Bug Summary

File:include/llvm/CodeGen/DIE.h
Warning:line 641, column 5
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name DwarfLinker.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/dsymutil -I /build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/dsymutil -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp

1//===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DwarfLinker.h"
11#include "BinaryHolder.h"
12#include "DebugMap.h"
13#include "DeclContext.h"
14#include "DwarfStreamer.h"
15#include "MachOUtils.h"
16#include "NonRelocatableStringpool.h"
17#include "dsymutil.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseMapInfo.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/Hashing.h"
25#include "llvm/ADT/IntervalMap.h"
26#include "llvm/ADT/None.h"
27#include "llvm/ADT/Optional.h"
28#include "llvm/ADT/PointerIntPair.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringMap.h"
32#include "llvm/ADT/StringRef.h"
33#include "llvm/ADT/Triple.h"
34#include "llvm/ADT/Twine.h"
35#include "llvm/BinaryFormat/Dwarf.h"
36#include "llvm/BinaryFormat/MachO.h"
37#include "llvm/CodeGen/AccelTable.h"
38#include "llvm/CodeGen/AsmPrinter.h"
39#include "llvm/CodeGen/DIE.h"
40#include "llvm/Config/config.h"
41#include "llvm/DebugInfo/DIContext.h"
42#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
43#include "llvm/DebugInfo/DWARF/DWARFContext.h"
44#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
45#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
46#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
47#include "llvm/DebugInfo/DWARF/DWARFDie.h"
48#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
49#include "llvm/DebugInfo/DWARF/DWARFSection.h"
50#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
51#include "llvm/MC/MCAsmBackend.h"
52#include "llvm/MC/MCAsmInfo.h"
53#include "llvm/MC/MCCodeEmitter.h"
54#include "llvm/MC/MCContext.h"
55#include "llvm/MC/MCDwarf.h"
56#include "llvm/MC/MCInstrInfo.h"
57#include "llvm/MC/MCObjectFileInfo.h"
58#include "llvm/MC/MCObjectWriter.h"
59#include "llvm/MC/MCRegisterInfo.h"
60#include "llvm/MC/MCSection.h"
61#include "llvm/MC/MCStreamer.h"
62#include "llvm/MC/MCSubtargetInfo.h"
63#include "llvm/MC/MCTargetOptions.h"
64#include "llvm/Object/MachO.h"
65#include "llvm/Object/ObjectFile.h"
66#include "llvm/Object/SymbolicFile.h"
67#include "llvm/Support/Allocator.h"
68#include "llvm/Support/Casting.h"
69#include "llvm/Support/Compiler.h"
70#include "llvm/Support/DJB.h"
71#include "llvm/Support/DataExtractor.h"
72#include "llvm/Support/Error.h"
73#include "llvm/Support/ErrorHandling.h"
74#include "llvm/Support/ErrorOr.h"
75#include "llvm/Support/FileSystem.h"
76#include "llvm/Support/Format.h"
77#include "llvm/Support/LEB128.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/MemoryBuffer.h"
80#include "llvm/Support/Path.h"
81#include "llvm/Support/TargetRegistry.h"
82#include "llvm/Support/ThreadPool.h"
83#include "llvm/Support/ToolOutputFile.h"
84#include "llvm/Support/WithColor.h"
85#include "llvm/Support/raw_ostream.h"
86#include "llvm/Target/TargetMachine.h"
87#include "llvm/Target/TargetOptions.h"
88#include <algorithm>
89#include <cassert>
90#include <cinttypes>
91#include <climits>
92#include <cstdint>
93#include <cstdlib>
94#include <cstring>
95#include <limits>
96#include <map>
97#include <memory>
98#include <string>
99#include <system_error>
100#include <tuple>
101#include <utility>
102#include <vector>
103
104// For GNU Hurd
105#if defined(__GNU__) && !defined(PATH_MAX4096)
106# define PATH_MAX4096 4096
107#endif
108
109namespace llvm {
110namespace dsymutil {
111
112/// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
113/// CompileUnit object instead.
114static CompileUnit *getUnitForOffset(const UnitListTy &Units, unsigned Offset) {
115 auto CU = std::upper_bound(
116 Units.begin(), Units.end(), Offset,
117 [](uint32_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
118 return LHS < RHS->getOrigUnit().getNextUnitOffset();
119 });
120 return CU != Units.end() ? CU->get() : nullptr;
121}
122
123/// Resolve the DIE attribute reference that has been extracted in \p RefValue.
124/// The resulting DIE might be in another CompileUnit which is stored into \p
125/// ReferencedCU. \returns null if resolving fails for any reason.
126static DWARFDie resolveDIEReference(const DwarfLinker &Linker,
127 const DebugMapObject &DMO,
128 const UnitListTy &Units,
129 const DWARFFormValue &RefValue,
130 const DWARFUnit &Unit, const DWARFDie &DIE,
131 CompileUnit *&RefCU) {
132 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference))((RefValue.isFormClass(DWARFFormValue::FC_Reference)) ? static_cast
<void> (0) : __assert_fail ("RefValue.isFormClass(DWARFFormValue::FC_Reference)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 132, __PRETTY_FUNCTION__))
;
133 uint64_t RefOffset = *RefValue.getAsReference();
134
135 if ((RefCU = getUnitForOffset(Units, RefOffset)))
136 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
137 // In a file with broken references, an attribute might point to a NULL
138 // DIE.
139 if (!RefDie.isNULL())
140 return RefDie;
141 }
142
143 Linker.reportWarning("could not find referenced DIE", DMO, &DIE);
144 return DWARFDie();
145}
146
147/// \returns whether the passed \a Attr type might contain a DIE reference
148/// suitable for ODR uniquing.
149static bool isODRAttribute(uint16_t Attr) {
150 switch (Attr) {
151 default:
152 return false;
153 case dwarf::DW_AT_type:
154 case dwarf::DW_AT_containing_type:
155 case dwarf::DW_AT_specification:
156 case dwarf::DW_AT_abstract_origin:
157 case dwarf::DW_AT_import:
158 return true;
159 }
160 llvm_unreachable("Improper attribute.")::llvm::llvm_unreachable_internal("Improper attribute.", "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 160)
;
161}
162
163static bool isTypeTag(uint16_t Tag) {
164 switch (Tag) {
165 case dwarf::DW_TAG_array_type:
166 case dwarf::DW_TAG_class_type:
167 case dwarf::DW_TAG_enumeration_type:
168 case dwarf::DW_TAG_pointer_type:
169 case dwarf::DW_TAG_reference_type:
170 case dwarf::DW_TAG_string_type:
171 case dwarf::DW_TAG_structure_type:
172 case dwarf::DW_TAG_subroutine_type:
173 case dwarf::DW_TAG_typedef:
174 case dwarf::DW_TAG_union_type:
175 case dwarf::DW_TAG_ptr_to_member_type:
176 case dwarf::DW_TAG_set_type:
177 case dwarf::DW_TAG_subrange_type:
178 case dwarf::DW_TAG_base_type:
179 case dwarf::DW_TAG_const_type:
180 case dwarf::DW_TAG_constant:
181 case dwarf::DW_TAG_file_type:
182 case dwarf::DW_TAG_namelist:
183 case dwarf::DW_TAG_packed_type:
184 case dwarf::DW_TAG_volatile_type:
185 case dwarf::DW_TAG_restrict_type:
186 case dwarf::DW_TAG_atomic_type:
187 case dwarf::DW_TAG_interface_type:
188 case dwarf::DW_TAG_unspecified_type:
189 case dwarf::DW_TAG_shared_type:
190 return true;
191 default:
192 break;
193 }
194 return false;
195}
196
197bool DwarfLinker::DIECloner::getDIENames(const DWARFDie &Die,
198 AttributesInfo &Info,
199 OffsetsStringPool &StringPool,
200 bool StripTemplate) {
201 // This function will be called on DIEs having low_pcs and
202 // ranges. As getting the name might be more expansive, filter out
203 // blocks directly.
204 if (Die.getTag() == dwarf::DW_TAG_lexical_block)
205 return false;
206
207 // FIXME: a bit wasteful as the first getName might return the
208 // short name.
209 if (!Info.MangledName)
210 if (const char *MangledName = Die.getName(DINameKind::LinkageName))
211 Info.MangledName = StringPool.getEntry(MangledName);
212
213 if (!Info.Name)
214 if (const char *Name = Die.getName(DINameKind::ShortName))
215 Info.Name = StringPool.getEntry(Name);
216
217 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
218 // FIXME: dsymutil compatibility. This is wrong for operator<
219 auto Split = Info.Name.getString().split('<');
220 if (!Split.second.empty())
221 Info.NameWithoutTemplate = StringPool.getEntry(Split.first);
222 }
223
224 return Info.Name || Info.MangledName;
225}
226
227/// Report a warning to the user, optionally including information about a
228/// specific \p DIE related to the warning.
229void DwarfLinker::reportWarning(const Twine &Warning, const DebugMapObject &DMO,
230 const DWARFDie *DIE) const {
231 StringRef Context = DMO.getObjectFilename();
232 warn(Warning, Context);
233
234 if (!Options.Verbose || !DIE)
235 return;
236
237 DIDumpOptions DumpOpts;
238 DumpOpts.RecurseDepth = 0;
239 DumpOpts.Verbose = Options.Verbose;
240
241 WithColor::note() << " in DIE:\n";
242 DIE->dump(errs(), 6 /* Indent */, DumpOpts);
243}
244
245bool DwarfLinker::createStreamer(const Triple &TheTriple,
246 raw_fd_ostream &OutFile) {
247 if (Options.NoOutput)
248 return true;
249
250 Streamer = llvm::make_unique<DwarfStreamer>(OutFile, Options);
251 return Streamer->init(TheTriple);
252}
253
254/// Recursive helper to build the global DeclContext information and
255/// gather the child->parent relationships in the original compile unit.
256///
257/// \return true when this DIE and all of its children are only
258/// forward declarations to types defined in external clang modules
259/// (i.e., forward declarations that are children of a DW_TAG_module).
260static bool analyzeContextInfo(const DWARFDie &DIE, unsigned ParentIdx,
261 CompileUnit &CU, DeclContext *CurrentDeclContext,
262 UniquingStringPool &StringPool,
263 DeclContextTree &Contexts,
264 uint64_t ModulesEndOffset,
265 bool InImportedModule = false) {
266 unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
267 CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);
268
269 // Clang imposes an ODR on modules(!) regardless of the language:
270 // "The module-id should consist of only a single identifier,
271 // which provides the name of the module being defined. Each
272 // module shall have a single definition."
273 //
274 // This does not extend to the types inside the modules:
275 // "[I]n C, this implies that if two structs are defined in
276 // different submodules with the same name, those two types are
277 // distinct types (but may be compatible types if their
278 // definitions match)."
279 //
280 // We treat non-C++ modules like namespaces for this reason.
281 if (DIE.getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
282 dwarf::toString(DIE.find(dwarf::DW_AT_name), "") !=
283 CU.getClangModuleName()) {
284 InImportedModule = true;
285 }
286
287 Info.ParentIdx = ParentIdx;
288 bool InClangModule = CU.isClangModule() || InImportedModule;
289 if (CU.hasODR() || InClangModule) {
290 if (CurrentDeclContext) {
291 auto PtrInvalidPair = Contexts.getChildDeclContext(
292 *CurrentDeclContext, DIE, CU, StringPool, InClangModule);
293 CurrentDeclContext = PtrInvalidPair.getPointer();
294 Info.Ctxt =
295 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
296 if (Info.Ctxt)
297 Info.Ctxt->setDefinedInClangModule(InClangModule);
298 } else
299 Info.Ctxt = CurrentDeclContext = nullptr;
300 }
301
302 Info.Prune = InImportedModule;
303 if (DIE.hasChildren())
304 for (auto Child : DIE.children())
305 Info.Prune &=
306 analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext, StringPool,
307 Contexts, ModulesEndOffset, InImportedModule);
308
309 // Prune this DIE if it is either a forward declaration inside a
310 // DW_TAG_module or a DW_TAG_module that contains nothing but
311 // forward declarations.
312 Info.Prune &= (DIE.getTag() == dwarf::DW_TAG_module) ||
313 (isTypeTag(DIE.getTag()) &&
314 dwarf::toUnsigned(DIE.find(dwarf::DW_AT_declaration), 0));
315
316 // Only prune forward declarations inside a DW_TAG_module for which a
317 // definition exists elsewhere.
318 if (ModulesEndOffset == 0)
319 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
320 else
321 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
322 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
323
324 return Info.Prune;
325} // namespace dsymutil
326
327static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
328 switch (Tag) {
329 default:
330 return false;
331 case dwarf::DW_TAG_subprogram:
332 case dwarf::DW_TAG_lexical_block:
333 case dwarf::DW_TAG_subroutine_type:
334 case dwarf::DW_TAG_structure_type:
335 case dwarf::DW_TAG_class_type:
336 case dwarf::DW_TAG_union_type:
337 return true;
338 }
339 llvm_unreachable("Invalid Tag")::llvm::llvm_unreachable_internal("Invalid Tag", "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 339)
;
340}
341
342void DwarfLinker::startDebugObject(LinkContext &Context) {
343 // Iterate over the debug map entries and put all the ones that are
344 // functions (because they have a size) into the Ranges map. This map is
345 // very similar to the FunctionRanges that are stored in each unit, with 2
346 // notable differences:
347 //
348 // 1. Obviously this one is global, while the other ones are per-unit.
349 //
350 // 2. This one contains not only the functions described in the DIE
351 // tree, but also the ones that are only in the debug map.
352 //
353 // The latter information is required to reproduce dsymutil's logic while
354 // linking line tables. The cases where this information matters look like
355 // bugs that need to be investigated, but for now we need to reproduce
356 // dsymutil's behavior.
357 // FIXME: Once we understood exactly if that information is needed,
358 // maybe totally remove this (or try to use it to do a real
359 // -gline-tables-only on Darwin.
360 for (const auto &Entry : Context.DMO.symbols()) {
361 const auto &Mapping = Entry.getValue();
362 if (Mapping.Size && Mapping.ObjectAddress)
363 Context.Ranges[*Mapping.ObjectAddress] = DebugMapObjectRange(
364 *Mapping.ObjectAddress + Mapping.Size,
365 int64_t(Mapping.BinaryAddress) - *Mapping.ObjectAddress);
366 }
367}
368
369void DwarfLinker::endDebugObject(LinkContext &Context) {
370 Context.Clear();
371
372 for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
373 (*I)->~DIEBlock();
374 for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
375 (*I)->~DIELoc();
376
377 DIEBlocks.clear();
378 DIELocs.clear();
379 DIEAlloc.Reset();
380}
381
382static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) {
383 switch (Arch) {
384 case Triple::x86:
385 return RelocType == MachO::GENERIC_RELOC_SECTDIFF ||
386 RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
387 case Triple::x86_64:
388 return RelocType == MachO::X86_64_RELOC_SUBTRACTOR;
389 case Triple::arm:
390 case Triple::thumb:
391 return RelocType == MachO::ARM_RELOC_SECTDIFF ||
392 RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
393 RelocType == MachO::ARM_RELOC_HALF ||
394 RelocType == MachO::ARM_RELOC_HALF_SECTDIFF;
395 case Triple::aarch64:
396 return RelocType == MachO::ARM64_RELOC_SUBTRACTOR;
397 default:
398 return false;
399 }
400}
401
402/// Iterate over the relocations of the given \p Section and
403/// store the ones that correspond to debug map entries into the
404/// ValidRelocs array.
405void DwarfLinker::RelocationManager::findValidRelocsMachO(
406 const object::SectionRef &Section, const object::MachOObjectFile &Obj,
407 const DebugMapObject &DMO) {
408 StringRef Contents;
409 Section.getContents(Contents);
410 DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
411 bool SkipNext = false;
412
413 for (const object::RelocationRef &Reloc : Section.relocations()) {
414 if (SkipNext) {
415 SkipNext = false;
416 continue;
417 }
418
419 object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
420 MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
421
422 if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc),
423 Obj.getArch())) {
424 SkipNext = true;
425 Linker.reportWarning("unsupported relocation in debug_info section.",
426 DMO);
427 continue;
428 }
429
430 unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
431 uint64_t Offset64 = Reloc.getOffset();
432 if ((RelocSize != 4 && RelocSize != 8)) {
433 Linker.reportWarning("unsupported relocation in debug_info section.",
434 DMO);
435 continue;
436 }
437 uint32_t Offset = Offset64;
438 // Mach-o uses REL relocations, the addend is at the relocation offset.
439 uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
440 uint64_t SymAddress;
441 int64_t SymOffset;
442
443 if (Obj.isRelocationScattered(MachOReloc)) {
444 // The address of the base symbol for scattered relocations is
445 // stored in the reloc itself. The actual addend will store the
446 // base address plus the offset.
447 SymAddress = Obj.getScatteredRelocationValue(MachOReloc);
448 SymOffset = int64_t(Addend) - SymAddress;
449 } else {
450 SymAddress = Addend;
451 SymOffset = 0;
452 }
453
454 auto Sym = Reloc.getSymbol();
455 if (Sym != Obj.symbol_end()) {
456 Expected<StringRef> SymbolName = Sym->getName();
457 if (!SymbolName) {
458 consumeError(SymbolName.takeError());
459 Linker.reportWarning("error getting relocation symbol name.", DMO);
460 continue;
461 }
462 if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
463 ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
464 } else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) {
465 // Do not store the addend. The addend was the address of the symbol in
466 // the object file, the address in the binary that is stored in the debug
467 // map doesn't need to be offset.
468 ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping);
469 }
470 }
471}
472
473/// Dispatch the valid relocation finding logic to the
474/// appropriate handler depending on the object file format.
475bool DwarfLinker::RelocationManager::findValidRelocs(
476 const object::SectionRef &Section, const object::ObjectFile &Obj,
477 const DebugMapObject &DMO) {
478 // Dispatch to the right handler depending on the file type.
479 if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
480 findValidRelocsMachO(Section, *MachOObj, DMO);
481 else
482 Linker.reportWarning(
483 Twine("unsupported object file type: ") + Obj.getFileName(), DMO);
484
485 if (ValidRelocs.empty())
486 return false;
487
488 // Sort the relocations by offset. We will walk the DIEs linearly in
489 // the file, this allows us to just keep an index in the relocation
490 // array that we advance during our walk, rather than resorting to
491 // some associative container. See DwarfLinker::NextValidReloc.
492 llvm::sort(ValidRelocs);
493 return true;
494}
495
496/// Look for relocations in the debug_info section that match
497/// entries in the debug map. These relocations will drive the Dwarf
498/// link by indicating which DIEs refer to symbols present in the
499/// linked binary.
500/// \returns whether there are any valid relocations in the debug info.
501bool DwarfLinker::RelocationManager::findValidRelocsInDebugInfo(
502 const object::ObjectFile &Obj, const DebugMapObject &DMO) {
503 // Find the debug_info section.
504 for (const object::SectionRef &Section : Obj.sections()) {
505 StringRef SectionName;
506 Section.getName(SectionName);
507 SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
508 if (SectionName != "debug_info")
509 continue;
510 return findValidRelocs(Section, Obj, DMO);
511 }
512 return false;
513}
514
515/// Checks that there is a relocation against an actual debug
516/// map entry between \p StartOffset and \p NextOffset.
517///
518/// This function must be called with offsets in strictly ascending
519/// order because it never looks back at relocations it already 'went past'.
520/// \returns true and sets Info.InDebugMap if it is the case.
521bool DwarfLinker::RelocationManager::hasValidRelocation(
522 uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info) {
523 assert(NextValidReloc == 0 ||((NextValidReloc == 0 || StartOffset > ValidRelocs[NextValidReloc
- 1].Offset) ? static_cast<void> (0) : __assert_fail (
"NextValidReloc == 0 || StartOffset > ValidRelocs[NextValidReloc - 1].Offset"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 524, __PRETTY_FUNCTION__))
524 StartOffset > ValidRelocs[NextValidReloc - 1].Offset)((NextValidReloc == 0 || StartOffset > ValidRelocs[NextValidReloc
- 1].Offset) ? static_cast<void> (0) : __assert_fail (
"NextValidReloc == 0 || StartOffset > ValidRelocs[NextValidReloc - 1].Offset"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 524, __PRETTY_FUNCTION__))
;
525 if (NextValidReloc >= ValidRelocs.size())
526 return false;
527
528 uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
529
530 // We might need to skip some relocs that we didn't consider. For
531 // example the high_pc of a discarded DIE might contain a reloc that
532 // is in the list because it actually corresponds to the start of a
533 // function that is in the debug map.
534 while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
535 RelocOffset = ValidRelocs[++NextValidReloc].Offset;
536
537 if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
538 return false;
539
540 const auto &ValidReloc = ValidRelocs[NextValidReloc++];
541 const auto &Mapping = ValidReloc.Mapping->getValue();
542 uint64_t ObjectAddress = Mapping.ObjectAddress
543 ? uint64_t(*Mapping.ObjectAddress)
544 : std::numeric_limits<uint64_t>::max();
545 if (Linker.Options.Verbose)
546 outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
547 << " "
548 << format("\t%016" PRIx64"l" "x" " => %016" PRIx64"l" "x", ObjectAddress,
549 uint64_t(Mapping.BinaryAddress));
550
551 Info.AddrAdjust = int64_t(Mapping.BinaryAddress) + ValidReloc.Addend;
552 if (Mapping.ObjectAddress)
553 Info.AddrAdjust -= ObjectAddress;
554 Info.InDebugMap = true;
555 return true;
556}
557
558/// Get the starting and ending (exclusive) offset for the
559/// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
560/// supposed to point to the position of the first attribute described
561/// by \p Abbrev.
562/// \return [StartOffset, EndOffset) as a pair.
563static std::pair<uint32_t, uint32_t>
564getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
565 unsigned Offset, const DWARFUnit &Unit) {
566 DataExtractor Data = Unit.getDebugInfoExtractor();
567
568 for (unsigned i = 0; i < Idx; ++i)
569 DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset,
570 Unit.getFormParams());
571
572 uint32_t End = Offset;
573 DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End,
574 Unit.getFormParams());
575
576 return std::make_pair(Offset, End);
577}
578
579/// Check if a variable describing DIE should be kept.
580/// \returns updated TraversalFlags.
581unsigned DwarfLinker::shouldKeepVariableDIE(RelocationManager &RelocMgr,
582 const DWARFDie &DIE,
583 CompileUnit &Unit,
584 CompileUnit::DIEInfo &MyInfo,
585 unsigned Flags) {
586 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
587
588 // Global variables with constant value can always be kept.
589 if (!(Flags & TF_InFunctionScope) &&
590 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
591 MyInfo.InDebugMap = true;
592 return Flags | TF_Keep;
593 }
594
595 Optional<uint32_t> LocationIdx =
596 Abbrev->findAttributeIndex(dwarf::DW_AT_location);
597 if (!LocationIdx)
598 return Flags;
599
600 uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
601 const DWARFUnit &OrigUnit = Unit.getOrigUnit();
602 uint32_t LocationOffset, LocationEndOffset;
603 std::tie(LocationOffset, LocationEndOffset) =
604 getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit);
605
606 // See if there is a relocation to a valid debug map entry inside
607 // this variable's location. The order is important here. We want to
608 // always check in the variable has a valid relocation, so that the
609 // DIEInfo is filled. However, we don't want a static variable in a
610 // function to force us to keep the enclosing function.
611 if (!RelocMgr.hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
612 (Flags & TF_InFunctionScope))
613 return Flags;
614
615 if (Options.Verbose) {
616 DIDumpOptions DumpOpts;
617 DumpOpts.RecurseDepth = 0;
618 DumpOpts.Verbose = Options.Verbose;
619 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
620 }
621
622 return Flags | TF_Keep;
623}
624
625/// Check if a function describing DIE should be kept.
626/// \returns updated TraversalFlags.
627unsigned DwarfLinker::shouldKeepSubprogramDIE(
628 RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
629 const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
630 unsigned Flags) {
631 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
632
633 Flags |= TF_InFunctionScope;
634
635 Optional<uint32_t> LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
636 if (!LowPcIdx)
637 return Flags;
638
639 uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
640 DWARFUnit &OrigUnit = Unit.getOrigUnit();
641 uint32_t LowPcOffset, LowPcEndOffset;
642 std::tie(LowPcOffset, LowPcEndOffset) =
643 getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit);
644
645 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
646 assert(LowPc.hasValue() && "low_pc attribute is not an address.")((LowPc.hasValue() && "low_pc attribute is not an address."
) ? static_cast<void> (0) : __assert_fail ("LowPc.hasValue() && \"low_pc attribute is not an address.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 646, __PRETTY_FUNCTION__))
;
647 if (!LowPc ||
648 !RelocMgr.hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
649 return Flags;
650
651 if (Options.Verbose) {
652 DIDumpOptions DumpOpts;
653 DumpOpts.RecurseDepth = 0;
654 DumpOpts.Verbose = Options.Verbose;
655 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
656 }
657
658 if (DIE.getTag() == dwarf::DW_TAG_label) {
659 if (Unit.hasLabelAt(*LowPc))
660 return Flags;
661 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
662 // that don't fall into the CU's aranges. This is wrong IMO. Debug info
663 // generation bugs aside, this is really wrong in the case of labels, where
664 // a label marking the end of a function will have a PC == CU's high_pc.
665 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
666 .getValueOr(UINT64_MAX(18446744073709551615UL)) <= LowPc)
667 return Flags;
668 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
669 return Flags | TF_Keep;
670 }
671
672 Flags |= TF_Keep;
673
674 Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
675 if (!HighPc) {
676 reportWarning("Function without high_pc. Range will be discarded.\n", DMO,
677 &DIE);
678 return Flags;
679 }
680
681 // Replace the debug map range with a more accurate one.
682 Ranges[*LowPc] = DebugMapObjectRange(*HighPc, MyInfo.AddrAdjust);
683 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
684 return Flags;
685}
686
687/// Check if a DIE should be kept.
688/// \returns updated TraversalFlags.
689unsigned DwarfLinker::shouldKeepDIE(RelocationManager &RelocMgr,
690 RangesTy &Ranges, const DWARFDie &DIE,
691 const DebugMapObject &DMO,
692 CompileUnit &Unit,
693 CompileUnit::DIEInfo &MyInfo,
694 unsigned Flags) {
695 switch (DIE.getTag()) {
696 case dwarf::DW_TAG_constant:
697 case dwarf::DW_TAG_variable:
698 return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
699 case dwarf::DW_TAG_subprogram:
700 case dwarf::DW_TAG_label:
701 return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, DMO, Unit, MyInfo,
702 Flags);
703 case dwarf::DW_TAG_imported_module:
704 case dwarf::DW_TAG_imported_declaration:
705 case dwarf::DW_TAG_imported_unit:
706 // We always want to keep these.
707 return Flags | TF_Keep;
708 default:
709 break;
710 }
711
712 return Flags;
713}
714
715/// Mark the passed DIE as well as all the ones it depends on
716/// as kept.
717///
718/// This function is called by lookForDIEsToKeep on DIEs that are
719/// newly discovered to be needed in the link. It recursively calls
720/// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
721/// TraversalFlags to inform it that it's not doing the primary DIE
722/// tree walk.
723void DwarfLinker::keepDIEAndDependencies(
724 RelocationManager &RelocMgr, RangesTy &Ranges, const UnitListTy &Units,
725 const DWARFDie &Die, CompileUnit::DIEInfo &MyInfo,
726 const DebugMapObject &DMO, CompileUnit &CU, bool UseODR) {
727 DWARFUnit &Unit = CU.getOrigUnit();
728 MyInfo.Keep = true;
729
730 // We're looking for incomplete types.
731 MyInfo.Incomplete = Die.getTag() != dwarf::DW_TAG_subprogram &&
732 Die.getTag() != dwarf::DW_TAG_member &&
733 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0);
734
735 // First mark all the parent chain as kept.
736 unsigned AncestorIdx = MyInfo.ParentIdx;
737 while (!CU.getInfo(AncestorIdx).Keep) {
738 unsigned ODRFlag = UseODR ? TF_ODR : 0;
739 lookForDIEsToKeep(RelocMgr, Ranges, Units, Unit.getDIEAtIndex(AncestorIdx),
740 DMO, CU,
741 TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag);
742 AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
743 }
744
745 // Then we need to mark all the DIEs referenced by this DIE's
746 // attributes as kept.
747 DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
748 const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
749 uint32_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
750
751 // Mark all DIEs referenced through attributes as kept.
752 for (const auto &AttrSpec : Abbrev->attributes()) {
753 DWARFFormValue Val(AttrSpec.Form);
754
755 if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
756 AttrSpec.Attr == dwarf::DW_AT_sibling) {
757 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
758 Unit.getFormParams());
759 continue;
760 }
761
762 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
763 CompileUnit *ReferencedCU;
764 if (auto RefDie = resolveDIEReference(*this, DMO, Units, Val, Unit, Die,
765 ReferencedCU)) {
766 uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDie);
767 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
768 bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
769 Info.Ctxt->isDefinedInClangModule();
770 // If the referenced DIE has a DeclContext that has already been
771 // emitted, then do not keep the one in this CU. We'll link to
772 // the canonical DIE in cloneDieReferenceAttribute.
773 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
774 // be necessary and could be advantageously replaced by
775 // ReferencedCU->hasODR() && CU.hasODR().
776 // FIXME: compatibility with dsymutil-classic. There is no
777 // reason not to unique ref_addr references.
778 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseODR || IsModuleRef) &&
779 Info.Ctxt &&
780 Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
781 Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
782 continue;
783
784 // Keep a module forward declaration if there is no definition.
785 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
786 Info.Ctxt->getCanonicalDIEOffset()))
787 Info.Prune = false;
788
789 unsigned ODRFlag = UseODR ? TF_ODR : 0;
790 lookForDIEsToKeep(RelocMgr, Ranges, Units, RefDie, DMO, *ReferencedCU,
791 TF_Keep | TF_DependencyWalk | ODRFlag);
792
793 // The incomplete property is propagated if the current DIE is complete
794 // but references an incomplete DIE.
795 if (Info.Incomplete && !MyInfo.Incomplete &&
796 (Die.getTag() == dwarf::DW_TAG_typedef ||
797 Die.getTag() == dwarf::DW_TAG_member ||
798 Die.getTag() == dwarf::DW_TAG_reference_type ||
799 Die.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
800 Die.getTag() == dwarf::DW_TAG_pointer_type))
801 MyInfo.Incomplete = true;
802 }
803 }
804}
805
806namespace {
807/// This class represents an item in the work list. In addition to it's obvious
808/// purpose of representing the state associated with a particular run of the
809/// work loop, it also serves as a marker to indicate that we should run the
810/// "continuation" code.
811///
812/// Originally, the latter was lambda which allowed arbitrary code to be run.
813/// Because we always need to run the exact same code, it made more sense to
814/// use a boolean and repurpose the already existing DIE field.
815struct WorklistItem {
816 DWARFDie Die;
817 unsigned Flags;
818 bool IsContinuation;
819 CompileUnit::DIEInfo *ChildInfo = nullptr;
820
821 /// Construct a classic worklist item.
822 WorklistItem(DWARFDie Die, unsigned Flags)
823 : Die(Die), Flags(Flags), IsContinuation(false){};
824
825 /// Creates a continuation marker.
826 WorklistItem(DWARFDie Die) : Die(Die), IsContinuation(true){};
827};
828} // namespace
829
830// Helper that updates the completeness of the current DIE. It depends on the
831// fact that the incompletness of its children is already computed.
832static void updateIncompleteness(const DWARFDie &Die,
833 CompileUnit::DIEInfo &ChildInfo,
834 CompileUnit &CU) {
835 // Only propagate incomplete members.
836 if (Die.getTag() != dwarf::DW_TAG_structure_type &&
837 Die.getTag() != dwarf::DW_TAG_class_type)
838 return;
839
840 unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
841 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
842
843 if (MyInfo.Incomplete)
844 return;
845
846 if (ChildInfo.Incomplete || ChildInfo.Prune)
847 MyInfo.Incomplete = true;
848}
849
850/// Recursively walk the \p DIE tree and look for DIEs to
851/// keep. Store that information in \p CU's DIEInfo.
852///
853/// This function is the entry point of the DIE selection
854/// algorithm. It is expected to walk the DIE tree in file order and
855/// (though the mediation of its helper) call hasValidRelocation() on
856/// each DIE that might be a 'root DIE' (See DwarfLinker class
857/// comment).
858/// While walking the dependencies of root DIEs, this function is
859/// also called, but during these dependency walks the file order is
860/// not respected. The TF_DependencyWalk flag tells us which kind of
861/// traversal we are currently doing.
862///
863/// The return value indicates whether the DIE is incomplete.
864void DwarfLinker::lookForDIEsToKeep(RelocationManager &RelocMgr,
865 RangesTy &Ranges, const UnitListTy &Units,
866 const DWARFDie &Die,
867 const DebugMapObject &DMO, CompileUnit &CU,
868 unsigned Flags) {
869 // LIFO work list.
870 SmallVector<WorklistItem, 4> Worklist;
871 Worklist.emplace_back(Die, Flags);
872
873 while (!Worklist.empty()) {
874 WorklistItem Current = Worklist.back();
875 Worklist.pop_back();
876
877 if (Current.IsContinuation) {
878 updateIncompleteness(Current.Die, *Current.ChildInfo, CU);
879 continue;
880 }
881
882 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
883 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
884
885 // At this point we are guaranteed to have a continuation marker before us
886 // in the worklist, except for the last DIE.
887 if (!Worklist.empty())
888 Worklist.back().ChildInfo = &MyInfo;
889
890 if (MyInfo.Prune)
891 continue;
892
893 // If the Keep flag is set, we are marking a required DIE's dependencies.
894 // If our target is already marked as kept, we're all set.
895 bool AlreadyKept = MyInfo.Keep;
896 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
897 continue;
898
899 // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
900 // because it would screw up the relocation finding logic.
901 if (!(Current.Flags & TF_DependencyWalk))
902 Current.Flags = shouldKeepDIE(RelocMgr, Ranges, Current.Die, DMO, CU,
903 MyInfo, Current.Flags);
904
905 // If it is a newly kept DIE mark it as well as all its dependencies as
906 // kept.
907 if (!AlreadyKept && (Current.Flags & TF_Keep)) {
908 bool UseOdr = (Current.Flags & TF_DependencyWalk)
909 ? (Current.Flags & TF_ODR)
910 : CU.hasODR();
911 keepDIEAndDependencies(RelocMgr, Ranges, Units, Current.Die, MyInfo, DMO,
912 CU, UseOdr);
913 }
914
915 // The TF_ParentWalk flag tells us that we are currently walking up
916 // the parent chain of a required DIE, and we don't want to mark all
917 // the children of the parents as kept (consider for example a
918 // DW_TAG_namespace node in the parent chain). There are however a
919 // set of DIE types for which we want to ignore that directive and still
920 // walk their children.
921 if (dieNeedsChildrenToBeMeaningful(Current.Die.getTag()))
922 Current.Flags &= ~TF_ParentWalk;
923
924 if (!Current.Die.hasChildren() || (Current.Flags & TF_ParentWalk))
925 continue;
926
927 // Add children in reverse order to the worklist to effectively process
928 // them in order.
929 for (auto Child : reverse(Current.Die.children())) {
930 // Add continuation marker before every child to calculate incompleteness
931 // after the last child is processed. We can't store this information in
932 // the same item because we might have to process other continuations
933 // first.
934 Worklist.emplace_back(Current.Die);
935 Worklist.emplace_back(Child, Current.Flags);
936 }
937 }
938}
939
940/// Assign an abbreviation number to \p Abbrev.
941///
942/// Our DIEs get freed after every DebugMapObject has been processed,
943/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
944/// the instances hold by the DIEs. When we encounter an abbreviation
945/// that we don't know, we create a permanent copy of it.
946void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) {
947 // Check the set for priors.
948 FoldingSetNodeID ID;
949 Abbrev.Profile(ID);
950 void *InsertToken;
951 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
952
953 // If it's newly added.
954 if (InSet) {
955 // Assign existing abbreviation number.
956 Abbrev.setNumber(InSet->getNumber());
957 } else {
958 // Add to abbreviation list.
959 Abbreviations.push_back(
960 llvm::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
961 for (const auto &Attr : Abbrev.getData())
962 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
963 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
964 // Assign the unique abbreviation number.
965 Abbrev.setNumber(Abbreviations.size());
966 Abbreviations.back()->setNumber(Abbreviations.size());
967 }
968}
969
970unsigned DwarfLinker::DIECloner::cloneStringAttribute(
971 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
972 const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
973 // Switch everything to out of line strings.
974 const char *String = *Val.getAsCString();
975 auto StringEntry = StringPool.getEntry(String);
976
977 // Update attributes info.
978 if (AttrSpec.Attr == dwarf::DW_AT_name)
979 Info.Name = StringEntry;
980 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
981 AttrSpec.Attr == dwarf::DW_AT_linkage_name)
982 Info.MangledName = StringEntry;
983
984 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
985 DIEInteger(StringEntry.getOffset()));
986
987 return 4;
988}
989
990unsigned DwarfLinker::DIECloner::cloneDieReferenceAttribute(
991 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
992 unsigned AttrSize, const DWARFFormValue &Val, const DebugMapObject &DMO,
993 CompileUnit &Unit) {
994 const DWARFUnit &U = Unit.getOrigUnit();
995 uint32_t Ref = *Val.getAsReference();
996 DIE *NewRefDie = nullptr;
997 CompileUnit *RefUnit = nullptr;
998 DeclContext *Ctxt = nullptr;
999
1000 DWARFDie RefDie =
1001 resolveDIEReference(Linker, DMO, CompileUnits, Val, U, InputDIE, RefUnit);
1002
1003 // If the referenced DIE is not found, drop the attribute.
1004 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
1005 return 0;
1006
1007 unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
1008 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
1009
1010 // If we already have emitted an equivalent DeclContext, just point
1011 // at it.
1012 if (isODRAttribute(AttrSpec.Attr)) {
1013 Ctxt = RefInfo.Ctxt;
1014 if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
1015 DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
1016 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1017 dwarf::DW_FORM_ref_addr, Attr);
1018 return U.getRefAddrByteSize();
1019 }
1020 }
1021
1022 if (!RefInfo.Clone) {
1023 assert(Ref > InputDIE.getOffset())((Ref > InputDIE.getOffset()) ? static_cast<void> (0
) : __assert_fail ("Ref > InputDIE.getOffset()", "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1023, __PRETTY_FUNCTION__))
;
1024 // We haven't cloned this DIE yet. Just create an empty one and
1025 // store it. It'll get really cloned when we process it.
1026 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
1027 }
1028 NewRefDie = RefInfo.Clone;
1029
1030 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
1031 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
1032 // We cannot currently rely on a DIEEntry to emit ref_addr
1033 // references, because the implementation calls back to DwarfDebug
1034 // to find the unit offset. (We don't have a DwarfDebug)
1035 // FIXME: we should be able to design DIEEntry reliance on
1036 // DwarfDebug away.
1037 uint64_t Attr;
1038 if (Ref < InputDIE.getOffset()) {
1039 // We must have already cloned that DIE.
1040 uint32_t NewRefOffset =
1041 RefUnit->getStartOffset() + NewRefDie->getOffset();
1042 Attr = NewRefOffset;
1043 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1044 dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
1045 } else {
1046 // A forward reference. Note and fixup later.
1047 Attr = 0xBADDEF;
1048 Unit.noteForwardReference(
1049 NewRefDie, RefUnit, Ctxt,
1050 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1051 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
1052 }
1053 return U.getRefAddrByteSize();
1054 }
1055
1056 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1057 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
1058 return AttrSize;
1059}
1060
1061unsigned DwarfLinker::DIECloner::cloneBlockAttribute(DIE &Die,
1062 AttributeSpec AttrSpec,
1063 const DWARFFormValue &Val,
1064 unsigned AttrSize) {
1065 DIEValueList *Attr;
1066 DIEValue Value;
1067 DIELoc *Loc = nullptr;
1068 DIEBlock *Block = nullptr;
1069 // Just copy the block data over.
1070 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1071 Loc = new (DIEAlloc) DIELoc;
1072 Linker.DIELocs.push_back(Loc);
1073 } else {
1074 Block = new (DIEAlloc) DIEBlock;
1075 Linker.DIEBlocks.push_back(Block);
1076 }
1077 Attr = Loc ? static_cast<DIEValueList *>(Loc)
1078 : static_cast<DIEValueList *>(Block);
1079
1080 if (Loc)
1081 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1082 dwarf::Form(AttrSpec.Form), Loc);
1083 else
1084 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1085 dwarf::Form(AttrSpec.Form), Block);
1086 ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1087 for (auto Byte : Bytes)
1088 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1089 dwarf::DW_FORM_data1, DIEInteger(Byte));
1090 // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1091 // the DIE class, this if could be replaced by
1092 // Attr->setSize(Bytes.size()).
1093 if (Linker.Streamer) {
1094 auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
1095 if (Loc)
1096 Loc->ComputeSize(AsmPrinter);
1097 else
1098 Block->ComputeSize(AsmPrinter);
1099 }
1100 Die.addValue(DIEAlloc, Value);
1101 return AttrSize;
1102}
1103
1104unsigned DwarfLinker::DIECloner::cloneAddressAttribute(
1105 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1106 const CompileUnit &Unit, AttributesInfo &Info) {
1107 uint64_t Addr = *Val.getAsAddress();
1108
1109 if (LLVM_UNLIKELY(Linker.Options.Update)__builtin_expect((bool)(Linker.Options.Update), false)) {
1110 if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1111 Info.HasLowPc = true;
1112 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1113 dwarf::Form(AttrSpec.Form), DIEInteger(Addr));
1114 return Unit.getOrigUnit().getAddressByteSize();
1115 }
1116
1117 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1118 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1119 Die.getTag() == dwarf::DW_TAG_lexical_block)
1120 // The low_pc of a block or inline subroutine might get
1121 // relocated because it happens to match the low_pc of the
1122 // enclosing subprogram. To prevent issues with that, always use
1123 // the low_pc from the input DIE if relocations have been applied.
1124 Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
1125 ? Info.OrigLowPc
1126 : Addr) +
1127 Info.PCOffset;
1128 else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1129 Addr = Unit.getLowPc();
1130 if (Addr == std::numeric_limits<uint64_t>::max())
1131 return 0;
1132 }
1133 Info.HasLowPc = true;
1134 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1135 if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1136 if (uint64_t HighPc = Unit.getHighPc())
1137 Addr = HighPc;
1138 else
1139 return 0;
1140 } else
1141 // If we have a high_pc recorded for the input DIE, use
1142 // it. Otherwise (when no relocations where applied) just use the
1143 // one we just decoded.
1144 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1145 }
1146
1147 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1148 static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
1149 return Unit.getOrigUnit().getAddressByteSize();
1150}
1151
1152unsigned DwarfLinker::DIECloner::cloneScalarAttribute(
1153 DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
1154 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1155 unsigned AttrSize, AttributesInfo &Info) {
1156 uint64_t Value;
1157
1158 if (LLVM_UNLIKELY(Linker.Options.Update)__builtin_expect((bool)(Linker.Options.Update), false)) {
1159 if (auto OptionalValue = Val.getAsUnsignedConstant())
1160 Value = *OptionalValue;
1161 else if (auto OptionalValue = Val.getAsSignedConstant())
1162 Value = *OptionalValue;
1163 else if (auto OptionalValue = Val.getAsSectionOffset())
1164 Value = *OptionalValue;
1165 else {
1166 Linker.reportWarning(
1167 "Unsupported scalar attribute form. Dropping attribute.", DMO,
1168 &InputDIE);
1169 return 0;
1170 }
1171 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1172 Info.IsDeclaration = true;
1173 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1174 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1175 return AttrSize;
1176 }
1177
1178 if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1179 Die.getTag() == dwarf::DW_TAG_compile_unit) {
1180 if (Unit.getLowPc() == -1ULL)
1181 return 0;
1182 // Dwarf >= 4 high_pc is an size, not an address.
1183 Value = Unit.getHighPc() - Unit.getLowPc();
1184 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1185 Value = *Val.getAsSectionOffset();
1186 else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1187 Value = *Val.getAsSignedConstant();
1188 else if (auto OptionalValue = Val.getAsUnsignedConstant())
1189 Value = *OptionalValue;
1190 else {
1191 Linker.reportWarning(
1192 "Unsupported scalar attribute form. Dropping attribute.", DMO,
1193 &InputDIE);
1194 return 0;
1195 }
1196 PatchLocation Patch =
1197 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1198 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1199 if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
1200 Unit.noteRangeAttribute(Die, Patch);
1201 Info.HasRanges = true;
1202 }
1203
1204 // A more generic way to check for location attributes would be
1205 // nice, but it's very unlikely that any other attribute needs a
1206 // location list.
1207 else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1208 AttrSpec.Attr == dwarf::DW_AT_frame_base)
1209 Unit.noteLocationAttribute(Patch, Info.PCOffset);
1210 else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1211 Info.IsDeclaration = true;
1212
1213 return AttrSize;
1214}
1215
1216/// Clone \p InputDIE's attribute described by \p AttrSpec with
1217/// value \p Val, and add it to \p Die.
1218/// \returns the size of the cloned attribute.
1219unsigned DwarfLinker::DIECloner::cloneAttribute(
1220 DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
1221 CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
1222 const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info) {
1223 const DWARFUnit &U = Unit.getOrigUnit();
1224
1225 switch (AttrSpec.Form) {
1226 case dwarf::DW_FORM_strp:
1227 case dwarf::DW_FORM_string:
1228 return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
1229 case dwarf::DW_FORM_ref_addr:
1230 case dwarf::DW_FORM_ref1:
1231 case dwarf::DW_FORM_ref2:
1232 case dwarf::DW_FORM_ref4:
1233 case dwarf::DW_FORM_ref8:
1234 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1235 DMO, Unit);
1236 case dwarf::DW_FORM_block:
1237 case dwarf::DW_FORM_block1:
1238 case dwarf::DW_FORM_block2:
1239 case dwarf::DW_FORM_block4:
1240 case dwarf::DW_FORM_exprloc:
1241 return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize);
1242 case dwarf::DW_FORM_addr:
1243 return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
1244 case dwarf::DW_FORM_data1:
1245 case dwarf::DW_FORM_data2:
1246 case dwarf::DW_FORM_data4:
1247 case dwarf::DW_FORM_data8:
1248 case dwarf::DW_FORM_udata:
1249 case dwarf::DW_FORM_sdata:
1250 case dwarf::DW_FORM_sec_offset:
1251 case dwarf::DW_FORM_flag:
1252 case dwarf::DW_FORM_flag_present:
1253 return cloneScalarAttribute(Die, InputDIE, DMO, Unit, AttrSpec, Val,
1254 AttrSize, Info);
1255 default:
1256 Linker.reportWarning(
1257 "Unsupported attribute form in cloneAttribute. Dropping.", DMO,
1258 &InputDIE);
1259 }
1260
1261 return 0;
1262}
1263
1264/// Apply the valid relocations found by findValidRelocs() to
1265/// the buffer \p Data, taking into account that Data is at \p BaseOffset
1266/// in the debug_info section.
1267///
1268/// Like for findValidRelocs(), this function must be called with
1269/// monotonic \p BaseOffset values.
1270///
1271/// \returns whether any reloc has been applied.
1272bool DwarfLinker::RelocationManager::applyValidRelocs(
1273 MutableArrayRef<char> Data, uint32_t BaseOffset, bool isLittleEndian) {
1274 assert((NextValidReloc == 0 ||(((NextValidReloc == 0 || BaseOffset > ValidRelocs[NextValidReloc
- 1].Offset) && "BaseOffset should only be increasing."
) ? static_cast<void> (0) : __assert_fail ("(NextValidReloc == 0 || BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) && \"BaseOffset should only be increasing.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1276, __PRETTY_FUNCTION__))
1275 BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&(((NextValidReloc == 0 || BaseOffset > ValidRelocs[NextValidReloc
- 1].Offset) && "BaseOffset should only be increasing."
) ? static_cast<void> (0) : __assert_fail ("(NextValidReloc == 0 || BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) && \"BaseOffset should only be increasing.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1276, __PRETTY_FUNCTION__))
1276 "BaseOffset should only be increasing.")(((NextValidReloc == 0 || BaseOffset > ValidRelocs[NextValidReloc
- 1].Offset) && "BaseOffset should only be increasing."
) ? static_cast<void> (0) : __assert_fail ("(NextValidReloc == 0 || BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) && \"BaseOffset should only be increasing.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1276, __PRETTY_FUNCTION__))
;
1277 if (NextValidReloc >= ValidRelocs.size())
1278 return false;
1279
1280 // Skip relocs that haven't been applied.
1281 while (NextValidReloc < ValidRelocs.size() &&
1282 ValidRelocs[NextValidReloc].Offset < BaseOffset)
1283 ++NextValidReloc;
1284
1285 bool Applied = false;
1286 uint64_t EndOffset = BaseOffset + Data.size();
1287 while (NextValidReloc < ValidRelocs.size() &&
1288 ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
1289 ValidRelocs[NextValidReloc].Offset < EndOffset) {
1290 const auto &ValidReloc = ValidRelocs[NextValidReloc++];
1291 assert(ValidReloc.Offset - BaseOffset < Data.size())((ValidReloc.Offset - BaseOffset < Data.size()) ? static_cast
<void> (0) : __assert_fail ("ValidReloc.Offset - BaseOffset < Data.size()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1291, __PRETTY_FUNCTION__))
;
1292 assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size())((ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data
.size()) ? static_cast<void> (0) : __assert_fail ("ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1292, __PRETTY_FUNCTION__))
;
1293 char Buf[8];
1294 uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
1295 Value += ValidReloc.Addend;
1296 for (unsigned i = 0; i != ValidReloc.Size; ++i) {
1297 unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1);
1298 Buf[i] = uint8_t(Value >> (Index * 8));
1299 }
1300 assert(ValidReloc.Size <= sizeof(Buf))((ValidReloc.Size <= sizeof(Buf)) ? static_cast<void>
(0) : __assert_fail ("ValidReloc.Size <= sizeof(Buf)", "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1300, __PRETTY_FUNCTION__))
;
1301 memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
1302 Applied = true;
1303 }
1304
1305 return Applied;
1306}
1307
1308static bool isObjCSelector(StringRef Name) {
1309 return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
1310 (Name[1] == '[');
1311}
1312
1313void DwarfLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
1314 const DIE *Die,
1315 DwarfStringPoolEntryRef Name,
1316 OffsetsStringPool &StringPool,
1317 bool SkipPubSection) {
1318 assert(isObjCSelector(Name.getString()) && "not an objc selector")((isObjCSelector(Name.getString()) && "not an objc selector"
) ? static_cast<void> (0) : __assert_fail ("isObjCSelector(Name.getString()) && \"not an objc selector\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1318, __PRETTY_FUNCTION__))
;
1319 // Objective C method or class function.
1320 // "- [Class(Category) selector :withArg ...]"
1321 StringRef ClassNameStart(Name.getString().drop_front(2));
1322 size_t FirstSpace = ClassNameStart.find(' ');
1323 if (FirstSpace == StringRef::npos)
1324 return;
1325
1326 StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
1327 if (!SelectorStart.size())
1328 return;
1329
1330 StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
1331 Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
1332
1333 // Add an entry for the class name that points to this
1334 // method/class function.
1335 StringRef ClassName(ClassNameStart.data(), FirstSpace);
1336 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
1337
1338 if (ClassName[ClassName.size() - 1] == ')') {
1339 size_t OpenParens = ClassName.find('(');
1340 if (OpenParens != StringRef::npos) {
1341 StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
1342 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
1343 SkipPubSection);
1344
1345 std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
1346 // FIXME: The missing space here may be a bug, but
1347 // dsymutil-classic also does it this way.
1348 MethodNameNoCategory.append(SelectorStart);
1349 Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
1350 SkipPubSection);
1351 }
1352 }
1353}
1354
1355static bool
1356shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1357 uint16_t Tag, bool InDebugMap, bool SkipPC,
1358 bool InFunctionScope) {
1359 switch (AttrSpec.Attr) {
1360 default:
1361 return false;
1362 case dwarf::DW_AT_low_pc:
1363 case dwarf::DW_AT_high_pc:
1364 case dwarf::DW_AT_ranges:
1365 return SkipPC;
1366 case dwarf::DW_AT_location:
1367 case dwarf::DW_AT_frame_base:
1368 // FIXME: for some reason dsymutil-classic keeps the location attributes
1369 // when they are of block type (i.e. not location lists). This is totally
1370 // wrong for globals where we will keep a wrong address. It is mostly
1371 // harmless for locals, but there is no point in keeping these anyway when
1372 // the function wasn't linked.
1373 return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
1374 !InDebugMap)) &&
1375 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
1376 }
1377}
1378
1379DIE *DwarfLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
1380 const DebugMapObject &DMO,
1381 CompileUnit &Unit,
1382 OffsetsStringPool &StringPool,
1383 int64_t PCOffset, uint32_t OutOffset,
1384 unsigned Flags, DIE *Die) {
1385 DWARFUnit &U = Unit.getOrigUnit();
1386 unsigned Idx = U.getDIEIndex(InputDIE);
1387 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1388
1389 // Should the DIE appear in the output?
1390 if (!Unit.getInfo(Idx).Keep)
1391 return nullptr;
1392
1393 uint32_t Offset = InputDIE.getOffset();
1394 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE")((!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE"
) ? static_cast<void> (0) : __assert_fail ("!(Die && Info.Clone) && \"Can't supply a DIE and a cloned DIE\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1394, __PRETTY_FUNCTION__))
;
1395 if (!Die) {
1396 // The DIE might have been already created by a forward reference
1397 // (see cloneDieReferenceAttribute()).
1398 if (!Info.Clone)
1399 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1400 Die = Info.Clone;
1401 }
1402
1403 assert(Die->getTag() == InputDIE.getTag())((Die->getTag() == InputDIE.getTag()) ? static_cast<void
> (0) : __assert_fail ("Die->getTag() == InputDIE.getTag()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1403, __PRETTY_FUNCTION__))
;
1404 Die->setOffset(OutOffset);
1405 if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
1406 Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
1407 Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
1408 !Info.Ctxt->getCanonicalDIEOffset()) {
1409 // We are about to emit a DIE that is the root of its own valid
1410 // DeclContext tree. Make the current offset the canonical offset
1411 // for this context.
1412 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1413 }
1414
1415 // Extract and clone every attribute.
1416 DWARFDataExtractor Data = U.getDebugInfoExtractor();
1417 // Point to the next DIE (generally there is always at least a NULL
1418 // entry after the current one). If this is a lone
1419 // DW_TAG_compile_unit without any children, point to the next unit.
1420 uint32_t NextOffset = (Idx + 1 < U.getNumDIEs())
1421 ? U.getDIEAtIndex(Idx + 1).getOffset()
1422 : U.getNextUnitOffset();
1423 AttributesInfo AttrInfo;
1424
1425 // We could copy the data only if we need to apply a relocation to it. After
1426 // testing, it seems there is no performance downside to doing the copy
1427 // unconditionally, and it makes the code simpler.
1428 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1429 Data =
1430 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1431 // Modify the copy with relocated addresses.
1432 if (RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
1433 // If we applied relocations, we store the value of high_pc that was
1434 // potentially stored in the input DIE. If high_pc is an address
1435 // (Dwarf version == 2), then it might have been relocated to a
1436 // totally unrelated value (because the end address in the object
1437 // file might be start address of another function which got moved
1438 // independently by the linker). The computation of the actual
1439 // high_pc value is done in cloneAddressAttribute().
1440 AttrInfo.OrigHighPc =
1441 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
1442 // Also store the low_pc. It might get relocated in an
1443 // inline_subprogram that happens at the beginning of its
1444 // inlining function.
1445 AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
1446 std::numeric_limits<uint64_t>::max());
1447 }
1448
1449 // Reset the Offset to 0 as we will be working on the local copy of
1450 // the data.
1451 Offset = 0;
1452
1453 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1454 Offset += getULEB128Size(Abbrev->getCode());
1455
1456 // We are entering a subprogram. Get and propagate the PCOffset.
1457 if (Die->getTag() == dwarf::DW_TAG_subprogram)
1458 PCOffset = Info.AddrAdjust;
1459 AttrInfo.PCOffset = PCOffset;
1460
1461 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1462 Flags |= TF_InFunctionScope;
1463 if (!Info.InDebugMap && LLVM_LIKELY(!Options.Update)__builtin_expect((bool)(!Options.Update), true))
1464 Flags |= TF_SkipPC;
1465 }
1466
1467 bool Copied = false;
1468 for (const auto &AttrSpec : Abbrev->attributes()) {
1469 if (LLVM_LIKELY(!Options.Update)__builtin_expect((bool)(!Options.Update), true) &&
1470 shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
1471 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
1472 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1473 U.getFormParams());
1474 // FIXME: dsymutil-classic keeps the old abbreviation around
1475 // even if it's not used. We can remove this (and the copyAbbrev
1476 // helper) as soon as bit-for-bit compatibility is not a goal anymore.
1477 if (!Copied) {
1478 copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
1479 Copied = true;
1480 }
1481 continue;
1482 }
1483
1484 DWARFFormValue Val(AttrSpec.Form);
1485 uint32_t AttrSize = Offset;
1486 Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1487 AttrSize = Offset - AttrSize;
1488
1489 OutOffset += cloneAttribute(*Die, InputDIE, DMO, Unit, StringPool, Val,
1490 AttrSpec, AttrSize, AttrInfo);
1491 }
1492
1493 // Look for accelerator entries.
1494 uint16_t Tag = InputDIE.getTag();
1495 // FIXME: This is slightly wrong. An inline_subroutine without a
1496 // low_pc, but with AT_ranges might be interesting to get into the
1497 // accelerator tables too. For now stick with dsymutil's behavior.
1498 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1499 Tag != dwarf::DW_TAG_compile_unit &&
1500 getDIENames(InputDIE, AttrInfo, StringPool,
1501 Tag != dwarf::DW_TAG_inlined_subroutine)) {
1502 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1503 Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1504 Tag == dwarf::DW_TAG_inlined_subroutine);
1505 if (AttrInfo.Name) {
1506 if (AttrInfo.NameWithoutTemplate)
1507 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1508 /* SkipPubSection */ true);
1509 Unit.addNameAccelerator(Die, AttrInfo.Name,
1510 Tag == dwarf::DW_TAG_inlined_subroutine);
1511 }
1512 if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
1513 addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
1514 /* SkipPubSection =*/true);
1515
1516 } else if (Tag == dwarf::DW_TAG_namespace) {
1517 if (!AttrInfo.Name)
1518 AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
1519 Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1520 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1521 getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
1522 AttrInfo.Name.getString()[0]) {
1523 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, DMO);
1524 uint64_t RuntimeLang =
1525 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1526 .getValueOr(0);
1527 bool ObjCClassIsImplementation =
1528 (RuntimeLang == dwarf::DW_LANG_ObjC ||
1529 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1530 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1531 .getValueOr(0);
1532 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1533 Hash);
1534 }
1535
1536 // Determine whether there are any children that we want to keep.
1537 bool HasChildren = false;
1538 for (auto Child : InputDIE.children()) {
1539 unsigned Idx = U.getDIEIndex(Child);
1540 if (Unit.getInfo(Idx).Keep) {
1541 HasChildren = true;
1542 break;
1543 }
1544 }
1545
1546 DIEAbbrev NewAbbrev = Die->generateAbbrev();
1547 if (HasChildren)
1548 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1549 // Assign a permanent abbrev number
1550 Linker.AssignAbbrev(NewAbbrev);
1551 Die->setAbbrevNumber(NewAbbrev.getNumber());
1552
1553 // Add the size of the abbreviation number to the output offset.
1554 OutOffset += getULEB128Size(Die->getAbbrevNumber());
1555
1556 if (!HasChildren) {
1557 // Update our size.
1558 Die->setSize(OutOffset - Die->getOffset());
1559 return Die;
1560 }
1561
1562 // Recursively clone children.
1563 for (auto Child : InputDIE.children()) {
1564 if (DIE *Clone = cloneDIE(Child, DMO, Unit, StringPool, PCOffset, OutOffset,
1565 Flags)) {
1566 Die->addChild(Clone);
1567 OutOffset = Clone->getOffset() + Clone->getSize();
1568 }
1569 }
1570
1571 // Account for the end of children marker.
1572 OutOffset += sizeof(int8_t);
1573 // Update our size.
1574 Die->setSize(OutOffset - Die->getOffset());
1575 return Die;
1576}
1577
1578/// Patch the input object file relevant debug_ranges entries
1579/// and emit them in the output file. Update the relevant attributes
1580/// to point at the new entries.
1581void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit,
1582 DWARFContext &OrigDwarf,
1583 const DebugMapObject &DMO) const {
1584 DWARFDebugRangeList RangeList;
1585 const auto &FunctionRanges = Unit.getFunctionRanges();
1586 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
1587 DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
1588 OrigDwarf.getDWARFObj().getRangeSection(),
1589 OrigDwarf.isLittleEndian(), AddressSize);
1590 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1591 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1592 auto OrigUnitDie = OrigUnit.getUnitDIE(false);
1593 uint64_t OrigLowPc =
1594 dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
1595 // Ranges addresses are based on the unit's low_pc. Compute the
1596 // offset we need to apply to adapt to the new unit's low_pc.
1597 int64_t UnitPcOffset = 0;
1598 if (OrigLowPc != -1ULL)
1599 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
1600
1601 for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
1602 uint32_t Offset = RangeAttribute.get();
1603 RangeAttribute.set(Streamer->getRangesSectionSize());
1604 if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
1605 llvm::consumeError(std::move(E));
1606 reportWarning("invalid range list ignored.", DMO);
1607 RangeList.clear();
1608 }
1609 const auto &Entries = RangeList.getEntries();
1610 if (!Entries.empty()) {
1611 const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
1612
1613 if (CurrRange == InvalidRange ||
1614 First.StartAddress + OrigLowPc < CurrRange.start() ||
1615 First.StartAddress + OrigLowPc >= CurrRange.stop()) {
1616 CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
1617 if (CurrRange == InvalidRange ||
1618 CurrRange.start() > First.StartAddress + OrigLowPc) {
1619 reportWarning("no mapping for range.", DMO);
1620 continue;
1621 }
1622 }
1623 }
1624
1625 Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
1626 AddressSize);
1627 }
1628}
1629
1630/// Generate the debug_aranges entries for \p Unit and if the
1631/// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1632/// contribution for this attribute.
1633/// FIXME: this could actually be done right in patchRangesForUnit,
1634/// but for the sake of initial bit-for-bit compatibility with legacy
1635/// dsymutil, we have to do it in a delayed pass.
1636void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const {
1637 auto Attr = Unit.getUnitRangesAttribute();
1638 if (Attr)
1639 Attr->set(Streamer->getRangesSectionSize());
1640 Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
1641}
1642
1643/// Insert the new line info sequence \p Seq into the current
1644/// set of already linked line info \p Rows.
1645static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
1646 std::vector<DWARFDebugLine::Row> &Rows) {
1647 if (Seq.empty())
1648 return;
1649
1650 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
1651 Rows.insert(Rows.end(), Seq.begin(), Seq.end());
1652 Seq.clear();
1653 return;
1654 }
1655
1656 auto InsertPoint = std::lower_bound(
1657 Rows.begin(), Rows.end(), Seq.front(),
1658 [](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) {
1659 return LHS.Address < RHS.Address;
1660 });
1661
1662 // FIXME: this only removes the unneeded end_sequence if the
1663 // sequences have been inserted in order. Using a global sort like
1664 // described in patchLineTableForUnit() and delaying the end_sequene
1665 // elimination to emitLineTableForUnit() we can get rid of all of them.
1666 if (InsertPoint != Rows.end() &&
1667 InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) {
1668 *InsertPoint = Seq.front();
1669 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
1670 } else {
1671 Rows.insert(InsertPoint, Seq.begin(), Seq.end());
1672 }
1673
1674 Seq.clear();
1675}
1676
1677static void patchStmtList(DIE &Die, DIEInteger Offset) {
1678 for (auto &V : Die.values())
1679 if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
1680 V = DIEValue(V.getAttribute(), V.getForm(), Offset);
1681 return;
1682 }
1683
1684 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!")::llvm::llvm_unreachable_internal("Didn't find DW_AT_stmt_list in cloned DIE!"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1684)
;
1685}
1686
1687/// Extract the line table for \p Unit from \p OrigDwarf, and
1688/// recreate a relocated version of these for the address ranges that
1689/// are present in the binary.
1690void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit,
1691 DWARFContext &OrigDwarf,
1692 RangesTy &Ranges,
1693 const DebugMapObject &DMO) {
1694 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
1695 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1696 if (!StmtList)
1697 return;
1698
1699 // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1700 if (auto *OutputDIE = Unit.getOutputUnitDIE())
1701 patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));
1702
1703 // Parse the original line info for the unit.
1704 DWARFDebugLine::LineTable LineTable;
1705 uint32_t StmtOffset = *StmtList;
1706 DWARFDataExtractor LineExtractor(
1707 OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
1708 OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
1709
1710 Error Err = LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
1711 &Unit.getOrigUnit(), DWARFContext::dumpWarning);
1712 DWARFContext::dumpWarning(std::move(Err));
1713
1714 // This vector is the output line table.
1715 std::vector<DWARFDebugLine::Row> NewRows;
1716 NewRows.reserve(LineTable.Rows.size());
1717
1718 // Current sequence of rows being extracted, before being inserted
1719 // in NewRows.
1720 std::vector<DWARFDebugLine::Row> Seq;
1721 const auto &FunctionRanges = Unit.getFunctionRanges();
1722 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1723
1724 // FIXME: This logic is meant to generate exactly the same output as
1725 // Darwin's classic dsymutil. There is a nicer way to implement this
1726 // by simply putting all the relocated line info in NewRows and simply
1727 // sorting NewRows before passing it to emitLineTableForUnit. This
1728 // should be correct as sequences for a function should stay
1729 // together in the sorted output. There are a few corner cases that
1730 // look suspicious though, and that required to implement the logic
1731 // this way. Revisit that once initial validation is finished.
1732
1733 // Iterate over the object file line info and extract the sequences
1734 // that correspond to linked functions.
1735 for (auto &Row : LineTable.Rows) {
1736 // Check whether we stepped out of the range. The range is
1737 // half-open, but consider accept the end address of the range if
1738 // it is marked as end_sequence in the input (because in that
1739 // case, the relocation offset is accurate and that entry won't
1740 // serve as the start of another function).
1741 if (CurrRange == InvalidRange || Row.Address < CurrRange.start() ||
1742 Row.Address > CurrRange.stop() ||
1743 (Row.Address == CurrRange.stop() && !Row.EndSequence)) {
1744 // We just stepped out of a known range. Insert a end_sequence
1745 // corresponding to the end of the range.
1746 uint64_t StopAddress = CurrRange != InvalidRange
1747 ? CurrRange.stop() + CurrRange.value()
1748 : -1ULL;
1749 CurrRange = FunctionRanges.find(Row.Address);
1750 bool CurrRangeValid =
1751 CurrRange != InvalidRange && CurrRange.start() <= Row.Address;
1752 if (!CurrRangeValid) {
1753 CurrRange = InvalidRange;
1754 if (StopAddress != -1ULL) {
1755 // Try harder by looking in the DebugMapObject function
1756 // ranges map. There are corner cases where this finds a
1757 // valid entry. It's unclear if this is right or wrong, but
1758 // for now do as dsymutil.
1759 // FIXME: Understand exactly what cases this addresses and
1760 // potentially remove it along with the Ranges map.
1761 auto Range = Ranges.lower_bound(Row.Address);
1762 if (Range != Ranges.begin() && Range != Ranges.end())
1763 --Range;
1764
1765 if (Range != Ranges.end() && Range->first <= Row.Address &&
1766 Range->second.HighPC >= Row.Address) {
1767 StopAddress = Row.Address + Range->second.Offset;
1768 }
1769 }
1770 }
1771 if (StopAddress != -1ULL && !Seq.empty()) {
1772 // Insert end sequence row with the computed end address, but
1773 // the same line as the previous one.
1774 auto NextLine = Seq.back();
1775 NextLine.Address = StopAddress;
1776 NextLine.EndSequence = 1;
1777 NextLine.PrologueEnd = 0;
1778 NextLine.BasicBlock = 0;
1779 NextLine.EpilogueBegin = 0;
1780 Seq.push_back(NextLine);
1781 insertLineSequence(Seq, NewRows);
1782 }
1783
1784 if (!CurrRangeValid)
1785 continue;
1786 }
1787
1788 // Ignore empty sequences.
1789 if (Row.EndSequence && Seq.empty())
1790 continue;
1791
1792 // Relocate row address and add it to the current sequence.
1793 Row.Address += CurrRange.value();
1794 Seq.emplace_back(Row);
1795
1796 if (Row.EndSequence)
1797 insertLineSequence(Seq, NewRows);
1798 }
1799
1800 // Finished extracting, now emit the line tables.
1801 // FIXME: LLVM hard-codes its prologue values. We just copy the
1802 // prologue over and that works because we act as both producer and
1803 // consumer. It would be nicer to have a real configurable line
1804 // table emitter.
1805 if (LineTable.Prologue.getVersion() < 2 ||
1806 LineTable.Prologue.getVersion() > 5 ||
1807 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT1 ||
1808 LineTable.Prologue.OpcodeBase > 13)
1809 reportWarning("line table parameters mismatch. Cannot emit.", DMO);
1810 else {
1811 uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
1812 // DWARF v5 has an extra 2 bytes of information before the header_length
1813 // field.
1814 if (LineTable.Prologue.getVersion() == 5)
1815 PrologueEnd += 2;
1816 StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
1817 MCDwarfLineTableParams Params;
1818 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
1819 Params.DWARF2LineBase = LineTable.Prologue.LineBase;
1820 Params.DWARF2LineRange = LineTable.Prologue.LineRange;
1821 Streamer->emitLineTableForUnit(Params,
1822 LineData.slice(*StmtList + 4, PrologueEnd),
1823 LineTable.Prologue.MinInstLength, NewRows,
1824 Unit.getOrigUnit().getAddressByteSize());
1825 }
1826}
1827
1828void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
1829 switch (Options.TheAccelTableKind) {
1830 case AccelTableKind::Apple:
1831 emitAppleAcceleratorEntriesForUnit(Unit);
1832 break;
1833 case AccelTableKind::Dwarf:
1834 emitDwarfAcceleratorEntriesForUnit(Unit);
1835 break;
1836 case AccelTableKind::Default:
1837 llvm_unreachable("The default must be updated to a concrete value.")::llvm::llvm_unreachable_internal("The default must be updated to a concrete value."
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 1837)
;
1838 break;
1839 }
1840}
1841
1842void DwarfLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) {
1843 // Add namespaces.
1844 for (const auto &Namespace : Unit.getNamespaces())
1845 AppleNamespaces.addName(Namespace.Name,
1846 Namespace.Die->getOffset() + Unit.getStartOffset());
1847
1848 /// Add names.
1849 if (!Options.Minimize)
1850 Streamer->emitPubNamesForUnit(Unit);
1851 for (const auto &Pubname : Unit.getPubnames())
1852 AppleNames.addName(Pubname.Name,
1853 Pubname.Die->getOffset() + Unit.getStartOffset());
1854
1855 /// Add types.
1856 if (!Options.Minimize)
1857 Streamer->emitPubTypesForUnit(Unit);
1858 for (const auto &Pubtype : Unit.getPubtypes())
1859 AppleTypes.addName(
1860 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
1861 Pubtype.Die->getTag(),
1862 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
1863 : 0,
1864 Pubtype.QualifiedNameHash);
1865
1866 /// Add ObjC names.
1867 for (const auto &ObjC : Unit.getObjC())
1868 AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
1869}
1870
1871void DwarfLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) {
1872 for (const auto &Namespace : Unit.getNamespaces())
1873 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
1874 Namespace.Die->getTag(), Unit.getUniqueID());
1875 for (const auto &Pubname : Unit.getPubnames())
1876 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
1877 Pubname.Die->getTag(), Unit.getUniqueID());
1878 for (const auto &Pubtype : Unit.getPubtypes())
1879 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
1880 Pubtype.Die->getTag(), Unit.getUniqueID());
1881}
1882
1883/// Read the frame info stored in the object, and emit the
1884/// patched frame descriptions for the linked binary.
1885///
1886/// This is actually pretty easy as the data of the CIEs and FDEs can
1887/// be considered as black boxes and moved as is. The only thing to do
1888/// is to patch the addresses in the headers.
1889void DwarfLinker::patchFrameInfoForObject(const DebugMapObject &DMO,
1890 RangesTy &Ranges,
1891 DWARFContext &OrigDwarf,
1892 unsigned AddrSize) {
1893 StringRef FrameData = OrigDwarf.getDWARFObj().getDebugFrameSection();
1894 if (FrameData.empty())
1895 return;
1896
1897 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
1898 uint32_t InputOffset = 0;
1899
1900 // Store the data of the CIEs defined in this object, keyed by their
1901 // offsets.
1902 DenseMap<uint32_t, StringRef> LocalCIES;
1903
1904 while (Data.isValidOffset(InputOffset)) {
1905 uint32_t EntryOffset = InputOffset;
1906 uint32_t InitialLength = Data.getU32(&InputOffset);
1907 if (InitialLength == 0xFFFFFFFF)
1908 return reportWarning("Dwarf64 bits no supported", DMO);
1909
1910 uint32_t CIEId = Data.getU32(&InputOffset);
1911 if (CIEId == 0xFFFFFFFF) {
1912 // This is a CIE, store it.
1913 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
1914 LocalCIES[EntryOffset] = CIEData;
1915 // The -4 is to account for the CIEId we just read.
1916 InputOffset += InitialLength - 4;
1917 continue;
1918 }
1919
1920 uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
1921
1922 // Some compilers seem to emit frame info that doesn't start at
1923 // the function entry point, thus we can't just lookup the address
1924 // in the debug map. Use the linker's range map to see if the FDE
1925 // describes something that we can relocate.
1926 auto Range = Ranges.upper_bound(Loc);
1927 if (Range != Ranges.begin())
1928 --Range;
1929 if (Range == Ranges.end() || Range->first > Loc ||
1930 Range->second.HighPC <= Loc) {
1931 // The +4 is to account for the size of the InitialLength field itself.
1932 InputOffset = EntryOffset + InitialLength + 4;
1933 continue;
1934 }
1935
1936 // This is an FDE, and we have a mapping.
1937 // Have we already emitted a corresponding CIE?
1938 StringRef CIEData = LocalCIES[CIEId];
1939 if (CIEData.empty())
1940 return reportWarning("Inconsistent debug_frame content. Dropping.", DMO);
1941
1942 // Look if we already emitted a CIE that corresponds to the
1943 // referenced one (the CIE data is the key of that lookup).
1944 auto IteratorInserted = EmittedCIEs.insert(
1945 std::make_pair(CIEData, Streamer->getFrameSectionSize()));
1946 // If there is no CIE yet for this ID, emit it.
1947 if (IteratorInserted.second ||
1948 // FIXME: dsymutil-classic only caches the last used CIE for
1949 // reuse. Mimic that behavior for now. Just removing that
1950 // second half of the condition and the LastCIEOffset variable
1951 // makes the code DTRT.
1952 LastCIEOffset != IteratorInserted.first->getValue()) {
1953 LastCIEOffset = Streamer->getFrameSectionSize();
1954 IteratorInserted.first->getValue() = LastCIEOffset;
1955 Streamer->emitCIE(CIEData);
1956 }
1957
1958 // Emit the FDE with updated address and CIE pointer.
1959 // (4 + AddrSize) is the size of the CIEId + initial_location
1960 // fields that will get reconstructed by emitFDE().
1961 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
1962 Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
1963 Loc + Range->second.Offset,
1964 FrameData.substr(InputOffset, FDERemainingBytes));
1965 InputOffset += FDERemainingBytes;
1966 }
1967}
1968
1969void DwarfLinker::DIECloner::copyAbbrev(
1970 const DWARFAbbreviationDeclaration &Abbrev, bool hasODR) {
1971 DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
1972 dwarf::Form(Abbrev.hasChildren()));
1973
1974 for (const auto &Attr : Abbrev.attributes()) {
1975 uint16_t Form = Attr.Form;
1976 if (hasODR && isODRAttribute(Attr.Attr))
1977 Form = dwarf::DW_FORM_ref_addr;
1978 Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
1979 }
1980
1981 Linker.AssignAbbrev(Copy);
1982}
1983
1984uint32_t DwarfLinker::DIECloner::hashFullyQualifiedName(
1985 DWARFDie DIE, CompileUnit &U, const DebugMapObject &DMO, int RecurseDepth) {
1986 const char *Name = nullptr;
1987 DWARFUnit *OrigUnit = &U.getOrigUnit();
1988 CompileUnit *CU = &U;
1989 Optional<DWARFFormValue> Ref;
1990
1991 while (1) {
1992 if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
1993 Name = CurrentName;
1994
1995 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
1996 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
1997 break;
1998
1999 if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
2000 break;
2001
2002 CompileUnit *RefCU;
2003 if (auto RefDIE = resolveDIEReference(Linker, DMO, CompileUnits, *Ref,
2004 U.getOrigUnit(), DIE, RefCU)) {
2005 CU = RefCU;
2006 OrigUnit = &RefCU->getOrigUnit();
2007 DIE = RefDIE;
2008 }
2009 }
2010
2011 unsigned Idx = OrigUnit->getDIEIndex(DIE);
2012 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
2013 Name = "(anonymous namespace)";
2014
2015 if (CU->getInfo(Idx).ParentIdx == 0 ||
2016 // FIXME: dsymutil-classic compatibility. Ignore modules.
2017 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
2018 dwarf::DW_TAG_module)
2019 return djbHash(Name ? Name : "", djbHash(RecurseDepth ? "" : "::"));
2020
2021 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
2022 return djbHash(
2023 (Name ? Name : ""),
2024 djbHash((Name ? "::" : ""),
2025 hashFullyQualifiedName(Die, *CU, DMO, ++RecurseDepth)));
2026}
2027
2028static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
2029 auto DwoId = dwarf::toUnsigned(
2030 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
2031 if (DwoId)
2032 return *DwoId;
2033 return 0;
2034}
2035
2036bool DwarfLinker::registerModuleReference(
2037 const DWARFDie &CUDie, const DWARFUnit &Unit, DebugMap &ModuleMap,
2038 const DebugMapObject &DMO, RangesTy &Ranges, OffsetsStringPool &StringPool,
2039 UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
2040 uint64_t ModulesEndOffset, unsigned &UnitID, unsigned Indent, bool Quiet) {
2041 std::string PCMfile = dwarf::toString(
2042 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
2043 if (PCMfile.empty())
2044 return false;
2045
2046 // Clang module DWARF skeleton CUs abuse this for the path to the module.
2047 std::string PCMpath = dwarf::toString(CUDie.find(dwarf::DW_AT_comp_dir), "");
2048 uint64_t DwoId = getDwoId(CUDie, Unit);
2049
2050 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2051 if (Name.empty()) {
2052 if (!Quiet)
2053 reportWarning("Anonymous module skeleton CU for " + PCMfile, DMO);
2054 return true;
2055 }
2056
2057 if (!Quiet && Options.Verbose) {
2058 outs().indent(Indent);
2059 outs() << "Found clang module reference " << PCMfile;
2060 }
2061
2062 auto Cached = ClangModules.find(PCMfile);
2063 if (Cached != ClangModules.end()) {
2064 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2065 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2066 // ASTFileSignatures will change randomly when a module is rebuilt.
2067 if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2068 reportWarning(Twine("hash mismatch: this object file was built against a "
2069 "different version of the module ") +
2070 PCMfile,
2071 DMO);
2072 if (!Quiet && Options.Verbose)
2073 outs() << " [cached].\n";
2074 return true;
2075 }
2076 if (!Quiet && Options.Verbose)
2077 outs() << " ...\n";
2078
2079 // Cyclic dependencies are disallowed by Clang, but we still
2080 // shouldn't run into an infinite loop, so mark it as processed now.
2081 ClangModules.insert({PCMfile, DwoId});
2082 if (Error E =
2083 loadClangModule(PCMfile, PCMpath, Name, DwoId, ModuleMap, DMO, Ranges,
2084 StringPool, UniquingStringPool, ODRContexts,
2085 ModulesEndOffset, UnitID, Indent + 2, Quiet)) {
2086 consumeError(std::move(E));
2087 return false;
2088 }
2089 return true;
2090}
2091
2092ErrorOr<const object::ObjectFile &>
2093DwarfLinker::loadObject(const DebugMapObject &Obj, const DebugMap &Map) {
2094 auto ObjectEntry =
2095 BinHolder.getObjectEntry(Obj.getObjectFilename(), Obj.getTimestamp());
2096 if (!ObjectEntry) {
2097 auto Err = ObjectEntry.takeError();
2098 reportWarning(
2099 Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
2100 return errorToErrorCode(std::move(Err));
2101 }
2102
2103 auto Object = ObjectEntry->getObject(Map.getTriple());
2104 if (!Object) {
2105 auto Err = Object.takeError();
2106 reportWarning(
2107 Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
2108 return errorToErrorCode(std::move(Err));
2109 }
2110
2111 return *Object;
2112}
2113
2114Error DwarfLinker::loadClangModule(
2115 StringRef Filename, StringRef ModulePath, StringRef ModuleName,
2116 uint64_t DwoId, DebugMap &ModuleMap, const DebugMapObject &DMO,
2117 RangesTy &Ranges, OffsetsStringPool &StringPool,
2118 UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
2119 uint64_t ModulesEndOffset, unsigned &UnitID, unsigned Indent, bool Quiet) {
2120 SmallString<80> Path(Options.PrependPath);
2121 if (sys::path::is_relative(Filename))
2122 sys::path::append(Path, ModulePath, Filename);
2123 else
2124 sys::path::append(Path, Filename);
2125 // Don't use the cached binary holder because we have no thread-safety
2126 // guarantee and the lifetime is limited.
2127 auto &Obj = ModuleMap.addDebugMapObject(
2128 Path, sys::TimePoint<std::chrono::seconds>(), MachO::N_OSO);
2129 auto ErrOrObj = loadObject(Obj, ModuleMap);
2130 if (!ErrOrObj) {
2131 // Try and emit more helpful warnings by applying some heuristics.
2132 StringRef ObjFile = DMO.getObjectFilename();
2133 bool isClangModule = sys::path::extension(Filename).equals(".pcm");
2134 bool isArchive = ObjFile.endswith(")");
2135 if (isClangModule) {
2136 StringRef ModuleCacheDir = sys::path::parent_path(Path);
2137 if (sys::fs::exists(ModuleCacheDir)) {
2138 // If the module's parent directory exists, we assume that the module
2139 // cache has expired and was pruned by clang. A more adventurous
2140 // dsymutil would invoke clang to rebuild the module now.
2141 if (!ModuleCacheHintDisplayed) {
2142 WithColor::note() << "The clang module cache may have expired since "
2143 "this object file was built. Rebuilding the "
2144 "object file will rebuild the module cache.\n";
2145 ModuleCacheHintDisplayed = true;
2146 }
2147 } else if (isArchive) {
2148 // If the module cache directory doesn't exist at all and the object
2149 // file is inside a static library, we assume that the static library
2150 // was built on a different machine. We don't want to discourage module
2151 // debugging for convenience libraries within a project though.
2152 if (!ArchiveHintDisplayed) {
2153 WithColor::note()
2154 << "Linking a static library that was built with "
2155 "-gmodules, but the module cache was not found. "
2156 "Redistributable static libraries should never be "
2157 "built with module debugging enabled. The debug "
2158 "experience will be degraded due to incomplete "
2159 "debug information.\n";
2160 ArchiveHintDisplayed = true;
2161 }
2162 }
2163 }
2164 return Error::success();
2165 }
2166
2167 std::unique_ptr<CompileUnit> Unit;
2168
2169 // Setup access to the debug info.
2170 auto DwarfContext = DWARFContext::create(*ErrOrObj);
2171 RelocationManager RelocMgr(*this);
2172
2173 for (const auto &CU : DwarfContext->compile_units()) {
2174 updateDwarfVersion(CU->getVersion());
2175 // Recursively get all modules imported by this one.
2176 auto CUDie = CU->getUnitDIE(false);
2177 if (!CUDie)
2178 continue;
2179 if (!registerModuleReference(CUDie, *CU, ModuleMap, DMO, Ranges, StringPool,
2180 UniquingStringPool, ODRContexts,
2181 ModulesEndOffset, UnitID, Indent, Quiet)) {
2182 if (Unit) {
2183 std::string Err =
2184 (Filename +
2185 ": Clang modules are expected to have exactly 1 compile unit.\n")
2186 .str();
2187 error(Err);
2188 return make_error<StringError>(Err, inconvertibleErrorCode());
2189 }
2190 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2191 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2192 // ASTFileSignatures will change randomly when a module is rebuilt.
2193 uint64_t PCMDwoId = getDwoId(CUDie, *CU);
2194 if (PCMDwoId != DwoId) {
2195 if (!Quiet && Options.Verbose)
2196 reportWarning(
2197 Twine("hash mismatch: this object file was built against a "
2198 "different version of the module ") +
2199 Filename,
2200 DMO);
2201 // Update the cache entry with the DwoId of the module loaded from disk.
2202 ClangModules[Filename] = PCMDwoId;
2203 }
2204
2205 // Add this module.
2206 Unit = llvm::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
2207 ModuleName);
2208 Unit->setHasInterestingContent();
2209 analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(),
2210 UniquingStringPool, ODRContexts, ModulesEndOffset);
2211 // Keep everything.
2212 Unit->markEverythingAsKept();
2213 }
2214 }
2215 if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
2216 return Error::success();
2217 if (!Quiet && Options.Verbose) {
2218 outs().indent(Indent);
2219 outs() << "cloning .debug_info from " << Filename << "\n";
2220 }
2221
2222 UnitListTy CompileUnits;
2223 CompileUnits.push_back(std::move(Unit));
2224 DIECloner(*this, RelocMgr, DIEAlloc, CompileUnits, Options)
2225 .cloneAllCompileUnits(*DwarfContext, DMO, Ranges, StringPool);
2226 return Error::success();
2227}
2228
2229void DwarfLinker::DIECloner::cloneAllCompileUnits(
2230 DWARFContext &DwarfContext, const DebugMapObject &DMO, RangesTy &Ranges,
2231 OffsetsStringPool &StringPool) {
2232 if (!Linker.Streamer)
2233 return;
2234
2235 for (auto &CurrentUnit : CompileUnits) {
2236 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2237 CurrentUnit->setStartOffset(Linker.OutputDebugInfoSize);
2238 if (!InputDIE) {
2239 Linker.OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
2240 continue;
2241 }
2242 if (CurrentUnit->getInfo(0).Keep) {
2243 // Clone the InputDIE into your Unit DIE in our compile unit since it
2244 // already has a DIE inside of it.
2245 CurrentUnit->createOutputDIE();
2246 cloneDIE(InputDIE, DMO, *CurrentUnit, StringPool, 0 /* PC offset */,
2247 11 /* Unit Header size */, 0, CurrentUnit->getOutputUnitDIE());
2248 }
2249 Linker.OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
2250 if (Linker.Options.NoOutput)
2251 continue;
2252
2253 if (LLVM_LIKELY(!Linker.Options.Update)__builtin_expect((bool)(!Linker.Options.Update), true)) {
2254 // FIXME: for compatibility with the classic dsymutil, we emit an empty
2255 // line table for the unit, even if the unit doesn't actually exist in
2256 // the DIE tree.
2257 Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, Ranges, DMO);
2258 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2259 Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, DMO);
2260 Linker.Streamer->emitLocationsForUnit(*CurrentUnit, DwarfContext);
2261 } else {
2262 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2263 }
2264 }
2265
2266 if (Linker.Options.NoOutput)
2267 return;
2268
2269 // Emit all the compile unit's debug information.
2270 for (auto &CurrentUnit : CompileUnits) {
2271 if (LLVM_LIKELY(!Linker.Options.Update)__builtin_expect((bool)(!Linker.Options.Update), true))
2272 Linker.generateUnitRanges(*CurrentUnit);
2273 CurrentUnit->fixupForwardReferences();
2274 Linker.Streamer->emitCompileUnitHeader(*CurrentUnit);
2275 if (!CurrentUnit->getOutputUnitDIE())
2276 continue;
2277 Linker.Streamer->emitDIE(*CurrentUnit->getOutputUnitDIE());
2278 }
2279}
2280
2281void DwarfLinker::updateAccelKind(DWARFContext &Dwarf) {
2282 if (Options.TheAccelTableKind != AccelTableKind::Default)
2283 return;
2284
2285 auto &DwarfObj = Dwarf.getDWARFObj();
2286
2287 if (!AtLeastOneDwarfAccelTable &&
2288 (!DwarfObj.getAppleNamesSection().Data.empty() ||
2289 !DwarfObj.getAppleTypesSection().Data.empty() ||
2290 !DwarfObj.getAppleNamespacesSection().Data.empty() ||
2291 !DwarfObj.getAppleObjCSection().Data.empty())) {
2292 AtLeastOneAppleAccelTable = true;
2293 }
2294
2295 if (!AtLeastOneDwarfAccelTable &&
2296 !DwarfObj.getDebugNamesSection().Data.empty()) {
2297 AtLeastOneDwarfAccelTable = true;
2298 }
2299}
2300
2301bool DwarfLinker::emitPaperTrailWarnings(const DebugMapObject &DMO,
2302 const DebugMap &Map,
2303 OffsetsStringPool &StringPool) {
2304 if (DMO.getWarnings().empty() || !DMO.empty())
11
Assuming the condition is false
12
Taking false branch
2305 return false;
2306
2307 Streamer->switchToDebugInfoSection(/* Version */ 2);
2308 DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
2309 CUDie->setOffset(11);
2310 StringRef Producer = StringPool.internString("dsymutil");
2311 StringRef File = StringPool.internString(DMO.getObjectFilename());
2312 CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
13
Calling 'DIEValueList::addValue'
2313 DIEInteger(StringPool.getStringOffset(Producer)));
2314 DIEBlock *String = new (DIEAlloc) DIEBlock();
2315 DIEBlocks.push_back(String);
2316 for (auto &C : File)
2317 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2318 DIEInteger(C));
2319 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2320 DIEInteger(0));
2321
2322 CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
2323 for (const auto &Warning : DMO.getWarnings()) {
2324 DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
2325 ConstDie.addValue(
2326 DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
2327 DIEInteger(StringPool.getStringOffset("dsymutil_warning")));
2328 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
2329 DIEInteger(1));
2330 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
2331 DIEInteger(StringPool.getStringOffset(Warning)));
2332 }
2333 unsigned Size = 4 /* FORM_strp */ + File.size() + 1 +
2334 DMO.getWarnings().size() * (4 + 1 + 4) +
2335 1 /* End of children */;
2336 DIEAbbrev Abbrev = CUDie->generateAbbrev();
2337 AssignAbbrev(Abbrev);
2338 CUDie->setAbbrevNumber(Abbrev.getNumber());
2339 Size += getULEB128Size(Abbrev.getNumber());
2340 // Abbreviation ordering needed for classic compatibility.
2341 for (auto &Child : CUDie->children()) {
2342 Abbrev = Child.generateAbbrev();
2343 AssignAbbrev(Abbrev);
2344 Child.setAbbrevNumber(Abbrev.getNumber());
2345 Size += getULEB128Size(Abbrev.getNumber());
2346 }
2347 CUDie->setSize(Size);
2348 auto &Asm = Streamer->getAsmPrinter();
2349 Asm.emitInt32(11 + CUDie->getSize() - 4);
2350 Asm.emitInt16(2);
2351 Asm.emitInt32(0);
2352 Asm.emitInt8(Map.getTriple().isArch64Bit() ? 8 : 4);
2353 Streamer->emitDIE(*CUDie);
2354 OutputDebugInfoSize += 11 /* Header */ + Size;
2355
2356 return true;
2357}
2358
2359bool DwarfLinker::link(const DebugMap &Map) {
2360 if (!createStreamer(Map.getTriple(), OutFile))
2
Assuming the condition is false
3
Taking false branch
2361 return false;
2362
2363 // Size of the DIEs (and headers) generated for the linked output.
2364 OutputDebugInfoSize = 0;
2365 // A unique ID that identifies each compile unit.
2366 unsigned UnitID = 0;
2367 DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());
2368
2369 // First populate the data structure we need for each iteration of the
2370 // parallel loop.
2371 unsigned NumObjects = Map.getNumberOfObjects();
2372 std::vector<LinkContext> ObjectContexts;
2373 ObjectContexts.reserve(NumObjects);
2374 for (const auto &Obj : Map.objects()) {
2375 ObjectContexts.emplace_back(Map, *this, *Obj.get());
2376 LinkContext &LC = ObjectContexts.back();
2377 if (LC.ObjectFile)
2378 updateAccelKind(*LC.DwarfContext);
2379 }
2380
2381 // This Dwarf string pool which is only used for uniquing. This one should
2382 // never be used for offsets as its not thread-safe or predictable.
2383 UniquingStringPool UniquingStringPool;
2384
2385 // This Dwarf string pool which is used for emission. It must be used
2386 // serially as the order of calling getStringOffset matters for
2387 // reproducibility.
2388 OffsetsStringPool OffsetsStringPool;
2389
2390 // ODR Contexts for the link.
2391 DeclContextTree ODRContexts;
2392
2393 // If we haven't decided on an accelerator table kind yet, we base ourselves
2394 // on the DWARF we have seen so far. At this point we haven't pulled in debug
2395 // information from modules yet, so it is technically possible that they
2396 // would affect the decision. However, as they're built with the same
2397 // compiler and flags, it is safe to assume that they will follow the
2398 // decision made here.
2399 if (Options.TheAccelTableKind == AccelTableKind::Default) {
4
Assuming the condition is false
5
Taking false branch
2400 if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
2401 Options.TheAccelTableKind = AccelTableKind::Dwarf;
2402 else
2403 Options.TheAccelTableKind = AccelTableKind::Apple;
2404 }
2405
2406 for (LinkContext &LinkContext : ObjectContexts) {
2407 if (Options.Verbose)
6
Assuming the condition is false
7
Taking false branch
2408 outs() << "DEBUG MAP OBJECT: " << LinkContext.DMO.getObjectFilename()
2409 << "\n";
2410
2411 // N_AST objects (swiftmodule files) should get dumped directly into the
2412 // appropriate DWARF section.
2413 if (LinkContext.DMO.getType() == MachO::N_AST) {
8
Assuming the condition is false
9
Taking false branch
2414 StringRef File = LinkContext.DMO.getObjectFilename();
2415 auto ErrorOrMem = MemoryBuffer::getFile(File);
2416 if (!ErrorOrMem) {
2417 warn("Could not open '" + File + "'\n");
2418 continue;
2419 }
2420 sys::fs::file_status Stat;
2421 if (auto Err = sys::fs::status(File, Stat)) {
2422 warn(Err.message());
2423 continue;
2424 }
2425 if (!Options.NoTimestamp &&
2426 Stat.getLastModificationTime() !=
2427 sys::TimePoint<>(LinkContext.DMO.getTimestamp())) {
2428 // Not using the helper here as we can easily stream TimePoint<>.
2429 WithColor::warning()
2430 << "Timestamp mismatch for " << File << ": "
2431 << Stat.getLastModificationTime() << " and "
2432 << sys::TimePoint<>(LinkContext.DMO.getTimestamp()) << "\n";
2433 continue;
2434 }
2435
2436 // Copy the module into the .swift_ast section.
2437 if (!Options.NoOutput)
2438 Streamer->emitSwiftAST((*ErrorOrMem)->getBuffer());
2439 continue;
2440 }
2441
2442 if (emitPaperTrailWarnings(LinkContext.DMO, Map, OffsetsStringPool))
10
Calling 'DwarfLinker::emitPaperTrailWarnings'
2443 continue;
2444
2445 if (!LinkContext.ObjectFile)
2446 continue;
2447
2448 // Look for relocations that correspond to debug map entries.
2449
2450 if (LLVM_LIKELY(!Options.Update)__builtin_expect((bool)(!Options.Update), true) &&
2451 !LinkContext.RelocMgr.findValidRelocsInDebugInfo(
2452 *LinkContext.ObjectFile, LinkContext.DMO)) {
2453 if (Options.Verbose)
2454 outs() << "No valid relocations found. Skipping.\n";
2455
2456 // Clear this ObjFile entry as a signal to other loops that we should not
2457 // process this iteration.
2458 LinkContext.ObjectFile = nullptr;
2459 continue;
2460 }
2461
2462 // Setup access to the debug info.
2463 if (!LinkContext.DwarfContext)
2464 continue;
2465
2466 startDebugObject(LinkContext);
2467
2468 // In a first phase, just read in the debug info and load all clang modules.
2469 LinkContext.CompileUnits.reserve(
2470 LinkContext.DwarfContext->getNumCompileUnits());
2471
2472 for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
2473 updateDwarfVersion(CU->getVersion());
2474 auto CUDie = CU->getUnitDIE(false);
2475 if (Options.Verbose) {
2476 outs() << "Input compilation unit:";
2477 DIDumpOptions DumpOpts;
2478 DumpOpts.RecurseDepth = 0;
2479 DumpOpts.Verbose = Options.Verbose;
2480 CUDie.dump(outs(), 0, DumpOpts);
2481 }
2482 if (CUDie && !LLVM_UNLIKELY(Options.Update)__builtin_expect((bool)(Options.Update), false))
2483 registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
2484 LinkContext.Ranges, OffsetsStringPool,
2485 UniquingStringPool, ODRContexts, 0, UnitID);
2486 }
2487 }
2488
2489 // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
2490 if (MaxDwarfVersion == 0)
2491 MaxDwarfVersion = 3;
2492
2493 // At this point we know how much data we have emitted. We use this value to
2494 // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2495 // is already emitted, without being affected by canonical die offsets set
2496 // later. This prevents undeterminism when analyze and clone execute
2497 // concurrently, as clone set the canonical DIE offset and analyze reads it.
2498 const uint64_t ModulesEndOffset = OutputDebugInfoSize;
2499
2500 // These variables manage the list of processed object files.
2501 // The mutex and condition variable are to ensure that this is thread safe.
2502 std::mutex ProcessedFilesMutex;
2503 std::condition_variable ProcessedFilesConditionVariable;
2504 BitVector ProcessedFiles(NumObjects, false);
2505
2506 // Analyzing the context info is particularly expensive so it is executed in
2507 // parallel with emitting the previous compile unit.
2508 auto AnalyzeLambda = [&](size_t i) {
2509 auto &LinkContext = ObjectContexts[i];
2510
2511 if (!LinkContext.ObjectFile || !LinkContext.DwarfContext)
2512 return;
2513
2514 for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
2515 updateDwarfVersion(CU->getVersion());
2516 // The !registerModuleReference() condition effectively skips
2517 // over fully resolved skeleton units. This second pass of
2518 // registerModuleReferences doesn't do any new work, but it
2519 // will collect top-level errors, which are suppressed. Module
2520 // warnings were already displayed in the first iteration.
2521 bool Quiet = true;
2522 auto CUDie = CU->getUnitDIE(false);
2523 if (!CUDie || LLVM_UNLIKELY(Options.Update)__builtin_expect((bool)(Options.Update), false) ||
2524 !registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
2525 LinkContext.Ranges, OffsetsStringPool,
2526 UniquingStringPool, ODRContexts,
2527 ModulesEndOffset, UnitID, Quiet)) {
2528 LinkContext.CompileUnits.push_back(llvm::make_unique<CompileUnit>(
2529 *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
2530 }
2531 }
2532
2533 // Now build the DIE parent links that we will use during the next phase.
2534 for (auto &CurrentUnit : LinkContext.CompileUnits) {
2535 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2536 if (!CUDie)
2537 continue;
2538 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2539 *CurrentUnit, &ODRContexts.getRoot(),
2540 UniquingStringPool, ODRContexts, ModulesEndOffset);
2541 }
2542 };
2543
2544 // And then the remaining work in serial again.
2545 // Note, although this loop runs in serial, it can run in parallel with
2546 // the analyzeContextInfo loop so long as we process files with indices >=
2547 // than those processed by analyzeContextInfo.
2548 auto CloneLambda = [&](size_t i) {
2549 auto &LinkContext = ObjectContexts[i];
2550 if (!LinkContext.ObjectFile)
2551 return;
2552
2553 // Then mark all the DIEs that need to be present in the linked output
2554 // and collect some information about them.
2555 // Note that this loop can not be merged with the previous one because
2556 // cross-cu references require the ParentIdx to be setup for every CU in
2557 // the object file before calling this.
2558 if (LLVM_UNLIKELY(Options.Update)__builtin_expect((bool)(Options.Update), false)) {
2559 for (auto &CurrentUnit : LinkContext.CompileUnits)
2560 CurrentUnit->markEverythingAsKept();
2561 Streamer->copyInvariantDebugSection(*LinkContext.ObjectFile);
2562 } else {
2563 for (auto &CurrentUnit : LinkContext.CompileUnits)
2564 lookForDIEsToKeep(LinkContext.RelocMgr, LinkContext.Ranges,
2565 LinkContext.CompileUnits,
2566 CurrentUnit->getOrigUnit().getUnitDIE(),
2567 LinkContext.DMO, *CurrentUnit, 0);
2568 }
2569
2570 // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2571 // array again (in the same way findValidRelocsInDebugInfo() did). We
2572 // need to reset the NextValidReloc index to the beginning.
2573 LinkContext.RelocMgr.resetValidRelocs();
2574 if (LinkContext.RelocMgr.hasValidRelocs() || LLVM_UNLIKELY(Options.Update)__builtin_expect((bool)(Options.Update), false))
2575 DIECloner(*this, LinkContext.RelocMgr, DIEAlloc, LinkContext.CompileUnits,
2576 Options)
2577 .cloneAllCompileUnits(*LinkContext.DwarfContext, LinkContext.DMO,
2578 LinkContext.Ranges, OffsetsStringPool);
2579 if (!Options.NoOutput && !LinkContext.CompileUnits.empty() &&
2580 LLVM_LIKELY(!Options.Update)__builtin_expect((bool)(!Options.Update), true))
2581 patchFrameInfoForObject(
2582 LinkContext.DMO, LinkContext.Ranges, *LinkContext.DwarfContext,
2583 LinkContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
2584
2585 // Clean-up before starting working on the next object.
2586 endDebugObject(LinkContext);
2587 };
2588
2589 auto EmitLambda = [&]() {
2590 // Emit everything that's global.
2591 if (!Options.NoOutput) {
2592 Streamer->emitAbbrevs(Abbreviations, MaxDwarfVersion);
2593 Streamer->emitStrings(OffsetsStringPool);
2594 switch (Options.TheAccelTableKind) {
2595 case AccelTableKind::Apple:
2596 Streamer->emitAppleNames(AppleNames);
2597 Streamer->emitAppleNamespaces(AppleNamespaces);
2598 Streamer->emitAppleTypes(AppleTypes);
2599 Streamer->emitAppleObjc(AppleObjc);
2600 break;
2601 case AccelTableKind::Dwarf:
2602 Streamer->emitDebugNames(DebugNames);
2603 break;
2604 case AccelTableKind::Default:
2605 llvm_unreachable("Default should have already been resolved.")::llvm::llvm_unreachable_internal("Default should have already been resolved."
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/dsymutil/DwarfLinker.cpp"
, 2605)
;
2606 break;
2607 }
2608 }
2609 };
2610
2611 auto AnalyzeAll = [&]() {
2612 for (unsigned i = 0, e = NumObjects; i != e; ++i) {
2613 AnalyzeLambda(i);
2614
2615 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2616 ProcessedFiles.set(i);
2617 ProcessedFilesConditionVariable.notify_one();
2618 }
2619 };
2620
2621 auto CloneAll = [&]() {
2622 for (unsigned i = 0, e = NumObjects; i != e; ++i) {
2623 {
2624 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2625 if (!ProcessedFiles[i]) {
2626 ProcessedFilesConditionVariable.wait(
2627 LockGuard, [&]() { return ProcessedFiles[i]; });
2628 }
2629 }
2630
2631 CloneLambda(i);
2632 }
2633 EmitLambda();
2634 };
2635
2636 // To limit memory usage in the single threaded case, analyze and clone are
2637 // run sequentially so the LinkContext is freed after processing each object
2638 // in endDebugObject.
2639 if (Options.Threads == 1) {
2640 for (unsigned i = 0, e = NumObjects; i != e; ++i) {
2641 AnalyzeLambda(i);
2642 CloneLambda(i);
2643 }
2644 EmitLambda();
2645 } else {
2646 ThreadPool pool(2);
2647 pool.async(AnalyzeAll);
2648 pool.async(CloneAll);
2649 pool.wait();
2650 }
2651
2652 return Options.NoOutput ? true : Streamer->finish(Map);
2653} // namespace dsymutil
2654
2655bool linkDwarf(raw_fd_ostream &OutFile, BinaryHolder &BinHolder,
2656 const DebugMap &DM, const LinkOptions &Options) {
2657 DwarfLinker Linker(OutFile, BinHolder, Options);
2658 return Linker.link(DM);
1
Calling 'DwarfLinker::link'
2659}
2660
2661} // namespace dsymutil
2662} // namespace llvm

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/CodeGen/DIE.h

1//===- lib/CodeGen/DIE.h - DWARF Info Entries -------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Data structures for DWARF info entries.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DIE_H
15#define LLVM_LIB_CODEGEN_ASMPRINTER_DIE_H
16
17#include "llvm/ADT/FoldingSet.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/PointerUnion.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/BinaryFormat/Dwarf.h"
25#include "llvm/CodeGen/DwarfStringPoolEntry.h"
26#include "llvm/Support/AlignOf.h"
27#include "llvm/Support/Allocator.h"
28#include <cassert>
29#include <cstddef>
30#include <cstdint>
31#include <iterator>
32#include <new>
33#include <type_traits>
34#include <utility>
35#include <vector>
36
37namespace llvm {
38
39class AsmPrinter;
40class DIE;
41class DIEUnit;
42class MCExpr;
43class MCSection;
44class MCSymbol;
45class raw_ostream;
46
47//===--------------------------------------------------------------------===//
48/// Dwarf abbreviation data, describes one attribute of a Dwarf abbreviation.
49class DIEAbbrevData {
50 /// Dwarf attribute code.
51 dwarf::Attribute Attribute;
52
53 /// Dwarf form code.
54 dwarf::Form Form;
55
56 /// Dwarf attribute value for DW_FORM_implicit_const
57 int64_t Value = 0;
58
59public:
60 DIEAbbrevData(dwarf::Attribute A, dwarf::Form F)
61 : Attribute(A), Form(F) {}
62 DIEAbbrevData(dwarf::Attribute A, int64_t V)
63 : Attribute(A), Form(dwarf::DW_FORM_implicit_const), Value(V) {}
64
65 /// Accessors.
66 /// @{
67 dwarf::Attribute getAttribute() const { return Attribute; }
68 dwarf::Form getForm() const { return Form; }
69 int64_t getValue() const { return Value; }
70 /// @}
71
72 /// Used to gather unique data for the abbreviation folding set.
73 void Profile(FoldingSetNodeID &ID) const;
74};
75
76//===--------------------------------------------------------------------===//
77/// Dwarf abbreviation, describes the organization of a debug information
78/// object.
79class DIEAbbrev : public FoldingSetNode {
80 /// Unique number for node.
81 unsigned Number;
82
83 /// Dwarf tag code.
84 dwarf::Tag Tag;
85
86 /// Whether or not this node has children.
87 ///
88 /// This cheats a bit in all of the uses since the values in the standard
89 /// are 0 and 1 for no children and children respectively.
90 bool Children;
91
92 /// Raw data bytes for abbreviation.
93 SmallVector<DIEAbbrevData, 12> Data;
94
95public:
96 DIEAbbrev(dwarf::Tag T, bool C) : Tag(T), Children(C) {}
97
98 /// Accessors.
99 /// @{
100 dwarf::Tag getTag() const { return Tag; }
101 unsigned getNumber() const { return Number; }
102 bool hasChildren() const { return Children; }
103 const SmallVectorImpl<DIEAbbrevData> &getData() const { return Data; }
104 void setChildrenFlag(bool hasChild) { Children = hasChild; }
105 void setNumber(unsigned N) { Number = N; }
106 /// @}
107
108 /// Adds another set of attribute information to the abbreviation.
109 void AddAttribute(dwarf::Attribute Attribute, dwarf::Form Form) {
110 Data.push_back(DIEAbbrevData(Attribute, Form));
111 }
112
113 /// Adds attribute with DW_FORM_implicit_const value
114 void AddImplicitConstAttribute(dwarf::Attribute Attribute, int64_t Value) {
115 Data.push_back(DIEAbbrevData(Attribute, Value));
116 }
117
118 /// Used to gather unique data for the abbreviation folding set.
119 void Profile(FoldingSetNodeID &ID) const;
120
121 /// Print the abbreviation using the specified asm printer.
122 void Emit(const AsmPrinter *AP) const;
123
124 void print(raw_ostream &O) const;
125 void dump() const;
126};
127
128//===--------------------------------------------------------------------===//
129/// Helps unique DIEAbbrev objects and assigns abbreviation numbers.
130///
131/// This class will unique the DIE abbreviations for a llvm::DIE object and
132/// assign a unique abbreviation number to each unique DIEAbbrev object it
133/// finds. The resulting collection of DIEAbbrev objects can then be emitted
134/// into the .debug_abbrev section.
135class DIEAbbrevSet {
136 /// The bump allocator to use when creating DIEAbbrev objects in the uniqued
137 /// storage container.
138 BumpPtrAllocator &Alloc;
139 /// FoldingSet that uniques the abbreviations.
140 FoldingSet<DIEAbbrev> AbbreviationsSet;
141 /// A list of all the unique abbreviations in use.
142 std::vector<DIEAbbrev *> Abbreviations;
143
144public:
145 DIEAbbrevSet(BumpPtrAllocator &A) : Alloc(A) {}
146 ~DIEAbbrevSet();
147
148 /// Generate the abbreviation declaration for a DIE and return a pointer to
149 /// the generated abbreviation.
150 ///
151 /// \param Die the debug info entry to generate the abbreviation for.
152 /// \returns A reference to the uniqued abbreviation declaration that is
153 /// owned by this class.
154 DIEAbbrev &uniqueAbbreviation(DIE &Die);
155
156 /// Print all abbreviations using the specified asm printer.
157 void Emit(const AsmPrinter *AP, MCSection *Section) const;
158};
159
160//===--------------------------------------------------------------------===//
161/// An integer value DIE.
162///
163class DIEInteger {
164 uint64_t Integer;
165
166public:
167 explicit DIEInteger(uint64_t I) : Integer(I) {}
168
169 /// Choose the best form for integer.
170 static dwarf::Form BestForm(bool IsSigned, uint64_t Int) {
171 if (IsSigned) {
172 const int64_t SignedInt = Int;
173 if ((char)Int == SignedInt)
174 return dwarf::DW_FORM_data1;
175 if ((short)Int == SignedInt)
176 return dwarf::DW_FORM_data2;
177 if ((int)Int == SignedInt)
178 return dwarf::DW_FORM_data4;
179 } else {
180 if ((unsigned char)Int == Int)
181 return dwarf::DW_FORM_data1;
182 if ((unsigned short)Int == Int)
183 return dwarf::DW_FORM_data2;
184 if ((unsigned int)Int == Int)
185 return dwarf::DW_FORM_data4;
186 }
187 return dwarf::DW_FORM_data8;
188 }
189
190 uint64_t getValue() const { return Integer; }
191 void setValue(uint64_t Val) { Integer = Val; }
192
193 void EmitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
194 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
195
196 void print(raw_ostream &O) const;
197};
198
199//===--------------------------------------------------------------------===//
200/// An expression DIE.
201class DIEExpr {
202 const MCExpr *Expr;
203
204public:
205 explicit DIEExpr(const MCExpr *E) : Expr(E) {}
206
207 /// Get MCExpr.
208 const MCExpr *getValue() const { return Expr; }
209
210 void EmitValue(const AsmPrinter *AP, dwarf::Form Form) const;
211 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
212
213 void print(raw_ostream &O) const;
214};
215
216//===--------------------------------------------------------------------===//
217/// A label DIE.
218class DIELabel {
219 const MCSymbol *Label;
220
221public:
222 explicit DIELabel(const MCSymbol *L) : Label(L) {}
223
224 /// Get MCSymbol.
225 const MCSymbol *getValue() const { return Label; }
226
227 void EmitValue(const AsmPrinter *AP, dwarf::Form Form) const;
228 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
229
230 void print(raw_ostream &O) const;
231};
232
233//===--------------------------------------------------------------------===//
234/// A simple label difference DIE.
235///
236class DIEDelta {
237 const MCSymbol *LabelHi;
238 const MCSymbol *LabelLo;
239
240public:
241 DIEDelta(const MCSymbol *Hi, const MCSymbol *Lo) : LabelHi(Hi), LabelLo(Lo) {}
242
243 void EmitValue(const AsmPrinter *AP, dwarf::Form Form) const;
244 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
245
246 void print(raw_ostream &O) const;
247};
248
249//===--------------------------------------------------------------------===//
250/// A container for string pool string values.
251///
252/// This class is used with the DW_FORM_strp and DW_FORM_GNU_str_index forms.
253class DIEString {
254 DwarfStringPoolEntryRef S;
255
256public:
257 DIEString(DwarfStringPoolEntryRef S) : S(S) {}
258
259 /// Grab the string out of the object.
260 StringRef getString() const { return S.getString(); }
261
262 void EmitValue(const AsmPrinter *AP, dwarf::Form Form) const;
263 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
264
265 void print(raw_ostream &O) const;
266};
267
268//===--------------------------------------------------------------------===//
269/// A container for inline string values.
270///
271/// This class is used with the DW_FORM_string form.
272class DIEInlineString {
273 StringRef S;
274
275public:
276 template <typename Allocator>
277 explicit DIEInlineString(StringRef Str, Allocator &A) : S(Str.copy(A)) {}
278
279 ~DIEInlineString() = default;
280
281 /// Grab the string out of the object.
282 StringRef getString() const { return S; }
283
284 void EmitValue(const AsmPrinter *AP, dwarf::Form Form) const;
285 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
286
287 void print(raw_ostream &O) const;
288};
289
290//===--------------------------------------------------------------------===//
291/// A pointer to another debug information entry. An instance of this class can
292/// also be used as a proxy for a debug information entry not yet defined
293/// (ie. types.)
294class DIEEntry {
295 DIE *Entry;
296
297public:
298 DIEEntry() = delete;
299 explicit DIEEntry(DIE &E) : Entry(&E) {}
300
301 DIE &getEntry() const { return *Entry; }
302
303 void EmitValue(const AsmPrinter *AP, dwarf::Form Form) const;
304 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
305
306 void print(raw_ostream &O) const;
307};
308
309//===--------------------------------------------------------------------===//
310/// Represents a pointer to a location list in the debug_loc
311/// section.
312class DIELocList {
313 /// Index into the .debug_loc vector.
314 size_t Index;
315
316public:
317 DIELocList(size_t I) : Index(I) {}
318
319 /// Grab the current index out.
320 size_t getValue() const { return Index; }
321
322 void EmitValue(const AsmPrinter *AP, dwarf::Form Form) const;
323 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
324
325 void print(raw_ostream &O) const;
326};
327
328//===--------------------------------------------------------------------===//
329/// A debug information entry value. Some of these roughly correlate
330/// to DWARF attribute classes.
331class DIEBlock;
332class DIELoc;
333class DIEValue {
334public:
335 enum Type {
336 isNone,
337#define HANDLE_DIEVALUE(T) is##T,
338#include "llvm/CodeGen/DIEValue.def"
339 };
340
341private:
342 /// Type of data stored in the value.
343 Type Ty = isNone;
344 dwarf::Attribute Attribute = (dwarf::Attribute)0;
345 dwarf::Form Form = (dwarf::Form)0;
346
347 /// Storage for the value.
348 ///
349 /// All values that aren't standard layout (or are larger than 8 bytes)
350 /// should be stored by reference instead of by value.
351 using ValTy = AlignedCharArrayUnion<DIEInteger, DIEString, DIEExpr, DIELabel,
352 DIEDelta *, DIEEntry, DIEBlock *,
353 DIELoc *, DIELocList>;
354
355 static_assert(sizeof(ValTy) <= sizeof(uint64_t) ||
356 sizeof(ValTy) <= sizeof(void *),
357 "Expected all large types to be stored via pointer");
358
359 /// Underlying stored value.
360 ValTy Val;
361
362 template <class T> void construct(T V) {
363 static_assert(std::is_standard_layout<T>::value ||
364 std::is_pointer<T>::value,
365 "Expected standard layout or pointer");
366 new (reinterpret_cast<void *>(Val.buffer)) T(V);
367 }
368
369 template <class T> T *get() { return reinterpret_cast<T *>(Val.buffer); }
370 template <class T> const T *get() const {
371 return reinterpret_cast<const T *>(Val.buffer);
372 }
373 template <class T> void destruct() { get<T>()->~T(); }
374
375 /// Destroy the underlying value.
376 ///
377 /// This should get optimized down to a no-op. We could skip it if we could
378 /// add a static assert on \a std::is_trivially_copyable(), but we currently
379 /// support versions of GCC that don't understand that.
380 void destroyVal() {
381 switch (Ty) {
382 case isNone:
383 return;
384#define HANDLE_DIEVALUE_SMALL(T) \
385 case is##T: \
386 destruct<DIE##T>(); \
387 return;
388#define HANDLE_DIEVALUE_LARGE(T) \
389 case is##T: \
390 destruct<const DIE##T *>(); \
391 return;
392#include "llvm/CodeGen/DIEValue.def"
393 }
394 }
395
396 /// Copy the underlying value.
397 ///
398 /// This should get optimized down to a simple copy. We need to actually
399 /// construct the value, rather than calling memcpy, to satisfy strict
400 /// aliasing rules.
401 void copyVal(const DIEValue &X) {
402 switch (Ty) {
403 case isNone:
404 return;
405#define HANDLE_DIEVALUE_SMALL(T) \
406 case is##T: \
407 construct<DIE##T>(*X.get<DIE##T>()); \
408 return;
409#define HANDLE_DIEVALUE_LARGE(T) \
410 case is##T: \
411 construct<const DIE##T *>(*X.get<const DIE##T *>()); \
412 return;
413#include "llvm/CodeGen/DIEValue.def"
414 }
415 }
416
417public:
418 DIEValue() = default;
419
420 DIEValue(const DIEValue &X) : Ty(X.Ty), Attribute(X.Attribute), Form(X.Form) {
421 copyVal(X);
422 }
423
424 DIEValue &operator=(const DIEValue &X) {
425 destroyVal();
426 Ty = X.Ty;
427 Attribute = X.Attribute;
428 Form = X.Form;
429 copyVal(X);
430 return *this;
431 }
432
433 ~DIEValue() { destroyVal(); }
434
435#define HANDLE_DIEVALUE_SMALL(T) \
436 DIEValue(dwarf::Attribute Attribute, dwarf::Form Form, const DIE##T &V) \
437 : Ty(is##T), Attribute(Attribute), Form(Form) { \
438 construct<DIE##T>(V); \
439 }
440#define HANDLE_DIEVALUE_LARGE(T) \
441 DIEValue(dwarf::Attribute Attribute, dwarf::Form Form, const DIE##T *V) \
442 : Ty(is##T), Attribute(Attribute), Form(Form) { \
443 assert(V && "Expected valid value")((V && "Expected valid value") ? static_cast<void>
(0) : __assert_fail ("V && \"Expected valid value\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/CodeGen/DIE.h"
, 443, __PRETTY_FUNCTION__))
; \
444 construct<const DIE##T *>(V); \
445 }
446#include "llvm/CodeGen/DIEValue.def"
447
448 /// Accessors.
449 /// @{
450 Type getType() const { return Ty; }
451 dwarf::Attribute getAttribute() const { return Attribute; }
452 dwarf::Form getForm() const { return Form; }
453 explicit operator bool() const { return Ty; }
454 /// @}
455
456#define HANDLE_DIEVALUE_SMALL(T) \
457 const DIE##T &getDIE##T() const { \
458 assert(getType() == is##T && "Expected " #T)((getType() == is##T && "Expected " #T) ? static_cast
<void> (0) : __assert_fail ("getType() == is##T && \"Expected \" #T"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/CodeGen/DIE.h"
, 458, __PRETTY_FUNCTION__))
; \
459 return *get<DIE##T>(); \
460 }
461#define HANDLE_DIEVALUE_LARGE(T) \
462 const DIE##T &getDIE##T() const { \
463 assert(getType() == is##T && "Expected " #T)((getType() == is##T && "Expected " #T) ? static_cast
<void> (0) : __assert_fail ("getType() == is##T && \"Expected \" #T"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/CodeGen/DIE.h"
, 463, __PRETTY_FUNCTION__))
; \
464 return **get<const DIE##T *>(); \
465 }
466#include "llvm/CodeGen/DIEValue.def"
467
468 /// Emit value via the Dwarf writer.
469 void EmitValue(const AsmPrinter *AP) const;
470
471 /// Return the size of a value in bytes.
472 unsigned SizeOf(const AsmPrinter *AP) const;
473
474 void print(raw_ostream &O) const;
475 void dump() const;
476};
477
478struct IntrusiveBackListNode {
479 PointerIntPair<IntrusiveBackListNode *, 1> Next;
480
481 IntrusiveBackListNode() : Next(this, true) {}
482
483 IntrusiveBackListNode *getNext() const {
484 return Next.getInt() ? nullptr : Next.getPointer();
485 }
486};
487
488struct IntrusiveBackListBase {
489 using Node = IntrusiveBackListNode;
490
491 Node *Last = nullptr;
492
493 bool empty() const { return !Last; }
494
495 void push_back(Node &N) {
496 assert(N.Next.getPointer() == &N && "Expected unlinked node")((N.Next.getPointer() == &N && "Expected unlinked node"
) ? static_cast<void> (0) : __assert_fail ("N.Next.getPointer() == &N && \"Expected unlinked node\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/CodeGen/DIE.h"
, 496, __PRETTY_FUNCTION__))
;
497 assert(N.Next.getInt() == true && "Expected unlinked node")((N.Next.getInt() == true && "Expected unlinked node"
) ? static_cast<void> (0) : __assert_fail ("N.Next.getInt() == true && \"Expected unlinked node\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/CodeGen/DIE.h"
, 497, __PRETTY_FUNCTION__))
;
498
499 if (Last) {
500 N.Next = Last->Next;
501 Last->Next.setPointerAndInt(&N, false);
502 }
503 Last = &N;
504 }
505};
506
507template <class T> class IntrusiveBackList : IntrusiveBackListBase {
508public:
509 using IntrusiveBackListBase::empty;
510
511 void push_back(T &N) { IntrusiveBackListBase::push_back(N); }
512 T &back() { return *static_cast<T *>(Last); }
513 const T &back() const { return *static_cast<T *>(Last); }
514
515 class const_iterator;
516 class iterator
517 : public iterator_facade_base<iterator, std::forward_iterator_tag, T> {
518 friend class const_iterator;
519
520 Node *N = nullptr;
521
522 public:
523 iterator() = default;
524 explicit iterator(T *N) : N(N) {}
525
526 iterator &operator++() {
527 N = N->getNext();
528 return *this;
529 }
530
531 explicit operator bool() const { return N; }
532 T &operator*() const { return *static_cast<T *>(N); }
533
534 bool operator==(const iterator &X) const { return N == X.N; }
535 bool operator!=(const iterator &X) const { return N != X.N; }
536 };
537
538 class const_iterator
539 : public iterator_facade_base<const_iterator, std::forward_iterator_tag,
540 const T> {
541 const Node *N = nullptr;
542
543 public:
544 const_iterator() = default;
545 // Placate MSVC by explicitly scoping 'iterator'.
546 const_iterator(typename IntrusiveBackList<T>::iterator X) : N(X.N) {}
547 explicit const_iterator(const T *N) : N(N) {}
548
549 const_iterator &operator++() {
550 N = N->getNext();
551 return *this;
552 }
553
554 explicit operator bool() const { return N; }
555 const T &operator*() const { return *static_cast<const T *>(N); }
556
557 bool operator==(const const_iterator &X) const { return N == X.N; }
558 bool operator!=(const const_iterator &X) const { return N != X.N; }
559 };
560
561 iterator begin() {
562 return Last ? iterator(static_cast<T *>(Last->Next.getPointer())) : end();
563 }
564 const_iterator begin() const {
565 return const_cast<IntrusiveBackList *>(this)->begin();
566 }
567 iterator end() { return iterator(); }
568 const_iterator end() const { return const_iterator(); }
569
570 static iterator toIterator(T &N) { return iterator(&N); }
571 static const_iterator toIterator(const T &N) { return const_iterator(&N); }
572};
573
574/// A list of DIE values.
575///
576/// This is a singly-linked list, but instead of reversing the order of
577/// insertion, we keep a pointer to the back of the list so we can push in
578/// order.
579///
580/// There are two main reasons to choose a linked list over a customized
581/// vector-like data structure.
582///
583/// 1. For teardown efficiency, we want DIEs to be BumpPtrAllocated. Using a
584/// linked list here makes this way easier to accomplish.
585/// 2. Carrying an extra pointer per \a DIEValue isn't expensive. 45% of DIEs
586/// have 2 or fewer values, and 90% have 5 or fewer. A vector would be
587/// over-allocated by 50% on average anyway, the same cost as the
588/// linked-list node.
589class DIEValueList {
590 struct Node : IntrusiveBackListNode {
591 DIEValue V;
592
593 explicit Node(DIEValue V) : V(V) {}
594 };
595
596 using ListTy = IntrusiveBackList<Node>;
597
598 ListTy List;
599
600public:
601 class const_value_iterator;
602 class value_iterator
603 : public iterator_adaptor_base<value_iterator, ListTy::iterator,
604 std::forward_iterator_tag, DIEValue> {
605 friend class const_value_iterator;
606
607 using iterator_adaptor =
608 iterator_adaptor_base<value_iterator, ListTy::iterator,
609 std::forward_iterator_tag, DIEValue>;
610
611 public:
612 value_iterator() = default;
613 explicit value_iterator(ListTy::iterator X) : iterator_adaptor(X) {}
614
615 explicit operator bool() const { return bool(wrapped()); }
616 DIEValue &operator*() const { return wrapped()->V; }
617 };
618
619 class const_value_iterator : public iterator_adaptor_base<
620 const_value_iterator, ListTy::const_iterator,
621 std::forward_iterator_tag, const DIEValue> {
622 using iterator_adaptor =
623 iterator_adaptor_base<const_value_iterator, ListTy::const_iterator,
624 std::forward_iterator_tag, const DIEValue>;
625
626 public:
627 const_value_iterator() = default;
628 const_value_iterator(DIEValueList::value_iterator X)
629 : iterator_adaptor(X.wrapped()) {}
630 explicit const_value_iterator(ListTy::const_iterator X)
631 : iterator_adaptor(X) {}
632
633 explicit operator bool() const { return bool(wrapped()); }
634 const DIEValue &operator*() const { return wrapped()->V; }
635 };
636
637 using value_range = iterator_range<value_iterator>;
638 using const_value_range = iterator_range<const_value_iterator>;
639
640 value_iterator addValue(BumpPtrAllocator &Alloc, const DIEValue &V) {
641 List.push_back(*new (Alloc) Node(V));
15
Forming reference to null pointer
642 return value_iterator(ListTy::toIterator(List.back()));
643 }
644 template <class T>
645 value_iterator addValue(BumpPtrAllocator &Alloc, dwarf::Attribute Attribute,
646 dwarf::Form Form, T &&Value) {
647 return addValue(Alloc, DIEValue(Attribute, Form, std::forward<T>(Value)));
14
Calling 'DIEValueList::addValue'
648 }
649
650 value_range values() {
651 return make_range(value_iterator(List.begin()), value_iterator(List.end()));
652 }
653 const_value_range values() const {
654 return make_range(const_value_iterator(List.begin()),
655 const_value_iterator(List.end()));
656 }
657};
658
659//===--------------------------------------------------------------------===//
660/// A structured debug information entry. Has an abbreviation which
661/// describes its organization.
662class DIE : IntrusiveBackListNode, public DIEValueList {
663 friend class IntrusiveBackList<DIE>;
664 friend class DIEUnit;
665
666 /// Dwarf unit relative offset.
667 unsigned Offset = 0;
668 /// Size of instance + children.
669 unsigned Size = 0;
670 unsigned AbbrevNumber = ~0u;
671 /// Dwarf tag code.
672 dwarf::Tag Tag = (dwarf::Tag)0;
673 /// Set to true to force a DIE to emit an abbreviation that says it has
674 /// children even when it doesn't. This is used for unit testing purposes.
675 bool ForceChildren = false;
676 /// Children DIEs.
677 IntrusiveBackList<DIE> Children;
678
679 /// The owner is either the parent DIE for children of other DIEs, or a
680 /// DIEUnit which contains this DIE as its unit DIE.
681 PointerUnion<DIE *, DIEUnit *> Owner;
682
683 explicit DIE(dwarf::Tag Tag) : Tag(Tag) {}
684
685public:
686 DIE() = delete;
687 DIE(const DIE &RHS) = delete;
688 DIE(DIE &&RHS) = delete;
689 DIE &operator=(const DIE &RHS) = delete;
690 DIE &operator=(const DIE &&RHS) = delete;
691
692 static DIE *get(BumpPtrAllocator &Alloc, dwarf::Tag Tag) {
693 return new (Alloc) DIE(Tag);
694 }
695
696 // Accessors.
697 unsigned getAbbrevNumber() const { return AbbrevNumber; }
698 dwarf::Tag getTag() const { return Tag; }
699 /// Get the compile/type unit relative offset of this DIE.
700 unsigned getOffset() const { return Offset; }
701 unsigned getSize() const { return Size; }
702 bool hasChildren() const { return ForceChildren || !Children.empty(); }
703 void setForceChildren(bool B) { ForceChildren = B; }
704
705 using child_iterator = IntrusiveBackList<DIE>::iterator;
706 using const_child_iterator = IntrusiveBackList<DIE>::const_iterator;
707 using child_range = iterator_range<child_iterator>;
708 using const_child_range = iterator_range<const_child_iterator>;
709
710 child_range children() {
711 return make_range(Children.begin(), Children.end());
712 }
713 const_child_range children() const {
714 return make_range(Children.begin(), Children.end());
715 }
716
717 DIE *getParent() const;
718
719 /// Generate the abbreviation for this DIE.
720 ///
721 /// Calculate the abbreviation for this, which should be uniqued and
722 /// eventually used to call \a setAbbrevNumber().
723 DIEAbbrev generateAbbrev() const;
724
725 /// Set the abbreviation number for this DIE.
726 void setAbbrevNumber(unsigned I) { AbbrevNumber = I; }
727
728 /// Get the absolute offset within the .debug_info or .debug_types section
729 /// for this DIE.
730 unsigned getDebugSectionOffset() const;
731
732 /// Compute the offset of this DIE and all its children.
733 ///
734 /// This function gets called just before we are going to generate the debug
735 /// information and gives each DIE a chance to figure out its CU relative DIE
736 /// offset, unique its abbreviation and fill in the abbreviation code, and
737 /// return the unit offset that points to where the next DIE will be emitted
738 /// within the debug unit section. After this function has been called for all
739 /// DIE objects, the DWARF can be generated since all DIEs will be able to
740 /// properly refer to other DIE objects since all DIEs have calculated their
741 /// offsets.
742 ///
743 /// \param AP AsmPrinter to use when calculating sizes.
744 /// \param AbbrevSet the abbreviation used to unique DIE abbreviations.
745 /// \param CUOffset the compile/type unit relative offset in bytes.
746 /// \returns the offset for the DIE that follows this DIE within the
747 /// current compile/type unit.
748 unsigned computeOffsetsAndAbbrevs(const AsmPrinter *AP,
749 DIEAbbrevSet &AbbrevSet, unsigned CUOffset);
750
751 /// Climb up the parent chain to get the compile unit or type unit DIE that
752 /// this DIE belongs to.
753 ///
754 /// \returns the compile or type unit DIE that owns this DIE, or NULL if
755 /// this DIE hasn't been added to a unit DIE.
756 const DIE *getUnitDie() const;
757
758 /// Climb up the parent chain to get the compile unit or type unit that this
759 /// DIE belongs to.
760 ///
761 /// \returns the DIEUnit that represents the compile or type unit that owns
762 /// this DIE, or NULL if this DIE hasn't been added to a unit DIE.
763 const DIEUnit *getUnit() const;
764
765 void setOffset(unsigned O) { Offset = O; }
766 void setSize(unsigned S) { Size = S; }
767
768 /// Add a child to the DIE.
769 DIE &addChild(DIE *Child) {
770 assert(!Child->getParent() && "Child should be orphaned")((!Child->getParent() && "Child should be orphaned"
) ? static_cast<void> (0) : __assert_fail ("!Child->getParent() && \"Child should be orphaned\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/CodeGen/DIE.h"
, 770, __PRETTY_FUNCTION__))
;
771 Child->Owner = this;
772 Children.push_back(*Child);
773 return Children.back();
774 }
775
776 /// Find a value in the DIE with the attribute given.
777 ///
778 /// Returns a default-constructed DIEValue (where \a DIEValue::getType()
779 /// gives \a DIEValue::isNone) if no such attribute exists.
780 DIEValue findAttribute(dwarf::Attribute Attribute) const;
781
782 void print(raw_ostream &O, unsigned IndentCount = 0) const;
783 void dump() const;
784};
785
786//===--------------------------------------------------------------------===//
787/// Represents a compile or type unit.
788class DIEUnit {
789 /// The compile unit or type unit DIE. This variable must be an instance of
790 /// DIE so that we can calculate the DIEUnit from any DIE by traversing the
791 /// parent backchain and getting the Unit DIE, and then casting itself to a
792 /// DIEUnit. This allows us to be able to find the DIEUnit for any DIE without
793 /// having to store a pointer to the DIEUnit in each DIE instance.
794 DIE Die;
795 /// The section this unit will be emitted in. This may or may not be set to
796 /// a valid section depending on the client that is emitting DWARF.
797 MCSection *Section;
798 uint64_t Offset; /// .debug_info or .debug_types absolute section offset.
799 uint32_t Length; /// The length in bytes of all of the DIEs in this unit.
800 const uint16_t Version; /// The Dwarf version number for this unit.
801 const uint8_t AddrSize; /// The size in bytes of an address for this unit.
802protected:
803 ~DIEUnit() = default;
804
805public:
806 DIEUnit(uint16_t Version, uint8_t AddrSize, dwarf::Tag UnitTag);
807 DIEUnit(const DIEUnit &RHS) = delete;
808 DIEUnit(DIEUnit &&RHS) = delete;
809 void operator=(const DIEUnit &RHS) = delete;
810 void operator=(const DIEUnit &&RHS) = delete;
811 /// Set the section that this DIEUnit will be emitted into.
812 ///
813 /// This function is used by some clients to set the section. Not all clients
814 /// that emit DWARF use this section variable.
815 void setSection(MCSection *Section) {
816 assert(!this->Section)((!this->Section) ? static_cast<void> (0) : __assert_fail
("!this->Section", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/CodeGen/DIE.h"
, 816, __PRETTY_FUNCTION__))
;
817 this->Section = Section;
818 }
819
820 virtual const MCSymbol *getCrossSectionRelativeBaseAddress() const {
821 return nullptr;
822 }
823
824 /// Return the section that this DIEUnit will be emitted into.
825 ///
826 /// \returns Section pointer which can be NULL.
827 MCSection *getSection() const { return Section; }
828 void setDebugSectionOffset(unsigned O) { Offset = O; }
829 unsigned getDebugSectionOffset() const { return Offset; }
830 void setLength(uint64_t L) { Length = L; }
831 uint64_t getLength() const { return Length; }
832 uint16_t getDwarfVersion() const { return Version; }
833 uint16_t getAddressSize() const { return AddrSize; }
834 DIE &getUnitDie() { return Die; }
835 const DIE &getUnitDie() const { return Die; }
836};
837
838struct BasicDIEUnit final : DIEUnit {
839 BasicDIEUnit(uint16_t Version, uint8_t AddrSize, dwarf::Tag UnitTag)
840 : DIEUnit(Version, AddrSize, UnitTag) {}
841};
842
843//===--------------------------------------------------------------------===//
844/// DIELoc - Represents an expression location.
845//
846class DIELoc : public DIEValueList {
847 mutable unsigned Size = 0; // Size in bytes excluding size header.
848
849public:
850 DIELoc() = default;
851
852 /// ComputeSize - Calculate the size of the location expression.
853 ///
854 unsigned ComputeSize(const AsmPrinter *AP) const;
855
856 /// BestForm - Choose the best form for data.
857 ///
858 dwarf::Form BestForm(unsigned DwarfVersion) const {
859 if (DwarfVersion > 3)
860 return dwarf::DW_FORM_exprloc;
861 // Pre-DWARF4 location expressions were blocks and not exprloc.
862 if ((unsigned char)Size == Size)
863 return dwarf::DW_FORM_block1;
864 if ((unsigned short)Size == Size)
865 return dwarf::DW_FORM_block2;
866 if ((unsigned int)Size == Size)
867 return dwarf::DW_FORM_block4;
868 return dwarf::DW_FORM_block;
869 }
870
871 void EmitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
872 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
873
874 void print(raw_ostream &O) const;
875};
876
877//===--------------------------------------------------------------------===//
878/// DIEBlock - Represents a block of values.
879//
880class DIEBlock : public DIEValueList {
881 mutable unsigned Size = 0; // Size in bytes excluding size header.
882
883public:
884 DIEBlock() = default;
885
886 /// ComputeSize - Calculate the size of the location expression.
887 ///
888 unsigned ComputeSize(const AsmPrinter *AP) const;
889
890 /// BestForm - Choose the best form for data.
891 ///
892 dwarf::Form BestForm() const {
893 if ((unsigned char)Size == Size)
894 return dwarf::DW_FORM_block1;
895 if ((unsigned short)Size == Size)
896 return dwarf::DW_FORM_block2;
897 if ((unsigned int)Size == Size)
898 return dwarf::DW_FORM_block4;
899 return dwarf::DW_FORM_block;
900 }
901
902 void EmitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
903 unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
904
905 void print(raw_ostream &O) const;
906};
907
908} // end namespace llvm
909
910#endif // LLVM_LIB_CODEGEN_ASMPRINTER_DIE_H