Bug Summary

File:tools/lldb/source/Expression/DWARFExpression.cpp
Warning:line 1472, column 51
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name DWARFExpression.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D HAVE_ROUND -D LLDB_CONFIGURATION_RELEASE -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/source/Expression -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Expression -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/include -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -I /usr/include/python2.7 -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/../clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/. -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -Wno-deprecated-declarations -Wno-unknown-pragmas -Wno-strict-aliasing -Wno-deprecated-register -Wno-vla-extension -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/source/Expression -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Expression/DWARFExpression.cpp -faddrsig
1//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "lldb/Expression/DWARFExpression.h"
11
12// C Includes
13#include <inttypes.h>
14
15// C++ Includes
16#include <vector>
17
18#include "lldb/Core/Module.h"
19#include "lldb/Core/Value.h"
20#include "lldb/Core/dwarf.h"
21#include "lldb/Utility/DataEncoder.h"
22#include "lldb/Utility/Log.h"
23#include "lldb/Utility/RegisterValue.h"
24#include "lldb/Utility/Scalar.h"
25#include "lldb/Utility/StreamString.h"
26#include "lldb/Utility/VMRange.h"
27
28#include "lldb/Host/Host.h"
29#include "lldb/Utility/Endian.h"
30
31#include "lldb/Symbol/Function.h"
32
33#include "lldb/Target/ABI.h"
34#include "lldb/Target/ExecutionContext.h"
35#include "lldb/Target/Process.h"
36#include "lldb/Target/RegisterContext.h"
37#include "lldb/Target/StackFrame.h"
38#include "lldb/Target/StackID.h"
39#include "lldb/Target/Thread.h"
40
41#include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
42
43using namespace lldb;
44using namespace lldb_private;
45
46static lldb::addr_t
47ReadAddressFromDebugAddrSection(const DWARFUnit *dwarf_cu,
48 uint32_t index) {
49 uint32_t index_size = dwarf_cu->GetAddressByteSize();
50 dw_offset_t addr_base = dwarf_cu->GetAddrBase();
51 lldb::offset_t offset = addr_base + index * index_size;
52 return dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data().GetMaxU64(
53 &offset, index_size);
54}
55
56//----------------------------------------------------------------------
57// DWARFExpression constructor
58//----------------------------------------------------------------------
59DWARFExpression::DWARFExpression(DWARFUnit *dwarf_cu)
60 : m_module_wp(), m_data(), m_dwarf_cu(dwarf_cu),
61 m_reg_kind(eRegisterKindDWARF), m_loclist_slide(LLDB_INVALID_ADDRESS(18446744073709551615UL)) {}
62
63DWARFExpression::DWARFExpression(const DWARFExpression &rhs)
64 : m_module_wp(rhs.m_module_wp), m_data(rhs.m_data),
65 m_dwarf_cu(rhs.m_dwarf_cu), m_reg_kind(rhs.m_reg_kind),
66 m_loclist_slide(rhs.m_loclist_slide) {}
67
68DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp,
69 const DataExtractor &data,
70 DWARFUnit *dwarf_cu,
71 lldb::offset_t data_offset,
72 lldb::offset_t data_length)
73 : m_module_wp(), m_data(data, data_offset, data_length),
74 m_dwarf_cu(dwarf_cu), m_reg_kind(eRegisterKindDWARF),
75 m_loclist_slide(LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
76 if (module_sp)
77 m_module_wp = module_sp;
78}
79
80//----------------------------------------------------------------------
81// Destructor
82//----------------------------------------------------------------------
83DWARFExpression::~DWARFExpression() {}
84
85bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
86
87void DWARFExpression::SetOpcodeData(const DataExtractor &data) {
88 m_data = data;
89}
90
91void DWARFExpression::CopyOpcodeData(lldb::ModuleSP module_sp,
92 const DataExtractor &data,
93 lldb::offset_t data_offset,
94 lldb::offset_t data_length) {
95 const uint8_t *bytes = data.PeekData(data_offset, data_length);
96 if (bytes) {
97 m_module_wp = module_sp;
98 m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length)));
99 m_data.SetByteOrder(data.GetByteOrder());
100 m_data.SetAddressByteSize(data.GetAddressByteSize());
101 }
102}
103
104void DWARFExpression::CopyOpcodeData(const void *data,
105 lldb::offset_t data_length,
106 ByteOrder byte_order,
107 uint8_t addr_byte_size) {
108 if (data && data_length) {
109 m_data.SetData(DataBufferSP(new DataBufferHeap(data, data_length)));
110 m_data.SetByteOrder(byte_order);
111 m_data.SetAddressByteSize(addr_byte_size);
112 }
113}
114
115void DWARFExpression::CopyOpcodeData(uint64_t const_value,
116 lldb::offset_t const_value_byte_size,
117 uint8_t addr_byte_size) {
118 if (const_value_byte_size) {
119 m_data.SetData(
120 DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
121 m_data.SetByteOrder(endian::InlHostByteOrder());
122 m_data.SetAddressByteSize(addr_byte_size);
123 }
124}
125
126void DWARFExpression::SetOpcodeData(lldb::ModuleSP module_sp,
127 const DataExtractor &data,
128 lldb::offset_t data_offset,
129 lldb::offset_t data_length) {
130 m_module_wp = module_sp;
131 m_data.SetData(data, data_offset, data_length);
132}
133
134void DWARFExpression::DumpLocation(Stream *s, lldb::offset_t offset,
135 lldb::offset_t length,
136 lldb::DescriptionLevel level,
137 ABI *abi) const {
138 if (!m_data.ValidOffsetForDataOfSize(offset, length))
139 return;
140 const lldb::offset_t start_offset = offset;
141 const lldb::offset_t end_offset = offset + length;
142 while (m_data.ValidOffset(offset) && offset < end_offset) {
143 const lldb::offset_t op_offset = offset;
144 const uint8_t op = m_data.GetU8(&offset);
145
146 switch (level) {
147 default:
148 break;
149
150 case lldb::eDescriptionLevelBrief:
151 if (op_offset > start_offset)
152 s->PutChar(' ');
153 break;
154
155 case lldb::eDescriptionLevelFull:
156 case lldb::eDescriptionLevelVerbose:
157 if (op_offset > start_offset)
158 s->EOL();
159 s->Indent();
160 if (level == lldb::eDescriptionLevelFull)
161 break;
162 // Fall through for verbose and print offset and DW_OP prefix..
163 s->Printf("0x%8.8" PRIx64"l" "x" ": %s", op_offset,
164 op >= DW_OP_APPLE_uninit0xF0 ? "DW_OP_APPLE_" : "DW_OP_");
165 break;
166 }
167
168 switch (op) {
169 case DW_OP_addr:
170 *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") ";
171 break; // 0x03 1 address
172 case DW_OP_deref:
173 *s << "DW_OP_deref";
174 break; // 0x06
175 case DW_OP_const1u:
176 s->Printf("DW_OP_const1u(0x%2.2x)", m_data.GetU8(&offset));
177 break; // 0x08 1 1-byte constant
178 case DW_OP_const1s:
179 s->Printf("DW_OP_const1s(0x%2.2x)", m_data.GetU8(&offset));
180 break; // 0x09 1 1-byte constant
181 case DW_OP_const2u:
182 s->Printf("DW_OP_const2u(0x%4.4x)", m_data.GetU16(&offset));
183 break; // 0x0a 1 2-byte constant
184 case DW_OP_const2s:
185 s->Printf("DW_OP_const2s(0x%4.4x)", m_data.GetU16(&offset));
186 break; // 0x0b 1 2-byte constant
187 case DW_OP_const4u:
188 s->Printf("DW_OP_const4u(0x%8.8x)", m_data.GetU32(&offset));
189 break; // 0x0c 1 4-byte constant
190 case DW_OP_const4s:
191 s->Printf("DW_OP_const4s(0x%8.8x)", m_data.GetU32(&offset));
192 break; // 0x0d 1 4-byte constant
193 case DW_OP_const8u:
194 s->Printf("DW_OP_const8u(0x%16.16" PRIx64"l" "x" ")", m_data.GetU64(&offset));
195 break; // 0x0e 1 8-byte constant
196 case DW_OP_const8s:
197 s->Printf("DW_OP_const8s(0x%16.16" PRIx64"l" "x" ")", m_data.GetU64(&offset));
198 break; // 0x0f 1 8-byte constant
199 case DW_OP_constu:
200 s->Printf("DW_OP_constu(0x%" PRIx64"l" "x" ")", m_data.GetULEB128(&offset));
201 break; // 0x10 1 ULEB128 constant
202 case DW_OP_consts:
203 s->Printf("DW_OP_consts(0x%" PRId64"l" "d" ")", m_data.GetSLEB128(&offset));
204 break; // 0x11 1 SLEB128 constant
205 case DW_OP_dup:
206 s->PutCString("DW_OP_dup");
207 break; // 0x12
208 case DW_OP_drop:
209 s->PutCString("DW_OP_drop");
210 break; // 0x13
211 case DW_OP_over:
212 s->PutCString("DW_OP_over");
213 break; // 0x14
214 case DW_OP_pick:
215 s->Printf("DW_OP_pick(0x%2.2x)", m_data.GetU8(&offset));
216 break; // 0x15 1 1-byte stack index
217 case DW_OP_swap:
218 s->PutCString("DW_OP_swap");
219 break; // 0x16
220 case DW_OP_rot:
221 s->PutCString("DW_OP_rot");
222 break; // 0x17
223 case DW_OP_xderef:
224 s->PutCString("DW_OP_xderef");
225 break; // 0x18
226 case DW_OP_abs:
227 s->PutCString("DW_OP_abs");
228 break; // 0x19
229 case DW_OP_and:
230 s->PutCString("DW_OP_and");
231 break; // 0x1a
232 case DW_OP_div:
233 s->PutCString("DW_OP_div");
234 break; // 0x1b
235 case DW_OP_minus:
236 s->PutCString("DW_OP_minus");
237 break; // 0x1c
238 case DW_OP_mod:
239 s->PutCString("DW_OP_mod");
240 break; // 0x1d
241 case DW_OP_mul:
242 s->PutCString("DW_OP_mul");
243 break; // 0x1e
244 case DW_OP_neg:
245 s->PutCString("DW_OP_neg");
246 break; // 0x1f
247 case DW_OP_not:
248 s->PutCString("DW_OP_not");
249 break; // 0x20
250 case DW_OP_or:
251 s->PutCString("DW_OP_or");
252 break; // 0x21
253 case DW_OP_plus:
254 s->PutCString("DW_OP_plus");
255 break; // 0x22
256 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
257 s->Printf("DW_OP_plus_uconst(0x%" PRIx64"l" "x" ")",
258 m_data.GetULEB128(&offset));
259 break;
260
261 case DW_OP_shl:
262 s->PutCString("DW_OP_shl");
263 break; // 0x24
264 case DW_OP_shr:
265 s->PutCString("DW_OP_shr");
266 break; // 0x25
267 case DW_OP_shra:
268 s->PutCString("DW_OP_shra");
269 break; // 0x26
270 case DW_OP_xor:
271 s->PutCString("DW_OP_xor");
272 break; // 0x27
273 case DW_OP_skip:
274 s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset));
275 break; // 0x2f 1 signed 2-byte constant
276 case DW_OP_bra:
277 s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset));
278 break; // 0x28 1 signed 2-byte constant
279 case DW_OP_eq:
280 s->PutCString("DW_OP_eq");
281 break; // 0x29
282 case DW_OP_ge:
283 s->PutCString("DW_OP_ge");
284 break; // 0x2a
285 case DW_OP_gt:
286 s->PutCString("DW_OP_gt");
287 break; // 0x2b
288 case DW_OP_le:
289 s->PutCString("DW_OP_le");
290 break; // 0x2c
291 case DW_OP_lt:
292 s->PutCString("DW_OP_lt");
293 break; // 0x2d
294 case DW_OP_ne:
295 s->PutCString("DW_OP_ne");
296 break; // 0x2e
297
298 case DW_OP_lit0: // 0x30
299 case DW_OP_lit1: // 0x31
300 case DW_OP_lit2: // 0x32
301 case DW_OP_lit3: // 0x33
302 case DW_OP_lit4: // 0x34
303 case DW_OP_lit5: // 0x35
304 case DW_OP_lit6: // 0x36
305 case DW_OP_lit7: // 0x37
306 case DW_OP_lit8: // 0x38
307 case DW_OP_lit9: // 0x39
308 case DW_OP_lit10: // 0x3A
309 case DW_OP_lit11: // 0x3B
310 case DW_OP_lit12: // 0x3C
311 case DW_OP_lit13: // 0x3D
312 case DW_OP_lit14: // 0x3E
313 case DW_OP_lit15: // 0x3F
314 case DW_OP_lit16: // 0x40
315 case DW_OP_lit17: // 0x41
316 case DW_OP_lit18: // 0x42
317 case DW_OP_lit19: // 0x43
318 case DW_OP_lit20: // 0x44
319 case DW_OP_lit21: // 0x45
320 case DW_OP_lit22: // 0x46
321 case DW_OP_lit23: // 0x47
322 case DW_OP_lit24: // 0x48
323 case DW_OP_lit25: // 0x49
324 case DW_OP_lit26: // 0x4A
325 case DW_OP_lit27: // 0x4B
326 case DW_OP_lit28: // 0x4C
327 case DW_OP_lit29: // 0x4D
328 case DW_OP_lit30: // 0x4E
329 case DW_OP_lit31:
330 s->Printf("DW_OP_lit%i", op - DW_OP_lit0);
331 break; // 0x4f
332
333 case DW_OP_reg0: // 0x50
334 case DW_OP_reg1: // 0x51
335 case DW_OP_reg2: // 0x52
336 case DW_OP_reg3: // 0x53
337 case DW_OP_reg4: // 0x54
338 case DW_OP_reg5: // 0x55
339 case DW_OP_reg6: // 0x56
340 case DW_OP_reg7: // 0x57
341 case DW_OP_reg8: // 0x58
342 case DW_OP_reg9: // 0x59
343 case DW_OP_reg10: // 0x5A
344 case DW_OP_reg11: // 0x5B
345 case DW_OP_reg12: // 0x5C
346 case DW_OP_reg13: // 0x5D
347 case DW_OP_reg14: // 0x5E
348 case DW_OP_reg15: // 0x5F
349 case DW_OP_reg16: // 0x60
350 case DW_OP_reg17: // 0x61
351 case DW_OP_reg18: // 0x62
352 case DW_OP_reg19: // 0x63
353 case DW_OP_reg20: // 0x64
354 case DW_OP_reg21: // 0x65
355 case DW_OP_reg22: // 0x66
356 case DW_OP_reg23: // 0x67
357 case DW_OP_reg24: // 0x68
358 case DW_OP_reg25: // 0x69
359 case DW_OP_reg26: // 0x6A
360 case DW_OP_reg27: // 0x6B
361 case DW_OP_reg28: // 0x6C
362 case DW_OP_reg29: // 0x6D
363 case DW_OP_reg30: // 0x6E
364 case DW_OP_reg31: // 0x6F
365 {
366 uint32_t reg_num = op - DW_OP_reg0;
367 if (abi) {
368 RegisterInfo reg_info;
369 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) {
370 if (reg_info.name) {
371 s->PutCString(reg_info.name);
372 break;
373 } else if (reg_info.alt_name) {
374 s->PutCString(reg_info.alt_name);
375 break;
376 }
377 }
378 }
379 s->Printf("DW_OP_reg%u", reg_num);
380 break;
381 } break;
382
383 case DW_OP_breg0:
384 case DW_OP_breg1:
385 case DW_OP_breg2:
386 case DW_OP_breg3:
387 case DW_OP_breg4:
388 case DW_OP_breg5:
389 case DW_OP_breg6:
390 case DW_OP_breg7:
391 case DW_OP_breg8:
392 case DW_OP_breg9:
393 case DW_OP_breg10:
394 case DW_OP_breg11:
395 case DW_OP_breg12:
396 case DW_OP_breg13:
397 case DW_OP_breg14:
398 case DW_OP_breg15:
399 case DW_OP_breg16:
400 case DW_OP_breg17:
401 case DW_OP_breg18:
402 case DW_OP_breg19:
403 case DW_OP_breg20:
404 case DW_OP_breg21:
405 case DW_OP_breg22:
406 case DW_OP_breg23:
407 case DW_OP_breg24:
408 case DW_OP_breg25:
409 case DW_OP_breg26:
410 case DW_OP_breg27:
411 case DW_OP_breg28:
412 case DW_OP_breg29:
413 case DW_OP_breg30:
414 case DW_OP_breg31: {
415 uint32_t reg_num = op - DW_OP_breg0;
416 int64_t reg_offset = m_data.GetSLEB128(&offset);
417 if (abi) {
418 RegisterInfo reg_info;
419 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) {
420 if (reg_info.name) {
421 s->Printf("[%s%+" PRIi64"l" "i" "]", reg_info.name, reg_offset);
422 break;
423 } else if (reg_info.alt_name) {
424 s->Printf("[%s%+" PRIi64"l" "i" "]", reg_info.alt_name, reg_offset);
425 break;
426 }
427 }
428 }
429 s->Printf("DW_OP_breg%i(0x%" PRIx64"l" "x" ")", reg_num, reg_offset);
430 } break;
431
432 case DW_OP_regx: // 0x90 1 ULEB128 register
433 {
434 uint32_t reg_num = m_data.GetULEB128(&offset);
435 if (abi) {
436 RegisterInfo reg_info;
437 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) {
438 if (reg_info.name) {
439 s->PutCString(reg_info.name);
440 break;
441 } else if (reg_info.alt_name) {
442 s->PutCString(reg_info.alt_name);
443 break;
444 }
445 }
446 }
447 s->Printf("DW_OP_regx(%" PRIu32"u" ")", reg_num);
448 break;
449 } break;
450 case DW_OP_fbreg: // 0x91 1 SLEB128 offset
451 s->Printf("DW_OP_fbreg(%" PRIi64"l" "i" ")", m_data.GetSLEB128(&offset));
452 break;
453 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
454 {
455 uint32_t reg_num = m_data.GetULEB128(&offset);
456 int64_t reg_offset = m_data.GetSLEB128(&offset);
457 if (abi) {
458 RegisterInfo reg_info;
459 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) {
460 if (reg_info.name) {
461 s->Printf("[%s%+" PRIi64"l" "i" "]", reg_info.name, reg_offset);
462 break;
463 } else if (reg_info.alt_name) {
464 s->Printf("[%s%+" PRIi64"l" "i" "]", reg_info.alt_name, reg_offset);
465 break;
466 }
467 }
468 }
469 s->Printf("DW_OP_bregx(reg=%" PRIu32"u" ",offset=%" PRIi64"l" "i" ")", reg_num,
470 reg_offset);
471 } break;
472 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
473 s->Printf("DW_OP_piece(0x%" PRIx64"l" "x" ")", m_data.GetULEB128(&offset));
474 break;
475 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
476 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset));
477 break;
478 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
479 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset));
480 break;
481 case DW_OP_nop:
482 s->PutCString("DW_OP_nop");
483 break; // 0x96
484 case DW_OP_push_object_address:
485 s->PutCString("DW_OP_push_object_address");
486 break; // 0x97 DWARF3
487 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE
488 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset));
489 break;
490 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE
491 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset));
492 break;
493 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE
494 s->Printf("DW_OP_call_ref(0x%8.8" PRIx64"l" "x" ")", m_data.GetAddress(&offset));
495 break;
496 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break;
497 // // 0x9c DWARF3
498 // case DW_OP_bit_piece: // 0x9d DWARF3 2
499 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)",
500 // m_data.GetULEB128(&offset), m_data.GetULEB128(&offset));
501 // break;
502 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break;
503 // // 0xe0
504 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break;
505 // // 0xff
506 // case DW_OP_APPLE_extern:
507 // s->Printf("DW_OP_APPLE_extern(%" PRIu64 ")",
508 // m_data.GetULEB128(&offset));
509 // break;
510 // case DW_OP_APPLE_array_ref:
511 // s->PutCString("DW_OP_APPLE_array_ref");
512 // break;
513 case DW_OP_form_tls_address:
514 s->PutCString("DW_OP_form_tls_address"); // 0x9b
515 break;
516 case DW_OP_GNU_addr_index: // 0xfb
517 s->Printf("DW_OP_GNU_addr_index(0x%" PRIx64"l" "x" ")",
518 m_data.GetULEB128(&offset));
519 break;
520 case DW_OP_GNU_const_index: // 0xfc
521 s->Printf("DW_OP_GNU_const_index(0x%" PRIx64"l" "x" ")",
522 m_data.GetULEB128(&offset));
523 break;
524 case DW_OP_GNU_push_tls_address:
525 s->PutCString("DW_OP_GNU_push_tls_address"); // 0xe0
526 break;
527 case DW_OP_APPLE_uninit0xF0:
528 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0
529 break;
530 // case DW_OP_APPLE_assign: // 0xF1 - pops value off and
531 // assigns it to second item on stack (2nd item must have
532 // assignable context)
533 // s->PutCString("DW_OP_APPLE_assign");
534 // break;
535 // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of
536 // the top stack item (top item must be a variable, or have
537 // value_type that is an address already)
538 // s->PutCString("DW_OP_APPLE_address_of");
539 // break;
540 // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the
541 // stack and pushes the value of that object (top item must be a
542 // variable, or expression local)
543 // s->PutCString("DW_OP_APPLE_value_of");
544 // break;
545 // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of
546 // the top stack item (top item must be a variable, or a clang
547 // type)
548 // s->PutCString("DW_OP_APPLE_deref_type");
549 // break;
550 // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression
551 // local index
552 // s->Printf("DW_OP_APPLE_expr_local(%" PRIu64 ")",
553 // m_data.GetULEB128(&offset));
554 // break;
555 // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size,
556 // followed by constant float data
557 // {
558 // uint8_t float_length = m_data.GetU8(&offset);
559 // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length);
560 // m_data.Dump(s, offset, eFormatHex, float_length, 1,
561 // UINT32_MAX, DW_INVALID_ADDRESS, 0, 0);
562 // s->PutChar(')');
563 // // Consume the float data
564 // m_data.GetData(&offset, float_length);
565 // }
566 // break;
567 // case DW_OP_APPLE_scalar_cast:
568 // s->Printf("DW_OP_APPLE_scalar_cast(%s)",
569 // Scalar::GetValueTypeAsCString
570 // ((Scalar::Type)m_data.GetU8(&offset)));
571 // break;
572 // case DW_OP_APPLE_clang_cast:
573 // {
574 // clang::Type *clang_type = (clang::Type
575 // *)m_data.GetMaxU64(&offset, sizeof(void*));
576 // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type);
577 // }
578 // break;
579 // case DW_OP_APPLE_clear:
580 // s->PutCString("DW_OP_APPLE_clear");
581 // break;
582 // case DW_OP_APPLE_error: // 0xFF - Stops expression
583 // evaluation and returns an error (no args)
584 // s->PutCString("DW_OP_APPLE_error");
585 // break;
586 }
587 }
588}
589
590void DWARFExpression::SetLocationListSlide(addr_t slide) {
591 m_loclist_slide = slide;
592}
593
594int DWARFExpression::GetRegisterKind() { return m_reg_kind; }
595
596void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
597 m_reg_kind = reg_kind;
598}
599
600bool DWARFExpression::IsLocationList() const {
601 return m_loclist_slide != LLDB_INVALID_ADDRESS(18446744073709551615UL);
602}
603
604void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level,
605 addr_t location_list_base_addr,
606 ABI *abi) const {
607 if (IsLocationList()) {
608 // We have a location list
609 lldb::offset_t offset = 0;
610 uint32_t count = 0;
611 addr_t curr_base_addr = location_list_base_addr;
612 while (m_data.ValidOffset(offset)) {
613 addr_t begin_addr_offset = LLDB_INVALID_ADDRESS(18446744073709551615UL);
614 addr_t end_addr_offset = LLDB_INVALID_ADDRESS(18446744073709551615UL);
615 if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset,
616 begin_addr_offset, end_addr_offset))
617 break;
618
619 if (begin_addr_offset == 0 && end_addr_offset == 0)
620 break;
621
622 if (begin_addr_offset < end_addr_offset) {
623 if (count > 0)
624 s->PutCString(", ");
625 VMRange addr_range(curr_base_addr + begin_addr_offset,
626 curr_base_addr + end_addr_offset);
627 addr_range.Dump(s, 0, 8);
628 s->PutChar('{');
629 lldb::offset_t location_length = m_data.GetU16(&offset);
630 DumpLocation(s, offset, location_length, level, abi);
631 s->PutChar('}');
632 offset += location_length;
633 } else {
634 if ((m_data.GetAddressByteSize() == 4 &&
635 (begin_addr_offset == UINT32_MAX(4294967295U))) ||
636 (m_data.GetAddressByteSize() == 8 &&
637 (begin_addr_offset == UINT64_MAX(18446744073709551615UL)))) {
638 curr_base_addr = end_addr_offset + location_list_base_addr;
639 // We have a new base address
640 if (count > 0)
641 s->PutCString(", ");
642 *s << "base_addr = " << end_addr_offset;
643 }
644 }
645
646 count++;
647 }
648 } else {
649 // We have a normal location that contains DW_OP location opcodes
650 DumpLocation(s, 0, m_data.GetByteSize(), level, abi);
651 }
652}
653
654static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
655 lldb::RegisterKind reg_kind,
656 uint32_t reg_num, Status *error_ptr,
657 Value &value) {
658 if (reg_ctx == NULL__null) {
659 if (error_ptr)
660 error_ptr->SetErrorStringWithFormat("No register context in frame.\n");
661 } else {
662 uint32_t native_reg =
663 reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
664 if (native_reg == LLDB_INVALID_REGNUM(4294967295U)) {
665 if (error_ptr)
666 error_ptr->SetErrorStringWithFormat("Unable to convert register "
667 "kind=%u reg_num=%u to a native "
668 "register number.\n",
669 reg_kind, reg_num);
670 } else {
671 const RegisterInfo *reg_info =
672 reg_ctx->GetRegisterInfoAtIndex(native_reg);
673 RegisterValue reg_value;
674 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
675 if (reg_value.GetScalarValue(value.GetScalar())) {
676 value.SetValueType(Value::eValueTypeScalar);
677 value.SetContext(Value::eContextTypeRegisterInfo,
678 const_cast<RegisterInfo *>(reg_info));
679 if (error_ptr)
680 error_ptr->Clear();
681 return true;
682 } else {
683 // If we get this error, then we need to implement a value buffer in
684 // the dwarf expression evaluation function...
685 if (error_ptr)
686 error_ptr->SetErrorStringWithFormat(
687 "register %s can't be converted to a scalar value",
688 reg_info->name);
689 }
690 } else {
691 if (error_ptr)
692 error_ptr->SetErrorStringWithFormat("register %s is not available",
693 reg_info->name);
694 }
695 }
696 }
697 return false;
698}
699
700// bool
701// DWARFExpression::LocationListContainsLoadAddress (Process* process, const
702// Address &addr) const
703//{
704// return LocationListContainsLoadAddress(process,
705// addr.GetLoadAddress(process));
706//}
707//
708// bool
709// DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t
710// load_addr) const
711//{
712// if (load_addr == LLDB_INVALID_ADDRESS)
713// return false;
714//
715// if (IsLocationList())
716// {
717// lldb::offset_t offset = 0;
718//
719// addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process);
720//
721// if (loc_list_base_addr == LLDB_INVALID_ADDRESS)
722// return false;
723//
724// while (m_data.ValidOffset(offset))
725// {
726// // We need to figure out what the value is for the location.
727// addr_t lo_pc = m_data.GetAddress(&offset);
728// addr_t hi_pc = m_data.GetAddress(&offset);
729// if (lo_pc == 0 && hi_pc == 0)
730// break;
731// else
732// {
733// lo_pc += loc_list_base_addr;
734// hi_pc += loc_list_base_addr;
735//
736// if (lo_pc <= load_addr && load_addr < hi_pc)
737// return true;
738//
739// offset += m_data.GetU16(&offset);
740// }
741// }
742// }
743// return false;
744//}
745
746static offset_t GetOpcodeDataSize(const DataExtractor &data,
747 const lldb::offset_t data_offset,
748 const uint8_t op) {
749 lldb::offset_t offset = data_offset;
750 switch (op) {
751 case DW_OP_addr:
752 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
753 return data.GetAddressByteSize();
754
755 // Opcodes with no arguments
756 case DW_OP_deref: // 0x06
757 case DW_OP_dup: // 0x12
758 case DW_OP_drop: // 0x13
759 case DW_OP_over: // 0x14
760 case DW_OP_swap: // 0x16
761 case DW_OP_rot: // 0x17
762 case DW_OP_xderef: // 0x18
763 case DW_OP_abs: // 0x19
764 case DW_OP_and: // 0x1a
765 case DW_OP_div: // 0x1b
766 case DW_OP_minus: // 0x1c
767 case DW_OP_mod: // 0x1d
768 case DW_OP_mul: // 0x1e
769 case DW_OP_neg: // 0x1f
770 case DW_OP_not: // 0x20
771 case DW_OP_or: // 0x21
772 case DW_OP_plus: // 0x22
773 case DW_OP_shl: // 0x24
774 case DW_OP_shr: // 0x25
775 case DW_OP_shra: // 0x26
776 case DW_OP_xor: // 0x27
777 case DW_OP_eq: // 0x29
778 case DW_OP_ge: // 0x2a
779 case DW_OP_gt: // 0x2b
780 case DW_OP_le: // 0x2c
781 case DW_OP_lt: // 0x2d
782 case DW_OP_ne: // 0x2e
783 case DW_OP_lit0: // 0x30
784 case DW_OP_lit1: // 0x31
785 case DW_OP_lit2: // 0x32
786 case DW_OP_lit3: // 0x33
787 case DW_OP_lit4: // 0x34
788 case DW_OP_lit5: // 0x35
789 case DW_OP_lit6: // 0x36
790 case DW_OP_lit7: // 0x37
791 case DW_OP_lit8: // 0x38
792 case DW_OP_lit9: // 0x39
793 case DW_OP_lit10: // 0x3A
794 case DW_OP_lit11: // 0x3B
795 case DW_OP_lit12: // 0x3C
796 case DW_OP_lit13: // 0x3D
797 case DW_OP_lit14: // 0x3E
798 case DW_OP_lit15: // 0x3F
799 case DW_OP_lit16: // 0x40
800 case DW_OP_lit17: // 0x41
801 case DW_OP_lit18: // 0x42
802 case DW_OP_lit19: // 0x43
803 case DW_OP_lit20: // 0x44
804 case DW_OP_lit21: // 0x45
805 case DW_OP_lit22: // 0x46
806 case DW_OP_lit23: // 0x47
807 case DW_OP_lit24: // 0x48
808 case DW_OP_lit25: // 0x49
809 case DW_OP_lit26: // 0x4A
810 case DW_OP_lit27: // 0x4B
811 case DW_OP_lit28: // 0x4C
812 case DW_OP_lit29: // 0x4D
813 case DW_OP_lit30: // 0x4E
814 case DW_OP_lit31: // 0x4f
815 case DW_OP_reg0: // 0x50
816 case DW_OP_reg1: // 0x51
817 case DW_OP_reg2: // 0x52
818 case DW_OP_reg3: // 0x53
819 case DW_OP_reg4: // 0x54
820 case DW_OP_reg5: // 0x55
821 case DW_OP_reg6: // 0x56
822 case DW_OP_reg7: // 0x57
823 case DW_OP_reg8: // 0x58
824 case DW_OP_reg9: // 0x59
825 case DW_OP_reg10: // 0x5A
826 case DW_OP_reg11: // 0x5B
827 case DW_OP_reg12: // 0x5C
828 case DW_OP_reg13: // 0x5D
829 case DW_OP_reg14: // 0x5E
830 case DW_OP_reg15: // 0x5F
831 case DW_OP_reg16: // 0x60
832 case DW_OP_reg17: // 0x61
833 case DW_OP_reg18: // 0x62
834 case DW_OP_reg19: // 0x63
835 case DW_OP_reg20: // 0x64
836 case DW_OP_reg21: // 0x65
837 case DW_OP_reg22: // 0x66
838 case DW_OP_reg23: // 0x67
839 case DW_OP_reg24: // 0x68
840 case DW_OP_reg25: // 0x69
841 case DW_OP_reg26: // 0x6A
842 case DW_OP_reg27: // 0x6B
843 case DW_OP_reg28: // 0x6C
844 case DW_OP_reg29: // 0x6D
845 case DW_OP_reg30: // 0x6E
846 case DW_OP_reg31: // 0x6F
847 case DW_OP_nop: // 0x96
848 case DW_OP_push_object_address: // 0x97 DWARF3
849 case DW_OP_form_tls_address: // 0x9b DWARF3
850 case DW_OP_call_frame_cfa: // 0x9c DWARF3
851 case DW_OP_stack_value: // 0x9f DWARF4
852 case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
853 return 0;
854
855 // Opcodes with a single 1 byte arguments
856 case DW_OP_const1u: // 0x08 1 1-byte constant
857 case DW_OP_const1s: // 0x09 1 1-byte constant
858 case DW_OP_pick: // 0x15 1 1-byte stack index
859 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
860 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
861 return 1;
862
863 // Opcodes with a single 2 byte arguments
864 case DW_OP_const2u: // 0x0a 1 2-byte constant
865 case DW_OP_const2s: // 0x0b 1 2-byte constant
866 case DW_OP_skip: // 0x2f 1 signed 2-byte constant
867 case DW_OP_bra: // 0x28 1 signed 2-byte constant
868 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3)
869 return 2;
870
871 // Opcodes with a single 4 byte arguments
872 case DW_OP_const4u: // 0x0c 1 4-byte constant
873 case DW_OP_const4s: // 0x0d 1 4-byte constant
874 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3)
875 return 4;
876
877 // Opcodes with a single 8 byte arguments
878 case DW_OP_const8u: // 0x0e 1 8-byte constant
879 case DW_OP_const8s: // 0x0f 1 8-byte constant
880 return 8;
881
882 // All opcodes that have a single ULEB (signed or unsigned) argument
883 case DW_OP_constu: // 0x10 1 ULEB128 constant
884 case DW_OP_consts: // 0x11 1 SLEB128 constant
885 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
886 case DW_OP_breg0: // 0x70 1 ULEB128 register
887 case DW_OP_breg1: // 0x71 1 ULEB128 register
888 case DW_OP_breg2: // 0x72 1 ULEB128 register
889 case DW_OP_breg3: // 0x73 1 ULEB128 register
890 case DW_OP_breg4: // 0x74 1 ULEB128 register
891 case DW_OP_breg5: // 0x75 1 ULEB128 register
892 case DW_OP_breg6: // 0x76 1 ULEB128 register
893 case DW_OP_breg7: // 0x77 1 ULEB128 register
894 case DW_OP_breg8: // 0x78 1 ULEB128 register
895 case DW_OP_breg9: // 0x79 1 ULEB128 register
896 case DW_OP_breg10: // 0x7a 1 ULEB128 register
897 case DW_OP_breg11: // 0x7b 1 ULEB128 register
898 case DW_OP_breg12: // 0x7c 1 ULEB128 register
899 case DW_OP_breg13: // 0x7d 1 ULEB128 register
900 case DW_OP_breg14: // 0x7e 1 ULEB128 register
901 case DW_OP_breg15: // 0x7f 1 ULEB128 register
902 case DW_OP_breg16: // 0x80 1 ULEB128 register
903 case DW_OP_breg17: // 0x81 1 ULEB128 register
904 case DW_OP_breg18: // 0x82 1 ULEB128 register
905 case DW_OP_breg19: // 0x83 1 ULEB128 register
906 case DW_OP_breg20: // 0x84 1 ULEB128 register
907 case DW_OP_breg21: // 0x85 1 ULEB128 register
908 case DW_OP_breg22: // 0x86 1 ULEB128 register
909 case DW_OP_breg23: // 0x87 1 ULEB128 register
910 case DW_OP_breg24: // 0x88 1 ULEB128 register
911 case DW_OP_breg25: // 0x89 1 ULEB128 register
912 case DW_OP_breg26: // 0x8a 1 ULEB128 register
913 case DW_OP_breg27: // 0x8b 1 ULEB128 register
914 case DW_OP_breg28: // 0x8c 1 ULEB128 register
915 case DW_OP_breg29: // 0x8d 1 ULEB128 register
916 case DW_OP_breg30: // 0x8e 1 ULEB128 register
917 case DW_OP_breg31: // 0x8f 1 ULEB128 register
918 case DW_OP_regx: // 0x90 1 ULEB128 register
919 case DW_OP_fbreg: // 0x91 1 SLEB128 offset
920 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
921 case DW_OP_GNU_addr_index: // 0xfb 1 ULEB128 index
922 case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
923 data.Skip_LEB128(&offset);
924 return offset - data_offset;
925
926 // All opcodes that have a 2 ULEB (signed or unsigned) arguments
927 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
928 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
929 data.Skip_LEB128(&offset);
930 data.Skip_LEB128(&offset);
931 return offset - data_offset;
932
933 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
934 // (DWARF4)
935 {
936 uint64_t block_len = data.Skip_LEB128(&offset);
937 offset += block_len;
938 return offset - data_offset;
939 }
940
941 default:
942 break;
943 }
944 return LLDB_INVALID_OFFSET(18446744073709551615UL);
945}
946
947lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx,
948 bool &error) const {
949 error = false;
950 if (IsLocationList())
951 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
952 lldb::offset_t offset = 0;
953 uint32_t curr_op_addr_idx = 0;
954 while (m_data.ValidOffset(offset)) {
955 const uint8_t op = m_data.GetU8(&offset);
956
957 if (op == DW_OP_addr) {
958 const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
959 if (curr_op_addr_idx == op_addr_idx)
960 return op_file_addr;
961 else
962 ++curr_op_addr_idx;
963 } else if (op == DW_OP_GNU_addr_index) {
964 uint64_t index = m_data.GetULEB128(&offset);
965 if (curr_op_addr_idx == op_addr_idx) {
966 if (!m_dwarf_cu) {
967 error = true;
968 break;
969 }
970
971 return ReadAddressFromDebugAddrSection(m_dwarf_cu, index);
972 } else
973 ++curr_op_addr_idx;
974 } else {
975 const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
976 if (op_arg_size == LLDB_INVALID_OFFSET(18446744073709551615UL)) {
977 error = true;
978 break;
979 }
980 offset += op_arg_size;
981 }
982 }
983 return LLDB_INVALID_ADDRESS(18446744073709551615UL);
984}
985
986bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
987 if (IsLocationList())
988 return false;
989 lldb::offset_t offset = 0;
990 while (m_data.ValidOffset(offset)) {
991 const uint8_t op = m_data.GetU8(&offset);
992
993 if (op == DW_OP_addr) {
994 const uint32_t addr_byte_size = m_data.GetAddressByteSize();
995 // We have to make a copy of the data as we don't know if this data is
996 // from a read only memory mapped buffer, so we duplicate all of the data
997 // first, then modify it, and if all goes well, we then replace the data
998 // for this expression
999
1000 // So first we copy the data into a heap buffer
1001 std::unique_ptr<DataBufferHeap> head_data_ap(
1002 new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
1003
1004 // Make en encoder so we can write the address into the buffer using the
1005 // correct byte order (endianness)
1006 DataEncoder encoder(head_data_ap->GetBytes(), head_data_ap->GetByteSize(),
1007 m_data.GetByteOrder(), addr_byte_size);
1008
1009 // Replace the address in the new buffer
1010 if (encoder.PutMaxU64(offset, addr_byte_size, file_addr) == UINT32_MAX(4294967295U))
1011 return false;
1012
1013 // All went well, so now we can reset the data using a shared pointer to
1014 // the heap data so "m_data" will now correctly manage the heap data.
1015 m_data.SetData(DataBufferSP(head_data_ap.release()));
1016 return true;
1017 } else {
1018 const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
1019 if (op_arg_size == LLDB_INVALID_OFFSET(18446744073709551615UL))
1020 break;
1021 offset += op_arg_size;
1022 }
1023 }
1024 return false;
1025}
1026
1027bool DWARFExpression::ContainsThreadLocalStorage() const {
1028 // We are assuming for now that any thread local variable will not have a
1029 // location list. This has been true for all thread local variables we have
1030 // seen so far produced by any compiler.
1031 if (IsLocationList())
1032 return false;
1033 lldb::offset_t offset = 0;
1034 while (m_data.ValidOffset(offset)) {
1035 const uint8_t op = m_data.GetU8(&offset);
1036
1037 if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
1038 return true;
1039 const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
1040 if (op_arg_size == LLDB_INVALID_OFFSET(18446744073709551615UL))
1041 return false;
1042 else
1043 offset += op_arg_size;
1044 }
1045 return false;
1046}
1047bool DWARFExpression::LinkThreadLocalStorage(
1048 lldb::ModuleSP new_module_sp,
1049 std::function<lldb::addr_t(lldb::addr_t file_addr)> const
1050 &link_address_callback) {
1051 // We are assuming for now that any thread local variable will not have a
1052 // location list. This has been true for all thread local variables we have
1053 // seen so far produced by any compiler.
1054 if (IsLocationList())
1055 return false;
1056
1057 const uint32_t addr_byte_size = m_data.GetAddressByteSize();
1058 // We have to make a copy of the data as we don't know if this data is from a
1059 // read only memory mapped buffer, so we duplicate all of the data first,
1060 // then modify it, and if all goes well, we then replace the data for this
1061 // expression
1062
1063 // So first we copy the data into a heap buffer
1064 std::shared_ptr<DataBufferHeap> heap_data_sp(
1065 new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize()));
1066
1067 // Make en encoder so we can write the address into the buffer using the
1068 // correct byte order (endianness)
1069 DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(),
1070 m_data.GetByteOrder(), addr_byte_size);
1071
1072 lldb::offset_t offset = 0;
1073 lldb::offset_t const_offset = 0;
1074 lldb::addr_t const_value = 0;
1075 size_t const_byte_size = 0;
1076 while (m_data.ValidOffset(offset)) {
1077 const uint8_t op = m_data.GetU8(&offset);
1078
1079 bool decoded_data = false;
1080 switch (op) {
1081 case DW_OP_const4u:
1082 // Remember the const offset in case we later have a
1083 // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
1084 const_offset = offset;
1085 const_value = m_data.GetU32(&offset);
1086 decoded_data = true;
1087 const_byte_size = 4;
1088 break;
1089
1090 case DW_OP_const8u:
1091 // Remember the const offset in case we later have a
1092 // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
1093 const_offset = offset;
1094 const_value = m_data.GetU64(&offset);
1095 decoded_data = true;
1096 const_byte_size = 8;
1097 break;
1098
1099 case DW_OP_form_tls_address:
1100 case DW_OP_GNU_push_tls_address:
1101 // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
1102 // by a file address on the stack. We assume that DW_OP_const4u or
1103 // DW_OP_const8u is used for these values, and we check that the last
1104 // opcode we got before either of these was DW_OP_const4u or
1105 // DW_OP_const8u. If so, then we can link the value accodingly. For
1106 // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
1107 // address of a structure that contains a function pointer, the pthread
1108 // key and the offset into the data pointed to by the pthread key. So we
1109 // must link this address and also set the module of this expression to
1110 // the new_module_sp so we can resolve the file address correctly
1111 if (const_byte_size > 0) {
1112 lldb::addr_t linked_file_addr = link_address_callback(const_value);
1113 if (linked_file_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL))
1114 return false;
1115 // Replace the address in the new buffer
1116 if (encoder.PutMaxU64(const_offset, const_byte_size,
1117 linked_file_addr) == UINT32_MAX(4294967295U))
1118 return false;
1119 }
1120 break;
1121
1122 default:
1123 const_offset = 0;
1124 const_value = 0;
1125 const_byte_size = 0;
1126 break;
1127 }
1128
1129 if (!decoded_data) {
1130 const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
1131 if (op_arg_size == LLDB_INVALID_OFFSET(18446744073709551615UL))
1132 return false;
1133 else
1134 offset += op_arg_size;
1135 }
1136 }
1137
1138 // If we linked the TLS address correctly, update the module so that when the
1139 // expression is evaluated it can resolve the file address to a load address
1140 // and read the
1141 // TLS data
1142 m_module_wp = new_module_sp;
1143 m_data.SetData(heap_data_sp);
1144 return true;
1145}
1146
1147bool DWARFExpression::LocationListContainsAddress(
1148 lldb::addr_t loclist_base_addr, lldb::addr_t addr) const {
1149 if (addr == LLDB_INVALID_ADDRESS(18446744073709551615UL))
1150 return false;
1151
1152 if (IsLocationList()) {
1153 lldb::offset_t offset = 0;
1154
1155 if (loclist_base_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL))
1156 return false;
1157
1158 while (m_data.ValidOffset(offset)) {
1159 // We need to figure out what the value is for the location.
1160 addr_t lo_pc = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1161 addr_t hi_pc = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1162 if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset, lo_pc,
1163 hi_pc))
1164 break;
1165
1166 if (lo_pc == 0 && hi_pc == 0)
1167 break;
1168
1169 lo_pc += loclist_base_addr - m_loclist_slide;
1170 hi_pc += loclist_base_addr - m_loclist_slide;
1171
1172 if (lo_pc <= addr && addr < hi_pc)
1173 return true;
1174
1175 offset += m_data.GetU16(&offset);
1176 }
1177 }
1178 return false;
1179}
1180
1181bool DWARFExpression::GetLocation(addr_t base_addr, addr_t pc,
1182 lldb::offset_t &offset,
1183 lldb::offset_t &length) {
1184 offset = 0;
1185 if (!IsLocationList()) {
1186 length = m_data.GetByteSize();
1187 return true;
1188 }
1189
1190 if (base_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL) && pc != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
1191 addr_t curr_base_addr = base_addr;
1192
1193 while (m_data.ValidOffset(offset)) {
1194 // We need to figure out what the value is for the location.
1195 addr_t lo_pc = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1196 addr_t hi_pc = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1197 if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset, lo_pc,
1198 hi_pc))
1199 break;
1200
1201 if (lo_pc == 0 && hi_pc == 0)
1202 break;
1203
1204 lo_pc += curr_base_addr - m_loclist_slide;
1205 hi_pc += curr_base_addr - m_loclist_slide;
1206
1207 length = m_data.GetU16(&offset);
1208
1209 if (length > 0 && lo_pc <= pc && pc < hi_pc)
1210 return true;
1211
1212 offset += length;
1213 }
1214 }
1215 offset = LLDB_INVALID_OFFSET(18446744073709551615UL);
1216 length = 0;
1217 return false;
1218}
1219
1220bool DWARFExpression::DumpLocationForAddress(Stream *s,
1221 lldb::DescriptionLevel level,
1222 addr_t base_addr, addr_t address,
1223 ABI *abi) {
1224 lldb::offset_t offset = 0;
1225 lldb::offset_t length = 0;
1226
1227 if (GetLocation(base_addr, address, offset, length)) {
1228 if (length > 0) {
1229 DumpLocation(s, offset, length, level, abi);
1230 return true;
1231 }
1232 }
1233 return false;
1234}
1235
1236bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope,
1237 lldb::addr_t loclist_base_load_addr,
1238 const Value *initial_value_ptr,
1239 const Value *object_address_ptr, Value &result,
1240 Status *error_ptr) const {
1241 ExecutionContext exe_ctx(exe_scope);
1242 return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr,
1243 object_address_ptr, result, error_ptr);
1244}
1245
1246bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx,
1247 RegisterContext *reg_ctx,
1248 lldb::addr_t loclist_base_load_addr,
1249 const Value *initial_value_ptr,
1250 const Value *object_address_ptr, Value &result,
1251 Status *error_ptr) const {
1252 ModuleSP module_sp = m_module_wp.lock();
1253
1254 if (IsLocationList()) {
1255 lldb::offset_t offset = 0;
1256 addr_t pc;
1257 StackFrame *frame = NULL__null;
1258 if (reg_ctx)
1259 pc = reg_ctx->GetPC();
1260 else {
1261 frame = exe_ctx->GetFramePtr();
1262 if (!frame)
1263 return false;
1264 RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
1265 if (!reg_ctx_sp)
1266 return false;
1267 pc = reg_ctx_sp->GetPC();
1268 }
1269
1270 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
1271 if (pc == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
1272 if (error_ptr)
1273 error_ptr->SetErrorString("Invalid PC in frame.");
1274 return false;
1275 }
1276
1277 addr_t curr_loclist_base_load_addr = loclist_base_load_addr;
1278
1279 while (m_data.ValidOffset(offset)) {
1280 // We need to figure out what the value is for the location.
1281 addr_t lo_pc = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1282 addr_t hi_pc = LLDB_INVALID_ADDRESS(18446744073709551615UL);
1283 if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset,
1284 lo_pc, hi_pc))
1285 break;
1286
1287 if (lo_pc == 0 && hi_pc == 0)
1288 break;
1289
1290 lo_pc += curr_loclist_base_load_addr - m_loclist_slide;
1291 hi_pc += curr_loclist_base_load_addr - m_loclist_slide;
1292
1293 uint16_t length = m_data.GetU16(&offset);
1294
1295 if (length > 0 && lo_pc <= pc && pc < hi_pc) {
1296 return DWARFExpression::Evaluate(
1297 exe_ctx, reg_ctx, module_sp, m_data, m_dwarf_cu, offset, length,
1298 m_reg_kind, initial_value_ptr, object_address_ptr, result,
1299 error_ptr);
1300 }
1301 offset += length;
1302 }
1303 }
1304 if (error_ptr)
1305 error_ptr->SetErrorString("variable not available");
1306 return false;
1307 }
1308
1309 // Not a location list, just a single expression.
1310 return DWARFExpression::Evaluate(
1311 exe_ctx, reg_ctx, module_sp, m_data, m_dwarf_cu, 0, m_data.GetByteSize(),
1312 m_reg_kind, initial_value_ptr, object_address_ptr, result, error_ptr);
1313}
1314
1315bool DWARFExpression::Evaluate(
1316 ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
1317 lldb::ModuleSP module_sp, const DataExtractor &opcodes,
1318 DWARFUnit *dwarf_cu, const lldb::offset_t opcodes_offset,
1319 const lldb::offset_t opcodes_length, const lldb::RegisterKind reg_kind,
1320 const Value *initial_value_ptr, const Value *object_address_ptr,
1321 Value &result, Status *error_ptr) {
1322
1323 if (opcodes_length == 0) {
1
Assuming 'opcodes_length' is not equal to 0
2
Taking false branch
1324 if (error_ptr)
1325 error_ptr->SetErrorString(
1326 "no location, value may have been optimized out");
1327 return false;
1328 }
1329 std::vector<Value> stack;
1330
1331 Process *process = NULL__null;
1332 StackFrame *frame = NULL__null;
1333
1334 if (exe_ctx) {
3
Assuming 'exe_ctx' is null
4
Taking false branch
1335 process = exe_ctx->GetProcessPtr();
1336 frame = exe_ctx->GetFramePtr();
1337 }
1338 if (reg_ctx == NULL__null && frame)
5
Assuming 'reg_ctx' is not equal to NULL
1339 reg_ctx = frame->GetRegisterContext().get();
1340
1341 if (initial_value_ptr)
6
Assuming 'initial_value_ptr' is null
7
Taking false branch
1342 stack.push_back(*initial_value_ptr);
1343
1344 lldb::offset_t offset = opcodes_offset;
1345 const lldb::offset_t end_offset = opcodes_offset + opcodes_length;
1346 Value tmp;
1347 uint32_t reg_num;
1348
1349 /// Insertion point for evaluating multi-piece expression.
1350 uint64_t op_piece_offset = 0;
1351 Value pieces; // Used for DW_OP_piece
1352
1353 // Make sure all of the data is available in opcodes.
1354 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) {
8
Taking false branch
1355 if (error_ptr)
1356 error_ptr->SetErrorString(
1357 "invalid offset and/or length for opcodes buffer.");
1358 return false;
1359 }
1360 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS(1u << 8)));
1361
1362 while (opcodes.ValidOffset(offset) && offset < end_offset) {
9
Assuming 'offset' is < 'end_offset'
10
Loop condition is true. Entering loop body
1363 const lldb::offset_t op_offset = offset;
1364 const uint8_t op = opcodes.GetU8(&offset);
1365
1366 if (log && log->GetVerbose()) {
11
Assuming 'log' is null
1367 size_t count = stack.size();
1368 log->Printf("Stack before operation has %" PRIu64"l" "u" " values:",
1369 (uint64_t)count);
1370 for (size_t i = 0; i < count; ++i) {
1371 StreamString new_value;
1372 new_value.Printf("[%" PRIu64"l" "u" "]", (uint64_t)i);
1373 stack[i].Dump(&new_value);
1374 log->Printf(" %s", new_value.GetData());
1375 }
1376 log->Printf("0x%8.8" PRIx64"l" "x" ": %s", op_offset, DW_OP_value_to_name(op));
1377 }
1378
1379 switch (op) {
12
Control jumps to 'case DW_OP_deref:' at line 1441
1380 //----------------------------------------------------------------------
1381 // The DW_OP_addr operation has a single operand that encodes a machine
1382 // address and whose size is the size of an address on the target machine.
1383 //----------------------------------------------------------------------
1384 case DW_OP_addr:
1385 stack.push_back(Scalar(opcodes.GetAddress(&offset)));
1386 stack.back().SetValueType(Value::eValueTypeFileAddress);
1387 // Convert the file address to a load address, so subsequent
1388 // DWARF operators can operate on it.
1389 if (frame)
1390 stack.back().ConvertToLoadAddress(module_sp.get(),
1391 frame->CalculateTarget().get());
1392 break;
1393
1394 //----------------------------------------------------------------------
1395 // The DW_OP_addr_sect_offset4 is used for any location expressions in
1396 // shared libraries that have a location like:
1397 // DW_OP_addr(0x1000)
1398 // If this address resides in a shared library, then this virtual address
1399 // won't make sense when it is evaluated in the context of a running
1400 // process where shared libraries have been slid. To account for this, this
1401 // new address type where we can store the section pointer and a 4 byte
1402 // offset.
1403 //----------------------------------------------------------------------
1404 // case DW_OP_addr_sect_offset4:
1405 // {
1406 // result_type = eResultTypeFileAddress;
1407 // lldb::Section *sect = (lldb::Section
1408 // *)opcodes.GetMaxU64(&offset, sizeof(void *));
1409 // lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1410 //
1411 // Address so_addr (sect, sect_offset);
1412 // lldb::addr_t load_addr = so_addr.GetLoadAddress();
1413 // if (load_addr != LLDB_INVALID_ADDRESS)
1414 // {
1415 // // We successfully resolve a file address to a load
1416 // // address.
1417 // stack.push_back(load_addr);
1418 // break;
1419 // }
1420 // else
1421 // {
1422 // // We were able
1423 // if (error_ptr)
1424 // error_ptr->SetErrorStringWithFormat ("Section %s in
1425 // %s is not currently loaded.\n",
1426 // sect->GetName().AsCString(),
1427 // sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1428 // return false;
1429 // }
1430 // }
1431 // break;
1432
1433 //----------------------------------------------------------------------
1434 // OPCODE: DW_OP_deref
1435 // OPERANDS: none
1436 // DESCRIPTION: Pops the top stack entry and treats it as an address.
1437 // The value retrieved from that address is pushed. The size of the data
1438 // retrieved from the dereferenced address is the size of an address on the
1439 // target machine.
1440 //----------------------------------------------------------------------
1441 case DW_OP_deref: {
1442 if (stack.empty()) {
13
Assuming the condition is false
14
Taking false branch
1443 if (error_ptr)
1444 error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1445 return false;
1446 }
1447 Value::ValueType value_type = stack.back().GetValueType();
1448 switch (value_type) {
15
Control jumps to 'case eValueTypeFileAddress:' at line 1456
1449 case Value::eValueTypeHostAddress: {
1450 void *src = (void *)stack.back().GetScalar().ULongLong();
1451 intptr_t ptr;
1452 ::memcpy(&ptr, src, sizeof(void *));
1453 stack.back().GetScalar() = ptr;
1454 stack.back().ClearContext();
1455 } break;
1456 case Value::eValueTypeFileAddress: {
1457 auto file_addr = stack.back().GetScalar().ULongLong(
1458 LLDB_INVALID_ADDRESS(18446744073709551615UL));
1459 if (!module_sp) {
16
Taking false branch
1460 if (error_ptr)
1461 error_ptr->SetErrorStringWithFormat(
1462 "need module to resolve file address for DW_OP_deref");
1463 return false;
1464 }
1465 Address so_addr;
1466 if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
17
Assuming the condition is false
18
Taking false branch
1467 if (error_ptr)
1468 error_ptr->SetErrorStringWithFormat(
1469 "failed to resolve file address in module");
1470 return false;
1471 }
1472 addr_t load_Addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
19
Called C++ object pointer is null
1473 if (load_Addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
1474 if (error_ptr)
1475 error_ptr->SetErrorStringWithFormat(
1476 "failed to resolve load address");
1477 return false;
1478 }
1479 stack.back().GetScalar() = load_Addr;
1480 stack.back().SetValueType(Value::eValueTypeLoadAddress);
1481 // Fall through to load address code below...
1482 } LLVM_FALLTHROUGH[[clang::fallthrough]];
1483 case Value::eValueTypeLoadAddress:
1484 if (exe_ctx) {
1485 if (process) {
1486 lldb::addr_t pointer_addr =
1487 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS(18446744073709551615UL));
1488 Status error;
1489 lldb::addr_t pointer_value =
1490 process->ReadPointerFromMemory(pointer_addr, error);
1491 if (pointer_value != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
1492 stack.back().GetScalar() = pointer_value;
1493 stack.back().ClearContext();
1494 } else {
1495 if (error_ptr)
1496 error_ptr->SetErrorStringWithFormat(
1497 "Failed to dereference pointer from 0x%" PRIx64"l" "x"
1498 " for DW_OP_deref: %s\n",
1499 pointer_addr, error.AsCString());
1500 return false;
1501 }
1502 } else {
1503 if (error_ptr)
1504 error_ptr->SetErrorStringWithFormat(
1505 "NULL process for DW_OP_deref.\n");
1506 return false;
1507 }
1508 } else {
1509 if (error_ptr)
1510 error_ptr->SetErrorStringWithFormat(
1511 "NULL execution context for DW_OP_deref.\n");
1512 return false;
1513 }
1514 break;
1515
1516 default:
1517 break;
1518 }
1519
1520 } break;
1521
1522 //----------------------------------------------------------------------
1523 // OPCODE: DW_OP_deref_size
1524 // OPERANDS: 1
1525 // 1 - uint8_t that specifies the size of the data to dereference.
1526 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1527 // stack entry and treats it as an address. The value retrieved from that
1528 // address is pushed. In the DW_OP_deref_size operation, however, the size
1529 // in bytes of the data retrieved from the dereferenced address is
1530 // specified by the single operand. This operand is a 1-byte unsigned
1531 // integral constant whose value may not be larger than the size of an
1532 // address on the target machine. The data retrieved is zero extended to
1533 // the size of an address on the target machine before being pushed on the
1534 // expression stack.
1535 //----------------------------------------------------------------------
1536 case DW_OP_deref_size: {
1537 if (stack.empty()) {
1538 if (error_ptr)
1539 error_ptr->SetErrorString(
1540 "Expression stack empty for DW_OP_deref_size.");
1541 return false;
1542 }
1543 uint8_t size = opcodes.GetU8(&offset);
1544 Value::ValueType value_type = stack.back().GetValueType();
1545 switch (value_type) {
1546 case Value::eValueTypeHostAddress: {
1547 void *src = (void *)stack.back().GetScalar().ULongLong();
1548 intptr_t ptr;
1549 ::memcpy(&ptr, src, sizeof(void *));
1550 // I can't decide whether the size operand should apply to the bytes in
1551 // their
1552 // lldb-host endianness or the target endianness.. I doubt this'll ever
1553 // come up but I'll opt for assuming big endian regardless.
1554 switch (size) {
1555 case 1:
1556 ptr = ptr & 0xff;
1557 break;
1558 case 2:
1559 ptr = ptr & 0xffff;
1560 break;
1561 case 3:
1562 ptr = ptr & 0xffffff;
1563 break;
1564 case 4:
1565 ptr = ptr & 0xffffffff;
1566 break;
1567 // the casts are added to work around the case where intptr_t is a 32
1568 // bit quantity;
1569 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1570 // program.
1571 case 5:
1572 ptr = (intptr_t)ptr & 0xffffffffffULL;
1573 break;
1574 case 6:
1575 ptr = (intptr_t)ptr & 0xffffffffffffULL;
1576 break;
1577 case 7:
1578 ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1579 break;
1580 default:
1581 break;
1582 }
1583 stack.back().GetScalar() = ptr;
1584 stack.back().ClearContext();
1585 } break;
1586 case Value::eValueTypeLoadAddress:
1587 if (exe_ctx) {
1588 if (process) {
1589 lldb::addr_t pointer_addr =
1590 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS(18446744073709551615UL));
1591 uint8_t addr_bytes[sizeof(lldb::addr_t)];
1592 Status error;
1593 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1594 size) {
1595 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes),
1596 process->GetByteOrder(), size);
1597 lldb::offset_t addr_data_offset = 0;
1598 switch (size) {
1599 case 1:
1600 stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset);
1601 break;
1602 case 2:
1603 stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset);
1604 break;
1605 case 4:
1606 stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset);
1607 break;
1608 case 8:
1609 stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset);
1610 break;
1611 default:
1612 stack.back().GetScalar() =
1613 addr_data.GetPointer(&addr_data_offset);
1614 }
1615 stack.back().ClearContext();
1616 } else {
1617 if (error_ptr)
1618 error_ptr->SetErrorStringWithFormat(
1619 "Failed to dereference pointer from 0x%" PRIx64"l" "x"
1620 " for DW_OP_deref: %s\n",
1621 pointer_addr, error.AsCString());
1622 return false;
1623 }
1624 } else {
1625 if (error_ptr)
1626 error_ptr->SetErrorStringWithFormat(
1627 "NULL process for DW_OP_deref.\n");
1628 return false;
1629 }
1630 } else {
1631 if (error_ptr)
1632 error_ptr->SetErrorStringWithFormat(
1633 "NULL execution context for DW_OP_deref.\n");
1634 return false;
1635 }
1636 break;
1637
1638 default:
1639 break;
1640 }
1641
1642 } break;
1643
1644 //----------------------------------------------------------------------
1645 // OPCODE: DW_OP_xderef_size
1646 // OPERANDS: 1
1647 // 1 - uint8_t that specifies the size of the data to dereference.
1648 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1649 // the top of the stack is treated as an address. The second stack entry is
1650 // treated as an "address space identifier" for those architectures that
1651 // support multiple address spaces. The top two stack elements are popped,
1652 // a data item is retrieved through an implementation-defined address
1653 // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1654 // operation, however, the size in bytes of the data retrieved from the
1655 // dereferenced address is specified by the single operand. This operand is
1656 // a 1-byte unsigned integral constant whose value may not be larger than
1657 // the size of an address on the target machine. The data retrieved is zero
1658 // extended to the size of an address on the target machine before being
1659 // pushed on the expression stack.
1660 //----------------------------------------------------------------------
1661 case DW_OP_xderef_size:
1662 if (error_ptr)
1663 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1664 return false;
1665 //----------------------------------------------------------------------
1666 // OPCODE: DW_OP_xderef
1667 // OPERANDS: none
1668 // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1669 // the top of the stack is treated as an address. The second stack entry is
1670 // treated as an "address space identifier" for those architectures that
1671 // support multiple address spaces. The top two stack elements are popped,
1672 // a data item is retrieved through an implementation-defined address
1673 // calculation and pushed as the new stack top. The size of the data
1674 // retrieved from the dereferenced address is the size of an address on the
1675 // target machine.
1676 //----------------------------------------------------------------------
1677 case DW_OP_xderef:
1678 if (error_ptr)
1679 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1680 return false;
1681
1682 //----------------------------------------------------------------------
1683 // All DW_OP_constXXX opcodes have a single operand as noted below:
1684 //
1685 // Opcode Operand 1
1686 // --------------- ----------------------------------------------------
1687 // DW_OP_const1u 1-byte unsigned integer constant DW_OP_const1s
1688 // 1-byte signed integer constant DW_OP_const2u 2-byte unsigned integer
1689 // constant DW_OP_const2s 2-byte signed integer constant DW_OP_const4u
1690 // 4-byte unsigned integer constant DW_OP_const4s 4-byte signed integer
1691 // constant DW_OP_const8u 8-byte unsigned integer constant DW_OP_const8s
1692 // 8-byte signed integer constant DW_OP_constu unsigned LEB128 integer
1693 // constant DW_OP_consts signed LEB128 integer constant
1694 //----------------------------------------------------------------------
1695 case DW_OP_const1u:
1696 stack.push_back(Scalar((uint8_t)opcodes.GetU8(&offset)));
1697 break;
1698 case DW_OP_const1s:
1699 stack.push_back(Scalar((int8_t)opcodes.GetU8(&offset)));
1700 break;
1701 case DW_OP_const2u:
1702 stack.push_back(Scalar((uint16_t)opcodes.GetU16(&offset)));
1703 break;
1704 case DW_OP_const2s:
1705 stack.push_back(Scalar((int16_t)opcodes.GetU16(&offset)));
1706 break;
1707 case DW_OP_const4u:
1708 stack.push_back(Scalar((uint32_t)opcodes.GetU32(&offset)));
1709 break;
1710 case DW_OP_const4s:
1711 stack.push_back(Scalar((int32_t)opcodes.GetU32(&offset)));
1712 break;
1713 case DW_OP_const8u:
1714 stack.push_back(Scalar((uint64_t)opcodes.GetU64(&offset)));
1715 break;
1716 case DW_OP_const8s:
1717 stack.push_back(Scalar((int64_t)opcodes.GetU64(&offset)));
1718 break;
1719 case DW_OP_constu:
1720 stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1721 break;
1722 case DW_OP_consts:
1723 stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1724 break;
1725
1726 //----------------------------------------------------------------------
1727 // OPCODE: DW_OP_dup
1728 // OPERANDS: none
1729 // DESCRIPTION: duplicates the value at the top of the stack
1730 //----------------------------------------------------------------------
1731 case DW_OP_dup:
1732 if (stack.empty()) {
1733 if (error_ptr)
1734 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1735 return false;
1736 } else
1737 stack.push_back(stack.back());
1738 break;
1739
1740 //----------------------------------------------------------------------
1741 // OPCODE: DW_OP_drop
1742 // OPERANDS: none
1743 // DESCRIPTION: pops the value at the top of the stack
1744 //----------------------------------------------------------------------
1745 case DW_OP_drop:
1746 if (stack.empty()) {
1747 if (error_ptr)
1748 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1749 return false;
1750 } else
1751 stack.pop_back();
1752 break;
1753
1754 //----------------------------------------------------------------------
1755 // OPCODE: DW_OP_over
1756 // OPERANDS: none
1757 // DESCRIPTION: Duplicates the entry currently second in the stack at
1758 // the top of the stack.
1759 //----------------------------------------------------------------------
1760 case DW_OP_over:
1761 if (stack.size() < 2) {
1762 if (error_ptr)
1763 error_ptr->SetErrorString(
1764 "Expression stack needs at least 2 items for DW_OP_over.");
1765 return false;
1766 } else
1767 stack.push_back(stack[stack.size() - 2]);
1768 break;
1769
1770 //----------------------------------------------------------------------
1771 // OPCODE: DW_OP_pick
1772 // OPERANDS: uint8_t index into the current stack
1773 // DESCRIPTION: The stack entry with the specified index (0 through 255,
1774 // inclusive) is pushed on the stack
1775 //----------------------------------------------------------------------
1776 case DW_OP_pick: {
1777 uint8_t pick_idx = opcodes.GetU8(&offset);
1778 if (pick_idx < stack.size())
1779 stack.push_back(stack[pick_idx]);
1780 else {
1781 if (error_ptr)
1782 error_ptr->SetErrorStringWithFormat(
1783 "Index %u out of range for DW_OP_pick.\n", pick_idx);
1784 return false;
1785 }
1786 } break;
1787
1788 //----------------------------------------------------------------------
1789 // OPCODE: DW_OP_swap
1790 // OPERANDS: none
1791 // DESCRIPTION: swaps the top two stack entries. The entry at the top
1792 // of the stack becomes the second stack entry, and the second entry
1793 // becomes the top of the stack
1794 //----------------------------------------------------------------------
1795 case DW_OP_swap:
1796 if (stack.size() < 2) {
1797 if (error_ptr)
1798 error_ptr->SetErrorString(
1799 "Expression stack needs at least 2 items for DW_OP_swap.");
1800 return false;
1801 } else {
1802 tmp = stack.back();
1803 stack.back() = stack[stack.size() - 2];
1804 stack[stack.size() - 2] = tmp;
1805 }
1806 break;
1807
1808 //----------------------------------------------------------------------
1809 // OPCODE: DW_OP_rot
1810 // OPERANDS: none
1811 // DESCRIPTION: Rotates the first three stack entries. The entry at
1812 // the top of the stack becomes the third stack entry, the second entry
1813 // becomes the top of the stack, and the third entry becomes the second
1814 // entry.
1815 //----------------------------------------------------------------------
1816 case DW_OP_rot:
1817 if (stack.size() < 3) {
1818 if (error_ptr)
1819 error_ptr->SetErrorString(
1820 "Expression stack needs at least 3 items for DW_OP_rot.");
1821 return false;
1822 } else {
1823 size_t last_idx = stack.size() - 1;
1824 Value old_top = stack[last_idx];
1825 stack[last_idx] = stack[last_idx - 1];
1826 stack[last_idx - 1] = stack[last_idx - 2];
1827 stack[last_idx - 2] = old_top;
1828 }
1829 break;
1830
1831 //----------------------------------------------------------------------
1832 // OPCODE: DW_OP_abs
1833 // OPERANDS: none
1834 // DESCRIPTION: pops the top stack entry, interprets it as a signed
1835 // value and pushes its absolute value. If the absolute value can not be
1836 // represented, the result is undefined.
1837 //----------------------------------------------------------------------
1838 case DW_OP_abs:
1839 if (stack.empty()) {
1840 if (error_ptr)
1841 error_ptr->SetErrorString(
1842 "Expression stack needs at least 1 item for DW_OP_abs.");
1843 return false;
1844 } else if (stack.back().ResolveValue(exe_ctx).AbsoluteValue() == false) {
1845 if (error_ptr)
1846 error_ptr->SetErrorString(
1847 "Failed to take the absolute value of the first stack item.");
1848 return false;
1849 }
1850 break;
1851
1852 //----------------------------------------------------------------------
1853 // OPCODE: DW_OP_and
1854 // OPERANDS: none
1855 // DESCRIPTION: pops the top two stack values, performs a bitwise and
1856 // operation on the two, and pushes the result.
1857 //----------------------------------------------------------------------
1858 case DW_OP_and:
1859 if (stack.size() < 2) {
1860 if (error_ptr)
1861 error_ptr->SetErrorString(
1862 "Expression stack needs at least 2 items for DW_OP_and.");
1863 return false;
1864 } else {
1865 tmp = stack.back();
1866 stack.pop_back();
1867 stack.back().ResolveValue(exe_ctx) =
1868 stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1869 }
1870 break;
1871
1872 //----------------------------------------------------------------------
1873 // OPCODE: DW_OP_div
1874 // OPERANDS: none
1875 // DESCRIPTION: pops the top two stack values, divides the former second
1876 // entry by the former top of the stack using signed division, and pushes
1877 // the result.
1878 //----------------------------------------------------------------------
1879 case DW_OP_div:
1880 if (stack.size() < 2) {
1881 if (error_ptr)
1882 error_ptr->SetErrorString(
1883 "Expression stack needs at least 2 items for DW_OP_div.");
1884 return false;
1885 } else {
1886 tmp = stack.back();
1887 if (tmp.ResolveValue(exe_ctx).IsZero()) {
1888 if (error_ptr)
1889 error_ptr->SetErrorString("Divide by zero.");
1890 return false;
1891 } else {
1892 stack.pop_back();
1893 stack.back() =
1894 stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1895 if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1896 if (error_ptr)
1897 error_ptr->SetErrorString("Divide failed.");
1898 return false;
1899 }
1900 }
1901 }
1902 break;
1903
1904 //----------------------------------------------------------------------
1905 // OPCODE: DW_OP_minus
1906 // OPERANDS: none
1907 // DESCRIPTION: pops the top two stack values, subtracts the former top
1908 // of the stack from the former second entry, and pushes the result.
1909 //----------------------------------------------------------------------
1910 case DW_OP_minus:
1911 if (stack.size() < 2) {
1912 if (error_ptr)
1913 error_ptr->SetErrorString(
1914 "Expression stack needs at least 2 items for DW_OP_minus.");
1915 return false;
1916 } else {
1917 tmp = stack.back();
1918 stack.pop_back();
1919 stack.back().ResolveValue(exe_ctx) =
1920 stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1921 }
1922 break;
1923
1924 //----------------------------------------------------------------------
1925 // OPCODE: DW_OP_mod
1926 // OPERANDS: none
1927 // DESCRIPTION: pops the top two stack values and pushes the result of
1928 // the calculation: former second stack entry modulo the former top of the
1929 // stack.
1930 //----------------------------------------------------------------------
1931 case DW_OP_mod:
1932 if (stack.size() < 2) {
1933 if (error_ptr)
1934 error_ptr->SetErrorString(
1935 "Expression stack needs at least 2 items for DW_OP_mod.");
1936 return false;
1937 } else {
1938 tmp = stack.back();
1939 stack.pop_back();
1940 stack.back().ResolveValue(exe_ctx) =
1941 stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1942 }
1943 break;
1944
1945 //----------------------------------------------------------------------
1946 // OPCODE: DW_OP_mul
1947 // OPERANDS: none
1948 // DESCRIPTION: pops the top two stack entries, multiplies them
1949 // together, and pushes the result.
1950 //----------------------------------------------------------------------
1951 case DW_OP_mul:
1952 if (stack.size() < 2) {
1953 if (error_ptr)
1954 error_ptr->SetErrorString(
1955 "Expression stack needs at least 2 items for DW_OP_mul.");
1956 return false;
1957 } else {
1958 tmp = stack.back();
1959 stack.pop_back();
1960 stack.back().ResolveValue(exe_ctx) =
1961 stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1962 }
1963 break;
1964
1965 //----------------------------------------------------------------------
1966 // OPCODE: DW_OP_neg
1967 // OPERANDS: none
1968 // DESCRIPTION: pops the top stack entry, and pushes its negation.
1969 //----------------------------------------------------------------------
1970 case DW_OP_neg:
1971 if (stack.empty()) {
1972 if (error_ptr)
1973 error_ptr->SetErrorString(
1974 "Expression stack needs at least 1 item for DW_OP_neg.");
1975 return false;
1976 } else {
1977 if (stack.back().ResolveValue(exe_ctx).UnaryNegate() == false) {
1978 if (error_ptr)
1979 error_ptr->SetErrorString("Unary negate failed.");
1980 return false;
1981 }
1982 }
1983 break;
1984
1985 //----------------------------------------------------------------------
1986 // OPCODE: DW_OP_not
1987 // OPERANDS: none
1988 // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1989 // complement
1990 //----------------------------------------------------------------------
1991 case DW_OP_not:
1992 if (stack.empty()) {
1993 if (error_ptr)
1994 error_ptr->SetErrorString(
1995 "Expression stack needs at least 1 item for DW_OP_not.");
1996 return false;
1997 } else {
1998 if (stack.back().ResolveValue(exe_ctx).OnesComplement() == false) {
1999 if (error_ptr)
2000 error_ptr->SetErrorString("Logical NOT failed.");
2001 return false;
2002 }
2003 }
2004 break;
2005
2006 //----------------------------------------------------------------------
2007 // OPCODE: DW_OP_or
2008 // OPERANDS: none
2009 // DESCRIPTION: pops the top two stack entries, performs a bitwise or
2010 // operation on the two, and pushes the result.
2011 //----------------------------------------------------------------------
2012 case DW_OP_or:
2013 if (stack.size() < 2) {
2014 if (error_ptr)
2015 error_ptr->SetErrorString(
2016 "Expression stack needs at least 2 items for DW_OP_or.");
2017 return false;
2018 } else {
2019 tmp = stack.back();
2020 stack.pop_back();
2021 stack.back().ResolveValue(exe_ctx) =
2022 stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
2023 }
2024 break;
2025
2026 //----------------------------------------------------------------------
2027 // OPCODE: DW_OP_plus
2028 // OPERANDS: none
2029 // DESCRIPTION: pops the top two stack entries, adds them together, and
2030 // pushes the result.
2031 //----------------------------------------------------------------------
2032 case DW_OP_plus:
2033 if (stack.size() < 2) {
2034 if (error_ptr)
2035 error_ptr->SetErrorString(
2036 "Expression stack needs at least 2 items for DW_OP_plus.");
2037 return false;
2038 } else {
2039 tmp = stack.back();
2040 stack.pop_back();
2041 stack.back().GetScalar() += tmp.GetScalar();
2042 }
2043 break;
2044
2045 //----------------------------------------------------------------------
2046 // OPCODE: DW_OP_plus_uconst
2047 // OPERANDS: none
2048 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
2049 // constant operand and pushes the result.
2050 //----------------------------------------------------------------------
2051 case DW_OP_plus_uconst:
2052 if (stack.empty()) {
2053 if (error_ptr)
2054 error_ptr->SetErrorString(
2055 "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
2056 return false;
2057 } else {
2058 const uint64_t uconst_value = opcodes.GetULEB128(&offset);
2059 // Implicit conversion from a UINT to a Scalar...
2060 stack.back().GetScalar() += uconst_value;
2061 if (!stack.back().GetScalar().IsValid()) {
2062 if (error_ptr)
2063 error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
2064 return false;
2065 }
2066 }
2067 break;
2068
2069 //----------------------------------------------------------------------
2070 // OPCODE: DW_OP_shl
2071 // OPERANDS: none
2072 // DESCRIPTION: pops the top two stack entries, shifts the former
2073 // second entry left by the number of bits specified by the former top of
2074 // the stack, and pushes the result.
2075 //----------------------------------------------------------------------
2076 case DW_OP_shl:
2077 if (stack.size() < 2) {
2078 if (error_ptr)
2079 error_ptr->SetErrorString(
2080 "Expression stack needs at least 2 items for DW_OP_shl.");
2081 return false;
2082 } else {
2083 tmp = stack.back();
2084 stack.pop_back();
2085 stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
2086 }
2087 break;
2088
2089 //----------------------------------------------------------------------
2090 // OPCODE: DW_OP_shr
2091 // OPERANDS: none
2092 // DESCRIPTION: pops the top two stack entries, shifts the former second
2093 // entry right logically (filling with zero bits) by the number of bits
2094 // specified by the former top of the stack, and pushes the result.
2095 //----------------------------------------------------------------------
2096 case DW_OP_shr:
2097 if (stack.size() < 2) {
2098 if (error_ptr)
2099 error_ptr->SetErrorString(
2100 "Expression stack needs at least 2 items for DW_OP_shr.");
2101 return false;
2102 } else {
2103 tmp = stack.back();
2104 stack.pop_back();
2105 if (stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
2106 tmp.ResolveValue(exe_ctx)) == false) {
2107 if (error_ptr)
2108 error_ptr->SetErrorString("DW_OP_shr failed.");
2109 return false;
2110 }
2111 }
2112 break;
2113
2114 //----------------------------------------------------------------------
2115 // OPCODE: DW_OP_shra
2116 // OPERANDS: none
2117 // DESCRIPTION: pops the top two stack entries, shifts the former second
2118 // entry right arithmetically (divide the magnitude by 2, keep the same
2119 // sign for the result) by the number of bits specified by the former top
2120 // of the stack, and pushes the result.
2121 //----------------------------------------------------------------------
2122 case DW_OP_shra:
2123 if (stack.size() < 2) {
2124 if (error_ptr)
2125 error_ptr->SetErrorString(
2126 "Expression stack needs at least 2 items for DW_OP_shra.");
2127 return false;
2128 } else {
2129 tmp = stack.back();
2130 stack.pop_back();
2131 stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
2132 }
2133 break;
2134
2135 //----------------------------------------------------------------------
2136 // OPCODE: DW_OP_xor
2137 // OPERANDS: none
2138 // DESCRIPTION: pops the top two stack entries, performs the bitwise
2139 // exclusive-or operation on the two, and pushes the result.
2140 //----------------------------------------------------------------------
2141 case DW_OP_xor:
2142 if (stack.size() < 2) {
2143 if (error_ptr)
2144 error_ptr->SetErrorString(
2145 "Expression stack needs at least 2 items for DW_OP_xor.");
2146 return false;
2147 } else {
2148 tmp = stack.back();
2149 stack.pop_back();
2150 stack.back().ResolveValue(exe_ctx) =
2151 stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
2152 }
2153 break;
2154
2155 //----------------------------------------------------------------------
2156 // OPCODE: DW_OP_skip
2157 // OPERANDS: int16_t
2158 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte
2159 // signed integer constant. The 2-byte constant is the number of bytes of
2160 // the DWARF expression to skip forward or backward from the current
2161 // operation, beginning after the 2-byte constant.
2162 //----------------------------------------------------------------------
2163 case DW_OP_skip: {
2164 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
2165 lldb::offset_t new_offset = offset + skip_offset;
2166 if (new_offset >= opcodes_offset && new_offset < end_offset)
2167 offset = new_offset;
2168 else {
2169 if (error_ptr)
2170 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
2171 return false;
2172 }
2173 } break;
2174
2175 //----------------------------------------------------------------------
2176 // OPCODE: DW_OP_bra
2177 // OPERANDS: int16_t
2178 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
2179 // signed integer constant. This operation pops the top of stack. If the
2180 // value popped is not the constant 0, the 2-byte constant operand is the
2181 // number of bytes of the DWARF expression to skip forward or backward from
2182 // the current operation, beginning after the 2-byte constant.
2183 //----------------------------------------------------------------------
2184 case DW_OP_bra:
2185 if (stack.empty()) {
2186 if (error_ptr)
2187 error_ptr->SetErrorString(
2188 "Expression stack needs at least 1 item for DW_OP_bra.");
2189 return false;
2190 } else {
2191 tmp = stack.back();
2192 stack.pop_back();
2193 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
2194 Scalar zero(0);
2195 if (tmp.ResolveValue(exe_ctx) != zero) {
2196 lldb::offset_t new_offset = offset + bra_offset;
2197 if (new_offset >= opcodes_offset && new_offset < end_offset)
2198 offset = new_offset;
2199 else {
2200 if (error_ptr)
2201 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
2202 return false;
2203 }
2204 }
2205 }
2206 break;
2207
2208 //----------------------------------------------------------------------
2209 // OPCODE: DW_OP_eq
2210 // OPERANDS: none
2211 // DESCRIPTION: pops the top two stack values, compares using the
2212 // equals (==) operator.
2213 // STACK RESULT: push the constant value 1 onto the stack if the result
2214 // of the operation is true or the constant value 0 if the result of the
2215 // operation is false.
2216 //----------------------------------------------------------------------
2217 case DW_OP_eq:
2218 if (stack.size() < 2) {
2219 if (error_ptr)
2220 error_ptr->SetErrorString(
2221 "Expression stack needs at least 2 items for DW_OP_eq.");
2222 return false;
2223 } else {
2224 tmp = stack.back();
2225 stack.pop_back();
2226 stack.back().ResolveValue(exe_ctx) =
2227 stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
2228 }
2229 break;
2230
2231 //----------------------------------------------------------------------
2232 // OPCODE: DW_OP_ge
2233 // OPERANDS: none
2234 // DESCRIPTION: pops the top two stack values, compares using the
2235 // greater than or equal to (>=) operator.
2236 // STACK RESULT: push the constant value 1 onto the stack if the result
2237 // of the operation is true or the constant value 0 if the result of the
2238 // operation is false.
2239 //----------------------------------------------------------------------
2240 case DW_OP_ge:
2241 if (stack.size() < 2) {
2242 if (error_ptr)
2243 error_ptr->SetErrorString(
2244 "Expression stack needs at least 2 items for DW_OP_ge.");
2245 return false;
2246 } else {
2247 tmp = stack.back();
2248 stack.pop_back();
2249 stack.back().ResolveValue(exe_ctx) =
2250 stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
2251 }
2252 break;
2253
2254 //----------------------------------------------------------------------
2255 // OPCODE: DW_OP_gt
2256 // OPERANDS: none
2257 // DESCRIPTION: pops the top two stack values, compares using the
2258 // greater than (>) operator.
2259 // STACK RESULT: push the constant value 1 onto the stack if the result
2260 // of the operation is true or the constant value 0 if the result of the
2261 // operation is false.
2262 //----------------------------------------------------------------------
2263 case DW_OP_gt:
2264 if (stack.size() < 2) {
2265 if (error_ptr)
2266 error_ptr->SetErrorString(
2267 "Expression stack needs at least 2 items for DW_OP_gt.");
2268 return false;
2269 } else {
2270 tmp = stack.back();
2271 stack.pop_back();
2272 stack.back().ResolveValue(exe_ctx) =
2273 stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
2274 }
2275 break;
2276
2277 //----------------------------------------------------------------------
2278 // OPCODE: DW_OP_le
2279 // OPERANDS: none
2280 // DESCRIPTION: pops the top two stack values, compares using the
2281 // less than or equal to (<=) operator.
2282 // STACK RESULT: push the constant value 1 onto the stack if the result
2283 // of the operation is true or the constant value 0 if the result of the
2284 // operation is false.
2285 //----------------------------------------------------------------------
2286 case DW_OP_le:
2287 if (stack.size() < 2) {
2288 if (error_ptr)
2289 error_ptr->SetErrorString(
2290 "Expression stack needs at least 2 items for DW_OP_le.");
2291 return false;
2292 } else {
2293 tmp = stack.back();
2294 stack.pop_back();
2295 stack.back().ResolveValue(exe_ctx) =
2296 stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
2297 }
2298 break;
2299
2300 //----------------------------------------------------------------------
2301 // OPCODE: DW_OP_lt
2302 // OPERANDS: none
2303 // DESCRIPTION: pops the top two stack values, compares using the
2304 // less than (<) operator.
2305 // STACK RESULT: push the constant value 1 onto the stack if the result
2306 // of the operation is true or the constant value 0 if the result of the
2307 // operation is false.
2308 //----------------------------------------------------------------------
2309 case DW_OP_lt:
2310 if (stack.size() < 2) {
2311 if (error_ptr)
2312 error_ptr->SetErrorString(
2313 "Expression stack needs at least 2 items for DW_OP_lt.");
2314 return false;
2315 } else {
2316 tmp = stack.back();
2317 stack.pop_back();
2318 stack.back().ResolveValue(exe_ctx) =
2319 stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
2320 }
2321 break;
2322
2323 //----------------------------------------------------------------------
2324 // OPCODE: DW_OP_ne
2325 // OPERANDS: none
2326 // DESCRIPTION: pops the top two stack values, compares using the
2327 // not equal (!=) operator.
2328 // STACK RESULT: push the constant value 1 onto the stack if the result
2329 // of the operation is true or the constant value 0 if the result of the
2330 // operation is false.
2331 //----------------------------------------------------------------------
2332 case DW_OP_ne:
2333 if (stack.size() < 2) {
2334 if (error_ptr)
2335 error_ptr->SetErrorString(
2336 "Expression stack needs at least 2 items for DW_OP_ne.");
2337 return false;
2338 } else {
2339 tmp = stack.back();
2340 stack.pop_back();
2341 stack.back().ResolveValue(exe_ctx) =
2342 stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
2343 }
2344 break;
2345
2346 //----------------------------------------------------------------------
2347 // OPCODE: DW_OP_litn
2348 // OPERANDS: none
2349 // DESCRIPTION: encode the unsigned literal values from 0 through 31.
2350 // STACK RESULT: push the unsigned literal constant value onto the top
2351 // of the stack.
2352 //----------------------------------------------------------------------
2353 case DW_OP_lit0:
2354 case DW_OP_lit1:
2355 case DW_OP_lit2:
2356 case DW_OP_lit3:
2357 case DW_OP_lit4:
2358 case DW_OP_lit5:
2359 case DW_OP_lit6:
2360 case DW_OP_lit7:
2361 case DW_OP_lit8:
2362 case DW_OP_lit9:
2363 case DW_OP_lit10:
2364 case DW_OP_lit11:
2365 case DW_OP_lit12:
2366 case DW_OP_lit13:
2367 case DW_OP_lit14:
2368 case DW_OP_lit15:
2369 case DW_OP_lit16:
2370 case DW_OP_lit17:
2371 case DW_OP_lit18:
2372 case DW_OP_lit19:
2373 case DW_OP_lit20:
2374 case DW_OP_lit21:
2375 case DW_OP_lit22:
2376 case DW_OP_lit23:
2377 case DW_OP_lit24:
2378 case DW_OP_lit25:
2379 case DW_OP_lit26:
2380 case DW_OP_lit27:
2381 case DW_OP_lit28:
2382 case DW_OP_lit29:
2383 case DW_OP_lit30:
2384 case DW_OP_lit31:
2385 stack.push_back(Scalar((uint64_t)(op - DW_OP_lit0)));
2386 break;
2387
2388 //----------------------------------------------------------------------
2389 // OPCODE: DW_OP_regN
2390 // OPERANDS: none
2391 // DESCRIPTION: Push the value in register n on the top of the stack.
2392 //----------------------------------------------------------------------
2393 case DW_OP_reg0:
2394 case DW_OP_reg1:
2395 case DW_OP_reg2:
2396 case DW_OP_reg3:
2397 case DW_OP_reg4:
2398 case DW_OP_reg5:
2399 case DW_OP_reg6:
2400 case DW_OP_reg7:
2401 case DW_OP_reg8:
2402 case DW_OP_reg9:
2403 case DW_OP_reg10:
2404 case DW_OP_reg11:
2405 case DW_OP_reg12:
2406 case DW_OP_reg13:
2407 case DW_OP_reg14:
2408 case DW_OP_reg15:
2409 case DW_OP_reg16:
2410 case DW_OP_reg17:
2411 case DW_OP_reg18:
2412 case DW_OP_reg19:
2413 case DW_OP_reg20:
2414 case DW_OP_reg21:
2415 case DW_OP_reg22:
2416 case DW_OP_reg23:
2417 case DW_OP_reg24:
2418 case DW_OP_reg25:
2419 case DW_OP_reg26:
2420 case DW_OP_reg27:
2421 case DW_OP_reg28:
2422 case DW_OP_reg29:
2423 case DW_OP_reg30:
2424 case DW_OP_reg31: {
2425 reg_num = op - DW_OP_reg0;
2426
2427 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2428 stack.push_back(tmp);
2429 else
2430 return false;
2431 } break;
2432 //----------------------------------------------------------------------
2433 // OPCODE: DW_OP_regx
2434 // OPERANDS:
2435 // ULEB128 literal operand that encodes the register.
2436 // DESCRIPTION: Push the value in register on the top of the stack.
2437 //----------------------------------------------------------------------
2438 case DW_OP_regx: {
2439 reg_num = opcodes.GetULEB128(&offset);
2440 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2441 stack.push_back(tmp);
2442 else
2443 return false;
2444 } break;
2445
2446 //----------------------------------------------------------------------
2447 // OPCODE: DW_OP_bregN
2448 // OPERANDS:
2449 // SLEB128 offset from register N
2450 // DESCRIPTION: Value is in memory at the address specified by register
2451 // N plus an offset.
2452 //----------------------------------------------------------------------
2453 case DW_OP_breg0:
2454 case DW_OP_breg1:
2455 case DW_OP_breg2:
2456 case DW_OP_breg3:
2457 case DW_OP_breg4:
2458 case DW_OP_breg5:
2459 case DW_OP_breg6:
2460 case DW_OP_breg7:
2461 case DW_OP_breg8:
2462 case DW_OP_breg9:
2463 case DW_OP_breg10:
2464 case DW_OP_breg11:
2465 case DW_OP_breg12:
2466 case DW_OP_breg13:
2467 case DW_OP_breg14:
2468 case DW_OP_breg15:
2469 case DW_OP_breg16:
2470 case DW_OP_breg17:
2471 case DW_OP_breg18:
2472 case DW_OP_breg19:
2473 case DW_OP_breg20:
2474 case DW_OP_breg21:
2475 case DW_OP_breg22:
2476 case DW_OP_breg23:
2477 case DW_OP_breg24:
2478 case DW_OP_breg25:
2479 case DW_OP_breg26:
2480 case DW_OP_breg27:
2481 case DW_OP_breg28:
2482 case DW_OP_breg29:
2483 case DW_OP_breg30:
2484 case DW_OP_breg31: {
2485 reg_num = op - DW_OP_breg0;
2486
2487 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2488 tmp)) {
2489 int64_t breg_offset = opcodes.GetSLEB128(&offset);
2490 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2491 tmp.ClearContext();
2492 stack.push_back(tmp);
2493 stack.back().SetValueType(Value::eValueTypeLoadAddress);
2494 } else
2495 return false;
2496 } break;
2497 //----------------------------------------------------------------------
2498 // OPCODE: DW_OP_bregx
2499 // OPERANDS: 2
2500 // ULEB128 literal operand that encodes the register.
2501 // SLEB128 offset from register N
2502 // DESCRIPTION: Value is in memory at the address specified by register
2503 // N plus an offset.
2504 //----------------------------------------------------------------------
2505 case DW_OP_bregx: {
2506 reg_num = opcodes.GetULEB128(&offset);
2507
2508 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2509 tmp)) {
2510 int64_t breg_offset = opcodes.GetSLEB128(&offset);
2511 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2512 tmp.ClearContext();
2513 stack.push_back(tmp);
2514 stack.back().SetValueType(Value::eValueTypeLoadAddress);
2515 } else
2516 return false;
2517 } break;
2518
2519 case DW_OP_fbreg:
2520 if (exe_ctx) {
2521 if (frame) {
2522 Scalar value;
2523 if (frame->GetFrameBaseValue(value, error_ptr)) {
2524 int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2525 value += fbreg_offset;
2526 stack.push_back(value);
2527 stack.back().SetValueType(Value::eValueTypeLoadAddress);
2528 } else
2529 return false;
2530 } else {
2531 if (error_ptr)
2532 error_ptr->SetErrorString(
2533 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2534 return false;
2535 }
2536 } else {
2537 if (error_ptr)
2538 error_ptr->SetErrorStringWithFormat(
2539 "NULL execution context for DW_OP_fbreg.\n");
2540 return false;
2541 }
2542
2543 break;
2544
2545 //----------------------------------------------------------------------
2546 // OPCODE: DW_OP_nop
2547 // OPERANDS: none
2548 // DESCRIPTION: A place holder. It has no effect on the location stack
2549 // or any of its values.
2550 //----------------------------------------------------------------------
2551 case DW_OP_nop:
2552 break;
2553
2554 //----------------------------------------------------------------------
2555 // OPCODE: DW_OP_piece
2556 // OPERANDS: 1
2557 // ULEB128: byte size of the piece
2558 // DESCRIPTION: The operand describes the size in bytes of the piece of
2559 // the object referenced by the DWARF expression whose result is at the top
2560 // of the stack. If the piece is located in a register, but does not occupy
2561 // the entire register, the placement of the piece within that register is
2562 // defined by the ABI.
2563 //
2564 // Many compilers store a single variable in sets of registers, or store a
2565 // variable partially in memory and partially in registers. DW_OP_piece
2566 // provides a way of describing how large a part of a variable a particular
2567 // DWARF expression refers to.
2568 //----------------------------------------------------------------------
2569 case DW_OP_piece: {
2570 const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2571
2572 if (piece_byte_size > 0) {
2573 Value curr_piece;
2574
2575 if (stack.empty()) {
2576 // In a multi-piece expression, this means that the current piece is
2577 // not available. Fill with zeros for now by resizing the data and
2578 // appending it
2579 curr_piece.ResizeData(piece_byte_size);
2580 ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2581 pieces.AppendDataToHostBuffer(curr_piece);
2582 } else {
2583 Status error;
2584 // Extract the current piece into "curr_piece"
2585 Value curr_piece_source_value(stack.back());
2586 stack.pop_back();
2587
2588 const Value::ValueType curr_piece_source_value_type =
2589 curr_piece_source_value.GetValueType();
2590 switch (curr_piece_source_value_type) {
2591 case Value::eValueTypeLoadAddress:
2592 if (process) {
2593 if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2594 lldb::addr_t load_addr =
2595 curr_piece_source_value.GetScalar().ULongLong(
2596 LLDB_INVALID_ADDRESS(18446744073709551615UL));
2597 if (process->ReadMemory(
2598 load_addr, curr_piece.GetBuffer().GetBytes(),
2599 piece_byte_size, error) != piece_byte_size) {
2600 if (error_ptr)
2601 error_ptr->SetErrorStringWithFormat(
2602 "failed to read memory DW_OP_piece(%" PRIu64"l" "u"
2603 ") from 0x%" PRIx64"l" "x",
2604 piece_byte_size, load_addr);
2605 return false;
2606 }
2607 } else {
2608 if (error_ptr)
2609 error_ptr->SetErrorStringWithFormat(
2610 "failed to resize the piece memory buffer for "
2611 "DW_OP_piece(%" PRIu64"l" "u" ")",
2612 piece_byte_size);
2613 return false;
2614 }
2615 }
2616 break;
2617
2618 case Value::eValueTypeFileAddress:
2619 case Value::eValueTypeHostAddress:
2620 if (error_ptr) {
2621 lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2622 LLDB_INVALID_ADDRESS(18446744073709551615UL));
2623 error_ptr->SetErrorStringWithFormat(
2624 "failed to read memory DW_OP_piece(%" PRIu64"l" "u"
2625 ") from %s address 0x%" PRIx64"l" "x",
2626 piece_byte_size, curr_piece_source_value.GetValueType() ==
2627 Value::eValueTypeFileAddress
2628 ? "file"
2629 : "host",
2630 addr);
2631 }
2632 return false;
2633
2634 case Value::eValueTypeScalar: {
2635 uint32_t bit_size = piece_byte_size * 8;
2636 uint32_t bit_offset = 0;
2637 if (!curr_piece_source_value.GetScalar().ExtractBitfield(
2638 bit_size, bit_offset)) {
2639 if (error_ptr)
2640 error_ptr->SetErrorStringWithFormat(
2641 "unable to extract %" PRIu64"l" "u" " bytes from a %" PRIu64"l" "u"
2642 " byte scalar value.",
2643 piece_byte_size,
2644 (uint64_t)curr_piece_source_value.GetScalar()
2645 .GetByteSize());
2646 return false;
2647 }
2648 curr_piece = curr_piece_source_value;
2649 } break;
2650
2651 case Value::eValueTypeVector: {
2652 if (curr_piece_source_value.GetVector().length >= piece_byte_size)
2653 curr_piece_source_value.GetVector().length = piece_byte_size;
2654 else {
2655 if (error_ptr)
2656 error_ptr->SetErrorStringWithFormat(
2657 "unable to extract %" PRIu64"l" "u" " bytes from a %" PRIu64"l" "u"
2658 " byte vector value.",
2659 piece_byte_size,
2660 (uint64_t)curr_piece_source_value.GetVector().length);
2661 return false;
2662 }
2663 } break;
2664 }
2665
2666 // Check if this is the first piece?
2667 if (op_piece_offset == 0) {
2668 // This is the first piece, we should push it back onto the stack
2669 // so subsequent pieces will be able to access this piece and add
2670 // to it
2671 if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2672 if (error_ptr)
2673 error_ptr->SetErrorString("failed to append piece data");
2674 return false;
2675 }
2676 } else {
2677 // If this is the second or later piece there should be a value on
2678 // the stack
2679 if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2680 if (error_ptr)
2681 error_ptr->SetErrorStringWithFormat(
2682 "DW_OP_piece for offset %" PRIu64"l" "u"
2683 " but top of stack is of size %" PRIu64"l" "u",
2684 op_piece_offset, pieces.GetBuffer().GetByteSize());
2685 return false;
2686 }
2687
2688 if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2689 if (error_ptr)
2690 error_ptr->SetErrorString("failed to append piece data");
2691 return false;
2692 }
2693 }
2694 op_piece_offset += piece_byte_size;
2695 }
2696 }
2697 } break;
2698
2699 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2700 if (stack.size() < 1) {
2701 if (error_ptr)
2702 error_ptr->SetErrorString(
2703 "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2704 return false;
2705 } else {
2706 const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2707 const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2708 switch (stack.back().GetValueType()) {
2709 case Value::eValueTypeScalar: {
2710 if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2711 piece_bit_offset)) {
2712 if (error_ptr)
2713 error_ptr->SetErrorStringWithFormat(
2714 "unable to extract %" PRIu64"l" "u" " bit value with %" PRIu64"l" "u"
2715 " bit offset from a %" PRIu64"l" "u" " bit scalar value.",
2716 piece_bit_size, piece_bit_offset,
2717 (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2718 return false;
2719 }
2720 } break;
2721
2722 case Value::eValueTypeFileAddress:
2723 case Value::eValueTypeLoadAddress:
2724 case Value::eValueTypeHostAddress:
2725 if (error_ptr) {
2726 error_ptr->SetErrorStringWithFormat(
2727 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64"l" "u"
2728 ", bit_offset = %" PRIu64"l" "u" ") from an address value.",
2729 piece_bit_size, piece_bit_offset);
2730 }
2731 return false;
2732
2733 case Value::eValueTypeVector:
2734 if (error_ptr) {
2735 error_ptr->SetErrorStringWithFormat(
2736 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64"l" "u"
2737 ", bit_offset = %" PRIu64"l" "u" ") from a vector value.",
2738 piece_bit_size, piece_bit_offset);
2739 }
2740 return false;
2741 }
2742 }
2743 break;
2744
2745 //----------------------------------------------------------------------
2746 // OPCODE: DW_OP_push_object_address
2747 // OPERANDS: none
2748 // DESCRIPTION: Pushes the address of the object currently being
2749 // evaluated as part of evaluation of a user presented expression. This
2750 // object may correspond to an independent variable described by its own
2751 // DIE or it may be a component of an array, structure, or class whose
2752 // address has been dynamically determined by an earlier step during user
2753 // expression evaluation.
2754 //----------------------------------------------------------------------
2755 case DW_OP_push_object_address:
2756 if (object_address_ptr)
2757 stack.push_back(*object_address_ptr);
2758 else {
2759 if (error_ptr)
2760 error_ptr->SetErrorString("DW_OP_push_object_address used without "
2761 "specifying an object address");
2762 return false;
2763 }
2764 break;
2765
2766 //----------------------------------------------------------------------
2767 // OPCODE: DW_OP_call2
2768 // OPERANDS:
2769 // uint16_t compile unit relative offset of a DIE
2770 // DESCRIPTION: Performs subroutine calls during evaluation
2771 // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2772 // debugging information entry in the current compilation unit.
2773 //
2774 // Operand interpretation is exactly like that for DW_FORM_ref2.
2775 //
2776 // This operation transfers control of DWARF expression evaluation to the
2777 // DW_AT_location attribute of the referenced DIE. If there is no such
2778 // attribute, then there is no effect. Execution of the DWARF expression of
2779 // a DW_AT_location attribute may add to and/or remove from values on the
2780 // stack. Execution returns to the point following the call when the end of
2781 // the attribute is reached. Values on the stack at the time of the call
2782 // may be used as parameters by the called expression and values left on
2783 // the stack by the called expression may be used as return values by prior
2784 // agreement between the calling and called expressions.
2785 //----------------------------------------------------------------------
2786 case DW_OP_call2:
2787 if (error_ptr)
2788 error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2789 return false;
2790 //----------------------------------------------------------------------
2791 // OPCODE: DW_OP_call4
2792 // OPERANDS: 1
2793 // uint32_t compile unit relative offset of a DIE
2794 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2795 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2796 // a debugging information entry in the current compilation unit.
2797 //
2798 // Operand interpretation DW_OP_call4 is exactly like that for
2799 // DW_FORM_ref4.
2800 //
2801 // This operation transfers control of DWARF expression evaluation to the
2802 // DW_AT_location attribute of the referenced DIE. If there is no such
2803 // attribute, then there is no effect. Execution of the DWARF expression of
2804 // a DW_AT_location attribute may add to and/or remove from values on the
2805 // stack. Execution returns to the point following the call when the end of
2806 // the attribute is reached. Values on the stack at the time of the call
2807 // may be used as parameters by the called expression and values left on
2808 // the stack by the called expression may be used as return values by prior
2809 // agreement between the calling and called expressions.
2810 //----------------------------------------------------------------------
2811 case DW_OP_call4:
2812 if (error_ptr)
2813 error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2814 return false;
2815
2816 //----------------------------------------------------------------------
2817 // OPCODE: DW_OP_stack_value
2818 // OPERANDS: None
2819 // DESCRIPTION: Specifies that the object does not exist in memory but
2820 // rather is a constant value. The value from the top of the stack is the
2821 // value to be used. This is the actual object value and not the location.
2822 //----------------------------------------------------------------------
2823 case DW_OP_stack_value:
2824 stack.back().SetValueType(Value::eValueTypeScalar);
2825 break;
2826
2827 //----------------------------------------------------------------------
2828 // OPCODE: DW_OP_call_frame_cfa
2829 // OPERANDS: None
2830 // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2831 // the canonical frame address consistent with the call frame information
2832 // located in .debug_frame (or in the FDEs of the eh_frame section).
2833 //----------------------------------------------------------------------
2834 case DW_OP_call_frame_cfa:
2835 if (frame) {
2836 // Note that we don't have to parse FDEs because this DWARF expression
2837 // is commonly evaluated with a valid stack frame.
2838 StackID id = frame->GetStackID();
2839 addr_t cfa = id.GetCallFrameAddress();
2840 if (cfa != LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2841 stack.push_back(Scalar(cfa));
2842 stack.back().SetValueType(Value::eValueTypeLoadAddress);
2843 } else if (error_ptr)
2844 error_ptr->SetErrorString("Stack frame does not include a canonical "
2845 "frame address for DW_OP_call_frame_cfa "
2846 "opcode.");
2847 } else {
2848 if (error_ptr)
2849 error_ptr->SetErrorString("Invalid stack frame in context for "
2850 "DW_OP_call_frame_cfa opcode.");
2851 return false;
2852 }
2853 break;
2854
2855 //----------------------------------------------------------------------
2856 // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2857 // opcode, DW_OP_GNU_push_tls_address)
2858 // OPERANDS: none
2859 // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2860 // an address in the current thread's thread-local storage block, and
2861 // pushes it on the stack.
2862 //----------------------------------------------------------------------
2863 case DW_OP_form_tls_address:
2864 case DW_OP_GNU_push_tls_address: {
2865 if (stack.size() < 1) {
2866 if (error_ptr) {
2867 if (op == DW_OP_form_tls_address)
2868 error_ptr->SetErrorString(
2869 "DW_OP_form_tls_address needs an argument.");
2870 else
2871 error_ptr->SetErrorString(
2872 "DW_OP_GNU_push_tls_address needs an argument.");
2873 }
2874 return false;
2875 }
2876
2877 if (!exe_ctx || !module_sp) {
2878 if (error_ptr)
2879 error_ptr->SetErrorString("No context to evaluate TLS within.");
2880 return false;
2881 }
2882
2883 Thread *thread = exe_ctx->GetThreadPtr();
2884 if (!thread) {
2885 if (error_ptr)
2886 error_ptr->SetErrorString("No thread to evaluate TLS within.");
2887 return false;
2888 }
2889
2890 // Lookup the TLS block address for this thread and module.
2891 const addr_t tls_file_addr =
2892 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS(18446744073709551615UL));
2893 const addr_t tls_load_addr =
2894 thread->GetThreadLocalData(module_sp, tls_file_addr);
2895
2896 if (tls_load_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
2897 if (error_ptr)
2898 error_ptr->SetErrorString(
2899 "No TLS data currently exists for this thread.");
2900 return false;
2901 }
2902
2903 stack.back().GetScalar() = tls_load_addr;
2904 stack.back().SetValueType(Value::eValueTypeLoadAddress);
2905 } break;
2906
2907 //----------------------------------------------------------------------
2908 // OPCODE: DW_OP_GNU_addr_index
2909 // OPERANDS: 1
2910 // ULEB128: index to the .debug_addr section
2911 // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2912 // section with the base address specified by the DW_AT_addr_base attribute
2913 // and the 0 based index is the ULEB128 encoded index.
2914 //----------------------------------------------------------------------
2915 case DW_OP_GNU_addr_index: {
2916 if (!dwarf_cu) {
2917 if (error_ptr)
2918 error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2919 "compile unit being specified");
2920 return false;
2921 }
2922 uint64_t index = opcodes.GetULEB128(&offset);
2923 uint32_t index_size = dwarf_cu->GetAddressByteSize();
2924 dw_offset_t addr_base = dwarf_cu->GetAddrBase();
2925 lldb::offset_t offset = addr_base + index * index_size;
2926 uint64_t value =
2927 dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data().GetMaxU64(
2928 &offset, index_size);
2929 stack.push_back(Scalar(value));
2930 stack.back().SetValueType(Value::eValueTypeFileAddress);
2931 } break;
2932
2933 //----------------------------------------------------------------------
2934 // OPCODE: DW_OP_GNU_const_index
2935 // OPERANDS: 1
2936 // ULEB128: index to the .debug_addr section
2937 // DESCRIPTION: Pushes an constant with the size of a machine address to
2938 // the stack from the .debug_addr section with the base address specified
2939 // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2940 // encoded index.
2941 //----------------------------------------------------------------------
2942 case DW_OP_GNU_const_index: {
2943 if (!dwarf_cu) {
2944 if (error_ptr)
2945 error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2946 "compile unit being specified");
2947 return false;
2948 }
2949 uint64_t index = opcodes.GetULEB128(&offset);
2950 uint32_t index_size = dwarf_cu->GetAddressByteSize();
2951 dw_offset_t addr_base = dwarf_cu->GetAddrBase();
2952 lldb::offset_t offset = addr_base + index * index_size;
2953 const DWARFDataExtractor &debug_addr =
2954 dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data();
2955 switch (index_size) {
2956 case 4:
2957 stack.push_back(Scalar(debug_addr.GetU32(&offset)));
2958 break;
2959 case 8:
2960 stack.push_back(Scalar(debug_addr.GetU64(&offset)));
2961 break;
2962 default:
2963 assert(false && "Unhandled index size")((false && "Unhandled index size") ? static_cast<void
> (0) : __assert_fail ("false && \"Unhandled index size\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Expression/DWARFExpression.cpp"
, 2963, __PRETTY_FUNCTION__))
;
2964 return false;
2965 }
2966 } break;
2967
2968 default:
2969 if (log)
2970 log->Printf("Unhandled opcode %s in DWARFExpression.",
2971 DW_OP_value_to_name(op));
2972 break;
2973 }
2974 }
2975
2976 if (stack.empty()) {
2977 // Nothing on the stack, check if we created a piece value from DW_OP_piece
2978 // or DW_OP_bit_piece opcodes
2979 if (pieces.GetBuffer().GetByteSize()) {
2980 result = pieces;
2981 } else {
2982 if (error_ptr)
2983 error_ptr->SetErrorString("Stack empty after evaluation.");
2984 return false;
2985 }
2986 } else {
2987 if (log && log->GetVerbose()) {
2988 size_t count = stack.size();
2989 log->Printf("Stack after operation has %" PRIu64"l" "u" " values:",
2990 (uint64_t)count);
2991 for (size_t i = 0; i < count; ++i) {
2992 StreamString new_value;
2993 new_value.Printf("[%" PRIu64"l" "u" "]", (uint64_t)i);
2994 stack[i].Dump(&new_value);
2995 log->Printf(" %s", new_value.GetData());
2996 }
2997 }
2998 result = stack.back();
2999 }
3000 return true; // Return true on success
3001}
3002
3003size_t DWARFExpression::LocationListSize(const DWARFUnit *dwarf_cu,
3004 const DataExtractor &debug_loc_data,
3005 lldb::offset_t offset) {
3006 const lldb::offset_t debug_loc_offset = offset;
3007 while (debug_loc_data.ValidOffset(offset)) {
3008 lldb::addr_t start_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
3009 lldb::addr_t end_addr = LLDB_INVALID_ADDRESS(18446744073709551615UL);
3010 if (!AddressRangeForLocationListEntry(dwarf_cu, debug_loc_data, &offset,
3011 start_addr, end_addr))
3012 break;
3013
3014 if (start_addr == 0 && end_addr == 0)
3015 break;
3016
3017 uint16_t loc_length = debug_loc_data.GetU16(&offset);
3018 offset += loc_length;
3019 }
3020
3021 if (offset > debug_loc_offset)
3022 return offset - debug_loc_offset;
3023 return 0;
3024}
3025
3026bool DWARFExpression::AddressRangeForLocationListEntry(
3027 const DWARFUnit *dwarf_cu, const DataExtractor &debug_loc_data,
3028 lldb::offset_t *offset_ptr, lldb::addr_t &low_pc, lldb::addr_t &high_pc) {
3029 if (!debug_loc_data.ValidOffset(*offset_ptr))
3030 return false;
3031
3032 DWARFExpression::LocationListFormat format =
3033 dwarf_cu->GetSymbolFileDWARF()->GetLocationListFormat();
3034 switch (format) {
3035 case NonLocationList:
3036 return false;
3037 case RegularLocationList:
3038 low_pc = debug_loc_data.GetAddress(offset_ptr);
3039 high_pc = debug_loc_data.GetAddress(offset_ptr);
3040 return true;
3041 case SplitDwarfLocationList:
3042 case LocLists:
3043 switch (debug_loc_data.GetU8(offset_ptr)) {
3044 case DW_LLE_end_of_list:
3045 return false;
3046 case DW_LLE_startx_endx: {
3047 uint64_t index = debug_loc_data.GetULEB128(offset_ptr);
3048 low_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index);
3049 index = debug_loc_data.GetULEB128(offset_ptr);
3050 high_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index);
3051 return true;
3052 }
3053 case DW_LLE_startx_length: {
3054 uint64_t index = debug_loc_data.GetULEB128(offset_ptr);
3055 low_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index);
3056 uint64_t length = (format == LocLists)
3057 ? debug_loc_data.GetULEB128(offset_ptr)
3058 : debug_loc_data.GetU32(offset_ptr);
3059 high_pc = low_pc + length;
3060 return true;
3061 }
3062 case DW_LLE_start_length: {
3063 low_pc = debug_loc_data.GetAddress(offset_ptr);
3064 high_pc = low_pc + debug_loc_data.GetULEB128(offset_ptr);
3065 return true;
3066 }
3067 case DW_LLE_start_end: {
3068 low_pc = debug_loc_data.GetAddress(offset_ptr);
3069 high_pc = debug_loc_data.GetAddress(offset_ptr);
3070 return true;
3071 }
3072 default:
3073 // Not supported entry type
3074 lldbassert(false && "Not supported location list type")lldb_private::lldb_assert(static_cast<bool>(false &&
"Not supported location list type"), "false && \"Not supported location list type\""
, __FUNCTION__, "/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Expression/DWARFExpression.cpp"
, 3074)
;
3075 return false;
3076 }
3077 }
3078 assert(false && "Not supported location list type")((false && "Not supported location list type") ? static_cast
<void> (0) : __assert_fail ("false && \"Not supported location list type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Expression/DWARFExpression.cpp"
, 3078, __PRETTY_FUNCTION__))
;
3079 return false;
3080}
3081
3082static bool print_dwarf_exp_op(Stream &s, const DataExtractor &data,
3083 lldb::offset_t *offset_ptr, int address_size,
3084 int dwarf_ref_size) {
3085 uint8_t opcode = data.GetU8(offset_ptr);
3086 DRC_class opcode_class;
3087 uint64_t uint;
3088 int64_t sint;
3089
3090 int size;
3091
3092 opcode_class = DW_OP_value_to_class(opcode) & (~DRC_DWARFv30x10);
3093
3094 s.Printf("%s ", DW_OP_value_to_name(opcode));
3095
3096 /* Does this take zero parameters? If so we can shortcut this function. */
3097 if (opcode_class == DRC_ZEROOPERANDS0x80000000)
3098 return true;
3099
3100 if (opcode_class == DRC_TWOOPERANDS0x10000000 && opcode == DW_OP_bregx) {
3101 uint = data.GetULEB128(offset_ptr);
3102 sint = data.GetSLEB128(offset_ptr);
3103 s.Printf("%" PRIu64"l" "u" " %" PRIi64"l" "i", uint, sint);
3104 return true;
3105 }
3106 if (opcode_class != DRC_ONEOPERAND0x800) {
3107 s.Printf("UNKNOWN OP %u", opcode);
3108 return false;
3109 }
3110
3111 switch (opcode) {
3112 case DW_OP_addr:
3113 size = address_size;
3114 break;
3115 case DW_OP_const1u:
3116 size = 1;
3117 break;
3118 case DW_OP_const1s:
3119 size = -1;
3120 break;
3121 case DW_OP_const2u:
3122 size = 2;
3123 break;
3124 case DW_OP_const2s:
3125 size = -2;
3126 break;
3127 case DW_OP_const4u:
3128 size = 4;
3129 break;
3130 case DW_OP_const4s:
3131 size = -4;
3132 break;
3133 case DW_OP_const8u:
3134 size = 8;
3135 break;
3136 case DW_OP_const8s:
3137 size = -8;
3138 break;
3139 case DW_OP_constu:
3140 size = 128;
3141 break;
3142 case DW_OP_consts:
3143 size = -128;
3144 break;
3145 case DW_OP_fbreg:
3146 size = -128;
3147 break;
3148 case DW_OP_breg0:
3149 case DW_OP_breg1:
3150 case DW_OP_breg2:
3151 case DW_OP_breg3:
3152 case DW_OP_breg4:
3153 case DW_OP_breg5:
3154 case DW_OP_breg6:
3155 case DW_OP_breg7:
3156 case DW_OP_breg8:
3157 case DW_OP_breg9:
3158 case DW_OP_breg10:
3159 case DW_OP_breg11:
3160 case DW_OP_breg12:
3161 case DW_OP_breg13:
3162 case DW_OP_breg14:
3163 case DW_OP_breg15:
3164 case DW_OP_breg16:
3165 case DW_OP_breg17:
3166 case DW_OP_breg18:
3167 case DW_OP_breg19:
3168 case DW_OP_breg20:
3169 case DW_OP_breg21:
3170 case DW_OP_breg22:
3171 case DW_OP_breg23:
3172 case DW_OP_breg24:
3173 case DW_OP_breg25:
3174 case DW_OP_breg26:
3175 case DW_OP_breg27:
3176 case DW_OP_breg28:
3177 case DW_OP_breg29:
3178 case DW_OP_breg30:
3179 case DW_OP_breg31:
3180 size = -128;
3181 break;
3182 case DW_OP_pick:
3183 case DW_OP_deref_size:
3184 case DW_OP_xderef_size:
3185 size = 1;
3186 break;
3187 case DW_OP_skip:
3188 case DW_OP_bra:
3189 size = -2;
3190 break;
3191 case DW_OP_call2:
3192 size = 2;
3193 break;
3194 case DW_OP_call4:
3195 size = 4;
3196 break;
3197 case DW_OP_call_ref:
3198 size = dwarf_ref_size;
3199 break;
3200 case DW_OP_piece:
3201 case DW_OP_plus_uconst:
3202 case DW_OP_regx:
3203 case DW_OP_GNU_addr_index:
3204 case DW_OP_GNU_const_index:
3205 size = 128;
3206 break;
3207 default:
3208 s.Printf("UNKNOWN ONE-OPERAND OPCODE, #%u", opcode);
3209 return true;
3210 }
3211
3212 switch (size) {
3213 case -1:
3214 sint = (int8_t)data.GetU8(offset_ptr);
3215 s.Printf("%+" PRIi64"l" "i", sint);
3216 break;
3217 case -2:
3218 sint = (int16_t)data.GetU16(offset_ptr);
3219 s.Printf("%+" PRIi64"l" "i", sint);
3220 break;
3221 case -4:
3222 sint = (int32_t)data.GetU32(offset_ptr);
3223 s.Printf("%+" PRIi64"l" "i", sint);
3224 break;
3225 case -8:
3226 sint = (int64_t)data.GetU64(offset_ptr);
3227 s.Printf("%+" PRIi64"l" "i", sint);
3228 break;
3229 case -128:
3230 sint = data.GetSLEB128(offset_ptr);
3231 s.Printf("%+" PRIi64"l" "i", sint);
3232 break;
3233 case 1:
3234 uint = data.GetU8(offset_ptr);
3235 s.Printf("0x%2.2" PRIx64"l" "x", uint);
3236 break;
3237 case 2:
3238 uint = data.GetU16(offset_ptr);
3239 s.Printf("0x%4.4" PRIx64"l" "x", uint);
3240 break;
3241 case 4:
3242 uint = data.GetU32(offset_ptr);
3243 s.Printf("0x%8.8" PRIx64"l" "x", uint);
3244 break;
3245 case 8:
3246 uint = data.GetU64(offset_ptr);
3247 s.Printf("0x%16.16" PRIx64"l" "x", uint);
3248 break;
3249 case 128:
3250 uint = data.GetULEB128(offset_ptr);
3251 s.Printf("0x%" PRIx64"l" "x", uint);
3252 break;
3253 }
3254
3255 return false;
3256}
3257
3258bool DWARFExpression::PrintDWARFExpression(Stream &s, const DataExtractor &data,
3259 int address_size, int dwarf_ref_size,
3260 bool location_expression) {
3261 int op_count = 0;
3262 lldb::offset_t offset = 0;
3263 while (data.ValidOffset(offset)) {
3264 if (location_expression && op_count > 0)
3265 return false;
3266 if (op_count > 0)
3267 s.PutCString(", ");
3268 if (!print_dwarf_exp_op(s, data, &offset, address_size, dwarf_ref_size))
3269 return false;
3270 op_count++;
3271 }
3272
3273 return true;
3274}
3275
3276void DWARFExpression::PrintDWARFLocationList(
3277 Stream &s, const DWARFUnit *cu, const DataExtractor &debug_loc_data,
3278 lldb::offset_t offset) {
3279 uint64_t start_addr, end_addr;
3280 uint32_t addr_size = DWARFUnit::GetAddressByteSize(cu);
3281 s.SetAddressByteSize(DWARFUnit::GetAddressByteSize(cu));
3282 dw_addr_t base_addr = cu ? cu->GetBaseAddress() : 0;
3283 while (debug_loc_data.ValidOffset(offset)) {
3284 start_addr = debug_loc_data.GetMaxU64(&offset, addr_size);
3285 end_addr = debug_loc_data.GetMaxU64(&offset, addr_size);
3286
3287 if (start_addr == 0 && end_addr == 0)
3288 break;
3289
3290 s.PutCString("\n ");
3291 s.Indent();
3292 if (cu)
3293 s.AddressRange(start_addr + base_addr, end_addr + base_addr,
3294 cu->GetAddressByteSize(), NULL__null, ": ");
3295 uint32_t loc_length = debug_loc_data.GetU16(&offset);
3296
3297 DataExtractor locationData(debug_loc_data, offset, loc_length);
3298 PrintDWARFExpression(s, locationData, addr_size, 4, false);
3299 offset += loc_length;
3300 }
3301}
3302
3303bool DWARFExpression::GetOpAndEndOffsets(StackFrame &frame,
3304 lldb::offset_t &op_offset,
3305 lldb::offset_t &end_offset) {
3306 SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction);
3307 if (!sc.function) {
3308 return false;
3309 }
3310
3311 addr_t loclist_base_file_addr =
3312 sc.function->GetAddressRange().GetBaseAddress().GetFileAddress();
3313 if (loclist_base_file_addr == LLDB_INVALID_ADDRESS(18446744073709551615UL)) {
3314 return false;
3315 }
3316
3317 addr_t pc_file_addr = frame.GetFrameCodeAddress().GetFileAddress();
3318 lldb::offset_t opcodes_offset, opcodes_length;
3319 if (!GetLocation(loclist_base_file_addr, pc_file_addr, opcodes_offset,
3320 opcodes_length)) {
3321 return false;
3322 }
3323
3324 if (opcodes_length == 0) {
3325 return false;
3326 }
3327
3328 op_offset = opcodes_offset;
3329 end_offset = opcodes_offset + opcodes_length;
3330 return true;
3331}
3332
3333bool DWARFExpression::MatchesOperand(StackFrame &frame,
3334 const Instruction::Operand &operand) {
3335 using namespace OperandMatchers;
3336
3337 lldb::offset_t op_offset;
3338 lldb::offset_t end_offset;
3339 if (!GetOpAndEndOffsets(frame, op_offset, end_offset)) {
3340 return false;
3341 }
3342
3343 if (!m_data.ValidOffset(op_offset) || op_offset >= end_offset) {
3344 return false;
3345 }
3346
3347 RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
3348 if (!reg_ctx_sp) {
3349 return false;
3350 }
3351
3352 DataExtractor opcodes = m_data;
3353 uint8_t opcode = opcodes.GetU8(&op_offset);
3354
3355 if (opcode == DW_OP_fbreg) {
3356 int64_t offset = opcodes.GetSLEB128(&op_offset);
3357
3358 DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr);
3359 if (!fb_expr) {
3360 return false;
3361 }
3362
3363 auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
3364 return fb_expr->MatchesOperand(frame, child);
3365 };
3366
3367 if (!offset &&
3368 MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
3369 recurse)(operand)) {
3370 return true;
3371 }
3372
3373 return MatchUnaryOp(
3374 MatchOpType(Instruction::Operand::Type::Dereference),
3375 MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
3376 MatchImmOp(offset), recurse))(operand);
3377 }
3378
3379 bool dereference = false;
3380 const RegisterInfo *reg = nullptr;
3381 int64_t offset = 0;
3382
3383 if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
3384 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
3385 } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
3386 offset = opcodes.GetSLEB128(&op_offset);
3387 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
3388 } else if (opcode == DW_OP_regx) {
3389 uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
3390 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
3391 } else if (opcode == DW_OP_bregx) {
3392 uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
3393 offset = opcodes.GetSLEB128(&op_offset);
3394 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
3395 } else {
3396 return false;
3397 }
3398
3399 if (!reg) {
3400 return false;
3401 }
3402
3403 if (dereference) {
3404 if (!offset &&
3405 MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
3406 MatchRegOp(*reg))(operand)) {
3407 return true;
3408 }
3409
3410 return MatchUnaryOp(
3411 MatchOpType(Instruction::Operand::Type::Dereference),
3412 MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
3413 MatchRegOp(*reg),
3414 MatchImmOp(offset)))(operand);
3415 } else {
3416 return MatchRegOp(*reg)(operand);
3417 }
3418}
3419