Bug Summary

File:llvm/include/llvm/IR/Instructions.h
Warning:line 940, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name DataFlowSanitizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/build-llvm/lib/Transforms/Instrumentation -I /build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation -I /build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/build-llvm/lib/Transforms/Instrumentation -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-12-03-051126-41451-1 -x c++ /build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp

/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp

1//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11/// analysis.
12///
13/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14/// class of bugs on its own. Instead, it provides a generic dynamic data flow
15/// analysis framework to be used by clients to help detect application-specific
16/// issues within their own code.
17///
18/// The analysis is based on automatic propagation of data flow labels (also
19/// known as taint labels) through a program as it performs computation. Each
20/// byte of application memory is backed by two bytes of shadow memory which
21/// hold the label. On Linux/x86_64, memory is laid out as follows:
22///
23/// +--------------------+ 0x800000000000 (top of memory)
24/// | application memory |
25/// +--------------------+ 0x700000008000 (kAppAddr)
26/// | |
27/// | unused |
28/// | |
29/// +--------------------+ 0x200200000000 (kUnusedAddr)
30/// | union table |
31/// +--------------------+ 0x200000000000 (kUnionTableAddr)
32/// | shadow memory |
33/// +--------------------+ 0x000000010000 (kShadowAddr)
34/// | reserved by kernel |
35/// +--------------------+ 0x000000000000
36///
37/// To derive a shadow memory address from an application memory address,
38/// bits 44-46 are cleared to bring the address into the range
39/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
40/// account for the double byte representation of shadow labels and move the
41/// address into the shadow memory range. See the function
42/// DataFlowSanitizer::getShadowAddress below.
43///
44/// For more information, please refer to the design document:
45/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46//
47//===----------------------------------------------------------------------===//
48
49#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/DenseSet.h"
52#include "llvm/ADT/DepthFirstIterator.h"
53#include "llvm/ADT/None.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/StringExtras.h"
57#include "llvm/ADT/StringRef.h"
58#include "llvm/ADT/Triple.h"
59#include "llvm/Analysis/ValueTracking.h"
60#include "llvm/IR/Argument.h"
61#include "llvm/IR/Attributes.h"
62#include "llvm/IR/BasicBlock.h"
63#include "llvm/IR/Constant.h"
64#include "llvm/IR/Constants.h"
65#include "llvm/IR/DataLayout.h"
66#include "llvm/IR/DerivedTypes.h"
67#include "llvm/IR/Dominators.h"
68#include "llvm/IR/Function.h"
69#include "llvm/IR/GlobalAlias.h"
70#include "llvm/IR/GlobalValue.h"
71#include "llvm/IR/GlobalVariable.h"
72#include "llvm/IR/IRBuilder.h"
73#include "llvm/IR/InlineAsm.h"
74#include "llvm/IR/InstVisitor.h"
75#include "llvm/IR/InstrTypes.h"
76#include "llvm/IR/Instruction.h"
77#include "llvm/IR/Instructions.h"
78#include "llvm/IR/IntrinsicInst.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/MDBuilder.h"
81#include "llvm/IR/Module.h"
82#include "llvm/IR/PassManager.h"
83#include "llvm/IR/Type.h"
84#include "llvm/IR/User.h"
85#include "llvm/IR/Value.h"
86#include "llvm/InitializePasses.h"
87#include "llvm/Pass.h"
88#include "llvm/Support/Casting.h"
89#include "llvm/Support/CommandLine.h"
90#include "llvm/Support/ErrorHandling.h"
91#include "llvm/Support/SpecialCaseList.h"
92#include "llvm/Support/VirtualFileSystem.h"
93#include "llvm/Transforms/Instrumentation.h"
94#include "llvm/Transforms/Utils/BasicBlockUtils.h"
95#include "llvm/Transforms/Utils/Local.h"
96#include <algorithm>
97#include <cassert>
98#include <cstddef>
99#include <cstdint>
100#include <iterator>
101#include <memory>
102#include <set>
103#include <string>
104#include <utility>
105#include <vector>
106
107using namespace llvm;
108
109// External symbol to be used when generating the shadow address for
110// architectures with multiple VMAs. Instead of using a constant integer
111// the runtime will set the external mask based on the VMA range.
112const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask";
113
114// The -dfsan-preserve-alignment flag controls whether this pass assumes that
115// alignment requirements provided by the input IR are correct. For example,
116// if the input IR contains a load with alignment 8, this flag will cause
117// the shadow load to have alignment 16. This flag is disabled by default as
118// we have unfortunately encountered too much code (including Clang itself;
119// see PR14291) which performs misaligned access.
120static cl::opt<bool> ClPreserveAlignment(
121 "dfsan-preserve-alignment",
122 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
123 cl::init(false));
124
125// The ABI list files control how shadow parameters are passed. The pass treats
126// every function labelled "uninstrumented" in the ABI list file as conforming
127// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
128// additional annotations for those functions, a call to one of those functions
129// will produce a warning message, as the labelling behaviour of the function is
130// unknown. The other supported annotations are "functional" and "discard",
131// which are described below under DataFlowSanitizer::WrapperKind.
132static cl::list<std::string> ClABIListFiles(
133 "dfsan-abilist",
134 cl::desc("File listing native ABI functions and how the pass treats them"),
135 cl::Hidden);
136
137// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
138// functions (see DataFlowSanitizer::InstrumentedABI below).
139static cl::opt<bool> ClArgsABI(
140 "dfsan-args-abi",
141 cl::desc("Use the argument ABI rather than the TLS ABI"),
142 cl::Hidden);
143
144// Controls whether the pass includes or ignores the labels of pointers in load
145// instructions.
146static cl::opt<bool> ClCombinePointerLabelsOnLoad(
147 "dfsan-combine-pointer-labels-on-load",
148 cl::desc("Combine the label of the pointer with the label of the data when "
149 "loading from memory."),
150 cl::Hidden, cl::init(true));
151
152// Controls whether the pass includes or ignores the labels of pointers in
153// stores instructions.
154static cl::opt<bool> ClCombinePointerLabelsOnStore(
155 "dfsan-combine-pointer-labels-on-store",
156 cl::desc("Combine the label of the pointer with the label of the data when "
157 "storing in memory."),
158 cl::Hidden, cl::init(false));
159
160static cl::opt<bool> ClDebugNonzeroLabels(
161 "dfsan-debug-nonzero-labels",
162 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
163 "load or return with a nonzero label"),
164 cl::Hidden);
165
166// Experimental feature that inserts callbacks for certain data events.
167// Currently callbacks are only inserted for loads, stores, memory transfers
168// (i.e. memcpy and memmove), and comparisons.
169//
170// If this flag is set to true, the user must provide definitions for the
171// following callback functions:
172// void __dfsan_load_callback(dfsan_label Label, void* addr);
173// void __dfsan_store_callback(dfsan_label Label, void* addr);
174// void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
175// void __dfsan_cmp_callback(dfsan_label CombinedLabel);
176static cl::opt<bool> ClEventCallbacks(
177 "dfsan-event-callbacks",
178 cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
179 cl::Hidden, cl::init(false));
180
181// Use a distinct bit for each base label, enabling faster unions with less
182// instrumentation. Limits the max number of base labels to 16.
183static cl::opt<bool> ClFast16Labels(
184 "dfsan-fast-16-labels",
185 cl::desc("Use more efficient instrumentation, limiting the number of "
186 "labels to 16."),
187 cl::Hidden, cl::init(false));
188
189// Controls whether the pass tracks the control flow of select instructions.
190static cl::opt<bool> ClTrackSelectControlFlow(
191 "dfsan-track-select-control-flow",
192 cl::desc("Propagate labels from condition values of select instructions "
193 "to results."),
194 cl::Hidden, cl::init(true));
195
196static StringRef GetGlobalTypeString(const GlobalValue &G) {
197 // Types of GlobalVariables are always pointer types.
198 Type *GType = G.getValueType();
199 // For now we support excluding struct types only.
200 if (StructType *SGType = dyn_cast<StructType>(GType)) {
201 if (!SGType->isLiteral())
202 return SGType->getName();
203 }
204 return "<unknown type>";
205}
206
207namespace {
208
209class DFSanABIList {
210 std::unique_ptr<SpecialCaseList> SCL;
211
212 public:
213 DFSanABIList() = default;
214
215 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
216
217 /// Returns whether either this function or its source file are listed in the
218 /// given category.
219 bool isIn(const Function &F, StringRef Category) const {
220 return isIn(*F.getParent(), Category) ||
221 SCL->inSection("dataflow", "fun", F.getName(), Category);
222 }
223
224 /// Returns whether this global alias is listed in the given category.
225 ///
226 /// If GA aliases a function, the alias's name is matched as a function name
227 /// would be. Similarly, aliases of globals are matched like globals.
228 bool isIn(const GlobalAlias &GA, StringRef Category) const {
229 if (isIn(*GA.getParent(), Category))
230 return true;
231
232 if (isa<FunctionType>(GA.getValueType()))
233 return SCL->inSection("dataflow", "fun", GA.getName(), Category);
234
235 return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
236 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
237 Category);
238 }
239
240 /// Returns whether this module is listed in the given category.
241 bool isIn(const Module &M, StringRef Category) const {
242 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
243 }
244};
245
246/// TransformedFunction is used to express the result of transforming one
247/// function type into another. This struct is immutable. It holds metadata
248/// useful for updating calls of the old function to the new type.
249struct TransformedFunction {
250 TransformedFunction(FunctionType* OriginalType,
251 FunctionType* TransformedType,
252 std::vector<unsigned> ArgumentIndexMapping)
253 : OriginalType(OriginalType),
254 TransformedType(TransformedType),
255 ArgumentIndexMapping(ArgumentIndexMapping) {}
256
257 // Disallow copies.
258 TransformedFunction(const TransformedFunction&) = delete;
259 TransformedFunction& operator=(const TransformedFunction&) = delete;
260
261 // Allow moves.
262 TransformedFunction(TransformedFunction&&) = default;
263 TransformedFunction& operator=(TransformedFunction&&) = default;
264
265 /// Type of the function before the transformation.
266 FunctionType *OriginalType;
267
268 /// Type of the function after the transformation.
269 FunctionType *TransformedType;
270
271 /// Transforming a function may change the position of arguments. This
272 /// member records the mapping from each argument's old position to its new
273 /// position. Argument positions are zero-indexed. If the transformation
274 /// from F to F' made the first argument of F into the third argument of F',
275 /// then ArgumentIndexMapping[0] will equal 2.
276 std::vector<unsigned> ArgumentIndexMapping;
277};
278
279/// Given function attributes from a call site for the original function,
280/// return function attributes appropriate for a call to the transformed
281/// function.
282AttributeList TransformFunctionAttributes(
283 const TransformedFunction& TransformedFunction,
284 LLVMContext& Ctx, AttributeList CallSiteAttrs) {
285
286 // Construct a vector of AttributeSet for each function argument.
287 std::vector<llvm::AttributeSet> ArgumentAttributes(
288 TransformedFunction.TransformedType->getNumParams());
289
290 // Copy attributes from the parameter of the original function to the
291 // transformed version. 'ArgumentIndexMapping' holds the mapping from
292 // old argument position to new.
293 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
294 i < ie; ++i) {
295 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
296 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
297 }
298
299 // Copy annotations on varargs arguments.
300 for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
301 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
302 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
303 }
304
305 return AttributeList::get(
306 Ctx,
307 CallSiteAttrs.getFnAttributes(),
308 CallSiteAttrs.getRetAttributes(),
309 llvm::makeArrayRef(ArgumentAttributes));
310}
311
312class DataFlowSanitizer {
313 friend struct DFSanFunction;
314 friend class DFSanVisitor;
315
316 enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 };
317
318 /// Which ABI should be used for instrumented functions?
319 enum InstrumentedABI {
320 /// Argument and return value labels are passed through additional
321 /// arguments and by modifying the return type.
322 IA_Args,
323
324 /// Argument and return value labels are passed through TLS variables
325 /// __dfsan_arg_tls and __dfsan_retval_tls.
326 IA_TLS
327 };
328
329 /// How should calls to uninstrumented functions be handled?
330 enum WrapperKind {
331 /// This function is present in an uninstrumented form but we don't know
332 /// how it should be handled. Print a warning and call the function anyway.
333 /// Don't label the return value.
334 WK_Warning,
335
336 /// This function does not write to (user-accessible) memory, and its return
337 /// value is unlabelled.
338 WK_Discard,
339
340 /// This function does not write to (user-accessible) memory, and the label
341 /// of its return value is the union of the label of its arguments.
342 WK_Functional,
343
344 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
345 /// where F is the name of the function. This function may wrap the
346 /// original function or provide its own implementation. This is similar to
347 /// the IA_Args ABI, except that IA_Args uses a struct return type to
348 /// pass the return value shadow in a register, while WK_Custom uses an
349 /// extra pointer argument to return the shadow. This allows the wrapped
350 /// form of the function type to be expressed in C.
351 WK_Custom
352 };
353
354 Module *Mod;
355 LLVMContext *Ctx;
356 Type *Int8Ptr;
357 IntegerType *ShadowTy;
358 PointerType *ShadowPtrTy;
359 IntegerType *IntptrTy;
360 ConstantInt *ZeroShadow;
361 ConstantInt *ShadowPtrMask;
362 ConstantInt *ShadowPtrMul;
363 Constant *ArgTLS;
364 Constant *RetvalTLS;
365 Constant *ExternalShadowMask;
366 FunctionType *DFSanUnionFnTy;
367 FunctionType *DFSanUnionLoadFnTy;
368 FunctionType *DFSanUnimplementedFnTy;
369 FunctionType *DFSanSetLabelFnTy;
370 FunctionType *DFSanNonzeroLabelFnTy;
371 FunctionType *DFSanVarargWrapperFnTy;
372 FunctionType *DFSanCmpCallbackFnTy;
373 FunctionType *DFSanLoadStoreCallbackFnTy;
374 FunctionType *DFSanMemTransferCallbackFnTy;
375 FunctionCallee DFSanUnionFn;
376 FunctionCallee DFSanCheckedUnionFn;
377 FunctionCallee DFSanUnionLoadFn;
378 FunctionCallee DFSanUnionLoadFast16LabelsFn;
379 FunctionCallee DFSanUnimplementedFn;
380 FunctionCallee DFSanSetLabelFn;
381 FunctionCallee DFSanNonzeroLabelFn;
382 FunctionCallee DFSanVarargWrapperFn;
383 FunctionCallee DFSanLoadCallbackFn;
384 FunctionCallee DFSanStoreCallbackFn;
385 FunctionCallee DFSanMemTransferCallbackFn;
386 FunctionCallee DFSanCmpCallbackFn;
387 MDNode *ColdCallWeights;
388 DFSanABIList ABIList;
389 DenseMap<Value *, Function *> UnwrappedFnMap;
390 AttrBuilder ReadOnlyNoneAttrs;
391 bool DFSanRuntimeShadowMask = false;
392
393 Value *getShadowAddress(Value *Addr, Instruction *Pos);
394 bool isInstrumented(const Function *F);
395 bool isInstrumented(const GlobalAlias *GA);
396 FunctionType *getArgsFunctionType(FunctionType *T);
397 FunctionType *getTrampolineFunctionType(FunctionType *T);
398 TransformedFunction getCustomFunctionType(FunctionType *T);
399 InstrumentedABI getInstrumentedABI();
400 WrapperKind getWrapperKind(Function *F);
401 void addGlobalNamePrefix(GlobalValue *GV);
402 Function *buildWrapperFunction(Function *F, StringRef NewFName,
403 GlobalValue::LinkageTypes NewFLink,
404 FunctionType *NewFT);
405 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
406 void initializeCallbackFunctions(Module &M);
407 void initializeRuntimeFunctions(Module &M);
408
409 bool init(Module &M);
410
411public:
412 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
413
414 bool runImpl(Module &M);
415};
416
417struct DFSanFunction {
418 DataFlowSanitizer &DFS;
419 Function *F;
420 DominatorTree DT;
421 DataFlowSanitizer::InstrumentedABI IA;
422 bool IsNativeABI;
423 AllocaInst *LabelReturnAlloca = nullptr;
424 DenseMap<Value *, Value *> ValShadowMap;
425 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
426 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
427 DenseSet<Instruction *> SkipInsts;
428 std::vector<Value *> NonZeroChecks;
429 bool AvoidNewBlocks;
430
431 struct CachedCombinedShadow {
432 BasicBlock *Block;
433 Value *Shadow;
434 };
435 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
436 CachedCombinedShadows;
437 DenseMap<Value *, std::set<Value *>> ShadowElements;
438
439 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
440 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
441 DT.recalculate(*F);
442 // FIXME: Need to track down the register allocator issue which causes poor
443 // performance in pathological cases with large numbers of basic blocks.
444 AvoidNewBlocks = F->size() > 1000;
445 }
446
447 Value *getArgTLS(unsigned Index, Instruction *Pos);
448 Value *getShadow(Value *V);
449 void setShadow(Instruction *I, Value *Shadow);
450 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
451 Value *combineOperandShadows(Instruction *Inst);
452 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
453 Instruction *Pos);
454 void storeShadow(Value *Addr, uint64_t Size, Align Alignment, Value *Shadow,
455 Instruction *Pos);
456};
457
458class DFSanVisitor : public InstVisitor<DFSanVisitor> {
459public:
460 DFSanFunction &DFSF;
461
462 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
463
464 const DataLayout &getDataLayout() const {
465 return DFSF.F->getParent()->getDataLayout();
466 }
467
468 // Combines shadow values for all of I's operands. Returns the combined shadow
469 // value.
470 Value *visitOperandShadowInst(Instruction &I);
471
472 void visitUnaryOperator(UnaryOperator &UO);
473 void visitBinaryOperator(BinaryOperator &BO);
474 void visitCastInst(CastInst &CI);
475 void visitCmpInst(CmpInst &CI);
476 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
477 void visitLoadInst(LoadInst &LI);
478 void visitStoreInst(StoreInst &SI);
479 void visitReturnInst(ReturnInst &RI);
480 void visitCallBase(CallBase &CB);
481 void visitPHINode(PHINode &PN);
482 void visitExtractElementInst(ExtractElementInst &I);
483 void visitInsertElementInst(InsertElementInst &I);
484 void visitShuffleVectorInst(ShuffleVectorInst &I);
485 void visitExtractValueInst(ExtractValueInst &I);
486 void visitInsertValueInst(InsertValueInst &I);
487 void visitAllocaInst(AllocaInst &I);
488 void visitSelectInst(SelectInst &I);
489 void visitMemSetInst(MemSetInst &I);
490 void visitMemTransferInst(MemTransferInst &I);
491};
492
493} // end anonymous namespace
494
495DataFlowSanitizer::DataFlowSanitizer(
496 const std::vector<std::string> &ABIListFiles) {
497 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
498 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
499 ClABIListFiles.end());
500 // FIXME: should we propagate vfs::FileSystem to this constructor?
501 ABIList.set(
502 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
503}
504
505FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
506 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
507 ArgTypes.append(T->getNumParams(), ShadowTy);
508 if (T->isVarArg())
509 ArgTypes.push_back(ShadowPtrTy);
510 Type *RetType = T->getReturnType();
511 if (!RetType->isVoidTy())
512 RetType = StructType::get(RetType, ShadowTy);
513 return FunctionType::get(RetType, ArgTypes, T->isVarArg());
514}
515
516FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
517 assert(!T->isVarArg())((!T->isVarArg()) ? static_cast<void> (0) : __assert_fail
("!T->isVarArg()", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp"
, 517, __PRETTY_FUNCTION__))
;
518 SmallVector<Type *, 4> ArgTypes;
519 ArgTypes.push_back(T->getPointerTo());
520 ArgTypes.append(T->param_begin(), T->param_end());
521 ArgTypes.append(T->getNumParams(), ShadowTy);
522 Type *RetType = T->getReturnType();
523 if (!RetType->isVoidTy())
524 ArgTypes.push_back(ShadowPtrTy);
525 return FunctionType::get(T->getReturnType(), ArgTypes, false);
526}
527
528TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
529 SmallVector<Type *, 4> ArgTypes;
530
531 // Some parameters of the custom function being constructed are
532 // parameters of T. Record the mapping from parameters of T to
533 // parameters of the custom function, so that parameter attributes
534 // at call sites can be updated.
535 std::vector<unsigned> ArgumentIndexMapping;
536 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
537 Type* param_type = T->getParamType(i);
538 FunctionType *FT;
539 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
540 cast<PointerType>(param_type)->getElementType()))) {
541 ArgumentIndexMapping.push_back(ArgTypes.size());
542 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
543 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
544 } else {
545 ArgumentIndexMapping.push_back(ArgTypes.size());
546 ArgTypes.push_back(param_type);
547 }
548 }
549 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
550 ArgTypes.push_back(ShadowTy);
551 if (T->isVarArg())
552 ArgTypes.push_back(ShadowPtrTy);
553 Type *RetType = T->getReturnType();
554 if (!RetType->isVoidTy())
555 ArgTypes.push_back(ShadowPtrTy);
556 return TransformedFunction(
557 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
558 ArgumentIndexMapping);
559}
560
561bool DataFlowSanitizer::init(Module &M) {
562 Triple TargetTriple(M.getTargetTriple());
563 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
564 bool IsMIPS64 = TargetTriple.isMIPS64();
565 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
566 TargetTriple.getArch() == Triple::aarch64_be;
567
568 const DataLayout &DL = M.getDataLayout();
569
570 Mod = &M;
571 Ctx = &M.getContext();
572 Int8Ptr = Type::getInt8PtrTy(*Ctx);
573 ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
574 ShadowPtrTy = PointerType::getUnqual(ShadowTy);
575 IntptrTy = DL.getIntPtrType(*Ctx);
576 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
577 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes);
578 if (IsX86_64)
579 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
580 else if (IsMIPS64)
581 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
582 // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
583 else if (IsAArch64)
584 DFSanRuntimeShadowMask = true;
585 else
586 report_fatal_error("unsupported triple");
587
588 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
589 DFSanUnionFnTy =
590 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
591 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
592 DFSanUnionLoadFnTy =
593 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
594 DFSanUnimplementedFnTy = FunctionType::get(
595 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
596 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
597 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
598 DFSanSetLabelArgs, /*isVarArg=*/false);
599 DFSanNonzeroLabelFnTy = FunctionType::get(
600 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
601 DFSanVarargWrapperFnTy = FunctionType::get(
602 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
603 DFSanCmpCallbackFnTy = FunctionType::get(Type::getVoidTy(*Ctx), ShadowTy,
604 /*isVarArg=*/false);
605 Type *DFSanLoadStoreCallbackArgs[2] = {ShadowTy, Int8Ptr};
606 DFSanLoadStoreCallbackFnTy =
607 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
608 /*isVarArg=*/false);
609 Type *DFSanMemTransferCallbackArgs[2] = {ShadowPtrTy, IntptrTy};
610 DFSanMemTransferCallbackFnTy =
611 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
612 /*isVarArg=*/false);
613
614 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
615 return true;
616}
617
618bool DataFlowSanitizer::isInstrumented(const Function *F) {
619 return !ABIList.isIn(*F, "uninstrumented");
620}
621
622bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
623 return !ABIList.isIn(*GA, "uninstrumented");
624}
625
626DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
627 return ClArgsABI ? IA_Args : IA_TLS;
628}
629
630DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
631 if (ABIList.isIn(*F, "functional"))
632 return WK_Functional;
633 if (ABIList.isIn(*F, "discard"))
634 return WK_Discard;
635 if (ABIList.isIn(*F, "custom"))
636 return WK_Custom;
637
638 return WK_Warning;
639}
640
641void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
642 std::string GVName = std::string(GV->getName()), Prefix = "dfs$";
643 GV->setName(Prefix + GVName);
644
645 // Try to change the name of the function in module inline asm. We only do
646 // this for specific asm directives, currently only ".symver", to try to avoid
647 // corrupting asm which happens to contain the symbol name as a substring.
648 // Note that the substitution for .symver assumes that the versioned symbol
649 // also has an instrumented name.
650 std::string Asm = GV->getParent()->getModuleInlineAsm();
651 std::string SearchStr = ".symver " + GVName + ",";
652 size_t Pos = Asm.find(SearchStr);
653 if (Pos != std::string::npos) {
654 Asm.replace(Pos, SearchStr.size(),
655 ".symver " + Prefix + GVName + "," + Prefix);
656 GV->getParent()->setModuleInlineAsm(Asm);
657 }
658}
659
660Function *
661DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
662 GlobalValue::LinkageTypes NewFLink,
663 FunctionType *NewFT) {
664 FunctionType *FT = F->getFunctionType();
665 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
666 NewFName, F->getParent());
667 NewF->copyAttributesFrom(F);
668 NewF->removeAttributes(
669 AttributeList::ReturnIndex,
670 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
671
672 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
673 if (F->isVarArg()) {
674 NewF->removeAttributes(AttributeList::FunctionIndex,
675 AttrBuilder().addAttribute("split-stack"));
676 CallInst::Create(DFSanVarargWrapperFn,
677 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
678 BB);
679 new UnreachableInst(*Ctx, BB);
680 } else {
681 std::vector<Value *> Args;
682 unsigned n = FT->getNumParams();
683 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
684 Args.push_back(&*ai);
685 CallInst *CI = CallInst::Create(F, Args, "", BB);
686 if (FT->getReturnType()->isVoidTy())
687 ReturnInst::Create(*Ctx, BB);
688 else
689 ReturnInst::Create(*Ctx, CI, BB);
690 }
691
692 return NewF;
693}
694
695Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
696 StringRef FName) {
697 FunctionType *FTT = getTrampolineFunctionType(FT);
698 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
699 Function *F = dyn_cast<Function>(C.getCallee());
700 if (F && F->isDeclaration()) {
701 F->setLinkage(GlobalValue::LinkOnceODRLinkage);
702 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
703 std::vector<Value *> Args;
704 Function::arg_iterator AI = F->arg_begin(); ++AI;
705 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
706 Args.push_back(&*AI);
707 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
708 ReturnInst *RI;
709 if (FT->getReturnType()->isVoidTy())
710 RI = ReturnInst::Create(*Ctx, BB);
711 else
712 RI = ReturnInst::Create(*Ctx, CI, BB);
713
714 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
715 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
716 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
717 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
718 DFSanVisitor(DFSF).visitCallInst(*CI);
719 if (!FT->getReturnType()->isVoidTy())
720 new StoreInst(DFSF.getShadow(RI->getReturnValue()),
721 &*std::prev(F->arg_end()), RI);
722 }
723
724 return cast<Constant>(C.getCallee());
725}
726
727// Initialize DataFlowSanitizer runtime functions and declare them in the module
728void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
729 {
730 AttributeList AL;
731 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
732 Attribute::NoUnwind);
733 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
734 Attribute::ReadNone);
735 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
736 Attribute::ZExt);
737 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
738 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
739 DFSanUnionFn =
740 Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL);
741 }
742 {
743 AttributeList AL;
744 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
745 Attribute::NoUnwind);
746 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
747 Attribute::ReadNone);
748 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
749 Attribute::ZExt);
750 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
751 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
752 DFSanCheckedUnionFn =
753 Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL);
754 }
755 {
756 AttributeList AL;
757 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
758 Attribute::NoUnwind);
759 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
760 Attribute::ReadOnly);
761 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
762 Attribute::ZExt);
763 DFSanUnionLoadFn =
764 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
765 }
766 {
767 AttributeList AL;
768 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
769 Attribute::NoUnwind);
770 AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
771 Attribute::ReadOnly);
772 AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
773 Attribute::ZExt);
774 DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction(
775 "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL);
776 }
777 DFSanUnimplementedFn =
778 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
779 {
780 AttributeList AL;
781 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
782 DFSanSetLabelFn =
783 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
784 }
785 DFSanNonzeroLabelFn =
786 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
787 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
788 DFSanVarargWrapperFnTy);
789}
790
791// Initializes event callback functions and declare them in the module
792void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
793 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
794 DFSanLoadStoreCallbackFnTy);
795 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
796 DFSanLoadStoreCallbackFnTy);
797 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
798 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
799 DFSanCmpCallbackFn =
800 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
801}
802
803bool DataFlowSanitizer::runImpl(Module &M) {
804 init(M);
805
806 if (ABIList.isIn(M, "skip"))
1
Assuming the condition is false
2
Taking false branch
807 return false;
808
809 const unsigned InitialGlobalSize = M.global_size();
810 const unsigned InitialModuleSize = M.size();
811
812 bool Changed = false;
813
814 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
815 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
816 if (GlobalVariable *G
3.1
'G' is null
3.1
'G' is null
3.1
'G' is null
= dyn_cast<GlobalVariable>(ArgTLS)) {
3
Assuming field 'ArgTLS' is not a 'GlobalVariable'
4
Taking false branch
817 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
818 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
819 }
820 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
821 if (GlobalVariable *G
5.1
'G' is null
5.1
'G' is null
5.1
'G' is null
= dyn_cast<GlobalVariable>(RetvalTLS)) {
5
Assuming field 'RetvalTLS' is not a 'GlobalVariable'
6
Taking false branch
822 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
823 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
824 }
825
826 ExternalShadowMask =
827 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
828
829 initializeCallbackFunctions(M);
830 initializeRuntimeFunctions(M);
831
832 std::vector<Function *> FnsToInstrument;
833 SmallPtrSet<Function *, 2> FnsWithNativeABI;
834 for (Function &i : M) {
835 if (!i.isIntrinsic() &&
836 &i != DFSanUnionFn.getCallee()->stripPointerCasts() &&
837 &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() &&
838 &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() &&
839 &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() &&
840 &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() &&
841 &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() &&
842 &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() &&
843 &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() &&
844 &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() &&
845 &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() &&
846 &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() &&
847 &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts())
848 FnsToInstrument.push_back(&i);
849 }
850
851 // Give function aliases prefixes when necessary, and build wrappers where the
852 // instrumentedness is inconsistent.
853 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
7
Loop condition is false. Execution continues on line 876
854 GlobalAlias *GA = &*i;
855 ++i;
856 // Don't stop on weak. We assume people aren't playing games with the
857 // instrumentedness of overridden weak aliases.
858 if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
859 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
860 if (GAInst && FInst) {
861 addGlobalNamePrefix(GA);
862 } else if (GAInst != FInst) {
863 // Non-instrumented alias of an instrumented function, or vice versa.
864 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
865 // below will take care of instrumenting it.
866 Function *NewF =
867 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
868 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
869 NewF->takeName(GA);
870 GA->eraseFromParent();
871 FnsToInstrument.push_back(NewF);
872 }
873 }
874 }
875
876 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
877 .addAttribute(Attribute::ReadNone);
878
879 // First, change the ABI of every function in the module. ABI-listed
880 // functions keep their original ABI and get a wrapper function.
881 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
8
Loop condition is false. Execution continues on line 980
882 e = FnsToInstrument.end();
883 i != e; ++i) {
884 Function &F = **i;
885 FunctionType *FT = F.getFunctionType();
886
887 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
888 FT->getReturnType()->isVoidTy());
889
890 if (isInstrumented(&F)) {
891 // Instrumented functions get a 'dfs$' prefix. This allows us to more
892 // easily identify cases of mismatching ABIs.
893 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
894 FunctionType *NewFT = getArgsFunctionType(FT);
895 Function *NewF = Function::Create(NewFT, F.getLinkage(),
896 F.getAddressSpace(), "", &M);
897 NewF->copyAttributesFrom(&F);
898 NewF->removeAttributes(
899 AttributeList::ReturnIndex,
900 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
901 for (Function::arg_iterator FArg = F.arg_begin(),
902 NewFArg = NewF->arg_begin(),
903 FArgEnd = F.arg_end();
904 FArg != FArgEnd; ++FArg, ++NewFArg) {
905 FArg->replaceAllUsesWith(&*NewFArg);
906 }
907 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
908
909 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
910 UI != UE;) {
911 BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
912 ++UI;
913 if (BA) {
914 BA->replaceAllUsesWith(
915 BlockAddress::get(NewF, BA->getBasicBlock()));
916 delete BA;
917 }
918 }
919 F.replaceAllUsesWith(
920 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
921 NewF->takeName(&F);
922 F.eraseFromParent();
923 *i = NewF;
924 addGlobalNamePrefix(NewF);
925 } else {
926 addGlobalNamePrefix(&F);
927 }
928 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
929 // Build a wrapper function for F. The wrapper simply calls F, and is
930 // added to FnsToInstrument so that any instrumentation according to its
931 // WrapperKind is done in the second pass below.
932 FunctionType *NewFT = getInstrumentedABI() == IA_Args
933 ? getArgsFunctionType(FT)
934 : FT;
935
936 // If the function being wrapped has local linkage, then preserve the
937 // function's linkage in the wrapper function.
938 GlobalValue::LinkageTypes wrapperLinkage =
939 F.hasLocalLinkage()
940 ? F.getLinkage()
941 : GlobalValue::LinkOnceODRLinkage;
942
943 Function *NewF = buildWrapperFunction(
944 &F, std::string("dfsw$") + std::string(F.getName()),
945 wrapperLinkage, NewFT);
946 if (getInstrumentedABI() == IA_TLS)
947 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
948
949 Value *WrappedFnCst =
950 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
951 F.replaceAllUsesWith(WrappedFnCst);
952
953 UnwrappedFnMap[WrappedFnCst] = &F;
954 *i = NewF;
955
956 if (!F.isDeclaration()) {
957 // This function is probably defining an interposition of an
958 // uninstrumented function and hence needs to keep the original ABI.
959 // But any functions it may call need to use the instrumented ABI, so
960 // we instrument it in a mode which preserves the original ABI.
961 FnsWithNativeABI.insert(&F);
962
963 // This code needs to rebuild the iterators, as they may be invalidated
964 // by the push_back, taking care that the new range does not include
965 // any functions added by this code.
966 size_t N = i - FnsToInstrument.begin(),
967 Count = e - FnsToInstrument.begin();
968 FnsToInstrument.push_back(&F);
969 i = FnsToInstrument.begin() + N;
970 e = FnsToInstrument.begin() + Count;
971 }
972 // Hopefully, nobody will try to indirectly call a vararg
973 // function... yet.
974 } else if (FT->isVarArg()) {
975 UnwrappedFnMap[&F] = &F;
976 *i = nullptr;
977 }
978 }
979
980 for (Function *i : FnsToInstrument) {
981 if (!i || i->isDeclaration())
9
Assuming 'i' is non-null
10
Assuming the condition is false
11
Taking false branch
982 continue;
983
984 removeUnreachableBlocks(*i);
985
986 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
987
988 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
989 // Build a copy of the list before iterating over it.
990 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
991
992 for (BasicBlock *i : BBList) {
12
Assuming '__begin2' is equal to '__end2'
993 Instruction *Inst = &i->front();
994 while (true) {
995 // DFSanVisitor may split the current basic block, changing the current
996 // instruction's next pointer and moving the next instruction to the
997 // tail block from which we should continue.
998 Instruction *Next = Inst->getNextNode();
999 // DFSanVisitor may delete Inst, so keep track of whether it was a
1000 // terminator.
1001 bool IsTerminator = Inst->isTerminator();
1002 if (!DFSF.SkipInsts.count(Inst))
1003 DFSanVisitor(DFSF).visit(Inst);
1004 if (IsTerminator)
1005 break;
1006 Inst = Next;
1007 }
1008 }
1009
1010 // We will not necessarily be able to compute the shadow for every phi node
1011 // until we have visited every block. Therefore, the code that handles phi
1012 // nodes adds them to the PHIFixups list so that they can be properly
1013 // handled here.
1014 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
13
Loop condition is true. Entering loop body
1015 i = DFSF.PHIFixups.begin(),
1016 e = DFSF.PHIFixups.end();
1017 i != e; ++i) {
1018 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
14
Assuming 'val' is not equal to 'n'
15
Loop condition is true. Entering loop body
1019 ++val) {
1020 i->second->setIncomingValue(
1021 val, DFSF.getShadow(i->first->getIncomingValue(val)));
16
Calling 'DFSanFunction::getShadow'
1022 }
1023 }
1024
1025 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1026 // places (i.e. instructions in basic blocks we haven't even begun visiting
1027 // yet). To make our life easier, do this work in a pass after the main
1028 // instrumentation.
1029 if (ClDebugNonzeroLabels) {
1030 for (Value *V : DFSF.NonZeroChecks) {
1031 Instruction *Pos;
1032 if (Instruction *I = dyn_cast<Instruction>(V))
1033 Pos = I->getNextNode();
1034 else
1035 Pos = &DFSF.F->getEntryBlock().front();
1036 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1037 Pos = Pos->getNextNode();
1038 IRBuilder<> IRB(Pos);
1039 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
1040 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1041 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1042 IRBuilder<> ThenIRB(BI);
1043 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1044 }
1045 }
1046 }
1047
1048 return Changed || !FnsToInstrument.empty() ||
1049 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1050}
1051
1052Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
1053 IRBuilder<> IRB(Pos);
1054 return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64), DFS.ArgTLS, 0,
30
Passing null pointer value via 2nd parameter 'Ptr'
31
Calling 'IRBuilderBase::CreateConstGEP2_64'
1055 Idx);
1056}
1057
1058Value *DFSanFunction::getShadow(Value *V) {
1059 if (!isa<Argument>(V) && !isa<Instruction>(V))
17
Assuming 'V' is not a 'Argument'
18
Assuming 'V' is a 'Instruction'
19
Taking false branch
1060 return DFS.ZeroShadow;
1061 Value *&Shadow = ValShadowMap[V];
1062 if (!Shadow) {
20
Assuming 'Shadow' is null
21
Taking true branch
1063 if (Argument *A
22.1
'A' is non-null
22.1
'A' is non-null
22.1
'A' is non-null
= dyn_cast<Argument>(V)) {
22
Assuming 'V' is a 'Argument'
23
Taking true branch
1064 if (IsNativeABI)
24
Assuming field 'IsNativeABI' is false
25
Taking false branch
1065 return DFS.ZeroShadow;
1066 switch (IA) {
26
Control jumps to 'case IA_TLS:' at line 1067
1067 case DataFlowSanitizer::IA_TLS: {
1068 Value *ArgTLSPtr = DFS.ArgTLS;
1069 Instruction *ArgTLSPos =
1070 DFS.ArgTLS ? &*F->getEntryBlock().begin()
27
Assuming field 'ArgTLS' is null
28
'?' condition is false
1071 : cast<Instruction>(ArgTLSPtr)->getNextNode();
1072 IRBuilder<> IRB(ArgTLSPos);
1073 Shadow =
1074 IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos));
29
Calling 'DFSanFunction::getArgTLS'
1075 break;
1076 }
1077 case DataFlowSanitizer::IA_Args: {
1078 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1079 Function::arg_iterator i = F->arg_begin();
1080 while (ArgIdx--)
1081 ++i;
1082 Shadow = &*i;
1083 assert(Shadow->getType() == DFS.ShadowTy)((Shadow->getType() == DFS.ShadowTy) ? static_cast<void
> (0) : __assert_fail ("Shadow->getType() == DFS.ShadowTy"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp"
, 1083, __PRETTY_FUNCTION__))
;
1084 break;
1085 }
1086 }
1087 NonZeroChecks.push_back(Shadow);
1088 } else {
1089 Shadow = DFS.ZeroShadow;
1090 }
1091 }
1092 return Shadow;
1093}
1094
1095void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1096 assert(!ValShadowMap.count(I))((!ValShadowMap.count(I)) ? static_cast<void> (0) : __assert_fail
("!ValShadowMap.count(I)", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp"
, 1096, __PRETTY_FUNCTION__))
;
1097 assert(Shadow->getType() == DFS.ShadowTy)((Shadow->getType() == DFS.ShadowTy) ? static_cast<void
> (0) : __assert_fail ("Shadow->getType() == DFS.ShadowTy"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp"
, 1097, __PRETTY_FUNCTION__))
;
1098 ValShadowMap[I] = Shadow;
1099}
1100
1101Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1102 assert(Addr != RetvalTLS && "Reinstrumenting?")((Addr != RetvalTLS && "Reinstrumenting?") ? static_cast
<void> (0) : __assert_fail ("Addr != RetvalTLS && \"Reinstrumenting?\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp"
, 1102, __PRETTY_FUNCTION__))
;
1103 IRBuilder<> IRB(Pos);
1104 Value *ShadowPtrMaskValue;
1105 if (DFSanRuntimeShadowMask)
1106 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
1107 else
1108 ShadowPtrMaskValue = ShadowPtrMask;
1109 return IRB.CreateIntToPtr(
1110 IRB.CreateMul(
1111 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
1112 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
1113 ShadowPtrMul),
1114 ShadowPtrTy);
1115}
1116
1117// Generates IR to compute the union of the two given shadows, inserting it
1118// before Pos. Returns the computed union Value.
1119Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1120 if (V1 == DFS.ZeroShadow)
1121 return V2;
1122 if (V2 == DFS.ZeroShadow)
1123 return V1;
1124 if (V1 == V2)
1125 return V1;
1126
1127 auto V1Elems = ShadowElements.find(V1);
1128 auto V2Elems = ShadowElements.find(V2);
1129 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1130 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1131 V2Elems->second.begin(), V2Elems->second.end())) {
1132 return V1;
1133 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1134 V1Elems->second.begin(), V1Elems->second.end())) {
1135 return V2;
1136 }
1137 } else if (V1Elems != ShadowElements.end()) {
1138 if (V1Elems->second.count(V2))
1139 return V1;
1140 } else if (V2Elems != ShadowElements.end()) {
1141 if (V2Elems->second.count(V1))
1142 return V2;
1143 }
1144
1145 auto Key = std::make_pair(V1, V2);
1146 if (V1 > V2)
1147 std::swap(Key.first, Key.second);
1148 CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
1149 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1150 return CCS.Shadow;
1151
1152 IRBuilder<> IRB(Pos);
1153 if (ClFast16Labels) {
1154 CCS.Block = Pos->getParent();
1155 CCS.Shadow = IRB.CreateOr(V1, V2);
1156 } else if (AvoidNewBlocks) {
1157 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
1158 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1159 Call->addParamAttr(0, Attribute::ZExt);
1160 Call->addParamAttr(1, Attribute::ZExt);
1161
1162 CCS.Block = Pos->getParent();
1163 CCS.Shadow = Call;
1164 } else {
1165 BasicBlock *Head = Pos->getParent();
1166 Value *Ne = IRB.CreateICmpNE(V1, V2);
1167 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1168 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1169 IRBuilder<> ThenIRB(BI);
1170 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
1171 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1172 Call->addParamAttr(0, Attribute::ZExt);
1173 Call->addParamAttr(1, Attribute::ZExt);
1174
1175 BasicBlock *Tail = BI->getSuccessor(0);
1176 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1177 Phi->addIncoming(Call, Call->getParent());
1178 Phi->addIncoming(V1, Head);
1179
1180 CCS.Block = Tail;
1181 CCS.Shadow = Phi;
1182 }
1183
1184 std::set<Value *> UnionElems;
1185 if (V1Elems != ShadowElements.end()) {
1186 UnionElems = V1Elems->second;
1187 } else {
1188 UnionElems.insert(V1);
1189 }
1190 if (V2Elems != ShadowElements.end()) {
1191 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1192 } else {
1193 UnionElems.insert(V2);
1194 }
1195 ShadowElements[CCS.Shadow] = std::move(UnionElems);
1196
1197 return CCS.Shadow;
1198}
1199
1200// A convenience function which folds the shadows of each of the operands
1201// of the provided instruction Inst, inserting the IR before Inst. Returns
1202// the computed union Value.
1203Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1204 if (Inst->getNumOperands() == 0)
1205 return DFS.ZeroShadow;
1206
1207 Value *Shadow = getShadow(Inst->getOperand(0));
1208 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1209 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1210 }
1211 return Shadow;
1212}
1213
1214Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1215 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1216 DFSF.setShadow(&I, CombinedShadow);
1217 return CombinedShadow;
1218}
1219
1220// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1221// Addr has alignment Align, and take the union of each of those shadows.
1222Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1223 Instruction *Pos) {
1224 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1225 const auto i = AllocaShadowMap.find(AI);
1226 if (i != AllocaShadowMap.end()) {
1227 IRBuilder<> IRB(Pos);
1228 return IRB.CreateLoad(DFS.ShadowTy, i->second);
1229 }
1230 }
1231
1232 const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes);
1233 SmallVector<const Value *, 2> Objs;
1234 getUnderlyingObjects(Addr, Objs);
1235 bool AllConstants = true;
1236 for (const Value *Obj : Objs) {
1237 if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1238 continue;
1239 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1240 continue;
1241
1242 AllConstants = false;
1243 break;
1244 }
1245 if (AllConstants)
1246 return DFS.ZeroShadow;
1247
1248 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1249 switch (Size) {
1250 case 0:
1251 return DFS.ZeroShadow;
1252 case 1: {
1253 LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos);
1254 LI->setAlignment(ShadowAlign);
1255 return LI;
1256 }
1257 case 2: {
1258 IRBuilder<> IRB(Pos);
1259 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
1260 ConstantInt::get(DFS.IntptrTy, 1));
1261 return combineShadows(
1262 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign),
1263 IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos);
1264 }
1265 }
1266
1267 if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) {
1268 // First OR all the WideShadows, then OR individual shadows within the
1269 // combined WideShadow. This is fewer instructions than ORing shadows
1270 // individually.
1271 IRBuilder<> IRB(Pos);
1272 Value *WideAddr =
1273 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1274 Value *CombinedWideShadow =
1275 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1276 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size;
1277 Ofs += 64 / DFS.ShadowWidthBits) {
1278 WideAddr = IRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1279 ConstantInt::get(DFS.IntptrTy, 1));
1280 Value *NextWideShadow =
1281 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1282 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
1283 }
1284 for (unsigned Width = 32; Width >= DFS.ShadowWidthBits; Width >>= 1) {
1285 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
1286 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
1287 }
1288 return IRB.CreateTrunc(CombinedWideShadow, DFS.ShadowTy);
1289 }
1290 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) {
1291 // Fast path for the common case where each byte has identical shadow: load
1292 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1293 // shadow is non-equal.
1294 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1295 IRBuilder<> FallbackIRB(FallbackBB);
1296 CallInst *FallbackCall = FallbackIRB.CreateCall(
1297 DFS.DFSanUnionLoadFn,
1298 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1299 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1300
1301 // Compare each of the shadows stored in the loaded 64 bits to each other,
1302 // by computing (WideShadow rotl ShadowWidthBits) == WideShadow.
1303 IRBuilder<> IRB(Pos);
1304 Value *WideAddr =
1305 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1306 Value *WideShadow =
1307 IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
1308 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
1309 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits);
1310 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits);
1311 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1312 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1313
1314 BasicBlock *Head = Pos->getParent();
1315 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
1316
1317 if (DomTreeNode *OldNode = DT.getNode(Head)) {
1318 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1319
1320 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1321 for (auto Child : Children)
1322 DT.changeImmediateDominator(Child, NewNode);
1323 }
1324
1325 // In the following code LastBr will refer to the previous basic block's
1326 // conditional branch instruction, whose true successor is fixed up to point
1327 // to the next block during the loop below or to the tail after the final
1328 // iteration.
1329 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1330 ReplaceInstWithInst(Head->getTerminator(), LastBr);
1331 DT.addNewBlock(FallbackBB, Head);
1332
1333 for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size;
1334 Ofs += 64 / DFS.ShadowWidthBits) {
1335 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1336 DT.addNewBlock(NextBB, LastBr->getParent());
1337 IRBuilder<> NextIRB(NextBB);
1338 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1339 ConstantInt::get(DFS.IntptrTy, 1));
1340 Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(),
1341 WideAddr, ShadowAlign);
1342 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1343 LastBr->setSuccessor(0, NextBB);
1344 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1345 }
1346
1347 LastBr->setSuccessor(0, Tail);
1348 FallbackIRB.CreateBr(Tail);
1349 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1350 Shadow->addIncoming(FallbackCall, FallbackBB);
1351 Shadow->addIncoming(TruncShadow, LastBr->getParent());
1352 return Shadow;
1353 }
1354
1355 IRBuilder<> IRB(Pos);
1356 FunctionCallee &UnionLoadFn =
1357 ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn;
1358 CallInst *FallbackCall = IRB.CreateCall(
1359 UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
1360 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1361 return FallbackCall;
1362}
1363
1364void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1365 auto &DL = LI.getModule()->getDataLayout();
1366 uint64_t Size = DL.getTypeStoreSize(LI.getType());
1367 if (Size == 0) {
1368 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
1369 return;
1370 }
1371
1372 Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1);
1373 Value *Shadow =
1374 DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI);
1375 if (ClCombinePointerLabelsOnLoad) {
1376 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1377 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
1378 }
1379 if (Shadow != DFSF.DFS.ZeroShadow)
1380 DFSF.NonZeroChecks.push_back(Shadow);
1381
1382 DFSF.setShadow(&LI, Shadow);
1383 if (ClEventCallbacks) {
1384 IRBuilder<> IRB(&LI);
1385 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
1386 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {Shadow, Addr8});
1387 }
1388}
1389
1390void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, Align Alignment,
1391 Value *Shadow, Instruction *Pos) {
1392 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1393 const auto i = AllocaShadowMap.find(AI);
1394 if (i != AllocaShadowMap.end()) {
1395 IRBuilder<> IRB(Pos);
1396 IRB.CreateStore(Shadow, i->second);
1397 return;
1398 }
1399 }
1400
1401 const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes);
1402 IRBuilder<> IRB(Pos);
1403 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1404 if (Shadow == DFS.ZeroShadow) {
1405 IntegerType *ShadowTy =
1406 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
1407 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1408 Value *ExtShadowAddr =
1409 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1410 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1411 return;
1412 }
1413
1414 const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits;
1415 uint64_t Offset = 0;
1416 if (Size >= ShadowVecSize) {
1417 auto *ShadowVecTy = FixedVectorType::get(DFS.ShadowTy, ShadowVecSize);
1418 Value *ShadowVec = UndefValue::get(ShadowVecTy);
1419 for (unsigned i = 0; i != ShadowVecSize; ++i) {
1420 ShadowVec = IRB.CreateInsertElement(
1421 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1422 }
1423 Value *ShadowVecAddr =
1424 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1425 do {
1426 Value *CurShadowVecAddr =
1427 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1428 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1429 Size -= ShadowVecSize;
1430 ++Offset;
1431 } while (Size >= ShadowVecSize);
1432 Offset *= ShadowVecSize;
1433 }
1434 while (Size > 0) {
1435 Value *CurShadowAddr =
1436 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
1437 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1438 --Size;
1439 ++Offset;
1440 }
1441}
1442
1443void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1444 auto &DL = SI.getModule()->getDataLayout();
1445 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1446 if (Size == 0)
1447 return;
1448
1449 const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1);
1450
1451 Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1452 if (ClCombinePointerLabelsOnStore) {
1453 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1454 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1455 }
1456 DFSF.storeShadow(SI.getPointerOperand(), Size, Alignment, Shadow, &SI);
1457 if (ClEventCallbacks) {
1458 IRBuilder<> IRB(&SI);
1459 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
1460 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {Shadow, Addr8});
1461 }
1462}
1463
1464void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
1465 visitOperandShadowInst(UO);
1466}
1467
1468void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1469 visitOperandShadowInst(BO);
1470}
1471
1472void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1473
1474void DFSanVisitor::visitCmpInst(CmpInst &CI) {
1475 Value *CombinedShadow = visitOperandShadowInst(CI);
1476 if (ClEventCallbacks) {
1477 IRBuilder<> IRB(&CI);
1478 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
1479 }
1480}
1481
1482void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1483 visitOperandShadowInst(GEPI);
1484}
1485
1486void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1487 visitOperandShadowInst(I);
1488}
1489
1490void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1491 visitOperandShadowInst(I);
1492}
1493
1494void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1495 visitOperandShadowInst(I);
1496}
1497
1498void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1499 visitOperandShadowInst(I);
1500}
1501
1502void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1503 visitOperandShadowInst(I);
1504}
1505
1506void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1507 bool AllLoadsStores = true;
1508 for (User *U : I.users()) {
1509 if (isa<LoadInst>(U))
1510 continue;
1511
1512 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1513 if (SI->getPointerOperand() == &I)
1514 continue;
1515 }
1516
1517 AllLoadsStores = false;
1518 break;
1519 }
1520 if (AllLoadsStores) {
1521 IRBuilder<> IRB(&I);
1522 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1523 }
1524 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1525}
1526
1527void DFSanVisitor::visitSelectInst(SelectInst &I) {
1528 Value *CondShadow = DFSF.getShadow(I.getCondition());
1529 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1530 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1531 Value *ShadowSel = nullptr;
1532
1533 if (isa<VectorType>(I.getCondition()->getType())) {
1534 ShadowSel = DFSF.combineShadows(TrueShadow, FalseShadow, &I);
1535 } else {
1536 if (TrueShadow == FalseShadow) {
1537 ShadowSel = TrueShadow;
1538 } else {
1539 ShadowSel =
1540 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1541 }
1542 }
1543 DFSF.setShadow(&I, ClTrackSelectControlFlow
1544 ? DFSF.combineShadows(CondShadow, ShadowSel, &I)
1545 : ShadowSel);
1546}
1547
1548void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1549 IRBuilder<> IRB(&I);
1550 Value *ValShadow = DFSF.getShadow(I.getValue());
1551 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
1552 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
1553 *DFSF.DFS.Ctx)),
1554 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
1555}
1556
1557void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1558 IRBuilder<> IRB(&I);
1559 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1560 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1561 Value *LenShadow =
1562 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
1563 DFSF.DFS.ShadowWidthBytes));
1564 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1565 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
1566 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1567 auto *MTI = cast<MemTransferInst>(
1568 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
1569 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
1570 if (ClPreserveAlignment) {
1571 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
1572 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
1573 } else {
1574 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
1575 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
1576 }
1577 if (ClEventCallbacks) {
1578 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
1579 {RawDestShadow, I.getLength()});
1580 }
1581}
1582
1583void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1584 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1585 switch (DFSF.IA) {
1586 case DataFlowSanitizer::IA_TLS: {
1587 Value *S = DFSF.getShadow(RI.getReturnValue());
1588 IRBuilder<> IRB(&RI);
1589 IRB.CreateStore(S, DFSF.DFS.RetvalTLS);
1590 break;
1591 }
1592 case DataFlowSanitizer::IA_Args: {
1593 IRBuilder<> IRB(&RI);
1594 Type *RT = DFSF.F->getFunctionType()->getReturnType();
1595 Value *InsVal =
1596 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1597 Value *InsShadow =
1598 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1599 RI.setOperand(0, InsShadow);
1600 break;
1601 }
1602 }
1603 }
1604}
1605
1606void DFSanVisitor::visitCallBase(CallBase &CB) {
1607 Function *F = CB.getCalledFunction();
1608 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
1609 visitOperandShadowInst(CB);
1610 return;
1611 }
1612
1613 // Calls to this function are synthesized in wrappers, and we shouldn't
1614 // instrument them.
1615 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
1616 return;
1617
1618 IRBuilder<> IRB(&CB);
1619
1620 DenseMap<Value *, Function *>::iterator i =
1621 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
1622 if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1623 Function *F = i->second;
1624 switch (DFSF.DFS.getWrapperKind(F)) {
1625 case DataFlowSanitizer::WK_Warning:
1626 CB.setCalledFunction(F);
1627 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1628 IRB.CreateGlobalStringPtr(F->getName()));
1629 DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow);
1630 return;
1631 case DataFlowSanitizer::WK_Discard:
1632 CB.setCalledFunction(F);
1633 DFSF.setShadow(&CB, DFSF.DFS.ZeroShadow);
1634 return;
1635 case DataFlowSanitizer::WK_Functional:
1636 CB.setCalledFunction(F);
1637 visitOperandShadowInst(CB);
1638 return;
1639 case DataFlowSanitizer::WK_Custom:
1640 // Don't try to handle invokes of custom functions, it's too complicated.
1641 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1642 // wrapper.
1643 if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1644 FunctionType *FT = F->getFunctionType();
1645 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
1646 std::string CustomFName = "__dfsw_";
1647 CustomFName += F->getName();
1648 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
1649 CustomFName, CustomFn.TransformedType);
1650 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
1651 CustomFn->copyAttributesFrom(F);
1652
1653 // Custom functions returning non-void will write to the return label.
1654 if (!FT->getReturnType()->isVoidTy()) {
1655 CustomFn->removeAttributes(AttributeList::FunctionIndex,
1656 DFSF.DFS.ReadOnlyNoneAttrs);
1657 }
1658 }
1659
1660 std::vector<Value *> Args;
1661
1662 auto i = CB.arg_begin();
1663 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1664 Type *T = (*i)->getType();
1665 FunctionType *ParamFT;
1666 if (isa<PointerType>(T) &&
1667 (ParamFT = dyn_cast<FunctionType>(
1668 cast<PointerType>(T)->getElementType()))) {
1669 std::string TName = "dfst";
1670 TName += utostr(FT->getNumParams() - n);
1671 TName += "$";
1672 TName += F->getName();
1673 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1674 Args.push_back(T);
1675 Args.push_back(
1676 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1677 } else {
1678 Args.push_back(*i);
1679 }
1680 }
1681
1682 i = CB.arg_begin();
1683 const unsigned ShadowArgStart = Args.size();
1684 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1685 Args.push_back(DFSF.getShadow(*i));
1686
1687 if (FT->isVarArg()) {
1688 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
1689 CB.arg_size() - FT->getNumParams());
1690 auto *LabelVAAlloca = new AllocaInst(
1691 LabelVATy, getDataLayout().getAllocaAddrSpace(),
1692 "labelva", &DFSF.F->getEntryBlock().front());
1693
1694 for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) {
1695 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
1696 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
1697 }
1698
1699 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
1700 }
1701
1702 if (!FT->getReturnType()->isVoidTy()) {
1703 if (!DFSF.LabelReturnAlloca) {
1704 DFSF.LabelReturnAlloca =
1705 new AllocaInst(DFSF.DFS.ShadowTy,
1706 getDataLayout().getAllocaAddrSpace(),
1707 "labelreturn", &DFSF.F->getEntryBlock().front());
1708 }
1709 Args.push_back(DFSF.LabelReturnAlloca);
1710 }
1711
1712 for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i)
1713 Args.push_back(*i);
1714
1715 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1716 CustomCI->setCallingConv(CI->getCallingConv());
1717 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
1718 CI->getContext(), CI->getAttributes()));
1719
1720 // Update the parameter attributes of the custom call instruction to
1721 // zero extend the shadow parameters. This is required for targets
1722 // which consider ShadowTy an illegal type.
1723 for (unsigned n = 0; n < FT->getNumParams(); n++) {
1724 const unsigned ArgNo = ShadowArgStart + n;
1725 if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy)
1726 CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
1727 }
1728
1729 if (!FT->getReturnType()->isVoidTy()) {
1730 LoadInst *LabelLoad =
1731 IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca);
1732 DFSF.setShadow(CustomCI, LabelLoad);
1733 }
1734
1735 CI->replaceAllUsesWith(CustomCI);
1736 CI->eraseFromParent();
1737 return;
1738 }
1739 break;
1740 }
1741 }
1742
1743 FunctionType *FT = CB.getFunctionType();
1744 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1745 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1746 IRB.CreateStore(DFSF.getShadow(CB.getArgOperand(i)),
1747 DFSF.getArgTLS(i, &CB));
1748 }
1749 }
1750
1751 Instruction *Next = nullptr;
1752 if (!CB.getType()->isVoidTy()) {
1753 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
1754 if (II->getNormalDest()->getSinglePredecessor()) {
1755 Next = &II->getNormalDest()->front();
1756 } else {
1757 BasicBlock *NewBB =
1758 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
1759 Next = &NewBB->front();
1760 }
1761 } else {
1762 assert(CB.getIterator() != CB.getParent()->end())((CB.getIterator() != CB.getParent()->end()) ? static_cast
<void> (0) : __assert_fail ("CB.getIterator() != CB.getParent()->end()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp"
, 1762, __PRETTY_FUNCTION__))
;
1763 Next = CB.getNextNode();
1764 }
1765
1766 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1767 IRBuilder<> NextIRB(Next);
1768 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.DFS.RetvalTLS);
1769 DFSF.SkipInsts.insert(LI);
1770 DFSF.setShadow(&CB, LI);
1771 DFSF.NonZeroChecks.push_back(LI);
1772 }
1773 }
1774
1775 // Do all instrumentation for IA_Args down here to defer tampering with the
1776 // CFG in a way that SplitEdge may be able to detect.
1777 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1778 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1779 Value *Func =
1780 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT));
1781 std::vector<Value *> Args;
1782
1783 auto i = CB.arg_begin(), E = CB.arg_end();
1784 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1785 Args.push_back(*i);
1786
1787 i = CB.arg_begin();
1788 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1789 Args.push_back(DFSF.getShadow(*i));
1790
1791 if (FT->isVarArg()) {
1792 unsigned VarArgSize = CB.arg_size() - FT->getNumParams();
1793 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1794 AllocaInst *VarArgShadow =
1795 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
1796 "", &DFSF.F->getEntryBlock().front());
1797 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
1798 for (unsigned n = 0; i != E; ++i, ++n) {
1799 IRB.CreateStore(
1800 DFSF.getShadow(*i),
1801 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
1802 Args.push_back(*i);
1803 }
1804 }
1805
1806 CallBase *NewCB;
1807 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
1808 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(),
1809 II->getUnwindDest(), Args);
1810 } else {
1811 NewCB = IRB.CreateCall(NewFT, Func, Args);
1812 }
1813 NewCB->setCallingConv(CB.getCallingConv());
1814 NewCB->setAttributes(CB.getAttributes().removeAttributes(
1815 *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
1816 AttributeFuncs::typeIncompatible(NewCB->getType())));
1817
1818 if (Next) {
1819 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next);
1820 DFSF.SkipInsts.insert(ExVal);
1821 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next);
1822 DFSF.SkipInsts.insert(ExShadow);
1823 DFSF.setShadow(ExVal, ExShadow);
1824 DFSF.NonZeroChecks.push_back(ExShadow);
1825
1826 CB.replaceAllUsesWith(ExVal);
1827 }
1828
1829 CB.eraseFromParent();
1830 }
1831}
1832
1833void DFSanVisitor::visitPHINode(PHINode &PN) {
1834 PHINode *ShadowPN =
1835 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1836
1837 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1838 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1839 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1840 ++i) {
1841 ShadowPN->addIncoming(UndefShadow, *i);
1842 }
1843
1844 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1845 DFSF.setShadow(&PN, ShadowPN);
1846}
1847
1848namespace {
1849class DataFlowSanitizerLegacyPass : public ModulePass {
1850private:
1851 std::vector<std::string> ABIListFiles;
1852
1853public:
1854 static char ID;
1855
1856 DataFlowSanitizerLegacyPass(
1857 const std::vector<std::string> &ABIListFiles = std::vector<std::string>())
1858 : ModulePass(ID), ABIListFiles(ABIListFiles) {}
1859
1860 bool runOnModule(Module &M) override {
1861 return DataFlowSanitizer(ABIListFiles).runImpl(M);
1862 }
1863};
1864} // namespace
1865
1866char DataFlowSanitizerLegacyPass::ID;
1867
1868INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan",static void *initializeDataFlowSanitizerLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "DataFlowSanitizer: dynamic data flow analysis."
, "dfsan", &DataFlowSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<DataFlowSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeDataFlowSanitizerLegacyPassPassFlag; void
llvm::initializeDataFlowSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeDataFlowSanitizerLegacyPassPassFlag
, initializeDataFlowSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1869 "DataFlowSanitizer: dynamic data flow analysis.", false, false)static void *initializeDataFlowSanitizerLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "DataFlowSanitizer: dynamic data flow analysis."
, "dfsan", &DataFlowSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<DataFlowSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeDataFlowSanitizerLegacyPassPassFlag; void
llvm::initializeDataFlowSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeDataFlowSanitizerLegacyPassPassFlag
, initializeDataFlowSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1870
1871ModulePass *llvm::createDataFlowSanitizerLegacyPassPass(
1872 const std::vector<std::string> &ABIListFiles) {
1873 return new DataFlowSanitizerLegacyPass(ABIListFiles);
1874}
1875
1876PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
1877 ModuleAnalysisManager &AM) {
1878 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) {
1879 return PreservedAnalyses::none();
1880 }
1881 return PreservedAnalyses::all();
1882}

/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h

1//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the IRBuilder class, which is used as a convenient way
10// to create LLVM instructions with a consistent and simplified interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_IRBUILDER_H
15#define LLVM_IR_IRBUILDER_H
16
17#include "llvm-c/Types.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Constant.h"
24#include "llvm/IR/ConstantFolder.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Value.h"
40#include "llvm/IR/ValueHandle.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/CBindingWrapping.h"
43#include "llvm/Support/Casting.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <functional>
48#include <utility>
49
50namespace llvm {
51
52class APInt;
53class MDNode;
54class Use;
55
56/// This provides the default implementation of the IRBuilder
57/// 'InsertHelper' method that is called whenever an instruction is created by
58/// IRBuilder and needs to be inserted.
59///
60/// By default, this inserts the instruction at the insertion point.
61class IRBuilderDefaultInserter {
62public:
63 virtual ~IRBuilderDefaultInserter();
64
65 virtual void InsertHelper(Instruction *I, const Twine &Name,
66 BasicBlock *BB,
67 BasicBlock::iterator InsertPt) const {
68 if (BB) BB->getInstList().insert(InsertPt, I);
69 I->setName(Name);
70 }
71};
72
73/// Provides an 'InsertHelper' that calls a user-provided callback after
74/// performing the default insertion.
75class IRBuilderCallbackInserter : public IRBuilderDefaultInserter {
76 std::function<void(Instruction *)> Callback;
77
78public:
79 virtual ~IRBuilderCallbackInserter();
80
81 IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
82 : Callback(std::move(Callback)) {}
83
84 void InsertHelper(Instruction *I, const Twine &Name,
85 BasicBlock *BB,
86 BasicBlock::iterator InsertPt) const override {
87 IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
88 Callback(I);
89 }
90};
91
92/// Common base class shared among various IRBuilders.
93class IRBuilderBase {
94 DebugLoc CurDbgLocation;
95
96protected:
97 BasicBlock *BB;
98 BasicBlock::iterator InsertPt;
99 LLVMContext &Context;
100 const IRBuilderFolder &Folder;
101 const IRBuilderDefaultInserter &Inserter;
102
103 MDNode *DefaultFPMathTag;
104 FastMathFlags FMF;
105
106 bool IsFPConstrained;
107 fp::ExceptionBehavior DefaultConstrainedExcept;
108 RoundingMode DefaultConstrainedRounding;
109
110 ArrayRef<OperandBundleDef> DefaultOperandBundles;
111
112public:
113 IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder,
114 const IRBuilderDefaultInserter &Inserter,
115 MDNode *FPMathTag, ArrayRef<OperandBundleDef> OpBundles)
116 : Context(context), Folder(Folder), Inserter(Inserter),
117 DefaultFPMathTag(FPMathTag), IsFPConstrained(false),
118 DefaultConstrainedExcept(fp::ebStrict),
119 DefaultConstrainedRounding(RoundingMode::Dynamic),
120 DefaultOperandBundles(OpBundles) {
121 ClearInsertionPoint();
122 }
123
124 /// Insert and return the specified instruction.
125 template<typename InstTy>
126 InstTy *Insert(InstTy *I, const Twine &Name = "") const {
127 Inserter.InsertHelper(I, Name, BB, InsertPt);
128 SetInstDebugLocation(I);
129 return I;
130 }
131
132 /// No-op overload to handle constants.
133 Constant *Insert(Constant *C, const Twine& = "") const {
134 return C;
135 }
136
137 Value *Insert(Value *V, const Twine &Name = "") const {
138 if (Instruction *I = dyn_cast<Instruction>(V))
139 return Insert(I, Name);
140 assert(isa<Constant>(V))((isa<Constant>(V)) ? static_cast<void> (0) : __assert_fail
("isa<Constant>(V)", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 140, __PRETTY_FUNCTION__))
;
141 return V;
142 }
143
144 //===--------------------------------------------------------------------===//
145 // Builder configuration methods
146 //===--------------------------------------------------------------------===//
147
148 /// Clear the insertion point: created instructions will not be
149 /// inserted into a block.
150 void ClearInsertionPoint() {
151 BB = nullptr;
152 InsertPt = BasicBlock::iterator();
153 }
154
155 BasicBlock *GetInsertBlock() const { return BB; }
156 BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
157 LLVMContext &getContext() const { return Context; }
158
159 /// This specifies that created instructions should be appended to the
160 /// end of the specified block.
161 void SetInsertPoint(BasicBlock *TheBB) {
162 BB = TheBB;
163 InsertPt = BB->end();
164 }
165
166 /// This specifies that created instructions should be inserted before
167 /// the specified instruction.
168 void SetInsertPoint(Instruction *I) {
169 BB = I->getParent();
170 InsertPt = I->getIterator();
171 assert(InsertPt != BB->end() && "Can't read debug loc from end()")((InsertPt != BB->end() && "Can't read debug loc from end()"
) ? static_cast<void> (0) : __assert_fail ("InsertPt != BB->end() && \"Can't read debug loc from end()\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 171, __PRETTY_FUNCTION__))
;
172 SetCurrentDebugLocation(I->getDebugLoc());
173 }
174
175 /// This specifies that created instructions should be inserted at the
176 /// specified point.
177 void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
178 BB = TheBB;
179 InsertPt = IP;
180 if (IP != TheBB->end())
181 SetCurrentDebugLocation(IP->getDebugLoc());
182 }
183
184 /// Set location information used by debugging information.
185 void SetCurrentDebugLocation(DebugLoc L) { CurDbgLocation = std::move(L); }
186
187 /// Get location information used by debugging information.
188 const DebugLoc &getCurrentDebugLocation() const { return CurDbgLocation; }
189
190 /// If this builder has a current debug location, set it on the
191 /// specified instruction.
192 void SetInstDebugLocation(Instruction *I) const {
193 if (CurDbgLocation)
194 I->setDebugLoc(CurDbgLocation);
195 }
196
197 /// Get the return type of the current function that we're emitting
198 /// into.
199 Type *getCurrentFunctionReturnType() const;
200
201 /// InsertPoint - A saved insertion point.
202 class InsertPoint {
203 BasicBlock *Block = nullptr;
204 BasicBlock::iterator Point;
205
206 public:
207 /// Creates a new insertion point which doesn't point to anything.
208 InsertPoint() = default;
209
210 /// Creates a new insertion point at the given location.
211 InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
212 : Block(InsertBlock), Point(InsertPoint) {}
213
214 /// Returns true if this insert point is set.
215 bool isSet() const { return (Block != nullptr); }
216
217 BasicBlock *getBlock() const { return Block; }
218 BasicBlock::iterator getPoint() const { return Point; }
219 };
220
221 /// Returns the current insert point.
222 InsertPoint saveIP() const {
223 return InsertPoint(GetInsertBlock(), GetInsertPoint());
224 }
225
226 /// Returns the current insert point, clearing it in the process.
227 InsertPoint saveAndClearIP() {
228 InsertPoint IP(GetInsertBlock(), GetInsertPoint());
229 ClearInsertionPoint();
230 return IP;
231 }
232
233 /// Sets the current insert point to a previously-saved location.
234 void restoreIP(InsertPoint IP) {
235 if (IP.isSet())
236 SetInsertPoint(IP.getBlock(), IP.getPoint());
237 else
238 ClearInsertionPoint();
239 }
240
241 /// Get the floating point math metadata being used.
242 MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
243
244 /// Get the flags to be applied to created floating point ops
245 FastMathFlags getFastMathFlags() const { return FMF; }
246
247 FastMathFlags &getFastMathFlags() { return FMF; }
248
249 /// Clear the fast-math flags.
250 void clearFastMathFlags() { FMF.clear(); }
251
252 /// Set the floating point math metadata to be used.
253 void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
254
255 /// Set the fast-math flags to be used with generated fp-math operators
256 void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
257
258 /// Enable/Disable use of constrained floating point math. When
259 /// enabled the CreateF<op>() calls instead create constrained
260 /// floating point intrinsic calls. Fast math flags are unaffected
261 /// by this setting.
262 void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; }
263
264 /// Query for the use of constrained floating point math
265 bool getIsFPConstrained() { return IsFPConstrained; }
266
267 /// Set the exception handling to be used with constrained floating point
268 void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) {
269#ifndef NDEBUG
270 Optional<StringRef> ExceptStr = ExceptionBehaviorToStr(NewExcept);
271 assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")((ExceptStr.hasValue() && "Garbage strict exception behavior!"
) ? static_cast<void> (0) : __assert_fail ("ExceptStr.hasValue() && \"Garbage strict exception behavior!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 271, __PRETTY_FUNCTION__))
;
272#endif
273 DefaultConstrainedExcept = NewExcept;
274 }
275
276 /// Set the rounding mode handling to be used with constrained floating point
277 void setDefaultConstrainedRounding(RoundingMode NewRounding) {
278#ifndef NDEBUG
279 Optional<StringRef> RoundingStr = RoundingModeToStr(NewRounding);
280 assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")((RoundingStr.hasValue() && "Garbage strict rounding mode!"
) ? static_cast<void> (0) : __assert_fail ("RoundingStr.hasValue() && \"Garbage strict rounding mode!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 280, __PRETTY_FUNCTION__))
;
281#endif
282 DefaultConstrainedRounding = NewRounding;
283 }
284
285 /// Get the exception handling used with constrained floating point
286 fp::ExceptionBehavior getDefaultConstrainedExcept() {
287 return DefaultConstrainedExcept;
288 }
289
290 /// Get the rounding mode handling used with constrained floating point
291 RoundingMode getDefaultConstrainedRounding() {
292 return DefaultConstrainedRounding;
293 }
294
295 void setConstrainedFPFunctionAttr() {
296 assert(BB && "Must have a basic block to set any function attributes!")((BB && "Must have a basic block to set any function attributes!"
) ? static_cast<void> (0) : __assert_fail ("BB && \"Must have a basic block to set any function attributes!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 296, __PRETTY_FUNCTION__))
;
297
298 Function *F = BB->getParent();
299 if (!F->hasFnAttribute(Attribute::StrictFP)) {
300 F->addFnAttr(Attribute::StrictFP);
301 }
302 }
303
304 void setConstrainedFPCallAttr(CallInst *I) {
305 I->addAttribute(AttributeList::FunctionIndex, Attribute::StrictFP);
306 }
307
308 void setDefaultOperandBundles(ArrayRef<OperandBundleDef> OpBundles) {
309 DefaultOperandBundles = OpBundles;
310 }
311
312 //===--------------------------------------------------------------------===//
313 // RAII helpers.
314 //===--------------------------------------------------------------------===//
315
316 // RAII object that stores the current insertion point and restores it
317 // when the object is destroyed. This includes the debug location.
318 class InsertPointGuard {
319 IRBuilderBase &Builder;
320 AssertingVH<BasicBlock> Block;
321 BasicBlock::iterator Point;
322 DebugLoc DbgLoc;
323
324 public:
325 InsertPointGuard(IRBuilderBase &B)
326 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
327 DbgLoc(B.getCurrentDebugLocation()) {}
328
329 InsertPointGuard(const InsertPointGuard &) = delete;
330 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
331
332 ~InsertPointGuard() {
333 Builder.restoreIP(InsertPoint(Block, Point));
334 Builder.SetCurrentDebugLocation(DbgLoc);
335 }
336 };
337
338 // RAII object that stores the current fast math settings and restores
339 // them when the object is destroyed.
340 class FastMathFlagGuard {
341 IRBuilderBase &Builder;
342 FastMathFlags FMF;
343 MDNode *FPMathTag;
344 bool IsFPConstrained;
345 fp::ExceptionBehavior DefaultConstrainedExcept;
346 RoundingMode DefaultConstrainedRounding;
347
348 public:
349 FastMathFlagGuard(IRBuilderBase &B)
350 : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag),
351 IsFPConstrained(B.IsFPConstrained),
352 DefaultConstrainedExcept(B.DefaultConstrainedExcept),
353 DefaultConstrainedRounding(B.DefaultConstrainedRounding) {}
354
355 FastMathFlagGuard(const FastMathFlagGuard &) = delete;
356 FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
357
358 ~FastMathFlagGuard() {
359 Builder.FMF = FMF;
360 Builder.DefaultFPMathTag = FPMathTag;
361 Builder.IsFPConstrained = IsFPConstrained;
362 Builder.DefaultConstrainedExcept = DefaultConstrainedExcept;
363 Builder.DefaultConstrainedRounding = DefaultConstrainedRounding;
364 }
365 };
366
367 // RAII object that stores the current default operand bundles and restores
368 // them when the object is destroyed.
369 class OperandBundlesGuard {
370 IRBuilderBase &Builder;
371 ArrayRef<OperandBundleDef> DefaultOperandBundles;
372
373 public:
374 OperandBundlesGuard(IRBuilderBase &B)
375 : Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {}
376
377 OperandBundlesGuard(const OperandBundlesGuard &) = delete;
378 OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete;
379
380 ~OperandBundlesGuard() {
381 Builder.DefaultOperandBundles = DefaultOperandBundles;
382 }
383 };
384
385
386 //===--------------------------------------------------------------------===//
387 // Miscellaneous creation methods.
388 //===--------------------------------------------------------------------===//
389
390 /// Make a new global variable with initializer type i8*
391 ///
392 /// Make a new global variable with an initializer that has array of i8 type
393 /// filled in with the null terminated string value specified. The new global
394 /// variable will be marked mergable with any others of the same contents. If
395 /// Name is specified, it is the name of the global variable created.
396 ///
397 /// If no module is given via \p M, it is take from the insertion point basic
398 /// block.
399 GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
400 unsigned AddressSpace = 0,
401 Module *M = nullptr);
402
403 /// Get a constant value representing either true or false.
404 ConstantInt *getInt1(bool V) {
405 return ConstantInt::get(getInt1Ty(), V);
406 }
407
408 /// Get the constant value for i1 true.
409 ConstantInt *getTrue() {
410 return ConstantInt::getTrue(Context);
411 }
412
413 /// Get the constant value for i1 false.
414 ConstantInt *getFalse() {
415 return ConstantInt::getFalse(Context);
416 }
417
418 /// Get a constant 8-bit value.
419 ConstantInt *getInt8(uint8_t C) {
420 return ConstantInt::get(getInt8Ty(), C);
421 }
422
423 /// Get a constant 16-bit value.
424 ConstantInt *getInt16(uint16_t C) {
425 return ConstantInt::get(getInt16Ty(), C);
426 }
427
428 /// Get a constant 32-bit value.
429 ConstantInt *getInt32(uint32_t C) {
430 return ConstantInt::get(getInt32Ty(), C);
431 }
432
433 /// Get a constant 64-bit value.
434 ConstantInt *getInt64(uint64_t C) {
435 return ConstantInt::get(getInt64Ty(), C);
436 }
437
438 /// Get a constant N-bit value, zero extended or truncated from
439 /// a 64-bit value.
440 ConstantInt *getIntN(unsigned N, uint64_t C) {
441 return ConstantInt::get(getIntNTy(N), C);
442 }
443
444 /// Get a constant integer value.
445 ConstantInt *getInt(const APInt &AI) {
446 return ConstantInt::get(Context, AI);
447 }
448
449 //===--------------------------------------------------------------------===//
450 // Type creation methods
451 //===--------------------------------------------------------------------===//
452
453 /// Fetch the type representing a single bit
454 IntegerType *getInt1Ty() {
455 return Type::getInt1Ty(Context);
456 }
457
458 /// Fetch the type representing an 8-bit integer.
459 IntegerType *getInt8Ty() {
460 return Type::getInt8Ty(Context);
461 }
462
463 /// Fetch the type representing a 16-bit integer.
464 IntegerType *getInt16Ty() {
465 return Type::getInt16Ty(Context);
466 }
467
468 /// Fetch the type representing a 32-bit integer.
469 IntegerType *getInt32Ty() {
470 return Type::getInt32Ty(Context);
471 }
472
473 /// Fetch the type representing a 64-bit integer.
474 IntegerType *getInt64Ty() {
475 return Type::getInt64Ty(Context);
476 }
477
478 /// Fetch the type representing a 128-bit integer.
479 IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
480
481 /// Fetch the type representing an N-bit integer.
482 IntegerType *getIntNTy(unsigned N) {
483 return Type::getIntNTy(Context, N);
484 }
485
486 /// Fetch the type representing a 16-bit floating point value.
487 Type *getHalfTy() {
488 return Type::getHalfTy(Context);
489 }
490
491 /// Fetch the type representing a 16-bit brain floating point value.
492 Type *getBFloatTy() {
493 return Type::getBFloatTy(Context);
494 }
495
496 /// Fetch the type representing a 32-bit floating point value.
497 Type *getFloatTy() {
498 return Type::getFloatTy(Context);
499 }
500
501 /// Fetch the type representing a 64-bit floating point value.
502 Type *getDoubleTy() {
503 return Type::getDoubleTy(Context);
504 }
505
506 /// Fetch the type representing void.
507 Type *getVoidTy() {
508 return Type::getVoidTy(Context);
509 }
510
511 /// Fetch the type representing a pointer to an 8-bit integer value.
512 PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
513 return Type::getInt8PtrTy(Context, AddrSpace);
514 }
515
516 /// Fetch the type representing a pointer to an integer value.
517 IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
518 return DL.getIntPtrType(Context, AddrSpace);
519 }
520
521 //===--------------------------------------------------------------------===//
522 // Intrinsic creation methods
523 //===--------------------------------------------------------------------===//
524
525 /// Create and insert a memset to the specified pointer and the
526 /// specified value.
527 ///
528 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
529 /// specified, it will be added to the instruction. Likewise with alias.scope
530 /// and noalias tags.
531 CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size,
532 MaybeAlign Align, bool isVolatile = false,
533 MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
534 MDNode *NoAliasTag = nullptr) {
535 return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
536 TBAATag, ScopeTag, NoAliasTag);
537 }
538
539 CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align,
540 bool isVolatile = false, MDNode *TBAATag = nullptr,
541 MDNode *ScopeTag = nullptr,
542 MDNode *NoAliasTag = nullptr);
543
544 /// Create and insert an element unordered-atomic memset of the region of
545 /// memory starting at the given pointer to the given value.
546 ///
547 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
548 /// specified, it will be added to the instruction. Likewise with alias.scope
549 /// and noalias tags.
550 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
551 uint64_t Size, Align Alignment,
552 uint32_t ElementSize,
553 MDNode *TBAATag = nullptr,
554 MDNode *ScopeTag = nullptr,
555 MDNode *NoAliasTag = nullptr) {
556 return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size),
557 Align(Alignment), ElementSize,
558 TBAATag, ScopeTag, NoAliasTag);
559 }
560
561 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
562 Value *Size, Align Alignment,
563 uint32_t ElementSize,
564 MDNode *TBAATag = nullptr,
565 MDNode *ScopeTag = nullptr,
566 MDNode *NoAliasTag = nullptr);
567
568 /// Create and insert a memcpy between the specified pointers.
569 ///
570 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
571 /// specified, it will be added to the instruction. Likewise with alias.scope
572 /// and noalias tags.
573 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
574 MaybeAlign SrcAlign, uint64_t Size,
575 bool isVolatile = false, MDNode *TBAATag = nullptr,
576 MDNode *TBAAStructTag = nullptr,
577 MDNode *ScopeTag = nullptr,
578 MDNode *NoAliasTag = nullptr) {
579 return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
580 isVolatile, TBAATag, TBAAStructTag, ScopeTag,
581 NoAliasTag);
582 }
583
584 CallInst *CreateMemTransferInst(
585 Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
586 MaybeAlign SrcAlign, Value *Size, bool isVolatile = false,
587 MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
588 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
589
590 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
591 MaybeAlign SrcAlign, Value *Size,
592 bool isVolatile = false, MDNode *TBAATag = nullptr,
593 MDNode *TBAAStructTag = nullptr,
594 MDNode *ScopeTag = nullptr,
595 MDNode *NoAliasTag = nullptr) {
596 return CreateMemTransferInst(Intrinsic::memcpy, Dst, DstAlign, Src,
597 SrcAlign, Size, isVolatile, TBAATag,
598 TBAAStructTag, ScopeTag, NoAliasTag);
599 }
600
601 CallInst *CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src,
602 MaybeAlign SrcAlign, Value *Size);
603
604 /// Create and insert an element unordered-atomic memcpy between the
605 /// specified pointers.
606 ///
607 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
608 ///
609 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
610 /// specified, it will be added to the instruction. Likewise with alias.scope
611 /// and noalias tags.
612 CallInst *CreateElementUnorderedAtomicMemCpy(
613 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
614 uint32_t ElementSize, MDNode *TBAATag = nullptr,
615 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
616 MDNode *NoAliasTag = nullptr);
617
618 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemCpy(CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
619 Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
620 unsigned SrcAlign, uint64_t Size,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
621 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
622 MDNode *TBAAStructTag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
623 MDNode *ScopeTag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
624 MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
625 "Use the version that takes Align instead")CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
626 return CreateElementUnorderedAtomicMemCpy(
627 Dst, Align(DstAlign), Src, Align(SrcAlign), getInt64(Size), ElementSize,
628 TBAATag, TBAAStructTag, ScopeTag, NoAliasTag);
629 }
630
631 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemCpy(CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
632 Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
633 unsigned SrcAlign, Value *Size,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
634 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
635 MDNode *TBAAStructTag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
636 MDNode *ScopeTag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
637 MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
638 "Use the version that takes Align instead")CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
639 return CreateElementUnorderedAtomicMemCpy(
640 Dst, Align(DstAlign), Src, Align(SrcAlign), Size, ElementSize, TBAATag,
641 TBAAStructTag, ScopeTag, NoAliasTag);
642 }
643
644 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
645 MaybeAlign SrcAlign, uint64_t Size,
646 bool isVolatile = false, MDNode *TBAATag = nullptr,
647 MDNode *ScopeTag = nullptr,
648 MDNode *NoAliasTag = nullptr) {
649 return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
650 isVolatile, TBAATag, ScopeTag, NoAliasTag);
651 }
652
653 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
654 MaybeAlign SrcAlign, Value *Size,
655 bool isVolatile = false, MDNode *TBAATag = nullptr,
656 MDNode *ScopeTag = nullptr,
657 MDNode *NoAliasTag = nullptr);
658
659 /// \brief Create and insert an element unordered-atomic memmove between the
660 /// specified pointers.
661 ///
662 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
663 /// respectively.
664 ///
665 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
666 /// specified, it will be added to the instruction. Likewise with alias.scope
667 /// and noalias tags.
668 CallInst *CreateElementUnorderedAtomicMemMove(
669 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
670 uint32_t ElementSize, MDNode *TBAATag = nullptr,
671 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
672 MDNode *NoAliasTag = nullptr);
673
674 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemMove(CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
675 Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
676 unsigned SrcAlign, uint64_t Size,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
677 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
678 MDNode *TBAAStructTag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
679 MDNode *ScopeTag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
680 MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
681 "Use the version that takes Align instead")CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
682 return CreateElementUnorderedAtomicMemMove(
683 Dst, Align(DstAlign), Src, Align(SrcAlign), getInt64(Size), ElementSize,
684 TBAATag, TBAAStructTag, ScopeTag, NoAliasTag);
685 }
686
687 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemMove(CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
688 Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
689 unsigned SrcAlign, Value *Size,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
690 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
691 MDNode *TBAAStructTag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
692 MDNode *ScopeTag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
693 MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
694 "Use the version that takes Align instead")CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
695 return CreateElementUnorderedAtomicMemMove(
696 Dst, Align(DstAlign), Src, Align(SrcAlign), Size, ElementSize, TBAATag,
697 TBAAStructTag, ScopeTag, NoAliasTag);
698 }
699
700 /// Create a vector fadd reduction intrinsic of the source vector.
701 /// The first parameter is a scalar accumulator value for ordered reductions.
702 CallInst *CreateFAddReduce(Value *Acc, Value *Src);
703
704 /// Create a vector fmul reduction intrinsic of the source vector.
705 /// The first parameter is a scalar accumulator value for ordered reductions.
706 CallInst *CreateFMulReduce(Value *Acc, Value *Src);
707
708 /// Create a vector int add reduction intrinsic of the source vector.
709 CallInst *CreateAddReduce(Value *Src);
710
711 /// Create a vector int mul reduction intrinsic of the source vector.
712 CallInst *CreateMulReduce(Value *Src);
713
714 /// Create a vector int AND reduction intrinsic of the source vector.
715 CallInst *CreateAndReduce(Value *Src);
716
717 /// Create a vector int OR reduction intrinsic of the source vector.
718 CallInst *CreateOrReduce(Value *Src);
719
720 /// Create a vector int XOR reduction intrinsic of the source vector.
721 CallInst *CreateXorReduce(Value *Src);
722
723 /// Create a vector integer max reduction intrinsic of the source
724 /// vector.
725 CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
726
727 /// Create a vector integer min reduction intrinsic of the source
728 /// vector.
729 CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
730
731 /// Create a vector float max reduction intrinsic of the source
732 /// vector.
733 CallInst *CreateFPMaxReduce(Value *Src, bool NoNaN = false);
734
735 /// Create a vector float min reduction intrinsic of the source
736 /// vector.
737 CallInst *CreateFPMinReduce(Value *Src, bool NoNaN = false);
738
739 /// Create a lifetime.start intrinsic.
740 ///
741 /// If the pointer isn't i8* it will be converted.
742 CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
743
744 /// Create a lifetime.end intrinsic.
745 ///
746 /// If the pointer isn't i8* it will be converted.
747 CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
748
749 /// Create a call to invariant.start intrinsic.
750 ///
751 /// If the pointer isn't i8* it will be converted.
752 CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
753
754 /// Create a call to Masked Load intrinsic
755 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
756 CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value *Mask,CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
757 Value *PassThru = nullptr,CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
758 const Twine &Name = ""),CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
759 "Use the version that takes Align instead")CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
760 return CreateMaskedLoad(Ptr, assumeAligned(Alignment), Mask, PassThru,
761 Name);
762 }
763 CallInst *CreateMaskedLoad(Value *Ptr, Align Alignment, Value *Mask,
764 Value *PassThru = nullptr, const Twine &Name = "");
765
766 /// Create a call to Masked Store intrinsic
767 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMaskedStore(Value *Val, Value *Ptr,CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Alignment
, Value *Mask) __attribute__((deprecated("Use the version that takes Align instead"
)))
768 unsigned Alignment,CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Alignment
, Value *Mask) __attribute__((deprecated("Use the version that takes Align instead"
)))
769 Value *Mask),CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Alignment
, Value *Mask) __attribute__((deprecated("Use the version that takes Align instead"
)))
770 "Use the version that takes Align instead")CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Alignment
, Value *Mask) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
771 return CreateMaskedStore(Val, Ptr, assumeAligned(Alignment), Mask);
772 }
773
774 CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment,
775 Value *Mask);
776
777 /// Create a call to Masked Gather intrinsic
778 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
779 CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
780 Value *Mask = nullptr,CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
781 Value *PassThru = nullptr,CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
782 const Twine &Name = ""),CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
783 "Use the version that takes Align instead")CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
{
784 return CreateMaskedGather(Ptrs, Align(Alignment), Mask, PassThru, Name);
785 }
786
787 /// Create a call to Masked Gather intrinsic
788 CallInst *CreateMaskedGather(Value *Ptrs, Align Alignment,
789 Value *Mask = nullptr, Value *PassThru = nullptr,
790 const Twine &Name = "");
791
792 /// Create a call to Masked Scatter intrinsic
793 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned
Alignment, Value *Mask = nullptr) __attribute__((deprecated(
"Use the version that takes Align instead")))
794 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned Alignment,CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned
Alignment, Value *Mask = nullptr) __attribute__((deprecated(
"Use the version that takes Align instead")))
795 Value *Mask = nullptr),CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned
Alignment, Value *Mask = nullptr) __attribute__((deprecated(
"Use the version that takes Align instead")))
796 "Use the version that takes Align instead")CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned
Alignment, Value *Mask = nullptr) __attribute__((deprecated(
"Use the version that takes Align instead")))
{
797 return CreateMaskedScatter(Val, Ptrs, Align(Alignment), Mask);
798 }
799
800 /// Create a call to Masked Scatter intrinsic
801 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment,
802 Value *Mask = nullptr);
803
804 /// Create an assume intrinsic call that allows the optimizer to
805 /// assume that the provided condition will be true.
806 ///
807 /// The optional argument \p OpBundles specifies operand bundles that are
808 /// added to the call instruction.
809 CallInst *CreateAssumption(Value *Cond,
810 ArrayRef<OperandBundleDef> OpBundles = llvm::None);
811
812 /// Create a call to the experimental.gc.statepoint intrinsic to
813 /// start a new statepoint sequence.
814 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
815 Value *ActualCallee,
816 ArrayRef<Value *> CallArgs,
817 Optional<ArrayRef<Value *>> DeoptArgs,
818 ArrayRef<Value *> GCArgs,
819 const Twine &Name = "");
820
821 /// Create a call to the experimental.gc.statepoint intrinsic to
822 /// start a new statepoint sequence.
823 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
824 Value *ActualCallee, uint32_t Flags,
825 ArrayRef<Value *> CallArgs,
826 Optional<ArrayRef<Use>> TransitionArgs,
827 Optional<ArrayRef<Use>> DeoptArgs,
828 ArrayRef<Value *> GCArgs,
829 const Twine &Name = "");
830
831 /// Conveninence function for the common case when CallArgs are filled
832 /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
833 /// .get()'ed to get the Value pointer.
834 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
835 Value *ActualCallee, ArrayRef<Use> CallArgs,
836 Optional<ArrayRef<Value *>> DeoptArgs,
837 ArrayRef<Value *> GCArgs,
838 const Twine &Name = "");
839
840 /// Create an invoke to the experimental.gc.statepoint intrinsic to
841 /// start a new statepoint sequence.
842 InvokeInst *
843 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
844 Value *ActualInvokee, BasicBlock *NormalDest,
845 BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
846 Optional<ArrayRef<Value *>> DeoptArgs,
847 ArrayRef<Value *> GCArgs, const Twine &Name = "");
848
849 /// Create an invoke to the experimental.gc.statepoint intrinsic to
850 /// start a new statepoint sequence.
851 InvokeInst *CreateGCStatepointInvoke(
852 uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
853 BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
854 ArrayRef<Value *> InvokeArgs, Optional<ArrayRef<Use>> TransitionArgs,
855 Optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
856 const Twine &Name = "");
857
858 // Convenience function for the common case when CallArgs are filled in using
859 // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
860 // get the Value *.
861 InvokeInst *
862 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
863 Value *ActualInvokee, BasicBlock *NormalDest,
864 BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
865 Optional<ArrayRef<Value *>> DeoptArgs,
866 ArrayRef<Value *> GCArgs, const Twine &Name = "");
867
868 /// Create a call to the experimental.gc.result intrinsic to extract
869 /// the result from a call wrapped in a statepoint.
870 CallInst *CreateGCResult(Instruction *Statepoint,
871 Type *ResultType,
872 const Twine &Name = "");
873
874 /// Create a call to the experimental.gc.relocate intrinsics to
875 /// project the relocated value of one pointer from the statepoint.
876 CallInst *CreateGCRelocate(Instruction *Statepoint,
877 int BaseOffset,
878 int DerivedOffset,
879 Type *ResultType,
880 const Twine &Name = "");
881
882 /// Create a call to intrinsic \p ID with 1 operand which is mangled on its
883 /// type.
884 CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
885 Instruction *FMFSource = nullptr,
886 const Twine &Name = "");
887
888 /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
889 /// first type.
890 CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS,
891 Instruction *FMFSource = nullptr,
892 const Twine &Name = "");
893
894 /// Create a call to intrinsic \p ID with \p args, mangled using \p Types. If
895 /// \p FMFSource is provided, copy fast-math-flags from that instruction to
896 /// the intrinsic.
897 CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types,
898 ArrayRef<Value *> Args,
899 Instruction *FMFSource = nullptr,
900 const Twine &Name = "");
901
902 /// Create call to the minnum intrinsic.
903 CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
904 return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name);
905 }
906
907 /// Create call to the maxnum intrinsic.
908 CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
909 return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name);
910 }
911
912 /// Create call to the minimum intrinsic.
913 CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") {
914 return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name);
915 }
916
917 /// Create call to the maximum intrinsic.
918 CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") {
919 return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name);
920 }
921
922private:
923 /// Create a call to a masked intrinsic with given Id.
924 CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
925 ArrayRef<Type *> OverloadedTypes,
926 const Twine &Name = "");
927
928 Value *getCastedInt8PtrValue(Value *Ptr);
929
930 //===--------------------------------------------------------------------===//
931 // Instruction creation methods: Terminators
932 //===--------------------------------------------------------------------===//
933
934private:
935 /// Helper to add branch weight and unpredictable metadata onto an
936 /// instruction.
937 /// \returns The annotated instruction.
938 template <typename InstTy>
939 InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
940 if (Weights)
941 I->setMetadata(LLVMContext::MD_prof, Weights);
942 if (Unpredictable)
943 I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
944 return I;
945 }
946
947public:
948 /// Create a 'ret void' instruction.
949 ReturnInst *CreateRetVoid() {
950 return Insert(ReturnInst::Create(Context));
951 }
952
953 /// Create a 'ret <val>' instruction.
954 ReturnInst *CreateRet(Value *V) {
955 return Insert(ReturnInst::Create(Context, V));
956 }
957
958 /// Create a sequence of N insertvalue instructions,
959 /// with one Value from the retVals array each, that build a aggregate
960 /// return value one value at a time, and a ret instruction to return
961 /// the resulting aggregate value.
962 ///
963 /// This is a convenience function for code that uses aggregate return values
964 /// as a vehicle for having multiple return values.
965 ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
966 Value *V = UndefValue::get(getCurrentFunctionReturnType());
967 for (unsigned i = 0; i != N; ++i)
968 V = CreateInsertValue(V, retVals[i], i, "mrv");
969 return Insert(ReturnInst::Create(Context, V));
970 }
971
972 /// Create an unconditional 'br label X' instruction.
973 BranchInst *CreateBr(BasicBlock *Dest) {
974 return Insert(BranchInst::Create(Dest));
975 }
976
977 /// Create a conditional 'br Cond, TrueDest, FalseDest'
978 /// instruction.
979 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
980 MDNode *BranchWeights = nullptr,
981 MDNode *Unpredictable = nullptr) {
982 return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
983 BranchWeights, Unpredictable));
984 }
985
986 /// Create a conditional 'br Cond, TrueDest, FalseDest'
987 /// instruction. Copy branch meta data if available.
988 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
989 Instruction *MDSrc) {
990 BranchInst *Br = BranchInst::Create(True, False, Cond);
991 if (MDSrc) {
992 unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
993 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
994 Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4));
995 }
996 return Insert(Br);
997 }
998
999 /// Create a switch instruction with the specified value, default dest,
1000 /// and with a hint for the number of cases that will be added (for efficient
1001 /// allocation).
1002 SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
1003 MDNode *BranchWeights = nullptr,
1004 MDNode *Unpredictable = nullptr) {
1005 return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
1006 BranchWeights, Unpredictable));
1007 }
1008
1009 /// Create an indirect branch instruction with the specified address
1010 /// operand, with an optional hint for the number of destinations that will be
1011 /// added (for efficient allocation).
1012 IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
1013 return Insert(IndirectBrInst::Create(Addr, NumDests));
1014 }
1015
1016 /// Create an invoke instruction.
1017 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1018 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1019 ArrayRef<Value *> Args,
1020 ArrayRef<OperandBundleDef> OpBundles,
1021 const Twine &Name = "") {
1022 return Insert(
1023 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles),
1024 Name);
1025 }
1026 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1027 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1028 ArrayRef<Value *> Args = None,
1029 const Twine &Name = "") {
1030 return Insert(InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args),
1031 Name);
1032 }
1033
1034 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1035 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
1036 ArrayRef<OperandBundleDef> OpBundles,
1037 const Twine &Name = "") {
1038 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1039 NormalDest, UnwindDest, Args, OpBundles, Name);
1040 }
1041
1042 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1043 BasicBlock *UnwindDest,
1044 ArrayRef<Value *> Args = None,
1045 const Twine &Name = "") {
1046 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1047 NormalDest, UnwindDest, Args, Name);
1048 }
1049
1050 /// \brief Create a callbr instruction.
1051 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1052 BasicBlock *DefaultDest,
1053 ArrayRef<BasicBlock *> IndirectDests,
1054 ArrayRef<Value *> Args = None,
1055 const Twine &Name = "") {
1056 return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests,
1057 Args), Name);
1058 }
1059 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1060 BasicBlock *DefaultDest,
1061 ArrayRef<BasicBlock *> IndirectDests,
1062 ArrayRef<Value *> Args,
1063 ArrayRef<OperandBundleDef> OpBundles,
1064 const Twine &Name = "") {
1065 return Insert(
1066 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
1067 OpBundles), Name);
1068 }
1069
1070 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1071 ArrayRef<BasicBlock *> IndirectDests,
1072 ArrayRef<Value *> Args = None,
1073 const Twine &Name = "") {
1074 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1075 DefaultDest, IndirectDests, Args, Name);
1076 }
1077 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1078 ArrayRef<BasicBlock *> IndirectDests,
1079 ArrayRef<Value *> Args,
1080 ArrayRef<OperandBundleDef> OpBundles,
1081 const Twine &Name = "") {
1082 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1083 DefaultDest, IndirectDests, Args, Name);
1084 }
1085
1086 ResumeInst *CreateResume(Value *Exn) {
1087 return Insert(ResumeInst::Create(Exn));
1088 }
1089
1090 CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
1091 BasicBlock *UnwindBB = nullptr) {
1092 return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
1093 }
1094
1095 CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
1096 unsigned NumHandlers,
1097 const Twine &Name = "") {
1098 return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
1099 Name);
1100 }
1101
1102 CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
1103 const Twine &Name = "") {
1104 return Insert(CatchPadInst::Create(ParentPad, Args), Name);
1105 }
1106
1107 CleanupPadInst *CreateCleanupPad(Value *ParentPad,
1108 ArrayRef<Value *> Args = None,
1109 const Twine &Name = "") {
1110 return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
1111 }
1112
1113 CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
1114 return Insert(CatchReturnInst::Create(CatchPad, BB));
1115 }
1116
1117 UnreachableInst *CreateUnreachable() {
1118 return Insert(new UnreachableInst(Context));
1119 }
1120
1121 //===--------------------------------------------------------------------===//
1122 // Instruction creation methods: Binary Operators
1123 //===--------------------------------------------------------------------===//
1124private:
1125 BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
1126 Value *LHS, Value *RHS,
1127 const Twine &Name,
1128 bool HasNUW, bool HasNSW) {
1129 BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
1130 if (HasNUW) BO->setHasNoUnsignedWrap();
1131 if (HasNSW) BO->setHasNoSignedWrap();
1132 return BO;
1133 }
1134
1135 Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
1136 FastMathFlags FMF) const {
1137 if (!FPMD)
1138 FPMD = DefaultFPMathTag;
1139 if (FPMD)
1140 I->setMetadata(LLVMContext::MD_fpmath, FPMD);
1141 I->setFastMathFlags(FMF);
1142 return I;
1143 }
1144
1145 Value *foldConstant(Instruction::BinaryOps Opc, Value *L,
1146 Value *R, const Twine &Name) const {
1147 auto *LC = dyn_cast<Constant>(L);
1148 auto *RC = dyn_cast<Constant>(R);
1149 return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr;
1150 }
1151
1152 Value *getConstrainedFPRounding(Optional<RoundingMode> Rounding) {
1153 RoundingMode UseRounding = DefaultConstrainedRounding;
1154
1155 if (Rounding.hasValue())
1156 UseRounding = Rounding.getValue();
1157
1158 Optional<StringRef> RoundingStr = RoundingModeToStr(UseRounding);
1159 assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")((RoundingStr.hasValue() && "Garbage strict rounding mode!"
) ? static_cast<void> (0) : __assert_fail ("RoundingStr.hasValue() && \"Garbage strict rounding mode!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1159, __PRETTY_FUNCTION__))
;
1160 auto *RoundingMDS = MDString::get(Context, RoundingStr.getValue());
1161
1162 return MetadataAsValue::get(Context, RoundingMDS);
1163 }
1164
1165 Value *getConstrainedFPExcept(Optional<fp::ExceptionBehavior> Except) {
1166 fp::ExceptionBehavior UseExcept = DefaultConstrainedExcept;
1167
1168 if (Except.hasValue())
1169 UseExcept = Except.getValue();
1170
1171 Optional<StringRef> ExceptStr = ExceptionBehaviorToStr(UseExcept);
1172 assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")((ExceptStr.hasValue() && "Garbage strict exception behavior!"
) ? static_cast<void> (0) : __assert_fail ("ExceptStr.hasValue() && \"Garbage strict exception behavior!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1172, __PRETTY_FUNCTION__))
;
1173 auto *ExceptMDS = MDString::get(Context, ExceptStr.getValue());
1174
1175 return MetadataAsValue::get(Context, ExceptMDS);
1176 }
1177
1178 Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) {
1179 assert(CmpInst::isFPPredicate(Predicate) &&((CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst
::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!") ? static_cast
<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1182, __PRETTY_FUNCTION__))
1180 Predicate != CmpInst::FCMP_FALSE &&((CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst
::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!") ? static_cast
<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1182, __PRETTY_FUNCTION__))
1181 Predicate != CmpInst::FCMP_TRUE &&((CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst
::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!") ? static_cast
<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1182, __PRETTY_FUNCTION__))
1182 "Invalid constrained FP comparison predicate!")((CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst
::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!") ? static_cast
<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1182, __PRETTY_FUNCTION__))
;
1183
1184 StringRef PredicateStr = CmpInst::getPredicateName(Predicate);
1185 auto *PredicateMDS = MDString::get(Context, PredicateStr);
1186
1187 return MetadataAsValue::get(Context, PredicateMDS);
1188 }
1189
1190public:
1191 Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
1192 bool HasNUW = false, bool HasNSW = false) {
1193 if (auto *LC = dyn_cast<Constant>(LHS))
1194 if (auto *RC = dyn_cast<Constant>(RHS))
1195 return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
1196 return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
1197 HasNUW, HasNSW);
1198 }
1199
1200 Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1201 return CreateAdd(LHS, RHS, Name, false, true);
1202 }
1203
1204 Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1205 return CreateAdd(LHS, RHS, Name, true, false);
1206 }
1207
1208 Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
1209 bool HasNUW = false, bool HasNSW = false) {
1210 if (auto *LC = dyn_cast<Constant>(LHS))
1211 if (auto *RC = dyn_cast<Constant>(RHS))
1212 return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
1213 return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
1214 HasNUW, HasNSW);
1215 }
1216
1217 Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1218 return CreateSub(LHS, RHS, Name, false, true);
1219 }
1220
1221 Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1222 return CreateSub(LHS, RHS, Name, true, false);
1223 }
1224
1225 Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
1226 bool HasNUW = false, bool HasNSW = false) {
1227 if (auto *LC = dyn_cast<Constant>(LHS))
1228 if (auto *RC = dyn_cast<Constant>(RHS))
1229 return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
1230 return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
1231 HasNUW, HasNSW);
1232 }
1233
1234 Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1235 return CreateMul(LHS, RHS, Name, false, true);
1236 }
1237
1238 Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1239 return CreateMul(LHS, RHS, Name, true, false);
1240 }
1241
1242 Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1243 bool isExact = false) {
1244 if (auto *LC = dyn_cast<Constant>(LHS))
1245 if (auto *RC = dyn_cast<Constant>(RHS))
1246 return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
1247 if (!isExact)
1248 return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
1249 return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
1250 }
1251
1252 Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1253 return CreateUDiv(LHS, RHS, Name, true);
1254 }
1255
1256 Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1257 bool isExact = false) {
1258 if (auto *LC = dyn_cast<Constant>(LHS))
1259 if (auto *RC = dyn_cast<Constant>(RHS))
1260 return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
1261 if (!isExact)
1262 return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
1263 return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
1264 }
1265
1266 Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1267 return CreateSDiv(LHS, RHS, Name, true);
1268 }
1269
1270 Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
1271 if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V;
1272 return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
1273 }
1274
1275 Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
1276 if (Value *V = foldConstant(Instruction::SRem, LHS, RHS, Name)) return V;
1277 return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
1278 }
1279
1280 Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
1281 bool HasNUW = false, bool HasNSW = false) {
1282 if (auto *LC = dyn_cast<Constant>(LHS))
1283 if (auto *RC = dyn_cast<Constant>(RHS))
1284 return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
1285 return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
1286 HasNUW, HasNSW);
1287 }
1288
1289 Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
1290 bool HasNUW = false, bool HasNSW = false) {
1291 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1292 HasNUW, HasNSW);
1293 }
1294
1295 Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
1296 bool HasNUW = false, bool HasNSW = false) {
1297 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1298 HasNUW, HasNSW);
1299 }
1300
1301 Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
1302 bool isExact = false) {
1303 if (auto *LC = dyn_cast<Constant>(LHS))
1304 if (auto *RC = dyn_cast<Constant>(RHS))
1305 return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
1306 if (!isExact)
1307 return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
1308 return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
1309 }
1310
1311 Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1312 bool isExact = false) {
1313 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1314 }
1315
1316 Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1317 bool isExact = false) {
1318 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1319 }
1320
1321 Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
1322 bool isExact = false) {
1323 if (auto *LC = dyn_cast<Constant>(LHS))
1324 if (auto *RC = dyn_cast<Constant>(RHS))
1325 return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
1326 if (!isExact)
1327 return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
1328 return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
1329 }
1330
1331 Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1332 bool isExact = false) {
1333 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1334 }
1335
1336 Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1337 bool isExact = false) {
1338 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1339 }
1340
1341 Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
1342 if (auto *RC = dyn_cast<Constant>(RHS)) {
1343 if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isMinusOne())
1344 return LHS; // LHS & -1 -> LHS
1345 if (auto *LC = dyn_cast<Constant>(LHS))
1346 return Insert(Folder.CreateAnd(LC, RC), Name);
1347 }
1348 return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
1349 }
1350
1351 Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1352 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1353 }
1354
1355 Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1356 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1357 }
1358
1359 Value *CreateAnd(ArrayRef<Value*> Ops) {
1360 assert(!Ops.empty())((!Ops.empty()) ? static_cast<void> (0) : __assert_fail
("!Ops.empty()", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1360, __PRETTY_FUNCTION__))
;
1361 Value *Accum = Ops[0];
1362 for (unsigned i = 1; i < Ops.size(); i++)
1363 Accum = CreateAnd(Accum, Ops[i]);
1364 return Accum;
1365 }
1366
1367 Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
1368 if (auto *RC = dyn_cast<Constant>(RHS)) {
1369 if (RC->isNullValue())
1370 return LHS; // LHS | 0 -> LHS
1371 if (auto *LC = dyn_cast<Constant>(LHS))
1372 return Insert(Folder.CreateOr(LC, RC), Name);
1373 }
1374 return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
1375 }
1376
1377 Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1378 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1379 }
1380
1381 Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1382 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1383 }
1384
1385 Value *CreateOr(ArrayRef<Value*> Ops) {
1386 assert(!Ops.empty())((!Ops.empty()) ? static_cast<void> (0) : __assert_fail
("!Ops.empty()", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1386, __PRETTY_FUNCTION__))
;
1387 Value *Accum = Ops[0];
1388 for (unsigned i = 1; i < Ops.size(); i++)
1389 Accum = CreateOr(Accum, Ops[i]);
1390 return Accum;
1391 }
1392
1393 Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
1394 if (Value *V = foldConstant(Instruction::Xor, LHS, RHS, Name)) return V;
1395 return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
1396 }
1397
1398 Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1399 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1400 }
1401
1402 Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1403 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1404 }
1405
1406 Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
1407 MDNode *FPMD = nullptr) {
1408 if (IsFPConstrained)
1409 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1410 L, R, nullptr, Name, FPMD);
1411
1412 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1413 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
1414 return Insert(I, Name);
1415 }
1416
1417 /// Copy fast-math-flags from an instruction rather than using the builder's
1418 /// default FMF.
1419 Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
1420 const Twine &Name = "") {
1421 if (IsFPConstrained)
1422 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1423 L, R, FMFSource, Name);
1424
1425 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1426 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr,
1427 FMFSource->getFastMathFlags());
1428 return Insert(I, Name);
1429 }
1430
1431 Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
1432 MDNode *FPMD = nullptr) {
1433 if (IsFPConstrained)
1434 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1435 L, R, nullptr, Name, FPMD);
1436
1437 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1438 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
1439 return Insert(I, Name);
1440 }
1441
1442 /// Copy fast-math-flags from an instruction rather than using the builder's
1443 /// default FMF.
1444 Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
1445 const Twine &Name = "") {
1446 if (IsFPConstrained)
1447 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1448 L, R, FMFSource, Name);
1449
1450 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1451 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr,
1452 FMFSource->getFastMathFlags());
1453 return Insert(I, Name);
1454 }
1455
1456 Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
1457 MDNode *FPMD = nullptr) {
1458 if (IsFPConstrained)
1459 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1460 L, R, nullptr, Name, FPMD);
1461
1462 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1463 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
1464 return Insert(I, Name);
1465 }
1466
1467 /// Copy fast-math-flags from an instruction rather than using the builder's
1468 /// default FMF.
1469 Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
1470 const Twine &Name = "") {
1471 if (IsFPConstrained)
1472 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1473 L, R, FMFSource, Name);
1474
1475 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1476 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr,
1477 FMFSource->getFastMathFlags());
1478 return Insert(I, Name);
1479 }
1480
1481 Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
1482 MDNode *FPMD = nullptr) {
1483 if (IsFPConstrained)
1484 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1485 L, R, nullptr, Name, FPMD);
1486
1487 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1488 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
1489 return Insert(I, Name);
1490 }
1491
1492 /// Copy fast-math-flags from an instruction rather than using the builder's
1493 /// default FMF.
1494 Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
1495 const Twine &Name = "") {
1496 if (IsFPConstrained)
1497 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1498 L, R, FMFSource, Name);
1499
1500 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1501 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr,
1502 FMFSource->getFastMathFlags());
1503 return Insert(I, Name);
1504 }
1505
1506 Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
1507 MDNode *FPMD = nullptr) {
1508 if (IsFPConstrained)
1509 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1510 L, R, nullptr, Name, FPMD);
1511
1512 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1513 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
1514 return Insert(I, Name);
1515 }
1516
1517 /// Copy fast-math-flags from an instruction rather than using the builder's
1518 /// default FMF.
1519 Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
1520 const Twine &Name = "") {
1521 if (IsFPConstrained)
1522 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1523 L, R, FMFSource, Name);
1524
1525 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1526 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr,
1527 FMFSource->getFastMathFlags());
1528 return Insert(I, Name);
1529 }
1530
1531 Value *CreateBinOp(Instruction::BinaryOps Opc,
1532 Value *LHS, Value *RHS, const Twine &Name = "",
1533 MDNode *FPMathTag = nullptr) {
1534 if (Value *V = foldConstant(Opc, LHS, RHS, Name)) return V;
1535 Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
1536 if (isa<FPMathOperator>(BinOp))
1537 setFPAttrs(BinOp, FPMathTag, FMF);
1538 return Insert(BinOp, Name);
1539 }
1540
1541 CallInst *CreateConstrainedFPBinOp(
1542 Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr,
1543 const Twine &Name = "", MDNode *FPMathTag = nullptr,
1544 Optional<RoundingMode> Rounding = None,
1545 Optional<fp::ExceptionBehavior> Except = None);
1546
1547 Value *CreateNeg(Value *V, const Twine &Name = "",
1548 bool HasNUW = false, bool HasNSW = false) {
1549 if (auto *VC = dyn_cast<Constant>(V))
1550 return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
1551 BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
1552 if (HasNUW) BO->setHasNoUnsignedWrap();
1553 if (HasNSW) BO->setHasNoSignedWrap();
1554 return BO;
1555 }
1556
1557 Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
1558 return CreateNeg(V, Name, false, true);
1559 }
1560
1561 Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
1562 return CreateNeg(V, Name, true, false);
1563 }
1564
1565 Value *CreateFNeg(Value *V, const Twine &Name = "",
1566 MDNode *FPMathTag = nullptr) {
1567 if (auto *VC = dyn_cast<Constant>(V))
1568 return Insert(Folder.CreateFNeg(VC), Name);
1569 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF),
1570 Name);
1571 }
1572
1573 /// Copy fast-math-flags from an instruction rather than using the builder's
1574 /// default FMF.
1575 Value *CreateFNegFMF(Value *V, Instruction *FMFSource,
1576 const Twine &Name = "") {
1577 if (auto *VC = dyn_cast<Constant>(V))
1578 return Insert(Folder.CreateFNeg(VC), Name);
1579 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr,
1580 FMFSource->getFastMathFlags()),
1581 Name);
1582 }
1583
1584 Value *CreateNot(Value *V, const Twine &Name = "") {
1585 if (auto *VC = dyn_cast<Constant>(V))
1586 return Insert(Folder.CreateNot(VC), Name);
1587 return Insert(BinaryOperator::CreateNot(V), Name);
1588 }
1589
1590 Value *CreateUnOp(Instruction::UnaryOps Opc,
1591 Value *V, const Twine &Name = "",
1592 MDNode *FPMathTag = nullptr) {
1593 if (auto *VC = dyn_cast<Constant>(V))
1594 return Insert(Folder.CreateUnOp(Opc, VC), Name);
1595 Instruction *UnOp = UnaryOperator::Create(Opc, V);
1596 if (isa<FPMathOperator>(UnOp))
1597 setFPAttrs(UnOp, FPMathTag, FMF);
1598 return Insert(UnOp, Name);
1599 }
1600
1601 /// Create either a UnaryOperator or BinaryOperator depending on \p Opc.
1602 /// Correct number of operands must be passed accordingly.
1603 Value *CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1604 const Twine &Name = "", MDNode *FPMathTag = nullptr);
1605
1606 //===--------------------------------------------------------------------===//
1607 // Instruction creation methods: Memory Instructions
1608 //===--------------------------------------------------------------------===//
1609
1610 AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
1611 Value *ArraySize = nullptr, const Twine &Name = "") {
1612 const DataLayout &DL = BB->getModule()->getDataLayout();
1613 Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1614 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1615 }
1616
1617 AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
1618 const Twine &Name = "") {
1619 const DataLayout &DL = BB->getModule()->getDataLayout();
1620 Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1621 unsigned AddrSpace = DL.getAllocaAddrSpace();
1622 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1623 }
1624
1625 /// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of
1626 /// converting the string to 'bool' for the isVolatile parameter.
1627 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) {
1628 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1629 }
1630
1631 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
1632 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1633 }
1634
1635 LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile,
1636 const Twine &Name = "") {
1637 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), isVolatile, Name);
1638 }
1639
1640 // Deprecated [opaque pointer types]
1641 LoadInst *CreateLoad(Value *Ptr, const char *Name) {
1642 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, Name);
1643 }
1644
1645 // Deprecated [opaque pointer types]
1646 LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") {
1647 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, Name);
1648 }
1649
1650 // Deprecated [opaque pointer types]
1651 LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") {
1652 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, isVolatile,
1653 Name);
1654 }
1655
1656 StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
1657 return CreateAlignedStore(Val, Ptr, MaybeAlign(), isVolatile);
1658 }
1659
1660 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const char *Name) __attribute__((deprecated("Use the version that takes NaybeAlign instead"
)))
1661 unsigned Align,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const char *Name) __attribute__((deprecated("Use the version that takes NaybeAlign instead"
)))
1662 const char *Name),LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const char *Name) __attribute__((deprecated("Use the version that takes NaybeAlign instead"
)))
1663 "Use the version that takes NaybeAlign instead")LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const char *Name) __attribute__((deprecated("Use the version that takes NaybeAlign instead"
)))
{
1664 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(Align), Name);
1665 }
1666 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1667 const char *Name) {
1668 return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1669 }
1670
1671 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1672 unsigned Align,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1673 const Twine &Name = ""),LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1674 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1675 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(Align), Name);
1676 }
1677 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1678 const Twine &Name = "") {
1679 return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1680 }
1681
1682 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
1683 unsigned Align,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
1684 bool isVolatile,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
1685 const Twine &Name = ""),LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
1686 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
{
1687 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(Align), isVolatile, Name);
1688 }
1689 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1690 bool isVolatile, const Twine &Name = "") {
1691 if (!Align) {
1692 const DataLayout &DL = BB->getModule()->getDataLayout();
1693 Align = DL.getABITypeAlign(Ty);
1694 }
1695 return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile, *Align), Name);
1696 }
1697
1698 // Deprecated [opaque pointer types]
1699 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
char *Name) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1700 unsigned Align,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
char *Name) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1701 const char *Name),LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
char *Name) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1702 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
char *Name) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1703 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1704 MaybeAlign(Align), Name);
1705 }
1706 // Deprecated [opaque pointer types]
1707 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1708 unsigned Align,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1709 const Twine &Name = ""),LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1710 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1711 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1712 MaybeAlign(Align), Name);
1713 }
1714 // Deprecated [opaque pointer types]
1715 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1716 unsigned Align,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1717 bool isVolatile,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1718 const Twine &Name = ""),LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1719 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1720 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1721 MaybeAlign(Align), isVolatile, Name);
1722 }
1723 // Deprecated [opaque pointer types]
1724 LoadInst *CreateAlignedLoad(Value *Ptr, MaybeAlign Align, const char *Name) {
1725 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1726 Align, Name);
1727 }
1728 // Deprecated [opaque pointer types]
1729 LoadInst *CreateAlignedLoad(Value *Ptr, MaybeAlign Align,
1730 const Twine &Name = "") {
1731 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1732 Align, Name);
1733 }
1734 // Deprecated [opaque pointer types]
1735 LoadInst *CreateAlignedLoad(Value *Ptr, MaybeAlign Align, bool isVolatile,
1736 const Twine &Name = "") {
1737 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1738 Align, isVolatile, Name);
1739 }
1740
1741 LLVM_ATTRIBUTE_DEPRECATED(StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned
Align, bool isVolatile = false) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1742 StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align,StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned
Align, bool isVolatile = false) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1743 bool isVolatile = false),StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned
Align, bool isVolatile = false) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1744 "Use the version that takes MaybeAlign instead")StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned
Align, bool isVolatile = false) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1745 return CreateAlignedStore(Val, Ptr, MaybeAlign(Align), isVolatile);
1746 }
1747 StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align,
1748 bool isVolatile = false) {
1749 if (!Align) {
1750 const DataLayout &DL = BB->getModule()->getDataLayout();
1751 Align = DL.getABITypeAlign(Val->getType());
1752 }
1753 return Insert(new StoreInst(Val, Ptr, isVolatile, *Align));
1754 }
1755 FenceInst *CreateFence(AtomicOrdering Ordering,
1756 SyncScope::ID SSID = SyncScope::System,
1757 const Twine &Name = "") {
1758 return Insert(new FenceInst(Context, Ordering, SSID), Name);
1759 }
1760
1761 AtomicCmpXchgInst *CreateAtomicCmpXchg(
1762 Value *Ptr, Value *Cmp, Value *New, AtomicOrdering SuccessOrdering,
1763 AtomicOrdering FailureOrdering, SyncScope::ID SSID = SyncScope::System) {
1764 const DataLayout &DL = BB->getModule()->getDataLayout();
1765 Align Alignment(DL.getTypeStoreSize(New->getType()));
1766 return Insert(new AtomicCmpXchgInst(
1767 Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID));
1768 }
1769
1770 AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val,
1771 AtomicOrdering Ordering,
1772 SyncScope::ID SSID = SyncScope::System) {
1773 const DataLayout &DL = BB->getModule()->getDataLayout();
1774 Align Alignment(DL.getTypeStoreSize(Val->getType()));
1775 return Insert(new AtomicRMWInst(Op, Ptr, Val, Alignment, Ordering, SSID));
1776 }
1777
1778 Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,
1779 const Twine &Name = "") {
1780 return CreateGEP(nullptr, Ptr, IdxList, Name);
1781 }
1782
1783 Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1784 const Twine &Name = "") {
1785 if (auto *PC = dyn_cast<Constant>(Ptr)) {
1786 // Every index must be constant.
1787 size_t i, e;
1788 for (i = 0, e = IdxList.size(); i != e; ++i)
1789 if (!isa<Constant>(IdxList[i]))
1790 break;
1791 if (i == e)
1792 return Insert(Folder.CreateGetElementPtr(Ty, PC, IdxList), Name);
1793 }
1794 return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name);
1795 }
1796
1797 Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
1798 const Twine &Name = "") {
1799 return CreateInBoundsGEP(nullptr, Ptr, IdxList, Name);
1800 }
1801
1802 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1803 const Twine &Name = "") {
1804 if (auto *PC = dyn_cast<Constant>(Ptr)) {
1805 // Every index must be constant.
1806 size_t i, e;
1807 for (i = 0, e = IdxList.size(); i != e; ++i)
1808 if (!isa<Constant>(IdxList[i]))
1809 break;
1810 if (i == e)
1811 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IdxList),
1812 Name);
1813 }
1814 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name);
1815 }
1816
1817 Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
1818 return CreateGEP(nullptr, Ptr, Idx, Name);
1819 }
1820
1821 Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") {
1822 if (auto *PC = dyn_cast<Constant>(Ptr))
1823 if (auto *IC = dyn_cast<Constant>(Idx))
1824 return Insert(Folder.CreateGetElementPtr(Ty, PC, IC), Name);
1825 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1826 }
1827
1828 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx,
1829 const Twine &Name = "") {
1830 if (auto *PC = dyn_cast<Constant>(Ptr))
1831 if (auto *IC = dyn_cast<Constant>(Idx))
1832 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IC), Name);
1833 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1834 }
1835
1836 Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") {
1837 return CreateConstGEP1_32(nullptr, Ptr, Idx0, Name);
1838 }
1839
1840 Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1841 const Twine &Name = "") {
1842 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1843
1844 if (auto *PC = dyn_cast<Constant>(Ptr))
1845 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);
1846
1847 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1848 }
1849
1850 Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1851 const Twine &Name = "") {
1852 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1853
1854 if (auto *PC = dyn_cast<Constant>(Ptr))
1855 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);
1856
1857 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1858 }
1859
1860 Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
1861 const Twine &Name = "") {
1862 Value *Idxs[] = {
1863 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1864 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1865 };
1866
1867 if (auto *PC = dyn_cast<Constant>(Ptr))
1868 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);
1869
1870 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1871 }
1872
1873 Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
1874 unsigned Idx1, const Twine &Name = "") {
1875 Value *Idxs[] = {
1876 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1877 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1878 };
1879
1880 if (auto *PC = dyn_cast<Constant>(Ptr))
1881 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);
1882
1883 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1884 }
1885
1886 Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1887 const Twine &Name = "") {
1888 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1889
1890 if (auto *PC = dyn_cast<Constant>(Ptr))
1891 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);
1892
1893 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1894 }
1895
1896 Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") {
1897 return CreateConstGEP1_64(nullptr, Ptr, Idx0, Name);
1898 }
1899
1900 Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1901 const Twine &Name = "") {
1902 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1903
1904 if (auto *PC = dyn_cast<Constant>(Ptr))
1905 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);
1906
1907 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1908 }
1909
1910 Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,
1911 const Twine &Name = "") {
1912 return CreateConstInBoundsGEP1_64(nullptr, Ptr, Idx0, Name);
1913 }
1914
1915 Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1916 const Twine &Name = "") {
1917 Value *Idxs[] = {
1918 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1919 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1920 };
1921
1922 if (auto *PC = dyn_cast<Constant>(Ptr))
32
Assuming 'PC' is null
33
Taking false branch
1923 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);
1924
1925 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
34
Passing null pointer value via 2nd parameter 'Ptr'
35
Calling 'GetElementPtrInst::Create'
1926 }
1927
1928 Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1929 const Twine &Name = "") {
1930 return CreateConstGEP2_64(nullptr, Ptr, Idx0, Idx1, Name);
1931 }
1932
1933 Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1934 uint64_t Idx1, const Twine &Name = "") {
1935 Value *Idxs[] = {
1936 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1937 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1938 };
1939
1940 if (auto *PC = dyn_cast<Constant>(Ptr))
1941 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);
1942
1943 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1944 }
1945
1946 Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1947 const Twine &Name = "") {
1948 return CreateConstInBoundsGEP2_64(nullptr, Ptr, Idx0, Idx1, Name);
1949 }
1950
1951 Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
1952 const Twine &Name = "") {
1953 return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
1954 }
1955
1956 Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") {
1957 return CreateConstInBoundsGEP2_32(nullptr, Ptr, 0, Idx, Name);
1958 }
1959
1960 /// Same as CreateGlobalString, but return a pointer with "i8*" type
1961 /// instead of a pointer to array of i8.
1962 ///
1963 /// If no module is given via \p M, it is take from the insertion point basic
1964 /// block.
1965 Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
1966 unsigned AddressSpace = 0,
1967 Module *M = nullptr) {
1968 GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace, M);
1969 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1970 Constant *Indices[] = {Zero, Zero};
1971 return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
1972 Indices);
1973 }
1974
1975 //===--------------------------------------------------------------------===//
1976 // Instruction creation methods: Cast/Conversion Operators
1977 //===--------------------------------------------------------------------===//
1978
1979 Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
1980 return CreateCast(Instruction::Trunc, V, DestTy, Name);
1981 }
1982
1983 Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
1984 return CreateCast(Instruction::ZExt, V, DestTy, Name);
1985 }
1986
1987 Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
1988 return CreateCast(Instruction::SExt, V, DestTy, Name);
1989 }
1990
1991 /// Create a ZExt or Trunc from the integer value V to DestTy. Return
1992 /// the value untouched if the type of V is already DestTy.
1993 Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
1994 const Twine &Name = "") {
1995 assert(V->getType()->isIntOrIntVectorTy() &&((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1997, __PRETTY_FUNCTION__))
1996 DestTy->isIntOrIntVectorTy() &&((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1997, __PRETTY_FUNCTION__))
1997 "Can only zero extend/truncate integers!")((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 1997, __PRETTY_FUNCTION__))
;
1998 Type *VTy = V->getType();
1999 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
2000 return CreateZExt(V, DestTy, Name);
2001 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
2002 return CreateTrunc(V, DestTy, Name);
2003 return V;
2004 }
2005
2006 /// Create a SExt or Trunc from the integer value V to DestTy. Return
2007 /// the value untouched if the type of V is already DestTy.
2008 Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
2009 const Twine &Name = "") {
2010 assert(V->getType()->isIntOrIntVectorTy() &&((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 2012, __PRETTY_FUNCTION__))
2011 DestTy->isIntOrIntVectorTy() &&((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 2012, __PRETTY_FUNCTION__))
2012 "Can only sign extend/truncate integers!")((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/IRBuilder.h"
, 2012, __PRETTY_FUNCTION__))
;
2013 Type *VTy = V->getType();
2014 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
2015 return CreateSExt(V, DestTy, Name);
2016 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
2017 return CreateTrunc(V, DestTy, Name);
2018 return V;
2019 }
2020
2021 Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") {
2022 if (IsFPConstrained)
2023 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui,
2024 V, DestTy, nullptr, Name);
2025 return CreateCast(Instruction::FPToUI, V, DestTy, Name);
2026 }
2027
2028 Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") {
2029 if (IsFPConstrained)
2030 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi,
2031 V, DestTy, nullptr, Name);
2032 return CreateCast(Instruction::FPToSI, V, DestTy, Name);
2033 }
2034
2035 Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
2036 if (IsFPConstrained)
2037 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp,
2038 V, DestTy, nullptr, Name);
2039 return CreateCast(Instruction::UIToFP, V, DestTy, Name);
2040 }
2041
2042 Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
2043 if (IsFPConstrained)
2044 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp,
2045 V, DestTy, nullptr, Name);
2046 return CreateCast(Instruction::SIToFP, V, DestTy, Name);
2047 }
2048
2049 Value *CreateFPTrunc(Value *V, Type *DestTy,
2050 const Twine &Name = "") {
2051 if (IsFPConstrained)
2052 return CreateConstrainedFPCast(
2053 Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr,
2054 Name);
2055 return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
2056 }
2057
2058 Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
2059 if (IsFPConstrained)
2060 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext,
2061 V, DestTy, nullptr, Name);
2062 return CreateCast(Instruction::FPExt, V, DestTy, Name);
2063 }
2064
2065 Value *CreatePtrToInt(Value *V, Type *DestTy,
2066 const Twine &Name = "") {
2067 return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
2068 }
2069
2070 Value *CreateIntToPtr(Value *V, Type *DestTy,
2071 const Twine &Name = "") {
2072 return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
2073 }
2074
2075 Value *CreateBitCast(Value *V, Type *DestTy,
2076 const Twine &Name = "") {
2077 return CreateCast(Instruction::BitCast, V, DestTy, Name);
2078 }
2079
2080 Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
2081 const Twine &Name = "") {
2082 return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
2083 }
2084
2085 Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
2086 const Twine &Name = "") {
2087 if (V->getType() == DestTy)
2088 return V;
2089 if (auto *VC = dyn_cast<Constant>(V))
2090 return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
2091 return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
2092 }
2093
2094 Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
2095 const Twine &Name = "") {
2096 if (V->getType() == DestTy)
2097 return V;
2098 if (auto *VC = dyn_cast<Constant>(V))
2099 return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
2100 return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
2101 }
2102
2103 Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
2104 const Twine &Name = "") {
2105 if (V->getType() == DestTy)
2106 return V;
2107 if (auto *VC = dyn_cast<Constant>(V))
2108 return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
2109 return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
2110 }
2111
2112 Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
2113 const Twine &Name = "") {
2114 if (V->getType() == DestTy)
2115 return V;
2116 if (auto *VC = dyn_cast<Constant>(V))
2117 return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
2118 return Insert(CastInst::Create(Op, V, DestTy), Name);
2119 }
2120
2121 Value *CreatePointerCast(Value *V, Type *DestTy,
2122 const Twine &Name = "") {
2123 if (V->getType() == DestTy)
2124 return V;
2125 if (auto *VC = dyn_cast<Constant>(V))
2126 return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
2127 return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
2128 }
2129
2130 Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
2131 const Twine &Name = "") {
2132 if (V->getType() == DestTy)
2133 return V;
2134
2135 if (auto *VC = dyn_cast<Constant>(V)) {
2136 return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
2137 Name);
2138 }
2139
2140 return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
2141 Name);
2142 }
2143
2144 Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
2145 const Twine &Name = "") {
2146 if (V->getType() == DestTy)
2147 return V;
2148 if (auto *VC = dyn_cast<Constant>(V))
2149 return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
2150 return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
2151 }
2152
2153 Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
2154 const Twine &Name = "") {
2155 if (V->getType() == DestTy)
2156 return V;
2157 if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
2158 return CreatePtrToInt(V, DestTy, Name);
2159 if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
2160 return CreateIntToPtr(V, DestTy, Name);
2161
2162 return CreateBitCast(V, DestTy, Name);
2163 }
2164
2165 Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
2166 if (V->getType() == DestTy)
2167 return V;
2168 if (auto *VC = dyn_cast<Constant>(V))
2169 return Insert(Folder.CreateFPCast(VC, DestTy), Name);
2170 return Insert(CastInst::CreateFPCast(V, DestTy), Name);
2171 }
2172
2173 CallInst *CreateConstrainedFPCast(
2174 Intrinsic::ID ID, Value *V, Type *DestTy,
2175 Instruction *FMFSource = nullptr, const Twine &Name = "",
2176 MDNode *FPMathTag = nullptr,
2177 Optional<RoundingMode> Rounding = None,
2178 Optional<fp::ExceptionBehavior> Except = None);
2179
2180 // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
2181 // compile time error, instead of converting the string to bool for the
2182 // isSigned parameter.
2183 Value *CreateIntCast(Value *, Type *, const char *) = delete;
2184
2185 //===--------------------------------------------------------------------===//
2186 // Instruction creation methods: Compare Instructions
2187 //===--------------------------------------------------------------------===//
2188
2189 Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
2190 return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
2191 }
2192
2193 Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
2194 return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
2195 }
2196
2197 Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2198 return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
2199 }
2200
2201 Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2202 return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
2203 }
2204
2205 Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
2206 return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
2207 }
2208
2209 Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
2210 return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
2211 }
2212
2213 Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2214 return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
2215 }
2216
2217 Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2218 return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
2219 }
2220
2221 Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
2222 return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
2223 }
2224
2225 Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
2226 return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
2227 }
2228
2229 Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2230 MDNode *FPMathTag = nullptr) {
2231 return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
2232 }
2233
2234 Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
2235 MDNode *FPMathTag = nullptr) {
2236 return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
2237 }
2238
2239 Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
2240 MDNode *FPMathTag = nullptr) {
2241 return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
2242 }
2243
2244 Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
2245 MDNode *FPMathTag = nullptr) {
2246 return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
2247 }
2248
2249 Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
2250 MDNode *FPMathTag = nullptr) {
2251 return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
2252 }
2253
2254 Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
2255 MDNode *FPMathTag = nullptr) {
2256 return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
2257 }
2258
2259 Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
2260 MDNode *FPMathTag = nullptr) {
2261 return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
2262 }
2263
2264 Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
2265 MDNode *FPMathTag = nullptr) {
2266 return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
2267 }
2268
2269 Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2270 MDNode *FPMathTag = nullptr) {
2271 return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
2272 }
2273
2274 Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
2275 MDNode *FPMathTag = nullptr) {
2276 return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
2277 }
2278
2279 Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
2280 MDNode *FPMathTag = nullptr) {
2281 return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
2282 }
2283
2284 Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
2285 MDNode *FPMathTag = nullptr) {
2286 return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
2287 }
2288
2289 Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
2290 MDNode *FPMathTag = nullptr) {
2291 return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
2292 }
2293
2294 Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
2295 MDNode *FPMathTag = nullptr) {
2296 return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
2297 }
2298
2299 Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2300 const Twine &Name = "") {
2301 if (auto *LC = dyn_cast<Constant>(LHS))
2302 if (auto *RC = dyn_cast<Constant>(RHS))
2303 return Insert(Folder.CreateICmp(P, LC, RC), Name);
2304 return Insert(new ICmpInst(P, LHS, RHS), Name);
2305 }
2306
2307 // Create a quiet floating-point comparison (i.e. one that raises an FP
2308 // exception only in the case where an input is a signaling NaN).
2309 // Note that this differs from CreateFCmpS only if IsFPConstrained is true.
2310 Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2311 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2312 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false);
2313 }
2314
2315 Value *CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2316 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2317 return CmpInst::isFPPredicate(Pred)
2318 ? CreateFCmp(Pred, LHS, RHS, Name, FPMathTag)
2319 : CreateICmp(Pred, LHS, RHS, Name);
2320 }
2321
2322 // Create a signaling floating-point comparison (i.e. one that raises an FP
2323 // exception whenever an input is any NaN, signaling or quiet).
2324 // Note that this differs from CreateFCmp only if IsFPConstrained is true.
2325 Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS,
2326 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2327 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true);
2328 }
2329
2330private:
2331 // Helper routine to create either a signaling or a quiet FP comparison.
2332 Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS,
2333 const Twine &Name, MDNode *FPMathTag,
2334 bool IsSignaling);
2335
2336public:
2337 CallInst *CreateConstrainedFPCmp(
2338 Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
2339 const Twine &Name = "", Optional<fp::ExceptionBehavior> Except = None);
2340
2341 //===--------------------------------------------------------------------===//
2342 // Instruction creation methods: Other Instructions
2343 //===--------------------------------------------------------------------===//
2344
2345 PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
2346 const Twine &Name = "") {
2347 PHINode *Phi = PHINode::Create(Ty, NumReservedValues);
2348 if (isa<FPMathOperator>(Phi))
2349 setFPAttrs(Phi, nullptr /* MDNode* */, FMF);
2350 return Insert(Phi, Name);
2351 }
2352
2353 CallInst *CreateCall(FunctionType *FTy, Value *Callee,
2354 ArrayRef<Value *> Args = None, const Twine &Name = "",
2355 MDNode *FPMathTag = nullptr) {
2356 CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles);
2357 if (IsFPConstrained)
2358 setConstrainedFPCallAttr(CI);
2359 if (isa<FPMathOperator>(CI))
2360 setFPAttrs(CI, FPMathTag, FMF);
2361 return Insert(CI, Name);
2362 }
2363
2364 CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args,
2365 ArrayRef<OperandBundleDef> OpBundles,
2366 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2367 CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles);
2368 if (IsFPConstrained)
2369 setConstrainedFPCallAttr(CI);
2370 if (isa<FPMathOperator>(CI))
2371 setFPAttrs(CI, FPMathTag, FMF);
2372 return Insert(CI, Name);
2373 }
2374
2375 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args = None,
2376 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2377 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name,
2378 FPMathTag);
2379 }
2380
2381 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args,
2382 ArrayRef<OperandBundleDef> OpBundles,
2383 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2384 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args,
2385 OpBundles, Name, FPMathTag);
2386 }
2387
2388 CallInst *CreateConstrainedFPCall(
2389 Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "",
2390 Optional<RoundingMode> Rounding = None,
2391 Optional<fp::ExceptionBehavior> Except = None);
2392
2393 Value *CreateSelect(Value *C, Value *True, Value *False,
2394 const Twine &Name = "", Instruction *MDFrom = nullptr);
2395
2396 VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
2397 return Insert(new VAArgInst(List, Ty), Name);
2398 }
2399
2400 Value *CreateExtractElement(Value *Vec, Value *Idx,
2401 const Twine &Name = "") {
2402 if (auto *VC = dyn_cast<Constant>(Vec))
2403 if (auto *IC = dyn_cast<Constant>(Idx))
2404 return Insert(Folder.CreateExtractElement(VC, IC), Name);
2405 return Insert(ExtractElementInst::Create(Vec, Idx), Name);
2406 }
2407
2408 Value *CreateExtractElement(Value *Vec, uint64_t Idx,
2409 const Twine &Name = "") {
2410 return CreateExtractElement(Vec, getInt64(Idx), Name);
2411 }
2412
2413 Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
2414 const Twine &Name = "") {
2415 if (auto *VC = dyn_cast<Constant>(Vec))
2416 if (auto *NC = dyn_cast<Constant>(NewElt))
2417 if (auto *IC = dyn_cast<Constant>(Idx))
2418 return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
2419 return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
2420 }
2421
2422 Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
2423 const Twine &Name = "") {
2424 return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
2425 }
2426
2427 Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
2428 const Twine &Name = "") {
2429 SmallVector<int, 16> IntMask;
2430 ShuffleVectorInst::getShuffleMask(cast<Constant>(Mask), IntMask);
2431 return CreateShuffleVector(V1, V2, IntMask, Name);
2432 }
2433
2434 LLVM_ATTRIBUTE_DEPRECATED(Value *CreateShuffleVector(Value *V1, Value *V2,Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<
uint32_t> Mask, const Twine &Name = "") __attribute__(
(deprecated("Pass indices as 'int' instead")))
2435 ArrayRef<uint32_t> Mask,Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<
uint32_t> Mask, const Twine &Name = "") __attribute__(
(deprecated("Pass indices as 'int' instead")))
2436 const Twine &Name = ""),Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<
uint32_t> Mask, const Twine &Name = "") __attribute__(
(deprecated("Pass indices as 'int' instead")))
2437 "Pass indices as 'int' instead")Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<
uint32_t> Mask, const Twine &Name = "") __attribute__(
(deprecated("Pass indices as 'int' instead")))
{
2438 SmallVector<int, 16> IntMask;
2439 IntMask.assign(Mask.begin(), Mask.end());
2440 return CreateShuffleVector(V1, V2, IntMask, Name);
2441 }
2442
2443 /// See class ShuffleVectorInst for a description of the mask representation.
2444 Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask,
2445 const Twine &Name = "") {
2446 if (auto *V1C = dyn_cast<Constant>(V1))
2447 if (auto *V2C = dyn_cast<Constant>(V2))
2448 return Insert(Folder.CreateShuffleVector(V1C, V2C, Mask), Name);
2449 return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
2450 }
2451
2452 /// Create a unary shuffle. The second vector operand of the IR instruction
2453 /// is undefined.
2454 Value *CreateShuffleVector(Value *V, ArrayRef<int> Mask,
2455 const Twine &Name = "") {
2456 return CreateShuffleVector(V, UndefValue::get(V->getType()), Mask, Name);
2457 }
2458
2459 Value *CreateExtractValue(Value *Agg,
2460 ArrayRef<unsigned> Idxs,
2461 const Twine &Name = "") {
2462 if (auto *AggC = dyn_cast<Constant>(Agg))
2463 return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
2464 return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
2465 }
2466
2467 Value *CreateInsertValue(Value *Agg, Value *Val,
2468 ArrayRef<unsigned> Idxs,
2469 const Twine &Name = "") {
2470 if (auto *AggC = dyn_cast<Constant>(Agg))
2471 if (auto *ValC = dyn_cast<Constant>(Val))
2472 return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
2473 return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
2474 }
2475
2476 LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
2477 const Twine &Name = "") {
2478 return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
2479 }
2480
2481 Value *CreateFreeze(Value *V, const Twine &Name = "") {
2482 return Insert(new FreezeInst(V), Name);
2483 }
2484
2485 //===--------------------------------------------------------------------===//
2486 // Utility creation methods
2487 //===--------------------------------------------------------------------===//
2488
2489 /// Return an i1 value testing if \p Arg is null.
2490 Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
2491 return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
2492 Name);
2493 }
2494
2495 /// Return an i1 value testing if \p Arg is not null.
2496 Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
2497 return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
2498 Name);
2499 }
2500
2501 /// Return the i64 difference between two pointer values, dividing out
2502 /// the size of the pointed-to objects.
2503 ///
2504 /// This is intended to implement C-style pointer subtraction. As such, the
2505 /// pointers must be appropriately aligned for their element types and
2506 /// pointing into the same object.
2507 Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "");
2508
2509 /// Create a launder.invariant.group intrinsic call. If Ptr type is
2510 /// different from pointer to i8, it's casted to pointer to i8 in the same
2511 /// address space before call and casted back to Ptr type after call.
2512 Value *CreateLaunderInvariantGroup(Value *Ptr);
2513
2514 /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is
2515 /// different from pointer to i8, it's casted to pointer to i8 in the same
2516 /// address space before call and casted back to Ptr type after call.
2517 Value *CreateStripInvariantGroup(Value *Ptr);
2518
2519 /// Return a vector value that contains \arg V broadcasted to \p
2520 /// NumElts elements.
2521 Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "");
2522
2523 /// Return a vector value that contains \arg V broadcasted to \p
2524 /// EC elements.
2525 Value *CreateVectorSplat(ElementCount EC, Value *V, const Twine &Name = "");
2526
2527 /// Return a value that has been extracted from a larger integer type.
2528 Value *CreateExtractInteger(const DataLayout &DL, Value *From,
2529 IntegerType *ExtractedTy, uint64_t Offset,
2530 const Twine &Name);
2531
2532 Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base,
2533 unsigned Dimension, unsigned LastIndex,
2534 MDNode *DbgInfo);
2535
2536 Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex,
2537 MDNode *DbgInfo);
2538
2539 Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base,
2540 unsigned Index, unsigned FieldIndex,
2541 MDNode *DbgInfo);
2542
2543private:
2544 /// Helper function that creates an assume intrinsic call that
2545 /// represents an alignment assumption on the provided pointer \p PtrValue
2546 /// with offset \p OffsetValue and alignment value \p AlignValue.
2547 CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL,
2548 Value *PtrValue, Value *AlignValue,
2549 Value *OffsetValue);
2550
2551public:
2552 /// Create an assume intrinsic call that represents an alignment
2553 /// assumption on the provided pointer.
2554 ///
2555 /// An optional offset can be provided, and if it is provided, the offset
2556 /// must be subtracted from the provided pointer to get the pointer with the
2557 /// specified alignment.
2558 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2559 unsigned Alignment,
2560 Value *OffsetValue = nullptr);
2561
2562 /// Create an assume intrinsic call that represents an alignment
2563 /// assumption on the provided pointer.
2564 ///
2565 /// An optional offset can be provided, and if it is provided, the offset
2566 /// must be subtracted from the provided pointer to get the pointer with the
2567 /// specified alignment.
2568 ///
2569 /// This overload handles the condition where the Alignment is dependent
2570 /// on an existing value rather than a static value.
2571 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2572 Value *Alignment,
2573 Value *OffsetValue = nullptr);
2574};
2575
2576/// This provides a uniform API for creating instructions and inserting
2577/// them into a basic block: either at the end of a BasicBlock, or at a specific
2578/// iterator location in a block.
2579///
2580/// Note that the builder does not expose the full generality of LLVM
2581/// instructions. For access to extra instruction properties, use the mutators
2582/// (e.g. setVolatile) on the instructions after they have been
2583/// created. Convenience state exists to specify fast-math flags and fp-math
2584/// tags.
2585///
2586/// The first template argument specifies a class to use for creating constants.
2587/// This defaults to creating minimally folded constants. The second template
2588/// argument allows clients to specify custom insertion hooks that are called on
2589/// every newly created insertion.
2590template <typename FolderTy = ConstantFolder,
2591 typename InserterTy = IRBuilderDefaultInserter>
2592class IRBuilder : public IRBuilderBase {
2593private:
2594 FolderTy Folder;
2595 InserterTy Inserter;
2596
2597public:
2598 IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(),
2599 MDNode *FPMathTag = nullptr,
2600 ArrayRef<OperandBundleDef> OpBundles = None)
2601 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles),
2602 Folder(Folder), Inserter(Inserter) {}
2603
2604 explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
2605 ArrayRef<OperandBundleDef> OpBundles = None)
2606 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {}
2607
2608 explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder,
2609 MDNode *FPMathTag = nullptr,
2610 ArrayRef<OperandBundleDef> OpBundles = None)
2611 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2612 FPMathTag, OpBundles), Folder(Folder) {
2613 SetInsertPoint(TheBB);
2614 }
2615
2616 explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
2617 ArrayRef<OperandBundleDef> OpBundles = None)
2618 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2619 FPMathTag, OpBundles) {
2620 SetInsertPoint(TheBB);
2621 }
2622
2623 explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
2624 ArrayRef<OperandBundleDef> OpBundles = None)
2625 : IRBuilderBase(IP->getContext(), this->Folder, this->Inserter,
2626 FPMathTag, OpBundles) {
2627 SetInsertPoint(IP);
2628 }
2629
2630 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder,
2631 MDNode *FPMathTag = nullptr,
2632 ArrayRef<OperandBundleDef> OpBundles = None)
2633 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2634 FPMathTag, OpBundles), Folder(Folder) {
2635 SetInsertPoint(TheBB, IP);
2636 }
2637
2638 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
2639 MDNode *FPMathTag = nullptr,
2640 ArrayRef<OperandBundleDef> OpBundles = None)
2641 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2642 FPMathTag, OpBundles) {
2643 SetInsertPoint(TheBB, IP);
2644 }
2645
2646 /// Avoid copying the full IRBuilder. Prefer using InsertPointGuard
2647 /// or FastMathFlagGuard instead.
2648 IRBuilder(const IRBuilder &) = delete;
2649
2650 InserterTy &getInserter() { return Inserter; }
2651};
2652
2653// Create wrappers for C Binding types (see CBindingWrapping.h).
2654DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)inline IRBuilder<> *unwrap(LLVMBuilderRef P) { return reinterpret_cast
<IRBuilder<>*>(P); } inline LLVMBuilderRef wrap(const
IRBuilder<> *P) { return reinterpret_cast<LLVMBuilderRef
>(const_cast<IRBuilder<>*>(P)); }
2655
2656} // end namespace llvm
2657
2658#endif // LLVM_IR_IRBUILDER_H

/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/OperandTraits.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <iterator>
48
49namespace llvm {
50
51class APInt;
52class ConstantInt;
53class DataLayout;
54class LLVMContext;
55
56//===----------------------------------------------------------------------===//
57// AllocaInst Class
58//===----------------------------------------------------------------------===//
59
60/// an instruction to allocate memory on the stack
61class AllocaInst : public UnaryInstruction {
62 Type *AllocatedType;
63
64 using AlignmentField = AlignmentBitfieldElementT<0>;
65 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68 SwiftErrorField>(),
69 "Bitfields must be contiguous");
70
71protected:
72 // Note: Instruction needs to be a friend here to call cloneImpl.
73 friend class Instruction;
74
75 AllocaInst *cloneImpl() const;
76
77public:
78 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79 const Twine &Name, Instruction *InsertBefore);
80 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81 const Twine &Name, BasicBlock *InsertAtEnd);
82
83 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84 Instruction *InsertBefore);
85 AllocaInst(Type *Ty, unsigned AddrSpace,
86 const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 /// Return true if there is an allocation size parameter to the allocation
94 /// instruction that is not 1.
95 bool isArrayAllocation() const;
96
97 /// Get the number of elements allocated. For a simple allocation of a single
98 /// element, this will return a constant 1 value.
99 const Value *getArraySize() const { return getOperand(0); }
100 Value *getArraySize() { return getOperand(0); }
101
102 /// Overload to return most specific pointer type.
103 PointerType *getType() const {
104 return cast<PointerType>(Instruction::getType());
105 }
106
107 /// Get allocation size in bits. Returns None if size can't be determined,
108 /// e.g. in case of a VLA.
109 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
110
111 /// Return the type that is being allocated by the instruction.
112 Type *getAllocatedType() const { return AllocatedType; }
113 /// for use only in special circumstances that need to generically
114 /// transform a whole instruction (eg: IR linking and vectorization).
115 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116
117 /// Return the alignment of the memory that is being allocated by the
118 /// instruction.
119 Align getAlign() const {
120 return Align(1ULL << getSubclassData<AlignmentField>());
121 }
122
123 void setAlignment(Align Align) {
124 setSubclassData<AlignmentField>(Log2(Align));
125 }
126
127 // FIXME: Remove this one transition to Align is over.
128 unsigned getAlignment() const { return getAlign().value(); }
129
130 /// Return true if this alloca is in the entry block of the function and is a
131 /// constant size. If so, the code generator will fold it into the
132 /// prolog/epilog code, so it is basically free.
133 bool isStaticAlloca() const;
134
135 /// Return true if this alloca is used as an inalloca argument to a call. Such
136 /// allocas are never considered static even if they are in the entry block.
137 bool isUsedWithInAlloca() const {
138 return getSubclassData<UsedWithInAllocaField>();
139 }
140
141 /// Specify whether this alloca is used to represent the arguments to a call.
142 void setUsedWithInAlloca(bool V) {
143 setSubclassData<UsedWithInAllocaField>(V);
144 }
145
146 /// Return true if this alloca is used as a swifterror argument to a call.
147 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148 /// Specify whether this alloca is used to represent a swifterror.
149 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 template <typename Bitfield>
163 void setSubclassData(typename Bitfield::Type Value) {
164 Instruction::setSubclassData<Bitfield>(Value);
165 }
166};
167
168//===----------------------------------------------------------------------===//
169// LoadInst Class
170//===----------------------------------------------------------------------===//
171
172/// An instruction for reading from memory. This uses the SubclassData field in
173/// Value to store whether or not the load is volatile.
174class LoadInst : public UnaryInstruction {
175 using VolatileField = BoolBitfieldElementT<0>;
176 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178 static_assert(
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
181
182 void AssertOK();
183
184protected:
185 // Note: Instruction needs to be a friend here to call cloneImpl.
186 friend class Instruction;
187
188 LoadInst *cloneImpl() const;
189
190public:
191 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192 Instruction *InsertBefore);
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 BasicBlock *InsertAtEnd);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 Align Align, Instruction *InsertBefore = nullptr);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, BasicBlock *InsertAtEnd);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, AtomicOrdering Order,
204 SyncScope::ID SSID = SyncScope::System,
205 Instruction *InsertBefore = nullptr);
206 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208 BasicBlock *InsertAtEnd);
209
210 /// Return true if this is a load from a volatile memory location.
211 bool isVolatile() const { return getSubclassData<VolatileField>(); }
212
213 /// Specify whether this is a volatile load or not.
214 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215
216 /// Return the alignment of the access that is being performed.
217 /// FIXME: Remove this function once transition to Align is over.
218 /// Use getAlign() instead.
219 unsigned getAlignment() const { return getAlign().value(); }
220
221 /// Return the alignment of the access that is being performed.
222 Align getAlign() const {
223 return Align(1ULL << (getSubclassData<AlignmentField>()));
224 }
225
226 void setAlignment(Align Align) {
227 setSubclassData<AlignmentField>(Log2(Align));
228 }
229
230 /// Returns the ordering constraint of this load instruction.
231 AtomicOrdering getOrdering() const {
232 return getSubclassData<OrderingField>();
233 }
234 /// Sets the ordering constraint of this load instruction. May not be Release
235 /// or AcquireRelease.
236 void setOrdering(AtomicOrdering Ordering) {
237 setSubclassData<OrderingField>(Ordering);
238 }
239
240 /// Returns the synchronization scope ID of this load instruction.
241 SyncScope::ID getSyncScopeID() const {
242 return SSID;
243 }
244
245 /// Sets the synchronization scope ID of this load instruction.
246 void setSyncScopeID(SyncScope::ID SSID) {
247 this->SSID = SSID;
248 }
249
250 /// Sets the ordering constraint and the synchronization scope ID of this load
251 /// instruction.
252 void setAtomic(AtomicOrdering Ordering,
253 SyncScope::ID SSID = SyncScope::System) {
254 setOrdering(Ordering);
255 setSyncScopeID(SSID);
256 }
257
258 bool isSimple() const { return !isAtomic() && !isVolatile(); }
259
260 bool isUnordered() const {
261 return (getOrdering() == AtomicOrdering::NotAtomic ||
262 getOrdering() == AtomicOrdering::Unordered) &&
263 !isVolatile();
264 }
265
266 Value *getPointerOperand() { return getOperand(0); }
267 const Value *getPointerOperand() const { return getOperand(0); }
268 static unsigned getPointerOperandIndex() { return 0U; }
269 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270
271 /// Returns the address space of the pointer operand.
272 unsigned getPointerAddressSpace() const {
273 return getPointerOperandType()->getPointerAddressSpace();
274 }
275
276 // Methods for support type inquiry through isa, cast, and dyn_cast:
277 static bool classof(const Instruction *I) {
278 return I->getOpcode() == Instruction::Load;
279 }
280 static bool classof(const Value *V) {
281 return isa<Instruction>(V) && classof(cast<Instruction>(V));
282 }
283
284private:
285 // Shadow Instruction::setInstructionSubclassData with a private forwarding
286 // method so that subclasses cannot accidentally use it.
287 template <typename Bitfield>
288 void setSubclassData(typename Bitfield::Type Value) {
289 Instruction::setSubclassData<Bitfield>(Value);
290 }
291
292 /// The synchronization scope ID of this load instruction. Not quite enough
293 /// room in SubClassData for everything, so synchronization scope ID gets its
294 /// own field.
295 SyncScope::ID SSID;
296};
297
298//===----------------------------------------------------------------------===//
299// StoreInst Class
300//===----------------------------------------------------------------------===//
301
302/// An instruction for storing to memory.
303class StoreInst : public Instruction {
304 using VolatileField = BoolBitfieldElementT<0>;
305 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307 static_assert(
308 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309 "Bitfields must be contiguous");
310
311 void AssertOK();
312
313protected:
314 // Note: Instruction needs to be a friend here to call cloneImpl.
315 friend class Instruction;
316
317 StoreInst *cloneImpl() const;
318
319public:
320 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 Instruction *InsertBefore = nullptr);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 BasicBlock *InsertAtEnd);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330 Instruction *InsertBefore = nullptr);
331 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333
334 // allocate space for exactly two operands
335 void *operator new(size_t s) {
336 return User::operator new(s, 2);
337 }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t s) {
466 return User::operator new(s, 0);
467 }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t s) {
550 return User::operator new(s, 3);
551 }
552
553 using VolatileField = BoolBitfieldElementT<0>;
554 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555 using SuccessOrderingField =
556 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557 using FailureOrderingField =
558 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559 using AlignmentField =
560 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561 static_assert(
562 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563 FailureOrderingField, AlignmentField>(),
564 "Bitfields must be contiguous");
565
566 /// Return the alignment of the memory that is being allocated by the
567 /// instruction.
568 Align getAlign() const {
569 return Align(1ULL << getSubclassData<AlignmentField>());
570 }
571
572 void setAlignment(Align Align) {
573 setSubclassData<AlignmentField>(Log2(Align));
574 }
575
576 /// Return true if this is a cmpxchg from a volatile memory
577 /// location.
578 ///
579 bool isVolatile() const { return getSubclassData<VolatileField>(); }
580
581 /// Specify whether this is a volatile cmpxchg.
582 ///
583 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584
585 /// Return true if this cmpxchg may spuriously fail.
586 bool isWeak() const { return getSubclassData<WeakField>(); }
587
588 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589
590 /// Transparently provide more efficient getOperand methods.
591 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
592
593 /// Returns the success ordering constraint of this cmpxchg instruction.
594 AtomicOrdering getSuccessOrdering() const {
595 return getSubclassData<SuccessOrderingField>();
596 }
597
598 /// Sets the success ordering constraint of this cmpxchg instruction.
599 void setSuccessOrdering(AtomicOrdering Ordering) {
600 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
601 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
;
602 setSubclassData<SuccessOrderingField>(Ordering);
603 }
604
605 /// Returns the failure ordering constraint of this cmpxchg instruction.
606 AtomicOrdering getFailureOrdering() const {
607 return getSubclassData<FailureOrderingField>();
608 }
609
610 /// Sets the failure ordering constraint of this cmpxchg instruction.
611 void setFailureOrdering(AtomicOrdering Ordering) {
612 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
613 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
;
614 setSubclassData<FailureOrderingField>(Ordering);
615 }
616
617 /// Returns the synchronization scope ID of this cmpxchg instruction.
618 SyncScope::ID getSyncScopeID() const {
619 return SSID;
620 }
621
622 /// Sets the synchronization scope ID of this cmpxchg instruction.
623 void setSyncScopeID(SyncScope::ID SSID) {
624 this->SSID = SSID;
625 }
626
627 Value *getPointerOperand() { return getOperand(0); }
628 const Value *getPointerOperand() const { return getOperand(0); }
629 static unsigned getPointerOperandIndex() { return 0U; }
630
631 Value *getCompareOperand() { return getOperand(1); }
632 const Value *getCompareOperand() const { return getOperand(1); }
633
634 Value *getNewValOperand() { return getOperand(2); }
635 const Value *getNewValOperand() const { return getOperand(2); }
636
637 /// Returns the address space of the pointer operand.
638 unsigned getPointerAddressSpace() const {
639 return getPointerOperand()->getType()->getPointerAddressSpace();
640 }
641
642 /// Returns the strongest permitted ordering on failure, given the
643 /// desired ordering on success.
644 ///
645 /// If the comparison in a cmpxchg operation fails, there is no atomic store
646 /// so release semantics cannot be provided. So this function drops explicit
647 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648 /// operation would remain SequentiallyConsistent.
649 static AtomicOrdering
650 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651 switch (SuccessOrdering) {
652 default:
653 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 653)
;
654 case AtomicOrdering::Release:
655 case AtomicOrdering::Monotonic:
656 return AtomicOrdering::Monotonic;
657 case AtomicOrdering::AcquireRelease:
658 case AtomicOrdering::Acquire:
659 return AtomicOrdering::Acquire;
660 case AtomicOrdering::SequentiallyConsistent:
661 return AtomicOrdering::SequentiallyConsistent;
662 }
663 }
664
665 // Methods for support type inquiry through isa, cast, and dyn_cast:
666 static bool classof(const Instruction *I) {
667 return I->getOpcode() == Instruction::AtomicCmpXchg;
668 }
669 static bool classof(const Value *V) {
670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
671 }
672
673private:
674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
675 // method so that subclasses cannot accidentally use it.
676 template <typename Bitfield>
677 void setSubclassData(typename Bitfield::Type Value) {
678 Instruction::setSubclassData<Bitfield>(Value);
679 }
680
681 /// The synchronization scope ID of this cmpxchg instruction. Not quite
682 /// enough room in SubClassData for everything, so synchronization scope ID
683 /// gets its own field.
684 SyncScope::ID SSID;
685};
686
687template <>
688struct OperandTraits<AtomicCmpXchgInst> :
689 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690};
691
692DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
693
694//===----------------------------------------------------------------------===//
695// AtomicRMWInst Class
696//===----------------------------------------------------------------------===//
697
698/// an instruction that atomically reads a memory location,
699/// combines it with another value, and then stores the result back. Returns
700/// the old value.
701///
702class AtomicRMWInst : public Instruction {
703protected:
704 // Note: Instruction needs to be a friend here to call cloneImpl.
705 friend class Instruction;
706
707 AtomicRMWInst *cloneImpl() const;
708
709public:
710 /// This enumeration lists the possible modifications atomicrmw can make. In
711 /// the descriptions, 'p' is the pointer to the instruction's memory location,
712 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713 /// instruction. These instructions always return 'old'.
714 enum BinOp : unsigned {
715 /// *p = v
716 Xchg,
717 /// *p = old + v
718 Add,
719 /// *p = old - v
720 Sub,
721 /// *p = old & v
722 And,
723 /// *p = ~(old & v)
724 Nand,
725 /// *p = old | v
726 Or,
727 /// *p = old ^ v
728 Xor,
729 /// *p = old >signed v ? old : v
730 Max,
731 /// *p = old <signed v ? old : v
732 Min,
733 /// *p = old >unsigned v ? old : v
734 UMax,
735 /// *p = old <unsigned v ? old : v
736 UMin,
737
738 /// *p = old + v
739 FAdd,
740
741 /// *p = old - v
742 FSub,
743
744 FIRST_BINOP = Xchg,
745 LAST_BINOP = FSub,
746 BAD_BINOP
747 };
748
749private:
750 template <unsigned Offset>
751 using AtomicOrderingBitfieldElement =
752 typename Bitfield::Element<AtomicOrdering, Offset, 3,
753 AtomicOrdering::LAST>;
754
755 template <unsigned Offset>
756 using BinOpBitfieldElement =
757 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758
759public:
760 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761 AtomicOrdering Ordering, SyncScope::ID SSID,
762 Instruction *InsertBefore = nullptr);
763 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764 AtomicOrdering Ordering, SyncScope::ID SSID,
765 BasicBlock *InsertAtEnd);
766
767 // allocate space for exactly two operands
768 void *operator new(size_t s) {
769 return User::operator new(s, 2);
770 }
771
772 using VolatileField = BoolBitfieldElementT<0>;
773 using AtomicOrderingField =
774 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778 OperationField, AlignmentField>(),
779 "Bitfields must be contiguous");
780
781 BinOp getOperation() const { return getSubclassData<OperationField>(); }
782
783 static StringRef getOperationName(BinOp Op);
784
785 static bool isFPOperation(BinOp Op) {
786 switch (Op) {
787 case AtomicRMWInst::FAdd:
788 case AtomicRMWInst::FSub:
789 return true;
790 default:
791 return false;
792 }
793 }
794
795 void setOperation(BinOp Operation) {
796 setSubclassData<OperationField>(Operation);
797 }
798
799 /// Return the alignment of the memory that is being allocated by the
800 /// instruction.
801 Align getAlign() const {
802 return Align(1ULL << getSubclassData<AlignmentField>());
803 }
804
805 void setAlignment(Align Align) {
806 setSubclassData<AlignmentField>(Log2(Align));
807 }
808
809 /// Return true if this is a RMW on a volatile memory location.
810 ///
811 bool isVolatile() const { return getSubclassData<VolatileField>(); }
812
813 /// Specify whether this is a volatile RMW or not.
814 ///
815 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816
817 /// Transparently provide more efficient getOperand methods.
818 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
819
820 /// Returns the ordering constraint of this rmw instruction.
821 AtomicOrdering getOrdering() const {
822 return getSubclassData<AtomicOrderingField>();
823 }
824
825 /// Sets the ordering constraint of this rmw instruction.
826 void setOrdering(AtomicOrdering Ordering) {
827 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
828 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
;
829 setSubclassData<AtomicOrderingField>(Ordering);
830 }
831
832 /// Returns the synchronization scope ID of this rmw instruction.
833 SyncScope::ID getSyncScopeID() const {
834 return SSID;
835 }
836
837 /// Sets the synchronization scope ID of this rmw instruction.
838 void setSyncScopeID(SyncScope::ID SSID) {
839 this->SSID = SSID;
840 }
841
842 Value *getPointerOperand() { return getOperand(0); }
843 const Value *getPointerOperand() const { return getOperand(0); }
844 static unsigned getPointerOperandIndex() { return 0U; }
845
846 Value *getValOperand() { return getOperand(1); }
847 const Value *getValOperand() const { return getOperand(1); }
848
849 /// Returns the address space of the pointer operand.
850 unsigned getPointerAddressSpace() const {
851 return getPointerOperand()->getType()->getPointerAddressSpace();
852 }
853
854 bool isFloatingPointOperation() const {
855 return isFPOperation(getOperation());
856 }
857
858 // Methods for support type inquiry through isa, cast, and dyn_cast:
859 static bool classof(const Instruction *I) {
860 return I->getOpcode() == Instruction::AtomicRMW;
861 }
862 static bool classof(const Value *V) {
863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
864 }
865
866private:
867 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868 AtomicOrdering Ordering, SyncScope::ID SSID);
869
870 // Shadow Instruction::setInstructionSubclassData with a private forwarding
871 // method so that subclasses cannot accidentally use it.
872 template <typename Bitfield>
873 void setSubclassData(typename Bitfield::Type Value) {
874 Instruction::setSubclassData<Bitfield>(Value);
875 }
876
877 /// The synchronization scope ID of this rmw instruction. Not quite enough
878 /// room in SubClassData for everything, so synchronization scope ID gets its
879 /// own field.
880 SyncScope::ID SSID;
881};
882
883template <>
884struct OperandTraits<AtomicRMWInst>
885 : public FixedNumOperandTraits<AtomicRMWInst,2> {
886};
887
888DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
889
890//===----------------------------------------------------------------------===//
891// GetElementPtrInst Class
892//===----------------------------------------------------------------------===//
893
894// checkGEPType - Simple wrapper function to give a better assertion failure
895// message on bad indexes for a gep instruction.
896//
897inline Type *checkGEPType(Type *Ty) {
898 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 898, __PRETTY_FUNCTION__))
;
899 return Ty;
900}
901
902/// an instruction for type-safe pointer arithmetic to
903/// access elements of arrays and structs
904///
905class GetElementPtrInst : public Instruction {
906 Type *SourceElementType;
907 Type *ResultElementType;
908
909 GetElementPtrInst(const GetElementPtrInst &GEPI);
910
911 /// Constructors - Create a getelementptr instruction with a base pointer an
912 /// list of indices. The first ctor can optionally insert before an existing
913 /// instruction, the second appends the new instruction to the specified
914 /// BasicBlock.
915 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList, unsigned Values,
917 const Twine &NameStr, Instruction *InsertBefore);
918 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919 ArrayRef<Value *> IdxList, unsigned Values,
920 const Twine &NameStr, BasicBlock *InsertAtEnd);
921
922 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923
924protected:
925 // Note: Instruction needs to be a friend here to call cloneImpl.
926 friend class Instruction;
927
928 GetElementPtrInst *cloneImpl() const;
929
930public:
931 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932 ArrayRef<Value *> IdxList,
933 const Twine &NameStr = "",
934 Instruction *InsertBefore = nullptr) {
935 unsigned Values = 1 + unsigned(IdxList.size());
936 if (!PointeeType)
36
Assuming 'PointeeType' is non-null
37
Taking false branch
937 PointeeType =
938 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939 else
940 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
38
Called C++ object pointer is null
941 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
942 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
;
943 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944 NameStr, InsertBefore);
945 }
946
947 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr,
950 BasicBlock *InsertAtEnd) {
951 unsigned Values = 1 + unsigned(IdxList.size());
952 if (!PointeeType)
953 PointeeType =
954 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955 else
956 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
957 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
958 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
;
959 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960 NameStr, InsertAtEnd);
961 }
962
963 /// Create an "inbounds" getelementptr. See the documentation for the
964 /// "inbounds" flag in LangRef.html for details.
965 static GetElementPtrInst *CreateInBounds(Value *Ptr,
966 ArrayRef<Value *> IdxList,
967 const Twine &NameStr = "",
968 Instruction *InsertBefore = nullptr){
969 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970 }
971
972 static GetElementPtrInst *
973 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974 const Twine &NameStr = "",
975 Instruction *InsertBefore = nullptr) {
976 GetElementPtrInst *GEP =
977 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978 GEP->setIsInBounds(true);
979 return GEP;
980 }
981
982 static GetElementPtrInst *CreateInBounds(Value *Ptr,
983 ArrayRef<Value *> IdxList,
984 const Twine &NameStr,
985 BasicBlock *InsertAtEnd) {
986 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987 }
988
989 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990 ArrayRef<Value *> IdxList,
991 const Twine &NameStr,
992 BasicBlock *InsertAtEnd) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 /// Transparently provide more efficient getOperand methods.
1000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1001
1002 Type *getSourceElementType() const { return SourceElementType; }
1003
1004 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006
1007 Type *getResultElementType() const {
1008 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
1009 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
;
1010 return ResultElementType;
1011 }
1012
1013 /// Returns the address space of this instruction's pointer type.
1014 unsigned getAddressSpace() const {
1015 // Note that this is always the same as the pointer operand's address space
1016 // and that is cheaper to compute, so cheat here.
1017 return getPointerAddressSpace();
1018 }
1019
1020 /// Returns the result type of a getelementptr with the given source
1021 /// element type and indexes.
1022 ///
1023 /// Null is returned if the indices are invalid for the specified
1024 /// source element type.
1025 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028
1029 /// Return the type of the element at the given index of an indexable
1030 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031 ///
1032 /// Returns null if the type can't be indexed, or the given index is not
1033 /// legal for the given type.
1034 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036
1037 inline op_iterator idx_begin() { return op_begin()+1; }
1038 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039 inline op_iterator idx_end() { return op_end(); }
1040 inline const_op_iterator idx_end() const { return op_end(); }
1041
1042 inline iterator_range<op_iterator> indices() {
1043 return make_range(idx_begin(), idx_end());
1044 }
1045
1046 inline iterator_range<const_op_iterator> indices() const {
1047 return make_range(idx_begin(), idx_end());
1048 }
1049
1050 Value *getPointerOperand() {
1051 return getOperand(0);
1052 }
1053 const Value *getPointerOperand() const {
1054 return getOperand(0);
1055 }
1056 static unsigned getPointerOperandIndex() {
1057 return 0U; // get index for modifying correct operand.
1058 }
1059
1060 /// Method to return the pointer operand as a
1061 /// PointerType.
1062 Type *getPointerOperandType() const {
1063 return getPointerOperand()->getType();
1064 }
1065
1066 /// Returns the address space of the pointer operand.
1067 unsigned getPointerAddressSpace() const {
1068 return getPointerOperandType()->getPointerAddressSpace();
1069 }
1070
1071 /// Returns the pointer type returned by the GEP
1072 /// instruction, which may be a vector of pointers.
1073 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074 ArrayRef<Value *> IdxList) {
1075 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076 Ptr->getType()->getPointerAddressSpace());
1077 // Vector GEP
1078 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079 ElementCount EltCount = PtrVTy->getElementCount();
1080 return VectorType::get(PtrTy, EltCount);
1081 }
1082 for (Value *Index : IdxList)
1083 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084 ElementCount EltCount = IndexVTy->getElementCount();
1085 return VectorType::get(PtrTy, EltCount);
1086 }
1087 // Scalar GEP
1088 return PtrTy;
1089 }
1090
1091 unsigned getNumIndices() const { // Note: always non-negative
1092 return getNumOperands() - 1;
1093 }
1094
1095 bool hasIndices() const {
1096 return getNumOperands() > 1;
1097 }
1098
1099 /// Return true if all of the indices of this GEP are
1100 /// zeros. If so, the result pointer and the first operand have the same
1101 /// value, just potentially different types.
1102 bool hasAllZeroIndices() const;
1103
1104 /// Return true if all of the indices of this GEP are
1105 /// constant integers. If so, the result pointer and the first operand have
1106 /// a constant offset between them.
1107 bool hasAllConstantIndices() const;
1108
1109 /// Set or clear the inbounds flag on this GEP instruction.
1110 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111 void setIsInBounds(bool b = true);
1112
1113 /// Determine whether the GEP has the inbounds flag.
1114 bool isInBounds() const;
1115
1116 /// Accumulate the constant address offset of this GEP if possible.
1117 ///
1118 /// This routine accepts an APInt into which it will accumulate the constant
1119 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120 /// all-constant, it returns false and the value of the offset APInt is
1121 /// undefined (it is *not* preserved!). The APInt passed into this routine
1122 /// must be at least as wide as the IntPtr type for the address space of
1123 /// the base GEP pointer.
1124 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125
1126 // Methods for support type inquiry through isa, cast, and dyn_cast:
1127 static bool classof(const Instruction *I) {
1128 return (I->getOpcode() == Instruction::GetElementPtr);
1129 }
1130 static bool classof(const Value *V) {
1131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132 }
1133};
1134
1135template <>
1136struct OperandTraits<GetElementPtrInst> :
1137 public VariadicOperandTraits<GetElementPtrInst, 1> {
1138};
1139
1140GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141 ArrayRef<Value *> IdxList, unsigned Values,
1142 const Twine &NameStr,
1143 Instruction *InsertBefore)
1144 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146 Values, InsertBefore),
1147 SourceElementType(PointeeType),
1148 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
1150 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
;
1151 init(Ptr, IdxList, NameStr);
1152}
1153
1154GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155 ArrayRef<Value *> IdxList, unsigned Values,
1156 const Twine &NameStr,
1157 BasicBlock *InsertAtEnd)
1158 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160 Values, InsertAtEnd),
1161 SourceElementType(PointeeType),
1162 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
1164 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
;
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1180 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
1181 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
;
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
1183 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
;
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1187 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
;
1188 }
1189
1190protected:
1191 // Note: Instruction needs to be a friend here to call cloneImpl.
1192 friend class Instruction;
1193
1194 /// Clone an identical ICmpInst
1195 ICmpInst *cloneImpl() const;
1196
1197public:
1198 /// Constructor with insert-before-instruction semantics.
1199 ICmpInst(
1200 Instruction *InsertBefore, ///< Where to insert
1201 Predicate pred, ///< The predicate to use for the comparison
1202 Value *LHS, ///< The left-hand-side of the expression
1203 Value *RHS, ///< The right-hand-side of the expression
1204 const Twine &NameStr = "" ///< Name of the instruction
1205 ) : CmpInst(makeCmpResultType(LHS->getType()),
1206 Instruction::ICmp, pred, LHS, RHS, NameStr,
1207 InsertBefore) {
1208#ifndef NDEBUG
1209 AssertOK();
1210#endif
1211 }
1212
1213 /// Constructor with insert-at-end semantics.
1214 ICmpInst(
1215 BasicBlock &InsertAtEnd, ///< Block to insert into.
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1220 ) : CmpInst(makeCmpResultType(LHS->getType()),
1221 Instruction::ICmp, pred, LHS, RHS, NameStr,
1222 &InsertAtEnd) {
1223#ifndef NDEBUG
1224 AssertOK();
1225#endif
1226 }
1227
1228 /// Constructor with no-insertion semantics
1229 ICmpInst(
1230 Predicate pred, ///< The predicate to use for the comparison
1231 Value *LHS, ///< The left-hand-side of the expression
1232 Value *RHS, ///< The right-hand-side of the expression
1233 const Twine &NameStr = "" ///< Name of the instruction
1234 ) : CmpInst(makeCmpResultType(LHS->getType()),
1235 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236#ifndef NDEBUG
1237 AssertOK();
1238#endif
1239 }
1240
1241 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242 /// @returns the predicate that would be the result if the operand were
1243 /// regarded as signed.
1244 /// Return the signed version of the predicate
1245 Predicate getSignedPredicate() const {
1246 return getSignedPredicate(getPredicate());
1247 }
1248
1249 /// This is a static version that you can use without an instruction.
1250 /// Return the signed version of the predicate.
1251 static Predicate getSignedPredicate(Predicate pred);
1252
1253 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254 /// @returns the predicate that would be the result if the operand were
1255 /// regarded as unsigned.
1256 /// Return the unsigned version of the predicate
1257 Predicate getUnsignedPredicate() const {
1258 return getUnsignedPredicate(getPredicate());
1259 }
1260
1261 /// This is a static version that you can use without an instruction.
1262 /// Return the unsigned version of the predicate.
1263 static Predicate getUnsignedPredicate(Predicate pred);
1264
1265 /// Return true if this predicate is either EQ or NE. This also
1266 /// tests for commutativity.
1267 static bool isEquality(Predicate P) {
1268 return P == ICMP_EQ || P == ICMP_NE;
1269 }
1270
1271 /// Return true if this predicate is either EQ or NE. This also
1272 /// tests for commutativity.
1273 bool isEquality() const {
1274 return isEquality(getPredicate());
1275 }
1276
1277 /// @returns true if the predicate of this ICmpInst is commutative
1278 /// Determine if this relation is commutative.
1279 bool isCommutative() const { return isEquality(); }
1280
1281 /// Return true if the predicate is relational (not EQ or NE).
1282 ///
1283 bool isRelational() const {
1284 return !isEquality();
1285 }
1286
1287 /// Return true if the predicate is relational (not EQ or NE).
1288 ///
1289 static bool isRelational(Predicate P) {
1290 return !isEquality(P);
1291 }
1292
1293 /// Return true if the predicate is SGT or UGT.
1294 ///
1295 static bool isGT(Predicate P) {
1296 return P == ICMP_SGT || P == ICMP_UGT;
1297 }
1298
1299 /// Return true if the predicate is SLT or ULT.
1300 ///
1301 static bool isLT(Predicate P) {
1302 return P == ICMP_SLT || P == ICMP_ULT;
1303 }
1304
1305 /// Return true if the predicate is SGE or UGE.
1306 ///
1307 static bool isGE(Predicate P) {
1308 return P == ICMP_SGE || P == ICMP_UGE;
1309 }
1310
1311 /// Return true if the predicate is SLE or ULE.
1312 ///
1313 static bool isLE(Predicate P) {
1314 return P == ICMP_SLE || P == ICMP_ULE;
1315 }
1316
1317 /// Exchange the two operands to this instruction in such a way that it does
1318 /// not modify the semantics of the instruction. The predicate value may be
1319 /// changed to retain the same result if the predicate is order dependent
1320 /// (e.g. ult).
1321 /// Swap operands and adjust predicate.
1322 void swapOperands() {
1323 setPredicate(getSwappedPredicate());
1324 Op<0>().swap(Op<1>());
1325 }
1326
1327 // Methods for support type inquiry through isa, cast, and dyn_cast:
1328 static bool classof(const Instruction *I) {
1329 return I->getOpcode() == Instruction::ICmp;
1330 }
1331 static bool classof(const Value *V) {
1332 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1333 }
1334};
1335
1336//===----------------------------------------------------------------------===//
1337// FCmpInst Class
1338//===----------------------------------------------------------------------===//
1339
1340/// This instruction compares its operands according to the predicate given
1341/// to the constructor. It only operates on floating point values or packed
1342/// vectors of floating point values. The operands must be identical types.
1343/// Represents a floating point comparison operator.
1344class FCmpInst: public CmpInst {
1345 void AssertOK() {
1346 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1346, __PRETTY_FUNCTION__))
;
1347 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1348, __PRETTY_FUNCTION__))
1348 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1348, __PRETTY_FUNCTION__))
;
1349 // Check that the operands are the right type
1350 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1351, __PRETTY_FUNCTION__))
1351 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1351, __PRETTY_FUNCTION__))
;
1352 }
1353
1354protected:
1355 // Note: Instruction needs to be a friend here to call cloneImpl.
1356 friend class Instruction;
1357
1358 /// Clone an identical FCmpInst
1359 FCmpInst *cloneImpl() const;
1360
1361public:
1362 /// Constructor with insert-before-instruction semantics.
1363 FCmpInst(
1364 Instruction *InsertBefore, ///< Where to insert
1365 Predicate pred, ///< The predicate to use for the comparison
1366 Value *LHS, ///< The left-hand-side of the expression
1367 Value *RHS, ///< The right-hand-side of the expression
1368 const Twine &NameStr = "" ///< Name of the instruction
1369 ) : CmpInst(makeCmpResultType(LHS->getType()),
1370 Instruction::FCmp, pred, LHS, RHS, NameStr,
1371 InsertBefore) {
1372 AssertOK();
1373 }
1374
1375 /// Constructor with insert-at-end semantics.
1376 FCmpInst(
1377 BasicBlock &InsertAtEnd, ///< Block to insert into.
1378 Predicate pred, ///< The predicate to use for the comparison
1379 Value *LHS, ///< The left-hand-side of the expression
1380 Value *RHS, ///< The right-hand-side of the expression
1381 const Twine &NameStr = "" ///< Name of the instruction
1382 ) : CmpInst(makeCmpResultType(LHS->getType()),
1383 Instruction::FCmp, pred, LHS, RHS, NameStr,
1384 &InsertAtEnd) {
1385 AssertOK();
1386 }
1387
1388 /// Constructor with no-insertion semantics
1389 FCmpInst(
1390 Predicate Pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "", ///< Name of the instruction
1394 Instruction *FlagsSource = nullptr
1395 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1396 RHS, NameStr, nullptr, FlagsSource) {
1397 AssertOK();
1398 }
1399
1400 /// @returns true if the predicate of this instruction is EQ or NE.
1401 /// Determine if this is an equality predicate.
1402 static bool isEquality(Predicate Pred) {
1403 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1404 Pred == FCMP_UNE;
1405 }
1406
1407 /// @returns true if the predicate of this instruction is EQ or NE.
1408 /// Determine if this is an equality predicate.
1409 bool isEquality() const { return isEquality(getPredicate()); }
1410
1411 /// @returns true if the predicate of this instruction is commutative.
1412 /// Determine if this is a commutative predicate.
1413 bool isCommutative() const {
1414 return isEquality() ||
1415 getPredicate() == FCMP_FALSE ||
1416 getPredicate() == FCMP_TRUE ||
1417 getPredicate() == FCMP_ORD ||
1418 getPredicate() == FCMP_UNO;
1419 }
1420
1421 /// @returns true if the predicate is relational (not EQ or NE).
1422 /// Determine if this a relational predicate.
1423 bool isRelational() const { return !isEquality(); }
1424
1425 /// Exchange the two operands to this instruction in such a way that it does
1426 /// not modify the semantics of the instruction. The predicate value may be
1427 /// changed to retain the same result if the predicate is order dependent
1428 /// (e.g. ult).
1429 /// Swap operands and adjust predicate.
1430 void swapOperands() {
1431 setPredicate(getSwappedPredicate());
1432 Op<0>().swap(Op<1>());
1433 }
1434
1435 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1436 static bool classof(const Instruction *I) {
1437 return I->getOpcode() == Instruction::FCmp;
1438 }
1439 static bool classof(const Value *V) {
1440 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1441 }
1442};
1443
1444//===----------------------------------------------------------------------===//
1445/// This class represents a function call, abstracting a target
1446/// machine's calling convention. This class uses low bit of the SubClassData
1447/// field to indicate whether or not this is a tail call. The rest of the bits
1448/// hold the calling convention of the call.
1449///
1450class CallInst : public CallBase {
1451 CallInst(const CallInst &CI);
1452
1453 /// Construct a CallInst given a range of arguments.
1454 /// Construct a CallInst from a range of arguments
1455 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1456 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1457 Instruction *InsertBefore);
1458
1459 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1460 const Twine &NameStr, Instruction *InsertBefore)
1461 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1462
1463 /// Construct a CallInst given a range of arguments.
1464 /// Construct a CallInst from a range of arguments
1465 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1467 BasicBlock *InsertAtEnd);
1468
1469 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1470 Instruction *InsertBefore);
1471
1472 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1473 BasicBlock *InsertAtEnd);
1474
1475 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1476 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1477 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1478
1479 /// Compute the number of operands to allocate.
1480 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1481 // We need one operand for the called function, plus the input operand
1482 // counts provided.
1483 return 1 + NumArgs + NumBundleInputs;
1484 }
1485
1486protected:
1487 // Note: Instruction needs to be a friend here to call cloneImpl.
1488 friend class Instruction;
1489
1490 CallInst *cloneImpl() const;
1491
1492public:
1493 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1494 Instruction *InsertBefore = nullptr) {
1495 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1496 }
1497
1498 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499 const Twine &NameStr,
1500 Instruction *InsertBefore = nullptr) {
1501 return new (ComputeNumOperands(Args.size()))
1502 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 const int NumOperands =
1510 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1511 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1512
1513 return new (NumOperands, DescriptorBytes)
1514 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1515 }
1516
1517 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1518 BasicBlock *InsertAtEnd) {
1519 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1520 }
1521
1522 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1523 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1524 return new (ComputeNumOperands(Args.size()))
1525 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1526 }
1527
1528 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1529 ArrayRef<OperandBundleDef> Bundles,
1530 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1531 const int NumOperands =
1532 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1533 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1534
1535 return new (NumOperands, DescriptorBytes)
1536 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1537 }
1538
1539 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1540 Instruction *InsertBefore = nullptr) {
1541 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1542 InsertBefore);
1543 }
1544
1545 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1546 ArrayRef<OperandBundleDef> Bundles = None,
1547 const Twine &NameStr = "",
1548 Instruction *InsertBefore = nullptr) {
1549 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1550 NameStr, InsertBefore);
1551 }
1552
1553 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1554 const Twine &NameStr,
1555 Instruction *InsertBefore = nullptr) {
1556 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1557 InsertBefore);
1558 }
1559
1560 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1561 BasicBlock *InsertAtEnd) {
1562 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1563 InsertAtEnd);
1564 }
1565
1566 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1567 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1568 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1569 InsertAtEnd);
1570 }
1571
1572 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1573 ArrayRef<OperandBundleDef> Bundles,
1574 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1575 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1576 NameStr, InsertAtEnd);
1577 }
1578
1579 /// Create a clone of \p CI with a different set of operand bundles and
1580 /// insert it before \p InsertPt.
1581 ///
1582 /// The returned call instruction is identical \p CI in every way except that
1583 /// the operand bundles for the new instruction are set to the operand bundles
1584 /// in \p Bundles.
1585 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1586 Instruction *InsertPt = nullptr);
1587
1588 /// Create a clone of \p CI with a different set of operand bundles and
1589 /// insert it before \p InsertPt.
1590 ///
1591 /// The returned call instruction is identical \p CI in every way except that
1592 /// the operand bundle for the new instruction is set to the operand bundle
1593 /// in \p Bundle.
1594 static CallInst *CreateWithReplacedBundle(CallInst *CI,
1595 OperandBundleDef Bundle,
1596 Instruction *InsertPt = nullptr);
1597
1598 /// Generate the IR for a call to malloc:
1599 /// 1. Compute the malloc call's argument as the specified type's size,
1600 /// possibly multiplied by the array size if the array size is not
1601 /// constant 1.
1602 /// 2. Call malloc with that argument.
1603 /// 3. Bitcast the result of the malloc call to the specified type.
1604 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1605 Type *AllocTy, Value *AllocSize,
1606 Value *ArraySize = nullptr,
1607 Function *MallocF = nullptr,
1608 const Twine &Name = "");
1609 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1610 Type *AllocTy, Value *AllocSize,
1611 Value *ArraySize = nullptr,
1612 Function *MallocF = nullptr,
1613 const Twine &Name = "");
1614 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1615 Type *AllocTy, Value *AllocSize,
1616 Value *ArraySize = nullptr,
1617 ArrayRef<OperandBundleDef> Bundles = None,
1618 Function *MallocF = nullptr,
1619 const Twine &Name = "");
1620 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1621 Type *AllocTy, Value *AllocSize,
1622 Value *ArraySize = nullptr,
1623 ArrayRef<OperandBundleDef> Bundles = None,
1624 Function *MallocF = nullptr,
1625 const Twine &Name = "");
1626 /// Generate the IR for a call to the builtin free function.
1627 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1628 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1629 static Instruction *CreateFree(Value *Source,
1630 ArrayRef<OperandBundleDef> Bundles,
1631 Instruction *InsertBefore);
1632 static Instruction *CreateFree(Value *Source,
1633 ArrayRef<OperandBundleDef> Bundles,
1634 BasicBlock *InsertAtEnd);
1635
1636 // Note that 'musttail' implies 'tail'.
1637 enum TailCallKind : unsigned {
1638 TCK_None = 0,
1639 TCK_Tail = 1,
1640 TCK_MustTail = 2,
1641 TCK_NoTail = 3,
1642 TCK_LAST = TCK_NoTail
1643 };
1644
1645 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1646 static_assert(
1647 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1648 "Bitfields must be contiguous");
1649
1650 TailCallKind getTailCallKind() const {
1651 return getSubclassData<TailCallKindField>();
1652 }
1653
1654 bool isTailCall() const {
1655 TailCallKind Kind = getTailCallKind();
1656 return Kind == TCK_Tail || Kind == TCK_MustTail;
1657 }
1658
1659 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1660
1661 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1662
1663 void setTailCallKind(TailCallKind TCK) {
1664 setSubclassData<TailCallKindField>(TCK);
1665 }
1666
1667 void setTailCall(bool IsTc = true) {
1668 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1669 }
1670
1671 /// Return true if the call can return twice
1672 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1673 void setCanReturnTwice() {
1674 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1675 }
1676
1677 // Methods for support type inquiry through isa, cast, and dyn_cast:
1678 static bool classof(const Instruction *I) {
1679 return I->getOpcode() == Instruction::Call;
1680 }
1681 static bool classof(const Value *V) {
1682 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1683 }
1684
1685 /// Updates profile metadata by scaling it by \p S / \p T.
1686 void updateProfWeight(uint64_t S, uint64_t T);
1687
1688private:
1689 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1690 // method so that subclasses cannot accidentally use it.
1691 template <typename Bitfield>
1692 void setSubclassData(typename Bitfield::Type Value) {
1693 Instruction::setSubclassData<Bitfield>(Value);
1694 }
1695};
1696
1697CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1698 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1699 BasicBlock *InsertAtEnd)
1700 : CallBase(Ty->getReturnType(), Instruction::Call,
1701 OperandTraits<CallBase>::op_end(this) -
1702 (Args.size() + CountBundleInputs(Bundles) + 1),
1703 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1704 InsertAtEnd) {
1705 init(Ty, Func, Args, Bundles, NameStr);
1706}
1707
1708CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1709 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1710 Instruction *InsertBefore)
1711 : CallBase(Ty->getReturnType(), Instruction::Call,
1712 OperandTraits<CallBase>::op_end(this) -
1713 (Args.size() + CountBundleInputs(Bundles) + 1),
1714 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1715 InsertBefore) {
1716 init(Ty, Func, Args, Bundles, NameStr);
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// SelectInst Class
1721//===----------------------------------------------------------------------===//
1722
1723/// This class represents the LLVM 'select' instruction.
1724///
1725class SelectInst : public Instruction {
1726 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1727 Instruction *InsertBefore)
1728 : Instruction(S1->getType(), Instruction::Select,
1729 &Op<0>(), 3, InsertBefore) {
1730 init(C, S1, S2);
1731 setName(NameStr);
1732 }
1733
1734 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1735 BasicBlock *InsertAtEnd)
1736 : Instruction(S1->getType(), Instruction::Select,
1737 &Op<0>(), 3, InsertAtEnd) {
1738 init(C, S1, S2);
1739 setName(NameStr);
1740 }
1741
1742 void init(Value *C, Value *S1, Value *S2) {
1743 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1743, __PRETTY_FUNCTION__))
;
1744 Op<0>() = C;
1745 Op<1>() = S1;
1746 Op<2>() = S2;
1747 }
1748
1749protected:
1750 // Note: Instruction needs to be a friend here to call cloneImpl.
1751 friend class Instruction;
1752
1753 SelectInst *cloneImpl() const;
1754
1755public:
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr = "",
1758 Instruction *InsertBefore = nullptr,
1759 Instruction *MDFrom = nullptr) {
1760 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1761 if (MDFrom)
1762 Sel->copyMetadata(*MDFrom);
1763 return Sel;
1764 }
1765
1766 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1767 const Twine &NameStr,
1768 BasicBlock *InsertAtEnd) {
1769 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1770 }
1771
1772 const Value *getCondition() const { return Op<0>(); }
1773 const Value *getTrueValue() const { return Op<1>(); }
1774 const Value *getFalseValue() const { return Op<2>(); }
1775 Value *getCondition() { return Op<0>(); }
1776 Value *getTrueValue() { return Op<1>(); }
1777 Value *getFalseValue() { return Op<2>(); }
1778
1779 void setCondition(Value *V) { Op<0>() = V; }
1780 void setTrueValue(Value *V) { Op<1>() = V; }
1781 void setFalseValue(Value *V) { Op<2>() = V; }
1782
1783 /// Swap the true and false values of the select instruction.
1784 /// This doesn't swap prof metadata.
1785 void swapValues() { Op<1>().swap(Op<2>()); }
1786
1787 /// Return a string if the specified operands are invalid
1788 /// for a select operation, otherwise return null.
1789 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1790
1791 /// Transparently provide more efficient getOperand methods.
1792 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1793
1794 OtherOps getOpcode() const {
1795 return static_cast<OtherOps>(Instruction::getOpcode());
1796 }
1797
1798 // Methods for support type inquiry through isa, cast, and dyn_cast:
1799 static bool classof(const Instruction *I) {
1800 return I->getOpcode() == Instruction::Select;
1801 }
1802 static bool classof(const Value *V) {
1803 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1804 }
1805};
1806
1807template <>
1808struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1809};
1810
1811DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1812
1813//===----------------------------------------------------------------------===//
1814// VAArgInst Class
1815//===----------------------------------------------------------------------===//
1816
1817/// This class represents the va_arg llvm instruction, which returns
1818/// an argument of the specified type given a va_list and increments that list
1819///
1820class VAArgInst : public UnaryInstruction {
1821protected:
1822 // Note: Instruction needs to be a friend here to call cloneImpl.
1823 friend class Instruction;
1824
1825 VAArgInst *cloneImpl() const;
1826
1827public:
1828 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1829 Instruction *InsertBefore = nullptr)
1830 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1831 setName(NameStr);
1832 }
1833
1834 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1835 BasicBlock *InsertAtEnd)
1836 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1837 setName(NameStr);
1838 }
1839
1840 Value *getPointerOperand() { return getOperand(0); }
1841 const Value *getPointerOperand() const { return getOperand(0); }
1842 static unsigned getPointerOperandIndex() { return 0U; }
1843
1844 // Methods for support type inquiry through isa, cast, and dyn_cast:
1845 static bool classof(const Instruction *I) {
1846 return I->getOpcode() == VAArg;
1847 }
1848 static bool classof(const Value *V) {
1849 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1850 }
1851};
1852
1853//===----------------------------------------------------------------------===//
1854// ExtractElementInst Class
1855//===----------------------------------------------------------------------===//
1856
1857/// This instruction extracts a single (scalar)
1858/// element from a VectorType value
1859///
1860class ExtractElementInst : public Instruction {
1861 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1862 Instruction *InsertBefore = nullptr);
1863 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1864 BasicBlock *InsertAtEnd);
1865
1866protected:
1867 // Note: Instruction needs to be a friend here to call cloneImpl.
1868 friend class Instruction;
1869
1870 ExtractElementInst *cloneImpl() const;
1871
1872public:
1873 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1874 const Twine &NameStr = "",
1875 Instruction *InsertBefore = nullptr) {
1876 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1877 }
1878
1879 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1880 const Twine &NameStr,
1881 BasicBlock *InsertAtEnd) {
1882 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1883 }
1884
1885 /// Return true if an extractelement instruction can be
1886 /// formed with the specified operands.
1887 static bool isValidOperands(const Value *Vec, const Value *Idx);
1888
1889 Value *getVectorOperand() { return Op<0>(); }
1890 Value *getIndexOperand() { return Op<1>(); }
1891 const Value *getVectorOperand() const { return Op<0>(); }
1892 const Value *getIndexOperand() const { return Op<1>(); }
1893
1894 VectorType *getVectorOperandType() const {
1895 return cast<VectorType>(getVectorOperand()->getType());
1896 }
1897
1898 /// Transparently provide more efficient getOperand methods.
1899 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1900
1901 // Methods for support type inquiry through isa, cast, and dyn_cast:
1902 static bool classof(const Instruction *I) {
1903 return I->getOpcode() == Instruction::ExtractElement;
1904 }
1905 static bool classof(const Value *V) {
1906 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1907 }
1908};
1909
1910template <>
1911struct OperandTraits<ExtractElementInst> :
1912 public FixedNumOperandTraits<ExtractElementInst, 2> {
1913};
1914
1915DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1916
1917//===----------------------------------------------------------------------===//
1918// InsertElementInst Class
1919//===----------------------------------------------------------------------===//
1920
1921/// This instruction inserts a single (scalar)
1922/// element into a VectorType value
1923///
1924class InsertElementInst : public Instruction {
1925 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1926 const Twine &NameStr = "",
1927 Instruction *InsertBefore = nullptr);
1928 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1929 BasicBlock *InsertAtEnd);
1930
1931protected:
1932 // Note: Instruction needs to be a friend here to call cloneImpl.
1933 friend class Instruction;
1934
1935 InsertElementInst *cloneImpl() const;
1936
1937public:
1938 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1939 const Twine &NameStr = "",
1940 Instruction *InsertBefore = nullptr) {
1941 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1942 }
1943
1944 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1945 const Twine &NameStr,
1946 BasicBlock *InsertAtEnd) {
1947 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1948 }
1949
1950 /// Return true if an insertelement instruction can be
1951 /// formed with the specified operands.
1952 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1953 const Value *Idx);
1954
1955 /// Overload to return most specific vector type.
1956 ///
1957 VectorType *getType() const {
1958 return cast<VectorType>(Instruction::getType());
1959 }
1960
1961 /// Transparently provide more efficient getOperand methods.
1962 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1963
1964 // Methods for support type inquiry through isa, cast, and dyn_cast:
1965 static bool classof(const Instruction *I) {
1966 return I->getOpcode() == Instruction::InsertElement;
1967 }
1968 static bool classof(const Value *V) {
1969 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1970 }
1971};
1972
1973template <>
1974struct OperandTraits<InsertElementInst> :
1975 public FixedNumOperandTraits<InsertElementInst, 3> {
1976};
1977
1978DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1979
1980//===----------------------------------------------------------------------===//
1981// ShuffleVectorInst Class
1982//===----------------------------------------------------------------------===//
1983
1984constexpr int UndefMaskElem = -1;
1985
1986/// This instruction constructs a fixed permutation of two
1987/// input vectors.
1988///
1989/// For each element of the result vector, the shuffle mask selects an element
1990/// from one of the input vectors to copy to the result. Non-negative elements
1991/// in the mask represent an index into the concatenated pair of input vectors.
1992/// UndefMaskElem (-1) specifies that the result element is undefined.
1993///
1994/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1995/// requirement may be relaxed in the future.
1996class ShuffleVectorInst : public Instruction {
1997 SmallVector<int, 4> ShuffleMask;
1998 Constant *ShuffleMaskForBitcode;
1999
2000protected:
2001 // Note: Instruction needs to be a friend here to call cloneImpl.
2002 friend class Instruction;
2003
2004 ShuffleVectorInst *cloneImpl() const;
2005
2006public:
2007 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2008 const Twine &NameStr = "",
2009 Instruction *InsertBefor = nullptr);
2010 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2011 const Twine &NameStr, BasicBlock *InsertAtEnd);
2012 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2013 const Twine &NameStr = "",
2014 Instruction *InsertBefor = nullptr);
2015 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2016 const Twine &NameStr, BasicBlock *InsertAtEnd);
2017
2018 void *operator new(size_t s) { return User::operator new(s, 2); }
2019
2020 /// Swap the operands and adjust the mask to preserve the semantics
2021 /// of the instruction.
2022 void commute();
2023
2024 /// Return true if a shufflevector instruction can be
2025 /// formed with the specified operands.
2026 static bool isValidOperands(const Value *V1, const Value *V2,
2027 const Value *Mask);
2028 static bool isValidOperands(const Value *V1, const Value *V2,
2029 ArrayRef<int> Mask);
2030
2031 /// Overload to return most specific vector type.
2032 ///
2033 VectorType *getType() const {
2034 return cast<VectorType>(Instruction::getType());
2035 }
2036
2037 /// Transparently provide more efficient getOperand methods.
2038 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2039
2040 /// Return the shuffle mask value of this instruction for the given element
2041 /// index. Return UndefMaskElem if the element is undef.
2042 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2043
2044 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2045 /// elements of the mask are returned as UndefMaskElem.
2046 static void getShuffleMask(const Constant *Mask,
2047 SmallVectorImpl<int> &Result);
2048
2049 /// Return the mask for this instruction as a vector of integers. Undefined
2050 /// elements of the mask are returned as UndefMaskElem.
2051 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2052 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2053 }
2054
2055 /// Return the mask for this instruction, for use in bitcode.
2056 ///
2057 /// TODO: This is temporary until we decide a new bitcode encoding for
2058 /// shufflevector.
2059 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2060
2061 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2062 Type *ResultTy);
2063
2064 void setShuffleMask(ArrayRef<int> Mask);
2065
2066 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2067
2068 /// Return true if this shuffle returns a vector with a different number of
2069 /// elements than its source vectors.
2070 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2071 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2072 bool changesLength() const {
2073 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2074 ->getElementCount()
2075 .getKnownMinValue();
2076 unsigned NumMaskElts = ShuffleMask.size();
2077 return NumSourceElts != NumMaskElts;
2078 }
2079
2080 /// Return true if this shuffle returns a vector with a greater number of
2081 /// elements than its source vectors.
2082 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2083 bool increasesLength() const {
2084 unsigned NumSourceElts =
2085 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2086 unsigned NumMaskElts = ShuffleMask.size();
2087 return NumSourceElts < NumMaskElts;
2088 }
2089
2090 /// Return true if this shuffle mask chooses elements from exactly one source
2091 /// vector.
2092 /// Example: <7,5,undef,7>
2093 /// This assumes that vector operands are the same length as the mask.
2094 static bool isSingleSourceMask(ArrayRef<int> Mask);
2095 static bool isSingleSourceMask(const Constant *Mask) {
2096 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2096, __PRETTY_FUNCTION__))
;
2097 SmallVector<int, 16> MaskAsInts;
2098 getShuffleMask(Mask, MaskAsInts);
2099 return isSingleSourceMask(MaskAsInts);
2100 }
2101
2102 /// Return true if this shuffle chooses elements from exactly one source
2103 /// vector without changing the length of that vector.
2104 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2105 /// TODO: Optionally allow length-changing shuffles.
2106 bool isSingleSource() const {
2107 return !changesLength() && isSingleSourceMask(ShuffleMask);
2108 }
2109
2110 /// Return true if this shuffle mask chooses elements from exactly one source
2111 /// vector without lane crossings. A shuffle using this mask is not
2112 /// necessarily a no-op because it may change the number of elements from its
2113 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2114 /// Example: <undef,undef,2,3>
2115 static bool isIdentityMask(ArrayRef<int> Mask);
2116 static bool isIdentityMask(const Constant *Mask) {
2117 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2117, __PRETTY_FUNCTION__))
;
2118 SmallVector<int, 16> MaskAsInts;
2119 getShuffleMask(Mask, MaskAsInts);
2120 return isIdentityMask(MaskAsInts);
2121 }
2122
2123 /// Return true if this shuffle chooses elements from exactly one source
2124 /// vector without lane crossings and does not change the number of elements
2125 /// from its input vectors.
2126 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2127 bool isIdentity() const {
2128 return !changesLength() && isIdentityMask(ShuffleMask);
2129 }
2130
2131 /// Return true if this shuffle lengthens exactly one source vector with
2132 /// undefs in the high elements.
2133 bool isIdentityWithPadding() const;
2134
2135 /// Return true if this shuffle extracts the first N elements of exactly one
2136 /// source vector.
2137 bool isIdentityWithExtract() const;
2138
2139 /// Return true if this shuffle concatenates its 2 source vectors. This
2140 /// returns false if either input is undefined. In that case, the shuffle is
2141 /// is better classified as an identity with padding operation.
2142 bool isConcat() const;
2143
2144 /// Return true if this shuffle mask chooses elements from its source vectors
2145 /// without lane crossings. A shuffle using this mask would be
2146 /// equivalent to a vector select with a constant condition operand.
2147 /// Example: <4,1,6,undef>
2148 /// This returns false if the mask does not choose from both input vectors.
2149 /// In that case, the shuffle is better classified as an identity shuffle.
2150 /// This assumes that vector operands are the same length as the mask
2151 /// (a length-changing shuffle can never be equivalent to a vector select).
2152 static bool isSelectMask(ArrayRef<int> Mask);
2153 static bool isSelectMask(const Constant *Mask) {
2154 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2154, __PRETTY_FUNCTION__))
;
2155 SmallVector<int, 16> MaskAsInts;
2156 getShuffleMask(Mask, MaskAsInts);
2157 return isSelectMask(MaskAsInts);
2158 }
2159
2160 /// Return true if this shuffle chooses elements from its source vectors
2161 /// without lane crossings and all operands have the same number of elements.
2162 /// In other words, this shuffle is equivalent to a vector select with a
2163 /// constant condition operand.
2164 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2165 /// This returns false if the mask does not choose from both input vectors.
2166 /// In that case, the shuffle is better classified as an identity shuffle.
2167 /// TODO: Optionally allow length-changing shuffles.
2168 bool isSelect() const {
2169 return !changesLength() && isSelectMask(ShuffleMask);
2170 }
2171
2172 /// Return true if this shuffle mask swaps the order of elements from exactly
2173 /// one source vector.
2174 /// Example: <7,6,undef,4>
2175 /// This assumes that vector operands are the same length as the mask.
2176 static bool isReverseMask(ArrayRef<int> Mask);
2177 static bool isReverseMask(const Constant *Mask) {
2178 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2178, __PRETTY_FUNCTION__))
;
2179 SmallVector<int, 16> MaskAsInts;
2180 getShuffleMask(Mask, MaskAsInts);
2181 return isReverseMask(MaskAsInts);
2182 }
2183
2184 /// Return true if this shuffle swaps the order of elements from exactly
2185 /// one source vector.
2186 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2187 /// TODO: Optionally allow length-changing shuffles.
2188 bool isReverse() const {
2189 return !changesLength() && isReverseMask(ShuffleMask);
2190 }
2191
2192 /// Return true if this shuffle mask chooses all elements with the same value
2193 /// as the first element of exactly one source vector.
2194 /// Example: <4,undef,undef,4>
2195 /// This assumes that vector operands are the same length as the mask.
2196 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2197 static bool isZeroEltSplatMask(const Constant *Mask) {
2198 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2198, __PRETTY_FUNCTION__))
;
2199 SmallVector<int, 16> MaskAsInts;
2200 getShuffleMask(Mask, MaskAsInts);
2201 return isZeroEltSplatMask(MaskAsInts);
2202 }
2203
2204 /// Return true if all elements of this shuffle are the same value as the
2205 /// first element of exactly one source vector without changing the length
2206 /// of that vector.
2207 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2208 /// TODO: Optionally allow length-changing shuffles.
2209 /// TODO: Optionally allow splats from other elements.
2210 bool isZeroEltSplat() const {
2211 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2212 }
2213
2214 /// Return true if this shuffle mask is a transpose mask.
2215 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2216 /// even- or odd-numbered vector elements from two n-dimensional source
2217 /// vectors and write each result into consecutive elements of an
2218 /// n-dimensional destination vector. Two shuffles are necessary to complete
2219 /// the transpose, one for the even elements and another for the odd elements.
2220 /// This description closely follows how the TRN1 and TRN2 AArch64
2221 /// instructions operate.
2222 ///
2223 /// For example, a simple 2x2 matrix can be transposed with:
2224 ///
2225 /// ; Original matrix
2226 /// m0 = < a, b >
2227 /// m1 = < c, d >
2228 ///
2229 /// ; Transposed matrix
2230 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2231 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2232 ///
2233 /// For matrices having greater than n columns, the resulting nx2 transposed
2234 /// matrix is stored in two result vectors such that one vector contains
2235 /// interleaved elements from all the even-numbered rows and the other vector
2236 /// contains interleaved elements from all the odd-numbered rows. For example,
2237 /// a 2x4 matrix can be transposed with:
2238 ///
2239 /// ; Original matrix
2240 /// m0 = < a, b, c, d >
2241 /// m1 = < e, f, g, h >
2242 ///
2243 /// ; Transposed matrix
2244 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2245 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2246 static bool isTransposeMask(ArrayRef<int> Mask);
2247 static bool isTransposeMask(const Constant *Mask) {
2248 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2248, __PRETTY_FUNCTION__))
;
2249 SmallVector<int, 16> MaskAsInts;
2250 getShuffleMask(Mask, MaskAsInts);
2251 return isTransposeMask(MaskAsInts);
2252 }
2253
2254 /// Return true if this shuffle transposes the elements of its inputs without
2255 /// changing the length of the vectors. This operation may also be known as a
2256 /// merge or interleave. See the description for isTransposeMask() for the
2257 /// exact specification.
2258 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2259 bool isTranspose() const {
2260 return !changesLength() && isTransposeMask(ShuffleMask);
2261 }
2262
2263 /// Return true if this shuffle mask is an extract subvector mask.
2264 /// A valid extract subvector mask returns a smaller vector from a single
2265 /// source operand. The base extraction index is returned as well.
2266 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2267 int &Index);
2268 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2269 int &Index) {
2270 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2270, __PRETTY_FUNCTION__))
;
2271 SmallVector<int, 16> MaskAsInts;
2272 getShuffleMask(Mask, MaskAsInts);
2273 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2274 }
2275
2276 /// Return true if this shuffle mask is an extract subvector mask.
2277 bool isExtractSubvectorMask(int &Index) const {
2278 int NumSrcElts =
2279 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2280 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2281 }
2282
2283 /// Change values in a shuffle permute mask assuming the two vector operands
2284 /// of length InVecNumElts have swapped position.
2285 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2286 unsigned InVecNumElts) {
2287 for (int &Idx : Mask) {
2288 if (Idx == -1)
2289 continue;
2290 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2291 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2292, __PRETTY_FUNCTION__))
2292 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2292, __PRETTY_FUNCTION__))
;
2293 }
2294 }
2295
2296 // Methods for support type inquiry through isa, cast, and dyn_cast:
2297 static bool classof(const Instruction *I) {
2298 return I->getOpcode() == Instruction::ShuffleVector;
2299 }
2300 static bool classof(const Value *V) {
2301 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2302 }
2303};
2304
2305template <>
2306struct OperandTraits<ShuffleVectorInst>
2307 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2308
2309DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2309, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2309, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2310
2311//===----------------------------------------------------------------------===//
2312// ExtractValueInst Class
2313//===----------------------------------------------------------------------===//
2314
2315/// This instruction extracts a struct member or array
2316/// element value from an aggregate value.
2317///
2318class ExtractValueInst : public UnaryInstruction {
2319 SmallVector<unsigned, 4> Indices;
2320
2321 ExtractValueInst(const ExtractValueInst &EVI);
2322
2323 /// Constructors - Create a extractvalue instruction with a base aggregate
2324 /// value and a list of indices. The first ctor can optionally insert before
2325 /// an existing instruction, the second appends the new instruction to the
2326 /// specified BasicBlock.
2327 inline ExtractValueInst(Value *Agg,
2328 ArrayRef<unsigned> Idxs,
2329 const Twine &NameStr,
2330 Instruction *InsertBefore);
2331 inline ExtractValueInst(Value *Agg,
2332 ArrayRef<unsigned> Idxs,
2333 const Twine &NameStr, BasicBlock *InsertAtEnd);
2334
2335 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2336
2337protected:
2338 // Note: Instruction needs to be a friend here to call cloneImpl.
2339 friend class Instruction;
2340
2341 ExtractValueInst *cloneImpl() const;
2342
2343public:
2344 static ExtractValueInst *Create(Value *Agg,
2345 ArrayRef<unsigned> Idxs,
2346 const Twine &NameStr = "",
2347 Instruction *InsertBefore = nullptr) {
2348 return new
2349 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2350 }
2351
2352 static ExtractValueInst *Create(Value *Agg,
2353 ArrayRef<unsigned> Idxs,
2354 const Twine &NameStr,
2355 BasicBlock *InsertAtEnd) {
2356 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2357 }
2358
2359 /// Returns the type of the element that would be extracted
2360 /// with an extractvalue instruction with the specified parameters.
2361 ///
2362 /// Null is returned if the indices are invalid for the specified type.
2363 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2364
2365 using idx_iterator = const unsigned*;
2366
2367 inline idx_iterator idx_begin() const { return Indices.begin(); }
2368 inline idx_iterator idx_end() const { return Indices.end(); }
2369 inline iterator_range<idx_iterator> indices() const {
2370 return make_range(idx_begin(), idx_end());
2371 }
2372
2373 Value *getAggregateOperand() {
2374 return getOperand(0);
2375 }
2376 const Value *getAggregateOperand() const {
2377 return getOperand(0);
2378 }
2379 static unsigned getAggregateOperandIndex() {
2380 return 0U; // get index for modifying correct operand
2381 }
2382
2383 ArrayRef<unsigned> getIndices() const {
2384 return Indices;
2385 }
2386
2387 unsigned getNumIndices() const {
2388 return (unsigned)Indices.size();
2389 }
2390
2391 bool hasIndices() const {
2392 return true;
2393 }
2394
2395 // Methods for support type inquiry through isa, cast, and dyn_cast:
2396 static bool classof(const Instruction *I) {
2397 return I->getOpcode() == Instruction::ExtractValue;
2398 }
2399 static bool classof(const Value *V) {
2400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2401 }
2402};
2403
2404ExtractValueInst::ExtractValueInst(Value *Agg,
2405 ArrayRef<unsigned> Idxs,
2406 const Twine &NameStr,
2407 Instruction *InsertBefore)
2408 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2409 ExtractValue, Agg, InsertBefore) {
2410 init(Idxs, NameStr);
2411}
2412
2413ExtractValueInst::ExtractValueInst(Value *Agg,
2414 ArrayRef<unsigned> Idxs,
2415 const Twine &NameStr,
2416 BasicBlock *InsertAtEnd)
2417 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2418 ExtractValue, Agg, InsertAtEnd) {
2419 init(Idxs, NameStr);
2420}
2421
2422//===----------------------------------------------------------------------===//
2423// InsertValueInst Class
2424//===----------------------------------------------------------------------===//
2425
2426/// This instruction inserts a struct field of array element
2427/// value into an aggregate value.
2428///
2429class InsertValueInst : public Instruction {
2430 SmallVector<unsigned, 4> Indices;
2431
2432 InsertValueInst(const InsertValueInst &IVI);
2433
2434 /// Constructors - Create a insertvalue instruction with a base aggregate
2435 /// value, a value to insert, and a list of indices. The first ctor can
2436 /// optionally insert before an existing instruction, the second appends
2437 /// the new instruction to the specified BasicBlock.
2438 inline InsertValueInst(Value *Agg, Value *Val,
2439 ArrayRef<unsigned> Idxs,
2440 const Twine &NameStr,
2441 Instruction *InsertBefore);
2442 inline InsertValueInst(Value *Agg, Value *Val,
2443 ArrayRef<unsigned> Idxs,
2444 const Twine &NameStr, BasicBlock *InsertAtEnd);
2445
2446 /// Constructors - These two constructors are convenience methods because one
2447 /// and two index insertvalue instructions are so common.
2448 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2449 const Twine &NameStr = "",
2450 Instruction *InsertBefore = nullptr);
2451 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2452 BasicBlock *InsertAtEnd);
2453
2454 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr);
2456
2457protected:
2458 // Note: Instruction needs to be a friend here to call cloneImpl.
2459 friend class Instruction;
2460
2461 InsertValueInst *cloneImpl() const;
2462
2463public:
2464 // allocate space for exactly two operands
2465 void *operator new(size_t s) {
2466 return User::operator new(s, 2);
2467 }
2468
2469 static InsertValueInst *Create(Value *Agg, Value *Val,
2470 ArrayRef<unsigned> Idxs,
2471 const Twine &NameStr = "",
2472 Instruction *InsertBefore = nullptr) {
2473 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2474 }
2475
2476 static InsertValueInst *Create(Value *Agg, Value *Val,
2477 ArrayRef<unsigned> Idxs,
2478 const Twine &NameStr,
2479 BasicBlock *InsertAtEnd) {
2480 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2481 }
2482
2483 /// Transparently provide more efficient getOperand methods.
2484 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2485
2486 using idx_iterator = const unsigned*;
2487
2488 inline idx_iterator idx_begin() const { return Indices.begin(); }
2489 inline idx_iterator idx_end() const { return Indices.end(); }
2490 inline iterator_range<idx_iterator> indices() const {
2491 return make_range(idx_begin(), idx_end());
2492 }
2493
2494 Value *getAggregateOperand() {
2495 return getOperand(0);
2496 }
2497 const Value *getAggregateOperand() const {
2498 return getOperand(0);
2499 }
2500 static unsigned getAggregateOperandIndex() {
2501 return 0U; // get index for modifying correct operand
2502 }
2503
2504 Value *getInsertedValueOperand() {
2505 return getOperand(1);
2506 }
2507 const Value *getInsertedValueOperand() const {
2508 return getOperand(1);
2509 }
2510 static unsigned getInsertedValueOperandIndex() {
2511 return 1U; // get index for modifying correct operand
2512 }
2513
2514 ArrayRef<unsigned> getIndices() const {
2515 return Indices;
2516 }
2517
2518 unsigned getNumIndices() const {
2519 return (unsigned)Indices.size();
2520 }
2521
2522 bool hasIndices() const {
2523 return true;
2524 }
2525
2526 // Methods for support type inquiry through isa, cast, and dyn_cast:
2527 static bool classof(const Instruction *I) {
2528 return I->getOpcode() == Instruction::InsertValue;
2529 }
2530 static bool classof(const Value *V) {
2531 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2532 }
2533};
2534
2535template <>
2536struct OperandTraits<InsertValueInst> :
2537 public FixedNumOperandTraits<InsertValueInst, 2> {
2538};
2539
2540InsertValueInst::InsertValueInst(Value *Agg,
2541 Value *Val,
2542 ArrayRef<unsigned> Idxs,
2543 const Twine &NameStr,
2544 Instruction *InsertBefore)
2545 : Instruction(Agg->getType(), InsertValue,
2546 OperandTraits<InsertValueInst>::op_begin(this),
2547 2, InsertBefore) {
2548 init(Agg, Val, Idxs, NameStr);
2549}
2550
2551InsertValueInst::InsertValueInst(Value *Agg,
2552 Value *Val,
2553 ArrayRef<unsigned> Idxs,
2554 const Twine &NameStr,
2555 BasicBlock *InsertAtEnd)
2556 : Instruction(Agg->getType(), InsertValue,
2557 OperandTraits<InsertValueInst>::op_begin(this),
2558 2, InsertAtEnd) {
2559 init(Agg, Val, Idxs, NameStr);
2560}
2561
2562DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2562, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2562, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2563
2564//===----------------------------------------------------------------------===//
2565// PHINode Class
2566//===----------------------------------------------------------------------===//
2567
2568// PHINode - The PHINode class is used to represent the magical mystical PHI
2569// node, that can not exist in nature, but can be synthesized in a computer
2570// scientist's overactive imagination.
2571//
2572class PHINode : public Instruction {
2573 /// The number of operands actually allocated. NumOperands is
2574 /// the number actually in use.
2575 unsigned ReservedSpace;
2576
2577 PHINode(const PHINode &PN);
2578
2579 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2580 const Twine &NameStr = "",
2581 Instruction *InsertBefore = nullptr)
2582 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2583 ReservedSpace(NumReservedValues) {
2584 setName(NameStr);
2585 allocHungoffUses(ReservedSpace);
2586 }
2587
2588 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2589 BasicBlock *InsertAtEnd)
2590 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2591 ReservedSpace(NumReservedValues) {
2592 setName(NameStr);
2593 allocHungoffUses(ReservedSpace);
2594 }
2595
2596protected:
2597 // Note: Instruction needs to be a friend here to call cloneImpl.
2598 friend class Instruction;
2599
2600 PHINode *cloneImpl() const;
2601
2602 // allocHungoffUses - this is more complicated than the generic
2603 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2604 // values and pointers to the incoming blocks, all in one allocation.
2605 void allocHungoffUses(unsigned N) {
2606 User::allocHungoffUses(N, /* IsPhi */ true);
2607 }
2608
2609public:
2610 /// Constructors - NumReservedValues is a hint for the number of incoming
2611 /// edges that this phi node will have (use 0 if you really have no idea).
2612 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2613 const Twine &NameStr = "",
2614 Instruction *InsertBefore = nullptr) {
2615 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2616 }
2617
2618 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2619 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2620 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2621 }
2622
2623 /// Provide fast operand accessors
2624 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2625
2626 // Block iterator interface. This provides access to the list of incoming
2627 // basic blocks, which parallels the list of incoming values.
2628
2629 using block_iterator = BasicBlock **;
2630 using const_block_iterator = BasicBlock * const *;
2631
2632 block_iterator block_begin() {
2633 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2634 }
2635
2636 const_block_iterator block_begin() const {
2637 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2638 }
2639
2640 block_iterator block_end() {
2641 return block_begin() + getNumOperands();
2642 }
2643
2644 const_block_iterator block_end() const {
2645 return block_begin() + getNumOperands();
2646 }
2647
2648 iterator_range<block_iterator> blocks() {
2649 return make_range(block_begin(), block_end());
2650 }
2651
2652 iterator_range<const_block_iterator> blocks() const {
2653 return make_range(block_begin(), block_end());
2654 }
2655
2656 op_range incoming_values() { return operands(); }
2657
2658 const_op_range incoming_values() const { return operands(); }
2659
2660 /// Return the number of incoming edges
2661 ///
2662 unsigned getNumIncomingValues() const { return getNumOperands(); }
2663
2664 /// Return incoming value number x
2665 ///
2666 Value *getIncomingValue(unsigned i) const {
2667 return getOperand(i);
2668 }
2669 void setIncomingValue(unsigned i, Value *V) {
2670 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2670, __PRETTY_FUNCTION__))
;
2671 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2672, __PRETTY_FUNCTION__))
2672 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2672, __PRETTY_FUNCTION__))
;
2673 setOperand(i, V);
2674 }
2675
2676 static unsigned getOperandNumForIncomingValue(unsigned i) {
2677 return i;
2678 }
2679
2680 static unsigned getIncomingValueNumForOperand(unsigned i) {
2681 return i;
2682 }
2683
2684 /// Return incoming basic block number @p i.
2685 ///
2686 BasicBlock *getIncomingBlock(unsigned i) const {
2687 return block_begin()[i];
2688 }
2689
2690 /// Return incoming basic block corresponding
2691 /// to an operand of the PHI.
2692 ///
2693 BasicBlock *getIncomingBlock(const Use &U) const {
2694 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2694, __PRETTY_FUNCTION__))
;
2695 return getIncomingBlock(unsigned(&U - op_begin()));
2696 }
2697
2698 /// Return incoming basic block corresponding
2699 /// to value use iterator.
2700 ///
2701 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2702 return getIncomingBlock(I.getUse());
2703 }
2704
2705 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2706 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2706, __PRETTY_FUNCTION__))
;
2707 block_begin()[i] = BB;
2708 }
2709
2710 /// Replace every incoming basic block \p Old to basic block \p New.
2711 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2712 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2712, __PRETTY_FUNCTION__))
;
2713 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2714 if (getIncomingBlock(Op) == Old)
2715 setIncomingBlock(Op, New);
2716 }
2717
2718 /// Add an incoming value to the end of the PHI list
2719 ///
2720 void addIncoming(Value *V, BasicBlock *BB) {
2721 if (getNumOperands() == ReservedSpace)
2722 growOperands(); // Get more space!
2723 // Initialize some new operands.
2724 setNumHungOffUseOperands(getNumOperands() + 1);
2725 setIncomingValue(getNumOperands() - 1, V);
2726 setIncomingBlock(getNumOperands() - 1, BB);
2727 }
2728
2729 /// Remove an incoming value. This is useful if a
2730 /// predecessor basic block is deleted. The value removed is returned.
2731 ///
2732 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2733 /// is true), the PHI node is destroyed and any uses of it are replaced with
2734 /// dummy values. The only time there should be zero incoming values to a PHI
2735 /// node is when the block is dead, so this strategy is sound.
2736 ///
2737 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2738
2739 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2740 int Idx = getBasicBlockIndex(BB);
2741 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2741, __PRETTY_FUNCTION__))
;
2742 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2743 }
2744
2745 /// Return the first index of the specified basic
2746 /// block in the value list for this PHI. Returns -1 if no instance.
2747 ///
2748 int getBasicBlockIndex(const BasicBlock *BB) const {
2749 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2750 if (block_begin()[i] == BB)
2751 return i;
2752 return -1;
2753 }
2754
2755 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2756 int Idx = getBasicBlockIndex(BB);
2757 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2757, __PRETTY_FUNCTION__))
;
2758 return getIncomingValue(Idx);
2759 }
2760
2761 /// Set every incoming value(s) for block \p BB to \p V.
2762 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2763 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2763, __PRETTY_FUNCTION__))
;
2764 bool Found = false;
2765 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2766 if (getIncomingBlock(Op) == BB) {
2767 Found = true;
2768 setIncomingValue(Op, V);
2769 }
2770 (void)Found;
2771 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2771, __PRETTY_FUNCTION__))
;
2772 }
2773
2774 /// If the specified PHI node always merges together the
2775 /// same value, return the value, otherwise return null.
2776 Value *hasConstantValue() const;
2777
2778 /// Whether the specified PHI node always merges
2779 /// together the same value, assuming undefs are equal to a unique
2780 /// non-undef value.
2781 bool hasConstantOrUndefValue() const;
2782
2783 /// If the PHI node is complete which means all of its parent's predecessors
2784 /// have incoming value in this PHI, return true, otherwise return false.
2785 bool isComplete() const {
2786 return llvm::all_of(predecessors(getParent()),
2787 [this](const BasicBlock *Pred) {
2788 return getBasicBlockIndex(Pred) >= 0;
2789 });
2790 }
2791
2792 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2793 static bool classof(const Instruction *I) {
2794 return I->getOpcode() == Instruction::PHI;
2795 }
2796 static bool classof(const Value *V) {
2797 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2798 }
2799
2800private:
2801 void growOperands();
2802};
2803
2804template <>
2805struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2806};
2807
2808DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2808, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2808, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2809
2810//===----------------------------------------------------------------------===//
2811// LandingPadInst Class
2812//===----------------------------------------------------------------------===//
2813
2814//===---------------------------------------------------------------------------
2815/// The landingpad instruction holds all of the information
2816/// necessary to generate correct exception handling. The landingpad instruction
2817/// cannot be moved from the top of a landing pad block, which itself is
2818/// accessible only from the 'unwind' edge of an invoke. This uses the
2819/// SubclassData field in Value to store whether or not the landingpad is a
2820/// cleanup.
2821///
2822class LandingPadInst : public Instruction {
2823 using CleanupField = BoolBitfieldElementT<0>;
2824
2825 /// The number of operands actually allocated. NumOperands is
2826 /// the number actually in use.
2827 unsigned ReservedSpace;
2828
2829 LandingPadInst(const LandingPadInst &LP);
2830
2831public:
2832 enum ClauseType { Catch, Filter };
2833
2834private:
2835 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2836 const Twine &NameStr, Instruction *InsertBefore);
2837 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2838 const Twine &NameStr, BasicBlock *InsertAtEnd);
2839
2840 // Allocate space for exactly zero operands.
2841 void *operator new(size_t s) {
2842 return User::operator new(s);
2843 }
2844
2845 void growOperands(unsigned Size);
2846 void init(unsigned NumReservedValues, const Twine &NameStr);
2847
2848protected:
2849 // Note: Instruction needs to be a friend here to call cloneImpl.
2850 friend class Instruction;
2851
2852 LandingPadInst *cloneImpl() const;
2853
2854public:
2855 /// Constructors - NumReservedClauses is a hint for the number of incoming
2856 /// clauses that this landingpad will have (use 0 if you really have no idea).
2857 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2858 const Twine &NameStr = "",
2859 Instruction *InsertBefore = nullptr);
2860 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2861 const Twine &NameStr, BasicBlock *InsertAtEnd);
2862
2863 /// Provide fast operand accessors
2864 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2865
2866 /// Return 'true' if this landingpad instruction is a
2867 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2868 /// doesn't catch the exception.
2869 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2870
2871 /// Indicate that this landingpad instruction is a cleanup.
2872 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2873
2874 /// Add a catch or filter clause to the landing pad.
2875 void addClause(Constant *ClauseVal);
2876
2877 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2878 /// determine what type of clause this is.
2879 Constant *getClause(unsigned Idx) const {
2880 return cast<Constant>(getOperandList()[Idx]);
2881 }
2882
2883 /// Return 'true' if the clause and index Idx is a catch clause.
2884 bool isCatch(unsigned Idx) const {
2885 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2886 }
2887
2888 /// Return 'true' if the clause and index Idx is a filter clause.
2889 bool isFilter(unsigned Idx) const {
2890 return isa<ArrayType>(getOperandList()[Idx]->getType());
2891 }
2892
2893 /// Get the number of clauses for this landing pad.
2894 unsigned getNumClauses() const { return getNumOperands(); }
2895
2896 /// Grow the size of the operand list to accommodate the new
2897 /// number of clauses.
2898 void reserveClauses(unsigned Size) { growOperands(Size); }
2899
2900 // Methods for support type inquiry through isa, cast, and dyn_cast:
2901 static bool classof(const Instruction *I) {
2902 return I->getOpcode() == Instruction::LandingPad;
2903 }
2904 static bool classof(const Value *V) {
2905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2906 }
2907};
2908
2909template <>
2910struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2911};
2912
2913DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2913, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2913, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2914
2915//===----------------------------------------------------------------------===//
2916// ReturnInst Class
2917//===----------------------------------------------------------------------===//
2918
2919//===---------------------------------------------------------------------------
2920/// Return a value (possibly void), from a function. Execution
2921/// does not continue in this function any longer.
2922///
2923class ReturnInst : public Instruction {
2924 ReturnInst(const ReturnInst &RI);
2925
2926private:
2927 // ReturnInst constructors:
2928 // ReturnInst() - 'ret void' instruction
2929 // ReturnInst( null) - 'ret void' instruction
2930 // ReturnInst(Value* X) - 'ret X' instruction
2931 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2932 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2933 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2934 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2935 //
2936 // NOTE: If the Value* passed is of type void then the constructor behaves as
2937 // if it was passed NULL.
2938 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2939 Instruction *InsertBefore = nullptr);
2940 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2941 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2942
2943protected:
2944 // Note: Instruction needs to be a friend here to call cloneImpl.
2945 friend class Instruction;
2946
2947 ReturnInst *cloneImpl() const;
2948
2949public:
2950 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2951 Instruction *InsertBefore = nullptr) {
2952 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2953 }
2954
2955 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2956 BasicBlock *InsertAtEnd) {
2957 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2958 }
2959
2960 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2961 return new(0) ReturnInst(C, InsertAtEnd);
2962 }
2963
2964 /// Provide fast operand accessors
2965 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2966
2967 /// Convenience accessor. Returns null if there is no return value.
2968 Value *getReturnValue() const {
2969 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2970 }
2971
2972 unsigned getNumSuccessors() const { return 0; }
2973
2974 // Methods for support type inquiry through isa, cast, and dyn_cast:
2975 static bool classof(const Instruction *I) {
2976 return (I->getOpcode() == Instruction::Ret);
2977 }
2978 static bool classof(const Value *V) {
2979 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2980 }
2981
2982private:
2983 BasicBlock *getSuccessor(unsigned idx) const {
2984 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2984)
;
2985 }
2986
2987 void setSuccessor(unsigned idx, BasicBlock *B) {
2988 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2988)
;
2989 }
2990};
2991
2992template <>
2993struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2994};
2995
2996DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2996, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 2996, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2997
2998//===----------------------------------------------------------------------===//
2999// BranchInst Class
3000//===----------------------------------------------------------------------===//
3001
3002//===---------------------------------------------------------------------------
3003/// Conditional or Unconditional Branch instruction.
3004///
3005class BranchInst : public Instruction {
3006 /// Ops list - Branches are strange. The operands are ordered:
3007 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3008 /// they don't have to check for cond/uncond branchness. These are mostly
3009 /// accessed relative from op_end().
3010 BranchInst(const BranchInst &BI);
3011 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3012 // BranchInst(BB *B) - 'br B'
3013 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3014 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3015 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3016 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3017 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3018 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3019 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3020 Instruction *InsertBefore = nullptr);
3021 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3022 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3023 BasicBlock *InsertAtEnd);
3024
3025 void AssertOK();
3026
3027protected:
3028 // Note: Instruction needs to be a friend here to call cloneImpl.
3029 friend class Instruction;
3030
3031 BranchInst *cloneImpl() const;
3032
3033public:
3034 /// Iterator type that casts an operand to a basic block.
3035 ///
3036 /// This only makes sense because the successors are stored as adjacent
3037 /// operands for branch instructions.
3038 struct succ_op_iterator
3039 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3040 std::random_access_iterator_tag, BasicBlock *,
3041 ptrdiff_t, BasicBlock *, BasicBlock *> {
3042 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3043
3044 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3045 BasicBlock *operator->() const { return operator*(); }
3046 };
3047
3048 /// The const version of `succ_op_iterator`.
3049 struct const_succ_op_iterator
3050 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3051 std::random_access_iterator_tag,
3052 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3053 const BasicBlock *> {
3054 explicit const_succ_op_iterator(const_value_op_iterator I)
3055 : iterator_adaptor_base(I) {}
3056
3057 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3058 const BasicBlock *operator->() const { return operator*(); }
3059 };
3060
3061 static BranchInst *Create(BasicBlock *IfTrue,
3062 Instruction *InsertBefore = nullptr) {
3063 return new(1) BranchInst(IfTrue, InsertBefore);
3064 }
3065
3066 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3067 Value *Cond, Instruction *InsertBefore = nullptr) {
3068 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3069 }
3070
3071 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3072 return new(1) BranchInst(IfTrue, InsertAtEnd);
3073 }
3074
3075 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3076 Value *Cond, BasicBlock *InsertAtEnd) {
3077 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3078 }
3079
3080 /// Transparently provide more efficient getOperand methods.
3081 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3082
3083 bool isUnconditional() const { return getNumOperands() == 1; }
3084 bool isConditional() const { return getNumOperands() == 3; }
3085
3086 Value *getCondition() const {
3087 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3087, __PRETTY_FUNCTION__))
;
3088 return Op<-3>();
3089 }
3090
3091 void setCondition(Value *V) {
3092 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3092, __PRETTY_FUNCTION__))
;
3093 Op<-3>() = V;
3094 }
3095
3096 unsigned getNumSuccessors() const { return 1+isConditional(); }
3097
3098 BasicBlock *getSuccessor(unsigned i) const {
3099 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3099, __PRETTY_FUNCTION__))
;
3100 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3101 }
3102
3103 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3104 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3104, __PRETTY_FUNCTION__))
;
3105 *(&Op<-1>() - idx) = NewSucc;
3106 }
3107
3108 /// Swap the successors of this branch instruction.
3109 ///
3110 /// Swaps the successors of the branch instruction. This also swaps any
3111 /// branch weight metadata associated with the instruction so that it
3112 /// continues to map correctly to each operand.
3113 void swapSuccessors();
3114
3115 iterator_range<succ_op_iterator> successors() {
3116 return make_range(
3117 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3118 succ_op_iterator(value_op_end()));
3119 }
3120
3121 iterator_range<const_succ_op_iterator> successors() const {
3122 return make_range(const_succ_op_iterator(
3123 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3124 const_succ_op_iterator(value_op_end()));
3125 }
3126
3127 // Methods for support type inquiry through isa, cast, and dyn_cast:
3128 static bool classof(const Instruction *I) {
3129 return (I->getOpcode() == Instruction::Br);
3130 }
3131 static bool classof(const Value *V) {
3132 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3133 }
3134};
3135
3136template <>
3137struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3138};
3139
3140DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3140, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3140, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3141
3142//===----------------------------------------------------------------------===//
3143// SwitchInst Class
3144//===----------------------------------------------------------------------===//
3145
3146//===---------------------------------------------------------------------------
3147/// Multiway switch
3148///
3149class SwitchInst : public Instruction {
3150 unsigned ReservedSpace;
3151
3152 // Operand[0] = Value to switch on
3153 // Operand[1] = Default basic block destination
3154 // Operand[2n ] = Value to match
3155 // Operand[2n+1] = BasicBlock to go to on match
3156 SwitchInst(const SwitchInst &SI);
3157
3158 /// Create a new switch instruction, specifying a value to switch on and a
3159 /// default destination. The number of additional cases can be specified here
3160 /// to make memory allocation more efficient. This constructor can also
3161 /// auto-insert before another instruction.
3162 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3163 Instruction *InsertBefore);
3164
3165 /// Create a new switch instruction, specifying a value to switch on and a
3166 /// default destination. The number of additional cases can be specified here
3167 /// to make memory allocation more efficient. This constructor also
3168 /// auto-inserts at the end of the specified BasicBlock.
3169 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3170 BasicBlock *InsertAtEnd);
3171
3172 // allocate space for exactly zero operands
3173 void *operator new(size_t s) {
3174 return User::operator new(s);
3175 }
3176
3177 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3178 void growOperands();
3179
3180protected:
3181 // Note: Instruction needs to be a friend here to call cloneImpl.
3182 friend class Instruction;
3183
3184 SwitchInst *cloneImpl() const;
3185
3186public:
3187 // -2
3188 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3189
3190 template <typename CaseHandleT> class CaseIteratorImpl;
3191
3192 /// A handle to a particular switch case. It exposes a convenient interface
3193 /// to both the case value and the successor block.
3194 ///
3195 /// We define this as a template and instantiate it to form both a const and
3196 /// non-const handle.
3197 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3198 class CaseHandleImpl {
3199 // Directly befriend both const and non-const iterators.
3200 friend class SwitchInst::CaseIteratorImpl<
3201 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3202
3203 protected:
3204 // Expose the switch type we're parameterized with to the iterator.
3205 using SwitchInstType = SwitchInstT;
3206
3207 SwitchInstT *SI;
3208 ptrdiff_t Index;
3209
3210 CaseHandleImpl() = default;
3211 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3212
3213 public:
3214 /// Resolves case value for current case.
3215 ConstantIntT *getCaseValue() const {
3216 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3217, __PRETTY_FUNCTION__))
3217 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3217, __PRETTY_FUNCTION__))
;
3218 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3219 }
3220
3221 /// Resolves successor for current case.
3222 BasicBlockT *getCaseSuccessor() const {
3223 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
3224 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
3225 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
;
3226 return SI->getSuccessor(getSuccessorIndex());
3227 }
3228
3229 /// Returns number of current case.
3230 unsigned getCaseIndex() const { return Index; }
3231
3232 /// Returns successor index for current case successor.
3233 unsigned getSuccessorIndex() const {
3234 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
3235 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
3236 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
;
3237 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3238 }
3239
3240 bool operator==(const CaseHandleImpl &RHS) const {
3241 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3241, __PRETTY_FUNCTION__))
;
3242 return Index == RHS.Index;
3243 }
3244 };
3245
3246 using ConstCaseHandle =
3247 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3248
3249 class CaseHandle
3250 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3251 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3252
3253 public:
3254 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3255
3256 /// Sets the new value for current case.
3257 void setValue(ConstantInt *V) {
3258 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3259, __PRETTY_FUNCTION__))
3259 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3259, __PRETTY_FUNCTION__))
;
3260 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3261 }
3262
3263 /// Sets the new successor for current case.
3264 void setSuccessor(BasicBlock *S) {
3265 SI->setSuccessor(getSuccessorIndex(), S);
3266 }
3267 };
3268
3269 template <typename CaseHandleT>
3270 class CaseIteratorImpl
3271 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3272 std::random_access_iterator_tag,
3273 CaseHandleT> {
3274 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3275
3276 CaseHandleT Case;
3277
3278 public:
3279 /// Default constructed iterator is in an invalid state until assigned to
3280 /// a case for a particular switch.
3281 CaseIteratorImpl() = default;
3282
3283 /// Initializes case iterator for given SwitchInst and for given
3284 /// case number.
3285 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3286
3287 /// Initializes case iterator for given SwitchInst and for given
3288 /// successor index.
3289 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3290 unsigned SuccessorIndex) {
3291 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3292, __PRETTY_FUNCTION__))
3292 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3292, __PRETTY_FUNCTION__))
;
3293 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3294 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3295 }
3296
3297 /// Support converting to the const variant. This will be a no-op for const
3298 /// variant.
3299 operator CaseIteratorImpl<ConstCaseHandle>() const {
3300 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3301 }
3302
3303 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3304 // Check index correctness after addition.
3305 // Note: Index == getNumCases() means end().
3306 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
3307 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
3308 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
;
3309 Case.Index += N;
3310 return *this;
3311 }
3312 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3313 // Check index correctness after subtraction.
3314 // Note: Case.Index == getNumCases() means end().
3315 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
3316 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
3317 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
;
3318 Case.Index -= N;
3319 return *this;
3320 }
3321 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3322 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3322, __PRETTY_FUNCTION__))
;
3323 return Case.Index - RHS.Case.Index;
3324 }
3325 bool operator==(const CaseIteratorImpl &RHS) const {
3326 return Case == RHS.Case;
3327 }
3328 bool operator<(const CaseIteratorImpl &RHS) const {
3329 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3329, __PRETTY_FUNCTION__))
;
3330 return Case.Index < RHS.Case.Index;
3331 }
3332 CaseHandleT &operator*() { return Case; }
3333 const CaseHandleT &operator*() const { return Case; }
3334 };
3335
3336 using CaseIt = CaseIteratorImpl<CaseHandle>;
3337 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3338
3339 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3340 unsigned NumCases,
3341 Instruction *InsertBefore = nullptr) {
3342 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3343 }
3344
3345 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3346 unsigned NumCases, BasicBlock *InsertAtEnd) {
3347 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3348 }
3349
3350 /// Provide fast operand accessors
3351 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3352
3353 // Accessor Methods for Switch stmt
3354 Value *getCondition() const { return getOperand(0); }
3355 void setCondition(Value *V) { setOperand(0, V); }
3356
3357 BasicBlock *getDefaultDest() const {
3358 return cast<BasicBlock>(getOperand(1));
3359 }
3360
3361 void setDefaultDest(BasicBlock *DefaultCase) {
3362 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3363 }
3364
3365 /// Return the number of 'cases' in this switch instruction, excluding the
3366 /// default case.
3367 unsigned getNumCases() const {
3368 return getNumOperands()/2 - 1;
3369 }
3370
3371 /// Returns a read/write iterator that points to the first case in the
3372 /// SwitchInst.
3373 CaseIt case_begin() {
3374 return CaseIt(this, 0);
3375 }
3376
3377 /// Returns a read-only iterator that points to the first case in the
3378 /// SwitchInst.
3379 ConstCaseIt case_begin() const {
3380 return ConstCaseIt(this, 0);
3381 }
3382
3383 /// Returns a read/write iterator that points one past the last in the
3384 /// SwitchInst.
3385 CaseIt case_end() {
3386 return CaseIt(this, getNumCases());
3387 }
3388
3389 /// Returns a read-only iterator that points one past the last in the
3390 /// SwitchInst.
3391 ConstCaseIt case_end() const {
3392 return ConstCaseIt(this, getNumCases());
3393 }
3394
3395 /// Iteration adapter for range-for loops.
3396 iterator_range<CaseIt> cases() {
3397 return make_range(case_begin(), case_end());
3398 }
3399
3400 /// Constant iteration adapter for range-for loops.
3401 iterator_range<ConstCaseIt> cases() const {
3402 return make_range(case_begin(), case_end());
3403 }
3404
3405 /// Returns an iterator that points to the default case.
3406 /// Note: this iterator allows to resolve successor only. Attempt
3407 /// to resolve case value causes an assertion.
3408 /// Also note, that increment and decrement also causes an assertion and
3409 /// makes iterator invalid.
3410 CaseIt case_default() {
3411 return CaseIt(this, DefaultPseudoIndex);
3412 }
3413 ConstCaseIt case_default() const {
3414 return ConstCaseIt(this, DefaultPseudoIndex);
3415 }
3416
3417 /// Search all of the case values for the specified constant. If it is
3418 /// explicitly handled, return the case iterator of it, otherwise return
3419 /// default case iterator to indicate that it is handled by the default
3420 /// handler.
3421 CaseIt findCaseValue(const ConstantInt *C) {
3422 CaseIt I = llvm::find_if(
3423 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3424 if (I != case_end())
3425 return I;
3426
3427 return case_default();
3428 }
3429 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3430 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3431 return Case.getCaseValue() == C;
3432 });
3433 if (I != case_end())
3434 return I;
3435
3436 return case_default();
3437 }
3438
3439 /// Finds the unique case value for a given successor. Returns null if the
3440 /// successor is not found, not unique, or is the default case.
3441 ConstantInt *findCaseDest(BasicBlock *BB) {
3442 if (BB == getDefaultDest())
3443 return nullptr;
3444
3445 ConstantInt *CI = nullptr;
3446 for (auto Case : cases()) {
3447 if (Case.getCaseSuccessor() != BB)
3448 continue;
3449
3450 if (CI)
3451 return nullptr; // Multiple cases lead to BB.
3452
3453 CI = Case.getCaseValue();
3454 }
3455
3456 return CI;
3457 }
3458
3459 /// Add an entry to the switch instruction.
3460 /// Note:
3461 /// This action invalidates case_end(). Old case_end() iterator will
3462 /// point to the added case.
3463 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3464
3465 /// This method removes the specified case and its successor from the switch
3466 /// instruction. Note that this operation may reorder the remaining cases at
3467 /// index idx and above.
3468 /// Note:
3469 /// This action invalidates iterators for all cases following the one removed,
3470 /// including the case_end() iterator. It returns an iterator for the next
3471 /// case.
3472 CaseIt removeCase(CaseIt I);
3473
3474 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3475 BasicBlock *getSuccessor(unsigned idx) const {
3476 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3476, __PRETTY_FUNCTION__))
;
3477 return cast<BasicBlock>(getOperand(idx*2+1));
3478 }
3479 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3480 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3480, __PRETTY_FUNCTION__))
;
3481 setOperand(idx * 2 + 1, NewSucc);
3482 }
3483
3484 // Methods for support type inquiry through isa, cast, and dyn_cast:
3485 static bool classof(const Instruction *I) {
3486 return I->getOpcode() == Instruction::Switch;
3487 }
3488 static bool classof(const Value *V) {
3489 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3490 }
3491};
3492
3493/// A wrapper class to simplify modification of SwitchInst cases along with
3494/// their prof branch_weights metadata.
3495class SwitchInstProfUpdateWrapper {
3496 SwitchInst &SI;
3497 Optional<SmallVector<uint32_t, 8> > Weights = None;
3498 bool Changed = false;
3499
3500protected:
3501 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3502
3503 MDNode *buildProfBranchWeightsMD();
3504
3505 void init();
3506
3507public:
3508 using CaseWeightOpt = Optional<uint32_t>;
3509 SwitchInst *operator->() { return &SI; }
3510 SwitchInst &operator*() { return SI; }
3511 operator SwitchInst *() { return &SI; }
3512
3513 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3514
3515 ~SwitchInstProfUpdateWrapper() {
3516 if (Changed)
3517 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3518 }
3519
3520 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3521 /// correspondent branch weight.
3522 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3523
3524 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3525 /// specified branch weight for the added case.
3526 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3527
3528 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3529 /// this object to not touch the underlying SwitchInst in destructor.
3530 SymbolTableList<Instruction>::iterator eraseFromParent();
3531
3532 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3533 CaseWeightOpt getSuccessorWeight(unsigned idx);
3534
3535 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3536};
3537
3538template <>
3539struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3540};
3541
3542DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3542, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3542, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3543
3544//===----------------------------------------------------------------------===//
3545// IndirectBrInst Class
3546//===----------------------------------------------------------------------===//
3547
3548//===---------------------------------------------------------------------------
3549/// Indirect Branch Instruction.
3550///
3551class IndirectBrInst : public Instruction {
3552 unsigned ReservedSpace;
3553
3554 // Operand[0] = Address to jump to
3555 // Operand[n+1] = n-th destination
3556 IndirectBrInst(const IndirectBrInst &IBI);
3557
3558 /// Create a new indirectbr instruction, specifying an
3559 /// Address to jump to. The number of expected destinations can be specified
3560 /// here to make memory allocation more efficient. This constructor can also
3561 /// autoinsert before another instruction.
3562 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3563
3564 /// Create a new indirectbr instruction, specifying an
3565 /// Address to jump to. The number of expected destinations can be specified
3566 /// here to make memory allocation more efficient. This constructor also
3567 /// autoinserts at the end of the specified BasicBlock.
3568 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3569
3570 // allocate space for exactly zero operands
3571 void *operator new(size_t s) {
3572 return User::operator new(s);
3573 }
3574
3575 void init(Value *Address, unsigned NumDests);
3576 void growOperands();
3577
3578protected:
3579 // Note: Instruction needs to be a friend here to call cloneImpl.
3580 friend class Instruction;
3581
3582 IndirectBrInst *cloneImpl() const;
3583
3584public:
3585 /// Iterator type that casts an operand to a basic block.
3586 ///
3587 /// This only makes sense because the successors are stored as adjacent
3588 /// operands for indirectbr instructions.
3589 struct succ_op_iterator
3590 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3591 std::random_access_iterator_tag, BasicBlock *,
3592 ptrdiff_t, BasicBlock *, BasicBlock *> {
3593 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3594
3595 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3596 BasicBlock *operator->() const { return operator*(); }
3597 };
3598
3599 /// The const version of `succ_op_iterator`.
3600 struct const_succ_op_iterator
3601 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3602 std::random_access_iterator_tag,
3603 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3604 const BasicBlock *> {
3605 explicit const_succ_op_iterator(const_value_op_iterator I)
3606 : iterator_adaptor_base(I) {}
3607
3608 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3609 const BasicBlock *operator->() const { return operator*(); }
3610 };
3611
3612 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3613 Instruction *InsertBefore = nullptr) {
3614 return new IndirectBrInst(Address, NumDests, InsertBefore);
3615 }
3616
3617 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3618 BasicBlock *InsertAtEnd) {
3619 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3620 }
3621
3622 /// Provide fast operand accessors.
3623 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3624
3625 // Accessor Methods for IndirectBrInst instruction.
3626 Value *getAddress() { return getOperand(0); }
3627 const Value *getAddress() const { return getOperand(0); }
3628 void setAddress(Value *V) { setOperand(0, V); }
3629
3630 /// return the number of possible destinations in this
3631 /// indirectbr instruction.
3632 unsigned getNumDestinations() const { return getNumOperands()-1; }
3633
3634 /// Return the specified destination.
3635 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3636 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3637
3638 /// Add a destination.
3639 ///
3640 void addDestination(BasicBlock *Dest);
3641
3642 /// This method removes the specified successor from the
3643 /// indirectbr instruction.
3644 void removeDestination(unsigned i);
3645
3646 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3647 BasicBlock *getSuccessor(unsigned i) const {
3648 return cast<BasicBlock>(getOperand(i+1));
3649 }
3650 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3651 setOperand(i + 1, NewSucc);
3652 }
3653
3654 iterator_range<succ_op_iterator> successors() {
3655 return make_range(succ_op_iterator(std::next(value_op_begin())),
3656 succ_op_iterator(value_op_end()));
3657 }
3658
3659 iterator_range<const_succ_op_iterator> successors() const {
3660 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3661 const_succ_op_iterator(value_op_end()));
3662 }
3663
3664 // Methods for support type inquiry through isa, cast, and dyn_cast:
3665 static bool classof(const Instruction *I) {
3666 return I->getOpcode() == Instruction::IndirectBr;
3667 }
3668 static bool classof(const Value *V) {
3669 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3670 }
3671};
3672
3673template <>
3674struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3675};
3676
3677DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3677, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3677, __PRETTY_FUNCTION__)); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3678
3679//===----------------------------------------------------------------------===//
3680// InvokeInst Class
3681//===----------------------------------------------------------------------===//
3682
3683/// Invoke instruction. The SubclassData field is used to hold the
3684/// calling convention of the call.
3685///
3686class InvokeInst : public CallBase {
3687 /// The number of operands for this call beyond the called function,
3688 /// arguments, and operand bundles.
3689 static constexpr int NumExtraOperands = 2;
3690
3691 /// The index from the end of the operand array to the normal destination.
3692 static constexpr int NormalDestOpEndIdx = -3;
3693
3694 /// The index from the end of the operand array to the unwind destination.
3695 static constexpr int UnwindDestOpEndIdx = -2;
3696
3697 InvokeInst(const InvokeInst &BI);
3698
3699 /// Construct an InvokeInst given a range of arguments.
3700 ///
3701 /// Construct an InvokeInst from a range of arguments
3702 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3703 BasicBlock *IfException, ArrayRef<Value *> Args,
3704 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3705 const Twine &NameStr, Instruction *InsertBefore);
3706
3707 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3708 BasicBlock *IfException, ArrayRef<Value *> Args,
3709 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3710 const Twine &NameStr, BasicBlock *InsertAtEnd);
3711
3712 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3713 BasicBlock *IfException, ArrayRef<Value *> Args,
3714 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3715
3716 /// Compute the number of operands to allocate.
3717 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3718 // We need one operand for the called function, plus our extra operands and
3719 // the input operand counts provided.
3720 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3721 }
3722
3723protected:
3724 // Note: Instruction needs to be a friend here to call cloneImpl.
3725 friend class Instruction;
3726
3727 InvokeInst *cloneImpl() const;
3728
3729public:
3730 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3731 BasicBlock *IfException, ArrayRef<Value *> Args,
3732 const Twine &NameStr,
3733 Instruction *InsertBefore = nullptr) {
3734 int NumOperands = ComputeNumOperands(Args.size());
3735 return new (NumOperands)
3736 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3737 NameStr, InsertBefore);
3738 }
3739
3740 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3741 BasicBlock *IfException, ArrayRef<Value *> Args,
3742 ArrayRef<OperandBundleDef> Bundles = None,
3743 const Twine &NameStr = "",
3744 Instruction *InsertBefore = nullptr) {
3745 int NumOperands =
3746 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3747 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3748
3749 return new (NumOperands, DescriptorBytes)
3750 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3751 NameStr, InsertBefore);
3752 }
3753
3754 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3755 BasicBlock *IfException, ArrayRef<Value *> Args,
3756 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3757 int NumOperands = ComputeNumOperands(Args.size());
3758 return new (NumOperands)
3759 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3760 NameStr, InsertAtEnd);
3761 }
3762
3763 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3764 BasicBlock *IfException, ArrayRef<Value *> Args,
3765 ArrayRef<OperandBundleDef> Bundles,
3766 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3767 int NumOperands =
3768 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3769 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3770
3771 return new (NumOperands, DescriptorBytes)
3772 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3773 NameStr, InsertAtEnd);
3774 }
3775
3776 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3777 BasicBlock *IfException, ArrayRef<Value *> Args,
3778 const Twine &NameStr,
3779 Instruction *InsertBefore = nullptr) {
3780 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3781 IfException, Args, None, NameStr, InsertBefore);
3782 }
3783
3784 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3785 BasicBlock *IfException, ArrayRef<Value *> Args,
3786 ArrayRef<OperandBundleDef> Bundles = None,
3787 const Twine &NameStr = "",
3788 Instruction *InsertBefore = nullptr) {
3789 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3790 IfException, Args, Bundles, NameStr, InsertBefore);
3791 }
3792
3793 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3794 BasicBlock *IfException, ArrayRef<Value *> Args,
3795 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3796 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3797 IfException, Args, NameStr, InsertAtEnd);
3798 }
3799
3800 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3801 BasicBlock *IfException, ArrayRef<Value *> Args,
3802 ArrayRef<OperandBundleDef> Bundles,
3803 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3804 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3805 IfException, Args, Bundles, NameStr, InsertAtEnd);
3806 }
3807
3808 /// Create a clone of \p II with a different set of operand bundles and
3809 /// insert it before \p InsertPt.
3810 ///
3811 /// The returned invoke instruction is identical to \p II in every way except
3812 /// that the operand bundles for the new instruction are set to the operand
3813 /// bundles in \p Bundles.
3814 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3815 Instruction *InsertPt = nullptr);
3816
3817 /// Create a clone of \p II with a different set of operand bundles and
3818 /// insert it before \p InsertPt.
3819 ///
3820 /// The returned invoke instruction is identical to \p II in every way except
3821 /// that the operand bundle for the new instruction is set to the operand
3822 /// bundle in \p Bundle.
3823 static InvokeInst *CreateWithReplacedBundle(InvokeInst *II,
3824 OperandBundleDef Bundles,
3825 Instruction *InsertPt = nullptr);
3826
3827 // get*Dest - Return the destination basic blocks...
3828 BasicBlock *getNormalDest() const {
3829 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3830 }
3831 BasicBlock *getUnwindDest() const {
3832 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3833 }
3834 void setNormalDest(BasicBlock *B) {
3835 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3836 }
3837 void setUnwindDest(BasicBlock *B) {
3838 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3839 }
3840
3841 /// Get the landingpad instruction from the landing pad
3842 /// block (the unwind destination).
3843 LandingPadInst *getLandingPadInst() const;
3844
3845 BasicBlock *getSuccessor(unsigned i) const {
3846 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3846, __PRETTY_FUNCTION__))
;
3847 return i == 0 ? getNormalDest() : getUnwindDest();
3848 }
3849
3850 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3851 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 3851, __PRETTY_FUNCTION__))
;
3852 if (i == 0)
3853 setNormalDest(NewSucc);
3854 else
3855 setUnwindDest(NewSucc);
3856 }
3857
3858 unsigned getNumSuccessors() const { return 2; }
3859
3860 // Methods for support type inquiry through isa, cast, and dyn_cast:
3861 static bool classof(const Instruction *I) {
3862 return (I->getOpcode() == Instruction::Invoke);
3863 }
3864 static bool classof(const Value *V) {
3865 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3866 }
3867
3868private:
3869 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3870 // method so that subclasses cannot accidentally use it.
3871 template <typename Bitfield>
3872 void setSubclassData(typename Bitfield::Type Value) {
3873 Instruction::setSubclassData<Bitfield>(Value);
3874 }
3875};
3876
3877InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3878 BasicBlock *IfException, ArrayRef<Value *> Args,
3879 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3880 const Twine &NameStr, Instruction *InsertBefore)
3881 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3882 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3883 InsertBefore) {
3884 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3885}
3886
3887InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3888 BasicBlock *IfException, ArrayRef<Value *> Args,
3889 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3890 const Twine &NameStr, BasicBlock *InsertAtEnd)
3891 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3892 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3893 InsertAtEnd) {
3894 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3895}
3896
3897//===----------------------------------------------------------------------===//
3898// CallBrInst Class
3899//===----------------------------------------------------------------------===//
3900
3901/// CallBr instruction, tracking function calls that may not return control but
3902/// instead transfer it to a third location. The SubclassData field is used to
3903/// hold the calling convention of the call.
3904///
3905class CallBrInst : public CallBase {
3906
3907 unsigned NumIndirectDests;
3908
3909 CallBrInst(const CallBrInst &BI);
3910
3911 /// Construct a CallBrInst given a range of arguments.
3912 ///
3913 /// Construct a CallBrInst from a range of arguments
3914 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3915 ArrayRef<BasicBlock *> IndirectDests,
3916 ArrayRef<Value *> Args,
3917 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3918 const Twine &NameStr, Instruction *InsertBefore);
3919
3920 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3921 ArrayRef<BasicBlock *> IndirectDests,
3922 ArrayRef<Value *> Args,
3923 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3924 const Twine &NameStr, BasicBlock *InsertAtEnd);
3925
3926 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3927 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3928 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3929
3930 /// Should the Indirect Destinations change, scan + update the Arg list.
3931 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3932
3933 /// Compute the number of operands to allocate.
3934 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3935 int NumBundleInputs = 0) {
3936 // We need one operand for the called function, plus our extra operands and
3937 // the input operand counts provided.
3938 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3939 }
3940
3941protected:
3942 // Note: Instruction needs to be a friend here to call cloneImpl.
3943 friend class Instruction;
3944
3945 CallBrInst *cloneImpl() const;
3946
3947public:
3948 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3949 BasicBlock *DefaultDest,
3950 ArrayRef<BasicBlock *> IndirectDests,
3951 ArrayRef<Value *> Args, const Twine &NameStr,
3952 Instruction *InsertBefore = nullptr) {
3953 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3954 return new (NumOperands)
3955 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3956 NumOperands, NameStr, InsertBefore);
3957 }
3958
3959 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3960 BasicBlock *DefaultDest,
3961 ArrayRef<BasicBlock *> IndirectDests,
3962 ArrayRef<Value *> Args,
3963 ArrayRef<OperandBundleDef> Bundles = None,
3964 const Twine &NameStr = "",
3965 Instruction *InsertBefore = nullptr) {
3966 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3967 CountBundleInputs(Bundles));
3968 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3969
3970 return new (NumOperands, DescriptorBytes)
3971 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3972 NumOperands, NameStr, InsertBefore);
3973 }
3974
3975 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3976 BasicBlock *DefaultDest,
3977 ArrayRef<BasicBlock *> IndirectDests,
3978 ArrayRef<Value *> Args, const Twine &NameStr,
3979 BasicBlock *InsertAtEnd) {
3980 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3981 return new (NumOperands)
3982 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3983 NumOperands, NameStr, InsertAtEnd);
3984 }
3985
3986 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3987 BasicBlock *DefaultDest,
3988 ArrayRef<BasicBlock *> IndirectDests,
3989 ArrayRef<Value *> Args,
3990 ArrayRef<OperandBundleDef> Bundles,
3991 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3992 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3993 CountBundleInputs(Bundles));
3994 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3995
3996 return new (NumOperands, DescriptorBytes)
3997 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3998 NumOperands, NameStr, InsertAtEnd);
3999 }
4000
4001 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4002 ArrayRef<BasicBlock *> IndirectDests,
4003 ArrayRef<Value *> Args, const Twine &NameStr,
4004 Instruction *InsertBefore = nullptr) {
4005 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4006 IndirectDests, Args, NameStr, InsertBefore);
4007 }
4008
4009 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4010 ArrayRef<BasicBlock *> IndirectDests,
4011 ArrayRef<Value *> Args,
4012 ArrayRef<OperandBundleDef> Bundles = None,
4013 const Twine &NameStr = "",
4014 Instruction *InsertBefore = nullptr) {
4015 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4016 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4017 }
4018
4019 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4020 ArrayRef<BasicBlock *> IndirectDests,
4021 ArrayRef<Value *> Args, const Twine &NameStr,
4022 BasicBlock *InsertAtEnd) {
4023 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4024 IndirectDests, Args, NameStr, InsertAtEnd);
4025 }
4026
4027 static CallBrInst *Create(FunctionCallee Func,
4028 BasicBlock *DefaultDest,
4029 ArrayRef<BasicBlock *> IndirectDests,
4030 ArrayRef<Value *> Args,
4031 ArrayRef<OperandBundleDef> Bundles,
4032 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4033 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4034 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4035 }
4036
4037 /// Create a clone of \p CBI with a different set of operand bundles and
4038 /// insert it before \p InsertPt.
4039 ///
4040 /// The returned callbr instruction is identical to \p CBI in every way
4041 /// except that the operand bundles for the new instruction are set to the
4042 /// operand bundles in \p Bundles.
4043 static CallBrInst *Create(CallBrInst *CBI,
4044 ArrayRef<OperandBundleDef> Bundles,
4045 Instruction *InsertPt = nullptr);
4046
4047 /// Return the number of callbr indirect dest labels.
4048 ///
4049 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4050
4051 /// getIndirectDestLabel - Return the i-th indirect dest label.
4052 ///
4053 Value *getIndirectDestLabel(unsigned i) const {
4054 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4054, __PRETTY_FUNCTION__))
;
4055 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4056 1);
4057 }
4058
4059 Value *getIndirectDestLabelUse(unsigned i) const {
4060 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4060, __PRETTY_FUNCTION__))
;
4061 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4062 1);
4063 }
4064
4065 // Return the destination basic blocks...
4066 BasicBlock *getDefaultDest() const {
4067 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4068 }
4069 BasicBlock *getIndirectDest(unsigned i) const {
4070 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4071 }
4072 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4073 SmallVector<BasicBlock *, 16> IndirectDests;
4074 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4075 IndirectDests.push_back(getIndirectDest(i));
4076 return IndirectDests;
4077 }
4078 void setDefaultDest(BasicBlock *B) {
4079 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4080 }
4081 void setIndirectDest(unsigned i, BasicBlock *B) {
4082 updateArgBlockAddresses(i, B);
4083 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4084 }
4085
4086 BasicBlock *getSuccessor(unsigned i) const {
4087 assert(i < getNumSuccessors() + 1 &&((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4088, __PRETTY_FUNCTION__))
4088 "Successor # out of range for callbr!")((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4088, __PRETTY_FUNCTION__))
;
4089 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4090 }
4091
4092 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4093 assert(i < getNumIndirectDests() + 1 &&((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4094, __PRETTY_FUNCTION__))
4094 "Successor # out of range for callbr!")((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4094, __PRETTY_FUNCTION__))
;
4095 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4096 }
4097
4098 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4099
4100 // Methods for support type inquiry through isa, cast, and dyn_cast:
4101 static bool classof(const Instruction *I) {
4102 return (I->getOpcode() == Instruction::CallBr);
4103 }
4104 static bool classof(const Value *V) {
4105 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4106 }
4107
4108private:
4109 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4110 // method so that subclasses cannot accidentally use it.
4111 template <typename Bitfield>
4112 void setSubclassData(typename Bitfield::Type Value) {
4113 Instruction::setSubclassData<Bitfield>(Value);
4114 }
4115};
4116
4117CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4118 ArrayRef<BasicBlock *> IndirectDests,
4119 ArrayRef<Value *> Args,
4120 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4121 const Twine &NameStr, Instruction *InsertBefore)
4122 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4123 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4124 InsertBefore) {
4125 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4126}
4127
4128CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4129 ArrayRef<BasicBlock *> IndirectDests,
4130 ArrayRef<Value *> Args,
4131 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4132 const Twine &NameStr, BasicBlock *InsertAtEnd)
4133 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4134 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4135 InsertAtEnd) {
4136 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4137}
4138
4139//===----------------------------------------------------------------------===//
4140// ResumeInst Class
4141//===----------------------------------------------------------------------===//
4142
4143//===---------------------------------------------------------------------------
4144/// Resume the propagation of an exception.
4145///
4146class ResumeInst : public Instruction {
4147 ResumeInst(const ResumeInst &RI);
4148
4149 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4150 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4151
4152protected:
4153 // Note: Instruction needs to be a friend here to call cloneImpl.
4154 friend class Instruction;
4155
4156 ResumeInst *cloneImpl() const;
4157
4158public:
4159 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4160 return new(1) ResumeInst(Exn, InsertBefore);
4161 }
4162
4163 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4164 return new(1) ResumeInst(Exn, InsertAtEnd);
4165 }
4166
4167 /// Provide fast operand accessors
4168 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4169
4170 /// Convenience accessor.
4171 Value *getValue() const { return Op<0>(); }
4172
4173 unsigned getNumSuccessors() const { return 0; }
4174
4175 // Methods for support type inquiry through isa, cast, and dyn_cast:
4176 static bool classof(const Instruction *I) {
4177 return I->getOpcode() == Instruction::Resume;
4178 }
4179 static bool classof(const Value *V) {
4180 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4181 }
4182
4183private:
4184 BasicBlock *getSuccessor(unsigned idx) const {
4185 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4185)
;
4186 }
4187
4188 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4189 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4189)
;
4190 }
4191};
4192
4193template <>
4194struct OperandTraits<ResumeInst> :
4195 public FixedNumOperandTraits<ResumeInst, 1> {
4196};
4197
4198DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4198, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ResumeInst>::op_begin(const_cast<ResumeInst
*>(this))[i_nocapture].get()); } void ResumeInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4198, __PRETTY_FUNCTION__)); OperandTraits<ResumeInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ResumeInst
::getNumOperands() const { return OperandTraits<ResumeInst
>::operands(this); } template <int Idx_nocapture> Use
&ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4199
4200//===----------------------------------------------------------------------===//
4201// CatchSwitchInst Class
4202//===----------------------------------------------------------------------===//
4203class CatchSwitchInst : public Instruction {
4204 using UnwindDestField = BoolBitfieldElementT<0>;
4205
4206 /// The number of operands actually allocated. NumOperands is
4207 /// the number actually in use.
4208 unsigned ReservedSpace;
4209
4210 // Operand[0] = Outer scope
4211 // Operand[1] = Unwind block destination
4212 // Operand[n] = BasicBlock to go to on match
4213 CatchSwitchInst(const CatchSwitchInst &CSI);
4214
4215 /// Create a new switch instruction, specifying a
4216 /// default destination. The number of additional handlers can be specified
4217 /// here to make memory allocation more efficient.
4218 /// This constructor can also autoinsert before another instruction.
4219 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4220 unsigned NumHandlers, const Twine &NameStr,
4221 Instruction *InsertBefore);
4222
4223 /// Create a new switch instruction, specifying a
4224 /// default destination. The number of additional handlers can be specified
4225 /// here to make memory allocation more efficient.
4226 /// This constructor also autoinserts at the end of the specified BasicBlock.
4227 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4228 unsigned NumHandlers, const Twine &NameStr,
4229 BasicBlock *InsertAtEnd);
4230
4231 // allocate space for exactly zero operands
4232 void *operator new(size_t s) { return User::operator new(s); }
4233
4234 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4235 void growOperands(unsigned Size);
4236
4237protected:
4238 // Note: Instruction needs to be a friend here to call cloneImpl.
4239 friend class Instruction;
4240
4241 CatchSwitchInst *cloneImpl() const;
4242
4243public:
4244 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4245 unsigned NumHandlers,
4246 const Twine &NameStr = "",
4247 Instruction *InsertBefore = nullptr) {
4248 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4249 InsertBefore);
4250 }
4251
4252 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4253 unsigned NumHandlers, const Twine &NameStr,
4254 BasicBlock *InsertAtEnd) {
4255 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4256 InsertAtEnd);
4257 }
4258
4259 /// Provide fast operand accessors
4260 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4261
4262 // Accessor Methods for CatchSwitch stmt
4263 Value *getParentPad() const { return getOperand(0); }
4264 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4265
4266 // Accessor Methods for CatchSwitch stmt
4267 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4268 bool unwindsToCaller() const { return !hasUnwindDest(); }
4269 BasicBlock *getUnwindDest() const {
4270 if (hasUnwindDest())
4271 return cast<BasicBlock>(getOperand(1));
4272 return nullptr;
4273 }
4274 void setUnwindDest(BasicBlock *UnwindDest) {
4275 assert(UnwindDest)((UnwindDest) ? static_cast<void> (0) : __assert_fail (
"UnwindDest", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4275, __PRETTY_FUNCTION__))
;
4276 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4276, __PRETTY_FUNCTION__))
;
4277 setOperand(1, UnwindDest);
4278 }
4279
4280 /// return the number of 'handlers' in this catchswitch
4281 /// instruction, except the default handler
4282 unsigned getNumHandlers() const {
4283 if (hasUnwindDest())
4284 return getNumOperands() - 2;
4285 return getNumOperands() - 1;
4286 }
4287
4288private:
4289 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4290 static const BasicBlock *handler_helper(const Value *V) {
4291 return cast<BasicBlock>(V);
4292 }
4293
4294public:
4295 using DerefFnTy = BasicBlock *(*)(Value *);
4296 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4297 using handler_range = iterator_range<handler_iterator>;
4298 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4299 using const_handler_iterator =
4300 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4301 using const_handler_range = iterator_range<const_handler_iterator>;
4302
4303 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4304 handler_iterator handler_begin() {
4305 op_iterator It = op_begin() + 1;
4306 if (hasUnwindDest())
4307 ++It;
4308 return handler_iterator(It, DerefFnTy(handler_helper));
4309 }
4310
4311 /// Returns an iterator that points to the first handler in the
4312 /// CatchSwitchInst.
4313 const_handler_iterator handler_begin() const {
4314 const_op_iterator It = op_begin() + 1;
4315 if (hasUnwindDest())
4316 ++It;
4317 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4318 }
4319
4320 /// Returns a read-only iterator that points one past the last
4321 /// handler in the CatchSwitchInst.
4322 handler_iterator handler_end() {
4323 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4324 }
4325
4326 /// Returns an iterator that points one past the last handler in the
4327 /// CatchSwitchInst.
4328 const_handler_iterator handler_end() const {
4329 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4330 }
4331
4332 /// iteration adapter for range-for loops.
4333 handler_range handlers() {
4334 return make_range(handler_begin(), handler_end());
4335 }
4336
4337 /// iteration adapter for range-for loops.
4338 const_handler_range handlers() const {
4339 return make_range(handler_begin(), handler_end());
4340 }
4341
4342 /// Add an entry to the switch instruction...
4343 /// Note:
4344 /// This action invalidates handler_end(). Old handler_end() iterator will
4345 /// point to the added handler.
4346 void addHandler(BasicBlock *Dest);
4347
4348 void removeHandler(handler_iterator HI);
4349
4350 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4351 BasicBlock *getSuccessor(unsigned Idx) const {
4352 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4353, __PRETTY_FUNCTION__))
4353 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4353, __PRETTY_FUNCTION__))
;
4354 return cast<BasicBlock>(getOperand(Idx + 1));
4355 }
4356 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4357 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4358, __PRETTY_FUNCTION__))
4358 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4358, __PRETTY_FUNCTION__))
;
4359 setOperand(Idx + 1, NewSucc);
4360 }
4361
4362 // Methods for support type inquiry through isa, cast, and dyn_cast:
4363 static bool classof(const Instruction *I) {
4364 return I->getOpcode() == Instruction::CatchSwitch;
4365 }
4366 static bool classof(const Value *V) {
4367 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4368 }
4369};
4370
4371template <>
4372struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4373
4374DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4374, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this))[i_nocapture].get()); } void CatchSwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchSwitchInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4374, __PRETTY_FUNCTION__)); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4375
4376//===----------------------------------------------------------------------===//
4377// CleanupPadInst Class
4378//===----------------------------------------------------------------------===//
4379class CleanupPadInst : public FuncletPadInst {
4380private:
4381 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4382 unsigned Values, const Twine &NameStr,
4383 Instruction *InsertBefore)
4384 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4385 NameStr, InsertBefore) {}
4386 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4387 unsigned Values, const Twine &NameStr,
4388 BasicBlock *InsertAtEnd)
4389 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4390 NameStr, InsertAtEnd) {}
4391
4392public:
4393 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4394 const Twine &NameStr = "",
4395 Instruction *InsertBefore = nullptr) {
4396 unsigned Values = 1 + Args.size();
4397 return new (Values)
4398 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4399 }
4400
4401 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4402 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4403 unsigned Values = 1 + Args.size();
4404 return new (Values)
4405 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4406 }
4407
4408 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4409 static bool classof(const Instruction *I) {
4410 return I->getOpcode() == Instruction::CleanupPad;
4411 }
4412 static bool classof(const Value *V) {
4413 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4414 }
4415};
4416
4417//===----------------------------------------------------------------------===//
4418// CatchPadInst Class
4419//===----------------------------------------------------------------------===//
4420class CatchPadInst : public FuncletPadInst {
4421private:
4422 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4423 unsigned Values, const Twine &NameStr,
4424 Instruction *InsertBefore)
4425 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4426 NameStr, InsertBefore) {}
4427 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4428 unsigned Values, const Twine &NameStr,
4429 BasicBlock *InsertAtEnd)
4430 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4431 NameStr, InsertAtEnd) {}
4432
4433public:
4434 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4435 const Twine &NameStr = "",
4436 Instruction *InsertBefore = nullptr) {
4437 unsigned Values = 1 + Args.size();
4438 return new (Values)
4439 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4440 }
4441
4442 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4443 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4444 unsigned Values = 1 + Args.size();
4445 return new (Values)
4446 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4447 }
4448
4449 /// Convenience accessors
4450 CatchSwitchInst *getCatchSwitch() const {
4451 return cast<CatchSwitchInst>(Op<-1>());
4452 }
4453 void setCatchSwitch(Value *CatchSwitch) {
4454 assert(CatchSwitch)((CatchSwitch) ? static_cast<void> (0) : __assert_fail (
"CatchSwitch", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4454, __PRETTY_FUNCTION__))
;
4455 Op<-1>() = CatchSwitch;
4456 }
4457
4458 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4459 static bool classof(const Instruction *I) {
4460 return I->getOpcode() == Instruction::CatchPad;
4461 }
4462 static bool classof(const Value *V) {
4463 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4464 }
4465};
4466
4467//===----------------------------------------------------------------------===//
4468// CatchReturnInst Class
4469//===----------------------------------------------------------------------===//
4470
4471class CatchReturnInst : public Instruction {
4472 CatchReturnInst(const CatchReturnInst &RI);
4473 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4474 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4475
4476 void init(Value *CatchPad, BasicBlock *BB);
4477
4478protected:
4479 // Note: Instruction needs to be a friend here to call cloneImpl.
4480 friend class Instruction;
4481
4482 CatchReturnInst *cloneImpl() const;
4483
4484public:
4485 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4486 Instruction *InsertBefore = nullptr) {
4487 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4487, __PRETTY_FUNCTION__))
;
4488 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4488, __PRETTY_FUNCTION__))
;
4489 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4490 }
4491
4492 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4493 BasicBlock *InsertAtEnd) {
4494 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4494, __PRETTY_FUNCTION__))
;
4495 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4495, __PRETTY_FUNCTION__))
;
4496 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4497 }
4498
4499 /// Provide fast operand accessors
4500 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4501
4502 /// Convenience accessors.
4503 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4504 void setCatchPad(CatchPadInst *CatchPad) {
4505 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4505, __PRETTY_FUNCTION__))
;
4506 Op<0>() = CatchPad;
4507 }
4508
4509 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4510 void setSuccessor(BasicBlock *NewSucc) {
4511 assert(NewSucc)((NewSucc) ? static_cast<void> (0) : __assert_fail ("NewSucc"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4511, __PRETTY_FUNCTION__))
;
4512 Op<1>() = NewSucc;
4513 }
4514 unsigned getNumSuccessors() const { return 1; }
4515
4516 /// Get the parentPad of this catchret's catchpad's catchswitch.
4517 /// The successor block is implicitly a member of this funclet.
4518 Value *getCatchSwitchParentPad() const {
4519 return getCatchPad()->getCatchSwitch()->getParentPad();
4520 }
4521
4522 // Methods for support type inquiry through isa, cast, and dyn_cast:
4523 static bool classof(const Instruction *I) {
4524 return (I->getOpcode() == Instruction::CatchRet);
4525 }
4526 static bool classof(const Value *V) {
4527 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4528 }
4529
4530private:
4531 BasicBlock *getSuccessor(unsigned Idx) const {
4532 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4532, __PRETTY_FUNCTION__))
;
4533 return getSuccessor();
4534 }
4535
4536 void setSuccessor(unsigned Idx, BasicBlock *B) {
4537 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4537, __PRETTY_FUNCTION__))
;
4538 setSuccessor(B);
4539 }
4540};
4541
4542template <>
4543struct OperandTraits<CatchReturnInst>
4544 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4545
4546DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4546, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this))[i_nocapture].get()); } void CatchReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchReturnInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4546, __PRETTY_FUNCTION__)); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4547
4548//===----------------------------------------------------------------------===//
4549// CleanupReturnInst Class
4550//===----------------------------------------------------------------------===//
4551
4552class CleanupReturnInst : public Instruction {
4553 using UnwindDestField = BoolBitfieldElementT<0>;
4554
4555private:
4556 CleanupReturnInst(const CleanupReturnInst &RI);
4557 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4558 Instruction *InsertBefore = nullptr);
4559 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4560 BasicBlock *InsertAtEnd);
4561
4562 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4563
4564protected:
4565 // Note: Instruction needs to be a friend here to call cloneImpl.
4566 friend class Instruction;
4567
4568 CleanupReturnInst *cloneImpl() const;
4569
4570public:
4571 static CleanupReturnInst *Create(Value *CleanupPad,
4572 BasicBlock *UnwindBB = nullptr,
4573 Instruction *InsertBefore = nullptr) {
4574 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4574, __PRETTY_FUNCTION__))
;
4575 unsigned Values = 1;
4576 if (UnwindBB)
4577 ++Values;
4578 return new (Values)
4579 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4580 }
4581
4582 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4583 BasicBlock *InsertAtEnd) {
4584 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4584, __PRETTY_FUNCTION__))
;
4585 unsigned Values = 1;
4586 if (UnwindBB)
4587 ++Values;
4588 return new (Values)
4589 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4590 }
4591
4592 /// Provide fast operand accessors
4593 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4594
4595 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4596 bool unwindsToCaller() const { return !hasUnwindDest(); }
4597
4598 /// Convenience accessor.
4599 CleanupPadInst *getCleanupPad() const {
4600 return cast<CleanupPadInst>(Op<0>());
4601 }
4602 void setCleanupPad(CleanupPadInst *CleanupPad) {
4603 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4603, __PRETTY_FUNCTION__))
;
4604 Op<0>() = CleanupPad;
4605 }
4606
4607 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4608
4609 BasicBlock *getUnwindDest() const {
4610 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4611 }
4612 void setUnwindDest(BasicBlock *NewDest) {
4613 assert(NewDest)((NewDest) ? static_cast<void> (0) : __assert_fail ("NewDest"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4613, __PRETTY_FUNCTION__))
;
4614 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4614, __PRETTY_FUNCTION__))
;
4615 Op<1>() = NewDest;
4616 }
4617
4618 // Methods for support type inquiry through isa, cast, and dyn_cast:
4619 static bool classof(const Instruction *I) {
4620 return (I->getOpcode() == Instruction::CleanupRet);
4621 }
4622 static bool classof(const Value *V) {
4623 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4624 }
4625
4626private:
4627 BasicBlock *getSuccessor(unsigned Idx) const {
4628 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4628, __PRETTY_FUNCTION__))
;
4629 return getUnwindDest();
4630 }
4631
4632 void setSuccessor(unsigned Idx, BasicBlock *B) {
4633 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4633, __PRETTY_FUNCTION__))
;
4634 setUnwindDest(B);
4635 }
4636
4637 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4638 // method so that subclasses cannot accidentally use it.
4639 template <typename Bitfield>
4640 void setSubclassData(typename Bitfield::Type Value) {
4641 Instruction::setSubclassData<Bitfield>(Value);
4642 }
4643};
4644
4645template <>
4646struct OperandTraits<CleanupReturnInst>
4647 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4648
4649DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CleanupReturnInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4649, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<CleanupReturnInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4649, __PRETTY_FUNCTION__)); OperandTraits<CleanupReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CleanupReturnInst::getNumOperands() const { return OperandTraits
<CleanupReturnInst>::operands(this); } template <int
Idx_nocapture> Use &CleanupReturnInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &CleanupReturnInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
4650
4651//===----------------------------------------------------------------------===//
4652// UnreachableInst Class
4653//===----------------------------------------------------------------------===//
4654
4655//===---------------------------------------------------------------------------
4656/// This function has undefined behavior. In particular, the
4657/// presence of this instruction indicates some higher level knowledge that the
4658/// end of the block cannot be reached.
4659///
4660class UnreachableInst : public Instruction {
4661protected:
4662 // Note: Instruction needs to be a friend here to call cloneImpl.
4663 friend class Instruction;
4664
4665 UnreachableInst *cloneImpl() const;
4666
4667public:
4668 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4669 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4670
4671 // allocate space for exactly zero operands
4672 void *operator new(size_t s) {
4673 return User::operator new(s, 0);
4674 }
4675
4676 unsigned getNumSuccessors() const { return 0; }
4677
4678 // Methods for support type inquiry through isa, cast, and dyn_cast:
4679 static bool classof(const Instruction *I) {
4680 return I->getOpcode() == Instruction::Unreachable;
4681 }
4682 static bool classof(const Value *V) {
4683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4684 }
4685
4686private:
4687 BasicBlock *getSuccessor(unsigned idx) const {
4688 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4688)
;
4689 }
4690
4691 void setSuccessor(unsigned idx, BasicBlock *B) {
4692 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 4692)
;
4693 }
4694};
4695
4696//===----------------------------------------------------------------------===//
4697// TruncInst Class
4698//===----------------------------------------------------------------------===//
4699
4700/// This class represents a truncation of integer types.
4701class TruncInst : public CastInst {
4702protected:
4703 // Note: Instruction needs to be a friend here to call cloneImpl.
4704 friend class Instruction;
4705
4706 /// Clone an identical TruncInst
4707 TruncInst *cloneImpl() const;
4708
4709public:
4710 /// Constructor with insert-before-instruction semantics
4711 TruncInst(
4712 Value *S, ///< The value to be truncated
4713 Type *Ty, ///< The (smaller) type to truncate to
4714 const Twine &NameStr = "", ///< A name for the new instruction
4715 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4716 );
4717
4718 /// Constructor with insert-at-end-of-block semantics
4719 TruncInst(
4720 Value *S, ///< The value to be truncated
4721 Type *Ty, ///< The (smaller) type to truncate to
4722 const Twine &NameStr, ///< A name for the new instruction
4723 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4724 );
4725
4726 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4727 static bool classof(const Instruction *I) {
4728 return I->getOpcode() == Trunc;
4729 }
4730 static bool classof(const Value *V) {
4731 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4732 }
4733};
4734
4735//===----------------------------------------------------------------------===//
4736// ZExtInst Class
4737//===----------------------------------------------------------------------===//
4738
4739/// This class represents zero extension of integer types.
4740class ZExtInst : public CastInst {
4741protected:
4742 // Note: Instruction needs to be a friend here to call cloneImpl.
4743 friend class Instruction;
4744
4745 /// Clone an identical ZExtInst
4746 ZExtInst *cloneImpl() const;
4747
4748public:
4749 /// Constructor with insert-before-instruction semantics
4750 ZExtInst(
4751 Value *S, ///< The value to be zero extended
4752 Type *Ty, ///< The type to zero extend to
4753 const Twine &NameStr = "", ///< A name for the new instruction
4754 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4755 );
4756
4757 /// Constructor with insert-at-end semantics.
4758 ZExtInst(
4759 Value *S, ///< The value to be zero extended
4760 Type *Ty, ///< The type to zero extend to
4761 const Twine &NameStr, ///< A name for the new instruction
4762 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4763 );
4764
4765 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4766 static bool classof(const Instruction *I) {
4767 return I->getOpcode() == ZExt;
4768 }
4769 static bool classof(const Value *V) {
4770 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4771 }
4772};
4773
4774//===----------------------------------------------------------------------===//
4775// SExtInst Class
4776//===----------------------------------------------------------------------===//
4777
4778/// This class represents a sign extension of integer types.
4779class SExtInst : public CastInst {
4780protected:
4781 // Note: Instruction needs to be a friend here to call cloneImpl.
4782 friend class Instruction;
4783
4784 /// Clone an identical SExtInst
4785 SExtInst *cloneImpl() const;
4786
4787public:
4788 /// Constructor with insert-before-instruction semantics
4789 SExtInst(
4790 Value *S, ///< The value to be sign extended
4791 Type *Ty, ///< The type to sign extend to
4792 const Twine &NameStr = "", ///< A name for the new instruction
4793 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4794 );
4795
4796 /// Constructor with insert-at-end-of-block semantics
4797 SExtInst(
4798 Value *S, ///< The value to be sign extended
4799 Type *Ty, ///< The type to sign extend to
4800 const Twine &NameStr, ///< A name for the new instruction
4801 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4802 );
4803
4804 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4805 static bool classof(const Instruction *I) {
4806 return I->getOpcode() == SExt;
4807 }
4808 static bool classof(const Value *V) {
4809 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4810 }
4811};
4812
4813//===----------------------------------------------------------------------===//
4814// FPTruncInst Class
4815//===----------------------------------------------------------------------===//
4816
4817/// This class represents a truncation of floating point types.
4818class FPTruncInst : public CastInst {
4819protected:
4820 // Note: Instruction needs to be a friend here to call cloneImpl.
4821 friend class Instruction;
4822
4823 /// Clone an identical FPTruncInst
4824 FPTruncInst *cloneImpl() const;
4825
4826public:
4827 /// Constructor with insert-before-instruction semantics
4828 FPTruncInst(
4829 Value *S, ///< The value to be truncated
4830 Type *Ty, ///< The type to truncate to
4831 const Twine &NameStr = "", ///< A name for the new instruction
4832 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4833 );
4834
4835 /// Constructor with insert-before-instruction semantics
4836 FPTruncInst(
4837 Value *S, ///< The value to be truncated
4838 Type *Ty, ///< The type to truncate to
4839 const Twine &NameStr, ///< A name for the new instruction
4840 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4841 );
4842
4843 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4844 static bool classof(const Instruction *I) {
4845 return I->getOpcode() == FPTrunc;
4846 }
4847 static bool classof(const Value *V) {
4848 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4849 }
4850};
4851
4852//===----------------------------------------------------------------------===//
4853// FPExtInst Class
4854//===----------------------------------------------------------------------===//
4855
4856/// This class represents an extension of floating point types.
4857class FPExtInst : public CastInst {
4858protected:
4859 // Note: Instruction needs to be a friend here to call cloneImpl.
4860 friend class Instruction;
4861
4862 /// Clone an identical FPExtInst
4863 FPExtInst *cloneImpl() const;
4864
4865public:
4866 /// Constructor with insert-before-instruction semantics
4867 FPExtInst(
4868 Value *S, ///< The value to be extended
4869 Type *Ty, ///< The type to extend to
4870 const Twine &NameStr = "", ///< A name for the new instruction
4871 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4872 );
4873
4874 /// Constructor with insert-at-end-of-block semantics
4875 FPExtInst(
4876 Value *S, ///< The value to be extended
4877 Type *Ty, ///< The type to extend to
4878 const Twine &NameStr, ///< A name for the new instruction
4879 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4880 );
4881
4882 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4883 static bool classof(const Instruction *I) {
4884 return I->getOpcode() == FPExt;
4885 }
4886 static bool classof(const Value *V) {
4887 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4888 }
4889};
4890
4891//===----------------------------------------------------------------------===//
4892// UIToFPInst Class
4893//===----------------------------------------------------------------------===//
4894
4895/// This class represents a cast unsigned integer to floating point.
4896class UIToFPInst : public CastInst {
4897protected:
4898 // Note: Instruction needs to be a friend here to call cloneImpl.
4899 friend class Instruction;
4900
4901 /// Clone an identical UIToFPInst
4902 UIToFPInst *cloneImpl() const;
4903
4904public:
4905 /// Constructor with insert-before-instruction semantics
4906 UIToFPInst(
4907 Value *S, ///< The value to be converted
4908 Type *Ty, ///< The type to convert to
4909 const Twine &NameStr = "", ///< A name for the new instruction
4910 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4911 );
4912
4913 /// Constructor with insert-at-end-of-block semantics
4914 UIToFPInst(
4915 Value *S, ///< The value to be converted
4916 Type *Ty, ///< The type to convert to
4917 const Twine &NameStr, ///< A name for the new instruction
4918 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4919 );
4920
4921 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4922 static bool classof(const Instruction *I) {
4923 return I->getOpcode() == UIToFP;
4924 }
4925 static bool classof(const Value *V) {
4926 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4927 }
4928};
4929
4930//===----------------------------------------------------------------------===//
4931// SIToFPInst Class
4932//===----------------------------------------------------------------------===//
4933
4934/// This class represents a cast from signed integer to floating point.
4935class SIToFPInst : public CastInst {
4936protected:
4937 // Note: Instruction needs to be a friend here to call cloneImpl.
4938 friend class Instruction;
4939
4940 /// Clone an identical SIToFPInst
4941 SIToFPInst *cloneImpl() const;
4942
4943public:
4944 /// Constructor with insert-before-instruction semantics
4945 SIToFPInst(
4946 Value *S, ///< The value to be converted
4947 Type *Ty, ///< The type to convert to
4948 const Twine &NameStr = "", ///< A name for the new instruction
4949 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4950 );
4951
4952 /// Constructor with insert-at-end-of-block semantics
4953 SIToFPInst(
4954 Value *S, ///< The value to be converted
4955 Type *Ty, ///< The type to convert to
4956 const Twine &NameStr, ///< A name for the new instruction
4957 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4958 );
4959
4960 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4961 static bool classof(const Instruction *I) {
4962 return I->getOpcode() == SIToFP;
4963 }
4964 static bool classof(const Value *V) {
4965 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4966 }
4967};
4968
4969//===----------------------------------------------------------------------===//
4970// FPToUIInst Class
4971//===----------------------------------------------------------------------===//
4972
4973/// This class represents a cast from floating point to unsigned integer
4974class FPToUIInst : public CastInst {
4975protected:
4976 // Note: Instruction needs to be a friend here to call cloneImpl.
4977 friend class Instruction;
4978
4979 /// Clone an identical FPToUIInst
4980 FPToUIInst *cloneImpl() const;
4981
4982public:
4983 /// Constructor with insert-before-instruction semantics
4984 FPToUIInst(
4985 Value *S, ///< The value to be converted
4986 Type *Ty, ///< The type to convert to
4987 const Twine &NameStr = "", ///< A name for the new instruction
4988 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4989 );
4990
4991 /// Constructor with insert-at-end-of-block semantics
4992 FPToUIInst(
4993 Value *S, ///< The value to be converted
4994 Type *Ty, ///< The type to convert to
4995 const Twine &NameStr, ///< A name for the new instruction
4996 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
4997 );
4998
4999 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5000 static bool classof(const Instruction *I) {
5001 return I->getOpcode() == FPToUI;
5002 }
5003 static bool classof(const Value *V) {
5004 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5005 }
5006};
5007
5008//===----------------------------------------------------------------------===//
5009// FPToSIInst Class
5010//===----------------------------------------------------------------------===//
5011
5012/// This class represents a cast from floating point to signed integer.
5013class FPToSIInst : public CastInst {
5014protected:
5015 // Note: Instruction needs to be a friend here to call cloneImpl.
5016 friend class Instruction;
5017
5018 /// Clone an identical FPToSIInst
5019 FPToSIInst *cloneImpl() const;
5020
5021public:
5022 /// Constructor with insert-before-instruction semantics
5023 FPToSIInst(
5024 Value *S, ///< The value to be converted
5025 Type *Ty, ///< The type to convert to
5026 const Twine &NameStr = "", ///< A name for the new instruction
5027 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5028 );
5029
5030 /// Constructor with insert-at-end-of-block semantics
5031 FPToSIInst(
5032 Value *S, ///< The value to be converted
5033 Type *Ty, ///< The type to convert to
5034 const Twine &NameStr, ///< A name for the new instruction
5035 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5036 );
5037
5038 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5039 static bool classof(const Instruction *I) {
5040 return I->getOpcode() == FPToSI;
5041 }
5042 static bool classof(const Value *V) {
5043 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5044 }
5045};
5046
5047//===----------------------------------------------------------------------===//
5048// IntToPtrInst Class
5049//===----------------------------------------------------------------------===//
5050
5051/// This class represents a cast from an integer to a pointer.
5052class IntToPtrInst : public CastInst {
5053public:
5054 // Note: Instruction needs to be a friend here to call cloneImpl.
5055 friend class Instruction;
5056
5057 /// Constructor with insert-before-instruction semantics
5058 IntToPtrInst(
5059 Value *S, ///< The value to be converted
5060 Type *Ty, ///< The type to convert to
5061 const Twine &NameStr = "", ///< A name for the new instruction
5062 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5063 );
5064
5065 /// Constructor with insert-at-end-of-block semantics
5066 IntToPtrInst(
5067 Value *S, ///< The value to be converted
5068 Type *Ty, ///< The type to convert to
5069 const Twine &NameStr, ///< A name for the new instruction
5070 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5071 );
5072
5073 /// Clone an identical IntToPtrInst.
5074 IntToPtrInst *cloneImpl() const;
5075
5076 /// Returns the address space of this instruction's pointer type.
5077 unsigned getAddressSpace() const {
5078 return getType()->getPointerAddressSpace();
5079 }
5080
5081 // Methods for support type inquiry through isa, cast, and dyn_cast:
5082 static bool classof(const Instruction *I) {
5083 return I->getOpcode() == IntToPtr;
5084 }
5085 static bool classof(const Value *V) {
5086 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5087 }
5088};
5089
5090//===----------------------------------------------------------------------===//
5091// PtrToIntInst Class
5092//===----------------------------------------------------------------------===//
5093
5094/// This class represents a cast from a pointer to an integer.
5095class PtrToIntInst : public CastInst {
5096protected:
5097 // Note: Instruction needs to be a friend here to call cloneImpl.
5098 friend class Instruction;
5099
5100 /// Clone an identical PtrToIntInst.
5101 PtrToIntInst *cloneImpl() const;
5102
5103public:
5104 /// Constructor with insert-before-instruction semantics
5105 PtrToIntInst(
5106 Value *S, ///< The value to be converted
5107 Type *Ty, ///< The type to convert to
5108 const Twine &NameStr = "", ///< A name for the new instruction
5109 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5110 );
5111
5112 /// Constructor with insert-at-end-of-block semantics
5113 PtrToIntInst(
5114 Value *S, ///< The value to be converted
5115 Type *Ty, ///< The type to convert to
5116 const Twine &NameStr, ///< A name for the new instruction
5117 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5118 );
5119
5120 /// Gets the pointer operand.
5121 Value *getPointerOperand() { return getOperand(0); }
5122 /// Gets the pointer operand.
5123 const Value *getPointerOperand() const { return getOperand(0); }
5124 /// Gets the operand index of the pointer operand.
5125 static unsigned getPointerOperandIndex() { return 0U; }
5126
5127 /// Returns the address space of the pointer operand.
5128 unsigned getPointerAddressSpace() const {
5129 return getPointerOperand()->getType()->getPointerAddressSpace();
5130 }
5131
5132 // Methods for support type inquiry through isa, cast, and dyn_cast:
5133 static bool classof(const Instruction *I) {
5134 return I->getOpcode() == PtrToInt;
5135 }
5136 static bool classof(const Value *V) {
5137 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5138 }
5139};
5140
5141//===----------------------------------------------------------------------===//
5142// BitCastInst Class
5143//===----------------------------------------------------------------------===//
5144
5145/// This class represents a no-op cast from one type to another.
5146class BitCastInst : public CastInst {
5147protected:
5148 // Note: Instruction needs to be a friend here to call cloneImpl.
5149 friend class Instruction;
5150
5151 /// Clone an identical BitCastInst.
5152 BitCastInst *cloneImpl() const;
5153
5154public:
5155 /// Constructor with insert-before-instruction semantics
5156 BitCastInst(
5157 Value *S, ///< The value to be casted
5158 Type *Ty, ///< The type to casted to
5159 const Twine &NameStr = "", ///< A name for the new instruction
5160 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5161 );
5162
5163 /// Constructor with insert-at-end-of-block semantics
5164 BitCastInst(
5165 Value *S, ///< The value to be casted
5166 Type *Ty, ///< The type to casted to
5167 const Twine &NameStr, ///< A name for the new instruction
5168 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5169 );
5170
5171 // Methods for support type inquiry through isa, cast, and dyn_cast:
5172 static bool classof(const Instruction *I) {
5173 return I->getOpcode() == BitCast;
5174 }
5175 static bool classof(const Value *V) {
5176 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5177 }
5178};
5179
5180//===----------------------------------------------------------------------===//
5181// AddrSpaceCastInst Class
5182//===----------------------------------------------------------------------===//
5183
5184/// This class represents a conversion between pointers from one address space
5185/// to another.
5186class AddrSpaceCastInst : public CastInst {
5187protected:
5188 // Note: Instruction needs to be a friend here to call cloneImpl.
5189 friend class Instruction;
5190
5191 /// Clone an identical AddrSpaceCastInst.
5192 AddrSpaceCastInst *cloneImpl() const;
5193
5194public:
5195 /// Constructor with insert-before-instruction semantics
5196 AddrSpaceCastInst(
5197 Value *S, ///< The value to be casted
5198 Type *Ty, ///< The type to casted to
5199 const Twine &NameStr = "", ///< A name for the new instruction
5200 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5201 );
5202
5203 /// Constructor with insert-at-end-of-block semantics
5204 AddrSpaceCastInst(
5205 Value *S, ///< The value to be casted
5206 Type *Ty, ///< The type to casted to
5207 const Twine &NameStr, ///< A name for the new instruction
5208 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5209 );
5210
5211 // Methods for support type inquiry through isa, cast, and dyn_cast:
5212 static bool classof(const Instruction *I) {
5213 return I->getOpcode() == AddrSpaceCast;
5214 }
5215 static bool classof(const Value *V) {
5216 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5217 }
5218
5219 /// Gets the pointer operand.
5220 Value *getPointerOperand() {
5221 return getOperand(0);
5222 }
5223
5224 /// Gets the pointer operand.
5225 const Value *getPointerOperand() const {
5226 return getOperand(0);
5227 }
5228
5229 /// Gets the operand index of the pointer operand.
5230 static unsigned getPointerOperandIndex() {
5231 return 0U;
5232 }
5233
5234 /// Returns the address space of the pointer operand.
5235 unsigned getSrcAddressSpace() const {
5236 return getPointerOperand()->getType()->getPointerAddressSpace();
5237 }
5238
5239 /// Returns the address space of the result.
5240 unsigned getDestAddressSpace() const {
5241 return getType()->getPointerAddressSpace();
5242 }
5243};
5244
5245/// A helper function that returns the pointer operand of a load or store
5246/// instruction. Returns nullptr if not load or store.
5247inline const Value *getLoadStorePointerOperand(const Value *V) {
5248 if (auto *Load = dyn_cast<LoadInst>(V))
5249 return Load->getPointerOperand();
5250 if (auto *Store = dyn_cast<StoreInst>(V))
5251 return Store->getPointerOperand();
5252 return nullptr;
5253}
5254inline Value *getLoadStorePointerOperand(Value *V) {
5255 return const_cast<Value *>(
5256 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5257}
5258
5259/// A helper function that returns the pointer operand of a load, store
5260/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5261inline const Value *getPointerOperand(const Value *V) {
5262 if (auto *Ptr = getLoadStorePointerOperand(V))
5263 return Ptr;
5264 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5265 return Gep->getPointerOperand();
5266 return nullptr;
5267}
5268inline Value *getPointerOperand(Value *V) {
5269 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5270}
5271
5272/// A helper function that returns the alignment of load or store instruction.
5273inline Align getLoadStoreAlignment(Value *I) {
5274 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 5275, __PRETTY_FUNCTION__))
5275 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 5275, __PRETTY_FUNCTION__))
;
5276 if (auto *LI = dyn_cast<LoadInst>(I))
5277 return LI->getAlign();
5278 return cast<StoreInst>(I)->getAlign();
5279}
5280
5281/// A helper function that returns the address space of the pointer operand of
5282/// load or store instruction.
5283inline unsigned getLoadStoreAddressSpace(Value *I) {
5284 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 5285, __PRETTY_FUNCTION__))
5285 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-12~++20201202100633+b276bf5a572/llvm/include/llvm/IR/Instructions.h"
, 5285, __PRETTY_FUNCTION__))
;
5286 if (auto *LI = dyn_cast<LoadInst>(I))
5287 return LI->getPointerAddressSpace();
5288 return cast<StoreInst>(I)->getPointerAddressSpace();
5289}
5290
5291//===----------------------------------------------------------------------===//
5292// FreezeInst Class
5293//===----------------------------------------------------------------------===//
5294
5295/// This class represents a freeze function that returns random concrete
5296/// value if an operand is either a poison value or an undef value
5297class FreezeInst : public UnaryInstruction {
5298protected:
5299 // Note: Instruction needs to be a friend here to call cloneImpl.
5300 friend class Instruction;
5301
5302 /// Clone an identical FreezeInst
5303 FreezeInst *cloneImpl() const;
5304
5305public:
5306 explicit FreezeInst(Value *S,
5307 const Twine &NameStr = "",
5308 Instruction *InsertBefore = nullptr);
5309 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5310
5311 // Methods for support type inquiry through isa, cast, and dyn_cast:
5312 static inline bool classof(const Instruction *I) {
5313 return I->getOpcode() == Freeze;
5314 }
5315 static inline bool classof(const Value *V) {
5316 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5317 }
5318};
5319
5320} // end namespace llvm
5321
5322#endif // LLVM_IR_INSTRUCTIONS_H