Bug Summary

File:clang/lib/AST/Decl.cpp
Warning:line 3856, column 5
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Decl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/build-llvm/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/include -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/build-llvm/tools/clang/lib/AST -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-01-16-002530-32805-1 -x c++ /build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp

/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp

1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DeclarationName.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/ODRHash.h"
31#include "clang/AST/PrettyDeclStackTrace.h"
32#include "clang/AST/PrettyPrinter.h"
33#include "clang/AST/Redeclarable.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/Basic/Builtins.h"
39#include "clang/Basic/IdentifierTable.h"
40#include "clang/Basic/LLVM.h"
41#include "clang/Basic/LangOptions.h"
42#include "clang/Basic/Linkage.h"
43#include "clang/Basic/Module.h"
44#include "clang/Basic/PartialDiagnostic.h"
45#include "clang/Basic/SanitizerBlacklist.h"
46#include "clang/Basic/Sanitizers.h"
47#include "clang/Basic/SourceLocation.h"
48#include "clang/Basic/SourceManager.h"
49#include "clang/Basic/Specifiers.h"
50#include "clang/Basic/TargetCXXABI.h"
51#include "clang/Basic/TargetInfo.h"
52#include "clang/Basic/Visibility.h"
53#include "llvm/ADT/APSInt.h"
54#include "llvm/ADT/ArrayRef.h"
55#include "llvm/ADT/None.h"
56#include "llvm/ADT/Optional.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/ADT/Triple.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/raw_ostream.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <string>
71#include <tuple>
72#include <type_traits>
73
74using namespace clang;
75
76Decl *clang::getPrimaryMergedDecl(Decl *D) {
77 return D->getASTContext().getPrimaryMergedDecl(D);
78}
79
80void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92 OS << "'";
93 }
94
95 OS << '\n';
96}
97
98// Defined here so that it can be inlined into its direct callers.
99bool Decl::isOutOfLine() const {
100 return !getLexicalDeclContext()->Equals(getDeclContext());
101}
102
103TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), Ctx(ctx) {}
106
107//===----------------------------------------------------------------------===//
108// NamedDecl Implementation
109//===----------------------------------------------------------------------===//
110
111// Visibility rules aren't rigorously externally specified, but here
112// are the basic principles behind what we implement:
113//
114// 1. An explicit visibility attribute is generally a direct expression
115// of the user's intent and should be honored. Only the innermost
116// visibility attribute applies. If no visibility attribute applies,
117// global visibility settings are considered.
118//
119// 2. There is one caveat to the above: on or in a template pattern,
120// an explicit visibility attribute is just a default rule, and
121// visibility can be decreased by the visibility of template
122// arguments. But this, too, has an exception: an attribute on an
123// explicit specialization or instantiation causes all the visibility
124// restrictions of the template arguments to be ignored.
125//
126// 3. A variable that does not otherwise have explicit visibility can
127// be restricted by the visibility of its type.
128//
129// 4. A visibility restriction is explicit if it comes from an
130// attribute (or something like it), not a global visibility setting.
131// When emitting a reference to an external symbol, visibility
132// restrictions are ignored unless they are explicit.
133//
134// 5. When computing the visibility of a non-type, including a
135// non-type member of a class, only non-type visibility restrictions
136// are considered: the 'visibility' attribute, global value-visibility
137// settings, and a few special cases like __private_extern.
138//
139// 6. When computing the visibility of a type, including a type member
140// of a class, only type visibility restrictions are considered:
141// the 'type_visibility' attribute and global type-visibility settings.
142// However, a 'visibility' attribute counts as a 'type_visibility'
143// attribute on any declaration that only has the former.
144//
145// The visibility of a "secondary" entity, like a template argument,
146// is computed using the kind of that entity, not the kind of the
147// primary entity for which we are computing visibility. For example,
148// the visibility of a specialization of either of these templates:
149// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150// template <class T, bool (&compare)(T, X)> class matcher;
151// is restricted according to the type visibility of the argument 'T',
152// the type visibility of 'bool(&)(T,X)', and the value visibility of
153// the argument function 'compare'. That 'has_match' is a value
154// and 'matcher' is a type only matters when looking for attributes
155// and settings from the immediate context.
156
157/// Does this computation kind permit us to consider additional
158/// visibility settings from attributes and the like?
159static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160 return computation.IgnoreExplicitVisibility;
161}
162
163/// Given an LVComputationKind, return one of the same type/value sort
164/// that records that it already has explicit visibility.
165static LVComputationKind
166withExplicitVisibilityAlready(LVComputationKind Kind) {
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169}
170
171static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&((!kind.IgnoreExplicitVisibility && "asking for explicit visibility when we shouldn't be"
) ? static_cast<void> (0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 174, __PRETTY_FUNCTION__))
174 "asking for explicit visibility when we shouldn't be")((!kind.IgnoreExplicitVisibility && "asking for explicit visibility when we shouldn't be"
) ? static_cast<void> (0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 174, __PRETTY_FUNCTION__))
;
175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176}
177
178/// Is the given declaration a "type" or a "value" for the purposes of
179/// visibility computation?
180static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(D) ||
182 isa<ClassTemplateDecl>(D) ||
183 isa<ObjCInterfaceDecl>(D);
184}
185
186/// Does the given declaration have member specialization information,
187/// and if so, is it an explicit specialization?
188template <class T> static typename
189std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190isExplicitMemberSpecialization(const T *D) {
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196}
197
198/// For templates, this question is easier: a member template can't be
199/// explicitly instantiated, so there's a single bit indicating whether
200/// or not this is an explicit member specialization.
201static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202 return D->isMemberSpecialization();
203}
204
205/// Given a visibility attribute, return the explicit visibility
206/// associated with it.
207template <class T>
208static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind")::llvm::llvm_unreachable_internal("bad visibility kind", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 217)
;
218}
219
220/// Return the explicit visibility of the given declaration.
221static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222 NamedDecl::ExplicitVisibilityKind kind) {
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(A);
234 }
235
236 return None;
237}
238
239LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243 return getTypeLinkageAndVisibility(&T);
244}
245
246/// Get the most restrictive linkage for the types in the given
247/// template parameter list. For visibility purposes, template
248/// parameters are part of the signature of a template.
249LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(getLVForType(*NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(i);
274 if (!type->isDependentType())
275 LV.merge(getTypeLinkageAndVisibility(type));
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(getLVForTemplateParameterList(
295 TTP->getExpansionTemplateParameters(i), computation));
296 }
297 }
298
299 return LV;
300}
301
302static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307 Ret = cast<Decl>(DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311}
312
313/// Get the most restrictive linkage for the types and
314/// declarations in the given template argument list.
315///
316/// Note that we don't take an LVComputationKind because we always
317/// want to honor the visibility of template arguments in the same way.
318LinkageInfo
319LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
325 case TemplateArgument::Null:
326 case TemplateArgument::Integral:
327 case TemplateArgument::Expression:
328 continue;
329
330 case TemplateArgument::Type:
331 LV.merge(getLVForType(*Arg.getAsType(), computation));
332 continue;
333
334 case TemplateArgument::Declaration: {
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND))((!usesTypeVisibility(ND)) ? static_cast<void> (0) : __assert_fail
("!usesTypeVisibility(ND)", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 336, __PRETTY_FUNCTION__))
;
337 LV.merge(getLVForDecl(ND, computation));
338 continue;
339 }
340
341 case TemplateArgument::NullPtr:
342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343 continue;
344
345 case TemplateArgument::Template:
346 case TemplateArgument::TemplateExpansion:
347 if (TemplateDecl *Template =
348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349 LV.merge(getLVForDecl(Template, computation));
350 continue;
351
352 case TemplateArgument::Pack:
353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354 continue;
355 }
356 llvm_unreachable("bad template argument kind")::llvm::llvm_unreachable_internal("bad template argument kind"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 356)
;
357 }
358
359 return LV;
360}
361
362LinkageInfo
363LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364 LVComputationKind computation) {
365 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366}
367
368static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369 const FunctionTemplateSpecializationInfo *specInfo) {
370 // Include visibility from the template parameters and arguments
371 // only if this is not an explicit instantiation or specialization
372 // with direct explicit visibility. (Implicit instantiations won't
373 // have a direct attribute.)
374 if (!specInfo->isExplicitInstantiationOrSpecialization())
375 return true;
376
377 return !fn->hasAttr<VisibilityAttr>();
378}
379
380/// Merge in template-related linkage and visibility for the given
381/// function template specialization.
382///
383/// We don't need a computation kind here because we can assume
384/// LVForValue.
385///
386/// \param[out] LV the computation to use for the parent
387void LinkageComputer::mergeTemplateLV(
388 LinkageInfo &LV, const FunctionDecl *fn,
389 const FunctionTemplateSpecializationInfo *specInfo,
390 LVComputationKind computation) {
391 bool considerVisibility =
392 shouldConsiderTemplateVisibility(fn, specInfo);
393
394 // Merge information from the template parameters.
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 LinkageInfo tempLV =
397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399
400 // Merge information from the template arguments.
401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404}
405
406/// Does the given declaration have a direct visibility attribute
407/// that would match the given rules?
408static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409 LVComputationKind computation) {
410 if (computation.IgnoreAllVisibility)
411 return false;
412
413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414 D->hasAttr<VisibilityAttr>();
415}
416
417/// Should we consider visibility associated with the template
418/// arguments and parameters of the given class template specialization?
419static bool shouldConsiderTemplateVisibility(
420 const ClassTemplateSpecializationDecl *spec,
421 LVComputationKind computation) {
422 // Include visibility from the template parameters and arguments
423 // only if this is not an explicit instantiation or specialization
424 // with direct explicit visibility (and note that implicit
425 // instantiations won't have a direct attribute).
426 //
427 // Furthermore, we want to ignore template parameters and arguments
428 // for an explicit specialization when computing the visibility of a
429 // member thereof with explicit visibility.
430 //
431 // This is a bit complex; let's unpack it.
432 //
433 // An explicit class specialization is an independent, top-level
434 // declaration. As such, if it or any of its members has an
435 // explicit visibility attribute, that must directly express the
436 // user's intent, and we should honor it. The same logic applies to
437 // an explicit instantiation of a member of such a thing.
438
439 // Fast path: if this is not an explicit instantiation or
440 // specialization, we always want to consider template-related
441 // visibility restrictions.
442 if (!spec->isExplicitInstantiationOrSpecialization())
443 return true;
444
445 // This is the 'member thereof' check.
446 if (spec->isExplicitSpecialization() &&
447 hasExplicitVisibilityAlready(computation))
448 return false;
449
450 return !hasDirectVisibilityAttribute(spec, computation);
451}
452
453/// Merge in template-related linkage and visibility for the given
454/// class template specialization.
455void LinkageComputer::mergeTemplateLV(
456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457 LVComputationKind computation) {
458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459
460 // Merge information from the template parameters, but ignore
461 // visibility if we're only considering template arguments.
462
463 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464 LinkageInfo tempLV =
465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466 LV.mergeMaybeWithVisibility(tempLV,
467 considerVisibility && !hasExplicitVisibilityAlready(computation));
468
469 // Merge information from the template arguments. We ignore
470 // template-argument visibility if we've got an explicit
471 // instantiation with a visibility attribute.
472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474 if (considerVisibility)
475 LV.mergeVisibility(argsLV);
476 LV.mergeExternalVisibility(argsLV);
477}
478
479/// Should we consider visibility associated with the template
480/// arguments and parameters of the given variable template
481/// specialization? As usual, follow class template specialization
482/// logic up to initialization.
483static bool shouldConsiderTemplateVisibility(
484 const VarTemplateSpecializationDecl *spec,
485 LVComputationKind computation) {
486 // Include visibility from the template parameters and arguments
487 // only if this is not an explicit instantiation or specialization
488 // with direct explicit visibility (and note that implicit
489 // instantiations won't have a direct attribute).
490 if (!spec->isExplicitInstantiationOrSpecialization())
491 return true;
492
493 // An explicit variable specialization is an independent, top-level
494 // declaration. As such, if it has an explicit visibility attribute,
495 // that must directly express the user's intent, and we should honor
496 // it.
497 if (spec->isExplicitSpecialization() &&
498 hasExplicitVisibilityAlready(computation))
499 return false;
500
501 return !hasDirectVisibilityAttribute(spec, computation);
502}
503
504/// Merge in template-related linkage and visibility for the given
505/// variable template specialization. As usual, follow class template
506/// specialization logic up to initialization.
507void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508 const VarTemplateSpecializationDecl *spec,
509 LVComputationKind computation) {
510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511
512 // Merge information from the template parameters, but ignore
513 // visibility if we're only considering template arguments.
514
515 VarTemplateDecl *temp = spec->getSpecializedTemplate();
516 LinkageInfo tempLV =
517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518 LV.mergeMaybeWithVisibility(tempLV,
519 considerVisibility && !hasExplicitVisibilityAlready(computation));
520
521 // Merge information from the template arguments. We ignore
522 // template-argument visibility if we've got an explicit
523 // instantiation with a visibility attribute.
524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526 if (considerVisibility)
527 LV.mergeVisibility(argsLV);
528 LV.mergeExternalVisibility(argsLV);
529}
530
531static bool useInlineVisibilityHidden(const NamedDecl *D) {
532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533 const LangOptions &Opts = D->getASTContext().getLangOpts();
534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535 return false;
536
537 const auto *FD = dyn_cast<FunctionDecl>(D);
538 if (!FD)
539 return false;
540
541 TemplateSpecializationKind TSK = TSK_Undeclared;
542 if (FunctionTemplateSpecializationInfo *spec
543 = FD->getTemplateSpecializationInfo()) {
544 TSK = spec->getTemplateSpecializationKind();
545 } else if (MemberSpecializationInfo *MSI =
546 FD->getMemberSpecializationInfo()) {
547 TSK = MSI->getTemplateSpecializationKind();
548 }
549
550 const FunctionDecl *Def = nullptr;
551 // InlineVisibilityHidden only applies to definitions, and
552 // isInlined() only gives meaningful answers on definitions
553 // anyway.
554 return TSK != TSK_ExplicitInstantiationDeclaration &&
555 TSK != TSK_ExplicitInstantiationDefinition &&
556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557}
558
559template <typename T> static bool isFirstInExternCContext(T *D) {
560 const T *First = D->getFirstDecl();
561 return First->isInExternCContext();
562}
563
564static bool isSingleLineLanguageLinkage(const Decl &D) {
565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566 if (!SD->hasBraces())
567 return true;
568 return false;
569}
570
571/// Determine whether D is declared in the purview of a named module.
572static bool isInModulePurview(const NamedDecl *D) {
573 if (auto *M = D->getOwningModule())
574 return M->isModulePurview();
575 return false;
576}
577
578static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579 // FIXME: Handle isModulePrivate.
580 switch (D->getModuleOwnershipKind()) {
581 case Decl::ModuleOwnershipKind::Unowned:
582 case Decl::ModuleOwnershipKind::ModulePrivate:
583 return false;
584 case Decl::ModuleOwnershipKind::Visible:
585 case Decl::ModuleOwnershipKind::VisibleWhenImported:
586 return isInModulePurview(D);
587 }
588 llvm_unreachable("unexpected module ownership kind")::llvm::llvm_unreachable_internal("unexpected module ownership kind"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 588)
;
589}
590
591static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592 // Internal linkage declarations within a module interface unit are modeled
593 // as "module-internal linkage", which means that they have internal linkage
594 // formally but can be indirectly accessed from outside the module via inline
595 // functions and templates defined within the module.
596 if (isInModulePurview(D))
597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598
599 return LinkageInfo::internal();
600}
601
602static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603 // C++ Modules TS [basic.link]/6.8:
604 // - A name declared at namespace scope that does not have internal linkage
605 // by the previous rules and that is introduced by a non-exported
606 // declaration has module linkage.
607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608 cast<NamedDecl>(D->getCanonicalDecl())))
609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610
611 return LinkageInfo::external();
612}
613
614static StorageClass getStorageClass(const Decl *D) {
615 if (auto *TD = dyn_cast<TemplateDecl>(D))
616 D = TD->getTemplatedDecl();
617 if (D) {
618 if (auto *VD = dyn_cast<VarDecl>(D))
619 return VD->getStorageClass();
620 if (auto *FD = dyn_cast<FunctionDecl>(D))
621 return FD->getStorageClass();
622 }
623 return SC_None;
624}
625
626LinkageInfo
627LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628 LVComputationKind computation,
629 bool IgnoreVarTypeLinkage) {
630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&((D->getDeclContext()->getRedeclContext()->isFileContext
() && "Not a name having namespace scope") ? static_cast
<void> (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 631, __PRETTY_FUNCTION__))
631 "Not a name having namespace scope")((D->getDeclContext()->getRedeclContext()->isFileContext
() && "Not a name having namespace scope") ? static_cast
<void> (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 631, __PRETTY_FUNCTION__))
;
632 ASTContext &Context = D->getASTContext();
633
634 // C++ [basic.link]p3:
635 // A name having namespace scope (3.3.6) has internal linkage if it
636 // is the name of
637
638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639 // - a variable, variable template, function, or function template
640 // that is explicitly declared static; or
641 // (This bullet corresponds to C99 6.2.2p3.)
642 return getInternalLinkageFor(D);
643 }
644
645 if (const auto *Var = dyn_cast<VarDecl>(D)) {
646 // - a non-template variable of non-volatile const-qualified type, unless
647 // - it is explicitly declared extern, or
648 // - it is inline or exported, or
649 // - it was previously declared and the prior declaration did not have
650 // internal linkage
651 // (There is no equivalent in C99.)
652 if (Context.getLangOpts().CPlusPlus &&
653 Var->getType().isConstQualified() &&
654 !Var->getType().isVolatileQualified() &&
655 !Var->isInline() &&
656 !isExportedFromModuleInterfaceUnit(Var) &&
657 !isa<VarTemplateSpecializationDecl>(Var) &&
658 !Var->getDescribedVarTemplate()) {
659 const VarDecl *PrevVar = Var->getPreviousDecl();
660 if (PrevVar)
661 return getLVForDecl(PrevVar, computation);
662
663 if (Var->getStorageClass() != SC_Extern &&
664 Var->getStorageClass() != SC_PrivateExtern &&
665 !isSingleLineLanguageLinkage(*Var))
666 return getInternalLinkageFor(Var);
667 }
668
669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670 PrevVar = PrevVar->getPreviousDecl()) {
671 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672 Var->getStorageClass() == SC_None)
673 return getDeclLinkageAndVisibility(PrevVar);
674 // Explicitly declared static.
675 if (PrevVar->getStorageClass() == SC_Static)
676 return getInternalLinkageFor(Var);
677 }
678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679 // - a data member of an anonymous union.
680 const VarDecl *VD = IFD->getVarDecl();
681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!")((VD && "Expected a VarDecl in this IndirectFieldDecl!"
) ? static_cast<void> (0) : __assert_fail ("VD && \"Expected a VarDecl in this IndirectFieldDecl!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 681, __PRETTY_FUNCTION__))
;
682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683 }
684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!")((!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"
) ? static_cast<void> (0) : __assert_fail ("!isa<FieldDecl>(D) && \"Didn't expect a FieldDecl!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 684, __PRETTY_FUNCTION__))
;
685
686 // FIXME: This gives internal linkage to names that should have no linkage
687 // (those not covered by [basic.link]p6).
688 if (D->isInAnonymousNamespace()) {
689 const auto *Var = dyn_cast<VarDecl>(D);
690 const auto *Func = dyn_cast<FunctionDecl>(D);
691 // FIXME: The check for extern "C" here is not justified by the standard
692 // wording, but we retain it from the pre-DR1113 model to avoid breaking
693 // code.
694 //
695 // C++11 [basic.link]p4:
696 // An unnamed namespace or a namespace declared directly or indirectly
697 // within an unnamed namespace has internal linkage.
698 if ((!Var || !isFirstInExternCContext(Var)) &&
699 (!Func || !isFirstInExternCContext(Func)))
700 return getInternalLinkageFor(D);
701 }
702
703 // Set up the defaults.
704
705 // C99 6.2.2p5:
706 // If the declaration of an identifier for an object has file
707 // scope and no storage-class specifier, its linkage is
708 // external.
709 LinkageInfo LV = getExternalLinkageFor(D);
710
711 if (!hasExplicitVisibilityAlready(computation)) {
712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 } else {
715 // If we're declared in a namespace with a visibility attribute,
716 // use that namespace's visibility, and it still counts as explicit.
717 for (const DeclContext *DC = D->getDeclContext();
718 !isa<TranslationUnitDecl>(DC);
719 DC = DC->getParent()) {
720 const auto *ND = dyn_cast<NamespaceDecl>(DC);
721 if (!ND) continue;
722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723 LV.mergeVisibility(*Vis, true);
724 break;
725 }
726 }
727 }
728
729 // Add in global settings if the above didn't give us direct visibility.
730 if (!LV.isVisibilityExplicit()) {
731 // Use global type/value visibility as appropriate.
732 Visibility globalVisibility =
733 computation.isValueVisibility()
734 ? Context.getLangOpts().getValueVisibilityMode()
735 : Context.getLangOpts().getTypeVisibilityMode();
736 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737
738 // If we're paying attention to global visibility, apply
739 // -finline-visibility-hidden if this is an inline method.
740 if (useInlineVisibilityHidden(D))
741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742 }
743 }
744
745 // C++ [basic.link]p4:
746
747 // A name having namespace scope that has not been given internal linkage
748 // above and that is the name of
749 // [...bullets...]
750 // has its linkage determined as follows:
751 // - if the enclosing namespace has internal linkage, the name has
752 // internal linkage; [handled above]
753 // - otherwise, if the declaration of the name is attached to a named
754 // module and is not exported, the name has module linkage;
755 // - otherwise, the name has external linkage.
756 // LV is currently set up to handle the last two bullets.
757 //
758 // The bullets are:
759
760 // - a variable; or
761 if (const auto *Var = dyn_cast<VarDecl>(D)) {
762 // GCC applies the following optimization to variables and static
763 // data members, but not to functions:
764 //
765 // Modify the variable's LV by the LV of its type unless this is
766 // C or extern "C". This follows from [basic.link]p9:
767 // A type without linkage shall not be used as the type of a
768 // variable or function with external linkage unless
769 // - the entity has C language linkage, or
770 // - the entity is declared within an unnamed namespace, or
771 // - the entity is not used or is defined in the same
772 // translation unit.
773 // and [basic.link]p10:
774 // ...the types specified by all declarations referring to a
775 // given variable or function shall be identical...
776 // C does not have an equivalent rule.
777 //
778 // Ignore this if we've got an explicit attribute; the user
779 // probably knows what they're doing.
780 //
781 // Note that we don't want to make the variable non-external
782 // because of this, but unique-external linkage suits us.
783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784 !IgnoreVarTypeLinkage) {
785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786 if (!isExternallyVisible(TypeLV.getLinkage()))
787 return LinkageInfo::uniqueExternal();
788 if (!LV.isVisibilityExplicit())
789 LV.mergeVisibility(TypeLV);
790 }
791
792 if (Var->getStorageClass() == SC_PrivateExtern)
793 LV.mergeVisibility(HiddenVisibility, true);
794
795 // Note that Sema::MergeVarDecl already takes care of implementing
796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797 // to do it here.
798
799 // As per function and class template specializations (below),
800 // consider LV for the template and template arguments. We're at file
801 // scope, so we do not need to worry about nested specializations.
802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803 mergeTemplateLV(LV, spec, computation);
804 }
805
806 // - a function; or
807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808 // In theory, we can modify the function's LV by the LV of its
809 // type unless it has C linkage (see comment above about variables
810 // for justification). In practice, GCC doesn't do this, so it's
811 // just too painful to make work.
812
813 if (Function->getStorageClass() == SC_PrivateExtern)
814 LV.mergeVisibility(HiddenVisibility, true);
815
816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817 // merging storage classes and visibility attributes, so we don't have to
818 // look at previous decls in here.
819
820 // In C++, then if the type of the function uses a type with
821 // unique-external linkage, it's not legally usable from outside
822 // this translation unit. However, we should use the C linkage
823 // rules instead for extern "C" declarations.
824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825 // Only look at the type-as-written. Otherwise, deducing the return type
826 // of a function could change its linkage.
827 QualType TypeAsWritten = Function->getType();
828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829 TypeAsWritten = TSI->getType();
830 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831 return LinkageInfo::uniqueExternal();
832 }
833
834 // Consider LV from the template and the template arguments.
835 // We're at file scope, so we do not need to worry about nested
836 // specializations.
837 if (FunctionTemplateSpecializationInfo *specInfo
838 = Function->getTemplateSpecializationInfo()) {
839 mergeTemplateLV(LV, Function, specInfo, computation);
840 }
841
842 // - a named class (Clause 9), or an unnamed class defined in a
843 // typedef declaration in which the class has the typedef name
844 // for linkage purposes (7.1.3); or
845 // - a named enumeration (7.2), or an unnamed enumeration
846 // defined in a typedef declaration in which the enumeration
847 // has the typedef name for linkage purposes (7.1.3); or
848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849 // Unnamed tags have no linkage.
850 if (!Tag->hasNameForLinkage())
851 return LinkageInfo::none();
852
853 // If this is a class template specialization, consider the
854 // linkage of the template and template arguments. We're at file
855 // scope, so we do not need to worry about nested specializations.
856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857 mergeTemplateLV(LV, spec, computation);
858 }
859
860 // FIXME: This is not part of the C++ standard any more.
861 // - an enumerator belonging to an enumeration with external linkage; or
862 } else if (isa<EnumConstantDecl>(D)) {
863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864 computation);
865 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866 return LinkageInfo::none();
867 LV.merge(EnumLV);
868
869 // - a template
870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872 LinkageInfo tempLV =
873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875
876 // An unnamed namespace or a namespace declared directly or indirectly
877 // within an unnamed namespace has internal linkage. All other namespaces
878 // have external linkage.
879 //
880 // We handled names in anonymous namespaces above.
881 } else if (isa<NamespaceDecl>(D)) {
882 return LV;
883
884 // By extension, we assign external linkage to Objective-C
885 // interfaces.
886 } else if (isa<ObjCInterfaceDecl>(D)) {
887 // fallout
888
889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890 // A typedef declaration has linkage if it gives a type a name for
891 // linkage purposes.
892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893 return LinkageInfo::none();
894
895 } else if (isa<MSGuidDecl>(D)) {
896 // A GUID behaves like an inline variable with external linkage. Fall
897 // through.
898
899 // Everything not covered here has no linkage.
900 } else {
901 return LinkageInfo::none();
902 }
903
904 // If we ended up with non-externally-visible linkage, visibility should
905 // always be default.
906 if (!isExternallyVisible(LV.getLinkage()))
907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908
909 // Mark the symbols as hidden when compiling for the device.
910 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912
913 return LV;
914}
915
916LinkageInfo
917LinkageComputer::getLVForClassMember(const NamedDecl *D,
918 LVComputationKind computation,
919 bool IgnoreVarTypeLinkage) {
920 // Only certain class members have linkage. Note that fields don't
921 // really have linkage, but it's convenient to say they do for the
922 // purposes of calculating linkage of pointer-to-data-member
923 // template arguments.
924 //
925 // Templates also don't officially have linkage, but since we ignore
926 // the C++ standard and look at template arguments when determining
927 // linkage and visibility of a template specialization, we might hit
928 // a template template argument that way. If we do, we need to
929 // consider its linkage.
930 if (!(isa<CXXMethodDecl>(D) ||
931 isa<VarDecl>(D) ||
932 isa<FieldDecl>(D) ||
933 isa<IndirectFieldDecl>(D) ||
934 isa<TagDecl>(D) ||
935 isa<TemplateDecl>(D)))
936 return LinkageInfo::none();
937
938 LinkageInfo LV;
939
940 // If we have an explicit visibility attribute, merge that in.
941 if (!hasExplicitVisibilityAlready(computation)) {
942 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943 LV.mergeVisibility(*Vis, true);
944 // If we're paying attention to global visibility, apply
945 // -finline-visibility-hidden if this is an inline method.
946 //
947 // Note that we do this before merging information about
948 // the class visibility.
949 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951 }
952
953 // If this class member has an explicit visibility attribute, the only
954 // thing that can change its visibility is the template arguments, so
955 // only look for them when processing the class.
956 LVComputationKind classComputation = computation;
957 if (LV.isVisibilityExplicit())
958 classComputation = withExplicitVisibilityAlready(computation);
959
960 LinkageInfo classLV =
961 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962 // The member has the same linkage as the class. If that's not externally
963 // visible, we don't need to compute anything about the linkage.
964 // FIXME: If we're only computing linkage, can we bail out here?
965 if (!isExternallyVisible(classLV.getLinkage()))
966 return classLV;
967
968
969 // Otherwise, don't merge in classLV yet, because in certain cases
970 // we need to completely ignore the visibility from it.
971
972 // Specifically, if this decl exists and has an explicit attribute.
973 const NamedDecl *explicitSpecSuppressor = nullptr;
974
975 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976 // Only look at the type-as-written. Otherwise, deducing the return type
977 // of a function could change its linkage.
978 QualType TypeAsWritten = MD->getType();
979 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980 TypeAsWritten = TSI->getType();
981 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982 return LinkageInfo::uniqueExternal();
983
984 // If this is a method template specialization, use the linkage for
985 // the template parameters and arguments.
986 if (FunctionTemplateSpecializationInfo *spec
987 = MD->getTemplateSpecializationInfo()) {
988 mergeTemplateLV(LV, MD, spec, computation);
989 if (spec->isExplicitSpecialization()) {
990 explicitSpecSuppressor = MD;
991 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993 }
994 } else if (isExplicitMemberSpecialization(MD)) {
995 explicitSpecSuppressor = MD;
996 }
997
998 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000 mergeTemplateLV(LV, spec, computation);
1001 if (spec->isExplicitSpecialization()) {
1002 explicitSpecSuppressor = spec;
1003 } else {
1004 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005 if (isExplicitMemberSpecialization(temp)) {
1006 explicitSpecSuppressor = temp->getTemplatedDecl();
1007 }
1008 }
1009 } else if (isExplicitMemberSpecialization(RD)) {
1010 explicitSpecSuppressor = RD;
1011 }
1012
1013 // Static data members.
1014 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016 mergeTemplateLV(LV, spec, computation);
1017
1018 // Modify the variable's linkage by its type, but ignore the
1019 // type's visibility unless it's a definition.
1020 if (!IgnoreVarTypeLinkage) {
1021 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022 // FIXME: If the type's linkage is not externally visible, we can
1023 // give this static data member UniqueExternalLinkage.
1024 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025 LV.mergeVisibility(typeLV);
1026 LV.mergeExternalVisibility(typeLV);
1027 }
1028
1029 if (isExplicitMemberSpecialization(VD)) {
1030 explicitSpecSuppressor = VD;
1031 }
1032
1033 // Template members.
1034 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035 bool considerVisibility =
1036 (!LV.isVisibilityExplicit() &&
1037 !classLV.isVisibilityExplicit() &&
1038 !hasExplicitVisibilityAlready(computation));
1039 LinkageInfo tempLV =
1040 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042
1043 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044 if (isExplicitMemberSpecialization(redeclTemp)) {
1045 explicitSpecSuppressor = temp->getTemplatedDecl();
1046 }
1047 }
1048 }
1049
1050 // We should never be looking for an attribute directly on a template.
1051 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor))((!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor
)) ? static_cast<void> (0) : __assert_fail ("!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1051, __PRETTY_FUNCTION__))
;
1052
1053 // If this member is an explicit member specialization, and it has
1054 // an explicit attribute, ignore visibility from the parent.
1055 bool considerClassVisibility = true;
1056 if (explicitSpecSuppressor &&
1057 // optimization: hasDVA() is true only with explicit visibility.
1058 LV.isVisibilityExplicit() &&
1059 classLV.getVisibility() != DefaultVisibility &&
1060 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061 considerClassVisibility = false;
1062 }
1063
1064 // Finally, merge in information from the class.
1065 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066 return LV;
1067}
1068
1069void NamedDecl::anchor() {}
1070
1071bool NamedDecl::isLinkageValid() const {
1072 if (!hasCachedLinkage())
1073 return true;
1074
1075 Linkage L = LinkageComputer{}
1076 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077 .getLinkage();
1078 return L == getCachedLinkage();
1079}
1080
1081ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1082 StringRef name = getName();
1083 if (name.empty()) return SFF_None;
1084
1085 if (name.front() == 'C')
1086 if (name == "CFStringCreateWithFormat" ||
1087 name == "CFStringCreateWithFormatAndArguments" ||
1088 name == "CFStringAppendFormat" ||
1089 name == "CFStringAppendFormatAndArguments")
1090 return SFF_CFString;
1091 return SFF_None;
1092}
1093
1094Linkage NamedDecl::getLinkageInternal() const {
1095 // We don't care about visibility here, so ask for the cheapest
1096 // possible visibility analysis.
1097 return LinkageComputer{}
1098 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1099 .getLinkage();
1100}
1101
1102LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1103 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1104}
1105
1106static Optional<Visibility>
1107getExplicitVisibilityAux(const NamedDecl *ND,
1108 NamedDecl::ExplicitVisibilityKind kind,
1109 bool IsMostRecent) {
1110 assert(!IsMostRecent || ND == ND->getMostRecentDecl())((!IsMostRecent || ND == ND->getMostRecentDecl()) ? static_cast
<void> (0) : __assert_fail ("!IsMostRecent || ND == ND->getMostRecentDecl()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1110, __PRETTY_FUNCTION__))
;
1111
1112 // Check the declaration itself first.
1113 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1114 return V;
1115
1116 // If this is a member class of a specialization of a class template
1117 // and the corresponding decl has explicit visibility, use that.
1118 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1119 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1120 if (InstantiatedFrom)
1121 return getVisibilityOf(InstantiatedFrom, kind);
1122 }
1123
1124 // If there wasn't explicit visibility there, and this is a
1125 // specialization of a class template, check for visibility
1126 // on the pattern.
1127 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1128 // Walk all the template decl till this point to see if there are
1129 // explicit visibility attributes.
1130 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1131 while (TD != nullptr) {
1132 auto Vis = getVisibilityOf(TD, kind);
1133 if (Vis != None)
1134 return Vis;
1135 TD = TD->getPreviousDecl();
1136 }
1137 return None;
1138 }
1139
1140 // Use the most recent declaration.
1141 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1142 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1143 if (MostRecent != ND)
1144 return getExplicitVisibilityAux(MostRecent, kind, true);
1145 }
1146
1147 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1148 if (Var->isStaticDataMember()) {
1149 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1150 if (InstantiatedFrom)
1151 return getVisibilityOf(InstantiatedFrom, kind);
1152 }
1153
1154 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1155 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1156 kind);
1157
1158 return None;
1159 }
1160 // Also handle function template specializations.
1161 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1162 // If the function is a specialization of a template with an
1163 // explicit visibility attribute, use that.
1164 if (FunctionTemplateSpecializationInfo *templateInfo
1165 = fn->getTemplateSpecializationInfo())
1166 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1167 kind);
1168
1169 // If the function is a member of a specialization of a class template
1170 // and the corresponding decl has explicit visibility, use that.
1171 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1172 if (InstantiatedFrom)
1173 return getVisibilityOf(InstantiatedFrom, kind);
1174
1175 return None;
1176 }
1177
1178 // The visibility of a template is stored in the templated decl.
1179 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1180 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1181
1182 return None;
1183}
1184
1185Optional<Visibility>
1186NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1187 return getExplicitVisibilityAux(this, kind, false);
1188}
1189
1190LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1191 Decl *ContextDecl,
1192 LVComputationKind computation) {
1193 // This lambda has its linkage/visibility determined by its owner.
1194 const NamedDecl *Owner;
1195 if (!ContextDecl)
1196 Owner = dyn_cast<NamedDecl>(DC);
1197 else if (isa<ParmVarDecl>(ContextDecl))
1198 Owner =
1199 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1200 else
1201 Owner = cast<NamedDecl>(ContextDecl);
1202
1203 if (!Owner)
1204 return LinkageInfo::none();
1205
1206 // If the owner has a deduced type, we need to skip querying the linkage and
1207 // visibility of that type, because it might involve this closure type. The
1208 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1209 // than NoLinkage when we don't strictly need to, which is benign.
1210 auto *VD = dyn_cast<VarDecl>(Owner);
1211 LinkageInfo OwnerLV =
1212 VD && VD->getType()->getContainedDeducedType()
1213 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1214 : getLVForDecl(Owner, computation);
1215
1216 // A lambda never formally has linkage. But if the owner is externally
1217 // visible, then the lambda is too. We apply the same rules to blocks.
1218 if (!isExternallyVisible(OwnerLV.getLinkage()))
1219 return LinkageInfo::none();
1220 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1221 OwnerLV.isVisibilityExplicit());
1222}
1223
1224LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1225 LVComputationKind computation) {
1226 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1227 if (Function->isInAnonymousNamespace() &&
1228 !isFirstInExternCContext(Function))
1229 return getInternalLinkageFor(Function);
1230
1231 // This is a "void f();" which got merged with a file static.
1232 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1233 return getInternalLinkageFor(Function);
1234
1235 LinkageInfo LV;
1236 if (!hasExplicitVisibilityAlready(computation)) {
1237 if (Optional<Visibility> Vis =
1238 getExplicitVisibility(Function, computation))
1239 LV.mergeVisibility(*Vis, true);
1240 }
1241
1242 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1243 // merging storage classes and visibility attributes, so we don't have to
1244 // look at previous decls in here.
1245
1246 return LV;
1247 }
1248
1249 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1250 if (Var->hasExternalStorage()) {
1251 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1252 return getInternalLinkageFor(Var);
1253
1254 LinkageInfo LV;
1255 if (Var->getStorageClass() == SC_PrivateExtern)
1256 LV.mergeVisibility(HiddenVisibility, true);
1257 else if (!hasExplicitVisibilityAlready(computation)) {
1258 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1259 LV.mergeVisibility(*Vis, true);
1260 }
1261
1262 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1263 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1264 if (PrevLV.getLinkage())
1265 LV.setLinkage(PrevLV.getLinkage());
1266 LV.mergeVisibility(PrevLV);
1267 }
1268
1269 return LV;
1270 }
1271
1272 if (!Var->isStaticLocal())
1273 return LinkageInfo::none();
1274 }
1275
1276 ASTContext &Context = D->getASTContext();
1277 if (!Context.getLangOpts().CPlusPlus)
1278 return LinkageInfo::none();
1279
1280 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1281 if (!OuterD || OuterD->isInvalidDecl())
1282 return LinkageInfo::none();
1283
1284 LinkageInfo LV;
1285 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1286 if (!BD->getBlockManglingNumber())
1287 return LinkageInfo::none();
1288
1289 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1290 BD->getBlockManglingContextDecl(), computation);
1291 } else {
1292 const auto *FD = cast<FunctionDecl>(OuterD);
1293 if (!FD->isInlined() &&
1294 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1295 return LinkageInfo::none();
1296
1297 // If a function is hidden by -fvisibility-inlines-hidden option and
1298 // is not explicitly attributed as a hidden function,
1299 // we should not make static local variables in the function hidden.
1300 LV = getLVForDecl(FD, computation);
1301 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1302 !LV.isVisibilityExplicit() &&
1303 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1304 assert(cast<VarDecl>(D)->isStaticLocal())((cast<VarDecl>(D)->isStaticLocal()) ? static_cast<
void> (0) : __assert_fail ("cast<VarDecl>(D)->isStaticLocal()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1304, __PRETTY_FUNCTION__))
;
1305 // If this was an implicitly hidden inline method, check again for
1306 // explicit visibility on the parent class, and use that for static locals
1307 // if present.
1308 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1309 LV = getLVForDecl(MD->getParent(), computation);
1310 if (!LV.isVisibilityExplicit()) {
1311 Visibility globalVisibility =
1312 computation.isValueVisibility()
1313 ? Context.getLangOpts().getValueVisibilityMode()
1314 : Context.getLangOpts().getTypeVisibilityMode();
1315 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1316 /*visibilityExplicit=*/false);
1317 }
1318 }
1319 }
1320 if (!isExternallyVisible(LV.getLinkage()))
1321 return LinkageInfo::none();
1322 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1323 LV.isVisibilityExplicit());
1324}
1325
1326LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1327 LVComputationKind computation,
1328 bool IgnoreVarTypeLinkage) {
1329 // Internal_linkage attribute overrides other considerations.
1330 if (D->hasAttr<InternalLinkageAttr>())
1331 return getInternalLinkageFor(D);
1332
1333 // Objective-C: treat all Objective-C declarations as having external
1334 // linkage.
1335 switch (D->getKind()) {
1336 default:
1337 break;
1338
1339 // Per C++ [basic.link]p2, only the names of objects, references,
1340 // functions, types, templates, namespaces, and values ever have linkage.
1341 //
1342 // Note that the name of a typedef, namespace alias, using declaration,
1343 // and so on are not the name of the corresponding type, namespace, or
1344 // declaration, so they do *not* have linkage.
1345 case Decl::ImplicitParam:
1346 case Decl::Label:
1347 case Decl::NamespaceAlias:
1348 case Decl::ParmVar:
1349 case Decl::Using:
1350 case Decl::UsingShadow:
1351 case Decl::UsingDirective:
1352 return LinkageInfo::none();
1353
1354 case Decl::EnumConstant:
1355 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1356 if (D->getASTContext().getLangOpts().CPlusPlus)
1357 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1358 return LinkageInfo::visible_none();
1359
1360 case Decl::Typedef:
1361 case Decl::TypeAlias:
1362 // A typedef declaration has linkage if it gives a type a name for
1363 // linkage purposes.
1364 if (!cast<TypedefNameDecl>(D)
1365 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1366 return LinkageInfo::none();
1367 break;
1368
1369 case Decl::TemplateTemplateParm: // count these as external
1370 case Decl::NonTypeTemplateParm:
1371 case Decl::ObjCAtDefsField:
1372 case Decl::ObjCCategory:
1373 case Decl::ObjCCategoryImpl:
1374 case Decl::ObjCCompatibleAlias:
1375 case Decl::ObjCImplementation:
1376 case Decl::ObjCMethod:
1377 case Decl::ObjCProperty:
1378 case Decl::ObjCPropertyImpl:
1379 case Decl::ObjCProtocol:
1380 return getExternalLinkageFor(D);
1381
1382 case Decl::CXXRecord: {
1383 const auto *Record = cast<CXXRecordDecl>(D);
1384 if (Record->isLambda()) {
1385 if (Record->hasKnownLambdaInternalLinkage() ||
1386 !Record->getLambdaManglingNumber()) {
1387 // This lambda has no mangling number, so it's internal.
1388 return getInternalLinkageFor(D);
1389 }
1390
1391 return getLVForClosure(
1392 Record->getDeclContext()->getRedeclContext(),
1393 Record->getLambdaContextDecl(), computation);
1394 }
1395
1396 break;
1397 }
1398
1399 case Decl::TemplateParamObject: {
1400 // The template parameter object can be referenced from anywhere its type
1401 // and value can be referenced.
1402 auto *TPO = cast<TemplateParamObjectDecl>(D);
1403 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1404 LV.merge(getLVForValue(TPO->getValue(), computation));
1405 return LV;
1406 }
1407 }
1408
1409 // Handle linkage for namespace-scope names.
1410 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1411 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1412
1413 // C++ [basic.link]p5:
1414 // In addition, a member function, static data member, a named
1415 // class or enumeration of class scope, or an unnamed class or
1416 // enumeration defined in a class-scope typedef declaration such
1417 // that the class or enumeration has the typedef name for linkage
1418 // purposes (7.1.3), has external linkage if the name of the class
1419 // has external linkage.
1420 if (D->getDeclContext()->isRecord())
1421 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1422
1423 // C++ [basic.link]p6:
1424 // The name of a function declared in block scope and the name of
1425 // an object declared by a block scope extern declaration have
1426 // linkage. If there is a visible declaration of an entity with
1427 // linkage having the same name and type, ignoring entities
1428 // declared outside the innermost enclosing namespace scope, the
1429 // block scope declaration declares that same entity and receives
1430 // the linkage of the previous declaration. If there is more than
1431 // one such matching entity, the program is ill-formed. Otherwise,
1432 // if no matching entity is found, the block scope entity receives
1433 // external linkage.
1434 if (D->getDeclContext()->isFunctionOrMethod())
1435 return getLVForLocalDecl(D, computation);
1436
1437 // C++ [basic.link]p6:
1438 // Names not covered by these rules have no linkage.
1439 return LinkageInfo::none();
1440}
1441
1442/// getLVForDecl - Get the linkage and visibility for the given declaration.
1443LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1444 LVComputationKind computation) {
1445 // Internal_linkage attribute overrides other considerations.
1446 if (D->hasAttr<InternalLinkageAttr>())
1447 return getInternalLinkageFor(D);
1448
1449 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1450 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1451
1452 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1453 return *LI;
1454
1455 LinkageInfo LV = computeLVForDecl(D, computation);
1456 if (D->hasCachedLinkage())
1457 assert(D->getCachedLinkage() == LV.getLinkage())((D->getCachedLinkage() == LV.getLinkage()) ? static_cast<
void> (0) : __assert_fail ("D->getCachedLinkage() == LV.getLinkage()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1457, __PRETTY_FUNCTION__))
;
1458
1459 D->setCachedLinkage(LV.getLinkage());
1460 cache(D, computation, LV);
1461
1462#ifndef NDEBUG
1463 // In C (because of gnu inline) and in c++ with microsoft extensions an
1464 // static can follow an extern, so we can have two decls with different
1465 // linkages.
1466 const LangOptions &Opts = D->getASTContext().getLangOpts();
1467 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1468 return LV;
1469
1470 // We have just computed the linkage for this decl. By induction we know
1471 // that all other computed linkages match, check that the one we just
1472 // computed also does.
1473 NamedDecl *Old = nullptr;
1474 for (auto I : D->redecls()) {
1475 auto *T = cast<NamedDecl>(I);
1476 if (T == D)
1477 continue;
1478 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1479 Old = T;
1480 break;
1481 }
1482 }
1483 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage())((!Old || Old->getCachedLinkage() == D->getCachedLinkage
()) ? static_cast<void> (0) : __assert_fail ("!Old || Old->getCachedLinkage() == D->getCachedLinkage()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1483, __PRETTY_FUNCTION__))
;
1484#endif
1485
1486 return LV;
1487}
1488
1489LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1490 return getLVForDecl(D,
1491 LVComputationKind(usesTypeVisibility(D)
1492 ? NamedDecl::VisibilityForType
1493 : NamedDecl::VisibilityForValue));
1494}
1495
1496Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1497 Module *M = getOwningModule();
1498 if (!M)
1499 return nullptr;
1500
1501 switch (M->Kind) {
1502 case Module::ModuleMapModule:
1503 // Module map modules have no special linkage semantics.
1504 return nullptr;
1505
1506 case Module::ModuleInterfaceUnit:
1507 return M;
1508
1509 case Module::GlobalModuleFragment: {
1510 // External linkage declarations in the global module have no owning module
1511 // for linkage purposes. But internal linkage declarations in the global
1512 // module fragment of a particular module are owned by that module for
1513 // linkage purposes.
1514 if (IgnoreLinkage)
1515 return nullptr;
1516 bool InternalLinkage;
1517 if (auto *ND = dyn_cast<NamedDecl>(this))
1518 InternalLinkage = !ND->hasExternalFormalLinkage();
1519 else {
1520 auto *NSD = dyn_cast<NamespaceDecl>(this);
1521 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1522 isInAnonymousNamespace();
1523 }
1524 return InternalLinkage ? M->Parent : nullptr;
1525 }
1526
1527 case Module::PrivateModuleFragment:
1528 // The private module fragment is part of its containing module for linkage
1529 // purposes.
1530 return M->Parent;
1531 }
1532
1533 llvm_unreachable("unknown module kind")::llvm::llvm_unreachable_internal("unknown module kind", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1533)
;
1534}
1535
1536void NamedDecl::printName(raw_ostream &os) const {
1537 os << Name;
1538}
1539
1540std::string NamedDecl::getQualifiedNameAsString() const {
1541 std::string QualName;
1542 llvm::raw_string_ostream OS(QualName);
1543 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1544 return OS.str();
1545}
1546
1547void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1548 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1549}
1550
1551void NamedDecl::printQualifiedName(raw_ostream &OS,
1552 const PrintingPolicy &P) const {
1553 if (getDeclContext()->isFunctionOrMethod()) {
1554 // We do not print '(anonymous)' for function parameters without name.
1555 printName(OS);
1556 return;
1557 }
1558 printNestedNameSpecifier(OS, P);
1559 if (getDeclName())
1560 OS << *this;
1561 else {
1562 // Give the printName override a chance to pick a different name before we
1563 // fall back to "(anonymous)".
1564 SmallString<64> NameBuffer;
1565 llvm::raw_svector_ostream NameOS(NameBuffer);
1566 printName(NameOS);
1567 if (NameBuffer.empty())
1568 OS << "(anonymous)";
1569 else
1570 OS << NameBuffer;
1571 }
1572}
1573
1574void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1575 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1576}
1577
1578void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1579 const PrintingPolicy &P) const {
1580 const DeclContext *Ctx = getDeclContext();
1581
1582 // For ObjC methods and properties, look through categories and use the
1583 // interface as context.
1584 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1585 if (auto *ID = MD->getClassInterface())
1586 Ctx = ID;
1587 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1588 if (auto *MD = PD->getGetterMethodDecl())
1589 if (auto *ID = MD->getClassInterface())
1590 Ctx = ID;
1591 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1592 if (auto *CI = ID->getContainingInterface())
1593 Ctx = CI;
1594 }
1595
1596 if (Ctx->isFunctionOrMethod())
1597 return;
1598
1599 using ContextsTy = SmallVector<const DeclContext *, 8>;
1600 ContextsTy Contexts;
1601
1602 // Collect named contexts.
1603 DeclarationName NameInScope = getDeclName();
1604 for (; Ctx; Ctx = Ctx->getParent()) {
1605 // Suppress anonymous namespace if requested.
1606 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1607 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1608 continue;
1609
1610 // Suppress inline namespace if it doesn't make the result ambiguous.
1611 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1612 Ctx->lookup(NameInScope).size() ==
1613 Ctx->getParent()->lookup(NameInScope).size())
1614 continue;
1615
1616 // Skip non-named contexts such as linkage specifications and ExportDecls.
1617 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1618 if (!ND)
1619 continue;
1620
1621 Contexts.push_back(Ctx);
1622 NameInScope = ND->getDeclName();
1623 }
1624
1625 for (unsigned I = Contexts.size(); I != 0; --I) {
1626 const DeclContext *DC = Contexts[I - 1];
1627 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1628 OS << Spec->getName();
1629 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1630 printTemplateArgumentList(
1631 OS, TemplateArgs.asArray(), P,
1632 Spec->getSpecializedTemplate()->getTemplateParameters());
1633 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1634 if (ND->isAnonymousNamespace()) {
1635 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1636 : "(anonymous namespace)");
1637 }
1638 else
1639 OS << *ND;
1640 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1641 if (!RD->getIdentifier())
1642 OS << "(anonymous " << RD->getKindName() << ')';
1643 else
1644 OS << *RD;
1645 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1646 const FunctionProtoType *FT = nullptr;
1647 if (FD->hasWrittenPrototype())
1648 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1649
1650 OS << *FD << '(';
1651 if (FT) {
1652 unsigned NumParams = FD->getNumParams();
1653 for (unsigned i = 0; i < NumParams; ++i) {
1654 if (i)
1655 OS << ", ";
1656 OS << FD->getParamDecl(i)->getType().stream(P);
1657 }
1658
1659 if (FT->isVariadic()) {
1660 if (NumParams > 0)
1661 OS << ", ";
1662 OS << "...";
1663 }
1664 }
1665 OS << ')';
1666 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1667 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1668 // enumerator is declared in the scope that immediately contains
1669 // the enum-specifier. Each scoped enumerator is declared in the
1670 // scope of the enumeration.
1671 // For the case of unscoped enumerator, do not include in the qualified
1672 // name any information about its enum enclosing scope, as its visibility
1673 // is global.
1674 if (ED->isScoped())
1675 OS << *ED;
1676 else
1677 continue;
1678 } else {
1679 OS << *cast<NamedDecl>(DC);
1680 }
1681 OS << "::";
1682 }
1683}
1684
1685void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1686 const PrintingPolicy &Policy,
1687 bool Qualified) const {
1688 if (Qualified)
1689 printQualifiedName(OS, Policy);
1690 else
1691 printName(OS);
1692}
1693
1694template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1695 return true;
1696}
1697static bool isRedeclarableImpl(...) { return false; }
1698static bool isRedeclarable(Decl::Kind K) {
1699 switch (K) {
1700#define DECL(Type, Base) \
1701 case Decl::Type: \
1702 return isRedeclarableImpl((Type##Decl *)nullptr);
1703#define ABSTRACT_DECL(DECL)
1704#include "clang/AST/DeclNodes.inc"
1705 }
1706 llvm_unreachable("unknown decl kind")::llvm::llvm_unreachable_internal("unknown decl kind", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1706)
;
1707}
1708
1709bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1710 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch")((getDeclName() == OldD->getDeclName() && "Declaration name mismatch"
) ? static_cast<void> (0) : __assert_fail ("getDeclName() == OldD->getDeclName() && \"Declaration name mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1710, __PRETTY_FUNCTION__))
;
1711
1712 // Never replace one imported declaration with another; we need both results
1713 // when re-exporting.
1714 if (OldD->isFromASTFile() && isFromASTFile())
1715 return false;
1716
1717 // A kind mismatch implies that the declaration is not replaced.
1718 if (OldD->getKind() != getKind())
1719 return false;
1720
1721 // For method declarations, we never replace. (Why?)
1722 if (isa<ObjCMethodDecl>(this))
1723 return false;
1724
1725 // For parameters, pick the newer one. This is either an error or (in
1726 // Objective-C) permitted as an extension.
1727 if (isa<ParmVarDecl>(this))
1728 return true;
1729
1730 // Inline namespaces can give us two declarations with the same
1731 // name and kind in the same scope but different contexts; we should
1732 // keep both declarations in this case.
1733 if (!this->getDeclContext()->getRedeclContext()->Equals(
1734 OldD->getDeclContext()->getRedeclContext()))
1735 return false;
1736
1737 // Using declarations can be replaced if they import the same name from the
1738 // same context.
1739 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1740 ASTContext &Context = getASTContext();
1741 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1742 Context.getCanonicalNestedNameSpecifier(
1743 cast<UsingDecl>(OldD)->getQualifier());
1744 }
1745 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1746 ASTContext &Context = getASTContext();
1747 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1748 Context.getCanonicalNestedNameSpecifier(
1749 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1750 }
1751
1752 if (isRedeclarable(getKind())) {
1753 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1754 return false;
1755
1756 if (IsKnownNewer)
1757 return true;
1758
1759 // Check whether this is actually newer than OldD. We want to keep the
1760 // newer declaration. This loop will usually only iterate once, because
1761 // OldD is usually the previous declaration.
1762 for (auto D : redecls()) {
1763 if (D == OldD)
1764 break;
1765
1766 // If we reach the canonical declaration, then OldD is not actually older
1767 // than this one.
1768 //
1769 // FIXME: In this case, we should not add this decl to the lookup table.
1770 if (D->isCanonicalDecl())
1771 return false;
1772 }
1773
1774 // It's a newer declaration of the same kind of declaration in the same
1775 // scope: we want this decl instead of the existing one.
1776 return true;
1777 }
1778
1779 // In all other cases, we need to keep both declarations in case they have
1780 // different visibility. Any attempt to use the name will result in an
1781 // ambiguity if more than one is visible.
1782 return false;
1783}
1784
1785bool NamedDecl::hasLinkage() const {
1786 return getFormalLinkage() != NoLinkage;
1787}
1788
1789NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1790 NamedDecl *ND = this;
1791 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1792 ND = UD->getTargetDecl();
1793
1794 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1795 return AD->getClassInterface();
1796
1797 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1798 return AD->getNamespace();
1799
1800 return ND;
1801}
1802
1803bool NamedDecl::isCXXInstanceMember() const {
1804 if (!isCXXClassMember())
1805 return false;
1806
1807 const NamedDecl *D = this;
1808 if (isa<UsingShadowDecl>(D))
1809 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1810
1811 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1812 return true;
1813 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1814 return MD->isInstance();
1815 return false;
1816}
1817
1818//===----------------------------------------------------------------------===//
1819// DeclaratorDecl Implementation
1820//===----------------------------------------------------------------------===//
1821
1822template <typename DeclT>
1823static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1824 if (decl->getNumTemplateParameterLists() > 0)
1825 return decl->getTemplateParameterList(0)->getTemplateLoc();
1826 else
1827 return decl->getInnerLocStart();
1828}
1829
1830SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1831 TypeSourceInfo *TSI = getTypeSourceInfo();
1832 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1833 return SourceLocation();
1834}
1835
1836SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1837 TypeSourceInfo *TSI = getTypeSourceInfo();
1838 if (TSI) return TSI->getTypeLoc().getEndLoc();
1839 return SourceLocation();
1840}
1841
1842void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1843 if (QualifierLoc) {
1844 // Make sure the extended decl info is allocated.
1845 if (!hasExtInfo()) {
1846 // Save (non-extended) type source info pointer.
1847 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1848 // Allocate external info struct.
1849 DeclInfo = new (getASTContext()) ExtInfo;
1850 // Restore savedTInfo into (extended) decl info.
1851 getExtInfo()->TInfo = savedTInfo;
1852 }
1853 // Set qualifier info.
1854 getExtInfo()->QualifierLoc = QualifierLoc;
1855 } else if (hasExtInfo()) {
1856 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1857 getExtInfo()->QualifierLoc = QualifierLoc;
1858 }
1859}
1860
1861void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1862 assert(TrailingRequiresClause)((TrailingRequiresClause) ? static_cast<void> (0) : __assert_fail
("TrailingRequiresClause", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1862, __PRETTY_FUNCTION__))
;
1863 // Make sure the extended decl info is allocated.
1864 if (!hasExtInfo()) {
1865 // Save (non-extended) type source info pointer.
1866 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1867 // Allocate external info struct.
1868 DeclInfo = new (getASTContext()) ExtInfo;
1869 // Restore savedTInfo into (extended) decl info.
1870 getExtInfo()->TInfo = savedTInfo;
1871 }
1872 // Set requires clause info.
1873 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1874}
1875
1876void DeclaratorDecl::setTemplateParameterListsInfo(
1877 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1878 assert(!TPLists.empty())((!TPLists.empty()) ? static_cast<void> (0) : __assert_fail
("!TPLists.empty()", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1878, __PRETTY_FUNCTION__))
;
1879 // Make sure the extended decl info is allocated.
1880 if (!hasExtInfo()) {
1881 // Save (non-extended) type source info pointer.
1882 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1883 // Allocate external info struct.
1884 DeclInfo = new (getASTContext()) ExtInfo;
1885 // Restore savedTInfo into (extended) decl info.
1886 getExtInfo()->TInfo = savedTInfo;
1887 }
1888 // Set the template parameter lists info.
1889 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1890}
1891
1892SourceLocation DeclaratorDecl::getOuterLocStart() const {
1893 return getTemplateOrInnerLocStart(this);
1894}
1895
1896// Helper function: returns true if QT is or contains a type
1897// having a postfix component.
1898static bool typeIsPostfix(QualType QT) {
1899 while (true) {
1900 const Type* T = QT.getTypePtr();
1901 switch (T->getTypeClass()) {
1902 default:
1903 return false;
1904 case Type::Pointer:
1905 QT = cast<PointerType>(T)->getPointeeType();
1906 break;
1907 case Type::BlockPointer:
1908 QT = cast<BlockPointerType>(T)->getPointeeType();
1909 break;
1910 case Type::MemberPointer:
1911 QT = cast<MemberPointerType>(T)->getPointeeType();
1912 break;
1913 case Type::LValueReference:
1914 case Type::RValueReference:
1915 QT = cast<ReferenceType>(T)->getPointeeType();
1916 break;
1917 case Type::PackExpansion:
1918 QT = cast<PackExpansionType>(T)->getPattern();
1919 break;
1920 case Type::Paren:
1921 case Type::ConstantArray:
1922 case Type::DependentSizedArray:
1923 case Type::IncompleteArray:
1924 case Type::VariableArray:
1925 case Type::FunctionProto:
1926 case Type::FunctionNoProto:
1927 return true;
1928 }
1929 }
1930}
1931
1932SourceRange DeclaratorDecl::getSourceRange() const {
1933 SourceLocation RangeEnd = getLocation();
1934 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1935 // If the declaration has no name or the type extends past the name take the
1936 // end location of the type.
1937 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1938 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1939 }
1940 return SourceRange(getOuterLocStart(), RangeEnd);
1941}
1942
1943void QualifierInfo::setTemplateParameterListsInfo(
1944 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1945 // Free previous template parameters (if any).
1946 if (NumTemplParamLists > 0) {
1947 Context.Deallocate(TemplParamLists);
1948 TemplParamLists = nullptr;
1949 NumTemplParamLists = 0;
1950 }
1951 // Set info on matched template parameter lists (if any).
1952 if (!TPLists.empty()) {
1953 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1954 NumTemplParamLists = TPLists.size();
1955 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1956 }
1957}
1958
1959//===----------------------------------------------------------------------===//
1960// VarDecl Implementation
1961//===----------------------------------------------------------------------===//
1962
1963const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1964 switch (SC) {
1965 case SC_None: break;
1966 case SC_Auto: return "auto";
1967 case SC_Extern: return "extern";
1968 case SC_PrivateExtern: return "__private_extern__";
1969 case SC_Register: return "register";
1970 case SC_Static: return "static";
1971 }
1972
1973 llvm_unreachable("Invalid storage class")::llvm::llvm_unreachable_internal("Invalid storage class", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 1973)
;
1974}
1975
1976VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1977 SourceLocation StartLoc, SourceLocation IdLoc,
1978 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1979 StorageClass SC)
1980 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1981 redeclarable_base(C) {
1982 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1983 "VarDeclBitfields too large!");
1984 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1985 "ParmVarDeclBitfields too large!");
1986 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1987 "NonParmVarDeclBitfields too large!");
1988 AllBits = 0;
1989 VarDeclBits.SClass = SC;
1990 // Everything else is implicitly initialized to false.
1991}
1992
1993VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1994 SourceLocation StartL, SourceLocation IdL,
1995 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1996 StorageClass S) {
1997 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1998}
1999
2000VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2001 return new (C, ID)
2002 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2003 QualType(), nullptr, SC_None);
2004}
2005
2006void VarDecl::setStorageClass(StorageClass SC) {
2007 assert(isLegalForVariable(SC))((isLegalForVariable(SC)) ? static_cast<void> (0) : __assert_fail
("isLegalForVariable(SC)", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2007, __PRETTY_FUNCTION__))
;
2008 VarDeclBits.SClass = SC;
2009}
2010
2011VarDecl::TLSKind VarDecl::getTLSKind() const {
2012 switch (VarDeclBits.TSCSpec) {
2013 case TSCS_unspecified:
2014 if (!hasAttr<ThreadAttr>() &&
2015 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2016 getASTContext().getTargetInfo().isTLSSupported() &&
2017 hasAttr<OMPThreadPrivateDeclAttr>()))
2018 return TLS_None;
2019 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2020 LangOptions::MSVC2015)) ||
2021 hasAttr<OMPThreadPrivateDeclAttr>())
2022 ? TLS_Dynamic
2023 : TLS_Static;
2024 case TSCS___thread: // Fall through.
2025 case TSCS__Thread_local:
2026 return TLS_Static;
2027 case TSCS_thread_local:
2028 return TLS_Dynamic;
2029 }
2030 llvm_unreachable("Unknown thread storage class specifier!")::llvm::llvm_unreachable_internal("Unknown thread storage class specifier!"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2030)
;
2031}
2032
2033SourceRange VarDecl::getSourceRange() const {
2034 if (const Expr *Init = getInit()) {
2035 SourceLocation InitEnd = Init->getEndLoc();
2036 // If Init is implicit, ignore its source range and fallback on
2037 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2038 if (InitEnd.isValid() && InitEnd != getLocation())
2039 return SourceRange(getOuterLocStart(), InitEnd);
2040 }
2041 return DeclaratorDecl::getSourceRange();
2042}
2043
2044template<typename T>
2045static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2046 // C++ [dcl.link]p1: All function types, function names with external linkage,
2047 // and variable names with external linkage have a language linkage.
2048 if (!D.hasExternalFormalLinkage())
2049 return NoLanguageLinkage;
2050
2051 // Language linkage is a C++ concept, but saying that everything else in C has
2052 // C language linkage fits the implementation nicely.
2053 ASTContext &Context = D.getASTContext();
2054 if (!Context.getLangOpts().CPlusPlus)
2055 return CLanguageLinkage;
2056
2057 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2058 // language linkage of the names of class members and the function type of
2059 // class member functions.
2060 const DeclContext *DC = D.getDeclContext();
2061 if (DC->isRecord())
2062 return CXXLanguageLinkage;
2063
2064 // If the first decl is in an extern "C" context, any other redeclaration
2065 // will have C language linkage. If the first one is not in an extern "C"
2066 // context, we would have reported an error for any other decl being in one.
2067 if (isFirstInExternCContext(&D))
2068 return CLanguageLinkage;
2069 return CXXLanguageLinkage;
2070}
2071
2072template<typename T>
2073static bool isDeclExternC(const T &D) {
2074 // Since the context is ignored for class members, they can only have C++
2075 // language linkage or no language linkage.
2076 const DeclContext *DC = D.getDeclContext();
2077 if (DC->isRecord()) {
2078 assert(D.getASTContext().getLangOpts().CPlusPlus)((D.getASTContext().getLangOpts().CPlusPlus) ? static_cast<
void> (0) : __assert_fail ("D.getASTContext().getLangOpts().CPlusPlus"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2078, __PRETTY_FUNCTION__))
;
2079 return false;
2080 }
2081
2082 return D.getLanguageLinkage() == CLanguageLinkage;
2083}
2084
2085LanguageLinkage VarDecl::getLanguageLinkage() const {
2086 return getDeclLanguageLinkage(*this);
2087}
2088
2089bool VarDecl::isExternC() const {
2090 return isDeclExternC(*this);
2091}
2092
2093bool VarDecl::isInExternCContext() const {
2094 return getLexicalDeclContext()->isExternCContext();
2095}
2096
2097bool VarDecl::isInExternCXXContext() const {
2098 return getLexicalDeclContext()->isExternCXXContext();
2099}
2100
2101VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2102
2103VarDecl::DefinitionKind
2104VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2105 if (isThisDeclarationADemotedDefinition())
2106 return DeclarationOnly;
2107
2108 // C++ [basic.def]p2:
2109 // A declaration is a definition unless [...] it contains the 'extern'
2110 // specifier or a linkage-specification and neither an initializer [...],
2111 // it declares a non-inline static data member in a class declaration [...],
2112 // it declares a static data member outside a class definition and the variable
2113 // was defined within the class with the constexpr specifier [...],
2114 // C++1y [temp.expl.spec]p15:
2115 // An explicit specialization of a static data member or an explicit
2116 // specialization of a static data member template is a definition if the
2117 // declaration includes an initializer; otherwise, it is a declaration.
2118 //
2119 // FIXME: How do you declare (but not define) a partial specialization of
2120 // a static data member template outside the containing class?
2121 if (isStaticDataMember()) {
2122 if (isOutOfLine() &&
2123 !(getCanonicalDecl()->isInline() &&
2124 getCanonicalDecl()->isConstexpr()) &&
2125 (hasInit() ||
2126 // If the first declaration is out-of-line, this may be an
2127 // instantiation of an out-of-line partial specialization of a variable
2128 // template for which we have not yet instantiated the initializer.
2129 (getFirstDecl()->isOutOfLine()
2130 ? getTemplateSpecializationKind() == TSK_Undeclared
2131 : getTemplateSpecializationKind() !=
2132 TSK_ExplicitSpecialization) ||
2133 isa<VarTemplatePartialSpecializationDecl>(this)))
2134 return Definition;
2135 else if (!isOutOfLine() && isInline())
2136 return Definition;
2137 else
2138 return DeclarationOnly;
2139 }
2140 // C99 6.7p5:
2141 // A definition of an identifier is a declaration for that identifier that
2142 // [...] causes storage to be reserved for that object.
2143 // Note: that applies for all non-file-scope objects.
2144 // C99 6.9.2p1:
2145 // If the declaration of an identifier for an object has file scope and an
2146 // initializer, the declaration is an external definition for the identifier
2147 if (hasInit())
2148 return Definition;
2149
2150 if (hasDefiningAttr())
2151 return Definition;
2152
2153 if (const auto *SAA = getAttr<SelectAnyAttr>())
2154 if (!SAA->isInherited())
2155 return Definition;
2156
2157 // A variable template specialization (other than a static data member
2158 // template or an explicit specialization) is a declaration until we
2159 // instantiate its initializer.
2160 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2161 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2162 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2163 !VTSD->IsCompleteDefinition)
2164 return DeclarationOnly;
2165 }
2166
2167 if (hasExternalStorage())
2168 return DeclarationOnly;
2169
2170 // [dcl.link] p7:
2171 // A declaration directly contained in a linkage-specification is treated
2172 // as if it contains the extern specifier for the purpose of determining
2173 // the linkage of the declared name and whether it is a definition.
2174 if (isSingleLineLanguageLinkage(*this))
2175 return DeclarationOnly;
2176
2177 // C99 6.9.2p2:
2178 // A declaration of an object that has file scope without an initializer,
2179 // and without a storage class specifier or the scs 'static', constitutes
2180 // a tentative definition.
2181 // No such thing in C++.
2182 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2183 return TentativeDefinition;
2184
2185 // What's left is (in C, block-scope) declarations without initializers or
2186 // external storage. These are definitions.
2187 return Definition;
2188}
2189
2190VarDecl *VarDecl::getActingDefinition() {
2191 DefinitionKind Kind = isThisDeclarationADefinition();
2192 if (Kind != TentativeDefinition)
2193 return nullptr;
2194
2195 VarDecl *LastTentative = nullptr;
2196 VarDecl *First = getFirstDecl();
2197 for (auto I : First->redecls()) {
2198 Kind = I->isThisDeclarationADefinition();
2199 if (Kind == Definition)
2200 return nullptr;
2201 else if (Kind == TentativeDefinition)
2202 LastTentative = I;
2203 }
2204 return LastTentative;
2205}
2206
2207VarDecl *VarDecl::getDefinition(ASTContext &C) {
2208 VarDecl *First = getFirstDecl();
2209 for (auto I : First->redecls()) {
2210 if (I->isThisDeclarationADefinition(C) == Definition)
2211 return I;
2212 }
2213 return nullptr;
2214}
2215
2216VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2217 DefinitionKind Kind = DeclarationOnly;
2218
2219 const VarDecl *First = getFirstDecl();
2220 for (auto I : First->redecls()) {
2221 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2222 if (Kind == Definition)
2223 break;
2224 }
2225
2226 return Kind;
2227}
2228
2229const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2230 for (auto I : redecls()) {
2231 if (auto Expr = I->getInit()) {
2232 D = I;
2233 return Expr;
2234 }
2235 }
2236 return nullptr;
2237}
2238
2239bool VarDecl::hasInit() const {
2240 if (auto *P = dyn_cast<ParmVarDecl>(this))
2241 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2242 return false;
2243
2244 return !Init.isNull();
2245}
2246
2247Expr *VarDecl::getInit() {
2248 if (!hasInit())
2249 return nullptr;
2250
2251 if (auto *S = Init.dyn_cast<Stmt *>())
2252 return cast<Expr>(S);
2253
2254 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2255}
2256
2257Stmt **VarDecl::getInitAddress() {
2258 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2259 return &ES->Value;
2260
2261 return Init.getAddrOfPtr1();
2262}
2263
2264VarDecl *VarDecl::getInitializingDeclaration() {
2265 VarDecl *Def = nullptr;
2266 for (auto I : redecls()) {
2267 if (I->hasInit())
2268 return I;
2269
2270 if (I->isThisDeclarationADefinition()) {
2271 if (isStaticDataMember())
2272 return I;
2273 else
2274 Def = I;
2275 }
2276 }
2277 return Def;
2278}
2279
2280bool VarDecl::isOutOfLine() const {
2281 if (Decl::isOutOfLine())
2282 return true;
2283
2284 if (!isStaticDataMember())
2285 return false;
2286
2287 // If this static data member was instantiated from a static data member of
2288 // a class template, check whether that static data member was defined
2289 // out-of-line.
2290 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2291 return VD->isOutOfLine();
2292
2293 return false;
2294}
2295
2296void VarDecl::setInit(Expr *I) {
2297 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2298 Eval->~EvaluatedStmt();
2299 getASTContext().Deallocate(Eval);
2300 }
2301
2302 Init = I;
2303}
2304
2305bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2306 const LangOptions &Lang = C.getLangOpts();
2307
2308 // OpenCL permits const integral variables to be used in constant
2309 // expressions, like in C++98.
2310 if (!Lang.CPlusPlus && !Lang.OpenCL)
2311 return false;
2312
2313 // Function parameters are never usable in constant expressions.
2314 if (isa<ParmVarDecl>(this))
2315 return false;
2316
2317 // The values of weak variables are never usable in constant expressions.
2318 if (isWeak())
2319 return false;
2320
2321 // In C++11, any variable of reference type can be used in a constant
2322 // expression if it is initialized by a constant expression.
2323 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2324 return true;
2325
2326 // Only const objects can be used in constant expressions in C++. C++98 does
2327 // not require the variable to be non-volatile, but we consider this to be a
2328 // defect.
2329 if (!getType().isConstant(C) || getType().isVolatileQualified())
2330 return false;
2331
2332 // In C++, const, non-volatile variables of integral or enumeration types
2333 // can be used in constant expressions.
2334 if (getType()->isIntegralOrEnumerationType())
2335 return true;
2336
2337 // Additionally, in C++11, non-volatile constexpr variables can be used in
2338 // constant expressions.
2339 return Lang.CPlusPlus11 && isConstexpr();
2340}
2341
2342bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2343 // C++2a [expr.const]p3:
2344 // A variable is usable in constant expressions after its initializing
2345 // declaration is encountered...
2346 const VarDecl *DefVD = nullptr;
2347 const Expr *Init = getAnyInitializer(DefVD);
2348 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2349 return false;
2350 // ... if it is a constexpr variable, or it is of reference type or of
2351 // const-qualified integral or enumeration type, ...
2352 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2353 return false;
2354 // ... and its initializer is a constant initializer.
2355 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2356 return false;
2357 // C++98 [expr.const]p1:
2358 // An integral constant-expression can involve only [...] const variables
2359 // or static data members of integral or enumeration types initialized with
2360 // [integer] constant expressions (dcl.init)
2361 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2362 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2363 return false;
2364 return true;
2365}
2366
2367/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2368/// form, which contains extra information on the evaluated value of the
2369/// initializer.
2370EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2371 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2372 if (!Eval) {
2373 // Note: EvaluatedStmt contains an APValue, which usually holds
2374 // resources not allocated from the ASTContext. We need to do some
2375 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2376 // where we can detect whether there's anything to clean up or not.
2377 Eval = new (getASTContext()) EvaluatedStmt;
2378 Eval->Value = Init.get<Stmt *>();
2379 Init = Eval;
2380 }
2381 return Eval;
2382}
2383
2384EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2385 return Init.dyn_cast<EvaluatedStmt *>();
2386}
2387
2388APValue *VarDecl::evaluateValue() const {
2389 SmallVector<PartialDiagnosticAt, 8> Notes;
2390 return evaluateValueImpl(Notes, hasConstantInitialization());
2391}
2392
2393APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2394 bool IsConstantInitialization) const {
2395 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2396
2397 const auto *Init = cast<Expr>(Eval->Value);
2398 assert(!Init->isValueDependent())((!Init->isValueDependent()) ? static_cast<void> (0)
: __assert_fail ("!Init->isValueDependent()", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2398, __PRETTY_FUNCTION__))
;
2399
2400 // We only produce notes indicating why an initializer is non-constant the
2401 // first time it is evaluated. FIXME: The notes won't always be emitted the
2402 // first time we try evaluation, so might not be produced at all.
2403 if (Eval->WasEvaluated)
2404 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2405
2406 if (Eval->IsEvaluating) {
2407 // FIXME: Produce a diagnostic for self-initialization.
2408 return nullptr;
2409 }
2410
2411 Eval->IsEvaluating = true;
2412
2413 ASTContext &Ctx = getASTContext();
2414 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2415 IsConstantInitialization);
2416
2417 // In C++11, this isn't a constant initializer if we produced notes. In that
2418 // case, we can't keep the result, because it may only be correct under the
2419 // assumption that the initializer is a constant context.
2420 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2421 !Notes.empty())
2422 Result = false;
2423
2424 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2425 // or that it's empty (so that there's nothing to clean up) if evaluation
2426 // failed.
2427 if (!Result)
2428 Eval->Evaluated = APValue();
2429 else if (Eval->Evaluated.needsCleanup())
2430 Ctx.addDestruction(&Eval->Evaluated);
2431
2432 Eval->IsEvaluating = false;
2433 Eval->WasEvaluated = true;
2434
2435 return Result ? &Eval->Evaluated : nullptr;
2436}
2437
2438APValue *VarDecl::getEvaluatedValue() const {
2439 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2440 if (Eval->WasEvaluated)
2441 return &Eval->Evaluated;
2442
2443 return nullptr;
2444}
2445
2446bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2447 const Expr *Init = getInit();
2448 assert(Init && "no initializer")((Init && "no initializer") ? static_cast<void>
(0) : __assert_fail ("Init && \"no initializer\"", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2448, __PRETTY_FUNCTION__))
;
2449
2450 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2451 if (!Eval->CheckedForICEInit) {
2452 Eval->CheckedForICEInit = true;
2453 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2454 }
2455 return Eval->HasICEInit;
2456}
2457
2458bool VarDecl::hasConstantInitialization() const {
2459 // In C, all globals (and only globals) have constant initialization.
2460 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2461 return true;
2462
2463 // In C++, it depends on whether the evaluation at the point of definition
2464 // was evaluatable as a constant initializer.
2465 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2466 return Eval->HasConstantInitialization;
2467
2468 return false;
2469}
2470
2471bool VarDecl::checkForConstantInitialization(
2472 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2473 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2474 // If we ask for the value before we know whether we have a constant
2475 // initializer, we can compute the wrong value (for example, due to
2476 // std::is_constant_evaluated()).
2477 assert(!Eval->WasEvaluated &&((!Eval->WasEvaluated && "already evaluated var value before checking for constant init"
) ? static_cast<void> (0) : __assert_fail ("!Eval->WasEvaluated && \"already evaluated var value before checking for constant init\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2478, __PRETTY_FUNCTION__))
2478 "already evaluated var value before checking for constant init")((!Eval->WasEvaluated && "already evaluated var value before checking for constant init"
) ? static_cast<void> (0) : __assert_fail ("!Eval->WasEvaluated && \"already evaluated var value before checking for constant init\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2478, __PRETTY_FUNCTION__))
;
2479 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++")((getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"
) ? static_cast<void> (0) : __assert_fail ("getASTContext().getLangOpts().CPlusPlus && \"only meaningful in C++\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2479, __PRETTY_FUNCTION__))
;
2480
2481 assert(!cast<Expr>(Eval->Value)->isValueDependent())((!cast<Expr>(Eval->Value)->isValueDependent()) ?
static_cast<void> (0) : __assert_fail ("!cast<Expr>(Eval->Value)->isValueDependent()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2481, __PRETTY_FUNCTION__))
;
2482
2483 // Evaluate the initializer to check whether it's a constant expression.
2484 Eval->HasConstantInitialization =
2485 evaluateValueImpl(Notes, true) && Notes.empty();
2486
2487 // If evaluation as a constant initializer failed, allow re-evaluation as a
2488 // non-constant initializer if we later find we want the value.
2489 if (!Eval->HasConstantInitialization)
2490 Eval->WasEvaluated = false;
2491
2492 return Eval->HasConstantInitialization;
2493}
2494
2495bool VarDecl::isParameterPack() const {
2496 return isa<PackExpansionType>(getType());
2497}
2498
2499template<typename DeclT>
2500static DeclT *getDefinitionOrSelf(DeclT *D) {
2501 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2501, __PRETTY_FUNCTION__))
;
2502 if (auto *Def = D->getDefinition())
2503 return Def;
2504 return D;
2505}
2506
2507bool VarDecl::isEscapingByref() const {
2508 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2509}
2510
2511bool VarDecl::isNonEscapingByref() const {
2512 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2513}
2514
2515VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2516 const VarDecl *VD = this;
2517
2518 // If this is an instantiated member, walk back to the template from which
2519 // it was instantiated.
2520 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2521 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2522 VD = VD->getInstantiatedFromStaticDataMember();
2523 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2524 VD = NewVD;
2525 }
2526 }
2527
2528 // If it's an instantiated variable template specialization, find the
2529 // template or partial specialization from which it was instantiated.
2530 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2531 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2532 auto From = VDTemplSpec->getInstantiatedFrom();
2533 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2534 while (!VTD->isMemberSpecialization()) {
2535 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2536 if (!NewVTD)
2537 break;
2538 VTD = NewVTD;
2539 }
2540 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2541 }
2542 if (auto *VTPSD =
2543 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2544 while (!VTPSD->isMemberSpecialization()) {
2545 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2546 if (!NewVTPSD)
2547 break;
2548 VTPSD = NewVTPSD;
2549 }
2550 return getDefinitionOrSelf<VarDecl>(VTPSD);
2551 }
2552 }
2553 }
2554
2555 // If this is the pattern of a variable template, find where it was
2556 // instantiated from. FIXME: Is this necessary?
2557 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2558 while (!VarTemplate->isMemberSpecialization()) {
2559 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2560 if (!NewVT)
2561 break;
2562 VarTemplate = NewVT;
2563 }
2564
2565 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2566 }
2567
2568 if (VD == this)
2569 return nullptr;
2570 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2571}
2572
2573VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2574 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2575 return cast<VarDecl>(MSI->getInstantiatedFrom());
2576
2577 return nullptr;
2578}
2579
2580TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2581 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2582 return Spec->getSpecializationKind();
2583
2584 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2585 return MSI->getTemplateSpecializationKind();
2586
2587 return TSK_Undeclared;
2588}
2589
2590TemplateSpecializationKind
2591VarDecl::getTemplateSpecializationKindForInstantiation() const {
2592 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2593 return MSI->getTemplateSpecializationKind();
2594
2595 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2596 return Spec->getSpecializationKind();
2597
2598 return TSK_Undeclared;
2599}
2600
2601SourceLocation VarDecl::getPointOfInstantiation() const {
2602 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2603 return Spec->getPointOfInstantiation();
2604
2605 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2606 return MSI->getPointOfInstantiation();
2607
2608 return SourceLocation();
2609}
2610
2611VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2612 return getASTContext().getTemplateOrSpecializationInfo(this)
2613 .dyn_cast<VarTemplateDecl *>();
2614}
2615
2616void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2617 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2618}
2619
2620bool VarDecl::isKnownToBeDefined() const {
2621 const auto &LangOpts = getASTContext().getLangOpts();
2622 // In CUDA mode without relocatable device code, variables of form 'extern
2623 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2624 // memory pool. These are never undefined variables, even if they appear
2625 // inside of an anon namespace or static function.
2626 //
2627 // With CUDA relocatable device code enabled, these variables don't get
2628 // special handling; they're treated like regular extern variables.
2629 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2630 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2631 isa<IncompleteArrayType>(getType()))
2632 return true;
2633
2634 return hasDefinition();
2635}
2636
2637bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2638 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2639 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2640 !hasAttr<AlwaysDestroyAttr>()));
2641}
2642
2643QualType::DestructionKind
2644VarDecl::needsDestruction(const ASTContext &Ctx) const {
2645 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2646 if (Eval->HasConstantDestruction)
2647 return QualType::DK_none;
2648
2649 if (isNoDestroy(Ctx))
2650 return QualType::DK_none;
2651
2652 return getType().isDestructedType();
2653}
2654
2655MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2656 if (isStaticDataMember())
2657 // FIXME: Remove ?
2658 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2659 return getASTContext().getTemplateOrSpecializationInfo(this)
2660 .dyn_cast<MemberSpecializationInfo *>();
2661 return nullptr;
2662}
2663
2664void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2665 SourceLocation PointOfInstantiation) {
2666 assert((isa<VarTemplateSpecializationDecl>(this) ||(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2668, __PRETTY_FUNCTION__))
2667 getMemberSpecializationInfo()) &&(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2668, __PRETTY_FUNCTION__))
2668 "not a variable or static data member template specialization")(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2668, __PRETTY_FUNCTION__))
;
2669
2670 if (VarTemplateSpecializationDecl *Spec =
2671 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2672 Spec->setSpecializationKind(TSK);
2673 if (TSK != TSK_ExplicitSpecialization &&
2674 PointOfInstantiation.isValid() &&
2675 Spec->getPointOfInstantiation().isInvalid()) {
2676 Spec->setPointOfInstantiation(PointOfInstantiation);
2677 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2678 L->InstantiationRequested(this);
2679 }
2680 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2681 MSI->setTemplateSpecializationKind(TSK);
2682 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2683 MSI->getPointOfInstantiation().isInvalid()) {
2684 MSI->setPointOfInstantiation(PointOfInstantiation);
2685 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2686 L->InstantiationRequested(this);
2687 }
2688 }
2689}
2690
2691void
2692VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2693 TemplateSpecializationKind TSK) {
2694 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&((getASTContext().getTemplateOrSpecializationInfo(this).isNull
() && "Previous template or instantiation?") ? static_cast
<void> (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2695, __PRETTY_FUNCTION__))
2695 "Previous template or instantiation?")((getASTContext().getTemplateOrSpecializationInfo(this).isNull
() && "Previous template or instantiation?") ? static_cast
<void> (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2695, __PRETTY_FUNCTION__))
;
2696 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2697}
2698
2699//===----------------------------------------------------------------------===//
2700// ParmVarDecl Implementation
2701//===----------------------------------------------------------------------===//
2702
2703ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2704 SourceLocation StartLoc,
2705 SourceLocation IdLoc, IdentifierInfo *Id,
2706 QualType T, TypeSourceInfo *TInfo,
2707 StorageClass S, Expr *DefArg) {
2708 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2709 S, DefArg);
2710}
2711
2712QualType ParmVarDecl::getOriginalType() const {
2713 TypeSourceInfo *TSI = getTypeSourceInfo();
2714 QualType T = TSI ? TSI->getType() : getType();
2715 if (const auto *DT = dyn_cast<DecayedType>(T))
2716 return DT->getOriginalType();
2717 return T;
2718}
2719
2720ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2721 return new (C, ID)
2722 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2723 nullptr, QualType(), nullptr, SC_None, nullptr);
2724}
2725
2726SourceRange ParmVarDecl::getSourceRange() const {
2727 if (!hasInheritedDefaultArg()) {
2728 SourceRange ArgRange = getDefaultArgRange();
2729 if (ArgRange.isValid())
2730 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2731 }
2732
2733 // DeclaratorDecl considers the range of postfix types as overlapping with the
2734 // declaration name, but this is not the case with parameters in ObjC methods.
2735 if (isa<ObjCMethodDecl>(getDeclContext()))
2736 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2737
2738 return DeclaratorDecl::getSourceRange();
2739}
2740
2741bool ParmVarDecl::isDestroyedInCallee() const {
2742 if (hasAttr<NSConsumedAttr>())
2743 return true;
2744
2745 auto *RT = getType()->getAs<RecordType>();
2746 if (RT && RT->getDecl()->isParamDestroyedInCallee())
2747 return true;
2748
2749 return false;
2750}
2751
2752Expr *ParmVarDecl::getDefaultArg() {
2753 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!")((!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"
) ? static_cast<void> (0) : __assert_fail ("!hasUnparsedDefaultArg() && \"Default argument is not yet parsed!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2753, __PRETTY_FUNCTION__))
;
2754 assert(!hasUninstantiatedDefaultArg() &&((!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"
) ? static_cast<void> (0) : __assert_fail ("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2755, __PRETTY_FUNCTION__))
2755 "Default argument is not yet instantiated!")((!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"
) ? static_cast<void> (0) : __assert_fail ("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2755, __PRETTY_FUNCTION__))
;
2756
2757 Expr *Arg = getInit();
2758 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2759 return E->getSubExpr();
2760
2761 return Arg;
2762}
2763
2764void ParmVarDecl::setDefaultArg(Expr *defarg) {
2765 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2766 Init = defarg;
2767}
2768
2769SourceRange ParmVarDecl::getDefaultArgRange() const {
2770 switch (ParmVarDeclBits.DefaultArgKind) {
2771 case DAK_None:
2772 case DAK_Unparsed:
2773 // Nothing we can do here.
2774 return SourceRange();
2775
2776 case DAK_Uninstantiated:
2777 return getUninstantiatedDefaultArg()->getSourceRange();
2778
2779 case DAK_Normal:
2780 if (const Expr *E = getInit())
2781 return E->getSourceRange();
2782
2783 // Missing an actual expression, may be invalid.
2784 return SourceRange();
2785 }
2786 llvm_unreachable("Invalid default argument kind.")::llvm::llvm_unreachable_internal("Invalid default argument kind."
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2786)
;
2787}
2788
2789void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2790 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2791 Init = arg;
2792}
2793
2794Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2795 assert(hasUninstantiatedDefaultArg() &&((hasUninstantiatedDefaultArg() && "Wrong kind of initialization expression!"
) ? static_cast<void> (0) : __assert_fail ("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2796, __PRETTY_FUNCTION__))
2796 "Wrong kind of initialization expression!")((hasUninstantiatedDefaultArg() && "Wrong kind of initialization expression!"
) ? static_cast<void> (0) : __assert_fail ("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2796, __PRETTY_FUNCTION__))
;
2797 return cast_or_null<Expr>(Init.get<Stmt *>());
2798}
2799
2800bool ParmVarDecl::hasDefaultArg() const {
2801 // FIXME: We should just return false for DAK_None here once callers are
2802 // prepared for the case that we encountered an invalid default argument and
2803 // were unable to even build an invalid expression.
2804 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2805 !Init.isNull();
2806}
2807
2808void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2809 getASTContext().setParameterIndex(this, parameterIndex);
2810 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2811}
2812
2813unsigned ParmVarDecl::getParameterIndexLarge() const {
2814 return getASTContext().getParameterIndex(this);
2815}
2816
2817//===----------------------------------------------------------------------===//
2818// FunctionDecl Implementation
2819//===----------------------------------------------------------------------===//
2820
2821FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2822 SourceLocation StartLoc,
2823 const DeclarationNameInfo &NameInfo, QualType T,
2824 TypeSourceInfo *TInfo, StorageClass S,
2825 bool isInlineSpecified,
2826 ConstexprSpecKind ConstexprKind,
2827 Expr *TrailingRequiresClause)
2828 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2829 StartLoc),
2830 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2831 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2832 assert(T.isNull() || T->isFunctionType())((T.isNull() || T->isFunctionType()) ? static_cast<void
> (0) : __assert_fail ("T.isNull() || T->isFunctionType()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2832, __PRETTY_FUNCTION__))
;
2833 FunctionDeclBits.SClass = S;
2834 FunctionDeclBits.IsInline = isInlineSpecified;
2835 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2836 FunctionDeclBits.IsVirtualAsWritten = false;
2837 FunctionDeclBits.IsPure = false;
2838 FunctionDeclBits.HasInheritedPrototype = false;
2839 FunctionDeclBits.HasWrittenPrototype = true;
2840 FunctionDeclBits.IsDeleted = false;
2841 FunctionDeclBits.IsTrivial = false;
2842 FunctionDeclBits.IsTrivialForCall = false;
2843 FunctionDeclBits.IsDefaulted = false;
2844 FunctionDeclBits.IsExplicitlyDefaulted = false;
2845 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2846 FunctionDeclBits.HasImplicitReturnZero = false;
2847 FunctionDeclBits.IsLateTemplateParsed = false;
2848 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2849 FunctionDeclBits.InstantiationIsPending = false;
2850 FunctionDeclBits.UsesSEHTry = false;
2851 FunctionDeclBits.UsesFPIntrin = false;
2852 FunctionDeclBits.HasSkippedBody = false;
2853 FunctionDeclBits.WillHaveBody = false;
2854 FunctionDeclBits.IsMultiVersion = false;
2855 FunctionDeclBits.IsCopyDeductionCandidate = false;
2856 FunctionDeclBits.HasODRHash = false;
2857 if (TrailingRequiresClause)
2858 setTrailingRequiresClause(TrailingRequiresClause);
2859}
2860
2861void FunctionDecl::getNameForDiagnostic(
2862 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2863 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2864 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2865 if (TemplateArgs)
2866 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2867}
2868
2869bool FunctionDecl::isVariadic() const {
2870 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2871 return FT->isVariadic();
2872 return false;
2873}
2874
2875FunctionDecl::DefaultedFunctionInfo *
2876FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2877 ArrayRef<DeclAccessPair> Lookups) {
2878 DefaultedFunctionInfo *Info = new (Context.Allocate(
2879 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2880 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2881 DefaultedFunctionInfo;
2882 Info->NumLookups = Lookups.size();
2883 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2884 Info->getTrailingObjects<DeclAccessPair>());
2885 return Info;
2886}
2887
2888void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2889 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this")((!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"
) ? static_cast<void> (0) : __assert_fail ("!FunctionDeclBits.HasDefaultedFunctionInfo && \"already have this\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2889, __PRETTY_FUNCTION__))
;
2890 assert(!Body && "can't replace function body with defaulted function info")((!Body && "can't replace function body with defaulted function info"
) ? static_cast<void> (0) : __assert_fail ("!Body && \"can't replace function body with defaulted function info\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2890, __PRETTY_FUNCTION__))
;
2891
2892 FunctionDeclBits.HasDefaultedFunctionInfo = true;
2893 DefaultedInfo = Info;
2894}
2895
2896FunctionDecl::DefaultedFunctionInfo *
2897FunctionDecl::getDefaultedFunctionInfo() const {
2898 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2899}
2900
2901bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2902 for (auto I : redecls()) {
2903 if (I->doesThisDeclarationHaveABody()) {
2904 Definition = I;
2905 return true;
2906 }
2907 }
2908
2909 return false;
2910}
2911
2912bool FunctionDecl::hasTrivialBody() const {
2913 Stmt *S = getBody();
2914 if (!S) {
2915 // Since we don't have a body for this function, we don't know if it's
2916 // trivial or not.
2917 return false;
2918 }
2919
2920 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2921 return true;
2922 return false;
2923}
2924
2925bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2926 if (!getFriendObjectKind())
2927 return false;
2928
2929 // Check for a friend function instantiated from a friend function
2930 // definition in a templated class.
2931 if (const FunctionDecl *InstantiatedFrom =
2932 getInstantiatedFromMemberFunction())
2933 return InstantiatedFrom->getFriendObjectKind() &&
2934 InstantiatedFrom->isThisDeclarationADefinition();
2935
2936 // Check for a friend function template instantiated from a friend
2937 // function template definition in a templated class.
2938 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2939 if (const FunctionTemplateDecl *InstantiatedFrom =
2940 Template->getInstantiatedFromMemberTemplate())
2941 return InstantiatedFrom->getFriendObjectKind() &&
2942 InstantiatedFrom->isThisDeclarationADefinition();
2943 }
2944
2945 return false;
2946}
2947
2948bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2949 bool CheckForPendingFriendDefinition) const {
2950 for (const FunctionDecl *FD : redecls()) {
2951 if (FD->isThisDeclarationADefinition()) {
2952 Definition = FD;
2953 return true;
2954 }
2955
2956 // If this is a friend function defined in a class template, it does not
2957 // have a body until it is used, nevertheless it is a definition, see
2958 // [temp.inst]p2:
2959 //
2960 // ... for the purpose of determining whether an instantiated redeclaration
2961 // is valid according to [basic.def.odr] and [class.mem], a declaration that
2962 // corresponds to a definition in the template is considered to be a
2963 // definition.
2964 //
2965 // The following code must produce redefinition error:
2966 //
2967 // template<typename T> struct C20 { friend void func_20() {} };
2968 // C20<int> c20i;
2969 // void func_20() {}
2970 //
2971 if (CheckForPendingFriendDefinition &&
2972 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
2973 Definition = FD;
2974 return true;
2975 }
2976 }
2977
2978 return false;
2979}
2980
2981Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2982 if (!hasBody(Definition))
2983 return nullptr;
2984
2985 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&((!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
"definition should not have a body") ? static_cast<void>
(0) : __assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2986, __PRETTY_FUNCTION__))
2986 "definition should not have a body")((!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
"definition should not have a body") ? static_cast<void>
(0) : __assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 2986, __PRETTY_FUNCTION__))
;
2987 if (Definition->Body)
2988 return Definition->Body.get(getASTContext().getExternalSource());
2989
2990 return nullptr;
2991}
2992
2993void FunctionDecl::setBody(Stmt *B) {
2994 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2995 Body = LazyDeclStmtPtr(B);
2996 if (B)
2997 EndRangeLoc = B->getEndLoc();
2998}
2999
3000void FunctionDecl::setPure(bool P) {
3001 FunctionDeclBits.IsPure = P;
3002 if (P)
3003 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3004 Parent->markedVirtualFunctionPure();
3005}
3006
3007template<std::size_t Len>
3008static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3009 IdentifierInfo *II = ND->getIdentifier();
3010 return II && II->isStr(Str);
3011}
3012
3013bool FunctionDecl::isMain() const {
3014 const TranslationUnitDecl *tunit =
3015 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3016 return tunit &&
3017 !tunit->getASTContext().getLangOpts().Freestanding &&
3018 isNamed(this, "main");
3019}
3020
3021bool FunctionDecl::isMSVCRTEntryPoint() const {
3022 const TranslationUnitDecl *TUnit =
3023 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3024 if (!TUnit)
3025 return false;
3026
3027 // Even though we aren't really targeting MSVCRT if we are freestanding,
3028 // semantic analysis for these functions remains the same.
3029
3030 // MSVCRT entry points only exist on MSVCRT targets.
3031 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3032 return false;
3033
3034 // Nameless functions like constructors cannot be entry points.
3035 if (!getIdentifier())
3036 return false;
3037
3038 return llvm::StringSwitch<bool>(getName())
3039 .Cases("main", // an ANSI console app
3040 "wmain", // a Unicode console App
3041 "WinMain", // an ANSI GUI app
3042 "wWinMain", // a Unicode GUI app
3043 "DllMain", // a DLL
3044 true)
3045 .Default(false);
3046}
3047
3048bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3049 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName)((getDeclName().getNameKind() == DeclarationName::CXXOperatorName
) ? static_cast<void> (0) : __assert_fail ("getDeclName().getNameKind() == DeclarationName::CXXOperatorName"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3049, __PRETTY_FUNCTION__))
;
3050 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3053, __PRETTY_FUNCTION__))
3051 getDeclName().getCXXOverloadedOperator() == OO_Delete ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3053, __PRETTY_FUNCTION__))
3052 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3053, __PRETTY_FUNCTION__))
3053 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3053, __PRETTY_FUNCTION__))
;
3054
3055 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3056 return false;
3057
3058 const auto *proto = getType()->castAs<FunctionProtoType>();
3059 if (proto->getNumParams() != 2 || proto->isVariadic())
3060 return false;
3061
3062 ASTContext &Context =
3063 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3064 ->getASTContext();
3065
3066 // The result type and first argument type are constant across all
3067 // these operators. The second argument must be exactly void*.
3068 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3069}
3070
3071bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3072 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3073 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3074 return false;
3075 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3076 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3077 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3078 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3079 return false;
3080
3081 if (isa<CXXRecordDecl>(getDeclContext()))
3082 return false;
3083
3084 // This can only fail for an invalid 'operator new' declaration.
3085 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3086 return false;
3087
3088 const auto *FPT = getType()->castAs<FunctionProtoType>();
3089 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3090 return false;
3091
3092 // If this is a single-parameter function, it must be a replaceable global
3093 // allocation or deallocation function.
3094 if (FPT->getNumParams() == 1)
3095 return true;
3096
3097 unsigned Params = 1;
3098 QualType Ty = FPT->getParamType(Params);
3099 ASTContext &Ctx = getASTContext();
3100
3101 auto Consume = [&] {
3102 ++Params;
3103 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3104 };
3105
3106 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3107 bool IsSizedDelete = false;
3108 if (Ctx.getLangOpts().SizedDeallocation &&
3109 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3110 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3111 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3112 IsSizedDelete = true;
3113 Consume();
3114 }
3115
3116 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3117 // new/delete.
3118 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3119 Consume();
3120 if (AlignmentParam)
3121 *AlignmentParam = Params;
3122 }
3123
3124 // Finally, if this is not a sized delete, the final parameter can
3125 // be a 'const std::nothrow_t&'.
3126 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3127 Ty = Ty->getPointeeType();
3128 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3129 return false;
3130 if (Ty->isNothrowT()) {
3131 if (IsNothrow)
3132 *IsNothrow = true;
3133 Consume();
3134 }
3135 }
3136
3137 return Params == FPT->getNumParams();
3138}
3139
3140bool FunctionDecl::isInlineBuiltinDeclaration() const {
3141 if (!getBuiltinID())
3142 return false;
3143
3144 const FunctionDecl *Definition;
3145 return hasBody(Definition) && Definition->isInlineSpecified();
3146}
3147
3148bool FunctionDecl::isDestroyingOperatorDelete() const {
3149 // C++ P0722:
3150 // Within a class C, a single object deallocation function with signature
3151 // (T, std::destroying_delete_t, <more params>)
3152 // is a destroying operator delete.
3153 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3154 getNumParams() < 2)
3155 return false;
3156
3157 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3158 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3159 RD->getIdentifier()->isStr("destroying_delete_t");
3160}
3161
3162LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3163 return getDeclLanguageLinkage(*this);
3164}
3165
3166bool FunctionDecl::isExternC() const {
3167 return isDeclExternC(*this);
3168}
3169
3170bool FunctionDecl::isInExternCContext() const {
3171 if (hasAttr<OpenCLKernelAttr>())
3172 return true;
3173 return getLexicalDeclContext()->isExternCContext();
3174}
3175
3176bool FunctionDecl::isInExternCXXContext() const {
3177 return getLexicalDeclContext()->isExternCXXContext();
3178}
3179
3180bool FunctionDecl::isGlobal() const {
3181 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3182 return Method->isStatic();
3183
3184 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3185 return false;
3186
3187 for (const DeclContext *DC = getDeclContext();
3188 DC->isNamespace();
3189 DC = DC->getParent()) {
3190 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3191 if (!Namespace->getDeclName())
3192 return false;
3193 break;
3194 }
3195 }
3196
3197 return true;
3198}
3199
3200bool FunctionDecl::isNoReturn() const {
3201 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3202 hasAttr<C11NoReturnAttr>())
3203 return true;
3204
3205 if (auto *FnTy = getType()->getAs<FunctionType>())
3206 return FnTy->getNoReturnAttr();
3207
3208 return false;
3209}
3210
3211
3212MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3213 if (hasAttr<TargetAttr>())
3214 return MultiVersionKind::Target;
3215 if (hasAttr<CPUDispatchAttr>())
3216 return MultiVersionKind::CPUDispatch;
3217 if (hasAttr<CPUSpecificAttr>())
3218 return MultiVersionKind::CPUSpecific;
3219 return MultiVersionKind::None;
3220}
3221
3222bool FunctionDecl::isCPUDispatchMultiVersion() const {
3223 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3224}
3225
3226bool FunctionDecl::isCPUSpecificMultiVersion() const {
3227 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3228}
3229
3230bool FunctionDecl::isTargetMultiVersion() const {
3231 return isMultiVersion() && hasAttr<TargetAttr>();
3232}
3233
3234void
3235FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3236 redeclarable_base::setPreviousDecl(PrevDecl);
3237
3238 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3239 FunctionTemplateDecl *PrevFunTmpl
3240 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3241 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch")(((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"
) ? static_cast<void> (0) : __assert_fail ("(!PrevDecl || PrevFunTmpl) && \"Function/function template mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3241, __PRETTY_FUNCTION__))
;
3242 FunTmpl->setPreviousDecl(PrevFunTmpl);
3243 }
3244
3245 if (PrevDecl && PrevDecl->isInlined())
3246 setImplicitlyInline(true);
3247}
3248
3249FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3250
3251/// Returns a value indicating whether this function corresponds to a builtin
3252/// function.
3253///
3254/// The function corresponds to a built-in function if it is declared at
3255/// translation scope or within an extern "C" block and its name matches with
3256/// the name of a builtin. The returned value will be 0 for functions that do
3257/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3258/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3259/// value.
3260///
3261/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3262/// functions as their wrapped builtins. This shouldn't be done in general, but
3263/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3264unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3265 unsigned BuiltinID = 0;
3266
3267 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3268 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3269 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3270 BuiltinID = A->getID();
3271 }
3272
3273 if (!BuiltinID)
3274 return 0;
3275
3276 // If the function is marked "overloadable", it has a different mangled name
3277 // and is not the C library function.
3278 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3279 !hasAttr<ArmBuiltinAliasAttr>())
3280 return 0;
3281
3282 ASTContext &Context = getASTContext();
3283 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3284 return BuiltinID;
3285
3286 // This function has the name of a known C library
3287 // function. Determine whether it actually refers to the C library
3288 // function or whether it just has the same name.
3289
3290 // If this is a static function, it's not a builtin.
3291 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3292 return 0;
3293
3294 // OpenCL v1.2 s6.9.f - The library functions defined in
3295 // the C99 standard headers are not available.
3296 if (Context.getLangOpts().OpenCL &&
3297 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3298 return 0;
3299
3300 // CUDA does not have device-side standard library. printf and malloc are the
3301 // only special cases that are supported by device-side runtime.
3302 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3303 !hasAttr<CUDAHostAttr>() &&
3304 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3305 return 0;
3306
3307 // As AMDGCN implementation of OpenMP does not have a device-side standard
3308 // library, none of the predefined library functions except printf and malloc
3309 // should be treated as a builtin i.e. 0 should be returned for them.
3310 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3311 Context.getLangOpts().OpenMPIsDevice &&
3312 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3313 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3314 return 0;
3315
3316 return BuiltinID;
3317}
3318
3319/// getNumParams - Return the number of parameters this function must have
3320/// based on its FunctionType. This is the length of the ParamInfo array
3321/// after it has been created.
3322unsigned FunctionDecl::getNumParams() const {
3323 const auto *FPT = getType()->getAs<FunctionProtoType>();
3324 return FPT ? FPT->getNumParams() : 0;
3325}
3326
3327void FunctionDecl::setParams(ASTContext &C,
3328 ArrayRef<ParmVarDecl *> NewParamInfo) {
3329 assert(!ParamInfo && "Already has param info!")((!ParamInfo && "Already has param info!") ? static_cast
<void> (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3329, __PRETTY_FUNCTION__))
;
3330 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!")((NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"
) ? static_cast<void> (0) : __assert_fail ("NewParamInfo.size() == getNumParams() && \"Parameter count mismatch!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3330, __PRETTY_FUNCTION__))
;
3331
3332 // Zero params -> null pointer.
3333 if (!NewParamInfo.empty()) {
3334 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3335 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3336 }
3337}
3338
3339/// getMinRequiredArguments - Returns the minimum number of arguments
3340/// needed to call this function. This may be fewer than the number of
3341/// function parameters, if some of the parameters have default
3342/// arguments (in C++) or are parameter packs (C++11).
3343unsigned FunctionDecl::getMinRequiredArguments() const {
3344 if (!getASTContext().getLangOpts().CPlusPlus)
3345 return getNumParams();
3346
3347 // Note that it is possible for a parameter with no default argument to
3348 // follow a parameter with a default argument.
3349 unsigned NumRequiredArgs = 0;
3350 unsigned MinParamsSoFar = 0;
3351 for (auto *Param : parameters()) {
3352 if (!Param->isParameterPack()) {
3353 ++MinParamsSoFar;
3354 if (!Param->hasDefaultArg())
3355 NumRequiredArgs = MinParamsSoFar;
3356 }
3357 }
3358 return NumRequiredArgs;
3359}
3360
3361bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3362 return getNumParams() == 1 ||
3363 (getNumParams() > 1 &&
3364 std::all_of(param_begin() + 1, param_end(),
3365 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3366}
3367
3368/// The combination of the extern and inline keywords under MSVC forces
3369/// the function to be required.
3370///
3371/// Note: This function assumes that we will only get called when isInlined()
3372/// would return true for this FunctionDecl.
3373bool FunctionDecl::isMSExternInline() const {
3374 assert(isInlined() && "expected to get called on an inlined function!")((isInlined() && "expected to get called on an inlined function!"
) ? static_cast<void> (0) : __assert_fail ("isInlined() && \"expected to get called on an inlined function!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3374, __PRETTY_FUNCTION__))
;
3375
3376 const ASTContext &Context = getASTContext();
3377 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3378 !hasAttr<DLLExportAttr>())
3379 return false;
3380
3381 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3382 FD = FD->getPreviousDecl())
3383 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3384 return true;
3385
3386 return false;
3387}
3388
3389static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3390 if (Redecl->getStorageClass() != SC_Extern)
3391 return false;
3392
3393 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3394 FD = FD->getPreviousDecl())
3395 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3396 return false;
3397
3398 return true;
3399}
3400
3401static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3402 // Only consider file-scope declarations in this test.
3403 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3404 return false;
3405
3406 // Only consider explicit declarations; the presence of a builtin for a
3407 // libcall shouldn't affect whether a definition is externally visible.
3408 if (Redecl->isImplicit())
3409 return false;
3410
3411 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3412 return true; // Not an inline definition
3413
3414 return false;
3415}
3416
3417/// For a function declaration in C or C++, determine whether this
3418/// declaration causes the definition to be externally visible.
3419///
3420/// For instance, this determines if adding the current declaration to the set
3421/// of redeclarations of the given functions causes
3422/// isInlineDefinitionExternallyVisible to change from false to true.
3423bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3424 assert(!doesThisDeclarationHaveABody() &&((!doesThisDeclarationHaveABody() && "Must have a declaration without a body."
) ? static_cast<void> (0) : __assert_fail ("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3425, __PRETTY_FUNCTION__))
3425 "Must have a declaration without a body.")((!doesThisDeclarationHaveABody() && "Must have a declaration without a body."
) ? static_cast<void> (0) : __assert_fail ("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3425, __PRETTY_FUNCTION__))
;
3426
3427 ASTContext &Context = getASTContext();
3428
3429 if (Context.getLangOpts().MSVCCompat) {
3430 const FunctionDecl *Definition;
3431 if (hasBody(Definition) && Definition->isInlined() &&
3432 redeclForcesDefMSVC(this))
3433 return true;
3434 }
3435
3436 if (Context.getLangOpts().CPlusPlus)
3437 return false;
3438
3439 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3440 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3441 // an externally visible definition.
3442 //
3443 // FIXME: What happens if gnu_inline gets added on after the first
3444 // declaration?
3445 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3446 return false;
3447
3448 const FunctionDecl *Prev = this;
3449 bool FoundBody = false;
3450 while ((Prev = Prev->getPreviousDecl())) {
3451 FoundBody |= Prev->doesThisDeclarationHaveABody();
3452
3453 if (Prev->doesThisDeclarationHaveABody()) {
3454 // If it's not the case that both 'inline' and 'extern' are
3455 // specified on the definition, then it is always externally visible.
3456 if (!Prev->isInlineSpecified() ||
3457 Prev->getStorageClass() != SC_Extern)
3458 return false;
3459 } else if (Prev->isInlineSpecified() &&
3460 Prev->getStorageClass() != SC_Extern) {
3461 return false;
3462 }
3463 }
3464 return FoundBody;
3465 }
3466
3467 // C99 6.7.4p6:
3468 // [...] If all of the file scope declarations for a function in a
3469 // translation unit include the inline function specifier without extern,
3470 // then the definition in that translation unit is an inline definition.
3471 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3472 return false;
3473 const FunctionDecl *Prev = this;
3474 bool FoundBody = false;
3475 while ((Prev = Prev->getPreviousDecl())) {
3476 FoundBody |= Prev->doesThisDeclarationHaveABody();
3477 if (RedeclForcesDefC99(Prev))
3478 return false;
3479 }
3480 return FoundBody;
3481}
3482
3483FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3484 const TypeSourceInfo *TSI = getTypeSourceInfo();
3485 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3486 : FunctionTypeLoc();
3487}
3488
3489SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3490 FunctionTypeLoc FTL = getFunctionTypeLoc();
3491 if (!FTL)
3492 return SourceRange();
3493
3494 // Skip self-referential return types.
3495 const SourceManager &SM = getASTContext().getSourceManager();
3496 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3497 SourceLocation Boundary = getNameInfo().getBeginLoc();
3498 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3499 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3500 return SourceRange();
3501
3502 return RTRange;
3503}
3504
3505SourceRange FunctionDecl::getParametersSourceRange() const {
3506 unsigned NP = getNumParams();
3507 SourceLocation EllipsisLoc = getEllipsisLoc();
3508
3509 if (NP == 0 && EllipsisLoc.isInvalid())
3510 return SourceRange();
3511
3512 SourceLocation Begin =
3513 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3514 SourceLocation End = EllipsisLoc.isValid()
3515 ? EllipsisLoc
3516 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3517
3518 return SourceRange(Begin, End);
3519}
3520
3521SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3522 FunctionTypeLoc FTL = getFunctionTypeLoc();
3523 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3524}
3525
3526/// For an inline function definition in C, or for a gnu_inline function
3527/// in C++, determine whether the definition will be externally visible.
3528///
3529/// Inline function definitions are always available for inlining optimizations.
3530/// However, depending on the language dialect, declaration specifiers, and
3531/// attributes, the definition of an inline function may or may not be
3532/// "externally" visible to other translation units in the program.
3533///
3534/// In C99, inline definitions are not externally visible by default. However,
3535/// if even one of the global-scope declarations is marked "extern inline", the
3536/// inline definition becomes externally visible (C99 6.7.4p6).
3537///
3538/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3539/// definition, we use the GNU semantics for inline, which are nearly the
3540/// opposite of C99 semantics. In particular, "inline" by itself will create
3541/// an externally visible symbol, but "extern inline" will not create an
3542/// externally visible symbol.
3543bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3544 assert((doesThisDeclarationHaveABody() || willHaveBody() ||(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3546, __PRETTY_FUNCTION__))
3545 hasAttr<AliasAttr>()) &&(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3546, __PRETTY_FUNCTION__))
3546 "Must be a function definition")(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3546, __PRETTY_FUNCTION__))
;
3547 assert(isInlined() && "Function must be inline")((isInlined() && "Function must be inline") ? static_cast
<void> (0) : __assert_fail ("isInlined() && \"Function must be inline\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3547, __PRETTY_FUNCTION__))
;
3548 ASTContext &Context = getASTContext();
3549
3550 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3551 // Note: If you change the logic here, please change
3552 // doesDeclarationForceExternallyVisibleDefinition as well.
3553 //
3554 // If it's not the case that both 'inline' and 'extern' are
3555 // specified on the definition, then this inline definition is
3556 // externally visible.
3557 if (Context.getLangOpts().CPlusPlus)
3558 return false;
3559 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3560 return true;
3561
3562 // If any declaration is 'inline' but not 'extern', then this definition
3563 // is externally visible.
3564 for (auto Redecl : redecls()) {
3565 if (Redecl->isInlineSpecified() &&
3566 Redecl->getStorageClass() != SC_Extern)
3567 return true;
3568 }
3569
3570 return false;
3571 }
3572
3573 // The rest of this function is C-only.
3574 assert(!Context.getLangOpts().CPlusPlus &&((!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"
) ? static_cast<void> (0) : __assert_fail ("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3575, __PRETTY_FUNCTION__))
3575 "should not use C inline rules in C++")((!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"
) ? static_cast<void> (0) : __assert_fail ("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3575, __PRETTY_FUNCTION__))
;
3576
3577 // C99 6.7.4p6:
3578 // [...] If all of the file scope declarations for a function in a
3579 // translation unit include the inline function specifier without extern,
3580 // then the definition in that translation unit is an inline definition.
3581 for (auto Redecl : redecls()) {
3582 if (RedeclForcesDefC99(Redecl))
3583 return true;
3584 }
3585
3586 // C99 6.7.4p6:
3587 // An inline definition does not provide an external definition for the
3588 // function, and does not forbid an external definition in another
3589 // translation unit.
3590 return false;
3591}
3592
3593/// getOverloadedOperator - Which C++ overloaded operator this
3594/// function represents, if any.
3595OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3596 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3597 return getDeclName().getCXXOverloadedOperator();
3598 else
3599 return OO_None;
3600}
3601
3602/// getLiteralIdentifier - The literal suffix identifier this function
3603/// represents, if any.
3604const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3605 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3606 return getDeclName().getCXXLiteralIdentifier();
3607 else
3608 return nullptr;
3609}
3610
3611FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3612 if (TemplateOrSpecialization.isNull())
3613 return TK_NonTemplate;
3614 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3615 return TK_FunctionTemplate;
3616 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3617 return TK_MemberSpecialization;
3618 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3619 return TK_FunctionTemplateSpecialization;
3620 if (TemplateOrSpecialization.is
3621 <DependentFunctionTemplateSpecializationInfo*>())
3622 return TK_DependentFunctionTemplateSpecialization;
3623
3624 llvm_unreachable("Did we miss a TemplateOrSpecialization type?")::llvm::llvm_unreachable_internal("Did we miss a TemplateOrSpecialization type?"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3624)
;
3625}
3626
3627FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3628 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3629 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3630
3631 return nullptr;
3632}
3633
3634MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3635 if (auto *MSI =
3636 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3637 return MSI;
3638 if (auto *FTSI = TemplateOrSpecialization
3639 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3640 return FTSI->getMemberSpecializationInfo();
3641 return nullptr;
3642}
3643
3644void
3645FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3646 FunctionDecl *FD,
3647 TemplateSpecializationKind TSK) {
3648 assert(TemplateOrSpecialization.isNull() &&((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3649, __PRETTY_FUNCTION__))
3649 "Member function is already a specialization")((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3649, __PRETTY_FUNCTION__))
;
3650 MemberSpecializationInfo *Info
3651 = new (C) MemberSpecializationInfo(FD, TSK);
3652 TemplateOrSpecialization = Info;
3653}
3654
3655FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3656 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3657}
3658
3659void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3660 assert(TemplateOrSpecialization.isNull() &&((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3661, __PRETTY_FUNCTION__))
3661 "Member function is already a specialization")((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3661, __PRETTY_FUNCTION__))
;
3662 TemplateOrSpecialization = Template;
3663}
3664
3665bool FunctionDecl::isImplicitlyInstantiable() const {
3666 // If the function is invalid, it can't be implicitly instantiated.
3667 if (isInvalidDecl())
3668 return false;
3669
3670 switch (getTemplateSpecializationKindForInstantiation()) {
3671 case TSK_Undeclared:
3672 case TSK_ExplicitInstantiationDefinition:
3673 case TSK_ExplicitSpecialization:
3674 return false;
3675
3676 case TSK_ImplicitInstantiation:
3677 return true;
3678
3679 case TSK_ExplicitInstantiationDeclaration:
3680 // Handled below.
3681 break;
3682 }
3683
3684 // Find the actual template from which we will instantiate.
3685 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3686 bool HasPattern = false;
3687 if (PatternDecl)
3688 HasPattern = PatternDecl->hasBody(PatternDecl);
3689
3690 // C++0x [temp.explicit]p9:
3691 // Except for inline functions, other explicit instantiation declarations
3692 // have the effect of suppressing the implicit instantiation of the entity
3693 // to which they refer.
3694 if (!HasPattern || !PatternDecl)
3695 return true;
3696
3697 return PatternDecl->isInlined();
3698}
3699
3700bool FunctionDecl::isTemplateInstantiation() const {
3701 // FIXME: Remove this, it's not clear what it means. (Which template
3702 // specialization kind?)
3703 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3704}
3705
3706FunctionDecl *
3707FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3708 // If this is a generic lambda call operator specialization, its
3709 // instantiation pattern is always its primary template's pattern
3710 // even if its primary template was instantiated from another
3711 // member template (which happens with nested generic lambdas).
3712 // Since a lambda's call operator's body is transformed eagerly,
3713 // we don't have to go hunting for a prototype definition template
3714 // (i.e. instantiated-from-member-template) to use as an instantiation
3715 // pattern.
3716
3717 if (isGenericLambdaCallOperatorSpecialization(
3718 dyn_cast<CXXMethodDecl>(this))) {
3719 assert(getPrimaryTemplate() && "not a generic lambda call operator?")((getPrimaryTemplate() && "not a generic lambda call operator?"
) ? static_cast<void> (0) : __assert_fail ("getPrimaryTemplate() && \"not a generic lambda call operator?\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3719, __PRETTY_FUNCTION__))
;
3720 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3721 }
3722
3723 // Check for a declaration of this function that was instantiated from a
3724 // friend definition.
3725 const FunctionDecl *FD = nullptr;
3726 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3727 FD = this;
3728
3729 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3730 if (ForDefinition &&
3731 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3732 return nullptr;
3733 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3734 }
3735
3736 if (ForDefinition &&
3737 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3738 return nullptr;
3739
3740 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3741 // If we hit a point where the user provided a specialization of this
3742 // template, we're done looking.
3743 while (!ForDefinition || !Primary->isMemberSpecialization()) {
3744 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3745 if (!NewPrimary)
3746 break;
3747 Primary = NewPrimary;
3748 }
3749
3750 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3751 }
3752
3753 return nullptr;
3754}
3755
3756FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3757 if (FunctionTemplateSpecializationInfo *Info
3758 = TemplateOrSpecialization
3759 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3760 return Info->getTemplate();
3761 }
3762 return nullptr;
3763}
3764
3765FunctionTemplateSpecializationInfo *
3766FunctionDecl::getTemplateSpecializationInfo() const {
3767 return TemplateOrSpecialization
3768 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3769}
3770
3771const TemplateArgumentList *
3772FunctionDecl::getTemplateSpecializationArgs() const {
3773 if (FunctionTemplateSpecializationInfo *Info
3774 = TemplateOrSpecialization
3775 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3776 return Info->TemplateArguments;
3777 }
3778 return nullptr;
3779}
3780
3781const ASTTemplateArgumentListInfo *
3782FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3783 if (FunctionTemplateSpecializationInfo *Info
3784 = TemplateOrSpecialization
3785 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3786 return Info->TemplateArgumentsAsWritten;
3787 }
3788 return nullptr;
3789}
3790
3791void
3792FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3793 FunctionTemplateDecl *Template,
3794 const TemplateArgumentList *TemplateArgs,
3795 void *InsertPos,
3796 TemplateSpecializationKind TSK,
3797 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3798 SourceLocation PointOfInstantiation) {
3799 assert((TemplateOrSpecialization.isNull() ||(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3801, __PRETTY_FUNCTION__))
3800 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3801, __PRETTY_FUNCTION__))
3801 "Member function is already a specialization")(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3801, __PRETTY_FUNCTION__))
;
3802 assert(TSK != TSK_Undeclared &&((TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3803, __PRETTY_FUNCTION__))
3803 "Must specify the type of function template specialization")((TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3803, __PRETTY_FUNCTION__))
;
3804 assert((TemplateOrSpecialization.isNull() ||(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3806, __PRETTY_FUNCTION__))
3805 TSK == TSK_ExplicitSpecialization) &&(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3806, __PRETTY_FUNCTION__))
3806 "Member specialization must be an explicit specialization")(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3806, __PRETTY_FUNCTION__))
;
3807 FunctionTemplateSpecializationInfo *Info =
3808 FunctionTemplateSpecializationInfo::Create(
3809 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3810 PointOfInstantiation,
3811 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3812 TemplateOrSpecialization = Info;
3813 Template->addSpecialization(Info, InsertPos);
3814}
3815
3816void
3817FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3818 const UnresolvedSetImpl &Templates,
3819 const TemplateArgumentListInfo &TemplateArgs) {
3820 assert(TemplateOrSpecialization.isNull())((TemplateOrSpecialization.isNull()) ? static_cast<void>
(0) : __assert_fail ("TemplateOrSpecialization.isNull()", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3820, __PRETTY_FUNCTION__))
;
1
'?' condition is true
3821 DependentFunctionTemplateSpecializationInfo *Info =
3822 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
2
Calling 'DependentFunctionTemplateSpecializationInfo::Create'
3823 TemplateArgs);
3824 TemplateOrSpecialization = Info;
3825}
3826
3827DependentFunctionTemplateSpecializationInfo *
3828FunctionDecl::getDependentSpecializationInfo() const {
3829 return TemplateOrSpecialization
3830 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3831}
3832
3833DependentFunctionTemplateSpecializationInfo *
3834DependentFunctionTemplateSpecializationInfo::Create(
3835 ASTContext &Context, const UnresolvedSetImpl &Ts,
3836 const TemplateArgumentListInfo &TArgs) {
3837 void *Buffer = Context.Allocate(
3838 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3839 TArgs.size(), Ts.size()));
3840 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3
Calling constructor for 'DependentFunctionTemplateSpecializationInfo'
3841}
3842
3843DependentFunctionTemplateSpecializationInfo::
3844DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3845 const TemplateArgumentListInfo &TArgs)
3846 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3847 NumTemplates = Ts.size();
3848 NumArgs = TArgs.size();
3849
3850 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3851 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
4
Assuming 'I' is equal to 'E'
5
Loop condition is false. Execution continues on line 3854
3852 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3853
3854 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
6
Calling 'TrailingObjects::getTrailingObjects'
15
Returning from 'TrailingObjects::getTrailingObjects'
16
'ArgsArray' initialized here
3855 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
17
Assuming 'I' is not equal to 'E'
18
Loop condition is true. Entering loop body
3856 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
19
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes
3857}
3858
3859TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3860 // For a function template specialization, query the specialization
3861 // information object.
3862 if (FunctionTemplateSpecializationInfo *FTSInfo =
3863 TemplateOrSpecialization
3864 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3865 return FTSInfo->getTemplateSpecializationKind();
3866
3867 if (MemberSpecializationInfo *MSInfo =
3868 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3869 return MSInfo->getTemplateSpecializationKind();
3870
3871 return TSK_Undeclared;
3872}
3873
3874TemplateSpecializationKind
3875FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3876 // This is the same as getTemplateSpecializationKind(), except that for a
3877 // function that is both a function template specialization and a member
3878 // specialization, we prefer the member specialization information. Eg:
3879 //
3880 // template<typename T> struct A {
3881 // template<typename U> void f() {}
3882 // template<> void f<int>() {}
3883 // };
3884 //
3885 // For A<int>::f<int>():
3886 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3887 // * getTemplateSpecializationKindForInstantiation() will return
3888 // TSK_ImplicitInstantiation
3889 //
3890 // This reflects the facts that A<int>::f<int> is an explicit specialization
3891 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3892 // from A::f<int> if a definition is needed.
3893 if (FunctionTemplateSpecializationInfo *FTSInfo =
3894 TemplateOrSpecialization
3895 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3896 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3897 return MSInfo->getTemplateSpecializationKind();
3898 return FTSInfo->getTemplateSpecializationKind();
3899 }
3900
3901 if (MemberSpecializationInfo *MSInfo =
3902 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3903 return MSInfo->getTemplateSpecializationKind();
3904
3905 return TSK_Undeclared;
3906}
3907
3908void
3909FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3910 SourceLocation PointOfInstantiation) {
3911 if (FunctionTemplateSpecializationInfo *FTSInfo
3912 = TemplateOrSpecialization.dyn_cast<
3913 FunctionTemplateSpecializationInfo*>()) {
3914 FTSInfo->setTemplateSpecializationKind(TSK);
3915 if (TSK != TSK_ExplicitSpecialization &&
3916 PointOfInstantiation.isValid() &&
3917 FTSInfo->getPointOfInstantiation().isInvalid()) {
3918 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3919 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3920 L->InstantiationRequested(this);
3921 }
3922 } else if (MemberSpecializationInfo *MSInfo
3923 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3924 MSInfo->setTemplateSpecializationKind(TSK);
3925 if (TSK != TSK_ExplicitSpecialization &&
3926 PointOfInstantiation.isValid() &&
3927 MSInfo->getPointOfInstantiation().isInvalid()) {
3928 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3929 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3930 L->InstantiationRequested(this);
3931 }
3932 } else
3933 llvm_unreachable("Function cannot have a template specialization kind")::llvm::llvm_unreachable_internal("Function cannot have a template specialization kind"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 3933)
;
3934}
3935
3936SourceLocation FunctionDecl::getPointOfInstantiation() const {
3937 if (FunctionTemplateSpecializationInfo *FTSInfo
3938 = TemplateOrSpecialization.dyn_cast<
3939 FunctionTemplateSpecializationInfo*>())
3940 return FTSInfo->getPointOfInstantiation();
3941 else if (MemberSpecializationInfo *MSInfo
3942 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3943 return MSInfo->getPointOfInstantiation();
3944
3945 return SourceLocation();
3946}
3947
3948bool FunctionDecl::isOutOfLine() const {
3949 if (Decl::isOutOfLine())
3950 return true;
3951
3952 // If this function was instantiated from a member function of a
3953 // class template, check whether that member function was defined out-of-line.
3954 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3955 const FunctionDecl *Definition;
3956 if (FD->hasBody(Definition))
3957 return Definition->isOutOfLine();
3958 }
3959
3960 // If this function was instantiated from a function template,
3961 // check whether that function template was defined out-of-line.
3962 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3963 const FunctionDecl *Definition;
3964 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3965 return Definition->isOutOfLine();
3966 }
3967
3968 return false;
3969}
3970
3971SourceRange FunctionDecl::getSourceRange() const {
3972 return SourceRange(getOuterLocStart(), EndRangeLoc);
3973}
3974
3975unsigned FunctionDecl::getMemoryFunctionKind() const {
3976 IdentifierInfo *FnInfo = getIdentifier();
3977
3978 if (!FnInfo)
3979 return 0;
3980
3981 // Builtin handling.
3982 switch (getBuiltinID()) {
3983 case Builtin::BI__builtin_memset:
3984 case Builtin::BI__builtin___memset_chk:
3985 case Builtin::BImemset:
3986 return Builtin::BImemset;
3987
3988 case Builtin::BI__builtin_memcpy:
3989 case Builtin::BI__builtin___memcpy_chk:
3990 case Builtin::BImemcpy:
3991 return Builtin::BImemcpy;
3992
3993 case Builtin::BI__builtin_mempcpy:
3994 case Builtin::BI__builtin___mempcpy_chk:
3995 case Builtin::BImempcpy:
3996 return Builtin::BImempcpy;
3997
3998 case Builtin::BI__builtin_memmove:
3999 case Builtin::BI__builtin___memmove_chk:
4000 case Builtin::BImemmove:
4001 return Builtin::BImemmove;
4002
4003// case Builtin::BIstrlcpy:
4004// case Builtin::BI__builtin___strlcpy_chk:
4005// return Builtin::BIstrlcpy;
4006
4007// case Builtin::BIstrlcat:
4008// case Builtin::BI__builtin___strlcat_chk:
4009// return Builtin::BIstrlcat;
4010
4011 case Builtin::BI__builtin_memcmp:
4012 case Builtin::BImemcmp:
4013 return Builtin::BImemcmp;
4014
4015 case Builtin::BI__builtin_bcmp:
4016 case Builtin::BIbcmp:
4017 return Builtin::BIbcmp;
4018
4019 case Builtin::BI__builtin_strncpy:
4020 case Builtin::BI__builtin___strncpy_chk:
4021 case Builtin::BIstrncpy:
4022 return Builtin::BIstrncpy;
4023
4024 case Builtin::BI__builtin_strncmp:
4025 case Builtin::BIstrncmp:
4026 return Builtin::BIstrncmp;
4027
4028 case Builtin::BI__builtin_strncasecmp:
4029 case Builtin::BIstrncasecmp:
4030 return Builtin::BIstrncasecmp;
4031
4032 case Builtin::BI__builtin_strncat:
4033 case Builtin::BI__builtin___strncat_chk:
4034 case Builtin::BIstrncat:
4035 return Builtin::BIstrncat;
4036
4037 case Builtin::BI__builtin_strndup:
4038 case Builtin::BIstrndup:
4039 return Builtin::BIstrndup;
4040
4041 case Builtin::BI__builtin_strlen:
4042 case Builtin::BIstrlen:
4043 return Builtin::BIstrlen;
4044
4045 case Builtin::BI__builtin_bzero:
4046 case Builtin::BIbzero:
4047 return Builtin::BIbzero;
4048
4049 case Builtin::BIfree:
4050 return Builtin::BIfree;
4051
4052 default:
4053 if (isExternC()) {
4054 if (FnInfo->isStr("memset"))
4055 return Builtin::BImemset;
4056 else if (FnInfo->isStr("memcpy"))
4057 return Builtin::BImemcpy;
4058 else if (FnInfo->isStr("mempcpy"))
4059 return Builtin::BImempcpy;
4060 else if (FnInfo->isStr("memmove"))
4061 return Builtin::BImemmove;
4062 else if (FnInfo->isStr("memcmp"))
4063 return Builtin::BImemcmp;
4064 else if (FnInfo->isStr("bcmp"))
4065 return Builtin::BIbcmp;
4066 else if (FnInfo->isStr("strncpy"))
4067 return Builtin::BIstrncpy;
4068 else if (FnInfo->isStr("strncmp"))
4069 return Builtin::BIstrncmp;
4070 else if (FnInfo->isStr("strncasecmp"))
4071 return Builtin::BIstrncasecmp;
4072 else if (FnInfo->isStr("strncat"))
4073 return Builtin::BIstrncat;
4074 else if (FnInfo->isStr("strndup"))
4075 return Builtin::BIstrndup;
4076 else if (FnInfo->isStr("strlen"))
4077 return Builtin::BIstrlen;
4078 else if (FnInfo->isStr("bzero"))
4079 return Builtin::BIbzero;
4080 } else if (isInStdNamespace()) {
4081 if (FnInfo->isStr("free"))
4082 return Builtin::BIfree;
4083 }
4084 break;
4085 }
4086 return 0;
4087}
4088
4089unsigned FunctionDecl::getODRHash() const {
4090 assert(hasODRHash())((hasODRHash()) ? static_cast<void> (0) : __assert_fail
("hasODRHash()", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4090, __PRETTY_FUNCTION__))
;
4091 return ODRHash;
4092}
4093
4094unsigned FunctionDecl::getODRHash() {
4095 if (hasODRHash())
4096 return ODRHash;
4097
4098 if (auto *FT = getInstantiatedFromMemberFunction()) {
4099 setHasODRHash(true);
4100 ODRHash = FT->getODRHash();
4101 return ODRHash;
4102 }
4103
4104 class ODRHash Hash;
4105 Hash.AddFunctionDecl(this);
4106 setHasODRHash(true);
4107 ODRHash = Hash.CalculateHash();
4108 return ODRHash;
4109}
4110
4111//===----------------------------------------------------------------------===//
4112// FieldDecl Implementation
4113//===----------------------------------------------------------------------===//
4114
4115FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4116 SourceLocation StartLoc, SourceLocation IdLoc,
4117 IdentifierInfo *Id, QualType T,
4118 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4119 InClassInitStyle InitStyle) {
4120 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4121 BW, Mutable, InitStyle);
4122}
4123
4124FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4125 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4126 SourceLocation(), nullptr, QualType(), nullptr,
4127 nullptr, false, ICIS_NoInit);
4128}
4129
4130bool FieldDecl::isAnonymousStructOrUnion() const {
4131 if (!isImplicit() || getDeclName())
4132 return false;
4133
4134 if (const auto *Record = getType()->getAs<RecordType>())
4135 return Record->getDecl()->isAnonymousStructOrUnion();
4136
4137 return false;
4138}
4139
4140unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4141 assert(isBitField() && "not a bitfield")((isBitField() && "not a bitfield") ? static_cast<
void> (0) : __assert_fail ("isBitField() && \"not a bitfield\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4141, __PRETTY_FUNCTION__))
;
4142 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4143}
4144
4145bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4146 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4147 getBitWidthValue(Ctx) == 0;
4148}
4149
4150bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4151 if (isZeroLengthBitField(Ctx))
4152 return true;
4153
4154 // C++2a [intro.object]p7:
4155 // An object has nonzero size if it
4156 // -- is not a potentially-overlapping subobject, or
4157 if (!hasAttr<NoUniqueAddressAttr>())
4158 return false;
4159
4160 // -- is not of class type, or
4161 const auto *RT = getType()->getAs<RecordType>();
4162 if (!RT)
4163 return false;
4164 const RecordDecl *RD = RT->getDecl()->getDefinition();
4165 if (!RD) {
4166 assert(isInvalidDecl() && "valid field has incomplete type")((isInvalidDecl() && "valid field has incomplete type"
) ? static_cast<void> (0) : __assert_fail ("isInvalidDecl() && \"valid field has incomplete type\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4166, __PRETTY_FUNCTION__))
;
4167 return false;
4168 }
4169
4170 // -- [has] virtual member functions or virtual base classes, or
4171 // -- has subobjects of nonzero size or bit-fields of nonzero length
4172 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4173 if (!CXXRD->isEmpty())
4174 return false;
4175
4176 // Otherwise, [...] the circumstances under which the object has zero size
4177 // are implementation-defined.
4178 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4179 // ABI will do.
4180 return true;
4181}
4182
4183unsigned FieldDecl::getFieldIndex() const {
4184 const FieldDecl *Canonical = getCanonicalDecl();
4185 if (Canonical != this)
4186 return Canonical->getFieldIndex();
4187
4188 if (CachedFieldIndex) return CachedFieldIndex - 1;
4189
4190 unsigned Index = 0;
4191 const RecordDecl *RD = getParent()->getDefinition();
4192 assert(RD && "requested index for field of struct with no definition")((RD && "requested index for field of struct with no definition"
) ? static_cast<void> (0) : __assert_fail ("RD && \"requested index for field of struct with no definition\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4192, __PRETTY_FUNCTION__))
;
4193
4194 for (auto *Field : RD->fields()) {
4195 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4196 ++Index;
4197 }
4198
4199 assert(CachedFieldIndex && "failed to find field in parent")((CachedFieldIndex && "failed to find field in parent"
) ? static_cast<void> (0) : __assert_fail ("CachedFieldIndex && \"failed to find field in parent\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4199, __PRETTY_FUNCTION__))
;
4200 return CachedFieldIndex - 1;
4201}
4202
4203SourceRange FieldDecl::getSourceRange() const {
4204 const Expr *FinalExpr = getInClassInitializer();
4205 if (!FinalExpr)
4206 FinalExpr = getBitWidth();
4207 if (FinalExpr)
4208 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4209 return DeclaratorDecl::getSourceRange();
4210}
4211
4212void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4213 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&(((getParent()->isLambda() || getParent()->isCapturedRecord
()) && "capturing type in non-lambda or captured record."
) ? static_cast<void> (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4214, __PRETTY_FUNCTION__))
4214 "capturing type in non-lambda or captured record.")(((getParent()->isLambda() || getParent()->isCapturedRecord
()) && "capturing type in non-lambda or captured record."
) ? static_cast<void> (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4214, __PRETTY_FUNCTION__))
;
4215 assert(InitStorage.getInt() == ISK_NoInit &&((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4217, __PRETTY_FUNCTION__))
4216 InitStorage.getPointer() == nullptr &&((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4217, __PRETTY_FUNCTION__))
4217 "bit width, initializer or captured type already set")((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4217, __PRETTY_FUNCTION__))
;
4218 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4219 ISK_CapturedVLAType);
4220}
4221
4222//===----------------------------------------------------------------------===//
4223// TagDecl Implementation
4224//===----------------------------------------------------------------------===//
4225
4226TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4227 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4228 SourceLocation StartL)
4229 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4230 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4231 assert((DK != Enum || TK == TTK_Enum) &&(((DK != Enum || TK == TTK_Enum) && "EnumDecl not matched with TTK_Enum"
) ? static_cast<void> (0) : __assert_fail ("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4232, __PRETTY_FUNCTION__))
4232 "EnumDecl not matched with TTK_Enum")(((DK != Enum || TK == TTK_Enum) && "EnumDecl not matched with TTK_Enum"
) ? static_cast<void> (0) : __assert_fail ("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4232, __PRETTY_FUNCTION__))
;
4233 setPreviousDecl(PrevDecl);
4234 setTagKind(TK);
4235 setCompleteDefinition(false);
4236 setBeingDefined(false);
4237 setEmbeddedInDeclarator(false);
4238 setFreeStanding(false);
4239 setCompleteDefinitionRequired(false);
4240}
4241
4242SourceLocation TagDecl::getOuterLocStart() const {
4243 return getTemplateOrInnerLocStart(this);
4244}
4245
4246SourceRange TagDecl::getSourceRange() const {
4247 SourceLocation RBraceLoc = BraceRange.getEnd();
4248 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4249 return SourceRange(getOuterLocStart(), E);
4250}
4251
4252TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4253
4254void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4255 TypedefNameDeclOrQualifier = TDD;
4256 if (const Type *T = getTypeForDecl()) {
4257 (void)T;
4258 assert(T->isLinkageValid())((T->isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("T->isLinkageValid()", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4258, __PRETTY_FUNCTION__))
;
4259 }
4260 assert(isLinkageValid())((isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("isLinkageValid()", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4260, __PRETTY_FUNCTION__))
;
4261}
4262
4263void TagDecl::startDefinition() {
4264 setBeingDefined(true);
4265
4266 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4267 struct CXXRecordDecl::DefinitionData *Data =
4268 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4269 for (auto I : redecls())
4270 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4271 }
4272}
4273
4274void TagDecl::completeDefinition() {
4275 assert((!isa<CXXRecordDecl>(this) ||(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4277, __PRETTY_FUNCTION__))
4276 cast<CXXRecordDecl>(this)->hasDefinition()) &&(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4277, __PRETTY_FUNCTION__))
4277 "definition completed but not started")(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4277, __PRETTY_FUNCTION__))
;
4278
4279 setCompleteDefinition(true);
4280 setBeingDefined(false);
4281
4282 if (ASTMutationListener *L = getASTMutationListener())
4283 L->CompletedTagDefinition(this);
4284}
4285
4286TagDecl *TagDecl::getDefinition() const {
4287 if (isCompleteDefinition())
4288 return const_cast<TagDecl *>(this);
4289
4290 // If it's possible for us to have an out-of-date definition, check now.
4291 if (mayHaveOutOfDateDef()) {
4292 if (IdentifierInfo *II = getIdentifier()) {
4293 if (II->isOutOfDate()) {
4294 updateOutOfDate(*II);
4295 }
4296 }
4297 }
4298
4299 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4300 return CXXRD->getDefinition();
4301
4302 for (auto R : redecls())
4303 if (R->isCompleteDefinition())
4304 return R;
4305
4306 return nullptr;
4307}
4308
4309void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4310 if (QualifierLoc) {
4311 // Make sure the extended qualifier info is allocated.
4312 if (!hasExtInfo())
4313 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4314 // Set qualifier info.
4315 getExtInfo()->QualifierLoc = QualifierLoc;
4316 } else {
4317 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4318 if (hasExtInfo()) {
4319 if (getExtInfo()->NumTemplParamLists == 0) {
4320 getASTContext().Deallocate(getExtInfo());
4321 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4322 }
4323 else
4324 getExtInfo()->QualifierLoc = QualifierLoc;
4325 }
4326 }
4327}
4328
4329void TagDecl::setTemplateParameterListsInfo(
4330 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4331 assert(!TPLists.empty())((!TPLists.empty()) ? static_cast<void> (0) : __assert_fail
("!TPLists.empty()", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4331, __PRETTY_FUNCTION__))
;
4332 // Make sure the extended decl info is allocated.
4333 if (!hasExtInfo())
4334 // Allocate external info struct.
4335 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4336 // Set the template parameter lists info.
4337 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4338}
4339
4340//===----------------------------------------------------------------------===//
4341// EnumDecl Implementation
4342//===----------------------------------------------------------------------===//
4343
4344EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4345 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4346 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4347 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4348 assert(Scoped || !ScopedUsingClassTag)((Scoped || !ScopedUsingClassTag) ? static_cast<void> (
0) : __assert_fail ("Scoped || !ScopedUsingClassTag", "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4348, __PRETTY_FUNCTION__))
;
4349 IntegerType = nullptr;
4350 setNumPositiveBits(0);
4351 setNumNegativeBits(0);
4352 setScoped(Scoped);
4353 setScopedUsingClassTag(ScopedUsingClassTag);
4354 setFixed(Fixed);
4355 setHasODRHash(false);
4356 ODRHash = 0;
4357}
4358
4359void EnumDecl::anchor() {}
4360
4361EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4362 SourceLocation StartLoc, SourceLocation IdLoc,
4363 IdentifierInfo *Id,
4364 EnumDecl *PrevDecl, bool IsScoped,
4365 bool IsScopedUsingClassTag, bool IsFixed) {
4366 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4367 IsScoped, IsScopedUsingClassTag, IsFixed);
4368 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4369 C.getTypeDeclType(Enum, PrevDecl);
4370 return Enum;
4371}
4372
4373EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4374 EnumDecl *Enum =
4375 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4376 nullptr, nullptr, false, false, false);
4377 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4378 return Enum;
4379}
4380
4381SourceRange EnumDecl::getIntegerTypeRange() const {
4382 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4383 return TI->getTypeLoc().getSourceRange();
4384 return SourceRange();
4385}
4386
4387void EnumDecl::completeDefinition(QualType NewType,
4388 QualType NewPromotionType,
4389 unsigned NumPositiveBits,
4390 unsigned NumNegativeBits) {
4391 assert(!isCompleteDefinition() && "Cannot redefine enums!")((!isCompleteDefinition() && "Cannot redefine enums!"
) ? static_cast<void> (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine enums!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4391, __PRETTY_FUNCTION__))
;
4392 if (!IntegerType)
4393 IntegerType = NewType.getTypePtr();
4394 PromotionType = NewPromotionType;
4395 setNumPositiveBits(NumPositiveBits);
4396 setNumNegativeBits(NumNegativeBits);
4397 TagDecl::completeDefinition();
4398}
4399
4400bool EnumDecl::isClosed() const {
4401 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4402 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4403 return true;
4404}
4405
4406bool EnumDecl::isClosedFlag() const {
4407 return isClosed() && hasAttr<FlagEnumAttr>();
4408}
4409
4410bool EnumDecl::isClosedNonFlag() const {
4411 return isClosed() && !hasAttr<FlagEnumAttr>();
4412}
4413
4414TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4415 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4416 return MSI->getTemplateSpecializationKind();
4417
4418 return TSK_Undeclared;
4419}
4420
4421void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4422 SourceLocation PointOfInstantiation) {
4423 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4424 assert(MSI && "Not an instantiated member enumeration?")((MSI && "Not an instantiated member enumeration?") ?
static_cast<void> (0) : __assert_fail ("MSI && \"Not an instantiated member enumeration?\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4424, __PRETTY_FUNCTION__))
;
4425 MSI->setTemplateSpecializationKind(TSK);
4426 if (TSK != TSK_ExplicitSpecialization &&
4427 PointOfInstantiation.isValid() &&
4428 MSI->getPointOfInstantiation().isInvalid())
4429 MSI->setPointOfInstantiation(PointOfInstantiation);
4430}
4431
4432EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4433 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4434 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4435 EnumDecl *ED = getInstantiatedFromMemberEnum();
4436 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4437 ED = NewED;
4438 return getDefinitionOrSelf(ED);
4439 }
4440 }
4441
4442 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&((!isTemplateInstantiation(getTemplateSpecializationKind()) &&
"couldn't find pattern for enum instantiation") ? static_cast
<void> (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4443, __PRETTY_FUNCTION__))
4443 "couldn't find pattern for enum instantiation")((!isTemplateInstantiation(getTemplateSpecializationKind()) &&
"couldn't find pattern for enum instantiation") ? static_cast
<void> (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4443, __PRETTY_FUNCTION__))
;
4444 return nullptr;
4445}
4446
4447EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4448 if (SpecializationInfo)
4449 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4450
4451 return nullptr;
4452}
4453
4454void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4455 TemplateSpecializationKind TSK) {
4456 assert(!SpecializationInfo && "Member enum is already a specialization")((!SpecializationInfo && "Member enum is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("!SpecializationInfo && \"Member enum is already a specialization\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4456, __PRETTY_FUNCTION__))
;
4457 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4458}
4459
4460unsigned EnumDecl::getODRHash() {
4461 if (hasODRHash())
4462 return ODRHash;
4463
4464 class ODRHash Hash;
4465 Hash.AddEnumDecl(this);
4466 setHasODRHash(true);
4467 ODRHash = Hash.CalculateHash();
4468 return ODRHash;
4469}
4470
4471//===----------------------------------------------------------------------===//
4472// RecordDecl Implementation
4473//===----------------------------------------------------------------------===//
4474
4475RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4476 DeclContext *DC, SourceLocation StartLoc,
4477 SourceLocation IdLoc, IdentifierInfo *Id,
4478 RecordDecl *PrevDecl)
4479 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4480 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!")((classof(static_cast<Decl *>(this)) && "Invalid Kind!"
) ? static_cast<void> (0) : __assert_fail ("classof(static_cast<Decl *>(this)) && \"Invalid Kind!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4480, __PRETTY_FUNCTION__))
;
4481 setHasFlexibleArrayMember(false);
4482 setAnonymousStructOrUnion(false);
4483 setHasObjectMember(false);
4484 setHasVolatileMember(false);
4485 setHasLoadedFieldsFromExternalStorage(false);
4486 setNonTrivialToPrimitiveDefaultInitialize(false);
4487 setNonTrivialToPrimitiveCopy(false);
4488 setNonTrivialToPrimitiveDestroy(false);
4489 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4490 setHasNonTrivialToPrimitiveDestructCUnion(false);
4491 setHasNonTrivialToPrimitiveCopyCUnion(false);
4492 setParamDestroyedInCallee(false);
4493 setArgPassingRestrictions(APK_CanPassInRegs);
4494}
4495
4496RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4497 SourceLocation StartLoc, SourceLocation IdLoc,
4498 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4499 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4500 StartLoc, IdLoc, Id, PrevDecl);
4501 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4502
4503 C.getTypeDeclType(R, PrevDecl);
4504 return R;
4505}
4506
4507RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4508 RecordDecl *R =
4509 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4510 SourceLocation(), nullptr, nullptr);
4511 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4512 return R;
4513}
4514
4515bool RecordDecl::isInjectedClassName() const {
4516 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4517 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4518}
4519
4520bool RecordDecl::isLambda() const {
4521 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4522 return RD->isLambda();
4523 return false;
4524}
4525
4526bool RecordDecl::isCapturedRecord() const {
4527 return hasAttr<CapturedRecordAttr>();
4528}
4529
4530void RecordDecl::setCapturedRecord() {
4531 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4532}
4533
4534bool RecordDecl::isOrContainsUnion() const {
4535 if (isUnion())
4536 return true;
4537
4538 if (const RecordDecl *Def = getDefinition()) {
4539 for (const FieldDecl *FD : Def->fields()) {
4540 const RecordType *RT = FD->getType()->getAs<RecordType>();
4541 if (RT && RT->getDecl()->isOrContainsUnion())
4542 return true;
4543 }
4544 }
4545
4546 return false;
4547}
4548
4549RecordDecl::field_iterator RecordDecl::field_begin() const {
4550 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4551 LoadFieldsFromExternalStorage();
4552
4553 return field_iterator(decl_iterator(FirstDecl));
4554}
4555
4556/// completeDefinition - Notes that the definition of this type is now
4557/// complete.
4558void RecordDecl::completeDefinition() {
4559 assert(!isCompleteDefinition() && "Cannot redefine record!")((!isCompleteDefinition() && "Cannot redefine record!"
) ? static_cast<void> (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine record!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4559, __PRETTY_FUNCTION__))
;
4560 TagDecl::completeDefinition();
4561}
4562
4563/// isMsStruct - Get whether or not this record uses ms_struct layout.
4564/// This which can be turned on with an attribute, pragma, or the
4565/// -mms-bitfields command-line option.
4566bool RecordDecl::isMsStruct(const ASTContext &C) const {
4567 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4568}
4569
4570void RecordDecl::LoadFieldsFromExternalStorage() const {
4571 ExternalASTSource *Source = getASTContext().getExternalSource();
4572 assert(hasExternalLexicalStorage() && Source && "No external storage?")((hasExternalLexicalStorage() && Source && "No external storage?"
) ? static_cast<void> (0) : __assert_fail ("hasExternalLexicalStorage() && Source && \"No external storage?\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4572, __PRETTY_FUNCTION__))
;
4573
4574 // Notify that we have a RecordDecl doing some initialization.
4575 ExternalASTSource::Deserializing TheFields(Source);
4576
4577 SmallVector<Decl*, 64> Decls;
4578 setHasLoadedFieldsFromExternalStorage(true);
4579 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4580 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4581 }, Decls);
4582
4583#ifndef NDEBUG
4584 // Check that all decls we got were FieldDecls.
4585 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4586 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]))((isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>
(Decls[i])) ? static_cast<void> (0) : __assert_fail ("isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4586, __PRETTY_FUNCTION__))
;
4587#endif
4588
4589 if (Decls.empty())
4590 return;
4591
4592 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4593 /*FieldsAlreadyLoaded=*/false);
4594}
4595
4596bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4597 ASTContext &Context = getASTContext();
4598 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4599 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4600 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4601 return false;
4602 const auto &Blacklist = Context.getSanitizerBlacklist();
4603 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4604 // We may be able to relax some of these requirements.
4605 int ReasonToReject = -1;
4606 if (!CXXRD || CXXRD->isExternCContext())
4607 ReasonToReject = 0; // is not C++.
4608 else if (CXXRD->hasAttr<PackedAttr>())
4609 ReasonToReject = 1; // is packed.
4610 else if (CXXRD->isUnion())
4611 ReasonToReject = 2; // is a union.
4612 else if (CXXRD->isTriviallyCopyable())
4613 ReasonToReject = 3; // is trivially copyable.
4614 else if (CXXRD->hasTrivialDestructor())
4615 ReasonToReject = 4; // has trivial destructor.
4616 else if (CXXRD->isStandardLayout())
4617 ReasonToReject = 5; // is standard layout.
4618 else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4619 "field-padding"))
4620 ReasonToReject = 6; // is in an excluded file.
4621 else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4622 getQualifiedNameAsString(),
4623 "field-padding"))
4624 ReasonToReject = 7; // The type is excluded.
4625
4626 if (EmitRemark) {
4627 if (ReasonToReject >= 0)
4628 Context.getDiagnostics().Report(
4629 getLocation(),
4630 diag::remark_sanitize_address_insert_extra_padding_rejected)
4631 << getQualifiedNameAsString() << ReasonToReject;
4632 else
4633 Context.getDiagnostics().Report(
4634 getLocation(),
4635 diag::remark_sanitize_address_insert_extra_padding_accepted)
4636 << getQualifiedNameAsString();
4637 }
4638 return ReasonToReject < 0;
4639}
4640
4641const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4642 for (const auto *I : fields()) {
4643 if (I->getIdentifier())
4644 return I;
4645
4646 if (const auto *RT = I->getType()->getAs<RecordType>())
4647 if (const FieldDecl *NamedDataMember =
4648 RT->getDecl()->findFirstNamedDataMember())
4649 return NamedDataMember;
4650 }
4651
4652 // We didn't find a named data member.
4653 return nullptr;
4654}
4655
4656//===----------------------------------------------------------------------===//
4657// BlockDecl Implementation
4658//===----------------------------------------------------------------------===//
4659
4660BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4661 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4662 setIsVariadic(false);
4663 setCapturesCXXThis(false);
4664 setBlockMissingReturnType(true);
4665 setIsConversionFromLambda(false);
4666 setDoesNotEscape(false);
4667 setCanAvoidCopyToHeap(false);
4668}
4669
4670void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4671 assert(!ParamInfo && "Already has param info!")((!ParamInfo && "Already has param info!") ? static_cast
<void> (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4671, __PRETTY_FUNCTION__))
;
4672
4673 // Zero params -> null pointer.
4674 if (!NewParamInfo.empty()) {
4675 NumParams = NewParamInfo.size();
4676 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4677 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4678 }
4679}
4680
4681void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4682 bool CapturesCXXThis) {
4683 this->setCapturesCXXThis(CapturesCXXThis);
4684 this->NumCaptures = Captures.size();
4685
4686 if (Captures.empty()) {
4687 this->Captures = nullptr;
4688 return;
4689 }
4690
4691 this->Captures = Captures.copy(Context).data();
4692}
4693
4694bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4695 for (const auto &I : captures())
4696 // Only auto vars can be captured, so no redeclaration worries.
4697 if (I.getVariable() == variable)
4698 return true;
4699
4700 return false;
4701}
4702
4703SourceRange BlockDecl::getSourceRange() const {
4704 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4705}
4706
4707//===----------------------------------------------------------------------===//
4708// Other Decl Allocation/Deallocation Method Implementations
4709//===----------------------------------------------------------------------===//
4710
4711void TranslationUnitDecl::anchor() {}
4712
4713TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4714 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4715}
4716
4717void PragmaCommentDecl::anchor() {}
4718
4719PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4720 TranslationUnitDecl *DC,
4721 SourceLocation CommentLoc,
4722 PragmaMSCommentKind CommentKind,
4723 StringRef Arg) {
4724 PragmaCommentDecl *PCD =
4725 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4726 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4727 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4728 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4729 return PCD;
4730}
4731
4732PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4733 unsigned ID,
4734 unsigned ArgSize) {
4735 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4736 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4737}
4738
4739void PragmaDetectMismatchDecl::anchor() {}
4740
4741PragmaDetectMismatchDecl *
4742PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4743 SourceLocation Loc, StringRef Name,
4744 StringRef Value) {
4745 size_t ValueStart = Name.size() + 1;
4746 PragmaDetectMismatchDecl *PDMD =
4747 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4748 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4749 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4750 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4751 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4752 Value.size());
4753 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4754 return PDMD;
4755}
4756
4757PragmaDetectMismatchDecl *
4758PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4759 unsigned NameValueSize) {
4760 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4761 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4762}
4763
4764void ExternCContextDecl::anchor() {}
4765
4766ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4767 TranslationUnitDecl *DC) {
4768 return new (C, DC) ExternCContextDecl(DC);
4769}
4770
4771void LabelDecl::anchor() {}
4772
4773LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4774 SourceLocation IdentL, IdentifierInfo *II) {
4775 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4776}
4777
4778LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4779 SourceLocation IdentL, IdentifierInfo *II,
4780 SourceLocation GnuLabelL) {
4781 assert(GnuLabelL != IdentL && "Use this only for GNU local labels")((GnuLabelL != IdentL && "Use this only for GNU local labels"
) ? static_cast<void> (0) : __assert_fail ("GnuLabelL != IdentL && \"Use this only for GNU local labels\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 4781, __PRETTY_FUNCTION__))
;
4782 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4783}
4784
4785LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4786 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4787 SourceLocation());
4788}
4789
4790void LabelDecl::setMSAsmLabel(StringRef Name) {
4791char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4792 memcpy(Buffer, Name.data(), Name.size());
4793 Buffer[Name.size()] = '\0';
4794 MSAsmName = Buffer;
4795}
4796
4797void ValueDecl::anchor() {}
4798
4799bool ValueDecl::isWeak() const {
4800 auto *MostRecent = getMostRecentDecl();
4801 return MostRecent->hasAttr<WeakAttr>() ||
4802 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4803}
4804
4805void ImplicitParamDecl::anchor() {}
4806
4807ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4808 SourceLocation IdLoc,
4809 IdentifierInfo *Id, QualType Type,
4810 ImplicitParamKind ParamKind) {
4811 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4812}
4813
4814ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4815 ImplicitParamKind ParamKind) {
4816 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4817}
4818
4819ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4820 unsigned ID) {
4821 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4822}
4823
4824FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4825 SourceLocation StartLoc,
4826 const DeclarationNameInfo &NameInfo,
4827 QualType T, TypeSourceInfo *TInfo,
4828 StorageClass SC, bool isInlineSpecified,
4829 bool hasWrittenPrototype,
4830 ConstexprSpecKind ConstexprKind,
4831 Expr *TrailingRequiresClause) {
4832 FunctionDecl *New =
4833 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4834 SC, isInlineSpecified, ConstexprKind,
4835 TrailingRequiresClause);
4836 New->setHasWrittenPrototype(hasWrittenPrototype);
4837 return New;
4838}
4839
4840FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4841 return new (C, ID) FunctionDecl(
4842 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4843 nullptr, SC_None, false, ConstexprSpecKind::Unspecified, nullptr);
4844}
4845
4846BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4847 return new (C, DC) BlockDecl(DC, L);
4848}
4849
4850BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4851 return new (C, ID) BlockDecl(nullptr, SourceLocation());
4852}
4853
4854CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4855 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4856 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4857
4858CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4859 unsigned NumParams) {
4860 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4861 CapturedDecl(DC, NumParams);
4862}
4863
4864CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4865 unsigned NumParams) {
4866 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4867 CapturedDecl(nullptr, NumParams);
4868}
4869
4870Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4871void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4872
4873bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4874void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4875
4876EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4877 SourceLocation L,
4878 IdentifierInfo *Id, QualType T,
4879 Expr *E, const llvm::APSInt &V) {
4880 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4881}
4882
4883EnumConstantDecl *
4884EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4885 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4886 QualType(), nullptr, llvm::APSInt());
4887}
4888
4889void IndirectFieldDecl::anchor() {}
4890
4891IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4892 SourceLocation L, DeclarationName N,
4893 QualType T,
4894 MutableArrayRef<NamedDecl *> CH)
4895 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4896 ChainingSize(CH.size()) {
4897 // In C++, indirect field declarations conflict with tag declarations in the
4898 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4899 if (C.getLangOpts().CPlusPlus)
4900 IdentifierNamespace |= IDNS_Tag;
4901}
4902
4903IndirectFieldDecl *
4904IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4905 IdentifierInfo *Id, QualType T,
4906 llvm::MutableArrayRef<NamedDecl *> CH) {
4907 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4908}
4909
4910IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4911 unsigned ID) {
4912 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4913 DeclarationName(), QualType(), None);
4914}
4915
4916SourceRange EnumConstantDecl::getSourceRange() const {
4917 SourceLocation End = getLocation();
4918 if (Init)
4919 End = Init->getEndLoc();
4920 return SourceRange(getLocation(), End);
4921}
4922
4923void TypeDecl::anchor() {}
4924
4925TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4926 SourceLocation StartLoc, SourceLocation IdLoc,
4927 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4928 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4929}
4930
4931void TypedefNameDecl::anchor() {}
4932
4933TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4934 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4935 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4936 auto *ThisTypedef = this;
4937 if (AnyRedecl && OwningTypedef) {
4938 OwningTypedef = OwningTypedef->getCanonicalDecl();
4939 ThisTypedef = ThisTypedef->getCanonicalDecl();
4940 }
4941 if (OwningTypedef == ThisTypedef)
4942 return TT->getDecl();
4943 }
4944
4945 return nullptr;
4946}
4947
4948bool TypedefNameDecl::isTransparentTagSlow() const {
4949 auto determineIsTransparent = [&]() {
4950 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4951 if (auto *TD = TT->getDecl()) {
4952 if (TD->getName() != getName())
4953 return false;
4954 SourceLocation TTLoc = getLocation();
4955 SourceLocation TDLoc = TD->getLocation();
4956 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4957 return false;
4958 SourceManager &SM = getASTContext().getSourceManager();
4959 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4960 }
4961 }
4962 return false;
4963 };
4964
4965 bool isTransparent = determineIsTransparent();
4966 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4967 return isTransparent;
4968}
4969
4970TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4971 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4972 nullptr, nullptr);
4973}
4974
4975TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4976 SourceLocation StartLoc,
4977 SourceLocation IdLoc, IdentifierInfo *Id,
4978 TypeSourceInfo *TInfo) {
4979 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4980}
4981
4982TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4983 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4984 SourceLocation(), nullptr, nullptr);
4985}
4986
4987SourceRange TypedefDecl::getSourceRange() const {
4988 SourceLocation RangeEnd = getLocation();
4989 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4990 if (typeIsPostfix(TInfo->getType()))
4991 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4992 }
4993 return SourceRange(getBeginLoc(), RangeEnd);
4994}
4995
4996SourceRange TypeAliasDecl::getSourceRange() const {
4997 SourceLocation RangeEnd = getBeginLoc();
4998 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4999 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5000 return SourceRange(getBeginLoc(), RangeEnd);
5001}
5002
5003void FileScopeAsmDecl::anchor() {}
5004
5005FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5006 StringLiteral *Str,
5007 SourceLocation AsmLoc,
5008 SourceLocation RParenLoc) {
5009 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5010}
5011
5012FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5013 unsigned ID) {
5014 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5015 SourceLocation());
5016}
5017
5018void EmptyDecl::anchor() {}
5019
5020EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5021 return new (C, DC) EmptyDecl(DC, L);
5022}
5023
5024EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5025 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5026}
5027
5028//===----------------------------------------------------------------------===//
5029// ImportDecl Implementation
5030//===----------------------------------------------------------------------===//
5031
5032/// Retrieve the number of module identifiers needed to name the given
5033/// module.
5034static unsigned getNumModuleIdentifiers(Module *Mod) {
5035 unsigned Result = 1;
5036 while (Mod->Parent) {
5037 Mod = Mod->Parent;
5038 ++Result;
5039 }
5040 return Result;
5041}
5042
5043ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5044 Module *Imported,
5045 ArrayRef<SourceLocation> IdentifierLocs)
5046 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5047 NextLocalImportAndComplete(nullptr, true) {
5048 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size())((getNumModuleIdentifiers(Imported) == IdentifierLocs.size())
? static_cast<void> (0) : __assert_fail ("getNumModuleIdentifiers(Imported) == IdentifierLocs.size()"
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/clang/lib/AST/Decl.cpp"
, 5048, __PRETTY_FUNCTION__))
;
5049 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5050 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5051 StoredLocs);
5052}
5053
5054ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5055 Module *Imported, SourceLocation EndLoc)
5056 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5057 NextLocalImportAndComplete(nullptr, false) {
5058 *getTrailingObjects<SourceLocation>() = EndLoc;
5059}
5060
5061ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5062 SourceLocation StartLoc, Module *Imported,
5063 ArrayRef<SourceLocation> IdentifierLocs) {
5064 return new (C, DC,
5065 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5066 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5067}
5068
5069ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5070 SourceLocation StartLoc,
5071 Module *Imported,
5072 SourceLocation EndLoc) {
5073 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5074 ImportDecl(DC, StartLoc, Imported, EndLoc);
5075 Import->setImplicit();
5076 return Import;
5077}
5078
5079ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5080 unsigned NumLocations) {
5081 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5082 ImportDecl(EmptyShell());
5083}
5084
5085ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5086 if (!isImportComplete())
5087 return None;
5088
5089 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5090 return llvm::makeArrayRef(StoredLocs,
5091 getNumModuleIdentifiers(getImportedModule()));
5092}
5093
5094SourceRange ImportDecl::getSourceRange() const {
5095 if (!isImportComplete())
5096 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5097
5098 return SourceRange(getLocation(), getIdentifierLocs().back());
5099}
5100
5101//===----------------------------------------------------------------------===//
5102// ExportDecl Implementation
5103//===----------------------------------------------------------------------===//
5104
5105void ExportDecl::anchor() {}
5106
5107ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5108 SourceLocation ExportLoc) {
5109 return new (C, DC) ExportDecl(DC, ExportLoc);
5110}
5111
5112ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5113 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5114}

/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/Support/TrailingObjects.h

1//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This header defines support for implementing classes that have
11/// some trailing object (or arrays of objects) appended to them. The
12/// main purpose is to make it obvious where this idiom is being used,
13/// and to make the usage more idiomatic and more difficult to get
14/// wrong.
15///
16/// The TrailingObject template abstracts away the reinterpret_cast,
17/// pointer arithmetic, and size calculations used for the allocation
18/// and access of appended arrays of objects, and takes care that they
19/// are all allocated at their required alignment. Additionally, it
20/// ensures that the base type is final -- deriving from a class that
21/// expects data appended immediately after it is typically not safe.
22///
23/// Users are expected to derive from this template, and provide
24/// numTrailingObjects implementations for each trailing type except
25/// the last, e.g. like this sample:
26///
27/// \code
28/// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> {
29/// friend TrailingObjects;
30///
31/// unsigned NumInts, NumDoubles;
32/// size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; }
33/// };
34/// \endcode
35///
36/// You can access the appended arrays via 'getTrailingObjects', and
37/// determine the size needed for allocation via
38/// 'additionalSizeToAlloc' and 'totalSizeToAlloc'.
39///
40/// All the methods implemented by this class are are intended for use
41/// by the implementation of the class, not as part of its interface
42/// (thus, private inheritance is suggested).
43///
44//===----------------------------------------------------------------------===//
45
46#ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H
47#define LLVM_SUPPORT_TRAILINGOBJECTS_H
48
49#include "llvm/Support/AlignOf.h"
50#include "llvm/Support/Alignment.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/type_traits.h"
54#include <new>
55#include <type_traits>
56
57namespace llvm {
58
59namespace trailing_objects_internal {
60/// Helper template to calculate the max alignment requirement for a set of
61/// objects.
62template <typename First, typename... Rest> class AlignmentCalcHelper {
63private:
64 enum {
65 FirstAlignment = alignof(First),
66 RestAlignment = AlignmentCalcHelper<Rest...>::Alignment,
67 };
68
69public:
70 enum {
71 Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment
72 };
73};
74
75template <typename First> class AlignmentCalcHelper<First> {
76public:
77 enum { Alignment = alignof(First) };
78};
79
80/// The base class for TrailingObjects* classes.
81class TrailingObjectsBase {
82protected:
83 /// OverloadToken's purpose is to allow specifying function overloads
84 /// for different types, without actually taking the types as
85 /// parameters. (Necessary because member function templates cannot
86 /// be specialized, so overloads must be used instead of
87 /// specialization.)
88 template <typename T> struct OverloadToken {};
89};
90
91template <int Align>
92class TrailingObjectsAligner : public TrailingObjectsBase {};
93template <>
94class alignas(1) TrailingObjectsAligner<1> : public TrailingObjectsBase {};
95template <>
96class alignas(2) TrailingObjectsAligner<2> : public TrailingObjectsBase {};
97template <>
98class alignas(4) TrailingObjectsAligner<4> : public TrailingObjectsBase {};
99template <>
100class alignas(8) TrailingObjectsAligner<8> : public TrailingObjectsBase {};
101template <>
102class alignas(16) TrailingObjectsAligner<16> : public TrailingObjectsBase {
103};
104template <>
105class alignas(32) TrailingObjectsAligner<32> : public TrailingObjectsBase {
106};
107
108// Just a little helper for transforming a type pack into the same
109// number of a different type. e.g.:
110// ExtractSecondType<Foo..., int>::type
111template <typename Ty1, typename Ty2> struct ExtractSecondType {
112 typedef Ty2 type;
113};
114
115// TrailingObjectsImpl is somewhat complicated, because it is a
116// recursively inheriting template, in order to handle the template
117// varargs. Each level of inheritance picks off a single trailing type
118// then recurses on the rest. The "Align", "BaseTy", and
119// "TopTrailingObj" arguments are passed through unchanged through the
120// recursion. "PrevTy" is, at each level, the type handled by the
121// level right above it.
122
123template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
124 typename... MoreTys>
125class TrailingObjectsImpl {
126 // The main template definition is never used -- the two
127 // specializations cover all possibilities.
128};
129
130template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
131 typename NextTy, typename... MoreTys>
132class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy,
133 MoreTys...>
134 : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy,
135 MoreTys...> {
136
137 typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...>
138 ParentType;
139
140 struct RequiresRealignment {
141 static const bool value = alignof(PrevTy) < alignof(NextTy);
142 };
143
144 static constexpr bool requiresRealignment() {
145 return RequiresRealignment::value;
146 }
147
148protected:
149 // Ensure the inherited getTrailingObjectsImpl is not hidden.
150 using ParentType::getTrailingObjectsImpl;
151
152 // These two functions are helper functions for
153 // TrailingObjects::getTrailingObjects. They recurse to the left --
154 // the result for each type in the list of trailing types depends on
155 // the result of calling the function on the type to the
156 // left. However, the function for the type to the left is
157 // implemented by a *subclass* of this class, so we invoke it via
158 // the TopTrailingObj, which is, via the
159 // curiously-recurring-template-pattern, the most-derived type in
160 // this recursion, and thus, contains all the overloads.
161 static const NextTy *
162 getTrailingObjectsImpl(const BaseTy *Obj,
163 TrailingObjectsBase::OverloadToken<NextTy>) {
164 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
165 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
166 TopTrailingObj::callNumTrailingObjects(
167 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
168
169 if (requiresRealignment())
170 return reinterpret_cast<const NextTy *>(
171 alignAddr(Ptr, Align::Of<NextTy>()));
172 else
173 return reinterpret_cast<const NextTy *>(Ptr);
174 }
175
176 static NextTy *
177 getTrailingObjectsImpl(BaseTy *Obj,
178 TrailingObjectsBase::OverloadToken<NextTy>) {
179 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
10
'Ptr' initialized here
180 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
9
Passing value via 1st parameter 'Obj'
181 TopTrailingObj::callNumTrailingObjects(
182 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
183
184 if (requiresRealignment())
11
Taking false branch
185 return reinterpret_cast<NextTy *>(alignAddr(Ptr, Align::Of<NextTy>()));
186 else
187 return reinterpret_cast<NextTy *>(Ptr);
12
Returning pointer (loaded from 'Ptr')
188 }
189
190 // Helper function for TrailingObjects::additionalSizeToAlloc: this
191 // function recurses to superclasses, each of which requires one
192 // fewer size_t argument, and adds its own size.
193 static constexpr size_t additionalSizeToAllocImpl(
194 size_t SizeSoFar, size_t Count1,
195 typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) {
196 return ParentType::additionalSizeToAllocImpl(
197 (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar)
198 : SizeSoFar) +
199 sizeof(NextTy) * Count1,
200 MoreCounts...);
201 }
202};
203
204// The base case of the TrailingObjectsImpl inheritance recursion,
205// when there's no more trailing types.
206template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy>
207class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy>
208 : public TrailingObjectsAligner<Align> {
209protected:
210 // This is a dummy method, only here so the "using" doesn't fail --
211 // it will never be called, because this function recurses backwards
212 // up the inheritance chain to subclasses.
213 static void getTrailingObjectsImpl();
214
215 static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) {
216 return SizeSoFar;
217 }
218
219 template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {}
220};
221
222} // end namespace trailing_objects_internal
223
224// Finally, the main type defined in this file, the one intended for users...
225
226/// See the file comment for details on the usage of the
227/// TrailingObjects type.
228template <typename BaseTy, typename... TrailingTys>
229class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl<
230 trailing_objects_internal::AlignmentCalcHelper<
231 TrailingTys...>::Alignment,
232 BaseTy, TrailingObjects<BaseTy, TrailingTys...>,
233 BaseTy, TrailingTys...> {
234
235 template <int A, typename B, typename T, typename P, typename... M>
236 friend class trailing_objects_internal::TrailingObjectsImpl;
237
238 template <typename... Tys> class Foo {};
239
240 typedef trailing_objects_internal::TrailingObjectsImpl<
241 trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment,
242 BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...>
243 ParentType;
244 using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase;
245
246 using ParentType::getTrailingObjectsImpl;
247
248 // This function contains only a static_assert BaseTy is final. The
249 // static_assert must be in a function, and not at class-level
250 // because BaseTy isn't complete at class instantiation time, but
251 // will be by the time this function is instantiated.
252 static void verifyTrailingObjectsAssertions() {
253 static_assert(std::is_final<BaseTy>(), "BaseTy must be final.");
254 }
255
256 // These two methods are the base of the recursion for this method.
257 static const BaseTy *
258 getTrailingObjectsImpl(const BaseTy *Obj,
259 TrailingObjectsBase::OverloadToken<BaseTy>) {
260 return Obj;
261 }
262
263 static BaseTy *
264 getTrailingObjectsImpl(BaseTy *Obj,
265 TrailingObjectsBase::OverloadToken<BaseTy>) {
266 return Obj;
267 }
268
269 // callNumTrailingObjects simply calls numTrailingObjects on the
270 // provided Obj -- except when the type being queried is BaseTy
271 // itself. There is always only one of the base object, so that case
272 // is handled here. (An additional benefit of indirecting through
273 // this function is that consumers only say "friend
274 // TrailingObjects", and thus, only this class itself can call the
275 // numTrailingObjects function.)
276 static size_t
277 callNumTrailingObjects(const BaseTy *Obj,
278 TrailingObjectsBase::OverloadToken<BaseTy>) {
279 return 1;
280 }
281
282 template <typename T>
283 static size_t callNumTrailingObjects(const BaseTy *Obj,
284 TrailingObjectsBase::OverloadToken<T>) {
285 return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>());
286 }
287
288public:
289 // Make this (privately inherited) member public.
290#ifndef _MSC_VER
291 using ParentType::OverloadToken;
292#else
293 // MSVC bug prevents the above from working, at least up through CL
294 // 19.10.24629.
295 template <typename T>
296 using OverloadToken = typename ParentType::template OverloadToken<T>;
297#endif
298
299 /// Returns a pointer to the trailing object array of the given type
300 /// (which must be one of those specified in the class template). The
301 /// array may have zero or more elements in it.
302 template <typename T> const T *getTrailingObjects() const {
303 verifyTrailingObjectsAssertions();
304 // Forwards to an impl function with overloads, since member
305 // function templates can't be specialized.
306 return this->getTrailingObjectsImpl(
307 static_cast<const BaseTy *>(this),
308 TrailingObjectsBase::OverloadToken<T>());
309 }
310
311 /// Returns a pointer to the trailing object array of the given type
312 /// (which must be one of those specified in the class template). The
313 /// array may have zero or more elements in it.
314 template <typename T> T *getTrailingObjects() {
315 verifyTrailingObjectsAssertions();
316 // Forwards to an impl function with overloads, since member
317 // function templates can't be specialized.
318 return this->getTrailingObjectsImpl(
8
Calling 'TrailingObjectsImpl::getTrailingObjectsImpl'
13
Returning from 'TrailingObjectsImpl::getTrailingObjectsImpl'
14
Returning pointer
319 static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>());
7
Passing value via 1st parameter 'Obj'
320 }
321
322 /// Returns the size of the trailing data, if an object were
323 /// allocated with the given counts (The counts are in the same order
324 /// as the template arguments). This does not include the size of the
325 /// base object. The template arguments must be the same as those
326 /// used in the class; they are supplied here redundantly only so
327 /// that it's clear what the counts are counting in callers.
328 template <typename... Tys>
329 static constexpr std::enable_if_t<
330 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
331 additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
332 TrailingTys, size_t>::type... Counts) {
333 return ParentType::additionalSizeToAllocImpl(0, Counts...);
334 }
335
336 /// Returns the total size of an object if it were allocated with the
337 /// given trailing object counts. This is the same as
338 /// additionalSizeToAlloc, except it *does* include the size of the base
339 /// object.
340 template <typename... Tys>
341 static constexpr std::enable_if_t<
342 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
343 totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
344 TrailingTys, size_t>::type... Counts) {
345 return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
346 }
347
348 /// A type where its ::with_counts template member has a ::type member
349 /// suitable for use as uninitialized storage for an object with the given
350 /// trailing object counts. The template arguments are similar to those
351 /// of additionalSizeToAlloc.
352 ///
353 /// Use with FixedSizeStorageOwner, e.g.:
354 ///
355 /// \code{.cpp}
356 ///
357 /// MyObj::FixedSizeStorage<void *>::with_counts<1u>::type myStackObjStorage;
358 /// MyObj::FixedSizeStorageOwner
359 /// myStackObjOwner(new ((void *)&myStackObjStorage) MyObj);
360 /// MyObj *const myStackObjPtr = myStackObjOwner.get();
361 ///
362 /// \endcode
363 template <typename... Tys> struct FixedSizeStorage {
364 template <size_t... Counts> struct with_counts {
365 enum { Size = totalSizeToAlloc<Tys...>(Counts...) };
366 struct type {
367 alignas(BaseTy) char buffer[Size];
368 };
369 };
370 };
371
372 /// A type that acts as the owner for an object placed into fixed storage.
373 class FixedSizeStorageOwner {
374 public:
375 FixedSizeStorageOwner(BaseTy *p) : p(p) {}
376 ~FixedSizeStorageOwner() {
377 assert(p && "FixedSizeStorageOwner owns null?")((p && "FixedSizeStorageOwner owns null?") ? static_cast
<void> (0) : __assert_fail ("p && \"FixedSizeStorageOwner owns null?\""
, "/build/llvm-toolchain-snapshot-12~++20210115100614+a14c36fe27f5/llvm/include/llvm/Support/TrailingObjects.h"
, 377, __PRETTY_FUNCTION__))
;
378 p->~BaseTy();
379 }
380
381 BaseTy *get() { return p; }
382 const BaseTy *get() const { return p; }
383
384 private:
385 FixedSizeStorageOwner(const FixedSizeStorageOwner &) = delete;
386 FixedSizeStorageOwner(FixedSizeStorageOwner &&) = delete;
387 FixedSizeStorageOwner &operator=(const FixedSizeStorageOwner &) = delete;
388 FixedSizeStorageOwner &operator=(FixedSizeStorageOwner &&) = delete;
389
390 BaseTy *const p;
391 };
392};
393
394} // end namespace llvm
395
396#endif