Bug Summary

File:clang/lib/AST/Decl.cpp
Warning:line 3770, column 5
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 48 bytes

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Decl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/build-llvm/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/include -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/build-llvm/tools/clang/lib/AST -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-08-06-171148-17323-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp

/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp

1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DeclarationName.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/ODRHash.h"
31#include "clang/AST/PrettyDeclStackTrace.h"
32#include "clang/AST/PrettyPrinter.h"
33#include "clang/AST/Redeclarable.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/Basic/Builtins.h"
39#include "clang/Basic/IdentifierTable.h"
40#include "clang/Basic/LLVM.h"
41#include "clang/Basic/LangOptions.h"
42#include "clang/Basic/Linkage.h"
43#include "clang/Basic/Module.h"
44#include "clang/Basic/PartialDiagnostic.h"
45#include "clang/Basic/SanitizerBlacklist.h"
46#include "clang/Basic/Sanitizers.h"
47#include "clang/Basic/SourceLocation.h"
48#include "clang/Basic/SourceManager.h"
49#include "clang/Basic/Specifiers.h"
50#include "clang/Basic/TargetCXXABI.h"
51#include "clang/Basic/TargetInfo.h"
52#include "clang/Basic/Visibility.h"
53#include "llvm/ADT/APSInt.h"
54#include "llvm/ADT/ArrayRef.h"
55#include "llvm/ADT/None.h"
56#include "llvm/ADT/Optional.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/ADT/Triple.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/raw_ostream.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <string>
71#include <tuple>
72#include <type_traits>
73
74using namespace clang;
75
76Decl *clang::getPrimaryMergedDecl(Decl *D) {
77 return D->getASTContext().getPrimaryMergedDecl(D);
78}
79
80void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92 OS << "'";
93 }
94
95 OS << '\n';
96}
97
98// Defined here so that it can be inlined into its direct callers.
99bool Decl::isOutOfLine() const {
100 return !getLexicalDeclContext()->Equals(getDeclContext());
101}
102
103TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), Ctx(ctx) {}
106
107//===----------------------------------------------------------------------===//
108// NamedDecl Implementation
109//===----------------------------------------------------------------------===//
110
111// Visibility rules aren't rigorously externally specified, but here
112// are the basic principles behind what we implement:
113//
114// 1. An explicit visibility attribute is generally a direct expression
115// of the user's intent and should be honored. Only the innermost
116// visibility attribute applies. If no visibility attribute applies,
117// global visibility settings are considered.
118//
119// 2. There is one caveat to the above: on or in a template pattern,
120// an explicit visibility attribute is just a default rule, and
121// visibility can be decreased by the visibility of template
122// arguments. But this, too, has an exception: an attribute on an
123// explicit specialization or instantiation causes all the visibility
124// restrictions of the template arguments to be ignored.
125//
126// 3. A variable that does not otherwise have explicit visibility can
127// be restricted by the visibility of its type.
128//
129// 4. A visibility restriction is explicit if it comes from an
130// attribute (or something like it), not a global visibility setting.
131// When emitting a reference to an external symbol, visibility
132// restrictions are ignored unless they are explicit.
133//
134// 5. When computing the visibility of a non-type, including a
135// non-type member of a class, only non-type visibility restrictions
136// are considered: the 'visibility' attribute, global value-visibility
137// settings, and a few special cases like __private_extern.
138//
139// 6. When computing the visibility of a type, including a type member
140// of a class, only type visibility restrictions are considered:
141// the 'type_visibility' attribute and global type-visibility settings.
142// However, a 'visibility' attribute counts as a 'type_visibility'
143// attribute on any declaration that only has the former.
144//
145// The visibility of a "secondary" entity, like a template argument,
146// is computed using the kind of that entity, not the kind of the
147// primary entity for which we are computing visibility. For example,
148// the visibility of a specialization of either of these templates:
149// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150// template <class T, bool (&compare)(T, X)> class matcher;
151// is restricted according to the type visibility of the argument 'T',
152// the type visibility of 'bool(&)(T,X)', and the value visibility of
153// the argument function 'compare'. That 'has_match' is a value
154// and 'matcher' is a type only matters when looking for attributes
155// and settings from the immediate context.
156
157/// Does this computation kind permit us to consider additional
158/// visibility settings from attributes and the like?
159static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160 return computation.IgnoreExplicitVisibility;
161}
162
163/// Given an LVComputationKind, return one of the same type/value sort
164/// that records that it already has explicit visibility.
165static LVComputationKind
166withExplicitVisibilityAlready(LVComputationKind Kind) {
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169}
170
171static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&((!kind.IgnoreExplicitVisibility && "asking for explicit visibility when we shouldn't be"
) ? static_cast<void> (0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 174, __PRETTY_FUNCTION__))
174 "asking for explicit visibility when we shouldn't be")((!kind.IgnoreExplicitVisibility && "asking for explicit visibility when we shouldn't be"
) ? static_cast<void> (0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 174, __PRETTY_FUNCTION__))
;
175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176}
177
178/// Is the given declaration a "type" or a "value" for the purposes of
179/// visibility computation?
180static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(D) ||
182 isa<ClassTemplateDecl>(D) ||
183 isa<ObjCInterfaceDecl>(D);
184}
185
186/// Does the given declaration have member specialization information,
187/// and if so, is it an explicit specialization?
188template <class T> static typename
189std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190isExplicitMemberSpecialization(const T *D) {
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196}
197
198/// For templates, this question is easier: a member template can't be
199/// explicitly instantiated, so there's a single bit indicating whether
200/// or not this is an explicit member specialization.
201static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202 return D->isMemberSpecialization();
203}
204
205/// Given a visibility attribute, return the explicit visibility
206/// associated with it.
207template <class T>
208static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind")::llvm::llvm_unreachable_internal("bad visibility kind", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 217)
;
218}
219
220/// Return the explicit visibility of the given declaration.
221static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222 NamedDecl::ExplicitVisibilityKind kind) {
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(A);
234 }
235
236 return None;
237}
238
239LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243 return getTypeLinkageAndVisibility(&T);
244}
245
246/// Get the most restrictive linkage for the types in the given
247/// template parameter list. For visibility purposes, template
248/// parameters are part of the signature of a template.
249LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(getLVForType(*NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(i);
274 if (!type->isDependentType())
275 LV.merge(getTypeLinkageAndVisibility(type));
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(getLVForTemplateParameterList(
295 TTP->getExpansionTemplateParameters(i), computation));
296 }
297 }
298
299 return LV;
300}
301
302static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307 Ret = cast<Decl>(DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311}
312
313/// Get the most restrictive linkage for the types and
314/// declarations in the given template argument list.
315///
316/// Note that we don't take an LVComputationKind because we always
317/// want to honor the visibility of template arguments in the same way.
318LinkageInfo
319LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
325 case TemplateArgument::Null:
326 case TemplateArgument::Integral:
327 case TemplateArgument::Expression:
328 continue;
329
330 case TemplateArgument::Type:
331 LV.merge(getLVForType(*Arg.getAsType(), computation));
332 continue;
333
334 case TemplateArgument::Declaration: {
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND))((!usesTypeVisibility(ND)) ? static_cast<void> (0) : __assert_fail
("!usesTypeVisibility(ND)", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 336, __PRETTY_FUNCTION__))
;
337 LV.merge(getLVForDecl(ND, computation));
338 continue;
339 }
340
341 case TemplateArgument::NullPtr:
342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343 continue;
344
345 case TemplateArgument::Template:
346 case TemplateArgument::TemplateExpansion:
347 if (TemplateDecl *Template =
348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349 LV.merge(getLVForDecl(Template, computation));
350 continue;
351
352 case TemplateArgument::Pack:
353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354 continue;
355 }
356 llvm_unreachable("bad template argument kind")::llvm::llvm_unreachable_internal("bad template argument kind"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 356)
;
357 }
358
359 return LV;
360}
361
362LinkageInfo
363LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364 LVComputationKind computation) {
365 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366}
367
368static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369 const FunctionTemplateSpecializationInfo *specInfo) {
370 // Include visibility from the template parameters and arguments
371 // only if this is not an explicit instantiation or specialization
372 // with direct explicit visibility. (Implicit instantiations won't
373 // have a direct attribute.)
374 if (!specInfo->isExplicitInstantiationOrSpecialization())
375 return true;
376
377 return !fn->hasAttr<VisibilityAttr>();
378}
379
380/// Merge in template-related linkage and visibility for the given
381/// function template specialization.
382///
383/// We don't need a computation kind here because we can assume
384/// LVForValue.
385///
386/// \param[out] LV the computation to use for the parent
387void LinkageComputer::mergeTemplateLV(
388 LinkageInfo &LV, const FunctionDecl *fn,
389 const FunctionTemplateSpecializationInfo *specInfo,
390 LVComputationKind computation) {
391 bool considerVisibility =
392 shouldConsiderTemplateVisibility(fn, specInfo);
393
394 // Merge information from the template parameters.
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 LinkageInfo tempLV =
397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399
400 // Merge information from the template arguments.
401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404}
405
406/// Does the given declaration have a direct visibility attribute
407/// that would match the given rules?
408static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409 LVComputationKind computation) {
410 if (computation.IgnoreAllVisibility)
411 return false;
412
413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414 D->hasAttr<VisibilityAttr>();
415}
416
417/// Should we consider visibility associated with the template
418/// arguments and parameters of the given class template specialization?
419static bool shouldConsiderTemplateVisibility(
420 const ClassTemplateSpecializationDecl *spec,
421 LVComputationKind computation) {
422 // Include visibility from the template parameters and arguments
423 // only if this is not an explicit instantiation or specialization
424 // with direct explicit visibility (and note that implicit
425 // instantiations won't have a direct attribute).
426 //
427 // Furthermore, we want to ignore template parameters and arguments
428 // for an explicit specialization when computing the visibility of a
429 // member thereof with explicit visibility.
430 //
431 // This is a bit complex; let's unpack it.
432 //
433 // An explicit class specialization is an independent, top-level
434 // declaration. As such, if it or any of its members has an
435 // explicit visibility attribute, that must directly express the
436 // user's intent, and we should honor it. The same logic applies to
437 // an explicit instantiation of a member of such a thing.
438
439 // Fast path: if this is not an explicit instantiation or
440 // specialization, we always want to consider template-related
441 // visibility restrictions.
442 if (!spec->isExplicitInstantiationOrSpecialization())
443 return true;
444
445 // This is the 'member thereof' check.
446 if (spec->isExplicitSpecialization() &&
447 hasExplicitVisibilityAlready(computation))
448 return false;
449
450 return !hasDirectVisibilityAttribute(spec, computation);
451}
452
453/// Merge in template-related linkage and visibility for the given
454/// class template specialization.
455void LinkageComputer::mergeTemplateLV(
456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457 LVComputationKind computation) {
458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459
460 // Merge information from the template parameters, but ignore
461 // visibility if we're only considering template arguments.
462
463 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464 LinkageInfo tempLV =
465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466 LV.mergeMaybeWithVisibility(tempLV,
467 considerVisibility && !hasExplicitVisibilityAlready(computation));
468
469 // Merge information from the template arguments. We ignore
470 // template-argument visibility if we've got an explicit
471 // instantiation with a visibility attribute.
472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474 if (considerVisibility)
475 LV.mergeVisibility(argsLV);
476 LV.mergeExternalVisibility(argsLV);
477}
478
479/// Should we consider visibility associated with the template
480/// arguments and parameters of the given variable template
481/// specialization? As usual, follow class template specialization
482/// logic up to initialization.
483static bool shouldConsiderTemplateVisibility(
484 const VarTemplateSpecializationDecl *spec,
485 LVComputationKind computation) {
486 // Include visibility from the template parameters and arguments
487 // only if this is not an explicit instantiation or specialization
488 // with direct explicit visibility (and note that implicit
489 // instantiations won't have a direct attribute).
490 if (!spec->isExplicitInstantiationOrSpecialization())
491 return true;
492
493 // An explicit variable specialization is an independent, top-level
494 // declaration. As such, if it has an explicit visibility attribute,
495 // that must directly express the user's intent, and we should honor
496 // it.
497 if (spec->isExplicitSpecialization() &&
498 hasExplicitVisibilityAlready(computation))
499 return false;
500
501 return !hasDirectVisibilityAttribute(spec, computation);
502}
503
504/// Merge in template-related linkage and visibility for the given
505/// variable template specialization. As usual, follow class template
506/// specialization logic up to initialization.
507void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508 const VarTemplateSpecializationDecl *spec,
509 LVComputationKind computation) {
510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511
512 // Merge information from the template parameters, but ignore
513 // visibility if we're only considering template arguments.
514
515 VarTemplateDecl *temp = spec->getSpecializedTemplate();
516 LinkageInfo tempLV =
517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518 LV.mergeMaybeWithVisibility(tempLV,
519 considerVisibility && !hasExplicitVisibilityAlready(computation));
520
521 // Merge information from the template arguments. We ignore
522 // template-argument visibility if we've got an explicit
523 // instantiation with a visibility attribute.
524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526 if (considerVisibility)
527 LV.mergeVisibility(argsLV);
528 LV.mergeExternalVisibility(argsLV);
529}
530
531static bool useInlineVisibilityHidden(const NamedDecl *D) {
532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533 const LangOptions &Opts = D->getASTContext().getLangOpts();
534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535 return false;
536
537 const auto *FD = dyn_cast<FunctionDecl>(D);
538 if (!FD)
539 return false;
540
541 TemplateSpecializationKind TSK = TSK_Undeclared;
542 if (FunctionTemplateSpecializationInfo *spec
543 = FD->getTemplateSpecializationInfo()) {
544 TSK = spec->getTemplateSpecializationKind();
545 } else if (MemberSpecializationInfo *MSI =
546 FD->getMemberSpecializationInfo()) {
547 TSK = MSI->getTemplateSpecializationKind();
548 }
549
550 const FunctionDecl *Def = nullptr;
551 // InlineVisibilityHidden only applies to definitions, and
552 // isInlined() only gives meaningful answers on definitions
553 // anyway.
554 return TSK != TSK_ExplicitInstantiationDeclaration &&
555 TSK != TSK_ExplicitInstantiationDefinition &&
556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557}
558
559template <typename T> static bool isFirstInExternCContext(T *D) {
560 const T *First = D->getFirstDecl();
561 return First->isInExternCContext();
562}
563
564static bool isSingleLineLanguageLinkage(const Decl &D) {
565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566 if (!SD->hasBraces())
567 return true;
568 return false;
569}
570
571/// Determine whether D is declared in the purview of a named module.
572static bool isInModulePurview(const NamedDecl *D) {
573 if (auto *M = D->getOwningModule())
574 return M->isModulePurview();
575 return false;
576}
577
578static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579 // FIXME: Handle isModulePrivate.
580 switch (D->getModuleOwnershipKind()) {
581 case Decl::ModuleOwnershipKind::Unowned:
582 case Decl::ModuleOwnershipKind::ModulePrivate:
583 return false;
584 case Decl::ModuleOwnershipKind::Visible:
585 case Decl::ModuleOwnershipKind::VisibleWhenImported:
586 return isInModulePurview(D);
587 }
588 llvm_unreachable("unexpected module ownership kind")::llvm::llvm_unreachable_internal("unexpected module ownership kind"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 588)
;
589}
590
591static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592 // Internal linkage declarations within a module interface unit are modeled
593 // as "module-internal linkage", which means that they have internal linkage
594 // formally but can be indirectly accessed from outside the module via inline
595 // functions and templates defined within the module.
596 if (isInModulePurview(D))
597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598
599 return LinkageInfo::internal();
600}
601
602static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603 // C++ Modules TS [basic.link]/6.8:
604 // - A name declared at namespace scope that does not have internal linkage
605 // by the previous rules and that is introduced by a non-exported
606 // declaration has module linkage.
607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608 cast<NamedDecl>(D->getCanonicalDecl())))
609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610
611 return LinkageInfo::external();
612}
613
614static StorageClass getStorageClass(const Decl *D) {
615 if (auto *TD = dyn_cast<TemplateDecl>(D))
616 D = TD->getTemplatedDecl();
617 if (D) {
618 if (auto *VD = dyn_cast<VarDecl>(D))
619 return VD->getStorageClass();
620 if (auto *FD = dyn_cast<FunctionDecl>(D))
621 return FD->getStorageClass();
622 }
623 return SC_None;
624}
625
626LinkageInfo
627LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628 LVComputationKind computation,
629 bool IgnoreVarTypeLinkage) {
630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&((D->getDeclContext()->getRedeclContext()->isFileContext
() && "Not a name having namespace scope") ? static_cast
<void> (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 631, __PRETTY_FUNCTION__))
631 "Not a name having namespace scope")((D->getDeclContext()->getRedeclContext()->isFileContext
() && "Not a name having namespace scope") ? static_cast
<void> (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 631, __PRETTY_FUNCTION__))
;
632 ASTContext &Context = D->getASTContext();
633
634 // C++ [basic.link]p3:
635 // A name having namespace scope (3.3.6) has internal linkage if it
636 // is the name of
637
638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639 // - a variable, variable template, function, or function template
640 // that is explicitly declared static; or
641 // (This bullet corresponds to C99 6.2.2p3.)
642 return getInternalLinkageFor(D);
643 }
644
645 if (const auto *Var = dyn_cast<VarDecl>(D)) {
646 // - a non-template variable of non-volatile const-qualified type, unless
647 // - it is explicitly declared extern, or
648 // - it is inline or exported, or
649 // - it was previously declared and the prior declaration did not have
650 // internal linkage
651 // (There is no equivalent in C99.)
652 if (Context.getLangOpts().CPlusPlus &&
653 Var->getType().isConstQualified() &&
654 !Var->getType().isVolatileQualified() &&
655 !Var->isInline() &&
656 !isExportedFromModuleInterfaceUnit(Var) &&
657 !isa<VarTemplateSpecializationDecl>(Var) &&
658 !Var->getDescribedVarTemplate()) {
659 const VarDecl *PrevVar = Var->getPreviousDecl();
660 if (PrevVar)
661 return getLVForDecl(PrevVar, computation);
662
663 if (Var->getStorageClass() != SC_Extern &&
664 Var->getStorageClass() != SC_PrivateExtern &&
665 !isSingleLineLanguageLinkage(*Var))
666 return getInternalLinkageFor(Var);
667 }
668
669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670 PrevVar = PrevVar->getPreviousDecl()) {
671 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672 Var->getStorageClass() == SC_None)
673 return getDeclLinkageAndVisibility(PrevVar);
674 // Explicitly declared static.
675 if (PrevVar->getStorageClass() == SC_Static)
676 return getInternalLinkageFor(Var);
677 }
678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679 // - a data member of an anonymous union.
680 const VarDecl *VD = IFD->getVarDecl();
681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!")((VD && "Expected a VarDecl in this IndirectFieldDecl!"
) ? static_cast<void> (0) : __assert_fail ("VD && \"Expected a VarDecl in this IndirectFieldDecl!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 681, __PRETTY_FUNCTION__))
;
682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683 }
684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!")((!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"
) ? static_cast<void> (0) : __assert_fail ("!isa<FieldDecl>(D) && \"Didn't expect a FieldDecl!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 684, __PRETTY_FUNCTION__))
;
685
686 // FIXME: This gives internal linkage to names that should have no linkage
687 // (those not covered by [basic.link]p6).
688 if (D->isInAnonymousNamespace()) {
689 const auto *Var = dyn_cast<VarDecl>(D);
690 const auto *Func = dyn_cast<FunctionDecl>(D);
691 // FIXME: The check for extern "C" here is not justified by the standard
692 // wording, but we retain it from the pre-DR1113 model to avoid breaking
693 // code.
694 //
695 // C++11 [basic.link]p4:
696 // An unnamed namespace or a namespace declared directly or indirectly
697 // within an unnamed namespace has internal linkage.
698 if ((!Var || !isFirstInExternCContext(Var)) &&
699 (!Func || !isFirstInExternCContext(Func)))
700 return getInternalLinkageFor(D);
701 }
702
703 // Set up the defaults.
704
705 // C99 6.2.2p5:
706 // If the declaration of an identifier for an object has file
707 // scope and no storage-class specifier, its linkage is
708 // external.
709 LinkageInfo LV = getExternalLinkageFor(D);
710
711 if (!hasExplicitVisibilityAlready(computation)) {
712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 } else {
715 // If we're declared in a namespace with a visibility attribute,
716 // use that namespace's visibility, and it still counts as explicit.
717 for (const DeclContext *DC = D->getDeclContext();
718 !isa<TranslationUnitDecl>(DC);
719 DC = DC->getParent()) {
720 const auto *ND = dyn_cast<NamespaceDecl>(DC);
721 if (!ND) continue;
722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723 LV.mergeVisibility(*Vis, true);
724 break;
725 }
726 }
727 }
728
729 // Add in global settings if the above didn't give us direct visibility.
730 if (!LV.isVisibilityExplicit()) {
731 // Use global type/value visibility as appropriate.
732 Visibility globalVisibility =
733 computation.isValueVisibility()
734 ? Context.getLangOpts().getValueVisibilityMode()
735 : Context.getLangOpts().getTypeVisibilityMode();
736 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737
738 // If we're paying attention to global visibility, apply
739 // -finline-visibility-hidden if this is an inline method.
740 if (useInlineVisibilityHidden(D))
741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742 }
743 }
744
745 // C++ [basic.link]p4:
746
747 // A name having namespace scope that has not been given internal linkage
748 // above and that is the name of
749 // [...bullets...]
750 // has its linkage determined as follows:
751 // - if the enclosing namespace has internal linkage, the name has
752 // internal linkage; [handled above]
753 // - otherwise, if the declaration of the name is attached to a named
754 // module and is not exported, the name has module linkage;
755 // - otherwise, the name has external linkage.
756 // LV is currently set up to handle the last two bullets.
757 //
758 // The bullets are:
759
760 // - a variable; or
761 if (const auto *Var = dyn_cast<VarDecl>(D)) {
762 // GCC applies the following optimization to variables and static
763 // data members, but not to functions:
764 //
765 // Modify the variable's LV by the LV of its type unless this is
766 // C or extern "C". This follows from [basic.link]p9:
767 // A type without linkage shall not be used as the type of a
768 // variable or function with external linkage unless
769 // - the entity has C language linkage, or
770 // - the entity is declared within an unnamed namespace, or
771 // - the entity is not used or is defined in the same
772 // translation unit.
773 // and [basic.link]p10:
774 // ...the types specified by all declarations referring to a
775 // given variable or function shall be identical...
776 // C does not have an equivalent rule.
777 //
778 // Ignore this if we've got an explicit attribute; the user
779 // probably knows what they're doing.
780 //
781 // Note that we don't want to make the variable non-external
782 // because of this, but unique-external linkage suits us.
783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784 !IgnoreVarTypeLinkage) {
785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786 if (!isExternallyVisible(TypeLV.getLinkage()))
787 return LinkageInfo::uniqueExternal();
788 if (!LV.isVisibilityExplicit())
789 LV.mergeVisibility(TypeLV);
790 }
791
792 if (Var->getStorageClass() == SC_PrivateExtern)
793 LV.mergeVisibility(HiddenVisibility, true);
794
795 // Note that Sema::MergeVarDecl already takes care of implementing
796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797 // to do it here.
798
799 // As per function and class template specializations (below),
800 // consider LV for the template and template arguments. We're at file
801 // scope, so we do not need to worry about nested specializations.
802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803 mergeTemplateLV(LV, spec, computation);
804 }
805
806 // - a function; or
807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808 // In theory, we can modify the function's LV by the LV of its
809 // type unless it has C linkage (see comment above about variables
810 // for justification). In practice, GCC doesn't do this, so it's
811 // just too painful to make work.
812
813 if (Function->getStorageClass() == SC_PrivateExtern)
814 LV.mergeVisibility(HiddenVisibility, true);
815
816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817 // merging storage classes and visibility attributes, so we don't have to
818 // look at previous decls in here.
819
820 // In C++, then if the type of the function uses a type with
821 // unique-external linkage, it's not legally usable from outside
822 // this translation unit. However, we should use the C linkage
823 // rules instead for extern "C" declarations.
824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825 // Only look at the type-as-written. Otherwise, deducing the return type
826 // of a function could change its linkage.
827 QualType TypeAsWritten = Function->getType();
828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829 TypeAsWritten = TSI->getType();
830 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831 return LinkageInfo::uniqueExternal();
832 }
833
834 // Consider LV from the template and the template arguments.
835 // We're at file scope, so we do not need to worry about nested
836 // specializations.
837 if (FunctionTemplateSpecializationInfo *specInfo
838 = Function->getTemplateSpecializationInfo()) {
839 mergeTemplateLV(LV, Function, specInfo, computation);
840 }
841
842 // - a named class (Clause 9), or an unnamed class defined in a
843 // typedef declaration in which the class has the typedef name
844 // for linkage purposes (7.1.3); or
845 // - a named enumeration (7.2), or an unnamed enumeration
846 // defined in a typedef declaration in which the enumeration
847 // has the typedef name for linkage purposes (7.1.3); or
848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849 // Unnamed tags have no linkage.
850 if (!Tag->hasNameForLinkage())
851 return LinkageInfo::none();
852
853 // If this is a class template specialization, consider the
854 // linkage of the template and template arguments. We're at file
855 // scope, so we do not need to worry about nested specializations.
856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857 mergeTemplateLV(LV, spec, computation);
858 }
859
860 // FIXME: This is not part of the C++ standard any more.
861 // - an enumerator belonging to an enumeration with external linkage; or
862 } else if (isa<EnumConstantDecl>(D)) {
863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864 computation);
865 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866 return LinkageInfo::none();
867 LV.merge(EnumLV);
868
869 // - a template
870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872 LinkageInfo tempLV =
873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875
876 // An unnamed namespace or a namespace declared directly or indirectly
877 // within an unnamed namespace has internal linkage. All other namespaces
878 // have external linkage.
879 //
880 // We handled names in anonymous namespaces above.
881 } else if (isa<NamespaceDecl>(D)) {
882 return LV;
883
884 // By extension, we assign external linkage to Objective-C
885 // interfaces.
886 } else if (isa<ObjCInterfaceDecl>(D)) {
887 // fallout
888
889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890 // A typedef declaration has linkage if it gives a type a name for
891 // linkage purposes.
892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893 return LinkageInfo::none();
894
895 } else if (isa<MSGuidDecl>(D)) {
896 // A GUID behaves like an inline variable with external linkage. Fall
897 // through.
898
899 // Everything not covered here has no linkage.
900 } else {
901 return LinkageInfo::none();
902 }
903
904 // If we ended up with non-externally-visible linkage, visibility should
905 // always be default.
906 if (!isExternallyVisible(LV.getLinkage()))
907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908
909 // Mark the symbols as hidden when compiling for the device.
910 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912
913 return LV;
914}
915
916LinkageInfo
917LinkageComputer::getLVForClassMember(const NamedDecl *D,
918 LVComputationKind computation,
919 bool IgnoreVarTypeLinkage) {
920 // Only certain class members have linkage. Note that fields don't
921 // really have linkage, but it's convenient to say they do for the
922 // purposes of calculating linkage of pointer-to-data-member
923 // template arguments.
924 //
925 // Templates also don't officially have linkage, but since we ignore
926 // the C++ standard and look at template arguments when determining
927 // linkage and visibility of a template specialization, we might hit
928 // a template template argument that way. If we do, we need to
929 // consider its linkage.
930 if (!(isa<CXXMethodDecl>(D) ||
931 isa<VarDecl>(D) ||
932 isa<FieldDecl>(D) ||
933 isa<IndirectFieldDecl>(D) ||
934 isa<TagDecl>(D) ||
935 isa<TemplateDecl>(D)))
936 return LinkageInfo::none();
937
938 LinkageInfo LV;
939
940 // If we have an explicit visibility attribute, merge that in.
941 if (!hasExplicitVisibilityAlready(computation)) {
942 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943 LV.mergeVisibility(*Vis, true);
944 // If we're paying attention to global visibility, apply
945 // -finline-visibility-hidden if this is an inline method.
946 //
947 // Note that we do this before merging information about
948 // the class visibility.
949 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951 }
952
953 // If this class member has an explicit visibility attribute, the only
954 // thing that can change its visibility is the template arguments, so
955 // only look for them when processing the class.
956 LVComputationKind classComputation = computation;
957 if (LV.isVisibilityExplicit())
958 classComputation = withExplicitVisibilityAlready(computation);
959
960 LinkageInfo classLV =
961 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962 // The member has the same linkage as the class. If that's not externally
963 // visible, we don't need to compute anything about the linkage.
964 // FIXME: If we're only computing linkage, can we bail out here?
965 if (!isExternallyVisible(classLV.getLinkage()))
966 return classLV;
967
968
969 // Otherwise, don't merge in classLV yet, because in certain cases
970 // we need to completely ignore the visibility from it.
971
972 // Specifically, if this decl exists and has an explicit attribute.
973 const NamedDecl *explicitSpecSuppressor = nullptr;
974
975 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976 // Only look at the type-as-written. Otherwise, deducing the return type
977 // of a function could change its linkage.
978 QualType TypeAsWritten = MD->getType();
979 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980 TypeAsWritten = TSI->getType();
981 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982 return LinkageInfo::uniqueExternal();
983
984 // If this is a method template specialization, use the linkage for
985 // the template parameters and arguments.
986 if (FunctionTemplateSpecializationInfo *spec
987 = MD->getTemplateSpecializationInfo()) {
988 mergeTemplateLV(LV, MD, spec, computation);
989 if (spec->isExplicitSpecialization()) {
990 explicitSpecSuppressor = MD;
991 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993 }
994 } else if (isExplicitMemberSpecialization(MD)) {
995 explicitSpecSuppressor = MD;
996 }
997
998 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000 mergeTemplateLV(LV, spec, computation);
1001 if (spec->isExplicitSpecialization()) {
1002 explicitSpecSuppressor = spec;
1003 } else {
1004 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005 if (isExplicitMemberSpecialization(temp)) {
1006 explicitSpecSuppressor = temp->getTemplatedDecl();
1007 }
1008 }
1009 } else if (isExplicitMemberSpecialization(RD)) {
1010 explicitSpecSuppressor = RD;
1011 }
1012
1013 // Static data members.
1014 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016 mergeTemplateLV(LV, spec, computation);
1017
1018 // Modify the variable's linkage by its type, but ignore the
1019 // type's visibility unless it's a definition.
1020 if (!IgnoreVarTypeLinkage) {
1021 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022 // FIXME: If the type's linkage is not externally visible, we can
1023 // give this static data member UniqueExternalLinkage.
1024 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025 LV.mergeVisibility(typeLV);
1026 LV.mergeExternalVisibility(typeLV);
1027 }
1028
1029 if (isExplicitMemberSpecialization(VD)) {
1030 explicitSpecSuppressor = VD;
1031 }
1032
1033 // Template members.
1034 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035 bool considerVisibility =
1036 (!LV.isVisibilityExplicit() &&
1037 !classLV.isVisibilityExplicit() &&
1038 !hasExplicitVisibilityAlready(computation));
1039 LinkageInfo tempLV =
1040 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042
1043 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044 if (isExplicitMemberSpecialization(redeclTemp)) {
1045 explicitSpecSuppressor = temp->getTemplatedDecl();
1046 }
1047 }
1048 }
1049
1050 // We should never be looking for an attribute directly on a template.
1051 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor))((!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor
)) ? static_cast<void> (0) : __assert_fail ("!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1051, __PRETTY_FUNCTION__))
;
1052
1053 // If this member is an explicit member specialization, and it has
1054 // an explicit attribute, ignore visibility from the parent.
1055 bool considerClassVisibility = true;
1056 if (explicitSpecSuppressor &&
1057 // optimization: hasDVA() is true only with explicit visibility.
1058 LV.isVisibilityExplicit() &&
1059 classLV.getVisibility() != DefaultVisibility &&
1060 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061 considerClassVisibility = false;
1062 }
1063
1064 // Finally, merge in information from the class.
1065 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066 return LV;
1067}
1068
1069void NamedDecl::anchor() {}
1070
1071bool NamedDecl::isLinkageValid() const {
1072 if (!hasCachedLinkage())
1073 return true;
1074
1075 Linkage L = LinkageComputer{}
1076 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077 .getLinkage();
1078 return L == getCachedLinkage();
1079}
1080
1081ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1082 StringRef name = getName();
1083 if (name.empty()) return SFF_None;
1084
1085 if (name.front() == 'C')
1086 if (name == "CFStringCreateWithFormat" ||
1087 name == "CFStringCreateWithFormatAndArguments" ||
1088 name == "CFStringAppendFormat" ||
1089 name == "CFStringAppendFormatAndArguments")
1090 return SFF_CFString;
1091 return SFF_None;
1092}
1093
1094Linkage NamedDecl::getLinkageInternal() const {
1095 // We don't care about visibility here, so ask for the cheapest
1096 // possible visibility analysis.
1097 return LinkageComputer{}
1098 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1099 .getLinkage();
1100}
1101
1102LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1103 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1104}
1105
1106static Optional<Visibility>
1107getExplicitVisibilityAux(const NamedDecl *ND,
1108 NamedDecl::ExplicitVisibilityKind kind,
1109 bool IsMostRecent) {
1110 assert(!IsMostRecent || ND == ND->getMostRecentDecl())((!IsMostRecent || ND == ND->getMostRecentDecl()) ? static_cast
<void> (0) : __assert_fail ("!IsMostRecent || ND == ND->getMostRecentDecl()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1110, __PRETTY_FUNCTION__))
;
1111
1112 // Check the declaration itself first.
1113 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1114 return V;
1115
1116 // If this is a member class of a specialization of a class template
1117 // and the corresponding decl has explicit visibility, use that.
1118 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1119 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1120 if (InstantiatedFrom)
1121 return getVisibilityOf(InstantiatedFrom, kind);
1122 }
1123
1124 // If there wasn't explicit visibility there, and this is a
1125 // specialization of a class template, check for visibility
1126 // on the pattern.
1127 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1128 // Walk all the template decl till this point to see if there are
1129 // explicit visibility attributes.
1130 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1131 while (TD != nullptr) {
1132 auto Vis = getVisibilityOf(TD, kind);
1133 if (Vis != None)
1134 return Vis;
1135 TD = TD->getPreviousDecl();
1136 }
1137 return None;
1138 }
1139
1140 // Use the most recent declaration.
1141 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1142 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1143 if (MostRecent != ND)
1144 return getExplicitVisibilityAux(MostRecent, kind, true);
1145 }
1146
1147 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1148 if (Var->isStaticDataMember()) {
1149 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1150 if (InstantiatedFrom)
1151 return getVisibilityOf(InstantiatedFrom, kind);
1152 }
1153
1154 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1155 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1156 kind);
1157
1158 return None;
1159 }
1160 // Also handle function template specializations.
1161 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1162 // If the function is a specialization of a template with an
1163 // explicit visibility attribute, use that.
1164 if (FunctionTemplateSpecializationInfo *templateInfo
1165 = fn->getTemplateSpecializationInfo())
1166 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1167 kind);
1168
1169 // If the function is a member of a specialization of a class template
1170 // and the corresponding decl has explicit visibility, use that.
1171 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1172 if (InstantiatedFrom)
1173 return getVisibilityOf(InstantiatedFrom, kind);
1174
1175 return None;
1176 }
1177
1178 // The visibility of a template is stored in the templated decl.
1179 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1180 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1181
1182 return None;
1183}
1184
1185Optional<Visibility>
1186NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1187 return getExplicitVisibilityAux(this, kind, false);
1188}
1189
1190LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1191 Decl *ContextDecl,
1192 LVComputationKind computation) {
1193 // This lambda has its linkage/visibility determined by its owner.
1194 const NamedDecl *Owner;
1195 if (!ContextDecl)
1196 Owner = dyn_cast<NamedDecl>(DC);
1197 else if (isa<ParmVarDecl>(ContextDecl))
1198 Owner =
1199 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1200 else
1201 Owner = cast<NamedDecl>(ContextDecl);
1202
1203 if (!Owner)
1204 return LinkageInfo::none();
1205
1206 // If the owner has a deduced type, we need to skip querying the linkage and
1207 // visibility of that type, because it might involve this closure type. The
1208 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1209 // than NoLinkage when we don't strictly need to, which is benign.
1210 auto *VD = dyn_cast<VarDecl>(Owner);
1211 LinkageInfo OwnerLV =
1212 VD && VD->getType()->getContainedDeducedType()
1213 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1214 : getLVForDecl(Owner, computation);
1215
1216 // A lambda never formally has linkage. But if the owner is externally
1217 // visible, then the lambda is too. We apply the same rules to blocks.
1218 if (!isExternallyVisible(OwnerLV.getLinkage()))
1219 return LinkageInfo::none();
1220 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1221 OwnerLV.isVisibilityExplicit());
1222}
1223
1224LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1225 LVComputationKind computation) {
1226 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1227 if (Function->isInAnonymousNamespace() &&
1228 !isFirstInExternCContext(Function))
1229 return getInternalLinkageFor(Function);
1230
1231 // This is a "void f();" which got merged with a file static.
1232 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1233 return getInternalLinkageFor(Function);
1234
1235 LinkageInfo LV;
1236 if (!hasExplicitVisibilityAlready(computation)) {
1237 if (Optional<Visibility> Vis =
1238 getExplicitVisibility(Function, computation))
1239 LV.mergeVisibility(*Vis, true);
1240 }
1241
1242 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1243 // merging storage classes and visibility attributes, so we don't have to
1244 // look at previous decls in here.
1245
1246 return LV;
1247 }
1248
1249 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1250 if (Var->hasExternalStorage()) {
1251 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1252 return getInternalLinkageFor(Var);
1253
1254 LinkageInfo LV;
1255 if (Var->getStorageClass() == SC_PrivateExtern)
1256 LV.mergeVisibility(HiddenVisibility, true);
1257 else if (!hasExplicitVisibilityAlready(computation)) {
1258 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1259 LV.mergeVisibility(*Vis, true);
1260 }
1261
1262 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1263 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1264 if (PrevLV.getLinkage())
1265 LV.setLinkage(PrevLV.getLinkage());
1266 LV.mergeVisibility(PrevLV);
1267 }
1268
1269 return LV;
1270 }
1271
1272 if (!Var->isStaticLocal())
1273 return LinkageInfo::none();
1274 }
1275
1276 ASTContext &Context = D->getASTContext();
1277 if (!Context.getLangOpts().CPlusPlus)
1278 return LinkageInfo::none();
1279
1280 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1281 if (!OuterD || OuterD->isInvalidDecl())
1282 return LinkageInfo::none();
1283
1284 LinkageInfo LV;
1285 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1286 if (!BD->getBlockManglingNumber())
1287 return LinkageInfo::none();
1288
1289 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1290 BD->getBlockManglingContextDecl(), computation);
1291 } else {
1292 const auto *FD = cast<FunctionDecl>(OuterD);
1293 if (!FD->isInlined() &&
1294 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1295 return LinkageInfo::none();
1296
1297 // If a function is hidden by -fvisibility-inlines-hidden option and
1298 // is not explicitly attributed as a hidden function,
1299 // we should not make static local variables in the function hidden.
1300 LV = getLVForDecl(FD, computation);
1301 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1302 !LV.isVisibilityExplicit()) {
1303 assert(cast<VarDecl>(D)->isStaticLocal())((cast<VarDecl>(D)->isStaticLocal()) ? static_cast<
void> (0) : __assert_fail ("cast<VarDecl>(D)->isStaticLocal()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1303, __PRETTY_FUNCTION__))
;
1304 // If this was an implicitly hidden inline method, check again for
1305 // explicit visibility on the parent class, and use that for static locals
1306 // if present.
1307 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1308 LV = getLVForDecl(MD->getParent(), computation);
1309 if (!LV.isVisibilityExplicit()) {
1310 Visibility globalVisibility =
1311 computation.isValueVisibility()
1312 ? Context.getLangOpts().getValueVisibilityMode()
1313 : Context.getLangOpts().getTypeVisibilityMode();
1314 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1315 /*visibilityExplicit=*/false);
1316 }
1317 }
1318 }
1319 if (!isExternallyVisible(LV.getLinkage()))
1320 return LinkageInfo::none();
1321 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1322 LV.isVisibilityExplicit());
1323}
1324
1325LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1326 LVComputationKind computation,
1327 bool IgnoreVarTypeLinkage) {
1328 // Internal_linkage attribute overrides other considerations.
1329 if (D->hasAttr<InternalLinkageAttr>())
1330 return getInternalLinkageFor(D);
1331
1332 // Objective-C: treat all Objective-C declarations as having external
1333 // linkage.
1334 switch (D->getKind()) {
1335 default:
1336 break;
1337
1338 // Per C++ [basic.link]p2, only the names of objects, references,
1339 // functions, types, templates, namespaces, and values ever have linkage.
1340 //
1341 // Note that the name of a typedef, namespace alias, using declaration,
1342 // and so on are not the name of the corresponding type, namespace, or
1343 // declaration, so they do *not* have linkage.
1344 case Decl::ImplicitParam:
1345 case Decl::Label:
1346 case Decl::NamespaceAlias:
1347 case Decl::ParmVar:
1348 case Decl::Using:
1349 case Decl::UsingShadow:
1350 case Decl::UsingDirective:
1351 return LinkageInfo::none();
1352
1353 case Decl::EnumConstant:
1354 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1355 if (D->getASTContext().getLangOpts().CPlusPlus)
1356 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1357 return LinkageInfo::visible_none();
1358
1359 case Decl::Typedef:
1360 case Decl::TypeAlias:
1361 // A typedef declaration has linkage if it gives a type a name for
1362 // linkage purposes.
1363 if (!cast<TypedefNameDecl>(D)
1364 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1365 return LinkageInfo::none();
1366 break;
1367
1368 case Decl::TemplateTemplateParm: // count these as external
1369 case Decl::NonTypeTemplateParm:
1370 case Decl::ObjCAtDefsField:
1371 case Decl::ObjCCategory:
1372 case Decl::ObjCCategoryImpl:
1373 case Decl::ObjCCompatibleAlias:
1374 case Decl::ObjCImplementation:
1375 case Decl::ObjCMethod:
1376 case Decl::ObjCProperty:
1377 case Decl::ObjCPropertyImpl:
1378 case Decl::ObjCProtocol:
1379 return getExternalLinkageFor(D);
1380
1381 case Decl::CXXRecord: {
1382 const auto *Record = cast<CXXRecordDecl>(D);
1383 if (Record->isLambda()) {
1384 if (Record->hasKnownLambdaInternalLinkage() ||
1385 !Record->getLambdaManglingNumber()) {
1386 // This lambda has no mangling number, so it's internal.
1387 return getInternalLinkageFor(D);
1388 }
1389
1390 return getLVForClosure(
1391 Record->getDeclContext()->getRedeclContext(),
1392 Record->getLambdaContextDecl(), computation);
1393 }
1394
1395 break;
1396 }
1397 }
1398
1399 // Handle linkage for namespace-scope names.
1400 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1401 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1402
1403 // C++ [basic.link]p5:
1404 // In addition, a member function, static data member, a named
1405 // class or enumeration of class scope, or an unnamed class or
1406 // enumeration defined in a class-scope typedef declaration such
1407 // that the class or enumeration has the typedef name for linkage
1408 // purposes (7.1.3), has external linkage if the name of the class
1409 // has external linkage.
1410 if (D->getDeclContext()->isRecord())
1411 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1412
1413 // C++ [basic.link]p6:
1414 // The name of a function declared in block scope and the name of
1415 // an object declared by a block scope extern declaration have
1416 // linkage. If there is a visible declaration of an entity with
1417 // linkage having the same name and type, ignoring entities
1418 // declared outside the innermost enclosing namespace scope, the
1419 // block scope declaration declares that same entity and receives
1420 // the linkage of the previous declaration. If there is more than
1421 // one such matching entity, the program is ill-formed. Otherwise,
1422 // if no matching entity is found, the block scope entity receives
1423 // external linkage.
1424 if (D->getDeclContext()->isFunctionOrMethod())
1425 return getLVForLocalDecl(D, computation);
1426
1427 // C++ [basic.link]p6:
1428 // Names not covered by these rules have no linkage.
1429 return LinkageInfo::none();
1430}
1431
1432/// getLVForDecl - Get the linkage and visibility for the given declaration.
1433LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1434 LVComputationKind computation) {
1435 // Internal_linkage attribute overrides other considerations.
1436 if (D->hasAttr<InternalLinkageAttr>())
1437 return getInternalLinkageFor(D);
1438
1439 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1440 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1441
1442 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1443 return *LI;
1444
1445 LinkageInfo LV = computeLVForDecl(D, computation);
1446 if (D->hasCachedLinkage())
1447 assert(D->getCachedLinkage() == LV.getLinkage())((D->getCachedLinkage() == LV.getLinkage()) ? static_cast<
void> (0) : __assert_fail ("D->getCachedLinkage() == LV.getLinkage()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1447, __PRETTY_FUNCTION__))
;
1448
1449 D->setCachedLinkage(LV.getLinkage());
1450 cache(D, computation, LV);
1451
1452#ifndef NDEBUG
1453 // In C (because of gnu inline) and in c++ with microsoft extensions an
1454 // static can follow an extern, so we can have two decls with different
1455 // linkages.
1456 const LangOptions &Opts = D->getASTContext().getLangOpts();
1457 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1458 return LV;
1459
1460 // We have just computed the linkage for this decl. By induction we know
1461 // that all other computed linkages match, check that the one we just
1462 // computed also does.
1463 NamedDecl *Old = nullptr;
1464 for (auto I : D->redecls()) {
1465 auto *T = cast<NamedDecl>(I);
1466 if (T == D)
1467 continue;
1468 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1469 Old = T;
1470 break;
1471 }
1472 }
1473 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage())((!Old || Old->getCachedLinkage() == D->getCachedLinkage
()) ? static_cast<void> (0) : __assert_fail ("!Old || Old->getCachedLinkage() == D->getCachedLinkage()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1473, __PRETTY_FUNCTION__))
;
1474#endif
1475
1476 return LV;
1477}
1478
1479LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1480 return getLVForDecl(D,
1481 LVComputationKind(usesTypeVisibility(D)
1482 ? NamedDecl::VisibilityForType
1483 : NamedDecl::VisibilityForValue));
1484}
1485
1486Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1487 Module *M = getOwningModule();
1488 if (!M)
1489 return nullptr;
1490
1491 switch (M->Kind) {
1492 case Module::ModuleMapModule:
1493 // Module map modules have no special linkage semantics.
1494 return nullptr;
1495
1496 case Module::ModuleInterfaceUnit:
1497 return M;
1498
1499 case Module::GlobalModuleFragment: {
1500 // External linkage declarations in the global module have no owning module
1501 // for linkage purposes. But internal linkage declarations in the global
1502 // module fragment of a particular module are owned by that module for
1503 // linkage purposes.
1504 if (IgnoreLinkage)
1505 return nullptr;
1506 bool InternalLinkage;
1507 if (auto *ND = dyn_cast<NamedDecl>(this))
1508 InternalLinkage = !ND->hasExternalFormalLinkage();
1509 else {
1510 auto *NSD = dyn_cast<NamespaceDecl>(this);
1511 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1512 isInAnonymousNamespace();
1513 }
1514 return InternalLinkage ? M->Parent : nullptr;
1515 }
1516
1517 case Module::PrivateModuleFragment:
1518 // The private module fragment is part of its containing module for linkage
1519 // purposes.
1520 return M->Parent;
1521 }
1522
1523 llvm_unreachable("unknown module kind")::llvm::llvm_unreachable_internal("unknown module kind", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1523)
;
1524}
1525
1526void NamedDecl::printName(raw_ostream &os) const {
1527 os << Name;
1528}
1529
1530std::string NamedDecl::getQualifiedNameAsString() const {
1531 std::string QualName;
1532 llvm::raw_string_ostream OS(QualName);
1533 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1534 return OS.str();
1535}
1536
1537void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1538 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1539}
1540
1541void NamedDecl::printQualifiedName(raw_ostream &OS,
1542 const PrintingPolicy &P) const {
1543 if (getDeclContext()->isFunctionOrMethod()) {
1544 // We do not print '(anonymous)' for function parameters without name.
1545 printName(OS);
1546 return;
1547 }
1548 printNestedNameSpecifier(OS, P);
1549 if (getDeclName())
1550 OS << *this;
1551 else {
1552 // Give the printName override a chance to pick a different name before we
1553 // fall back to "(anonymous)".
1554 SmallString<64> NameBuffer;
1555 llvm::raw_svector_ostream NameOS(NameBuffer);
1556 printName(NameOS);
1557 if (NameBuffer.empty())
1558 OS << "(anonymous)";
1559 else
1560 OS << NameBuffer;
1561 }
1562}
1563
1564void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1565 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1566}
1567
1568void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1569 const PrintingPolicy &P) const {
1570 const DeclContext *Ctx = getDeclContext();
1571
1572 // For ObjC methods and properties, look through categories and use the
1573 // interface as context.
1574 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1575 if (auto *ID = MD->getClassInterface())
1576 Ctx = ID;
1577 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1578 if (auto *MD = PD->getGetterMethodDecl())
1579 if (auto *ID = MD->getClassInterface())
1580 Ctx = ID;
1581 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1582 if (auto *CI = ID->getContainingInterface())
1583 Ctx = CI;
1584 }
1585
1586 if (Ctx->isFunctionOrMethod())
1587 return;
1588
1589 using ContextsTy = SmallVector<const DeclContext *, 8>;
1590 ContextsTy Contexts;
1591
1592 // Collect named contexts.
1593 while (Ctx) {
1594 if (isa<NamedDecl>(Ctx))
1595 Contexts.push_back(Ctx);
1596 Ctx = Ctx->getParent();
1597 }
1598
1599 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1600 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1601 OS << Spec->getName();
1602 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1603 printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1604 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1605 if (P.SuppressUnwrittenScope &&
1606 (ND->isAnonymousNamespace() || ND->isInline()))
1607 continue;
1608 if (ND->isAnonymousNamespace()) {
1609 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1610 : "(anonymous namespace)");
1611 }
1612 else
1613 OS << *ND;
1614 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1615 if (!RD->getIdentifier())
1616 OS << "(anonymous " << RD->getKindName() << ')';
1617 else
1618 OS << *RD;
1619 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1620 const FunctionProtoType *FT = nullptr;
1621 if (FD->hasWrittenPrototype())
1622 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1623
1624 OS << *FD << '(';
1625 if (FT) {
1626 unsigned NumParams = FD->getNumParams();
1627 for (unsigned i = 0; i < NumParams; ++i) {
1628 if (i)
1629 OS << ", ";
1630 OS << FD->getParamDecl(i)->getType().stream(P);
1631 }
1632
1633 if (FT->isVariadic()) {
1634 if (NumParams > 0)
1635 OS << ", ";
1636 OS << "...";
1637 }
1638 }
1639 OS << ')';
1640 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1641 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1642 // enumerator is declared in the scope that immediately contains
1643 // the enum-specifier. Each scoped enumerator is declared in the
1644 // scope of the enumeration.
1645 // For the case of unscoped enumerator, do not include in the qualified
1646 // name any information about its enum enclosing scope, as its visibility
1647 // is global.
1648 if (ED->isScoped())
1649 OS << *ED;
1650 else
1651 continue;
1652 } else {
1653 OS << *cast<NamedDecl>(DC);
1654 }
1655 OS << "::";
1656 }
1657}
1658
1659void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1660 const PrintingPolicy &Policy,
1661 bool Qualified) const {
1662 if (Qualified)
1663 printQualifiedName(OS, Policy);
1664 else
1665 printName(OS);
1666}
1667
1668template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1669 return true;
1670}
1671static bool isRedeclarableImpl(...) { return false; }
1672static bool isRedeclarable(Decl::Kind K) {
1673 switch (K) {
1674#define DECL(Type, Base) \
1675 case Decl::Type: \
1676 return isRedeclarableImpl((Type##Decl *)nullptr);
1677#define ABSTRACT_DECL(DECL)
1678#include "clang/AST/DeclNodes.inc"
1679 }
1680 llvm_unreachable("unknown decl kind")::llvm::llvm_unreachable_internal("unknown decl kind", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1680)
;
1681}
1682
1683bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1684 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch")((getDeclName() == OldD->getDeclName() && "Declaration name mismatch"
) ? static_cast<void> (0) : __assert_fail ("getDeclName() == OldD->getDeclName() && \"Declaration name mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1684, __PRETTY_FUNCTION__))
;
1685
1686 // Never replace one imported declaration with another; we need both results
1687 // when re-exporting.
1688 if (OldD->isFromASTFile() && isFromASTFile())
1689 return false;
1690
1691 // A kind mismatch implies that the declaration is not replaced.
1692 if (OldD->getKind() != getKind())
1693 return false;
1694
1695 // For method declarations, we never replace. (Why?)
1696 if (isa<ObjCMethodDecl>(this))
1697 return false;
1698
1699 // For parameters, pick the newer one. This is either an error or (in
1700 // Objective-C) permitted as an extension.
1701 if (isa<ParmVarDecl>(this))
1702 return true;
1703
1704 // Inline namespaces can give us two declarations with the same
1705 // name and kind in the same scope but different contexts; we should
1706 // keep both declarations in this case.
1707 if (!this->getDeclContext()->getRedeclContext()->Equals(
1708 OldD->getDeclContext()->getRedeclContext()))
1709 return false;
1710
1711 // Using declarations can be replaced if they import the same name from the
1712 // same context.
1713 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1714 ASTContext &Context = getASTContext();
1715 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1716 Context.getCanonicalNestedNameSpecifier(
1717 cast<UsingDecl>(OldD)->getQualifier());
1718 }
1719 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1720 ASTContext &Context = getASTContext();
1721 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1722 Context.getCanonicalNestedNameSpecifier(
1723 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1724 }
1725
1726 if (isRedeclarable(getKind())) {
1727 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1728 return false;
1729
1730 if (IsKnownNewer)
1731 return true;
1732
1733 // Check whether this is actually newer than OldD. We want to keep the
1734 // newer declaration. This loop will usually only iterate once, because
1735 // OldD is usually the previous declaration.
1736 for (auto D : redecls()) {
1737 if (D == OldD)
1738 break;
1739
1740 // If we reach the canonical declaration, then OldD is not actually older
1741 // than this one.
1742 //
1743 // FIXME: In this case, we should not add this decl to the lookup table.
1744 if (D->isCanonicalDecl())
1745 return false;
1746 }
1747
1748 // It's a newer declaration of the same kind of declaration in the same
1749 // scope: we want this decl instead of the existing one.
1750 return true;
1751 }
1752
1753 // In all other cases, we need to keep both declarations in case they have
1754 // different visibility. Any attempt to use the name will result in an
1755 // ambiguity if more than one is visible.
1756 return false;
1757}
1758
1759bool NamedDecl::hasLinkage() const {
1760 return getFormalLinkage() != NoLinkage;
1761}
1762
1763NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1764 NamedDecl *ND = this;
1765 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1766 ND = UD->getTargetDecl();
1767
1768 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1769 return AD->getClassInterface();
1770
1771 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1772 return AD->getNamespace();
1773
1774 return ND;
1775}
1776
1777bool NamedDecl::isCXXInstanceMember() const {
1778 if (!isCXXClassMember())
1779 return false;
1780
1781 const NamedDecl *D = this;
1782 if (isa<UsingShadowDecl>(D))
1783 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1784
1785 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1786 return true;
1787 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1788 return MD->isInstance();
1789 return false;
1790}
1791
1792//===----------------------------------------------------------------------===//
1793// DeclaratorDecl Implementation
1794//===----------------------------------------------------------------------===//
1795
1796template <typename DeclT>
1797static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1798 if (decl->getNumTemplateParameterLists() > 0)
1799 return decl->getTemplateParameterList(0)->getTemplateLoc();
1800 else
1801 return decl->getInnerLocStart();
1802}
1803
1804SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1805 TypeSourceInfo *TSI = getTypeSourceInfo();
1806 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1807 return SourceLocation();
1808}
1809
1810SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1811 TypeSourceInfo *TSI = getTypeSourceInfo();
1812 if (TSI) return TSI->getTypeLoc().getEndLoc();
1813 return SourceLocation();
1814}
1815
1816void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1817 if (QualifierLoc) {
1818 // Make sure the extended decl info is allocated.
1819 if (!hasExtInfo()) {
1820 // Save (non-extended) type source info pointer.
1821 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1822 // Allocate external info struct.
1823 DeclInfo = new (getASTContext()) ExtInfo;
1824 // Restore savedTInfo into (extended) decl info.
1825 getExtInfo()->TInfo = savedTInfo;
1826 }
1827 // Set qualifier info.
1828 getExtInfo()->QualifierLoc = QualifierLoc;
1829 } else if (hasExtInfo()) {
1830 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1831 getExtInfo()->QualifierLoc = QualifierLoc;
1832 }
1833}
1834
1835void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1836 assert(TrailingRequiresClause)((TrailingRequiresClause) ? static_cast<void> (0) : __assert_fail
("TrailingRequiresClause", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1836, __PRETTY_FUNCTION__))
;
1837 // Make sure the extended decl info is allocated.
1838 if (!hasExtInfo()) {
1839 // Save (non-extended) type source info pointer.
1840 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1841 // Allocate external info struct.
1842 DeclInfo = new (getASTContext()) ExtInfo;
1843 // Restore savedTInfo into (extended) decl info.
1844 getExtInfo()->TInfo = savedTInfo;
1845 }
1846 // Set requires clause info.
1847 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1848}
1849
1850void DeclaratorDecl::setTemplateParameterListsInfo(
1851 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1852 assert(!TPLists.empty())((!TPLists.empty()) ? static_cast<void> (0) : __assert_fail
("!TPLists.empty()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1852, __PRETTY_FUNCTION__))
;
1853 // Make sure the extended decl info is allocated.
1854 if (!hasExtInfo()) {
1855 // Save (non-extended) type source info pointer.
1856 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1857 // Allocate external info struct.
1858 DeclInfo = new (getASTContext()) ExtInfo;
1859 // Restore savedTInfo into (extended) decl info.
1860 getExtInfo()->TInfo = savedTInfo;
1861 }
1862 // Set the template parameter lists info.
1863 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1864}
1865
1866SourceLocation DeclaratorDecl::getOuterLocStart() const {
1867 return getTemplateOrInnerLocStart(this);
1868}
1869
1870// Helper function: returns true if QT is or contains a type
1871// having a postfix component.
1872static bool typeIsPostfix(QualType QT) {
1873 while (true) {
1874 const Type* T = QT.getTypePtr();
1875 switch (T->getTypeClass()) {
1876 default:
1877 return false;
1878 case Type::Pointer:
1879 QT = cast<PointerType>(T)->getPointeeType();
1880 break;
1881 case Type::BlockPointer:
1882 QT = cast<BlockPointerType>(T)->getPointeeType();
1883 break;
1884 case Type::MemberPointer:
1885 QT = cast<MemberPointerType>(T)->getPointeeType();
1886 break;
1887 case Type::LValueReference:
1888 case Type::RValueReference:
1889 QT = cast<ReferenceType>(T)->getPointeeType();
1890 break;
1891 case Type::PackExpansion:
1892 QT = cast<PackExpansionType>(T)->getPattern();
1893 break;
1894 case Type::Paren:
1895 case Type::ConstantArray:
1896 case Type::DependentSizedArray:
1897 case Type::IncompleteArray:
1898 case Type::VariableArray:
1899 case Type::FunctionProto:
1900 case Type::FunctionNoProto:
1901 return true;
1902 }
1903 }
1904}
1905
1906SourceRange DeclaratorDecl::getSourceRange() const {
1907 SourceLocation RangeEnd = getLocation();
1908 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1909 // If the declaration has no name or the type extends past the name take the
1910 // end location of the type.
1911 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1912 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1913 }
1914 return SourceRange(getOuterLocStart(), RangeEnd);
1915}
1916
1917void QualifierInfo::setTemplateParameterListsInfo(
1918 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1919 // Free previous template parameters (if any).
1920 if (NumTemplParamLists > 0) {
1921 Context.Deallocate(TemplParamLists);
1922 TemplParamLists = nullptr;
1923 NumTemplParamLists = 0;
1924 }
1925 // Set info on matched template parameter lists (if any).
1926 if (!TPLists.empty()) {
1927 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1928 NumTemplParamLists = TPLists.size();
1929 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1930 }
1931}
1932
1933//===----------------------------------------------------------------------===//
1934// VarDecl Implementation
1935//===----------------------------------------------------------------------===//
1936
1937const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1938 switch (SC) {
1939 case SC_None: break;
1940 case SC_Auto: return "auto";
1941 case SC_Extern: return "extern";
1942 case SC_PrivateExtern: return "__private_extern__";
1943 case SC_Register: return "register";
1944 case SC_Static: return "static";
1945 }
1946
1947 llvm_unreachable("Invalid storage class")::llvm::llvm_unreachable_internal("Invalid storage class", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1947)
;
1948}
1949
1950VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1951 SourceLocation StartLoc, SourceLocation IdLoc,
1952 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1953 StorageClass SC)
1954 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1955 redeclarable_base(C) {
1956 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1957 "VarDeclBitfields too large!");
1958 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1959 "ParmVarDeclBitfields too large!");
1960 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1961 "NonParmVarDeclBitfields too large!");
1962 AllBits = 0;
1963 VarDeclBits.SClass = SC;
1964 // Everything else is implicitly initialized to false.
1965}
1966
1967VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1968 SourceLocation StartL, SourceLocation IdL,
1969 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1970 StorageClass S) {
1971 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1972}
1973
1974VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1975 return new (C, ID)
1976 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1977 QualType(), nullptr, SC_None);
1978}
1979
1980void VarDecl::setStorageClass(StorageClass SC) {
1981 assert(isLegalForVariable(SC))((isLegalForVariable(SC)) ? static_cast<void> (0) : __assert_fail
("isLegalForVariable(SC)", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 1981, __PRETTY_FUNCTION__))
;
1982 VarDeclBits.SClass = SC;
1983}
1984
1985VarDecl::TLSKind VarDecl::getTLSKind() const {
1986 switch (VarDeclBits.TSCSpec) {
1987 case TSCS_unspecified:
1988 if (!hasAttr<ThreadAttr>() &&
1989 !(getASTContext().getLangOpts().OpenMPUseTLS &&
1990 getASTContext().getTargetInfo().isTLSSupported() &&
1991 hasAttr<OMPThreadPrivateDeclAttr>()))
1992 return TLS_None;
1993 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1994 LangOptions::MSVC2015)) ||
1995 hasAttr<OMPThreadPrivateDeclAttr>())
1996 ? TLS_Dynamic
1997 : TLS_Static;
1998 case TSCS___thread: // Fall through.
1999 case TSCS__Thread_local:
2000 return TLS_Static;
2001 case TSCS_thread_local:
2002 return TLS_Dynamic;
2003 }
2004 llvm_unreachable("Unknown thread storage class specifier!")::llvm::llvm_unreachable_internal("Unknown thread storage class specifier!"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2004)
;
2005}
2006
2007SourceRange VarDecl::getSourceRange() const {
2008 if (const Expr *Init = getInit()) {
2009 SourceLocation InitEnd = Init->getEndLoc();
2010 // If Init is implicit, ignore its source range and fallback on
2011 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2012 if (InitEnd.isValid() && InitEnd != getLocation())
2013 return SourceRange(getOuterLocStart(), InitEnd);
2014 }
2015 return DeclaratorDecl::getSourceRange();
2016}
2017
2018template<typename T>
2019static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2020 // C++ [dcl.link]p1: All function types, function names with external linkage,
2021 // and variable names with external linkage have a language linkage.
2022 if (!D.hasExternalFormalLinkage())
2023 return NoLanguageLinkage;
2024
2025 // Language linkage is a C++ concept, but saying that everything else in C has
2026 // C language linkage fits the implementation nicely.
2027 ASTContext &Context = D.getASTContext();
2028 if (!Context.getLangOpts().CPlusPlus)
2029 return CLanguageLinkage;
2030
2031 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2032 // language linkage of the names of class members and the function type of
2033 // class member functions.
2034 const DeclContext *DC = D.getDeclContext();
2035 if (DC->isRecord())
2036 return CXXLanguageLinkage;
2037
2038 // If the first decl is in an extern "C" context, any other redeclaration
2039 // will have C language linkage. If the first one is not in an extern "C"
2040 // context, we would have reported an error for any other decl being in one.
2041 if (isFirstInExternCContext(&D))
2042 return CLanguageLinkage;
2043 return CXXLanguageLinkage;
2044}
2045
2046template<typename T>
2047static bool isDeclExternC(const T &D) {
2048 // Since the context is ignored for class members, they can only have C++
2049 // language linkage or no language linkage.
2050 const DeclContext *DC = D.getDeclContext();
2051 if (DC->isRecord()) {
2052 assert(D.getASTContext().getLangOpts().CPlusPlus)((D.getASTContext().getLangOpts().CPlusPlus) ? static_cast<
void> (0) : __assert_fail ("D.getASTContext().getLangOpts().CPlusPlus"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2052, __PRETTY_FUNCTION__))
;
2053 return false;
2054 }
2055
2056 return D.getLanguageLinkage() == CLanguageLinkage;
2057}
2058
2059LanguageLinkage VarDecl::getLanguageLinkage() const {
2060 return getDeclLanguageLinkage(*this);
2061}
2062
2063bool VarDecl::isExternC() const {
2064 return isDeclExternC(*this);
2065}
2066
2067bool VarDecl::isInExternCContext() const {
2068 return getLexicalDeclContext()->isExternCContext();
2069}
2070
2071bool VarDecl::isInExternCXXContext() const {
2072 return getLexicalDeclContext()->isExternCXXContext();
2073}
2074
2075VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2076
2077VarDecl::DefinitionKind
2078VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2079 if (isThisDeclarationADemotedDefinition())
2080 return DeclarationOnly;
2081
2082 // C++ [basic.def]p2:
2083 // A declaration is a definition unless [...] it contains the 'extern'
2084 // specifier or a linkage-specification and neither an initializer [...],
2085 // it declares a non-inline static data member in a class declaration [...],
2086 // it declares a static data member outside a class definition and the variable
2087 // was defined within the class with the constexpr specifier [...],
2088 // C++1y [temp.expl.spec]p15:
2089 // An explicit specialization of a static data member or an explicit
2090 // specialization of a static data member template is a definition if the
2091 // declaration includes an initializer; otherwise, it is a declaration.
2092 //
2093 // FIXME: How do you declare (but not define) a partial specialization of
2094 // a static data member template outside the containing class?
2095 if (isStaticDataMember()) {
2096 if (isOutOfLine() &&
2097 !(getCanonicalDecl()->isInline() &&
2098 getCanonicalDecl()->isConstexpr()) &&
2099 (hasInit() ||
2100 // If the first declaration is out-of-line, this may be an
2101 // instantiation of an out-of-line partial specialization of a variable
2102 // template for which we have not yet instantiated the initializer.
2103 (getFirstDecl()->isOutOfLine()
2104 ? getTemplateSpecializationKind() == TSK_Undeclared
2105 : getTemplateSpecializationKind() !=
2106 TSK_ExplicitSpecialization) ||
2107 isa<VarTemplatePartialSpecializationDecl>(this)))
2108 return Definition;
2109 else if (!isOutOfLine() && isInline())
2110 return Definition;
2111 else
2112 return DeclarationOnly;
2113 }
2114 // C99 6.7p5:
2115 // A definition of an identifier is a declaration for that identifier that
2116 // [...] causes storage to be reserved for that object.
2117 // Note: that applies for all non-file-scope objects.
2118 // C99 6.9.2p1:
2119 // If the declaration of an identifier for an object has file scope and an
2120 // initializer, the declaration is an external definition for the identifier
2121 if (hasInit())
2122 return Definition;
2123
2124 if (hasDefiningAttr())
2125 return Definition;
2126
2127 if (const auto *SAA = getAttr<SelectAnyAttr>())
2128 if (!SAA->isInherited())
2129 return Definition;
2130
2131 // A variable template specialization (other than a static data member
2132 // template or an explicit specialization) is a declaration until we
2133 // instantiate its initializer.
2134 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2135 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2136 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2137 !VTSD->IsCompleteDefinition)
2138 return DeclarationOnly;
2139 }
2140
2141 if (hasExternalStorage())
2142 return DeclarationOnly;
2143
2144 // [dcl.link] p7:
2145 // A declaration directly contained in a linkage-specification is treated
2146 // as if it contains the extern specifier for the purpose of determining
2147 // the linkage of the declared name and whether it is a definition.
2148 if (isSingleLineLanguageLinkage(*this))
2149 return DeclarationOnly;
2150
2151 // C99 6.9.2p2:
2152 // A declaration of an object that has file scope without an initializer,
2153 // and without a storage class specifier or the scs 'static', constitutes
2154 // a tentative definition.
2155 // No such thing in C++.
2156 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2157 return TentativeDefinition;
2158
2159 // What's left is (in C, block-scope) declarations without initializers or
2160 // external storage. These are definitions.
2161 return Definition;
2162}
2163
2164VarDecl *VarDecl::getActingDefinition() {
2165 DefinitionKind Kind = isThisDeclarationADefinition();
2166 if (Kind != TentativeDefinition)
2167 return nullptr;
2168
2169 VarDecl *LastTentative = nullptr;
2170 VarDecl *First = getFirstDecl();
2171 for (auto I : First->redecls()) {
2172 Kind = I->isThisDeclarationADefinition();
2173 if (Kind == Definition)
2174 return nullptr;
2175 else if (Kind == TentativeDefinition)
2176 LastTentative = I;
2177 }
2178 return LastTentative;
2179}
2180
2181VarDecl *VarDecl::getDefinition(ASTContext &C) {
2182 VarDecl *First = getFirstDecl();
2183 for (auto I : First->redecls()) {
2184 if (I->isThisDeclarationADefinition(C) == Definition)
2185 return I;
2186 }
2187 return nullptr;
2188}
2189
2190VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2191 DefinitionKind Kind = DeclarationOnly;
2192
2193 const VarDecl *First = getFirstDecl();
2194 for (auto I : First->redecls()) {
2195 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2196 if (Kind == Definition)
2197 break;
2198 }
2199
2200 return Kind;
2201}
2202
2203const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2204 for (auto I : redecls()) {
2205 if (auto Expr = I->getInit()) {
2206 D = I;
2207 return Expr;
2208 }
2209 }
2210 return nullptr;
2211}
2212
2213bool VarDecl::hasInit() const {
2214 if (auto *P = dyn_cast<ParmVarDecl>(this))
2215 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2216 return false;
2217
2218 return !Init.isNull();
2219}
2220
2221Expr *VarDecl::getInit() {
2222 if (!hasInit())
2223 return nullptr;
2224
2225 if (auto *S = Init.dyn_cast<Stmt *>())
2226 return cast<Expr>(S);
2227
2228 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2229}
2230
2231Stmt **VarDecl::getInitAddress() {
2232 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2233 return &ES->Value;
2234
2235 return Init.getAddrOfPtr1();
2236}
2237
2238VarDecl *VarDecl::getInitializingDeclaration() {
2239 VarDecl *Def = nullptr;
2240 for (auto I : redecls()) {
2241 if (I->hasInit())
2242 return I;
2243
2244 if (I->isThisDeclarationADefinition()) {
2245 if (isStaticDataMember())
2246 return I;
2247 else
2248 Def = I;
2249 }
2250 }
2251 return Def;
2252}
2253
2254bool VarDecl::isOutOfLine() const {
2255 if (Decl::isOutOfLine())
2256 return true;
2257
2258 if (!isStaticDataMember())
2259 return false;
2260
2261 // If this static data member was instantiated from a static data member of
2262 // a class template, check whether that static data member was defined
2263 // out-of-line.
2264 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2265 return VD->isOutOfLine();
2266
2267 return false;
2268}
2269
2270void VarDecl::setInit(Expr *I) {
2271 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2272 Eval->~EvaluatedStmt();
2273 getASTContext().Deallocate(Eval);
2274 }
2275
2276 Init = I;
2277}
2278
2279bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const {
2280 const LangOptions &Lang = C.getLangOpts();
2281
2282 if (!Lang.CPlusPlus)
2283 return false;
2284
2285 // Function parameters are never usable in constant expressions.
2286 if (isa<ParmVarDecl>(this))
2287 return false;
2288
2289 // In C++11, any variable of reference type can be used in a constant
2290 // expression if it is initialized by a constant expression.
2291 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2292 return true;
2293
2294 // Only const objects can be used in constant expressions in C++. C++98 does
2295 // not require the variable to be non-volatile, but we consider this to be a
2296 // defect.
2297 if (!getType().isConstQualified() || getType().isVolatileQualified())
2298 return false;
2299
2300 // In C++, const, non-volatile variables of integral or enumeration types
2301 // can be used in constant expressions.
2302 if (getType()->isIntegralOrEnumerationType())
2303 return true;
2304
2305 // Additionally, in C++11, non-volatile constexpr variables can be used in
2306 // constant expressions.
2307 return Lang.CPlusPlus11 && isConstexpr();
2308}
2309
2310bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const {
2311 // C++2a [expr.const]p3:
2312 // A variable is usable in constant expressions after its initializing
2313 // declaration is encountered...
2314 const VarDecl *DefVD = nullptr;
2315 const Expr *Init = getAnyInitializer(DefVD);
2316 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2317 return false;
2318 // ... if it is a constexpr variable, or it is of reference type or of
2319 // const-qualified integral or enumeration type, ...
2320 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2321 return false;
2322 // ... and its initializer is a constant initializer.
2323 return DefVD->checkInitIsICE();
2324}
2325
2326/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2327/// form, which contains extra information on the evaluated value of the
2328/// initializer.
2329EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2330 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2331 if (!Eval) {
2332 // Note: EvaluatedStmt contains an APValue, which usually holds
2333 // resources not allocated from the ASTContext. We need to do some
2334 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2335 // where we can detect whether there's anything to clean up or not.
2336 Eval = new (getASTContext()) EvaluatedStmt;
2337 Eval->Value = Init.get<Stmt *>();
2338 Init = Eval;
2339 }
2340 return Eval;
2341}
2342
2343APValue *VarDecl::evaluateValue() const {
2344 SmallVector<PartialDiagnosticAt, 8> Notes;
2345 return evaluateValue(Notes);
2346}
2347
2348APValue *VarDecl::evaluateValue(
2349 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2350 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2351
2352 // We only produce notes indicating why an initializer is non-constant the
2353 // first time it is evaluated. FIXME: The notes won't always be emitted the
2354 // first time we try evaluation, so might not be produced at all.
2355 if (Eval->WasEvaluated)
2356 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2357
2358 const auto *Init = cast<Expr>(Eval->Value);
2359 assert(!Init->isValueDependent())((!Init->isValueDependent()) ? static_cast<void> (0)
: __assert_fail ("!Init->isValueDependent()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2359, __PRETTY_FUNCTION__))
;
2360
2361 if (Eval->IsEvaluating) {
2362 // FIXME: Produce a diagnostic for self-initialization.
2363 Eval->CheckedICE = true;
2364 Eval->IsICE = false;
2365 return nullptr;
2366 }
2367
2368 Eval->IsEvaluating = true;
2369
2370 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2371 this, Notes);
2372
2373 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2374 // or that it's empty (so that there's nothing to clean up) if evaluation
2375 // failed.
2376 if (!Result)
2377 Eval->Evaluated = APValue();
2378 else if (Eval->Evaluated.needsCleanup())
2379 getASTContext().addDestruction(&Eval->Evaluated);
2380
2381 Eval->IsEvaluating = false;
2382 Eval->WasEvaluated = true;
2383
2384 // In C++11, we have determined whether the initializer was a constant
2385 // expression as a side-effect.
2386 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2387 Eval->CheckedICE = true;
2388 Eval->IsICE = Result && Notes.empty();
2389 }
2390
2391 return Result ? &Eval->Evaluated : nullptr;
2392}
2393
2394APValue *VarDecl::getEvaluatedValue() const {
2395 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2396 if (Eval->WasEvaluated)
2397 return &Eval->Evaluated;
2398
2399 return nullptr;
2400}
2401
2402bool VarDecl::isInitKnownICE() const {
2403 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2404 return Eval->CheckedICE;
2405
2406 return false;
2407}
2408
2409bool VarDecl::isInitICE() const {
2410 assert(isInitKnownICE() &&((isInitKnownICE() && "Check whether we already know that the initializer is an ICE"
) ? static_cast<void> (0) : __assert_fail ("isInitKnownICE() && \"Check whether we already know that the initializer is an ICE\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2411, __PRETTY_FUNCTION__))
2411 "Check whether we already know that the initializer is an ICE")((isInitKnownICE() && "Check whether we already know that the initializer is an ICE"
) ? static_cast<void> (0) : __assert_fail ("isInitKnownICE() && \"Check whether we already know that the initializer is an ICE\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2411, __PRETTY_FUNCTION__))
;
2412 return Init.get<EvaluatedStmt *>()->IsICE;
2413}
2414
2415bool VarDecl::checkInitIsICE() const {
2416 // Initializers of weak variables are never ICEs.
2417 if (isWeak())
2418 return false;
2419
2420 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2421 if (Eval->CheckedICE)
2422 // We have already checked whether this subexpression is an
2423 // integral constant expression.
2424 return Eval->IsICE;
2425
2426 const auto *Init = cast<Expr>(Eval->Value);
2427 assert(!Init->isValueDependent())((!Init->isValueDependent()) ? static_cast<void> (0)
: __assert_fail ("!Init->isValueDependent()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2427, __PRETTY_FUNCTION__))
;
2428
2429 // In C++11, evaluate the initializer to check whether it's a constant
2430 // expression.
2431 if (getASTContext().getLangOpts().CPlusPlus11) {
2432 SmallVector<PartialDiagnosticAt, 8> Notes;
2433 evaluateValue(Notes);
2434 return Eval->IsICE;
2435 }
2436
2437 // It's an ICE whether or not the definition we found is
2438 // out-of-line. See DR 721 and the discussion in Clang PR
2439 // 6206 for details.
2440
2441 if (Eval->CheckingICE)
2442 return false;
2443 Eval->CheckingICE = true;
2444
2445 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2446 Eval->CheckingICE = false;
2447 Eval->CheckedICE = true;
2448 return Eval->IsICE;
2449}
2450
2451bool VarDecl::isParameterPack() const {
2452 return isa<PackExpansionType>(getType());
2453}
2454
2455template<typename DeclT>
2456static DeclT *getDefinitionOrSelf(DeclT *D) {
2457 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2457, __PRETTY_FUNCTION__))
;
2458 if (auto *Def = D->getDefinition())
2459 return Def;
2460 return D;
2461}
2462
2463bool VarDecl::isEscapingByref() const {
2464 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2465}
2466
2467bool VarDecl::isNonEscapingByref() const {
2468 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2469}
2470
2471VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2472 const VarDecl *VD = this;
2473
2474 // If this is an instantiated member, walk back to the template from which
2475 // it was instantiated.
2476 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2477 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2478 VD = VD->getInstantiatedFromStaticDataMember();
2479 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2480 VD = NewVD;
2481 }
2482 }
2483
2484 // If it's an instantiated variable template specialization, find the
2485 // template or partial specialization from which it was instantiated.
2486 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2487 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2488 auto From = VDTemplSpec->getInstantiatedFrom();
2489 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2490 while (!VTD->isMemberSpecialization()) {
2491 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2492 if (!NewVTD)
2493 break;
2494 VTD = NewVTD;
2495 }
2496 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2497 }
2498 if (auto *VTPSD =
2499 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2500 while (!VTPSD->isMemberSpecialization()) {
2501 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2502 if (!NewVTPSD)
2503 break;
2504 VTPSD = NewVTPSD;
2505 }
2506 return getDefinitionOrSelf<VarDecl>(VTPSD);
2507 }
2508 }
2509 }
2510
2511 // If this is the pattern of a variable template, find where it was
2512 // instantiated from. FIXME: Is this necessary?
2513 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2514 while (!VarTemplate->isMemberSpecialization()) {
2515 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2516 if (!NewVT)
2517 break;
2518 VarTemplate = NewVT;
2519 }
2520
2521 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2522 }
2523
2524 if (VD == this)
2525 return nullptr;
2526 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2527}
2528
2529VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2530 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2531 return cast<VarDecl>(MSI->getInstantiatedFrom());
2532
2533 return nullptr;
2534}
2535
2536TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2537 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2538 return Spec->getSpecializationKind();
2539
2540 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2541 return MSI->getTemplateSpecializationKind();
2542
2543 return TSK_Undeclared;
2544}
2545
2546TemplateSpecializationKind
2547VarDecl::getTemplateSpecializationKindForInstantiation() const {
2548 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2549 return MSI->getTemplateSpecializationKind();
2550
2551 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2552 return Spec->getSpecializationKind();
2553
2554 return TSK_Undeclared;
2555}
2556
2557SourceLocation VarDecl::getPointOfInstantiation() const {
2558 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2559 return Spec->getPointOfInstantiation();
2560
2561 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2562 return MSI->getPointOfInstantiation();
2563
2564 return SourceLocation();
2565}
2566
2567VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2568 return getASTContext().getTemplateOrSpecializationInfo(this)
2569 .dyn_cast<VarTemplateDecl *>();
2570}
2571
2572void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2573 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2574}
2575
2576bool VarDecl::isKnownToBeDefined() const {
2577 const auto &LangOpts = getASTContext().getLangOpts();
2578 // In CUDA mode without relocatable device code, variables of form 'extern
2579 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2580 // memory pool. These are never undefined variables, even if they appear
2581 // inside of an anon namespace or static function.
2582 //
2583 // With CUDA relocatable device code enabled, these variables don't get
2584 // special handling; they're treated like regular extern variables.
2585 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2586 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2587 isa<IncompleteArrayType>(getType()))
2588 return true;
2589
2590 return hasDefinition();
2591}
2592
2593bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2594 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2595 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2596 !hasAttr<AlwaysDestroyAttr>()));
2597}
2598
2599QualType::DestructionKind
2600VarDecl::needsDestruction(const ASTContext &Ctx) const {
2601 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2602 if (Eval->HasConstantDestruction)
2603 return QualType::DK_none;
2604
2605 if (isNoDestroy(Ctx))
2606 return QualType::DK_none;
2607
2608 return getType().isDestructedType();
2609}
2610
2611MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2612 if (isStaticDataMember())
2613 // FIXME: Remove ?
2614 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2615 return getASTContext().getTemplateOrSpecializationInfo(this)
2616 .dyn_cast<MemberSpecializationInfo *>();
2617 return nullptr;
2618}
2619
2620void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2621 SourceLocation PointOfInstantiation) {
2622 assert((isa<VarTemplateSpecializationDecl>(this) ||(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2624, __PRETTY_FUNCTION__))
2623 getMemberSpecializationInfo()) &&(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2624, __PRETTY_FUNCTION__))
2624 "not a variable or static data member template specialization")(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2624, __PRETTY_FUNCTION__))
;
2625
2626 if (VarTemplateSpecializationDecl *Spec =
2627 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2628 Spec->setSpecializationKind(TSK);
2629 if (TSK != TSK_ExplicitSpecialization &&
2630 PointOfInstantiation.isValid() &&
2631 Spec->getPointOfInstantiation().isInvalid()) {
2632 Spec->setPointOfInstantiation(PointOfInstantiation);
2633 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2634 L->InstantiationRequested(this);
2635 }
2636 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2637 MSI->setTemplateSpecializationKind(TSK);
2638 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2639 MSI->getPointOfInstantiation().isInvalid()) {
2640 MSI->setPointOfInstantiation(PointOfInstantiation);
2641 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2642 L->InstantiationRequested(this);
2643 }
2644 }
2645}
2646
2647void
2648VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2649 TemplateSpecializationKind TSK) {
2650 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&((getASTContext().getTemplateOrSpecializationInfo(this).isNull
() && "Previous template or instantiation?") ? static_cast
<void> (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2651, __PRETTY_FUNCTION__))
2651 "Previous template or instantiation?")((getASTContext().getTemplateOrSpecializationInfo(this).isNull
() && "Previous template or instantiation?") ? static_cast
<void> (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2651, __PRETTY_FUNCTION__))
;
2652 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2653}
2654
2655//===----------------------------------------------------------------------===//
2656// ParmVarDecl Implementation
2657//===----------------------------------------------------------------------===//
2658
2659ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2660 SourceLocation StartLoc,
2661 SourceLocation IdLoc, IdentifierInfo *Id,
2662 QualType T, TypeSourceInfo *TInfo,
2663 StorageClass S, Expr *DefArg) {
2664 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2665 S, DefArg);
2666}
2667
2668QualType ParmVarDecl::getOriginalType() const {
2669 TypeSourceInfo *TSI = getTypeSourceInfo();
2670 QualType T = TSI ? TSI->getType() : getType();
2671 if (const auto *DT = dyn_cast<DecayedType>(T))
2672 return DT->getOriginalType();
2673 return T;
2674}
2675
2676ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2677 return new (C, ID)
2678 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2679 nullptr, QualType(), nullptr, SC_None, nullptr);
2680}
2681
2682SourceRange ParmVarDecl::getSourceRange() const {
2683 if (!hasInheritedDefaultArg()) {
2684 SourceRange ArgRange = getDefaultArgRange();
2685 if (ArgRange.isValid())
2686 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2687 }
2688
2689 // DeclaratorDecl considers the range of postfix types as overlapping with the
2690 // declaration name, but this is not the case with parameters in ObjC methods.
2691 if (isa<ObjCMethodDecl>(getDeclContext()))
2692 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2693
2694 return DeclaratorDecl::getSourceRange();
2695}
2696
2697Expr *ParmVarDecl::getDefaultArg() {
2698 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!")((!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"
) ? static_cast<void> (0) : __assert_fail ("!hasUnparsedDefaultArg() && \"Default argument is not yet parsed!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2698, __PRETTY_FUNCTION__))
;
2699 assert(!hasUninstantiatedDefaultArg() &&((!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"
) ? static_cast<void> (0) : __assert_fail ("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2700, __PRETTY_FUNCTION__))
2700 "Default argument is not yet instantiated!")((!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"
) ? static_cast<void> (0) : __assert_fail ("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2700, __PRETTY_FUNCTION__))
;
2701
2702 Expr *Arg = getInit();
2703 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2704 return E->getSubExpr();
2705
2706 return Arg;
2707}
2708
2709void ParmVarDecl::setDefaultArg(Expr *defarg) {
2710 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2711 Init = defarg;
2712}
2713
2714SourceRange ParmVarDecl::getDefaultArgRange() const {
2715 switch (ParmVarDeclBits.DefaultArgKind) {
2716 case DAK_None:
2717 case DAK_Unparsed:
2718 // Nothing we can do here.
2719 return SourceRange();
2720
2721 case DAK_Uninstantiated:
2722 return getUninstantiatedDefaultArg()->getSourceRange();
2723
2724 case DAK_Normal:
2725 if (const Expr *E = getInit())
2726 return E->getSourceRange();
2727
2728 // Missing an actual expression, may be invalid.
2729 return SourceRange();
2730 }
2731 llvm_unreachable("Invalid default argument kind.")::llvm::llvm_unreachable_internal("Invalid default argument kind."
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2731)
;
2732}
2733
2734void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2735 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2736 Init = arg;
2737}
2738
2739Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2740 assert(hasUninstantiatedDefaultArg() &&((hasUninstantiatedDefaultArg() && "Wrong kind of initialization expression!"
) ? static_cast<void> (0) : __assert_fail ("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2741, __PRETTY_FUNCTION__))
2741 "Wrong kind of initialization expression!")((hasUninstantiatedDefaultArg() && "Wrong kind of initialization expression!"
) ? static_cast<void> (0) : __assert_fail ("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2741, __PRETTY_FUNCTION__))
;
2742 return cast_or_null<Expr>(Init.get<Stmt *>());
2743}
2744
2745bool ParmVarDecl::hasDefaultArg() const {
2746 // FIXME: We should just return false for DAK_None here once callers are
2747 // prepared for the case that we encountered an invalid default argument and
2748 // were unable to even build an invalid expression.
2749 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2750 !Init.isNull();
2751}
2752
2753void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2754 getASTContext().setParameterIndex(this, parameterIndex);
2755 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2756}
2757
2758unsigned ParmVarDecl::getParameterIndexLarge() const {
2759 return getASTContext().getParameterIndex(this);
2760}
2761
2762//===----------------------------------------------------------------------===//
2763// FunctionDecl Implementation
2764//===----------------------------------------------------------------------===//
2765
2766FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2767 SourceLocation StartLoc,
2768 const DeclarationNameInfo &NameInfo, QualType T,
2769 TypeSourceInfo *TInfo, StorageClass S,
2770 bool isInlineSpecified,
2771 ConstexprSpecKind ConstexprKind,
2772 Expr *TrailingRequiresClause)
2773 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2774 StartLoc),
2775 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2776 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2777 assert(T.isNull() || T->isFunctionType())((T.isNull() || T->isFunctionType()) ? static_cast<void
> (0) : __assert_fail ("T.isNull() || T->isFunctionType()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2777, __PRETTY_FUNCTION__))
;
2778 FunctionDeclBits.SClass = S;
2779 FunctionDeclBits.IsInline = isInlineSpecified;
2780 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2781 FunctionDeclBits.IsVirtualAsWritten = false;
2782 FunctionDeclBits.IsPure = false;
2783 FunctionDeclBits.HasInheritedPrototype = false;
2784 FunctionDeclBits.HasWrittenPrototype = true;
2785 FunctionDeclBits.IsDeleted = false;
2786 FunctionDeclBits.IsTrivial = false;
2787 FunctionDeclBits.IsTrivialForCall = false;
2788 FunctionDeclBits.IsDefaulted = false;
2789 FunctionDeclBits.IsExplicitlyDefaulted = false;
2790 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2791 FunctionDeclBits.HasImplicitReturnZero = false;
2792 FunctionDeclBits.IsLateTemplateParsed = false;
2793 FunctionDeclBits.ConstexprKind = ConstexprKind;
2794 FunctionDeclBits.InstantiationIsPending = false;
2795 FunctionDeclBits.UsesSEHTry = false;
2796 FunctionDeclBits.UsesFPIntrin = false;
2797 FunctionDeclBits.HasSkippedBody = false;
2798 FunctionDeclBits.WillHaveBody = false;
2799 FunctionDeclBits.IsMultiVersion = false;
2800 FunctionDeclBits.IsCopyDeductionCandidate = false;
2801 FunctionDeclBits.HasODRHash = false;
2802 if (TrailingRequiresClause)
2803 setTrailingRequiresClause(TrailingRequiresClause);
2804}
2805
2806void FunctionDecl::getNameForDiagnostic(
2807 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2808 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2809 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2810 if (TemplateArgs)
2811 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2812}
2813
2814bool FunctionDecl::isVariadic() const {
2815 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2816 return FT->isVariadic();
2817 return false;
2818}
2819
2820FunctionDecl::DefaultedFunctionInfo *
2821FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2822 ArrayRef<DeclAccessPair> Lookups) {
2823 DefaultedFunctionInfo *Info = new (Context.Allocate(
2824 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2825 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2826 DefaultedFunctionInfo;
2827 Info->NumLookups = Lookups.size();
2828 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2829 Info->getTrailingObjects<DeclAccessPair>());
2830 return Info;
2831}
2832
2833void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2834 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this")((!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"
) ? static_cast<void> (0) : __assert_fail ("!FunctionDeclBits.HasDefaultedFunctionInfo && \"already have this\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2834, __PRETTY_FUNCTION__))
;
2835 assert(!Body && "can't replace function body with defaulted function info")((!Body && "can't replace function body with defaulted function info"
) ? static_cast<void> (0) : __assert_fail ("!Body && \"can't replace function body with defaulted function info\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2835, __PRETTY_FUNCTION__))
;
2836
2837 FunctionDeclBits.HasDefaultedFunctionInfo = true;
2838 DefaultedInfo = Info;
2839}
2840
2841FunctionDecl::DefaultedFunctionInfo *
2842FunctionDecl::getDefaultedFunctionInfo() const {
2843 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2844}
2845
2846bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2847 for (auto I : redecls()) {
2848 if (I->doesThisDeclarationHaveABody()) {
2849 Definition = I;
2850 return true;
2851 }
2852 }
2853
2854 return false;
2855}
2856
2857bool FunctionDecl::hasTrivialBody() const {
2858 Stmt *S = getBody();
2859 if (!S) {
2860 // Since we don't have a body for this function, we don't know if it's
2861 // trivial or not.
2862 return false;
2863 }
2864
2865 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2866 return true;
2867 return false;
2868}
2869
2870bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2871 for (auto I : redecls()) {
2872 if (I->isThisDeclarationADefinition()) {
2873 Definition = I;
2874 return true;
2875 }
2876 }
2877
2878 return false;
2879}
2880
2881Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2882 if (!hasBody(Definition))
2883 return nullptr;
2884
2885 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&((!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
"definition should not have a body") ? static_cast<void>
(0) : __assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2886, __PRETTY_FUNCTION__))
2886 "definition should not have a body")((!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
"definition should not have a body") ? static_cast<void>
(0) : __assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2886, __PRETTY_FUNCTION__))
;
2887 if (Definition->Body)
2888 return Definition->Body.get(getASTContext().getExternalSource());
2889
2890 return nullptr;
2891}
2892
2893void FunctionDecl::setBody(Stmt *B) {
2894 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2895 Body = LazyDeclStmtPtr(B);
2896 if (B)
2897 EndRangeLoc = B->getEndLoc();
2898}
2899
2900void FunctionDecl::setPure(bool P) {
2901 FunctionDeclBits.IsPure = P;
2902 if (P)
2903 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2904 Parent->markedVirtualFunctionPure();
2905}
2906
2907template<std::size_t Len>
2908static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2909 IdentifierInfo *II = ND->getIdentifier();
2910 return II && II->isStr(Str);
2911}
2912
2913bool FunctionDecl::isMain() const {
2914 const TranslationUnitDecl *tunit =
2915 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2916 return tunit &&
2917 !tunit->getASTContext().getLangOpts().Freestanding &&
2918 isNamed(this, "main");
2919}
2920
2921bool FunctionDecl::isMSVCRTEntryPoint() const {
2922 const TranslationUnitDecl *TUnit =
2923 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2924 if (!TUnit)
2925 return false;
2926
2927 // Even though we aren't really targeting MSVCRT if we are freestanding,
2928 // semantic analysis for these functions remains the same.
2929
2930 // MSVCRT entry points only exist on MSVCRT targets.
2931 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2932 return false;
2933
2934 // Nameless functions like constructors cannot be entry points.
2935 if (!getIdentifier())
2936 return false;
2937
2938 return llvm::StringSwitch<bool>(getName())
2939 .Cases("main", // an ANSI console app
2940 "wmain", // a Unicode console App
2941 "WinMain", // an ANSI GUI app
2942 "wWinMain", // a Unicode GUI app
2943 "DllMain", // a DLL
2944 true)
2945 .Default(false);
2946}
2947
2948bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2949 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName)((getDeclName().getNameKind() == DeclarationName::CXXOperatorName
) ? static_cast<void> (0) : __assert_fail ("getDeclName().getNameKind() == DeclarationName::CXXOperatorName"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2949, __PRETTY_FUNCTION__))
;
2950 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2953, __PRETTY_FUNCTION__))
2951 getDeclName().getCXXOverloadedOperator() == OO_Delete ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2953, __PRETTY_FUNCTION__))
2952 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2953, __PRETTY_FUNCTION__))
2953 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 2953, __PRETTY_FUNCTION__))
;
2954
2955 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2956 return false;
2957
2958 const auto *proto = getType()->castAs<FunctionProtoType>();
2959 if (proto->getNumParams() != 2 || proto->isVariadic())
2960 return false;
2961
2962 ASTContext &Context =
2963 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2964 ->getASTContext();
2965
2966 // The result type and first argument type are constant across all
2967 // these operators. The second argument must be exactly void*.
2968 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2969}
2970
2971bool FunctionDecl::isReplaceableGlobalAllocationFunction(
2972 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
2973 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2974 return false;
2975 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2976 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2977 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2978 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2979 return false;
2980
2981 if (isa<CXXRecordDecl>(getDeclContext()))
2982 return false;
2983
2984 // This can only fail for an invalid 'operator new' declaration.
2985 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2986 return false;
2987
2988 const auto *FPT = getType()->castAs<FunctionProtoType>();
2989 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2990 return false;
2991
2992 // If this is a single-parameter function, it must be a replaceable global
2993 // allocation or deallocation function.
2994 if (FPT->getNumParams() == 1)
2995 return true;
2996
2997 unsigned Params = 1;
2998 QualType Ty = FPT->getParamType(Params);
2999 ASTContext &Ctx = getASTContext();
3000
3001 auto Consume = [&] {
3002 ++Params;
3003 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3004 };
3005
3006 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3007 bool IsSizedDelete = false;
3008 if (Ctx.getLangOpts().SizedDeallocation &&
3009 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3010 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3011 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3012 IsSizedDelete = true;
3013 Consume();
3014 }
3015
3016 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3017 // new/delete.
3018 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3019 Consume();
3020 if (AlignmentParam)
3021 *AlignmentParam = Params;
3022 }
3023
3024 // Finally, if this is not a sized delete, the final parameter can
3025 // be a 'const std::nothrow_t&'.
3026 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3027 Ty = Ty->getPointeeType();
3028 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3029 return false;
3030 if (Ty->isNothrowT()) {
3031 if (IsNothrow)
3032 *IsNothrow = true;
3033 Consume();
3034 }
3035 }
3036
3037 return Params == FPT->getNumParams();
3038}
3039
3040bool FunctionDecl::isInlineBuiltinDeclaration() const {
3041 if (!getBuiltinID())
3042 return false;
3043
3044 const FunctionDecl *Definition;
3045 return hasBody(Definition) && Definition->isInlineSpecified();
3046}
3047
3048bool FunctionDecl::isDestroyingOperatorDelete() const {
3049 // C++ P0722:
3050 // Within a class C, a single object deallocation function with signature
3051 // (T, std::destroying_delete_t, <more params>)
3052 // is a destroying operator delete.
3053 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3054 getNumParams() < 2)
3055 return false;
3056
3057 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3058 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3059 RD->getIdentifier()->isStr("destroying_delete_t");
3060}
3061
3062LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3063 return getDeclLanguageLinkage(*this);
3064}
3065
3066bool FunctionDecl::isExternC() const {
3067 return isDeclExternC(*this);
3068}
3069
3070bool FunctionDecl::isInExternCContext() const {
3071 if (hasAttr<OpenCLKernelAttr>())
3072 return true;
3073 return getLexicalDeclContext()->isExternCContext();
3074}
3075
3076bool FunctionDecl::isInExternCXXContext() const {
3077 return getLexicalDeclContext()->isExternCXXContext();
3078}
3079
3080bool FunctionDecl::isGlobal() const {
3081 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3082 return Method->isStatic();
3083
3084 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3085 return false;
3086
3087 for (const DeclContext *DC = getDeclContext();
3088 DC->isNamespace();
3089 DC = DC->getParent()) {
3090 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3091 if (!Namespace->getDeclName())
3092 return false;
3093 break;
3094 }
3095 }
3096
3097 return true;
3098}
3099
3100bool FunctionDecl::isNoReturn() const {
3101 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3102 hasAttr<C11NoReturnAttr>())
3103 return true;
3104
3105 if (auto *FnTy = getType()->getAs<FunctionType>())
3106 return FnTy->getNoReturnAttr();
3107
3108 return false;
3109}
3110
3111
3112MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3113 if (hasAttr<TargetAttr>())
3114 return MultiVersionKind::Target;
3115 if (hasAttr<CPUDispatchAttr>())
3116 return MultiVersionKind::CPUDispatch;
3117 if (hasAttr<CPUSpecificAttr>())
3118 return MultiVersionKind::CPUSpecific;
3119 return MultiVersionKind::None;
3120}
3121
3122bool FunctionDecl::isCPUDispatchMultiVersion() const {
3123 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3124}
3125
3126bool FunctionDecl::isCPUSpecificMultiVersion() const {
3127 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3128}
3129
3130bool FunctionDecl::isTargetMultiVersion() const {
3131 return isMultiVersion() && hasAttr<TargetAttr>();
3132}
3133
3134void
3135FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3136 redeclarable_base::setPreviousDecl(PrevDecl);
3137
3138 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3139 FunctionTemplateDecl *PrevFunTmpl
3140 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3141 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch")(((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"
) ? static_cast<void> (0) : __assert_fail ("(!PrevDecl || PrevFunTmpl) && \"Function/function template mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3141, __PRETTY_FUNCTION__))
;
3142 FunTmpl->setPreviousDecl(PrevFunTmpl);
3143 }
3144
3145 if (PrevDecl && PrevDecl->isInlined())
3146 setImplicitlyInline(true);
3147}
3148
3149FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3150
3151/// Returns a value indicating whether this function corresponds to a builtin
3152/// function.
3153///
3154/// The function corresponds to a built-in function if it is declared at
3155/// translation scope or within an extern "C" block and its name matches with
3156/// the name of a builtin. The returned value will be 0 for functions that do
3157/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3158/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3159/// value.
3160///
3161/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3162/// functions as their wrapped builtins. This shouldn't be done in general, but
3163/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3164unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3165 unsigned BuiltinID;
3166
3167 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3168 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3169 } else {
3170 if (!getIdentifier())
3171 return 0;
3172
3173 BuiltinID = getIdentifier()->getBuiltinID();
3174 }
3175
3176 if (!BuiltinID)
3177 return 0;
3178
3179 ASTContext &Context = getASTContext();
3180 if (Context.getLangOpts().CPlusPlus) {
3181 const auto *LinkageDecl =
3182 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
3183 // In C++, the first declaration of a builtin is always inside an implicit
3184 // extern "C".
3185 // FIXME: A recognised library function may not be directly in an extern "C"
3186 // declaration, for instance "extern "C" { namespace std { decl } }".
3187 if (!LinkageDecl) {
3188 if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3189 Context.getTargetInfo().getCXXABI().isMicrosoft())
3190 return Builtin::BI__GetExceptionInfo;
3191 return 0;
3192 }
3193 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3194 return 0;
3195 }
3196
3197 // If the function is marked "overloadable", it has a different mangled name
3198 // and is not the C library function.
3199 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3200 !hasAttr<ArmBuiltinAliasAttr>())
3201 return 0;
3202
3203 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3204 return BuiltinID;
3205
3206 // This function has the name of a known C library
3207 // function. Determine whether it actually refers to the C library
3208 // function or whether it just has the same name.
3209
3210 // If this is a static function, it's not a builtin.
3211 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3212 return 0;
3213
3214 // OpenCL v1.2 s6.9.f - The library functions defined in
3215 // the C99 standard headers are not available.
3216 if (Context.getLangOpts().OpenCL &&
3217 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3218 return 0;
3219
3220 // CUDA does not have device-side standard library. printf and malloc are the
3221 // only special cases that are supported by device-side runtime.
3222 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3223 !hasAttr<CUDAHostAttr>() &&
3224 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3225 return 0;
3226
3227 // As AMDGCN implementation of OpenMP does not have a device-side standard
3228 // library, none of the predefined library functions except printf and malloc
3229 // should be treated as a builtin i.e. 0 should be returned for them.
3230 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3231 Context.getLangOpts().OpenMPIsDevice &&
3232 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3233 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3234 return 0;
3235
3236 return BuiltinID;
3237}
3238
3239/// getNumParams - Return the number of parameters this function must have
3240/// based on its FunctionType. This is the length of the ParamInfo array
3241/// after it has been created.
3242unsigned FunctionDecl::getNumParams() const {
3243 const auto *FPT = getType()->getAs<FunctionProtoType>();
3244 return FPT ? FPT->getNumParams() : 0;
3245}
3246
3247void FunctionDecl::setParams(ASTContext &C,
3248 ArrayRef<ParmVarDecl *> NewParamInfo) {
3249 assert(!ParamInfo && "Already has param info!")((!ParamInfo && "Already has param info!") ? static_cast
<void> (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3249, __PRETTY_FUNCTION__))
;
3250 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!")((NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"
) ? static_cast<void> (0) : __assert_fail ("NewParamInfo.size() == getNumParams() && \"Parameter count mismatch!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3250, __PRETTY_FUNCTION__))
;
3251
3252 // Zero params -> null pointer.
3253 if (!NewParamInfo.empty()) {
3254 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3255 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3256 }
3257}
3258
3259/// getMinRequiredArguments - Returns the minimum number of arguments
3260/// needed to call this function. This may be fewer than the number of
3261/// function parameters, if some of the parameters have default
3262/// arguments (in C++) or are parameter packs (C++11).
3263unsigned FunctionDecl::getMinRequiredArguments() const {
3264 if (!getASTContext().getLangOpts().CPlusPlus)
3265 return getNumParams();
3266
3267 // Note that it is possible for a parameter with no default argument to
3268 // follow a parameter with a default argument.
3269 unsigned NumRequiredArgs = 0;
3270 unsigned MinParamsSoFar = 0;
3271 for (auto *Param : parameters()) {
3272 if (!Param->isParameterPack()) {
3273 ++MinParamsSoFar;
3274 if (!Param->hasDefaultArg())
3275 NumRequiredArgs = MinParamsSoFar;
3276 }
3277 }
3278 return NumRequiredArgs;
3279}
3280
3281bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3282 return getNumParams() == 1 ||
3283 (getNumParams() > 1 &&
3284 std::all_of(param_begin() + 1, param_end(),
3285 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3286}
3287
3288/// The combination of the extern and inline keywords under MSVC forces
3289/// the function to be required.
3290///
3291/// Note: This function assumes that we will only get called when isInlined()
3292/// would return true for this FunctionDecl.
3293bool FunctionDecl::isMSExternInline() const {
3294 assert(isInlined() && "expected to get called on an inlined function!")((isInlined() && "expected to get called on an inlined function!"
) ? static_cast<void> (0) : __assert_fail ("isInlined() && \"expected to get called on an inlined function!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3294, __PRETTY_FUNCTION__))
;
3295
3296 const ASTContext &Context = getASTContext();
3297 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3298 !hasAttr<DLLExportAttr>())
3299 return false;
3300
3301 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3302 FD = FD->getPreviousDecl())
3303 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3304 return true;
3305
3306 return false;
3307}
3308
3309static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3310 if (Redecl->getStorageClass() != SC_Extern)
3311 return false;
3312
3313 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3314 FD = FD->getPreviousDecl())
3315 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3316 return false;
3317
3318 return true;
3319}
3320
3321static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3322 // Only consider file-scope declarations in this test.
3323 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3324 return false;
3325
3326 // Only consider explicit declarations; the presence of a builtin for a
3327 // libcall shouldn't affect whether a definition is externally visible.
3328 if (Redecl->isImplicit())
3329 return false;
3330
3331 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3332 return true; // Not an inline definition
3333
3334 return false;
3335}
3336
3337/// For a function declaration in C or C++, determine whether this
3338/// declaration causes the definition to be externally visible.
3339///
3340/// For instance, this determines if adding the current declaration to the set
3341/// of redeclarations of the given functions causes
3342/// isInlineDefinitionExternallyVisible to change from false to true.
3343bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3344 assert(!doesThisDeclarationHaveABody() &&((!doesThisDeclarationHaveABody() && "Must have a declaration without a body."
) ? static_cast<void> (0) : __assert_fail ("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3345, __PRETTY_FUNCTION__))
3345 "Must have a declaration without a body.")((!doesThisDeclarationHaveABody() && "Must have a declaration without a body."
) ? static_cast<void> (0) : __assert_fail ("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3345, __PRETTY_FUNCTION__))
;
3346
3347 ASTContext &Context = getASTContext();
3348
3349 if (Context.getLangOpts().MSVCCompat) {
3350 const FunctionDecl *Definition;
3351 if (hasBody(Definition) && Definition->isInlined() &&
3352 redeclForcesDefMSVC(this))
3353 return true;
3354 }
3355
3356 if (Context.getLangOpts().CPlusPlus)
3357 return false;
3358
3359 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3360 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3361 // an externally visible definition.
3362 //
3363 // FIXME: What happens if gnu_inline gets added on after the first
3364 // declaration?
3365 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3366 return false;
3367
3368 const FunctionDecl *Prev = this;
3369 bool FoundBody = false;
3370 while ((Prev = Prev->getPreviousDecl())) {
3371 FoundBody |= Prev->doesThisDeclarationHaveABody();
3372
3373 if (Prev->doesThisDeclarationHaveABody()) {
3374 // If it's not the case that both 'inline' and 'extern' are
3375 // specified on the definition, then it is always externally visible.
3376 if (!Prev->isInlineSpecified() ||
3377 Prev->getStorageClass() != SC_Extern)
3378 return false;
3379 } else if (Prev->isInlineSpecified() &&
3380 Prev->getStorageClass() != SC_Extern) {
3381 return false;
3382 }
3383 }
3384 return FoundBody;
3385 }
3386
3387 // C99 6.7.4p6:
3388 // [...] If all of the file scope declarations for a function in a
3389 // translation unit include the inline function specifier without extern,
3390 // then the definition in that translation unit is an inline definition.
3391 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3392 return false;
3393 const FunctionDecl *Prev = this;
3394 bool FoundBody = false;
3395 while ((Prev = Prev->getPreviousDecl())) {
3396 FoundBody |= Prev->doesThisDeclarationHaveABody();
3397 if (RedeclForcesDefC99(Prev))
3398 return false;
3399 }
3400 return FoundBody;
3401}
3402
3403FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3404 const TypeSourceInfo *TSI = getTypeSourceInfo();
3405 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3406 : FunctionTypeLoc();
3407}
3408
3409SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3410 FunctionTypeLoc FTL = getFunctionTypeLoc();
3411 if (!FTL)
3412 return SourceRange();
3413
3414 // Skip self-referential return types.
3415 const SourceManager &SM = getASTContext().getSourceManager();
3416 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3417 SourceLocation Boundary = getNameInfo().getBeginLoc();
3418 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3419 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3420 return SourceRange();
3421
3422 return RTRange;
3423}
3424
3425SourceRange FunctionDecl::getParametersSourceRange() const {
3426 unsigned NP = getNumParams();
3427 SourceLocation EllipsisLoc = getEllipsisLoc();
3428
3429 if (NP == 0 && EllipsisLoc.isInvalid())
3430 return SourceRange();
3431
3432 SourceLocation Begin =
3433 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3434 SourceLocation End = EllipsisLoc.isValid()
3435 ? EllipsisLoc
3436 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3437
3438 return SourceRange(Begin, End);
3439}
3440
3441SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3442 FunctionTypeLoc FTL = getFunctionTypeLoc();
3443 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3444}
3445
3446/// For an inline function definition in C, or for a gnu_inline function
3447/// in C++, determine whether the definition will be externally visible.
3448///
3449/// Inline function definitions are always available for inlining optimizations.
3450/// However, depending on the language dialect, declaration specifiers, and
3451/// attributes, the definition of an inline function may or may not be
3452/// "externally" visible to other translation units in the program.
3453///
3454/// In C99, inline definitions are not externally visible by default. However,
3455/// if even one of the global-scope declarations is marked "extern inline", the
3456/// inline definition becomes externally visible (C99 6.7.4p6).
3457///
3458/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3459/// definition, we use the GNU semantics for inline, which are nearly the
3460/// opposite of C99 semantics. In particular, "inline" by itself will create
3461/// an externally visible symbol, but "extern inline" will not create an
3462/// externally visible symbol.
3463bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3464 assert((doesThisDeclarationHaveABody() || willHaveBody() ||(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3466, __PRETTY_FUNCTION__))
3465 hasAttr<AliasAttr>()) &&(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3466, __PRETTY_FUNCTION__))
3466 "Must be a function definition")(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3466, __PRETTY_FUNCTION__))
;
3467 assert(isInlined() && "Function must be inline")((isInlined() && "Function must be inline") ? static_cast
<void> (0) : __assert_fail ("isInlined() && \"Function must be inline\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3467, __PRETTY_FUNCTION__))
;
3468 ASTContext &Context = getASTContext();
3469
3470 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3471 // Note: If you change the logic here, please change
3472 // doesDeclarationForceExternallyVisibleDefinition as well.
3473 //
3474 // If it's not the case that both 'inline' and 'extern' are
3475 // specified on the definition, then this inline definition is
3476 // externally visible.
3477 if (Context.getLangOpts().CPlusPlus)
3478 return false;
3479 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3480 return true;
3481
3482 // If any declaration is 'inline' but not 'extern', then this definition
3483 // is externally visible.
3484 for (auto Redecl : redecls()) {
3485 if (Redecl->isInlineSpecified() &&
3486 Redecl->getStorageClass() != SC_Extern)
3487 return true;
3488 }
3489
3490 return false;
3491 }
3492
3493 // The rest of this function is C-only.
3494 assert(!Context.getLangOpts().CPlusPlus &&((!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"
) ? static_cast<void> (0) : __assert_fail ("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3495, __PRETTY_FUNCTION__))
3495 "should not use C inline rules in C++")((!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"
) ? static_cast<void> (0) : __assert_fail ("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3495, __PRETTY_FUNCTION__))
;
3496
3497 // C99 6.7.4p6:
3498 // [...] If all of the file scope declarations for a function in a
3499 // translation unit include the inline function specifier without extern,
3500 // then the definition in that translation unit is an inline definition.
3501 for (auto Redecl : redecls()) {
3502 if (RedeclForcesDefC99(Redecl))
3503 return true;
3504 }
3505
3506 // C99 6.7.4p6:
3507 // An inline definition does not provide an external definition for the
3508 // function, and does not forbid an external definition in another
3509 // translation unit.
3510 return false;
3511}
3512
3513/// getOverloadedOperator - Which C++ overloaded operator this
3514/// function represents, if any.
3515OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3516 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3517 return getDeclName().getCXXOverloadedOperator();
3518 else
3519 return OO_None;
3520}
3521
3522/// getLiteralIdentifier - The literal suffix identifier this function
3523/// represents, if any.
3524const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3525 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3526 return getDeclName().getCXXLiteralIdentifier();
3527 else
3528 return nullptr;
3529}
3530
3531FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3532 if (TemplateOrSpecialization.isNull())
3533 return TK_NonTemplate;
3534 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3535 return TK_FunctionTemplate;
3536 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3537 return TK_MemberSpecialization;
3538 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3539 return TK_FunctionTemplateSpecialization;
3540 if (TemplateOrSpecialization.is
3541 <DependentFunctionTemplateSpecializationInfo*>())
3542 return TK_DependentFunctionTemplateSpecialization;
3543
3544 llvm_unreachable("Did we miss a TemplateOrSpecialization type?")::llvm::llvm_unreachable_internal("Did we miss a TemplateOrSpecialization type?"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3544)
;
3545}
3546
3547FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3548 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3549 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3550
3551 return nullptr;
3552}
3553
3554MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3555 if (auto *MSI =
3556 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3557 return MSI;
3558 if (auto *FTSI = TemplateOrSpecialization
3559 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3560 return FTSI->getMemberSpecializationInfo();
3561 return nullptr;
3562}
3563
3564void
3565FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3566 FunctionDecl *FD,
3567 TemplateSpecializationKind TSK) {
3568 assert(TemplateOrSpecialization.isNull() &&((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3569, __PRETTY_FUNCTION__))
3569 "Member function is already a specialization")((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3569, __PRETTY_FUNCTION__))
;
3570 MemberSpecializationInfo *Info
3571 = new (C) MemberSpecializationInfo(FD, TSK);
3572 TemplateOrSpecialization = Info;
3573}
3574
3575FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3576 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3577}
3578
3579void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3580 assert(TemplateOrSpecialization.isNull() &&((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3581, __PRETTY_FUNCTION__))
3581 "Member function is already a specialization")((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3581, __PRETTY_FUNCTION__))
;
3582 TemplateOrSpecialization = Template;
3583}
3584
3585bool FunctionDecl::isImplicitlyInstantiable() const {
3586 // If the function is invalid, it can't be implicitly instantiated.
3587 if (isInvalidDecl())
3588 return false;
3589
3590 switch (getTemplateSpecializationKindForInstantiation()) {
3591 case TSK_Undeclared:
3592 case TSK_ExplicitInstantiationDefinition:
3593 case TSK_ExplicitSpecialization:
3594 return false;
3595
3596 case TSK_ImplicitInstantiation:
3597 return true;
3598
3599 case TSK_ExplicitInstantiationDeclaration:
3600 // Handled below.
3601 break;
3602 }
3603
3604 // Find the actual template from which we will instantiate.
3605 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3606 bool HasPattern = false;
3607 if (PatternDecl)
3608 HasPattern = PatternDecl->hasBody(PatternDecl);
3609
3610 // C++0x [temp.explicit]p9:
3611 // Except for inline functions, other explicit instantiation declarations
3612 // have the effect of suppressing the implicit instantiation of the entity
3613 // to which they refer.
3614 if (!HasPattern || !PatternDecl)
3615 return true;
3616
3617 return PatternDecl->isInlined();
3618}
3619
3620bool FunctionDecl::isTemplateInstantiation() const {
3621 // FIXME: Remove this, it's not clear what it means. (Which template
3622 // specialization kind?)
3623 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3624}
3625
3626FunctionDecl *
3627FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3628 // If this is a generic lambda call operator specialization, its
3629 // instantiation pattern is always its primary template's pattern
3630 // even if its primary template was instantiated from another
3631 // member template (which happens with nested generic lambdas).
3632 // Since a lambda's call operator's body is transformed eagerly,
3633 // we don't have to go hunting for a prototype definition template
3634 // (i.e. instantiated-from-member-template) to use as an instantiation
3635 // pattern.
3636
3637 if (isGenericLambdaCallOperatorSpecialization(
3638 dyn_cast<CXXMethodDecl>(this))) {
3639 assert(getPrimaryTemplate() && "not a generic lambda call operator?")((getPrimaryTemplate() && "not a generic lambda call operator?"
) ? static_cast<void> (0) : __assert_fail ("getPrimaryTemplate() && \"not a generic lambda call operator?\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3639, __PRETTY_FUNCTION__))
;
3640 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3641 }
3642
3643 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) {
3644 if (ForDefinition &&
3645 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3646 return nullptr;
3647 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3648 }
3649
3650 if (ForDefinition &&
3651 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3652 return nullptr;
3653
3654 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3655 // If we hit a point where the user provided a specialization of this
3656 // template, we're done looking.
3657 while (!ForDefinition || !Primary->isMemberSpecialization()) {
3658 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3659 if (!NewPrimary)
3660 break;
3661 Primary = NewPrimary;
3662 }
3663
3664 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3665 }
3666
3667 return nullptr;
3668}
3669
3670FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3671 if (FunctionTemplateSpecializationInfo *Info
3672 = TemplateOrSpecialization
3673 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3674 return Info->getTemplate();
3675 }
3676 return nullptr;
3677}
3678
3679FunctionTemplateSpecializationInfo *
3680FunctionDecl::getTemplateSpecializationInfo() const {
3681 return TemplateOrSpecialization
3682 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3683}
3684
3685const TemplateArgumentList *
3686FunctionDecl::getTemplateSpecializationArgs() const {
3687 if (FunctionTemplateSpecializationInfo *Info
3688 = TemplateOrSpecialization
3689 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3690 return Info->TemplateArguments;
3691 }
3692 return nullptr;
3693}
3694
3695const ASTTemplateArgumentListInfo *
3696FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3697 if (FunctionTemplateSpecializationInfo *Info
3698 = TemplateOrSpecialization
3699 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3700 return Info->TemplateArgumentsAsWritten;
3701 }
3702 return nullptr;
3703}
3704
3705void
3706FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3707 FunctionTemplateDecl *Template,
3708 const TemplateArgumentList *TemplateArgs,
3709 void *InsertPos,
3710 TemplateSpecializationKind TSK,
3711 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3712 SourceLocation PointOfInstantiation) {
3713 assert((TemplateOrSpecialization.isNull() ||(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3715, __PRETTY_FUNCTION__))
3714 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3715, __PRETTY_FUNCTION__))
3715 "Member function is already a specialization")(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3715, __PRETTY_FUNCTION__))
;
3716 assert(TSK != TSK_Undeclared &&((TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3717, __PRETTY_FUNCTION__))
3717 "Must specify the type of function template specialization")((TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3717, __PRETTY_FUNCTION__))
;
3718 assert((TemplateOrSpecialization.isNull() ||(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3720, __PRETTY_FUNCTION__))
3719 TSK == TSK_ExplicitSpecialization) &&(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3720, __PRETTY_FUNCTION__))
3720 "Member specialization must be an explicit specialization")(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3720, __PRETTY_FUNCTION__))
;
3721 FunctionTemplateSpecializationInfo *Info =
3722 FunctionTemplateSpecializationInfo::Create(
3723 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3724 PointOfInstantiation,
3725 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3726 TemplateOrSpecialization = Info;
3727 Template->addSpecialization(Info, InsertPos);
3728}
3729
3730void
3731FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3732 const UnresolvedSetImpl &Templates,
3733 const TemplateArgumentListInfo &TemplateArgs) {
3734 assert(TemplateOrSpecialization.isNull())((TemplateOrSpecialization.isNull()) ? static_cast<void>
(0) : __assert_fail ("TemplateOrSpecialization.isNull()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3734, __PRETTY_FUNCTION__))
;
1
'?' condition is true
3735 DependentFunctionTemplateSpecializationInfo *Info =
3736 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
2
Calling 'DependentFunctionTemplateSpecializationInfo::Create'
3737 TemplateArgs);
3738 TemplateOrSpecialization = Info;
3739}
3740
3741DependentFunctionTemplateSpecializationInfo *
3742FunctionDecl::getDependentSpecializationInfo() const {
3743 return TemplateOrSpecialization
3744 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3745}
3746
3747DependentFunctionTemplateSpecializationInfo *
3748DependentFunctionTemplateSpecializationInfo::Create(
3749 ASTContext &Context, const UnresolvedSetImpl &Ts,
3750 const TemplateArgumentListInfo &TArgs) {
3751 void *Buffer = Context.Allocate(
3752 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3753 TArgs.size(), Ts.size()));
3754 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3
Calling constructor for 'DependentFunctionTemplateSpecializationInfo'
3755}
3756
3757DependentFunctionTemplateSpecializationInfo::
3758DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3759 const TemplateArgumentListInfo &TArgs)
3760 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3761 NumTemplates = Ts.size();
3762 NumArgs = TArgs.size();
3763
3764 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3765 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
4
Assuming 'I' is equal to 'E'
5
Loop condition is false. Execution continues on line 3768
3766 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3767
3768 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
6
Calling 'TrailingObjects::getTrailingObjects'
15
Returning from 'TrailingObjects::getTrailingObjects'
16
'ArgsArray' initialized here
3769 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
17
Assuming 'I' is not equal to 'E'
18
Loop condition is true. Entering loop body
3770 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
19
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 48 bytes
3771}
3772
3773TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3774 // For a function template specialization, query the specialization
3775 // information object.
3776 if (FunctionTemplateSpecializationInfo *FTSInfo =
3777 TemplateOrSpecialization
3778 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3779 return FTSInfo->getTemplateSpecializationKind();
3780
3781 if (MemberSpecializationInfo *MSInfo =
3782 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3783 return MSInfo->getTemplateSpecializationKind();
3784
3785 return TSK_Undeclared;
3786}
3787
3788TemplateSpecializationKind
3789FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3790 // This is the same as getTemplateSpecializationKind(), except that for a
3791 // function that is both a function template specialization and a member
3792 // specialization, we prefer the member specialization information. Eg:
3793 //
3794 // template<typename T> struct A {
3795 // template<typename U> void f() {}
3796 // template<> void f<int>() {}
3797 // };
3798 //
3799 // For A<int>::f<int>():
3800 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3801 // * getTemplateSpecializationKindForInstantiation() will return
3802 // TSK_ImplicitInstantiation
3803 //
3804 // This reflects the facts that A<int>::f<int> is an explicit specialization
3805 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3806 // from A::f<int> if a definition is needed.
3807 if (FunctionTemplateSpecializationInfo *FTSInfo =
3808 TemplateOrSpecialization
3809 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3810 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3811 return MSInfo->getTemplateSpecializationKind();
3812 return FTSInfo->getTemplateSpecializationKind();
3813 }
3814
3815 if (MemberSpecializationInfo *MSInfo =
3816 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3817 return MSInfo->getTemplateSpecializationKind();
3818
3819 return TSK_Undeclared;
3820}
3821
3822void
3823FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3824 SourceLocation PointOfInstantiation) {
3825 if (FunctionTemplateSpecializationInfo *FTSInfo
3826 = TemplateOrSpecialization.dyn_cast<
3827 FunctionTemplateSpecializationInfo*>()) {
3828 FTSInfo->setTemplateSpecializationKind(TSK);
3829 if (TSK != TSK_ExplicitSpecialization &&
3830 PointOfInstantiation.isValid() &&
3831 FTSInfo->getPointOfInstantiation().isInvalid()) {
3832 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3833 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3834 L->InstantiationRequested(this);
3835 }
3836 } else if (MemberSpecializationInfo *MSInfo
3837 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3838 MSInfo->setTemplateSpecializationKind(TSK);
3839 if (TSK != TSK_ExplicitSpecialization &&
3840 PointOfInstantiation.isValid() &&
3841 MSInfo->getPointOfInstantiation().isInvalid()) {
3842 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3843 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3844 L->InstantiationRequested(this);
3845 }
3846 } else
3847 llvm_unreachable("Function cannot have a template specialization kind")::llvm::llvm_unreachable_internal("Function cannot have a template specialization kind"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3847)
;
3848}
3849
3850SourceLocation FunctionDecl::getPointOfInstantiation() const {
3851 if (FunctionTemplateSpecializationInfo *FTSInfo
3852 = TemplateOrSpecialization.dyn_cast<
3853 FunctionTemplateSpecializationInfo*>())
3854 return FTSInfo->getPointOfInstantiation();
3855 else if (MemberSpecializationInfo *MSInfo
3856 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3857 return MSInfo->getPointOfInstantiation();
3858
3859 return SourceLocation();
3860}
3861
3862bool FunctionDecl::isOutOfLine() const {
3863 if (Decl::isOutOfLine())
3864 return true;
3865
3866 // If this function was instantiated from a member function of a
3867 // class template, check whether that member function was defined out-of-line.
3868 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3869 const FunctionDecl *Definition;
3870 if (FD->hasBody(Definition))
3871 return Definition->isOutOfLine();
3872 }
3873
3874 // If this function was instantiated from a function template,
3875 // check whether that function template was defined out-of-line.
3876 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3877 const FunctionDecl *Definition;
3878 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3879 return Definition->isOutOfLine();
3880 }
3881
3882 return false;
3883}
3884
3885SourceRange FunctionDecl::getSourceRange() const {
3886 return SourceRange(getOuterLocStart(), EndRangeLoc);
3887}
3888
3889unsigned FunctionDecl::getMemoryFunctionKind() const {
3890 IdentifierInfo *FnInfo = getIdentifier();
3891
3892 if (!FnInfo)
3893 return 0;
3894
3895 // Builtin handling.
3896 switch (getBuiltinID()) {
3897 case Builtin::BI__builtin_memset:
3898 case Builtin::BI__builtin___memset_chk:
3899 case Builtin::BImemset:
3900 return Builtin::BImemset;
3901
3902 case Builtin::BI__builtin_memcpy:
3903 case Builtin::BI__builtin___memcpy_chk:
3904 case Builtin::BImemcpy:
3905 return Builtin::BImemcpy;
3906
3907 case Builtin::BI__builtin_mempcpy:
3908 case Builtin::BI__builtin___mempcpy_chk:
3909 case Builtin::BImempcpy:
3910 return Builtin::BImempcpy;
3911
3912 case Builtin::BI__builtin_memmove:
3913 case Builtin::BI__builtin___memmove_chk:
3914 case Builtin::BImemmove:
3915 return Builtin::BImemmove;
3916
3917// case Builtin::BIstrlcpy:
3918// case Builtin::BI__builtin___strlcpy_chk:
3919// return Builtin::BIstrlcpy;
3920
3921// case Builtin::BIstrlcat:
3922// case Builtin::BI__builtin___strlcat_chk:
3923// return Builtin::BIstrlcat;
3924
3925 case Builtin::BI__builtin_memcmp:
3926 case Builtin::BImemcmp:
3927 return Builtin::BImemcmp;
3928
3929 case Builtin::BI__builtin_bcmp:
3930 case Builtin::BIbcmp:
3931 return Builtin::BIbcmp;
3932
3933 case Builtin::BI__builtin_strncpy:
3934 case Builtin::BI__builtin___strncpy_chk:
3935 case Builtin::BIstrncpy:
3936 return Builtin::BIstrncpy;
3937
3938 case Builtin::BI__builtin_strncmp:
3939 case Builtin::BIstrncmp:
3940 return Builtin::BIstrncmp;
3941
3942 case Builtin::BI__builtin_strncasecmp:
3943 case Builtin::BIstrncasecmp:
3944 return Builtin::BIstrncasecmp;
3945
3946 case Builtin::BI__builtin_strncat:
3947 case Builtin::BI__builtin___strncat_chk:
3948 case Builtin::BIstrncat:
3949 return Builtin::BIstrncat;
3950
3951 case Builtin::BI__builtin_strndup:
3952 case Builtin::BIstrndup:
3953 return Builtin::BIstrndup;
3954
3955 case Builtin::BI__builtin_strlen:
3956 case Builtin::BIstrlen:
3957 return Builtin::BIstrlen;
3958
3959 case Builtin::BI__builtin_bzero:
3960 case Builtin::BIbzero:
3961 return Builtin::BIbzero;
3962
3963 default:
3964 if (isExternC()) {
3965 if (FnInfo->isStr("memset"))
3966 return Builtin::BImemset;
3967 else if (FnInfo->isStr("memcpy"))
3968 return Builtin::BImemcpy;
3969 else if (FnInfo->isStr("mempcpy"))
3970 return Builtin::BImempcpy;
3971 else if (FnInfo->isStr("memmove"))
3972 return Builtin::BImemmove;
3973 else if (FnInfo->isStr("memcmp"))
3974 return Builtin::BImemcmp;
3975 else if (FnInfo->isStr("bcmp"))
3976 return Builtin::BIbcmp;
3977 else if (FnInfo->isStr("strncpy"))
3978 return Builtin::BIstrncpy;
3979 else if (FnInfo->isStr("strncmp"))
3980 return Builtin::BIstrncmp;
3981 else if (FnInfo->isStr("strncasecmp"))
3982 return Builtin::BIstrncasecmp;
3983 else if (FnInfo->isStr("strncat"))
3984 return Builtin::BIstrncat;
3985 else if (FnInfo->isStr("strndup"))
3986 return Builtin::BIstrndup;
3987 else if (FnInfo->isStr("strlen"))
3988 return Builtin::BIstrlen;
3989 else if (FnInfo->isStr("bzero"))
3990 return Builtin::BIbzero;
3991 }
3992 break;
3993 }
3994 return 0;
3995}
3996
3997unsigned FunctionDecl::getODRHash() const {
3998 assert(hasODRHash())((hasODRHash()) ? static_cast<void> (0) : __assert_fail
("hasODRHash()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 3998, __PRETTY_FUNCTION__))
;
3999 return ODRHash;
4000}
4001
4002unsigned FunctionDecl::getODRHash() {
4003 if (hasODRHash())
4004 return ODRHash;
4005
4006 if (auto *FT = getInstantiatedFromMemberFunction()) {
4007 setHasODRHash(true);
4008 ODRHash = FT->getODRHash();
4009 return ODRHash;
4010 }
4011
4012 class ODRHash Hash;
4013 Hash.AddFunctionDecl(this);
4014 setHasODRHash(true);
4015 ODRHash = Hash.CalculateHash();
4016 return ODRHash;
4017}
4018
4019//===----------------------------------------------------------------------===//
4020// FieldDecl Implementation
4021//===----------------------------------------------------------------------===//
4022
4023FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4024 SourceLocation StartLoc, SourceLocation IdLoc,
4025 IdentifierInfo *Id, QualType T,
4026 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4027 InClassInitStyle InitStyle) {
4028 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4029 BW, Mutable, InitStyle);
4030}
4031
4032FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4033 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4034 SourceLocation(), nullptr, QualType(), nullptr,
4035 nullptr, false, ICIS_NoInit);
4036}
4037
4038bool FieldDecl::isAnonymousStructOrUnion() const {
4039 if (!isImplicit() || getDeclName())
4040 return false;
4041
4042 if (const auto *Record = getType()->getAs<RecordType>())
4043 return Record->getDecl()->isAnonymousStructOrUnion();
4044
4045 return false;
4046}
4047
4048unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4049 assert(isBitField() && "not a bitfield")((isBitField() && "not a bitfield") ? static_cast<
void> (0) : __assert_fail ("isBitField() && \"not a bitfield\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4049, __PRETTY_FUNCTION__))
;
4050 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4051}
4052
4053bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4054 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4055 getBitWidthValue(Ctx) == 0;
4056}
4057
4058bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4059 if (isZeroLengthBitField(Ctx))
4060 return true;
4061
4062 // C++2a [intro.object]p7:
4063 // An object has nonzero size if it
4064 // -- is not a potentially-overlapping subobject, or
4065 if (!hasAttr<NoUniqueAddressAttr>())
4066 return false;
4067
4068 // -- is not of class type, or
4069 const auto *RT = getType()->getAs<RecordType>();
4070 if (!RT)
4071 return false;
4072 const RecordDecl *RD = RT->getDecl()->getDefinition();
4073 if (!RD) {
4074 assert(isInvalidDecl() && "valid field has incomplete type")((isInvalidDecl() && "valid field has incomplete type"
) ? static_cast<void> (0) : __assert_fail ("isInvalidDecl() && \"valid field has incomplete type\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4074, __PRETTY_FUNCTION__))
;
4075 return false;
4076 }
4077
4078 // -- [has] virtual member functions or virtual base classes, or
4079 // -- has subobjects of nonzero size or bit-fields of nonzero length
4080 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4081 if (!CXXRD->isEmpty())
4082 return false;
4083
4084 // Otherwise, [...] the circumstances under which the object has zero size
4085 // are implementation-defined.
4086 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4087 // ABI will do.
4088 return true;
4089}
4090
4091unsigned FieldDecl::getFieldIndex() const {
4092 const FieldDecl *Canonical = getCanonicalDecl();
4093 if (Canonical != this)
4094 return Canonical->getFieldIndex();
4095
4096 if (CachedFieldIndex) return CachedFieldIndex - 1;
4097
4098 unsigned Index = 0;
4099 const RecordDecl *RD = getParent()->getDefinition();
4100 assert(RD && "requested index for field of struct with no definition")((RD && "requested index for field of struct with no definition"
) ? static_cast<void> (0) : __assert_fail ("RD && \"requested index for field of struct with no definition\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4100, __PRETTY_FUNCTION__))
;
4101
4102 for (auto *Field : RD->fields()) {
4103 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4104 ++Index;
4105 }
4106
4107 assert(CachedFieldIndex && "failed to find field in parent")((CachedFieldIndex && "failed to find field in parent"
) ? static_cast<void> (0) : __assert_fail ("CachedFieldIndex && \"failed to find field in parent\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4107, __PRETTY_FUNCTION__))
;
4108 return CachedFieldIndex - 1;
4109}
4110
4111SourceRange FieldDecl::getSourceRange() const {
4112 const Expr *FinalExpr = getInClassInitializer();
4113 if (!FinalExpr)
4114 FinalExpr = getBitWidth();
4115 if (FinalExpr)
4116 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4117 return DeclaratorDecl::getSourceRange();
4118}
4119
4120void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4121 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&(((getParent()->isLambda() || getParent()->isCapturedRecord
()) && "capturing type in non-lambda or captured record."
) ? static_cast<void> (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4122, __PRETTY_FUNCTION__))
4122 "capturing type in non-lambda or captured record.")(((getParent()->isLambda() || getParent()->isCapturedRecord
()) && "capturing type in non-lambda or captured record."
) ? static_cast<void> (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4122, __PRETTY_FUNCTION__))
;
4123 assert(InitStorage.getInt() == ISK_NoInit &&((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4125, __PRETTY_FUNCTION__))
4124 InitStorage.getPointer() == nullptr &&((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4125, __PRETTY_FUNCTION__))
4125 "bit width, initializer or captured type already set")((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4125, __PRETTY_FUNCTION__))
;
4126 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4127 ISK_CapturedVLAType);
4128}
4129
4130//===----------------------------------------------------------------------===//
4131// TagDecl Implementation
4132//===----------------------------------------------------------------------===//
4133
4134TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4135 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4136 SourceLocation StartL)
4137 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4138 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4139 assert((DK != Enum || TK == TTK_Enum) &&(((DK != Enum || TK == TTK_Enum) && "EnumDecl not matched with TTK_Enum"
) ? static_cast<void> (0) : __assert_fail ("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4140, __PRETTY_FUNCTION__))
4140 "EnumDecl not matched with TTK_Enum")(((DK != Enum || TK == TTK_Enum) && "EnumDecl not matched with TTK_Enum"
) ? static_cast<void> (0) : __assert_fail ("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4140, __PRETTY_FUNCTION__))
;
4141 setPreviousDecl(PrevDecl);
4142 setTagKind(TK);
4143 setCompleteDefinition(false);
4144 setBeingDefined(false);
4145 setEmbeddedInDeclarator(false);
4146 setFreeStanding(false);
4147 setCompleteDefinitionRequired(false);
4148}
4149
4150SourceLocation TagDecl::getOuterLocStart() const {
4151 return getTemplateOrInnerLocStart(this);
4152}
4153
4154SourceRange TagDecl::getSourceRange() const {
4155 SourceLocation RBraceLoc = BraceRange.getEnd();
4156 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4157 return SourceRange(getOuterLocStart(), E);
4158}
4159
4160TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4161
4162void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4163 TypedefNameDeclOrQualifier = TDD;
4164 if (const Type *T = getTypeForDecl()) {
4165 (void)T;
4166 assert(T->isLinkageValid())((T->isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("T->isLinkageValid()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4166, __PRETTY_FUNCTION__))
;
4167 }
4168 assert(isLinkageValid())((isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("isLinkageValid()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4168, __PRETTY_FUNCTION__))
;
4169}
4170
4171void TagDecl::startDefinition() {
4172 setBeingDefined(true);
4173
4174 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4175 struct CXXRecordDecl::DefinitionData *Data =
4176 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4177 for (auto I : redecls())
4178 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4179 }
4180}
4181
4182void TagDecl::completeDefinition() {
4183 assert((!isa<CXXRecordDecl>(this) ||(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4185, __PRETTY_FUNCTION__))
4184 cast<CXXRecordDecl>(this)->hasDefinition()) &&(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4185, __PRETTY_FUNCTION__))
4185 "definition completed but not started")(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4185, __PRETTY_FUNCTION__))
;
4186
4187 setCompleteDefinition(true);
4188 setBeingDefined(false);
4189
4190 if (ASTMutationListener *L = getASTMutationListener())
4191 L->CompletedTagDefinition(this);
4192}
4193
4194TagDecl *TagDecl::getDefinition() const {
4195 if (isCompleteDefinition())
4196 return const_cast<TagDecl *>(this);
4197
4198 // If it's possible for us to have an out-of-date definition, check now.
4199 if (mayHaveOutOfDateDef()) {
4200 if (IdentifierInfo *II = getIdentifier()) {
4201 if (II->isOutOfDate()) {
4202 updateOutOfDate(*II);
4203 }
4204 }
4205 }
4206
4207 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4208 return CXXRD->getDefinition();
4209
4210 for (auto R : redecls())
4211 if (R->isCompleteDefinition())
4212 return R;
4213
4214 return nullptr;
4215}
4216
4217void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4218 if (QualifierLoc) {
4219 // Make sure the extended qualifier info is allocated.
4220 if (!hasExtInfo())
4221 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4222 // Set qualifier info.
4223 getExtInfo()->QualifierLoc = QualifierLoc;
4224 } else {
4225 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4226 if (hasExtInfo()) {
4227 if (getExtInfo()->NumTemplParamLists == 0) {
4228 getASTContext().Deallocate(getExtInfo());
4229 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4230 }
4231 else
4232 getExtInfo()->QualifierLoc = QualifierLoc;
4233 }
4234 }
4235}
4236
4237void TagDecl::setTemplateParameterListsInfo(
4238 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4239 assert(!TPLists.empty())((!TPLists.empty()) ? static_cast<void> (0) : __assert_fail
("!TPLists.empty()", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4239, __PRETTY_FUNCTION__))
;
4240 // Make sure the extended decl info is allocated.
4241 if (!hasExtInfo())
4242 // Allocate external info struct.
4243 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4244 // Set the template parameter lists info.
4245 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4246}
4247
4248//===----------------------------------------------------------------------===//
4249// EnumDecl Implementation
4250//===----------------------------------------------------------------------===//
4251
4252EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4253 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4254 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4255 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4256 assert(Scoped || !ScopedUsingClassTag)((Scoped || !ScopedUsingClassTag) ? static_cast<void> (
0) : __assert_fail ("Scoped || !ScopedUsingClassTag", "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4256, __PRETTY_FUNCTION__))
;
4257 IntegerType = nullptr;
4258 setNumPositiveBits(0);
4259 setNumNegativeBits(0);
4260 setScoped(Scoped);
4261 setScopedUsingClassTag(ScopedUsingClassTag);
4262 setFixed(Fixed);
4263 setHasODRHash(false);
4264 ODRHash = 0;
4265}
4266
4267void EnumDecl::anchor() {}
4268
4269EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4270 SourceLocation StartLoc, SourceLocation IdLoc,
4271 IdentifierInfo *Id,
4272 EnumDecl *PrevDecl, bool IsScoped,
4273 bool IsScopedUsingClassTag, bool IsFixed) {
4274 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4275 IsScoped, IsScopedUsingClassTag, IsFixed);
4276 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4277 C.getTypeDeclType(Enum, PrevDecl);
4278 return Enum;
4279}
4280
4281EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4282 EnumDecl *Enum =
4283 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4284 nullptr, nullptr, false, false, false);
4285 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4286 return Enum;
4287}
4288
4289SourceRange EnumDecl::getIntegerTypeRange() const {
4290 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4291 return TI->getTypeLoc().getSourceRange();
4292 return SourceRange();
4293}
4294
4295void EnumDecl::completeDefinition(QualType NewType,
4296 QualType NewPromotionType,
4297 unsigned NumPositiveBits,
4298 unsigned NumNegativeBits) {
4299 assert(!isCompleteDefinition() && "Cannot redefine enums!")((!isCompleteDefinition() && "Cannot redefine enums!"
) ? static_cast<void> (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine enums!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4299, __PRETTY_FUNCTION__))
;
4300 if (!IntegerType)
4301 IntegerType = NewType.getTypePtr();
4302 PromotionType = NewPromotionType;
4303 setNumPositiveBits(NumPositiveBits);
4304 setNumNegativeBits(NumNegativeBits);
4305 TagDecl::completeDefinition();
4306}
4307
4308bool EnumDecl::isClosed() const {
4309 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4310 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4311 return true;
4312}
4313
4314bool EnumDecl::isClosedFlag() const {
4315 return isClosed() && hasAttr<FlagEnumAttr>();
4316}
4317
4318bool EnumDecl::isClosedNonFlag() const {
4319 return isClosed() && !hasAttr<FlagEnumAttr>();
4320}
4321
4322TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4323 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4324 return MSI->getTemplateSpecializationKind();
4325
4326 return TSK_Undeclared;
4327}
4328
4329void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4330 SourceLocation PointOfInstantiation) {
4331 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4332 assert(MSI && "Not an instantiated member enumeration?")((MSI && "Not an instantiated member enumeration?") ?
static_cast<void> (0) : __assert_fail ("MSI && \"Not an instantiated member enumeration?\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4332, __PRETTY_FUNCTION__))
;
4333 MSI->setTemplateSpecializationKind(TSK);
4334 if (TSK != TSK_ExplicitSpecialization &&
4335 PointOfInstantiation.isValid() &&
4336 MSI->getPointOfInstantiation().isInvalid())
4337 MSI->setPointOfInstantiation(PointOfInstantiation);
4338}
4339
4340EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4341 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4342 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4343 EnumDecl *ED = getInstantiatedFromMemberEnum();
4344 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4345 ED = NewED;
4346 return getDefinitionOrSelf(ED);
4347 }
4348 }
4349
4350 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&((!isTemplateInstantiation(getTemplateSpecializationKind()) &&
"couldn't find pattern for enum instantiation") ? static_cast
<void> (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4351, __PRETTY_FUNCTION__))
4351 "couldn't find pattern for enum instantiation")((!isTemplateInstantiation(getTemplateSpecializationKind()) &&
"couldn't find pattern for enum instantiation") ? static_cast
<void> (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4351, __PRETTY_FUNCTION__))
;
4352 return nullptr;
4353}
4354
4355EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4356 if (SpecializationInfo)
4357 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4358
4359 return nullptr;
4360}
4361
4362void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4363 TemplateSpecializationKind TSK) {
4364 assert(!SpecializationInfo && "Member enum is already a specialization")((!SpecializationInfo && "Member enum is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("!SpecializationInfo && \"Member enum is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4364, __PRETTY_FUNCTION__))
;
4365 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4366}
4367
4368unsigned EnumDecl::getODRHash() {
4369 if (hasODRHash())
4370 return ODRHash;
4371
4372 class ODRHash Hash;
4373 Hash.AddEnumDecl(this);
4374 setHasODRHash(true);
4375 ODRHash = Hash.CalculateHash();
4376 return ODRHash;
4377}
4378
4379//===----------------------------------------------------------------------===//
4380// RecordDecl Implementation
4381//===----------------------------------------------------------------------===//
4382
4383RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4384 DeclContext *DC, SourceLocation StartLoc,
4385 SourceLocation IdLoc, IdentifierInfo *Id,
4386 RecordDecl *PrevDecl)
4387 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4388 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!")((classof(static_cast<Decl *>(this)) && "Invalid Kind!"
) ? static_cast<void> (0) : __assert_fail ("classof(static_cast<Decl *>(this)) && \"Invalid Kind!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4388, __PRETTY_FUNCTION__))
;
4389 setHasFlexibleArrayMember(false);
4390 setAnonymousStructOrUnion(false);
4391 setHasObjectMember(false);
4392 setHasVolatileMember(false);
4393 setHasLoadedFieldsFromExternalStorage(false);
4394 setNonTrivialToPrimitiveDefaultInitialize(false);
4395 setNonTrivialToPrimitiveCopy(false);
4396 setNonTrivialToPrimitiveDestroy(false);
4397 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4398 setHasNonTrivialToPrimitiveDestructCUnion(false);
4399 setHasNonTrivialToPrimitiveCopyCUnion(false);
4400 setParamDestroyedInCallee(false);
4401 setArgPassingRestrictions(APK_CanPassInRegs);
4402}
4403
4404RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4405 SourceLocation StartLoc, SourceLocation IdLoc,
4406 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4407 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4408 StartLoc, IdLoc, Id, PrevDecl);
4409 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4410
4411 C.getTypeDeclType(R, PrevDecl);
4412 return R;
4413}
4414
4415RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4416 RecordDecl *R =
4417 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4418 SourceLocation(), nullptr, nullptr);
4419 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4420 return R;
4421}
4422
4423bool RecordDecl::isInjectedClassName() const {
4424 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4425 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4426}
4427
4428bool RecordDecl::isLambda() const {
4429 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4430 return RD->isLambda();
4431 return false;
4432}
4433
4434bool RecordDecl::isCapturedRecord() const {
4435 return hasAttr<CapturedRecordAttr>();
4436}
4437
4438void RecordDecl::setCapturedRecord() {
4439 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4440}
4441
4442bool RecordDecl::isOrContainsUnion() const {
4443 if (isUnion())
4444 return true;
4445
4446 if (const RecordDecl *Def = getDefinition()) {
4447 for (const FieldDecl *FD : Def->fields()) {
4448 const RecordType *RT = FD->getType()->getAs<RecordType>();
4449 if (RT && RT->getDecl()->isOrContainsUnion())
4450 return true;
4451 }
4452 }
4453
4454 return false;
4455}
4456
4457RecordDecl::field_iterator RecordDecl::field_begin() const {
4458 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4459 LoadFieldsFromExternalStorage();
4460
4461 return field_iterator(decl_iterator(FirstDecl));
4462}
4463
4464/// completeDefinition - Notes that the definition of this type is now
4465/// complete.
4466void RecordDecl::completeDefinition() {
4467 assert(!isCompleteDefinition() && "Cannot redefine record!")((!isCompleteDefinition() && "Cannot redefine record!"
) ? static_cast<void> (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine record!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4467, __PRETTY_FUNCTION__))
;
4468 TagDecl::completeDefinition();
4469}
4470
4471/// isMsStruct - Get whether or not this record uses ms_struct layout.
4472/// This which can be turned on with an attribute, pragma, or the
4473/// -mms-bitfields command-line option.
4474bool RecordDecl::isMsStruct(const ASTContext &C) const {
4475 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4476}
4477
4478void RecordDecl::LoadFieldsFromExternalStorage() const {
4479 ExternalASTSource *Source = getASTContext().getExternalSource();
4480 assert(hasExternalLexicalStorage() && Source && "No external storage?")((hasExternalLexicalStorage() && Source && "No external storage?"
) ? static_cast<void> (0) : __assert_fail ("hasExternalLexicalStorage() && Source && \"No external storage?\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4480, __PRETTY_FUNCTION__))
;
4481
4482 // Notify that we have a RecordDecl doing some initialization.
4483 ExternalASTSource::Deserializing TheFields(Source);
4484
4485 SmallVector<Decl*, 64> Decls;
4486 setHasLoadedFieldsFromExternalStorage(true);
4487 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4488 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4489 }, Decls);
4490
4491#ifndef NDEBUG
4492 // Check that all decls we got were FieldDecls.
4493 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4494 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]))((isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>
(Decls[i])) ? static_cast<void> (0) : __assert_fail ("isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4494, __PRETTY_FUNCTION__))
;
4495#endif
4496
4497 if (Decls.empty())
4498 return;
4499
4500 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4501 /*FieldsAlreadyLoaded=*/false);
4502}
4503
4504bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4505 ASTContext &Context = getASTContext();
4506 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4507 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4508 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4509 return false;
4510 const auto &Blacklist = Context.getSanitizerBlacklist();
4511 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4512 // We may be able to relax some of these requirements.
4513 int ReasonToReject = -1;
4514 if (!CXXRD || CXXRD->isExternCContext())
4515 ReasonToReject = 0; // is not C++.
4516 else if (CXXRD->hasAttr<PackedAttr>())
4517 ReasonToReject = 1; // is packed.
4518 else if (CXXRD->isUnion())
4519 ReasonToReject = 2; // is a union.
4520 else if (CXXRD->isTriviallyCopyable())
4521 ReasonToReject = 3; // is trivially copyable.
4522 else if (CXXRD->hasTrivialDestructor())
4523 ReasonToReject = 4; // has trivial destructor.
4524 else if (CXXRD->isStandardLayout())
4525 ReasonToReject = 5; // is standard layout.
4526 else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4527 "field-padding"))
4528 ReasonToReject = 6; // is in an excluded file.
4529 else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4530 getQualifiedNameAsString(),
4531 "field-padding"))
4532 ReasonToReject = 7; // The type is excluded.
4533
4534 if (EmitRemark) {
4535 if (ReasonToReject >= 0)
4536 Context.getDiagnostics().Report(
4537 getLocation(),
4538 diag::remark_sanitize_address_insert_extra_padding_rejected)
4539 << getQualifiedNameAsString() << ReasonToReject;
4540 else
4541 Context.getDiagnostics().Report(
4542 getLocation(),
4543 diag::remark_sanitize_address_insert_extra_padding_accepted)
4544 << getQualifiedNameAsString();
4545 }
4546 return ReasonToReject < 0;
4547}
4548
4549const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4550 for (const auto *I : fields()) {
4551 if (I->getIdentifier())
4552 return I;
4553
4554 if (const auto *RT = I->getType()->getAs<RecordType>())
4555 if (const FieldDecl *NamedDataMember =
4556 RT->getDecl()->findFirstNamedDataMember())
4557 return NamedDataMember;
4558 }
4559
4560 // We didn't find a named data member.
4561 return nullptr;
4562}
4563
4564//===----------------------------------------------------------------------===//
4565// BlockDecl Implementation
4566//===----------------------------------------------------------------------===//
4567
4568BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4569 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4570 setIsVariadic(false);
4571 setCapturesCXXThis(false);
4572 setBlockMissingReturnType(true);
4573 setIsConversionFromLambda(false);
4574 setDoesNotEscape(false);
4575 setCanAvoidCopyToHeap(false);
4576}
4577
4578void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4579 assert(!ParamInfo && "Already has param info!")((!ParamInfo && "Already has param info!") ? static_cast
<void> (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4579, __PRETTY_FUNCTION__))
;
4580
4581 // Zero params -> null pointer.
4582 if (!NewParamInfo.empty()) {
4583 NumParams = NewParamInfo.size();
4584 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4585 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4586 }
4587}
4588
4589void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4590 bool CapturesCXXThis) {
4591 this->setCapturesCXXThis(CapturesCXXThis);
4592 this->NumCaptures = Captures.size();
4593
4594 if (Captures.empty()) {
4595 this->Captures = nullptr;
4596 return;
4597 }
4598
4599 this->Captures = Captures.copy(Context).data();
4600}
4601
4602bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4603 for (const auto &I : captures())
4604 // Only auto vars can be captured, so no redeclaration worries.
4605 if (I.getVariable() == variable)
4606 return true;
4607
4608 return false;
4609}
4610
4611SourceRange BlockDecl::getSourceRange() const {
4612 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4613}
4614
4615//===----------------------------------------------------------------------===//
4616// Other Decl Allocation/Deallocation Method Implementations
4617//===----------------------------------------------------------------------===//
4618
4619void TranslationUnitDecl::anchor() {}
4620
4621TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4622 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4623}
4624
4625void PragmaCommentDecl::anchor() {}
4626
4627PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4628 TranslationUnitDecl *DC,
4629 SourceLocation CommentLoc,
4630 PragmaMSCommentKind CommentKind,
4631 StringRef Arg) {
4632 PragmaCommentDecl *PCD =
4633 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4634 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4635 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4636 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4637 return PCD;
4638}
4639
4640PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4641 unsigned ID,
4642 unsigned ArgSize) {
4643 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4644 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4645}
4646
4647void PragmaDetectMismatchDecl::anchor() {}
4648
4649PragmaDetectMismatchDecl *
4650PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4651 SourceLocation Loc, StringRef Name,
4652 StringRef Value) {
4653 size_t ValueStart = Name.size() + 1;
4654 PragmaDetectMismatchDecl *PDMD =
4655 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4656 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4657 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4658 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4659 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4660 Value.size());
4661 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4662 return PDMD;
4663}
4664
4665PragmaDetectMismatchDecl *
4666PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4667 unsigned NameValueSize) {
4668 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4669 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4670}
4671
4672void ExternCContextDecl::anchor() {}
4673
4674ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4675 TranslationUnitDecl *DC) {
4676 return new (C, DC) ExternCContextDecl(DC);
4677}
4678
4679void LabelDecl::anchor() {}
4680
4681LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4682 SourceLocation IdentL, IdentifierInfo *II) {
4683 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4684}
4685
4686LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4687 SourceLocation IdentL, IdentifierInfo *II,
4688 SourceLocation GnuLabelL) {
4689 assert(GnuLabelL != IdentL && "Use this only for GNU local labels")((GnuLabelL != IdentL && "Use this only for GNU local labels"
) ? static_cast<void> (0) : __assert_fail ("GnuLabelL != IdentL && \"Use this only for GNU local labels\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4689, __PRETTY_FUNCTION__))
;
4690 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4691}
4692
4693LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4694 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4695 SourceLocation());
4696}
4697
4698void LabelDecl::setMSAsmLabel(StringRef Name) {
4699char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4700 memcpy(Buffer, Name.data(), Name.size());
4701 Buffer[Name.size()] = '\0';
4702 MSAsmName = Buffer;
4703}
4704
4705void ValueDecl::anchor() {}
4706
4707bool ValueDecl::isWeak() const {
4708 for (const auto *I : attrs())
4709 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4710 return true;
4711
4712 return isWeakImported();
4713}
4714
4715void ImplicitParamDecl::anchor() {}
4716
4717ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4718 SourceLocation IdLoc,
4719 IdentifierInfo *Id, QualType Type,
4720 ImplicitParamKind ParamKind) {
4721 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4722}
4723
4724ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4725 ImplicitParamKind ParamKind) {
4726 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4727}
4728
4729ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4730 unsigned ID) {
4731 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4732}
4733
4734FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4735 SourceLocation StartLoc,
4736 const DeclarationNameInfo &NameInfo,
4737 QualType T, TypeSourceInfo *TInfo,
4738 StorageClass SC, bool isInlineSpecified,
4739 bool hasWrittenPrototype,
4740 ConstexprSpecKind ConstexprKind,
4741 Expr *TrailingRequiresClause) {
4742 FunctionDecl *New =
4743 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4744 SC, isInlineSpecified, ConstexprKind,
4745 TrailingRequiresClause);
4746 New->setHasWrittenPrototype(hasWrittenPrototype);
4747 return New;
4748}
4749
4750FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4751 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4752 DeclarationNameInfo(), QualType(), nullptr,
4753 SC_None, false, CSK_unspecified, nullptr);
4754}
4755
4756BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4757 return new (C, DC) BlockDecl(DC, L);
4758}
4759
4760BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4761 return new (C, ID) BlockDecl(nullptr, SourceLocation());
4762}
4763
4764CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4765 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4766 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4767
4768CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4769 unsigned NumParams) {
4770 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4771 CapturedDecl(DC, NumParams);
4772}
4773
4774CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4775 unsigned NumParams) {
4776 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4777 CapturedDecl(nullptr, NumParams);
4778}
4779
4780Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4781void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4782
4783bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4784void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4785
4786EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4787 SourceLocation L,
4788 IdentifierInfo *Id, QualType T,
4789 Expr *E, const llvm::APSInt &V) {
4790 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4791}
4792
4793EnumConstantDecl *
4794EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4795 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4796 QualType(), nullptr, llvm::APSInt());
4797}
4798
4799void IndirectFieldDecl::anchor() {}
4800
4801IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4802 SourceLocation L, DeclarationName N,
4803 QualType T,
4804 MutableArrayRef<NamedDecl *> CH)
4805 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4806 ChainingSize(CH.size()) {
4807 // In C++, indirect field declarations conflict with tag declarations in the
4808 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4809 if (C.getLangOpts().CPlusPlus)
4810 IdentifierNamespace |= IDNS_Tag;
4811}
4812
4813IndirectFieldDecl *
4814IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4815 IdentifierInfo *Id, QualType T,
4816 llvm::MutableArrayRef<NamedDecl *> CH) {
4817 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4818}
4819
4820IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4821 unsigned ID) {
4822 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4823 DeclarationName(), QualType(), None);
4824}
4825
4826SourceRange EnumConstantDecl::getSourceRange() const {
4827 SourceLocation End = getLocation();
4828 if (Init)
4829 End = Init->getEndLoc();
4830 return SourceRange(getLocation(), End);
4831}
4832
4833void TypeDecl::anchor() {}
4834
4835TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4836 SourceLocation StartLoc, SourceLocation IdLoc,
4837 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4838 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4839}
4840
4841void TypedefNameDecl::anchor() {}
4842
4843TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4844 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4845 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4846 auto *ThisTypedef = this;
4847 if (AnyRedecl && OwningTypedef) {
4848 OwningTypedef = OwningTypedef->getCanonicalDecl();
4849 ThisTypedef = ThisTypedef->getCanonicalDecl();
4850 }
4851 if (OwningTypedef == ThisTypedef)
4852 return TT->getDecl();
4853 }
4854
4855 return nullptr;
4856}
4857
4858bool TypedefNameDecl::isTransparentTagSlow() const {
4859 auto determineIsTransparent = [&]() {
4860 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4861 if (auto *TD = TT->getDecl()) {
4862 if (TD->getName() != getName())
4863 return false;
4864 SourceLocation TTLoc = getLocation();
4865 SourceLocation TDLoc = TD->getLocation();
4866 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4867 return false;
4868 SourceManager &SM = getASTContext().getSourceManager();
4869 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4870 }
4871 }
4872 return false;
4873 };
4874
4875 bool isTransparent = determineIsTransparent();
4876 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4877 return isTransparent;
4878}
4879
4880TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4881 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4882 nullptr, nullptr);
4883}
4884
4885TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4886 SourceLocation StartLoc,
4887 SourceLocation IdLoc, IdentifierInfo *Id,
4888 TypeSourceInfo *TInfo) {
4889 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4890}
4891
4892TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4893 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4894 SourceLocation(), nullptr, nullptr);
4895}
4896
4897SourceRange TypedefDecl::getSourceRange() const {
4898 SourceLocation RangeEnd = getLocation();
4899 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4900 if (typeIsPostfix(TInfo->getType()))
4901 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4902 }
4903 return SourceRange(getBeginLoc(), RangeEnd);
4904}
4905
4906SourceRange TypeAliasDecl::getSourceRange() const {
4907 SourceLocation RangeEnd = getBeginLoc();
4908 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4909 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4910 return SourceRange(getBeginLoc(), RangeEnd);
4911}
4912
4913void FileScopeAsmDecl::anchor() {}
4914
4915FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4916 StringLiteral *Str,
4917 SourceLocation AsmLoc,
4918 SourceLocation RParenLoc) {
4919 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4920}
4921
4922FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4923 unsigned ID) {
4924 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4925 SourceLocation());
4926}
4927
4928void EmptyDecl::anchor() {}
4929
4930EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4931 return new (C, DC) EmptyDecl(DC, L);
4932}
4933
4934EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4935 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4936}
4937
4938//===----------------------------------------------------------------------===//
4939// ImportDecl Implementation
4940//===----------------------------------------------------------------------===//
4941
4942/// Retrieve the number of module identifiers needed to name the given
4943/// module.
4944static unsigned getNumModuleIdentifiers(Module *Mod) {
4945 unsigned Result = 1;
4946 while (Mod->Parent) {
4947 Mod = Mod->Parent;
4948 ++Result;
4949 }
4950 return Result;
4951}
4952
4953ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4954 Module *Imported,
4955 ArrayRef<SourceLocation> IdentifierLocs)
4956 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
4957 NextLocalImportAndComplete(nullptr, true) {
4958 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size())((getNumModuleIdentifiers(Imported) == IdentifierLocs.size())
? static_cast<void> (0) : __assert_fail ("getNumModuleIdentifiers(Imported) == IdentifierLocs.size()"
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/clang/lib/AST/Decl.cpp"
, 4958, __PRETTY_FUNCTION__))
;
4959 auto *StoredLocs = getTrailingObjects<SourceLocation>();
4960 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4961 StoredLocs);
4962}
4963
4964ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4965 Module *Imported, SourceLocation EndLoc)
4966 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
4967 NextLocalImportAndComplete(nullptr, false) {
4968 *getTrailingObjects<SourceLocation>() = EndLoc;
4969}
4970
4971ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4972 SourceLocation StartLoc, Module *Imported,
4973 ArrayRef<SourceLocation> IdentifierLocs) {
4974 return new (C, DC,
4975 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4976 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4977}
4978
4979ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4980 SourceLocation StartLoc,
4981 Module *Imported,
4982 SourceLocation EndLoc) {
4983 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4984 ImportDecl(DC, StartLoc, Imported, EndLoc);
4985 Import->setImplicit();
4986 return Import;
4987}
4988
4989ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4990 unsigned NumLocations) {
4991 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4992 ImportDecl(EmptyShell());
4993}
4994
4995ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4996 if (!isImportComplete())
4997 return None;
4998
4999 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5000 return llvm::makeArrayRef(StoredLocs,
5001 getNumModuleIdentifiers(getImportedModule()));
5002}
5003
5004SourceRange ImportDecl::getSourceRange() const {
5005 if (!isImportComplete())
5006 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5007
5008 return SourceRange(getLocation(), getIdentifierLocs().back());
5009}
5010
5011//===----------------------------------------------------------------------===//
5012// ExportDecl Implementation
5013//===----------------------------------------------------------------------===//
5014
5015void ExportDecl::anchor() {}
5016
5017ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5018 SourceLocation ExportLoc) {
5019 return new (C, DC) ExportDecl(DC, ExportLoc);
5020}
5021
5022ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5023 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5024}

/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/llvm/include/llvm/Support/TrailingObjects.h

1//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This header defines support for implementing classes that have
11/// some trailing object (or arrays of objects) appended to them. The
12/// main purpose is to make it obvious where this idiom is being used,
13/// and to make the usage more idiomatic and more difficult to get
14/// wrong.
15///
16/// The TrailingObject template abstracts away the reinterpret_cast,
17/// pointer arithmetic, and size calculations used for the allocation
18/// and access of appended arrays of objects, and takes care that they
19/// are all allocated at their required alignment. Additionally, it
20/// ensures that the base type is final -- deriving from a class that
21/// expects data appended immediately after it is typically not safe.
22///
23/// Users are expected to derive from this template, and provide
24/// numTrailingObjects implementations for each trailing type except
25/// the last, e.g. like this sample:
26///
27/// \code
28/// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> {
29/// friend TrailingObjects;
30///
31/// unsigned NumInts, NumDoubles;
32/// size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; }
33/// };
34/// \endcode
35///
36/// You can access the appended arrays via 'getTrailingObjects', and
37/// determine the size needed for allocation via
38/// 'additionalSizeToAlloc' and 'totalSizeToAlloc'.
39///
40/// All the methods implemented by this class are are intended for use
41/// by the implementation of the class, not as part of its interface
42/// (thus, private inheritance is suggested).
43///
44//===----------------------------------------------------------------------===//
45
46#ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H
47#define LLVM_SUPPORT_TRAILINGOBJECTS_H
48
49#include "llvm/Support/AlignOf.h"
50#include "llvm/Support/Alignment.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/type_traits.h"
54#include <new>
55#include <type_traits>
56
57namespace llvm {
58
59namespace trailing_objects_internal {
60/// Helper template to calculate the max alignment requirement for a set of
61/// objects.
62template <typename First, typename... Rest> class AlignmentCalcHelper {
63private:
64 enum {
65 FirstAlignment = alignof(First),
66 RestAlignment = AlignmentCalcHelper<Rest...>::Alignment,
67 };
68
69public:
70 enum {
71 Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment
72 };
73};
74
75template <typename First> class AlignmentCalcHelper<First> {
76public:
77 enum { Alignment = alignof(First) };
78};
79
80/// The base class for TrailingObjects* classes.
81class TrailingObjectsBase {
82protected:
83 /// OverloadToken's purpose is to allow specifying function overloads
84 /// for different types, without actually taking the types as
85 /// parameters. (Necessary because member function templates cannot
86 /// be specialized, so overloads must be used instead of
87 /// specialization.)
88 template <typename T> struct OverloadToken {};
89};
90
91template <int Align>
92class TrailingObjectsAligner : public TrailingObjectsBase {};
93template <>
94class alignas(1) TrailingObjectsAligner<1> : public TrailingObjectsBase {};
95template <>
96class alignas(2) TrailingObjectsAligner<2> : public TrailingObjectsBase {};
97template <>
98class alignas(4) TrailingObjectsAligner<4> : public TrailingObjectsBase {};
99template <>
100class alignas(8) TrailingObjectsAligner<8> : public TrailingObjectsBase {};
101template <>
102class alignas(16) TrailingObjectsAligner<16> : public TrailingObjectsBase {
103};
104template <>
105class alignas(32) TrailingObjectsAligner<32> : public TrailingObjectsBase {
106};
107
108// Just a little helper for transforming a type pack into the same
109// number of a different type. e.g.:
110// ExtractSecondType<Foo..., int>::type
111template <typename Ty1, typename Ty2> struct ExtractSecondType {
112 typedef Ty2 type;
113};
114
115// TrailingObjectsImpl is somewhat complicated, because it is a
116// recursively inheriting template, in order to handle the template
117// varargs. Each level of inheritance picks off a single trailing type
118// then recurses on the rest. The "Align", "BaseTy", and
119// "TopTrailingObj" arguments are passed through unchanged through the
120// recursion. "PrevTy" is, at each level, the type handled by the
121// level right above it.
122
123template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
124 typename... MoreTys>
125class TrailingObjectsImpl {
126 // The main template definition is never used -- the two
127 // specializations cover all possibilities.
128};
129
130template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
131 typename NextTy, typename... MoreTys>
132class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy,
133 MoreTys...>
134 : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy,
135 MoreTys...> {
136
137 typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...>
138 ParentType;
139
140 struct RequiresRealignment {
141 static const bool value = alignof(PrevTy) < alignof(NextTy);
142 };
143
144 static constexpr bool requiresRealignment() {
145 return RequiresRealignment::value;
146 }
147
148protected:
149 // Ensure the inherited getTrailingObjectsImpl is not hidden.
150 using ParentType::getTrailingObjectsImpl;
151
152 // These two functions are helper functions for
153 // TrailingObjects::getTrailingObjects. They recurse to the left --
154 // the result for each type in the list of trailing types depends on
155 // the result of calling the function on the type to the
156 // left. However, the function for the type to the left is
157 // implemented by a *subclass* of this class, so we invoke it via
158 // the TopTrailingObj, which is, via the
159 // curiously-recurring-template-pattern, the most-derived type in
160 // this recursion, and thus, contains all the overloads.
161 static const NextTy *
162 getTrailingObjectsImpl(const BaseTy *Obj,
163 TrailingObjectsBase::OverloadToken<NextTy>) {
164 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
165 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
166 TopTrailingObj::callNumTrailingObjects(
167 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
168
169 if (requiresRealignment())
170 return reinterpret_cast<const NextTy *>(
171 alignAddr(Ptr, Align::Of<NextTy>()));
172 else
173 return reinterpret_cast<const NextTy *>(Ptr);
174 }
175
176 static NextTy *
177 getTrailingObjectsImpl(BaseTy *Obj,
178 TrailingObjectsBase::OverloadToken<NextTy>) {
179 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
10
'Ptr' initialized here
180 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
9
Passing value via 1st parameter 'Obj'
181 TopTrailingObj::callNumTrailingObjects(
182 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
183
184 if (requiresRealignment())
11
Taking false branch
185 return reinterpret_cast<NextTy *>(alignAddr(Ptr, Align::Of<NextTy>()));
186 else
187 return reinterpret_cast<NextTy *>(Ptr);
12
Returning pointer (loaded from 'Ptr')
188 }
189
190 // Helper function for TrailingObjects::additionalSizeToAlloc: this
191 // function recurses to superclasses, each of which requires one
192 // fewer size_t argument, and adds its own size.
193 static constexpr size_t additionalSizeToAllocImpl(
194 size_t SizeSoFar, size_t Count1,
195 typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) {
196 return ParentType::additionalSizeToAllocImpl(
197 (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar)
198 : SizeSoFar) +
199 sizeof(NextTy) * Count1,
200 MoreCounts...);
201 }
202};
203
204// The base case of the TrailingObjectsImpl inheritance recursion,
205// when there's no more trailing types.
206template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy>
207class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy>
208 : public TrailingObjectsAligner<Align> {
209protected:
210 // This is a dummy method, only here so the "using" doesn't fail --
211 // it will never be called, because this function recurses backwards
212 // up the inheritance chain to subclasses.
213 static void getTrailingObjectsImpl();
214
215 static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) {
216 return SizeSoFar;
217 }
218
219 template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {}
220};
221
222} // end namespace trailing_objects_internal
223
224// Finally, the main type defined in this file, the one intended for users...
225
226/// See the file comment for details on the usage of the
227/// TrailingObjects type.
228template <typename BaseTy, typename... TrailingTys>
229class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl<
230 trailing_objects_internal::AlignmentCalcHelper<
231 TrailingTys...>::Alignment,
232 BaseTy, TrailingObjects<BaseTy, TrailingTys...>,
233 BaseTy, TrailingTys...> {
234
235 template <int A, typename B, typename T, typename P, typename... M>
236 friend class trailing_objects_internal::TrailingObjectsImpl;
237
238 template <typename... Tys> class Foo {};
239
240 typedef trailing_objects_internal::TrailingObjectsImpl<
241 trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment,
242 BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...>
243 ParentType;
244 using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase;
245
246 using ParentType::getTrailingObjectsImpl;
247
248 // This function contains only a static_assert BaseTy is final. The
249 // static_assert must be in a function, and not at class-level
250 // because BaseTy isn't complete at class instantiation time, but
251 // will be by the time this function is instantiated.
252 static void verifyTrailingObjectsAssertions() {
253 static_assert(std::is_final<BaseTy>(), "BaseTy must be final.");
254 }
255
256 // These two methods are the base of the recursion for this method.
257 static const BaseTy *
258 getTrailingObjectsImpl(const BaseTy *Obj,
259 TrailingObjectsBase::OverloadToken<BaseTy>) {
260 return Obj;
261 }
262
263 static BaseTy *
264 getTrailingObjectsImpl(BaseTy *Obj,
265 TrailingObjectsBase::OverloadToken<BaseTy>) {
266 return Obj;
267 }
268
269 // callNumTrailingObjects simply calls numTrailingObjects on the
270 // provided Obj -- except when the type being queried is BaseTy
271 // itself. There is always only one of the base object, so that case
272 // is handled here. (An additional benefit of indirecting through
273 // this function is that consumers only say "friend
274 // TrailingObjects", and thus, only this class itself can call the
275 // numTrailingObjects function.)
276 static size_t
277 callNumTrailingObjects(const BaseTy *Obj,
278 TrailingObjectsBase::OverloadToken<BaseTy>) {
279 return 1;
280 }
281
282 template <typename T>
283 static size_t callNumTrailingObjects(const BaseTy *Obj,
284 TrailingObjectsBase::OverloadToken<T>) {
285 return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>());
286 }
287
288public:
289 // Make this (privately inherited) member public.
290#ifndef _MSC_VER
291 using ParentType::OverloadToken;
292#else
293 // MSVC bug prevents the above from working, at least up through CL
294 // 19.10.24629.
295 template <typename T>
296 using OverloadToken = typename ParentType::template OverloadToken<T>;
297#endif
298
299 /// Returns a pointer to the trailing object array of the given type
300 /// (which must be one of those specified in the class template). The
301 /// array may have zero or more elements in it.
302 template <typename T> const T *getTrailingObjects() const {
303 verifyTrailingObjectsAssertions();
304 // Forwards to an impl function with overloads, since member
305 // function templates can't be specialized.
306 return this->getTrailingObjectsImpl(
307 static_cast<const BaseTy *>(this),
308 TrailingObjectsBase::OverloadToken<T>());
309 }
310
311 /// Returns a pointer to the trailing object array of the given type
312 /// (which must be one of those specified in the class template). The
313 /// array may have zero or more elements in it.
314 template <typename T> T *getTrailingObjects() {
315 verifyTrailingObjectsAssertions();
316 // Forwards to an impl function with overloads, since member
317 // function templates can't be specialized.
318 return this->getTrailingObjectsImpl(
8
Calling 'TrailingObjectsImpl::getTrailingObjectsImpl'
13
Returning from 'TrailingObjectsImpl::getTrailingObjectsImpl'
14
Returning pointer
319 static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>());
7
Passing value via 1st parameter 'Obj'
320 }
321
322 /// Returns the size of the trailing data, if an object were
323 /// allocated with the given counts (The counts are in the same order
324 /// as the template arguments). This does not include the size of the
325 /// base object. The template arguments must be the same as those
326 /// used in the class; they are supplied here redundantly only so
327 /// that it's clear what the counts are counting in callers.
328 template <typename... Tys>
329 static constexpr std::enable_if_t<
330 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
331 additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
332 TrailingTys, size_t>::type... Counts) {
333 return ParentType::additionalSizeToAllocImpl(0, Counts...);
334 }
335
336 /// Returns the total size of an object if it were allocated with the
337 /// given trailing object counts. This is the same as
338 /// additionalSizeToAlloc, except it *does* include the size of the base
339 /// object.
340 template <typename... Tys>
341 static constexpr std::enable_if_t<
342 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
343 totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
344 TrailingTys, size_t>::type... Counts) {
345 return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
346 }
347
348 /// A type where its ::with_counts template member has a ::type member
349 /// suitable for use as uninitialized storage for an object with the given
350 /// trailing object counts. The template arguments are similar to those
351 /// of additionalSizeToAlloc.
352 ///
353 /// Use with FixedSizeStorageOwner, e.g.:
354 ///
355 /// \code{.cpp}
356 ///
357 /// MyObj::FixedSizeStorage<void *>::with_counts<1u>::type myStackObjStorage;
358 /// MyObj::FixedSizeStorageOwner
359 /// myStackObjOwner(new ((void *)&myStackObjStorage) MyObj);
360 /// MyObj *const myStackObjPtr = myStackObjOwner.get();
361 ///
362 /// \endcode
363 template <typename... Tys> struct FixedSizeStorage {
364 template <size_t... Counts> struct with_counts {
365 enum { Size = totalSizeToAlloc<Tys...>(Counts...) };
366 struct type {
367 alignas(BaseTy) char buffer[Size];
368 };
369 };
370 };
371
372 /// A type that acts as the owner for an object placed into fixed storage.
373 class FixedSizeStorageOwner {
374 public:
375 FixedSizeStorageOwner(BaseTy *p) : p(p) {}
376 ~FixedSizeStorageOwner() {
377 assert(p && "FixedSizeStorageOwner owns null?")((p && "FixedSizeStorageOwner owns null?") ? static_cast
<void> (0) : __assert_fail ("p && \"FixedSizeStorageOwner owns null?\""
, "/build/llvm-toolchain-snapshot-12~++20200806111125+5446ec85070/llvm/include/llvm/Support/TrailingObjects.h"
, 377, __PRETTY_FUNCTION__))
;
378 p->~BaseTy();
379 }
380
381 BaseTy *get() { return p; }
382 const BaseTy *get() const { return p; }
383
384 private:
385 FixedSizeStorageOwner(const FixedSizeStorageOwner &) = delete;
386 FixedSizeStorageOwner(FixedSizeStorageOwner &&) = delete;
387 FixedSizeStorageOwner &operator=(const FixedSizeStorageOwner &) = delete;
388 FixedSizeStorageOwner &operator=(FixedSizeStorageOwner &&) = delete;
389
390 BaseTy *const p;
391 };
392};
393
394} // end namespace llvm
395
396#endif