Bug Summary

File:build/source/clang/lib/AST/Decl.cpp
Warning:line 4039, column 5
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Decl.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/AST -I /build/source/clang/lib/AST -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679443490 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-22-005342-16304-1 -x c++ /build/source/clang/lib/AST/Decl.cpp

/build/source/clang/lib/AST/Decl.cpp

1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DeclarationName.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/ODRHash.h"
31#include "clang/AST/PrettyDeclStackTrace.h"
32#include "clang/AST/PrettyPrinter.h"
33#include "clang/AST/Randstruct.h"
34#include "clang/AST/RecordLayout.h"
35#include "clang/AST/Redeclarable.h"
36#include "clang/AST/Stmt.h"
37#include "clang/AST/TemplateBase.h"
38#include "clang/AST/Type.h"
39#include "clang/AST/TypeLoc.h"
40#include "clang/Basic/Builtins.h"
41#include "clang/Basic/IdentifierTable.h"
42#include "clang/Basic/LLVM.h"
43#include "clang/Basic/LangOptions.h"
44#include "clang/Basic/Linkage.h"
45#include "clang/Basic/Module.h"
46#include "clang/Basic/NoSanitizeList.h"
47#include "clang/Basic/PartialDiagnostic.h"
48#include "clang/Basic/Sanitizers.h"
49#include "clang/Basic/SourceLocation.h"
50#include "clang/Basic/SourceManager.h"
51#include "clang/Basic/Specifiers.h"
52#include "clang/Basic/TargetCXXABI.h"
53#include "clang/Basic/TargetInfo.h"
54#include "clang/Basic/Visibility.h"
55#include "llvm/ADT/APSInt.h"
56#include "llvm/ADT/ArrayRef.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/TargetParser/Triple.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <optional>
71#include <string>
72#include <tuple>
73#include <type_traits>
74
75using namespace clang;
76
77Decl *clang::getPrimaryMergedDecl(Decl *D) {
78 return D->getASTContext().getPrimaryMergedDecl(D);
79}
80
81void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
82 SourceLocation Loc = this->Loc;
83 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
84 if (Loc.isValid()) {
85 Loc.print(OS, Context.getSourceManager());
86 OS << ": ";
87 }
88 OS << Message;
89
90 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
91 OS << " '";
92 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
93 OS << "'";
94 }
95
96 OS << '\n';
97}
98
99// Defined here so that it can be inlined into its direct callers.
100bool Decl::isOutOfLine() const {
101 return !getLexicalDeclContext()->Equals(getDeclContext());
102}
103
104TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
105 : Decl(TranslationUnit, nullptr, SourceLocation()),
106 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
107
108//===----------------------------------------------------------------------===//
109// NamedDecl Implementation
110//===----------------------------------------------------------------------===//
111
112// Visibility rules aren't rigorously externally specified, but here
113// are the basic principles behind what we implement:
114//
115// 1. An explicit visibility attribute is generally a direct expression
116// of the user's intent and should be honored. Only the innermost
117// visibility attribute applies. If no visibility attribute applies,
118// global visibility settings are considered.
119//
120// 2. There is one caveat to the above: on or in a template pattern,
121// an explicit visibility attribute is just a default rule, and
122// visibility can be decreased by the visibility of template
123// arguments. But this, too, has an exception: an attribute on an
124// explicit specialization or instantiation causes all the visibility
125// restrictions of the template arguments to be ignored.
126//
127// 3. A variable that does not otherwise have explicit visibility can
128// be restricted by the visibility of its type.
129//
130// 4. A visibility restriction is explicit if it comes from an
131// attribute (or something like it), not a global visibility setting.
132// When emitting a reference to an external symbol, visibility
133// restrictions are ignored unless they are explicit.
134//
135// 5. When computing the visibility of a non-type, including a
136// non-type member of a class, only non-type visibility restrictions
137// are considered: the 'visibility' attribute, global value-visibility
138// settings, and a few special cases like __private_extern.
139//
140// 6. When computing the visibility of a type, including a type member
141// of a class, only type visibility restrictions are considered:
142// the 'type_visibility' attribute and global type-visibility settings.
143// However, a 'visibility' attribute counts as a 'type_visibility'
144// attribute on any declaration that only has the former.
145//
146// The visibility of a "secondary" entity, like a template argument,
147// is computed using the kind of that entity, not the kind of the
148// primary entity for which we are computing visibility. For example,
149// the visibility of a specialization of either of these templates:
150// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
151// template <class T, bool (&compare)(T, X)> class matcher;
152// is restricted according to the type visibility of the argument 'T',
153// the type visibility of 'bool(&)(T,X)', and the value visibility of
154// the argument function 'compare'. That 'has_match' is a value
155// and 'matcher' is a type only matters when looking for attributes
156// and settings from the immediate context.
157
158/// Does this computation kind permit us to consider additional
159/// visibility settings from attributes and the like?
160static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
161 return computation.IgnoreExplicitVisibility;
162}
163
164/// Given an LVComputationKind, return one of the same type/value sort
165/// that records that it already has explicit visibility.
166static LVComputationKind
167withExplicitVisibilityAlready(LVComputationKind Kind) {
168 Kind.IgnoreExplicitVisibility = true;
169 return Kind;
170}
171
172static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
173 LVComputationKind kind) {
174 assert(!kind.IgnoreExplicitVisibility &&(static_cast <bool> (!kind.IgnoreExplicitVisibility &&
"asking for explicit visibility when we shouldn't be") ? void
(0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "clang/lib/AST/Decl.cpp", 175, __extension__ __PRETTY_FUNCTION__
))
175 "asking for explicit visibility when we shouldn't be")(static_cast <bool> (!kind.IgnoreExplicitVisibility &&
"asking for explicit visibility when we shouldn't be") ? void
(0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "clang/lib/AST/Decl.cpp", 175, __extension__ __PRETTY_FUNCTION__
))
;
176 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
177}
178
179/// Is the given declaration a "type" or a "value" for the purposes of
180/// visibility computation?
181static bool usesTypeVisibility(const NamedDecl *D) {
182 return isa<TypeDecl>(D) ||
183 isa<ClassTemplateDecl>(D) ||
184 isa<ObjCInterfaceDecl>(D);
185}
186
187/// Does the given declaration have member specialization information,
188/// and if so, is it an explicit specialization?
189template <class T>
190static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
191isExplicitMemberSpecialization(const T *D) {
192 if (const MemberSpecializationInfo *member =
193 D->getMemberSpecializationInfo()) {
194 return member->isExplicitSpecialization();
195 }
196 return false;
197}
198
199/// For templates, this question is easier: a member template can't be
200/// explicitly instantiated, so there's a single bit indicating whether
201/// or not this is an explicit member specialization.
202static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
203 return D->isMemberSpecialization();
204}
205
206/// Given a visibility attribute, return the explicit visibility
207/// associated with it.
208template <class T>
209static Visibility getVisibilityFromAttr(const T *attr) {
210 switch (attr->getVisibility()) {
211 case T::Default:
212 return DefaultVisibility;
213 case T::Hidden:
214 return HiddenVisibility;
215 case T::Protected:
216 return ProtectedVisibility;
217 }
218 llvm_unreachable("bad visibility kind")::llvm::llvm_unreachable_internal("bad visibility kind", "clang/lib/AST/Decl.cpp"
, 218)
;
219}
220
221/// Return the explicit visibility of the given declaration.
222static std::optional<Visibility>
223getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) {
224 // If we're ultimately computing the visibility of a type, look for
225 // a 'type_visibility' attribute before looking for 'visibility'.
226 if (kind == NamedDecl::VisibilityForType) {
227 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
228 return getVisibilityFromAttr(A);
229 }
230 }
231
232 // If this declaration has an explicit visibility attribute, use it.
233 if (const auto *A = D->getAttr<VisibilityAttr>()) {
234 return getVisibilityFromAttr(A);
235 }
236
237 return std::nullopt;
238}
239
240LinkageInfo LinkageComputer::getLVForType(const Type &T,
241 LVComputationKind computation) {
242 if (computation.IgnoreAllVisibility)
243 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
244 return getTypeLinkageAndVisibility(&T);
245}
246
247/// Get the most restrictive linkage for the types in the given
248/// template parameter list. For visibility purposes, template
249/// parameters are part of the signature of a template.
250LinkageInfo LinkageComputer::getLVForTemplateParameterList(
251 const TemplateParameterList *Params, LVComputationKind computation) {
252 LinkageInfo LV;
253 for (const NamedDecl *P : *Params) {
254 // Template type parameters are the most common and never
255 // contribute to visibility, pack or not.
256 if (isa<TemplateTypeParmDecl>(P))
257 continue;
258
259 // Non-type template parameters can be restricted by the value type, e.g.
260 // template <enum X> class A { ... };
261 // We have to be careful here, though, because we can be dealing with
262 // dependent types.
263 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
264 // Handle the non-pack case first.
265 if (!NTTP->isExpandedParameterPack()) {
266 if (!NTTP->getType()->isDependentType()) {
267 LV.merge(getLVForType(*NTTP->getType(), computation));
268 }
269 continue;
270 }
271
272 // Look at all the types in an expanded pack.
273 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
274 QualType type = NTTP->getExpansionType(i);
275 if (!type->isDependentType())
276 LV.merge(getTypeLinkageAndVisibility(type));
277 }
278 continue;
279 }
280
281 // Template template parameters can be restricted by their
282 // template parameters, recursively.
283 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
284
285 // Handle the non-pack case first.
286 if (!TTP->isExpandedParameterPack()) {
287 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
288 computation));
289 continue;
290 }
291
292 // Look at all expansions in an expanded pack.
293 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
294 i != n; ++i) {
295 LV.merge(getLVForTemplateParameterList(
296 TTP->getExpansionTemplateParameters(i), computation));
297 }
298 }
299
300 return LV;
301}
302
303static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
304 const Decl *Ret = nullptr;
305 const DeclContext *DC = D->getDeclContext();
306 while (DC->getDeclKind() != Decl::TranslationUnit) {
307 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
308 Ret = cast<Decl>(DC);
309 DC = DC->getParent();
310 }
311 return Ret;
312}
313
314/// Get the most restrictive linkage for the types and
315/// declarations in the given template argument list.
316///
317/// Note that we don't take an LVComputationKind because we always
318/// want to honor the visibility of template arguments in the same way.
319LinkageInfo
320LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
321 LVComputationKind computation) {
322 LinkageInfo LV;
323
324 for (const TemplateArgument &Arg : Args) {
325 switch (Arg.getKind()) {
326 case TemplateArgument::Null:
327 case TemplateArgument::Integral:
328 case TemplateArgument::Expression:
329 continue;
330
331 case TemplateArgument::Type:
332 LV.merge(getLVForType(*Arg.getAsType(), computation));
333 continue;
334
335 case TemplateArgument::Declaration: {
336 const NamedDecl *ND = Arg.getAsDecl();
337 assert(!usesTypeVisibility(ND))(static_cast <bool> (!usesTypeVisibility(ND)) ? void (0
) : __assert_fail ("!usesTypeVisibility(ND)", "clang/lib/AST/Decl.cpp"
, 337, __extension__ __PRETTY_FUNCTION__))
;
338 LV.merge(getLVForDecl(ND, computation));
339 continue;
340 }
341
342 case TemplateArgument::NullPtr:
343 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
344 continue;
345
346 case TemplateArgument::Template:
347 case TemplateArgument::TemplateExpansion:
348 if (TemplateDecl *Template =
349 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
350 LV.merge(getLVForDecl(Template, computation));
351 continue;
352
353 case TemplateArgument::Pack:
354 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
355 continue;
356 }
357 llvm_unreachable("bad template argument kind")::llvm::llvm_unreachable_internal("bad template argument kind"
, "clang/lib/AST/Decl.cpp", 357)
;
358 }
359
360 return LV;
361}
362
363LinkageInfo
364LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
365 LVComputationKind computation) {
366 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
367}
368
369static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
370 const FunctionTemplateSpecializationInfo *specInfo) {
371 // Include visibility from the template parameters and arguments
372 // only if this is not an explicit instantiation or specialization
373 // with direct explicit visibility. (Implicit instantiations won't
374 // have a direct attribute.)
375 if (!specInfo->isExplicitInstantiationOrSpecialization())
376 return true;
377
378 return !fn->hasAttr<VisibilityAttr>();
379}
380
381/// Merge in template-related linkage and visibility for the given
382/// function template specialization.
383///
384/// We don't need a computation kind here because we can assume
385/// LVForValue.
386///
387/// \param[out] LV the computation to use for the parent
388void LinkageComputer::mergeTemplateLV(
389 LinkageInfo &LV, const FunctionDecl *fn,
390 const FunctionTemplateSpecializationInfo *specInfo,
391 LVComputationKind computation) {
392 bool considerVisibility =
393 shouldConsiderTemplateVisibility(fn, specInfo);
394
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 // Merge information from the template declaration.
397 LinkageInfo tempLV = getLVForDecl(temp, computation);
398 // The linkage of the specialization should be consistent with the
399 // template declaration.
400 LV.setLinkage(tempLV.getLinkage());
401
402 // Merge information from the template parameters.
403 LinkageInfo paramsLV =
404 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
405 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
406
407 // Merge information from the template arguments.
408 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
409 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
410 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
411}
412
413/// Does the given declaration have a direct visibility attribute
414/// that would match the given rules?
415static bool hasDirectVisibilityAttribute(const NamedDecl *D,
416 LVComputationKind computation) {
417 if (computation.IgnoreAllVisibility)
418 return false;
419
420 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
421 D->hasAttr<VisibilityAttr>();
422}
423
424/// Should we consider visibility associated with the template
425/// arguments and parameters of the given class template specialization?
426static bool shouldConsiderTemplateVisibility(
427 const ClassTemplateSpecializationDecl *spec,
428 LVComputationKind computation) {
429 // Include visibility from the template parameters and arguments
430 // only if this is not an explicit instantiation or specialization
431 // with direct explicit visibility (and note that implicit
432 // instantiations won't have a direct attribute).
433 //
434 // Furthermore, we want to ignore template parameters and arguments
435 // for an explicit specialization when computing the visibility of a
436 // member thereof with explicit visibility.
437 //
438 // This is a bit complex; let's unpack it.
439 //
440 // An explicit class specialization is an independent, top-level
441 // declaration. As such, if it or any of its members has an
442 // explicit visibility attribute, that must directly express the
443 // user's intent, and we should honor it. The same logic applies to
444 // an explicit instantiation of a member of such a thing.
445
446 // Fast path: if this is not an explicit instantiation or
447 // specialization, we always want to consider template-related
448 // visibility restrictions.
449 if (!spec->isExplicitInstantiationOrSpecialization())
450 return true;
451
452 // This is the 'member thereof' check.
453 if (spec->isExplicitSpecialization() &&
454 hasExplicitVisibilityAlready(computation))
455 return false;
456
457 return !hasDirectVisibilityAttribute(spec, computation);
458}
459
460/// Merge in template-related linkage and visibility for the given
461/// class template specialization.
462void LinkageComputer::mergeTemplateLV(
463 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
464 LVComputationKind computation) {
465 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
466
467 // Merge information from the template parameters, but ignore
468 // visibility if we're only considering template arguments.
469 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
470 // Merge information from the template declaration.
471 LinkageInfo tempLV = getLVForDecl(temp, computation);
472 // The linkage of the specialization should be consistent with the
473 // template declaration.
474 LV.setLinkage(tempLV.getLinkage());
475
476 LinkageInfo paramsLV =
477 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
478 LV.mergeMaybeWithVisibility(paramsLV,
479 considerVisibility && !hasExplicitVisibilityAlready(computation));
480
481 // Merge information from the template arguments. We ignore
482 // template-argument visibility if we've got an explicit
483 // instantiation with a visibility attribute.
484 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
485 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
486 if (considerVisibility)
487 LV.mergeVisibility(argsLV);
488 LV.mergeExternalVisibility(argsLV);
489}
490
491/// Should we consider visibility associated with the template
492/// arguments and parameters of the given variable template
493/// specialization? As usual, follow class template specialization
494/// logic up to initialization.
495static bool shouldConsiderTemplateVisibility(
496 const VarTemplateSpecializationDecl *spec,
497 LVComputationKind computation) {
498 // Include visibility from the template parameters and arguments
499 // only if this is not an explicit instantiation or specialization
500 // with direct explicit visibility (and note that implicit
501 // instantiations won't have a direct attribute).
502 if (!spec->isExplicitInstantiationOrSpecialization())
503 return true;
504
505 // An explicit variable specialization is an independent, top-level
506 // declaration. As such, if it has an explicit visibility attribute,
507 // that must directly express the user's intent, and we should honor
508 // it.
509 if (spec->isExplicitSpecialization() &&
510 hasExplicitVisibilityAlready(computation))
511 return false;
512
513 return !hasDirectVisibilityAttribute(spec, computation);
514}
515
516/// Merge in template-related linkage and visibility for the given
517/// variable template specialization. As usual, follow class template
518/// specialization logic up to initialization.
519void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
520 const VarTemplateSpecializationDecl *spec,
521 LVComputationKind computation) {
522 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
523
524 // Merge information from the template parameters, but ignore
525 // visibility if we're only considering template arguments.
526 VarTemplateDecl *temp = spec->getSpecializedTemplate();
527 LinkageInfo tempLV =
528 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
529 LV.mergeMaybeWithVisibility(tempLV,
530 considerVisibility && !hasExplicitVisibilityAlready(computation));
531
532 // Merge information from the template arguments. We ignore
533 // template-argument visibility if we've got an explicit
534 // instantiation with a visibility attribute.
535 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
536 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
537 if (considerVisibility)
538 LV.mergeVisibility(argsLV);
539 LV.mergeExternalVisibility(argsLV);
540}
541
542static bool useInlineVisibilityHidden(const NamedDecl *D) {
543 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
544 const LangOptions &Opts = D->getASTContext().getLangOpts();
545 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
546 return false;
547
548 const auto *FD = dyn_cast<FunctionDecl>(D);
549 if (!FD)
550 return false;
551
552 TemplateSpecializationKind TSK = TSK_Undeclared;
553 if (FunctionTemplateSpecializationInfo *spec
554 = FD->getTemplateSpecializationInfo()) {
555 TSK = spec->getTemplateSpecializationKind();
556 } else if (MemberSpecializationInfo *MSI =
557 FD->getMemberSpecializationInfo()) {
558 TSK = MSI->getTemplateSpecializationKind();
559 }
560
561 const FunctionDecl *Def = nullptr;
562 // InlineVisibilityHidden only applies to definitions, and
563 // isInlined() only gives meaningful answers on definitions
564 // anyway.
565 return TSK != TSK_ExplicitInstantiationDeclaration &&
566 TSK != TSK_ExplicitInstantiationDefinition &&
567 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
568}
569
570template <typename T> static bool isFirstInExternCContext(T *D) {
571 const T *First = D->getFirstDecl();
572 return First->isInExternCContext();
573}
574
575static bool isSingleLineLanguageLinkage(const Decl &D) {
576 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
577 if (!SD->hasBraces())
578 return true;
579 return false;
580}
581
582/// Determine whether D is declared in the purview of a named module.
583static bool isInModulePurview(const NamedDecl *D) {
584 if (auto *M = D->getOwningModule())
585 return M->isModulePurview();
586 return false;
587}
588
589static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
590 // FIXME: Handle isModulePrivate.
591 switch (D->getModuleOwnershipKind()) {
592 case Decl::ModuleOwnershipKind::Unowned:
593 case Decl::ModuleOwnershipKind::ReachableWhenImported:
594 case Decl::ModuleOwnershipKind::ModulePrivate:
595 return false;
596 case Decl::ModuleOwnershipKind::Visible:
597 case Decl::ModuleOwnershipKind::VisibleWhenImported:
598 return isInModulePurview(D);
599 }
600 llvm_unreachable("unexpected module ownership kind")::llvm::llvm_unreachable_internal("unexpected module ownership kind"
, "clang/lib/AST/Decl.cpp", 600)
;
601}
602
603static bool isDeclaredInModuleInterfaceOrPartition(const NamedDecl *D) {
604 if (auto *M = D->getOwningModule())
605 return M->isInterfaceOrPartition();
606 return false;
607}
608
609static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
610 return LinkageInfo::internal();
611}
612
613static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
614 return LinkageInfo::external();
615}
616
617static StorageClass getStorageClass(const Decl *D) {
618 if (auto *TD = dyn_cast<TemplateDecl>(D))
619 D = TD->getTemplatedDecl();
620 if (D) {
621 if (auto *VD = dyn_cast<VarDecl>(D))
622 return VD->getStorageClass();
623 if (auto *FD = dyn_cast<FunctionDecl>(D))
624 return FD->getStorageClass();
625 }
626 return SC_None;
627}
628
629LinkageInfo
630LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
631 LVComputationKind computation,
632 bool IgnoreVarTypeLinkage) {
633 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&(static_cast <bool> (D->getDeclContext()->getRedeclContext
()->isFileContext() && "Not a name having namespace scope"
) ? void (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "clang/lib/AST/Decl.cpp", 634, __extension__ __PRETTY_FUNCTION__
))
634 "Not a name having namespace scope")(static_cast <bool> (D->getDeclContext()->getRedeclContext
()->isFileContext() && "Not a name having namespace scope"
) ? void (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "clang/lib/AST/Decl.cpp", 634, __extension__ __PRETTY_FUNCTION__
))
;
635 ASTContext &Context = D->getASTContext();
636
637 // C++ [basic.link]p3:
638 // A name having namespace scope (3.3.6) has internal linkage if it
639 // is the name of
640
641 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
642 // - a variable, variable template, function, or function template
643 // that is explicitly declared static; or
644 // (This bullet corresponds to C99 6.2.2p3.)
645 return getInternalLinkageFor(D);
646 }
647
648 if (const auto *Var = dyn_cast<VarDecl>(D)) {
649 // - a non-template variable of non-volatile const-qualified type, unless
650 // - it is explicitly declared extern, or
651 // - it is declared in the purview of a module interface unit
652 // (outside the private-module-fragment, if any) or module partition, or
653 // - it is inline, or
654 // - it was previously declared and the prior declaration did not have
655 // internal linkage
656 // (There is no equivalent in C99.)
657 if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
658 !Var->getType().isVolatileQualified() && !Var->isInline() &&
659 !isDeclaredInModuleInterfaceOrPartition(Var) &&
660 !isa<VarTemplateSpecializationDecl>(Var) &&
661 !Var->getDescribedVarTemplate()) {
662 const VarDecl *PrevVar = Var->getPreviousDecl();
663 if (PrevVar)
664 return getLVForDecl(PrevVar, computation);
665
666 if (Var->getStorageClass() != SC_Extern &&
667 Var->getStorageClass() != SC_PrivateExtern &&
668 !isSingleLineLanguageLinkage(*Var))
669 return getInternalLinkageFor(Var);
670 }
671
672 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
673 PrevVar = PrevVar->getPreviousDecl()) {
674 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
675 Var->getStorageClass() == SC_None)
676 return getDeclLinkageAndVisibility(PrevVar);
677 // Explicitly declared static.
678 if (PrevVar->getStorageClass() == SC_Static)
679 return getInternalLinkageFor(Var);
680 }
681 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
682 // - a data member of an anonymous union.
683 const VarDecl *VD = IFD->getVarDecl();
684 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!")(static_cast <bool> (VD && "Expected a VarDecl in this IndirectFieldDecl!"
) ? void (0) : __assert_fail ("VD && \"Expected a VarDecl in this IndirectFieldDecl!\""
, "clang/lib/AST/Decl.cpp", 684, __extension__ __PRETTY_FUNCTION__
))
;
685 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
686 }
687 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!")(static_cast <bool> (!isa<FieldDecl>(D) &&
"Didn't expect a FieldDecl!") ? void (0) : __assert_fail ("!isa<FieldDecl>(D) && \"Didn't expect a FieldDecl!\""
, "clang/lib/AST/Decl.cpp", 687, __extension__ __PRETTY_FUNCTION__
))
;
688
689 // FIXME: This gives internal linkage to names that should have no linkage
690 // (those not covered by [basic.link]p6).
691 if (D->isInAnonymousNamespace()) {
692 const auto *Var = dyn_cast<VarDecl>(D);
693 const auto *Func = dyn_cast<FunctionDecl>(D);
694 // FIXME: The check for extern "C" here is not justified by the standard
695 // wording, but we retain it from the pre-DR1113 model to avoid breaking
696 // code.
697 //
698 // C++11 [basic.link]p4:
699 // An unnamed namespace or a namespace declared directly or indirectly
700 // within an unnamed namespace has internal linkage.
701 if ((!Var || !isFirstInExternCContext(Var)) &&
702 (!Func || !isFirstInExternCContext(Func)))
703 return getInternalLinkageFor(D);
704 }
705
706 // Set up the defaults.
707
708 // C99 6.2.2p5:
709 // If the declaration of an identifier for an object has file
710 // scope and no storage-class specifier, its linkage is
711 // external.
712 LinkageInfo LV = getExternalLinkageFor(D);
713
714 if (!hasExplicitVisibilityAlready(computation)) {
715 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
716 LV.mergeVisibility(*Vis, true);
717 } else {
718 // If we're declared in a namespace with a visibility attribute,
719 // use that namespace's visibility, and it still counts as explicit.
720 for (const DeclContext *DC = D->getDeclContext();
721 !isa<TranslationUnitDecl>(DC);
722 DC = DC->getParent()) {
723 const auto *ND = dyn_cast<NamespaceDecl>(DC);
724 if (!ND) continue;
725 if (std::optional<Visibility> Vis =
726 getExplicitVisibility(ND, computation)) {
727 LV.mergeVisibility(*Vis, true);
728 break;
729 }
730 }
731 }
732
733 // Add in global settings if the above didn't give us direct visibility.
734 if (!LV.isVisibilityExplicit()) {
735 // Use global type/value visibility as appropriate.
736 Visibility globalVisibility =
737 computation.isValueVisibility()
738 ? Context.getLangOpts().getValueVisibilityMode()
739 : Context.getLangOpts().getTypeVisibilityMode();
740 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
741
742 // If we're paying attention to global visibility, apply
743 // -finline-visibility-hidden if this is an inline method.
744 if (useInlineVisibilityHidden(D))
745 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
746 }
747 }
748
749 // C++ [basic.link]p4:
750
751 // A name having namespace scope that has not been given internal linkage
752 // above and that is the name of
753 // [...bullets...]
754 // has its linkage determined as follows:
755 // - if the enclosing namespace has internal linkage, the name has
756 // internal linkage; [handled above]
757 // - otherwise, if the declaration of the name is attached to a named
758 // module and is not exported, the name has module linkage;
759 // - otherwise, the name has external linkage.
760 // LV is currently set up to handle the last two bullets.
761 //
762 // The bullets are:
763
764 // - a variable; or
765 if (const auto *Var = dyn_cast<VarDecl>(D)) {
766 // GCC applies the following optimization to variables and static
767 // data members, but not to functions:
768 //
769 // Modify the variable's LV by the LV of its type unless this is
770 // C or extern "C". This follows from [basic.link]p9:
771 // A type without linkage shall not be used as the type of a
772 // variable or function with external linkage unless
773 // - the entity has C language linkage, or
774 // - the entity is declared within an unnamed namespace, or
775 // - the entity is not used or is defined in the same
776 // translation unit.
777 // and [basic.link]p10:
778 // ...the types specified by all declarations referring to a
779 // given variable or function shall be identical...
780 // C does not have an equivalent rule.
781 //
782 // Ignore this if we've got an explicit attribute; the user
783 // probably knows what they're doing.
784 //
785 // Note that we don't want to make the variable non-external
786 // because of this, but unique-external linkage suits us.
787
788 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
789 !IgnoreVarTypeLinkage) {
790 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
791 if (!isExternallyVisible(TypeLV.getLinkage()))
792 return LinkageInfo::uniqueExternal();
793 if (!LV.isVisibilityExplicit())
794 LV.mergeVisibility(TypeLV);
795 }
796
797 if (Var->getStorageClass() == SC_PrivateExtern)
798 LV.mergeVisibility(HiddenVisibility, true);
799
800 // Note that Sema::MergeVarDecl already takes care of implementing
801 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
802 // to do it here.
803
804 // As per function and class template specializations (below),
805 // consider LV for the template and template arguments. We're at file
806 // scope, so we do not need to worry about nested specializations.
807 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
808 mergeTemplateLV(LV, spec, computation);
809 }
810
811 // - a function; or
812 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
813 // In theory, we can modify the function's LV by the LV of its
814 // type unless it has C linkage (see comment above about variables
815 // for justification). In practice, GCC doesn't do this, so it's
816 // just too painful to make work.
817
818 if (Function->getStorageClass() == SC_PrivateExtern)
819 LV.mergeVisibility(HiddenVisibility, true);
820
821 // OpenMP target declare device functions are not callable from the host so
822 // they should not be exported from the device image. This applies to all
823 // functions as the host-callable kernel functions are emitted at codegen.
824 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice &&
825 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
826 Context.getTargetInfo().getTriple().isNVPTX()) ||
827 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
828 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
829
830 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
831 // merging storage classes and visibility attributes, so we don't have to
832 // look at previous decls in here.
833
834 // In C++, then if the type of the function uses a type with
835 // unique-external linkage, it's not legally usable from outside
836 // this translation unit. However, we should use the C linkage
837 // rules instead for extern "C" declarations.
838 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
839 // Only look at the type-as-written. Otherwise, deducing the return type
840 // of a function could change its linkage.
841 QualType TypeAsWritten = Function->getType();
842 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
843 TypeAsWritten = TSI->getType();
844 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
845 return LinkageInfo::uniqueExternal();
846 }
847
848 // Consider LV from the template and the template arguments.
849 // We're at file scope, so we do not need to worry about nested
850 // specializations.
851 if (FunctionTemplateSpecializationInfo *specInfo
852 = Function->getTemplateSpecializationInfo()) {
853 mergeTemplateLV(LV, Function, specInfo, computation);
854 }
855
856 // - a named class (Clause 9), or an unnamed class defined in a
857 // typedef declaration in which the class has the typedef name
858 // for linkage purposes (7.1.3); or
859 // - a named enumeration (7.2), or an unnamed enumeration
860 // defined in a typedef declaration in which the enumeration
861 // has the typedef name for linkage purposes (7.1.3); or
862 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
863 // Unnamed tags have no linkage.
864 if (!Tag->hasNameForLinkage())
865 return LinkageInfo::none();
866
867 // If this is a class template specialization, consider the
868 // linkage of the template and template arguments. We're at file
869 // scope, so we do not need to worry about nested specializations.
870 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
871 mergeTemplateLV(LV, spec, computation);
872 }
873
874 // FIXME: This is not part of the C++ standard any more.
875 // - an enumerator belonging to an enumeration with external linkage; or
876 } else if (isa<EnumConstantDecl>(D)) {
877 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
878 computation);
879 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
880 return LinkageInfo::none();
881 LV.merge(EnumLV);
882
883 // - a template
884 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
885 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
886 LinkageInfo tempLV =
887 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
888 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
889
890 // An unnamed namespace or a namespace declared directly or indirectly
891 // within an unnamed namespace has internal linkage. All other namespaces
892 // have external linkage.
893 //
894 // We handled names in anonymous namespaces above.
895 } else if (isa<NamespaceDecl>(D)) {
896 return LV;
897
898 // By extension, we assign external linkage to Objective-C
899 // interfaces.
900 } else if (isa<ObjCInterfaceDecl>(D)) {
901 // fallout
902
903 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
904 // A typedef declaration has linkage if it gives a type a name for
905 // linkage purposes.
906 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
907 return LinkageInfo::none();
908
909 } else if (isa<MSGuidDecl>(D)) {
910 // A GUID behaves like an inline variable with external linkage. Fall
911 // through.
912
913 // Everything not covered here has no linkage.
914 } else {
915 return LinkageInfo::none();
916 }
917
918 // If we ended up with non-externally-visible linkage, visibility should
919 // always be default.
920 if (!isExternallyVisible(LV.getLinkage()))
921 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
922
923 return LV;
924}
925
926LinkageInfo
927LinkageComputer::getLVForClassMember(const NamedDecl *D,
928 LVComputationKind computation,
929 bool IgnoreVarTypeLinkage) {
930 // Only certain class members have linkage. Note that fields don't
931 // really have linkage, but it's convenient to say they do for the
932 // purposes of calculating linkage of pointer-to-data-member
933 // template arguments.
934 //
935 // Templates also don't officially have linkage, but since we ignore
936 // the C++ standard and look at template arguments when determining
937 // linkage and visibility of a template specialization, we might hit
938 // a template template argument that way. If we do, we need to
939 // consider its linkage.
940 if (!(isa<CXXMethodDecl>(D) ||
941 isa<VarDecl>(D) ||
942 isa<FieldDecl>(D) ||
943 isa<IndirectFieldDecl>(D) ||
944 isa<TagDecl>(D) ||
945 isa<TemplateDecl>(D)))
946 return LinkageInfo::none();
947
948 LinkageInfo LV;
949
950 // If we have an explicit visibility attribute, merge that in.
951 if (!hasExplicitVisibilityAlready(computation)) {
952 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
953 LV.mergeVisibility(*Vis, true);
954 // If we're paying attention to global visibility, apply
955 // -finline-visibility-hidden if this is an inline method.
956 //
957 // Note that we do this before merging information about
958 // the class visibility.
959 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
960 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
961 }
962
963 // If this class member has an explicit visibility attribute, the only
964 // thing that can change its visibility is the template arguments, so
965 // only look for them when processing the class.
966 LVComputationKind classComputation = computation;
967 if (LV.isVisibilityExplicit())
968 classComputation = withExplicitVisibilityAlready(computation);
969
970 LinkageInfo classLV =
971 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
972 // The member has the same linkage as the class. If that's not externally
973 // visible, we don't need to compute anything about the linkage.
974 // FIXME: If we're only computing linkage, can we bail out here?
975 if (!isExternallyVisible(classLV.getLinkage()))
976 return classLV;
977
978
979 // Otherwise, don't merge in classLV yet, because in certain cases
980 // we need to completely ignore the visibility from it.
981
982 // Specifically, if this decl exists and has an explicit attribute.
983 const NamedDecl *explicitSpecSuppressor = nullptr;
984
985 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
986 // Only look at the type-as-written. Otherwise, deducing the return type
987 // of a function could change its linkage.
988 QualType TypeAsWritten = MD->getType();
989 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
990 TypeAsWritten = TSI->getType();
991 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
992 return LinkageInfo::uniqueExternal();
993
994 // If this is a method template specialization, use the linkage for
995 // the template parameters and arguments.
996 if (FunctionTemplateSpecializationInfo *spec
997 = MD->getTemplateSpecializationInfo()) {
998 mergeTemplateLV(LV, MD, spec, computation);
999 if (spec->isExplicitSpecialization()) {
1000 explicitSpecSuppressor = MD;
1001 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
1002 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
1003 }
1004 } else if (isExplicitMemberSpecialization(MD)) {
1005 explicitSpecSuppressor = MD;
1006 }
1007
1008 // OpenMP target declare device functions are not callable from the host so
1009 // they should not be exported from the device image. This applies to all
1010 // functions as the host-callable kernel functions are emitted at codegen.
1011 ASTContext &Context = D->getASTContext();
1012 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice &&
1013 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1014 Context.getTargetInfo().getTriple().isNVPTX()) ||
1015 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1016 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1017
1018 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1019 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1020 mergeTemplateLV(LV, spec, computation);
1021 if (spec->isExplicitSpecialization()) {
1022 explicitSpecSuppressor = spec;
1023 } else {
1024 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1025 if (isExplicitMemberSpecialization(temp)) {
1026 explicitSpecSuppressor = temp->getTemplatedDecl();
1027 }
1028 }
1029 } else if (isExplicitMemberSpecialization(RD)) {
1030 explicitSpecSuppressor = RD;
1031 }
1032
1033 // Static data members.
1034 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1035 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1036 mergeTemplateLV(LV, spec, computation);
1037
1038 // Modify the variable's linkage by its type, but ignore the
1039 // type's visibility unless it's a definition.
1040 if (!IgnoreVarTypeLinkage) {
1041 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1042 // FIXME: If the type's linkage is not externally visible, we can
1043 // give this static data member UniqueExternalLinkage.
1044 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1045 LV.mergeVisibility(typeLV);
1046 LV.mergeExternalVisibility(typeLV);
1047 }
1048
1049 if (isExplicitMemberSpecialization(VD)) {
1050 explicitSpecSuppressor = VD;
1051 }
1052
1053 // Template members.
1054 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1055 bool considerVisibility =
1056 (!LV.isVisibilityExplicit() &&
1057 !classLV.isVisibilityExplicit() &&
1058 !hasExplicitVisibilityAlready(computation));
1059 LinkageInfo tempLV =
1060 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1061 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1062
1063 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1064 if (isExplicitMemberSpecialization(redeclTemp)) {
1065 explicitSpecSuppressor = temp->getTemplatedDecl();
1066 }
1067 }
1068 }
1069
1070 // We should never be looking for an attribute directly on a template.
1071 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor))(static_cast <bool> (!explicitSpecSuppressor || !isa<
TemplateDecl>(explicitSpecSuppressor)) ? void (0) : __assert_fail
("!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)"
, "clang/lib/AST/Decl.cpp", 1071, __extension__ __PRETTY_FUNCTION__
))
;
1072
1073 // If this member is an explicit member specialization, and it has
1074 // an explicit attribute, ignore visibility from the parent.
1075 bool considerClassVisibility = true;
1076 if (explicitSpecSuppressor &&
1077 // optimization: hasDVA() is true only with explicit visibility.
1078 LV.isVisibilityExplicit() &&
1079 classLV.getVisibility() != DefaultVisibility &&
1080 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1081 considerClassVisibility = false;
1082 }
1083
1084 // Finally, merge in information from the class.
1085 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1086 return LV;
1087}
1088
1089void NamedDecl::anchor() {}
1090
1091bool NamedDecl::isLinkageValid() const {
1092 if (!hasCachedLinkage())
1093 return true;
1094
1095 Linkage L = LinkageComputer{}
1096 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1097 .getLinkage();
1098 return L == getCachedLinkage();
1099}
1100
1101ReservedIdentifierStatus
1102NamedDecl::isReserved(const LangOptions &LangOpts) const {
1103 const IdentifierInfo *II = getIdentifier();
1104
1105 // This triggers at least for CXXLiteralIdentifiers, which we already checked
1106 // at lexing time.
1107 if (!II)
1108 return ReservedIdentifierStatus::NotReserved;
1109
1110 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1111 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1112 // This name is only reserved at global scope. Check if this declaration
1113 // conflicts with a global scope declaration.
1114 if (isa<ParmVarDecl>(this) || isTemplateParameter())
1115 return ReservedIdentifierStatus::NotReserved;
1116
1117 // C++ [dcl.link]/7:
1118 // Two declarations [conflict] if [...] one declares a function or
1119 // variable with C language linkage, and the other declares [...] a
1120 // variable that belongs to the global scope.
1121 //
1122 // Therefore names that are reserved at global scope are also reserved as
1123 // names of variables and functions with C language linkage.
1124 const DeclContext *DC = getDeclContext()->getRedeclContext();
1125 if (DC->isTranslationUnit())
1126 return Status;
1127 if (auto *VD = dyn_cast<VarDecl>(this))
1128 if (VD->isExternC())
1129 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1130 if (auto *FD = dyn_cast<FunctionDecl>(this))
1131 if (FD->isExternC())
1132 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1133 return ReservedIdentifierStatus::NotReserved;
1134 }
1135
1136 return Status;
1137}
1138
1139ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1140 StringRef name = getName();
1141 if (name.empty()) return SFF_None;
1142
1143 if (name.front() == 'C')
1144 if (name == "CFStringCreateWithFormat" ||
1145 name == "CFStringCreateWithFormatAndArguments" ||
1146 name == "CFStringAppendFormat" ||
1147 name == "CFStringAppendFormatAndArguments")
1148 return SFF_CFString;
1149 return SFF_None;
1150}
1151
1152Linkage NamedDecl::getLinkageInternal() const {
1153 // We don't care about visibility here, so ask for the cheapest
1154 // possible visibility analysis.
1155 return LinkageComputer{}
1156 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1157 .getLinkage();
1158}
1159
1160/// Get the linkage from a semantic point of view. Entities in
1161/// anonymous namespaces are external (in c++98).
1162Linkage NamedDecl::getFormalLinkage() const {
1163 Linkage InternalLinkage = getLinkageInternal();
1164
1165 // C++ [basic.link]p4.8:
1166 // - if the declaration of the name is attached to a named module and is not
1167 // exported
1168 // the name has module linkage;
1169 //
1170 // [basic.namespace.general]/p2
1171 // A namespace is never attached to a named module and never has a name with
1172 // module linkage.
1173 if (isInModulePurview(this) &&
1174 InternalLinkage == ExternalLinkage &&
1175 !isExportedFromModuleInterfaceUnit(
1176 cast<NamedDecl>(this->getCanonicalDecl())) &&
1177 !isa<NamespaceDecl>(this))
1178 InternalLinkage = ModuleLinkage;
1179
1180 return clang::getFormalLinkage(InternalLinkage);
1181}
1182
1183LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1184 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1185}
1186
1187static std::optional<Visibility>
1188getExplicitVisibilityAux(const NamedDecl *ND,
1189 NamedDecl::ExplicitVisibilityKind kind,
1190 bool IsMostRecent) {
1191 assert(!IsMostRecent || ND == ND->getMostRecentDecl())(static_cast <bool> (!IsMostRecent || ND == ND->getMostRecentDecl
()) ? void (0) : __assert_fail ("!IsMostRecent || ND == ND->getMostRecentDecl()"
, "clang/lib/AST/Decl.cpp", 1191, __extension__ __PRETTY_FUNCTION__
))
;
1192
1193 // Check the declaration itself first.
1194 if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1195 return V;
1196
1197 // If this is a member class of a specialization of a class template
1198 // and the corresponding decl has explicit visibility, use that.
1199 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1200 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1201 if (InstantiatedFrom)
1202 return getVisibilityOf(InstantiatedFrom, kind);
1203 }
1204
1205 // If there wasn't explicit visibility there, and this is a
1206 // specialization of a class template, check for visibility
1207 // on the pattern.
1208 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1209 // Walk all the template decl till this point to see if there are
1210 // explicit visibility attributes.
1211 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1212 while (TD != nullptr) {
1213 auto Vis = getVisibilityOf(TD, kind);
1214 if (Vis != std::nullopt)
1215 return Vis;
1216 TD = TD->getPreviousDecl();
1217 }
1218 return std::nullopt;
1219 }
1220
1221 // Use the most recent declaration.
1222 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1223 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1224 if (MostRecent != ND)
1225 return getExplicitVisibilityAux(MostRecent, kind, true);
1226 }
1227
1228 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1229 if (Var->isStaticDataMember()) {
1230 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1231 if (InstantiatedFrom)
1232 return getVisibilityOf(InstantiatedFrom, kind);
1233 }
1234
1235 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1236 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1237 kind);
1238
1239 return std::nullopt;
1240 }
1241 // Also handle function template specializations.
1242 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1243 // If the function is a specialization of a template with an
1244 // explicit visibility attribute, use that.
1245 if (FunctionTemplateSpecializationInfo *templateInfo
1246 = fn->getTemplateSpecializationInfo())
1247 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1248 kind);
1249
1250 // If the function is a member of a specialization of a class template
1251 // and the corresponding decl has explicit visibility, use that.
1252 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1253 if (InstantiatedFrom)
1254 return getVisibilityOf(InstantiatedFrom, kind);
1255
1256 return std::nullopt;
1257 }
1258
1259 // The visibility of a template is stored in the templated decl.
1260 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1261 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1262
1263 return std::nullopt;
1264}
1265
1266std::optional<Visibility>
1267NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1268 return getExplicitVisibilityAux(this, kind, false);
1269}
1270
1271LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1272 Decl *ContextDecl,
1273 LVComputationKind computation) {
1274 // This lambda has its linkage/visibility determined by its owner.
1275 const NamedDecl *Owner;
1276 if (!ContextDecl)
1277 Owner = dyn_cast<NamedDecl>(DC);
1278 else if (isa<ParmVarDecl>(ContextDecl))
1279 Owner =
1280 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1281 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1282 // Replace with the concept's owning decl, which is either a namespace or a
1283 // TU, so this needs a dyn_cast.
1284 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1285 } else {
1286 Owner = cast<NamedDecl>(ContextDecl);
1287 }
1288
1289 if (!Owner)
1290 return LinkageInfo::none();
1291
1292 // If the owner has a deduced type, we need to skip querying the linkage and
1293 // visibility of that type, because it might involve this closure type. The
1294 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1295 // than NoLinkage when we don't strictly need to, which is benign.
1296 auto *VD = dyn_cast<VarDecl>(Owner);
1297 LinkageInfo OwnerLV =
1298 VD && VD->getType()->getContainedDeducedType()
1299 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1300 : getLVForDecl(Owner, computation);
1301
1302 // A lambda never formally has linkage. But if the owner is externally
1303 // visible, then the lambda is too. We apply the same rules to blocks.
1304 if (!isExternallyVisible(OwnerLV.getLinkage()))
1305 return LinkageInfo::none();
1306 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1307 OwnerLV.isVisibilityExplicit());
1308}
1309
1310LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1311 LVComputationKind computation) {
1312 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1313 if (Function->isInAnonymousNamespace() &&
1314 !isFirstInExternCContext(Function))
1315 return getInternalLinkageFor(Function);
1316
1317 // This is a "void f();" which got merged with a file static.
1318 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1319 return getInternalLinkageFor(Function);
1320
1321 LinkageInfo LV;
1322 if (!hasExplicitVisibilityAlready(computation)) {
1323 if (std::optional<Visibility> Vis =
1324 getExplicitVisibility(Function, computation))
1325 LV.mergeVisibility(*Vis, true);
1326 }
1327
1328 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1329 // merging storage classes and visibility attributes, so we don't have to
1330 // look at previous decls in here.
1331
1332 return LV;
1333 }
1334
1335 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1336 if (Var->hasExternalStorage()) {
1337 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1338 return getInternalLinkageFor(Var);
1339
1340 LinkageInfo LV;
1341 if (Var->getStorageClass() == SC_PrivateExtern)
1342 LV.mergeVisibility(HiddenVisibility, true);
1343 else if (!hasExplicitVisibilityAlready(computation)) {
1344 if (std::optional<Visibility> Vis =
1345 getExplicitVisibility(Var, computation))
1346 LV.mergeVisibility(*Vis, true);
1347 }
1348
1349 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1350 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1351 if (PrevLV.getLinkage())
1352 LV.setLinkage(PrevLV.getLinkage());
1353 LV.mergeVisibility(PrevLV);
1354 }
1355
1356 return LV;
1357 }
1358
1359 if (!Var->isStaticLocal())
1360 return LinkageInfo::none();
1361 }
1362
1363 ASTContext &Context = D->getASTContext();
1364 if (!Context.getLangOpts().CPlusPlus)
1365 return LinkageInfo::none();
1366
1367 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1368 if (!OuterD || OuterD->isInvalidDecl())
1369 return LinkageInfo::none();
1370
1371 LinkageInfo LV;
1372 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1373 if (!BD->getBlockManglingNumber())
1374 return LinkageInfo::none();
1375
1376 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1377 BD->getBlockManglingContextDecl(), computation);
1378 } else {
1379 const auto *FD = cast<FunctionDecl>(OuterD);
1380 if (!FD->isInlined() &&
1381 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1382 return LinkageInfo::none();
1383
1384 // If a function is hidden by -fvisibility-inlines-hidden option and
1385 // is not explicitly attributed as a hidden function,
1386 // we should not make static local variables in the function hidden.
1387 LV = getLVForDecl(FD, computation);
1388 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1389 !LV.isVisibilityExplicit() &&
1390 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1391 assert(cast<VarDecl>(D)->isStaticLocal())(static_cast <bool> (cast<VarDecl>(D)->isStaticLocal
()) ? void (0) : __assert_fail ("cast<VarDecl>(D)->isStaticLocal()"
, "clang/lib/AST/Decl.cpp", 1391, __extension__ __PRETTY_FUNCTION__
))
;
1392 // If this was an implicitly hidden inline method, check again for
1393 // explicit visibility on the parent class, and use that for static locals
1394 // if present.
1395 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1396 LV = getLVForDecl(MD->getParent(), computation);
1397 if (!LV.isVisibilityExplicit()) {
1398 Visibility globalVisibility =
1399 computation.isValueVisibility()
1400 ? Context.getLangOpts().getValueVisibilityMode()
1401 : Context.getLangOpts().getTypeVisibilityMode();
1402 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1403 /*visibilityExplicit=*/false);
1404 }
1405 }
1406 }
1407 if (!isExternallyVisible(LV.getLinkage()))
1408 return LinkageInfo::none();
1409 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1410 LV.isVisibilityExplicit());
1411}
1412
1413LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1414 LVComputationKind computation,
1415 bool IgnoreVarTypeLinkage) {
1416 // Internal_linkage attribute overrides other considerations.
1417 if (D->hasAttr<InternalLinkageAttr>())
1418 return getInternalLinkageFor(D);
1419
1420 // Objective-C: treat all Objective-C declarations as having external
1421 // linkage.
1422 switch (D->getKind()) {
1423 default:
1424 break;
1425
1426 // Per C++ [basic.link]p2, only the names of objects, references,
1427 // functions, types, templates, namespaces, and values ever have linkage.
1428 //
1429 // Note that the name of a typedef, namespace alias, using declaration,
1430 // and so on are not the name of the corresponding type, namespace, or
1431 // declaration, so they do *not* have linkage.
1432 case Decl::ImplicitParam:
1433 case Decl::Label:
1434 case Decl::NamespaceAlias:
1435 case Decl::ParmVar:
1436 case Decl::Using:
1437 case Decl::UsingEnum:
1438 case Decl::UsingShadow:
1439 case Decl::UsingDirective:
1440 return LinkageInfo::none();
1441
1442 case Decl::EnumConstant:
1443 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1444 if (D->getASTContext().getLangOpts().CPlusPlus)
1445 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1446 return LinkageInfo::visible_none();
1447
1448 case Decl::Typedef:
1449 case Decl::TypeAlias:
1450 // A typedef declaration has linkage if it gives a type a name for
1451 // linkage purposes.
1452 if (!cast<TypedefNameDecl>(D)
1453 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1454 return LinkageInfo::none();
1455 break;
1456
1457 case Decl::TemplateTemplateParm: // count these as external
1458 case Decl::NonTypeTemplateParm:
1459 case Decl::ObjCAtDefsField:
1460 case Decl::ObjCCategory:
1461 case Decl::ObjCCategoryImpl:
1462 case Decl::ObjCCompatibleAlias:
1463 case Decl::ObjCImplementation:
1464 case Decl::ObjCMethod:
1465 case Decl::ObjCProperty:
1466 case Decl::ObjCPropertyImpl:
1467 case Decl::ObjCProtocol:
1468 return getExternalLinkageFor(D);
1469
1470 case Decl::CXXRecord: {
1471 const auto *Record = cast<CXXRecordDecl>(D);
1472 if (Record->isLambda()) {
1473 if (Record->hasKnownLambdaInternalLinkage() ||
1474 !Record->getLambdaManglingNumber()) {
1475 // This lambda has no mangling number, so it's internal.
1476 return getInternalLinkageFor(D);
1477 }
1478
1479 return getLVForClosure(
1480 Record->getDeclContext()->getRedeclContext(),
1481 Record->getLambdaContextDecl(), computation);
1482 }
1483
1484 break;
1485 }
1486
1487 case Decl::TemplateParamObject: {
1488 // The template parameter object can be referenced from anywhere its type
1489 // and value can be referenced.
1490 auto *TPO = cast<TemplateParamObjectDecl>(D);
1491 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1492 LV.merge(getLVForValue(TPO->getValue(), computation));
1493 return LV;
1494 }
1495 }
1496
1497 // Handle linkage for namespace-scope names.
1498 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1499 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1500
1501 // C++ [basic.link]p5:
1502 // In addition, a member function, static data member, a named
1503 // class or enumeration of class scope, or an unnamed class or
1504 // enumeration defined in a class-scope typedef declaration such
1505 // that the class or enumeration has the typedef name for linkage
1506 // purposes (7.1.3), has external linkage if the name of the class
1507 // has external linkage.
1508 if (D->getDeclContext()->isRecord())
1509 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1510
1511 // C++ [basic.link]p6:
1512 // The name of a function declared in block scope and the name of
1513 // an object declared by a block scope extern declaration have
1514 // linkage. If there is a visible declaration of an entity with
1515 // linkage having the same name and type, ignoring entities
1516 // declared outside the innermost enclosing namespace scope, the
1517 // block scope declaration declares that same entity and receives
1518 // the linkage of the previous declaration. If there is more than
1519 // one such matching entity, the program is ill-formed. Otherwise,
1520 // if no matching entity is found, the block scope entity receives
1521 // external linkage.
1522 if (D->getDeclContext()->isFunctionOrMethod())
1523 return getLVForLocalDecl(D, computation);
1524
1525 // C++ [basic.link]p6:
1526 // Names not covered by these rules have no linkage.
1527 return LinkageInfo::none();
1528}
1529
1530/// getLVForDecl - Get the linkage and visibility for the given declaration.
1531LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1532 LVComputationKind computation) {
1533 // Internal_linkage attribute overrides other considerations.
1534 if (D->hasAttr<InternalLinkageAttr>())
1535 return getInternalLinkageFor(D);
1536
1537 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1538 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1539
1540 if (std::optional<LinkageInfo> LI = lookup(D, computation))
1541 return *LI;
1542
1543 LinkageInfo LV = computeLVForDecl(D, computation);
1544 if (D->hasCachedLinkage())
1545 assert(D->getCachedLinkage() == LV.getLinkage())(static_cast <bool> (D->getCachedLinkage() == LV.getLinkage
()) ? void (0) : __assert_fail ("D->getCachedLinkage() == LV.getLinkage()"
, "clang/lib/AST/Decl.cpp", 1545, __extension__ __PRETTY_FUNCTION__
))
;
1546
1547 D->setCachedLinkage(LV.getLinkage());
1548 cache(D, computation, LV);
1549
1550#ifndef NDEBUG
1551 // In C (because of gnu inline) and in c++ with microsoft extensions an
1552 // static can follow an extern, so we can have two decls with different
1553 // linkages.
1554 const LangOptions &Opts = D->getASTContext().getLangOpts();
1555 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1556 return LV;
1557
1558 // We have just computed the linkage for this decl. By induction we know
1559 // that all other computed linkages match, check that the one we just
1560 // computed also does.
1561 NamedDecl *Old = nullptr;
1562 for (auto *I : D->redecls()) {
1563 auto *T = cast<NamedDecl>(I);
1564 if (T == D)
1565 continue;
1566 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1567 Old = T;
1568 break;
1569 }
1570 }
1571 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage())(static_cast <bool> (!Old || Old->getCachedLinkage()
== D->getCachedLinkage()) ? void (0) : __assert_fail ("!Old || Old->getCachedLinkage() == D->getCachedLinkage()"
, "clang/lib/AST/Decl.cpp", 1571, __extension__ __PRETTY_FUNCTION__
))
;
1572#endif
1573
1574 return LV;
1575}
1576
1577LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1578 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1579 ? NamedDecl::VisibilityForType
1580 : NamedDecl::VisibilityForValue;
1581 LVComputationKind CK(EK);
1582 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1583 ? CK.forLinkageOnly()
1584 : CK);
1585}
1586
1587Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1588 if (isa<NamespaceDecl>(this))
1589 // Namespaces never have module linkage. It is the entities within them
1590 // that [may] do.
1591 return nullptr;
1592
1593 Module *M = getOwningModule();
1594 if (!M)
1595 return nullptr;
1596
1597 switch (M->Kind) {
1598 case Module::ModuleMapModule:
1599 // Module map modules have no special linkage semantics.
1600 return nullptr;
1601
1602 case Module::ModuleInterfaceUnit:
1603 case Module::ModulePartitionInterface:
1604 case Module::ModulePartitionImplementation:
1605 return M;
1606
1607 case Module::ModuleHeaderUnit:
1608 case Module::ExplicitGlobalModuleFragment:
1609 case Module::ImplicitGlobalModuleFragment: {
1610 // External linkage declarations in the global module have no owning module
1611 // for linkage purposes. But internal linkage declarations in the global
1612 // module fragment of a particular module are owned by that module for
1613 // linkage purposes.
1614 // FIXME: p1815 removes the need for this distinction -- there are no
1615 // internal linkage declarations that need to be referred to from outside
1616 // this TU.
1617 if (IgnoreLinkage)
1618 return nullptr;
1619 bool InternalLinkage;
1620 if (auto *ND = dyn_cast<NamedDecl>(this))
1621 InternalLinkage = !ND->hasExternalFormalLinkage();
1622 else
1623 InternalLinkage = isInAnonymousNamespace();
1624 return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent
1625 : nullptr;
1626 }
1627
1628 case Module::PrivateModuleFragment:
1629 // The private module fragment is part of its containing module for linkage
1630 // purposes.
1631 return M->Parent;
1632 }
1633
1634 llvm_unreachable("unknown module kind")::llvm::llvm_unreachable_internal("unknown module kind", "clang/lib/AST/Decl.cpp"
, 1634)
;
1635}
1636
1637void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy&) const {
1638 OS << Name;
1639}
1640
1641void NamedDecl::printName(raw_ostream &OS) const {
1642 printName(OS, getASTContext().getPrintingPolicy());
1643}
1644
1645std::string NamedDecl::getQualifiedNameAsString() const {
1646 std::string QualName;
1647 llvm::raw_string_ostream OS(QualName);
1648 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1649 return QualName;
1650}
1651
1652void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1653 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1654}
1655
1656void NamedDecl::printQualifiedName(raw_ostream &OS,
1657 const PrintingPolicy &P) const {
1658 if (getDeclContext()->isFunctionOrMethod()) {
1659 // We do not print '(anonymous)' for function parameters without name.
1660 printName(OS, P);
1661 return;
1662 }
1663 printNestedNameSpecifier(OS, P);
1664 if (getDeclName())
1665 OS << *this;
1666 else {
1667 // Give the printName override a chance to pick a different name before we
1668 // fall back to "(anonymous)".
1669 SmallString<64> NameBuffer;
1670 llvm::raw_svector_ostream NameOS(NameBuffer);
1671 printName(NameOS, P);
1672 if (NameBuffer.empty())
1673 OS << "(anonymous)";
1674 else
1675 OS << NameBuffer;
1676 }
1677}
1678
1679void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1680 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1681}
1682
1683void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1684 const PrintingPolicy &P) const {
1685 const DeclContext *Ctx = getDeclContext();
1686
1687 // For ObjC methods and properties, look through categories and use the
1688 // interface as context.
1689 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1690 if (auto *ID = MD->getClassInterface())
1691 Ctx = ID;
1692 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1693 if (auto *MD = PD->getGetterMethodDecl())
1694 if (auto *ID = MD->getClassInterface())
1695 Ctx = ID;
1696 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1697 if (auto *CI = ID->getContainingInterface())
1698 Ctx = CI;
1699 }
1700
1701 if (Ctx->isFunctionOrMethod())
1702 return;
1703
1704 using ContextsTy = SmallVector<const DeclContext *, 8>;
1705 ContextsTy Contexts;
1706
1707 // Collect named contexts.
1708 DeclarationName NameInScope = getDeclName();
1709 for (; Ctx; Ctx = Ctx->getParent()) {
1710 // Suppress anonymous namespace if requested.
1711 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1712 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1713 continue;
1714
1715 // Suppress inline namespace if it doesn't make the result ambiguous.
1716 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1717 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1718 continue;
1719
1720 // Skip non-named contexts such as linkage specifications and ExportDecls.
1721 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1722 if (!ND)
1723 continue;
1724
1725 Contexts.push_back(Ctx);
1726 NameInScope = ND->getDeclName();
1727 }
1728
1729 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1730 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1731 OS << Spec->getName();
1732 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1733 printTemplateArgumentList(
1734 OS, TemplateArgs.asArray(), P,
1735 Spec->getSpecializedTemplate()->getTemplateParameters());
1736 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1737 if (ND->isAnonymousNamespace()) {
1738 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1739 : "(anonymous namespace)");
1740 }
1741 else
1742 OS << *ND;
1743 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1744 if (!RD->getIdentifier())
1745 OS << "(anonymous " << RD->getKindName() << ')';
1746 else
1747 OS << *RD;
1748 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1749 const FunctionProtoType *FT = nullptr;
1750 if (FD->hasWrittenPrototype())
1751 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1752
1753 OS << *FD << '(';
1754 if (FT) {
1755 unsigned NumParams = FD->getNumParams();
1756 for (unsigned i = 0; i < NumParams; ++i) {
1757 if (i)
1758 OS << ", ";
1759 OS << FD->getParamDecl(i)->getType().stream(P);
1760 }
1761
1762 if (FT->isVariadic()) {
1763 if (NumParams > 0)
1764 OS << ", ";
1765 OS << "...";
1766 }
1767 }
1768 OS << ')';
1769 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1770 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1771 // enumerator is declared in the scope that immediately contains
1772 // the enum-specifier. Each scoped enumerator is declared in the
1773 // scope of the enumeration.
1774 // For the case of unscoped enumerator, do not include in the qualified
1775 // name any information about its enum enclosing scope, as its visibility
1776 // is global.
1777 if (ED->isScoped())
1778 OS << *ED;
1779 else
1780 continue;
1781 } else {
1782 OS << *cast<NamedDecl>(DC);
1783 }
1784 OS << "::";
1785 }
1786}
1787
1788void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1789 const PrintingPolicy &Policy,
1790 bool Qualified) const {
1791 if (Qualified)
1792 printQualifiedName(OS, Policy);
1793 else
1794 printName(OS, Policy);
1795}
1796
1797template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1798 return true;
1799}
1800static bool isRedeclarableImpl(...) { return false; }
1801static bool isRedeclarable(Decl::Kind K) {
1802 switch (K) {
1803#define DECL(Type, Base) \
1804 case Decl::Type: \
1805 return isRedeclarableImpl((Type##Decl *)nullptr);
1806#define ABSTRACT_DECL(DECL)
1807#include "clang/AST/DeclNodes.inc"
1808 }
1809 llvm_unreachable("unknown decl kind")::llvm::llvm_unreachable_internal("unknown decl kind", "clang/lib/AST/Decl.cpp"
, 1809)
;
1810}
1811
1812bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1813 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch")(static_cast <bool> (getDeclName() == OldD->getDeclName
() && "Declaration name mismatch") ? void (0) : __assert_fail
("getDeclName() == OldD->getDeclName() && \"Declaration name mismatch\""
, "clang/lib/AST/Decl.cpp", 1813, __extension__ __PRETTY_FUNCTION__
))
;
1814
1815 // Never replace one imported declaration with another; we need both results
1816 // when re-exporting.
1817 if (OldD->isFromASTFile() && isFromASTFile())
1818 return false;
1819
1820 // A kind mismatch implies that the declaration is not replaced.
1821 if (OldD->getKind() != getKind())
1822 return false;
1823
1824 // For method declarations, we never replace. (Why?)
1825 if (isa<ObjCMethodDecl>(this))
1826 return false;
1827
1828 // For parameters, pick the newer one. This is either an error or (in
1829 // Objective-C) permitted as an extension.
1830 if (isa<ParmVarDecl>(this))
1831 return true;
1832
1833 // Inline namespaces can give us two declarations with the same
1834 // name and kind in the same scope but different contexts; we should
1835 // keep both declarations in this case.
1836 if (!this->getDeclContext()->getRedeclContext()->Equals(
1837 OldD->getDeclContext()->getRedeclContext()))
1838 return false;
1839
1840 // Using declarations can be replaced if they import the same name from the
1841 // same context.
1842 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1843 ASTContext &Context = getASTContext();
1844 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1845 Context.getCanonicalNestedNameSpecifier(
1846 cast<UsingDecl>(OldD)->getQualifier());
1847 }
1848 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1849 ASTContext &Context = getASTContext();
1850 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1851 Context.getCanonicalNestedNameSpecifier(
1852 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1853 }
1854
1855 if (isRedeclarable(getKind())) {
1856 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1857 return false;
1858
1859 if (IsKnownNewer)
1860 return true;
1861
1862 // Check whether this is actually newer than OldD. We want to keep the
1863 // newer declaration. This loop will usually only iterate once, because
1864 // OldD is usually the previous declaration.
1865 for (auto *D : redecls()) {
1866 if (D == OldD)
1867 break;
1868
1869 // If we reach the canonical declaration, then OldD is not actually older
1870 // than this one.
1871 //
1872 // FIXME: In this case, we should not add this decl to the lookup table.
1873 if (D->isCanonicalDecl())
1874 return false;
1875 }
1876
1877 // It's a newer declaration of the same kind of declaration in the same
1878 // scope: we want this decl instead of the existing one.
1879 return true;
1880 }
1881
1882 // In all other cases, we need to keep both declarations in case they have
1883 // different visibility. Any attempt to use the name will result in an
1884 // ambiguity if more than one is visible.
1885 return false;
1886}
1887
1888bool NamedDecl::hasLinkage() const {
1889 return getFormalLinkage() != NoLinkage;
1890}
1891
1892NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1893 NamedDecl *ND = this;
1894 if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1895 ND = UD->getTargetDecl();
1896
1897 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1898 return AD->getClassInterface();
1899
1900 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1901 return AD->getNamespace();
1902
1903 return ND;
1904}
1905
1906bool NamedDecl::isCXXInstanceMember() const {
1907 if (!isCXXClassMember())
1908 return false;
1909
1910 const NamedDecl *D = this;
1911 if (isa<UsingShadowDecl>(D))
1912 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1913
1914 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1915 return true;
1916 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1917 return MD->isInstance();
1918 return false;
1919}
1920
1921//===----------------------------------------------------------------------===//
1922// DeclaratorDecl Implementation
1923//===----------------------------------------------------------------------===//
1924
1925template <typename DeclT>
1926static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1927 if (decl->getNumTemplateParameterLists() > 0)
1928 return decl->getTemplateParameterList(0)->getTemplateLoc();
1929 return decl->getInnerLocStart();
1930}
1931
1932SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1933 TypeSourceInfo *TSI = getTypeSourceInfo();
1934 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1935 return SourceLocation();
1936}
1937
1938SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1939 TypeSourceInfo *TSI = getTypeSourceInfo();
1940 if (TSI) return TSI->getTypeLoc().getEndLoc();
1941 return SourceLocation();
1942}
1943
1944void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1945 if (QualifierLoc) {
1946 // Make sure the extended decl info is allocated.
1947 if (!hasExtInfo()) {
1948 // Save (non-extended) type source info pointer.
1949 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1950 // Allocate external info struct.
1951 DeclInfo = new (getASTContext()) ExtInfo;
1952 // Restore savedTInfo into (extended) decl info.
1953 getExtInfo()->TInfo = savedTInfo;
1954 }
1955 // Set qualifier info.
1956 getExtInfo()->QualifierLoc = QualifierLoc;
1957 } else if (hasExtInfo()) {
1958 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1959 getExtInfo()->QualifierLoc = QualifierLoc;
1960 }
1961}
1962
1963void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1964 assert(TrailingRequiresClause)(static_cast <bool> (TrailingRequiresClause) ? void (0)
: __assert_fail ("TrailingRequiresClause", "clang/lib/AST/Decl.cpp"
, 1964, __extension__ __PRETTY_FUNCTION__))
;
1965 // Make sure the extended decl info is allocated.
1966 if (!hasExtInfo()) {
1967 // Save (non-extended) type source info pointer.
1968 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1969 // Allocate external info struct.
1970 DeclInfo = new (getASTContext()) ExtInfo;
1971 // Restore savedTInfo into (extended) decl info.
1972 getExtInfo()->TInfo = savedTInfo;
1973 }
1974 // Set requires clause info.
1975 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1976}
1977
1978void DeclaratorDecl::setTemplateParameterListsInfo(
1979 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1980 assert(!TPLists.empty())(static_cast <bool> (!TPLists.empty()) ? void (0) : __assert_fail
("!TPLists.empty()", "clang/lib/AST/Decl.cpp", 1980, __extension__
__PRETTY_FUNCTION__))
;
1981 // Make sure the extended decl info is allocated.
1982 if (!hasExtInfo()) {
1983 // Save (non-extended) type source info pointer.
1984 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1985 // Allocate external info struct.
1986 DeclInfo = new (getASTContext()) ExtInfo;
1987 // Restore savedTInfo into (extended) decl info.
1988 getExtInfo()->TInfo = savedTInfo;
1989 }
1990 // Set the template parameter lists info.
1991 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1992}
1993
1994SourceLocation DeclaratorDecl::getOuterLocStart() const {
1995 return getTemplateOrInnerLocStart(this);
1996}
1997
1998// Helper function: returns true if QT is or contains a type
1999// having a postfix component.
2000static bool typeIsPostfix(QualType QT) {
2001 while (true) {
2002 const Type* T = QT.getTypePtr();
2003 switch (T->getTypeClass()) {
2004 default:
2005 return false;
2006 case Type::Pointer:
2007 QT = cast<PointerType>(T)->getPointeeType();
2008 break;
2009 case Type::BlockPointer:
2010 QT = cast<BlockPointerType>(T)->getPointeeType();
2011 break;
2012 case Type::MemberPointer:
2013 QT = cast<MemberPointerType>(T)->getPointeeType();
2014 break;
2015 case Type::LValueReference:
2016 case Type::RValueReference:
2017 QT = cast<ReferenceType>(T)->getPointeeType();
2018 break;
2019 case Type::PackExpansion:
2020 QT = cast<PackExpansionType>(T)->getPattern();
2021 break;
2022 case Type::Paren:
2023 case Type::ConstantArray:
2024 case Type::DependentSizedArray:
2025 case Type::IncompleteArray:
2026 case Type::VariableArray:
2027 case Type::FunctionProto:
2028 case Type::FunctionNoProto:
2029 return true;
2030 }
2031 }
2032}
2033
2034SourceRange DeclaratorDecl::getSourceRange() const {
2035 SourceLocation RangeEnd = getLocation();
2036 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2037 // If the declaration has no name or the type extends past the name take the
2038 // end location of the type.
2039 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2040 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2041 }
2042 return SourceRange(getOuterLocStart(), RangeEnd);
2043}
2044
2045void QualifierInfo::setTemplateParameterListsInfo(
2046 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2047 // Free previous template parameters (if any).
2048 if (NumTemplParamLists > 0) {
2049 Context.Deallocate(TemplParamLists);
2050 TemplParamLists = nullptr;
2051 NumTemplParamLists = 0;
2052 }
2053 // Set info on matched template parameter lists (if any).
2054 if (!TPLists.empty()) {
2055 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2056 NumTemplParamLists = TPLists.size();
2057 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2058 }
2059}
2060
2061//===----------------------------------------------------------------------===//
2062// VarDecl Implementation
2063//===----------------------------------------------------------------------===//
2064
2065const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2066 switch (SC) {
2067 case SC_None: break;
2068 case SC_Auto: return "auto";
2069 case SC_Extern: return "extern";
2070 case SC_PrivateExtern: return "__private_extern__";
2071 case SC_Register: return "register";
2072 case SC_Static: return "static";
2073 }
2074
2075 llvm_unreachable("Invalid storage class")::llvm::llvm_unreachable_internal("Invalid storage class", "clang/lib/AST/Decl.cpp"
, 2075)
;
2076}
2077
2078VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2079 SourceLocation StartLoc, SourceLocation IdLoc,
2080 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2081 StorageClass SC)
2082 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2083 redeclarable_base(C) {
2084 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2085 "VarDeclBitfields too large!");
2086 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2087 "ParmVarDeclBitfields too large!");
2088 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2089 "NonParmVarDeclBitfields too large!");
2090 AllBits = 0;
2091 VarDeclBits.SClass = SC;
2092 // Everything else is implicitly initialized to false.
2093}
2094
2095VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2096 SourceLocation IdL, const IdentifierInfo *Id,
2097 QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2098 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2099}
2100
2101VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2102 return new (C, ID)
2103 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2104 QualType(), nullptr, SC_None);
2105}
2106
2107void VarDecl::setStorageClass(StorageClass SC) {
2108 assert(isLegalForVariable(SC))(static_cast <bool> (isLegalForVariable(SC)) ? void (0)
: __assert_fail ("isLegalForVariable(SC)", "clang/lib/AST/Decl.cpp"
, 2108, __extension__ __PRETTY_FUNCTION__))
;
2109 VarDeclBits.SClass = SC;
2110}
2111
2112VarDecl::TLSKind VarDecl::getTLSKind() const {
2113 switch (VarDeclBits.TSCSpec) {
2114 case TSCS_unspecified:
2115 if (!hasAttr<ThreadAttr>() &&
2116 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2117 getASTContext().getTargetInfo().isTLSSupported() &&
2118 hasAttr<OMPThreadPrivateDeclAttr>()))
2119 return TLS_None;
2120 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2121 LangOptions::MSVC2015)) ||
2122 hasAttr<OMPThreadPrivateDeclAttr>())
2123 ? TLS_Dynamic
2124 : TLS_Static;
2125 case TSCS___thread: // Fall through.
2126 case TSCS__Thread_local:
2127 return TLS_Static;
2128 case TSCS_thread_local:
2129 return TLS_Dynamic;
2130 }
2131 llvm_unreachable("Unknown thread storage class specifier!")::llvm::llvm_unreachable_internal("Unknown thread storage class specifier!"
, "clang/lib/AST/Decl.cpp", 2131)
;
2132}
2133
2134SourceRange VarDecl::getSourceRange() const {
2135 if (const Expr *Init = getInit()) {
2136 SourceLocation InitEnd = Init->getEndLoc();
2137 // If Init is implicit, ignore its source range and fallback on
2138 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2139 if (InitEnd.isValid() && InitEnd != getLocation())
2140 return SourceRange(getOuterLocStart(), InitEnd);
2141 }
2142 return DeclaratorDecl::getSourceRange();
2143}
2144
2145template<typename T>
2146static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2147 // C++ [dcl.link]p1: All function types, function names with external linkage,
2148 // and variable names with external linkage have a language linkage.
2149 if (!D.hasExternalFormalLinkage())
2150 return NoLanguageLinkage;
2151
2152 // Language linkage is a C++ concept, but saying that everything else in C has
2153 // C language linkage fits the implementation nicely.
2154 ASTContext &Context = D.getASTContext();
2155 if (!Context.getLangOpts().CPlusPlus)
2156 return CLanguageLinkage;
2157
2158 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2159 // language linkage of the names of class members and the function type of
2160 // class member functions.
2161 const DeclContext *DC = D.getDeclContext();
2162 if (DC->isRecord())
2163 return CXXLanguageLinkage;
2164
2165 // If the first decl is in an extern "C" context, any other redeclaration
2166 // will have C language linkage. If the first one is not in an extern "C"
2167 // context, we would have reported an error for any other decl being in one.
2168 if (isFirstInExternCContext(&D))
2169 return CLanguageLinkage;
2170 return CXXLanguageLinkage;
2171}
2172
2173template<typename T>
2174static bool isDeclExternC(const T &D) {
2175 // Since the context is ignored for class members, they can only have C++
2176 // language linkage or no language linkage.
2177 const DeclContext *DC = D.getDeclContext();
2178 if (DC->isRecord()) {
2179 assert(D.getASTContext().getLangOpts().CPlusPlus)(static_cast <bool> (D.getASTContext().getLangOpts().CPlusPlus
) ? void (0) : __assert_fail ("D.getASTContext().getLangOpts().CPlusPlus"
, "clang/lib/AST/Decl.cpp", 2179, __extension__ __PRETTY_FUNCTION__
))
;
2180 return false;
2181 }
2182
2183 return D.getLanguageLinkage() == CLanguageLinkage;
2184}
2185
2186LanguageLinkage VarDecl::getLanguageLinkage() const {
2187 return getDeclLanguageLinkage(*this);
2188}
2189
2190bool VarDecl::isExternC() const {
2191 return isDeclExternC(*this);
2192}
2193
2194bool VarDecl::isInExternCContext() const {
2195 return getLexicalDeclContext()->isExternCContext();
2196}
2197
2198bool VarDecl::isInExternCXXContext() const {
2199 return getLexicalDeclContext()->isExternCXXContext();
2200}
2201
2202VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2203
2204VarDecl::DefinitionKind
2205VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2206 if (isThisDeclarationADemotedDefinition())
2207 return DeclarationOnly;
2208
2209 // C++ [basic.def]p2:
2210 // A declaration is a definition unless [...] it contains the 'extern'
2211 // specifier or a linkage-specification and neither an initializer [...],
2212 // it declares a non-inline static data member in a class declaration [...],
2213 // it declares a static data member outside a class definition and the variable
2214 // was defined within the class with the constexpr specifier [...],
2215 // C++1y [temp.expl.spec]p15:
2216 // An explicit specialization of a static data member or an explicit
2217 // specialization of a static data member template is a definition if the
2218 // declaration includes an initializer; otherwise, it is a declaration.
2219 //
2220 // FIXME: How do you declare (but not define) a partial specialization of
2221 // a static data member template outside the containing class?
2222 if (isStaticDataMember()) {
2223 if (isOutOfLine() &&
2224 !(getCanonicalDecl()->isInline() &&
2225 getCanonicalDecl()->isConstexpr()) &&
2226 (hasInit() ||
2227 // If the first declaration is out-of-line, this may be an
2228 // instantiation of an out-of-line partial specialization of a variable
2229 // template for which we have not yet instantiated the initializer.
2230 (getFirstDecl()->isOutOfLine()
2231 ? getTemplateSpecializationKind() == TSK_Undeclared
2232 : getTemplateSpecializationKind() !=
2233 TSK_ExplicitSpecialization) ||
2234 isa<VarTemplatePartialSpecializationDecl>(this)))
2235 return Definition;
2236 if (!isOutOfLine() && isInline())
2237 return Definition;
2238 return DeclarationOnly;
2239 }
2240 // C99 6.7p5:
2241 // A definition of an identifier is a declaration for that identifier that
2242 // [...] causes storage to be reserved for that object.
2243 // Note: that applies for all non-file-scope objects.
2244 // C99 6.9.2p1:
2245 // If the declaration of an identifier for an object has file scope and an
2246 // initializer, the declaration is an external definition for the identifier
2247 if (hasInit())
2248 return Definition;
2249
2250 if (hasDefiningAttr())
2251 return Definition;
2252
2253 if (const auto *SAA = getAttr<SelectAnyAttr>())
2254 if (!SAA->isInherited())
2255 return Definition;
2256
2257 // A variable template specialization (other than a static data member
2258 // template or an explicit specialization) is a declaration until we
2259 // instantiate its initializer.
2260 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2261 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2262 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2263 !VTSD->IsCompleteDefinition)
2264 return DeclarationOnly;
2265 }
2266
2267 if (hasExternalStorage())
2268 return DeclarationOnly;
2269
2270 // [dcl.link] p7:
2271 // A declaration directly contained in a linkage-specification is treated
2272 // as if it contains the extern specifier for the purpose of determining
2273 // the linkage of the declared name and whether it is a definition.
2274 if (isSingleLineLanguageLinkage(*this))
2275 return DeclarationOnly;
2276
2277 // C99 6.9.2p2:
2278 // A declaration of an object that has file scope without an initializer,
2279 // and without a storage class specifier or the scs 'static', constitutes
2280 // a tentative definition.
2281 // No such thing in C++.
2282 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2283 return TentativeDefinition;
2284
2285 // What's left is (in C, block-scope) declarations without initializers or
2286 // external storage. These are definitions.
2287 return Definition;
2288}
2289
2290VarDecl *VarDecl::getActingDefinition() {
2291 DefinitionKind Kind = isThisDeclarationADefinition();
2292 if (Kind != TentativeDefinition)
2293 return nullptr;
2294
2295 VarDecl *LastTentative = nullptr;
2296
2297 // Loop through the declaration chain, starting with the most recent.
2298 for (VarDecl *Decl = getMostRecentDecl(); Decl;
2299 Decl = Decl->getPreviousDecl()) {
2300 Kind = Decl->isThisDeclarationADefinition();
2301 if (Kind == Definition)
2302 return nullptr;
2303 // Record the first (most recent) TentativeDefinition that is encountered.
2304 if (Kind == TentativeDefinition && !LastTentative)
2305 LastTentative = Decl;
2306 }
2307
2308 return LastTentative;
2309}
2310
2311VarDecl *VarDecl::getDefinition(ASTContext &C) {
2312 VarDecl *First = getFirstDecl();
2313 for (auto *I : First->redecls()) {
2314 if (I->isThisDeclarationADefinition(C) == Definition)
2315 return I;
2316 }
2317 return nullptr;
2318}
2319
2320VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2321 DefinitionKind Kind = DeclarationOnly;
2322
2323 const VarDecl *First = getFirstDecl();
2324 for (auto *I : First->redecls()) {
2325 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2326 if (Kind == Definition)
2327 break;
2328 }
2329
2330 return Kind;
2331}
2332
2333const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2334 for (auto *I : redecls()) {
2335 if (auto Expr = I->getInit()) {
2336 D = I;
2337 return Expr;
2338 }
2339 }
2340 return nullptr;
2341}
2342
2343bool VarDecl::hasInit() const {
2344 if (auto *P = dyn_cast<ParmVarDecl>(this))
2345 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2346 return false;
2347
2348 return !Init.isNull();
2349}
2350
2351Expr *VarDecl::getInit() {
2352 if (!hasInit())
2353 return nullptr;
2354
2355 if (auto *S = Init.dyn_cast<Stmt *>())
2356 return cast<Expr>(S);
2357
2358 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2359}
2360
2361Stmt **VarDecl::getInitAddress() {
2362 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2363 return &ES->Value;
2364
2365 return Init.getAddrOfPtr1();
2366}
2367
2368VarDecl *VarDecl::getInitializingDeclaration() {
2369 VarDecl *Def = nullptr;
2370 for (auto *I : redecls()) {
2371 if (I->hasInit())
2372 return I;
2373
2374 if (I->isThisDeclarationADefinition()) {
2375 if (isStaticDataMember())
2376 return I;
2377 Def = I;
2378 }
2379 }
2380 return Def;
2381}
2382
2383bool VarDecl::isOutOfLine() const {
2384 if (Decl::isOutOfLine())
2385 return true;
2386
2387 if (!isStaticDataMember())
2388 return false;
2389
2390 // If this static data member was instantiated from a static data member of
2391 // a class template, check whether that static data member was defined
2392 // out-of-line.
2393 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2394 return VD->isOutOfLine();
2395
2396 return false;
2397}
2398
2399void VarDecl::setInit(Expr *I) {
2400 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2401 Eval->~EvaluatedStmt();
2402 getASTContext().Deallocate(Eval);
2403 }
2404
2405 Init = I;
2406}
2407
2408bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2409 const LangOptions &Lang = C.getLangOpts();
2410
2411 // OpenCL permits const integral variables to be used in constant
2412 // expressions, like in C++98.
2413 if (!Lang.CPlusPlus && !Lang.OpenCL)
2414 return false;
2415
2416 // Function parameters are never usable in constant expressions.
2417 if (isa<ParmVarDecl>(this))
2418 return false;
2419
2420 // The values of weak variables are never usable in constant expressions.
2421 if (isWeak())
2422 return false;
2423
2424 // In C++11, any variable of reference type can be used in a constant
2425 // expression if it is initialized by a constant expression.
2426 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2427 return true;
2428
2429 // Only const objects can be used in constant expressions in C++. C++98 does
2430 // not require the variable to be non-volatile, but we consider this to be a
2431 // defect.
2432 if (!getType().isConstant(C) || getType().isVolatileQualified())
2433 return false;
2434
2435 // In C++, const, non-volatile variables of integral or enumeration types
2436 // can be used in constant expressions.
2437 if (getType()->isIntegralOrEnumerationType())
2438 return true;
2439
2440 // Additionally, in C++11, non-volatile constexpr variables can be used in
2441 // constant expressions.
2442 return Lang.CPlusPlus11 && isConstexpr();
2443}
2444
2445bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2446 // C++2a [expr.const]p3:
2447 // A variable is usable in constant expressions after its initializing
2448 // declaration is encountered...
2449 const VarDecl *DefVD = nullptr;
2450 const Expr *Init = getAnyInitializer(DefVD);
2451 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2452 return false;
2453 // ... if it is a constexpr variable, or it is of reference type or of
2454 // const-qualified integral or enumeration type, ...
2455 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2456 return false;
2457 // ... and its initializer is a constant initializer.
2458 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2459 return false;
2460 // C++98 [expr.const]p1:
2461 // An integral constant-expression can involve only [...] const variables
2462 // or static data members of integral or enumeration types initialized with
2463 // [integer] constant expressions (dcl.init)
2464 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2465 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2466 return false;
2467 return true;
2468}
2469
2470/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2471/// form, which contains extra information on the evaluated value of the
2472/// initializer.
2473EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2474 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2475 if (!Eval) {
2476 // Note: EvaluatedStmt contains an APValue, which usually holds
2477 // resources not allocated from the ASTContext. We need to do some
2478 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2479 // where we can detect whether there's anything to clean up or not.
2480 Eval = new (getASTContext()) EvaluatedStmt;
2481 Eval->Value = Init.get<Stmt *>();
2482 Init = Eval;
2483 }
2484 return Eval;
2485}
2486
2487EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2488 return Init.dyn_cast<EvaluatedStmt *>();
2489}
2490
2491APValue *VarDecl::evaluateValue() const {
2492 SmallVector<PartialDiagnosticAt, 8> Notes;
2493 return evaluateValueImpl(Notes, hasConstantInitialization());
2494}
2495
2496APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2497 bool IsConstantInitialization) const {
2498 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2499
2500 const auto *Init = cast<Expr>(Eval->Value);
2501 assert(!Init->isValueDependent())(static_cast <bool> (!Init->isValueDependent()) ? void
(0) : __assert_fail ("!Init->isValueDependent()", "clang/lib/AST/Decl.cpp"
, 2501, __extension__ __PRETTY_FUNCTION__))
;
2502
2503 // We only produce notes indicating why an initializer is non-constant the
2504 // first time it is evaluated. FIXME: The notes won't always be emitted the
2505 // first time we try evaluation, so might not be produced at all.
2506 if (Eval->WasEvaluated)
2507 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2508
2509 if (Eval->IsEvaluating) {
2510 // FIXME: Produce a diagnostic for self-initialization.
2511 return nullptr;
2512 }
2513
2514 Eval->IsEvaluating = true;
2515
2516 ASTContext &Ctx = getASTContext();
2517 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2518 IsConstantInitialization);
2519
2520 // In C++11, this isn't a constant initializer if we produced notes. In that
2521 // case, we can't keep the result, because it may only be correct under the
2522 // assumption that the initializer is a constant context.
2523 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2524 !Notes.empty())
2525 Result = false;
2526
2527 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2528 // or that it's empty (so that there's nothing to clean up) if evaluation
2529 // failed.
2530 if (!Result)
2531 Eval->Evaluated = APValue();
2532 else if (Eval->Evaluated.needsCleanup())
2533 Ctx.addDestruction(&Eval->Evaluated);
2534
2535 Eval->IsEvaluating = false;
2536 Eval->WasEvaluated = true;
2537
2538 return Result ? &Eval->Evaluated : nullptr;
2539}
2540
2541APValue *VarDecl::getEvaluatedValue() const {
2542 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2543 if (Eval->WasEvaluated)
2544 return &Eval->Evaluated;
2545
2546 return nullptr;
2547}
2548
2549bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2550 const Expr *Init = getInit();
2551 assert(Init && "no initializer")(static_cast <bool> (Init && "no initializer") ?
void (0) : __assert_fail ("Init && \"no initializer\""
, "clang/lib/AST/Decl.cpp", 2551, __extension__ __PRETTY_FUNCTION__
))
;
2552
2553 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2554 if (!Eval->CheckedForICEInit) {
2555 Eval->CheckedForICEInit = true;
2556 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2557 }
2558 return Eval->HasICEInit;
2559}
2560
2561bool VarDecl::hasConstantInitialization() const {
2562 // In C, all globals (and only globals) have constant initialization.
2563 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2564 return true;
2565
2566 // In C++, it depends on whether the evaluation at the point of definition
2567 // was evaluatable as a constant initializer.
2568 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2569 return Eval->HasConstantInitialization;
2570
2571 return false;
2572}
2573
2574bool VarDecl::checkForConstantInitialization(
2575 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2576 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2577 // If we ask for the value before we know whether we have a constant
2578 // initializer, we can compute the wrong value (for example, due to
2579 // std::is_constant_evaluated()).
2580 assert(!Eval->WasEvaluated &&(static_cast <bool> (!Eval->WasEvaluated && "already evaluated var value before checking for constant init"
) ? void (0) : __assert_fail ("!Eval->WasEvaluated && \"already evaluated var value before checking for constant init\""
, "clang/lib/AST/Decl.cpp", 2581, __extension__ __PRETTY_FUNCTION__
))
2581 "already evaluated var value before checking for constant init")(static_cast <bool> (!Eval->WasEvaluated && "already evaluated var value before checking for constant init"
) ? void (0) : __assert_fail ("!Eval->WasEvaluated && \"already evaluated var value before checking for constant init\""
, "clang/lib/AST/Decl.cpp", 2581, __extension__ __PRETTY_FUNCTION__
))
;
2582 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++")(static_cast <bool> (getASTContext().getLangOpts().CPlusPlus
&& "only meaningful in C++") ? void (0) : __assert_fail
("getASTContext().getLangOpts().CPlusPlus && \"only meaningful in C++\""
, "clang/lib/AST/Decl.cpp", 2582, __extension__ __PRETTY_FUNCTION__
))
;
2583
2584 assert(!cast<Expr>(Eval->Value)->isValueDependent())(static_cast <bool> (!cast<Expr>(Eval->Value)->
isValueDependent()) ? void (0) : __assert_fail ("!cast<Expr>(Eval->Value)->isValueDependent()"
, "clang/lib/AST/Decl.cpp", 2584, __extension__ __PRETTY_FUNCTION__
))
;
2585
2586 // Evaluate the initializer to check whether it's a constant expression.
2587 Eval->HasConstantInitialization =
2588 evaluateValueImpl(Notes, true) && Notes.empty();
2589
2590 // If evaluation as a constant initializer failed, allow re-evaluation as a
2591 // non-constant initializer if we later find we want the value.
2592 if (!Eval->HasConstantInitialization)
2593 Eval->WasEvaluated = false;
2594
2595 return Eval->HasConstantInitialization;
2596}
2597
2598bool VarDecl::isParameterPack() const {
2599 return isa<PackExpansionType>(getType());
2600}
2601
2602template<typename DeclT>
2603static DeclT *getDefinitionOrSelf(DeclT *D) {
2604 assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D"
, "clang/lib/AST/Decl.cpp", 2604, __extension__ __PRETTY_FUNCTION__
))
;
2605 if (auto *Def = D->getDefinition())
2606 return Def;
2607 return D;
2608}
2609
2610bool VarDecl::isEscapingByref() const {
2611 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2612}
2613
2614bool VarDecl::isNonEscapingByref() const {
2615 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2616}
2617
2618bool VarDecl::hasDependentAlignment() const {
2619 QualType T = getType();
2620 return T->isDependentType() || T->isUndeducedType() ||
2621 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2622 return AA->isAlignmentDependent();
2623 });
2624}
2625
2626VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2627 const VarDecl *VD = this;
2628
2629 // If this is an instantiated member, walk back to the template from which
2630 // it was instantiated.
2631 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2632 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2633 VD = VD->getInstantiatedFromStaticDataMember();
2634 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2635 VD = NewVD;
2636 }
2637 }
2638
2639 // If it's an instantiated variable template specialization, find the
2640 // template or partial specialization from which it was instantiated.
2641 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2642 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2643 auto From = VDTemplSpec->getInstantiatedFrom();
2644 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2645 while (!VTD->isMemberSpecialization()) {
2646 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2647 if (!NewVTD)
2648 break;
2649 VTD = NewVTD;
2650 }
2651 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2652 }
2653 if (auto *VTPSD =
2654 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2655 while (!VTPSD->isMemberSpecialization()) {
2656 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2657 if (!NewVTPSD)
2658 break;
2659 VTPSD = NewVTPSD;
2660 }
2661 return getDefinitionOrSelf<VarDecl>(VTPSD);
2662 }
2663 }
2664 }
2665
2666 // If this is the pattern of a variable template, find where it was
2667 // instantiated from. FIXME: Is this necessary?
2668 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2669 while (!VarTemplate->isMemberSpecialization()) {
2670 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2671 if (!NewVT)
2672 break;
2673 VarTemplate = NewVT;
2674 }
2675
2676 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2677 }
2678
2679 if (VD == this)
2680 return nullptr;
2681 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2682}
2683
2684VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2685 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2686 return cast<VarDecl>(MSI->getInstantiatedFrom());
2687
2688 return nullptr;
2689}
2690
2691TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2692 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2693 return Spec->getSpecializationKind();
2694
2695 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2696 return MSI->getTemplateSpecializationKind();
2697
2698 return TSK_Undeclared;
2699}
2700
2701TemplateSpecializationKind
2702VarDecl::getTemplateSpecializationKindForInstantiation() const {
2703 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2704 return MSI->getTemplateSpecializationKind();
2705
2706 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2707 return Spec->getSpecializationKind();
2708
2709 return TSK_Undeclared;
2710}
2711
2712SourceLocation VarDecl::getPointOfInstantiation() const {
2713 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2714 return Spec->getPointOfInstantiation();
2715
2716 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2717 return MSI->getPointOfInstantiation();
2718
2719 return SourceLocation();
2720}
2721
2722VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2723 return getASTContext().getTemplateOrSpecializationInfo(this)
2724 .dyn_cast<VarTemplateDecl *>();
2725}
2726
2727void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2728 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2729}
2730
2731bool VarDecl::isKnownToBeDefined() const {
2732 const auto &LangOpts = getASTContext().getLangOpts();
2733 // In CUDA mode without relocatable device code, variables of form 'extern
2734 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2735 // memory pool. These are never undefined variables, even if they appear
2736 // inside of an anon namespace or static function.
2737 //
2738 // With CUDA relocatable device code enabled, these variables don't get
2739 // special handling; they're treated like regular extern variables.
2740 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2741 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2742 isa<IncompleteArrayType>(getType()))
2743 return true;
2744
2745 return hasDefinition();
2746}
2747
2748bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2749 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2750 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2751 !hasAttr<AlwaysDestroyAttr>()));
2752}
2753
2754QualType::DestructionKind
2755VarDecl::needsDestruction(const ASTContext &Ctx) const {
2756 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2757 if (Eval->HasConstantDestruction)
2758 return QualType::DK_none;
2759
2760 if (isNoDestroy(Ctx))
2761 return QualType::DK_none;
2762
2763 return getType().isDestructedType();
2764}
2765
2766bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2767 assert(hasInit() && "Expect initializer to check for flexible array init")(static_cast <bool> (hasInit() && "Expect initializer to check for flexible array init"
) ? void (0) : __assert_fail ("hasInit() && \"Expect initializer to check for flexible array init\""
, "clang/lib/AST/Decl.cpp", 2767, __extension__ __PRETTY_FUNCTION__
))
;
2768 auto *Ty = getType()->getAs<RecordType>();
2769 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2770 return false;
2771 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2772 if (!List)
2773 return false;
2774 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2775 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2776 if (!InitTy)
2777 return false;
2778 return InitTy->getSize() != 0;
2779}
2780
2781CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2782 assert(hasInit() && "Expect initializer to check for flexible array init")(static_cast <bool> (hasInit() && "Expect initializer to check for flexible array init"
) ? void (0) : __assert_fail ("hasInit() && \"Expect initializer to check for flexible array init\""
, "clang/lib/AST/Decl.cpp", 2782, __extension__ __PRETTY_FUNCTION__
))
;
2783 auto *Ty = getType()->getAs<RecordType>();
2784 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2785 return CharUnits::Zero();
2786 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2787 if (!List)
2788 return CharUnits::Zero();
2789 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2790 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2791 if (!InitTy)
2792 return CharUnits::Zero();
2793 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2794 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2795 CharUnits FlexibleArrayOffset =
2796 Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2797 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2798 return CharUnits::Zero();
2799 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2800}
2801
2802MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2803 if (isStaticDataMember())
2804 // FIXME: Remove ?
2805 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2806 return getASTContext().getTemplateOrSpecializationInfo(this)
2807 .dyn_cast<MemberSpecializationInfo *>();
2808 return nullptr;
2809}
2810
2811void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2812 SourceLocation PointOfInstantiation) {
2813 assert((isa<VarTemplateSpecializationDecl>(this) ||(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "clang/lib/AST/Decl.cpp", 2815, __extension__ __PRETTY_FUNCTION__
))
2814 getMemberSpecializationInfo()) &&(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "clang/lib/AST/Decl.cpp", 2815, __extension__ __PRETTY_FUNCTION__
))
2815 "not a variable or static data member template specialization")(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "clang/lib/AST/Decl.cpp", 2815, __extension__ __PRETTY_FUNCTION__
))
;
2816
2817 if (VarTemplateSpecializationDecl *Spec =
2818 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2819 Spec->setSpecializationKind(TSK);
2820 if (TSK != TSK_ExplicitSpecialization &&
2821 PointOfInstantiation.isValid() &&
2822 Spec->getPointOfInstantiation().isInvalid()) {
2823 Spec->setPointOfInstantiation(PointOfInstantiation);
2824 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2825 L->InstantiationRequested(this);
2826 }
2827 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2828 MSI->setTemplateSpecializationKind(TSK);
2829 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2830 MSI->getPointOfInstantiation().isInvalid()) {
2831 MSI->setPointOfInstantiation(PointOfInstantiation);
2832 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2833 L->InstantiationRequested(this);
2834 }
2835 }
2836}
2837
2838void
2839VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2840 TemplateSpecializationKind TSK) {
2841 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&(static_cast <bool> (getASTContext().getTemplateOrSpecializationInfo
(this).isNull() && "Previous template or instantiation?"
) ? void (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "clang/lib/AST/Decl.cpp", 2842, __extension__ __PRETTY_FUNCTION__
))
2842 "Previous template or instantiation?")(static_cast <bool> (getASTContext().getTemplateOrSpecializationInfo
(this).isNull() && "Previous template or instantiation?"
) ? void (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "clang/lib/AST/Decl.cpp", 2842, __extension__ __PRETTY_FUNCTION__
))
;
2843 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2844}
2845
2846//===----------------------------------------------------------------------===//
2847// ParmVarDecl Implementation
2848//===----------------------------------------------------------------------===//
2849
2850ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2851 SourceLocation StartLoc,
2852 SourceLocation IdLoc, IdentifierInfo *Id,
2853 QualType T, TypeSourceInfo *TInfo,
2854 StorageClass S, Expr *DefArg) {
2855 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2856 S, DefArg);
2857}
2858
2859QualType ParmVarDecl::getOriginalType() const {
2860 TypeSourceInfo *TSI = getTypeSourceInfo();
2861 QualType T = TSI ? TSI->getType() : getType();
2862 if (const auto *DT = dyn_cast<DecayedType>(T))
2863 return DT->getOriginalType();
2864 return T;
2865}
2866
2867ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2868 return new (C, ID)
2869 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2870 nullptr, QualType(), nullptr, SC_None, nullptr);
2871}
2872
2873SourceRange ParmVarDecl::getSourceRange() const {
2874 if (!hasInheritedDefaultArg()) {
2875 SourceRange ArgRange = getDefaultArgRange();
2876 if (ArgRange.isValid())
2877 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2878 }
2879
2880 // DeclaratorDecl considers the range of postfix types as overlapping with the
2881 // declaration name, but this is not the case with parameters in ObjC methods.
2882 if (isa<ObjCMethodDecl>(getDeclContext()))
2883 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2884
2885 return DeclaratorDecl::getSourceRange();
2886}
2887
2888bool ParmVarDecl::isDestroyedInCallee() const {
2889 // ns_consumed only affects code generation in ARC
2890 if (hasAttr<NSConsumedAttr>())
2891 return getASTContext().getLangOpts().ObjCAutoRefCount;
2892
2893 // FIXME: isParamDestroyedInCallee() should probably imply
2894 // isDestructedType()
2895 auto *RT = getType()->getAs<RecordType>();
2896 if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2897 getType().isDestructedType())
2898 return true;
2899
2900 return false;
2901}
2902
2903Expr *ParmVarDecl::getDefaultArg() {
2904 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!")(static_cast <bool> (!hasUnparsedDefaultArg() &&
"Default argument is not yet parsed!") ? void (0) : __assert_fail
("!hasUnparsedDefaultArg() && \"Default argument is not yet parsed!\""
, "clang/lib/AST/Decl.cpp", 2904, __extension__ __PRETTY_FUNCTION__
))
;
2905 assert(!hasUninstantiatedDefaultArg() &&(static_cast <bool> (!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!") ? void (0) : __assert_fail
("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "clang/lib/AST/Decl.cpp", 2906, __extension__ __PRETTY_FUNCTION__
))
2906 "Default argument is not yet instantiated!")(static_cast <bool> (!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!") ? void (0) : __assert_fail
("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "clang/lib/AST/Decl.cpp", 2906, __extension__ __PRETTY_FUNCTION__
))
;
2907
2908 Expr *Arg = getInit();
2909 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2910 return E->getSubExpr();
2911
2912 return Arg;
2913}
2914
2915void ParmVarDecl::setDefaultArg(Expr *defarg) {
2916 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2917 Init = defarg;
2918}
2919
2920SourceRange ParmVarDecl::getDefaultArgRange() const {
2921 switch (ParmVarDeclBits.DefaultArgKind) {
2922 case DAK_None:
2923 case DAK_Unparsed:
2924 // Nothing we can do here.
2925 return SourceRange();
2926
2927 case DAK_Uninstantiated:
2928 return getUninstantiatedDefaultArg()->getSourceRange();
2929
2930 case DAK_Normal:
2931 if (const Expr *E = getInit())
2932 return E->getSourceRange();
2933
2934 // Missing an actual expression, may be invalid.
2935 return SourceRange();
2936 }
2937 llvm_unreachable("Invalid default argument kind.")::llvm::llvm_unreachable_internal("Invalid default argument kind."
, "clang/lib/AST/Decl.cpp", 2937)
;
2938}
2939
2940void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2941 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2942 Init = arg;
2943}
2944
2945Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2946 assert(hasUninstantiatedDefaultArg() &&(static_cast <bool> (hasUninstantiatedDefaultArg() &&
"Wrong kind of initialization expression!") ? void (0) : __assert_fail
("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "clang/lib/AST/Decl.cpp", 2947, __extension__ __PRETTY_FUNCTION__
))
2947 "Wrong kind of initialization expression!")(static_cast <bool> (hasUninstantiatedDefaultArg() &&
"Wrong kind of initialization expression!") ? void (0) : __assert_fail
("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "clang/lib/AST/Decl.cpp", 2947, __extension__ __PRETTY_FUNCTION__
))
;
2948 return cast_or_null<Expr>(Init.get<Stmt *>());
2949}
2950
2951bool ParmVarDecl::hasDefaultArg() const {
2952 // FIXME: We should just return false for DAK_None here once callers are
2953 // prepared for the case that we encountered an invalid default argument and
2954 // were unable to even build an invalid expression.
2955 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2956 !Init.isNull();
2957}
2958
2959void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2960 getASTContext().setParameterIndex(this, parameterIndex);
2961 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2962}
2963
2964unsigned ParmVarDecl::getParameterIndexLarge() const {
2965 return getASTContext().getParameterIndex(this);
2966}
2967
2968//===----------------------------------------------------------------------===//
2969// FunctionDecl Implementation
2970//===----------------------------------------------------------------------===//
2971
2972FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2973 SourceLocation StartLoc,
2974 const DeclarationNameInfo &NameInfo, QualType T,
2975 TypeSourceInfo *TInfo, StorageClass S,
2976 bool UsesFPIntrin, bool isInlineSpecified,
2977 ConstexprSpecKind ConstexprKind,
2978 Expr *TrailingRequiresClause)
2979 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2980 StartLoc),
2981 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2982 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2983 assert(T.isNull() || T->isFunctionType())(static_cast <bool> (T.isNull() || T->isFunctionType
()) ? void (0) : __assert_fail ("T.isNull() || T->isFunctionType()"
, "clang/lib/AST/Decl.cpp", 2983, __extension__ __PRETTY_FUNCTION__
))
;
2984 FunctionDeclBits.SClass = S;
2985 FunctionDeclBits.IsInline = isInlineSpecified;
2986 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2987 FunctionDeclBits.IsVirtualAsWritten = false;
2988 FunctionDeclBits.IsPure = false;
2989 FunctionDeclBits.HasInheritedPrototype = false;
2990 FunctionDeclBits.HasWrittenPrototype = true;
2991 FunctionDeclBits.IsDeleted = false;
2992 FunctionDeclBits.IsTrivial = false;
2993 FunctionDeclBits.IsTrivialForCall = false;
2994 FunctionDeclBits.IsDefaulted = false;
2995 FunctionDeclBits.IsExplicitlyDefaulted = false;
2996 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2997 FunctionDeclBits.IsIneligibleOrNotSelected = false;
2998 FunctionDeclBits.HasImplicitReturnZero = false;
2999 FunctionDeclBits.IsLateTemplateParsed = false;
3000 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3001 FunctionDeclBits.InstantiationIsPending = false;
3002 FunctionDeclBits.UsesSEHTry = false;
3003 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3004 FunctionDeclBits.HasSkippedBody = false;
3005 FunctionDeclBits.WillHaveBody = false;
3006 FunctionDeclBits.IsMultiVersion = false;
3007 FunctionDeclBits.IsCopyDeductionCandidate = false;
3008 FunctionDeclBits.HasODRHash = false;
3009 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3010 if (TrailingRequiresClause)
3011 setTrailingRequiresClause(TrailingRequiresClause);
3012}
3013
3014void FunctionDecl::getNameForDiagnostic(
3015 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3016 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
3017 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
3018 if (TemplateArgs)
3019 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3020}
3021
3022bool FunctionDecl::isVariadic() const {
3023 if (const auto *FT = getType()->getAs<FunctionProtoType>())
3024 return FT->isVariadic();
3025 return false;
3026}
3027
3028FunctionDecl::DefaultedFunctionInfo *
3029FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
3030 ArrayRef<DeclAccessPair> Lookups) {
3031 DefaultedFunctionInfo *Info = new (Context.Allocate(
3032 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
3033 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
3034 DefaultedFunctionInfo;
3035 Info->NumLookups = Lookups.size();
3036 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3037 Info->getTrailingObjects<DeclAccessPair>());
3038 return Info;
3039}
3040
3041void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
3042 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this")(static_cast <bool> (!FunctionDeclBits.HasDefaultedFunctionInfo
&& "already have this") ? void (0) : __assert_fail (
"!FunctionDeclBits.HasDefaultedFunctionInfo && \"already have this\""
, "clang/lib/AST/Decl.cpp", 3042, __extension__ __PRETTY_FUNCTION__
))
;
3043 assert(!Body && "can't replace function body with defaulted function info")(static_cast <bool> (!Body && "can't replace function body with defaulted function info"
) ? void (0) : __assert_fail ("!Body && \"can't replace function body with defaulted function info\""
, "clang/lib/AST/Decl.cpp", 3043, __extension__ __PRETTY_FUNCTION__
))
;
3044
3045 FunctionDeclBits.HasDefaultedFunctionInfo = true;
3046 DefaultedInfo = Info;
3047}
3048
3049FunctionDecl::DefaultedFunctionInfo *
3050FunctionDecl::getDefaultedFunctionInfo() const {
3051 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
3052}
3053
3054bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3055 for (auto *I : redecls()) {
3056 if (I->doesThisDeclarationHaveABody()) {
3057 Definition = I;
3058 return true;
3059 }
3060 }
3061
3062 return false;
3063}
3064
3065bool FunctionDecl::hasTrivialBody() const {
3066 Stmt *S = getBody();
3067 if (!S) {
3068 // Since we don't have a body for this function, we don't know if it's
3069 // trivial or not.
3070 return false;
3071 }
3072
3073 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3074 return true;
3075 return false;
3076}
3077
3078bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3079 if (!getFriendObjectKind())
3080 return false;
3081
3082 // Check for a friend function instantiated from a friend function
3083 // definition in a templated class.
3084 if (const FunctionDecl *InstantiatedFrom =
3085 getInstantiatedFromMemberFunction())
3086 return InstantiatedFrom->getFriendObjectKind() &&
3087 InstantiatedFrom->isThisDeclarationADefinition();
3088
3089 // Check for a friend function template instantiated from a friend
3090 // function template definition in a templated class.
3091 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3092 if (const FunctionTemplateDecl *InstantiatedFrom =
3093 Template->getInstantiatedFromMemberTemplate())
3094 return InstantiatedFrom->getFriendObjectKind() &&
3095 InstantiatedFrom->isThisDeclarationADefinition();
3096 }
3097
3098 return false;
3099}
3100
3101bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3102 bool CheckForPendingFriendDefinition) const {
3103 for (const FunctionDecl *FD : redecls()) {
3104 if (FD->isThisDeclarationADefinition()) {
3105 Definition = FD;
3106 return true;
3107 }
3108
3109 // If this is a friend function defined in a class template, it does not
3110 // have a body until it is used, nevertheless it is a definition, see
3111 // [temp.inst]p2:
3112 //
3113 // ... for the purpose of determining whether an instantiated redeclaration
3114 // is valid according to [basic.def.odr] and [class.mem], a declaration that
3115 // corresponds to a definition in the template is considered to be a
3116 // definition.
3117 //
3118 // The following code must produce redefinition error:
3119 //
3120 // template<typename T> struct C20 { friend void func_20() {} };
3121 // C20<int> c20i;
3122 // void func_20() {}
3123 //
3124 if (CheckForPendingFriendDefinition &&
3125 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3126 Definition = FD;
3127 return true;
3128 }
3129 }
3130
3131 return false;
3132}
3133
3134Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3135 if (!hasBody(Definition))
3136 return nullptr;
3137
3138 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&(static_cast <bool> (!Definition->FunctionDeclBits.HasDefaultedFunctionInfo
&& "definition should not have a body") ? void (0) :
__assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "clang/lib/AST/Decl.cpp", 3139, __extension__ __PRETTY_FUNCTION__
))
3139 "definition should not have a body")(static_cast <bool> (!Definition->FunctionDeclBits.HasDefaultedFunctionInfo
&& "definition should not have a body") ? void (0) :
__assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "clang/lib/AST/Decl.cpp", 3139, __extension__ __PRETTY_FUNCTION__
))
;
3140 if (Definition->Body)
3141 return Definition->Body.get(getASTContext().getExternalSource());
3142
3143 return nullptr;
3144}
3145
3146void FunctionDecl::setBody(Stmt *B) {
3147 FunctionDeclBits.HasDefaultedFunctionInfo = false;
3148 Body = LazyDeclStmtPtr(B);
3149 if (B)
3150 EndRangeLoc = B->getEndLoc();
3151}
3152
3153void FunctionDecl::setPure(bool P) {
3154 FunctionDeclBits.IsPure = P;
3155 if (P)
3156 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3157 Parent->markedVirtualFunctionPure();
3158}
3159
3160template<std::size_t Len>
3161static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3162 IdentifierInfo *II = ND->getIdentifier();
3163 return II && II->isStr(Str);
3164}
3165
3166bool FunctionDecl::isMain() const {
3167 const TranslationUnitDecl *tunit =
3168 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3169 return tunit &&
3170 !tunit->getASTContext().getLangOpts().Freestanding &&
3171 isNamed(this, "main");
3172}
3173
3174bool FunctionDecl::isMSVCRTEntryPoint() const {
3175 const TranslationUnitDecl *TUnit =
3176 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3177 if (!TUnit)
3178 return false;
3179
3180 // Even though we aren't really targeting MSVCRT if we are freestanding,
3181 // semantic analysis for these functions remains the same.
3182
3183 // MSVCRT entry points only exist on MSVCRT targets.
3184 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3185 return false;
3186
3187 // Nameless functions like constructors cannot be entry points.
3188 if (!getIdentifier())
3189 return false;
3190
3191 return llvm::StringSwitch<bool>(getName())
3192 .Cases("main", // an ANSI console app
3193 "wmain", // a Unicode console App
3194 "WinMain", // an ANSI GUI app
3195 "wWinMain", // a Unicode GUI app
3196 "DllMain", // a DLL
3197 true)
3198 .Default(false);
3199}
3200
3201bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3202 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3203 return false;
3204 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3205 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3206 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3207 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3208 return false;
3209
3210 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3211 return false;
3212
3213 const auto *proto = getType()->castAs<FunctionProtoType>();
3214 if (proto->getNumParams() != 2 || proto->isVariadic())
3215 return false;
3216
3217 ASTContext &Context =
3218 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3219 ->getASTContext();
3220
3221 // The result type and first argument type are constant across all
3222 // these operators. The second argument must be exactly void*.
3223 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3224}
3225
3226bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3227 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3228 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3229 return false;
3230 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3231 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3232 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3233 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3234 return false;
3235
3236 if (isa<CXXRecordDecl>(getDeclContext()))
3237 return false;
3238
3239 // This can only fail for an invalid 'operator new' declaration.
3240 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3241 return false;
3242
3243 const auto *FPT = getType()->castAs<FunctionProtoType>();
3244 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3245 return false;
3246
3247 // If this is a single-parameter function, it must be a replaceable global
3248 // allocation or deallocation function.
3249 if (FPT->getNumParams() == 1)
3250 return true;
3251
3252 unsigned Params = 1;
3253 QualType Ty = FPT->getParamType(Params);
3254 ASTContext &Ctx = getASTContext();
3255
3256 auto Consume = [&] {
3257 ++Params;
3258 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3259 };
3260
3261 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3262 bool IsSizedDelete = false;
3263 if (Ctx.getLangOpts().SizedDeallocation &&
3264 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3265 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3266 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3267 IsSizedDelete = true;
3268 Consume();
3269 }
3270
3271 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3272 // new/delete.
3273 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3274 Consume();
3275 if (AlignmentParam)
3276 *AlignmentParam = Params;
3277 }
3278
3279 // Finally, if this is not a sized delete, the final parameter can
3280 // be a 'const std::nothrow_t&'.
3281 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3282 Ty = Ty->getPointeeType();
3283 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3284 return false;
3285 if (Ty->isNothrowT()) {
3286 if (IsNothrow)
3287 *IsNothrow = true;
3288 Consume();
3289 }
3290 }
3291
3292 return Params == FPT->getNumParams();
3293}
3294
3295bool FunctionDecl::isInlineBuiltinDeclaration() const {
3296 if (!getBuiltinID())
3297 return false;
3298
3299 const FunctionDecl *Definition;
3300 return hasBody(Definition) && Definition->isInlineSpecified() &&
3301 Definition->hasAttr<AlwaysInlineAttr>() &&
3302 Definition->hasAttr<GNUInlineAttr>();
3303}
3304
3305bool FunctionDecl::isDestroyingOperatorDelete() const {
3306 // C++ P0722:
3307 // Within a class C, a single object deallocation function with signature
3308 // (T, std::destroying_delete_t, <more params>)
3309 // is a destroying operator delete.
3310 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3311 getNumParams() < 2)
3312 return false;
3313
3314 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3315 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3316 RD->getIdentifier()->isStr("destroying_delete_t");
3317}
3318
3319LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3320 return getDeclLanguageLinkage(*this);
3321}
3322
3323bool FunctionDecl::isExternC() const {
3324 return isDeclExternC(*this);
3325}
3326
3327bool FunctionDecl::isInExternCContext() const {
3328 if (hasAttr<OpenCLKernelAttr>())
3329 return true;
3330 return getLexicalDeclContext()->isExternCContext();
3331}
3332
3333bool FunctionDecl::isInExternCXXContext() const {
3334 return getLexicalDeclContext()->isExternCXXContext();
3335}
3336
3337bool FunctionDecl::isGlobal() const {
3338 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3339 return Method->isStatic();
3340
3341 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3342 return false;
3343
3344 for (const DeclContext *DC = getDeclContext();
3345 DC->isNamespace();
3346 DC = DC->getParent()) {
3347 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3348 if (!Namespace->getDeclName())
3349 return false;
3350 }
3351 }
3352
3353 return true;
3354}
3355
3356bool FunctionDecl::isNoReturn() const {
3357 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3358 hasAttr<C11NoReturnAttr>())
3359 return true;
3360
3361 if (auto *FnTy = getType()->getAs<FunctionType>())
3362 return FnTy->getNoReturnAttr();
3363
3364 return false;
3365}
3366
3367
3368MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3369 if (hasAttr<TargetAttr>())
3370 return MultiVersionKind::Target;
3371 if (hasAttr<TargetVersionAttr>())
3372 return MultiVersionKind::TargetVersion;
3373 if (hasAttr<CPUDispatchAttr>())
3374 return MultiVersionKind::CPUDispatch;
3375 if (hasAttr<CPUSpecificAttr>())
3376 return MultiVersionKind::CPUSpecific;
3377 if (hasAttr<TargetClonesAttr>())
3378 return MultiVersionKind::TargetClones;
3379 return MultiVersionKind::None;
3380}
3381
3382bool FunctionDecl::isCPUDispatchMultiVersion() const {
3383 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3384}
3385
3386bool FunctionDecl::isCPUSpecificMultiVersion() const {
3387 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3388}
3389
3390bool FunctionDecl::isTargetMultiVersion() const {
3391 return isMultiVersion() &&
3392 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3393}
3394
3395bool FunctionDecl::isTargetClonesMultiVersion() const {
3396 return isMultiVersion() && hasAttr<TargetClonesAttr>();
3397}
3398
3399void
3400FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3401 redeclarable_base::setPreviousDecl(PrevDecl);
3402
3403 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3404 FunctionTemplateDecl *PrevFunTmpl
3405 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3406 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch")(static_cast <bool> ((!PrevDecl || PrevFunTmpl) &&
"Function/function template mismatch") ? void (0) : __assert_fail
("(!PrevDecl || PrevFunTmpl) && \"Function/function template mismatch\""
, "clang/lib/AST/Decl.cpp", 3406, __extension__ __PRETTY_FUNCTION__
))
;
3407 FunTmpl->setPreviousDecl(PrevFunTmpl);
3408 }
3409
3410 if (PrevDecl && PrevDecl->isInlined())
3411 setImplicitlyInline(true);
3412}
3413
3414FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3415
3416/// Returns a value indicating whether this function corresponds to a builtin
3417/// function.
3418///
3419/// The function corresponds to a built-in function if it is declared at
3420/// translation scope or within an extern "C" block and its name matches with
3421/// the name of a builtin. The returned value will be 0 for functions that do
3422/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3423/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3424/// value.
3425///
3426/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3427/// functions as their wrapped builtins. This shouldn't be done in general, but
3428/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3429unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3430 unsigned BuiltinID = 0;
3431
3432 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3433 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3434 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3435 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3436 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3437 BuiltinID = A->getID();
3438 }
3439
3440 if (!BuiltinID)
3441 return 0;
3442
3443 // If the function is marked "overloadable", it has a different mangled name
3444 // and is not the C library function.
3445 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3446 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3447 return 0;
3448
3449 ASTContext &Context = getASTContext();
3450 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3451 return BuiltinID;
3452
3453 // This function has the name of a known C library
3454 // function. Determine whether it actually refers to the C library
3455 // function or whether it just has the same name.
3456
3457 // If this is a static function, it's not a builtin.
3458 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3459 return 0;
3460
3461 // OpenCL v1.2 s6.9.f - The library functions defined in
3462 // the C99 standard headers are not available.
3463 if (Context.getLangOpts().OpenCL &&
3464 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3465 return 0;
3466
3467 // CUDA does not have device-side standard library. printf and malloc are the
3468 // only special cases that are supported by device-side runtime.
3469 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3470 !hasAttr<CUDAHostAttr>() &&
3471 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3472 return 0;
3473
3474 // As AMDGCN implementation of OpenMP does not have a device-side standard
3475 // library, none of the predefined library functions except printf and malloc
3476 // should be treated as a builtin i.e. 0 should be returned for them.
3477 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3478 Context.getLangOpts().OpenMPIsDevice &&
3479 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3480 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3481 return 0;
3482
3483 return BuiltinID;
3484}
3485
3486/// getNumParams - Return the number of parameters this function must have
3487/// based on its FunctionType. This is the length of the ParamInfo array
3488/// after it has been created.
3489unsigned FunctionDecl::getNumParams() const {
3490 const auto *FPT = getType()->getAs<FunctionProtoType>();
3491 return FPT ? FPT->getNumParams() : 0;
3492}
3493
3494void FunctionDecl::setParams(ASTContext &C,
3495 ArrayRef<ParmVarDecl *> NewParamInfo) {
3496 assert(!ParamInfo && "Already has param info!")(static_cast <bool> (!ParamInfo && "Already has param info!"
) ? void (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "clang/lib/AST/Decl.cpp", 3496, __extension__ __PRETTY_FUNCTION__
))
;
3497 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!")(static_cast <bool> (NewParamInfo.size() == getNumParams
() && "Parameter count mismatch!") ? void (0) : __assert_fail
("NewParamInfo.size() == getNumParams() && \"Parameter count mismatch!\""
, "clang/lib/AST/Decl.cpp", 3497, __extension__ __PRETTY_FUNCTION__
))
;
3498
3499 // Zero params -> null pointer.
3500 if (!NewParamInfo.empty()) {
3501 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3502 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3503 }
3504}
3505
3506/// getMinRequiredArguments - Returns the minimum number of arguments
3507/// needed to call this function. This may be fewer than the number of
3508/// function parameters, if some of the parameters have default
3509/// arguments (in C++) or are parameter packs (C++11).
3510unsigned FunctionDecl::getMinRequiredArguments() const {
3511 if (!getASTContext().getLangOpts().CPlusPlus)
3512 return getNumParams();
3513
3514 // Note that it is possible for a parameter with no default argument to
3515 // follow a parameter with a default argument.
3516 unsigned NumRequiredArgs = 0;
3517 unsigned MinParamsSoFar = 0;
3518 for (auto *Param : parameters()) {
3519 if (!Param->isParameterPack()) {
3520 ++MinParamsSoFar;
3521 if (!Param->hasDefaultArg())
3522 NumRequiredArgs = MinParamsSoFar;
3523 }
3524 }
3525 return NumRequiredArgs;
3526}
3527
3528bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3529 return getNumParams() == 1 ||
3530 (getNumParams() > 1 &&
3531 llvm::all_of(llvm::drop_begin(parameters()),
3532 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3533}
3534
3535/// The combination of the extern and inline keywords under MSVC forces
3536/// the function to be required.
3537///
3538/// Note: This function assumes that we will only get called when isInlined()
3539/// would return true for this FunctionDecl.
3540bool FunctionDecl::isMSExternInline() const {
3541 assert(isInlined() && "expected to get called on an inlined function!")(static_cast <bool> (isInlined() && "expected to get called on an inlined function!"
) ? void (0) : __assert_fail ("isInlined() && \"expected to get called on an inlined function!\""
, "clang/lib/AST/Decl.cpp", 3541, __extension__ __PRETTY_FUNCTION__
))
;
3542
3543 const ASTContext &Context = getASTContext();
3544 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3545 !hasAttr<DLLExportAttr>())
3546 return false;
3547
3548 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3549 FD = FD->getPreviousDecl())
3550 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3551 return true;
3552
3553 return false;
3554}
3555
3556static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3557 if (Redecl->getStorageClass() != SC_Extern)
3558 return false;
3559
3560 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3561 FD = FD->getPreviousDecl())
3562 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3563 return false;
3564
3565 return true;
3566}
3567
3568static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3569 // Only consider file-scope declarations in this test.
3570 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3571 return false;
3572
3573 // Only consider explicit declarations; the presence of a builtin for a
3574 // libcall shouldn't affect whether a definition is externally visible.
3575 if (Redecl->isImplicit())
3576 return false;
3577
3578 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3579 return true; // Not an inline definition
3580
3581 return false;
3582}
3583
3584/// For a function declaration in C or C++, determine whether this
3585/// declaration causes the definition to be externally visible.
3586///
3587/// For instance, this determines if adding the current declaration to the set
3588/// of redeclarations of the given functions causes
3589/// isInlineDefinitionExternallyVisible to change from false to true.
3590bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3591 assert(!doesThisDeclarationHaveABody() &&(static_cast <bool> (!doesThisDeclarationHaveABody() &&
"Must have a declaration without a body.") ? void (0) : __assert_fail
("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "clang/lib/AST/Decl.cpp", 3592, __extension__ __PRETTY_FUNCTION__
))
3592 "Must have a declaration without a body.")(static_cast <bool> (!doesThisDeclarationHaveABody() &&
"Must have a declaration without a body.") ? void (0) : __assert_fail
("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "clang/lib/AST/Decl.cpp", 3592, __extension__ __PRETTY_FUNCTION__
))
;
3593
3594 ASTContext &Context = getASTContext();
3595
3596 if (Context.getLangOpts().MSVCCompat) {
3597 const FunctionDecl *Definition;
3598 if (hasBody(Definition) && Definition->isInlined() &&
3599 redeclForcesDefMSVC(this))
3600 return true;
3601 }
3602
3603 if (Context.getLangOpts().CPlusPlus)
3604 return false;
3605
3606 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3607 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3608 // an externally visible definition.
3609 //
3610 // FIXME: What happens if gnu_inline gets added on after the first
3611 // declaration?
3612 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3613 return false;
3614
3615 const FunctionDecl *Prev = this;
3616 bool FoundBody = false;
3617 while ((Prev = Prev->getPreviousDecl())) {
3618 FoundBody |= Prev->doesThisDeclarationHaveABody();
3619
3620 if (Prev->doesThisDeclarationHaveABody()) {
3621 // If it's not the case that both 'inline' and 'extern' are
3622 // specified on the definition, then it is always externally visible.
3623 if (!Prev->isInlineSpecified() ||
3624 Prev->getStorageClass() != SC_Extern)
3625 return false;
3626 } else if (Prev->isInlineSpecified() &&
3627 Prev->getStorageClass() != SC_Extern) {
3628 return false;
3629 }
3630 }
3631 return FoundBody;
3632 }
3633
3634 // C99 6.7.4p6:
3635 // [...] If all of the file scope declarations for a function in a
3636 // translation unit include the inline function specifier without extern,
3637 // then the definition in that translation unit is an inline definition.
3638 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3639 return false;
3640 const FunctionDecl *Prev = this;
3641 bool FoundBody = false;
3642 while ((Prev = Prev->getPreviousDecl())) {
3643 FoundBody |= Prev->doesThisDeclarationHaveABody();
3644 if (RedeclForcesDefC99(Prev))
3645 return false;
3646 }
3647 return FoundBody;
3648}
3649
3650FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3651 const TypeSourceInfo *TSI = getTypeSourceInfo();
3652 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3653 : FunctionTypeLoc();
3654}
3655
3656SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3657 FunctionTypeLoc FTL = getFunctionTypeLoc();
3658 if (!FTL)
3659 return SourceRange();
3660
3661 // Skip self-referential return types.
3662 const SourceManager &SM = getASTContext().getSourceManager();
3663 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3664 SourceLocation Boundary = getNameInfo().getBeginLoc();
3665 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3666 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3667 return SourceRange();
3668
3669 return RTRange;
3670}
3671
3672SourceRange FunctionDecl::getParametersSourceRange() const {
3673 unsigned NP = getNumParams();
3674 SourceLocation EllipsisLoc = getEllipsisLoc();
3675
3676 if (NP == 0 && EllipsisLoc.isInvalid())
3677 return SourceRange();
3678
3679 SourceLocation Begin =
3680 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3681 SourceLocation End = EllipsisLoc.isValid()
3682 ? EllipsisLoc
3683 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3684
3685 return SourceRange(Begin, End);
3686}
3687
3688SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3689 FunctionTypeLoc FTL = getFunctionTypeLoc();
3690 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3691}
3692
3693/// For an inline function definition in C, or for a gnu_inline function
3694/// in C++, determine whether the definition will be externally visible.
3695///
3696/// Inline function definitions are always available for inlining optimizations.
3697/// However, depending on the language dialect, declaration specifiers, and
3698/// attributes, the definition of an inline function may or may not be
3699/// "externally" visible to other translation units in the program.
3700///
3701/// In C99, inline definitions are not externally visible by default. However,
3702/// if even one of the global-scope declarations is marked "extern inline", the
3703/// inline definition becomes externally visible (C99 6.7.4p6).
3704///
3705/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3706/// definition, we use the GNU semantics for inline, which are nearly the
3707/// opposite of C99 semantics. In particular, "inline" by itself will create
3708/// an externally visible symbol, but "extern inline" will not create an
3709/// externally visible symbol.
3710bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3711 assert((doesThisDeclarationHaveABody() || willHaveBody() ||(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "clang/lib/AST/Decl.cpp", 3713, __extension__ __PRETTY_FUNCTION__
))
3712 hasAttr<AliasAttr>()) &&(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "clang/lib/AST/Decl.cpp", 3713, __extension__ __PRETTY_FUNCTION__
))
3713 "Must be a function definition")(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "clang/lib/AST/Decl.cpp", 3713, __extension__ __PRETTY_FUNCTION__
))
;
3714 assert(isInlined() && "Function must be inline")(static_cast <bool> (isInlined() && "Function must be inline"
) ? void (0) : __assert_fail ("isInlined() && \"Function must be inline\""
, "clang/lib/AST/Decl.cpp", 3714, __extension__ __PRETTY_FUNCTION__
))
;
3715 ASTContext &Context = getASTContext();
3716
3717 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3718 // Note: If you change the logic here, please change
3719 // doesDeclarationForceExternallyVisibleDefinition as well.
3720 //
3721 // If it's not the case that both 'inline' and 'extern' are
3722 // specified on the definition, then this inline definition is
3723 // externally visible.
3724 if (Context.getLangOpts().CPlusPlus)
3725 return false;
3726 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3727 return true;
3728
3729 // If any declaration is 'inline' but not 'extern', then this definition
3730 // is externally visible.
3731 for (auto *Redecl : redecls()) {
3732 if (Redecl->isInlineSpecified() &&
3733 Redecl->getStorageClass() != SC_Extern)
3734 return true;
3735 }
3736
3737 return false;
3738 }
3739
3740 // The rest of this function is C-only.
3741 assert(!Context.getLangOpts().CPlusPlus &&(static_cast <bool> (!Context.getLangOpts().CPlusPlus &&
"should not use C inline rules in C++") ? void (0) : __assert_fail
("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "clang/lib/AST/Decl.cpp", 3742, __extension__ __PRETTY_FUNCTION__
))
3742 "should not use C inline rules in C++")(static_cast <bool> (!Context.getLangOpts().CPlusPlus &&
"should not use C inline rules in C++") ? void (0) : __assert_fail
("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "clang/lib/AST/Decl.cpp", 3742, __extension__ __PRETTY_FUNCTION__
))
;
3743
3744 // C99 6.7.4p6:
3745 // [...] If all of the file scope declarations for a function in a
3746 // translation unit include the inline function specifier without extern,
3747 // then the definition in that translation unit is an inline definition.
3748 for (auto *Redecl : redecls()) {
3749 if (RedeclForcesDefC99(Redecl))
3750 return true;
3751 }
3752
3753 // C99 6.7.4p6:
3754 // An inline definition does not provide an external definition for the
3755 // function, and does not forbid an external definition in another
3756 // translation unit.
3757 return false;
3758}
3759
3760/// getOverloadedOperator - Which C++ overloaded operator this
3761/// function represents, if any.
3762OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3763 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3764 return getDeclName().getCXXOverloadedOperator();
3765 return OO_None;
3766}
3767
3768/// getLiteralIdentifier - The literal suffix identifier this function
3769/// represents, if any.
3770const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3771 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3772 return getDeclName().getCXXLiteralIdentifier();
3773 return nullptr;
3774}
3775
3776FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3777 if (TemplateOrSpecialization.isNull())
3778 return TK_NonTemplate;
3779 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
3780 if (isa<FunctionDecl>(ND))
3781 return TK_DependentNonTemplate;
3782 assert(isa<FunctionTemplateDecl>(ND) &&(static_cast <bool> (isa<FunctionTemplateDecl>(ND
) && "No other valid types in NamedDecl") ? void (0) :
__assert_fail ("isa<FunctionTemplateDecl>(ND) && \"No other valid types in NamedDecl\""
, "clang/lib/AST/Decl.cpp", 3783, __extension__ __PRETTY_FUNCTION__
))
3783 "No other valid types in NamedDecl")(static_cast <bool> (isa<FunctionTemplateDecl>(ND
) && "No other valid types in NamedDecl") ? void (0) :
__assert_fail ("isa<FunctionTemplateDecl>(ND) && \"No other valid types in NamedDecl\""
, "clang/lib/AST/Decl.cpp", 3783, __extension__ __PRETTY_FUNCTION__
))
;
3784 return TK_FunctionTemplate;
3785 }
3786 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3787 return TK_MemberSpecialization;
3788 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3789 return TK_FunctionTemplateSpecialization;
3790 if (TemplateOrSpecialization.is
3791 <DependentFunctionTemplateSpecializationInfo*>())
3792 return TK_DependentFunctionTemplateSpecialization;
3793
3794 llvm_unreachable("Did we miss a TemplateOrSpecialization type?")::llvm::llvm_unreachable_internal("Did we miss a TemplateOrSpecialization type?"
, "clang/lib/AST/Decl.cpp", 3794)
;
3795}
3796
3797FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3798 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3799 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3800
3801 return nullptr;
3802}
3803
3804MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3805 if (auto *MSI =
3806 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3807 return MSI;
3808 if (auto *FTSI = TemplateOrSpecialization
3809 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3810 return FTSI->getMemberSpecializationInfo();
3811 return nullptr;
3812}
3813
3814void
3815FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3816 FunctionDecl *FD,
3817 TemplateSpecializationKind TSK) {
3818 assert(TemplateOrSpecialization.isNull() &&(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3819, __extension__ __PRETTY_FUNCTION__
))
3819 "Member function is already a specialization")(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3819, __extension__ __PRETTY_FUNCTION__
))
;
3820 MemberSpecializationInfo *Info
3821 = new (C) MemberSpecializationInfo(FD, TSK);
3822 TemplateOrSpecialization = Info;
3823}
3824
3825FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3826 return dyn_cast_or_null<FunctionTemplateDecl>(
3827 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3828}
3829
3830void FunctionDecl::setDescribedFunctionTemplate(
3831 FunctionTemplateDecl *Template) {
3832 assert(TemplateOrSpecialization.isNull() &&(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3833, __extension__ __PRETTY_FUNCTION__
))
3833 "Member function is already a specialization")(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3833, __extension__ __PRETTY_FUNCTION__
))
;
3834 TemplateOrSpecialization = Template;
3835}
3836
3837void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
3838 assert(TemplateOrSpecialization.isNull() &&(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3839, __extension__ __PRETTY_FUNCTION__
))
3839 "Function is already a specialization")(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3839, __extension__ __PRETTY_FUNCTION__
))
;
3840 TemplateOrSpecialization = FD;
3841}
3842
3843FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
3844 return dyn_cast_or_null<FunctionDecl>(
3845 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3846}
3847
3848bool FunctionDecl::isImplicitlyInstantiable() const {
3849 // If the function is invalid, it can't be implicitly instantiated.
3850 if (isInvalidDecl())
3851 return false;
3852
3853 switch (getTemplateSpecializationKindForInstantiation()) {
3854 case TSK_Undeclared:
3855 case TSK_ExplicitInstantiationDefinition:
3856 case TSK_ExplicitSpecialization:
3857 return false;
3858
3859 case TSK_ImplicitInstantiation:
3860 return true;
3861
3862 case TSK_ExplicitInstantiationDeclaration:
3863 // Handled below.
3864 break;
3865 }
3866
3867 // Find the actual template from which we will instantiate.
3868 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3869 bool HasPattern = false;
3870 if (PatternDecl)
3871 HasPattern = PatternDecl->hasBody(PatternDecl);
3872
3873 // C++0x [temp.explicit]p9:
3874 // Except for inline functions, other explicit instantiation declarations
3875 // have the effect of suppressing the implicit instantiation of the entity
3876 // to which they refer.
3877 if (!HasPattern || !PatternDecl)
3878 return true;
3879
3880 return PatternDecl->isInlined();
3881}
3882
3883bool FunctionDecl::isTemplateInstantiation() const {
3884 // FIXME: Remove this, it's not clear what it means. (Which template
3885 // specialization kind?)
3886 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3887}
3888
3889FunctionDecl *
3890FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3891 // If this is a generic lambda call operator specialization, its
3892 // instantiation pattern is always its primary template's pattern
3893 // even if its primary template was instantiated from another
3894 // member template (which happens with nested generic lambdas).
3895 // Since a lambda's call operator's body is transformed eagerly,
3896 // we don't have to go hunting for a prototype definition template
3897 // (i.e. instantiated-from-member-template) to use as an instantiation
3898 // pattern.
3899
3900 if (isGenericLambdaCallOperatorSpecialization(
3901 dyn_cast<CXXMethodDecl>(this))) {
3902 assert(getPrimaryTemplate() && "not a generic lambda call operator?")(static_cast <bool> (getPrimaryTemplate() && "not a generic lambda call operator?"
) ? void (0) : __assert_fail ("getPrimaryTemplate() && \"not a generic lambda call operator?\""
, "clang/lib/AST/Decl.cpp", 3902, __extension__ __PRETTY_FUNCTION__
))
;
3903 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3904 }
3905
3906 // Check for a declaration of this function that was instantiated from a
3907 // friend definition.
3908 const FunctionDecl *FD = nullptr;
3909 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3910 FD = this;
3911
3912 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3913 if (ForDefinition &&
3914 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3915 return nullptr;
3916 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3917 }
3918
3919 if (ForDefinition &&
3920 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3921 return nullptr;
3922
3923 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3924 // If we hit a point where the user provided a specialization of this
3925 // template, we're done looking.
3926 while (!ForDefinition || !Primary->isMemberSpecialization()) {
3927 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3928 if (!NewPrimary)
3929 break;
3930 Primary = NewPrimary;
3931 }
3932
3933 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3934 }
3935
3936 return nullptr;
3937}
3938
3939FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3940 if (FunctionTemplateSpecializationInfo *Info
3941 = TemplateOrSpecialization
3942 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3943 return Info->getTemplate();
3944 }
3945 return nullptr;
3946}
3947
3948FunctionTemplateSpecializationInfo *
3949FunctionDecl::getTemplateSpecializationInfo() const {
3950 return TemplateOrSpecialization
3951 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3952}
3953
3954const TemplateArgumentList *
3955FunctionDecl::getTemplateSpecializationArgs() const {
3956 if (FunctionTemplateSpecializationInfo *Info
3957 = TemplateOrSpecialization
3958 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3959 return Info->TemplateArguments;
3960 }
3961 return nullptr;
3962}
3963
3964const ASTTemplateArgumentListInfo *
3965FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3966 if (FunctionTemplateSpecializationInfo *Info
3967 = TemplateOrSpecialization
3968 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3969 return Info->TemplateArgumentsAsWritten;
3970 }
3971 return nullptr;
3972}
3973
3974void
3975FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3976 FunctionTemplateDecl *Template,
3977 const TemplateArgumentList *TemplateArgs,
3978 void *InsertPos,
3979 TemplateSpecializationKind TSK,
3980 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3981 SourceLocation PointOfInstantiation) {
3982 assert((TemplateOrSpecialization.isNull() ||(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3984, __extension__ __PRETTY_FUNCTION__
))
3983 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3984, __extension__ __PRETTY_FUNCTION__
))
3984 "Member function is already a specialization")(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3984, __extension__ __PRETTY_FUNCTION__
))
;
3985 assert(TSK != TSK_Undeclared &&(static_cast <bool> (TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? void (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "clang/lib/AST/Decl.cpp", 3986, __extension__ __PRETTY_FUNCTION__
))
3986 "Must specify the type of function template specialization")(static_cast <bool> (TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? void (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "clang/lib/AST/Decl.cpp", 3986, __extension__ __PRETTY_FUNCTION__
))
;
3987 assert((TemplateOrSpecialization.isNull() ||(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "clang/lib/AST/Decl.cpp", 3989, __extension__ __PRETTY_FUNCTION__
))
3988 TSK == TSK_ExplicitSpecialization) &&(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "clang/lib/AST/Decl.cpp", 3989, __extension__ __PRETTY_FUNCTION__
))
3989 "Member specialization must be an explicit specialization")(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "clang/lib/AST/Decl.cpp", 3989, __extension__ __PRETTY_FUNCTION__
))
;
3990 FunctionTemplateSpecializationInfo *Info =
3991 FunctionTemplateSpecializationInfo::Create(
3992 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3993 PointOfInstantiation,
3994 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3995 TemplateOrSpecialization = Info;
3996 Template->addSpecialization(Info, InsertPos);
3997}
3998
3999void
4000FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
4001 const UnresolvedSetImpl &Templates,
4002 const TemplateArgumentListInfo &TemplateArgs) {
4003 assert(TemplateOrSpecialization.isNull())(static_cast <bool> (TemplateOrSpecialization.isNull())
? void (0) : __assert_fail ("TemplateOrSpecialization.isNull()"
, "clang/lib/AST/Decl.cpp", 4003, __extension__ __PRETTY_FUNCTION__
))
;
1
'?' condition is true
4004 DependentFunctionTemplateSpecializationInfo *Info =
4005 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
2
Calling 'DependentFunctionTemplateSpecializationInfo::Create'
4006 TemplateArgs);
4007 TemplateOrSpecialization = Info;
4008}
4009
4010DependentFunctionTemplateSpecializationInfo *
4011FunctionDecl::getDependentSpecializationInfo() const {
4012 return TemplateOrSpecialization
4013 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
4014}
4015
4016DependentFunctionTemplateSpecializationInfo *
4017DependentFunctionTemplateSpecializationInfo::Create(
4018 ASTContext &Context, const UnresolvedSetImpl &Ts,
4019 const TemplateArgumentListInfo &TArgs) {
4020 void *Buffer = Context.Allocate(
4021 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
4022 TArgs.size(), Ts.size()));
4023 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3
Calling constructor for 'DependentFunctionTemplateSpecializationInfo'
4024}
4025
4026DependentFunctionTemplateSpecializationInfo::
4027DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
4028 const TemplateArgumentListInfo &TArgs)
4029 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
4030 NumTemplates = Ts.size();
4031 NumArgs = TArgs.size();
4032
4033 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
4034 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
4
Assuming 'I' is equal to 'E'
5
Loop condition is false. Execution continues on line 4037
4035 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
4036
4037 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
6
Calling 'TrailingObjects::getTrailingObjects'
15
Returning from 'TrailingObjects::getTrailingObjects'
16
'ArgsArray' initialized here
4038 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
17
Assuming 'I' is not equal to 'E'
18
Loop condition is true. Entering loop body
4039 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
19
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes
4040}
4041
4042TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
4043 // For a function template specialization, query the specialization
4044 // information object.
4045 if (FunctionTemplateSpecializationInfo *FTSInfo =
4046 TemplateOrSpecialization
4047 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4048 return FTSInfo->getTemplateSpecializationKind();
4049
4050 if (MemberSpecializationInfo *MSInfo =
4051 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4052 return MSInfo->getTemplateSpecializationKind();
4053
4054 return TSK_Undeclared;
4055}
4056
4057TemplateSpecializationKind
4058FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4059 // This is the same as getTemplateSpecializationKind(), except that for a
4060 // function that is both a function template specialization and a member
4061 // specialization, we prefer the member specialization information. Eg:
4062 //
4063 // template<typename T> struct A {
4064 // template<typename U> void f() {}
4065 // template<> void f<int>() {}
4066 // };
4067 //
4068 // For A<int>::f<int>():
4069 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4070 // * getTemplateSpecializationKindForInstantiation() will return
4071 // TSK_ImplicitInstantiation
4072 //
4073 // This reflects the facts that A<int>::f<int> is an explicit specialization
4074 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4075 // from A::f<int> if a definition is needed.
4076 if (FunctionTemplateSpecializationInfo *FTSInfo =
4077 TemplateOrSpecialization
4078 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4079 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4080 return MSInfo->getTemplateSpecializationKind();
4081 return FTSInfo->getTemplateSpecializationKind();
4082 }
4083
4084 if (MemberSpecializationInfo *MSInfo =
4085 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4086 return MSInfo->getTemplateSpecializationKind();
4087
4088 return TSK_Undeclared;
4089}
4090
4091void
4092FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4093 SourceLocation PointOfInstantiation) {
4094 if (FunctionTemplateSpecializationInfo *FTSInfo
4095 = TemplateOrSpecialization.dyn_cast<
4096 FunctionTemplateSpecializationInfo*>()) {
4097 FTSInfo->setTemplateSpecializationKind(TSK);
4098 if (TSK != TSK_ExplicitSpecialization &&
4099 PointOfInstantiation.isValid() &&
4100 FTSInfo->getPointOfInstantiation().isInvalid()) {
4101 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4102 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4103 L->InstantiationRequested(this);
4104 }
4105 } else if (MemberSpecializationInfo *MSInfo
4106 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4107 MSInfo->setTemplateSpecializationKind(TSK);
4108 if (TSK != TSK_ExplicitSpecialization &&
4109 PointOfInstantiation.isValid() &&
4110 MSInfo->getPointOfInstantiation().isInvalid()) {
4111 MSInfo->setPointOfInstantiation(PointOfInstantiation);
4112 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4113 L->InstantiationRequested(this);
4114 }
4115 } else
4116 llvm_unreachable("Function cannot have a template specialization kind")::llvm::llvm_unreachable_internal("Function cannot have a template specialization kind"
, "clang/lib/AST/Decl.cpp", 4116)
;
4117}
4118
4119SourceLocation FunctionDecl::getPointOfInstantiation() const {
4120 if (FunctionTemplateSpecializationInfo *FTSInfo
4121 = TemplateOrSpecialization.dyn_cast<
4122 FunctionTemplateSpecializationInfo*>())
4123 return FTSInfo->getPointOfInstantiation();
4124 if (MemberSpecializationInfo *MSInfo =
4125 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4126 return MSInfo->getPointOfInstantiation();
4127
4128 return SourceLocation();
4129}
4130
4131bool FunctionDecl::isOutOfLine() const {
4132 if (Decl::isOutOfLine())
4133 return true;
4134
4135 // If this function was instantiated from a member function of a
4136 // class template, check whether that member function was defined out-of-line.
4137 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4138 const FunctionDecl *Definition;
4139 if (FD->hasBody(Definition))
4140 return Definition->isOutOfLine();
4141 }
4142
4143 // If this function was instantiated from a function template,
4144 // check whether that function template was defined out-of-line.
4145 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4146 const FunctionDecl *Definition;
4147 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4148 return Definition->isOutOfLine();
4149 }
4150
4151 return false;
4152}
4153
4154SourceRange FunctionDecl::getSourceRange() const {
4155 return SourceRange(getOuterLocStart(), EndRangeLoc);
4156}
4157
4158unsigned FunctionDecl::getMemoryFunctionKind() const {
4159 IdentifierInfo *FnInfo = getIdentifier();
4160
4161 if (!FnInfo)
4162 return 0;
4163
4164 // Builtin handling.
4165 switch (getBuiltinID()) {
4166 case Builtin::BI__builtin_memset:
4167 case Builtin::BI__builtin___memset_chk:
4168 case Builtin::BImemset:
4169 return Builtin::BImemset;
4170
4171 case Builtin::BI__builtin_memcpy:
4172 case Builtin::BI__builtin___memcpy_chk:
4173 case Builtin::BImemcpy:
4174 return Builtin::BImemcpy;
4175
4176 case Builtin::BI__builtin_mempcpy:
4177 case Builtin::BI__builtin___mempcpy_chk:
4178 case Builtin::BImempcpy:
4179 return Builtin::BImempcpy;
4180
4181 case Builtin::BI__builtin_memmove:
4182 case Builtin::BI__builtin___memmove_chk:
4183 case Builtin::BImemmove:
4184 return Builtin::BImemmove;
4185
4186// case Builtin::BIstrlcpy:
4187// case Builtin::BI__builtin___strlcpy_chk:
4188// return Builtin::BIstrlcpy;
4189
4190// case Builtin::BIstrlcat:
4191// case Builtin::BI__builtin___strlcat_chk:
4192// return Builtin::BIstrlcat;
4193
4194 case Builtin::BI__builtin_memcmp:
4195 case Builtin::BImemcmp:
4196 return Builtin::BImemcmp;
4197
4198 case Builtin::BI__builtin_bcmp:
4199 case Builtin::BIbcmp:
4200 return Builtin::BIbcmp;
4201
4202 case Builtin::BI__builtin_strncpy:
4203 case Builtin::BI__builtin___strncpy_chk:
4204 case Builtin::BIstrncpy:
4205 return Builtin::BIstrncpy;
4206
4207 case Builtin::BI__builtin_strncmp:
4208 case Builtin::BIstrncmp:
4209 return Builtin::BIstrncmp;
4210
4211 case Builtin::BI__builtin_strncasecmp:
4212 case Builtin::BIstrncasecmp:
4213 return Builtin::BIstrncasecmp;
4214
4215 case Builtin::BI__builtin_strncat:
4216 case Builtin::BI__builtin___strncat_chk:
4217 case Builtin::BIstrncat:
4218 return Builtin::BIstrncat;
4219
4220 case Builtin::BI__builtin_strndup:
4221 case Builtin::BIstrndup:
4222 return Builtin::BIstrndup;
4223
4224 case Builtin::BI__builtin_strlen:
4225 case Builtin::BIstrlen:
4226 return Builtin::BIstrlen;
4227
4228 case Builtin::BI__builtin_bzero:
4229 case Builtin::BIbzero:
4230 return Builtin::BIbzero;
4231
4232 case Builtin::BIfree:
4233 return Builtin::BIfree;
4234
4235 default:
4236 if (isExternC()) {
4237 if (FnInfo->isStr("memset"))
4238 return Builtin::BImemset;
4239 if (FnInfo->isStr("memcpy"))
4240 return Builtin::BImemcpy;
4241 if (FnInfo->isStr("mempcpy"))
4242 return Builtin::BImempcpy;
4243 if (FnInfo->isStr("memmove"))
4244 return Builtin::BImemmove;
4245 if (FnInfo->isStr("memcmp"))
4246 return Builtin::BImemcmp;
4247 if (FnInfo->isStr("bcmp"))
4248 return Builtin::BIbcmp;
4249 if (FnInfo->isStr("strncpy"))
4250 return Builtin::BIstrncpy;
4251 if (FnInfo->isStr("strncmp"))
4252 return Builtin::BIstrncmp;
4253 if (FnInfo->isStr("strncasecmp"))
4254 return Builtin::BIstrncasecmp;
4255 if (FnInfo->isStr("strncat"))
4256 return Builtin::BIstrncat;
4257 if (FnInfo->isStr("strndup"))
4258 return Builtin::BIstrndup;
4259 if (FnInfo->isStr("strlen"))
4260 return Builtin::BIstrlen;
4261 if (FnInfo->isStr("bzero"))
4262 return Builtin::BIbzero;
4263 } else if (isInStdNamespace()) {
4264 if (FnInfo->isStr("free"))
4265 return Builtin::BIfree;
4266 }
4267 break;
4268 }
4269 return 0;
4270}
4271
4272unsigned FunctionDecl::getODRHash() const {
4273 assert(hasODRHash())(static_cast <bool> (hasODRHash()) ? void (0) : __assert_fail
("hasODRHash()", "clang/lib/AST/Decl.cpp", 4273, __extension__
__PRETTY_FUNCTION__))
;
4274 return ODRHash;
4275}
4276
4277unsigned FunctionDecl::getODRHash() {
4278 if (hasODRHash())
4279 return ODRHash;
4280
4281 if (auto *FT = getInstantiatedFromMemberFunction()) {
4282 setHasODRHash(true);
4283 ODRHash = FT->getODRHash();
4284 return ODRHash;
4285 }
4286
4287 class ODRHash Hash;
4288 Hash.AddFunctionDecl(this);
4289 setHasODRHash(true);
4290 ODRHash = Hash.CalculateHash();
4291 return ODRHash;
4292}
4293
4294//===----------------------------------------------------------------------===//
4295// FieldDecl Implementation
4296//===----------------------------------------------------------------------===//
4297
4298FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4299 SourceLocation StartLoc, SourceLocation IdLoc,
4300 IdentifierInfo *Id, QualType T,
4301 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4302 InClassInitStyle InitStyle) {
4303 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4304 BW, Mutable, InitStyle);
4305}
4306
4307FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4308 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4309 SourceLocation(), nullptr, QualType(), nullptr,
4310 nullptr, false, ICIS_NoInit);
4311}
4312
4313bool FieldDecl::isAnonymousStructOrUnion() const {
4314 if (!isImplicit() || getDeclName())
4315 return false;
4316
4317 if (const auto *Record = getType()->getAs<RecordType>())
4318 return Record->getDecl()->isAnonymousStructOrUnion();
4319
4320 return false;
4321}
4322
4323unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4324 assert(isBitField() && "not a bitfield")(static_cast <bool> (isBitField() && "not a bitfield"
) ? void (0) : __assert_fail ("isBitField() && \"not a bitfield\""
, "clang/lib/AST/Decl.cpp", 4324, __extension__ __PRETTY_FUNCTION__
))
;
4325 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4326}
4327
4328bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4329 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4330 getBitWidthValue(Ctx) == 0;
4331}
4332
4333bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4334 if (isZeroLengthBitField(Ctx))
4335 return true;
4336
4337 // C++2a [intro.object]p7:
4338 // An object has nonzero size if it
4339 // -- is not a potentially-overlapping subobject, or
4340 if (!hasAttr<NoUniqueAddressAttr>())
4341 return false;
4342
4343 // -- is not of class type, or
4344 const auto *RT = getType()->getAs<RecordType>();
4345 if (!RT)
4346 return false;
4347 const RecordDecl *RD = RT->getDecl()->getDefinition();
4348 if (!RD) {
4349 assert(isInvalidDecl() && "valid field has incomplete type")(static_cast <bool> (isInvalidDecl() && "valid field has incomplete type"
) ? void (0) : __assert_fail ("isInvalidDecl() && \"valid field has incomplete type\""
, "clang/lib/AST/Decl.cpp", 4349, __extension__ __PRETTY_FUNCTION__
))
;
4350 return false;
4351 }
4352
4353 // -- [has] virtual member functions or virtual base classes, or
4354 // -- has subobjects of nonzero size or bit-fields of nonzero length
4355 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4356 if (!CXXRD->isEmpty())
4357 return false;
4358
4359 // Otherwise, [...] the circumstances under which the object has zero size
4360 // are implementation-defined.
4361 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4362 // ABI will do.
4363 return true;
4364}
4365
4366bool FieldDecl::isPotentiallyOverlapping() const {
4367 return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4368}
4369
4370unsigned FieldDecl::getFieldIndex() const {
4371 const FieldDecl *Canonical = getCanonicalDecl();
4372 if (Canonical != this)
4373 return Canonical->getFieldIndex();
4374
4375 if (CachedFieldIndex) return CachedFieldIndex - 1;
4376
4377 unsigned Index = 0;
4378 const RecordDecl *RD = getParent()->getDefinition();
4379 assert(RD && "requested index for field of struct with no definition")(static_cast <bool> (RD && "requested index for field of struct with no definition"
) ? void (0) : __assert_fail ("RD && \"requested index for field of struct with no definition\""
, "clang/lib/AST/Decl.cpp", 4379, __extension__ __PRETTY_FUNCTION__
))
;
4380
4381 for (auto *Field : RD->fields()) {
4382 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4383 ++Index;
4384 }
4385
4386 assert(CachedFieldIndex && "failed to find field in parent")(static_cast <bool> (CachedFieldIndex && "failed to find field in parent"
) ? void (0) : __assert_fail ("CachedFieldIndex && \"failed to find field in parent\""
, "clang/lib/AST/Decl.cpp", 4386, __extension__ __PRETTY_FUNCTION__
))
;
4387 return CachedFieldIndex - 1;
4388}
4389
4390SourceRange FieldDecl::getSourceRange() const {
4391 const Expr *FinalExpr = getInClassInitializer();
4392 if (!FinalExpr)
4393 FinalExpr = getBitWidth();
4394 if (FinalExpr)
4395 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4396 return DeclaratorDecl::getSourceRange();
4397}
4398
4399void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4400 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&(static_cast <bool> ((getParent()->isLambda() || getParent
()->isCapturedRecord()) && "capturing type in non-lambda or captured record."
) ? void (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "clang/lib/AST/Decl.cpp", 4401, __extension__ __PRETTY_FUNCTION__
))
4401 "capturing type in non-lambda or captured record.")(static_cast <bool> ((getParent()->isLambda() || getParent
()->isCapturedRecord()) && "capturing type in non-lambda or captured record."
) ? void (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "clang/lib/AST/Decl.cpp", 4401, __extension__ __PRETTY_FUNCTION__
))
;
4402 assert(InitStorage.getInt() == ISK_NoInit &&(static_cast <bool> (InitStorage.getInt() == ISK_NoInit
&& InitStorage.getPointer() == nullptr && "bit width, initializer or captured type already set"
) ? void (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "clang/lib/AST/Decl.cpp", 4404, __extension__ __PRETTY_FUNCTION__
))
4403 InitStorage.getPointer() == nullptr &&(static_cast <bool> (InitStorage.getInt() == ISK_NoInit
&& InitStorage.getPointer() == nullptr && "bit width, initializer or captured type already set"
) ? void (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "clang/lib/AST/Decl.cpp", 4404, __extension__ __PRETTY_FUNCTION__
))
4404 "bit width, initializer or captured type already set")(static_cast <bool> (InitStorage.getInt() == ISK_NoInit
&& InitStorage.getPointer() == nullptr && "bit width, initializer or captured type already set"
) ? void (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "clang/lib/AST/Decl.cpp", 4404, __extension__ __PRETTY_FUNCTION__
))
;
4405 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4406 ISK_CapturedVLAType);
4407}
4408
4409//===----------------------------------------------------------------------===//
4410// TagDecl Implementation
4411//===----------------------------------------------------------------------===//
4412
4413TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4414 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4415 SourceLocation StartL)
4416 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4417 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4418 assert((DK != Enum || TK == TTK_Enum) &&(static_cast <bool> ((DK != Enum || TK == TTK_Enum) &&
"EnumDecl not matched with TTK_Enum") ? void (0) : __assert_fail
("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "clang/lib/AST/Decl.cpp", 4419, __extension__ __PRETTY_FUNCTION__
))
4419 "EnumDecl not matched with TTK_Enum")(static_cast <bool> ((DK != Enum || TK == TTK_Enum) &&
"EnumDecl not matched with TTK_Enum") ? void (0) : __assert_fail
("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "clang/lib/AST/Decl.cpp", 4419, __extension__ __PRETTY_FUNCTION__
))
;
4420 setPreviousDecl(PrevDecl);
4421 setTagKind(TK);
4422 setCompleteDefinition(false);
4423 setBeingDefined(false);
4424 setEmbeddedInDeclarator(false);
4425 setFreeStanding(false);
4426 setCompleteDefinitionRequired(false);
4427 TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4428}
4429
4430SourceLocation TagDecl::getOuterLocStart() const {
4431 return getTemplateOrInnerLocStart(this);
4432}
4433
4434SourceRange TagDecl::getSourceRange() const {
4435 SourceLocation RBraceLoc = BraceRange.getEnd();
4436 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4437 return SourceRange(getOuterLocStart(), E);
4438}
4439
4440TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4441
4442void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4443 TypedefNameDeclOrQualifier = TDD;
4444 if (const Type *T = getTypeForDecl()) {
4445 (void)T;
4446 assert(T->isLinkageValid())(static_cast <bool> (T->isLinkageValid()) ? void (0)
: __assert_fail ("T->isLinkageValid()", "clang/lib/AST/Decl.cpp"
, 4446, __extension__ __PRETTY_FUNCTION__))
;
4447 }
4448 assert(isLinkageValid())(static_cast <bool> (isLinkageValid()) ? void (0) : __assert_fail
("isLinkageValid()", "clang/lib/AST/Decl.cpp", 4448, __extension__
__PRETTY_FUNCTION__))
;
4449}
4450
4451void TagDecl::startDefinition() {
4452 setBeingDefined(true);
4453
4454 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4455 struct CXXRecordDecl::DefinitionData *Data =
4456 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4457 for (auto *I : redecls())
4458 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4459 }
4460}
4461
4462void TagDecl::completeDefinition() {
4463 assert((!isa<CXXRecordDecl>(this) ||(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "clang/lib/AST/Decl.cpp", 4465, __extension__ __PRETTY_FUNCTION__
))
4464 cast<CXXRecordDecl>(this)->hasDefinition()) &&(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "clang/lib/AST/Decl.cpp", 4465, __extension__ __PRETTY_FUNCTION__
))
4465 "definition completed but not started")(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "clang/lib/AST/Decl.cpp", 4465, __extension__ __PRETTY_FUNCTION__
))
;
4466
4467 setCompleteDefinition(true);
4468 setBeingDefined(false);
4469
4470 if (ASTMutationListener *L = getASTMutationListener())
4471 L->CompletedTagDefinition(this);
4472}
4473
4474TagDecl *TagDecl::getDefinition() const {
4475 if (isCompleteDefinition())
4476 return const_cast<TagDecl *>(this);
4477
4478 // If it's possible for us to have an out-of-date definition, check now.
4479 if (mayHaveOutOfDateDef()) {
4480 if (IdentifierInfo *II = getIdentifier()) {
4481 if (II->isOutOfDate()) {
4482 updateOutOfDate(*II);
4483 }
4484 }
4485 }
4486
4487 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4488 return CXXRD->getDefinition();
4489
4490 for (auto *R : redecls())
4491 if (R->isCompleteDefinition())
4492 return R;
4493
4494 return nullptr;
4495}
4496
4497void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4498 if (QualifierLoc) {
4499 // Make sure the extended qualifier info is allocated.
4500 if (!hasExtInfo())
4501 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4502 // Set qualifier info.
4503 getExtInfo()->QualifierLoc = QualifierLoc;
4504 } else {
4505 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4506 if (hasExtInfo()) {
4507 if (getExtInfo()->NumTemplParamLists == 0) {
4508 getASTContext().Deallocate(getExtInfo());
4509 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4510 }
4511 else
4512 getExtInfo()->QualifierLoc = QualifierLoc;
4513 }
4514 }
4515}
4516
4517void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4518 DeclarationName Name = getDeclName();
4519 // If the name is supposed to have an identifier but does not have one, then
4520 // the tag is anonymous and we should print it differently.
4521 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4522 // If the caller wanted to print a qualified name, they've already printed
4523 // the scope. And if the caller doesn't want that, the scope information
4524 // is already printed as part of the type.
4525 PrintingPolicy Copy(Policy);
4526 Copy.SuppressScope = true;
4527 getASTContext().getTagDeclType(this).print(OS, Copy);
4528 return;
4529 }
4530 // Otherwise, do the normal printing.
4531 Name.print(OS, Policy);
4532}
4533
4534void TagDecl::setTemplateParameterListsInfo(
4535 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4536 assert(!TPLists.empty())(static_cast <bool> (!TPLists.empty()) ? void (0) : __assert_fail
("!TPLists.empty()", "clang/lib/AST/Decl.cpp", 4536, __extension__
__PRETTY_FUNCTION__))
;
4537 // Make sure the extended decl info is allocated.
4538 if (!hasExtInfo())
4539 // Allocate external info struct.
4540 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4541 // Set the template parameter lists info.
4542 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4543}
4544
4545//===----------------------------------------------------------------------===//
4546// EnumDecl Implementation
4547//===----------------------------------------------------------------------===//
4548
4549EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4550 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4551 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4552 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4553 assert(Scoped || !ScopedUsingClassTag)(static_cast <bool> (Scoped || !ScopedUsingClassTag) ? void
(0) : __assert_fail ("Scoped || !ScopedUsingClassTag", "clang/lib/AST/Decl.cpp"
, 4553, __extension__ __PRETTY_FUNCTION__))
;
4554 IntegerType = nullptr;
4555 setNumPositiveBits(0);
4556 setNumNegativeBits(0);
4557 setScoped(Scoped);
4558 setScopedUsingClassTag(ScopedUsingClassTag);
4559 setFixed(Fixed);
4560 setHasODRHash(false);
4561 ODRHash = 0;
4562}
4563
4564void EnumDecl::anchor() {}
4565
4566EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4567 SourceLocation StartLoc, SourceLocation IdLoc,
4568 IdentifierInfo *Id,
4569 EnumDecl *PrevDecl, bool IsScoped,
4570 bool IsScopedUsingClassTag, bool IsFixed) {
4571 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4572 IsScoped, IsScopedUsingClassTag, IsFixed);
4573 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4574 C.getTypeDeclType(Enum, PrevDecl);
4575 return Enum;
4576}
4577
4578EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4579 EnumDecl *Enum =
4580 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4581 nullptr, nullptr, false, false, false);
4582 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4583 return Enum;
4584}
4585
4586SourceRange EnumDecl::getIntegerTypeRange() const {
4587 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4588 return TI->getTypeLoc().getSourceRange();
4589 return SourceRange();
4590}
4591
4592void EnumDecl::completeDefinition(QualType NewType,
4593 QualType NewPromotionType,
4594 unsigned NumPositiveBits,
4595 unsigned NumNegativeBits) {
4596 assert(!isCompleteDefinition() && "Cannot redefine enums!")(static_cast <bool> (!isCompleteDefinition() &&
"Cannot redefine enums!") ? void (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine enums!\""
, "clang/lib/AST/Decl.cpp", 4596, __extension__ __PRETTY_FUNCTION__
))
;
4597 if (!IntegerType)
4598 IntegerType = NewType.getTypePtr();
4599 PromotionType = NewPromotionType;
4600 setNumPositiveBits(NumPositiveBits);
4601 setNumNegativeBits(NumNegativeBits);
4602 TagDecl::completeDefinition();
4603}
4604
4605bool EnumDecl::isClosed() const {
4606 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4607 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4608 return true;
4609}
4610
4611bool EnumDecl::isClosedFlag() const {
4612 return isClosed() && hasAttr<FlagEnumAttr>();
4613}
4614
4615bool EnumDecl::isClosedNonFlag() const {
4616 return isClosed() && !hasAttr<FlagEnumAttr>();
4617}
4618
4619TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4620 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4621 return MSI->getTemplateSpecializationKind();
4622
4623 return TSK_Undeclared;
4624}
4625
4626void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4627 SourceLocation PointOfInstantiation) {
4628 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4629 assert(MSI && "Not an instantiated member enumeration?")(static_cast <bool> (MSI && "Not an instantiated member enumeration?"
) ? void (0) : __assert_fail ("MSI && \"Not an instantiated member enumeration?\""
, "clang/lib/AST/Decl.cpp", 4629, __extension__ __PRETTY_FUNCTION__
))
;
4630 MSI->setTemplateSpecializationKind(TSK);
4631 if (TSK != TSK_ExplicitSpecialization &&
4632 PointOfInstantiation.isValid() &&
4633 MSI->getPointOfInstantiation().isInvalid())
4634 MSI->setPointOfInstantiation(PointOfInstantiation);
4635}
4636
4637EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4638 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4639 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4640 EnumDecl *ED = getInstantiatedFromMemberEnum();
4641 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4642 ED = NewED;
4643 return getDefinitionOrSelf(ED);
4644 }
4645 }
4646
4647 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&(static_cast <bool> (!isTemplateInstantiation(getTemplateSpecializationKind
()) && "couldn't find pattern for enum instantiation"
) ? void (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "clang/lib/AST/Decl.cpp", 4648, __extension__ __PRETTY_FUNCTION__
))
4648 "couldn't find pattern for enum instantiation")(static_cast <bool> (!isTemplateInstantiation(getTemplateSpecializationKind
()) && "couldn't find pattern for enum instantiation"
) ? void (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "clang/lib/AST/Decl.cpp", 4648, __extension__ __PRETTY_FUNCTION__
))
;
4649 return nullptr;
4650}
4651
4652EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4653 if (SpecializationInfo)
4654 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4655
4656 return nullptr;
4657}
4658
4659void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4660 TemplateSpecializationKind TSK) {
4661 assert(!SpecializationInfo && "Member enum is already a specialization")(static_cast <bool> (!SpecializationInfo && "Member enum is already a specialization"
) ? void (0) : __assert_fail ("!SpecializationInfo && \"Member enum is already a specialization\""
, "clang/lib/AST/Decl.cpp", 4661, __extension__ __PRETTY_FUNCTION__
))
;
4662 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4663}
4664
4665unsigned EnumDecl::getODRHash() {
4666 if (hasODRHash())
4667 return ODRHash;
4668
4669 class ODRHash Hash;
4670 Hash.AddEnumDecl(this);
4671 setHasODRHash(true);
4672 ODRHash = Hash.CalculateHash();
4673 return ODRHash;
4674}
4675
4676SourceRange EnumDecl::getSourceRange() const {
4677 auto Res = TagDecl::getSourceRange();
4678 // Set end-point to enum-base, e.g. enum foo : ^bar
4679 if (auto *TSI = getIntegerTypeSourceInfo()) {
4680 // TagDecl doesn't know about the enum base.
4681 if (!getBraceRange().getEnd().isValid())
4682 Res.setEnd(TSI->getTypeLoc().getEndLoc());
4683 }
4684 return Res;
4685}
4686
4687void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4688 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4689 unsigned NumNegativeBits = getNumNegativeBits();
4690 unsigned NumPositiveBits = getNumPositiveBits();
4691
4692 if (NumNegativeBits) {
4693 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
4694 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
4695 Min = -Max;
4696 } else {
4697 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
4698 Min = llvm::APInt::getZero(Bitwidth);
4699 }
4700}
4701
4702//===----------------------------------------------------------------------===//
4703// RecordDecl Implementation
4704//===----------------------------------------------------------------------===//
4705
4706RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4707 DeclContext *DC, SourceLocation StartLoc,
4708 SourceLocation IdLoc, IdentifierInfo *Id,
4709 RecordDecl *PrevDecl)
4710 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4711 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!")(static_cast <bool> (classof(static_cast<Decl *>(
this)) && "Invalid Kind!") ? void (0) : __assert_fail
("classof(static_cast<Decl *>(this)) && \"Invalid Kind!\""
, "clang/lib/AST/Decl.cpp", 4711, __extension__ __PRETTY_FUNCTION__
))
;
4712 setHasFlexibleArrayMember(false);
4713 setAnonymousStructOrUnion(false);
4714 setHasObjectMember(false);
4715 setHasVolatileMember(false);
4716 setHasLoadedFieldsFromExternalStorage(false);
4717 setNonTrivialToPrimitiveDefaultInitialize(false);
4718 setNonTrivialToPrimitiveCopy(false);
4719 setNonTrivialToPrimitiveDestroy(false);
4720 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4721 setHasNonTrivialToPrimitiveDestructCUnion(false);
4722 setHasNonTrivialToPrimitiveCopyCUnion(false);
4723 setParamDestroyedInCallee(false);
4724 setArgPassingRestrictions(APK_CanPassInRegs);
4725 setIsRandomized(false);
4726 setODRHash(0);
4727}
4728
4729RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4730 SourceLocation StartLoc, SourceLocation IdLoc,
4731 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4732 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4733 StartLoc, IdLoc, Id, PrevDecl);
4734 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4735
4736 C.getTypeDeclType(R, PrevDecl);
4737 return R;
4738}
4739
4740RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4741 RecordDecl *R =
4742 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4743 SourceLocation(), nullptr, nullptr);
4744 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4745 return R;
4746}
4747
4748bool RecordDecl::isInjectedClassName() const {
4749 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4750 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4751}
4752
4753bool RecordDecl::isLambda() const {
4754 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4755 return RD->isLambda();
4756 return false;
4757}
4758
4759bool RecordDecl::isCapturedRecord() const {
4760 return hasAttr<CapturedRecordAttr>();
4761}
4762
4763void RecordDecl::setCapturedRecord() {
4764 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4765}
4766
4767bool RecordDecl::isOrContainsUnion() const {
4768 if (isUnion())
4769 return true;
4770
4771 if (const RecordDecl *Def = getDefinition()) {
4772 for (const FieldDecl *FD : Def->fields()) {
4773 const RecordType *RT = FD->getType()->getAs<RecordType>();
4774 if (RT && RT->getDecl()->isOrContainsUnion())
4775 return true;
4776 }
4777 }
4778
4779 return false;
4780}
4781
4782RecordDecl::field_iterator RecordDecl::field_begin() const {
4783 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4784 LoadFieldsFromExternalStorage();
4785 // This is necessary for correctness for C++ with modules.
4786 // FIXME: Come up with a test case that breaks without definition.
4787 if (RecordDecl *D = getDefinition(); D && D != this)
4788 return D->field_begin();
4789 return field_iterator(decl_iterator(FirstDecl));
4790}
4791
4792/// completeDefinition - Notes that the definition of this type is now
4793/// complete.
4794void RecordDecl::completeDefinition() {
4795 assert(!isCompleteDefinition() && "Cannot redefine record!")(static_cast <bool> (!isCompleteDefinition() &&
"Cannot redefine record!") ? void (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine record!\""
, "clang/lib/AST/Decl.cpp", 4795, __extension__ __PRETTY_FUNCTION__
))
;
4796 TagDecl::completeDefinition();
4797
4798 ASTContext &Ctx = getASTContext();
4799
4800 // Layouts are dumped when computed, so if we are dumping for all complete
4801 // types, we need to force usage to get types that wouldn't be used elsewhere.
4802 if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4803 (void)Ctx.getASTRecordLayout(this);
4804}
4805
4806/// isMsStruct - Get whether or not this record uses ms_struct layout.
4807/// This which can be turned on with an attribute, pragma, or the
4808/// -mms-bitfields command-line option.
4809bool RecordDecl::isMsStruct(const ASTContext &C) const {
4810 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4811}
4812
4813void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
4814 std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
4815 LastDecl->NextInContextAndBits.setPointer(nullptr);
4816 setIsRandomized(true);
4817}
4818
4819void RecordDecl::LoadFieldsFromExternalStorage() const {
4820 ExternalASTSource *Source = getASTContext().getExternalSource();
4821 assert(hasExternalLexicalStorage() && Source && "No external storage?")(static_cast <bool> (hasExternalLexicalStorage() &&
Source && "No external storage?") ? void (0) : __assert_fail
("hasExternalLexicalStorage() && Source && \"No external storage?\""
, "clang/lib/AST/Decl.cpp", 4821, __extension__ __PRETTY_FUNCTION__
))
;
4822
4823 // Notify that we have a RecordDecl doing some initialization.
4824 ExternalASTSource::Deserializing TheFields(Source);
4825
4826 SmallVector<Decl*, 64> Decls;
4827 setHasLoadedFieldsFromExternalStorage(true);
4828 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4829 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4830 }, Decls);
4831
4832#ifndef NDEBUG
4833 // Check that all decls we got were FieldDecls.
4834 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4835 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]))(static_cast <bool> (isa<FieldDecl>(Decls[i]) || isa
<IndirectFieldDecl>(Decls[i])) ? void (0) : __assert_fail
("isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])"
, "clang/lib/AST/Decl.cpp", 4835, __extension__ __PRETTY_FUNCTION__
))
;
4836#endif
4837
4838 if (Decls.empty())
4839 return;
4840
4841 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4842 /*FieldsAlreadyLoaded=*/false);
4843}
4844
4845bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4846 ASTContext &Context = getASTContext();
4847 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4848 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4849 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4850 return false;
4851 const auto &NoSanitizeList = Context.getNoSanitizeList();
4852 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4853 // We may be able to relax some of these requirements.
4854 int ReasonToReject = -1;
4855 if (!CXXRD || CXXRD->isExternCContext())
4856 ReasonToReject = 0; // is not C++.
4857 else if (CXXRD->hasAttr<PackedAttr>())
4858 ReasonToReject = 1; // is packed.
4859 else if (CXXRD->isUnion())
4860 ReasonToReject = 2; // is a union.
4861 else if (CXXRD->isTriviallyCopyable())
4862 ReasonToReject = 3; // is trivially copyable.
4863 else if (CXXRD->hasTrivialDestructor())
4864 ReasonToReject = 4; // has trivial destructor.
4865 else if (CXXRD->isStandardLayout())
4866 ReasonToReject = 5; // is standard layout.
4867 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4868 "field-padding"))
4869 ReasonToReject = 6; // is in an excluded file.
4870 else if (NoSanitizeList.containsType(
4871 EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4872 ReasonToReject = 7; // The type is excluded.
4873
4874 if (EmitRemark) {
4875 if (ReasonToReject >= 0)
4876 Context.getDiagnostics().Report(
4877 getLocation(),
4878 diag::remark_sanitize_address_insert_extra_padding_rejected)
4879 << getQualifiedNameAsString() << ReasonToReject;
4880 else
4881 Context.getDiagnostics().Report(
4882 getLocation(),
4883 diag::remark_sanitize_address_insert_extra_padding_accepted)
4884 << getQualifiedNameAsString();
4885 }
4886 return ReasonToReject < 0;
4887}
4888
4889const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4890 for (const auto *I : fields()) {
4891 if (I->getIdentifier())
4892 return I;
4893
4894 if (const auto *RT = I->getType()->getAs<RecordType>())
4895 if (const FieldDecl *NamedDataMember =
4896 RT->getDecl()->findFirstNamedDataMember())
4897 return NamedDataMember;
4898 }
4899
4900 // We didn't find a named data member.
4901 return nullptr;
4902}
4903
4904unsigned RecordDecl::getODRHash() {
4905 if (hasODRHash())
4906 return RecordDeclBits.ODRHash;
4907
4908 // Only calculate hash on first call of getODRHash per record.
4909 ODRHash Hash;
4910 Hash.AddRecordDecl(this);
4911 // For RecordDecl the ODRHash is stored in the remaining 26
4912 // bit of RecordDeclBits, adjust the hash to accomodate.
4913 setODRHash(Hash.CalculateHash() >> 6);
4914 return RecordDeclBits.ODRHash;
4915}
4916
4917//===----------------------------------------------------------------------===//
4918// BlockDecl Implementation
4919//===----------------------------------------------------------------------===//
4920
4921BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4922 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4923 setIsVariadic(false);
4924 setCapturesCXXThis(false);
4925 setBlockMissingReturnType(true);
4926 setIsConversionFromLambda(false);
4927 setDoesNotEscape(false);
4928 setCanAvoidCopyToHeap(false);
4929}
4930
4931void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4932 assert(!ParamInfo && "Already has param info!")(static_cast <bool> (!ParamInfo && "Already has param info!"
) ? void (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "clang/lib/AST/Decl.cpp", 4932, __extension__ __PRETTY_FUNCTION__
))
;
4933
4934 // Zero params -> null pointer.
4935 if (!NewParamInfo.empty()) {
4936 NumParams = NewParamInfo.size();
4937 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4938 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4939 }
4940}
4941
4942void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4943 bool CapturesCXXThis) {
4944 this->setCapturesCXXThis(CapturesCXXThis);
4945 this->NumCaptures = Captures.size();
4946
4947 if (Captures.empty()) {
4948 this->Captures = nullptr;
4949 return;
4950 }
4951
4952 this->Captures = Captures.copy(Context).data();
4953}
4954
4955bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4956 for (const auto &I : captures())
4957 // Only auto vars can be captured, so no redeclaration worries.
4958 if (I.getVariable() == variable)
4959 return true;
4960
4961 return false;
4962}
4963
4964SourceRange BlockDecl::getSourceRange() const {
4965 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4966}
4967
4968//===----------------------------------------------------------------------===//
4969// Other Decl Allocation/Deallocation Method Implementations
4970//===----------------------------------------------------------------------===//
4971
4972void TranslationUnitDecl::anchor() {}
4973
4974TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4975 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4976}
4977
4978void PragmaCommentDecl::anchor() {}
4979
4980PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4981 TranslationUnitDecl *DC,
4982 SourceLocation CommentLoc,
4983 PragmaMSCommentKind CommentKind,
4984 StringRef Arg) {
4985 PragmaCommentDecl *PCD =
4986 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4987 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4988 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4989 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4990 return PCD;
4991}
4992
4993PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4994 unsigned ID,
4995 unsigned ArgSize) {
4996 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4997 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4998}
4999
5000void PragmaDetectMismatchDecl::anchor() {}
5001
5002PragmaDetectMismatchDecl *
5003PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
5004 SourceLocation Loc, StringRef Name,
5005 StringRef Value) {
5006 size_t ValueStart = Name.size() + 1;
5007 PragmaDetectMismatchDecl *PDMD =
5008 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
5009 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
5010 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
5011 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
5012 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
5013 Value.size());
5014 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
5015 return PDMD;
5016}
5017
5018PragmaDetectMismatchDecl *
5019PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5020 unsigned NameValueSize) {
5021 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
5022 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
5023}
5024
5025void ExternCContextDecl::anchor() {}
5026
5027ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
5028 TranslationUnitDecl *DC) {
5029 return new (C, DC) ExternCContextDecl(DC);
5030}
5031
5032void LabelDecl::anchor() {}
5033
5034LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5035 SourceLocation IdentL, IdentifierInfo *II) {
5036 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5037}
5038
5039LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5040 SourceLocation IdentL, IdentifierInfo *II,
5041 SourceLocation GnuLabelL) {
5042 assert(GnuLabelL != IdentL && "Use this only for GNU local labels")(static_cast <bool> (GnuLabelL != IdentL && "Use this only for GNU local labels"
) ? void (0) : __assert_fail ("GnuLabelL != IdentL && \"Use this only for GNU local labels\""
, "clang/lib/AST/Decl.cpp", 5042, __extension__ __PRETTY_FUNCTION__
))
;
5043 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5044}
5045
5046LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5047 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5048 SourceLocation());
5049}
5050
5051void LabelDecl::setMSAsmLabel(StringRef Name) {
5052char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5053 memcpy(Buffer, Name.data(), Name.size());
5054 Buffer[Name.size()] = '\0';
5055 MSAsmName = Buffer;
5056}
5057
5058void ValueDecl::anchor() {}
5059
5060bool ValueDecl::isWeak() const {
5061 auto *MostRecent = getMostRecentDecl();
5062 return MostRecent->hasAttr<WeakAttr>() ||
5063 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5064}
5065
5066bool ValueDecl::isInitCapture() const {
5067 if (auto *Var = llvm::dyn_cast<VarDecl>(this))
5068 return Var->isInitCapture();
5069 return false;
5070}
5071
5072void ImplicitParamDecl::anchor() {}
5073
5074ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
5075 SourceLocation IdLoc,
5076 IdentifierInfo *Id, QualType Type,
5077 ImplicitParamKind ParamKind) {
5078 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5079}
5080
5081ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
5082 ImplicitParamKind ParamKind) {
5083 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5084}
5085
5086ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
5087 unsigned ID) {
5088 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
5089}
5090
5091FunctionDecl *
5092FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
5093 const DeclarationNameInfo &NameInfo, QualType T,
5094 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5095 bool isInlineSpecified, bool hasWrittenPrototype,
5096 ConstexprSpecKind ConstexprKind,
5097 Expr *TrailingRequiresClause) {
5098 FunctionDecl *New = new (C, DC) FunctionDecl(
5099 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5100 isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5101 New->setHasWrittenPrototype(hasWrittenPrototype);
5102 return New;
5103}
5104
5105FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5106 return new (C, ID) FunctionDecl(
5107 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
5108 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
5109}
5110
5111BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5112 return new (C, DC) BlockDecl(DC, L);
5113}
5114
5115BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5116 return new (C, ID) BlockDecl(nullptr, SourceLocation());
5117}
5118
5119CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5120 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5121 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5122
5123CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5124 unsigned NumParams) {
5125 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5126 CapturedDecl(DC, NumParams);
5127}
5128
5129CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5130 unsigned NumParams) {
5131 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5132 CapturedDecl(nullptr, NumParams);
5133}
5134
5135Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5136void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5137
5138bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5139void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5140
5141EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5142 SourceLocation L,
5143 IdentifierInfo *Id, QualType T,
5144 Expr *E, const llvm::APSInt &V) {
5145 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
5146}
5147
5148EnumConstantDecl *
5149EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5150 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
5151 QualType(), nullptr, llvm::APSInt());
5152}
5153
5154void IndirectFieldDecl::anchor() {}
5155
5156IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5157 SourceLocation L, DeclarationName N,
5158 QualType T,
5159 MutableArrayRef<NamedDecl *> CH)
5160 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5161 ChainingSize(CH.size()) {
5162 // In C++, indirect field declarations conflict with tag declarations in the
5163 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5164 if (C.getLangOpts().CPlusPlus)
5165 IdentifierNamespace |= IDNS_Tag;
5166}
5167
5168IndirectFieldDecl *
5169IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5170 IdentifierInfo *Id, QualType T,
5171 llvm::MutableArrayRef<NamedDecl *> CH) {
5172 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5173}
5174
5175IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5176 unsigned ID) {
5177 return new (C, ID)
5178 IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(),
5179 QualType(), std::nullopt);
5180}
5181
5182SourceRange EnumConstantDecl::getSourceRange() const {
5183 SourceLocation End = getLocation();
5184 if (Init)
5185 End = Init->getEndLoc();
5186 return SourceRange(getLocation(), End);
5187}
5188
5189void TypeDecl::anchor() {}
5190
5191TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5192 SourceLocation StartLoc, SourceLocation IdLoc,
5193 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
5194 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5195}
5196
5197void TypedefNameDecl::anchor() {}
5198
5199TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5200 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5201 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5202 auto *ThisTypedef = this;
5203 if (AnyRedecl && OwningTypedef) {
5204 OwningTypedef = OwningTypedef->getCanonicalDecl();
5205 ThisTypedef = ThisTypedef->getCanonicalDecl();
5206 }
5207 if (OwningTypedef == ThisTypedef)
5208 return TT->getDecl();
5209 }
5210
5211 return nullptr;
5212}
5213
5214bool TypedefNameDecl::isTransparentTagSlow() const {
5215 auto determineIsTransparent = [&]() {
5216 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5217 if (auto *TD = TT->getDecl()) {
5218 if (TD->getName() != getName())
5219 return false;
5220 SourceLocation TTLoc = getLocation();
5221 SourceLocation TDLoc = TD->getLocation();
5222 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5223 return false;
5224 SourceManager &SM = getASTContext().getSourceManager();
5225 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5226 }
5227 }
5228 return false;
5229 };
5230
5231 bool isTransparent = determineIsTransparent();
5232 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5233 return isTransparent;
5234}
5235
5236TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5237 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5238 nullptr, nullptr);
5239}
5240
5241TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5242 SourceLocation StartLoc,
5243 SourceLocation IdLoc, IdentifierInfo *Id,
5244 TypeSourceInfo *TInfo) {
5245 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5246}
5247
5248TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5249 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5250 SourceLocation(), nullptr, nullptr);
5251}
5252
5253SourceRange TypedefDecl::getSourceRange() const {
5254 SourceLocation RangeEnd = getLocation();
5255 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5256 if (typeIsPostfix(TInfo->getType()))
5257 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5258 }
5259 return SourceRange(getBeginLoc(), RangeEnd);
5260}
5261
5262SourceRange TypeAliasDecl::getSourceRange() const {
5263 SourceLocation RangeEnd = getBeginLoc();
5264 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5265 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5266 return SourceRange(getBeginLoc(), RangeEnd);
5267}
5268
5269void FileScopeAsmDecl::anchor() {}
5270
5271FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5272 StringLiteral *Str,
5273 SourceLocation AsmLoc,
5274 SourceLocation RParenLoc) {
5275 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5276}
5277
5278FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5279 unsigned ID) {
5280 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5281 SourceLocation());
5282}
5283
5284void TopLevelStmtDecl::anchor() {}
5285
5286TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) {
5287 assert(Statement)(static_cast <bool> (Statement) ? void (0) : __assert_fail
("Statement", "clang/lib/AST/Decl.cpp", 5287, __extension__ __PRETTY_FUNCTION__
))
;
5288 assert(C.getLangOpts().IncrementalExtensions &&(static_cast <bool> (C.getLangOpts().IncrementalExtensions
&& "Must be used only in incremental mode") ? void (
0) : __assert_fail ("C.getLangOpts().IncrementalExtensions && \"Must be used only in incremental mode\""
, "clang/lib/AST/Decl.cpp", 5289, __extension__ __PRETTY_FUNCTION__
))
5289 "Must be used only in incremental mode")(static_cast <bool> (C.getLangOpts().IncrementalExtensions
&& "Must be used only in incremental mode") ? void (
0) : __assert_fail ("C.getLangOpts().IncrementalExtensions && \"Must be used only in incremental mode\""
, "clang/lib/AST/Decl.cpp", 5289, __extension__ __PRETTY_FUNCTION__
))
;
5290
5291 SourceLocation BeginLoc = Statement->getBeginLoc();
5292 DeclContext *DC = C.getTranslationUnitDecl();
5293
5294 return new (C, DC) TopLevelStmtDecl(DC, BeginLoc, Statement);
5295}
5296
5297TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C,
5298 unsigned ID) {
5299 return new (C, ID)
5300 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5301}
5302
5303SourceRange TopLevelStmtDecl::getSourceRange() const {
5304 return SourceRange(getLocation(), Statement->getEndLoc());
5305}
5306
5307void EmptyDecl::anchor() {}
5308
5309EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5310 return new (C, DC) EmptyDecl(DC, L);
5311}
5312
5313EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5314 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5315}
5316
5317HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5318 SourceLocation KwLoc, IdentifierInfo *ID,
5319 SourceLocation IDLoc, SourceLocation LBrace)
5320 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5321 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5322 IsCBuffer(CBuffer) {}
5323
5324HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C,
5325 DeclContext *LexicalParent, bool CBuffer,
5326 SourceLocation KwLoc, IdentifierInfo *ID,
5327 SourceLocation IDLoc,
5328 SourceLocation LBrace) {
5329 // For hlsl like this
5330 // cbuffer A {
5331 // cbuffer B {
5332 // }
5333 // }
5334 // compiler should treat it as
5335 // cbuffer A {
5336 // }
5337 // cbuffer B {
5338 // }
5339 // FIXME: support nested buffers if required for back-compat.
5340 DeclContext *DC = LexicalParent;
5341 HLSLBufferDecl *Result =
5342 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5343 return Result;
5344}
5345
5346HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5347 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5348 SourceLocation(), SourceLocation());
5349}
5350
5351//===----------------------------------------------------------------------===//
5352// ImportDecl Implementation
5353//===----------------------------------------------------------------------===//
5354
5355/// Retrieve the number of module identifiers needed to name the given
5356/// module.
5357static unsigned getNumModuleIdentifiers(Module *Mod) {
5358 unsigned Result = 1;
5359 while (Mod->Parent) {
5360 Mod = Mod->Parent;
5361 ++Result;
5362 }
5363 return Result;
5364}
5365
5366ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5367 Module *Imported,
5368 ArrayRef<SourceLocation> IdentifierLocs)
5369 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5370 NextLocalImportAndComplete(nullptr, true) {
5371 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size())(static_cast <bool> (getNumModuleIdentifiers(Imported) ==
IdentifierLocs.size()) ? void (0) : __assert_fail ("getNumModuleIdentifiers(Imported) == IdentifierLocs.size()"
, "clang/lib/AST/Decl.cpp", 5371, __extension__ __PRETTY_FUNCTION__
))
;
5372 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5373 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5374 StoredLocs);
5375}
5376
5377ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5378 Module *Imported, SourceLocation EndLoc)
5379 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5380 NextLocalImportAndComplete(nullptr, false) {
5381 *getTrailingObjects<SourceLocation>() = EndLoc;
5382}
5383
5384ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5385 SourceLocation StartLoc, Module *Imported,
5386 ArrayRef<SourceLocation> IdentifierLocs) {
5387 return new (C, DC,
5388 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5389 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5390}
5391
5392ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5393 SourceLocation StartLoc,
5394 Module *Imported,
5395 SourceLocation EndLoc) {
5396 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5397 ImportDecl(DC, StartLoc, Imported, EndLoc);
5398 Import->setImplicit();
5399 return Import;
5400}
5401
5402ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5403 unsigned NumLocations) {
5404 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5405 ImportDecl(EmptyShell());
5406}
5407
5408ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5409 if (!isImportComplete())
5410 return std::nullopt;
5411
5412 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5413 return llvm::ArrayRef(StoredLocs,
5414 getNumModuleIdentifiers(getImportedModule()));
5415}
5416
5417SourceRange ImportDecl::getSourceRange() const {
5418 if (!isImportComplete())
5419 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5420
5421 return SourceRange(getLocation(), getIdentifierLocs().back());
5422}
5423
5424//===----------------------------------------------------------------------===//
5425// ExportDecl Implementation
5426//===----------------------------------------------------------------------===//
5427
5428void ExportDecl::anchor() {}
5429
5430ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5431 SourceLocation ExportLoc) {
5432 return new (C, DC) ExportDecl(DC, ExportLoc);
5433}
5434
5435ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5436 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5437}

/build/source/llvm/include/llvm/Support/TrailingObjects.h

1//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This header defines support for implementing classes that have
11/// some trailing object (or arrays of objects) appended to them. The
12/// main purpose is to make it obvious where this idiom is being used,
13/// and to make the usage more idiomatic and more difficult to get
14/// wrong.
15///
16/// The TrailingObject template abstracts away the reinterpret_cast,
17/// pointer arithmetic, and size calculations used for the allocation
18/// and access of appended arrays of objects, and takes care that they
19/// are all allocated at their required alignment. Additionally, it
20/// ensures that the base type is final -- deriving from a class that
21/// expects data appended immediately after it is typically not safe.
22///
23/// Users are expected to derive from this template, and provide
24/// numTrailingObjects implementations for each trailing type except
25/// the last, e.g. like this sample:
26///
27/// \code
28/// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> {
29/// friend TrailingObjects;
30///
31/// unsigned NumInts, NumDoubles;
32/// size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; }
33/// };
34/// \endcode
35///
36/// You can access the appended arrays via 'getTrailingObjects', and
37/// determine the size needed for allocation via
38/// 'additionalSizeToAlloc' and 'totalSizeToAlloc'.
39///
40/// All the methods implemented by this class are are intended for use
41/// by the implementation of the class, not as part of its interface
42/// (thus, private inheritance is suggested).
43///
44//===----------------------------------------------------------------------===//
45
46#ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H
47#define LLVM_SUPPORT_TRAILINGOBJECTS_H
48
49#include "llvm/Support/AlignOf.h"
50#include "llvm/Support/Alignment.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/type_traits.h"
54#include <new>
55#include <type_traits>
56
57namespace llvm {
58
59namespace trailing_objects_internal {
60/// Helper template to calculate the max alignment requirement for a set of
61/// objects.
62template <typename First, typename... Rest> class AlignmentCalcHelper {
63private:
64 enum {
65 FirstAlignment = alignof(First),
66 RestAlignment = AlignmentCalcHelper<Rest...>::Alignment,
67 };
68
69public:
70 enum {
71 Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment
72 };
73};
74
75template <typename First> class AlignmentCalcHelper<First> {
76public:
77 enum { Alignment = alignof(First) };
78};
79
80/// The base class for TrailingObjects* classes.
81class TrailingObjectsBase {
82protected:
83 /// OverloadToken's purpose is to allow specifying function overloads
84 /// for different types, without actually taking the types as
85 /// parameters. (Necessary because member function templates cannot
86 /// be specialized, so overloads must be used instead of
87 /// specialization.)
88 template <typename T> struct OverloadToken {};
89};
90
91// Just a little helper for transforming a type pack into the same
92// number of a different type. e.g.:
93// ExtractSecondType<Foo..., int>::type
94template <typename Ty1, typename Ty2> struct ExtractSecondType {
95 typedef Ty2 type;
96};
97
98// TrailingObjectsImpl is somewhat complicated, because it is a
99// recursively inheriting template, in order to handle the template
100// varargs. Each level of inheritance picks off a single trailing type
101// then recurses on the rest. The "Align", "BaseTy", and
102// "TopTrailingObj" arguments are passed through unchanged through the
103// recursion. "PrevTy" is, at each level, the type handled by the
104// level right above it.
105
106template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
107 typename... MoreTys>
108class TrailingObjectsImpl {
109 // The main template definition is never used -- the two
110 // specializations cover all possibilities.
111};
112
113template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
114 typename NextTy, typename... MoreTys>
115class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy,
116 MoreTys...>
117 : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy,
118 MoreTys...> {
119
120 typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...>
121 ParentType;
122
123 struct RequiresRealignment {
124 static const bool value = alignof(PrevTy) < alignof(NextTy);
125 };
126
127 static constexpr bool requiresRealignment() {
128 return RequiresRealignment::value;
129 }
130
131protected:
132 // Ensure the inherited getTrailingObjectsImpl is not hidden.
133 using ParentType::getTrailingObjectsImpl;
134
135 // These two functions are helper functions for
136 // TrailingObjects::getTrailingObjects. They recurse to the left --
137 // the result for each type in the list of trailing types depends on
138 // the result of calling the function on the type to the
139 // left. However, the function for the type to the left is
140 // implemented by a *subclass* of this class, so we invoke it via
141 // the TopTrailingObj, which is, via the
142 // curiously-recurring-template-pattern, the most-derived type in
143 // this recursion, and thus, contains all the overloads.
144 static const NextTy *
145 getTrailingObjectsImpl(const BaseTy *Obj,
146 TrailingObjectsBase::OverloadToken<NextTy>) {
147 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
148 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
149 TopTrailingObj::callNumTrailingObjects(
150 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
151
152 if (requiresRealignment())
153 return reinterpret_cast<const NextTy *>(
154 alignAddr(Ptr, Align::Of<NextTy>()));
155 else
156 return reinterpret_cast<const NextTy *>(Ptr);
157 }
158
159 static NextTy *
160 getTrailingObjectsImpl(BaseTy *Obj,
161 TrailingObjectsBase::OverloadToken<NextTy>) {
162 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
10
'Ptr' initialized here
163 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
9
Passing value via 1st parameter 'Obj'
164 TopTrailingObj::callNumTrailingObjects(
165 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
166
167 if (requiresRealignment())
11
Taking false branch
168 return reinterpret_cast<NextTy *>(alignAddr(Ptr, Align::Of<NextTy>()));
169 else
170 return reinterpret_cast<NextTy *>(Ptr);
12
Returning pointer (loaded from 'Ptr')
171 }
172
173 // Helper function for TrailingObjects::additionalSizeToAlloc: this
174 // function recurses to superclasses, each of which requires one
175 // fewer size_t argument, and adds its own size.
176 static constexpr size_t additionalSizeToAllocImpl(
177 size_t SizeSoFar, size_t Count1,
178 typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) {
179 return ParentType::additionalSizeToAllocImpl(
180 (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar)
181 : SizeSoFar) +
182 sizeof(NextTy) * Count1,
183 MoreCounts...);
184 }
185};
186
187// The base case of the TrailingObjectsImpl inheritance recursion,
188// when there's no more trailing types.
189template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy>
190class alignas(Align) TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy>
191 : public TrailingObjectsBase {
192protected:
193 // This is a dummy method, only here so the "using" doesn't fail --
194 // it will never be called, because this function recurses backwards
195 // up the inheritance chain to subclasses.
196 static void getTrailingObjectsImpl();
197
198 static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) {
199 return SizeSoFar;
200 }
201
202 template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {}
203};
204
205} // end namespace trailing_objects_internal
206
207// Finally, the main type defined in this file, the one intended for users...
208
209/// See the file comment for details on the usage of the
210/// TrailingObjects type.
211template <typename BaseTy, typename... TrailingTys>
212class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl<
213 trailing_objects_internal::AlignmentCalcHelper<
214 TrailingTys...>::Alignment,
215 BaseTy, TrailingObjects<BaseTy, TrailingTys...>,
216 BaseTy, TrailingTys...> {
217
218 template <int A, typename B, typename T, typename P, typename... M>
219 friend class trailing_objects_internal::TrailingObjectsImpl;
220
221 template <typename... Tys> class Foo {};
222
223 typedef trailing_objects_internal::TrailingObjectsImpl<
224 trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment,
225 BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...>
226 ParentType;
227 using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase;
228
229 using ParentType::getTrailingObjectsImpl;
230
231 // This function contains only a static_assert BaseTy is final. The
232 // static_assert must be in a function, and not at class-level
233 // because BaseTy isn't complete at class instantiation time, but
234 // will be by the time this function is instantiated.
235 static void verifyTrailingObjectsAssertions() {
236 static_assert(std::is_final<BaseTy>(), "BaseTy must be final.");
237 }
238
239 // These two methods are the base of the recursion for this method.
240 static const BaseTy *
241 getTrailingObjectsImpl(const BaseTy *Obj,
242 TrailingObjectsBase::OverloadToken<BaseTy>) {
243 return Obj;
244 }
245
246 static BaseTy *
247 getTrailingObjectsImpl(BaseTy *Obj,
248 TrailingObjectsBase::OverloadToken<BaseTy>) {
249 return Obj;
250 }
251
252 // callNumTrailingObjects simply calls numTrailingObjects on the
253 // provided Obj -- except when the type being queried is BaseTy
254 // itself. There is always only one of the base object, so that case
255 // is handled here. (An additional benefit of indirecting through
256 // this function is that consumers only say "friend
257 // TrailingObjects", and thus, only this class itself can call the
258 // numTrailingObjects function.)
259 static size_t
260 callNumTrailingObjects(const BaseTy *Obj,
261 TrailingObjectsBase::OverloadToken<BaseTy>) {
262 return 1;
263 }
264
265 template <typename T>
266 static size_t callNumTrailingObjects(const BaseTy *Obj,
267 TrailingObjectsBase::OverloadToken<T>) {
268 return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>());
269 }
270
271public:
272 // Make this (privately inherited) member public.
273#ifndef _MSC_VER
274 using ParentType::OverloadToken;
275#else
276 // An MSVC bug prevents the above from working, (last tested at CL version
277 // 19.28). "Class5" in TrailingObjectsTest.cpp tests the problematic case.
278 template <typename T>
279 using OverloadToken = typename ParentType::template OverloadToken<T>;
280#endif
281
282 /// Returns a pointer to the trailing object array of the given type
283 /// (which must be one of those specified in the class template). The
284 /// array may have zero or more elements in it.
285 template <typename T> const T *getTrailingObjects() const {
286 verifyTrailingObjectsAssertions();
287 // Forwards to an impl function with overloads, since member
288 // function templates can't be specialized.
289 return this->getTrailingObjectsImpl(
290 static_cast<const BaseTy *>(this),
291 TrailingObjectsBase::OverloadToken<T>());
292 }
293
294 /// Returns a pointer to the trailing object array of the given type
295 /// (which must be one of those specified in the class template). The
296 /// array may have zero or more elements in it.
297 template <typename T> T *getTrailingObjects() {
298 verifyTrailingObjectsAssertions();
299 // Forwards to an impl function with overloads, since member
300 // function templates can't be specialized.
301 return this->getTrailingObjectsImpl(
8
Calling 'TrailingObjectsImpl::getTrailingObjectsImpl'
13
Returning from 'TrailingObjectsImpl::getTrailingObjectsImpl'
14
Returning pointer
302 static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>());
7
Passing value via 1st parameter 'Obj'
303 }
304
305 /// Returns the size of the trailing data, if an object were
306 /// allocated with the given counts (The counts are in the same order
307 /// as the template arguments). This does not include the size of the
308 /// base object. The template arguments must be the same as those
309 /// used in the class; they are supplied here redundantly only so
310 /// that it's clear what the counts are counting in callers.
311 template <typename... Tys>
312 static constexpr std::enable_if_t<
313 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
314 additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
315 TrailingTys, size_t>::type... Counts) {
316 return ParentType::additionalSizeToAllocImpl(0, Counts...);
317 }
318
319 /// Returns the total size of an object if it were allocated with the
320 /// given trailing object counts. This is the same as
321 /// additionalSizeToAlloc, except it *does* include the size of the base
322 /// object.
323 template <typename... Tys>
324 static constexpr std::enable_if_t<
325 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
326 totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
327 TrailingTys, size_t>::type... Counts) {
328 return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
329 }
330
331 TrailingObjects() = default;
332 TrailingObjects(const TrailingObjects &) = delete;
333 TrailingObjects(TrailingObjects &&) = delete;
334 TrailingObjects &operator=(const TrailingObjects &) = delete;
335 TrailingObjects &operator=(TrailingObjects &&) = delete;
336
337 /// A type where its ::with_counts template member has a ::type member
338 /// suitable for use as uninitialized storage for an object with the given
339 /// trailing object counts. The template arguments are similar to those
340 /// of additionalSizeToAlloc.
341 ///
342 /// Use with FixedSizeStorageOwner, e.g.: