Bug Summary

File:build/source/clang/lib/AST/Decl.cpp
Warning:line 4076, column 5
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Decl.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/clang/lib/AST -I /build/source/clang/lib/AST -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/clang/lib/AST/Decl.cpp

/build/source/clang/lib/AST/Decl.cpp

1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DeclarationName.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/ODRHash.h"
31#include "clang/AST/PrettyDeclStackTrace.h"
32#include "clang/AST/PrettyPrinter.h"
33#include "clang/AST/Randstruct.h"
34#include "clang/AST/RecordLayout.h"
35#include "clang/AST/Redeclarable.h"
36#include "clang/AST/Stmt.h"
37#include "clang/AST/TemplateBase.h"
38#include "clang/AST/Type.h"
39#include "clang/AST/TypeLoc.h"
40#include "clang/Basic/Builtins.h"
41#include "clang/Basic/IdentifierTable.h"
42#include "clang/Basic/LLVM.h"
43#include "clang/Basic/LangOptions.h"
44#include "clang/Basic/Linkage.h"
45#include "clang/Basic/Module.h"
46#include "clang/Basic/NoSanitizeList.h"
47#include "clang/Basic/PartialDiagnostic.h"
48#include "clang/Basic/Sanitizers.h"
49#include "clang/Basic/SourceLocation.h"
50#include "clang/Basic/SourceManager.h"
51#include "clang/Basic/Specifiers.h"
52#include "clang/Basic/TargetCXXABI.h"
53#include "clang/Basic/TargetInfo.h"
54#include "clang/Basic/Visibility.h"
55#include "llvm/ADT/APSInt.h"
56#include "llvm/ADT/ArrayRef.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/TargetParser/Triple.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <optional>
71#include <string>
72#include <tuple>
73#include <type_traits>
74
75using namespace clang;
76
77Decl *clang::getPrimaryMergedDecl(Decl *D) {
78 return D->getASTContext().getPrimaryMergedDecl(D);
79}
80
81void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
82 SourceLocation Loc = this->Loc;
83 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
84 if (Loc.isValid()) {
85 Loc.print(OS, Context.getSourceManager());
86 OS << ": ";
87 }
88 OS << Message;
89
90 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
91 OS << " '";
92 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
93 OS << "'";
94 }
95
96 OS << '\n';
97}
98
99// Defined here so that it can be inlined into its direct callers.
100bool Decl::isOutOfLine() const {
101 return !getLexicalDeclContext()->Equals(getDeclContext());
102}
103
104TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
105 : Decl(TranslationUnit, nullptr, SourceLocation()),
106 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
107
108//===----------------------------------------------------------------------===//
109// NamedDecl Implementation
110//===----------------------------------------------------------------------===//
111
112// Visibility rules aren't rigorously externally specified, but here
113// are the basic principles behind what we implement:
114//
115// 1. An explicit visibility attribute is generally a direct expression
116// of the user's intent and should be honored. Only the innermost
117// visibility attribute applies. If no visibility attribute applies,
118// global visibility settings are considered.
119//
120// 2. There is one caveat to the above: on or in a template pattern,
121// an explicit visibility attribute is just a default rule, and
122// visibility can be decreased by the visibility of template
123// arguments. But this, too, has an exception: an attribute on an
124// explicit specialization or instantiation causes all the visibility
125// restrictions of the template arguments to be ignored.
126//
127// 3. A variable that does not otherwise have explicit visibility can
128// be restricted by the visibility of its type.
129//
130// 4. A visibility restriction is explicit if it comes from an
131// attribute (or something like it), not a global visibility setting.
132// When emitting a reference to an external symbol, visibility
133// restrictions are ignored unless they are explicit.
134//
135// 5. When computing the visibility of a non-type, including a
136// non-type member of a class, only non-type visibility restrictions
137// are considered: the 'visibility' attribute, global value-visibility
138// settings, and a few special cases like __private_extern.
139//
140// 6. When computing the visibility of a type, including a type member
141// of a class, only type visibility restrictions are considered:
142// the 'type_visibility' attribute and global type-visibility settings.
143// However, a 'visibility' attribute counts as a 'type_visibility'
144// attribute on any declaration that only has the former.
145//
146// The visibility of a "secondary" entity, like a template argument,
147// is computed using the kind of that entity, not the kind of the
148// primary entity for which we are computing visibility. For example,
149// the visibility of a specialization of either of these templates:
150// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
151// template <class T, bool (&compare)(T, X)> class matcher;
152// is restricted according to the type visibility of the argument 'T',
153// the type visibility of 'bool(&)(T,X)', and the value visibility of
154// the argument function 'compare'. That 'has_match' is a value
155// and 'matcher' is a type only matters when looking for attributes
156// and settings from the immediate context.
157
158/// Does this computation kind permit us to consider additional
159/// visibility settings from attributes and the like?
160static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
161 return computation.IgnoreExplicitVisibility;
162}
163
164/// Given an LVComputationKind, return one of the same type/value sort
165/// that records that it already has explicit visibility.
166static LVComputationKind
167withExplicitVisibilityAlready(LVComputationKind Kind) {
168 Kind.IgnoreExplicitVisibility = true;
169 return Kind;
170}
171
172static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
173 LVComputationKind kind) {
174 assert(!kind.IgnoreExplicitVisibility &&(static_cast <bool> (!kind.IgnoreExplicitVisibility &&
"asking for explicit visibility when we shouldn't be") ? void
(0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "clang/lib/AST/Decl.cpp", 175, __extension__ __PRETTY_FUNCTION__
))
175 "asking for explicit visibility when we shouldn't be")(static_cast <bool> (!kind.IgnoreExplicitVisibility &&
"asking for explicit visibility when we shouldn't be") ? void
(0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "clang/lib/AST/Decl.cpp", 175, __extension__ __PRETTY_FUNCTION__
))
;
176 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
177}
178
179/// Is the given declaration a "type" or a "value" for the purposes of
180/// visibility computation?
181static bool usesTypeVisibility(const NamedDecl *D) {
182 return isa<TypeDecl>(D) ||
183 isa<ClassTemplateDecl>(D) ||
184 isa<ObjCInterfaceDecl>(D);
185}
186
187/// Does the given declaration have member specialization information,
188/// and if so, is it an explicit specialization?
189template <class T>
190static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
191isExplicitMemberSpecialization(const T *D) {
192 if (const MemberSpecializationInfo *member =
193 D->getMemberSpecializationInfo()) {
194 return member->isExplicitSpecialization();
195 }
196 return false;
197}
198
199/// For templates, this question is easier: a member template can't be
200/// explicitly instantiated, so there's a single bit indicating whether
201/// or not this is an explicit member specialization.
202static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
203 return D->isMemberSpecialization();
204}
205
206/// Given a visibility attribute, return the explicit visibility
207/// associated with it.
208template <class T>
209static Visibility getVisibilityFromAttr(const T *attr) {
210 switch (attr->getVisibility()) {
211 case T::Default:
212 return DefaultVisibility;
213 case T::Hidden:
214 return HiddenVisibility;
215 case T::Protected:
216 return ProtectedVisibility;
217 }
218 llvm_unreachable("bad visibility kind")::llvm::llvm_unreachable_internal("bad visibility kind", "clang/lib/AST/Decl.cpp"
, 218)
;
219}
220
221/// Return the explicit visibility of the given declaration.
222static std::optional<Visibility>
223getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) {
224 // If we're ultimately computing the visibility of a type, look for
225 // a 'type_visibility' attribute before looking for 'visibility'.
226 if (kind == NamedDecl::VisibilityForType) {
227 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
228 return getVisibilityFromAttr(A);
229 }
230 }
231
232 // If this declaration has an explicit visibility attribute, use it.
233 if (const auto *A = D->getAttr<VisibilityAttr>()) {
234 return getVisibilityFromAttr(A);
235 }
236
237 return std::nullopt;
238}
239
240LinkageInfo LinkageComputer::getLVForType(const Type &T,
241 LVComputationKind computation) {
242 if (computation.IgnoreAllVisibility)
243 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
244 return getTypeLinkageAndVisibility(&T);
245}
246
247/// Get the most restrictive linkage for the types in the given
248/// template parameter list. For visibility purposes, template
249/// parameters are part of the signature of a template.
250LinkageInfo LinkageComputer::getLVForTemplateParameterList(
251 const TemplateParameterList *Params, LVComputationKind computation) {
252 LinkageInfo LV;
253 for (const NamedDecl *P : *Params) {
254 // Template type parameters are the most common and never
255 // contribute to visibility, pack or not.
256 if (isa<TemplateTypeParmDecl>(P))
257 continue;
258
259 // Non-type template parameters can be restricted by the value type, e.g.
260 // template <enum X> class A { ... };
261 // We have to be careful here, though, because we can be dealing with
262 // dependent types.
263 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
264 // Handle the non-pack case first.
265 if (!NTTP->isExpandedParameterPack()) {
266 if (!NTTP->getType()->isDependentType()) {
267 LV.merge(getLVForType(*NTTP->getType(), computation));
268 }
269 continue;
270 }
271
272 // Look at all the types in an expanded pack.
273 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
274 QualType type = NTTP->getExpansionType(i);
275 if (!type->isDependentType())
276 LV.merge(getTypeLinkageAndVisibility(type));
277 }
278 continue;
279 }
280
281 // Template template parameters can be restricted by their
282 // template parameters, recursively.
283 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
284
285 // Handle the non-pack case first.
286 if (!TTP->isExpandedParameterPack()) {
287 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
288 computation));
289 continue;
290 }
291
292 // Look at all expansions in an expanded pack.
293 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
294 i != n; ++i) {
295 LV.merge(getLVForTemplateParameterList(
296 TTP->getExpansionTemplateParameters(i), computation));
297 }
298 }
299
300 return LV;
301}
302
303static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
304 const Decl *Ret = nullptr;
305 const DeclContext *DC = D->getDeclContext();
306 while (DC->getDeclKind() != Decl::TranslationUnit) {
307 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
308 Ret = cast<Decl>(DC);
309 DC = DC->getParent();
310 }
311 return Ret;
312}
313
314/// Get the most restrictive linkage for the types and
315/// declarations in the given template argument list.
316///
317/// Note that we don't take an LVComputationKind because we always
318/// want to honor the visibility of template arguments in the same way.
319LinkageInfo
320LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
321 LVComputationKind computation) {
322 LinkageInfo LV;
323
324 for (const TemplateArgument &Arg : Args) {
325 switch (Arg.getKind()) {
326 case TemplateArgument::Null:
327 case TemplateArgument::Integral:
328 case TemplateArgument::Expression:
329 continue;
330
331 case TemplateArgument::Type:
332 LV.merge(getLVForType(*Arg.getAsType(), computation));
333 continue;
334
335 case TemplateArgument::Declaration: {
336 const NamedDecl *ND = Arg.getAsDecl();
337 assert(!usesTypeVisibility(ND))(static_cast <bool> (!usesTypeVisibility(ND)) ? void (0
) : __assert_fail ("!usesTypeVisibility(ND)", "clang/lib/AST/Decl.cpp"
, 337, __extension__ __PRETTY_FUNCTION__))
;
338 LV.merge(getLVForDecl(ND, computation));
339 continue;
340 }
341
342 case TemplateArgument::NullPtr:
343 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
344 continue;
345
346 case TemplateArgument::Template:
347 case TemplateArgument::TemplateExpansion:
348 if (TemplateDecl *Template =
349 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
350 LV.merge(getLVForDecl(Template, computation));
351 continue;
352
353 case TemplateArgument::Pack:
354 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
355 continue;
356 }
357 llvm_unreachable("bad template argument kind")::llvm::llvm_unreachable_internal("bad template argument kind"
, "clang/lib/AST/Decl.cpp", 357)
;
358 }
359
360 return LV;
361}
362
363LinkageInfo
364LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
365 LVComputationKind computation) {
366 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
367}
368
369static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
370 const FunctionTemplateSpecializationInfo *specInfo) {
371 // Include visibility from the template parameters and arguments
372 // only if this is not an explicit instantiation or specialization
373 // with direct explicit visibility. (Implicit instantiations won't
374 // have a direct attribute.)
375 if (!specInfo->isExplicitInstantiationOrSpecialization())
376 return true;
377
378 return !fn->hasAttr<VisibilityAttr>();
379}
380
381/// Merge in template-related linkage and visibility for the given
382/// function template specialization.
383///
384/// We don't need a computation kind here because we can assume
385/// LVForValue.
386///
387/// \param[out] LV the computation to use for the parent
388void LinkageComputer::mergeTemplateLV(
389 LinkageInfo &LV, const FunctionDecl *fn,
390 const FunctionTemplateSpecializationInfo *specInfo,
391 LVComputationKind computation) {
392 bool considerVisibility =
393 shouldConsiderTemplateVisibility(fn, specInfo);
394
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 // Merge information from the template declaration.
397 LinkageInfo tempLV = getLVForDecl(temp, computation);
398 // The linkage of the specialization should be consistent with the
399 // template declaration.
400 LV.setLinkage(tempLV.getLinkage());
401
402 // Merge information from the template parameters.
403 LinkageInfo paramsLV =
404 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
405 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
406
407 // Merge information from the template arguments.
408 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
409 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
410 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
411}
412
413/// Does the given declaration have a direct visibility attribute
414/// that would match the given rules?
415static bool hasDirectVisibilityAttribute(const NamedDecl *D,
416 LVComputationKind computation) {
417 if (computation.IgnoreAllVisibility)
418 return false;
419
420 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
421 D->hasAttr<VisibilityAttr>();
422}
423
424/// Should we consider visibility associated with the template
425/// arguments and parameters of the given class template specialization?
426static bool shouldConsiderTemplateVisibility(
427 const ClassTemplateSpecializationDecl *spec,
428 LVComputationKind computation) {
429 // Include visibility from the template parameters and arguments
430 // only if this is not an explicit instantiation or specialization
431 // with direct explicit visibility (and note that implicit
432 // instantiations won't have a direct attribute).
433 //
434 // Furthermore, we want to ignore template parameters and arguments
435 // for an explicit specialization when computing the visibility of a
436 // member thereof with explicit visibility.
437 //
438 // This is a bit complex; let's unpack it.
439 //
440 // An explicit class specialization is an independent, top-level
441 // declaration. As such, if it or any of its members has an
442 // explicit visibility attribute, that must directly express the
443 // user's intent, and we should honor it. The same logic applies to
444 // an explicit instantiation of a member of such a thing.
445
446 // Fast path: if this is not an explicit instantiation or
447 // specialization, we always want to consider template-related
448 // visibility restrictions.
449 if (!spec->isExplicitInstantiationOrSpecialization())
450 return true;
451
452 // This is the 'member thereof' check.
453 if (spec->isExplicitSpecialization() &&
454 hasExplicitVisibilityAlready(computation))
455 return false;
456
457 return !hasDirectVisibilityAttribute(spec, computation);
458}
459
460/// Merge in template-related linkage and visibility for the given
461/// class template specialization.
462void LinkageComputer::mergeTemplateLV(
463 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
464 LVComputationKind computation) {
465 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
466
467 // Merge information from the template parameters, but ignore
468 // visibility if we're only considering template arguments.
469 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
470 // Merge information from the template declaration.
471 LinkageInfo tempLV = getLVForDecl(temp, computation);
472 // The linkage of the specialization should be consistent with the
473 // template declaration.
474 LV.setLinkage(tempLV.getLinkage());
475
476 LinkageInfo paramsLV =
477 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
478 LV.mergeMaybeWithVisibility(paramsLV,
479 considerVisibility && !hasExplicitVisibilityAlready(computation));
480
481 // Merge information from the template arguments. We ignore
482 // template-argument visibility if we've got an explicit
483 // instantiation with a visibility attribute.
484 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
485 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
486 if (considerVisibility)
487 LV.mergeVisibility(argsLV);
488 LV.mergeExternalVisibility(argsLV);
489}
490
491/// Should we consider visibility associated with the template
492/// arguments and parameters of the given variable template
493/// specialization? As usual, follow class template specialization
494/// logic up to initialization.
495static bool shouldConsiderTemplateVisibility(
496 const VarTemplateSpecializationDecl *spec,
497 LVComputationKind computation) {
498 // Include visibility from the template parameters and arguments
499 // only if this is not an explicit instantiation or specialization
500 // with direct explicit visibility (and note that implicit
501 // instantiations won't have a direct attribute).
502 if (!spec->isExplicitInstantiationOrSpecialization())
503 return true;
504
505 // An explicit variable specialization is an independent, top-level
506 // declaration. As such, if it has an explicit visibility attribute,
507 // that must directly express the user's intent, and we should honor
508 // it.
509 if (spec->isExplicitSpecialization() &&
510 hasExplicitVisibilityAlready(computation))
511 return false;
512
513 return !hasDirectVisibilityAttribute(spec, computation);
514}
515
516/// Merge in template-related linkage and visibility for the given
517/// variable template specialization. As usual, follow class template
518/// specialization logic up to initialization.
519void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
520 const VarTemplateSpecializationDecl *spec,
521 LVComputationKind computation) {
522 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
523
524 // Merge information from the template parameters, but ignore
525 // visibility if we're only considering template arguments.
526 VarTemplateDecl *temp = spec->getSpecializedTemplate();
527 LinkageInfo tempLV =
528 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
529 LV.mergeMaybeWithVisibility(tempLV,
530 considerVisibility && !hasExplicitVisibilityAlready(computation));
531
532 // Merge information from the template arguments. We ignore
533 // template-argument visibility if we've got an explicit
534 // instantiation with a visibility attribute.
535 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
536 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
537 if (considerVisibility)
538 LV.mergeVisibility(argsLV);
539 LV.mergeExternalVisibility(argsLV);
540}
541
542static bool useInlineVisibilityHidden(const NamedDecl *D) {
543 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
544 const LangOptions &Opts = D->getASTContext().getLangOpts();
545 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
546 return false;
547
548 const auto *FD = dyn_cast<FunctionDecl>(D);
549 if (!FD)
550 return false;
551
552 TemplateSpecializationKind TSK = TSK_Undeclared;
553 if (FunctionTemplateSpecializationInfo *spec
554 = FD->getTemplateSpecializationInfo()) {
555 TSK = spec->getTemplateSpecializationKind();
556 } else if (MemberSpecializationInfo *MSI =
557 FD->getMemberSpecializationInfo()) {
558 TSK = MSI->getTemplateSpecializationKind();
559 }
560
561 const FunctionDecl *Def = nullptr;
562 // InlineVisibilityHidden only applies to definitions, and
563 // isInlined() only gives meaningful answers on definitions
564 // anyway.
565 return TSK != TSK_ExplicitInstantiationDeclaration &&
566 TSK != TSK_ExplicitInstantiationDefinition &&
567 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
568}
569
570template <typename T> static bool isFirstInExternCContext(T *D) {
571 const T *First = D->getFirstDecl();
572 return First->isInExternCContext();
573}
574
575static bool isSingleLineLanguageLinkage(const Decl &D) {
576 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
577 if (!SD->hasBraces())
578 return true;
579 return false;
580}
581
582/// Determine whether D is declared in the purview of a named module.
583static bool isInModulePurview(const NamedDecl *D) {
584 if (auto *M = D->getOwningModule())
585 return M->isModulePurview();
586 return false;
587}
588
589static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
590 // FIXME: Handle isModulePrivate.
591 switch (D->getModuleOwnershipKind()) {
592 case Decl::ModuleOwnershipKind::Unowned:
593 case Decl::ModuleOwnershipKind::ReachableWhenImported:
594 case Decl::ModuleOwnershipKind::ModulePrivate:
595 return false;
596 case Decl::ModuleOwnershipKind::Visible:
597 case Decl::ModuleOwnershipKind::VisibleWhenImported:
598 return isInModulePurview(D);
599 }
600 llvm_unreachable("unexpected module ownership kind")::llvm::llvm_unreachable_internal("unexpected module ownership kind"
, "clang/lib/AST/Decl.cpp", 600)
;
601}
602
603static bool isDeclaredInModuleInterfaceOrPartition(const NamedDecl *D) {
604 if (auto *M = D->getOwningModule())
605 return M->isInterfaceOrPartition();
606 return false;
607}
608
609static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
610 return LinkageInfo::internal();
611}
612
613static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
614 return LinkageInfo::external();
615}
616
617static StorageClass getStorageClass(const Decl *D) {
618 if (auto *TD = dyn_cast<TemplateDecl>(D))
619 D = TD->getTemplatedDecl();
620 if (D) {
621 if (auto *VD = dyn_cast<VarDecl>(D))
622 return VD->getStorageClass();
623 if (auto *FD = dyn_cast<FunctionDecl>(D))
624 return FD->getStorageClass();
625 }
626 return SC_None;
627}
628
629LinkageInfo
630LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
631 LVComputationKind computation,
632 bool IgnoreVarTypeLinkage) {
633 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&(static_cast <bool> (D->getDeclContext()->getRedeclContext
()->isFileContext() && "Not a name having namespace scope"
) ? void (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "clang/lib/AST/Decl.cpp", 634, __extension__ __PRETTY_FUNCTION__
))
634 "Not a name having namespace scope")(static_cast <bool> (D->getDeclContext()->getRedeclContext
()->isFileContext() && "Not a name having namespace scope"
) ? void (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "clang/lib/AST/Decl.cpp", 634, __extension__ __PRETTY_FUNCTION__
))
;
635 ASTContext &Context = D->getASTContext();
636
637 // C++ [basic.link]p3:
638 // A name having namespace scope (3.3.6) has internal linkage if it
639 // is the name of
640
641 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
642 // - a variable, variable template, function, or function template
643 // that is explicitly declared static; or
644 // (This bullet corresponds to C99 6.2.2p3.)
645 return getInternalLinkageFor(D);
646 }
647
648 if (const auto *Var = dyn_cast<VarDecl>(D)) {
649 // - a non-template variable of non-volatile const-qualified type, unless
650 // - it is explicitly declared extern, or
651 // - it is declared in the purview of a module interface unit
652 // (outside the private-module-fragment, if any) or module partition, or
653 // - it is inline, or
654 // - it was previously declared and the prior declaration did not have
655 // internal linkage
656 // (There is no equivalent in C99.)
657 if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
658 !Var->getType().isVolatileQualified() && !Var->isInline() &&
659 !isDeclaredInModuleInterfaceOrPartition(Var) &&
660 !isa<VarTemplateSpecializationDecl>(Var) &&
661 !Var->getDescribedVarTemplate()) {
662 const VarDecl *PrevVar = Var->getPreviousDecl();
663 if (PrevVar)
664 return getLVForDecl(PrevVar, computation);
665
666 if (Var->getStorageClass() != SC_Extern &&
667 Var->getStorageClass() != SC_PrivateExtern &&
668 !isSingleLineLanguageLinkage(*Var))
669 return getInternalLinkageFor(Var);
670 }
671
672 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
673 PrevVar = PrevVar->getPreviousDecl()) {
674 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
675 Var->getStorageClass() == SC_None)
676 return getDeclLinkageAndVisibility(PrevVar);
677 // Explicitly declared static.
678 if (PrevVar->getStorageClass() == SC_Static)
679 return getInternalLinkageFor(Var);
680 }
681 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
682 // - a data member of an anonymous union.
683 const VarDecl *VD = IFD->getVarDecl();
684 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!")(static_cast <bool> (VD && "Expected a VarDecl in this IndirectFieldDecl!"
) ? void (0) : __assert_fail ("VD && \"Expected a VarDecl in this IndirectFieldDecl!\""
, "clang/lib/AST/Decl.cpp", 684, __extension__ __PRETTY_FUNCTION__
))
;
685 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
686 }
687 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!")(static_cast <bool> (!isa<FieldDecl>(D) &&
"Didn't expect a FieldDecl!") ? void (0) : __assert_fail ("!isa<FieldDecl>(D) && \"Didn't expect a FieldDecl!\""
, "clang/lib/AST/Decl.cpp", 687, __extension__ __PRETTY_FUNCTION__
))
;
688
689 // FIXME: This gives internal linkage to names that should have no linkage
690 // (those not covered by [basic.link]p6).
691 if (D->isInAnonymousNamespace()) {
692 const auto *Var = dyn_cast<VarDecl>(D);
693 const auto *Func = dyn_cast<FunctionDecl>(D);
694 // FIXME: The check for extern "C" here is not justified by the standard
695 // wording, but we retain it from the pre-DR1113 model to avoid breaking
696 // code.
697 //
698 // C++11 [basic.link]p4:
699 // An unnamed namespace or a namespace declared directly or indirectly
700 // within an unnamed namespace has internal linkage.
701 if ((!Var || !isFirstInExternCContext(Var)) &&
702 (!Func || !isFirstInExternCContext(Func)))
703 return getInternalLinkageFor(D);
704 }
705
706 // Set up the defaults.
707
708 // C99 6.2.2p5:
709 // If the declaration of an identifier for an object has file
710 // scope and no storage-class specifier, its linkage is
711 // external.
712 LinkageInfo LV = getExternalLinkageFor(D);
713
714 if (!hasExplicitVisibilityAlready(computation)) {
715 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
716 LV.mergeVisibility(*Vis, true);
717 } else {
718 // If we're declared in a namespace with a visibility attribute,
719 // use that namespace's visibility, and it still counts as explicit.
720 for (const DeclContext *DC = D->getDeclContext();
721 !isa<TranslationUnitDecl>(DC);
722 DC = DC->getParent()) {
723 const auto *ND = dyn_cast<NamespaceDecl>(DC);
724 if (!ND) continue;
725 if (std::optional<Visibility> Vis =
726 getExplicitVisibility(ND, computation)) {
727 LV.mergeVisibility(*Vis, true);
728 break;
729 }
730 }
731 }
732
733 // Add in global settings if the above didn't give us direct visibility.
734 if (!LV.isVisibilityExplicit()) {
735 // Use global type/value visibility as appropriate.
736 Visibility globalVisibility =
737 computation.isValueVisibility()
738 ? Context.getLangOpts().getValueVisibilityMode()
739 : Context.getLangOpts().getTypeVisibilityMode();
740 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
741
742 // If we're paying attention to global visibility, apply
743 // -finline-visibility-hidden if this is an inline method.
744 if (useInlineVisibilityHidden(D))
745 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
746 }
747 }
748
749 // C++ [basic.link]p4:
750
751 // A name having namespace scope that has not been given internal linkage
752 // above and that is the name of
753 // [...bullets...]
754 // has its linkage determined as follows:
755 // - if the enclosing namespace has internal linkage, the name has
756 // internal linkage; [handled above]
757 // - otherwise, if the declaration of the name is attached to a named
758 // module and is not exported, the name has module linkage;
759 // - otherwise, the name has external linkage.
760 // LV is currently set up to handle the last two bullets.
761 //
762 // The bullets are:
763
764 // - a variable; or
765 if (const auto *Var = dyn_cast<VarDecl>(D)) {
766 // GCC applies the following optimization to variables and static
767 // data members, but not to functions:
768 //
769 // Modify the variable's LV by the LV of its type unless this is
770 // C or extern "C". This follows from [basic.link]p9:
771 // A type without linkage shall not be used as the type of a
772 // variable or function with external linkage unless
773 // - the entity has C language linkage, or
774 // - the entity is declared within an unnamed namespace, or
775 // - the entity is not used or is defined in the same
776 // translation unit.
777 // and [basic.link]p10:
778 // ...the types specified by all declarations referring to a
779 // given variable or function shall be identical...
780 // C does not have an equivalent rule.
781 //
782 // Ignore this if we've got an explicit attribute; the user
783 // probably knows what they're doing.
784 //
785 // Note that we don't want to make the variable non-external
786 // because of this, but unique-external linkage suits us.
787
788 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
789 !IgnoreVarTypeLinkage) {
790 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
791 if (!isExternallyVisible(TypeLV.getLinkage()))
792 return LinkageInfo::uniqueExternal();
793 if (!LV.isVisibilityExplicit())
794 LV.mergeVisibility(TypeLV);
795 }
796
797 if (Var->getStorageClass() == SC_PrivateExtern)
798 LV.mergeVisibility(HiddenVisibility, true);
799
800 // Note that Sema::MergeVarDecl already takes care of implementing
801 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
802 // to do it here.
803
804 // As per function and class template specializations (below),
805 // consider LV for the template and template arguments. We're at file
806 // scope, so we do not need to worry about nested specializations.
807 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
808 mergeTemplateLV(LV, spec, computation);
809 }
810
811 // - a function; or
812 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
813 // In theory, we can modify the function's LV by the LV of its
814 // type unless it has C linkage (see comment above about variables
815 // for justification). In practice, GCC doesn't do this, so it's
816 // just too painful to make work.
817
818 if (Function->getStorageClass() == SC_PrivateExtern)
819 LV.mergeVisibility(HiddenVisibility, true);
820
821 // OpenMP target declare device functions are not callable from the host so
822 // they should not be exported from the device image. This applies to all
823 // functions as the host-callable kernel functions are emitted at codegen.
824 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice &&
825 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
826 Context.getTargetInfo().getTriple().isNVPTX()) ||
827 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
828 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
829
830 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
831 // merging storage classes and visibility attributes, so we don't have to
832 // look at previous decls in here.
833
834 // In C++, then if the type of the function uses a type with
835 // unique-external linkage, it's not legally usable from outside
836 // this translation unit. However, we should use the C linkage
837 // rules instead for extern "C" declarations.
838 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
839 // Only look at the type-as-written. Otherwise, deducing the return type
840 // of a function could change its linkage.
841 QualType TypeAsWritten = Function->getType();
842 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
843 TypeAsWritten = TSI->getType();
844 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
845 return LinkageInfo::uniqueExternal();
846 }
847
848 // Consider LV from the template and the template arguments.
849 // We're at file scope, so we do not need to worry about nested
850 // specializations.
851 if (FunctionTemplateSpecializationInfo *specInfo
852 = Function->getTemplateSpecializationInfo()) {
853 mergeTemplateLV(LV, Function, specInfo, computation);
854 }
855
856 // - a named class (Clause 9), or an unnamed class defined in a
857 // typedef declaration in which the class has the typedef name
858 // for linkage purposes (7.1.3); or
859 // - a named enumeration (7.2), or an unnamed enumeration
860 // defined in a typedef declaration in which the enumeration
861 // has the typedef name for linkage purposes (7.1.3); or
862 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
863 // Unnamed tags have no linkage.
864 if (!Tag->hasNameForLinkage())
865 return LinkageInfo::none();
866
867 // If this is a class template specialization, consider the
868 // linkage of the template and template arguments. We're at file
869 // scope, so we do not need to worry about nested specializations.
870 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
871 mergeTemplateLV(LV, spec, computation);
872 }
873
874 // FIXME: This is not part of the C++ standard any more.
875 // - an enumerator belonging to an enumeration with external linkage; or
876 } else if (isa<EnumConstantDecl>(D)) {
877 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
878 computation);
879 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
880 return LinkageInfo::none();
881 LV.merge(EnumLV);
882
883 // - a template
884 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
885 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
886 LinkageInfo tempLV =
887 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
888 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
889
890 // An unnamed namespace or a namespace declared directly or indirectly
891 // within an unnamed namespace has internal linkage. All other namespaces
892 // have external linkage.
893 //
894 // We handled names in anonymous namespaces above.
895 } else if (isa<NamespaceDecl>(D)) {
896 return LV;
897
898 // By extension, we assign external linkage to Objective-C
899 // interfaces.
900 } else if (isa<ObjCInterfaceDecl>(D)) {
901 // fallout
902
903 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
904 // A typedef declaration has linkage if it gives a type a name for
905 // linkage purposes.
906 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
907 return LinkageInfo::none();
908
909 } else if (isa<MSGuidDecl>(D)) {
910 // A GUID behaves like an inline variable with external linkage. Fall
911 // through.
912
913 // Everything not covered here has no linkage.
914 } else {
915 return LinkageInfo::none();
916 }
917
918 // If we ended up with non-externally-visible linkage, visibility should
919 // always be default.
920 if (!isExternallyVisible(LV.getLinkage()))
921 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
922
923 return LV;
924}
925
926LinkageInfo
927LinkageComputer::getLVForClassMember(const NamedDecl *D,
928 LVComputationKind computation,
929 bool IgnoreVarTypeLinkage) {
930 // Only certain class members have linkage. Note that fields don't
931 // really have linkage, but it's convenient to say they do for the
932 // purposes of calculating linkage of pointer-to-data-member
933 // template arguments.
934 //
935 // Templates also don't officially have linkage, but since we ignore
936 // the C++ standard and look at template arguments when determining
937 // linkage and visibility of a template specialization, we might hit
938 // a template template argument that way. If we do, we need to
939 // consider its linkage.
940 if (!(isa<CXXMethodDecl>(D) ||
941 isa<VarDecl>(D) ||
942 isa<FieldDecl>(D) ||
943 isa<IndirectFieldDecl>(D) ||
944 isa<TagDecl>(D) ||
945 isa<TemplateDecl>(D)))
946 return LinkageInfo::none();
947
948 LinkageInfo LV;
949
950 // If we have an explicit visibility attribute, merge that in.
951 if (!hasExplicitVisibilityAlready(computation)) {
952 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
953 LV.mergeVisibility(*Vis, true);
954 // If we're paying attention to global visibility, apply
955 // -finline-visibility-hidden if this is an inline method.
956 //
957 // Note that we do this before merging information about
958 // the class visibility.
959 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
960 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
961 }
962
963 // If this class member has an explicit visibility attribute, the only
964 // thing that can change its visibility is the template arguments, so
965 // only look for them when processing the class.
966 LVComputationKind classComputation = computation;
967 if (LV.isVisibilityExplicit())
968 classComputation = withExplicitVisibilityAlready(computation);
969
970 LinkageInfo classLV =
971 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
972 // The member has the same linkage as the class. If that's not externally
973 // visible, we don't need to compute anything about the linkage.
974 // FIXME: If we're only computing linkage, can we bail out here?
975 if (!isExternallyVisible(classLV.getLinkage()))
976 return classLV;
977
978
979 // Otherwise, don't merge in classLV yet, because in certain cases
980 // we need to completely ignore the visibility from it.
981
982 // Specifically, if this decl exists and has an explicit attribute.
983 const NamedDecl *explicitSpecSuppressor = nullptr;
984
985 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
986 // Only look at the type-as-written. Otherwise, deducing the return type
987 // of a function could change its linkage.
988 QualType TypeAsWritten = MD->getType();
989 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
990 TypeAsWritten = TSI->getType();
991 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
992 return LinkageInfo::uniqueExternal();
993
994 // If this is a method template specialization, use the linkage for
995 // the template parameters and arguments.
996 if (FunctionTemplateSpecializationInfo *spec
997 = MD->getTemplateSpecializationInfo()) {
998 mergeTemplateLV(LV, MD, spec, computation);
999 if (spec->isExplicitSpecialization()) {
1000 explicitSpecSuppressor = MD;
1001 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
1002 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
1003 }
1004 } else if (isExplicitMemberSpecialization(MD)) {
1005 explicitSpecSuppressor = MD;
1006 }
1007
1008 // OpenMP target declare device functions are not callable from the host so
1009 // they should not be exported from the device image. This applies to all
1010 // functions as the host-callable kernel functions are emitted at codegen.
1011 ASTContext &Context = D->getASTContext();
1012 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice &&
1013 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1014 Context.getTargetInfo().getTriple().isNVPTX()) ||
1015 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1016 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1017
1018 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1019 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1020 mergeTemplateLV(LV, spec, computation);
1021 if (spec->isExplicitSpecialization()) {
1022 explicitSpecSuppressor = spec;
1023 } else {
1024 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1025 if (isExplicitMemberSpecialization(temp)) {
1026 explicitSpecSuppressor = temp->getTemplatedDecl();
1027 }
1028 }
1029 } else if (isExplicitMemberSpecialization(RD)) {
1030 explicitSpecSuppressor = RD;
1031 }
1032
1033 // Static data members.
1034 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1035 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1036 mergeTemplateLV(LV, spec, computation);
1037
1038 // Modify the variable's linkage by its type, but ignore the
1039 // type's visibility unless it's a definition.
1040 if (!IgnoreVarTypeLinkage) {
1041 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1042 // FIXME: If the type's linkage is not externally visible, we can
1043 // give this static data member UniqueExternalLinkage.
1044 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1045 LV.mergeVisibility(typeLV);
1046 LV.mergeExternalVisibility(typeLV);
1047 }
1048
1049 if (isExplicitMemberSpecialization(VD)) {
1050 explicitSpecSuppressor = VD;
1051 }
1052
1053 // Template members.
1054 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1055 bool considerVisibility =
1056 (!LV.isVisibilityExplicit() &&
1057 !classLV.isVisibilityExplicit() &&
1058 !hasExplicitVisibilityAlready(computation));
1059 LinkageInfo tempLV =
1060 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1061 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1062
1063 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1064 if (isExplicitMemberSpecialization(redeclTemp)) {
1065 explicitSpecSuppressor = temp->getTemplatedDecl();
1066 }
1067 }
1068 }
1069
1070 // We should never be looking for an attribute directly on a template.
1071 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor))(static_cast <bool> (!explicitSpecSuppressor || !isa<
TemplateDecl>(explicitSpecSuppressor)) ? void (0) : __assert_fail
("!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)"
, "clang/lib/AST/Decl.cpp", 1071, __extension__ __PRETTY_FUNCTION__
))
;
1072
1073 // If this member is an explicit member specialization, and it has
1074 // an explicit attribute, ignore visibility from the parent.
1075 bool considerClassVisibility = true;
1076 if (explicitSpecSuppressor &&
1077 // optimization: hasDVA() is true only with explicit visibility.
1078 LV.isVisibilityExplicit() &&
1079 classLV.getVisibility() != DefaultVisibility &&
1080 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1081 considerClassVisibility = false;
1082 }
1083
1084 // Finally, merge in information from the class.
1085 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1086 return LV;
1087}
1088
1089void NamedDecl::anchor() {}
1090
1091bool NamedDecl::isLinkageValid() const {
1092 if (!hasCachedLinkage())
1093 return true;
1094
1095 Linkage L = LinkageComputer{}
1096 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1097 .getLinkage();
1098 return L == getCachedLinkage();
1099}
1100
1101ReservedIdentifierStatus
1102NamedDecl::isReserved(const LangOptions &LangOpts) const {
1103 const IdentifierInfo *II = getIdentifier();
1104
1105 // This triggers at least for CXXLiteralIdentifiers, which we already checked
1106 // at lexing time.
1107 if (!II)
1108 return ReservedIdentifierStatus::NotReserved;
1109
1110 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1111 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1112 // This name is only reserved at global scope. Check if this declaration
1113 // conflicts with a global scope declaration.
1114 if (isa<ParmVarDecl>(this) || isTemplateParameter())
1115 return ReservedIdentifierStatus::NotReserved;
1116
1117 // C++ [dcl.link]/7:
1118 // Two declarations [conflict] if [...] one declares a function or
1119 // variable with C language linkage, and the other declares [...] a
1120 // variable that belongs to the global scope.
1121 //
1122 // Therefore names that are reserved at global scope are also reserved as
1123 // names of variables and functions with C language linkage.
1124 const DeclContext *DC = getDeclContext()->getRedeclContext();
1125 if (DC->isTranslationUnit())
1126 return Status;
1127 if (auto *VD = dyn_cast<VarDecl>(this))
1128 if (VD->isExternC())
1129 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1130 if (auto *FD = dyn_cast<FunctionDecl>(this))
1131 if (FD->isExternC())
1132 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1133 return ReservedIdentifierStatus::NotReserved;
1134 }
1135
1136 return Status;
1137}
1138
1139ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1140 StringRef name = getName();
1141 if (name.empty()) return SFF_None;
1142
1143 if (name.front() == 'C')
1144 if (name == "CFStringCreateWithFormat" ||
1145 name == "CFStringCreateWithFormatAndArguments" ||
1146 name == "CFStringAppendFormat" ||
1147 name == "CFStringAppendFormatAndArguments")
1148 return SFF_CFString;
1149 return SFF_None;
1150}
1151
1152Linkage NamedDecl::getLinkageInternal() const {
1153 // We don't care about visibility here, so ask for the cheapest
1154 // possible visibility analysis.
1155 return LinkageComputer{}
1156 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1157 .getLinkage();
1158}
1159
1160/// Get the linkage from a semantic point of view. Entities in
1161/// anonymous namespaces are external (in c++98).
1162Linkage NamedDecl::getFormalLinkage() const {
1163 Linkage InternalLinkage = getLinkageInternal();
1164
1165 // C++ [basic.link]p4.8:
1166 // - if the declaration of the name is attached to a named module and is not
1167 // exported
1168 // the name has module linkage;
1169 //
1170 // [basic.namespace.general]/p2
1171 // A namespace is never attached to a named module and never has a name with
1172 // module linkage.
1173 if (isInModulePurview(this) &&
1174 InternalLinkage == ExternalLinkage &&
1175 !isExportedFromModuleInterfaceUnit(
1176 cast<NamedDecl>(this->getCanonicalDecl())) &&
1177 !isa<NamespaceDecl>(this))
1178 InternalLinkage = ModuleLinkage;
1179
1180 return clang::getFormalLinkage(InternalLinkage);
1181}
1182
1183LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1184 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1185}
1186
1187static std::optional<Visibility>
1188getExplicitVisibilityAux(const NamedDecl *ND,
1189 NamedDecl::ExplicitVisibilityKind kind,
1190 bool IsMostRecent) {
1191 assert(!IsMostRecent || ND == ND->getMostRecentDecl())(static_cast <bool> (!IsMostRecent || ND == ND->getMostRecentDecl
()) ? void (0) : __assert_fail ("!IsMostRecent || ND == ND->getMostRecentDecl()"
, "clang/lib/AST/Decl.cpp", 1191, __extension__ __PRETTY_FUNCTION__
))
;
1192
1193 // Check the declaration itself first.
1194 if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1195 return V;
1196
1197 // If this is a member class of a specialization of a class template
1198 // and the corresponding decl has explicit visibility, use that.
1199 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1200 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1201 if (InstantiatedFrom)
1202 return getVisibilityOf(InstantiatedFrom, kind);
1203 }
1204
1205 // If there wasn't explicit visibility there, and this is a
1206 // specialization of a class template, check for visibility
1207 // on the pattern.
1208 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1209 // Walk all the template decl till this point to see if there are
1210 // explicit visibility attributes.
1211 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1212 while (TD != nullptr) {
1213 auto Vis = getVisibilityOf(TD, kind);
1214 if (Vis != std::nullopt)
1215 return Vis;
1216 TD = TD->getPreviousDecl();
1217 }
1218 return std::nullopt;
1219 }
1220
1221 // Use the most recent declaration.
1222 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1223 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1224 if (MostRecent != ND)
1225 return getExplicitVisibilityAux(MostRecent, kind, true);
1226 }
1227
1228 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1229 if (Var->isStaticDataMember()) {
1230 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1231 if (InstantiatedFrom)
1232 return getVisibilityOf(InstantiatedFrom, kind);
1233 }
1234
1235 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1236 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1237 kind);
1238
1239 return std::nullopt;
1240 }
1241 // Also handle function template specializations.
1242 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1243 // If the function is a specialization of a template with an
1244 // explicit visibility attribute, use that.
1245 if (FunctionTemplateSpecializationInfo *templateInfo
1246 = fn->getTemplateSpecializationInfo())
1247 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1248 kind);
1249
1250 // If the function is a member of a specialization of a class template
1251 // and the corresponding decl has explicit visibility, use that.
1252 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1253 if (InstantiatedFrom)
1254 return getVisibilityOf(InstantiatedFrom, kind);
1255
1256 return std::nullopt;
1257 }
1258
1259 // The visibility of a template is stored in the templated decl.
1260 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1261 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1262
1263 return std::nullopt;
1264}
1265
1266std::optional<Visibility>
1267NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1268 return getExplicitVisibilityAux(this, kind, false);
1269}
1270
1271LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1272 Decl *ContextDecl,
1273 LVComputationKind computation) {
1274 // This lambda has its linkage/visibility determined by its owner.
1275 const NamedDecl *Owner;
1276 if (!ContextDecl)
1277 Owner = dyn_cast<NamedDecl>(DC);
1278 else if (isa<ParmVarDecl>(ContextDecl))
1279 Owner =
1280 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1281 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1282 // Replace with the concept's owning decl, which is either a namespace or a
1283 // TU, so this needs a dyn_cast.
1284 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1285 } else {
1286 Owner = cast<NamedDecl>(ContextDecl);
1287 }
1288
1289 if (!Owner)
1290 return LinkageInfo::none();
1291
1292 // If the owner has a deduced type, we need to skip querying the linkage and
1293 // visibility of that type, because it might involve this closure type. The
1294 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1295 // than NoLinkage when we don't strictly need to, which is benign.
1296 auto *VD = dyn_cast<VarDecl>(Owner);
1297 LinkageInfo OwnerLV =
1298 VD && VD->getType()->getContainedDeducedType()
1299 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1300 : getLVForDecl(Owner, computation);
1301
1302 // A lambda never formally has linkage. But if the owner is externally
1303 // visible, then the lambda is too. We apply the same rules to blocks.
1304 if (!isExternallyVisible(OwnerLV.getLinkage()))
1305 return LinkageInfo::none();
1306 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1307 OwnerLV.isVisibilityExplicit());
1308}
1309
1310LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1311 LVComputationKind computation) {
1312 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1313 if (Function->isInAnonymousNamespace() &&
1314 !isFirstInExternCContext(Function))
1315 return getInternalLinkageFor(Function);
1316
1317 // This is a "void f();" which got merged with a file static.
1318 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1319 return getInternalLinkageFor(Function);
1320
1321 LinkageInfo LV;
1322 if (!hasExplicitVisibilityAlready(computation)) {
1323 if (std::optional<Visibility> Vis =
1324 getExplicitVisibility(Function, computation))
1325 LV.mergeVisibility(*Vis, true);
1326 }
1327
1328 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1329 // merging storage classes and visibility attributes, so we don't have to
1330 // look at previous decls in here.
1331
1332 return LV;
1333 }
1334
1335 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1336 if (Var->hasExternalStorage()) {
1337 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1338 return getInternalLinkageFor(Var);
1339
1340 LinkageInfo LV;
1341 if (Var->getStorageClass() == SC_PrivateExtern)
1342 LV.mergeVisibility(HiddenVisibility, true);
1343 else if (!hasExplicitVisibilityAlready(computation)) {
1344 if (std::optional<Visibility> Vis =
1345 getExplicitVisibility(Var, computation))
1346 LV.mergeVisibility(*Vis, true);
1347 }
1348
1349 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1350 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1351 if (PrevLV.getLinkage())
1352 LV.setLinkage(PrevLV.getLinkage());
1353 LV.mergeVisibility(PrevLV);
1354 }
1355
1356 return LV;
1357 }
1358
1359 if (!Var->isStaticLocal())
1360 return LinkageInfo::none();
1361 }
1362
1363 ASTContext &Context = D->getASTContext();
1364 if (!Context.getLangOpts().CPlusPlus)
1365 return LinkageInfo::none();
1366
1367 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1368 if (!OuterD || OuterD->isInvalidDecl())
1369 return LinkageInfo::none();
1370
1371 LinkageInfo LV;
1372 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1373 if (!BD->getBlockManglingNumber())
1374 return LinkageInfo::none();
1375
1376 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1377 BD->getBlockManglingContextDecl(), computation);
1378 } else {
1379 const auto *FD = cast<FunctionDecl>(OuterD);
1380 if (!FD->isInlined() &&
1381 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1382 return LinkageInfo::none();
1383
1384 // If a function is hidden by -fvisibility-inlines-hidden option and
1385 // is not explicitly attributed as a hidden function,
1386 // we should not make static local variables in the function hidden.
1387 LV = getLVForDecl(FD, computation);
1388 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1389 !LV.isVisibilityExplicit() &&
1390 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1391 assert(cast<VarDecl>(D)->isStaticLocal())(static_cast <bool> (cast<VarDecl>(D)->isStaticLocal
()) ? void (0) : __assert_fail ("cast<VarDecl>(D)->isStaticLocal()"
, "clang/lib/AST/Decl.cpp", 1391, __extension__ __PRETTY_FUNCTION__
))
;
1392 // If this was an implicitly hidden inline method, check again for
1393 // explicit visibility on the parent class, and use that for static locals
1394 // if present.
1395 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1396 LV = getLVForDecl(MD->getParent(), computation);
1397 if (!LV.isVisibilityExplicit()) {
1398 Visibility globalVisibility =
1399 computation.isValueVisibility()
1400 ? Context.getLangOpts().getValueVisibilityMode()
1401 : Context.getLangOpts().getTypeVisibilityMode();
1402 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1403 /*visibilityExplicit=*/false);
1404 }
1405 }
1406 }
1407 if (!isExternallyVisible(LV.getLinkage()))
1408 return LinkageInfo::none();
1409 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1410 LV.isVisibilityExplicit());
1411}
1412
1413LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1414 LVComputationKind computation,
1415 bool IgnoreVarTypeLinkage) {
1416 // Internal_linkage attribute overrides other considerations.
1417 if (D->hasAttr<InternalLinkageAttr>())
1418 return getInternalLinkageFor(D);
1419
1420 // Objective-C: treat all Objective-C declarations as having external
1421 // linkage.
1422 switch (D->getKind()) {
1423 default:
1424 break;
1425
1426 // Per C++ [basic.link]p2, only the names of objects, references,
1427 // functions, types, templates, namespaces, and values ever have linkage.
1428 //
1429 // Note that the name of a typedef, namespace alias, using declaration,
1430 // and so on are not the name of the corresponding type, namespace, or
1431 // declaration, so they do *not* have linkage.
1432 case Decl::ImplicitParam:
1433 case Decl::Label:
1434 case Decl::NamespaceAlias:
1435 case Decl::ParmVar:
1436 case Decl::Using:
1437 case Decl::UsingEnum:
1438 case Decl::UsingShadow:
1439 case Decl::UsingDirective:
1440 return LinkageInfo::none();
1441
1442 case Decl::EnumConstant:
1443 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1444 if (D->getASTContext().getLangOpts().CPlusPlus)
1445 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1446 return LinkageInfo::visible_none();
1447
1448 case Decl::Typedef:
1449 case Decl::TypeAlias:
1450 // A typedef declaration has linkage if it gives a type a name for
1451 // linkage purposes.
1452 if (!cast<TypedefNameDecl>(D)
1453 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1454 return LinkageInfo::none();
1455 break;
1456
1457 case Decl::TemplateTemplateParm: // count these as external
1458 case Decl::NonTypeTemplateParm:
1459 case Decl::ObjCAtDefsField:
1460 case Decl::ObjCCategory:
1461 case Decl::ObjCCategoryImpl:
1462 case Decl::ObjCCompatibleAlias:
1463 case Decl::ObjCImplementation:
1464 case Decl::ObjCMethod:
1465 case Decl::ObjCProperty:
1466 case Decl::ObjCPropertyImpl:
1467 case Decl::ObjCProtocol:
1468 return getExternalLinkageFor(D);
1469
1470 case Decl::CXXRecord: {
1471 const auto *Record = cast<CXXRecordDecl>(D);
1472 if (Record->isLambda()) {
1473 if (Record->hasKnownLambdaInternalLinkage() ||
1474 !Record->getLambdaManglingNumber()) {
1475 // This lambda has no mangling number, so it's internal.
1476 return getInternalLinkageFor(D);
1477 }
1478
1479 return getLVForClosure(
1480 Record->getDeclContext()->getRedeclContext(),
1481 Record->getLambdaContextDecl(), computation);
1482 }
1483
1484 break;
1485 }
1486
1487 case Decl::TemplateParamObject: {
1488 // The template parameter object can be referenced from anywhere its type
1489 // and value can be referenced.
1490 auto *TPO = cast<TemplateParamObjectDecl>(D);
1491 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1492 LV.merge(getLVForValue(TPO->getValue(), computation));
1493 return LV;
1494 }
1495 }
1496
1497 // Handle linkage for namespace-scope names.
1498 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1499 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1500
1501 // C++ [basic.link]p5:
1502 // In addition, a member function, static data member, a named
1503 // class or enumeration of class scope, or an unnamed class or
1504 // enumeration defined in a class-scope typedef declaration such
1505 // that the class or enumeration has the typedef name for linkage
1506 // purposes (7.1.3), has external linkage if the name of the class
1507 // has external linkage.
1508 if (D->getDeclContext()->isRecord())
1509 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1510
1511 // C++ [basic.link]p6:
1512 // The name of a function declared in block scope and the name of
1513 // an object declared by a block scope extern declaration have
1514 // linkage. If there is a visible declaration of an entity with
1515 // linkage having the same name and type, ignoring entities
1516 // declared outside the innermost enclosing namespace scope, the
1517 // block scope declaration declares that same entity and receives
1518 // the linkage of the previous declaration. If there is more than
1519 // one such matching entity, the program is ill-formed. Otherwise,
1520 // if no matching entity is found, the block scope entity receives
1521 // external linkage.
1522 if (D->getDeclContext()->isFunctionOrMethod())
1523 return getLVForLocalDecl(D, computation);
1524
1525 // C++ [basic.link]p6:
1526 // Names not covered by these rules have no linkage.
1527 return LinkageInfo::none();
1528}
1529
1530/// getLVForDecl - Get the linkage and visibility for the given declaration.
1531LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1532 LVComputationKind computation) {
1533 // Internal_linkage attribute overrides other considerations.
1534 if (D->hasAttr<InternalLinkageAttr>())
1535 return getInternalLinkageFor(D);
1536
1537 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1538 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1539
1540 if (std::optional<LinkageInfo> LI = lookup(D, computation))
1541 return *LI;
1542
1543 LinkageInfo LV = computeLVForDecl(D, computation);
1544 if (D->hasCachedLinkage())
1545 assert(D->getCachedLinkage() == LV.getLinkage())(static_cast <bool> (D->getCachedLinkage() == LV.getLinkage
()) ? void (0) : __assert_fail ("D->getCachedLinkage() == LV.getLinkage()"
, "clang/lib/AST/Decl.cpp", 1545, __extension__ __PRETTY_FUNCTION__
))
;
1546
1547 D->setCachedLinkage(LV.getLinkage());
1548 cache(D, computation, LV);
1549
1550#ifndef NDEBUG
1551 // In C (because of gnu inline) and in c++ with microsoft extensions an
1552 // static can follow an extern, so we can have two decls with different
1553 // linkages.
1554 const LangOptions &Opts = D->getASTContext().getLangOpts();
1555 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1556 return LV;
1557
1558 // We have just computed the linkage for this decl. By induction we know
1559 // that all other computed linkages match, check that the one we just
1560 // computed also does.
1561 NamedDecl *Old = nullptr;
1562 for (auto *I : D->redecls()) {
1563 auto *T = cast<NamedDecl>(I);
1564 if (T == D)
1565 continue;
1566 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1567 Old = T;
1568 break;
1569 }
1570 }
1571 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage())(static_cast <bool> (!Old || Old->getCachedLinkage()
== D->getCachedLinkage()) ? void (0) : __assert_fail ("!Old || Old->getCachedLinkage() == D->getCachedLinkage()"
, "clang/lib/AST/Decl.cpp", 1571, __extension__ __PRETTY_FUNCTION__
))
;
1572#endif
1573
1574 return LV;
1575}
1576
1577LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1578 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1579 ? NamedDecl::VisibilityForType
1580 : NamedDecl::VisibilityForValue;
1581 LVComputationKind CK(EK);
1582 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1583 ? CK.forLinkageOnly()
1584 : CK);
1585}
1586
1587Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1588 if (isa<NamespaceDecl>(this))
1589 // Namespaces never have module linkage. It is the entities within them
1590 // that [may] do.
1591 return nullptr;
1592
1593 Module *M = getOwningModule();
1594 if (!M)
1595 return nullptr;
1596
1597 switch (M->Kind) {
1598 case Module::ModuleMapModule:
1599 // Module map modules have no special linkage semantics.
1600 return nullptr;
1601
1602 case Module::ModuleInterfaceUnit:
1603 case Module::ModuleImplementationUnit:
1604 case Module::ModulePartitionInterface:
1605 case Module::ModulePartitionImplementation:
1606 return M;
1607
1608 case Module::ModuleHeaderUnit:
1609 case Module::ExplicitGlobalModuleFragment:
1610 case Module::ImplicitGlobalModuleFragment: {
1611 // External linkage declarations in the global module have no owning module
1612 // for linkage purposes. But internal linkage declarations in the global
1613 // module fragment of a particular module are owned by that module for
1614 // linkage purposes.
1615 // FIXME: p1815 removes the need for this distinction -- there are no
1616 // internal linkage declarations that need to be referred to from outside
1617 // this TU.
1618 if (IgnoreLinkage)
1619 return nullptr;
1620 bool InternalLinkage;
1621 if (auto *ND = dyn_cast<NamedDecl>(this))
1622 InternalLinkage = !ND->hasExternalFormalLinkage();
1623 else
1624 InternalLinkage = isInAnonymousNamespace();
1625 return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent
1626 : nullptr;
1627 }
1628
1629 case Module::PrivateModuleFragment:
1630 // The private module fragment is part of its containing module for linkage
1631 // purposes.
1632 return M->Parent;
1633 }
1634
1635 llvm_unreachable("unknown module kind")::llvm::llvm_unreachable_internal("unknown module kind", "clang/lib/AST/Decl.cpp"
, 1635)
;
1636}
1637
1638void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
1639 Name.print(OS, Policy);
1640}
1641
1642void NamedDecl::printName(raw_ostream &OS) const {
1643 printName(OS, getASTContext().getPrintingPolicy());
1644}
1645
1646std::string NamedDecl::getQualifiedNameAsString() const {
1647 std::string QualName;
1648 llvm::raw_string_ostream OS(QualName);
1649 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1650 return QualName;
1651}
1652
1653void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1654 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1655}
1656
1657void NamedDecl::printQualifiedName(raw_ostream &OS,
1658 const PrintingPolicy &P) const {
1659 if (getDeclContext()->isFunctionOrMethod()) {
1660 // We do not print '(anonymous)' for function parameters without name.
1661 printName(OS, P);
1662 return;
1663 }
1664 printNestedNameSpecifier(OS, P);
1665 if (getDeclName())
1666 OS << *this;
1667 else {
1668 // Give the printName override a chance to pick a different name before we
1669 // fall back to "(anonymous)".
1670 SmallString<64> NameBuffer;
1671 llvm::raw_svector_ostream NameOS(NameBuffer);
1672 printName(NameOS, P);
1673 if (NameBuffer.empty())
1674 OS << "(anonymous)";
1675 else
1676 OS << NameBuffer;
1677 }
1678}
1679
1680void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1681 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1682}
1683
1684void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1685 const PrintingPolicy &P) const {
1686 const DeclContext *Ctx = getDeclContext();
1687
1688 // For ObjC methods and properties, look through categories and use the
1689 // interface as context.
1690 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1691 if (auto *ID = MD->getClassInterface())
1692 Ctx = ID;
1693 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1694 if (auto *MD = PD->getGetterMethodDecl())
1695 if (auto *ID = MD->getClassInterface())
1696 Ctx = ID;
1697 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1698 if (auto *CI = ID->getContainingInterface())
1699 Ctx = CI;
1700 }
1701
1702 if (Ctx->isFunctionOrMethod())
1703 return;
1704
1705 using ContextsTy = SmallVector<const DeclContext *, 8>;
1706 ContextsTy Contexts;
1707
1708 // Collect named contexts.
1709 DeclarationName NameInScope = getDeclName();
1710 for (; Ctx; Ctx = Ctx->getParent()) {
1711 // Suppress anonymous namespace if requested.
1712 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1713 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1714 continue;
1715
1716 // Suppress inline namespace if it doesn't make the result ambiguous.
1717 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1718 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1719 continue;
1720
1721 // Skip non-named contexts such as linkage specifications and ExportDecls.
1722 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1723 if (!ND)
1724 continue;
1725
1726 Contexts.push_back(Ctx);
1727 NameInScope = ND->getDeclName();
1728 }
1729
1730 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1731 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1732 OS << Spec->getName();
1733 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1734 printTemplateArgumentList(
1735 OS, TemplateArgs.asArray(), P,
1736 Spec->getSpecializedTemplate()->getTemplateParameters());
1737 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1738 if (ND->isAnonymousNamespace()) {
1739 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1740 : "(anonymous namespace)");
1741 }
1742 else
1743 OS << *ND;
1744 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1745 if (!RD->getIdentifier())
1746 OS << "(anonymous " << RD->getKindName() << ')';
1747 else
1748 OS << *RD;
1749 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1750 const FunctionProtoType *FT = nullptr;
1751 if (FD->hasWrittenPrototype())
1752 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1753
1754 OS << *FD << '(';
1755 if (FT) {
1756 unsigned NumParams = FD->getNumParams();
1757 for (unsigned i = 0; i < NumParams; ++i) {
1758 if (i)
1759 OS << ", ";
1760 OS << FD->getParamDecl(i)->getType().stream(P);
1761 }
1762
1763 if (FT->isVariadic()) {
1764 if (NumParams > 0)
1765 OS << ", ";
1766 OS << "...";
1767 }
1768 }
1769 OS << ')';
1770 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1771 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1772 // enumerator is declared in the scope that immediately contains
1773 // the enum-specifier. Each scoped enumerator is declared in the
1774 // scope of the enumeration.
1775 // For the case of unscoped enumerator, do not include in the qualified
1776 // name any information about its enum enclosing scope, as its visibility
1777 // is global.
1778 if (ED->isScoped())
1779 OS << *ED;
1780 else
1781 continue;
1782 } else {
1783 OS << *cast<NamedDecl>(DC);
1784 }
1785 OS << "::";
1786 }
1787}
1788
1789void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1790 const PrintingPolicy &Policy,
1791 bool Qualified) const {
1792 if (Qualified)
1793 printQualifiedName(OS, Policy);
1794 else
1795 printName(OS, Policy);
1796}
1797
1798template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1799 return true;
1800}
1801static bool isRedeclarableImpl(...) { return false; }
1802static bool isRedeclarable(Decl::Kind K) {
1803 switch (K) {
1804#define DECL(Type, Base) \
1805 case Decl::Type: \
1806 return isRedeclarableImpl((Type##Decl *)nullptr);
1807#define ABSTRACT_DECL(DECL)
1808#include "clang/AST/DeclNodes.inc"
1809 }
1810 llvm_unreachable("unknown decl kind")::llvm::llvm_unreachable_internal("unknown decl kind", "clang/lib/AST/Decl.cpp"
, 1810)
;
1811}
1812
1813bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1814 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch")(static_cast <bool> (getDeclName() == OldD->getDeclName
() && "Declaration name mismatch") ? void (0) : __assert_fail
("getDeclName() == OldD->getDeclName() && \"Declaration name mismatch\""
, "clang/lib/AST/Decl.cpp", 1814, __extension__ __PRETTY_FUNCTION__
))
;
1815
1816 // Never replace one imported declaration with another; we need both results
1817 // when re-exporting.
1818 if (OldD->isFromASTFile() && isFromASTFile())
1819 return false;
1820
1821 // A kind mismatch implies that the declaration is not replaced.
1822 if (OldD->getKind() != getKind())
1823 return false;
1824
1825 // For method declarations, we never replace. (Why?)
1826 if (isa<ObjCMethodDecl>(this))
1827 return false;
1828
1829 // For parameters, pick the newer one. This is either an error or (in
1830 // Objective-C) permitted as an extension.
1831 if (isa<ParmVarDecl>(this))
1832 return true;
1833
1834 // Inline namespaces can give us two declarations with the same
1835 // name and kind in the same scope but different contexts; we should
1836 // keep both declarations in this case.
1837 if (!this->getDeclContext()->getRedeclContext()->Equals(
1838 OldD->getDeclContext()->getRedeclContext()))
1839 return false;
1840
1841 // Using declarations can be replaced if they import the same name from the
1842 // same context.
1843 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1844 ASTContext &Context = getASTContext();
1845 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1846 Context.getCanonicalNestedNameSpecifier(
1847 cast<UsingDecl>(OldD)->getQualifier());
1848 }
1849 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1850 ASTContext &Context = getASTContext();
1851 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1852 Context.getCanonicalNestedNameSpecifier(
1853 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1854 }
1855
1856 if (isRedeclarable(getKind())) {
1857 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1858 return false;
1859
1860 if (IsKnownNewer)
1861 return true;
1862
1863 // Check whether this is actually newer than OldD. We want to keep the
1864 // newer declaration. This loop will usually only iterate once, because
1865 // OldD is usually the previous declaration.
1866 for (auto *D : redecls()) {
1867 if (D == OldD)
1868 break;
1869
1870 // If we reach the canonical declaration, then OldD is not actually older
1871 // than this one.
1872 //
1873 // FIXME: In this case, we should not add this decl to the lookup table.
1874 if (D->isCanonicalDecl())
1875 return false;
1876 }
1877
1878 // It's a newer declaration of the same kind of declaration in the same
1879 // scope: we want this decl instead of the existing one.
1880 return true;
1881 }
1882
1883 // In all other cases, we need to keep both declarations in case they have
1884 // different visibility. Any attempt to use the name will result in an
1885 // ambiguity if more than one is visible.
1886 return false;
1887}
1888
1889bool NamedDecl::hasLinkage() const {
1890 return getFormalLinkage() != NoLinkage;
1891}
1892
1893NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1894 NamedDecl *ND = this;
1895 if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1896 ND = UD->getTargetDecl();
1897
1898 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1899 return AD->getClassInterface();
1900
1901 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1902 return AD->getNamespace();
1903
1904 return ND;
1905}
1906
1907bool NamedDecl::isCXXInstanceMember() const {
1908 if (!isCXXClassMember())
1909 return false;
1910
1911 const NamedDecl *D = this;
1912 if (isa<UsingShadowDecl>(D))
1913 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1914
1915 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1916 return true;
1917 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1918 return MD->isInstance();
1919 return false;
1920}
1921
1922//===----------------------------------------------------------------------===//
1923// DeclaratorDecl Implementation
1924//===----------------------------------------------------------------------===//
1925
1926template <typename DeclT>
1927static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1928 if (decl->getNumTemplateParameterLists() > 0)
1929 return decl->getTemplateParameterList(0)->getTemplateLoc();
1930 return decl->getInnerLocStart();
1931}
1932
1933SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1934 TypeSourceInfo *TSI = getTypeSourceInfo();
1935 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1936 return SourceLocation();
1937}
1938
1939SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1940 TypeSourceInfo *TSI = getTypeSourceInfo();
1941 if (TSI) return TSI->getTypeLoc().getEndLoc();
1942 return SourceLocation();
1943}
1944
1945void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1946 if (QualifierLoc) {
1947 // Make sure the extended decl info is allocated.
1948 if (!hasExtInfo()) {
1949 // Save (non-extended) type source info pointer.
1950 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1951 // Allocate external info struct.
1952 DeclInfo = new (getASTContext()) ExtInfo;
1953 // Restore savedTInfo into (extended) decl info.
1954 getExtInfo()->TInfo = savedTInfo;
1955 }
1956 // Set qualifier info.
1957 getExtInfo()->QualifierLoc = QualifierLoc;
1958 } else if (hasExtInfo()) {
1959 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1960 getExtInfo()->QualifierLoc = QualifierLoc;
1961 }
1962}
1963
1964void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1965 assert(TrailingRequiresClause)(static_cast <bool> (TrailingRequiresClause) ? void (0)
: __assert_fail ("TrailingRequiresClause", "clang/lib/AST/Decl.cpp"
, 1965, __extension__ __PRETTY_FUNCTION__))
;
1966 // Make sure the extended decl info is allocated.
1967 if (!hasExtInfo()) {
1968 // Save (non-extended) type source info pointer.
1969 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1970 // Allocate external info struct.
1971 DeclInfo = new (getASTContext()) ExtInfo;
1972 // Restore savedTInfo into (extended) decl info.
1973 getExtInfo()->TInfo = savedTInfo;
1974 }
1975 // Set requires clause info.
1976 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1977}
1978
1979void DeclaratorDecl::setTemplateParameterListsInfo(
1980 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1981 assert(!TPLists.empty())(static_cast <bool> (!TPLists.empty()) ? void (0) : __assert_fail
("!TPLists.empty()", "clang/lib/AST/Decl.cpp", 1981, __extension__
__PRETTY_FUNCTION__))
;
1982 // Make sure the extended decl info is allocated.
1983 if (!hasExtInfo()) {
1984 // Save (non-extended) type source info pointer.
1985 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1986 // Allocate external info struct.
1987 DeclInfo = new (getASTContext()) ExtInfo;
1988 // Restore savedTInfo into (extended) decl info.
1989 getExtInfo()->TInfo = savedTInfo;
1990 }
1991 // Set the template parameter lists info.
1992 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1993}
1994
1995SourceLocation DeclaratorDecl::getOuterLocStart() const {
1996 return getTemplateOrInnerLocStart(this);
1997}
1998
1999// Helper function: returns true if QT is or contains a type
2000// having a postfix component.
2001static bool typeIsPostfix(QualType QT) {
2002 while (true) {
2003 const Type* T = QT.getTypePtr();
2004 switch (T->getTypeClass()) {
2005 default:
2006 return false;
2007 case Type::Pointer:
2008 QT = cast<PointerType>(T)->getPointeeType();
2009 break;
2010 case Type::BlockPointer:
2011 QT = cast<BlockPointerType>(T)->getPointeeType();
2012 break;
2013 case Type::MemberPointer:
2014 QT = cast<MemberPointerType>(T)->getPointeeType();
2015 break;
2016 case Type::LValueReference:
2017 case Type::RValueReference:
2018 QT = cast<ReferenceType>(T)->getPointeeType();
2019 break;
2020 case Type::PackExpansion:
2021 QT = cast<PackExpansionType>(T)->getPattern();
2022 break;
2023 case Type::Paren:
2024 case Type::ConstantArray:
2025 case Type::DependentSizedArray:
2026 case Type::IncompleteArray:
2027 case Type::VariableArray:
2028 case Type::FunctionProto:
2029 case Type::FunctionNoProto:
2030 return true;
2031 }
2032 }
2033}
2034
2035SourceRange DeclaratorDecl::getSourceRange() const {
2036 SourceLocation RangeEnd = getLocation();
2037 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2038 // If the declaration has no name or the type extends past the name take the
2039 // end location of the type.
2040 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2041 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2042 }
2043 return SourceRange(getOuterLocStart(), RangeEnd);
2044}
2045
2046void QualifierInfo::setTemplateParameterListsInfo(
2047 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2048 // Free previous template parameters (if any).
2049 if (NumTemplParamLists > 0) {
2050 Context.Deallocate(TemplParamLists);
2051 TemplParamLists = nullptr;
2052 NumTemplParamLists = 0;
2053 }
2054 // Set info on matched template parameter lists (if any).
2055 if (!TPLists.empty()) {
2056 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2057 NumTemplParamLists = TPLists.size();
2058 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2059 }
2060}
2061
2062//===----------------------------------------------------------------------===//
2063// VarDecl Implementation
2064//===----------------------------------------------------------------------===//
2065
2066const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2067 switch (SC) {
2068 case SC_None: break;
2069 case SC_Auto: return "auto";
2070 case SC_Extern: return "extern";
2071 case SC_PrivateExtern: return "__private_extern__";
2072 case SC_Register: return "register";
2073 case SC_Static: return "static";
2074 }
2075
2076 llvm_unreachable("Invalid storage class")::llvm::llvm_unreachable_internal("Invalid storage class", "clang/lib/AST/Decl.cpp"
, 2076)
;
2077}
2078
2079VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2080 SourceLocation StartLoc, SourceLocation IdLoc,
2081 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2082 StorageClass SC)
2083 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2084 redeclarable_base(C) {
2085 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2086 "VarDeclBitfields too large!");
2087 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2088 "ParmVarDeclBitfields too large!");
2089 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2090 "NonParmVarDeclBitfields too large!");
2091 AllBits = 0;
2092 VarDeclBits.SClass = SC;
2093 // Everything else is implicitly initialized to false.
2094}
2095
2096VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2097 SourceLocation IdL, const IdentifierInfo *Id,
2098 QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2099 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2100}
2101
2102VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2103 return new (C, ID)
2104 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2105 QualType(), nullptr, SC_None);
2106}
2107
2108void VarDecl::setStorageClass(StorageClass SC) {
2109 assert(isLegalForVariable(SC))(static_cast <bool> (isLegalForVariable(SC)) ? void (0)
: __assert_fail ("isLegalForVariable(SC)", "clang/lib/AST/Decl.cpp"
, 2109, __extension__ __PRETTY_FUNCTION__))
;
2110 VarDeclBits.SClass = SC;
2111}
2112
2113VarDecl::TLSKind VarDecl::getTLSKind() const {
2114 switch (VarDeclBits.TSCSpec) {
2115 case TSCS_unspecified:
2116 if (!hasAttr<ThreadAttr>() &&
2117 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2118 getASTContext().getTargetInfo().isTLSSupported() &&
2119 hasAttr<OMPThreadPrivateDeclAttr>()))
2120 return TLS_None;
2121 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2122 LangOptions::MSVC2015)) ||
2123 hasAttr<OMPThreadPrivateDeclAttr>())
2124 ? TLS_Dynamic
2125 : TLS_Static;
2126 case TSCS___thread: // Fall through.
2127 case TSCS__Thread_local:
2128 return TLS_Static;
2129 case TSCS_thread_local:
2130 return TLS_Dynamic;
2131 }
2132 llvm_unreachable("Unknown thread storage class specifier!")::llvm::llvm_unreachable_internal("Unknown thread storage class specifier!"
, "clang/lib/AST/Decl.cpp", 2132)
;
2133}
2134
2135SourceRange VarDecl::getSourceRange() const {
2136 if (const Expr *Init = getInit()) {
2137 SourceLocation InitEnd = Init->getEndLoc();
2138 // If Init is implicit, ignore its source range and fallback on
2139 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2140 if (InitEnd.isValid() && InitEnd != getLocation())
2141 return SourceRange(getOuterLocStart(), InitEnd);
2142 }
2143 return DeclaratorDecl::getSourceRange();
2144}
2145
2146template<typename T>
2147static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2148 // C++ [dcl.link]p1: All function types, function names with external linkage,
2149 // and variable names with external linkage have a language linkage.
2150 if (!D.hasExternalFormalLinkage())
2151 return NoLanguageLinkage;
2152
2153 // Language linkage is a C++ concept, but saying that everything else in C has
2154 // C language linkage fits the implementation nicely.
2155 ASTContext &Context = D.getASTContext();
2156 if (!Context.getLangOpts().CPlusPlus)
2157 return CLanguageLinkage;
2158
2159 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2160 // language linkage of the names of class members and the function type of
2161 // class member functions.
2162 const DeclContext *DC = D.getDeclContext();
2163 if (DC->isRecord())
2164 return CXXLanguageLinkage;
2165
2166 // If the first decl is in an extern "C" context, any other redeclaration
2167 // will have C language linkage. If the first one is not in an extern "C"
2168 // context, we would have reported an error for any other decl being in one.
2169 if (isFirstInExternCContext(&D))
2170 return CLanguageLinkage;
2171 return CXXLanguageLinkage;
2172}
2173
2174template<typename T>
2175static bool isDeclExternC(const T &D) {
2176 // Since the context is ignored for class members, they can only have C++
2177 // language linkage or no language linkage.
2178 const DeclContext *DC = D.getDeclContext();
2179 if (DC->isRecord()) {
2180 assert(D.getASTContext().getLangOpts().CPlusPlus)(static_cast <bool> (D.getASTContext().getLangOpts().CPlusPlus
) ? void (0) : __assert_fail ("D.getASTContext().getLangOpts().CPlusPlus"
, "clang/lib/AST/Decl.cpp", 2180, __extension__ __PRETTY_FUNCTION__
))
;
2181 return false;
2182 }
2183
2184 return D.getLanguageLinkage() == CLanguageLinkage;
2185}
2186
2187LanguageLinkage VarDecl::getLanguageLinkage() const {
2188 return getDeclLanguageLinkage(*this);
2189}
2190
2191bool VarDecl::isExternC() const {
2192 return isDeclExternC(*this);
2193}
2194
2195bool VarDecl::isInExternCContext() const {
2196 return getLexicalDeclContext()->isExternCContext();
2197}
2198
2199bool VarDecl::isInExternCXXContext() const {
2200 return getLexicalDeclContext()->isExternCXXContext();
2201}
2202
2203VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2204
2205VarDecl::DefinitionKind
2206VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2207 if (isThisDeclarationADemotedDefinition())
2208 return DeclarationOnly;
2209
2210 // C++ [basic.def]p2:
2211 // A declaration is a definition unless [...] it contains the 'extern'
2212 // specifier or a linkage-specification and neither an initializer [...],
2213 // it declares a non-inline static data member in a class declaration [...],
2214 // it declares a static data member outside a class definition and the variable
2215 // was defined within the class with the constexpr specifier [...],
2216 // C++1y [temp.expl.spec]p15:
2217 // An explicit specialization of a static data member or an explicit
2218 // specialization of a static data member template is a definition if the
2219 // declaration includes an initializer; otherwise, it is a declaration.
2220 //
2221 // FIXME: How do you declare (but not define) a partial specialization of
2222 // a static data member template outside the containing class?
2223 if (isStaticDataMember()) {
2224 if (isOutOfLine() &&
2225 !(getCanonicalDecl()->isInline() &&
2226 getCanonicalDecl()->isConstexpr()) &&
2227 (hasInit() ||
2228 // If the first declaration is out-of-line, this may be an
2229 // instantiation of an out-of-line partial specialization of a variable
2230 // template for which we have not yet instantiated the initializer.
2231 (getFirstDecl()->isOutOfLine()
2232 ? getTemplateSpecializationKind() == TSK_Undeclared
2233 : getTemplateSpecializationKind() !=
2234 TSK_ExplicitSpecialization) ||
2235 isa<VarTemplatePartialSpecializationDecl>(this)))
2236 return Definition;
2237 if (!isOutOfLine() && isInline())
2238 return Definition;
2239 return DeclarationOnly;
2240 }
2241 // C99 6.7p5:
2242 // A definition of an identifier is a declaration for that identifier that
2243 // [...] causes storage to be reserved for that object.
2244 // Note: that applies for all non-file-scope objects.
2245 // C99 6.9.2p1:
2246 // If the declaration of an identifier for an object has file scope and an
2247 // initializer, the declaration is an external definition for the identifier
2248 if (hasInit())
2249 return Definition;
2250
2251 if (hasDefiningAttr())
2252 return Definition;
2253
2254 if (const auto *SAA = getAttr<SelectAnyAttr>())
2255 if (!SAA->isInherited())
2256 return Definition;
2257
2258 // A variable template specialization (other than a static data member
2259 // template or an explicit specialization) is a declaration until we
2260 // instantiate its initializer.
2261 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2262 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2263 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2264 !VTSD->IsCompleteDefinition)
2265 return DeclarationOnly;
2266 }
2267
2268 if (hasExternalStorage())
2269 return DeclarationOnly;
2270
2271 // [dcl.link] p7:
2272 // A declaration directly contained in a linkage-specification is treated
2273 // as if it contains the extern specifier for the purpose of determining
2274 // the linkage of the declared name and whether it is a definition.
2275 if (isSingleLineLanguageLinkage(*this))
2276 return DeclarationOnly;
2277
2278 // C99 6.9.2p2:
2279 // A declaration of an object that has file scope without an initializer,
2280 // and without a storage class specifier or the scs 'static', constitutes
2281 // a tentative definition.
2282 // No such thing in C++.
2283 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2284 return TentativeDefinition;
2285
2286 // What's left is (in C, block-scope) declarations without initializers or
2287 // external storage. These are definitions.
2288 return Definition;
2289}
2290
2291VarDecl *VarDecl::getActingDefinition() {
2292 DefinitionKind Kind = isThisDeclarationADefinition();
2293 if (Kind != TentativeDefinition)
2294 return nullptr;
2295
2296 VarDecl *LastTentative = nullptr;
2297
2298 // Loop through the declaration chain, starting with the most recent.
2299 for (VarDecl *Decl = getMostRecentDecl(); Decl;
2300 Decl = Decl->getPreviousDecl()) {
2301 Kind = Decl->isThisDeclarationADefinition();
2302 if (Kind == Definition)
2303 return nullptr;
2304 // Record the first (most recent) TentativeDefinition that is encountered.
2305 if (Kind == TentativeDefinition && !LastTentative)
2306 LastTentative = Decl;
2307 }
2308
2309 return LastTentative;
2310}
2311
2312VarDecl *VarDecl::getDefinition(ASTContext &C) {
2313 VarDecl *First = getFirstDecl();
2314 for (auto *I : First->redecls()) {
2315 if (I->isThisDeclarationADefinition(C) == Definition)
2316 return I;
2317 }
2318 return nullptr;
2319}
2320
2321VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2322 DefinitionKind Kind = DeclarationOnly;
2323
2324 const VarDecl *First = getFirstDecl();
2325 for (auto *I : First->redecls()) {
2326 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2327 if (Kind == Definition)
2328 break;
2329 }
2330
2331 return Kind;
2332}
2333
2334const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2335 for (auto *I : redecls()) {
2336 if (auto Expr = I->getInit()) {
2337 D = I;
2338 return Expr;
2339 }
2340 }
2341 return nullptr;
2342}
2343
2344bool VarDecl::hasInit() const {
2345 if (auto *P = dyn_cast<ParmVarDecl>(this))
2346 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2347 return false;
2348
2349 return !Init.isNull();
2350}
2351
2352Expr *VarDecl::getInit() {
2353 if (!hasInit())
2354 return nullptr;
2355
2356 if (auto *S = Init.dyn_cast<Stmt *>())
2357 return cast<Expr>(S);
2358
2359 auto *Eval = getEvaluatedStmt();
2360 return cast<Expr>(Eval->Value.isOffset()
2361 ? Eval->Value.get(getASTContext().getExternalSource())
2362 : Eval->Value.get(nullptr));
2363}
2364
2365Stmt **VarDecl::getInitAddress() {
2366 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2367 return ES->Value.getAddressOfPointer(getASTContext().getExternalSource());
2368
2369 return Init.getAddrOfPtr1();
2370}
2371
2372VarDecl *VarDecl::getInitializingDeclaration() {
2373 VarDecl *Def = nullptr;
2374 for (auto *I : redecls()) {
2375 if (I->hasInit())
2376 return I;
2377
2378 if (I->isThisDeclarationADefinition()) {
2379 if (isStaticDataMember())
2380 return I;
2381 Def = I;
2382 }
2383 }
2384 return Def;
2385}
2386
2387bool VarDecl::isOutOfLine() const {
2388 if (Decl::isOutOfLine())
2389 return true;
2390
2391 if (!isStaticDataMember())
2392 return false;
2393
2394 // If this static data member was instantiated from a static data member of
2395 // a class template, check whether that static data member was defined
2396 // out-of-line.
2397 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2398 return VD->isOutOfLine();
2399
2400 return false;
2401}
2402
2403void VarDecl::setInit(Expr *I) {
2404 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2405 Eval->~EvaluatedStmt();
2406 getASTContext().Deallocate(Eval);
2407 }
2408
2409 Init = I;
2410}
2411
2412bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2413 const LangOptions &Lang = C.getLangOpts();
2414
2415 // OpenCL permits const integral variables to be used in constant
2416 // expressions, like in C++98.
2417 if (!Lang.CPlusPlus && !Lang.OpenCL)
2418 return false;
2419
2420 // Function parameters are never usable in constant expressions.
2421 if (isa<ParmVarDecl>(this))
2422 return false;
2423
2424 // The values of weak variables are never usable in constant expressions.
2425 if (isWeak())
2426 return false;
2427
2428 // In C++11, any variable of reference type can be used in a constant
2429 // expression if it is initialized by a constant expression.
2430 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2431 return true;
2432
2433 // Only const objects can be used in constant expressions in C++. C++98 does
2434 // not require the variable to be non-volatile, but we consider this to be a
2435 // defect.
2436 if (!getType().isConstant(C) || getType().isVolatileQualified())
2437 return false;
2438
2439 // In C++, const, non-volatile variables of integral or enumeration types
2440 // can be used in constant expressions.
2441 if (getType()->isIntegralOrEnumerationType())
2442 return true;
2443
2444 // Additionally, in C++11, non-volatile constexpr variables can be used in
2445 // constant expressions.
2446 return Lang.CPlusPlus11 && isConstexpr();
2447}
2448
2449bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2450 // C++2a [expr.const]p3:
2451 // A variable is usable in constant expressions after its initializing
2452 // declaration is encountered...
2453 const VarDecl *DefVD = nullptr;
2454 const Expr *Init = getAnyInitializer(DefVD);
2455 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2456 return false;
2457 // ... if it is a constexpr variable, or it is of reference type or of
2458 // const-qualified integral or enumeration type, ...
2459 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2460 return false;
2461 // ... and its initializer is a constant initializer.
2462 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2463 return false;
2464 // C++98 [expr.const]p1:
2465 // An integral constant-expression can involve only [...] const variables
2466 // or static data members of integral or enumeration types initialized with
2467 // [integer] constant expressions (dcl.init)
2468 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2469 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2470 return false;
2471 return true;
2472}
2473
2474/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2475/// form, which contains extra information on the evaluated value of the
2476/// initializer.
2477EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2478 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2479 if (!Eval) {
2480 // Note: EvaluatedStmt contains an APValue, which usually holds
2481 // resources not allocated from the ASTContext. We need to do some
2482 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2483 // where we can detect whether there's anything to clean up or not.
2484 Eval = new (getASTContext()) EvaluatedStmt;
2485 Eval->Value = Init.get<Stmt *>();
2486 Init = Eval;
2487 }
2488 return Eval;
2489}
2490
2491EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2492 return Init.dyn_cast<EvaluatedStmt *>();
2493}
2494
2495APValue *VarDecl::evaluateValue() const {
2496 SmallVector<PartialDiagnosticAt, 8> Notes;
2497 return evaluateValueImpl(Notes, hasConstantInitialization());
2498}
2499
2500APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2501 bool IsConstantInitialization) const {
2502 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2503
2504 const auto *Init = getInit();
2505 assert(!Init->isValueDependent())(static_cast <bool> (!Init->isValueDependent()) ? void
(0) : __assert_fail ("!Init->isValueDependent()", "clang/lib/AST/Decl.cpp"
, 2505, __extension__ __PRETTY_FUNCTION__))
;
2506
2507 // We only produce notes indicating why an initializer is non-constant the
2508 // first time it is evaluated. FIXME: The notes won't always be emitted the
2509 // first time we try evaluation, so might not be produced at all.
2510 if (Eval->WasEvaluated)
2511 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2512
2513 if (Eval->IsEvaluating) {
2514 // FIXME: Produce a diagnostic for self-initialization.
2515 return nullptr;
2516 }
2517
2518 Eval->IsEvaluating = true;
2519
2520 ASTContext &Ctx = getASTContext();
2521 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2522 IsConstantInitialization);
2523
2524 // In C++11, this isn't a constant initializer if we produced notes. In that
2525 // case, we can't keep the result, because it may only be correct under the
2526 // assumption that the initializer is a constant context.
2527 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2528 !Notes.empty())
2529 Result = false;
2530
2531 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2532 // or that it's empty (so that there's nothing to clean up) if evaluation
2533 // failed.
2534 if (!Result)
2535 Eval->Evaluated = APValue();
2536 else if (Eval->Evaluated.needsCleanup())
2537 Ctx.addDestruction(&Eval->Evaluated);
2538
2539 Eval->IsEvaluating = false;
2540 Eval->WasEvaluated = true;
2541
2542 return Result ? &Eval->Evaluated : nullptr;
2543}
2544
2545APValue *VarDecl::getEvaluatedValue() const {
2546 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2547 if (Eval->WasEvaluated)
2548 return &Eval->Evaluated;
2549
2550 return nullptr;
2551}
2552
2553bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2554 const Expr *Init = getInit();
2555 assert(Init && "no initializer")(static_cast <bool> (Init && "no initializer") ?
void (0) : __assert_fail ("Init && \"no initializer\""
, "clang/lib/AST/Decl.cpp", 2555, __extension__ __PRETTY_FUNCTION__
))
;
2556
2557 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2558 if (!Eval->CheckedForICEInit) {
2559 Eval->CheckedForICEInit = true;
2560 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2561 }
2562 return Eval->HasICEInit;
2563}
2564
2565bool VarDecl::hasConstantInitialization() const {
2566 // In C, all globals (and only globals) have constant initialization.
2567 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2568 return true;
2569
2570 // In C++, it depends on whether the evaluation at the point of definition
2571 // was evaluatable as a constant initializer.
2572 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2573 return Eval->HasConstantInitialization;
2574
2575 return false;
2576}
2577
2578bool VarDecl::checkForConstantInitialization(
2579 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2580 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2581 // If we ask for the value before we know whether we have a constant
2582 // initializer, we can compute the wrong value (for example, due to
2583 // std::is_constant_evaluated()).
2584 assert(!Eval->WasEvaluated &&(static_cast <bool> (!Eval->WasEvaluated && "already evaluated var value before checking for constant init"
) ? void (0) : __assert_fail ("!Eval->WasEvaluated && \"already evaluated var value before checking for constant init\""
, "clang/lib/AST/Decl.cpp", 2585, __extension__ __PRETTY_FUNCTION__
))
2585 "already evaluated var value before checking for constant init")(static_cast <bool> (!Eval->WasEvaluated && "already evaluated var value before checking for constant init"
) ? void (0) : __assert_fail ("!Eval->WasEvaluated && \"already evaluated var value before checking for constant init\""
, "clang/lib/AST/Decl.cpp", 2585, __extension__ __PRETTY_FUNCTION__
))
;
2586 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++")(static_cast <bool> (getASTContext().getLangOpts().CPlusPlus
&& "only meaningful in C++") ? void (0) : __assert_fail
("getASTContext().getLangOpts().CPlusPlus && \"only meaningful in C++\""
, "clang/lib/AST/Decl.cpp", 2586, __extension__ __PRETTY_FUNCTION__
))
;
2587
2588 assert(!getInit()->isValueDependent())(static_cast <bool> (!getInit()->isValueDependent())
? void (0) : __assert_fail ("!getInit()->isValueDependent()"
, "clang/lib/AST/Decl.cpp", 2588, __extension__ __PRETTY_FUNCTION__
))
;
2589
2590 // Evaluate the initializer to check whether it's a constant expression.
2591 Eval->HasConstantInitialization =
2592 evaluateValueImpl(Notes, true) && Notes.empty();
2593
2594 // If evaluation as a constant initializer failed, allow re-evaluation as a
2595 // non-constant initializer if we later find we want the value.
2596 if (!Eval->HasConstantInitialization)
2597 Eval->WasEvaluated = false;
2598
2599 return Eval->HasConstantInitialization;
2600}
2601
2602bool VarDecl::isParameterPack() const {
2603 return isa<PackExpansionType>(getType());
2604}
2605
2606template<typename DeclT>
2607static DeclT *getDefinitionOrSelf(DeclT *D) {
2608 assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D"
, "clang/lib/AST/Decl.cpp", 2608, __extension__ __PRETTY_FUNCTION__
))
;
2609 if (auto *Def = D->getDefinition())
2610 return Def;
2611 return D;
2612}
2613
2614bool VarDecl::isEscapingByref() const {
2615 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2616}
2617
2618bool VarDecl::isNonEscapingByref() const {
2619 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2620}
2621
2622bool VarDecl::hasDependentAlignment() const {
2623 QualType T = getType();
2624 return T->isDependentType() || T->isUndeducedType() ||
2625 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2626 return AA->isAlignmentDependent();
2627 });
2628}
2629
2630VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2631 const VarDecl *VD = this;
2632
2633 // If this is an instantiated member, walk back to the template from which
2634 // it was instantiated.
2635 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2636 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2637 VD = VD->getInstantiatedFromStaticDataMember();
2638 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2639 VD = NewVD;
2640 }
2641 }
2642
2643 // If it's an instantiated variable template specialization, find the
2644 // template or partial specialization from which it was instantiated.
2645 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2646 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2647 auto From = VDTemplSpec->getInstantiatedFrom();
2648 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2649 while (!VTD->isMemberSpecialization()) {
2650 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2651 if (!NewVTD)
2652 break;
2653 VTD = NewVTD;
2654 }
2655 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2656 }
2657 if (auto *VTPSD =
2658 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2659 while (!VTPSD->isMemberSpecialization()) {
2660 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2661 if (!NewVTPSD)
2662 break;
2663 VTPSD = NewVTPSD;
2664 }
2665 return getDefinitionOrSelf<VarDecl>(VTPSD);
2666 }
2667 }
2668 }
2669
2670 // If this is the pattern of a variable template, find where it was
2671 // instantiated from. FIXME: Is this necessary?
2672 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2673 while (!VarTemplate->isMemberSpecialization()) {
2674 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2675 if (!NewVT)
2676 break;
2677 VarTemplate = NewVT;
2678 }
2679
2680 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2681 }
2682
2683 if (VD == this)
2684 return nullptr;
2685 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2686}
2687
2688VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2689 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2690 return cast<VarDecl>(MSI->getInstantiatedFrom());
2691
2692 return nullptr;
2693}
2694
2695TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2696 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2697 return Spec->getSpecializationKind();
2698
2699 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2700 return MSI->getTemplateSpecializationKind();
2701
2702 return TSK_Undeclared;
2703}
2704
2705TemplateSpecializationKind
2706VarDecl::getTemplateSpecializationKindForInstantiation() const {
2707 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2708 return MSI->getTemplateSpecializationKind();
2709
2710 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2711 return Spec->getSpecializationKind();
2712
2713 return TSK_Undeclared;
2714}
2715
2716SourceLocation VarDecl::getPointOfInstantiation() const {
2717 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2718 return Spec->getPointOfInstantiation();
2719
2720 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2721 return MSI->getPointOfInstantiation();
2722
2723 return SourceLocation();
2724}
2725
2726VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2727 return getASTContext().getTemplateOrSpecializationInfo(this)
2728 .dyn_cast<VarTemplateDecl *>();
2729}
2730
2731void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2732 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2733}
2734
2735bool VarDecl::isKnownToBeDefined() const {
2736 const auto &LangOpts = getASTContext().getLangOpts();
2737 // In CUDA mode without relocatable device code, variables of form 'extern
2738 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2739 // memory pool. These are never undefined variables, even if they appear
2740 // inside of an anon namespace or static function.
2741 //
2742 // With CUDA relocatable device code enabled, these variables don't get
2743 // special handling; they're treated like regular extern variables.
2744 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2745 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2746 isa<IncompleteArrayType>(getType()))
2747 return true;
2748
2749 return hasDefinition();
2750}
2751
2752bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2753 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2754 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2755 !hasAttr<AlwaysDestroyAttr>()));
2756}
2757
2758QualType::DestructionKind
2759VarDecl::needsDestruction(const ASTContext &Ctx) const {
2760 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2761 if (Eval->HasConstantDestruction)
2762 return QualType::DK_none;
2763
2764 if (isNoDestroy(Ctx))
2765 return QualType::DK_none;
2766
2767 return getType().isDestructedType();
2768}
2769
2770bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2771 assert(hasInit() && "Expect initializer to check for flexible array init")(static_cast <bool> (hasInit() && "Expect initializer to check for flexible array init"
) ? void (0) : __assert_fail ("hasInit() && \"Expect initializer to check for flexible array init\""
, "clang/lib/AST/Decl.cpp", 2771, __extension__ __PRETTY_FUNCTION__
))
;
2772 auto *Ty = getType()->getAs<RecordType>();
2773 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2774 return false;
2775 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2776 if (!List)
2777 return false;
2778 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2779 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2780 if (!InitTy)
2781 return false;
2782 return InitTy->getSize() != 0;
2783}
2784
2785CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2786 assert(hasInit() && "Expect initializer to check for flexible array init")(static_cast <bool> (hasInit() && "Expect initializer to check for flexible array init"
) ? void (0) : __assert_fail ("hasInit() && \"Expect initializer to check for flexible array init\""
, "clang/lib/AST/Decl.cpp", 2786, __extension__ __PRETTY_FUNCTION__
))
;
2787 auto *Ty = getType()->getAs<RecordType>();
2788 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2789 return CharUnits::Zero();
2790 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2791 if (!List)
2792 return CharUnits::Zero();
2793 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2794 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2795 if (!InitTy)
2796 return CharUnits::Zero();
2797 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2798 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2799 CharUnits FlexibleArrayOffset =
2800 Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2801 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2802 return CharUnits::Zero();
2803 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2804}
2805
2806MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2807 if (isStaticDataMember())
2808 // FIXME: Remove ?
2809 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2810 return getASTContext().getTemplateOrSpecializationInfo(this)
2811 .dyn_cast<MemberSpecializationInfo *>();
2812 return nullptr;
2813}
2814
2815void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2816 SourceLocation PointOfInstantiation) {
2817 assert((isa<VarTemplateSpecializationDecl>(this) ||(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "clang/lib/AST/Decl.cpp", 2819, __extension__ __PRETTY_FUNCTION__
))
2818 getMemberSpecializationInfo()) &&(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "clang/lib/AST/Decl.cpp", 2819, __extension__ __PRETTY_FUNCTION__
))
2819 "not a variable or static data member template specialization")(static_cast <bool> ((isa<VarTemplateSpecializationDecl
>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"
) ? void (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "clang/lib/AST/Decl.cpp", 2819, __extension__ __PRETTY_FUNCTION__
))
;
2820
2821 if (VarTemplateSpecializationDecl *Spec =
2822 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2823 Spec->setSpecializationKind(TSK);
2824 if (TSK != TSK_ExplicitSpecialization &&
2825 PointOfInstantiation.isValid() &&
2826 Spec->getPointOfInstantiation().isInvalid()) {
2827 Spec->setPointOfInstantiation(PointOfInstantiation);
2828 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2829 L->InstantiationRequested(this);
2830 }
2831 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2832 MSI->setTemplateSpecializationKind(TSK);
2833 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2834 MSI->getPointOfInstantiation().isInvalid()) {
2835 MSI->setPointOfInstantiation(PointOfInstantiation);
2836 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2837 L->InstantiationRequested(this);
2838 }
2839 }
2840}
2841
2842void
2843VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2844 TemplateSpecializationKind TSK) {
2845 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&(static_cast <bool> (getASTContext().getTemplateOrSpecializationInfo
(this).isNull() && "Previous template or instantiation?"
) ? void (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "clang/lib/AST/Decl.cpp", 2846, __extension__ __PRETTY_FUNCTION__
))
2846 "Previous template or instantiation?")(static_cast <bool> (getASTContext().getTemplateOrSpecializationInfo
(this).isNull() && "Previous template or instantiation?"
) ? void (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "clang/lib/AST/Decl.cpp", 2846, __extension__ __PRETTY_FUNCTION__
))
;
2847 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2848}
2849
2850//===----------------------------------------------------------------------===//
2851// ParmVarDecl Implementation
2852//===----------------------------------------------------------------------===//
2853
2854ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2855 SourceLocation StartLoc,
2856 SourceLocation IdLoc, IdentifierInfo *Id,
2857 QualType T, TypeSourceInfo *TInfo,
2858 StorageClass S, Expr *DefArg) {
2859 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2860 S, DefArg);
2861}
2862
2863QualType ParmVarDecl::getOriginalType() const {
2864 TypeSourceInfo *TSI = getTypeSourceInfo();
2865 QualType T = TSI ? TSI->getType() : getType();
2866 if (const auto *DT = dyn_cast<DecayedType>(T))
2867 return DT->getOriginalType();
2868 return T;
2869}
2870
2871ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2872 return new (C, ID)
2873 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2874 nullptr, QualType(), nullptr, SC_None, nullptr);
2875}
2876
2877SourceRange ParmVarDecl::getSourceRange() const {
2878 if (!hasInheritedDefaultArg()) {
2879 SourceRange ArgRange = getDefaultArgRange();
2880 if (ArgRange.isValid())
2881 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2882 }
2883
2884 // DeclaratorDecl considers the range of postfix types as overlapping with the
2885 // declaration name, but this is not the case with parameters in ObjC methods.
2886 if (isa<ObjCMethodDecl>(getDeclContext()))
2887 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2888
2889 return DeclaratorDecl::getSourceRange();
2890}
2891
2892bool ParmVarDecl::isDestroyedInCallee() const {
2893 // ns_consumed only affects code generation in ARC
2894 if (hasAttr<NSConsumedAttr>())
2895 return getASTContext().getLangOpts().ObjCAutoRefCount;
2896
2897 // FIXME: isParamDestroyedInCallee() should probably imply
2898 // isDestructedType()
2899 auto *RT = getType()->getAs<RecordType>();
2900 if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2901 getType().isDestructedType())
2902 return true;
2903
2904 return false;
2905}
2906
2907Expr *ParmVarDecl::getDefaultArg() {
2908 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!")(static_cast <bool> (!hasUnparsedDefaultArg() &&
"Default argument is not yet parsed!") ? void (0) : __assert_fail
("!hasUnparsedDefaultArg() && \"Default argument is not yet parsed!\""
, "clang/lib/AST/Decl.cpp", 2908, __extension__ __PRETTY_FUNCTION__
))
;
2909 assert(!hasUninstantiatedDefaultArg() &&(static_cast <bool> (!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!") ? void (0) : __assert_fail
("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "clang/lib/AST/Decl.cpp", 2910, __extension__ __PRETTY_FUNCTION__
))
2910 "Default argument is not yet instantiated!")(static_cast <bool> (!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!") ? void (0) : __assert_fail
("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "clang/lib/AST/Decl.cpp", 2910, __extension__ __PRETTY_FUNCTION__
))
;
2911
2912 Expr *Arg = getInit();
2913 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2914 return E->getSubExpr();
2915
2916 return Arg;
2917}
2918
2919void ParmVarDecl::setDefaultArg(Expr *defarg) {
2920 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2921 Init = defarg;
2922}
2923
2924SourceRange ParmVarDecl::getDefaultArgRange() const {
2925 switch (ParmVarDeclBits.DefaultArgKind) {
2926 case DAK_None:
2927 case DAK_Unparsed:
2928 // Nothing we can do here.
2929 return SourceRange();
2930
2931 case DAK_Uninstantiated:
2932 return getUninstantiatedDefaultArg()->getSourceRange();
2933
2934 case DAK_Normal:
2935 if (const Expr *E = getInit())
2936 return E->getSourceRange();
2937
2938 // Missing an actual expression, may be invalid.
2939 return SourceRange();
2940 }
2941 llvm_unreachable("Invalid default argument kind.")::llvm::llvm_unreachable_internal("Invalid default argument kind."
, "clang/lib/AST/Decl.cpp", 2941)
;
2942}
2943
2944void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2945 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2946 Init = arg;
2947}
2948
2949Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2950 assert(hasUninstantiatedDefaultArg() &&(static_cast <bool> (hasUninstantiatedDefaultArg() &&
"Wrong kind of initialization expression!") ? void (0) : __assert_fail
("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "clang/lib/AST/Decl.cpp", 2951, __extension__ __PRETTY_FUNCTION__
))
2951 "Wrong kind of initialization expression!")(static_cast <bool> (hasUninstantiatedDefaultArg() &&
"Wrong kind of initialization expression!") ? void (0) : __assert_fail
("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "clang/lib/AST/Decl.cpp", 2951, __extension__ __PRETTY_FUNCTION__
))
;
2952 return cast_or_null<Expr>(Init.get<Stmt *>());
2953}
2954
2955bool ParmVarDecl::hasDefaultArg() const {
2956 // FIXME: We should just return false for DAK_None here once callers are
2957 // prepared for the case that we encountered an invalid default argument and
2958 // were unable to even build an invalid expression.
2959 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2960 !Init.isNull();
2961}
2962
2963void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2964 getASTContext().setParameterIndex(this, parameterIndex);
2965 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2966}
2967
2968unsigned ParmVarDecl::getParameterIndexLarge() const {
2969 return getASTContext().getParameterIndex(this);
2970}
2971
2972//===----------------------------------------------------------------------===//
2973// FunctionDecl Implementation
2974//===----------------------------------------------------------------------===//
2975
2976FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2977 SourceLocation StartLoc,
2978 const DeclarationNameInfo &NameInfo, QualType T,
2979 TypeSourceInfo *TInfo, StorageClass S,
2980 bool UsesFPIntrin, bool isInlineSpecified,
2981 ConstexprSpecKind ConstexprKind,
2982 Expr *TrailingRequiresClause)
2983 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2984 StartLoc),
2985 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2986 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2987 assert(T.isNull() || T->isFunctionType())(static_cast <bool> (T.isNull() || T->isFunctionType
()) ? void (0) : __assert_fail ("T.isNull() || T->isFunctionType()"
, "clang/lib/AST/Decl.cpp", 2987, __extension__ __PRETTY_FUNCTION__
))
;
2988 FunctionDeclBits.SClass = S;
2989 FunctionDeclBits.IsInline = isInlineSpecified;
2990 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2991 FunctionDeclBits.IsVirtualAsWritten = false;
2992 FunctionDeclBits.IsPure = false;
2993 FunctionDeclBits.HasInheritedPrototype = false;
2994 FunctionDeclBits.HasWrittenPrototype = true;
2995 FunctionDeclBits.IsDeleted = false;
2996 FunctionDeclBits.IsTrivial = false;
2997 FunctionDeclBits.IsTrivialForCall = false;
2998 FunctionDeclBits.IsDefaulted = false;
2999 FunctionDeclBits.IsExplicitlyDefaulted = false;
3000 FunctionDeclBits.HasDefaultedFunctionInfo = false;
3001 FunctionDeclBits.IsIneligibleOrNotSelected = false;
3002 FunctionDeclBits.HasImplicitReturnZero = false;
3003 FunctionDeclBits.IsLateTemplateParsed = false;
3004 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3005 FunctionDeclBits.InstantiationIsPending = false;
3006 FunctionDeclBits.UsesSEHTry = false;
3007 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3008 FunctionDeclBits.HasSkippedBody = false;
3009 FunctionDeclBits.WillHaveBody = false;
3010 FunctionDeclBits.IsMultiVersion = false;
3011 FunctionDeclBits.IsCopyDeductionCandidate = false;
3012 FunctionDeclBits.HasODRHash = false;
3013 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3014 if (TrailingRequiresClause)
3015 setTrailingRequiresClause(TrailingRequiresClause);
3016}
3017
3018void FunctionDecl::getNameForDiagnostic(
3019 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3020 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
3021 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
3022 if (TemplateArgs)
3023 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3024}
3025
3026bool FunctionDecl::isVariadic() const {
3027 if (const auto *FT = getType()->getAs<FunctionProtoType>())
3028 return FT->isVariadic();
3029 return false;
3030}
3031
3032FunctionDecl::DefaultedFunctionInfo *
3033FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
3034 ArrayRef<DeclAccessPair> Lookups) {
3035 DefaultedFunctionInfo *Info = new (Context.Allocate(
3036 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
3037 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
3038 DefaultedFunctionInfo;
3039 Info->NumLookups = Lookups.size();
3040 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3041 Info->getTrailingObjects<DeclAccessPair>());
3042 return Info;
3043}
3044
3045void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
3046 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this")(static_cast <bool> (!FunctionDeclBits.HasDefaultedFunctionInfo
&& "already have this") ? void (0) : __assert_fail (
"!FunctionDeclBits.HasDefaultedFunctionInfo && \"already have this\""
, "clang/lib/AST/Decl.cpp", 3046, __extension__ __PRETTY_FUNCTION__
))
;
3047 assert(!Body && "can't replace function body with defaulted function info")(static_cast <bool> (!Body && "can't replace function body with defaulted function info"
) ? void (0) : __assert_fail ("!Body && \"can't replace function body with defaulted function info\""
, "clang/lib/AST/Decl.cpp", 3047, __extension__ __PRETTY_FUNCTION__
))
;
3048
3049 FunctionDeclBits.HasDefaultedFunctionInfo = true;
3050 DefaultedInfo = Info;
3051}
3052
3053FunctionDecl::DefaultedFunctionInfo *
3054FunctionDecl::getDefaultedFunctionInfo() const {
3055 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
3056}
3057
3058bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3059 for (auto *I : redecls()) {
3060 if (I->doesThisDeclarationHaveABody()) {
3061 Definition = I;
3062 return true;
3063 }
3064 }
3065
3066 return false;
3067}
3068
3069bool FunctionDecl::hasTrivialBody() const {
3070 Stmt *S = getBody();
3071 if (!S) {
3072 // Since we don't have a body for this function, we don't know if it's
3073 // trivial or not.
3074 return false;
3075 }
3076
3077 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3078 return true;
3079 return false;
3080}
3081
3082bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3083 if (!getFriendObjectKind())
3084 return false;
3085
3086 // Check for a friend function instantiated from a friend function
3087 // definition in a templated class.
3088 if (const FunctionDecl *InstantiatedFrom =
3089 getInstantiatedFromMemberFunction())
3090 return InstantiatedFrom->getFriendObjectKind() &&
3091 InstantiatedFrom->isThisDeclarationADefinition();
3092
3093 // Check for a friend function template instantiated from a friend
3094 // function template definition in a templated class.
3095 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3096 if (const FunctionTemplateDecl *InstantiatedFrom =
3097 Template->getInstantiatedFromMemberTemplate())
3098 return InstantiatedFrom->getFriendObjectKind() &&
3099 InstantiatedFrom->isThisDeclarationADefinition();
3100 }
3101
3102 return false;
3103}
3104
3105bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3106 bool CheckForPendingFriendDefinition) const {
3107 for (const FunctionDecl *FD : redecls()) {
3108 if (FD->isThisDeclarationADefinition()) {
3109 Definition = FD;
3110 return true;
3111 }
3112
3113 // If this is a friend function defined in a class template, it does not
3114 // have a body until it is used, nevertheless it is a definition, see
3115 // [temp.inst]p2:
3116 //
3117 // ... for the purpose of determining whether an instantiated redeclaration
3118 // is valid according to [basic.def.odr] and [class.mem], a declaration that
3119 // corresponds to a definition in the template is considered to be a
3120 // definition.
3121 //
3122 // The following code must produce redefinition error:
3123 //
3124 // template<typename T> struct C20 { friend void func_20() {} };
3125 // C20<int> c20i;
3126 // void func_20() {}
3127 //
3128 if (CheckForPendingFriendDefinition &&
3129 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3130 Definition = FD;
3131 return true;
3132 }
3133 }
3134
3135 return false;
3136}
3137
3138Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3139 if (!hasBody(Definition))
3140 return nullptr;
3141
3142 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&(static_cast <bool> (!Definition->FunctionDeclBits.HasDefaultedFunctionInfo
&& "definition should not have a body") ? void (0) :
__assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "clang/lib/AST/Decl.cpp", 3143, __extension__ __PRETTY_FUNCTION__
))
3143 "definition should not have a body")(static_cast <bool> (!Definition->FunctionDeclBits.HasDefaultedFunctionInfo
&& "definition should not have a body") ? void (0) :
__assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "clang/lib/AST/Decl.cpp", 3143, __extension__ __PRETTY_FUNCTION__
))
;
3144 if (Definition->Body)
3145 return Definition->Body.get(getASTContext().getExternalSource());
3146
3147 return nullptr;
3148}
3149
3150void FunctionDecl::setBody(Stmt *B) {
3151 FunctionDeclBits.HasDefaultedFunctionInfo = false;
3152 Body = LazyDeclStmtPtr(B);
3153 if (B)
3154 EndRangeLoc = B->getEndLoc();
3155}
3156
3157void FunctionDecl::setPure(bool P) {
3158 FunctionDeclBits.IsPure = P;
3159 if (P)
3160 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3161 Parent->markedVirtualFunctionPure();
3162}
3163
3164template<std::size_t Len>
3165static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3166 IdentifierInfo *II = ND->getIdentifier();
3167 return II && II->isStr(Str);
3168}
3169
3170bool FunctionDecl::isMain() const {
3171 const TranslationUnitDecl *tunit =
3172 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3173 return tunit &&
3174 !tunit->getASTContext().getLangOpts().Freestanding &&
3175 isNamed(this, "main");
3176}
3177
3178bool FunctionDecl::isMSVCRTEntryPoint() const {
3179 const TranslationUnitDecl *TUnit =
3180 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3181 if (!TUnit)
3182 return false;
3183
3184 // Even though we aren't really targeting MSVCRT if we are freestanding,
3185 // semantic analysis for these functions remains the same.
3186
3187 // MSVCRT entry points only exist on MSVCRT targets.
3188 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3189 return false;
3190
3191 // Nameless functions like constructors cannot be entry points.
3192 if (!getIdentifier())
3193 return false;
3194
3195 return llvm::StringSwitch<bool>(getName())
3196 .Cases("main", // an ANSI console app
3197 "wmain", // a Unicode console App
3198 "WinMain", // an ANSI GUI app
3199 "wWinMain", // a Unicode GUI app
3200 "DllMain", // a DLL
3201 true)
3202 .Default(false);
3203}
3204
3205bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3206 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3207 return false;
3208 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3209 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3210 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3211 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3212 return false;
3213
3214 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3215 return false;
3216
3217 const auto *proto = getType()->castAs<FunctionProtoType>();
3218 if (proto->getNumParams() != 2 || proto->isVariadic())
3219 return false;
3220
3221 ASTContext &Context =
3222 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3223 ->getASTContext();
3224
3225 // The result type and first argument type are constant across all
3226 // these operators. The second argument must be exactly void*.
3227 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3228}
3229
3230bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3231 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3232 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3233 return false;
3234 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3235 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3236 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3237 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3238 return false;
3239
3240 if (isa<CXXRecordDecl>(getDeclContext()))
3241 return false;
3242
3243 // This can only fail for an invalid 'operator new' declaration.
3244 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3245 return false;
3246
3247 const auto *FPT = getType()->castAs<FunctionProtoType>();
3248 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4 || FPT->isVariadic())
3249 return false;
3250
3251 // If this is a single-parameter function, it must be a replaceable global
3252 // allocation or deallocation function.
3253 if (FPT->getNumParams() == 1)
3254 return true;
3255
3256 unsigned Params = 1;
3257 QualType Ty = FPT->getParamType(Params);
3258 ASTContext &Ctx = getASTContext();
3259
3260 auto Consume = [&] {
3261 ++Params;
3262 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3263 };
3264
3265 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3266 bool IsSizedDelete = false;
3267 if (Ctx.getLangOpts().SizedDeallocation &&
3268 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3269 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3270 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3271 IsSizedDelete = true;
3272 Consume();
3273 }
3274
3275 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3276 // new/delete.
3277 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3278 Consume();
3279 if (AlignmentParam)
3280 *AlignmentParam = Params;
3281 }
3282
3283 // If this is not a sized delete, the next parameter can be a
3284 // 'const std::nothrow_t&'.
3285 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3286 Ty = Ty->getPointeeType();
3287 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3288 return false;
3289 if (Ty->isNothrowT()) {
3290 if (IsNothrow)
3291 *IsNothrow = true;
3292 Consume();
3293 }
3294 }
3295
3296 // Finally, recognize the not yet standard versions of new that take a
3297 // hot/cold allocation hint (__hot_cold_t). These are currently supported by
3298 // tcmalloc (see
3299 // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53).
3300 if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) {
3301 QualType T = Ty;
3302 while (const auto *TD = T->getAs<TypedefType>())
3303 T = TD->getDecl()->getUnderlyingType();
3304 IdentifierInfo *II = T->getAs<EnumType>()->getDecl()->getIdentifier();
3305 if (II && II->isStr("__hot_cold_t"))
3306 Consume();
3307 }
3308
3309 return Params == FPT->getNumParams();
3310}
3311
3312bool FunctionDecl::isInlineBuiltinDeclaration() const {
3313 if (!getBuiltinID())
3314 return false;
3315
3316 const FunctionDecl *Definition;
3317 return hasBody(Definition) && Definition->isInlineSpecified() &&
3318 Definition->hasAttr<AlwaysInlineAttr>();
3319}
3320
3321bool FunctionDecl::isDestroyingOperatorDelete() const {
3322 // C++ P0722:
3323 // Within a class C, a single object deallocation function with signature
3324 // (T, std::destroying_delete_t, <more params>)
3325 // is a destroying operator delete.
3326 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3327 getNumParams() < 2)
3328 return false;
3329
3330 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3331 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3332 RD->getIdentifier()->isStr("destroying_delete_t");
3333}
3334
3335LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3336 return getDeclLanguageLinkage(*this);
3337}
3338
3339bool FunctionDecl::isExternC() const {
3340 return isDeclExternC(*this);
3341}
3342
3343bool FunctionDecl::isInExternCContext() const {
3344 if (hasAttr<OpenCLKernelAttr>())
3345 return true;
3346 return getLexicalDeclContext()->isExternCContext();
3347}
3348
3349bool FunctionDecl::isInExternCXXContext() const {
3350 return getLexicalDeclContext()->isExternCXXContext();
3351}
3352
3353bool FunctionDecl::isGlobal() const {
3354 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3355 return Method->isStatic();
3356
3357 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3358 return false;
3359
3360 for (const DeclContext *DC = getDeclContext();
3361 DC->isNamespace();
3362 DC = DC->getParent()) {
3363 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3364 if (!Namespace->getDeclName())
3365 return false;
3366 }
3367 }
3368
3369 return true;
3370}
3371
3372bool FunctionDecl::isNoReturn() const {
3373 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3374 hasAttr<C11NoReturnAttr>())
3375 return true;
3376
3377 if (auto *FnTy = getType()->getAs<FunctionType>())
3378 return FnTy->getNoReturnAttr();
3379
3380 return false;
3381}
3382
3383bool FunctionDecl::isMemberLikeConstrainedFriend() const {
3384 // C++20 [temp.friend]p9:
3385 // A non-template friend declaration with a requires-clause [or]
3386 // a friend function template with a constraint that depends on a template
3387 // parameter from an enclosing template [...] does not declare the same
3388 // function or function template as a declaration in any other scope.
3389
3390 // If this isn't a friend then it's not a member-like constrained friend.
3391 if (!getFriendObjectKind()) {
3392 return false;
3393 }
3394
3395 if (!getDescribedFunctionTemplate()) {
3396 // If these friends don't have constraints, they aren't constrained, and
3397 // thus don't fall under temp.friend p9. Else the simple presence of a
3398 // constraint makes them unique.
3399 return getTrailingRequiresClause();
3400 }
3401
3402 return FriendConstraintRefersToEnclosingTemplate();
3403}
3404
3405MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3406 if (hasAttr<TargetAttr>())
3407 return MultiVersionKind::Target;
3408 if (hasAttr<TargetVersionAttr>())
3409 return MultiVersionKind::TargetVersion;
3410 if (hasAttr<CPUDispatchAttr>())
3411 return MultiVersionKind::CPUDispatch;
3412 if (hasAttr<CPUSpecificAttr>())
3413 return MultiVersionKind::CPUSpecific;
3414 if (hasAttr<TargetClonesAttr>())
3415 return MultiVersionKind::TargetClones;
3416 return MultiVersionKind::None;
3417}
3418
3419bool FunctionDecl::isCPUDispatchMultiVersion() const {
3420 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3421}
3422
3423bool FunctionDecl::isCPUSpecificMultiVersion() const {
3424 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3425}
3426
3427bool FunctionDecl::isTargetMultiVersion() const {
3428 return isMultiVersion() &&
3429 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3430}
3431
3432bool FunctionDecl::isTargetClonesMultiVersion() const {
3433 return isMultiVersion() && hasAttr<TargetClonesAttr>();
3434}
3435
3436void
3437FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3438 redeclarable_base::setPreviousDecl(PrevDecl);
3439
3440 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3441 FunctionTemplateDecl *PrevFunTmpl
3442 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3443 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch")(static_cast <bool> ((!PrevDecl || PrevFunTmpl) &&
"Function/function template mismatch") ? void (0) : __assert_fail
("(!PrevDecl || PrevFunTmpl) && \"Function/function template mismatch\""
, "clang/lib/AST/Decl.cpp", 3443, __extension__ __PRETTY_FUNCTION__
))
;
3444 FunTmpl->setPreviousDecl(PrevFunTmpl);
3445 }
3446
3447 if (PrevDecl && PrevDecl->isInlined())
3448 setImplicitlyInline(true);
3449}
3450
3451FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3452
3453/// Returns a value indicating whether this function corresponds to a builtin
3454/// function.
3455///
3456/// The function corresponds to a built-in function if it is declared at
3457/// translation scope or within an extern "C" block and its name matches with
3458/// the name of a builtin. The returned value will be 0 for functions that do
3459/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3460/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3461/// value.
3462///
3463/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3464/// functions as their wrapped builtins. This shouldn't be done in general, but
3465/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3466unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3467 unsigned BuiltinID = 0;
3468
3469 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3470 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3471 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3472 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3473 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3474 BuiltinID = A->getID();
3475 }
3476
3477 if (!BuiltinID)
3478 return 0;
3479
3480 // If the function is marked "overloadable", it has a different mangled name
3481 // and is not the C library function.
3482 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3483 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3484 return 0;
3485
3486 ASTContext &Context = getASTContext();
3487 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3488 return BuiltinID;
3489
3490 // This function has the name of a known C library
3491 // function. Determine whether it actually refers to the C library
3492 // function or whether it just has the same name.
3493
3494 // If this is a static function, it's not a builtin.
3495 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3496 return 0;
3497
3498 // OpenCL v1.2 s6.9.f - The library functions defined in
3499 // the C99 standard headers are not available.
3500 if (Context.getLangOpts().OpenCL &&
3501 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3502 return 0;
3503
3504 // CUDA does not have device-side standard library. printf and malloc are the
3505 // only special cases that are supported by device-side runtime.
3506 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3507 !hasAttr<CUDAHostAttr>() &&
3508 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3509 return 0;
3510
3511 // As AMDGCN implementation of OpenMP does not have a device-side standard
3512 // library, none of the predefined library functions except printf and malloc
3513 // should be treated as a builtin i.e. 0 should be returned for them.
3514 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3515 Context.getLangOpts().OpenMPIsDevice &&
3516 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3517 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3518 return 0;
3519
3520 return BuiltinID;
3521}
3522
3523/// getNumParams - Return the number of parameters this function must have
3524/// based on its FunctionType. This is the length of the ParamInfo array
3525/// after it has been created.
3526unsigned FunctionDecl::getNumParams() const {
3527 const auto *FPT = getType()->getAs<FunctionProtoType>();
3528 return FPT ? FPT->getNumParams() : 0;
3529}
3530
3531void FunctionDecl::setParams(ASTContext &C,
3532 ArrayRef<ParmVarDecl *> NewParamInfo) {
3533 assert(!ParamInfo && "Already has param info!")(static_cast <bool> (!ParamInfo && "Already has param info!"
) ? void (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "clang/lib/AST/Decl.cpp", 3533, __extension__ __PRETTY_FUNCTION__
))
;
3534 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!")(static_cast <bool> (NewParamInfo.size() == getNumParams
() && "Parameter count mismatch!") ? void (0) : __assert_fail
("NewParamInfo.size() == getNumParams() && \"Parameter count mismatch!\""
, "clang/lib/AST/Decl.cpp", 3534, __extension__ __PRETTY_FUNCTION__
))
;
3535
3536 // Zero params -> null pointer.
3537 if (!NewParamInfo.empty()) {
3538 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3539 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3540 }
3541}
3542
3543/// getMinRequiredArguments - Returns the minimum number of arguments
3544/// needed to call this function. This may be fewer than the number of
3545/// function parameters, if some of the parameters have default
3546/// arguments (in C++) or are parameter packs (C++11).
3547unsigned FunctionDecl::getMinRequiredArguments() const {
3548 if (!getASTContext().getLangOpts().CPlusPlus)
3549 return getNumParams();
3550
3551 // Note that it is possible for a parameter with no default argument to
3552 // follow a parameter with a default argument.
3553 unsigned NumRequiredArgs = 0;
3554 unsigned MinParamsSoFar = 0;
3555 for (auto *Param : parameters()) {
3556 if (!Param->isParameterPack()) {
3557 ++MinParamsSoFar;
3558 if (!Param->hasDefaultArg())
3559 NumRequiredArgs = MinParamsSoFar;
3560 }
3561 }
3562 return NumRequiredArgs;
3563}
3564
3565bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3566 return getNumParams() == 1 ||
3567 (getNumParams() > 1 &&
3568 llvm::all_of(llvm::drop_begin(parameters()),
3569 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3570}
3571
3572/// The combination of the extern and inline keywords under MSVC forces
3573/// the function to be required.
3574///
3575/// Note: This function assumes that we will only get called when isInlined()
3576/// would return true for this FunctionDecl.
3577bool FunctionDecl::isMSExternInline() const {
3578 assert(isInlined() && "expected to get called on an inlined function!")(static_cast <bool> (isInlined() && "expected to get called on an inlined function!"
) ? void (0) : __assert_fail ("isInlined() && \"expected to get called on an inlined function!\""
, "clang/lib/AST/Decl.cpp", 3578, __extension__ __PRETTY_FUNCTION__
))
;
3579
3580 const ASTContext &Context = getASTContext();
3581 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3582 !hasAttr<DLLExportAttr>())
3583 return false;
3584
3585 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3586 FD = FD->getPreviousDecl())
3587 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3588 return true;
3589
3590 return false;
3591}
3592
3593static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3594 if (Redecl->getStorageClass() != SC_Extern)
3595 return false;
3596
3597 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3598 FD = FD->getPreviousDecl())
3599 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3600 return false;
3601
3602 return true;
3603}
3604
3605static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3606 // Only consider file-scope declarations in this test.
3607 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3608 return false;
3609
3610 // Only consider explicit declarations; the presence of a builtin for a
3611 // libcall shouldn't affect whether a definition is externally visible.
3612 if (Redecl->isImplicit())
3613 return false;
3614
3615 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3616 return true; // Not an inline definition
3617
3618 return false;
3619}
3620
3621/// For a function declaration in C or C++, determine whether this
3622/// declaration causes the definition to be externally visible.
3623///
3624/// For instance, this determines if adding the current declaration to the set
3625/// of redeclarations of the given functions causes
3626/// isInlineDefinitionExternallyVisible to change from false to true.
3627bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3628 assert(!doesThisDeclarationHaveABody() &&(static_cast <bool> (!doesThisDeclarationHaveABody() &&
"Must have a declaration without a body.") ? void (0) : __assert_fail
("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "clang/lib/AST/Decl.cpp", 3629, __extension__ __PRETTY_FUNCTION__
))
3629 "Must have a declaration without a body.")(static_cast <bool> (!doesThisDeclarationHaveABody() &&
"Must have a declaration without a body.") ? void (0) : __assert_fail
("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "clang/lib/AST/Decl.cpp", 3629, __extension__ __PRETTY_FUNCTION__
))
;
3630
3631 ASTContext &Context = getASTContext();
3632
3633 if (Context.getLangOpts().MSVCCompat) {
3634 const FunctionDecl *Definition;
3635 if (hasBody(Definition) && Definition->isInlined() &&
3636 redeclForcesDefMSVC(this))
3637 return true;
3638 }
3639
3640 if (Context.getLangOpts().CPlusPlus)
3641 return false;
3642
3643 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3644 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3645 // an externally visible definition.
3646 //
3647 // FIXME: What happens if gnu_inline gets added on after the first
3648 // declaration?
3649 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3650 return false;
3651
3652 const FunctionDecl *Prev = this;
3653 bool FoundBody = false;
3654 while ((Prev = Prev->getPreviousDecl())) {
3655 FoundBody |= Prev->doesThisDeclarationHaveABody();
3656
3657 if (Prev->doesThisDeclarationHaveABody()) {
3658 // If it's not the case that both 'inline' and 'extern' are
3659 // specified on the definition, then it is always externally visible.
3660 if (!Prev->isInlineSpecified() ||
3661 Prev->getStorageClass() != SC_Extern)
3662 return false;
3663 } else if (Prev->isInlineSpecified() &&
3664 Prev->getStorageClass() != SC_Extern) {
3665 return false;
3666 }
3667 }
3668 return FoundBody;
3669 }
3670
3671 // C99 6.7.4p6:
3672 // [...] If all of the file scope declarations for a function in a
3673 // translation unit include the inline function specifier without extern,
3674 // then the definition in that translation unit is an inline definition.
3675 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3676 return false;
3677 const FunctionDecl *Prev = this;
3678 bool FoundBody = false;
3679 while ((Prev = Prev->getPreviousDecl())) {
3680 FoundBody |= Prev->doesThisDeclarationHaveABody();
3681 if (RedeclForcesDefC99(Prev))
3682 return false;
3683 }
3684 return FoundBody;
3685}
3686
3687FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3688 const TypeSourceInfo *TSI = getTypeSourceInfo();
3689 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3690 : FunctionTypeLoc();
3691}
3692
3693SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3694 FunctionTypeLoc FTL = getFunctionTypeLoc();
3695 if (!FTL)
3696 return SourceRange();
3697
3698 // Skip self-referential return types.
3699 const SourceManager &SM = getASTContext().getSourceManager();
3700 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3701 SourceLocation Boundary = getNameInfo().getBeginLoc();
3702 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3703 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3704 return SourceRange();
3705
3706 return RTRange;
3707}
3708
3709SourceRange FunctionDecl::getParametersSourceRange() const {
3710 unsigned NP = getNumParams();
3711 SourceLocation EllipsisLoc = getEllipsisLoc();
3712
3713 if (NP == 0 && EllipsisLoc.isInvalid())
3714 return SourceRange();
3715
3716 SourceLocation Begin =
3717 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3718 SourceLocation End = EllipsisLoc.isValid()
3719 ? EllipsisLoc
3720 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3721
3722 return SourceRange(Begin, End);
3723}
3724
3725SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3726 FunctionTypeLoc FTL = getFunctionTypeLoc();
3727 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3728}
3729
3730/// For an inline function definition in C, or for a gnu_inline function
3731/// in C++, determine whether the definition will be externally visible.
3732///
3733/// Inline function definitions are always available for inlining optimizations.
3734/// However, depending on the language dialect, declaration specifiers, and
3735/// attributes, the definition of an inline function may or may not be
3736/// "externally" visible to other translation units in the program.
3737///
3738/// In C99, inline definitions are not externally visible by default. However,
3739/// if even one of the global-scope declarations is marked "extern inline", the
3740/// inline definition becomes externally visible (C99 6.7.4p6).
3741///
3742/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3743/// definition, we use the GNU semantics for inline, which are nearly the
3744/// opposite of C99 semantics. In particular, "inline" by itself will create
3745/// an externally visible symbol, but "extern inline" will not create an
3746/// externally visible symbol.
3747bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3748 assert((doesThisDeclarationHaveABody() || willHaveBody() ||(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "clang/lib/AST/Decl.cpp", 3750, __extension__ __PRETTY_FUNCTION__
))
3749 hasAttr<AliasAttr>()) &&(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "clang/lib/AST/Decl.cpp", 3750, __extension__ __PRETTY_FUNCTION__
))
3750 "Must be a function definition")(static_cast <bool> ((doesThisDeclarationHaveABody() ||
willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"
) ? void (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "clang/lib/AST/Decl.cpp", 3750, __extension__ __PRETTY_FUNCTION__
))
;
3751 assert(isInlined() && "Function must be inline")(static_cast <bool> (isInlined() && "Function must be inline"
) ? void (0) : __assert_fail ("isInlined() && \"Function must be inline\""
, "clang/lib/AST/Decl.cpp", 3751, __extension__ __PRETTY_FUNCTION__
))
;
3752 ASTContext &Context = getASTContext();
3753
3754 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3755 // Note: If you change the logic here, please change
3756 // doesDeclarationForceExternallyVisibleDefinition as well.
3757 //
3758 // If it's not the case that both 'inline' and 'extern' are
3759 // specified on the definition, then this inline definition is
3760 // externally visible.
3761 if (Context.getLangOpts().CPlusPlus)
3762 return false;
3763 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3764 return true;
3765
3766 // If any declaration is 'inline' but not 'extern', then this definition
3767 // is externally visible.
3768 for (auto *Redecl : redecls()) {
3769 if (Redecl->isInlineSpecified() &&
3770 Redecl->getStorageClass() != SC_Extern)
3771 return true;
3772 }
3773
3774 return false;
3775 }
3776
3777 // The rest of this function is C-only.
3778 assert(!Context.getLangOpts().CPlusPlus &&(static_cast <bool> (!Context.getLangOpts().CPlusPlus &&
"should not use C inline rules in C++") ? void (0) : __assert_fail
("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "clang/lib/AST/Decl.cpp", 3779, __extension__ __PRETTY_FUNCTION__
))
3779 "should not use C inline rules in C++")(static_cast <bool> (!Context.getLangOpts().CPlusPlus &&
"should not use C inline rules in C++") ? void (0) : __assert_fail
("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "clang/lib/AST/Decl.cpp", 3779, __extension__ __PRETTY_FUNCTION__
))
;
3780
3781 // C99 6.7.4p6:
3782 // [...] If all of the file scope declarations for a function in a
3783 // translation unit include the inline function specifier without extern,
3784 // then the definition in that translation unit is an inline definition.
3785 for (auto *Redecl : redecls()) {
3786 if (RedeclForcesDefC99(Redecl))
3787 return true;
3788 }
3789
3790 // C99 6.7.4p6:
3791 // An inline definition does not provide an external definition for the
3792 // function, and does not forbid an external definition in another
3793 // translation unit.
3794 return false;
3795}
3796
3797/// getOverloadedOperator - Which C++ overloaded operator this
3798/// function represents, if any.
3799OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3800 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3801 return getDeclName().getCXXOverloadedOperator();
3802 return OO_None;
3803}
3804
3805/// getLiteralIdentifier - The literal suffix identifier this function
3806/// represents, if any.
3807const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3808 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3809 return getDeclName().getCXXLiteralIdentifier();
3810 return nullptr;
3811}
3812
3813FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3814 if (TemplateOrSpecialization.isNull())
3815 return TK_NonTemplate;
3816 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
3817 if (isa<FunctionDecl>(ND))
3818 return TK_DependentNonTemplate;
3819 assert(isa<FunctionTemplateDecl>(ND) &&(static_cast <bool> (isa<FunctionTemplateDecl>(ND
) && "No other valid types in NamedDecl") ? void (0) :
__assert_fail ("isa<FunctionTemplateDecl>(ND) && \"No other valid types in NamedDecl\""
, "clang/lib/AST/Decl.cpp", 3820, __extension__ __PRETTY_FUNCTION__
))
3820 "No other valid types in NamedDecl")(static_cast <bool> (isa<FunctionTemplateDecl>(ND
) && "No other valid types in NamedDecl") ? void (0) :
__assert_fail ("isa<FunctionTemplateDecl>(ND) && \"No other valid types in NamedDecl\""
, "clang/lib/AST/Decl.cpp", 3820, __extension__ __PRETTY_FUNCTION__
))
;
3821 return TK_FunctionTemplate;
3822 }
3823 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3824 return TK_MemberSpecialization;
3825 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3826 return TK_FunctionTemplateSpecialization;
3827 if (TemplateOrSpecialization.is
3828 <DependentFunctionTemplateSpecializationInfo*>())
3829 return TK_DependentFunctionTemplateSpecialization;
3830
3831 llvm_unreachable("Did we miss a TemplateOrSpecialization type?")::llvm::llvm_unreachable_internal("Did we miss a TemplateOrSpecialization type?"
, "clang/lib/AST/Decl.cpp", 3831)
;
3832}
3833
3834FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3835 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3836 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3837
3838 return nullptr;
3839}
3840
3841MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3842 if (auto *MSI =
3843 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3844 return MSI;
3845 if (auto *FTSI = TemplateOrSpecialization
3846 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3847 return FTSI->getMemberSpecializationInfo();
3848 return nullptr;
3849}
3850
3851void
3852FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3853 FunctionDecl *FD,
3854 TemplateSpecializationKind TSK) {
3855 assert(TemplateOrSpecialization.isNull() &&(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3856, __extension__ __PRETTY_FUNCTION__
))
3856 "Member function is already a specialization")(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3856, __extension__ __PRETTY_FUNCTION__
))
;
3857 MemberSpecializationInfo *Info
3858 = new (C) MemberSpecializationInfo(FD, TSK);
3859 TemplateOrSpecialization = Info;
3860}
3861
3862FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3863 return dyn_cast_or_null<FunctionTemplateDecl>(
3864 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3865}
3866
3867void FunctionDecl::setDescribedFunctionTemplate(
3868 FunctionTemplateDecl *Template) {
3869 assert(TemplateOrSpecialization.isNull() &&(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3870, __extension__ __PRETTY_FUNCTION__
))
3870 "Member function is already a specialization")(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Member function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3870, __extension__ __PRETTY_FUNCTION__
))
;
3871 TemplateOrSpecialization = Template;
3872}
3873
3874void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
3875 assert(TemplateOrSpecialization.isNull() &&(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3876, __extension__ __PRETTY_FUNCTION__
))
3876 "Function is already a specialization")(static_cast <bool> (TemplateOrSpecialization.isNull() &&
"Function is already a specialization") ? void (0) : __assert_fail
("TemplateOrSpecialization.isNull() && \"Function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 3876, __extension__ __PRETTY_FUNCTION__
))
;
3877 TemplateOrSpecialization = FD;
3878}
3879
3880FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
3881 return dyn_cast_or_null<FunctionDecl>(
3882 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3883}
3884
3885bool FunctionDecl::isImplicitlyInstantiable() const {
3886 // If the function is invalid, it can't be implicitly instantiated.
3887 if (isInvalidDecl())
3888 return false;
3889
3890 switch (getTemplateSpecializationKindForInstantiation()) {
3891 case TSK_Undeclared:
3892 case TSK_ExplicitInstantiationDefinition:
3893 case TSK_ExplicitSpecialization:
3894 return false;
3895
3896 case TSK_ImplicitInstantiation:
3897 return true;
3898
3899 case TSK_ExplicitInstantiationDeclaration:
3900 // Handled below.
3901 break;
3902 }
3903
3904 // Find the actual template from which we will instantiate.
3905 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3906 bool HasPattern = false;
3907 if (PatternDecl)
3908 HasPattern = PatternDecl->hasBody(PatternDecl);
3909
3910 // C++0x [temp.explicit]p9:
3911 // Except for inline functions, other explicit instantiation declarations
3912 // have the effect of suppressing the implicit instantiation of the entity
3913 // to which they refer.
3914 if (!HasPattern || !PatternDecl)
3915 return true;
3916
3917 return PatternDecl->isInlined();
3918}
3919
3920bool FunctionDecl::isTemplateInstantiation() const {
3921 // FIXME: Remove this, it's not clear what it means. (Which template
3922 // specialization kind?)
3923 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3924}
3925
3926FunctionDecl *
3927FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3928 // If this is a generic lambda call operator specialization, its
3929 // instantiation pattern is always its primary template's pattern
3930 // even if its primary template was instantiated from another
3931 // member template (which happens with nested generic lambdas).
3932 // Since a lambda's call operator's body is transformed eagerly,
3933 // we don't have to go hunting for a prototype definition template
3934 // (i.e. instantiated-from-member-template) to use as an instantiation
3935 // pattern.
3936
3937 if (isGenericLambdaCallOperatorSpecialization(
3938 dyn_cast<CXXMethodDecl>(this))) {
3939 assert(getPrimaryTemplate() && "not a generic lambda call operator?")(static_cast <bool> (getPrimaryTemplate() && "not a generic lambda call operator?"
) ? void (0) : __assert_fail ("getPrimaryTemplate() && \"not a generic lambda call operator?\""
, "clang/lib/AST/Decl.cpp", 3939, __extension__ __PRETTY_FUNCTION__
))
;
3940 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3941 }
3942
3943 // Check for a declaration of this function that was instantiated from a
3944 // friend definition.
3945 const FunctionDecl *FD = nullptr;
3946 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3947 FD = this;
3948
3949 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3950 if (ForDefinition &&
3951 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3952 return nullptr;
3953 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3954 }
3955
3956 if (ForDefinition &&
3957 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3958 return nullptr;
3959
3960 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3961 // If we hit a point where the user provided a specialization of this
3962 // template, we're done looking.
3963 while (!ForDefinition || !Primary->isMemberSpecialization()) {
3964 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3965 if (!NewPrimary)
3966 break;
3967 Primary = NewPrimary;
3968 }
3969
3970 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3971 }
3972
3973 return nullptr;
3974}
3975
3976FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3977 if (FunctionTemplateSpecializationInfo *Info
3978 = TemplateOrSpecialization
3979 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3980 return Info->getTemplate();
3981 }
3982 return nullptr;
3983}
3984
3985FunctionTemplateSpecializationInfo *
3986FunctionDecl::getTemplateSpecializationInfo() const {
3987 return TemplateOrSpecialization
3988 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3989}
3990
3991const TemplateArgumentList *
3992FunctionDecl::getTemplateSpecializationArgs() const {
3993 if (FunctionTemplateSpecializationInfo *Info
3994 = TemplateOrSpecialization
3995 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3996 return Info->TemplateArguments;
3997 }
3998 return nullptr;
3999}
4000
4001const ASTTemplateArgumentListInfo *
4002FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
4003 if (FunctionTemplateSpecializationInfo *Info
4004 = TemplateOrSpecialization
4005 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4006 return Info->TemplateArgumentsAsWritten;
4007 }
4008 return nullptr;
4009}
4010
4011void
4012FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
4013 FunctionTemplateDecl *Template,
4014 const TemplateArgumentList *TemplateArgs,
4015 void *InsertPos,
4016 TemplateSpecializationKind TSK,
4017 const TemplateArgumentListInfo *TemplateArgsAsWritten,
4018 SourceLocation PointOfInstantiation) {
4019 assert((TemplateOrSpecialization.isNull() ||(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 4021, __extension__ __PRETTY_FUNCTION__
))
4020 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 4021, __extension__ __PRETTY_FUNCTION__
))
4021 "Member function is already a specialization")(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TemplateOrSpecialization.is<MemberSpecializationInfo *
>()) && "Member function is already a specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "clang/lib/AST/Decl.cpp", 4021, __extension__ __PRETTY_FUNCTION__
))
;
4022 assert(TSK != TSK_Undeclared &&(static_cast <bool> (TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? void (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "clang/lib/AST/Decl.cpp", 4023, __extension__ __PRETTY_FUNCTION__
))
4023 "Must specify the type of function template specialization")(static_cast <bool> (TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? void (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "clang/lib/AST/Decl.cpp", 4023, __extension__ __PRETTY_FUNCTION__
))
;
4024 assert((TemplateOrSpecialization.isNull() ||(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "clang/lib/AST/Decl.cpp", 4026, __extension__ __PRETTY_FUNCTION__
))
4025 TSK == TSK_ExplicitSpecialization) &&(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "clang/lib/AST/Decl.cpp", 4026, __extension__ __PRETTY_FUNCTION__
))
4026 "Member specialization must be an explicit specialization")(static_cast <bool> ((TemplateOrSpecialization.isNull()
|| TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"
) ? void (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "clang/lib/AST/Decl.cpp", 4026, __extension__ __PRETTY_FUNCTION__
))
;
4027 FunctionTemplateSpecializationInfo *Info =
4028 FunctionTemplateSpecializationInfo::Create(
4029 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
4030 PointOfInstantiation,
4031 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
4032 TemplateOrSpecialization = Info;
4033 Template->addSpecialization(Info, InsertPos);
4034}
4035
4036void
4037FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
4038 const UnresolvedSetImpl &Templates,
4039 const TemplateArgumentListInfo &TemplateArgs) {
4040 assert(TemplateOrSpecialization.isNull())(static_cast <bool> (TemplateOrSpecialization.isNull())
? void (0) : __assert_fail ("TemplateOrSpecialization.isNull()"
, "clang/lib/AST/Decl.cpp", 4040, __extension__ __PRETTY_FUNCTION__
))
;
1
'?' condition is true
4041 DependentFunctionTemplateSpecializationInfo *Info =
4042 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
2
Calling 'DependentFunctionTemplateSpecializationInfo::Create'
4043 TemplateArgs);
4044 TemplateOrSpecialization = Info;
4045}
4046
4047DependentFunctionTemplateSpecializationInfo *
4048FunctionDecl::getDependentSpecializationInfo() const {
4049 return TemplateOrSpecialization
4050 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
4051}
4052
4053DependentFunctionTemplateSpecializationInfo *
4054DependentFunctionTemplateSpecializationInfo::Create(
4055 ASTContext &Context, const UnresolvedSetImpl &Ts,
4056 const TemplateArgumentListInfo &TArgs) {
4057 void *Buffer = Context.Allocate(
4058 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
4059 TArgs.size(), Ts.size()));
4060 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3
Calling constructor for 'DependentFunctionTemplateSpecializationInfo'
4061}
4062
4063DependentFunctionTemplateSpecializationInfo::
4064DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
4065 const TemplateArgumentListInfo &TArgs)
4066 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
4067 NumTemplates = Ts.size();
4068 NumArgs = TArgs.size();
4069
4070 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
4071 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
4
Assuming 'I' is equal to 'E'
5
Loop condition is false. Execution continues on line 4074
4072 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
4073
4074 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
6
Calling 'TrailingObjects::getTrailingObjects'
15
Returning from 'TrailingObjects::getTrailingObjects'
16
'ArgsArray' initialized here
4075 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
17
Assuming 'I' is not equal to 'E'
18
Loop condition is true. Entering loop body
4076 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
19
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 32 bytes
4077}
4078
4079TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
4080 // For a function template specialization, query the specialization
4081 // information object.
4082 if (FunctionTemplateSpecializationInfo *FTSInfo =
4083 TemplateOrSpecialization
4084 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4085 return FTSInfo->getTemplateSpecializationKind();
4086
4087 if (MemberSpecializationInfo *MSInfo =
4088 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4089 return MSInfo->getTemplateSpecializationKind();
4090
4091 return TSK_Undeclared;
4092}
4093
4094TemplateSpecializationKind
4095FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4096 // This is the same as getTemplateSpecializationKind(), except that for a
4097 // function that is both a function template specialization and a member
4098 // specialization, we prefer the member specialization information. Eg:
4099 //
4100 // template<typename T> struct A {
4101 // template<typename U> void f() {}
4102 // template<> void f<int>() {}
4103 // };
4104 //
4105 // For A<int>::f<int>():
4106 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4107 // * getTemplateSpecializationKindForInstantiation() will return
4108 // TSK_ImplicitInstantiation
4109 //
4110 // This reflects the facts that A<int>::f<int> is an explicit specialization
4111 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4112 // from A::f<int> if a definition is needed.
4113 if (FunctionTemplateSpecializationInfo *FTSInfo =
4114 TemplateOrSpecialization
4115 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4116 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4117 return MSInfo->getTemplateSpecializationKind();
4118 return FTSInfo->getTemplateSpecializationKind();
4119 }
4120
4121 if (MemberSpecializationInfo *MSInfo =
4122 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4123 return MSInfo->getTemplateSpecializationKind();
4124
4125 return TSK_Undeclared;
4126}
4127
4128void
4129FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4130 SourceLocation PointOfInstantiation) {
4131 if (FunctionTemplateSpecializationInfo *FTSInfo
4132 = TemplateOrSpecialization.dyn_cast<
4133 FunctionTemplateSpecializationInfo*>()) {
4134 FTSInfo->setTemplateSpecializationKind(TSK);
4135 if (TSK != TSK_ExplicitSpecialization &&
4136 PointOfInstantiation.isValid() &&
4137 FTSInfo->getPointOfInstantiation().isInvalid()) {
4138 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4139 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4140 L->InstantiationRequested(this);
4141 }
4142 } else if (MemberSpecializationInfo *MSInfo
4143 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4144 MSInfo->setTemplateSpecializationKind(TSK);
4145 if (TSK != TSK_ExplicitSpecialization &&
4146 PointOfInstantiation.isValid() &&
4147 MSInfo->getPointOfInstantiation().isInvalid()) {
4148 MSInfo->setPointOfInstantiation(PointOfInstantiation);
4149 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4150 L->InstantiationRequested(this);
4151 }
4152 } else
4153 llvm_unreachable("Function cannot have a template specialization kind")::llvm::llvm_unreachable_internal("Function cannot have a template specialization kind"
, "clang/lib/AST/Decl.cpp", 4153)
;
4154}
4155
4156SourceLocation FunctionDecl::getPointOfInstantiation() const {
4157 if (FunctionTemplateSpecializationInfo *FTSInfo
4158 = TemplateOrSpecialization.dyn_cast<
4159 FunctionTemplateSpecializationInfo*>())
4160 return FTSInfo->getPointOfInstantiation();
4161 if (MemberSpecializationInfo *MSInfo =
4162 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4163 return MSInfo->getPointOfInstantiation();
4164
4165 return SourceLocation();
4166}
4167
4168bool FunctionDecl::isOutOfLine() const {
4169 if (Decl::isOutOfLine())
4170 return true;
4171
4172 // If this function was instantiated from a member function of a
4173 // class template, check whether that member function was defined out-of-line.
4174 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4175 const FunctionDecl *Definition;
4176 if (FD->hasBody(Definition))
4177 return Definition->isOutOfLine();
4178 }
4179
4180 // If this function was instantiated from a function template,
4181 // check whether that function template was defined out-of-line.
4182 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4183 const FunctionDecl *Definition;
4184 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4185 return Definition->isOutOfLine();
4186 }
4187
4188 return false;
4189}
4190
4191SourceRange FunctionDecl::getSourceRange() const {
4192 return SourceRange(getOuterLocStart(), EndRangeLoc);
4193}
4194
4195unsigned FunctionDecl::getMemoryFunctionKind() const {
4196 IdentifierInfo *FnInfo = getIdentifier();
4197
4198 if (!FnInfo)
4199 return 0;
4200
4201 // Builtin handling.
4202 switch (getBuiltinID()) {
4203 case Builtin::BI__builtin_memset:
4204 case Builtin::BI__builtin___memset_chk:
4205 case Builtin::BImemset:
4206 return Builtin::BImemset;
4207
4208 case Builtin::BI__builtin_memcpy:
4209 case Builtin::BI__builtin___memcpy_chk:
4210 case Builtin::BImemcpy:
4211 return Builtin::BImemcpy;
4212
4213 case Builtin::BI__builtin_mempcpy:
4214 case Builtin::BI__builtin___mempcpy_chk:
4215 case Builtin::BImempcpy:
4216 return Builtin::BImempcpy;
4217
4218 case Builtin::BI__builtin_memmove:
4219 case Builtin::BI__builtin___memmove_chk:
4220 case Builtin::BImemmove:
4221 return Builtin::BImemmove;
4222
4223// case Builtin::BIstrlcpy:
4224// case Builtin::BI__builtin___strlcpy_chk:
4225// return Builtin::BIstrlcpy;
4226
4227// case Builtin::BIstrlcat:
4228// case Builtin::BI__builtin___strlcat_chk:
4229// return Builtin::BIstrlcat;
4230
4231 case Builtin::BI__builtin_memcmp:
4232 case Builtin::BImemcmp:
4233 return Builtin::BImemcmp;
4234
4235 case Builtin::BI__builtin_bcmp:
4236 case Builtin::BIbcmp:
4237 return Builtin::BIbcmp;
4238
4239 case Builtin::BI__builtin_strncpy:
4240 case Builtin::BI__builtin___strncpy_chk:
4241 case Builtin::BIstrncpy:
4242 return Builtin::BIstrncpy;
4243
4244 case Builtin::BI__builtin_strncmp:
4245 case Builtin::BIstrncmp:
4246 return Builtin::BIstrncmp;
4247
4248 case Builtin::BI__builtin_strncasecmp:
4249 case Builtin::BIstrncasecmp:
4250 return Builtin::BIstrncasecmp;
4251
4252 case Builtin::BI__builtin_strncat:
4253 case Builtin::BI__builtin___strncat_chk:
4254 case Builtin::BIstrncat:
4255 return Builtin::BIstrncat;
4256
4257 case Builtin::BI__builtin_strndup:
4258 case Builtin::BIstrndup:
4259 return Builtin::BIstrndup;
4260
4261 case Builtin::BI__builtin_strlen:
4262 case Builtin::BIstrlen:
4263 return Builtin::BIstrlen;
4264
4265 case Builtin::BI__builtin_bzero:
4266 case Builtin::BIbzero:
4267 return Builtin::BIbzero;
4268
4269 case Builtin::BIfree:
4270 return Builtin::BIfree;
4271
4272 default:
4273 if (isExternC()) {
4274 if (FnInfo->isStr("memset"))
4275 return Builtin::BImemset;
4276 if (FnInfo->isStr("memcpy"))
4277 return Builtin::BImemcpy;
4278 if (FnInfo->isStr("mempcpy"))
4279 return Builtin::BImempcpy;
4280 if (FnInfo->isStr("memmove"))
4281 return Builtin::BImemmove;
4282 if (FnInfo->isStr("memcmp"))
4283 return Builtin::BImemcmp;
4284 if (FnInfo->isStr("bcmp"))
4285 return Builtin::BIbcmp;
4286 if (FnInfo->isStr("strncpy"))
4287 return Builtin::BIstrncpy;
4288 if (FnInfo->isStr("strncmp"))
4289 return Builtin::BIstrncmp;
4290 if (FnInfo->isStr("strncasecmp"))
4291 return Builtin::BIstrncasecmp;
4292 if (FnInfo->isStr("strncat"))
4293 return Builtin::BIstrncat;
4294 if (FnInfo->isStr("strndup"))
4295 return Builtin::BIstrndup;
4296 if (FnInfo->isStr("strlen"))
4297 return Builtin::BIstrlen;
4298 if (FnInfo->isStr("bzero"))
4299 return Builtin::BIbzero;
4300 } else if (isInStdNamespace()) {
4301 if (FnInfo->isStr("free"))
4302 return Builtin::BIfree;
4303 }
4304 break;
4305 }
4306 return 0;
4307}
4308
4309unsigned FunctionDecl::getODRHash() const {
4310 assert(hasODRHash())(static_cast <bool> (hasODRHash()) ? void (0) : __assert_fail
("hasODRHash()", "clang/lib/AST/Decl.cpp", 4310, __extension__
__PRETTY_FUNCTION__))
;
4311 return ODRHash;
4312}
4313
4314unsigned FunctionDecl::getODRHash() {
4315 if (hasODRHash())
4316 return ODRHash;
4317
4318 if (auto *FT = getInstantiatedFromMemberFunction()) {
4319 setHasODRHash(true);
4320 ODRHash = FT->getODRHash();
4321 return ODRHash;
4322 }
4323
4324 class ODRHash Hash;
4325 Hash.AddFunctionDecl(this);
4326 setHasODRHash(true);
4327 ODRHash = Hash.CalculateHash();
4328 return ODRHash;
4329}
4330
4331//===----------------------------------------------------------------------===//
4332// FieldDecl Implementation
4333//===----------------------------------------------------------------------===//
4334
4335FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4336 SourceLocation StartLoc, SourceLocation IdLoc,
4337 IdentifierInfo *Id, QualType T,
4338 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4339 InClassInitStyle InitStyle) {
4340 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4341 BW, Mutable, InitStyle);
4342}
4343
4344FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4345 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4346 SourceLocation(), nullptr, QualType(), nullptr,
4347 nullptr, false, ICIS_NoInit);
4348}
4349
4350bool FieldDecl::isAnonymousStructOrUnion() const {
4351 if (!isImplicit() || getDeclName())
4352 return false;
4353
4354 if (const auto *Record = getType()->getAs<RecordType>())
4355 return Record->getDecl()->isAnonymousStructOrUnion();
4356
4357 return false;
4358}
4359
4360Expr *FieldDecl::getInClassInitializer() const {
4361 if (!hasInClassInitializer())
4362 return nullptr;
4363
4364 LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init;
4365 return cast_or_null<Expr>(
4366 InitPtr.isOffset() ? InitPtr.get(getASTContext().getExternalSource())
4367 : InitPtr.get(nullptr));
4368}
4369
4370void FieldDecl::setInClassInitializer(Expr *NewInit) {
4371 setLazyInClassInitializer(LazyDeclStmtPtr(NewInit));
4372}
4373
4374void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) {
4375 assert(hasInClassInitializer() && !getInClassInitializer())(static_cast <bool> (hasInClassInitializer() &&
!getInClassInitializer()) ? void (0) : __assert_fail ("hasInClassInitializer() && !getInClassInitializer()"
, "clang/lib/AST/Decl.cpp", 4375, __extension__ __PRETTY_FUNCTION__
))
;
4376 if (BitField)
4377 InitAndBitWidth->Init = NewInit;
4378 else
4379 Init = NewInit;
4380}
4381
4382unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4383 assert(isBitField() && "not a bitfield")(static_cast <bool> (isBitField() && "not a bitfield"
) ? void (0) : __assert_fail ("isBitField() && \"not a bitfield\""
, "clang/lib/AST/Decl.cpp", 4383, __extension__ __PRETTY_FUNCTION__
))
;
4384 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4385}
4386
4387bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4388 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4389 getBitWidthValue(Ctx) == 0;
4390}
4391
4392bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4393 if (isZeroLengthBitField(Ctx))
4394 return true;
4395
4396 // C++2a [intro.object]p7:
4397 // An object has nonzero size if it
4398 // -- is not a potentially-overlapping subobject, or
4399 if (!hasAttr<NoUniqueAddressAttr>())
4400 return false;
4401
4402 // -- is not of class type, or
4403 const auto *RT = getType()->getAs<RecordType>();
4404 if (!RT)
4405 return false;
4406 const RecordDecl *RD = RT->getDecl()->getDefinition();
4407 if (!RD) {
4408 assert(isInvalidDecl() && "valid field has incomplete type")(static_cast <bool> (isInvalidDecl() && "valid field has incomplete type"
) ? void (0) : __assert_fail ("isInvalidDecl() && \"valid field has incomplete type\""
, "clang/lib/AST/Decl.cpp", 4408, __extension__ __PRETTY_FUNCTION__
))
;
4409 return false;
4410 }
4411
4412 // -- [has] virtual member functions or virtual base classes, or
4413 // -- has subobjects of nonzero size or bit-fields of nonzero length
4414 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4415 if (!CXXRD->isEmpty())
4416 return false;
4417
4418 // Otherwise, [...] the circumstances under which the object has zero size
4419 // are implementation-defined.
4420 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4421 // ABI will do.
4422 return true;
4423}
4424
4425bool FieldDecl::isPotentiallyOverlapping() const {
4426 return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4427}
4428
4429unsigned FieldDecl::getFieldIndex() const {
4430 const FieldDecl *Canonical = getCanonicalDecl();
4431 if (Canonical != this)
4432 return Canonical->getFieldIndex();
4433
4434 if (CachedFieldIndex) return CachedFieldIndex - 1;
4435
4436 unsigned Index = 0;
4437 const RecordDecl *RD = getParent()->getDefinition();
4438 assert(RD && "requested index for field of struct with no definition")(static_cast <bool> (RD && "requested index for field of struct with no definition"
) ? void (0) : __assert_fail ("RD && \"requested index for field of struct with no definition\""
, "clang/lib/AST/Decl.cpp", 4438, __extension__ __PRETTY_FUNCTION__
))
;
4439
4440 for (auto *Field : RD->fields()) {
4441 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4442 assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 &&(static_cast <bool> (Field->getCanonicalDecl()->CachedFieldIndex
== Index + 1 && "overflow in field numbering") ? void
(0) : __assert_fail ("Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 && \"overflow in field numbering\""
, "clang/lib/AST/Decl.cpp", 4443, __extension__ __PRETTY_FUNCTION__
))
4443 "overflow in field numbering")(static_cast <bool> (Field->getCanonicalDecl()->CachedFieldIndex
== Index + 1 && "overflow in field numbering") ? void
(0) : __assert_fail ("Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 && \"overflow in field numbering\""
, "clang/lib/AST/Decl.cpp", 4443, __extension__ __PRETTY_FUNCTION__
))
;
4444 ++Index;
4445 }
4446
4447 assert(CachedFieldIndex && "failed to find field in parent")(static_cast <bool> (CachedFieldIndex && "failed to find field in parent"
) ? void (0) : __assert_fail ("CachedFieldIndex && \"failed to find field in parent\""
, "clang/lib/AST/Decl.cpp", 4447, __extension__ __PRETTY_FUNCTION__
))
;
4448 return CachedFieldIndex - 1;
4449}
4450
4451SourceRange FieldDecl::getSourceRange() const {
4452 const Expr *FinalExpr = getInClassInitializer();
4453 if (!FinalExpr)
4454 FinalExpr = getBitWidth();
4455 if (FinalExpr)
4456 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4457 return DeclaratorDecl::getSourceRange();
4458}
4459
4460void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4461 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&(static_cast <bool> ((getParent()->isLambda() || getParent
()->isCapturedRecord()) && "capturing type in non-lambda or captured record."
) ? void (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "clang/lib/AST/Decl.cpp", 4462, __extension__ __PRETTY_FUNCTION__
))
4462 "capturing type in non-lambda or captured record.")(static_cast <bool> ((getParent()->isLambda() || getParent
()->isCapturedRecord()) && "capturing type in non-lambda or captured record."
) ? void (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "clang/lib/AST/Decl.cpp", 4462, __extension__ __PRETTY_FUNCTION__
))
;
4463 assert(StorageKind == ISK_NoInit && !BitField &&(static_cast <bool> (StorageKind == ISK_NoInit &&
!BitField && "bit-field or field with default member initializer cannot capture "
"VLA type") ? void (0) : __assert_fail ("StorageKind == ISK_NoInit && !BitField && \"bit-field or field with default member initializer cannot capture \" \"VLA type\""
, "clang/lib/AST/Decl.cpp", 4465, __extension__ __PRETTY_FUNCTION__
))
4464 "bit-field or field with default member initializer cannot capture "(static_cast <bool> (StorageKind == ISK_NoInit &&
!BitField && "bit-field or field with default member initializer cannot capture "
"VLA type") ? void (0) : __assert_fail ("StorageKind == ISK_NoInit && !BitField && \"bit-field or field with default member initializer cannot capture \" \"VLA type\""
, "clang/lib/AST/Decl.cpp", 4465, __extension__ __PRETTY_FUNCTION__
))
4465 "VLA type")(static_cast <bool> (StorageKind == ISK_NoInit &&
!BitField && "bit-field or field with default member initializer cannot capture "
"VLA type") ? void (0) : __assert_fail ("StorageKind == ISK_NoInit && !BitField && \"bit-field or field with default member initializer cannot capture \" \"VLA type\""
, "clang/lib/AST/Decl.cpp", 4465, __extension__ __PRETTY_FUNCTION__
))
;
4466 StorageKind = ISK_CapturedVLAType;
4467 CapturedVLAType = VLAType;
4468}
4469
4470//===----------------------------------------------------------------------===//
4471// TagDecl Implementation
4472//===----------------------------------------------------------------------===//
4473
4474TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4475 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4476 SourceLocation StartL)
4477 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4478 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4479 assert((DK != Enum || TK == TTK_Enum) &&(static_cast <bool> ((DK != Enum || TK == TTK_Enum) &&
"EnumDecl not matched with TTK_Enum") ? void (0) : __assert_fail
("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "clang/lib/AST/Decl.cpp", 4480, __extension__ __PRETTY_FUNCTION__
))
4480 "EnumDecl not matched with TTK_Enum")(static_cast <bool> ((DK != Enum || TK == TTK_Enum) &&
"EnumDecl not matched with TTK_Enum") ? void (0) : __assert_fail
("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "clang/lib/AST/Decl.cpp", 4480, __extension__ __PRETTY_FUNCTION__
))
;
4481 setPreviousDecl(PrevDecl);
4482 setTagKind(TK);
4483 setCompleteDefinition(false);
4484 setBeingDefined(false);
4485 setEmbeddedInDeclarator(false);
4486 setFreeStanding(false);
4487 setCompleteDefinitionRequired(false);
4488 TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4489}
4490
4491SourceLocation TagDecl::getOuterLocStart() const {
4492 return getTemplateOrInnerLocStart(this);
4493}
4494
4495SourceRange TagDecl::getSourceRange() const {
4496 SourceLocation RBraceLoc = BraceRange.getEnd();
4497 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4498 return SourceRange(getOuterLocStart(), E);
4499}
4500
4501TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4502
4503void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4504 TypedefNameDeclOrQualifier = TDD;
4505 if (const Type *T = getTypeForDecl()) {
4506 (void)T;
4507 assert(T->isLinkageValid())(static_cast <bool> (T->isLinkageValid()) ? void (0)
: __assert_fail ("T->isLinkageValid()", "clang/lib/AST/Decl.cpp"
, 4507, __extension__ __PRETTY_FUNCTION__))
;
4508 }
4509 assert(isLinkageValid())(static_cast <bool> (isLinkageValid()) ? void (0) : __assert_fail
("isLinkageValid()", "clang/lib/AST/Decl.cpp", 4509, __extension__
__PRETTY_FUNCTION__))
;
4510}
4511
4512void TagDecl::startDefinition() {
4513 setBeingDefined(true);
4514
4515 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4516 struct CXXRecordDecl::DefinitionData *Data =
4517 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4518 for (auto *I : redecls())
4519 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4520 }
4521}
4522
4523void TagDecl::completeDefinition() {
4524 assert((!isa<CXXRecordDecl>(this) ||(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "clang/lib/AST/Decl.cpp", 4526, __extension__ __PRETTY_FUNCTION__
))
4525 cast<CXXRecordDecl>(this)->hasDefinition()) &&(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "clang/lib/AST/Decl.cpp", 4526, __extension__ __PRETTY_FUNCTION__
))
4526 "definition completed but not started")(static_cast <bool> ((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started") ? void (0) : __assert_fail
("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "clang/lib/AST/Decl.cpp", 4526, __extension__ __PRETTY_FUNCTION__
))
;
4527
4528 setCompleteDefinition(true);
4529 setBeingDefined(false);
4530
4531 if (ASTMutationListener *L = getASTMutationListener())
4532 L->CompletedTagDefinition(this);
4533}
4534
4535TagDecl *TagDecl::getDefinition() const {
4536 if (isCompleteDefinition())
4537 return const_cast<TagDecl *>(this);
4538
4539 // If it's possible for us to have an out-of-date definition, check now.
4540 if (mayHaveOutOfDateDef()) {
4541 if (IdentifierInfo *II = getIdentifier()) {
4542 if (II->isOutOfDate()) {
4543 updateOutOfDate(*II);
4544 }
4545 }
4546 }
4547
4548 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4549 return CXXRD->getDefinition();
4550
4551 for (auto *R : redecls())
4552 if (R->isCompleteDefinition())
4553 return R;
4554
4555 return nullptr;
4556}
4557
4558void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4559 if (QualifierLoc) {
4560 // Make sure the extended qualifier info is allocated.
4561 if (!hasExtInfo())
4562 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4563 // Set qualifier info.
4564 getExtInfo()->QualifierLoc = QualifierLoc;
4565 } else {
4566 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4567 if (hasExtInfo()) {
4568 if (getExtInfo()->NumTemplParamLists == 0) {
4569 getASTContext().Deallocate(getExtInfo());
4570 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4571 }
4572 else
4573 getExtInfo()->QualifierLoc = QualifierLoc;
4574 }
4575 }
4576}
4577
4578void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4579 DeclarationName Name = getDeclName();
4580 // If the name is supposed to have an identifier but does not have one, then
4581 // the tag is anonymous and we should print it differently.
4582 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4583 // If the caller wanted to print a qualified name, they've already printed
4584 // the scope. And if the caller doesn't want that, the scope information
4585 // is already printed as part of the type.
4586 PrintingPolicy Copy(Policy);
4587 Copy.SuppressScope = true;
4588 getASTContext().getTagDeclType(this).print(OS, Copy);
4589 return;
4590 }
4591 // Otherwise, do the normal printing.
4592 Name.print(OS, Policy);
4593}
4594
4595void TagDecl::setTemplateParameterListsInfo(
4596 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4597 assert(!TPLists.empty())(static_cast <bool> (!TPLists.empty()) ? void (0) : __assert_fail
("!TPLists.empty()", "clang/lib/AST/Decl.cpp", 4597, __extension__
__PRETTY_FUNCTION__))
;
4598 // Make sure the extended decl info is allocated.
4599 if (!hasExtInfo())
4600 // Allocate external info struct.
4601 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4602 // Set the template parameter lists info.
4603 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4604}
4605
4606//===----------------------------------------------------------------------===//
4607// EnumDecl Implementation
4608//===----------------------------------------------------------------------===//
4609
4610EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4611 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4612 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4613 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4614 assert(Scoped || !ScopedUsingClassTag)(static_cast <bool> (Scoped || !ScopedUsingClassTag) ? void
(0) : __assert_fail ("Scoped || !ScopedUsingClassTag", "clang/lib/AST/Decl.cpp"
, 4614, __extension__ __PRETTY_FUNCTION__))
;
4615 IntegerType = nullptr;
4616 setNumPositiveBits(0);
4617 setNumNegativeBits(0);
4618 setScoped(Scoped);
4619 setScopedUsingClassTag(ScopedUsingClassTag);
4620 setFixed(Fixed);
4621 setHasODRHash(false);
4622 ODRHash = 0;
4623}
4624
4625void EnumDecl::anchor() {}
4626
4627EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4628 SourceLocation StartLoc, SourceLocation IdLoc,
4629 IdentifierInfo *Id,
4630 EnumDecl *PrevDecl, bool IsScoped,
4631 bool IsScopedUsingClassTag, bool IsFixed) {
4632 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4633 IsScoped, IsScopedUsingClassTag, IsFixed);
4634 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4635 C.getTypeDeclType(Enum, PrevDecl);
4636 return Enum;
4637}
4638
4639EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4640 EnumDecl *Enum =
4641 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4642 nullptr, nullptr, false, false, false);
4643 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4644 return Enum;
4645}
4646
4647SourceRange EnumDecl::getIntegerTypeRange() const {
4648 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4649 return TI->getTypeLoc().getSourceRange();
4650 return SourceRange();
4651}
4652
4653void EnumDecl::completeDefinition(QualType NewType,
4654 QualType NewPromotionType,
4655 unsigned NumPositiveBits,
4656 unsigned NumNegativeBits) {
4657 assert(!isCompleteDefinition() && "Cannot redefine enums!")(static_cast <bool> (!isCompleteDefinition() &&
"Cannot redefine enums!") ? void (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine enums!\""
, "clang/lib/AST/Decl.cpp", 4657, __extension__ __PRETTY_FUNCTION__
))
;
4658 if (!IntegerType)
4659 IntegerType = NewType.getTypePtr();
4660 PromotionType = NewPromotionType;
4661 setNumPositiveBits(NumPositiveBits);
4662 setNumNegativeBits(NumNegativeBits);
4663 TagDecl::completeDefinition();
4664}
4665
4666bool EnumDecl::isClosed() const {
4667 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4668 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4669 return true;
4670}
4671
4672bool EnumDecl::isClosedFlag() const {
4673 return isClosed() && hasAttr<FlagEnumAttr>();
4674}
4675
4676bool EnumDecl::isClosedNonFlag() const {
4677 return isClosed() && !hasAttr<FlagEnumAttr>();
4678}
4679
4680TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4681 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4682 return MSI->getTemplateSpecializationKind();
4683
4684 return TSK_Undeclared;
4685}
4686
4687void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4688 SourceLocation PointOfInstantiation) {
4689 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4690 assert(MSI && "Not an instantiated member enumeration?")(static_cast <bool> (MSI && "Not an instantiated member enumeration?"
) ? void (0) : __assert_fail ("MSI && \"Not an instantiated member enumeration?\""
, "clang/lib/AST/Decl.cpp", 4690, __extension__ __PRETTY_FUNCTION__
))
;
4691 MSI->setTemplateSpecializationKind(TSK);
4692 if (TSK != TSK_ExplicitSpecialization &&
4693 PointOfInstantiation.isValid() &&
4694 MSI->getPointOfInstantiation().isInvalid())
4695 MSI->setPointOfInstantiation(PointOfInstantiation);
4696}
4697
4698EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4699 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4700 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4701 EnumDecl *ED = getInstantiatedFromMemberEnum();
4702 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4703 ED = NewED;
4704 return getDefinitionOrSelf(ED);
4705 }
4706 }
4707
4708 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&(static_cast <bool> (!isTemplateInstantiation(getTemplateSpecializationKind
()) && "couldn't find pattern for enum instantiation"
) ? void (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "clang/lib/AST/Decl.cpp", 4709, __extension__ __PRETTY_FUNCTION__
))
4709 "couldn't find pattern for enum instantiation")(static_cast <bool> (!isTemplateInstantiation(getTemplateSpecializationKind
()) && "couldn't find pattern for enum instantiation"
) ? void (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "clang/lib/AST/Decl.cpp", 4709, __extension__ __PRETTY_FUNCTION__
))
;
4710 return nullptr;
4711}
4712
4713EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4714 if (SpecializationInfo)
4715 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4716
4717 return nullptr;
4718}
4719
4720void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4721 TemplateSpecializationKind TSK) {
4722 assert(!SpecializationInfo && "Member enum is already a specialization")(static_cast <bool> (!SpecializationInfo && "Member enum is already a specialization"
) ? void (0) : __assert_fail ("!SpecializationInfo && \"Member enum is already a specialization\""
, "clang/lib/AST/Decl.cpp", 4722, __extension__ __PRETTY_FUNCTION__
))
;
4723 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4724}
4725
4726unsigned EnumDecl::getODRHash() {
4727 if (hasODRHash())
4728 return ODRHash;
4729
4730 class ODRHash Hash;
4731 Hash.AddEnumDecl(this);
4732 setHasODRHash(true);
4733 ODRHash = Hash.CalculateHash();
4734 return ODRHash;
4735}
4736
4737SourceRange EnumDecl::getSourceRange() const {
4738 auto Res = TagDecl::getSourceRange();
4739 // Set end-point to enum-base, e.g. enum foo : ^bar
4740 if (auto *TSI = getIntegerTypeSourceInfo()) {
4741 // TagDecl doesn't know about the enum base.
4742 if (!getBraceRange().getEnd().isValid())
4743 Res.setEnd(TSI->getTypeLoc().getEndLoc());
4744 }
4745 return Res;
4746}
4747
4748void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4749 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4750 unsigned NumNegativeBits = getNumNegativeBits();
4751 unsigned NumPositiveBits = getNumPositiveBits();
4752
4753 if (NumNegativeBits) {
4754 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
4755 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
4756 Min = -Max;
4757 } else {
4758 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
4759 Min = llvm::APInt::getZero(Bitwidth);
4760 }
4761}
4762
4763//===----------------------------------------------------------------------===//
4764// RecordDecl Implementation
4765//===----------------------------------------------------------------------===//
4766
4767RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4768 DeclContext *DC, SourceLocation StartLoc,
4769 SourceLocation IdLoc, IdentifierInfo *Id,
4770 RecordDecl *PrevDecl)
4771 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4772 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!")(static_cast <bool> (classof(static_cast<Decl *>(
this)) && "Invalid Kind!") ? void (0) : __assert_fail
("classof(static_cast<Decl *>(this)) && \"Invalid Kind!\""
, "clang/lib/AST/Decl.cpp", 4772, __extension__ __PRETTY_FUNCTION__
))
;
4773 setHasFlexibleArrayMember(false);
4774 setAnonymousStructOrUnion(false);
4775 setHasObjectMember(false);
4776 setHasVolatileMember(false);
4777 setHasLoadedFieldsFromExternalStorage(false);
4778 setNonTrivialToPrimitiveDefaultInitialize(false);
4779 setNonTrivialToPrimitiveCopy(false);
4780 setNonTrivialToPrimitiveDestroy(false);
4781 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4782 setHasNonTrivialToPrimitiveDestructCUnion(false);
4783 setHasNonTrivialToPrimitiveCopyCUnion(false);
4784 setParamDestroyedInCallee(false);
4785 setArgPassingRestrictions(APK_CanPassInRegs);
4786 setIsRandomized(false);
4787 setODRHash(0);
4788}
4789
4790RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4791 SourceLocation StartLoc, SourceLocation IdLoc,
4792 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4793 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4794 StartLoc, IdLoc, Id, PrevDecl);
4795 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4796
4797 C.getTypeDeclType(R, PrevDecl);
4798 return R;
4799}
4800
4801RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4802 RecordDecl *R =
4803 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4804 SourceLocation(), nullptr, nullptr);
4805 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4806 return R;
4807}
4808
4809bool RecordDecl::isInjectedClassName() const {
4810 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4811 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4812}
4813
4814bool RecordDecl::isLambda() const {
4815 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4816 return RD->isLambda();
4817 return false;
4818}
4819
4820bool RecordDecl::isCapturedRecord() const {
4821 return hasAttr<CapturedRecordAttr>();
4822}
4823
4824void RecordDecl::setCapturedRecord() {
4825 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4826}
4827
4828bool RecordDecl::isOrContainsUnion() const {
4829 if (isUnion())
4830 return true;
4831
4832 if (const RecordDecl *Def = getDefinition()) {
4833 for (const FieldDecl *FD : Def->fields()) {
4834 const RecordType *RT = FD->getType()->getAs<RecordType>();
4835 if (RT && RT->getDecl()->isOrContainsUnion())
4836 return true;
4837 }
4838 }
4839
4840 return false;
4841}
4842
4843RecordDecl::field_iterator RecordDecl::field_begin() const {
4844 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4845 LoadFieldsFromExternalStorage();
4846 // This is necessary for correctness for C++ with modules.
4847 // FIXME: Come up with a test case that breaks without definition.
4848 if (RecordDecl *D = getDefinition(); D && D != this)
4849 return D->field_begin();
4850 return field_iterator(decl_iterator(FirstDecl));
4851}
4852
4853/// completeDefinition - Notes that the definition of this type is now
4854/// complete.
4855void RecordDecl::completeDefinition() {
4856 assert(!isCompleteDefinition() && "Cannot redefine record!")(static_cast <bool> (!isCompleteDefinition() &&
"Cannot redefine record!") ? void (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine record!\""
, "clang/lib/AST/Decl.cpp", 4856, __extension__ __PRETTY_FUNCTION__
))
;
4857 TagDecl::completeDefinition();
4858
4859 ASTContext &Ctx = getASTContext();
4860
4861 // Layouts are dumped when computed, so if we are dumping for all complete
4862 // types, we need to force usage to get types that wouldn't be used elsewhere.
4863 if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4864 (void)Ctx.getASTRecordLayout(this);
4865}
4866
4867/// isMsStruct - Get whether or not this record uses ms_struct layout.
4868/// This which can be turned on with an attribute, pragma, or the
4869/// -mms-bitfields command-line option.
4870bool RecordDecl::isMsStruct(const ASTContext &C) const {
4871 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4872}
4873
4874void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
4875 std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
4876 LastDecl->NextInContextAndBits.setPointer(nullptr);
4877 setIsRandomized(true);
4878}
4879
4880void RecordDecl::LoadFieldsFromExternalStorage() const {
4881 ExternalASTSource *Source = getASTContext().getExternalSource();
4882 assert(hasExternalLexicalStorage() && Source && "No external storage?")(static_cast <bool> (hasExternalLexicalStorage() &&
Source && "No external storage?") ? void (0) : __assert_fail
("hasExternalLexicalStorage() && Source && \"No external storage?\""
, "clang/lib/AST/Decl.cpp", 4882, __extension__ __PRETTY_FUNCTION__
))
;
4883
4884 // Notify that we have a RecordDecl doing some initialization.
4885 ExternalASTSource::Deserializing TheFields(Source);
4886
4887 SmallVector<Decl*, 64> Decls;
4888 setHasLoadedFieldsFromExternalStorage(true);
4889 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4890 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4891 }, Decls);
4892
4893#ifndef NDEBUG
4894 // Check that all decls we got were FieldDecls.
4895 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4896 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]))(static_cast <bool> (isa<FieldDecl>(Decls[i]) || isa
<IndirectFieldDecl>(Decls[i])) ? void (0) : __assert_fail
("isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])"
, "clang/lib/AST/Decl.cpp", 4896, __extension__ __PRETTY_FUNCTION__
))
;
4897#endif
4898
4899 if (Decls.empty())
4900 return;
4901
4902 auto [ExternalFirst, ExternalLast] =
4903 BuildDeclChain(Decls,
4904 /*FieldsAlreadyLoaded=*/false);
4905 ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
4906 FirstDecl = ExternalFirst;
4907 if (!LastDecl)
4908 LastDecl = ExternalLast;
4909}
4910
4911bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4912 ASTContext &Context = getASTContext();
4913 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4914 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4915 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4916 return false;
4917 const auto &NoSanitizeList = Context.getNoSanitizeList();
4918 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4919 // We may be able to relax some of these requirements.
4920 int ReasonToReject = -1;
4921 if (!CXXRD || CXXRD->isExternCContext())
4922 ReasonToReject = 0; // is not C++.
4923 else if (CXXRD->hasAttr<PackedAttr>())
4924 ReasonToReject = 1; // is packed.
4925 else if (CXXRD->isUnion())
4926 ReasonToReject = 2; // is a union.
4927 else if (CXXRD->isTriviallyCopyable())
4928 ReasonToReject = 3; // is trivially copyable.
4929 else if (CXXRD->hasTrivialDestructor())
4930 ReasonToReject = 4; // has trivial destructor.
4931 else if (CXXRD->isStandardLayout())
4932 ReasonToReject = 5; // is standard layout.
4933 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4934 "field-padding"))
4935 ReasonToReject = 6; // is in an excluded file.
4936 else if (NoSanitizeList.containsType(
4937 EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4938 ReasonToReject = 7; // The type is excluded.
4939
4940 if (EmitRemark) {
4941 if (ReasonToReject >= 0)
4942 Context.getDiagnostics().Report(
4943 getLocation(),
4944 diag::remark_sanitize_address_insert_extra_padding_rejected)
4945 << getQualifiedNameAsString() << ReasonToReject;
4946 else
4947 Context.getDiagnostics().Report(
4948 getLocation(),
4949 diag::remark_sanitize_address_insert_extra_padding_accepted)
4950 << getQualifiedNameAsString();
4951 }
4952 return ReasonToReject < 0;
4953}
4954
4955const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4956 for (const auto *I : fields()) {
4957 if (I->getIdentifier())
4958 return I;
4959
4960 if (const auto *RT = I->getType()->getAs<RecordType>())
4961 if (const FieldDecl *NamedDataMember =
4962 RT->getDecl()->findFirstNamedDataMember())
4963 return NamedDataMember;
4964 }
4965
4966 // We didn't find a named data member.
4967 return nullptr;
4968}
4969
4970unsigned RecordDecl::getODRHash() {
4971 if (hasODRHash())
4972 return RecordDeclBits.ODRHash;
4973
4974 // Only calculate hash on first call of getODRHash per record.
4975 ODRHash Hash;
4976 Hash.AddRecordDecl(this);
4977 // For RecordDecl the ODRHash is stored in the remaining 26
4978 // bit of RecordDeclBits, adjust the hash to accomodate.
4979 setODRHash(Hash.CalculateHash() >> 6);
4980 return RecordDeclBits.ODRHash;
4981}
4982
4983//===----------------------------------------------------------------------===//
4984// BlockDecl Implementation
4985//===----------------------------------------------------------------------===//
4986
4987BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4988 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4989 setIsVariadic(false);
4990 setCapturesCXXThis(false);
4991 setBlockMissingReturnType(true);
4992 setIsConversionFromLambda(false);
4993 setDoesNotEscape(false);
4994 setCanAvoidCopyToHeap(false);
4995}
4996
4997void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4998 assert(!ParamInfo && "Already has param info!")(static_cast <bool> (!ParamInfo && "Already has param info!"
) ? void (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "clang/lib/AST/Decl.cpp", 4998, __extension__ __PRETTY_FUNCTION__
))
;
4999
5000 // Zero params -> null pointer.
5001 if (!NewParamInfo.empty()) {
5002 NumParams = NewParamInfo.size();
5003 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
5004 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
5005 }
5006}
5007
5008void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
5009 bool CapturesCXXThis) {
5010 this->setCapturesCXXThis(CapturesCXXThis);
5011 this->NumCaptures = Captures.size();
5012
5013 if (Captures.empty()) {
5014 this->Captures = nullptr;
5015 return;
5016 }
5017
5018 this->Captures = Captures.copy(Context).data();
5019}
5020
5021bool BlockDecl::capturesVariable(const VarDecl *variable) const {
5022 for (const auto &I : captures())
5023 // Only auto vars can be captured, so no redeclaration worries.
5024 if (I.getVariable() == variable)
5025 return true;
5026
5027 return false;
5028}
5029
5030SourceRange BlockDecl::getSourceRange() const {
5031 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
5032}
5033
5034//===----------------------------------------------------------------------===//
5035// Other Decl Allocation/Deallocation Method Implementations
5036//===----------------------------------------------------------------------===//
5037
5038void TranslationUnitDecl::anchor() {}
5039
5040TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
5041 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
5042}
5043
5044void PragmaCommentDecl::anchor() {}
5045
5046PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
5047 TranslationUnitDecl *DC,
5048 SourceLocation CommentLoc,
5049 PragmaMSCommentKind CommentKind,
5050 StringRef Arg) {
5051 PragmaCommentDecl *PCD =
5052 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
5053 PragmaCommentDecl(DC, CommentLoc, CommentKind);
5054 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
5055 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
5056 return PCD;
5057}
5058
5059PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
5060 unsigned ID,
5061 unsigned ArgSize) {
5062 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
5063 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
5064}
5065
5066void PragmaDetectMismatchDecl::anchor() {}
5067
5068PragmaDetectMismatchDecl *
5069PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
5070 SourceLocation Loc, StringRef Name,
5071 StringRef Value) {
5072 size_t ValueStart = Name.size() + 1;
5073 PragmaDetectMismatchDecl *PDMD =
5074 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
5075 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
5076 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
5077 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
5078 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
5079 Value.size());
5080 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
5081 return PDMD;
5082}
5083
5084PragmaDetectMismatchDecl *
5085PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5086 unsigned NameValueSize) {
5087 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
5088 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
5089}
5090
5091void ExternCContextDecl::anchor() {}
5092
5093ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
5094 TranslationUnitDecl *DC) {
5095 return new (C, DC) ExternCContextDecl(DC);
5096}
5097
5098void LabelDecl::anchor() {}
5099
5100LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5101 SourceLocation IdentL, IdentifierInfo *II) {
5102 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5103}
5104
5105LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5106 SourceLocation IdentL, IdentifierInfo *II,
5107 SourceLocation GnuLabelL) {
5108 assert(GnuLabelL != IdentL && "Use this only for GNU local labels")(static_cast <bool> (GnuLabelL != IdentL && "Use this only for GNU local labels"
) ? void (0) : __assert_fail ("GnuLabelL != IdentL && \"Use this only for GNU local labels\""
, "clang/lib/AST/Decl.cpp", 5108, __extension__ __PRETTY_FUNCTION__
))
;
5109 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5110}
5111
5112LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5113 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5114 SourceLocation());
5115}
5116
5117void LabelDecl::setMSAsmLabel(StringRef Name) {
5118char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5119 memcpy(Buffer, Name.data(), Name.size());
5120 Buffer[Name.size()] = '\0';
5121 MSAsmName = Buffer;
5122}
5123
5124void ValueDecl::anchor() {}
5125
5126bool ValueDecl::isWeak() const {
5127 auto *MostRecent = getMostRecentDecl();
5128 return MostRecent->hasAttr<WeakAttr>() ||
5129 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5130}
5131
5132bool ValueDecl::isInitCapture() const {
5133 if (auto *Var = llvm::dyn_cast<VarDecl>(this))
5134 return Var->isInitCapture();
5135 return false;
5136}
5137
5138void ImplicitParamDecl::anchor() {}
5139
5140ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
5141 SourceLocation IdLoc,
5142 IdentifierInfo *Id, QualType Type,
5143 ImplicitParamKind ParamKind) {
5144 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5145}
5146
5147ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
5148 ImplicitParamKind ParamKind) {
5149 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5150}
5151
5152ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
5153 unsigned ID) {
5154 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
5155}
5156
5157FunctionDecl *
5158FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
5159 const DeclarationNameInfo &NameInfo, QualType T,
5160 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5161 bool isInlineSpecified, bool hasWrittenPrototype,
5162 ConstexprSpecKind ConstexprKind,
5163 Expr *TrailingRequiresClause) {
5164 FunctionDecl *New = new (C, DC) FunctionDecl(
5165 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5166 isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5167 New->setHasWrittenPrototype(hasWrittenPrototype);
5168 return New;
5169}
5170
5171FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5172 return new (C, ID) FunctionDecl(
5173 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
5174 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
5175}
5176
5177BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5178 return new (C, DC) BlockDecl(DC, L);
5179}
5180
5181BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5182 return new (C, ID) BlockDecl(nullptr, SourceLocation());
5183}
5184
5185CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5186 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5187 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5188
5189CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5190 unsigned NumParams) {
5191 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5192 CapturedDecl(DC, NumParams);
5193}
5194
5195CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5196 unsigned NumParams) {
5197 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5198 CapturedDecl(nullptr, NumParams);
5199}
5200
5201Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5202void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5203
5204bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5205void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5206
5207EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5208 SourceLocation L,
5209 IdentifierInfo *Id, QualType T,
5210 Expr *E, const llvm::APSInt &V) {
5211 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
5212}
5213
5214EnumConstantDecl *
5215EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5216 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
5217 QualType(), nullptr, llvm::APSInt());
5218}
5219
5220void IndirectFieldDecl::anchor() {}
5221
5222IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5223 SourceLocation L, DeclarationName N,
5224 QualType T,
5225 MutableArrayRef<NamedDecl *> CH)
5226 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5227 ChainingSize(CH.size()) {
5228 // In C++, indirect field declarations conflict with tag declarations in the
5229 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5230 if (C.getLangOpts().CPlusPlus)
5231 IdentifierNamespace |= IDNS_Tag;
5232}
5233
5234IndirectFieldDecl *
5235IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5236 IdentifierInfo *Id, QualType T,
5237 llvm::MutableArrayRef<NamedDecl *> CH) {
5238 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5239}
5240
5241IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5242 unsigned ID) {
5243 return new (C, ID)
5244 IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(),
5245 QualType(), std::nullopt);
5246}
5247
5248SourceRange EnumConstantDecl::getSourceRange() const {
5249 SourceLocation End = getLocation();
5250 if (Init)
5251 End = Init->getEndLoc();
5252 return SourceRange(getLocation(), End);
5253}
5254
5255void TypeDecl::anchor() {}
5256
5257TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5258 SourceLocation StartLoc, SourceLocation IdLoc,
5259 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
5260 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5261}
5262
5263void TypedefNameDecl::anchor() {}
5264
5265TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5266 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5267 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5268 auto *ThisTypedef = this;
5269 if (AnyRedecl && OwningTypedef) {
5270 OwningTypedef = OwningTypedef->getCanonicalDecl();
5271 ThisTypedef = ThisTypedef->getCanonicalDecl();
5272 }
5273 if (OwningTypedef == ThisTypedef)
5274 return TT->getDecl();
5275 }
5276
5277 return nullptr;
5278}
5279
5280bool TypedefNameDecl::isTransparentTagSlow() const {
5281 auto determineIsTransparent = [&]() {
5282 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5283 if (auto *TD = TT->getDecl()) {
5284 if (TD->getName() != getName())
5285 return false;
5286 SourceLocation TTLoc = getLocation();
5287 SourceLocation TDLoc = TD->getLocation();
5288 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5289 return false;
5290 SourceManager &SM = getASTContext().getSourceManager();
5291 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5292 }
5293 }
5294 return false;
5295 };
5296
5297 bool isTransparent = determineIsTransparent();
5298 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5299 return isTransparent;
5300}
5301
5302TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5303 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5304 nullptr, nullptr);
5305}
5306
5307TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5308 SourceLocation StartLoc,
5309 SourceLocation IdLoc, IdentifierInfo *Id,
5310 TypeSourceInfo *TInfo) {
5311 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5312}
5313
5314TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5315 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5316 SourceLocation(), nullptr, nullptr);
5317}
5318
5319SourceRange TypedefDecl::getSourceRange() const {
5320 SourceLocation RangeEnd = getLocation();
5321 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5322 if (typeIsPostfix(TInfo->getType()))
5323 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5324 }
5325 return SourceRange(getBeginLoc(), RangeEnd);
5326}
5327
5328SourceRange TypeAliasDecl::getSourceRange() const {
5329 SourceLocation RangeEnd = getBeginLoc();
5330 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5331 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5332 return SourceRange(getBeginLoc(), RangeEnd);
5333}
5334
5335void FileScopeAsmDecl::anchor() {}
5336
5337FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5338 StringLiteral *Str,
5339 SourceLocation AsmLoc,
5340 SourceLocation RParenLoc) {
5341 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5342}
5343
5344FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5345 unsigned ID) {
5346 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5347 SourceLocation());
5348}
5349
5350void TopLevelStmtDecl::anchor() {}
5351
5352TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) {
5353 assert(Statement)(static_cast <bool> (Statement) ? void (0) : __assert_fail
("Statement", "clang/lib/AST/Decl.cpp", 5353, __extension__ __PRETTY_FUNCTION__
))
;
5354 assert(C.getLangOpts().IncrementalExtensions &&(static_cast <bool> (C.getLangOpts().IncrementalExtensions
&& "Must be used only in incremental mode") ? void (
0) : __assert_fail ("C.getLangOpts().IncrementalExtensions && \"Must be used only in incremental mode\""
, "clang/lib/AST/Decl.cpp", 5355, __extension__ __PRETTY_FUNCTION__
))
5355 "Must be used only in incremental mode")(static_cast <bool> (C.getLangOpts().IncrementalExtensions
&& "Must be used only in incremental mode") ? void (
0) : __assert_fail ("C.getLangOpts().IncrementalExtensions && \"Must be used only in incremental mode\""
, "clang/lib/AST/Decl.cpp", 5355, __extension__ __PRETTY_FUNCTION__
))
;
5356
5357 SourceLocation BeginLoc = Statement->getBeginLoc();
5358 DeclContext *DC = C.getTranslationUnitDecl();
5359
5360 return new (C, DC) TopLevelStmtDecl(DC, BeginLoc, Statement);
5361}
5362
5363TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C,
5364 unsigned ID) {
5365 return new (C, ID)
5366 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5367}
5368
5369SourceRange TopLevelStmtDecl::getSourceRange() const {
5370 return SourceRange(getLocation(), Statement->getEndLoc());
5371}
5372
5373void EmptyDecl::anchor() {}
5374
5375EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5376 return new (C, DC) EmptyDecl(DC, L);
5377}
5378
5379EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5380 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5381}
5382
5383HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5384 SourceLocation KwLoc, IdentifierInfo *ID,
5385 SourceLocation IDLoc, SourceLocation LBrace)
5386 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5387 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5388 IsCBuffer(CBuffer) {}
5389
5390HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C,
5391 DeclContext *LexicalParent, bool CBuffer,
5392 SourceLocation KwLoc, IdentifierInfo *ID,
5393 SourceLocation IDLoc,
5394 SourceLocation LBrace) {
5395 // For hlsl like this
5396 // cbuffer A {
5397 // cbuffer B {
5398 // }
5399 // }
5400 // compiler should treat it as
5401 // cbuffer A {
5402 // }
5403 // cbuffer B {
5404 // }
5405 // FIXME: support nested buffers if required for back-compat.
5406 DeclContext *DC = LexicalParent;
5407 HLSLBufferDecl *Result =
5408 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5409 return Result;
5410}
5411
5412HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5413 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5414 SourceLocation(), SourceLocation());
5415}
5416
5417//===----------------------------------------------------------------------===//
5418// ImportDecl Implementation
5419//===----------------------------------------------------------------------===//
5420
5421/// Retrieve the number of module identifiers needed to name the given
5422/// module.
5423static unsigned getNumModuleIdentifiers(Module *Mod) {
5424 unsigned Result = 1;
5425 while (Mod->Parent) {
5426 Mod = Mod->Parent;
5427 ++Result;
5428 }
5429 return Result;
5430}
5431
5432ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5433 Module *Imported,
5434 ArrayRef<SourceLocation> IdentifierLocs)
5435 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5436 NextLocalImportAndComplete(nullptr, true) {
5437 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size())(static_cast <bool> (getNumModuleIdentifiers(Imported) ==
IdentifierLocs.size()) ? void (0) : __assert_fail ("getNumModuleIdentifiers(Imported) == IdentifierLocs.size()"
, "clang/lib/AST/Decl.cpp", 5437, __extension__ __PRETTY_FUNCTION__
))
;
5438 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5439 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5440 StoredLocs);
5441}
5442
5443ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5444 Module *Imported, SourceLocation EndLoc)
5445 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5446 NextLocalImportAndComplete(nullptr, false) {
5447 *getTrailingObjects<SourceLocation>() = EndLoc;
5448}
5449
5450ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5451 SourceLocation StartLoc, Module *Imported,
5452 ArrayRef<SourceLocation> IdentifierLocs) {
5453 return new (C, DC,
5454 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5455 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5456}
5457
5458ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5459 SourceLocation StartLoc,
5460 Module *Imported,
5461 SourceLocation EndLoc) {
5462 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5463 ImportDecl(DC, StartLoc, Imported, EndLoc);
5464 Import->setImplicit();
5465 return Import;
5466}
5467
5468ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5469 unsigned NumLocations) {
5470 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5471 ImportDecl(EmptyShell());
5472}
5473
5474ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5475 if (!isImportComplete())
5476 return std::nullopt;
5477
5478 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5479 return llvm::ArrayRef(StoredLocs,
5480 getNumModuleIdentifiers(getImportedModule()));
5481}
5482
5483SourceRange ImportDecl::getSourceRange() const {
5484 if (!isImportComplete())
5485 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5486
5487 return SourceRange(getLocation(), getIdentifierLocs().back());
5488}
5489
5490//===----------------------------------------------------------------------===//
5491// ExportDecl Implementation
5492//===----------------------------------------------------------------------===//
5493
5494void ExportDecl::anchor() {}
5495
5496ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5497 SourceLocation ExportLoc) {
5498 return new (C, DC) ExportDecl(DC, ExportLoc);
5499}
5500
5501ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5502 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5503}

/build/source/llvm/include/llvm/Support/TrailingObjects.h

1//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This header defines support for implementing classes that have
11/// some trailing object (or arrays of objects) appended to them. The
12/// main purpose is to make it obvious where this idiom is being used,
13/// and to make the usage more idiomatic and more difficult to get
14/// wrong.
15///
16/// The TrailingObject template abstracts away the reinterpret_cast,
17/// pointer arithmetic, and size calculations used for the allocation
18/// and access of appended arrays of objects, and takes care that they
19/// are all allocated at their required alignment. Additionally, it
20/// ensures that the base type is final -- deriving from a class that
21/// expects data appended immediately after it is typically not safe.
22///
23/// Users are expected to derive from this template, and provide
24/// numTrailingObjects implementations for each trailing type except
25/// the last, e.g. like this sample:
26///
27/// \code
28/// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> {
29/// friend TrailingObjects;
30///
31/// unsigned NumInts, NumDoubles;
32/// size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; }
33/// };
34/// \endcode
35///
36/// You can access the appended arrays via 'getTrailingObjects', and
37/// determine the size needed for allocation via
38/// 'additionalSizeToAlloc' and 'totalSizeToAlloc'.
39///
40/// All the methods implemented by this class are are intended for use
41/// by the implementation of the class, not as part of its interface
42/// (thus, private inheritance is suggested).
43///
44//===----------------------------------------------------------------------===//
45
46#ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H
47#define LLVM_SUPPORT_TRAILINGOBJECTS_H
48
49#include "llvm/Support/AlignOf.h"
50#include "llvm/Support/Alignment.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/type_traits.h"
54#include <new>
55#include <type_traits>
56
57namespace llvm {
58
59namespace trailing_objects_internal {
60/// Helper template to calculate the max alignment requirement for a set of
61/// objects.
62template <typename First, typename... Rest> class AlignmentCalcHelper {
63private:
64 enum {
65 FirstAlignment = alignof(First),
66 RestAlignment = AlignmentCalcHelper<Rest...>::Alignment,
67 };
68
69public:
70 enum {
71 Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment
72 };
73};
74
75template <typename First> class AlignmentCalcHelper<First> {
76public:
77 enum { Alignment = alignof(First) };
78};
79
80/// The base class for TrailingObjects* classes.
81class TrailingObjectsBase {
82protected:
83 /// OverloadToken's purpose is to allow specifying function overloads
84 /// for different types, without actually taking the types as
85 /// parameters. (Necessary because member function templates cannot
86 /// be specialized, so overloads must be used instead of
87 /// specialization.)
88 template <typename T> struct OverloadToken {};
89};
90
91// Just a little helper for transforming a type pack into the same
92// number of a different type. e.g.:
93// ExtractSecondType<Foo..., int>::type
94template <typename Ty1, typename Ty2> struct ExtractSecondType {
95 typedef Ty2 type;
96};
97
98// TrailingObjectsImpl is somewhat complicated, because it is a
99// recursively inheriting template, in order to handle the template
100// varargs. Each level of inheritance picks off a single trailing type
101// then recurses on the rest. The "Align", "BaseTy", and
102// "TopTrailingObj" arguments are passed through unchanged through the
103// recursion. "PrevTy" is, at each level, the type handled by the
104// level right above it.
105
106template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
107 typename... MoreTys>
108class TrailingObjectsImpl {
109 // The main template definition is never used -- the two
110 // specializations cover all possibilities.
111};
112
113template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
114 typename NextTy, typename... MoreTys>
115class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy,
116 MoreTys...>
117 : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy,
118 MoreTys...> {
119
120 typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...>
121 ParentType;
122
123 struct RequiresRealignment {
124 static const bool value = alignof(PrevTy) < alignof(NextTy);
125 };
126
127 static constexpr bool requiresRealignment() {
128 return RequiresRealignment::value;
129 }
130
131protected:
132 // Ensure the inherited getTrailingObjectsImpl is not hidden.
133 using ParentType::getTrailingObjectsImpl;
134
135 // These two functions are helper functions for
136 // TrailingObjects::getTrailingObjects. They recurse to the left --
137 // the result for each type in the list of trailing types depends on
138 // the result of calling the function on the type to the
139 // left. However, the function for the type to the left is
140 // implemented by a *subclass* of this class, so we invoke it via
141 // the TopTrailingObj, which is, via the
142 // curiously-recurring-template-pattern, the most-derived type in
143 // this recursion, and thus, contains all the overloads.
144 static const NextTy *
145 getTrailingObjectsImpl(const BaseTy *Obj,
146 TrailingObjectsBase::OverloadToken<NextTy>) {
147 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
148 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
149 TopTrailingObj::callNumTrailingObjects(
150 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
151
152 if (requiresRealignment())
153 return reinterpret_cast<const NextTy *>(
154 alignAddr(Ptr, Align::Of<NextTy>()));
155 else
156 return reinterpret_cast<const NextTy *>(Ptr);
157 }
158
159 static NextTy *
160 getTrailingObjectsImpl(BaseTy *Obj,
161 TrailingObjectsBase::OverloadToken<NextTy>) {
162 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
10
'Ptr' initialized here
163 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
9
Passing value via 1st parameter 'Obj'
164 TopTrailingObj::callNumTrailingObjects(
165 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
166
167 if (requiresRealignment())
11
Taking false branch
168 return reinterpret_cast<NextTy *>(alignAddr(Ptr, Align::Of<NextTy>()));
169 else
170 return reinterpret_cast<NextTy *>(Ptr);
12
Returning pointer (loaded from 'Ptr')
171 }
172
173 // Helper function for TrailingObjects::additionalSizeToAlloc: this
174 // function recurses to superclasses, each of which requires one
175 // fewer size_t argument, and adds its own size.
176 static constexpr size_t additionalSizeToAllocImpl(
177 size_t SizeSoFar, size_t Count1,
178 typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) {
179 return ParentType::additionalSizeToAllocImpl(
180 (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar)
181 : SizeSoFar) +
182 sizeof(NextTy) * Count1,
183 MoreCounts...);
184 }
185};
186
187// The base case of the TrailingObjectsImpl inheritance recursion,
188// when there's no more trailing types.
189template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy>
190class alignas(Align) TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy>
191 : public TrailingObjectsBase {
192protected:
193 // This is a dummy method, only here so the "using" doesn't fail --
194 // it will never be called, because this function recurses backwards
195 // up the inheritance chain to subclasses.
196 static void getTrailingObjectsImpl();
197
198 static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) {
199 return SizeSoFar;
200 }
201
202 template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {}
203};
204
205} // end namespace trailing_objects_internal
206
207// Finally, the main type defined in this file, the one intended for users...
208
209/// See the file comment for details on the usage of the
210/// TrailingObjects type.
211template <typename BaseTy, typename... TrailingTys>
212class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl<
213 trailing_objects_internal::AlignmentCalcHelper<
214 TrailingTys...>::Alignment,
215 BaseTy, TrailingObjects<BaseTy, TrailingTys...>,
216 BaseTy, TrailingTys...> {
217
218 template <int A, typename B, typename T, typename P, typename... M>
219 friend class trailing_objects_internal::TrailingObjectsImpl;
220
221 template <typename... Tys> class Foo {};
222
223 typedef trailing_objects_internal::TrailingObjectsImpl<
224 trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment,
225 BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...>
226 ParentType;
227 using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase;
228
229 using ParentType::getTrailingObjectsImpl;
230
231 // This function contains only a static_assert BaseTy is final. The
232 // static_assert must be in a function, and not at class-level
233 // because BaseTy isn't complete at class instantiation time, but
234 // will be by the time this function is instantiated.
235 static void verifyTrailingObjectsAssertions() {
236 static_assert(std::is_final<BaseTy>(), "BaseTy must be final.");
237 }
238
239 // These two methods are the base of the recursion for this method.
240 static const BaseTy *
241 getTrailingObjectsImpl(const BaseTy *Obj,
242 TrailingObjectsBase::OverloadToken<BaseTy>) {
243 return Obj;
244 }
245
246 static BaseTy *
247 getTrailingObjectsImpl(BaseTy *Obj,
248 TrailingObjectsBase::OverloadToken<BaseTy>) {
249 return Obj;
250 }
251
252 // callNumTrailingObjects simply calls numTrailingObjects on the
253 // provided Obj -- except when the type being queried is BaseTy
254 // itself. There is always only one of the base object, so that case
255 // is handled here. (An additional benefit of indirecting through
256 // this function is that consumers only say "friend
257 // TrailingObjects", and thus, only this class itself can call the
258 // numTrailingObjects function.)
259 static size_t
260 callNumTrailingObjects(const BaseTy *Obj,
261 TrailingObjectsBase::OverloadToken<BaseTy>) {
262 return 1;
263 }
264
265 template <typename T>
266 static size_t callNumTrailingObjects(const BaseTy *Obj,
267 TrailingObjectsBase::OverloadToken<T>) {
268 return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>());
269 }
270
271public:
272 // Make this (privately inherited) member public.
273#ifndef _MSC_VER
274 using ParentType::OverloadToken;
275#else
276 // An MSVC bug prevents the above from working, (last tested at CL version
277 // 19.28). "Class5" in TrailingObjectsTest.cpp tests the problematic case.
278 template <typename T>
279 using OverloadToken = typename ParentType::template OverloadToken<T>;
280#endif
281
282 /// Returns a pointer to the trailing object array of the given type
283 /// (which must be one of those specified in the class template). The
284 /// array may have zero or more elements in it.
285 template <typename T> const T *getTrailingObjects() const {
286 verifyTrailingObjectsAssertions();
287 // Forwards to an impl function with overloads, since member
288 // function templates can't be specialized.
289 return this->getTrailingObjectsImpl(
290 static_cast<const BaseTy *>(this),
291 TrailingObjectsBase::OverloadToken<T>());
292 }
293
294 /// Returns a pointer to the trailing object array of the given type
295 /// (which must be one of those specified in the class template). The
296 /// array may have zero or more elements in it.
297 template <typename T> T *getTrailingObjects() {
298 verifyTrailingObjectsAssertions();
299 // Forwards to an impl function with overloads, since member
300 // function templates can't be specialized.
301 return this->getTrailingObjectsImpl(
8
Calling 'TrailingObjectsImpl::getTrailingObjectsImpl'
13
Returning from 'TrailingObjectsImpl::getTrailingObjectsImpl'
14
Returning pointer
302 static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>());
7
Passing value via 1st parameter 'Obj'
303 }
304
305 /// Returns the size of the trailing data, if an object were
306 /// allocated with the given counts (The counts are in the same order
307 /// as the template arguments). This does not include the size of the
308 /// base object. The template arguments must be the same as those
309 /// used in the class; they are supplied here redundantly only so
310 /// that it's clear what the counts are counting in callers.
311 template <typename... Tys>
312 static constexpr std::enable_if_t<
313 std::is_same_v<Foo<TrailingTys...>, Foo<Tys...>>, size_t>
314 additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
315 TrailingTys, size_t>::type... Counts) {
316 return ParentType::additionalSizeToAllocImpl(0, Counts...);
317 }
318
319 /// Returns the total size of an object if it were allocated with the
320 /// given trailing object counts. This is the same as
321 /// additionalSizeToAlloc, except it *does* include the size of the base
322 /// object.
323 template <typename... Tys>
324 static constexpr std::enable_if_t<
325 std::is_same_v<Foo<TrailingTys...>, Foo<Tys...>>, size_t>
326 totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
327 TrailingTys, size_t>::type... Counts) {
328 return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
329 }
330
331 TrailingObjects() = default;
332 TrailingObjects(const TrailingObjects &) = delete;
333 TrailingObjects(TrailingObjects &&) = delete;
334 TrailingObjects &operator=(const TrailingObjects &) = delete;
335 TrailingObjects &operator=(TrailingObjects &&) = delete;
336
337 /// A type where its ::with_counts template member has a ::type member
338 /// suitable for use as uninitialized storage for an object with the given
339 /// trailing object counts. The template arguments are similar to those
340 /// of additionalSizeToAlloc.
341 ///
342 /// Use with FixedSizeStorageOwner, e.g.:
343 ///
344 /// \code{.cpp}
345 ///
346 /// MyObj::FixedSizeStorage<void *>::with_counts<1u>::type myStackObjStorage;
347 /// MyObj::FixedSizeStorageOwner
348 /// myStackObjOwner(new ((void *)&myStackObjStorage) MyObj);
349 /// MyObj *const myStackObjPtr = myStackObjOwner.get();
350 ///
351 /// \endcode
352 template <typename... Tys> struct FixedSizeStorage {
353 template <size_t... Counts> struct with_counts {
354 enum { Size = totalSizeToAlloc<Tys...>(Counts...) };
355 struct type {
356 alignas(BaseTy) char buffer[Size];
357 };
358 };
359 };
360
361 /// A type that acts as the owner for an object placed into fixed storage.
362 class FixedSizeStorageOwner {
363 public:
364 FixedSizeStorageOwner(BaseTy *p) : p(p) {}
365 ~FixedSizeStorageOwner() {
366 assert(p && "FixedSizeStorageOwner owns null?")(static_cast <bool> (p && "FixedSizeStorageOwner owns null?"
) ? void (0) : __assert_fail ("p && \"FixedSizeStorageOwner owns null?\""
, "llvm/include/llvm/Support/TrailingObjects.h", 366, __extension__
__PRETTY_FUNCTION__))
;
367 p->~BaseTy();
368 }
369
370 BaseTy *get() { return p; }
371 const BaseTy *get() const { return p; }
372
373 private:
374 FixedSizeStorageOwner(const FixedSizeStorageOwner &) = delete;
375 FixedSizeStorageOwner(FixedSizeStorageOwner &&) = delete;
376 FixedSizeStorageOwner &operator=(const FixedSizeStorageOwner &) = delete;
377 FixedSizeStorageOwner &operator=(FixedSizeStorageOwner &&) = delete;
378
379 BaseTy *const p;
380 };
381};
382
383} // end namespace llvm
384
385#endif