleTypesSection() const override {
1636 return AppleTypesSection;
1637 }
1638 const DWARFSection &getAppleNamespacesSection() const override {
1639 return AppleNamespacesSection;
1640 }
1641 const DWARFSection &getAppleObjCSection() const override {
1642 return AppleObjCSection;
1643 }
1644 const DWARFSection &getDebugNamesSection() const override {
1645 return DebugNamesSection;
1646 }
1647
1648 StringRef getFileName() const override { return FileName; }
1649 uint8_t getAddressSize() const override { return AddressSize; }
1650 void forEachInfoSections(
1651 function_ref<void(const DWARFSection &)> F) const override {
1652 for (auto &P : InfoSections)
1653 F(P.second);
1654 }
1655 void forEachTypesSections(
1656 function_ref<void(const DWARFSection &)> F) const override {
1657 for (auto &P : TypesSections)
1658 F(P.second);
1659 }
1660};
1661} // namespace
1662
1663std::unique_ptr<DWARFContext>
1664DWARFContext::create(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
1665 function_ref<ErrorPolicy(Error)> HandleError,
1666 std::string DWPName) {
1667 auto DObj = llvm::make_unique<DWARFObjInMemory>(Obj, L, HandleError);
1668 return llvm::make_unique<DWARFContext>(std::move(DObj), std::move(DWPName));
1669}
1670
1671std::unique_ptr<DWARFContext>
1672DWARFContext::create(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
1673 uint8_t AddrSize, bool isLittleEndian) {
1674 auto DObj =
1675 llvm::make_unique<DWARFObjInMemory>(Sections, AddrSize, isLittleEndian);
1676 return llvm::make_unique<DWARFContext>(std::move(DObj), "");
1677}
1678
1679Error DWARFContext::loadRegisterInfo(const object::ObjectFile &Obj) {
1680 // Detect the architecture from the object file. We usually don't need OS
1681 // info to lookup a target and create register info.
1682 Triple TT;
1683 TT.setArch(Triple::ArchType(Obj.getArch()));
1684 TT.setVendor(Triple::UnknownVendor);
1685 TT.setOS(Triple::UnknownOS);
1686 std::string TargetLookupError;
1687 const Target *TheTarget =
1688 TargetRegistry::lookupTarget(TT.str(), TargetLookupError);
1689 if (!TargetLookupError.empty())
1690 return createStringError(errc::invalid_argument,
1691 TargetLookupError.c_str());
1692 RegInfo.reset(TheTarget->createMCRegInfo(TT.str()));
1693 return Error::success();
1694}
1695
1696uint8_t DWARFContext::getCUAddrSize() {
1697 // In theory, different compile units may have different address byte
1698 // sizes, but for simplicity we just use the address byte size of the
1699 // last compile unit. In practice the address size field is repeated across
1700 // various DWARF headers (at least in version 5) to make it easier to dump
1701 // them independently, not to enable varying the address size.
1702 uint8_t Addr = 0;
1703 for (const auto &CU : compile_units()) {
1704 Addr = CU->getAddressByteSize();
1705 break;
1706 }
1707 return Addr;
1708}
1709
1710void DWARFContext::dumpWarning(Error Warning) {
1711 handleAllErrors(std::move(Warning), [](ErrorInfoBase &Info) {
1712 WithColor::warning() << Info.message() << '\n';
1713 });
1714}

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
159 // pointers out of this class to add to the error list.
160 friend class ErrorList;
161 friend class FileError;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
17
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272 return reinterpret_cast<ErrorInfoBase*>(
273 reinterpret_cast<uintptr_t>(Payload) &
274 ~static_cast<uintptr_t>(0x1));
275 }
276
277 void setPtr(ErrorInfoBase *EI) {
278#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
279 Payload = reinterpret_cast<ErrorInfoBase*>(
280 (reinterpret_cast<uintptr_t>(EI) &
281 ~static_cast<uintptr_t>(0x1)) |
282 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
283#else
284 Payload = EI;
285#endif
286 }
287
288 bool getChecked() const {
289#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
290 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
291#else
292 return true;
293#endif
294 }
295
296 void setChecked(bool V) {
297 Payload = reinterpret_cast<ErrorInfoBase*>(
298 (reinterpret_cast<uintptr_t>(Payload) &
299 ~static_cast<uintptr_t>(0x1)) |
300 (V ? 0 : 1));
301 }
302
303 std::unique_ptr<ErrorInfoBase> takePayload() {
304 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
305 setPtr(nullptr);
306 setChecked(true);
307 return Tmp;
308 }
309
310 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
311 if (auto P = E.getPtr())
312 P->log(OS);
313 else
314 OS << "success";
315 return OS;
316 }
317
318 ErrorInfoBase *Payload = nullptr;
319};
320
321/// Subclass of Error for the sole purpose of identifying the success path in
322/// the type system. This allows to catch invalid conversion to Expected<T> at
323/// compile time.
324class ErrorSuccess final : public Error {};
325
326inline ErrorSuccess Error::success() { return ErrorSuccess(); }
327
328/// Make a Error instance representing failure using the given error info
329/// type.
330template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
331 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
13
Calling 'make_unique<llvm::StringError, llvm::Twine, std::error_code>'
15
Returned allocated memory
16
Calling constructor for 'Error'
332}
333
334/// Base class for user error types. Users should declare their error types
335/// like:
336///
337/// class MyError : public ErrorInfo<MyError> {
338/// ....
339/// };
340///
341/// This class provides an implementation of the ErrorInfoBase::kind
342/// method, which is used by the Error RTTI system.
343template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
344class ErrorInfo : public ParentErrT {
345public:
346 using ParentErrT::ParentErrT; // inherit constructors
347
348 static const void *classID() { return &ThisErrT::ID; }
349
350 const void *dynamicClassID() const override { return &ThisErrT::ID; }
351
352 bool isA(const void *const ClassID) const override {
353 return ClassID == classID() || ParentErrT::isA(ClassID);
354 }
355};
356
357/// Special ErrorInfo subclass representing a list of ErrorInfos.
358/// Instances of this class are constructed by joinError.
359class ErrorList final : public ErrorInfo<ErrorList> {
360 // handleErrors needs to be able to iterate the payload list of an
361 // ErrorList.
362 template <typename... HandlerTs>
363 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
364
365 // joinErrors is implemented in terms of join.
366 friend Error joinErrors(Error, Error);
367
368public:
369 void log(raw_ostream &OS) const override {
370 OS << "Multiple errors:\n";
371 for (auto &ErrPayload : Payloads) {
372 ErrPayload->log(OS);
373 OS << "\n";
374 }
375 }
376
377 std::error_code convertToErrorCode() const override;
378
379 // Used by ErrorInfo::classID.
380 static char ID;
381
382private:
383 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
384 std::unique_ptr<ErrorInfoBase> Payload2) {
385 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
386 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
;
387 Payloads.push_back(std::move(Payload1));
388 Payloads.push_back(std::move(Payload2));
389 }
390
391 static Error join(Error E1, Error E2) {
392 if (!E1)
393 return E2;
394 if (!E2)
395 return E1;
396 if (E1.isA<ErrorList>()) {
397 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
398 if (E2.isA<ErrorList>()) {
399 auto E2Payload = E2.takePayload();
400 auto &E2List = static_cast<ErrorList &>(*E2Payload);
401 for (auto &Payload : E2List.Payloads)
402 E1List.Payloads.push_back(std::move(Payload));
403 } else
404 E1List.Payloads.push_back(E2.takePayload());
405
406 return E1;
407 }
408 if (E2.isA<ErrorList>()) {
409 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
410 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
411 return E2;
412 }
413 return Error(std::unique_ptr<ErrorList>(
414 new ErrorList(E1.takePayload(), E2.takePayload())));
415 }
416
417 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
418};
419
420/// Concatenate errors. The resulting Error is unchecked, and contains the
421/// ErrorInfo(s), if any, contained in E1, followed by the
422/// ErrorInfo(s), if any, contained in E2.
423inline Error joinErrors(Error E1, Error E2) {
424 return ErrorList::join(std::move(E1), std::move(E2));
425}
426
427/// Tagged union holding either a T or a Error.
428///
429/// This class parallels ErrorOr, but replaces error_code with Error. Since
430/// Error cannot be copied, this class replaces getError() with
431/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
432/// error class type.
433template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
434 template <class T1> friend class ExpectedAsOutParameter;
435 template <class OtherT> friend class Expected;
436
437 static const bool isRef = std::is_reference<T>::value;
438
439 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
440
441 using error_type = std::unique_ptr<ErrorInfoBase>;
442
443public:
444 using storage_type = typename std::conditional<isRef, wrap, T>::type;
445 using value_type = T;
446
447private:
448 using reference = typename std::remove_reference<T>::type &;
449 using const_reference = const typename std::remove_reference<T>::type &;
450 using pointer = typename std::remove_reference<T>::type *;
451 using const_pointer = const typename std::remove_reference<T>::type *;
452
453public:
454 /// Create an Expected<T> error value from the given Error.
455 Expected(Error Err)
456 : HasError(true)
457#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
458 // Expected is unchecked upon construction in Debug builds.
459 , Unchecked(true)
460#endif
461 {
462 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 462, __PRETTY_FUNCTION__))
;
463 new (getErrorStorage()) error_type(Err.takePayload());
464 }
465
466 /// Forbid to convert from Error::success() implicitly, this avoids having
467 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
468 /// but triggers the assertion above.
469 Expected(ErrorSuccess) = delete;
470
471 /// Create an Expected<T> success value from the given OtherT value, which
472 /// must be convertible to T.
473 template <typename OtherT>
474 Expected(OtherT &&Val,
475 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
476 * = nullptr)
477 : HasError(false)
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 // Expected is unchecked upon construction in Debug builds.
480 , Unchecked(true)
481#endif
482 {
483 new (getStorage()) storage_type(std::forward<OtherT>(Val));
484 }
485
486 /// Move construct an Expected<T> value.
487 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
488
489 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
490 /// must be convertible to T.
491 template <class OtherT>
492 Expected(Expected<OtherT> &&Other,
493 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
494 * = nullptr) {
495 moveConstruct(std::move(Other));
496 }
497
498 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
499 /// isn't convertible to T.
500 template <class OtherT>
501 explicit Expected(
502 Expected<OtherT> &&Other,
503 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
504 nullptr) {
505 moveConstruct(std::move(Other));
506 }
507
508 /// Move-assign from another Expected<T>.
509 Expected &operator=(Expected &&Other) {
510 moveAssign(std::move(Other));
511 return *this;
512 }
513
514 /// Destroy an Expected<T>.
515 ~Expected() {
516 assertIsChecked();
517 if (!HasError)
518 getStorage()->~storage_type();
519 else
520 getErrorStorage()->~error_type();
521 }
522
523 /// Return false if there is an error.
524 explicit operator bool() {
525#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
526 Unchecked = HasError;
527#endif
528 return !HasError;
529 }
530
531 /// Returns a reference to the stored T value.
532 reference get() {
533 assertIsChecked();
534 return *getStorage();
535 }
536
537 /// Returns a const reference to the stored T value.
538 const_reference get() const {
539 assertIsChecked();
540 return const_cast<Expected<T> *>(this)->get();
541 }
542
543 /// Check that this Expected<T> is an error of type ErrT.
544 template <typename ErrT> bool errorIsA() const {
545 return HasError && (*getErrorStorage())->template isA<ErrT>();
546 }
547
548 /// Take ownership of the stored error.
549 /// After calling this the Expected<T> is in an indeterminate state that can
550 /// only be safely destructed. No further calls (beside the destructor) should
551 /// be made on the Expected<T> vaule.
552 Error takeError() {
553#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
554 Unchecked = false;
555#endif
556 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
557 }
558
559 /// Returns a pointer to the stored T value.
560 pointer operator->() {
561 assertIsChecked();
562 return toPointer(getStorage());
563 }
564
565 /// Returns a const pointer to the stored T value.
566 const_pointer operator->() const {
567 assertIsChecked();
568 return toPointer(getStorage());
569 }
570
571 /// Returns a reference to the stored T value.
572 reference operator*() {
573 assertIsChecked();
574 return *getStorage();
575 }
576
577 /// Returns a const reference to the stored T value.
578 const_reference operator*() const {
579 assertIsChecked();
580 return *getStorage();
581 }
582
583private:
584 template <class T1>
585 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
586 return &a == &b;
587 }
588
589 template <class T1, class T2>
590 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
591 return false;
592 }
593
594 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
595 HasError = Other.HasError;
596#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
597 Unchecked = true;
598 Other.Unchecked = false;
599#endif
600
601 if (!HasError)
602 new (getStorage()) storage_type(std::move(*Other.getStorage()));
603 else
604 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
605 }
606
607 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
608 assertIsChecked();
609
610 if (compareThisIfSameType(*this, Other))
611 return;
612
613 this->~Expected();
614 new (this) Expected(std::move(Other));
615 }
616
617 pointer toPointer(pointer Val) { return Val; }
618
619 const_pointer toPointer(const_pointer Val) const { return Val; }
620
621 pointer toPointer(wrap *Val) { return &Val->get(); }
622
623 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
624
625 storage_type *getStorage() {
626 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 626, __PRETTY_FUNCTION__))
;
627 return reinterpret_cast<storage_type *>(TStorage.buffer);
628 }
629
630 const storage_type *getStorage() const {
631 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 631, __PRETTY_FUNCTION__))
;
632 return reinterpret_cast<const storage_type *>(TStorage.buffer);
633 }
634
635 error_type *getErrorStorage() {
636 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 636, __PRETTY_FUNCTION__))
;
637 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
638 }
639
640 const error_type *getErrorStorage() const {
641 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 641, __PRETTY_FUNCTION__))
;
642 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
643 }
644
645 // Used by ExpectedAsOutParameter to reset the checked flag.
646 void setUnchecked() {
647#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
648 Unchecked = true;
649#endif
650 }
651
652#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
653 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
654 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
655 void fatalUncheckedExpected() const {
656 dbgs() << "Expected<T> must be checked before access or destruction.\n";
657 if (HasError) {
658 dbgs() << "Unchecked Expected<T> contained error:\n";
659 (*getErrorStorage())->log(dbgs());
660 } else
661 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
662 "values in success mode must still be checked prior to being "
663 "destroyed).\n";
664 abort();
665 }
666#endif
667
668 void assertIsChecked() {
669#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
670 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
671 fatalUncheckedExpected();
672#endif
673 }
674
675 union {
676 AlignedCharArrayUnion<storage_type> TStorage;
677 AlignedCharArrayUnion<error_type> ErrorStorage;
678 };
679 bool HasError : 1;
680#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
681 bool Unchecked : 1;
682#endif
683};
684
685/// Report a serious error, calling any installed error handler. See
686/// ErrorHandling.h.
687LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
688 bool gen_crash_diag = true);
689
690/// Report a fatal error if Err is a failure value.
691///
692/// This function can be used to wrap calls to fallible functions ONLY when it
693/// is known that the Error will always be a success value. E.g.
694///
695/// @code{.cpp}
696/// // foo only attempts the fallible operation if DoFallibleOperation is
697/// // true. If DoFallibleOperation is false then foo always returns
698/// // Error::success().
699/// Error foo(bool DoFallibleOperation);
700///
701/// cantFail(foo(false));
702/// @endcode
703inline void cantFail(Error Err, const char *Msg = nullptr) {
704 if (Err) {
705 if (!Msg)
706 Msg = "Failure value returned from cantFail wrapped call";
707 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 707)
;
708 }
709}
710
711/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
712/// returns the contained value.
713///
714/// This function can be used to wrap calls to fallible functions ONLY when it
715/// is known that the Error will always be a success value. E.g.
716///
717/// @code{.cpp}
718/// // foo only attempts the fallible operation if DoFallibleOperation is
719/// // true. If DoFallibleOperation is false then foo always returns an int.
720/// Expected<int> foo(bool DoFallibleOperation);
721///
722/// int X = cantFail(foo(false));
723/// @endcode
724template <typename T>
725T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
726 if (ValOrErr)
727 return std::move(*ValOrErr);
728 else {
729 if (!Msg)
730 Msg = "Failure value returned from cantFail wrapped call";
731 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 731)
;
732 }
733}
734
735/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
736/// returns the contained reference.
737///
738/// This function can be used to wrap calls to fallible functions ONLY when it
739/// is known that the Error will always be a success value. E.g.
740///
741/// @code{.cpp}
742/// // foo only attempts the fallible operation if DoFallibleOperation is
743/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
744/// Expected<Bar&> foo(bool DoFallibleOperation);
745///
746/// Bar &X = cantFail(foo(false));
747/// @endcode
748template <typename T>
749T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
750 if (ValOrErr)
751 return *ValOrErr;
752 else {
753 if (!Msg)
754 Msg = "Failure value returned from cantFail wrapped call";
755 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 755)
;
756 }
757}
758
759/// Helper for testing applicability of, and applying, handlers for
760/// ErrorInfo types.
761template <typename HandlerT>
762class ErrorHandlerTraits
763 : public ErrorHandlerTraits<decltype(
764 &std::remove_reference<HandlerT>::type::operator())> {};
765
766// Specialization functions of the form 'Error (const ErrT&)'.
767template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
768public:
769 static bool appliesTo(const ErrorInfoBase &E) {
770 return E.template isA<ErrT>();
771 }
772
773 template <typename HandlerT>
774 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
775 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 775, __PRETTY_FUNCTION__))
;
776 return H(static_cast<ErrT &>(*E));
777 }
778};
779
780// Specialization functions of the form 'void (const ErrT&)'.
781template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
782public:
783 static bool appliesTo(const ErrorInfoBase &E) {
784 return E.template isA<ErrT>();
785 }
786
787 template <typename HandlerT>
788 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
789 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 789, __PRETTY_FUNCTION__))
;
790 H(static_cast<ErrT &>(*E));
791 return Error::success();
792 }
793};
794
795/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
796template <typename ErrT>
797class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
798public:
799 static bool appliesTo(const ErrorInfoBase &E) {
800 return E.template isA<ErrT>();
801 }
802
803 template <typename HandlerT>
804 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
805 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 805, __PRETTY_FUNCTION__))
;
806 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
807 return H(std::move(SubE));
808 }
809};
810
811/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
812template <typename ErrT>
813class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
814public:
815 static bool appliesTo(const ErrorInfoBase &E) {
816 return E.template isA<ErrT>();
817 }
818
819 template <typename HandlerT>
820 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
821 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 821, __PRETTY_FUNCTION__))
;
822 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
823 H(std::move(SubE));
824 return Error::success();
825 }
826};
827
828// Specialization for member functions of the form 'RetT (const ErrT&)'.
829template <typename C, typename RetT, typename ErrT>
830class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
831 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
832
833// Specialization for member functions of the form 'RetT (const ErrT&) const'.
834template <typename C, typename RetT, typename ErrT>
835class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
836 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
837
838// Specialization for member functions of the form 'RetT (const ErrT&)'.
839template <typename C, typename RetT, typename ErrT>
840class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
841 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
842
843// Specialization for member functions of the form 'RetT (const ErrT&) const'.
844template <typename C, typename RetT, typename ErrT>
845class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
846 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
847
848/// Specialization for member functions of the form
849/// 'RetT (std::unique_ptr<ErrT>)'.
850template <typename C, typename RetT, typename ErrT>
851class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
852 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
853
854/// Specialization for member functions of the form
855/// 'RetT (std::unique_ptr<ErrT>) const'.
856template <typename C, typename RetT, typename ErrT>
857class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
858 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
859
860inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
861 return Error(std::move(Payload));
862}
863
864template <typename HandlerT, typename... HandlerTs>
865Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
866 HandlerT &&Handler, HandlerTs &&... Handlers) {
867 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
868 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
869 std::move(Payload));
870 return handleErrorImpl(std::move(Payload),
871 std::forward<HandlerTs>(Handlers)...);
872}
873
874/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
875/// unhandled errors (or Errors returned by handlers) are re-concatenated and
876/// returned.
877/// Because this function returns an error, its result must also be checked
878/// or returned. If you intend to handle all errors use handleAllErrors
879/// (which returns void, and will abort() on unhandled errors) instead.
880template <typename... HandlerTs>
881Error handleErrors(Error E, HandlerTs &&... Hs) {
882 if (!E)
883 return Error::success();
884
885 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
886
887 if (Payload->isA<ErrorList>()) {
888 ErrorList &List = static_cast<ErrorList &>(*Payload);
889 Error R;
890 for (auto &P : List.Payloads)
891 R = ErrorList::join(
892 std::move(R),
893 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
894 return R;
895 }
896
897 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
898}
899
900/// Behaves the same as handleErrors, except that by contract all errors
901/// *must* be handled by the given handlers (i.e. there must be no remaining
902/// errors after running the handlers, or llvm_unreachable is called).
903template <typename... HandlerTs>
904void handleAllErrors(Error E, HandlerTs &&... Handlers) {
905 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
906}
907
908/// Check that E is a non-error, then drop it.
909/// If E is an error, llvm_unreachable will be called.
910inline void handleAllErrors(Error E) {
911 cantFail(std::move(E));
912}
913
914/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
915///
916/// If the incoming value is a success value it is returned unmodified. If it
917/// is a failure value then it the contained error is passed to handleErrors.
918/// If handleErrors is able to handle the error then the RecoveryPath functor
919/// is called to supply the final result. If handleErrors is not able to
920/// handle all errors then the unhandled errors are returned.
921///
922/// This utility enables the follow pattern:
923///
924/// @code{.cpp}
925/// enum FooStrategy { Aggressive, Conservative };
926/// Expected<Foo> foo(FooStrategy S);
927///
928/// auto ResultOrErr =
929/// handleExpected(
930/// foo(Aggressive),
931/// []() { return foo(Conservative); },
932/// [](AggressiveStrategyError&) {
933/// // Implicitly conusme this - we'll recover by using a conservative
934/// // strategy.
935/// });
936///
937/// @endcode
938template <typename T, typename RecoveryFtor, typename... HandlerTs>
939Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
940 HandlerTs &&... Handlers) {
941 if (ValOrErr)
942 return ValOrErr;
943
944 if (auto Err = handleErrors(ValOrErr.takeError(),
945 std::forward<HandlerTs>(Handlers)...))
946 return std::move(Err);
947
948 return RecoveryPath();
949}
950
951/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
952/// will be printed before the first one is logged. A newline will be printed
953/// after each error.
954///
955/// This function is compatible with the helpers from Support/WithColor.h. You
956/// can pass any of them as the OS. Please consider using them instead of
957/// including 'error: ' in the ErrorBanner.
958///
959/// This is useful in the base level of your program to allow clean termination
960/// (allowing clean deallocation of resources, etc.), while reporting error
961/// information to the user.
962void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
963
964/// Write all error messages (if any) in E to a string. The newline character
965/// is used to separate error messages.
966inline std::string toString(Error E) {
967 SmallVector<std::string, 2> Errors;
968 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
969 Errors.push_back(EI.message());
970 });
971 return join(Errors.begin(), Errors.end(), "\n");
972}
973
974/// Consume a Error without doing anything. This method should be used
975/// only where an error can be considered a reasonable and expected return
976/// value.
977///
978/// Uses of this method are potentially indicative of design problems: If it's
979/// legitimate to do nothing while processing an "error", the error-producer
980/// might be more clearly refactored to return an Optional<T>.
981inline void consumeError(Error Err) {
982 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
983}
984
985/// Helper for converting an Error to a bool.
986///
987/// This method returns true if Err is in an error state, or false if it is
988/// in a success state. Puts Err in a checked state in both cases (unlike
989/// Error::operator bool(), which only does this for success states).
990inline bool errorToBool(Error Err) {
991 bool IsError = static_cast<bool>(Err);
992 if (IsError)
993 consumeError(std::move(Err));
994 return IsError;
995}
996
997/// Helper for Errors used as out-parameters.
998///
999/// This helper is for use with the Error-as-out-parameter idiom, where an error
1000/// is passed to a function or method by reference, rather than being returned.
1001/// In such cases it is helpful to set the checked bit on entry to the function
1002/// so that the error can be written to (unchecked Errors abort on assignment)
1003/// and clear the checked bit on exit so that clients cannot accidentally forget
1004/// to check the result. This helper performs these actions automatically using
1005/// RAII:
1006///
1007/// @code{.cpp}
1008/// Result foo(Error &Err) {
1009/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1010/// // <body of foo>
1011/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1012/// }
1013/// @endcode
1014///
1015/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1016/// used with optional Errors (Error pointers that are allowed to be null). If
1017/// ErrorAsOutParameter took an Error reference, an instance would have to be
1018/// created inside every condition that verified that Error was non-null. By
1019/// taking an Error pointer we can just create one instance at the top of the
1020/// function.
1021class ErrorAsOutParameter {
1022public:
1023 ErrorAsOutParameter(Error *Err) : Err(Err) {
1024 // Raise the checked bit if Err is success.
1025 if (Err)
1026 (void)!!*Err;
1027 }
1028
1029 ~ErrorAsOutParameter() {
1030 // Clear the checked bit.
1031 if (Err && !*Err)
1032 *Err = Error::success();
1033 }
1034
1035private:
1036 Error *Err;
1037};
1038
1039/// Helper for Expected<T>s used as out-parameters.
1040///
1041/// See ErrorAsOutParameter.
1042template <typename T>
1043class ExpectedAsOutParameter {
1044public:
1045 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1046 : ValOrErr(ValOrErr) {
1047 if (ValOrErr)
1048 (void)!!*ValOrErr;
1049 }
1050
1051 ~ExpectedAsOutParameter() {
1052 if (ValOrErr)
1053 ValOrErr->setUnchecked();
1054 }
1055
1056private:
1057 Expected<T> *ValOrErr;
1058};
1059
1060/// This class wraps a std::error_code in a Error.
1061///
1062/// This is useful if you're writing an interface that returns a Error
1063/// (or Expected) and you want to call code that still returns
1064/// std::error_codes.
1065class ECError : public ErrorInfo<ECError> {
1066 friend Error errorCodeToError(std::error_code);
1067
1068 virtual void anchor() override;
1069
1070public:
1071 void setErrorCode(std::error_code EC) { this->EC = EC; }
1072 std::error_code convertToErrorCode() const override { return EC; }
1073 void log(raw_ostream &OS) const override { OS << EC.message(); }
1074
1075 // Used by ErrorInfo::classID.
1076 static char ID;
1077
1078protected:
1079 ECError() = default;
1080 ECError(std::error_code EC) : EC(EC) {}
1081
1082 std::error_code EC;
1083};
1084
1085/// The value returned by this function can be returned from convertToErrorCode
1086/// for Error values where no sensible translation to std::error_code exists.
1087/// It should only be used in this situation, and should never be used where a
1088/// sensible conversion to std::error_code is available, as attempts to convert
1089/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1090///error to try to convert such a value).
1091std::error_code inconvertibleErrorCode();
1092
1093/// Helper for converting an std::error_code to a Error.
1094Error errorCodeToError(std::error_code EC);
1095
1096/// Helper for converting an ECError to a std::error_code.
1097///
1098/// This method requires that Err be Error() or an ECError, otherwise it
1099/// will trigger a call to abort().
1100std::error_code errorToErrorCode(Error Err);
1101
1102/// Convert an ErrorOr<T> to an Expected<T>.
1103template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1104 if (auto EC = EO.getError())
1105 return errorCodeToError(EC);
1106 return std::move(*EO);
1107}
1108
1109/// Convert an Expected<T> to an ErrorOr<T>.
1110template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1111 if (auto Err = E.takeError())
1112 return errorToErrorCode(std::move(Err));
1113 return std::move(*E);
1114}
1115
1116/// This class wraps a string in an Error.
1117///
1118/// StringError is useful in cases where the client is not expected to be able
1119/// to consume the specific error message programmatically (for example, if the
1120/// error message is to be presented to the user).
1121///
1122/// StringError can also be used when additional information is to be printed
1123/// along with a error_code message. Depending on the constructor called, this
1124/// class can either display:
1125/// 1. the error_code message (ECError behavior)
1126/// 2. a string
1127/// 3. the error_code message and a string
1128///
1129/// These behaviors are useful when subtyping is required; for example, when a
1130/// specific library needs an explicit error type. In the example below,
1131/// PDBError is derived from StringError:
1132///
1133/// @code{.cpp}
1134/// Expected<int> foo() {
1135/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1136/// "Additional information");
1137/// }
1138/// @endcode
1139///
1140class StringError : public ErrorInfo<StringError> {
1141public:
1142 static char ID;
1143
1144 // Prints EC + S and converts to EC
1145 StringError(std::error_code EC, const Twine &S = Twine());
1146
1147 // Prints S and converts to EC
1148 StringError(const Twine &S, std::error_code EC);
1149
1150 void log(raw_ostream &OS) const override;
1151 std::error_code convertToErrorCode() const override;
1152
1153 const std::string &getMessage() const { return Msg; }
1154
1155private:
1156 std::string Msg;
1157 std::error_code EC;
1158 const bool PrintMsgOnly = false;
1159};
1160
1161/// Create formatted StringError object.
1162template <typename... Ts>
1163Error createStringError(std::error_code EC, char const *Fmt,
1164 const Ts &... Vals) {
1165 std::string Buffer;
1166 raw_string_ostream Stream(Buffer);
1167 Stream << format(Fmt, Vals...);
1168 return make_error<StringError>(Stream.str(), EC);
1169}
1170
1171Error createStringError(std::error_code EC, char const *Msg);
1172
1173/// This class wraps a filename and another Error.
1174///
1175/// In some cases, an error needs to live along a 'source' name, in order to
1176/// show more detailed information to the user.
1177class FileError final : public ErrorInfo<FileError> {
1178
1179 friend Error createFileError(const Twine &, Error);
1180 friend Error createFileError(const Twine &, size_t, Error);
1181
1182public:
1183 void log(raw_ostream &OS) const override {
1184 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1184, __PRETTY_FUNCTION__))
;
1185 OS << "'" << FileName << "': ";
1186 if (Line.hasValue())
1187 OS << "line " << Line.getValue() << ": ";
1188 Err->log(OS);
1189 }
1190
1191 Error takeError() { return Error(std::move(Err)); }
1192
1193 std::error_code convertToErrorCode() const override;
1194
1195 // Used by ErrorInfo::classID.
1196 static char ID;
1197
1198private:
1199 FileError(const Twine &F, Optional<size_t> LineNum,
1200 std::unique_ptr<ErrorInfoBase> E) {
1201 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1201, __PRETTY_FUNCTION__))
;
1202 assert(!F.isTriviallyEmpty() &&((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
1203 "The file name provided to FileError must not be empty.")((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
;
1204 FileName = F.str();
1205 Err = std::move(E);
1206 Line = std::move(LineNum);
1207 }
1208
1209 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1210 return Error(
1211 std::unique_ptr<FileError>(new FileError(F, Line, E.takePayload())));
1212 }
1213
1214 std::string FileName;
1215 Optional<size_t> Line;
1216 std::unique_ptr<ErrorInfoBase> Err;
1217};
1218
1219/// Concatenate a source file path and/or name with an Error. The resulting
1220/// Error is unchecked.
1221inline Error createFileError(const Twine &F, Error E) {
1222 return FileError::build(F, Optional<size_t>(), std::move(E));
1223}
1224
1225/// Concatenate a source file path and/or name with line number and an Error.
1226/// The resulting Error is unchecked.
1227inline Error createFileError(const Twine &F, size_t Line, Error E) {
1228 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1229}
1230
1231/// Concatenate a source file path and/or name with a std::error_code
1232/// to form an Error object.
1233inline Error createFileError(const Twine &F, std::error_code EC) {
1234 return createFileError(F, errorCodeToError(EC));
1235}
1236
1237/// Concatenate a source file path and/or name with line number and
1238/// std::error_code to form an Error object.
1239inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1240 return createFileError(F, Line, errorCodeToError(EC));
1241}
1242
1243Error createFileError(const Twine &F, ErrorSuccess) = delete;
1244
1245/// Helper for check-and-exit error handling.
1246///
1247/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1248///
1249class ExitOnError {
1250public:
1251 /// Create an error on exit helper.
1252 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1253 : Banner(std::move(Banner)),
1254 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1255
1256 /// Set the banner string for any errors caught by operator().
1257 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1258
1259 /// Set the exit-code mapper function.
1260 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1261 this->GetExitCode = std::move(GetExitCode);
1262 }
1263
1264 /// Check Err. If it's in a failure state log the error(s) and exit.
1265 void operator()(Error Err) const { checkError(std::move(Err)); }
1266
1267 /// Check E. If it's in a success state then return the contained value. If
1268 /// it's in a failure state log the error(s) and exit.
1269 template <typename T> T operator()(Expected<T> &&E) const {
1270 checkError(E.takeError());
1271 return std::move(*E);
1272 }
1273
1274 /// Check E. If it's in a success state then return the contained reference. If
1275 /// it's in a failure state log the error(s) and exit.
1276 template <typename T> T& operator()(Expected<T&> &&E) const {
1277 checkError(E.takeError());
1278 return *E;
1279 }
1280
1281private:
1282 void checkError(Error Err) const {
1283 if (Err) {
1284 int ExitCode = GetExitCode(Err);
1285 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1286 exit(ExitCode);
1287 }
1288 }
1289
1290 std::string Banner;
1291 std::function<int(const Error &)> GetExitCode;
1292};
1293
1294/// Conversion from Error to LLVMErrorRef for C error bindings.
1295inline LLVMErrorRef wrap(Error Err) {
1296 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1297}
1298
1299/// Conversion from LLVMErrorRef to Error for C error bindings.
1300inline Error unwrap(LLVMErrorRef ErrRef) {
1301 return Error(std::unique_ptr<ErrorInfoBase>(
1302 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1303}
1304
1305} // end namespace llvm
1306
1307#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some templates that are useful if you are working with the
10// STL at all.
11//
12// No library is required when using these functions.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_STLEXTRAS_H
17#define LLVM_ADT_STLEXTRAS_H
18
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Config/abi-breaking.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T>
65struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67template <typename...> struct conjunction : std::true_type {};
68template <typename B1> struct conjunction<B1> : B1 {};
69template <typename B1, typename... Bn>
70struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73template <typename T> struct make_const_ptr {
74 using type =
75 typename std::add_pointer<typename std::add_const<T>::type>::type;
76};
77
78template <typename T> struct make_const_ref {
79 using type = typename std::add_lvalue_reference<
80 typename std::add_const<T>::type>::type;
81};
82
83//===----------------------------------------------------------------------===//
84// Extra additions to <functional>
85//===----------------------------------------------------------------------===//
86
87template <class Ty> struct identity {
88 using argument_type = Ty;
89
90 Ty &operator()(Ty &self) const {
91 return self;
92 }
93 const Ty &operator()(const Ty &self) const {
94 return self;
95 }
96};
97
98template <class Ty> struct less_ptr {
99 bool operator()(const Ty* left, const Ty* right) const {
100 return *left < *right;
101 }
102};
103
104template <class Ty> struct greater_ptr {
105 bool operator()(const Ty* left, const Ty* right) const {
106 return *right < *left;
107 }
108};
109
110/// An efficient, type-erasing, non-owning reference to a callable. This is
111/// intended for use as the type of a function parameter that is not used
112/// after the function in question returns.
113///
114/// This class does not own the callable, so it is not in general safe to store
115/// a function_ref.
116template<typename Fn> class function_ref;
117
118template<typename Ret, typename ...Params>
119class function_ref<Ret(Params...)> {
120 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121 intptr_t callable;
122
123 template<typename Callable>
124 static Ret callback_fn(intptr_t callable, Params ...params) {
125 return (*reinterpret_cast<Callable*>(callable))(
126 std::forward<Params>(params)...);
127 }
128
129public:
130 function_ref() = default;
131 function_ref(std::nullptr_t) {}
132
133 template <typename Callable>
134 function_ref(Callable &&callable,
135 typename std::enable_if<
136 !std::is_same<typename std::remove_reference<Callable>::type,
137 function_ref>::value>::type * = nullptr)
138 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139 callable(reinterpret_cast<intptr_t>(&callable)) {}
140
141 Ret operator()(Params ...params) const {
142 return callback(callable, std::forward<Params>(params)...);
143 }
144
145 operator bool() const { return callback; }
146};
147
148// deleter - Very very very simple method that is used to invoke operator
149// delete on something. It is used like this:
150//
151// for_each(V.begin(), B.end(), deleter<Interval>);
152template <class T>
153inline void deleter(T *Ptr) {
154 delete Ptr;
155}
156
157//===----------------------------------------------------------------------===//
158// Extra additions to <iterator>
159//===----------------------------------------------------------------------===//
160
161namespace adl_detail {
162
163using std::begin;
164
165template <typename ContainerTy>
166auto adl_begin(ContainerTy &&container)
167 -> decltype(begin(std::forward<ContainerTy>(container))) {
168 return begin(std::forward<ContainerTy>(container));
169}
170
171using std::end;
172
173template <typename ContainerTy>
174auto adl_end(ContainerTy &&container)
175 -> decltype(end(std::forward<ContainerTy>(container))) {
176 return end(std::forward<ContainerTy>(container));
177}
178
179using std::swap;
180
181template <typename T>
182void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183 std::declval<T>()))) {
184 swap(std::forward<T>(lhs), std::forward<T>(rhs));
185}
186
187} // end namespace adl_detail
188
189template <typename ContainerTy>
190auto adl_begin(ContainerTy &&container)
191 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
193}
194
195template <typename ContainerTy>
196auto adl_end(ContainerTy &&container)
197 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198 return adl_detail::adl_end(std::forward<ContainerTy>(container));
199}
200
201template <typename T>
202void adl_swap(T &&lhs, T &&rhs) noexcept(
203 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
205}
206
207/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208template <typename T>
209constexpr bool empty(const T &RangeOrContainer) {
210 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
211}
212
213// mapped_iterator - This is a simple iterator adapter that causes a function to
214// be applied whenever operator* is invoked on the iterator.
215
216template <typename ItTy, typename FuncTy,
217 typename FuncReturnTy =
218 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
219class mapped_iterator
220 : public iterator_adaptor_base<
221 mapped_iterator<ItTy, FuncTy>, ItTy,
222 typename std::iterator_traits<ItTy>::iterator_category,
223 typename std::remove_reference<FuncReturnTy>::type> {
224public:
225 mapped_iterator(ItTy U, FuncTy F)
226 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
227
228 ItTy getCurrent() { return this->I; }
229
230 FuncReturnTy operator*() { return F(*this->I); }
231
232private:
233 FuncTy F;
234};
235
236// map_iterator - Provide a convenient way to create mapped_iterators, just like
237// make_pair is useful for creating pairs...
238template <class ItTy, class FuncTy>
239inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
240 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
241}
242
243/// Helper to determine if type T has a member called rbegin().
244template <typename Ty> class has_rbegin_impl {
245 using yes = char[1];
246 using no = char[2];
247
248 template <typename Inner>
249 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
250
251 template <typename>
252 static no& test(...);
253
254public:
255 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
256};
257
258/// Metafunction to determine if T& or T has a member called rbegin().
259template <typename Ty>
260struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
261};
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have rbegin()/rend() methods for this to work.
265template <typename ContainerTy>
266auto reverse(ContainerTy &&C,
267 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
268 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
269 return make_range(C.rbegin(), C.rend());
270}
271
272// Returns a std::reverse_iterator wrapped around the given iterator.
273template <typename IteratorTy>
274std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
275 return std::reverse_iterator<IteratorTy>(It);
276}
277
278// Returns an iterator_range over the given container which iterates in reverse.
279// Note that the container must have begin()/end() methods which return
280// bidirectional iterators for this to work.
281template <typename ContainerTy>
282auto reverse(
283 ContainerTy &&C,
284 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
285 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
286 llvm::make_reverse_iterator(std::begin(C)))) {
287 return make_range(llvm::make_reverse_iterator(std::end(C)),
288 llvm::make_reverse_iterator(std::begin(C)));
289}
290
291/// An iterator adaptor that filters the elements of given inner iterators.
292///
293/// The predicate parameter should be a callable object that accepts the wrapped
294/// iterator's reference type and returns a bool. When incrementing or
295/// decrementing the iterator, it will call the predicate on each element and
296/// skip any where it returns false.
297///
298/// \code
299/// int A[] = { 1, 2, 3, 4 };
300/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
301/// // R contains { 1, 3 }.
302/// \endcode
303///
304/// Note: filter_iterator_base implements support for forward iteration.
305/// filter_iterator_impl exists to provide support for bidirectional iteration,
306/// conditional on whether the wrapped iterator supports it.
307template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
308class filter_iterator_base
309 : public iterator_adaptor_base<
310 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
311 WrappedIteratorT,
312 typename std::common_type<
313 IterTag, typename std::iterator_traits<
314 WrappedIteratorT>::iterator_category>::type> {
315 using BaseT = iterator_adaptor_base<
316 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
317 WrappedIteratorT,
318 typename std::common_type<
319 IterTag, typename std::iterator_traits<
320 WrappedIteratorT>::iterator_category>::type>;
321
322protected:
323 WrappedIteratorT End;
324 PredicateT Pred;
325
326 void findNextValid() {
327 while (this->I != End && !Pred(*this->I))
328 BaseT::operator++();
329 }
330
331 // Construct the iterator. The begin iterator needs to know where the end
332 // is, so that it can properly stop when it gets there. The end iterator only
333 // needs the predicate to support bidirectional iteration.
334 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
335 PredicateT Pred)
336 : BaseT(Begin), End(End), Pred(Pred) {
337 findNextValid();
338 }
339
340public:
341 using BaseT::operator++;
342
343 filter_iterator_base &operator++() {
344 BaseT::operator++();
345 findNextValid();
346 return *this;
347 }
348};
349
350/// Specialization of filter_iterator_base for forward iteration only.
351template <typename WrappedIteratorT, typename PredicateT,
352 typename IterTag = std::forward_iterator_tag>
353class filter_iterator_impl
354 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
355 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
356
357public:
358 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
359 PredicateT Pred)
360 : BaseT(Begin, End, Pred) {}
361};
362
363/// Specialization of filter_iterator_base for bidirectional iteration.
364template <typename WrappedIteratorT, typename PredicateT>
365class filter_iterator_impl<WrappedIteratorT, PredicateT,
366 std::bidirectional_iterator_tag>
367 : public filter_iterator_base<WrappedIteratorT, PredicateT,
368 std::bidirectional_iterator_tag> {
369 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
370 std::bidirectional_iterator_tag>;
371 void findPrevValid() {
372 while (!this->Pred(*this->I))
373 BaseT::operator--();
374 }
375
376public:
377 using BaseT::operator--;
378
379 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
380 PredicateT Pred)
381 : BaseT(Begin, End, Pred) {}
382
383 filter_iterator_impl &operator--() {
384 BaseT::operator--();
385 findPrevValid();
386 return *this;
387 }
388};
389
390namespace detail {
391
392template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
393 using type = std::forward_iterator_tag;
394};
395
396template <> struct fwd_or_bidi_tag_impl<true> {
397 using type = std::bidirectional_iterator_tag;
398};
399
400/// Helper which sets its type member to forward_iterator_tag if the category
401/// of \p IterT does not derive from bidirectional_iterator_tag, and to
402/// bidirectional_iterator_tag otherwise.
403template <typename IterT> struct fwd_or_bidi_tag {
404 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
405 std::bidirectional_iterator_tag,
406 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
407};
408
409} // namespace detail
410
411/// Defines filter_iterator to a suitable specialization of
412/// filter_iterator_impl, based on the underlying iterator's category.
413template <typename WrappedIteratorT, typename PredicateT>
414using filter_iterator = filter_iterator_impl<
415 WrappedIteratorT, PredicateT,
416 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
417
418/// Convenience function that takes a range of elements and a predicate,
419/// and return a new filter_iterator range.
420///
421/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
422/// lifetime of that temporary is not kept by the returned range object, and the
423/// temporary is going to be dropped on the floor after the make_iterator_range
424/// full expression that contains this function call.
425template <typename RangeT, typename PredicateT>
426iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
427make_filter_range(RangeT &&Range, PredicateT Pred) {
428 using FilterIteratorT =
429 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
430 return make_range(
431 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
432 std::end(std::forward<RangeT>(Range)), Pred),
433 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
434 std::end(std::forward<RangeT>(Range)), Pred));
435}
436
437/// A pseudo-iterator adaptor that is designed to implement "early increment"
438/// style loops.
439///
440/// This is *not a normal iterator* and should almost never be used directly. It
441/// is intended primarily to be used with range based for loops and some range
442/// algorithms.
443///
444/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
445/// somewhere between them. The constraints of these iterators are:
446///
447/// - On construction or after being incremented, it is comparable and
448/// dereferencable. It is *not* incrementable.
449/// - After being dereferenced, it is neither comparable nor dereferencable, it
450/// is only incrementable.
451///
452/// This means you can only dereference the iterator once, and you can only
453/// increment it once between dereferences.
454template <typename WrappedIteratorT>
455class early_inc_iterator_impl
456 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
457 WrappedIteratorT, std::input_iterator_tag> {
458 using BaseT =
459 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
460 WrappedIteratorT, std::input_iterator_tag>;
461
462 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
463
464protected:
465#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
466 bool IsEarlyIncremented = false;
467#endif
468
469public:
470 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
471
472 using BaseT::operator*;
473 typename BaseT::reference operator*() {
474#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
475 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 475, __PRETTY_FUNCTION__))
;
476 IsEarlyIncremented = true;
477#endif
478 return *(this->I)++;
479 }
480
481 using BaseT::operator++;
482 early_inc_iterator_impl &operator++() {
483#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
484 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 484, __PRETTY_FUNCTION__))
;
485 IsEarlyIncremented = false;
486#endif
487 return *this;
488 }
489
490 using BaseT::operator==;
491 bool operator==(const early_inc_iterator_impl &RHS) const {
492#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
493 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 493, __PRETTY_FUNCTION__))
;
494#endif
495 return BaseT::operator==(RHS);
496 }
497};
498
499/// Make a range that does early increment to allow mutation of the underlying
500/// range without disrupting iteration.
501///
502/// The underlying iterator will be incremented immediately after it is
503/// dereferenced, allowing deletion of the current node or insertion of nodes to
504/// not disrupt iteration provided they do not invalidate the *next* iterator --
505/// the current iterator can be invalidated.
506///
507/// This requires a very exact pattern of use that is only really suitable to
508/// range based for loops and other range algorithms that explicitly guarantee
509/// to dereference exactly once each element, and to increment exactly once each
510/// element.
511template <typename RangeT>
512iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
513make_early_inc_range(RangeT &&Range) {
514 using EarlyIncIteratorT =
515 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
516 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
517 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
518}
519
520// forward declarations required by zip_shortest/zip_first/zip_longest
521template <typename R, typename UnaryPredicate>
522bool all_of(R &&range, UnaryPredicate P);
523template <typename R, typename UnaryPredicate>
524bool any_of(R &&range, UnaryPredicate P);
525
526template <size_t... I> struct index_sequence;
527
528template <class... Ts> struct index_sequence_for;
529
530namespace detail {
531
532using std::declval;
533
534// We have to alias this since inlining the actual type at the usage site
535// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
536template<typename... Iters> struct ZipTupleType {
537 using type = std::tuple<decltype(*declval<Iters>())...>;
538};
539
540template <typename ZipType, typename... Iters>
541using zip_traits = iterator_facade_base<
542 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
543 typename std::iterator_traits<
544 Iters>::iterator_category...>::type,
545 // ^ TODO: Implement random access methods.
546 typename ZipTupleType<Iters...>::type,
547 typename std::iterator_traits<typename std::tuple_element<
548 0, std::tuple<Iters...>>::type>::difference_type,
549 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
550 // inner iterators have the same difference_type. It would fail if, for
551 // instance, the second field's difference_type were non-numeric while the
552 // first is.
553 typename ZipTupleType<Iters...>::type *,
554 typename ZipTupleType<Iters...>::type>;
555
556template <typename ZipType, typename... Iters>
557struct zip_common : public zip_traits<ZipType, Iters...> {
558 using Base = zip_traits<ZipType, Iters...>;
559 using value_type = typename Base::value_type;
560
561 std::tuple<Iters...> iterators;
562
563protected:
564 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
565 return value_type(*std::get<Ns>(iterators)...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
571 }
572
573 template <size_t... Ns>
574 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
575 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
576 }
577
578public:
579 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
580
581 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
582
583 const value_type operator*() const {
584 return deref(index_sequence_for<Iters...>{});
585 }
586
587 ZipType &operator++() {
588 iterators = tup_inc(index_sequence_for<Iters...>{});
589 return *reinterpret_cast<ZipType *>(this);
590 }
591
592 ZipType &operator--() {
593 static_assert(Base::IsBidirectional,
594 "All inner iterators must be at least bidirectional.");
595 iterators = tup_dec(index_sequence_for<Iters...>{});
596 return *reinterpret_cast<ZipType *>(this);
597 }
598};
599
600template <typename... Iters>
601struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
602 using Base = zip_common<zip_first<Iters...>, Iters...>;
603
604 bool operator==(const zip_first<Iters...> &other) const {
605 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
606 }
607
608 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
609};
610
611template <typename... Iters>
612class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
613 template <size_t... Ns>
614 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
615 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
616 std::get<Ns>(other.iterators)...},
617 identity<bool>{});
618 }
619
620public:
621 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
622
623 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
624
625 bool operator==(const zip_shortest<Iters...> &other) const {
626 return !test(other, index_sequence_for<Iters...>{});
627 }
628};
629
630template <template <typename...> class ItType, typename... Args> class zippy {
631public:
632 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
633 using iterator_category = typename iterator::iterator_category;
634 using value_type = typename iterator::value_type;
635 using difference_type = typename iterator::difference_type;
636 using pointer = typename iterator::pointer;
637 using reference = typename iterator::reference;
638
639private:
640 std::tuple<Args...> ts;
641
642 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
643 return iterator(std::begin(std::get<Ns>(ts))...);
644 }
645 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
646 return iterator(std::end(std::get<Ns>(ts))...);
647 }
648
649public:
650 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
651
652 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
653 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
654};
655
656} // end namespace detail
657
658/// zip iterator for two or more iteratable types.
659template <typename T, typename U, typename... Args>
660detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
661 Args &&... args) {
662 return detail::zippy<detail::zip_shortest, T, U, Args...>(
663 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
664}
665
666/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
667/// be the shortest.
668template <typename T, typename U, typename... Args>
669detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
670 Args &&... args) {
671 return detail::zippy<detail::zip_first, T, U, Args...>(
672 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
673}
674
675namespace detail {
676template <typename Iter>
677static Iter next_or_end(const Iter &I, const Iter &End) {
678 if (I == End)
679 return End;
680 return std::next(I);
681}
682
683template <typename Iter>
684static auto deref_or_none(const Iter &I, const Iter &End)
685 -> llvm::Optional<typename std::remove_const<
686 typename std::remove_reference<decltype(*I)>::type>::type> {
687 if (I == End)
688 return None;
689 return *I;
690}
691
692template <typename Iter> struct ZipLongestItemType {
693 using type =
694 llvm::Optional<typename std::remove_const<typename std::remove_reference<
695 decltype(*std::declval<Iter>())>::type>::type>;
696};
697
698template <typename... Iters> struct ZipLongestTupleType {
699 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
700};
701
702template <typename... Iters>
703class zip_longest_iterator
704 : public iterator_facade_base<
705 zip_longest_iterator<Iters...>,
706 typename std::common_type<
707 std::forward_iterator_tag,
708 typename std::iterator_traits<Iters>::iterator_category...>::type,
709 typename ZipLongestTupleType<Iters...>::type,
710 typename std::iterator_traits<typename std::tuple_element<
711 0, std::tuple<Iters...>>::type>::difference_type,
712 typename ZipLongestTupleType<Iters...>::type *,
713 typename ZipLongestTupleType<Iters...>::type> {
714public:
715 using value_type = typename ZipLongestTupleType<Iters...>::type;
716
717private:
718 std::tuple<Iters...> iterators;
719 std::tuple<Iters...> end_iterators;
720
721 template <size_t... Ns>
722 bool test(const zip_longest_iterator<Iters...> &other,
723 index_sequence<Ns...>) const {
724 return llvm::any_of(
725 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
726 std::get<Ns>(other.iterators)...},
727 identity<bool>{});
728 }
729
730 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
731 return value_type(
732 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
733 }
734
735 template <size_t... Ns>
736 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
737 return std::tuple<Iters...>(
738 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
739 }
740
741public:
742 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
743 : iterators(std::forward<Iters>(ts.first)...),
744 end_iterators(std::forward<Iters>(ts.second)...) {}
745
746 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
747
748 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
749
750 zip_longest_iterator<Iters...> &operator++() {
751 iterators = tup_inc(index_sequence_for<Iters...>{});
752 return *this;
753 }
754
755 bool operator==(const zip_longest_iterator<Iters...> &other) const {
756 return !test(other, index_sequence_for<Iters...>{});
757 }
758};
759
760template <typename... Args> class zip_longest_range {
761public:
762 using iterator =
763 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
764 using iterator_category = typename iterator::iterator_category;
765 using value_type = typename iterator::value_type;
766 using difference_type = typename iterator::difference_type;
767 using pointer = typename iterator::pointer;
768 using reference = typename iterator::reference;
769
770private:
771 std::tuple<Args...> ts;
772
773 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
779 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
780 adl_end(std::get<Ns>(ts)))...);
781 }
782
783public:
784 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
785
786 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
787 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
788};
789} // namespace detail
790
791/// Iterate over two or more iterators at the same time. Iteration continues
792/// until all iterators reach the end. The llvm::Optional only contains a value
793/// if the iterator has not reached the end.
794template <typename T, typename U, typename... Args>
795detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
796 Args &&... args) {
797 return detail::zip_longest_range<T, U, Args...>(
798 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
799}
800
801/// Iterator wrapper that concatenates sequences together.
802///
803/// This can concatenate different iterators, even with different types, into
804/// a single iterator provided the value types of all the concatenated
805/// iterators expose `reference` and `pointer` types that can be converted to
806/// `ValueT &` and `ValueT *` respectively. It doesn't support more
807/// interesting/customized pointer or reference types.
808///
809/// Currently this only supports forward or higher iterator categories as
810/// inputs and always exposes a forward iterator interface.
811template <typename ValueT, typename... IterTs>
812class concat_iterator
813 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
814 std::forward_iterator_tag, ValueT> {
815 using BaseT = typename concat_iterator::iterator_facade_base;
816
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
819 ///
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple<IterTs...> Begins;
824 std::tuple<IterTs...> Ends;
825
826 /// Attempts to increment a specific iterator.
827 ///
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index> bool incrementHelper() {
831 auto &Begin = std::get<Index>(Begins);
832 auto &End = std::get<Index>(Ends);
833 if (Begin == End)
834 return false;
835
836 ++Begin;
837 return true;
838 }
839
840 /// Increments the first non-end iterator.
841 ///
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns> void increment(index_sequence<Ns...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns[])() = {
846 &concat_iterator::incrementHelper<Ns>...};
847
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn : IncrementHelperFns)
850 if ((this->*IncrementHelperFn)())
851 return;
852
853 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 853)
;
854 }
855
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
858 /// reference.
859 template <size_t Index> ValueT *getHelper() const {
860 auto &Begin = std::get<Index>(Begins);
861 auto &End = std::get<Index>(Ends);
862 if (Begin == End)
863 return nullptr;
864
865 return &*Begin;
866 }
867
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
869 /// reference.
870 ///
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT *(concat_iterator::*GetHelperFns[])() const = {
875 &concat_iterator::getHelper<Ns>...};
876
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn : GetHelperFns)
879 if (ValueT *P = (this->*GetHelperFn)())
880 return *P;
881
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 882)
;
883 }
884
885public:
886 /// Constructs an iterator from a squence of ranges.
887 ///
888 /// We need the full range to know how to switch between each of the
889 /// iterators.
890 template <typename... RangeTs>
891 explicit concat_iterator(RangeTs &&... Ranges)
892 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
893
894 using BaseT::operator++;
895
896 concat_iterator &operator++() {
897 increment(index_sequence_for<IterTs...>());
898 return *this;
899 }
900
901 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
902
903 bool operator==(const concat_iterator &RHS) const {
904 return Begins == RHS.Begins && Ends == RHS.Ends;
905 }
906};
907
908namespace detail {
909
910/// Helper to store a sequence of ranges being concatenated and access them.
911///
912/// This is designed to facilitate providing actual storage when temporaries
913/// are passed into the constructor such that we can use it as part of range
914/// based for loops.
915template <typename ValueT, typename... RangeTs> class concat_range {
916public:
917 using iterator =
918 concat_iterator<ValueT,
919 decltype(std::begin(std::declval<RangeTs &>()))...>;
920
921private:
922 std::tuple<RangeTs...> Ranges;
923
924 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
925 return iterator(std::get<Ns>(Ranges)...);
926 }
927 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
928 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
929 std::end(std::get<Ns>(Ranges)))...);
930 }
931
932public:
933 concat_range(RangeTs &&... Ranges)
934 : Ranges(std::forward<RangeTs>(Ranges)...) {}
935
936 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
937 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
938};
939
940} // end namespace detail
941
942/// Concatenated range across two or more ranges.
943///
944/// The desired value type must be explicitly specified.
945template <typename ValueT, typename... RangeTs>
946detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
947 static_assert(sizeof...(RangeTs) > 1,
948 "Need more than one range to concatenate!");
949 return detail::concat_range<ValueT, RangeTs...>(
950 std::forward<RangeTs>(Ranges)...);
951}
952
953//===----------------------------------------------------------------------===//
954// Extra additions to <utility>
955//===----------------------------------------------------------------------===//
956
957/// Function object to check whether the first component of a std::pair
958/// compares less than the first component of another std::pair.
959struct less_first {
960 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
961 return lhs.first < rhs.first;
962 }
963};
964
965/// Function object to check whether the second component of a std::pair
966/// compares less than the second component of another std::pair.
967struct less_second {
968 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
969 return lhs.second < rhs.second;
970 }
971};
972
973/// \brief Function object to apply a binary function to the first component of
974/// a std::pair.
975template<typename FuncTy>
976struct on_first {
977 FuncTy func;
978
979 template <typename T>
980 auto operator()(const T &lhs, const T &rhs) const
981 -> decltype(func(lhs.first, rhs.first)) {
982 return func(lhs.first, rhs.first);
983 }
984};
985
986// A subset of N3658. More stuff can be added as-needed.
987
988/// Represents a compile-time sequence of integers.
989template <class T, T... I> struct integer_sequence {
990 using value_type = T;
991
992 static constexpr size_t size() { return sizeof...(I); }
993};
994
995/// Alias for the common case of a sequence of size_ts.
996template <size_t... I>
997struct index_sequence : integer_sequence<std::size_t, I...> {};
998
999template <std::size_t N, std::size_t... I>
1000struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1001template <std::size_t... I>
1002struct build_index_impl<0, I...> : index_sequence<I...> {};
1003
1004/// Creates a compile-time integer sequence for a parameter pack.
1005template <class... Ts>
1006struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1007
1008/// Utility type to build an inheritance chain that makes it easy to rank
1009/// overload candidates.
1010template <int N> struct rank : rank<N - 1> {};
1011template <> struct rank<0> {};
1012
1013/// traits class for checking whether type T is one of any of the given
1014/// types in the variadic list.
1015template <typename T, typename... Ts> struct is_one_of {
1016 static const bool value = false;
1017};
1018
1019template <typename T, typename U, typename... Ts>
1020struct is_one_of<T, U, Ts...> {
1021 static const bool value =
1022 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1023};
1024
1025/// traits class for checking whether type T is a base class for all
1026/// the given types in the variadic list.
1027template <typename T, typename... Ts> struct are_base_of {
1028 static const bool value = true;
1029};
1030
1031template <typename T, typename U, typename... Ts>
1032struct are_base_of<T, U, Ts...> {
1033 static const bool value =
1034 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1035};
1036
1037//===----------------------------------------------------------------------===//
1038// Extra additions for arrays
1039//===----------------------------------------------------------------------===//
1040
1041/// Find the length of an array.
1042template <class T, std::size_t N>
1043constexpr inline size_t array_lengthof(T (&)[N]) {
1044 return N;
1045}
1046
1047/// Adapt std::less<T> for array_pod_sort.
1048template<typename T>
1049inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1050 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1051 *reinterpret_cast<const T*>(P2)))
1052 return -1;
1053 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1054 *reinterpret_cast<const T*>(P1)))
1055 return 1;
1056 return 0;
1057}
1058
1059/// get_array_pod_sort_comparator - This is an internal helper function used to
1060/// get type deduction of T right.
1061template<typename T>
1062inline int (*get_array_pod_sort_comparator(const T &))
1063 (const void*, const void*) {
1064 return array_pod_sort_comparator<T>;
1065}
1066
1067/// array_pod_sort - This sorts an array with the specified start and end
1068/// extent. This is just like std::sort, except that it calls qsort instead of
1069/// using an inlined template. qsort is slightly slower than std::sort, but
1070/// most sorts are not performance critical in LLVM and std::sort has to be
1071/// template instantiated for each type, leading to significant measured code
1072/// bloat. This function should generally be used instead of std::sort where
1073/// possible.
1074///
1075/// This function assumes that you have simple POD-like types that can be
1076/// compared with std::less and can be moved with memcpy. If this isn't true,
1077/// you should use std::sort.
1078///
1079/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1080/// default to std::less.
1081template<class IteratorTy>
1082inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1083 // Don't inefficiently call qsort with one element or trigger undefined
1084 // behavior with an empty sequence.
1085 auto NElts = End - Start;
1086 if (NElts <= 1) return;
1087#ifdef EXPENSIVE_CHECKS
1088 std::mt19937 Generator(std::random_device{}());
1089 std::shuffle(Start, End, Generator);
1090#endif
1091 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1092}
1093
1094template <class IteratorTy>
1095inline void array_pod_sort(
1096 IteratorTy Start, IteratorTy End,
1097 int (*Compare)(
1098 const typename std::iterator_traits<IteratorTy>::value_type *,
1099 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1100 // Don't inefficiently call qsort with one element or trigger undefined
1101 // behavior with an empty sequence.
1102 auto NElts = End - Start;
1103 if (NElts <= 1) return;
1104#ifdef EXPENSIVE_CHECKS
1105 std::mt19937 Generator(std::random_device{}());
1106 std::shuffle(Start, End, Generator);
1107#endif
1108 qsort(&*Start, NElts, sizeof(*Start),
1109 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1110}
1111
1112// Provide wrappers to std::sort which shuffle the elements before sorting
1113// to help uncover non-deterministic behavior (PR35135).
1114template <typename IteratorTy>
1115inline void sort(IteratorTy Start, IteratorTy End) {
1116#ifdef EXPENSIVE_CHECKS
1117 std::mt19937 Generator(std::random_device{}());
1118 std::shuffle(Start, End, Generator);
1119#endif
1120 std::sort(Start, End);
1121}
1122
1123template <typename Container> inline void sort(Container &&C) {
1124 llvm::sort(adl_begin(C), adl_end(C));
1125}
1126
1127template <typename IteratorTy, typename Compare>
1128inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1129#ifdef EXPENSIVE_CHECKS
1130 std::mt19937 Generator(std::random_device{}());
1131 std::shuffle(Start, End, Generator);
1132#endif
1133 std::sort(Start, End, Comp);
1134}
1135
1136template <typename Container, typename Compare>
1137inline void sort(Container &&C, Compare Comp) {
1138 llvm::sort(adl_begin(C), adl_end(C), Comp);
1139}
1140
1141//===----------------------------------------------------------------------===//
1142// Extra additions to <algorithm>
1143//===----------------------------------------------------------------------===//
1144
1145/// For a container of pointers, deletes the pointers and then clears the
1146/// container.
1147template<typename Container>
1148void DeleteContainerPointers(Container &C) {
1149 for (auto V : C)
1150 delete V;
1151 C.clear();
1152}
1153
1154/// In a container of pairs (usually a map) whose second element is a pointer,
1155/// deletes the second elements and then clears the container.
1156template<typename Container>
1157void DeleteContainerSeconds(Container &C) {
1158 for (auto &V : C)
1159 delete V.second;
1160 C.clear();
1161}
1162
1163/// Get the size of a range. This is a wrapper function around std::distance
1164/// which is only enabled when the operation is O(1).
1165template <typename R>
1166auto size(R &&Range, typename std::enable_if<
1167 std::is_same<typename std::iterator_traits<decltype(
1168 Range.begin())>::iterator_category,
1169 std::random_access_iterator_tag>::value,
1170 void>::type * = nullptr)
1171 -> decltype(std::distance(Range.begin(), Range.end())) {
1172 return std::distance(Range.begin(), Range.end());
1173}
1174
1175/// Provide wrappers to std::for_each which take ranges instead of having to
1176/// pass begin/end explicitly.
1177template <typename R, typename UnaryPredicate>
1178UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1179 return std::for_each(adl_begin(Range), adl_end(Range), P);
1180}
1181
1182/// Provide wrappers to std::all_of which take ranges instead of having to pass
1183/// begin/end explicitly.
1184template <typename R, typename UnaryPredicate>
1185bool all_of(R &&Range, UnaryPredicate P) {
1186 return std::all_of(adl_begin(Range), adl_end(Range), P);
1187}
1188
1189/// Provide wrappers to std::any_of which take ranges instead of having to pass
1190/// begin/end explicitly.
1191template <typename R, typename UnaryPredicate>
1192bool any_of(R &&Range, UnaryPredicate P) {
1193 return std::any_of(adl_begin(Range), adl_end(Range), P);
1194}
1195
1196/// Provide wrappers to std::none_of which take ranges instead of having to pass
1197/// begin/end explicitly.
1198template <typename R, typename UnaryPredicate>
1199bool none_of(R &&Range, UnaryPredicate P) {
1200 return std::none_of(adl_begin(Range), adl_end(Range), P);
1201}
1202
1203/// Provide wrappers to std::find which take ranges instead of having to pass
1204/// begin/end explicitly.
1205template <typename R, typename T>
1206auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1207 return std::find(adl_begin(Range), adl_end(Range), Val);
1208}
1209
1210/// Provide wrappers to std::find_if which take ranges instead of having to pass
1211/// begin/end explicitly.
1212template <typename R, typename UnaryPredicate>
1213auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217template <typename R, typename UnaryPredicate>
1218auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1219 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1220}
1221
1222/// Provide wrappers to std::remove_if which take ranges instead of having to
1223/// pass begin/end explicitly.
1224template <typename R, typename UnaryPredicate>
1225auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1227}
1228
1229/// Provide wrappers to std::copy_if which take ranges instead of having to
1230/// pass begin/end explicitly.
1231template <typename R, typename OutputIt, typename UnaryPredicate>
1232OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1233 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1234}
1235
1236template <typename R, typename OutputIt>
1237OutputIt copy(R &&Range, OutputIt Out) {
1238 return std::copy(adl_begin(Range), adl_end(Range), Out);
1239}
1240
1241/// Wrapper function around std::find to detect if an element exists
1242/// in a container.
1243template <typename R, typename E>
1244bool is_contained(R &&Range, const E &Element) {
1245 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1246}
1247
1248/// Wrapper function around std::count to count the number of times an element
1249/// \p Element occurs in the given range \p Range.
1250template <typename R, typename E>
1251auto count(R &&Range, const E &Element) ->
1252 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1253 return std::count(adl_begin(Range), adl_end(Range), Element);
1254}
1255
1256/// Wrapper function around std::count_if to count the number of times an
1257/// element satisfying a given predicate occurs in a range.
1258template <typename R, typename UnaryPredicate>
1259auto count_if(R &&Range, UnaryPredicate P) ->
1260 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1261 return std::count_if(adl_begin(Range), adl_end(Range), P);
1262}
1263
1264/// Wrapper function around std::transform to apply a function to a range and
1265/// store the result elsewhere.
1266template <typename R, typename OutputIt, typename UnaryPredicate>
1267OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1268 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1269}
1270
1271/// Provide wrappers to std::partition which take ranges instead of having to
1272/// pass begin/end explicitly.
1273template <typename R, typename UnaryPredicate>
1274auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1275 return std::partition(adl_begin(Range), adl_end(Range), P);
1276}
1277
1278/// Provide wrappers to std::lower_bound which take ranges instead of having to
1279/// pass begin/end explicitly.
1280template <typename R, typename T>
1281auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1282 return std::lower_bound(adl_begin(Range), adl_end(Range),
1283 std::forward<T>(Value));
1284}
1285
1286template <typename R, typename T, typename Compare>
1287auto lower_bound(R &&Range, T &&Value, Compare C)
1288 -> decltype(adl_begin(Range)) {
1289 return std::lower_bound(adl_begin(Range), adl_end(Range),
1290 std::forward<T>(Value), C);
1291}
1292
1293/// Provide wrappers to std::upper_bound which take ranges instead of having to
1294/// pass begin/end explicitly.
1295template <typename R, typename T>
1296auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1297 return std::upper_bound(adl_begin(Range), adl_end(Range),
1298 std::forward<T>(Value));
1299}
1300
1301template <typename R, typename T, typename Compare>
1302auto upper_bound(R &&Range, T &&Value, Compare C)
1303 -> decltype(adl_begin(Range)) {
1304 return std::upper_bound(adl_begin(Range), adl_end(Range),
1305 std::forward<T>(Value), C);
1306}
1307
1308template <typename R>
1309void stable_sort(R &&Range) {
1310 std::stable_sort(adl_begin(Range), adl_end(Range));
1311}
1312
1313template <typename R, typename Compare>
1314void stable_sort(R &&Range, Compare C) {
1315 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1316}
1317
1318/// Binary search for the first index where a predicate is true.
1319/// Returns the first I in [Lo, Hi) where C(I) is true, or Hi if it never is.
1320/// Requires that C is always false below some limit, and always true above it.
1321///
1322/// Example:
1323/// size_t DawnModernEra = bsearch(1776, 2050, [](size_t Year){
1324/// return Presidents.for(Year).twitterHandle() != None;
1325/// });
1326///
1327/// Note the return value differs from std::binary_search!
1328template <typename Predicate>
1329size_t bsearch(size_t Lo, size_t Hi, Predicate P) {
1330 while (Lo != Hi) {
1331 assert(Hi > Lo)((Hi > Lo) ? static_cast<void> (0) : __assert_fail (
"Hi > Lo", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1331, __PRETTY_FUNCTION__))
;
1332 size_t Mid = Lo + (Hi - Lo) / 2;
1333 if (P(Mid))
1334 Hi = Mid;
1335 else
1336 Lo = Mid + 1;
1337 }
1338 return Hi;
1339}
1340
1341/// Binary search for the first iterator where a predicate is true.
1342/// Returns the first I in [Lo, Hi) where C(*I) is true, or Hi if it never is.
1343/// Requires that C is always false below some limit, and always true above it.
1344template <typename It, typename Predicate,
1345 typename Val = decltype(*std::declval<It>())>
1346It bsearch(It Lo, It Hi, Predicate P) {
1347 return std::lower_bound(Lo, Hi, 0u,
1348 [&](const Val &V, unsigned) { return !P(V); });
1349}
1350
1351/// Binary search for the first iterator in a range where a predicate is true.
1352/// Requires that C is always false below some limit, and always true above it.
1353template <typename R, typename Predicate>
1354auto bsearch(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1355 return bsearch(adl_begin(Range), adl_end(Range), P);
1356}
1357
1358/// Wrapper function around std::equal to detect if all elements
1359/// in a container are same.
1360template <typename R>
1361bool is_splat(R &&Range) {
1362 size_t range_size = size(Range);
1363 return range_size != 0 && (range_size == 1 ||
1364 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1365}
1366
1367/// Given a range of type R, iterate the entire range and return a
1368/// SmallVector with elements of the vector. This is useful, for example,
1369/// when you want to iterate a range and then sort the results.
1370template <unsigned Size, typename R>
1371SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1372to_vector(R &&Range) {
1373 return {adl_begin(Range), adl_end(Range)};
1374}
1375
1376/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1377/// `erase_if` which is equivalent to:
1378///
1379/// C.erase(remove_if(C, pred), C.end());
1380///
1381/// This version works for any container with an erase method call accepting
1382/// two iterators.
1383template <typename Container, typename UnaryPredicate>
1384void erase_if(Container &C, UnaryPredicate P) {
1385 C.erase(remove_if(C, P), C.end());
1386}
1387
1388//===----------------------------------------------------------------------===//
1389// Extra additions to <memory>
1390//===----------------------------------------------------------------------===//
1391
1392// Implement make_unique according to N3656.
1393
1394/// Constructs a `new T()` with the given args and returns a
1395/// `unique_ptr<T>` which owns the object.
1396///
1397/// Example:
1398///
1399/// auto p = make_unique<int>();
1400/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1401template <class T, class... Args>
1402typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1403make_unique(Args &&... args) {
1404 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
14
Memory is allocated
1405}
1406
1407/// Constructs a `new T[n]` with the given args and returns a
1408/// `unique_ptr<T[]>` which owns the object.
1409///
1410/// \param n size of the new array.
1411///
1412/// Example:
1413///
1414/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1415template <class T>
1416typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1417 std::unique_ptr<T>>::type
1418make_unique(size_t n) {
1419 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1420}
1421
1422/// This function isn't used and is only here to provide better compile errors.
1423template <class T, class... Args>
1424typename std::enable_if<std::extent<T>::value != 0>::type
1425make_unique(Args &&...) = delete;
1426
1427struct FreeDeleter {
1428 void operator()(void* v) {
1429 ::free(v);
1430 }
1431};
1432
1433template<typename First, typename Second>
1434struct pair_hash {
1435 size_t operator()(const std::pair<First, Second> &P) const {
1436 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1437 }
1438};
1439
1440/// A functor like C++14's std::less<void> in its absence.
1441struct less {
1442 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1443 return std::forward<A>(a) < std::forward<B>(b);
1444 }
1445};
1446
1447/// A functor like C++14's std::equal<void> in its absence.
1448struct equal {
1449 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1450 return std::forward<A>(a) == std::forward<B>(b);
1451 }
1452};
1453
1454/// Binary functor that adapts to any other binary functor after dereferencing
1455/// operands.
1456template <typename T> struct deref {
1457 T func;
1458
1459 // Could be further improved to cope with non-derivable functors and
1460 // non-binary functors (should be a variadic template member function
1461 // operator()).
1462 template <typename A, typename B>
1463 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1464 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1464, __PRETTY_FUNCTION__))
;
1465 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1465, __PRETTY_FUNCTION__))
;
1466 return func(*lhs, *rhs);
1467 }
1468};
1469
1470namespace detail {
1471
1472template <typename R> class enumerator_iter;
1473
1474template <typename R> struct result_pair {
1475 friend class enumerator_iter<R>;
1476
1477 result_pair() = default;
1478 result_pair(std::size_t Index, IterOfRange<R> Iter)
1479 : Index(Index), Iter(Iter) {}
1480
1481 result_pair<R> &operator=(const result_pair<R> &Other) {
1482 Index = Other.Index;
1483 Iter = Other.Iter;
1484 return *this;
1485 }
1486
1487 std::size_t index() const { return Index; }
1488 const ValueOfRange<R> &value() const { return *Iter; }
1489 ValueOfRange<R> &value() { return *Iter; }
1490
1491private:
1492 std::size_t Index = std::numeric_limits<std::size_t>::max();
1493 IterOfRange<R> Iter;
1494};
1495
1496template <typename R>
1497class enumerator_iter
1498 : public iterator_facade_base<
1499 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1500 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1501 typename std::iterator_traits<IterOfRange<R>>::pointer,
1502 typename std::iterator_traits<IterOfRange<R>>::reference> {
1503 using result_type = result_pair<R>;
1504
1505public:
1506 explicit enumerator_iter(IterOfRange<R> EndIter)
1507 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1508
1509 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1510 : Result(Index, Iter) {}
1511
1512 result_type &operator*() { return Result; }
1513 const result_type &operator*() const { return Result; }
1514
1515 enumerator_iter<R> &operator++() {
1516 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1516, __PRETTY_FUNCTION__))
;
1517 ++Result.Iter;
1518 ++Result.Index;
1519 return *this;
1520 }
1521
1522 bool operator==(const enumerator_iter<R> &RHS) const {
1523 // Don't compare indices here, only iterators. It's possible for an end
1524 // iterator to have different indices depending on whether it was created
1525 // by calling std::end() versus incrementing a valid iterator.
1526 return Result.Iter == RHS.Result.Iter;
1527 }
1528
1529 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1530 Result = Other.Result;
1531 return *this;
1532 }
1533
1534private:
1535 result_type Result;
1536};
1537
1538template <typename R> class enumerator {
1539public:
1540 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1541
1542 enumerator_iter<R> begin() {
1543 return enumerator_iter<R>(0, std::begin(TheRange));
1544 }
1545
1546 enumerator_iter<R> end() {
1547 return enumerator_iter<R>(std::end(TheRange));
1548 }
1549
1550private:
1551 R TheRange;
1552};
1553
1554} // end namespace detail
1555
1556/// Given an input range, returns a new range whose values are are pair (A,B)
1557/// such that A is the 0-based index of the item in the sequence, and B is
1558/// the value from the original sequence. Example:
1559///
1560/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1561/// for (auto X : enumerate(Items)) {
1562/// printf("Item %d - %c\n", X.index(), X.value());
1563/// }
1564///
1565/// Output:
1566/// Item 0 - A
1567/// Item 1 - B
1568/// Item 2 - C
1569/// Item 3 - D
1570///
1571template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1572 return detail::enumerator<R>(std::forward<R>(TheRange));
1573}
1574
1575namespace detail {
1576
1577template <typename F, typename Tuple, std::size_t... I>
1578auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1579 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1580 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1581}
1582
1583} // end namespace detail
1584
1585/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1586/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1587/// return the result.
1588template <typename F, typename Tuple>
1589auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1590 std::forward<F>(f), std::forward<Tuple>(t),
1591 build_index_impl<
1592 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1593 using Indices = build_index_impl<
1594 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1595
1596 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1597 Indices{});
1598}
1599
1600/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1601/// time. Not meant for use with random-access iterators.
1602template <typename IterTy>
1603bool hasNItems(
1604 IterTy &&Begin, IterTy &&End, unsigned N,
1605 typename std::enable_if<
1606 !std::is_same<
1607 typename std::iterator_traits<typename std::remove_reference<
1608 decltype(Begin)>::type>::iterator_category,
1609 std::random_access_iterator_tag>::value,
1610 void>::type * = nullptr) {
1611 for (; N; --N, ++Begin)
1612 if (Begin == End)
1613 return false; // Too few.
1614 return Begin == End;
1615}
1616
1617/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1618/// time. Not meant for use with random-access iterators.
1619template <typename IterTy>
1620bool hasNItemsOrMore(
1621 IterTy &&Begin, IterTy &&End, unsigned N,
1622 typename std::enable_if<
1623 !std::is_same<
1624 typename std::iterator_traits<typename std::remove_reference<
1625 decltype(Begin)>::type>::iterator_category,
1626 std::random_access_iterator_tag>::value,
1627 void>::type * = nullptr) {
1628 for (; N; --N, ++Begin)
1629 if (Begin == End)
1630 return false; // Too few.
1631 return true;
1632}
1633
1634/// Returns a raw pointer that represents the same address as the argument.
1635///
1636/// The late bound return should be removed once we move to C++14 to better
1637/// align with the C++20 declaration. Also, this implementation can be removed
1638/// once we move to C++20 where it's defined as std::to_addres()
1639///
1640/// The std::pointer_traits<>::to_address(p) variations of these overloads has
1641/// not been implemented.
1642template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1643 return P.operator->();
1644}
1645template <class T> constexpr T *to_address(T *P) { return P; }
1646
1647} // end namespace llvm
1648
1649#endif // LLVM_ADT_STLEXTRAS_H