Bug Summary

File:clang/lib/AST/Decl.cpp
Warning:line 3879, column 5
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Decl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/tools/clang/lib/AST -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/tools/clang/lib/AST -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-06-21-164211-33944-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp

/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp

1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DeclarationName.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/ODRHash.h"
31#include "clang/AST/PrettyDeclStackTrace.h"
32#include "clang/AST/PrettyPrinter.h"
33#include "clang/AST/Redeclarable.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/Basic/Builtins.h"
39#include "clang/Basic/IdentifierTable.h"
40#include "clang/Basic/LLVM.h"
41#include "clang/Basic/LangOptions.h"
42#include "clang/Basic/Linkage.h"
43#include "clang/Basic/Module.h"
44#include "clang/Basic/NoSanitizeList.h"
45#include "clang/Basic/PartialDiagnostic.h"
46#include "clang/Basic/Sanitizers.h"
47#include "clang/Basic/SourceLocation.h"
48#include "clang/Basic/SourceManager.h"
49#include "clang/Basic/Specifiers.h"
50#include "clang/Basic/TargetCXXABI.h"
51#include "clang/Basic/TargetInfo.h"
52#include "clang/Basic/Visibility.h"
53#include "llvm/ADT/APSInt.h"
54#include "llvm/ADT/ArrayRef.h"
55#include "llvm/ADT/None.h"
56#include "llvm/ADT/Optional.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/ADT/Triple.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/raw_ostream.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <string>
71#include <tuple>
72#include <type_traits>
73
74using namespace clang;
75
76Decl *clang::getPrimaryMergedDecl(Decl *D) {
77 return D->getASTContext().getPrimaryMergedDecl(D);
78}
79
80void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92 OS << "'";
93 }
94
95 OS << '\n';
96}
97
98// Defined here so that it can be inlined into its direct callers.
99bool Decl::isOutOfLine() const {
100 return !getLexicalDeclContext()->Equals(getDeclContext());
101}
102
103TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), Ctx(ctx) {}
106
107//===----------------------------------------------------------------------===//
108// NamedDecl Implementation
109//===----------------------------------------------------------------------===//
110
111// Visibility rules aren't rigorously externally specified, but here
112// are the basic principles behind what we implement:
113//
114// 1. An explicit visibility attribute is generally a direct expression
115// of the user's intent and should be honored. Only the innermost
116// visibility attribute applies. If no visibility attribute applies,
117// global visibility settings are considered.
118//
119// 2. There is one caveat to the above: on or in a template pattern,
120// an explicit visibility attribute is just a default rule, and
121// visibility can be decreased by the visibility of template
122// arguments. But this, too, has an exception: an attribute on an
123// explicit specialization or instantiation causes all the visibility
124// restrictions of the template arguments to be ignored.
125//
126// 3. A variable that does not otherwise have explicit visibility can
127// be restricted by the visibility of its type.
128//
129// 4. A visibility restriction is explicit if it comes from an
130// attribute (or something like it), not a global visibility setting.
131// When emitting a reference to an external symbol, visibility
132// restrictions are ignored unless they are explicit.
133//
134// 5. When computing the visibility of a non-type, including a
135// non-type member of a class, only non-type visibility restrictions
136// are considered: the 'visibility' attribute, global value-visibility
137// settings, and a few special cases like __private_extern.
138//
139// 6. When computing the visibility of a type, including a type member
140// of a class, only type visibility restrictions are considered:
141// the 'type_visibility' attribute and global type-visibility settings.
142// However, a 'visibility' attribute counts as a 'type_visibility'
143// attribute on any declaration that only has the former.
144//
145// The visibility of a "secondary" entity, like a template argument,
146// is computed using the kind of that entity, not the kind of the
147// primary entity for which we are computing visibility. For example,
148// the visibility of a specialization of either of these templates:
149// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150// template <class T, bool (&compare)(T, X)> class matcher;
151// is restricted according to the type visibility of the argument 'T',
152// the type visibility of 'bool(&)(T,X)', and the value visibility of
153// the argument function 'compare'. That 'has_match' is a value
154// and 'matcher' is a type only matters when looking for attributes
155// and settings from the immediate context.
156
157/// Does this computation kind permit us to consider additional
158/// visibility settings from attributes and the like?
159static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160 return computation.IgnoreExplicitVisibility;
161}
162
163/// Given an LVComputationKind, return one of the same type/value sort
164/// that records that it already has explicit visibility.
165static LVComputationKind
166withExplicitVisibilityAlready(LVComputationKind Kind) {
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169}
170
171static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&(static_cast <bool> (!kind.IgnoreExplicitVisibility &&
"asking for explicit visibility when we shouldn't be") ? void
(0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 174, __extension__ __PRETTY_FUNCTION__))
174 "asking for explicit visibility when we shouldn't be")(static_cast <bool> (!kind.IgnoreExplicitVisibility &&
"asking for explicit visibility when we shouldn't be") ? void
(0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 174, __extension__ __PRETTY_FUNCTION__))
;
175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176}
177
178/// Is the given declaration a "type" or a "value" for the purposes of
179/// visibility computation?
180static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(D) ||
182 isa<ClassTemplateDecl>(D) ||
183 isa<ObjCInterfaceDecl>(D);
184}
185
186/// Does the given declaration have member specialization information,
187/// and if so, is it an explicit specialization?
188template <class T> static typename
189std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190isExplicitMemberSpecialization(const T *D) {
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196}
197
198/// For templates, this question is easier: a member template can't be
199/// explicitly instantiated, so there's a single bit indicating whether
200/// or not this is an explicit member specialization.
201static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202 return D->isMemberSpecialization();
203}
204
205/// Given a visibility attribute, return the explicit visibility
206/// associated with it.
207template <class T>
208static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind")::llvm::llvm_unreachable_internal("bad visibility kind", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 217)
;
218}
219
220/// Return the explicit visibility of the given declaration.
221static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222 NamedDecl::ExplicitVisibilityKind kind) {
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(A);
234 }
235
236 return None;
237}
238
239LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243 return getTypeLinkageAndVisibility(&T);
244}
245
246/// Get the most restrictive linkage for the types in the given
247/// template parameter list. For visibility purposes, template
248/// parameters are part of the signature of a template.
249LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(getLVForType(*NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(i);
274 if (!type->isDependentType())
275 LV.merge(getTypeLinkageAndVisibility(type));
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(getLVForTemplateParameterList(
295 TTP->getExpansionTemplateParameters(i), computation));
296 }
297 }
298
299 return LV;
300}
301
302static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307 Ret = cast<Decl>(DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311}
312
313/// Get the most restrictive linkage for the types and
314/// declarations in the given template argument list.
315///
316/// Note that we don't take an LVComputationKind because we always
317/// want to honor the visibility of template arguments in the same way.
318LinkageInfo
319LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
325 case TemplateArgument::Null:
326 case TemplateArgument::Integral:
327 case TemplateArgument::Expression:
328 continue;
329
330 case TemplateArgument::Type:
331 LV.merge(getLVForType(*Arg.getAsType(), computation));
332 continue;
333
334 case TemplateArgument::Declaration: {
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND))(static_cast <bool> (!usesTypeVisibility(ND)) ? void (0
) : __assert_fail ("!usesTypeVisibility(ND)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 336, __extension__ __PRETTY_FUNCTION__))
;
337 LV.merge(getLVForDecl(ND, computation));
338 continue;
339 }
340
341 case TemplateArgument::NullPtr:
342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343 continue;
344
345 case TemplateArgument::Template:
346 case TemplateArgument::TemplateExpansion:
347 if (TemplateDecl *Template =
348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349 LV.merge(getLVForDecl(Template, computation));
350 continue;
351
352 case TemplateArgument::Pack:
353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354 continue;
355 }
356 llvm_unreachable("bad template argument kind")::llvm::llvm_unreachable_internal("bad template argument kind"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 356)
;
357 }
358
359 return LV;
360}
361
362LinkageInfo
363LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364 LVComputationKind computation) {
365 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366}
367
368static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369 const FunctionTemplateSpecializationInfo *specInfo) {
370 // Include visibility from the template parameters and arguments
371 // only if this is not an explicit instantiation or specialization
372 // with direct explicit visibility. (Implicit instantiations won't
373 // have a direct attribute.)
374 if (!specInfo->isExplicitInstantiationOrSpecialization())
375 return true;
376
377 return !fn->hasAttr<VisibilityAttr>();
378}
379
380/// Merge in template-related linkage and visibility for the given
381/// function template specialization.
382///
383/// We don't need a computation kind here because we can assume
384/// LVForValue.
385///
386/// \param[out] LV the computation to use for the parent
387void LinkageComputer::mergeTemplateLV(
388 LinkageInfo &LV, const FunctionDecl *fn,
389 const FunctionTemplateSpecializationInfo *specInfo,
390 LVComputationKind computation) {
391 bool considerVisibility =
392 shouldConsiderTemplateVisibility(fn, specInfo);
393
394 // Merge information from the template parameters.
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 LinkageInfo tempLV =
397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399
400 // Merge information from the template arguments.
401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404}
405
406/// Does the given declaration have a direct visibility attribute
407/// that would match the given rules?
408static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409 LVComputationKind computation) {
410 if (computation.IgnoreAllVisibility)
411 return false;
412
413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414 D->hasAttr<VisibilityAttr>();
415}
416
417/// Should we consider visibility associated with the template
418/// arguments and parameters of the given class template specialization?
419static bool shouldConsiderTemplateVisibility(
420 const ClassTemplateSpecializationDecl *spec,
421 LVComputationKind computation) {
422 // Include visibility from the template parameters and arguments
423 // only if this is not an explicit instantiation or specialization
424 // with direct explicit visibility (and note that implicit
425 // instantiations won't have a direct attribute).
426 //
427 // Furthermore, we want to ignore template parameters and arguments
428 // for an explicit specialization when computing the visibility of a
429 // member thereof with explicit visibility.
430 //
431 // This is a bit complex; let's unpack it.
432 //
433 // An explicit class specialization is an independent, top-level
434 // declaration. As such, if it or any of its members has an
435 // explicit visibility attribute, that must directly express the
436 // user's intent, and we should honor it. The same logic applies to
437 // an explicit instantiation of a member of such a thing.
438
439 // Fast path: if this is not an explicit instantiation or
440 // specialization, we always want to consider template-related
441 // visibility restrictions.
442 if (!spec->isExplicitInstantiationOrSpecialization())
443 return true;
444
445 // This is the 'member thereof' check.
446 if (spec->isExplicitSpecialization() &&
447 hasExplicitVisibilityAlready(computation))
448 return false;
449
450 return !hasDirectVisibilityAttribute(spec, computation);
451}
452
453/// Merge in template-related linkage and visibility for the given
454/// class template specialization.
455void LinkageComputer::mergeTemplateLV(
456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457 LVComputationKind computation) {
458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459
460 // Merge information from the template parameters, but ignore
461 // visibility if we're only considering template arguments.
462
463 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464 LinkageInfo tempLV =
465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466 LV.mergeMaybeWithVisibility(tempLV,
467 considerVisibility && !hasExplicitVisibilityAlready(computation));
468
469 // Merge information from the template arguments. We ignore
470 // template-argument visibility if we've got an explicit
471 // instantiation with a visibility attribute.
472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474 if (considerVisibility)
475 LV.mergeVisibility(argsLV);
476 LV.mergeExternalVisibility(argsLV);
477}
478
479/// Should we consider visibility associated with the template
480/// arguments and parameters of the given variable template
481/// specialization? As usual, follow class template specialization
482/// logic up to initialization.
483static bool shouldConsiderTemplateVisibility(
484 const VarTemplateSpecializationDecl *spec,
485 LVComputationKind computation) {
486 // Include visibility from the template parameters and arguments
487 // only if this is not an explicit instantiation or specialization
488 // with direct explicit visibility (and note that implicit
489 // instantiations won't have a direct attribute).
490 if (!spec->isExplicitInstantiationOrSpecialization())
491 return true;
492
493 // An explicit variable specialization is an independent, top-level
494 // declaration. As such, if it has an explicit visibility attribute,
495 // that must directly express the user's intent, and we should honor
496 // it.
497 if (spec->isExplicitSpecialization() &&
498 hasExplicitVisibilityAlready(computation))
499 return false;
500
501 return !hasDirectVisibilityAttribute(spec, computation);
502}
503
504/// Merge in template-related linkage and visibility for the given
505/// variable template specialization. As usual, follow class template
506/// specialization logic up to initialization.
507void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508 const VarTemplateSpecializationDecl *spec,
509 LVComputationKind computation) {
510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511
512 // Merge information from the template parameters, but ignore
513 // visibility if we're only considering template arguments.
514
515 VarTemplateDecl *temp = spec->getSpecializedTemplate();
516 LinkageInfo tempLV =
517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518 LV.mergeMaybeWithVisibility(tempLV,
519 considerVisibility && !hasExplicitVisibilityAlready(computation));
520
521 // Merge information from the template arguments. We ignore
522 // template-argument visibility if we've got an explicit
523 // instantiation with a visibility attribute.
524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526 if (considerVisibility)
527 LV.mergeVisibility(argsLV);
528 LV.mergeExternalVisibility(argsLV);
529}
530
531static bool useInlineVisibilityHidden(const NamedDecl *D) {
532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533 const LangOptions &Opts = D->getASTContext().getLangOpts();
534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535 return false;
536
537 const auto *FD = dyn_cast<FunctionDecl>(D);
538 if (!FD)
539 return false;
540
541 TemplateSpecializationKind TSK = TSK_Undeclared;
542 if (FunctionTemplateSpecializationInfo *spec
543 = FD->getTemplateSpecializationInfo()) {
544 TSK = spec->getTemplateSpecializationKind();
545 } else if (MemberSpecializationInfo *MSI =
546 FD->getMemberSpecializationInfo()) {
547 TSK = MSI->getTemplateSpecializationKind();
548 }
549
550 const FunctionDecl *Def = nullptr;
551 // InlineVisibilityHidden only applies to definitions, and
552 // isInlined() only gives meaningful answers on definitions
553 // anyway.
554 return TSK != TSK_ExplicitInstantiationDeclaration &&
555 TSK != TSK_ExplicitInstantiationDefinition &&
556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557}
558
559template <typename T> static bool isFirstInExternCContext(T *D) {
560 const T *First = D->getFirstDecl();
561 return First->isInExternCContext();
562}
563
564static bool isSingleLineLanguageLinkage(const Decl &D) {
565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566 if (!SD->hasBraces())
567 return true;
568 return false;
569}
570
571/// Determine whether D is declared in the purview of a named module.
572static bool isInModulePurview(const NamedDecl *D) {
573 if (auto *M = D->getOwningModule())
574 return M->isModulePurview();
575 return false;
576}
577
578static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579 // FIXME: Handle isModulePrivate.
580 switch (D->getModuleOwnershipKind()) {
581 case Decl::ModuleOwnershipKind::Unowned:
582 case Decl::ModuleOwnershipKind::ModulePrivate:
583 return false;
584 case Decl::ModuleOwnershipKind::Visible:
585 case Decl::ModuleOwnershipKind::VisibleWhenImported:
586 return isInModulePurview(D);
587 }
588 llvm_unreachable("unexpected module ownership kind")::llvm::llvm_unreachable_internal("unexpected module ownership kind"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 588)
;
589}
590
591static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592 // Internal linkage declarations within a module interface unit are modeled
593 // as "module-internal linkage", which means that they have internal linkage
594 // formally but can be indirectly accessed from outside the module via inline
595 // functions and templates defined within the module.
596 if (isInModulePurview(D))
597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598
599 return LinkageInfo::internal();
600}
601
602static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603 // C++ Modules TS [basic.link]/6.8:
604 // - A name declared at namespace scope that does not have internal linkage
605 // by the previous rules and that is introduced by a non-exported
606 // declaration has module linkage.
607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608 cast<NamedDecl>(D->getCanonicalDecl())))
609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610
611 return LinkageInfo::external();
612}
613
614static StorageClass getStorageClass(const Decl *D) {
615 if (auto *TD = dyn_cast<TemplateDecl>(D))
616 D = TD->getTemplatedDecl();
617 if (D) {
618 if (auto *VD = dyn_cast<VarDecl>(D))
619 return VD->getStorageClass();
620 if (auto *FD = dyn_cast<FunctionDecl>(D))
621 return FD->getStorageClass();
622 }
623 return SC_None;
624}
625
626LinkageInfo
627LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628 LVComputationKind computation,
629 bool IgnoreVarTypeLinkage) {
630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&(static_cast <bool> (D->getDeclContext()->getRedeclContext
()->isFileContext() && "Not a name having namespace scope"
) ? void (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 631, __extension__ __PRETTY_FUNCTION__))
631 "Not a name having namespace scope")(static_cast <bool> (D->getDeclContext()->getRedeclContext
()->isFileContext() && "Not a name having namespace scope"
) ? void (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 631, __extension__ __PRETTY_FUNCTION__))
;
632 ASTContext &Context = D->getASTContext();
633
634 // C++ [basic.link]p3:
635 // A name having namespace scope (3.3.6) has internal linkage if it
636 // is the name of
637
638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639 // - a variable, variable template, function, or function template
640 // that is explicitly declared static; or
641 // (This bullet corresponds to C99 6.2.2p3.)
642 return getInternalLinkageFor(D);
643 }
644
645 if (const auto *Var = dyn_cast<VarDecl>(D)) {
646 // - a non-template variable of non-volatile const-qualified type, unless
647 // - it is explicitly declared extern, or
648 // - it is inline or exported, or
649 // - it was previously declared and the prior declaration did not have
650 // internal linkage
651 // (There is no equivalent in C99.)
652 if (Context.getLangOpts().CPlusPlus &&
653 Var->getType().isConstQualified() &&
654 !Var->getType().isVolatileQualified() &&
655 !Var->isInline() &&
656 !isExportedFromModuleInterfaceUnit(Var) &&
657 !isa<VarTemplateSpecializationDecl>(Var) &&
658 !Var->getDescribedVarTemplate()) {
659 const VarDecl *PrevVar = Var->getPreviousDecl();
660 if (PrevVar)
661 return getLVForDecl(PrevVar, computation);
662
663 if (Var->getStorageClass() != SC_Extern &&
664 Var->getStorageClass() != SC_PrivateExtern &&
665 !isSingleLineLanguageLinkage(*Var))
666 return getInternalLinkageFor(Var);
667 }
668
669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670 PrevVar = PrevVar->getPreviousDecl()) {
671 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672 Var->getStorageClass() == SC_None)
673 return getDeclLinkageAndVisibility(PrevVar);
674 // Explicitly declared static.
675 if (PrevVar->getStorageClass() == SC_Static)
676 return getInternalLinkageFor(Var);
677 }
678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679 // - a data member of an anonymous union.
680 const VarDecl *VD = IFD->getVarDecl();
681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!")(static_cast <bool> (VD && "Expected a VarDecl in this IndirectFieldDecl!"
) ? void (0) : __assert_fail ("VD && \"Expected a VarDecl in this IndirectFieldDecl!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 681, __extension__ __PRETTY_FUNCTION__))
;
682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683 }
684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!")(static_cast <bool> (!isa<FieldDecl>(D) &&
"Didn't expect a FieldDecl!") ? void (0) : __assert_fail ("!isa<FieldDecl>(D) && \"Didn't expect a FieldDecl!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 684, __extension__ __PRETTY_FUNCTION__))
;
685
686 // FIXME: This gives internal linkage to names that should have no linkage
687 // (those not covered by [basic.link]p6).
688 if (D->isInAnonymousNamespace()) {
689 const auto *Var = dyn_cast<VarDecl>(D);
690 const auto *Func = dyn_cast<FunctionDecl>(D);
691 // FIXME: The check for extern "C" here is not justified by the standard
692 // wording, but we retain it from the pre-DR1113 model to avoid breaking
693 // code.
694 //
695 // C++11 [basic.link]p4:
696 // An unnamed namespace or a namespace declared directly or indirectly
697 // within an unnamed namespace has internal linkage.
698 if ((!Var || !isFirstInExternCContext(Var)) &&
699 (!Func || !isFirstInExternCContext(Func)))
700 return getInternalLinkageFor(D);
701 }
702
703 // Set up the defaults.
704
705 // C99 6.2.2p5:
706 // If the declaration of an identifier for an object has file
707 // scope and no storage-class specifier, its linkage is
708 // external.
709 LinkageInfo LV = getExternalLinkageFor(D);
710
711 if (!hasExplicitVisibilityAlready(computation)) {
712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 } else {
715 // If we're declared in a namespace with a visibility attribute,
716 // use that namespace's visibility, and it still counts as explicit.
717 for (const DeclContext *DC = D->getDeclContext();
718 !isa<TranslationUnitDecl>(DC);
719 DC = DC->getParent()) {
720 const auto *ND = dyn_cast<NamespaceDecl>(DC);
721 if (!ND) continue;
722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723 LV.mergeVisibility(*Vis, true);
724 break;
725 }
726 }
727 }
728
729 // Add in global settings if the above didn't give us direct visibility.
730 if (!LV.isVisibilityExplicit()) {
731 // Use global type/value visibility as appropriate.
732 Visibility globalVisibility =
733 computation.isValueVisibility()
734 ? Context.getLangOpts().getValueVisibilityMode()
735 : Context.getLangOpts().getTypeVisibilityMode();
736 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737
738 // If we're paying attention to global visibility, apply
739 // -finline-visibility-hidden if this is an inline method.
740 if (useInlineVisibilityHidden(D))
741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742 }
743 }
744
745 // C++ [basic.link]p4:
746
747 // A name having namespace scope that has not been given internal linkage
748 // above and that is the name of
749 // [...bullets...]
750 // has its linkage determined as follows:
751 // - if the enclosing namespace has internal linkage, the name has
752 // internal linkage; [handled above]
753 // - otherwise, if the declaration of the name is attached to a named
754 // module and is not exported, the name has module linkage;
755 // - otherwise, the name has external linkage.
756 // LV is currently set up to handle the last two bullets.
757 //
758 // The bullets are:
759
760 // - a variable; or
761 if (const auto *Var = dyn_cast<VarDecl>(D)) {
762 // GCC applies the following optimization to variables and static
763 // data members, but not to functions:
764 //
765 // Modify the variable's LV by the LV of its type unless this is
766 // C or extern "C". This follows from [basic.link]p9:
767 // A type without linkage shall not be used as the type of a
768 // variable or function with external linkage unless
769 // - the entity has C language linkage, or
770 // - the entity is declared within an unnamed namespace, or
771 // - the entity is not used or is defined in the same
772 // translation unit.
773 // and [basic.link]p10:
774 // ...the types specified by all declarations referring to a
775 // given variable or function shall be identical...
776 // C does not have an equivalent rule.
777 //
778 // Ignore this if we've got an explicit attribute; the user
779 // probably knows what they're doing.
780 //
781 // Note that we don't want to make the variable non-external
782 // because of this, but unique-external linkage suits us.
783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784 !IgnoreVarTypeLinkage) {
785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786 if (!isExternallyVisible(TypeLV.getLinkage()))
787 return LinkageInfo::uniqueExternal();
788 if (!LV.isVisibilityExplicit())
789 LV.mergeVisibility(TypeLV);
790 }
791
792 if (Var->getStorageClass() == SC_PrivateExtern)
793 LV.mergeVisibility(HiddenVisibility, true);
794
795 // Note that Sema::MergeVarDecl already takes care of implementing
796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797 // to do it here.
798
799 // As per function and class template specializations (below),
800 // consider LV for the template and template arguments. We're at file
801 // scope, so we do not need to worry about nested specializations.
802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803 mergeTemplateLV(LV, spec, computation);
804 }
805
806 // - a function; or
807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808 // In theory, we can modify the function's LV by the LV of its
809 // type unless it has C linkage (see comment above about variables
810 // for justification). In practice, GCC doesn't do this, so it's
811 // just too painful to make work.
812
813 if (Function->getStorageClass() == SC_PrivateExtern)
814 LV.mergeVisibility(HiddenVisibility, true);
815
816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817 // merging storage classes and visibility attributes, so we don't have to
818 // look at previous decls in here.
819
820 // In C++, then if the type of the function uses a type with
821 // unique-external linkage, it's not legally usable from outside
822 // this translation unit. However, we should use the C linkage
823 // rules instead for extern "C" declarations.
824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825 // Only look at the type-as-written. Otherwise, deducing the return type
826 // of a function could change its linkage.
827 QualType TypeAsWritten = Function->getType();
828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829 TypeAsWritten = TSI->getType();
830 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831 return LinkageInfo::uniqueExternal();
832 }
833
834 // Consider LV from the template and the template arguments.
835 // We're at file scope, so we do not need to worry about nested
836 // specializations.
837 if (FunctionTemplateSpecializationInfo *specInfo
838 = Function->getTemplateSpecializationInfo()) {
839 mergeTemplateLV(LV, Function, specInfo, computation);
840 }
841
842 // - a named class (Clause 9), or an unnamed class defined in a
843 // typedef declaration in which the class has the typedef name
844 // for linkage purposes (7.1.3); or
845 // - a named enumeration (7.2), or an unnamed enumeration
846 // defined in a typedef declaration in which the enumeration
847 // has the typedef name for linkage purposes (7.1.3); or
848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849 // Unnamed tags have no linkage.
850 if (!Tag->hasNameForLinkage())
851 return LinkageInfo::none();
852
853 // If this is a class template specialization, consider the
854 // linkage of the template and template arguments. We're at file
855 // scope, so we do not need to worry about nested specializations.
856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857 mergeTemplateLV(LV, spec, computation);
858 }
859
860 // FIXME: This is not part of the C++ standard any more.
861 // - an enumerator belonging to an enumeration with external linkage; or
862 } else if (isa<EnumConstantDecl>(D)) {
863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864 computation);
865 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866 return LinkageInfo::none();
867 LV.merge(EnumLV);
868
869 // - a template
870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872 LinkageInfo tempLV =
873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875
876 // An unnamed namespace or a namespace declared directly or indirectly
877 // within an unnamed namespace has internal linkage. All other namespaces
878 // have external linkage.
879 //
880 // We handled names in anonymous namespaces above.
881 } else if (isa<NamespaceDecl>(D)) {
882 return LV;
883
884 // By extension, we assign external linkage to Objective-C
885 // interfaces.
886 } else if (isa<ObjCInterfaceDecl>(D)) {
887 // fallout
888
889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890 // A typedef declaration has linkage if it gives a type a name for
891 // linkage purposes.
892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893 return LinkageInfo::none();
894
895 } else if (isa<MSGuidDecl>(D)) {
896 // A GUID behaves like an inline variable with external linkage. Fall
897 // through.
898
899 // Everything not covered here has no linkage.
900 } else {
901 return LinkageInfo::none();
902 }
903
904 // If we ended up with non-externally-visible linkage, visibility should
905 // always be default.
906 if (!isExternallyVisible(LV.getLinkage()))
907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908
909 // Mark the symbols as hidden when compiling for the device.
910 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912
913 return LV;
914}
915
916LinkageInfo
917LinkageComputer::getLVForClassMember(const NamedDecl *D,
918 LVComputationKind computation,
919 bool IgnoreVarTypeLinkage) {
920 // Only certain class members have linkage. Note that fields don't
921 // really have linkage, but it's convenient to say they do for the
922 // purposes of calculating linkage of pointer-to-data-member
923 // template arguments.
924 //
925 // Templates also don't officially have linkage, but since we ignore
926 // the C++ standard and look at template arguments when determining
927 // linkage and visibility of a template specialization, we might hit
928 // a template template argument that way. If we do, we need to
929 // consider its linkage.
930 if (!(isa<CXXMethodDecl>(D) ||
931 isa<VarDecl>(D) ||
932 isa<FieldDecl>(D) ||
933 isa<IndirectFieldDecl>(D) ||
934 isa<TagDecl>(D) ||
935 isa<TemplateDecl>(D)))
936 return LinkageInfo::none();
937
938 LinkageInfo LV;
939
940 // If we have an explicit visibility attribute, merge that in.
941 if (!hasExplicitVisibilityAlready(computation)) {
942 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943 LV.mergeVisibility(*Vis, true);
944 // If we're paying attention to global visibility, apply
945 // -finline-visibility-hidden if this is an inline method.
946 //
947 // Note that we do this before merging information about
948 // the class visibility.
949 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951 }
952
953 // If this class member has an explicit visibility attribute, the only
954 // thing that can change its visibility is the template arguments, so
955 // only look for them when processing the class.
956 LVComputationKind classComputation = computation;
957 if (LV.isVisibilityExplicit())
958 classComputation = withExplicitVisibilityAlready(computation);
959
960 LinkageInfo classLV =
961 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962 // The member has the same linkage as the class. If that's not externally
963 // visible, we don't need to compute anything about the linkage.
964 // FIXME: If we're only computing linkage, can we bail out here?
965 if (!isExternallyVisible(classLV.getLinkage()))
966 return classLV;
967
968
969 // Otherwise, don't merge in classLV yet, because in certain cases
970 // we need to completely ignore the visibility from it.
971
972 // Specifically, if this decl exists and has an explicit attribute.
973 const NamedDecl *explicitSpecSuppressor = nullptr;
974
975 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976 // Only look at the type-as-written. Otherwise, deducing the return type
977 // of a function could change its linkage.
978 QualType TypeAsWritten = MD->getType();
979 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980 TypeAsWritten = TSI->getType();
981 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982 return LinkageInfo::uniqueExternal();
983
984 // If this is a method template specialization, use the linkage for
985 // the template parameters and arguments.
986 if (FunctionTemplateSpecializationInfo *spec
987 = MD->getTemplateSpecializationInfo()) {
988 mergeTemplateLV(LV, MD, spec, computation);
989 if (spec->isExplicitSpecialization()) {
990 explicitSpecSuppressor = MD;
991 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993 }
994 } else if (isExplicitMemberSpecialization(MD)) {
995 explicitSpecSuppressor = MD;
996 }
997
998 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000 mergeTemplateLV(LV, spec, computation);
1001 if (spec->isExplicitSpecialization()) {
1002 explicitSpecSuppressor = spec;
1003 } else {
1004 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005 if (isExplicitMemberSpecialization(temp)) {
1006 explicitSpecSuppressor = temp->getTemplatedDecl();
1007 }
1008 }
1009 } else if (isExplicitMemberSpecialization(RD)) {
1010 explicitSpecSuppressor = RD;
1011 }
1012
1013 // Static data members.
1014 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016 mergeTemplateLV(LV, spec, computation);
1017
1018 // Modify the variable's linkage by its type, but ignore the
1019 // type's visibility unless it's a definition.
1020 if (!IgnoreVarTypeLinkage) {
1021 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022 // FIXME: If the type's linkage is not externally visible, we can
1023 // give this static data member UniqueExternalLinkage.
1024 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025 LV.mergeVisibility(typeLV);
1026 LV.mergeExternalVisibility(typeLV);
1027 }
1028
1029 if (isExplicitMemberSpecialization(VD)) {
1030 explicitSpecSuppressor = VD;
1031 }
1032
1033 // Template members.
1034 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035 bool considerVisibility =
1036 (!LV.isVisibilityExplicit() &&
1037 !classLV.isVisibilityExplicit() &&
1038 !hasExplicitVisibilityAlready(computation));
1039 LinkageInfo tempLV =
1040 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042
1043 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044 if (isExplicitMemberSpecialization(redeclTemp)) {
1045 explicitSpecSuppressor = temp->getTemplatedDecl();
1046 }
1047 }
1048 }
1049
1050 // We should never be looking for an attribute directly on a template.
1051 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor))(static_cast <bool> (!explicitSpecSuppressor || !isa<
TemplateDecl>(explicitSpecSuppressor)) ? void (0) : __assert_fail
("!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1051, __extension__ __PRETTY_FUNCTION__))
;
1052
1053 // If this member is an explicit member specialization, and it has
1054 // an explicit attribute, ignore visibility from the parent.
1055 bool considerClassVisibility = true;
1056 if (explicitSpecSuppressor &&
1057 // optimization: hasDVA() is true only with explicit visibility.
1058 LV.isVisibilityExplicit() &&
1059 classLV.getVisibility() != DefaultVisibility &&
1060 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061 considerClassVisibility = false;
1062 }
1063
1064 // Finally, merge in information from the class.
1065 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066 return LV;
1067}
1068
1069void NamedDecl::anchor() {}
1070
1071bool NamedDecl::isLinkageValid() const {
1072 if (!hasCachedLinkage())
1073 return true;
1074
1075 Linkage L = LinkageComputer{}
1076 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077 .getLinkage();
1078 return L == getCachedLinkage();
1079}
1080
1081ReservedIdentifierStatus
1082NamedDecl::isReserved(const LangOptions &LangOpts) const {
1083 const IdentifierInfo *II = getIdentifier();
1084 if (!II)
1085 if (const auto *FD = dyn_cast<FunctionDecl>(this))
1086 II = FD->getLiteralIdentifier();
1087
1088 if (!II)
1089 return ReservedIdentifierStatus::NotReserved;
1090
1091 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1092 if (Status == ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope) {
1093 // Check if we're at TU level or not.
1094 if (isa<ParmVarDecl>(this) || isTemplateParameter())
1095 return ReservedIdentifierStatus::NotReserved;
1096 const DeclContext *DC = getDeclContext()->getRedeclContext();
1097 if (!DC->isTranslationUnit())
1098 return ReservedIdentifierStatus::NotReserved;
1099 }
1100
1101 return Status;
1102}
1103
1104ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1105 StringRef name = getName();
1106 if (name.empty()) return SFF_None;
1107
1108 if (name.front() == 'C')
1109 if (name == "CFStringCreateWithFormat" ||
1110 name == "CFStringCreateWithFormatAndArguments" ||
1111 name == "CFStringAppendFormat" ||
1112 name == "CFStringAppendFormatAndArguments")
1113 return SFF_CFString;
1114 return SFF_None;
1115}
1116
1117Linkage NamedDecl::getLinkageInternal() const {
1118 // We don't care about visibility here, so ask for the cheapest
1119 // possible visibility analysis.
1120 return LinkageComputer{}
1121 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1122 .getLinkage();
1123}
1124
1125LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1126 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1127}
1128
1129static Optional<Visibility>
1130getExplicitVisibilityAux(const NamedDecl *ND,
1131 NamedDecl::ExplicitVisibilityKind kind,
1132 bool IsMostRecent) {
1133 assert(!IsMostRecent || ND == ND->getMostRecentDecl())(static_cast <bool> (!IsMostRecent || ND == ND->getMostRecentDecl
()) ? void (0) : __assert_fail ("!IsMostRecent || ND == ND->getMostRecentDecl()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1133, __extension__ __PRETTY_FUNCTION__))
;
1134
1135 // Check the declaration itself first.
1136 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1137 return V;
1138
1139 // If this is a member class of a specialization of a class template
1140 // and the corresponding decl has explicit visibility, use that.
1141 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1142 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1143 if (InstantiatedFrom)
1144 return getVisibilityOf(InstantiatedFrom, kind);
1145 }
1146
1147 // If there wasn't explicit visibility there, and this is a
1148 // specialization of a class template, check for visibility
1149 // on the pattern.
1150 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1151 // Walk all the template decl till this point to see if there are
1152 // explicit visibility attributes.
1153 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1154 while (TD != nullptr) {
1155 auto Vis = getVisibilityOf(TD, kind);
1156 if (Vis != None)
1157 return Vis;
1158 TD = TD->getPreviousDecl();
1159 }
1160 return None;
1161 }
1162
1163 // Use the most recent declaration.
1164 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1165 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1166 if (MostRecent != ND)
1167 return getExplicitVisibilityAux(MostRecent, kind, true);
1168 }
1169
1170 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1171 if (Var->isStaticDataMember()) {
1172 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1173 if (InstantiatedFrom)
1174 return getVisibilityOf(InstantiatedFrom, kind);
1175 }
1176
1177 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1178 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1179 kind);
1180
1181 return None;
1182 }
1183 // Also handle function template specializations.
1184 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1185 // If the function is a specialization of a template with an
1186 // explicit visibility attribute, use that.
1187 if (FunctionTemplateSpecializationInfo *templateInfo
1188 = fn->getTemplateSpecializationInfo())
1189 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1190 kind);
1191
1192 // If the function is a member of a specialization of a class template
1193 // and the corresponding decl has explicit visibility, use that.
1194 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1195 if (InstantiatedFrom)
1196 return getVisibilityOf(InstantiatedFrom, kind);
1197
1198 return None;
1199 }
1200
1201 // The visibility of a template is stored in the templated decl.
1202 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1203 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1204
1205 return None;
1206}
1207
1208Optional<Visibility>
1209NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1210 return getExplicitVisibilityAux(this, kind, false);
1211}
1212
1213LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1214 Decl *ContextDecl,
1215 LVComputationKind computation) {
1216 // This lambda has its linkage/visibility determined by its owner.
1217 const NamedDecl *Owner;
1218 if (!ContextDecl)
1219 Owner = dyn_cast<NamedDecl>(DC);
1220 else if (isa<ParmVarDecl>(ContextDecl))
1221 Owner =
1222 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1223 else
1224 Owner = cast<NamedDecl>(ContextDecl);
1225
1226 if (!Owner)
1227 return LinkageInfo::none();
1228
1229 // If the owner has a deduced type, we need to skip querying the linkage and
1230 // visibility of that type, because it might involve this closure type. The
1231 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1232 // than NoLinkage when we don't strictly need to, which is benign.
1233 auto *VD = dyn_cast<VarDecl>(Owner);
1234 LinkageInfo OwnerLV =
1235 VD && VD->getType()->getContainedDeducedType()
1236 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1237 : getLVForDecl(Owner, computation);
1238
1239 // A lambda never formally has linkage. But if the owner is externally
1240 // visible, then the lambda is too. We apply the same rules to blocks.
1241 if (!isExternallyVisible(OwnerLV.getLinkage()))
1242 return LinkageInfo::none();
1243 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1244 OwnerLV.isVisibilityExplicit());
1245}
1246
1247LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1248 LVComputationKind computation) {
1249 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1250 if (Function->isInAnonymousNamespace() &&
1251 !isFirstInExternCContext(Function))
1252 return getInternalLinkageFor(Function);
1253
1254 // This is a "void f();" which got merged with a file static.
1255 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1256 return getInternalLinkageFor(Function);
1257
1258 LinkageInfo LV;
1259 if (!hasExplicitVisibilityAlready(computation)) {
1260 if (Optional<Visibility> Vis =
1261 getExplicitVisibility(Function, computation))
1262 LV.mergeVisibility(*Vis, true);
1263 }
1264
1265 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1266 // merging storage classes and visibility attributes, so we don't have to
1267 // look at previous decls in here.
1268
1269 return LV;
1270 }
1271
1272 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1273 if (Var->hasExternalStorage()) {
1274 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1275 return getInternalLinkageFor(Var);
1276
1277 LinkageInfo LV;
1278 if (Var->getStorageClass() == SC_PrivateExtern)
1279 LV.mergeVisibility(HiddenVisibility, true);
1280 else if (!hasExplicitVisibilityAlready(computation)) {
1281 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1282 LV.mergeVisibility(*Vis, true);
1283 }
1284
1285 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1286 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1287 if (PrevLV.getLinkage())
1288 LV.setLinkage(PrevLV.getLinkage());
1289 LV.mergeVisibility(PrevLV);
1290 }
1291
1292 return LV;
1293 }
1294
1295 if (!Var->isStaticLocal())
1296 return LinkageInfo::none();
1297 }
1298
1299 ASTContext &Context = D->getASTContext();
1300 if (!Context.getLangOpts().CPlusPlus)
1301 return LinkageInfo::none();
1302
1303 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1304 if (!OuterD || OuterD->isInvalidDecl())
1305 return LinkageInfo::none();
1306
1307 LinkageInfo LV;
1308 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1309 if (!BD->getBlockManglingNumber())
1310 return LinkageInfo::none();
1311
1312 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1313 BD->getBlockManglingContextDecl(), computation);
1314 } else {
1315 const auto *FD = cast<FunctionDecl>(OuterD);
1316 if (!FD->isInlined() &&
1317 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1318 return LinkageInfo::none();
1319
1320 // If a function is hidden by -fvisibility-inlines-hidden option and
1321 // is not explicitly attributed as a hidden function,
1322 // we should not make static local variables in the function hidden.
1323 LV = getLVForDecl(FD, computation);
1324 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1325 !LV.isVisibilityExplicit() &&
1326 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1327 assert(cast<VarDecl>(D)->isStaticLocal())(static_cast <bool> (cast<VarDecl>(D)->isStaticLocal
()) ? void (0) : __assert_fail ("cast<VarDecl>(D)->isStaticLocal()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1327, __extension__ __PRETTY_FUNCTION__))
;
1328 // If this was an implicitly hidden inline method, check again for
1329 // explicit visibility on the parent class, and use that for static locals
1330 // if present.
1331 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1332 LV = getLVForDecl(MD->getParent(), computation);
1333 if (!LV.isVisibilityExplicit()) {
1334 Visibility globalVisibility =
1335 computation.isValueVisibility()
1336 ? Context.getLangOpts().getValueVisibilityMode()
1337 : Context.getLangOpts().getTypeVisibilityMode();
1338 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1339 /*visibilityExplicit=*/false);
1340 }
1341 }
1342 }
1343 if (!isExternallyVisible(LV.getLinkage()))
1344 return LinkageInfo::none();
1345 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1346 LV.isVisibilityExplicit());
1347}
1348
1349LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1350 LVComputationKind computation,
1351 bool IgnoreVarTypeLinkage) {
1352 // Internal_linkage attribute overrides other considerations.
1353 if (D->hasAttr<InternalLinkageAttr>())
1354 return getInternalLinkageFor(D);
1355
1356 // Objective-C: treat all Objective-C declarations as having external
1357 // linkage.
1358 switch (D->getKind()) {
1359 default:
1360 break;
1361
1362 // Per C++ [basic.link]p2, only the names of objects, references,
1363 // functions, types, templates, namespaces, and values ever have linkage.
1364 //
1365 // Note that the name of a typedef, namespace alias, using declaration,
1366 // and so on are not the name of the corresponding type, namespace, or
1367 // declaration, so they do *not* have linkage.
1368 case Decl::ImplicitParam:
1369 case Decl::Label:
1370 case Decl::NamespaceAlias:
1371 case Decl::ParmVar:
1372 case Decl::Using:
1373 case Decl::UsingEnum:
1374 case Decl::UsingShadow:
1375 case Decl::UsingDirective:
1376 return LinkageInfo::none();
1377
1378 case Decl::EnumConstant:
1379 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1380 if (D->getASTContext().getLangOpts().CPlusPlus)
1381 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1382 return LinkageInfo::visible_none();
1383
1384 case Decl::Typedef:
1385 case Decl::TypeAlias:
1386 // A typedef declaration has linkage if it gives a type a name for
1387 // linkage purposes.
1388 if (!cast<TypedefNameDecl>(D)
1389 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1390 return LinkageInfo::none();
1391 break;
1392
1393 case Decl::TemplateTemplateParm: // count these as external
1394 case Decl::NonTypeTemplateParm:
1395 case Decl::ObjCAtDefsField:
1396 case Decl::ObjCCategory:
1397 case Decl::ObjCCategoryImpl:
1398 case Decl::ObjCCompatibleAlias:
1399 case Decl::ObjCImplementation:
1400 case Decl::ObjCMethod:
1401 case Decl::ObjCProperty:
1402 case Decl::ObjCPropertyImpl:
1403 case Decl::ObjCProtocol:
1404 return getExternalLinkageFor(D);
1405
1406 case Decl::CXXRecord: {
1407 const auto *Record = cast<CXXRecordDecl>(D);
1408 if (Record->isLambda()) {
1409 if (Record->hasKnownLambdaInternalLinkage() ||
1410 !Record->getLambdaManglingNumber()) {
1411 // This lambda has no mangling number, so it's internal.
1412 return getInternalLinkageFor(D);
1413 }
1414
1415 return getLVForClosure(
1416 Record->getDeclContext()->getRedeclContext(),
1417 Record->getLambdaContextDecl(), computation);
1418 }
1419
1420 break;
1421 }
1422
1423 case Decl::TemplateParamObject: {
1424 // The template parameter object can be referenced from anywhere its type
1425 // and value can be referenced.
1426 auto *TPO = cast<TemplateParamObjectDecl>(D);
1427 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1428 LV.merge(getLVForValue(TPO->getValue(), computation));
1429 return LV;
1430 }
1431 }
1432
1433 // Handle linkage for namespace-scope names.
1434 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1435 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1436
1437 // C++ [basic.link]p5:
1438 // In addition, a member function, static data member, a named
1439 // class or enumeration of class scope, or an unnamed class or
1440 // enumeration defined in a class-scope typedef declaration such
1441 // that the class or enumeration has the typedef name for linkage
1442 // purposes (7.1.3), has external linkage if the name of the class
1443 // has external linkage.
1444 if (D->getDeclContext()->isRecord())
1445 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1446
1447 // C++ [basic.link]p6:
1448 // The name of a function declared in block scope and the name of
1449 // an object declared by a block scope extern declaration have
1450 // linkage. If there is a visible declaration of an entity with
1451 // linkage having the same name and type, ignoring entities
1452 // declared outside the innermost enclosing namespace scope, the
1453 // block scope declaration declares that same entity and receives
1454 // the linkage of the previous declaration. If there is more than
1455 // one such matching entity, the program is ill-formed. Otherwise,
1456 // if no matching entity is found, the block scope entity receives
1457 // external linkage.
1458 if (D->getDeclContext()->isFunctionOrMethod())
1459 return getLVForLocalDecl(D, computation);
1460
1461 // C++ [basic.link]p6:
1462 // Names not covered by these rules have no linkage.
1463 return LinkageInfo::none();
1464}
1465
1466/// getLVForDecl - Get the linkage and visibility for the given declaration.
1467LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1468 LVComputationKind computation) {
1469 // Internal_linkage attribute overrides other considerations.
1470 if (D->hasAttr<InternalLinkageAttr>())
1471 return getInternalLinkageFor(D);
1472
1473 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1474 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1475
1476 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1477 return *LI;
1478
1479 LinkageInfo LV = computeLVForDecl(D, computation);
1480 if (D->hasCachedLinkage())
1481 assert(D->getCachedLinkage() == LV.getLinkage())(static_cast <bool> (D->getCachedLinkage() == LV.getLinkage
()) ? void (0) : __assert_fail ("D->getCachedLinkage() == LV.getLinkage()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1481, __extension__ __PRETTY_FUNCTION__))
;
1482
1483 D->setCachedLinkage(LV.getLinkage());
1484 cache(D, computation, LV);
1485
1486#ifndef NDEBUG
1487 // In C (because of gnu inline) and in c++ with microsoft extensions an
1488 // static can follow an extern, so we can have two decls with different
1489 // linkages.
1490 const LangOptions &Opts = D->getASTContext().getLangOpts();
1491 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1492 return LV;
1493
1494 // We have just computed the linkage for this decl. By induction we know
1495 // that all other computed linkages match, check that the one we just
1496 // computed also does.
1497 NamedDecl *Old = nullptr;
1498 for (auto I : D->redecls()) {
1499 auto *T = cast<NamedDecl>(I);
1500 if (T == D)
1501 continue;
1502 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1503 Old = T;
1504 break;
1505 }
1506 }
1507 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage())(static_cast <bool> (!Old || Old->getCachedLinkage()
== D->getCachedLinkage()) ? void (0) : __assert_fail ("!Old || Old->getCachedLinkage() == D->getCachedLinkage()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1507, __extension__ __PRETTY_FUNCTION__))
;
1508#endif
1509
1510 return LV;
1511}
1512
1513LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1514 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1515 ? NamedDecl::VisibilityForType
1516 : NamedDecl::VisibilityForValue;
1517 LVComputationKind CK(EK);
1518 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1519 ? CK.forLinkageOnly()
1520 : CK);
1521}
1522
1523Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1524 Module *M = getOwningModule();
1525 if (!M)
1526 return nullptr;
1527
1528 switch (M->Kind) {
1529 case Module::ModuleMapModule:
1530 // Module map modules have no special linkage semantics.
1531 return nullptr;
1532
1533 case Module::ModuleInterfaceUnit:
1534 return M;
1535
1536 case Module::GlobalModuleFragment: {
1537 // External linkage declarations in the global module have no owning module
1538 // for linkage purposes. But internal linkage declarations in the global
1539 // module fragment of a particular module are owned by that module for
1540 // linkage purposes.
1541 if (IgnoreLinkage)
1542 return nullptr;
1543 bool InternalLinkage;
1544 if (auto *ND = dyn_cast<NamedDecl>(this))
1545 InternalLinkage = !ND->hasExternalFormalLinkage();
1546 else {
1547 auto *NSD = dyn_cast<NamespaceDecl>(this);
1548 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1549 isInAnonymousNamespace();
1550 }
1551 return InternalLinkage ? M->Parent : nullptr;
1552 }
1553
1554 case Module::PrivateModuleFragment:
1555 // The private module fragment is part of its containing module for linkage
1556 // purposes.
1557 return M->Parent;
1558 }
1559
1560 llvm_unreachable("unknown module kind")::llvm::llvm_unreachable_internal("unknown module kind", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1560)
;
1561}
1562
1563void NamedDecl::printName(raw_ostream &os) const {
1564 os << Name;
1565}
1566
1567std::string NamedDecl::getQualifiedNameAsString() const {
1568 std::string QualName;
1569 llvm::raw_string_ostream OS(QualName);
1570 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1571 return OS.str();
1572}
1573
1574void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1575 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1576}
1577
1578void NamedDecl::printQualifiedName(raw_ostream &OS,
1579 const PrintingPolicy &P) const {
1580 if (getDeclContext()->isFunctionOrMethod()) {
1581 // We do not print '(anonymous)' for function parameters without name.
1582 printName(OS);
1583 return;
1584 }
1585 printNestedNameSpecifier(OS, P);
1586 if (getDeclName())
1587 OS << *this;
1588 else {
1589 // Give the printName override a chance to pick a different name before we
1590 // fall back to "(anonymous)".
1591 SmallString<64> NameBuffer;
1592 llvm::raw_svector_ostream NameOS(NameBuffer);
1593 printName(NameOS);
1594 if (NameBuffer.empty())
1595 OS << "(anonymous)";
1596 else
1597 OS << NameBuffer;
1598 }
1599}
1600
1601void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1602 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1603}
1604
1605void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1606 const PrintingPolicy &P) const {
1607 const DeclContext *Ctx = getDeclContext();
1608
1609 // For ObjC methods and properties, look through categories and use the
1610 // interface as context.
1611 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1612 if (auto *ID = MD->getClassInterface())
1613 Ctx = ID;
1614 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1615 if (auto *MD = PD->getGetterMethodDecl())
1616 if (auto *ID = MD->getClassInterface())
1617 Ctx = ID;
1618 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1619 if (auto *CI = ID->getContainingInterface())
1620 Ctx = CI;
1621 }
1622
1623 if (Ctx->isFunctionOrMethod())
1624 return;
1625
1626 using ContextsTy = SmallVector<const DeclContext *, 8>;
1627 ContextsTy Contexts;
1628
1629 // Collect named contexts.
1630 DeclarationName NameInScope = getDeclName();
1631 for (; Ctx; Ctx = Ctx->getParent()) {
1632 // Suppress anonymous namespace if requested.
1633 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1634 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1635 continue;
1636
1637 // Suppress inline namespace if it doesn't make the result ambiguous.
1638 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1639 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1640 continue;
1641
1642 // Skip non-named contexts such as linkage specifications and ExportDecls.
1643 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1644 if (!ND)
1645 continue;
1646
1647 Contexts.push_back(Ctx);
1648 NameInScope = ND->getDeclName();
1649 }
1650
1651 for (unsigned I = Contexts.size(); I != 0; --I) {
1652 const DeclContext *DC = Contexts[I - 1];
1653 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1654 OS << Spec->getName();
1655 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1656 printTemplateArgumentList(
1657 OS, TemplateArgs.asArray(), P,
1658 Spec->getSpecializedTemplate()->getTemplateParameters());
1659 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1660 if (ND->isAnonymousNamespace()) {
1661 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1662 : "(anonymous namespace)");
1663 }
1664 else
1665 OS << *ND;
1666 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1667 if (!RD->getIdentifier())
1668 OS << "(anonymous " << RD->getKindName() << ')';
1669 else
1670 OS << *RD;
1671 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1672 const FunctionProtoType *FT = nullptr;
1673 if (FD->hasWrittenPrototype())
1674 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1675
1676 OS << *FD << '(';
1677 if (FT) {
1678 unsigned NumParams = FD->getNumParams();
1679 for (unsigned i = 0; i < NumParams; ++i) {
1680 if (i)
1681 OS << ", ";
1682 OS << FD->getParamDecl(i)->getType().stream(P);
1683 }
1684
1685 if (FT->isVariadic()) {
1686 if (NumParams > 0)
1687 OS << ", ";
1688 OS << "...";
1689 }
1690 }
1691 OS << ')';
1692 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1693 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1694 // enumerator is declared in the scope that immediately contains
1695 // the enum-specifier. Each scoped enumerator is declared in the
1696 // scope of the enumeration.
1697 // For the case of unscoped enumerator, do not include in the qualified
1698 // name any information about its enum enclosing scope, as its visibility
1699 // is global.
1700 if (ED->isScoped())
1701 OS << *ED;
1702 else
1703 continue;
1704 } else {
1705 OS << *cast<NamedDecl>(DC);
1706 }
1707 OS << "::";
1708 }
1709}
1710
1711void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1712 const PrintingPolicy &Policy,
1713 bool Qualified) const {
1714 if (Qualified)
1715 printQualifiedName(OS, Policy);
1716 else
1717 printName(OS);
1718}
1719
1720template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1721 return true;
1722}
1723static bool isRedeclarableImpl(...) { return false; }
1724static bool isRedeclarable(Decl::Kind K) {
1725 switch (K) {
1726#define DECL(Type, Base) \
1727 case Decl::Type: \
1728 return isRedeclarableImpl((Type##Decl *)nullptr);
1729#define ABSTRACT_DECL(DECL)
1730#include "clang/AST/DeclNodes.inc"
1731 }
1732 llvm_unreachable("unknown decl kind")::llvm::llvm_unreachable_internal("unknown decl kind", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1732)
;
1733}
1734
1735bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1736 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch")(static_cast <bool> (getDeclName() == OldD->getDeclName
() && "Declaration name mismatch") ? void (0) : __assert_fail
("getDeclName() == OldD->getDeclName() && \"Declaration name mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1736, __extension__ __PRETTY_FUNCTION__))
;
1737
1738 // Never replace one imported declaration with another; we need both results
1739 // when re-exporting.
1740 if (OldD->isFromASTFile() && isFromASTFile())
1741 return false;
1742
1743 // A kind mismatch implies that the declaration is not replaced.
1744 if (OldD->getKind() != getKind())
1745 return false;
1746
1747 // For method declarations, we never replace. (Why?)
1748 if (isa<ObjCMethodDecl>(this))
1749 return false;
1750
1751 // For parameters, pick the newer one. This is either an error or (in
1752 // Objective-C) permitted as an extension.
1753 if (isa<ParmVarDecl>(this))
1754 return true;
1755
1756 // Inline namespaces can give us two declarations with the same
1757 // name and kind in the same scope but different contexts; we should
1758 // keep both declarations in this case.
1759 if (!this->getDeclContext()->getRedeclContext()->Equals(
1760 OldD->getDeclContext()->getRedeclContext()))
1761 return false;
1762
1763 // Using declarations can be replaced if they import the same name from the
1764 // same context.
1765 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1766 ASTContext &Context = getASTContext();
1767 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1768 Context.getCanonicalNestedNameSpecifier(
1769 cast<UsingDecl>(OldD)->getQualifier());
1770 }
1771 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1772 ASTContext &Context = getASTContext();
1773 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1774 Context.getCanonicalNestedNameSpecifier(
1775 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1776 }
1777
1778 if (isRedeclarable(getKind())) {
1779 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1780 return false;
1781
1782 if (IsKnownNewer)
1783 return true;
1784
1785 // Check whether this is actually newer than OldD. We want to keep the
1786 // newer declaration. This loop will usually only iterate once, because
1787 // OldD is usually the previous declaration.
1788 for (auto D : redecls()) {
1789 if (D == OldD)
1790 break;
1791
1792 // If we reach the canonical declaration, then OldD is not actually older
1793 // than this one.
1794 //
1795 // FIXME: In this case, we should not add this decl to the lookup table.
1796 if (D->isCanonicalDecl())
1797 return false;
1798 }
1799
1800 // It's a newer declaration of the same kind of declaration in the same
1801 // scope: we want this decl instead of the existing one.
1802 return true;
1803 }
1804
1805 // In all other cases, we need to keep both declarations in case they have
1806 // different visibility. Any attempt to use the name will result in an
1807 // ambiguity if more than one is visible.
1808 return false;
1809}
1810
1811bool NamedDecl::hasLinkage() const {
1812 return getFormalLinkage() != NoLinkage;
1813}
1814
1815NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1816 NamedDecl *ND = this;
1817 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1818 ND = UD->getTargetDecl();
1819
1820 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1821 return AD->getClassInterface();
1822
1823 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1824 return AD->getNamespace();
1825
1826 return ND;
1827}
1828
1829bool NamedDecl::isCXXInstanceMember() const {
1830 if (!isCXXClassMember())
1831 return false;
1832
1833 const NamedDecl *D = this;
1834 if (isa<UsingShadowDecl>(D))
1835 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1836
1837 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1838 return true;
1839 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1840 return MD->isInstance();
1841 return false;
1842}
1843
1844//===----------------------------------------------------------------------===//
1845// DeclaratorDecl Implementation
1846//===----------------------------------------------------------------------===//
1847
1848template <typename DeclT>
1849static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1850 if (decl->getNumTemplateParameterLists() > 0)
1851 return decl->getTemplateParameterList(0)->getTemplateLoc();
1852 return decl->getInnerLocStart();
1853}
1854
1855SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1856 TypeSourceInfo *TSI = getTypeSourceInfo();
1857 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1858 return SourceLocation();
1859}
1860
1861SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1862 TypeSourceInfo *TSI = getTypeSourceInfo();
1863 if (TSI) return TSI->getTypeLoc().getEndLoc();
1864 return SourceLocation();
1865}
1866
1867void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1868 if (QualifierLoc) {
1869 // Make sure the extended decl info is allocated.
1870 if (!hasExtInfo()) {
1871 // Save (non-extended) type source info pointer.
1872 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1873 // Allocate external info struct.
1874 DeclInfo = new (getASTContext()) ExtInfo;
1875 // Restore savedTInfo into (extended) decl info.
1876 getExtInfo()->TInfo = savedTInfo;
1877 }
1878 // Set qualifier info.
1879 getExtInfo()->QualifierLoc = QualifierLoc;
1880 } else if (hasExtInfo()) {
1881 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1882 getExtInfo()->QualifierLoc = QualifierLoc;
1883 }
1884}
1885
1886void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1887 assert(TrailingRequiresClause)(static_cast <bool> (TrailingRequiresClause) ? void (0)
: __assert_fail ("TrailingRequiresClause", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1887, __extension__ __PRETTY_FUNCTION__))
;
1888 // Make sure the extended decl info is allocated.
1889 if (!hasExtInfo()) {
1890 // Save (non-extended) type source info pointer.
1891 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1892 // Allocate external info struct.
1893 DeclInfo = new (getASTContext()) ExtInfo;
1894 // Restore savedTInfo into (extended) decl info.
1895 getExtInfo()->TInfo = savedTInfo;
1896 }
1897 // Set requires clause info.
1898 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1899}
1900
1901void DeclaratorDecl::setTemplateParameterListsInfo(
1902 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1903 assert(!TPLists.empty())(static_cast <bool> (!TPLists.empty()) ? void (0) : __assert_fail
("!TPLists.empty()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1903, __extension__ __PRETTY_FUNCTION__))
;
1904 // Make sure the extended decl info is allocated.
1905 if (!hasExtInfo()) {
1906 // Save (non-extended) type source info pointer.
1907 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1908 // Allocate external info struct.
1909 DeclInfo = new (getASTContext()) ExtInfo;
1910 // Restore savedTInfo into (extended) decl info.
1911 getExtInfo()->TInfo = savedTInfo;
1912 }
1913 // Set the template parameter lists info.
1914 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1915}
1916
1917SourceLocation DeclaratorDecl::getOuterLocStart() const {
1918 return getTemplateOrInnerLocStart(this);
1919}
1920
1921// Helper function: returns true if QT is or contains a type
1922// having a postfix component.
1923static bool typeIsPostfix(QualType QT) {
1924 while (true) {
1925 const Type* T = QT.getTypePtr();
1926 switch (T->getTypeClass()) {
1927 default:
1928 return false;
1929 case Type::Pointer:
1930 QT = cast<PointerType>(T)->getPointeeType();
1931 break;
1932 case Type::BlockPointer:
1933 QT = cast<BlockPointerType>(T)->getPointeeType();
1934 break;
1935 case Type::MemberPointer:
1936 QT = cast<MemberPointerType>(T)->getPointeeType();
1937 break;
1938 case Type::LValueReference:
1939 case Type::RValueReference:
1940 QT = cast<ReferenceType>(T)->getPointeeType();
1941 break;
1942 case Type::PackExpansion:
1943 QT = cast<PackExpansionType>(T)->getPattern();
1944 break;
1945 case Type::Paren:
1946 case Type::ConstantArray:
1947 case Type::DependentSizedArray:
1948 case Type::IncompleteArray:
1949 case Type::VariableArray:
1950 case Type::FunctionProto:
1951 case Type::FunctionNoProto:
1952 return true;
1953 }
1954 }
1955}
1956
1957SourceRange DeclaratorDecl::getSourceRange() const {
1958 SourceLocation RangeEnd = getLocation();
1959 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1960 // If the declaration has no name or the type extends past the name take the
1961 // end location of the type.
1962 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1963 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1964 }
1965 return SourceRange(getOuterLocStart(), RangeEnd);
1966}
1967
1968void QualifierInfo::setTemplateParameterListsInfo(
1969 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1970 // Free previous template parameters (if any).
1971 if (NumTemplParamLists > 0) {
1972 Context.Deallocate(TemplParamLists);
1973 TemplParamLists = nullptr;
1974 NumTemplParamLists = 0;
1975 }
1976 // Set info on matched template parameter lists (if any).
1977 if (!TPLists.empty()) {
1978 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1979 NumTemplParamLists = TPLists.size();
1980 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1981 }
1982}
1983
1984//===----------------------------------------------------------------------===//
1985// VarDecl Implementation
1986//===----------------------------------------------------------------------===//
1987
1988const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1989 switch (SC) {
1990 case SC_None: break;
1991 case SC_Auto: return "auto";
1992 case SC_Extern: return "extern";
1993 case SC_PrivateExtern: return "__private_extern__";
1994 case SC_Register: return "register";
1995 case SC_Static: return "static";
1996 }
1997
1998 llvm_unreachable("Invalid storage class")::llvm::llvm_unreachable_internal("Invalid storage class", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 1998)
;
1999}
2000
2001VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2002 SourceLocation StartLoc, SourceLocation IdLoc,
2003 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2004 StorageClass SC)
2005 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2006 redeclarable_base(C) {
2007 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2008 "VarDeclBitfields too large!");
2009 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2010 "ParmVarDeclBitfields too large!");
2011 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2012 "NonParmVarDeclBitfields too large!");
2013 AllBits = 0;
2014 VarDeclBits.SClass = SC;
2015 // Everything else is implicitly initialized to false.
2016}
2017
2018VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
2019 SourceLocation StartL, SourceLocation IdL,
2020 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2021 StorageClass S) {
2022 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2023}
2024
2025VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2026 return new (C, ID)
2027 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2028 QualType(), nullptr, SC_None);
2029}
2030
2031void VarDecl::setStorageClass(StorageClass SC) {
2032 assert(isLegalForVariable(SC))(static_cast <bool> (isLegalForVariable(SC)) ? void (0)
: __assert_fail ("isLegalForVariable(SC)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2032, __extension__ __PRETTY_FUNCTION__))
;
2033 VarDeclBits.SClass = SC;
2034}
2035
2036VarDecl::TLSKind VarDecl::getTLSKind() const {
2037 switch (VarDeclBits.TSCSpec) {
2038 case TSCS_unspecified:
2039 if (!hasAttr<ThreadAttr>() &&
2040 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2041 getASTContext().getTargetInfo().isTLSSupported() &&
2042 hasAttr<OMPThreadPrivateDeclAttr>()))
2043 return TLS_None;
2044 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2045 LangOptions::MSVC2015)) ||
2046 hasAttr<OMPThreadPrivateDeclAttr>())
2047 ? TLS_Dynamic
2048 : TLS_Static;
2049 case TSCS___thread: // Fall through.
2050 case TSCS__Thread_local:
2051 return TLS_Static;
2052 case TSCS_thread_local:
2053 return TLS_Dynamic;
2054 }
2055 llvm_unreachable("Unknown thread storage class specifier!")::llvm::llvm_unreachable_internal("Unknown thread storage class specifier!"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2055)
;
2056}
2057
2058SourceRange VarDecl::getSourceRange() const {
2059 if (const Expr *Init = getInit()) {
2060 SourceLocation InitEnd = Init->getEndLoc();
2061 // If Init is implicit, ignore its source range and fallback on
2062 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2063 if (InitEnd.isValid() && InitEnd != getLocation())
2064 return SourceRange(getOuterLocStart(), InitEnd);
2065 }
2066 return DeclaratorDecl::getSourceRange();
2067}
2068
2069template<typename T>
2070static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2071 // C++ [dcl.link]p1: All function types, function names with external linkage,
2072 // and variable names with external linkage have a language linkage.
2073 if (!D.hasExternalFormalLinkage())
2074 return NoLanguageLinkage;
2075
2076 // Language linkage is a C++ concept, but saying that everything else in C has
2077 // C language linkage fits the implementation nicely.
2078 ASTContext &Context = D.getASTContext();
2079 if (!Context.getLangOpts().CPlusPlus)
2080 return CLanguageLinkage;
2081
2082 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2083 // language linkage of the names of class members and the function type of
2084 // class member functions.
2085 const DeclContext *DC = D.getDeclContext();
2086 if (DC->isRecord())
2087 return CXXLanguageLinkage;
2088
2089 // If the first decl is in an extern "C" context, any other redeclaration
2090 // will have C language linkage. If the first one is not in an extern "C"
2091 // context, we would have reported an error for any other decl being in one.
2092 if (isFirstInExternCContext(&D))
2093 return CLanguageLinkage;
2094 return CXXLanguageLinkage;
2095}
2096
2097template<typename T>
2098static bool isDeclExternC(const T &D) {
2099 // Since the context is ignored for class members, they can only have C++
2100 // language linkage or no language linkage.
2101 const DeclContext *DC = D.getDeclContext();
2102 if (DC->isRecord()) {
2103 assert(D.getASTContext().getLangOpts().CPlusPlus)(static_cast <bool> (D.getASTContext().getLangOpts().CPlusPlus
) ? void (0) : __assert_fail ("D.getASTContext().getLangOpts().CPlusPlus"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2103, __extension__ __PRETTY_FUNCTION__))
;
2104 return false;
2105 }
2106
2107 return D.getLanguageLinkage() == CLanguageLinkage;
2108}
2109
2110LanguageLinkage VarDecl::getLanguageLinkage() const {
2111 return getDeclLanguageLinkage(*this);
2112}
2113
2114bool VarDecl::isExternC() const {
2115 return isDeclExternC(*this);
2116}
2117
2118bool VarDecl::isInExternCContext() const {
2119 return getLexicalDeclContext()->isExternCContext();
2120}
2121
2122bool VarDecl::isInExternCXXContext() const {
2123 return getLexicalDeclContext()->isExternCXXContext();
2124}
2125
2126VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2127
2128VarDecl::DefinitionKind
2129VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2130 if (isThisDeclarationADemotedDefinition())
2131 return DeclarationOnly;
2132
2133 // C++ [basic.def]p2:
2134 // A declaration is a definition unless [...] it contains the 'extern'
2135 // specifier or a linkage-specification and neither an initializer [...],
2136 // it declares a non-inline static data member in a class declaration [...],
2137 // it declares a static data member outside a class definition and the variable
2138 // was defined within the class with the constexpr specifier [...],
2139 // C++1y [temp.expl.spec]p15:
2140 // An explicit specialization of a static data member or an explicit
2141 // specialization of a static data member template is a definition if the
2142 // declaration includes an initializer; otherwise, it is a declaration.
2143 //
2144 // FIXME: How do you declare (but not define) a partial specialization of
2145 // a static data member template outside the containing class?
2146 if (isStaticDataMember()) {
2147 if (isOutOfLine() &&
2148 !(getCanonicalDecl()->isInline() &&
2149 getCanonicalDecl()->isConstexpr()) &&
2150 (hasInit() ||
2151 // If the first declaration is out-of-line, this may be an
2152 // instantiation of an out-of-line partial specialization of a variable
2153 // template for which we have not yet instantiated the initializer.
2154 (getFirstDecl()->isOutOfLine()
2155 ? getTemplateSpecializationKind() == TSK_Undeclared
2156 : getTemplateSpecializationKind() !=
2157 TSK_ExplicitSpecialization) ||
2158 isa<VarTemplatePartialSpecializationDecl>(this)))
2159 return Definition;
2160 if (!isOutOfLine() && isInline())
2161 return Definition;
2162 return DeclarationOnly;
2163 }
2164 // C99 6.7p5:
2165 // A definition of an identifier is a declaration for that identifier that
2166 // [...] causes storage to be reserved for that object.
2167 // Note: that applies for all non-file-scope objects.
2168 // C99 6.9.2p1:
2169 // If the declaration of an identifier for an object has file scope and an
2170 // initializer, the declaration is an external definition for the identifier
2171 if (hasInit())
2172 return Definition;
2173
2174 if (hasDefiningAttr())
2175 return Definition;
2176
2177 if (const auto *SAA = getAttr<SelectAnyAttr>())
2178 if (!SAA->isInherited())
2179 return Definition;
2180
2181 // A variable template specialization (other than a static data member
2182 // template or an explicit specialization) is a declaration until we
2183 // instantiate its initializer.
2184 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2185 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2186 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2187 !VTSD->IsCompleteDefinition)
2188 return DeclarationOnly;
2189 }
2190
2191 if (hasExternalStorage())
2192 return DeclarationOnly;
2193
2194 // [dcl.link] p7:
2195 // A declaration directly contained in a linkage-specification is treated
2196 // as if it contains the extern specifier for the purpose of determining
2197 // the linkage of the declared name and whether it is a definition.
2198 if (isSingleLineLanguageLinkage(*this))
2199 return DeclarationOnly;
2200
2201 // C99 6.9.2p2:
2202 // A declaration of an object that has file scope without an initializer,
2203 // and without a storage class specifier or the scs 'static', constitutes
2204 // a tentative definition.
2205 // No such thing in C++.
2206 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2207 return TentativeDefinition;
2208
2209 // What's left is (in C, block-scope) declarations without initializers or
2210 // external storage. These are definitions.
2211 return Definition;
2212}
2213
2214VarDecl *VarDecl::getActingDefinition() {
2215 DefinitionKind Kind = isThisDeclarationADefinition();
2216 if (Kind != TentativeDefinition)
2217 return nullptr;
2218
2219 VarDecl *LastTentative = nullptr;
2220 VarDecl *First = getFirstDecl();
2221 for (auto I : First->redecls()) {
2222 Kind = I->isThisDeclarationADefinition();
2223 if (Kind == Definition)
2224 return nullptr;
2225 if (Kind == TentativeDefinition)
2226 LastTentative = I;
2227 }
2228 return LastTentative;
2229}
2230
2231VarDecl *VarDecl::getDefinition(ASTContext &C) {
2232 VarDecl *First = getFirstDecl();
2233 for (auto I : First->redecls()) {
2234 if (I->isThisDeclarationADefinition(C) == Definition)
2235 return I;
2236 }
2237 return nullptr;
2238}
2239
2240VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2241 DefinitionKind Kind = DeclarationOnly;
2242
2243 const VarDecl *First = getFirstDecl();
2244 for (auto I : First->redecls()) {
2245 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2246 if (Kind == Definition)
2247 break;
2248 }
2249
2250 return Kind;
2251}
2252
2253const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2254 for (auto I : redecls()) {
2255 if (auto Expr = I->getInit()) {
2256 D = I;
2257 return Expr;
2258 }
2259 }
2260 return nullptr;
2261}
2262
2263bool VarDecl::hasInit() const {
2264 if (auto *P = dyn_cast<ParmVarDecl>(this))
2265 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2266 return false;
2267
2268 return !Init.isNull();
2269}
2270
2271Expr *VarDecl::getInit() {
2272 if (!hasInit())
2273 return nullptr;
2274
2275 if (auto *S = Init.dyn_cast<Stmt *>())
2276 return cast<Expr>(S);
2277
2278 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2279}
2280
2281Stmt **VarDecl::getInitAddress() {
2282 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2283 return &ES->Value;
2284
2285 return Init.getAddrOfPtr1();
2286}
2287
2288VarDecl *VarDecl::getInitializingDeclaration() {
2289 VarDecl *Def = nullptr;
2290 for (auto I : redecls()) {
2291 if (I->hasInit())
2292 return I;
2293
2294 if (I->isThisDeclarationADefinition()) {
2295 if (isStaticDataMember())
2296 return I;
2297 Def = I;
2298 }
2299 }
2300 return Def;
2301}
2302
2303bool VarDecl::isOutOfLine() const {
2304 if (Decl::isOutOfLine())
2305 return true;
2306
2307 if (!isStaticDataMember())
2308 return false;
2309
2310 // If this static data member was instantiated from a static data member of
2311 // a class template, check whether that static data member was defined
2312 // out-of-line.
2313 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2314 return VD->isOutOfLine();
2315
2316 return false;
2317}
2318
2319void VarDecl::setInit(Expr *I) {
2320 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2321 Eval->~EvaluatedStmt();
2322 getASTContext().Deallocate(Eval);
2323 }
2324
2325 Init = I;
2326}
2327
2328bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2329 const LangOptions &Lang = C.getLangOpts();
2330
2331 // OpenCL permits const integral variables to be used in constant
2332 // expressions, like in C++98.
2333 if (!Lang.CPlusPlus && !Lang.OpenCL)
2334 return false;
2335
2336 // Function parameters are never usable in constant expressions.
2337 if (isa<ParmVarDecl>(this))
2338 return false;
2339
2340 // The values of weak variables are never usable in constant expressions.
2341 if (isWeak())
2342 return false;
2343
2344 // In C++11, any variable of reference type can be used in a constant
2345 // expression if it is initialized by a constant expression.
2346 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2347 return true;
2348
2349 // Only const objects can be used in constant expressions in C++. C++98 does
2350 // not require the variable to be non-volatile, but we consider this to be a
2351 // defect.
2352 if (!getType().isConstant(C) || getType().isVolatileQualified())
2353 return false;
2354
2355 // In C++, const, non-volatile variables of integral or enumeration types
2356 // can be used in constant expressions.
2357 if (getType()->isIntegralOrEnumerationType())
2358 return true;
2359
2360 // Additionally, in C++11, non-volatile constexpr variables can be used in
2361 // constant expressions.
2362 return Lang.CPlusPlus11 && isConstexpr();
2363}
2364
2365bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2366 // C++2a [expr.const]p3:
2367 // A variable is usable in constant expressions after its initializing
2368 // declaration is encountered...
2369 const VarDecl *DefVD = nullptr;
2370 const Expr *Init = getAnyInitializer(DefVD);
2371 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2372 return false;
2373 // ... if it is a constexpr variable, or it is of reference type or of
2374 // const-qualified integral or enumeration type, ...
2375 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2376 return false;
2377 // ... and its initializer is a constant initializer.
2378 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2379 return false;
2380 // C++98 [expr.const]p1:
2381 // An integral constant-expression can involve only [...] const variables
2382 // or static data members of integral or enumeration types initialized with
2383 // [integer] constant expressions (dcl.init)
2384 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2385 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2386 return false;
2387 return true;
2388}
2389
2390/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2391/// form, which contains extra information on the evaluated value of the
2392/// initializer.
2393EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2394 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2395 if (!Eval) {
2396 // Note: EvaluatedStmt contains an APValue, which usually holds
2397 // resources not allocated from the ASTContext. We need to do some
2398 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2399 // where we can detect whether there's anything to clean up or not.
2400 Eval = new (getASTContext()) EvaluatedStmt;
2401 Eval->Value = Init.get<Stmt *>();
2402 Init = Eval;
2403 }
2404 return Eval;
2405}
2406
2407EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2408 return Init.dyn_cast<EvaluatedStmt *>();
2409}
2410
2411APValue *VarDecl::evaluateValue() const {
2412 SmallVector<PartialDiagnosticAt, 8> Notes;
2413 return evaluateValueImpl(Notes, hasConstantInitialization());
2414}
2415
2416APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2417 bool IsConstantInitialization) const {
2418 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2419
2420 const auto *Init = cast<Expr>(Eval->Value);
2421 assert(!Init->isValueDependent())(static_cast <bool> (!Init->isValueDependent()) ? void
(0) : __assert_fail ("!Init->isValueDependent()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2421, __extension__ __PRETTY_FUNCTION__))
;
2422
2423 // We only produce notes indicating why an initializer is non-constant the
2424 // first time it is evaluated. FIXME: The notes won't always be emitted the
2425 // first time we try evaluation, so might not be produced at all.
2426 if (Eval->WasEvaluated)
2427 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2428
2429 if (Eval->IsEvaluating) {
2430 // FIXME: Produce a diagnostic for self-initialization.
2431 return nullptr;
2432 }
2433
2434 Eval->IsEvaluating = true;
2435
2436 ASTContext &Ctx = getASTContext();
2437 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2438 IsConstantInitialization);
2439
2440 // In C++11, this isn't a constant initializer if we produced notes. In that
2441 // case, we can't keep the result, because it may only be correct under the
2442 // assumption that the initializer is a constant context.
2443 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2444 !Notes.empty())
2445 Result = false;
2446
2447 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2448 // or that it's empty (so that there's nothing to clean up) if evaluation
2449 // failed.
2450 if (!Result)
2451 Eval->Evaluated = APValue();
2452 else if (Eval->Evaluated.needsCleanup())
2453 Ctx.addDestruction(&Eval->Evaluated);
2454
2455 Eval->IsEvaluating = false;
2456 Eval->WasEvaluated = true;
2457
2458 return Result ? &Eval->Evaluated : nullptr;
2459}
2460
2461APValue *VarDecl::getEvaluatedValue() const {
2462 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2463 if (Eval->WasEvaluated)
2464 return &Eval->Evaluated;
2465
2466 return nullptr;
2467}
2468
2469bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2470 const Expr *Init = getInit();
2471 assert(Init && "no initializer")(static_cast <bool> (Init && "no initializer") ?
void (0) : __assert_fail ("Init && \"no initializer\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2471, __extension__ __PRETTY_FUNCTION__))
;
2472
2473 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2474 if (!Eval->CheckedForICEInit) {
2475 Eval->CheckedForICEInit = true;
2476 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2477 }
2478 return Eval->HasICEInit;
2479}
2480
2481bool VarDecl::hasConstantInitialization() const {
2482 // In C, all globals (and only globals) have constant initialization.
2483 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2484 return true;
2485
2486 // In C++, it depends on whether the evaluation at the point of definition
2487 // was evaluatable as a constant initializer.
2488 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2489 return Eval->HasConstantInitialization;
2490
2491 return false;
2492}
2493
2494bool VarDecl::checkForConstantInitialization(
2495 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2496 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2497 // If we ask for the value before we know whether we have a constant
2498 // initializer, we can compute the wrong value (for example, due to
2499 // std::is_constant_evaluated()).
2500 assert(!Eval->WasEvaluated &&(static_cast <bool> (!Eval->WasEvaluated && "already evaluated var value before checking for constant init"
) ? void (0) : __assert_fail ("!Eval->WasEvaluated && \"already evaluated var value before checking for constant init\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2501, __extension__ __PRETTY_FUNCTION__))
2501 "already evaluated var value before checking for constant init")(static_cast <bool> (!Eval->WasEvaluated && "already evaluated var value before checking for constant init"
) ? void (0) : __assert_fail ("!Eval->WasEvaluated && \"already evaluated var value before checking for constant init\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2501, __extension__ __PRETTY_FUNCTION__))
;
2502 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++")(static_cast <bool> (getASTContext().getLangOpts().CPlusPlus
&& "only meaningful in C++") ? void (0) : __assert_fail
("getASTContext().getLangOpts().CPlusPlus && \"only meaningful in C++\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2502, __extension__ __PRETTY_FUNCTION__))
;
2503
2504 assert(!cast<Expr>(Eval->Value)->isValueDependent())(static_cast <bool> (!cast<Expr>(Eval->Value)->
isValueDependent()) ? void (0) : __assert_fail ("!cast<Expr>(Eval->Value)->isValueDependent()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2504, __extension__ __PRETTY_FUNCTION__))
;
2505
2506 // Evaluate the initializer to check whether it's a constant expression.
2507 Eval->HasConstantInitialization =
2508 evaluateValueImpl(Notes, true) && Notes.empty();
2509
2510 // If evaluation as a constant initializer failed, allow re-evaluation as a
2511 // non-constant initializer if we later find we want the value.
2512 if (!Eval->HasConstantInitialization)
2513 Eval->WasEvaluated = false;
2514
2515 return Eval->HasConstantInitialization;
2516}
2517
2518bool VarDecl::isParameterPack() const {
2519 return isa<PackExpansionType>(getType());
2520}
2521
2522template<typename DeclT>
2523static DeclT *getDefinitionOrSelf(DeclT *D) {
2524 assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2524, __extension__ __PRETTY_FUNCTION__))
;
2525 if (auto *Def = D->getDefinition())
2526 return Def;
2527 return D;
2528}
2529
2530bool VarDecl::isEscapingByref() const {
2531 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2532}
2533
2534bool VarDecl::isNonEscapingByref() const {
2535 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2536}
2537
2538VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2539 const VarDecl *VD = this;
2540
2541 // If this is an instantiated member, walk back to the template from which
2542 // it was instantiated.
2543 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2544 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2545 VD = VD->getInstantiatedFromStaticDataMember();
2546 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2547 VD = NewVD;
2548 }
2549 }
2550
2551 // If it's an instantiated variable template specialization, find the
2552 // template or partial specialization from which it was instantiated.
2553 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2554 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2555 auto From = VDTemplSpec->getInstantiatedFrom();
2556 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2557 while (!VTD->isMemberSpecialization()) {
2558 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2559 if (!NewVTD)
2560 break;
2561 VTD = NewVTD;
2562 }
2563 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2564 }
2565 if (auto *VTPSD =
2566 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2567 while (!VTPSD->isMemberSpecialization()) {
2568 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2569 if (!NewVTPSD)
2570 break;
2571 VTPSD = NewVTPSD;
2572 }
2573 return getDefinitionOrSelf<VarDecl>(VTPSD);
2574 }
2575 }
2576 }
2577
2578 // If this is the pattern of a variable template, find where it was
2579 // instantiated from. FIXME: Is this necessary?
2580 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2581 while (!VarTemplate->isMemberSpecialization()) {
2582 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2583 if (!NewVT)
2584 break;
2585 VarTemplate = NewVT;
2586 }
2587
2588 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2589 }
2590
2591 if (VD == this)
2592 return nullptr;
2593 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2594}
2595
2596VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2597 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2598 return cast<VarDecl>(MSI->getInstantiatedFrom());
2599
2600 return nullptr;
2601}
2602
2603TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2604 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2605 return Spec->getSpecializationKind();
2606
2607 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2608 return MSI->getTemplateSpecializationKind();
2609
2610 return TSK_Undeclared;
2611}
2612
2613TemplateSpecializationKind
2614VarDecl::getTemplateSpecializationKindForInstantiation() const {
2615 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2616 return MSI->getTemplateSpecializationKind();
2617
2618 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2619 return Spec->getSpecializationKind();
2620
2621 return TSK_Undeclared;
2622}
2623
2624SourceLocation VarDecl::getPointOfInstantiation() const {
2625 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2626 return Spec->getPointOfInstantiation();
2627
2628 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2629 return MSI->getPointOfInstantiation();
2630
2631 return SourceLocation();
2632}
2633
2634VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2635 return getASTContext().getTemplateOrSpecializationInfo(this)
2636 .dyn_cast<VarTemplateDecl *>();
2637}
2638
2639void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2640 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2641}
2642
2643bool VarDecl::isKnownToBeDefined() const {
2644 const auto &LangOpts = getASTContext().getLangOpts();
2645 // In CUDA mode without relocatable device code, variables of form 'extern
2646 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2647 // memory pool. These are never undefined variables, even if they appear
2648 // inside of an anon namespace or static function.
2649 //
2650 // With CUDA relocatable device code enabled, these variables don't get
2651 // special handling; they're treated like regular extern variables.
2652 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2653 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2654 isa<IncompleteArrayType>(getType()))
2655 return true;
2656
2657 return hasDefinition();
2658}
2659
2660bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2661 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2662 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2663 !hasAttr<AlwaysDestroyAttr>()));
2664}
2665
2666QualType::DestructionKind
2667VarDecl::needsDestruction(const ASTContext &Ctx) const {
2668 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2669 if (Eval->HasConstantDestruction)
2670 return QualType::DK_none;
2671
2672 if (isNoDestroy(Ctx))
2673 return QualType::DK_none;
2674
2675 return getType().isDestructedType();
2676}
2677
2678MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2679 if (isStaticDataMember())
2680 // FIXME: Remove ?
2681 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2682 return getASTContext().getTemplateOrSpecializationInfo(this)
2683 .dyn_cast<MemberSpecializationInfo *>();
2684 return nullptr;
2685}
2686
2687void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2688 SourceLocation PointOfInstantiation) {
2689 assert((isa<VarTemplateSpecializationDecl>(this) ||(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2691, __extension__ __PRETTY_FUNCTION__))
2690 getMemberSpecializationInfo()) &&(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2691, __extension__ __PRETTY_FUNCTION__))
2691 "not a variable or static data member template specialization")(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2691, __extension__ __PRETTY_FUNCTION__))
;
2692
2693 if (VarTemplateSpecializationDecl *Spec =
2694 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2695 Spec->setSpecializationKind(TSK);
2696 if (TSK != TSK_ExplicitSpecialization &&
2697 PointOfInstantiation.isValid() &&
2698 Spec->getPointOfInstantiation().isInvalid()) {
2699 Spec->setPointOfInstantiation(PointOfInstantiation);
2700 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2701 L->InstantiationRequested(this);
2702 }
2703 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2704 MSI->setTemplateSpecializationKind(TSK);
2705 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2706 MSI->getPointOfInstantiation().isInvalid()) {
2707 MSI->setPointOfInstantiation(PointOfInstantiation);
2708 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2709 L->InstantiationRequested(this);
2710 }
2711 }
2712}
2713
2714void
2715VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2716 TemplateSpecializationKind TSK) {
2717 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&(static_cast <bool> (getASTContext().getTemplateOrSpecializationInfo
(this).isNull() && "Previous template or instantiation?"
) ? void (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2718, __extension__ __PRETTY_FUNCTION__))
2718 "Previous template or instantiation?")(static_cast <bool> (getASTContext().getTemplateOrSpecializationInfo
(this).isNull() && "Previous template or instantiation?"
) ? void (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2718, __extension__ __PRETTY_FUNCTION__))
;
2719 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2720}
2721
2722//===----------------------------------------------------------------------===//
2723// ParmVarDecl Implementation
2724//===----------------------------------------------------------------------===//
2725
2726ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2727 SourceLocation StartLoc,
2728 SourceLocation IdLoc, IdentifierInfo *Id,
2729 QualType T, TypeSourceInfo *TInfo,
2730 StorageClass S, Expr *DefArg) {
2731 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2732 S, DefArg);
2733}
2734
2735QualType ParmVarDecl::getOriginalType() const {
2736 TypeSourceInfo *TSI = getTypeSourceInfo();
2737 QualType T = TSI ? TSI->getType() : getType();
2738 if (const auto *DT = dyn_cast<DecayedType>(T))
2739 return DT->getOriginalType();
2740 return T;
2741}
2742
2743ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2744 return new (C, ID)
2745 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2746 nullptr, QualType(), nullptr, SC_None, nullptr);
2747}
2748
2749SourceRange ParmVarDecl::getSourceRange() const {
2750 if (!hasInheritedDefaultArg()) {
2751 SourceRange ArgRange = getDefaultArgRange();
2752 if (ArgRange.isValid())
2753 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2754 }
2755
2756 // DeclaratorDecl considers the range of postfix types as overlapping with the
2757 // declaration name, but this is not the case with parameters in ObjC methods.
2758 if (isa<ObjCMethodDecl>(getDeclContext()))
2759 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2760
2761 return DeclaratorDecl::getSourceRange();
2762}
2763
2764bool ParmVarDecl::isDestroyedInCallee() const {
2765 if (hasAttr<NSConsumedAttr>())
2766 return true;
2767
2768 auto *RT = getType()->getAs<RecordType>();
2769 if (RT && RT->getDecl()->isParamDestroyedInCallee())
2770 return true;
2771
2772 return false;
2773}
2774
2775Expr *ParmVarDecl::getDefaultArg() {
2776 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!")(static_cast <bool> (!hasUnparsedDefaultArg() &&
"Default argument is not yet parsed!") ? void (0) : __assert_fail
("!hasUnparsedDefaultArg() && \"Default argument is not yet parsed!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2776, __extension__ __PRETTY_FUNCTION__))
;
2777 assert(!hasUninstantiatedDefaultArg() &&(static_cast <bool> (!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!") ? void (0) : __assert_fail
("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2778, __extension__ __PRETTY_FUNCTION__))
2778 "Default argument is not yet instantiated!")(static_cast <bool> (!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!") ? void (0) : __assert_fail
("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2778, __extension__ __PRETTY_FUNCTION__))
;
2779
2780 Expr *Arg = getInit();
2781 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2782 return E->getSubExpr();
2783
2784 return Arg;
2785}
2786
2787void ParmVarDecl::setDefaultArg(Expr *defarg) {
2788 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2789 Init = defarg;
2790}
2791
2792SourceRange ParmVarDecl::getDefaultArgRange() const {
2793 switch (ParmVarDeclBits.DefaultArgKind) {
2794 case DAK_None:
2795 case DAK_Unparsed:
2796 // Nothing we can do here.
2797 return SourceRange();
2798
2799 case DAK_Uninstantiated:
2800 return getUninstantiatedDefaultArg()->getSourceRange();
2801
2802 case DAK_Normal:
2803 if (const Expr *E = getInit())
2804 return E->getSourceRange();
2805
2806 // Missing an actual expression, may be invalid.
2807 return SourceRange();
2808 }
2809 llvm_unreachable("Invalid default argument kind.")::llvm::llvm_unreachable_internal("Invalid default argument kind."
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2809)
;
2810}
2811
2812void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2813 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2814 Init = arg;
2815}
2816
2817Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2818 assert(hasUninstantiatedDefaultArg() &&(static_cast <bool> (hasUninstantiatedDefaultArg() &&
"Wrong kind of initialization expression!") ? void (0) : __assert_fail
("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2819, __extension__ __PRETTY_FUNCTION__))
2819 "Wrong kind of initialization expression!")(static_cast <bool> (hasUninstantiatedDefaultArg() &&
"Wrong kind of initialization expression!") ? void (0) : __assert_fail
("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2819, __extension__ __PRETTY_FUNCTION__))
;
2820 return cast_or_null<Expr>(Init.get<Stmt *>());
2821}
2822
2823bool ParmVarDecl::hasDefaultArg() const {
2824 // FIXME: We should just return false for DAK_None here once callers are
2825 // prepared for the case that we encountered an invalid default argument and
2826 // were unable to even build an invalid expression.
2827 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2828 !Init.isNull();
2829}
2830
2831void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2832 getASTContext().setParameterIndex(this, parameterIndex);
2833 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2834}
2835
2836unsigned ParmVarDecl::getParameterIndexLarge() const {
2837 return getASTContext().getParameterIndex(this);
2838}
2839
2840//===----------------------------------------------------------------------===//
2841// FunctionDecl Implementation
2842//===----------------------------------------------------------------------===//
2843
2844FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2845 SourceLocation StartLoc,
2846 const DeclarationNameInfo &NameInfo, QualType T,
2847 TypeSourceInfo *TInfo, StorageClass S,
2848 bool isInlineSpecified,
2849 ConstexprSpecKind ConstexprKind,
2850 Expr *TrailingRequiresClause)
2851 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2852 StartLoc),
2853 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2854 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2855 assert(T.isNull() || T->isFunctionType())(static_cast <bool> (T.isNull() || T->isFunctionType
()) ? void (0) : __assert_fail ("T.isNull() || T->isFunctionType()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2855, __extension__ __PRETTY_FUNCTION__))
;
2856 FunctionDeclBits.SClass = S;
2857 FunctionDeclBits.IsInline = isInlineSpecified;
2858 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2859 FunctionDeclBits.IsVirtualAsWritten = false;
2860 FunctionDeclBits.IsPure = false;
2861 FunctionDeclBits.HasInheritedPrototype = false;
2862 FunctionDeclBits.HasWrittenPrototype = true;
2863 FunctionDeclBits.IsDeleted = false;
2864 FunctionDeclBits.IsTrivial = false;
2865 FunctionDeclBits.IsTrivialForCall = false;
2866 FunctionDeclBits.IsDefaulted = false;
2867 FunctionDeclBits.IsExplicitlyDefaulted = false;
2868 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2869 FunctionDeclBits.HasImplicitReturnZero = false;
2870 FunctionDeclBits.IsLateTemplateParsed = false;
2871 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2872 FunctionDeclBits.InstantiationIsPending = false;
2873 FunctionDeclBits.UsesSEHTry = false;
2874 FunctionDeclBits.UsesFPIntrin = false;
2875 FunctionDeclBits.HasSkippedBody = false;
2876 FunctionDeclBits.WillHaveBody = false;
2877 FunctionDeclBits.IsMultiVersion = false;
2878 FunctionDeclBits.IsCopyDeductionCandidate = false;
2879 FunctionDeclBits.HasODRHash = false;
2880 if (TrailingRequiresClause)
2881 setTrailingRequiresClause(TrailingRequiresClause);
2882}
2883
2884void FunctionDecl::getNameForDiagnostic(
2885 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2886 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2887 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2888 if (TemplateArgs)
2889 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2890}
2891
2892bool FunctionDecl::isVariadic() const {
2893 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2894 return FT->isVariadic();
2895 return false;
2896}
2897
2898FunctionDecl::DefaultedFunctionInfo *
2899FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2900 ArrayRef<DeclAccessPair> Lookups) {
2901 DefaultedFunctionInfo *Info = new (Context.Allocate(
2902 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2903 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2904 DefaultedFunctionInfo;
2905 Info->NumLookups = Lookups.size();
2906 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2907 Info->getTrailingObjects<DeclAccessPair>());
2908 return Info;
2909}
2910
2911void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2912 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this")(static_cast <bool> (!FunctionDeclBits.HasDefaultedFunctionInfo
&& "already have this") ? void (0) : __assert_fail (
"!FunctionDeclBits.HasDefaultedFunctionInfo && \"already have this\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2912, __extension__ __PRETTY_FUNCTION__))
;
2913 assert(!Body && "can't replace function body with defaulted function info")(static_cast <bool> (!Body && "can't replace function body with defaulted function info"
) ? void (0) : __assert_fail ("!Body && \"can't replace function body with defaulted function info\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 2913, __extension__ __PRETTY_FUNCTION__))
;
2914
2915 FunctionDeclBits.HasDefaultedFunctionInfo = true;
2916 DefaultedInfo = Info;
2917}
2918
2919FunctionDecl::DefaultedFunctionInfo *
2920FunctionDecl::getDefaultedFunctionInfo() const {
2921 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2922}
2923
2924bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2925 for (auto I : redecls()) {
2926 if (I->doesThisDeclarationHaveABody()) {
2927 Definition = I;
2928 return true;
2929 }
2930 }
2931
2932 return false;
2933}
2934
2935bool FunctionDecl::hasTrivialBody() const {
2936 Stmt *S = getBody();
2937 if (!S) {
2938 // Since we don't have a body for this function, we don't know if it's
2939 // trivial or not.
2940 return false;
2941 }
2942
2943 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2944 return true;
2945 return false;
2946}
2947
2948bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2949 if (!getFriendObjectKind())
2950 return false;
2951
2952 // Check for a friend function instantiated from a friend function
2953 // definition in a templated class.
2954 if (const FunctionDecl *InstantiatedFrom =
2955 getInstantiatedFromMemberFunction())
2956 return InstantiatedFrom->getFriendObjectKind() &&
2957 InstantiatedFrom->isThisDeclarationADefinition();
2958
2959 // Check for a friend function template instantiated from a friend
2960 // function template definition in a templated class.
2961 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2962 if (const FunctionTemplateDecl *InstantiatedFrom =
2963 Template->getInstantiatedFromMemberTemplate())
2964 return InstantiatedFrom->getFriendObjectKind() &&
2965 InstantiatedFrom->isThisDeclarationADefinition();
2966 }
2967
2968 return false;
2969}
2970
2971bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2972 bool CheckForPendingFriendDefinition) const {
2973 for (const FunctionDecl *FD : redecls()) {
2974 if (FD->isThisDeclarationADefinition()) {
2975 Definition = FD;
2976 return true;
2977 }
2978
2979 // If this is a friend function defined in a class template, it does not
2980 // have a body until it is used, nevertheless it is a definition, see
2981 // [temp.inst]p2:
2982 //
2983 // ... for the purpose of determining whether an instantiated redeclaration
2984 // is valid according to [basic.def.odr] and [class.mem], a declaration that
2985 // corresponds to a definition in the template is considered to be a
2986 // definition.
2987 //
2988 // The following code must produce redefinition error:
2989 //
2990 // template<typename T> struct C20 { friend void func_20() {} };
2991 // C20<int> c20i;
2992 // void func_20() {}
2993 //
2994 if (CheckForPendingFriendDefinition &&
2995 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
2996 Definition = FD;
2997 return true;
2998 }
2999 }
3000
3001 return false;
3002}
3003
3004Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3005 if (!hasBody(Definition))
3006 return nullptr;
3007
3008 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&(static_cast <bool> (!Definition->FunctionDeclBits.HasDefaultedFunctionInfo
&& "definition should not have a body") ? void (0) :
__assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3009, __extension__ __PRETTY_FUNCTION__))
3009 "definition should not have a body")(static_cast <bool> (!Definition->FunctionDeclBits.HasDefaultedFunctionInfo
&& "definition should not have a body") ? void (0) :
__assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3009, __extension__ __PRETTY_FUNCTION__))
;
3010 if (Definition->Body)
3011 return Definition->Body.get(getASTContext().getExternalSource());
3012
3013 return nullptr;
3014}
3015
3016void FunctionDecl::setBody(Stmt *B) {
3017 FunctionDeclBits.HasDefaultedFunctionInfo = false;
3018 Body = LazyDeclStmtPtr(B);
3019 if (B)
3020 EndRangeLoc = B->getEndLoc();
3021}
3022
3023void FunctionDecl::setPure(bool P) {
3024 FunctionDeclBits.IsPure = P;
3025 if (P)
3026 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3027 Parent->markedVirtualFunctionPure();
3028}
3029
3030template<std::size_t Len>
3031static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3032 IdentifierInfo *II = ND->getIdentifier();
3033 return II && II->isStr(Str);
3034}
3035
3036bool FunctionDecl::isMain() const {
3037 const TranslationUnitDecl *tunit =
3038 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3039 return tunit &&
3040 !tunit->getASTContext().getLangOpts().Freestanding &&
3041 isNamed(this, "main");
3042}
3043
3044bool FunctionDecl::isMSVCRTEntryPoint() const {
3045 const TranslationUnitDecl *TUnit =
3046 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3047 if (!TUnit)
3048 return false;
3049
3050 // Even though we aren't really targeting MSVCRT if we are freestanding,
3051 // semantic analysis for these functions remains the same.
3052
3053 // MSVCRT entry points only exist on MSVCRT targets.
3054 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3055 return false;
3056
3057 // Nameless functions like constructors cannot be entry points.
3058 if (!getIdentifier())
3059 return false;
3060
3061 return llvm::StringSwitch<bool>(getName())
3062 .Cases("main", // an ANSI console app
3063 "wmain", // a Unicode console App
3064 "WinMain", // an ANSI GUI app
3065 "wWinMain", // a Unicode GUI app
3066 "DllMain", // a DLL
3067 true)
3068 .Default(false);
3069}
3070
3071bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3072 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName)(static_cast <bool> (getDeclName().getNameKind() == DeclarationName
::CXXOperatorName) ? void (0) : __assert_fail ("getDeclName().getNameKind() == DeclarationName::CXXOperatorName"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3072, __extension__ __PRETTY_FUNCTION__))
;
3073 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||(static_cast <bool> (getDeclName().getCXXOverloadedOperator
() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete
|| getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)
? void (0) : __assert_fail ("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3076, __extension__ __PRETTY_FUNCTION__))
3074 getDeclName().getCXXOverloadedOperator() == OO_Delete ||(static_cast <bool> (getDeclName().getCXXOverloadedOperator
() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete
|| getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)
? void (0) : __assert_fail ("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3076, __extension__ __PRETTY_FUNCTION__))
3075 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||(static_cast <bool> (getDeclName().getCXXOverloadedOperator
() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete
|| getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)
? void (0) : __assert_fail ("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3076, __extension__ __PRETTY_FUNCTION__))
3076 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)(static_cast <bool> (getDeclName().getCXXOverloadedOperator
() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete
|| getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)
? void (0) : __assert_fail ("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3076, __extension__ __PRETTY_FUNCTION__))
;
3077
3078 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3079 return false;
3080
3081 const auto *proto = getType()->castAs<FunctionProtoType>();
3082 if (proto->getNumParams() != 2 || proto->isVariadic())
3083 return false;
3084
3085 ASTContext &Context =
3086 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3087 ->getASTContext();
3088
3089 // The result type and first argument type are constant across all
3090 // these operators. The second argument must be exactly void*.
3091 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3092}
3093
3094bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3095 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3096 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3097 return false;
3098 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3099 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3100 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3101 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3102 return false;
3103
3104 if (isa<CXXRecordDecl>(getDeclContext()))
3105 return false;
3106
3107 // This can only fail for an invalid 'operator new' declaration.
3108 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3109 return false;
3110
3111 const auto *FPT = getType()->castAs<FunctionProtoType>();
3112 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3113 return false;
3114
3115 // If this is a single-parameter function, it must be a replaceable global
3116 // allocation or deallocation function.
3117 if (FPT->getNumParams() == 1)
3118 return true;
3119
3120 unsigned Params = 1;
3121 QualType Ty = FPT->getParamType(Params);
3122 ASTContext &Ctx = getASTContext();
3123
3124 auto Consume = [&] {
3125 ++Params;
3126 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3127 };
3128
3129 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3130 bool IsSizedDelete = false;
3131 if (Ctx.getLangOpts().SizedDeallocation &&
3132 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3133 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3134 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3135 IsSizedDelete = true;
3136 Consume();
3137 }
3138
3139 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3140 // new/delete.
3141 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3142 Consume();
3143 if (AlignmentParam)
3144 *AlignmentParam = Params;
3145 }
3146
3147 // Finally, if this is not a sized delete, the final parameter can
3148 // be a 'const std::nothrow_t&'.
3149 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3150 Ty = Ty->getPointeeType();
3151 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3152 return false;
3153 if (Ty->isNothrowT()) {
3154 if (IsNothrow)
3155 *IsNothrow = true;
3156 Consume();
3157 }
3158 }
3159
3160 return Params == FPT->getNumParams();
3161}
3162
3163bool FunctionDecl::isInlineBuiltinDeclaration() const {
3164 if (!getBuiltinID())
3165 return false;
3166
3167 const FunctionDecl *Definition;
3168 return hasBody(Definition) && Definition->isInlineSpecified();
3169}
3170
3171bool FunctionDecl::isDestroyingOperatorDelete() const {
3172 // C++ P0722:
3173 // Within a class C, a single object deallocation function with signature
3174 // (T, std::destroying_delete_t, <more params>)
3175 // is a destroying operator delete.
3176 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3177 getNumParams() < 2)
3178 return false;
3179
3180 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3181 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3182 RD->getIdentifier()->isStr("destroying_delete_t");
3183}
3184
3185LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3186 return getDeclLanguageLinkage(*this);
3187}
3188
3189bool FunctionDecl::isExternC() const {
3190 return isDeclExternC(*this);
3191}
3192
3193bool FunctionDecl::isInExternCContext() const {
3194 if (hasAttr<OpenCLKernelAttr>())
3195 return true;
3196 return getLexicalDeclContext()->isExternCContext();
3197}
3198
3199bool FunctionDecl::isInExternCXXContext() const {
3200 return getLexicalDeclContext()->isExternCXXContext();
3201}
3202
3203bool FunctionDecl::isGlobal() const {
3204 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3205 return Method->isStatic();
3206
3207 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3208 return false;
3209
3210 for (const DeclContext *DC = getDeclContext();
3211 DC->isNamespace();
3212 DC = DC->getParent()) {
3213 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3214 if (!Namespace->getDeclName())
3215 return false;
3216 break;
3217 }
3218 }
3219
3220 return true;
3221}
3222
3223bool FunctionDecl::isNoReturn() const {
3224 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3225 hasAttr<C11NoReturnAttr>())
3226 return true;
3227
3228 if (auto *FnTy = getType()->getAs<FunctionType>())
3229 return FnTy->getNoReturnAttr();
3230
3231 return false;
3232}
3233
3234
3235MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3236 if (hasAttr<TargetAttr>())
3237 return MultiVersionKind::Target;
3238 if (hasAttr<CPUDispatchAttr>())
3239 return MultiVersionKind::CPUDispatch;
3240 if (hasAttr<CPUSpecificAttr>())
3241 return MultiVersionKind::CPUSpecific;
3242 return MultiVersionKind::None;
3243}
3244
3245bool FunctionDecl::isCPUDispatchMultiVersion() const {
3246 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3247}
3248
3249bool FunctionDecl::isCPUSpecificMultiVersion() const {
3250 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3251}
3252
3253bool FunctionDecl::isTargetMultiVersion() const {
3254 return isMultiVersion() && hasAttr<TargetAttr>();
3255}
3256
3257void
3258FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3259 redeclarable_base::setPreviousDecl(PrevDecl);
3260
3261 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3262 FunctionTemplateDecl *PrevFunTmpl
3263 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3264 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch")(static_cast <bool> ((!PrevDecl || PrevFunTmpl) &&
"Function/function template mismatch") ? void (0) : __assert_fail
("(!PrevDecl || PrevFunTmpl) && \"Function/function template mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3264, __extension__ __PRETTY_FUNCTION__))
;
3265 FunTmpl->setPreviousDecl(PrevFunTmpl);
3266 }
3267
3268 if (PrevDecl && PrevDecl->isInlined())
3269 setImplicitlyInline(true);
3270}
3271
3272FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3273
3274/// Returns a value indicating whether this function corresponds to a builtin
3275/// function.
3276///
3277/// The function corresponds to a built-in function if it is declared at
3278/// translation scope or within an extern "C" block and its name matches with
3279/// the name of a builtin. The returned value will be 0 for functions that do
3280/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3281/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3282/// value.
3283///
3284/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3285/// functions as their wrapped builtins. This shouldn't be done in general, but
3286/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3287unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3288 unsigned BuiltinID = 0;
3289
3290 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3291 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3292 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3293 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3294 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3295 BuiltinID = A->getID();
3296 }
3297
3298 if (!BuiltinID)
3299 return 0;
3300
3301 // If the function is marked "overloadable", it has a different mangled name
3302 // and is not the C library function.
3303 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3304 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3305 return 0;
3306
3307 ASTContext &Context = getASTContext();
3308 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3309 return BuiltinID;
3310
3311 // This function has the name of a known C library
3312 // function. Determine whether it actually refers to the C library
3313 // function or whether it just has the same name.
3314
3315 // If this is a static function, it's not a builtin.
3316 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3317 return 0;
3318
3319 // OpenCL v1.2 s6.9.f - The library functions defined in
3320 // the C99 standard headers are not available.
3321 if (Context.getLangOpts().OpenCL &&
3322 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3323 return 0;
3324
3325 // CUDA does not have device-side standard library. printf and malloc are the
3326 // only special cases that are supported by device-side runtime.
3327 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3328 !hasAttr<CUDAHostAttr>() &&
3329 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3330 return 0;
3331
3332 // As AMDGCN implementation of OpenMP does not have a device-side standard
3333 // library, none of the predefined library functions except printf and malloc
3334 // should be treated as a builtin i.e. 0 should be returned for them.
3335 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3336 Context.getLangOpts().OpenMPIsDevice &&
3337 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3338 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3339 return 0;
3340
3341 return BuiltinID;
3342}
3343
3344/// getNumParams - Return the number of parameters this function must have
3345/// based on its FunctionType. This is the length of the ParamInfo array
3346/// after it has been created.
3347unsigned FunctionDecl::getNumParams() const {
3348 const auto *FPT = getType()->getAs<FunctionProtoType>();
3349 return FPT ? FPT->getNumParams() : 0;
3350}
3351
3352void FunctionDecl::setParams(ASTContext &C,
3353 ArrayRef<ParmVarDecl *> NewParamInfo) {
3354 assert(!ParamInfo && "Already has param info!")(static_cast <bool> (!ParamInfo && "Already has param info!"
) ? void (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3354, __extension__ __PRETTY_FUNCTION__))
;
3355 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!")(static_cast <bool> (NewParamInfo.size() == getNumParams
() && "Parameter count mismatch!") ? void (0) : __assert_fail
("NewParamInfo.size() == getNumParams() && \"Parameter count mismatch!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3355, __extension__ __PRETTY_FUNCTION__))
;
3356
3357 // Zero params -> null pointer.
3358 if (!NewParamInfo.empty()) {
3359 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3360 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3361 }
3362}
3363
3364/// getMinRequiredArguments - Returns the minimum number of arguments
3365/// needed to call this function. This may be fewer than the number of
3366/// function parameters, if some of the parameters have default
3367/// arguments (in C++) or are parameter packs (C++11).
3368unsigned FunctionDecl::getMinRequiredArguments() const {
3369 if (!getASTContext().getLangOpts().CPlusPlus)
3370 return getNumParams();
3371
3372 // Note that it is possible for a parameter with no default argument to
3373 // follow a parameter with a default argument.
3374 unsigned NumRequiredArgs = 0;
3375 unsigned MinParamsSoFar = 0;
3376 for (auto *Param : parameters()) {
3377 if (!Param->isParameterPack()) {
3378 ++MinParamsSoFar;
3379 if (!Param->hasDefaultArg())
3380 NumRequiredArgs = MinParamsSoFar;
3381 }
3382 }
3383 return NumRequiredArgs;
3384}
3385
3386bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3387 return getNumParams() == 1 ||
3388 (getNumParams() > 1 &&
3389 std::all_of(param_begin() + 1, param_end(),
3390 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3391}
3392
3393/// The combination of the extern and inline keywords under MSVC forces
3394/// the function to be required.
3395///
3396/// Note: This function assumes that we will only get called when isInlined()
3397/// would return true for this FunctionDecl.
3398bool FunctionDecl::isMSExternInline() const {
3399 assert(isInlined() && "expected to get called on an inlined function!")(static_cast <bool> (isInlined() && "expected to get called on an inlined function!"
) ? void (0) : __assert_fail ("isInlined() && \"expected to get called on an inlined function!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3399, __extension__ __PRETTY_FUNCTION__))
;
3400
3401 const ASTContext &Context = getASTContext();
3402 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3403 !hasAttr<DLLExportAttr>())
3404 return false;
3405
3406 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3407 FD = FD->getPreviousDecl())
3408 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3409 return true;
3410
3411 return false;
3412}
3413
3414static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3415 if (Redecl->getStorageClass() != SC_Extern)
3416 return false;
3417
3418 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3419 FD = FD->getPreviousDecl())
3420 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3421 return false;
3422
3423 return true;
3424}
3425
3426static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3427 // Only consider file-scope declarations in this test.
3428 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3429 return false;
3430
3431 // Only consider explicit declarations; the presence of a builtin for a
3432 // libcall shouldn't affect whether a definition is externally visible.
3433 if (Redecl->isImplicit())
3434 return false;
3435
3436 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3437 return true; // Not an inline definition
3438
3439 return false;
3440}
3441
3442/// For a function declaration in C or C++, determine whether this
3443/// declaration causes the definition to be externally visible.
3444///
3445/// For instance, this determines if adding the current declaration to the set
3446/// of redeclarations of the given functions causes
3447/// isInlineDefinitionExternallyVisible to change from false to true.
3448bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3449 assert(!doesThisDeclarationHaveABody() &&(static_cast <bool> (!doesThisDeclarationHaveABody() &&
"Must have a declaration without a body.") ? void (0) : __assert_fail
("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3450, __extension__ __PRETTY_FUNCTION__))
3450 "Must have a declaration without a body.")(static_cast <bool> (!doesThisDeclarationHaveABody() &&
"Must have a declaration without a body.") ? void (0) : __assert_fail
("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3450, __extension__ __PRETTY_FUNCTION__))
;
3451
3452 ASTContext &Context = getASTContext();
3453
3454 if (Context.getLangOpts().MSVCCompat) {
3455 const FunctionDecl *Definition;
3456 if (hasBody(Definition) && Definition->isInlined() &&
3457 redeclForcesDefMSVC(this))
3458 return true;
3459 }
3460
3461 if (Context.getLangOpts().CPlusPlus)
3462 return false;
3463
3464 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3465 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3466 // an externally visible definition.
3467 //
3468 // FIXME: What happens if gnu_inline gets added on after the first
3469 // declaration?
3470 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3471 return false;
3472
3473 const FunctionDecl *Prev = this;
3474 bool FoundBody = false;
3475 while ((Prev = Prev->getPreviousDecl())) {
3476 FoundBody |= Prev->doesThisDeclarationHaveABody();
3477
3478 if (Prev->doesThisDeclarationHaveABody()) {
3479 // If it's not the case that both 'inline' and 'extern' are
3480 // specified on the definition, then it is always externally visible.
3481 if (!Prev->isInlineSpecified() ||
3482 Prev->getStorageClass() != SC_Extern)
3483 return false;
3484 } else if (Prev->isInlineSpecified() &&
3485 Prev->getStorageClass() != SC_Extern) {
3486 return false;
3487 }
3488 }
3489 return FoundBody;
3490 }
3491
3492 // C99 6.7.4p6:
3493 // [...] If all of the file scope declarations for a function in a
3494 // translation unit include the inline function specifier without extern,
3495 // then the definition in that translation unit is an inline definition.
3496 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3497 return false;
3498 const FunctionDecl *Prev = this;
3499 bool FoundBody = false;
3500 while ((Prev = Prev->getPreviousDecl())) {
3501 FoundBody |= Prev->doesThisDeclarationHaveABody();
3502 if (RedeclForcesDefC99(Prev))
3503 return false;
3504 }
3505 return FoundBody;
3506}
3507
3508FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3509 const TypeSourceInfo *TSI = getTypeSourceInfo();
3510 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3511 : FunctionTypeLoc();
3512}
3513
3514SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3515 FunctionTypeLoc FTL = getFunctionTypeLoc();
3516 if (!FTL)
3517 return SourceRange();
3518
3519 // Skip self-referential return types.
3520 const SourceManager &SM = getASTContext().getSourceManager();
3521 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3522 SourceLocation Boundary = getNameInfo().getBeginLoc();
3523 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3524 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3525 return SourceRange();
3526
3527 return RTRange;
3528}
3529
3530SourceRange FunctionDecl::getParametersSourceRange() const {
3531 unsigned NP = getNumParams();
3532 SourceLocation EllipsisLoc = getEllipsisLoc();
3533
3534 if (NP == 0 && EllipsisLoc.isInvalid())
3535 return SourceRange();
3536
3537 SourceLocation Begin =
3538 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3539 SourceLocation End = EllipsisLoc.isValid()
3540 ? EllipsisLoc
3541 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3542
3543 return SourceRange(Begin, End);
3544}
3545
3546SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3547 FunctionTypeLoc FTL = getFunctionTypeLoc();
3548 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3549}
3550
3551/// For an inline function definition in C, or for a gnu_inline function
3552/// in C++, determine whether the definition will be externally visible.
3553///
3554/// Inline function definitions are always available for inlining optimizations.
3555/// However, depending on the language dialect, declaration specifiers, and
3556/// attributes, the definition of an inline function may or may not be
3557/// "externally" visible to other translation units in the program.
3558///
3559/// In C99, inline definitions are not externally visible by default. However,
3560/// if even one of the global-scope declarations is marked "extern inline", the
3561/// inline definition becomes externally visible (C99 6.7.4p6).
3562///
3563/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3564/// definition, we use the GNU semantics for inline, which are nearly the
3565/// opposite of C99 semantics. In particular, "inline" by itself will create
3566/// an externally visible symbol, but "extern inline" will not create an
3567/// externally visible symbol.
3568bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3569 assert((doesThisDeclarationHaveABody() || willHaveBody() ||(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3571, __extension__ __PRETTY_FUNCTION__))
3570 hasAttr<AliasAttr>()) &&(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3571, __extension__ __PRETTY_FUNCTION__))
3571 "Must be a function definition")(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3571, __extension__ __PRETTY_FUNCTION__))
;
3572 assert(isInlined() && "Function must be inline")(static_cast <bool> (isInlined() && "Function must be inline"
) ? void (0) : __assert_fail ("isInlined() && \"Function must be inline\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3572, __extension__ __PRETTY_FUNCTION__))
;
3573 ASTContext &Context = getASTContext();
3574
3575 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3576 // Note: If you change the logic here, please change
3577 // doesDeclarationForceExternallyVisibleDefinition as well.
3578 //
3579 // If it's not the case that both 'inline' and 'extern' are
3580 // specified on the definition, then this inline definition is
3581 // externally visible.
3582 if (Context.getLangOpts().CPlusPlus)
3583 return false;
3584 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3585 return true;
3586
3587 // If any declaration is 'inline' but not 'extern', then this definition
3588 // is externally visible.
3589 for (auto Redecl : redecls()) {
3590 if (Redecl->isInlineSpecified() &&
3591 Redecl->getStorageClass() != SC_Extern)
3592 return true;
3593 }
3594
3595 return false;
3596 }
3597
3598 // The rest of this function is C-only.
3599 assert(!Context.getLangOpts().CPlusPlus &&(static_cast <bool> (!Context.getLangOpts().CPlusPlus &&
"should not use C inline rules in C++") ? void (0) : __assert_fail
("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3600, __extension__ __PRETTY_FUNCTION__))
3600 "should not use C inline rules in C++")(static_cast <bool> (!Context.getLangOpts().CPlusPlus &&
"should not use C inline rules in C++") ? void (0) : __assert_fail
("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3600, __extension__ __PRETTY_FUNCTION__))
;
3601
3602 // C99 6.7.4p6:
3603 // [...] If all of the file scope declarations for a function in a
3604 // translation unit include the inline function specifier without extern,
3605 // then the definition in that translation unit is an inline definition.
3606 for (auto Redecl : redecls()) {
3607 if (RedeclForcesDefC99(Redecl))
3608 return true;
3609 }
3610
3611 // C99 6.7.4p6:
3612 // An inline definition does not provide an external definition for the
3613 // function, and does not forbid an external definition in another
3614 // translation unit.
3615 return false;
3616}
3617
3618/// getOverloadedOperator - Which C++ overloaded operator this
3619/// function represents, if any.
3620OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3621 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3622 return getDeclName().getCXXOverloadedOperator();
3623 return OO_None;
3624}
3625
3626/// getLiteralIdentifier - The literal suffix identifier this function
3627/// represents, if any.
3628const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3629 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3630 return getDeclName().getCXXLiteralIdentifier();
3631 return nullptr;
3632}
3633
3634FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3635 if (TemplateOrSpecialization.isNull())
3636 return TK_NonTemplate;
3637 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3638 return TK_FunctionTemplate;
3639 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3640 return TK_MemberSpecialization;
3641 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3642 return TK_FunctionTemplateSpecialization;
3643 if (TemplateOrSpecialization.is
3644 <DependentFunctionTemplateSpecializationInfo*>())
3645 return TK_DependentFunctionTemplateSpecialization;
3646
3647 llvm_unreachable("Did we miss a TemplateOrSpecialization type?")::llvm::llvm_unreachable_internal("Did we miss a TemplateOrSpecialization type?"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3647)
;
3648}
3649
3650FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3651 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3652 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3653
3654 return nullptr;
3655}
3656
3657MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3658 if (auto *MSI =
3659 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3660 return MSI;
3661 if (auto *FTSI = TemplateOrSpecialization
3662 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3663 return FTSI->getMemberSpecializationInfo();
3664 return nullptr;
3665}
3666
3667void
3668FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3669 FunctionDecl *FD,
3670 TemplateSpecializationKind TSK) {
3671 assert(TemplateOrSpecialization.isNull() &&(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3672, __extension__ __PRETTY_FUNCTION__))
3672 "Member function is already a specialization")(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3672, __extension__ __PRETTY_FUNCTION__))
;
3673 MemberSpecializationInfo *Info
3674 = new (C) MemberSpecializationInfo(FD, TSK);
3675 TemplateOrSpecialization = Info;
3676}
3677
3678FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3679 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3680}
3681
3682void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3683 assert(TemplateOrSpecialization.isNull() &&(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3684, __extension__ __PRETTY_FUNCTION__))
3684 "Member function is already a specialization")(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3684, __extension__ __PRETTY_FUNCTION__))
;
3685 TemplateOrSpecialization = Template;
3686}
3687
3688bool FunctionDecl::isImplicitlyInstantiable() const {
3689 // If the function is invalid, it can't be implicitly instantiated.
3690 if (isInvalidDecl())
3691 return false;
3692
3693 switch (getTemplateSpecializationKindForInstantiation()) {
3694 case TSK_Undeclared:
3695 case TSK_ExplicitInstantiationDefinition:
3696 case TSK_ExplicitSpecialization:
3697 return false;
3698
3699 case TSK_ImplicitInstantiation:
3700 return true;
3701
3702 case TSK_ExplicitInstantiationDeclaration:
3703 // Handled below.
3704 break;
3705 }
3706
3707 // Find the actual template from which we will instantiate.
3708 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3709 bool HasPattern = false;
3710 if (PatternDecl)
3711 HasPattern = PatternDecl->hasBody(PatternDecl);
3712
3713 // C++0x [temp.explicit]p9:
3714 // Except for inline functions, other explicit instantiation declarations
3715 // have the effect of suppressing the implicit instantiation of the entity
3716 // to which they refer.
3717 if (!HasPattern || !PatternDecl)
3718 return true;
3719
3720 return PatternDecl->isInlined();
3721}
3722
3723bool FunctionDecl::isTemplateInstantiation() const {
3724 // FIXME: Remove this, it's not clear what it means. (Which template
3725 // specialization kind?)
3726 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3727}
3728
3729FunctionDecl *
3730FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3731 // If this is a generic lambda call operator specialization, its
3732 // instantiation pattern is always its primary template's pattern
3733 // even if its primary template was instantiated from another
3734 // member template (which happens with nested generic lambdas).
3735 // Since a lambda's call operator's body is transformed eagerly,
3736 // we don't have to go hunting for a prototype definition template
3737 // (i.e. instantiated-from-member-template) to use as an instantiation
3738 // pattern.
3739
3740 if (isGenericLambdaCallOperatorSpecialization(
3741 dyn_cast<CXXMethodDecl>(this))) {
3742 assert(getPrimaryTemplate() && "not a generic lambda call operator?")(static_cast <bool> (getPrimaryTemplate() && "not a generic lambda call operator?"
) ? void (0) : __assert_fail ("getPrimaryTemplate() && \"not a generic lambda call operator?\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3742, __extension__ __PRETTY_FUNCTION__))
;
3743 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3744 }
3745
3746 // Check for a declaration of this function that was instantiated from a
3747 // friend definition.
3748 const FunctionDecl *FD = nullptr;
3749 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3750 FD = this;
3751
3752 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3753 if (ForDefinition &&
3754 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3755 return nullptr;
3756 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3757 }
3758
3759 if (ForDefinition &&
3760 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3761 return nullptr;
3762
3763 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3764 // If we hit a point where the user provided a specialization of this
3765 // template, we're done looking.
3766 while (!ForDefinition || !Primary->isMemberSpecialization()) {
3767 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3768 if (!NewPrimary)
3769 break;
3770 Primary = NewPrimary;
3771 }
3772
3773 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3774 }
3775
3776 return nullptr;
3777}
3778
3779FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3780 if (FunctionTemplateSpecializationInfo *Info
3781 = TemplateOrSpecialization
3782 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3783 return Info->getTemplate();
3784 }
3785 return nullptr;
3786}
3787
3788FunctionTemplateSpecializationInfo *
3789FunctionDecl::getTemplateSpecializationInfo() const {
3790 return TemplateOrSpecialization
3791 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3792}
3793
3794const TemplateArgumentList *
3795FunctionDecl::getTemplateSpecializationArgs() const {
3796 if (FunctionTemplateSpecializationInfo *Info
3797 = TemplateOrSpecialization
3798 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3799 return Info->TemplateArguments;
3800 }
3801 return nullptr;
3802}
3803
3804const ASTTemplateArgumentListInfo *
3805FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3806 if (FunctionTemplateSpecializationInfo *Info
3807 = TemplateOrSpecialization
3808 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3809 return Info->TemplateArgumentsAsWritten;
3810 }
3811 return nullptr;
3812}
3813
3814void
3815FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3816 FunctionTemplateDecl *Template,
3817 const TemplateArgumentList *TemplateArgs,
3818 void *InsertPos,
3819 TemplateSpecializationKind TSK,
3820 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3821 SourceLocation PointOfInstantiation) {
3822 assert((TemplateOrSpecialization.isNull() ||(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3824, __extension__ __PRETTY_FUNCTION__))
3823 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3824, __extension__ __PRETTY_FUNCTION__))
3824 "Member function is already a specialization")(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3824, __extension__ __PRETTY_FUNCTION__))
;
3825 assert(TSK != TSK_Undeclared &&(static_cast <bool> (TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? void (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3826, __extension__ __PRETTY_FUNCTION__))
3826 "Must specify the type of function template specialization")(static_cast <bool> (TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? void (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3826, __extension__ __PRETTY_FUNCTION__))
;
3827 assert((TemplateOrSpecialization.isNull() ||(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3829, __extension__ __PRETTY_FUNCTION__))
3828 TSK == TSK_ExplicitSpecialization) &&(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3829, __extension__ __PRETTY_FUNCTION__))
3829 "Member specialization must be an explicit specialization")(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3829, __extension__ __PRETTY_FUNCTION__))
;
3830 FunctionTemplateSpecializationInfo *Info =
3831 FunctionTemplateSpecializationInfo::Create(
3832 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3833 PointOfInstantiation,
3834 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3835 TemplateOrSpecialization = Info;
3836 Template->addSpecialization(Info, InsertPos);
3837}
3838
3839void
3840FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3841 const UnresolvedSetImpl &Templates,
3842 const TemplateArgumentListInfo &TemplateArgs) {
3843 assert(TemplateOrSpecialization.isNull())(static_cast <bool> (TemplateOrSpecialization.isNull())
? void (0) : __assert_fail ("TemplateOrSpecialization.isNull()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3843, __extension__ __PRETTY_FUNCTION__))
;
1
'?' condition is true
3844 DependentFunctionTemplateSpecializationInfo *Info =
3845 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
2
Calling 'DependentFunctionTemplateSpecializationInfo::Create'
3846 TemplateArgs);
3847 TemplateOrSpecialization = Info;
3848}
3849
3850DependentFunctionTemplateSpecializationInfo *
3851FunctionDecl::getDependentSpecializationInfo() const {
3852 return TemplateOrSpecialization
3853 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3854}
3855
3856DependentFunctionTemplateSpecializationInfo *
3857DependentFunctionTemplateSpecializationInfo::Create(
3858 ASTContext &Context, const UnresolvedSetImpl &Ts,
3859 const TemplateArgumentListInfo &TArgs) {
3860 void *Buffer = Context.Allocate(
3861 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3862 TArgs.size(), Ts.size()));
3863 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3
Calling constructor for 'DependentFunctionTemplateSpecializationInfo'
3864}
3865
3866DependentFunctionTemplateSpecializationInfo::
3867DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3868 const TemplateArgumentListInfo &TArgs)
3869 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3870 NumTemplates = Ts.size();
3871 NumArgs = TArgs.size();
3872
3873 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3874 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
4
Assuming 'I' is equal to 'E'
5
Loop condition is false. Execution continues on line 3877
3875 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3876
3877 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
6
Calling 'TrailingObjects::getTrailingObjects'
15
Returning from 'TrailingObjects::getTrailingObjects'
16
'ArgsArray' initialized here
3878 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
17
Assuming 'I' is not equal to 'E'
18
Loop condition is true. Entering loop body
3879 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
19
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes
3880}
3881
3882TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3883 // For a function template specialization, query the specialization
3884 // information object.
3885 if (FunctionTemplateSpecializationInfo *FTSInfo =
3886 TemplateOrSpecialization
3887 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3888 return FTSInfo->getTemplateSpecializationKind();
3889
3890 if (MemberSpecializationInfo *MSInfo =
3891 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3892 return MSInfo->getTemplateSpecializationKind();
3893
3894 return TSK_Undeclared;
3895}
3896
3897TemplateSpecializationKind
3898FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3899 // This is the same as getTemplateSpecializationKind(), except that for a
3900 // function that is both a function template specialization and a member
3901 // specialization, we prefer the member specialization information. Eg:
3902 //
3903 // template<typename T> struct A {
3904 // template<typename U> void f() {}
3905 // template<> void f<int>() {}
3906 // };
3907 //
3908 // For A<int>::f<int>():
3909 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3910 // * getTemplateSpecializationKindForInstantiation() will return
3911 // TSK_ImplicitInstantiation
3912 //
3913 // This reflects the facts that A<int>::f<int> is an explicit specialization
3914 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3915 // from A::f<int> if a definition is needed.
3916 if (FunctionTemplateSpecializationInfo *FTSInfo =
3917 TemplateOrSpecialization
3918 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3919 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3920 return MSInfo->getTemplateSpecializationKind();
3921 return FTSInfo->getTemplateSpecializationKind();
3922 }
3923
3924 if (MemberSpecializationInfo *MSInfo =
3925 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3926 return MSInfo->getTemplateSpecializationKind();
3927
3928 return TSK_Undeclared;
3929}
3930
3931void
3932FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3933 SourceLocation PointOfInstantiation) {
3934 if (FunctionTemplateSpecializationInfo *FTSInfo
3935 = TemplateOrSpecialization.dyn_cast<
3936 FunctionTemplateSpecializationInfo*>()) {
3937 FTSInfo->setTemplateSpecializationKind(TSK);
3938 if (TSK != TSK_ExplicitSpecialization &&
3939 PointOfInstantiation.isValid() &&
3940 FTSInfo->getPointOfInstantiation().isInvalid()) {
3941 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3942 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3943 L->InstantiationRequested(this);
3944 }
3945 } else if (MemberSpecializationInfo *MSInfo
3946 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3947 MSInfo->setTemplateSpecializationKind(TSK);
3948 if (TSK != TSK_ExplicitSpecialization &&
3949 PointOfInstantiation.isValid() &&
3950 MSInfo->getPointOfInstantiation().isInvalid()) {
3951 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3952 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3953 L->InstantiationRequested(this);
3954 }
3955 } else
3956 llvm_unreachable("Function cannot have a template specialization kind")::llvm::llvm_unreachable_internal("Function cannot have a template specialization kind"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 3956)
;
3957}
3958
3959SourceLocation FunctionDecl::getPointOfInstantiation() const {
3960 if (FunctionTemplateSpecializationInfo *FTSInfo
3961 = TemplateOrSpecialization.dyn_cast<
3962 FunctionTemplateSpecializationInfo*>())
3963 return FTSInfo->getPointOfInstantiation();
3964 if (MemberSpecializationInfo *MSInfo =
3965 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3966 return MSInfo->getPointOfInstantiation();
3967
3968 return SourceLocation();
3969}
3970
3971bool FunctionDecl::isOutOfLine() const {
3972 if (Decl::isOutOfLine())
3973 return true;
3974
3975 // If this function was instantiated from a member function of a
3976 // class template, check whether that member function was defined out-of-line.
3977 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3978 const FunctionDecl *Definition;
3979 if (FD->hasBody(Definition))
3980 return Definition->isOutOfLine();
3981 }
3982
3983 // If this function was instantiated from a function template,
3984 // check whether that function template was defined out-of-line.
3985 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3986 const FunctionDecl *Definition;
3987 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3988 return Definition->isOutOfLine();
3989 }
3990
3991 return false;
3992}
3993
3994SourceRange FunctionDecl::getSourceRange() const {
3995 return SourceRange(getOuterLocStart(), EndRangeLoc);
3996}
3997
3998unsigned FunctionDecl::getMemoryFunctionKind() const {
3999 IdentifierInfo *FnInfo = getIdentifier();
4000
4001 if (!FnInfo)
4002 return 0;
4003
4004 // Builtin handling.
4005 switch (getBuiltinID()) {
4006 case Builtin::BI__builtin_memset:
4007 case Builtin::BI__builtin___memset_chk:
4008 case Builtin::BImemset:
4009 return Builtin::BImemset;
4010
4011 case Builtin::BI__builtin_memcpy:
4012 case Builtin::BI__builtin___memcpy_chk:
4013 case Builtin::BImemcpy:
4014 return Builtin::BImemcpy;
4015
4016 case Builtin::BI__builtin_mempcpy:
4017 case Builtin::BI__builtin___mempcpy_chk:
4018 case Builtin::BImempcpy:
4019 return Builtin::BImempcpy;
4020
4021 case Builtin::BI__builtin_memmove:
4022 case Builtin::BI__builtin___memmove_chk:
4023 case Builtin::BImemmove:
4024 return Builtin::BImemmove;
4025
4026// case Builtin::BIstrlcpy:
4027// case Builtin::BI__builtin___strlcpy_chk:
4028// return Builtin::BIstrlcpy;
4029
4030// case Builtin::BIstrlcat:
4031// case Builtin::BI__builtin___strlcat_chk:
4032// return Builtin::BIstrlcat;
4033
4034 case Builtin::BI__builtin_memcmp:
4035 case Builtin::BImemcmp:
4036 return Builtin::BImemcmp;
4037
4038 case Builtin::BI__builtin_bcmp:
4039 case Builtin::BIbcmp:
4040 return Builtin::BIbcmp;
4041
4042 case Builtin::BI__builtin_strncpy:
4043 case Builtin::BI__builtin___strncpy_chk:
4044 case Builtin::BIstrncpy:
4045 return Builtin::BIstrncpy;
4046
4047 case Builtin::BI__builtin_strncmp:
4048 case Builtin::BIstrncmp:
4049 return Builtin::BIstrncmp;
4050
4051 case Builtin::BI__builtin_strncasecmp:
4052 case Builtin::BIstrncasecmp:
4053 return Builtin::BIstrncasecmp;
4054
4055 case Builtin::BI__builtin_strncat:
4056 case Builtin::BI__builtin___strncat_chk:
4057 case Builtin::BIstrncat:
4058 return Builtin::BIstrncat;
4059
4060 case Builtin::BI__builtin_strndup:
4061 case Builtin::BIstrndup:
4062 return Builtin::BIstrndup;
4063
4064 case Builtin::BI__builtin_strlen:
4065 case Builtin::BIstrlen:
4066 return Builtin::BIstrlen;
4067
4068 case Builtin::BI__builtin_bzero:
4069 case Builtin::BIbzero:
4070 return Builtin::BIbzero;
4071
4072 case Builtin::BIfree:
4073 return Builtin::BIfree;
4074
4075 default:
4076 if (isExternC()) {
4077 if (FnInfo->isStr("memset"))
4078 return Builtin::BImemset;
4079 if (FnInfo->isStr("memcpy"))
4080 return Builtin::BImemcpy;
4081 if (FnInfo->isStr("mempcpy"))
4082 return Builtin::BImempcpy;
4083 if (FnInfo->isStr("memmove"))
4084 return Builtin::BImemmove;
4085 if (FnInfo->isStr("memcmp"))
4086 return Builtin::BImemcmp;
4087 if (FnInfo->isStr("bcmp"))
4088 return Builtin::BIbcmp;
4089 if (FnInfo->isStr("strncpy"))
4090 return Builtin::BIstrncpy;
4091 if (FnInfo->isStr("strncmp"))
4092 return Builtin::BIstrncmp;
4093 if (FnInfo->isStr("strncasecmp"))
4094 return Builtin::BIstrncasecmp;
4095 if (FnInfo->isStr("strncat"))
4096 return Builtin::BIstrncat;
4097 if (FnInfo->isStr("strndup"))
4098 return Builtin::BIstrndup;
4099 if (FnInfo->isStr("strlen"))
4100 return Builtin::BIstrlen;
4101 if (FnInfo->isStr("bzero"))
4102 return Builtin::BIbzero;
4103 } else if (isInStdNamespace()) {
4104 if (FnInfo->isStr("free"))
4105 return Builtin::BIfree;
4106 }
4107 break;
4108 }
4109 return 0;
4110}
4111
4112unsigned FunctionDecl::getODRHash() const {
4113 assert(hasODRHash())(static_cast <bool> (hasODRHash()) ? void (0) : __assert_fail
("hasODRHash()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4113, __extension__ __PRETTY_FUNCTION__))
;
4114 return ODRHash;
4115}
4116
4117unsigned FunctionDecl::getODRHash() {
4118 if (hasODRHash())
4119 return ODRHash;
4120
4121 if (auto *FT = getInstantiatedFromMemberFunction()) {
4122 setHasODRHash(true);
4123 ODRHash = FT->getODRHash();
4124 return ODRHash;
4125 }
4126
4127 class ODRHash Hash;
4128 Hash.AddFunctionDecl(this);
4129 setHasODRHash(true);
4130 ODRHash = Hash.CalculateHash();
4131 return ODRHash;
4132}
4133
4134//===----------------------------------------------------------------------===//
4135// FieldDecl Implementation
4136//===----------------------------------------------------------------------===//
4137
4138FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4139 SourceLocation StartLoc, SourceLocation IdLoc,
4140 IdentifierInfo *Id, QualType T,
4141 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4142 InClassInitStyle InitStyle) {
4143 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4144 BW, Mutable, InitStyle);
4145}
4146
4147FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4148 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4149 SourceLocation(), nullptr, QualType(), nullptr,
4150 nullptr, false, ICIS_NoInit);
4151}
4152
4153bool FieldDecl::isAnonymousStructOrUnion() const {
4154 if (!isImplicit() || getDeclName())
4155 return false;
4156
4157 if (const auto *Record = getType()->getAs<RecordType>())
4158 return Record->getDecl()->isAnonymousStructOrUnion();
4159
4160 return false;
4161}
4162
4163unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4164 assert(isBitField() && "not a bitfield")(static_cast <bool> (isBitField() && "not a bitfield"
) ? void (0) : __assert_fail ("isBitField() && \"not a bitfield\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4164, __extension__ __PRETTY_FUNCTION__))
;
4165 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4166}
4167
4168bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4169 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4170 getBitWidthValue(Ctx) == 0;
4171}
4172
4173bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4174 if (isZeroLengthBitField(Ctx))
4175 return true;
4176
4177 // C++2a [intro.object]p7:
4178 // An object has nonzero size if it
4179 // -- is not a potentially-overlapping subobject, or
4180 if (!hasAttr<NoUniqueAddressAttr>())
4181 return false;
4182
4183 // -- is not of class type, or
4184 const auto *RT = getType()->getAs<RecordType>();
4185 if (!RT)
4186 return false;
4187 const RecordDecl *RD = RT->getDecl()->getDefinition();
4188 if (!RD) {
4189 assert(isInvalidDecl() && "valid field has incomplete type")(static_cast <bool> (isInvalidDecl() && "valid field has incomplete type"
) ? void (0) : __assert_fail ("isInvalidDecl() && \"valid field has incomplete type\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4189, __extension__ __PRETTY_FUNCTION__))
;
4190 return false;
4191 }
4192
4193 // -- [has] virtual member functions or virtual base classes, or
4194 // -- has subobjects of nonzero size or bit-fields of nonzero length
4195 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4196 if (!CXXRD->isEmpty())
4197 return false;
4198
4199 // Otherwise, [...] the circumstances under which the object has zero size
4200 // are implementation-defined.
4201 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4202 // ABI will do.
4203 return true;
4204}
4205
4206unsigned FieldDecl::getFieldIndex() const {
4207 const FieldDecl *Canonical = getCanonicalDecl();
4208 if (Canonical != this)
4209 return Canonical->getFieldIndex();
4210
4211 if (CachedFieldIndex) return CachedFieldIndex - 1;
4212
4213 unsigned Index = 0;
4214 const RecordDecl *RD = getParent()->getDefinition();
4215 assert(RD && "requested index for field of struct with no definition")(static_cast <bool> (RD && "requested index for field of struct with no definition"
) ? void (0) : __assert_fail ("RD && \"requested index for field of struct with no definition\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4215, __extension__ __PRETTY_FUNCTION__))
;
4216
4217 for (auto *Field : RD->fields()) {
4218 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4219 ++Index;
4220 }
4221
4222 assert(CachedFieldIndex && "failed to find field in parent")(static_cast <bool> (CachedFieldIndex && "failed to find field in parent"
) ? void (0) : __assert_fail ("CachedFieldIndex && \"failed to find field in parent\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4222, __extension__ __PRETTY_FUNCTION__))
;
4223 return CachedFieldIndex - 1;
4224}
4225
4226SourceRange FieldDecl::getSourceRange() const {
4227 const Expr *FinalExpr = getInClassInitializer();
4228 if (!FinalExpr)
4229 FinalExpr = getBitWidth();
4230 if (FinalExpr)
4231 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4232 return DeclaratorDecl::getSourceRange();
4233}
4234
4235void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4236 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&(static_cast <bool> ((getParent()->isLambda() || getParent
()->isCapturedRecord()) && "capturing type in non-lambda or captured record."
) ? void (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4237, __extension__ __PRETTY_FUNCTION__))
4237 "capturing type in non-lambda or captured record.")(static_cast <bool> ((getParent()->isLambda() || getParent
()->isCapturedRecord()) && "capturing type in non-lambda or captured record."
) ? void (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4237, __extension__ __PRETTY_FUNCTION__))
;
4238 assert(InitStorage.getInt() == ISK_NoInit &&(static_cast <bool> (InitStorage.getInt() == ISK_NoInit
&& InitStorage.getPointer() == nullptr && "bit width, initializer or captured type already set"
) ? void (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4240, __extension__ __PRETTY_FUNCTION__))
4239 InitStorage.getPointer() == nullptr &&(static_cast <bool> (InitStorage.getInt() == ISK_NoInit
&& InitStorage.getPointer() == nullptr && "bit width, initializer or captured type already set"
) ? void (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4240, __extension__ __PRETTY_FUNCTION__))
4240 "bit width, initializer or captured type already set")(static_cast <bool> (InitStorage.getInt() == ISK_NoInit
&& InitStorage.getPointer() == nullptr && "bit width, initializer or captured type already set"
) ? void (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4240, __extension__ __PRETTY_FUNCTION__))
;
4241 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4242 ISK_CapturedVLAType);
4243}
4244
4245//===----------------------------------------------------------------------===//
4246// TagDecl Implementation
4247//===----------------------------------------------------------------------===//
4248
4249TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4250 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4251 SourceLocation StartL)
4252 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4253 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4254 assert((DK != Enum || TK == TTK_Enum) &&(static_cast <bool> ((DK != Enum || TK == TTK_Enum) &&
"EnumDecl not matched with TTK_Enum") ? void (0) : __assert_fail
("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4255, __extension__ __PRETTY_FUNCTION__))
4255 "EnumDecl not matched with TTK_Enum")(static_cast <bool> ((DK != Enum || TK == TTK_Enum) &&
"EnumDecl not matched with TTK_Enum") ? void (0) : __assert_fail
("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4255, __extension__ __PRETTY_FUNCTION__))
;
4256 setPreviousDecl(PrevDecl);
4257 setTagKind(TK);
4258 setCompleteDefinition(false);
4259 setBeingDefined(false);
4260 setEmbeddedInDeclarator(false);
4261 setFreeStanding(false);
4262 setCompleteDefinitionRequired(false);
4263}
4264
4265SourceLocation TagDecl::getOuterLocStart() const {
4266 return getTemplateOrInnerLocStart(this);
4267}
4268
4269SourceRange TagDecl::getSourceRange() const {
4270 SourceLocation RBraceLoc = BraceRange.getEnd();
4271 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4272 return SourceRange(getOuterLocStart(), E);
4273}
4274
4275TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4276
4277void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4278 TypedefNameDeclOrQualifier = TDD;
4279 if (const Type *T = getTypeForDecl()) {
4280 (void)T;
4281 assert(T->isLinkageValid())(static_cast <bool> (T->isLinkageValid()) ? void (0)
: __assert_fail ("T->isLinkageValid()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4281, __extension__ __PRETTY_FUNCTION__))
;
4282 }
4283 assert(isLinkageValid())(static_cast <bool> (isLinkageValid()) ? void (0) : __assert_fail
("isLinkageValid()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4283, __extension__ __PRETTY_FUNCTION__))
;
4284}
4285
4286void TagDecl::startDefinition() {
4287 setBeingDefined(true);
4288
4289 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4290 struct CXXRecordDecl::DefinitionData *Data =
4291 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4292 for (auto I : redecls())
4293 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4294 }
4295}
4296
4297void TagDecl::completeDefinition() {
4298 assert((!isa<CXXRecordDecl>(this) ||(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4300, __extension__ __PRETTY_FUNCTION__))
4299 cast<CXXRecordDecl>(this)->hasDefinition()) &&(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4300, __extension__ __PRETTY_FUNCTION__))
4300 "definition completed but not started")(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4300, __extension__ __PRETTY_FUNCTION__))
;
4301
4302 setCompleteDefinition(true);
4303 setBeingDefined(false);
4304
4305 if (ASTMutationListener *L = getASTMutationListener())
4306 L->CompletedTagDefinition(this);
4307}
4308
4309TagDecl *TagDecl::getDefinition() const {
4310 if (isCompleteDefinition())
4311 return const_cast<TagDecl *>(this);
4312
4313 // If it's possible for us to have an out-of-date definition, check now.
4314 if (mayHaveOutOfDateDef()) {
4315 if (IdentifierInfo *II = getIdentifier()) {
4316 if (II->isOutOfDate()) {
4317 updateOutOfDate(*II);
4318 }
4319 }
4320 }
4321
4322 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4323 return CXXRD->getDefinition();
4324
4325 for (auto R : redecls())
4326 if (R->isCompleteDefinition())
4327 return R;
4328
4329 return nullptr;
4330}
4331
4332void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4333 if (QualifierLoc) {
4334 // Make sure the extended qualifier info is allocated.
4335 if (!hasExtInfo())
4336 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4337 // Set qualifier info.
4338 getExtInfo()->QualifierLoc = QualifierLoc;
4339 } else {
4340 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4341 if (hasExtInfo()) {
4342 if (getExtInfo()->NumTemplParamLists == 0) {
4343 getASTContext().Deallocate(getExtInfo());
4344 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4345 }
4346 else
4347 getExtInfo()->QualifierLoc = QualifierLoc;
4348 }
4349 }
4350}
4351
4352void TagDecl::setTemplateParameterListsInfo(
4353 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4354 assert(!TPLists.empty())(static_cast <bool> (!TPLists.empty()) ? void (0) : __assert_fail
("!TPLists.empty()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4354, __extension__ __PRETTY_FUNCTION__))
;
4355 // Make sure the extended decl info is allocated.
4356 if (!hasExtInfo())
4357 // Allocate external info struct.
4358 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4359 // Set the template parameter lists info.
4360 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4361}
4362
4363//===----------------------------------------------------------------------===//
4364// EnumDecl Implementation
4365//===----------------------------------------------------------------------===//
4366
4367EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4368 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4369 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4370 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4371 assert(Scoped || !ScopedUsingClassTag)(static_cast <bool> (Scoped || !ScopedUsingClassTag) ? void
(0) : __assert_fail ("Scoped || !ScopedUsingClassTag", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4371, __extension__ __PRETTY_FUNCTION__))
;
4372 IntegerType = nullptr;
4373 setNumPositiveBits(0);
4374 setNumNegativeBits(0);
4375 setScoped(Scoped);
4376 setScopedUsingClassTag(ScopedUsingClassTag);
4377 setFixed(Fixed);
4378 setHasODRHash(false);
4379 ODRHash = 0;
4380}
4381
4382void EnumDecl::anchor() {}
4383
4384EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4385 SourceLocation StartLoc, SourceLocation IdLoc,
4386 IdentifierInfo *Id,
4387 EnumDecl *PrevDecl, bool IsScoped,
4388 bool IsScopedUsingClassTag, bool IsFixed) {
4389 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4390 IsScoped, IsScopedUsingClassTag, IsFixed);
4391 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4392 C.getTypeDeclType(Enum, PrevDecl);
4393 return Enum;
4394}
4395
4396EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4397 EnumDecl *Enum =
4398 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4399 nullptr, nullptr, false, false, false);
4400 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4401 return Enum;
4402}
4403
4404SourceRange EnumDecl::getIntegerTypeRange() const {
4405 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4406 return TI->getTypeLoc().getSourceRange();
4407 return SourceRange();
4408}
4409
4410void EnumDecl::completeDefinition(QualType NewType,
4411 QualType NewPromotionType,
4412 unsigned NumPositiveBits,
4413 unsigned NumNegativeBits) {
4414 assert(!isCompleteDefinition() && "Cannot redefine enums!")(static_cast <bool> (!isCompleteDefinition() &&
"Cannot redefine enums!") ? void (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine enums!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4414, __extension__ __PRETTY_FUNCTION__))
;
4415 if (!IntegerType)
4416 IntegerType = NewType.getTypePtr();
4417 PromotionType = NewPromotionType;
4418 setNumPositiveBits(NumPositiveBits);
4419 setNumNegativeBits(NumNegativeBits);
4420 TagDecl::completeDefinition();
4421}
4422
4423bool EnumDecl::isClosed() const {
4424 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4425 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4426 return true;
4427}
4428
4429bool EnumDecl::isClosedFlag() const {
4430 return isClosed() && hasAttr<FlagEnumAttr>();
4431}
4432
4433bool EnumDecl::isClosedNonFlag() const {
4434 return isClosed() && !hasAttr<FlagEnumAttr>();
4435}
4436
4437TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4438 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4439 return MSI->getTemplateSpecializationKind();
4440
4441 return TSK_Undeclared;
4442}
4443
4444void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4445 SourceLocation PointOfInstantiation) {
4446 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4447 assert(MSI && "Not an instantiated member enumeration?")(static_cast <bool> (MSI && "Not an instantiated member enumeration?"
) ? void (0) : __assert_fail ("MSI && \"Not an instantiated member enumeration?\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4447, __extension__ __PRETTY_FUNCTION__))
;
4448 MSI->setTemplateSpecializationKind(TSK);
4449 if (TSK != TSK_ExplicitSpecialization &&
4450 PointOfInstantiation.isValid() &&
4451 MSI->getPointOfInstantiation().isInvalid())
4452 MSI->setPointOfInstantiation(PointOfInstantiation);
4453}
4454
4455EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4456 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4457 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4458 EnumDecl *ED = getInstantiatedFromMemberEnum();
4459 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4460 ED = NewED;
4461 return getDefinitionOrSelf(ED);
4462 }
4463 }
4464
4465 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&(static_cast <bool> (!isTemplateInstantiation(getTemplateSpecializationKind
()) && "couldn't find pattern for enum instantiation"
) ? void (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4466, __extension__ __PRETTY_FUNCTION__))
4466 "couldn't find pattern for enum instantiation")(static_cast <bool> (!isTemplateInstantiation(getTemplateSpecializationKind
()) && "couldn't find pattern for enum instantiation"
) ? void (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4466, __extension__ __PRETTY_FUNCTION__))
;
4467 return nullptr;
4468}
4469
4470EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4471 if (SpecializationInfo)
4472 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4473
4474 return nullptr;
4475}
4476
4477void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4478 TemplateSpecializationKind TSK) {
4479 assert(!SpecializationInfo && "Member enum is already a specialization")(static_cast <bool> (!SpecializationInfo && "Member enum is already a specialization"
) ? void (0) : __assert_fail ("!SpecializationInfo && \"Member enum is already a specialization\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4479, __extension__ __PRETTY_FUNCTION__))
;
4480 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4481}
4482
4483unsigned EnumDecl::getODRHash() {
4484 if (hasODRHash())
4485 return ODRHash;
4486
4487 class ODRHash Hash;
4488 Hash.AddEnumDecl(this);
4489 setHasODRHash(true);
4490 ODRHash = Hash.CalculateHash();
4491 return ODRHash;
4492}
4493
4494//===----------------------------------------------------------------------===//
4495// RecordDecl Implementation
4496//===----------------------------------------------------------------------===//
4497
4498RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4499 DeclContext *DC, SourceLocation StartLoc,
4500 SourceLocation IdLoc, IdentifierInfo *Id,
4501 RecordDecl *PrevDecl)
4502 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4503 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!")(static_cast <bool> (classof(static_cast<Decl *>(
this)) && "Invalid Kind!") ? void (0) : __assert_fail
("classof(static_cast<Decl *>(this)) && \"Invalid Kind!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4503, __extension__ __PRETTY_FUNCTION__))
;
4504 setHasFlexibleArrayMember(false);
4505 setAnonymousStructOrUnion(false);
4506 setHasObjectMember(false);
4507 setHasVolatileMember(false);
4508 setHasLoadedFieldsFromExternalStorage(false);
4509 setNonTrivialToPrimitiveDefaultInitialize(false);
4510 setNonTrivialToPrimitiveCopy(false);
4511 setNonTrivialToPrimitiveDestroy(false);
4512 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4513 setHasNonTrivialToPrimitiveDestructCUnion(false);
4514 setHasNonTrivialToPrimitiveCopyCUnion(false);
4515 setParamDestroyedInCallee(false);
4516 setArgPassingRestrictions(APK_CanPassInRegs);
4517}
4518
4519RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4520 SourceLocation StartLoc, SourceLocation IdLoc,
4521 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4522 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4523 StartLoc, IdLoc, Id, PrevDecl);
4524 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4525
4526 C.getTypeDeclType(R, PrevDecl);
4527 return R;
4528}
4529
4530RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4531 RecordDecl *R =
4532 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4533 SourceLocation(), nullptr, nullptr);
4534 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4535 return R;
4536}
4537
4538bool RecordDecl::isInjectedClassName() const {
4539 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4540 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4541}
4542
4543bool RecordDecl::isLambda() const {
4544 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4545 return RD->isLambda();
4546 return false;
4547}
4548
4549bool RecordDecl::isCapturedRecord() const {
4550 return hasAttr<CapturedRecordAttr>();
4551}
4552
4553void RecordDecl::setCapturedRecord() {
4554 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4555}
4556
4557bool RecordDecl::isOrContainsUnion() const {
4558 if (isUnion())
4559 return true;
4560
4561 if (const RecordDecl *Def = getDefinition()) {
4562 for (const FieldDecl *FD : Def->fields()) {
4563 const RecordType *RT = FD->getType()->getAs<RecordType>();
4564 if (RT && RT->getDecl()->isOrContainsUnion())
4565 return true;
4566 }
4567 }
4568
4569 return false;
4570}
4571
4572RecordDecl::field_iterator RecordDecl::field_begin() const {
4573 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4574 LoadFieldsFromExternalStorage();
4575
4576 return field_iterator(decl_iterator(FirstDecl));
4577}
4578
4579/// completeDefinition - Notes that the definition of this type is now
4580/// complete.
4581void RecordDecl::completeDefinition() {
4582 assert(!isCompleteDefinition() && "Cannot redefine record!")(static_cast <bool> (!isCompleteDefinition() &&
"Cannot redefine record!") ? void (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine record!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4582, __extension__ __PRETTY_FUNCTION__))
;
4583 TagDecl::completeDefinition();
4584}
4585
4586/// isMsStruct - Get whether or not this record uses ms_struct layout.
4587/// This which can be turned on with an attribute, pragma, or the
4588/// -mms-bitfields command-line option.
4589bool RecordDecl::isMsStruct(const ASTContext &C) const {
4590 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4591}
4592
4593void RecordDecl::LoadFieldsFromExternalStorage() const {
4594 ExternalASTSource *Source = getASTContext().getExternalSource();
4595 assert(hasExternalLexicalStorage() && Source && "No external storage?")(static_cast <bool> (hasExternalLexicalStorage() &&
Source && "No external storage?") ? void (0) : __assert_fail
("hasExternalLexicalStorage() && Source && \"No external storage?\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4595, __extension__ __PRETTY_FUNCTION__))
;
4596
4597 // Notify that we have a RecordDecl doing some initialization.
4598 ExternalASTSource::Deserializing TheFields(Source);
4599
4600 SmallVector<Decl*, 64> Decls;
4601 setHasLoadedFieldsFromExternalStorage(true);
4602 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4603 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4604 }, Decls);
4605
4606#ifndef NDEBUG
4607 // Check that all decls we got were FieldDecls.
4608 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4609 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]))(static_cast <bool> (isa<FieldDecl>(Decls[i]) || isa
<IndirectFieldDecl>(Decls[i])) ? void (0) : __assert_fail
("isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4609, __extension__ __PRETTY_FUNCTION__))
;
4610#endif
4611
4612 if (Decls.empty())
4613 return;
4614
4615 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4616 /*FieldsAlreadyLoaded=*/false);
4617}
4618
4619bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4620 ASTContext &Context = getASTContext();
4621 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4622 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4623 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4624 return false;
4625 const auto &NoSanitizeList = Context.getNoSanitizeList();
4626 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4627 // We may be able to relax some of these requirements.
4628 int ReasonToReject = -1;
4629 if (!CXXRD || CXXRD->isExternCContext())
4630 ReasonToReject = 0; // is not C++.
4631 else if (CXXRD->hasAttr<PackedAttr>())
4632 ReasonToReject = 1; // is packed.
4633 else if (CXXRD->isUnion())
4634 ReasonToReject = 2; // is a union.
4635 else if (CXXRD->isTriviallyCopyable())
4636 ReasonToReject = 3; // is trivially copyable.
4637 else if (CXXRD->hasTrivialDestructor())
4638 ReasonToReject = 4; // has trivial destructor.
4639 else if (CXXRD->isStandardLayout())
4640 ReasonToReject = 5; // is standard layout.
4641 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4642 "field-padding"))
4643 ReasonToReject = 6; // is in an excluded file.
4644 else if (NoSanitizeList.containsType(
4645 EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4646 ReasonToReject = 7; // The type is excluded.
4647
4648 if (EmitRemark) {
4649 if (ReasonToReject >= 0)
4650 Context.getDiagnostics().Report(
4651 getLocation(),
4652 diag::remark_sanitize_address_insert_extra_padding_rejected)
4653 << getQualifiedNameAsString() << ReasonToReject;
4654 else
4655 Context.getDiagnostics().Report(
4656 getLocation(),
4657 diag::remark_sanitize_address_insert_extra_padding_accepted)
4658 << getQualifiedNameAsString();
4659 }
4660 return ReasonToReject < 0;
4661}
4662
4663const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4664 for (const auto *I : fields()) {
4665 if (I->getIdentifier())
4666 return I;
4667
4668 if (const auto *RT = I->getType()->getAs<RecordType>())
4669 if (const FieldDecl *NamedDataMember =
4670 RT->getDecl()->findFirstNamedDataMember())
4671 return NamedDataMember;
4672 }
4673
4674 // We didn't find a named data member.
4675 return nullptr;
4676}
4677
4678//===----------------------------------------------------------------------===//
4679// BlockDecl Implementation
4680//===----------------------------------------------------------------------===//
4681
4682BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4683 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4684 setIsVariadic(false);
4685 setCapturesCXXThis(false);
4686 setBlockMissingReturnType(true);
4687 setIsConversionFromLambda(false);
4688 setDoesNotEscape(false);
4689 setCanAvoidCopyToHeap(false);
4690}
4691
4692void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4693 assert(!ParamInfo && "Already has param info!")(static_cast <bool> (!ParamInfo && "Already has param info!"
) ? void (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4693, __extension__ __PRETTY_FUNCTION__))
;
4694
4695 // Zero params -> null pointer.
4696 if (!NewParamInfo.empty()) {
4697 NumParams = NewParamInfo.size();
4698 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4699 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4700 }
4701}
4702
4703void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4704 bool CapturesCXXThis) {
4705 this->setCapturesCXXThis(CapturesCXXThis);
4706 this->NumCaptures = Captures.size();
4707
4708 if (Captures.empty()) {
4709 this->Captures = nullptr;
4710 return;
4711 }
4712
4713 this->Captures = Captures.copy(Context).data();
4714}
4715
4716bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4717 for (const auto &I : captures())
4718 // Only auto vars can be captured, so no redeclaration worries.
4719 if (I.getVariable() == variable)
4720 return true;
4721
4722 return false;
4723}
4724
4725SourceRange BlockDecl::getSourceRange() const {
4726 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4727}
4728
4729//===----------------------------------------------------------------------===//
4730// Other Decl Allocation/Deallocation Method Implementations
4731//===----------------------------------------------------------------------===//
4732
4733void TranslationUnitDecl::anchor() {}
4734
4735TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4736 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4737}
4738
4739void PragmaCommentDecl::anchor() {}
4740
4741PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4742 TranslationUnitDecl *DC,
4743 SourceLocation CommentLoc,
4744 PragmaMSCommentKind CommentKind,
4745 StringRef Arg) {
4746 PragmaCommentDecl *PCD =
4747 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4748 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4749 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4750 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4751 return PCD;
4752}
4753
4754PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4755 unsigned ID,
4756 unsigned ArgSize) {
4757 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4758 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4759}
4760
4761void PragmaDetectMismatchDecl::anchor() {}
4762
4763PragmaDetectMismatchDecl *
4764PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4765 SourceLocation Loc, StringRef Name,
4766 StringRef Value) {
4767 size_t ValueStart = Name.size() + 1;
4768 PragmaDetectMismatchDecl *PDMD =
4769 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4770 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4771 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4772 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4773 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4774 Value.size());
4775 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4776 return PDMD;
4777}
4778
4779PragmaDetectMismatchDecl *
4780PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4781 unsigned NameValueSize) {
4782 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4783 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4784}
4785
4786void ExternCContextDecl::anchor() {}
4787
4788ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4789 TranslationUnitDecl *DC) {
4790 return new (C, DC) ExternCContextDecl(DC);
4791}
4792
4793void LabelDecl::anchor() {}
4794
4795LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4796 SourceLocation IdentL, IdentifierInfo *II) {
4797 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4798}
4799
4800LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4801 SourceLocation IdentL, IdentifierInfo *II,
4802 SourceLocation GnuLabelL) {
4803 assert(GnuLabelL != IdentL && "Use this only for GNU local labels")(static_cast <bool> (GnuLabelL != IdentL && "Use this only for GNU local labels"
) ? void (0) : __assert_fail ("GnuLabelL != IdentL && \"Use this only for GNU local labels\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 4803, __extension__ __PRETTY_FUNCTION__))
;
4804 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4805}
4806
4807LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4808 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4809 SourceLocation());
4810}
4811
4812void LabelDecl::setMSAsmLabel(StringRef Name) {
4813char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4814 memcpy(Buffer, Name.data(), Name.size());
4815 Buffer[Name.size()] = '\0';
4816 MSAsmName = Buffer;
4817}
4818
4819void ValueDecl::anchor() {}
4820
4821bool ValueDecl::isWeak() const {
4822 auto *MostRecent = getMostRecentDecl();
4823 return MostRecent->hasAttr<WeakAttr>() ||
4824 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4825}
4826
4827void ImplicitParamDecl::anchor() {}
4828
4829ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4830 SourceLocation IdLoc,
4831 IdentifierInfo *Id, QualType Type,
4832 ImplicitParamKind ParamKind) {
4833 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4834}
4835
4836ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4837 ImplicitParamKind ParamKind) {
4838 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4839}
4840
4841ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4842 unsigned ID) {
4843 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4844}
4845
4846FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4847 SourceLocation StartLoc,
4848 const DeclarationNameInfo &NameInfo,
4849 QualType T, TypeSourceInfo *TInfo,
4850 StorageClass SC, bool isInlineSpecified,
4851 bool hasWrittenPrototype,
4852 ConstexprSpecKind ConstexprKind,
4853 Expr *TrailingRequiresClause) {
4854 FunctionDecl *New =
4855 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4856 SC, isInlineSpecified, ConstexprKind,
4857 TrailingRequiresClause);
4858 New->setHasWrittenPrototype(hasWrittenPrototype);
4859 return New;
4860}
4861
4862FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4863 return new (C, ID) FunctionDecl(
4864 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4865 nullptr, SC_None, false, ConstexprSpecKind::Unspecified, nullptr);
4866}
4867
4868BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4869 return new (C, DC) BlockDecl(DC, L);
4870}
4871
4872BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4873 return new (C, ID) BlockDecl(nullptr, SourceLocation());
4874}
4875
4876CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4877 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4878 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4879
4880CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4881 unsigned NumParams) {
4882 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4883 CapturedDecl(DC, NumParams);
4884}
4885
4886CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4887 unsigned NumParams) {
4888 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4889 CapturedDecl(nullptr, NumParams);
4890}
4891
4892Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4893void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4894
4895bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4896void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4897
4898EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4899 SourceLocation L,
4900 IdentifierInfo *Id, QualType T,
4901 Expr *E, const llvm::APSInt &V) {
4902 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4903}
4904
4905EnumConstantDecl *
4906EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4907 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4908 QualType(), nullptr, llvm::APSInt());
4909}
4910
4911void IndirectFieldDecl::anchor() {}
4912
4913IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4914 SourceLocation L, DeclarationName N,
4915 QualType T,
4916 MutableArrayRef<NamedDecl *> CH)
4917 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4918 ChainingSize(CH.size()) {
4919 // In C++, indirect field declarations conflict with tag declarations in the
4920 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4921 if (C.getLangOpts().CPlusPlus)
4922 IdentifierNamespace |= IDNS_Tag;
4923}
4924
4925IndirectFieldDecl *
4926IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4927 IdentifierInfo *Id, QualType T,
4928 llvm::MutableArrayRef<NamedDecl *> CH) {
4929 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4930}
4931
4932IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4933 unsigned ID) {
4934 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4935 DeclarationName(), QualType(), None);
4936}
4937
4938SourceRange EnumConstantDecl::getSourceRange() const {
4939 SourceLocation End = getLocation();
4940 if (Init)
4941 End = Init->getEndLoc();
4942 return SourceRange(getLocation(), End);
4943}
4944
4945void TypeDecl::anchor() {}
4946
4947TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4948 SourceLocation StartLoc, SourceLocation IdLoc,
4949 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4950 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4951}
4952
4953void TypedefNameDecl::anchor() {}
4954
4955TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4956 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4957 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4958 auto *ThisTypedef = this;
4959 if (AnyRedecl && OwningTypedef) {
4960 OwningTypedef = OwningTypedef->getCanonicalDecl();
4961 ThisTypedef = ThisTypedef->getCanonicalDecl();
4962 }
4963 if (OwningTypedef == ThisTypedef)
4964 return TT->getDecl();
4965 }
4966
4967 return nullptr;
4968}
4969
4970bool TypedefNameDecl::isTransparentTagSlow() const {
4971 auto determineIsTransparent = [&]() {
4972 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4973 if (auto *TD = TT->getDecl()) {
4974 if (TD->getName() != getName())
4975 return false;
4976 SourceLocation TTLoc = getLocation();
4977 SourceLocation TDLoc = TD->getLocation();
4978 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4979 return false;
4980 SourceManager &SM = getASTContext().getSourceManager();
4981 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4982 }
4983 }
4984 return false;
4985 };
4986
4987 bool isTransparent = determineIsTransparent();
4988 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4989 return isTransparent;
4990}
4991
4992TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4993 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4994 nullptr, nullptr);
4995}
4996
4997TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4998 SourceLocation StartLoc,
4999 SourceLocation IdLoc, IdentifierInfo *Id,
5000 TypeSourceInfo *TInfo) {
5001 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5002}
5003
5004TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5005 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5006 SourceLocation(), nullptr, nullptr);
5007}
5008
5009SourceRange TypedefDecl::getSourceRange() const {
5010 SourceLocation RangeEnd = getLocation();
5011 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5012 if (typeIsPostfix(TInfo->getType()))
5013 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5014 }
5015 return SourceRange(getBeginLoc(), RangeEnd);
5016}
5017
5018SourceRange TypeAliasDecl::getSourceRange() const {
5019 SourceLocation RangeEnd = getBeginLoc();
5020 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5021 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5022 return SourceRange(getBeginLoc(), RangeEnd);
5023}
5024
5025void FileScopeAsmDecl::anchor() {}
5026
5027FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5028 StringLiteral *Str,
5029 SourceLocation AsmLoc,
5030 SourceLocation RParenLoc) {
5031 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5032}
5033
5034FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5035 unsigned ID) {
5036 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5037 SourceLocation());
5038}
5039
5040void EmptyDecl::anchor() {}
5041
5042EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5043 return new (C, DC) EmptyDecl(DC, L);
5044}
5045
5046EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5047 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5048}
5049
5050//===----------------------------------------------------------------------===//
5051// ImportDecl Implementation
5052//===----------------------------------------------------------------------===//
5053
5054/// Retrieve the number of module identifiers needed to name the given
5055/// module.
5056static unsigned getNumModuleIdentifiers(Module *Mod) {
5057 unsigned Result = 1;
5058 while (Mod->Parent) {
5059 Mod = Mod->Parent;
5060 ++Result;
5061 }
5062 return Result;
5063}
5064
5065ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5066 Module *Imported,
5067 ArrayRef<SourceLocation> IdentifierLocs)
5068 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5069 NextLocalImportAndComplete(nullptr, true) {
5070 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size())(static_cast <bool> (getNumModuleIdentifiers(Imported) ==
IdentifierLocs.size()) ? void (0) : __assert_fail ("getNumModuleIdentifiers(Imported) == IdentifierLocs.size()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/AST/Decl.cpp"
, 5070, __extension__ __PRETTY_FUNCTION__))
;
5071 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5072 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5073 StoredLocs);
5074}
5075
5076ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5077 Module *Imported, SourceLocation EndLoc)
5078 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5079 NextLocalImportAndComplete(nullptr, false) {
5080 *getTrailingObjects<SourceLocation>() = EndLoc;
5081}
5082
5083ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5084 SourceLocation StartLoc, Module *Imported,
5085 ArrayRef<SourceLocation> IdentifierLocs) {
5086 return new (C, DC,
5087 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5088 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5089}
5090
5091ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5092 SourceLocation StartLoc,
5093 Module *Imported,
5094 SourceLocation EndLoc) {
5095 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5096 ImportDecl(DC, StartLoc, Imported, EndLoc);
5097 Import->setImplicit();
5098 return Import;
5099}
5100
5101ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5102 unsigned NumLocations) {
5103 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5104 ImportDecl(EmptyShell());
5105}
5106
5107ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5108 if (!isImportComplete())
5109 return None;
5110
5111 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5112 return llvm::makeArrayRef(StoredLocs,
5113 getNumModuleIdentifiers(getImportedModule()));
5114}
5115
5116SourceRange ImportDecl::getSourceRange() const {
5117 if (!isImportComplete())
5118 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5119
5120 return SourceRange(getLocation(), getIdentifierLocs().back());
5121}
5122
5123//===----------------------------------------------------------------------===//
5124// ExportDecl Implementation
5125//===----------------------------------------------------------------------===//
5126
5127void ExportDecl::anchor() {}
5128
5129ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5130 SourceLocation ExportLoc) {
5131 return new (C, DC) ExportDecl(DC, ExportLoc);
5132}
5133
5134ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5135 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5136}

/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/llvm/include/llvm/Support/TrailingObjects.h

1//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This header defines support for implementing classes that have
11/// some trailing object (or arrays of objects) appended to them. The
12/// main purpose is to make it obvious where this idiom is being used,
13/// and to make the usage more idiomatic and more difficult to get
14/// wrong.
15///
16/// The TrailingObject template abstracts away the reinterpret_cast,
17/// pointer arithmetic, and size calculations used for the allocation
18/// and access of appended arrays of objects, and takes care that they
19/// are all allocated at their required alignment. Additionally, it
20/// ensures that the base type is final -- deriving from a class that
21/// expects data appended immediately after it is typically not safe.
22///
23/// Users are expected to derive from this template, and provide
24/// numTrailingObjects implementations for each trailing type except
25/// the last, e.g. like this sample:
26///
27/// \code
28/// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> {
29/// friend TrailingObjects;
30///
31/// unsigned NumInts, NumDoubles;
32/// size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; }
33/// };
34/// \endcode
35///
36/// You can access the appended arrays via 'getTrailingObjects', and
37/// determine the size needed for allocation via
38/// 'additionalSizeToAlloc' and 'totalSizeToAlloc'.
39///
40/// All the methods implemented by this class are are intended for use
41/// by the implementation of the class, not as part of its interface
42/// (thus, private inheritance is suggested).
43///
44//===----------------------------------------------------------------------===//
45
46#ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H
47#define LLVM_SUPPORT_TRAILINGOBJECTS_H
48
49#include "llvm/Support/AlignOf.h"
50#include "llvm/Support/Alignment.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/type_traits.h"
54#include <new>
55#include <type_traits>
56
57namespace llvm {
58
59namespace trailing_objects_internal {
60/// Helper template to calculate the max alignment requirement for a set of
61/// objects.
62template <typename First, typename... Rest> class AlignmentCalcHelper {
63private:
64 enum {
65 FirstAlignment = alignof(First),
66 RestAlignment = AlignmentCalcHelper<Rest...>::Alignment,
67 };
68
69public:
70 enum {
71 Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment
72 };
73};
74
75template <typename First> class AlignmentCalcHelper<First> {
76public:
77 enum { Alignment = alignof(First) };
78};
79
80/// The base class for TrailingObjects* classes.
81class TrailingObjectsBase {
82protected:
83 /// OverloadToken's purpose is to allow specifying function overloads
84 /// for different types, without actually taking the types as
85 /// parameters. (Necessary because member function templates cannot
86 /// be specialized, so overloads must be used instead of
87 /// specialization.)
88 template <typename T> struct OverloadToken {};
89};
90
91// Just a little helper for transforming a type pack into the same
92// number of a different type. e.g.:
93// ExtractSecondType<Foo..., int>::type
94template <typename Ty1, typename Ty2> struct ExtractSecondType {
95 typedef Ty2 type;
96};
97
98// TrailingObjectsImpl is somewhat complicated, because it is a
99// recursively inheriting template, in order to handle the template
100// varargs. Each level of inheritance picks off a single trailing type
101// then recurses on the rest. The "Align", "BaseTy", and
102// "TopTrailingObj" arguments are passed through unchanged through the
103// recursion. "PrevTy" is, at each level, the type handled by the
104// level right above it.
105
106template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
107 typename... MoreTys>
108class TrailingObjectsImpl {
109 // The main template definition is never used -- the two
110 // specializations cover all possibilities.
111};
112
113template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
114 typename NextTy, typename... MoreTys>
115class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy,
116 MoreTys...>
117 : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy,
118 MoreTys...> {
119
120 typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...>
121 ParentType;
122
123 struct RequiresRealignment {
124 static const bool value = alignof(PrevTy) < alignof(NextTy);
125 };
126
127 static constexpr bool requiresRealignment() {
128 return RequiresRealignment::value;
129 }
130
131protected:
132 // Ensure the inherited getTrailingObjectsImpl is not hidden.
133 using ParentType::getTrailingObjectsImpl;
134
135 // These two functions are helper functions for
136 // TrailingObjects::getTrailingObjects. They recurse to the left --
137 // the result for each type in the list of trailing types depends on
138 // the result of calling the function on the type to the
139 // left. However, the function for the type to the left is
140 // implemented by a *subclass* of this class, so we invoke it via
141 // the TopTrailingObj, which is, via the
142 // curiously-recurring-template-pattern, the most-derived type in
143 // this recursion, and thus, contains all the overloads.
144 static const NextTy *
145 getTrailingObjectsImpl(const BaseTy *Obj,
146 TrailingObjectsBase::OverloadToken<NextTy>) {
147 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
148 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
149 TopTrailingObj::callNumTrailingObjects(
150 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
151
152 if (requiresRealignment())
153 return reinterpret_cast<const NextTy *>(
154 alignAddr(Ptr, Align::Of<NextTy>()));
155 else
156 return reinterpret_cast<const NextTy *>(Ptr);
157 }
158
159 static NextTy *
160 getTrailingObjectsImpl(BaseTy *Obj,
161 TrailingObjectsBase::OverloadToken<NextTy>) {
162 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
10
'Ptr' initialized here
163 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
9
Passing value via 1st parameter 'Obj'
164 TopTrailingObj::callNumTrailingObjects(
165 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
166
167 if (requiresRealignment())
11
Taking false branch
168 return reinterpret_cast<NextTy *>(alignAddr(Ptr, Align::Of<NextTy>()));
169 else
170 return reinterpret_cast<NextTy *>(Ptr);
12
Returning pointer (loaded from 'Ptr')
171 }
172
173 // Helper function for TrailingObjects::additionalSizeToAlloc: this
174 // function recurses to superclasses, each of which requires one
175 // fewer size_t argument, and adds its own size.
176 static constexpr size_t additionalSizeToAllocImpl(
177 size_t SizeSoFar, size_t Count1,
178 typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) {
179 return ParentType::additionalSizeToAllocImpl(
180 (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar)
181 : SizeSoFar) +
182 sizeof(NextTy) * Count1,
183 MoreCounts...);
184 }
185};
186
187// The base case of the TrailingObjectsImpl inheritance recursion,
188// when there's no more trailing types.
189template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy>
190class alignas(Align) TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy>
191 : public TrailingObjectsBase {
192protected:
193 // This is a dummy method, only here so the "using" doesn't fail --
194 // it will never be called, because this function recurses backwards
195 // up the inheritance chain to subclasses.
196 static void getTrailingObjectsImpl();
197
198 static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) {
199 return SizeSoFar;
200 }
201
202 template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {}
203};
204
205} // end namespace trailing_objects_internal
206
207// Finally, the main type defined in this file, the one intended for users...
208
209/// See the file comment for details on the usage of the
210/// TrailingObjects type.
211template <typename BaseTy, typename... TrailingTys>
212class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl<
213 trailing_objects_internal::AlignmentCalcHelper<
214 TrailingTys...>::Alignment,
215 BaseTy, TrailingObjects<BaseTy, TrailingTys...>,
216 BaseTy, TrailingTys...> {
217
218 template <int A, typename B, typename T, typename P, typename... M>
219 friend class trailing_objects_internal::TrailingObjectsImpl;
220
221 template <typename... Tys> class Foo {};
222
223 typedef trailing_objects_internal::TrailingObjectsImpl<
224 trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment,
225 BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...>
226 ParentType;
227 using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase;
228
229 using ParentType::getTrailingObjectsImpl;
230
231 // This function contains only a static_assert BaseTy is final. The
232 // static_assert must be in a function, and not at class-level
233 // because BaseTy isn't complete at class instantiation time, but
234 // will be by the time this function is instantiated.
235 static void verifyTrailingObjectsAssertions() {
236 static_assert(std::is_final<BaseTy>(), "BaseTy must be final.");
237 }
238
239 // These two methods are the base of the recursion for this method.
240 static const BaseTy *
241 getTrailingObjectsImpl(const BaseTy *Obj,
242 TrailingObjectsBase::OverloadToken<BaseTy>) {
243 return Obj;
244 }
245
246 static BaseTy *
247 getTrailingObjectsImpl(BaseTy *Obj,
248 TrailingObjectsBase::OverloadToken<BaseTy>) {
249 return Obj;
250 }
251
252 // callNumTrailingObjects simply calls numTrailingObjects on the
253 // provided Obj -- except when the type being queried is BaseTy
254 // itself. There is always only one of the base object, so that case
255 // is handled here. (An additional benefit of indirecting through
256 // this function is that consumers only say "friend
257 // TrailingObjects", and thus, only this class itself can call the
258 // numTrailingObjects function.)
259 static size_t
260 callNumTrailingObjects(const BaseTy *Obj,
261 TrailingObjectsBase::OverloadToken<BaseTy>) {
262 return 1;
263 }
264
265 template <typename T>
266 static size_t callNumTrailingObjects(const BaseTy *Obj,
267 TrailingObjectsBase::OverloadToken<T>) {
268 return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>());
269 }
270
271public:
272 // Make this (privately inherited) member public.
273#ifndef _MSC_VER
274 using ParentType::OverloadToken;
275#else
276 // An MSVC bug prevents the above from working, (last tested at CL version
277 // 19.28). "Class5" in TrailingObjectsTest.cpp tests the problematic case.
278 template <typename T>
279 using OverloadToken = typename ParentType::template OverloadToken<T>;
280#endif
281
282 /// Returns a pointer to the trailing object array of the given type
283 /// (which must be one of those specified in the class template). The
284 /// array may have zero or more elements in it.
285 template <typename T> const T *getTrailingObjects() const {
286 verifyTrailingObjectsAssertions();
287 // Forwards to an impl function with overloads, since member
288 // function templates can't be specialized.
289 return this->getTrailingObjectsImpl(
290 static_cast<const BaseTy *>(this),
291 TrailingObjectsBase::OverloadToken<T>());
292 }
293
294 /// Returns a pointer to the trailing object array of the given type
295 /// (which must be one of those specified in the class template). The
296 /// array may have zero or more elements in it.
297 template <typename T> T *getTrailingObjects() {
298 verifyTrailingObjectsAssertions();
299 // Forwards to an impl function with overloads, since member
300 // function templates can't be specialized.
301 return this->getTrailingObjectsImpl(
8
Calling 'TrailingObjectsImpl::getTrailingObjectsImpl'
13
Returning from 'TrailingObjectsImpl::getTrailingObjectsImpl'
14
Returning pointer
302 static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>());
7
Passing value via 1st parameter 'Obj'
303 }
304
305 /// Returns the size of the trailing data, if an object were
306 /// allocated with the given counts (The counts are in the same order
307 /// as the template arguments). This does not include the size of the
308 /// base object. The template arguments must be the same as those
309 /// used in the class; they are supplied here redundantly only so
310 /// that it's clear what the counts are counting in callers.
311 template <typename... Tys>
312 static constexpr std::enable_if_t<
313 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
314 additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
315 TrailingTys, size_t>::type... Counts) {
316 return ParentType::additionalSizeToAllocImpl(0, Counts...);
317 }
318
319 /// Returns the total size of an object if it were allocated with the
320 /// given trailing object counts. This is the same as
321 /// additionalSizeToAlloc, except it *does* include the size of the base
322 /// object.
323 template <typename... Tys>
324 static constexpr std::enable_if_t<
325 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
326 totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
327 TrailingTys, size_t>::type... Counts) {
328 return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
329 }
330
331 TrailingObjects() = default;
332 TrailingObjects(const TrailingObjects &) = delete;
333 TrailingObjects(TrailingObjects &&) = delete;
334 TrailingObjects &operator=(const TrailingObjects &) = delete;
335 TrailingObjects &operator=(TrailingObjects &&) = delete;
336
337 /// A type where its ::with_counts template member has a ::type member
338 /// suitable for use as uninitialized storage for an object with the given
339 /// trailing object counts. The template arguments are similar to those
340 /// of additionalSizeToAlloc.
341 ///
342 /// Use with FixedSizeStorageOwner, e.g.:
343 ///
344 /// \code{.cpp}
345 ///
346 /// MyObj::FixedSizeStorage<void *>::with_counts<1u>::type myStackObjStorage;
347 /// MyObj::FixedSizeStorageOwner
348 /// myStackObjOwner(new ((void *)&myStackObjStorage) MyObj);
349 /// MyObj *const myStackObjPtr = myStackObjOwner.get();
350 ///
351 /// \endcode
352 template <typename... Tys> struct FixedSizeStorage {
353 template <size_t... Counts> struct with_counts {
354 enum { Size = totalSizeToAlloc<Tys...>(Counts...) };
355 struct type {
356 alignas(BaseTy) char buffer[Size];
357 };
358 };
359 };
360
361 /// A type that acts as the owner for an object placed into fixed storage.
362 class FixedSizeStorageOwner {
363 public:
364 FixedSizeStorageOwner(BaseTy *p) : p(p) {}
365 ~FixedSizeStorageOwner() {
366 assert(p && "FixedSizeStorageOwner owns null?")(static_cast <bool> (p && "FixedSizeStorageOwner owns null?"
) ? void (0) : __assert_fail ("p && \"FixedSizeStorageOwner owns null?\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/llvm/include/llvm/Support/TrailingObjects.h"
, 366, __extension__ __PRETTY_FUNCTION__))
;
367 p->~BaseTy();
368 }
369
370 BaseTy *get() { return p; }
371 const BaseTy *get() const { return p; }
372
373 private:
374 FixedSizeStorageOwner(const FixedSizeStorageOwner &) = delete;
375 FixedSizeStorageOwner(FixedSizeStorageOwner &&) = delete;
376 FixedSizeStorageOwner &operator=(const FixedSizeStorageOwner &) = delete;
377 FixedSizeStorageOwner &operator=(FixedSizeStorageOwner &&) = delete;
378
379 BaseTy *const p;
380 };
381};
382
383} // end namespace llvm
384
385#endif