Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ELFDumper.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/llvm-readobj -I /build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-readobj -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/llvm-readobj -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-readobj/ELFDumper.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-readobj/ELFDumper.cpp

1//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file implements the ELF-specific dumper for llvm-readobj.
12///
13//===----------------------------------------------------------------------===//
14
15#include "ARMEHABIPrinter.h"
16#include "DwarfCFIEHPrinter.h"
17#include "Error.h"
18#include "ObjDumper.h"
19#include "StackMapPrinter.h"
20#include "llvm-readobj.h"
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/ADT/Twine.h"
31#include "llvm/BinaryFormat/ELF.h"
32#include "llvm/Object/ELF.h"
33#include "llvm/Object/ELFObjectFile.h"
34#include "llvm/Object/ELFTypes.h"
35#include "llvm/Object/Error.h"
36#include "llvm/Object/ObjectFile.h"
37#include "llvm/Object/StackMapParser.h"
38#include "llvm/Support/AMDGPUMetadata.h"
39#include "llvm/Support/ARMAttributeParser.h"
40#include "llvm/Support/ARMBuildAttributes.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/Compiler.h"
43#include "llvm/Support/Endian.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/Format.h"
46#include "llvm/Support/FormattedStream.h"
47#include "llvm/Support/LEB128.h"
48#include "llvm/Support/MathExtras.h"
49#include "llvm/Support/MipsABIFlags.h"
50#include "llvm/Support/ScopedPrinter.h"
51#include "llvm/Support/raw_ostream.h"
52#include <algorithm>
53#include <cinttypes>
54#include <cstddef>
55#include <cstdint>
56#include <cstdlib>
57#include <iterator>
58#include <memory>
59#include <string>
60#include <system_error>
61#include <vector>
62
63using namespace llvm;
64using namespace llvm::object;
65using namespace ELF;
66
67#define LLVM_READOBJ_ENUM_CASE(ns, enum)case ns::enum: return "enum"; \
68 case ns::enum: return #enum;
69
70#define ENUM_ENT(enum, altName){ "enum", altName, ELF::enum } \
71 { #enum, altName, ELF::enum }
72
73#define ENUM_ENT_1(enum){ "enum", "enum", ELF::enum } \
74 { #enum, #enum, ELF::enum }
75
76#define LLVM_READOBJ_PHDR_ENUM(ns, enum)case ns::enum: return std::string("enum").substr(3); \
77 case ns::enum: \
78 return std::string(#enum).substr(3);
79
80#define TYPEDEF_ELF_TYPES(ELFT)using ELFO = ELFFile<ELFT>; using Elf_Addr = typename ELFT
::Addr; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym =
typename ELFT::Sym; using Elf_Dyn = typename ELFT::Dyn; using
Elf_Dyn_Range = typename ELFT::DynRange; using Elf_Rel = typename
ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using Elf_Relr
= typename ELFT::Relr; using Elf_Rel_Range = typename ELFT::
RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr = typename
ELFT::Phdr; using Elf_Half = typename ELFT::Half; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Word = typename ELFT::Word;
using Elf_Hash = typename ELFT::Hash; using Elf_GnuHash = typename
ELFT::GnuHash; using Elf_Note = typename ELFT::Note; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Versym = typename ELFT::
Versym; using Elf_Verneed = typename ELFT::Verneed; using Elf_Vernaux
= typename ELFT::Vernaux; using Elf_Verdef = typename ELFT::
Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_CGProfile
= typename ELFT::CGProfile; using uintX_t = typename ELFT::uint
;
\
81 using ELFO = ELFFile<ELFT>; \
82 using Elf_Addr = typename ELFT::Addr; \
83 using Elf_Shdr = typename ELFT::Shdr; \
84 using Elf_Sym = typename ELFT::Sym; \
85 using Elf_Dyn = typename ELFT::Dyn; \
86 using Elf_Dyn_Range = typename ELFT::DynRange; \
87 using Elf_Rel = typename ELFT::Rel; \
88 using Elf_Rela = typename ELFT::Rela; \
89 using Elf_Relr = typename ELFT::Relr; \
90 using Elf_Rel_Range = typename ELFT::RelRange; \
91 using Elf_Rela_Range = typename ELFT::RelaRange; \
92 using Elf_Relr_Range = typename ELFT::RelrRange; \
93 using Elf_Phdr = typename ELFT::Phdr; \
94 using Elf_Half = typename ELFT::Half; \
95 using Elf_Ehdr = typename ELFT::Ehdr; \
96 using Elf_Word = typename ELFT::Word; \
97 using Elf_Hash = typename ELFT::Hash; \
98 using Elf_GnuHash = typename ELFT::GnuHash; \
99 using Elf_Note = typename ELFT::Note; \
100 using Elf_Sym_Range = typename ELFT::SymRange; \
101 using Elf_Versym = typename ELFT::Versym; \
102 using Elf_Verneed = typename ELFT::Verneed; \
103 using Elf_Vernaux = typename ELFT::Vernaux; \
104 using Elf_Verdef = typename ELFT::Verdef; \
105 using Elf_Verdaux = typename ELFT::Verdaux; \
106 using Elf_CGProfile = typename ELFT::CGProfile; \
107 using uintX_t = typename ELFT::uint;
108
109namespace {
110
111template <class ELFT> class DumpStyle;
112
113/// Represents a contiguous uniform range in the file. We cannot just create a
114/// range directly because when creating one of these from the .dynamic table
115/// the size, entity size and virtual address are different entries in arbitrary
116/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
117struct DynRegionInfo {
118 DynRegionInfo() = default;
119 DynRegionInfo(const void *A, uint64_t S, uint64_t ES)
120 : Addr(A), Size(S), EntSize(ES) {}
121
122 /// Address in current address space.
123 const void *Addr = nullptr;
124 /// Size in bytes of the region.
125 uint64_t Size = 0;
126 /// Size of each entity in the region.
127 uint64_t EntSize = 0;
128
129 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
130 const Type *Start = reinterpret_cast<const Type *>(Addr);
131 if (!Start)
132 return {Start, Start};
133 if (EntSize != sizeof(Type) || Size % EntSize)
134 reportError("Invalid entity size");
135 return {Start, Start + (Size / EntSize)};
136 }
137};
138
139template<typename ELFT>
140class ELFDumper : public ObjDumper {
141public:
142 ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer);
143
144 void printFileHeaders() override;
145 void printSections() override;
146 void printRelocations() override;
147 void printDynamicRelocations() override;
148 void printSymbols() override;
149 void printDynamicSymbols() override;
150 void printUnwindInfo() override;
151
152 void printDynamicTable() override;
153 void printNeededLibraries() override;
154 void printProgramHeaders() override;
155 void printHashTable() override;
156 void printGnuHashTable() override;
157 void printLoadName() override;
158 void printVersionInfo() override;
159 void printGroupSections() override;
160
161 void printAttributes() override;
162 void printMipsPLTGOT() override;
163 void printMipsABIFlags() override;
164 void printMipsReginfo() override;
165 void printMipsOptions() override;
166
167 void printStackMap() const override;
168
169 void printHashHistogram() override;
170
171 void printCGProfile() override;
172 void printAddrsig() override;
173
174 void printNotes() override;
175
176 void printELFLinkerOptions() override;
177
178private:
179 std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
180
181 TYPEDEF_ELF_TYPES(ELFT)using ELFO = ELFFile<ELFT>; using Elf_Addr = typename ELFT
::Addr; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym =
typename ELFT::Sym; using Elf_Dyn = typename ELFT::Dyn; using
Elf_Dyn_Range = typename ELFT::DynRange; using Elf_Rel = typename
ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using Elf_Relr
= typename ELFT::Relr; using Elf_Rel_Range = typename ELFT::
RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr = typename
ELFT::Phdr; using Elf_Half = typename ELFT::Half; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Word = typename ELFT::Word;
using Elf_Hash = typename ELFT::Hash; using Elf_GnuHash = typename
ELFT::GnuHash; using Elf_Note = typename ELFT::Note; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Versym = typename ELFT::
Versym; using Elf_Verneed = typename ELFT::Verneed; using Elf_Vernaux
= typename ELFT::Vernaux; using Elf_Verdef = typename ELFT::
Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_CGProfile
= typename ELFT::CGProfile; using uintX_t = typename ELFT::uint
;
182
183 DynRegionInfo checkDRI(DynRegionInfo DRI) {
184 if (DRI.Addr < Obj->base() ||
185 (const uint8_t *)DRI.Addr + DRI.Size > Obj->base() + Obj->getBufSize())
186 error(llvm::object::object_error::parse_failed);
187 return DRI;
188 }
189
190 DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
191 return checkDRI({Obj->base() + P->p_offset, P->p_filesz, EntSize});
192 }
193
194 DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
195 return checkDRI({Obj->base() + S->sh_offset, S->sh_size, S->sh_entsize});
196 }
197
198 void parseDynamicTable(ArrayRef<const Elf_Phdr *> LoadSegments);
199
200 void printValue(uint64_t Type, uint64_t Value);
201
202 StringRef getDynamicString(uint64_t Offset) const;
203 StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
204 bool &IsDefault) const;
205 void LoadVersionMap() const;
206 void LoadVersionNeeds(const Elf_Shdr *ec) const;
207 void LoadVersionDefs(const Elf_Shdr *sec) const;
208
209 const ELFO *Obj;
210 DynRegionInfo DynRelRegion;
211 DynRegionInfo DynRelaRegion;
212 DynRegionInfo DynRelrRegion;
213 DynRegionInfo DynPLTRelRegion;
214 DynRegionInfo DynSymRegion;
215 DynRegionInfo DynamicTable;
216 StringRef DynamicStringTable;
217 StringRef SOName;
218 const Elf_Hash *HashTable = nullptr;
219 const Elf_GnuHash *GnuHashTable = nullptr;
220 const Elf_Shdr *DotSymtabSec = nullptr;
221 const Elf_Shdr *DotCGProfileSec = nullptr;
222 const Elf_Shdr *DotAddrsigSec = nullptr;
223 StringRef DynSymtabName;
224 ArrayRef<Elf_Word> ShndxTable;
225
226 const Elf_Shdr *dot_gnu_version_sec = nullptr; // .gnu.version
227 const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
228 const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d
229
230 // Records for each version index the corresponding Verdef or Vernaux entry.
231 // This is filled the first time LoadVersionMap() is called.
232 class VersionMapEntry : public PointerIntPair<const void *, 1> {
233 public:
234 // If the integer is 0, this is an Elf_Verdef*.
235 // If the integer is 1, this is an Elf_Vernaux*.
236 VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
237 VersionMapEntry(const Elf_Verdef *verdef)
238 : PointerIntPair<const void *, 1>(verdef, 0) {}
239 VersionMapEntry(const Elf_Vernaux *vernaux)
240 : PointerIntPair<const void *, 1>(vernaux, 1) {}
241
242 bool isNull() const { return getPointer() == nullptr; }
243 bool isVerdef() const { return !isNull() && getInt() == 0; }
244 bool isVernaux() const { return !isNull() && getInt() == 1; }
245 const Elf_Verdef *getVerdef() const {
246 return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
247 }
248 const Elf_Vernaux *getVernaux() const {
249 return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
250 }
251 };
252 mutable SmallVector<VersionMapEntry, 16> VersionMap;
253
254public:
255 Elf_Dyn_Range dynamic_table() const {
256 return DynamicTable.getAsArrayRef<Elf_Dyn>();
257 }
258
259 Elf_Sym_Range dynamic_symbols() const {
260 return DynSymRegion.getAsArrayRef<Elf_Sym>();
261 }
262
263 Elf_Rel_Range dyn_rels() const;
264 Elf_Rela_Range dyn_relas() const;
265 Elf_Relr_Range dyn_relrs() const;
266 std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
267 bool IsDynamic) const;
268 void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym,
269 StringRef &SectionName,
270 unsigned &SectionIndex) const;
271 StringRef getStaticSymbolName(uint32_t Index) const;
272
273 void printSymbolsHelper(bool IsDynamic) const;
274 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
275 const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
276 const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
277 ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
278 StringRef getDynamicStringTable() const { return DynamicStringTable; }
279 const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
280 const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
281 const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
282 const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
283 const Elf_Hash *getHashTable() const { return HashTable; }
284 const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
285};
286
287template <class ELFT>
288void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
289 StringRef StrTable, SymtabName;
290 size_t Entries = 0;
291 Elf_Sym_Range Syms(nullptr, nullptr);
292 if (IsDynamic) {
293 StrTable = DynamicStringTable;
294 Syms = dynamic_symbols();
295 SymtabName = DynSymtabName;
296 if (DynSymRegion.Addr)
297 Entries = DynSymRegion.Size / DynSymRegion.EntSize;
298 } else {
299 if (!DotSymtabSec)
300 return;
301 StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
302 Syms = unwrapOrError(Obj->symbols(DotSymtabSec));
303 SymtabName = unwrapOrError(Obj->getSectionName(DotSymtabSec));
304 Entries = DotSymtabSec->getEntityCount();
305 }
306 if (Syms.begin() == Syms.end())
307 return;
308 ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries);
309 for (const auto &Sym : Syms)
310 ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic);
311}
312
313template <class ELFT> class MipsGOTParser;
314
315template <typename ELFT> class DumpStyle {
316public:
317 using Elf_Shdr = typename ELFT::Shdr;
318 using Elf_Sym = typename ELFT::Sym;
319
320 DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {}
321 virtual ~DumpStyle() = default;
322
323 virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
324 virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
325 virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
326 virtual void printSections(const ELFFile<ELFT> *Obj) = 0;
327 virtual void printSymbols(const ELFFile<ELFT> *Obj) = 0;
328 virtual void printDynamicSymbols(const ELFFile<ELFT> *Obj) = 0;
329 virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
330 virtual void printSymtabMessage(const ELFFile<ELFT> *obj, StringRef Name,
331 size_t Offset) {}
332 virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
333 const Elf_Sym *FirstSym, StringRef StrTable,
334 bool IsDynamic) = 0;
335 virtual void printProgramHeaders(const ELFFile<ELFT> *Obj) = 0;
336 virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
337 virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0;
338 virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0;
339 virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
340 virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
341 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
342 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
343 const ELFDumper<ELFT> *dumper() const { return Dumper; }
344
345private:
346 const ELFDumper<ELFT> *Dumper;
347};
348
349template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
350 formatted_raw_ostream OS;
351
352public:
353 TYPEDEF_ELF_TYPES(ELFT)using ELFO = ELFFile<ELFT>; using Elf_Addr = typename ELFT
::Addr; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym =
typename ELFT::Sym; using Elf_Dyn = typename ELFT::Dyn; using
Elf_Dyn_Range = typename ELFT::DynRange; using Elf_Rel = typename
ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using Elf_Relr
= typename ELFT::Relr; using Elf_Rel_Range = typename ELFT::
RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr = typename
ELFT::Phdr; using Elf_Half = typename ELFT::Half; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Word = typename ELFT::Word;
using Elf_Hash = typename ELFT::Hash; using Elf_GnuHash = typename
ELFT::GnuHash; using Elf_Note = typename ELFT::Note; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Versym = typename ELFT::
Versym; using Elf_Verneed = typename ELFT::Verneed; using Elf_Vernaux
= typename ELFT::Vernaux; using Elf_Verdef = typename ELFT::
Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_CGProfile
= typename ELFT::CGProfile; using uintX_t = typename ELFT::uint
;
354
355 GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
356 : DumpStyle<ELFT>(Dumper), OS(W.getOStream()) {}
357
358 void printFileHeaders(const ELFO *Obj) override;
359 void printGroupSections(const ELFFile<ELFT> *Obj) override;
360 void printRelocations(const ELFO *Obj) override;
361 void printSections(const ELFO *Obj) override;
362 void printSymbols(const ELFO *Obj) override;
363 void printDynamicSymbols(const ELFO *Obj) override;
364 void printDynamicRelocations(const ELFO *Obj) override;
365 void printSymtabMessage(const ELFO *Obj, StringRef Name,
366 size_t Offset) override;
367 void printProgramHeaders(const ELFO *Obj) override;
368 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
369 void printCGProfile(const ELFFile<ELFT> *Obj) override;
370 void printAddrsig(const ELFFile<ELFT> *Obj) override;
371 void printNotes(const ELFFile<ELFT> *Obj) override;
372 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
373 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
374 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
375
376private:
377 struct Field {
378 StringRef Str;
379 unsigned Column;
380
381 Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
382 Field(unsigned Col) : Str(""), Column(Col) {}
383 };
384
385 template <typename T, typename TEnum>
386 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
387 for (const auto &EnumItem : EnumValues)
388 if (EnumItem.Value == Value)
389 return EnumItem.AltName;
390 return to_hexString(Value, false);
391 }
392
393 template <typename T, typename TEnum>
394 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
395 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
396 TEnum EnumMask3 = {}) {
397 std::string Str;
398 for (const auto &Flag : EnumValues) {
399 if (Flag.Value == 0)
400 continue;
401
402 TEnum EnumMask{};
403 if (Flag.Value & EnumMask1)
404 EnumMask = EnumMask1;
405 else if (Flag.Value & EnumMask2)
406 EnumMask = EnumMask2;
407 else if (Flag.Value & EnumMask3)
408 EnumMask = EnumMask3;
409 bool IsEnum = (Flag.Value & EnumMask) != 0;
410 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
411 (IsEnum && (Value & EnumMask) == Flag.Value)) {
412 if (!Str.empty())
413 Str += ", ";
414 Str += Flag.AltName;
415 }
416 }
417 return Str;
418 }
419
420 formatted_raw_ostream &printField(struct Field F) {
421 if (F.Column != 0)
422 OS.PadToColumn(F.Column);
423 OS << F.Str;
424 OS.flush();
425 return OS;
426 }
427 void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
428 StringRef StrTable, uint32_t Bucket);
429 void printRelocHeader(unsigned SType);
430 void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
431 const Elf_Rela &R, bool IsRela);
432 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
433 StringRef StrTable, bool IsDynamic) override;
434 std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
435 const Elf_Sym *FirstSym);
436 void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
437 bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
438 bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
439 bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
440 bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
441};
442
443template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
444public:
445 TYPEDEF_ELF_TYPES(ELFT)using ELFO = ELFFile<ELFT>; using Elf_Addr = typename ELFT
::Addr; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym =
typename ELFT::Sym; using Elf_Dyn = typename ELFT::Dyn; using
Elf_Dyn_Range = typename ELFT::DynRange; using Elf_Rel = typename
ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using Elf_Relr
= typename ELFT::Relr; using Elf_Rel_Range = typename ELFT::
RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr = typename
ELFT::Phdr; using Elf_Half = typename ELFT::Half; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Word = typename ELFT::Word;
using Elf_Hash = typename ELFT::Hash; using Elf_GnuHash = typename
ELFT::GnuHash; using Elf_Note = typename ELFT::Note; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Versym = typename ELFT::
Versym; using Elf_Verneed = typename ELFT::Verneed; using Elf_Vernaux
= typename ELFT::Vernaux; using Elf_Verdef = typename ELFT::
Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_CGProfile
= typename ELFT::CGProfile; using uintX_t = typename ELFT::uint
;
446
447 LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
448 : DumpStyle<ELFT>(Dumper), W(W) {}
449
450 void printFileHeaders(const ELFO *Obj) override;
451 void printGroupSections(const ELFFile<ELFT> *Obj) override;
452 void printRelocations(const ELFO *Obj) override;
453 void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
454 void printSections(const ELFO *Obj) override;
455 void printSymbols(const ELFO *Obj) override;
456 void printDynamicSymbols(const ELFO *Obj) override;
457 void printDynamicRelocations(const ELFO *Obj) override;
458 void printProgramHeaders(const ELFO *Obj) override;
459 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
460 void printCGProfile(const ELFFile<ELFT> *Obj) override;
461 void printAddrsig(const ELFFile<ELFT> *Obj) override;
462 void printNotes(const ELFFile<ELFT> *Obj) override;
463 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
464 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
465 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
466
467private:
468 void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
469 void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
470 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
471 StringRef StrTable, bool IsDynamic) override;
472
473 ScopedPrinter &W;
474};
475
476} // end anonymous namespace
477
478namespace llvm {
479
480template <class ELFT>
481static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
482 ScopedPrinter &Writer,
483 std::unique_ptr<ObjDumper> &Result) {
484 Result.reset(new ELFDumper<ELFT>(Obj, Writer));
485 return readobj_error::success;
486}
487
488std::error_code createELFDumper(const object::ObjectFile *Obj,
489 ScopedPrinter &Writer,
490 std::unique_ptr<ObjDumper> &Result) {
491 // Little-endian 32-bit
492 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
493 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
494
495 // Big-endian 32-bit
496 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
497 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
498
499 // Little-endian 64-bit
500 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
501 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
502
503 // Big-endian 64-bit
504 if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
505 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
506
507 return readobj_error::unsupported_obj_file_format;
508}
509
510} // end namespace llvm
511
512// Iterate through the versions needed section, and place each Elf_Vernaux
513// in the VersionMap according to its index.
514template <class ELFT>
515void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
516 unsigned vn_size = sec->sh_size; // Size of section in bytes
517 unsigned vn_count = sec->sh_info; // Number of Verneed entries
518 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
519 const char *sec_end = sec_start + vn_size;
520 // The first Verneed entry is at the start of the section.
521 const char *p = sec_start;
522 for (unsigned i = 0; i < vn_count; i++) {
523 if (p + sizeof(Elf_Verneed) > sec_end)
524 report_fatal_error("Section ended unexpectedly while scanning "
525 "version needed records.");
526 const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
527 if (vn->vn_version != ELF::VER_NEED_CURRENT)
528 report_fatal_error("Unexpected verneed version");
529 // Iterate through the Vernaux entries
530 const char *paux = p + vn->vn_aux;
531 for (unsigned j = 0; j < vn->vn_cnt; j++) {
532 if (paux + sizeof(Elf_Vernaux) > sec_end)
533 report_fatal_error("Section ended unexpected while scanning auxiliary "
534 "version needed records.");
535 const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
536 size_t index = vna->vna_other & ELF::VERSYM_VERSION;
537 if (index >= VersionMap.size())
538 VersionMap.resize(index + 1);
539 VersionMap[index] = VersionMapEntry(vna);
540 paux += vna->vna_next;
541 }
542 p += vn->vn_next;
543 }
544}
545
546// Iterate through the version definitions, and place each Elf_Verdef
547// in the VersionMap according to its index.
548template <class ELFT>
549void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
550 unsigned vd_size = sec->sh_size; // Size of section in bytes
551 unsigned vd_count = sec->sh_info; // Number of Verdef entries
552 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
553 const char *sec_end = sec_start + vd_size;
554 // The first Verdef entry is at the start of the section.
555 const char *p = sec_start;
556 for (unsigned i = 0; i < vd_count; i++) {
557 if (p + sizeof(Elf_Verdef) > sec_end)
558 report_fatal_error("Section ended unexpectedly while scanning "
559 "version definitions.");
560 const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
561 if (vd->vd_version != ELF::VER_DEF_CURRENT)
562 report_fatal_error("Unexpected verdef version");
563 size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
564 if (index >= VersionMap.size())
565 VersionMap.resize(index + 1);
566 VersionMap[index] = VersionMapEntry(vd);
567 p += vd->vd_next;
568 }
569}
570
571template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
572 // If there is no dynamic symtab or version table, there is nothing to do.
573 if (!DynSymRegion.Addr || !dot_gnu_version_sec)
574 return;
575
576 // Has the VersionMap already been loaded?
577 if (VersionMap.size() > 0)
578 return;
579
580 // The first two version indexes are reserved.
581 // Index 0 is LOCAL, index 1 is GLOBAL.
582 VersionMap.push_back(VersionMapEntry());
583 VersionMap.push_back(VersionMapEntry());
584
585 if (dot_gnu_version_d_sec)
586 LoadVersionDefs(dot_gnu_version_d_sec);
587
588 if (dot_gnu_version_r_sec)
589 LoadVersionNeeds(dot_gnu_version_r_sec);
590}
591
592template <typename ELFO, class ELFT>
593static void printVersionSymbolSection(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
594 const typename ELFO::Elf_Shdr *Sec,
595 ScopedPrinter &W) {
596 DictScope SS(W, "Version symbols");
597 if (!Sec)
598 return;
599 StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
600 W.printNumber("Section Name", Name, Sec->sh_name);
601 W.printHex("Address", Sec->sh_addr);
602 W.printHex("Offset", Sec->sh_offset);
603 W.printNumber("Link", Sec->sh_link);
604
605 const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset;
606 StringRef StrTable = Dumper->getDynamicStringTable();
607
608 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
609 ListScope Syms(W, "Symbols");
610 for (const typename ELFO::Elf_Sym &Sym : Dumper->dynamic_symbols()) {
611 DictScope S(W, "Symbol");
612 std::string FullSymbolName =
613 Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
614 W.printNumber("Version", *P);
615 W.printString("Name", FullSymbolName);
616 P += sizeof(typename ELFO::Elf_Half);
617 }
618}
619
620static const EnumEntry<unsigned> SymVersionFlags[] = {
621 {"Base", "BASE", VER_FLG_BASE},
622 {"Weak", "WEAK", VER_FLG_WEAK},
623 {"Info", "INFO", VER_FLG_INFO}};
624
625template <typename ELFO, class ELFT>
626static void printVersionDefinitionSection(ELFDumper<ELFT> *Dumper,
627 const ELFO *Obj,
628 const typename ELFO::Elf_Shdr *Sec,
629 ScopedPrinter &W) {
630 using VerDef = typename ELFO::Elf_Verdef;
631 using VerdAux = typename ELFO::Elf_Verdaux;
632
633 DictScope SD(W, "SHT_GNU_verdef");
634 if (!Sec)
635 return;
636
637 // The number of entries in the section SHT_GNU_verdef
638 // is determined by DT_VERDEFNUM tag.
639 unsigned VerDefsNum = 0;
640 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) {
641 if (Dyn.d_tag == DT_VERDEFNUM)
642 VerDefsNum = Dyn.d_un.d_val;
643 }
644 const uint8_t *SecStartAddress =
645 (const uint8_t *)Obj->base() + Sec->sh_offset;
646 const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
647 const uint8_t *P = SecStartAddress;
648 const typename ELFO::Elf_Shdr *StrTab =
649 unwrapOrError(Obj->getSection(Sec->sh_link));
650
651 while (VerDefsNum--) {
652 if (P + sizeof(VerDef) > SecEndAddress)
653 report_fatal_error("invalid offset in the section");
654
655 auto *VD = reinterpret_cast<const VerDef *>(P);
656 DictScope Def(W, "Definition");
657 W.printNumber("Version", VD->vd_version);
658 W.printEnum("Flags", VD->vd_flags, makeArrayRef(SymVersionFlags));
659 W.printNumber("Index", VD->vd_ndx);
660 W.printNumber("Hash", VD->vd_hash);
661 W.printString("Name",
662 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
663 VD->getAux()->vda_name)));
664 if (!VD->vd_cnt)
665 report_fatal_error("at least one definition string must exist");
666 if (VD->vd_cnt > 2)
667 report_fatal_error("more than one predecessor is not expected");
668
669 if (VD->vd_cnt == 2) {
670 const uint8_t *PAux = P + VD->vd_aux + VD->getAux()->vda_next;
671 const VerdAux *Aux = reinterpret_cast<const VerdAux *>(PAux);
672 W.printString("Predecessor",
673 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
674 Aux->vda_name)));
675 }
676
677 P += VD->vd_next;
678 }
679}
680
681template <typename ELFO, class ELFT>
682static void printVersionDependencySection(ELFDumper<ELFT> *Dumper,
683 const ELFO *Obj,
684 const typename ELFO::Elf_Shdr *Sec,
685 ScopedPrinter &W) {
686 using VerNeed = typename ELFO::Elf_Verneed;
687 using VernAux = typename ELFO::Elf_Vernaux;
688
689 DictScope SD(W, "SHT_GNU_verneed");
690 if (!Sec)
691 return;
692
693 unsigned VerNeedNum = 0;
694 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table())
695 if (Dyn.d_tag == DT_VERNEEDNUM)
696 VerNeedNum = Dyn.d_un.d_val;
697
698 const uint8_t *SecData = (const uint8_t *)Obj->base() + Sec->sh_offset;
699 const typename ELFO::Elf_Shdr *StrTab =
700 unwrapOrError(Obj->getSection(Sec->sh_link));
701
702 const uint8_t *P = SecData;
703 for (unsigned I = 0; I < VerNeedNum; ++I) {
704 const VerNeed *Need = reinterpret_cast<const VerNeed *>(P);
705 DictScope Entry(W, "Dependency");
706 W.printNumber("Version", Need->vn_version);
707 W.printNumber("Count", Need->vn_cnt);
708 W.printString("FileName",
709 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
710 Need->vn_file)));
711
712 const uint8_t *PAux = P + Need->vn_aux;
713 for (unsigned J = 0; J < Need->vn_cnt; ++J) {
714 const VernAux *Aux = reinterpret_cast<const VernAux *>(PAux);
715 DictScope Entry(W, "Entry");
716 W.printNumber("Hash", Aux->vna_hash);
717 W.printEnum("Flags", Aux->vna_flags, makeArrayRef(SymVersionFlags));
718 W.printNumber("Index", Aux->vna_other);
719 W.printString("Name",
720 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
721 Aux->vna_name)));
722 PAux += Aux->vna_next;
723 }
724 P += Need->vn_next;
725 }
726}
727
728template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
729 // Dump version symbol section.
730 printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W);
731
732 // Dump version definition section.
733 printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W);
734
735 // Dump version dependency section.
736 printVersionDependencySection(this, Obj, dot_gnu_version_r_sec, W);
737}
738
739template <typename ELFT>
740StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
741 const Elf_Sym *symb,
742 bool &IsDefault) const {
743 // This is a dynamic symbol. Look in the GNU symbol version table.
744 if (!dot_gnu_version_sec) {
745 // No version table.
746 IsDefault = false;
747 return StringRef("");
748 }
749
750 // Determine the position in the symbol table of this entry.
751 size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
752 reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
753 sizeof(Elf_Sym);
754
755 // Get the corresponding version index entry
756 const Elf_Versym *vs = unwrapOrError(
757 Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index));
758 size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
759
760 // Special markers for unversioned symbols.
761 if (version_index == ELF::VER_NDX_LOCAL ||
762 version_index == ELF::VER_NDX_GLOBAL) {
763 IsDefault = false;
764 return StringRef("");
765 }
766
767 // Lookup this symbol in the version table
768 LoadVersionMap();
769 if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
770 reportError("Invalid version entry");
771 const VersionMapEntry &entry = VersionMap[version_index];
772
773 // Get the version name string
774 size_t name_offset;
775 if (entry.isVerdef()) {
776 // The first Verdaux entry holds the name.
777 name_offset = entry.getVerdef()->getAux()->vda_name;
778 IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
779 } else {
780 name_offset = entry.getVernaux()->vna_name;
781 IsDefault = false;
782 }
783 if (name_offset >= StrTab.size())
784 reportError("Invalid string offset");
785 return StringRef(StrTab.data() + name_offset);
786}
787
788template <typename ELFT>
789StringRef ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
790 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
791 Elf_Sym_Range Syms = unwrapOrError(Obj->symbols(DotSymtabSec));
792 if (Index >= Syms.size())
793 reportError("Invalid symbol index");
794 const Elf_Sym *Sym = &Syms[Index];
795 return unwrapOrError(Sym->getName(StrTable));
796}
797
798template <typename ELFT>
799std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
800 StringRef StrTable,
801 bool IsDynamic) const {
802 StringRef SymbolName = unwrapOrError(Symbol->getName(StrTable));
803 if (!IsDynamic)
804 return SymbolName;
805
806 std::string FullSymbolName(SymbolName);
807
808 bool IsDefault;
809 StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
810 FullSymbolName += (IsDefault ? "@@" : "@");
811 FullSymbolName += Version;
812 return FullSymbolName;
813}
814
815template <typename ELFT>
816void ELFDumper<ELFT>::getSectionNameIndex(const Elf_Sym *Symbol,
817 const Elf_Sym *FirstSym,
818 StringRef &SectionName,
819 unsigned &SectionIndex) const {
820 SectionIndex = Symbol->st_shndx;
821 if (Symbol->isUndefined())
822 SectionName = "Undefined";
823 else if (Symbol->isProcessorSpecific())
824 SectionName = "Processor Specific";
825 else if (Symbol->isOSSpecific())
826 SectionName = "Operating System Specific";
827 else if (Symbol->isAbsolute())
828 SectionName = "Absolute";
829 else if (Symbol->isCommon())
830 SectionName = "Common";
831 else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
832 SectionName = "Reserved";
833 else {
834 if (SectionIndex == SHN_XINDEX)
835 SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex<ELFT>(
836 Symbol, FirstSym, ShndxTable));
837 const typename ELFT::Shdr *Sec =
838 unwrapOrError(Obj->getSection(SectionIndex));
839 SectionName = unwrapOrError(Obj->getSectionName(Sec));
840 }
841}
842
843template <class ELFO>
844static const typename ELFO::Elf_Shdr *
845findNotEmptySectionByAddress(const ELFO *Obj, uint64_t Addr) {
846 for (const auto &Shdr : unwrapOrError(Obj->sections()))
847 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
848 return &Shdr;
849 return nullptr;
850}
851
852template <class ELFO>
853static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
854 StringRef Name) {
855 for (const auto &Shdr : unwrapOrError(Obj.sections())) {
856 if (Name == unwrapOrError(Obj.getSectionName(&Shdr)))
857 return &Shdr;
858 }
859 return nullptr;
860}
861
862static const EnumEntry<unsigned> ElfClass[] = {
863 {"None", "none", ELF::ELFCLASSNONE},
864 {"32-bit", "ELF32", ELF::ELFCLASS32},
865 {"64-bit", "ELF64", ELF::ELFCLASS64},
866};
867
868static const EnumEntry<unsigned> ElfDataEncoding[] = {
869 {"None", "none", ELF::ELFDATANONE},
870 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
871 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
872};
873
874static const EnumEntry<unsigned> ElfObjectFileType[] = {
875 {"None", "NONE (none)", ELF::ET_NONE},
876 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
877 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
878 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
879 {"Core", "CORE (Core file)", ELF::ET_CORE},
880};
881
882static const EnumEntry<unsigned> ElfOSABI[] = {
883 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
884 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
885 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
886 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
887 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
888 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
889 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
890 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
891 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
892 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
893 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
894 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
895 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
896 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
897 {"AROS", "AROS", ELF::ELFOSABI_AROS},
898 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
899 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
900 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
901};
902
903static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
904 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
905 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
906 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
907};
908
909static const EnumEntry<unsigned> ARMElfOSABI[] = {
910 {"ARM", "ARM", ELF::ELFOSABI_ARM}
911};
912
913static const EnumEntry<unsigned> C6000ElfOSABI[] = {
914 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
915 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
916};
917
918static const EnumEntry<unsigned> ElfMachineType[] = {
919 ENUM_ENT(EM_NONE, "None"){ "EM_NONE", "None", ELF::EM_NONE },
920 ENUM_ENT(EM_M32, "WE32100"){ "EM_M32", "WE32100", ELF::EM_M32 },
921 ENUM_ENT(EM_SPARC, "Sparc"){ "EM_SPARC", "Sparc", ELF::EM_SPARC },
922 ENUM_ENT(EM_386, "Intel 80386"){ "EM_386", "Intel 80386", ELF::EM_386 },
923 ENUM_ENT(EM_68K, "MC68000"){ "EM_68K", "MC68000", ELF::EM_68K },
924 ENUM_ENT(EM_88K, "MC88000"){ "EM_88K", "MC88000", ELF::EM_88K },
925 ENUM_ENT(EM_IAMCU, "EM_IAMCU"){ "EM_IAMCU", "EM_IAMCU", ELF::EM_IAMCU },
926 ENUM_ENT(EM_860, "Intel 80860"){ "EM_860", "Intel 80860", ELF::EM_860 },
927 ENUM_ENT(EM_MIPS, "MIPS R3000"){ "EM_MIPS", "MIPS R3000", ELF::EM_MIPS },
928 ENUM_ENT(EM_S370, "IBM System/370"){ "EM_S370", "IBM System/370", ELF::EM_S370 },
929 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"){ "EM_MIPS_RS3_LE", "MIPS R3000 little-endian", ELF::EM_MIPS_RS3_LE
}
,
930 ENUM_ENT(EM_PARISC, "HPPA"){ "EM_PARISC", "HPPA", ELF::EM_PARISC },
931 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"){ "EM_VPP500", "Fujitsu VPP500", ELF::EM_VPP500 },
932 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"){ "EM_SPARC32PLUS", "Sparc v8+", ELF::EM_SPARC32PLUS },
933 ENUM_ENT(EM_960, "Intel 80960"){ "EM_960", "Intel 80960", ELF::EM_960 },
934 ENUM_ENT(EM_PPC, "PowerPC"){ "EM_PPC", "PowerPC", ELF::EM_PPC },
935 ENUM_ENT(EM_PPC64, "PowerPC64"){ "EM_PPC64", "PowerPC64", ELF::EM_PPC64 },
936 ENUM_ENT(EM_S390, "IBM S/390"){ "EM_S390", "IBM S/390", ELF::EM_S390 },
937 ENUM_ENT(EM_SPU, "SPU"){ "EM_SPU", "SPU", ELF::EM_SPU },
938 ENUM_ENT(EM_V800, "NEC V800 series"){ "EM_V800", "NEC V800 series", ELF::EM_V800 },
939 ENUM_ENT(EM_FR20, "Fujistsu FR20"){ "EM_FR20", "Fujistsu FR20", ELF::EM_FR20 },
940 ENUM_ENT(EM_RH32, "TRW RH-32"){ "EM_RH32", "TRW RH-32", ELF::EM_RH32 },
941 ENUM_ENT(EM_RCE, "Motorola RCE"){ "EM_RCE", "Motorola RCE", ELF::EM_RCE },
942 ENUM_ENT(EM_ARM, "ARM"){ "EM_ARM", "ARM", ELF::EM_ARM },
943 ENUM_ENT(EM_ALPHA, "EM_ALPHA"){ "EM_ALPHA", "EM_ALPHA", ELF::EM_ALPHA },
944 ENUM_ENT(EM_SH, "Hitachi SH"){ "EM_SH", "Hitachi SH", ELF::EM_SH },
945 ENUM_ENT(EM_SPARCV9, "Sparc v9"){ "EM_SPARCV9", "Sparc v9", ELF::EM_SPARCV9 },
946 ENUM_ENT(EM_TRICORE, "Siemens Tricore"){ "EM_TRICORE", "Siemens Tricore", ELF::EM_TRICORE },
947 ENUM_ENT(EM_ARC, "ARC"){ "EM_ARC", "ARC", ELF::EM_ARC },
948 ENUM_ENT(EM_H8_300, "Hitachi H8/300"){ "EM_H8_300", "Hitachi H8/300", ELF::EM_H8_300 },
949 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"){ "EM_H8_300H", "Hitachi H8/300H", ELF::EM_H8_300H },
950 ENUM_ENT(EM_H8S, "Hitachi H8S"){ "EM_H8S", "Hitachi H8S", ELF::EM_H8S },
951 ENUM_ENT(EM_H8_500, "Hitachi H8/500"){ "EM_H8_500", "Hitachi H8/500", ELF::EM_H8_500 },
952 ENUM_ENT(EM_IA_64, "Intel IA-64"){ "EM_IA_64", "Intel IA-64", ELF::EM_IA_64 },
953 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"){ "EM_MIPS_X", "Stanford MIPS-X", ELF::EM_MIPS_X },
954 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"){ "EM_COLDFIRE", "Motorola Coldfire", ELF::EM_COLDFIRE },
955 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"){ "EM_68HC12", "Motorola MC68HC12 Microcontroller", ELF::EM_68HC12
}
,
956 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"){ "EM_MMA", "Fujitsu Multimedia Accelerator", ELF::EM_MMA },
957 ENUM_ENT(EM_PCP, "Siemens PCP"){ "EM_PCP", "Siemens PCP", ELF::EM_PCP },
958 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"){ "EM_NCPU", "Sony nCPU embedded RISC processor", ELF::EM_NCPU
}
,
959 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"){ "EM_NDR1", "Denso NDR1 microprocesspr", ELF::EM_NDR1 },
960 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"){ "EM_STARCORE", "Motorola Star*Core processor", ELF::EM_STARCORE
}
,
961 ENUM_ENT(EM_ME16, "Toyota ME16 processor"){ "EM_ME16", "Toyota ME16 processor", ELF::EM_ME16 },
962 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"){ "EM_ST100", "STMicroelectronics ST100 processor", ELF::EM_ST100
}
,
963 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"){ "EM_TINYJ", "Advanced Logic Corp. TinyJ embedded processor"
, ELF::EM_TINYJ }
,
964 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"){ "EM_X86_64", "Advanced Micro Devices X86-64", ELF::EM_X86_64
}
,
965 ENUM_ENT(EM_PDSP, "Sony DSP processor"){ "EM_PDSP", "Sony DSP processor", ELF::EM_PDSP },
966 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"){ "EM_PDP10", "Digital Equipment Corp. PDP-10", ELF::EM_PDP10
}
,
967 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"){ "EM_PDP11", "Digital Equipment Corp. PDP-11", ELF::EM_PDP11
}
,
968 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"){ "EM_FX66", "Siemens FX66 microcontroller", ELF::EM_FX66 },
969 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"){ "EM_ST9PLUS", "STMicroelectronics ST9+ 8/16 bit microcontroller"
, ELF::EM_ST9PLUS }
,
970 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"){ "EM_ST7", "STMicroelectronics ST7 8-bit microcontroller", ELF
::EM_ST7 }
,
971 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"){ "EM_68HC16", "Motorola MC68HC16 Microcontroller", ELF::EM_68HC16
}
,
972 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"){ "EM_68HC11", "Motorola MC68HC11 Microcontroller", ELF::EM_68HC11
}
,
973 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"){ "EM_68HC08", "Motorola MC68HC08 Microcontroller", ELF::EM_68HC08
}
,
974 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"){ "EM_68HC05", "Motorola MC68HC05 Microcontroller", ELF::EM_68HC05
}
,
975 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"){ "EM_SVX", "Silicon Graphics SVx", ELF::EM_SVX },
976 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"){ "EM_ST19", "STMicroelectronics ST19 8-bit microcontroller",
ELF::EM_ST19 }
,
977 ENUM_ENT(EM_VAX, "Digital VAX"){ "EM_VAX", "Digital VAX", ELF::EM_VAX },
978 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"){ "EM_CRIS", "Axis Communications 32-bit embedded processor",
ELF::EM_CRIS }
,
979 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"){ "EM_JAVELIN", "Infineon Technologies 32-bit embedded cpu", ELF
::EM_JAVELIN }
,
980 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"){ "EM_FIREPATH", "Element 14 64-bit DSP processor", ELF::EM_FIREPATH
}
,
981 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"){ "EM_ZSP", "LSI Logic's 16-bit DSP processor", ELF::EM_ZSP },
982 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"){ "EM_MMIX", "Donald Knuth's educational 64-bit processor", ELF
::EM_MMIX }
,
983 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"){ "EM_HUANY", "Harvard Universitys's machine-independent object format"
, ELF::EM_HUANY }
,
984 ENUM_ENT(EM_PRISM, "Vitesse Prism"){ "EM_PRISM", "Vitesse Prism", ELF::EM_PRISM },
985 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"){ "EM_AVR", "Atmel AVR 8-bit microcontroller", ELF::EM_AVR },
986 ENUM_ENT(EM_FR30, "Fujitsu FR30"){ "EM_FR30", "Fujitsu FR30", ELF::EM_FR30 },
987 ENUM_ENT(EM_D10V, "Mitsubishi D10V"){ "EM_D10V", "Mitsubishi D10V", ELF::EM_D10V },
988 ENUM_ENT(EM_D30V, "Mitsubishi D30V"){ "EM_D30V", "Mitsubishi D30V", ELF::EM_D30V },
989 ENUM_ENT(EM_V850, "NEC v850"){ "EM_V850", "NEC v850", ELF::EM_V850 },
990 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"){ "EM_M32R", "Renesas M32R (formerly Mitsubishi M32r)", ELF::
EM_M32R }
,
991 ENUM_ENT(EM_MN10300, "Matsushita MN10300"){ "EM_MN10300", "Matsushita MN10300", ELF::EM_MN10300 },
992 ENUM_ENT(EM_MN10200, "Matsushita MN10200"){ "EM_MN10200", "Matsushita MN10200", ELF::EM_MN10200 },
993 ENUM_ENT(EM_PJ, "picoJava"){ "EM_PJ", "picoJava", ELF::EM_PJ },
994 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"){ "EM_OPENRISC", "OpenRISC 32-bit embedded processor", ELF::EM_OPENRISC
}
,
995 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"){ "EM_ARC_COMPACT", "EM_ARC_COMPACT", ELF::EM_ARC_COMPACT },
996 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"){ "EM_XTENSA", "Tensilica Xtensa Processor", ELF::EM_XTENSA },
997 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"){ "EM_VIDEOCORE", "Alphamosaic VideoCore processor", ELF::EM_VIDEOCORE
}
,
998 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"){ "EM_TMM_GPP", "Thompson Multimedia General Purpose Processor"
, ELF::EM_TMM_GPP }
,
999 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"){ "EM_NS32K", "National Semiconductor 32000 series", ELF::EM_NS32K
}
,
1000 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"){ "EM_TPC", "Tenor Network TPC processor", ELF::EM_TPC },
1001 ENUM_ENT(EM_SNP1K, "EM_SNP1K"){ "EM_SNP1K", "EM_SNP1K", ELF::EM_SNP1K },
1002 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"){ "EM_ST200", "STMicroelectronics ST200 microcontroller", ELF
::EM_ST200 }
,
1003 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"){ "EM_IP2K", "Ubicom IP2xxx 8-bit microcontrollers", ELF::EM_IP2K
}
,
1004 ENUM_ENT(EM_MAX, "MAX Processor"){ "EM_MAX", "MAX Processor", ELF::EM_MAX },
1005 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"){ "EM_CR", "National Semiconductor CompactRISC", ELF::EM_CR },
1006 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"){ "EM_F2MC16", "Fujitsu F2MC16", ELF::EM_F2MC16 },
1007 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"){ "EM_MSP430", "Texas Instruments msp430 microcontroller", ELF
::EM_MSP430 }
,
1008 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"){ "EM_BLACKFIN", "Analog Devices Blackfin", ELF::EM_BLACKFIN },
1009 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"){ "EM_SE_C33", "S1C33 Family of Seiko Epson processors", ELF::
EM_SE_C33 }
,
1010 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"){ "EM_SEP", "Sharp embedded microprocessor", ELF::EM_SEP },
1011 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"){ "EM_ARCA", "Arca RISC microprocessor", ELF::EM_ARCA },
1012 ENUM_ENT(EM_UNICORE, "Unicore"){ "EM_UNICORE", "Unicore", ELF::EM_UNICORE },
1013 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"){ "EM_EXCESS", "eXcess 16/32/64-bit configurable embedded CPU"
, ELF::EM_EXCESS }
,
1014 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"){ "EM_DXP", "Icera Semiconductor Inc. Deep Execution Processor"
, ELF::EM_DXP }
,
1015 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"){ "EM_ALTERA_NIOS2", "Altera Nios", ELF::EM_ALTERA_NIOS2 },
1016 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"){ "EM_CRX", "National Semiconductor CRX microprocessor", ELF::
EM_CRX }
,
1017 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"){ "EM_XGATE", "Motorola XGATE embedded processor", ELF::EM_XGATE
}
,
1018 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"){ "EM_C166", "Infineon Technologies xc16x", ELF::EM_C166 },
1019 ENUM_ENT(EM_M16C, "Renesas M16C"){ "EM_M16C", "Renesas M16C", ELF::EM_M16C },
1020 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"){ "EM_DSPIC30F", "Microchip Technology dsPIC30F Digital Signal Controller"
, ELF::EM_DSPIC30F }
,
1021 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"){ "EM_CE", "Freescale Communication Engine RISC core", ELF::EM_CE
}
,
1022 ENUM_ENT(EM_M32C, "Renesas M32C"){ "EM_M32C", "Renesas M32C", ELF::EM_M32C },
1023 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"){ "EM_TSK3000", "Altium TSK3000 core", ELF::EM_TSK3000 },
1024 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"){ "EM_RS08", "Freescale RS08 embedded processor", ELF::EM_RS08
}
,
1025 ENUM_ENT(EM_SHARC, "EM_SHARC"){ "EM_SHARC", "EM_SHARC", ELF::EM_SHARC },
1026 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"){ "EM_ECOG2", "Cyan Technology eCOG2 microprocessor", ELF::EM_ECOG2
}
,
1027 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"){ "EM_SCORE7", "SUNPLUS S+Core", ELF::EM_SCORE7 },
1028 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"){ "EM_DSP24", "New Japan Radio (NJR) 24-bit DSP Processor", ELF
::EM_DSP24 }
,
1029 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"){ "EM_VIDEOCORE3", "Broadcom VideoCore III processor", ELF::EM_VIDEOCORE3
}
,
1030 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"){ "EM_LATTICEMICO32", "Lattice Mico32", ELF::EM_LATTICEMICO32
}
,
1031 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"){ "EM_SE_C17", "Seiko Epson C17 family", ELF::EM_SE_C17 },
1032 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"){ "EM_TI_C6000", "Texas Instruments TMS320C6000 DSP family", ELF
::EM_TI_C6000 }
,
1033 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"){ "EM_TI_C2000", "Texas Instruments TMS320C2000 DSP family", ELF
::EM_TI_C2000 }
,
1034 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"){ "EM_TI_C5500", "Texas Instruments TMS320C55x DSP family", ELF
::EM_TI_C5500 }
,
1035 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"){ "EM_MMDSP_PLUS", "STMicroelectronics 64bit VLIW Data Signal Processor"
, ELF::EM_MMDSP_PLUS }
,
1036 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"){ "EM_CYPRESS_M8C", "Cypress M8C microprocessor", ELF::EM_CYPRESS_M8C
}
,
1037 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"){ "EM_R32C", "Renesas R32C series microprocessors", ELF::EM_R32C
}
,
1038 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"){ "EM_TRIMEDIA", "NXP Semiconductors TriMedia architecture family"
, ELF::EM_TRIMEDIA }
,
1039 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"){ "EM_HEXAGON", "Qualcomm Hexagon", ELF::EM_HEXAGON },
1040 ENUM_ENT(EM_8051, "Intel 8051 and variants"){ "EM_8051", "Intel 8051 and variants", ELF::EM_8051 },
1041 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"){ "EM_STXP7X", "STMicroelectronics STxP7x family", ELF::EM_STXP7X
}
,
1042 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"){ "EM_NDS32", "Andes Technology compact code size embedded RISC processor family"
, ELF::EM_NDS32 }
,
1043 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"){ "EM_ECOG1", "Cyan Technology eCOG1 microprocessor", ELF::EM_ECOG1
}
,
1044 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"){ "EM_ECOG1X", "Cyan Technology eCOG1X family", ELF::EM_ECOG1X
}
,
1045 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"){ "EM_MAXQ30", "Dallas Semiconductor MAXQ30 Core microcontrollers"
, ELF::EM_MAXQ30 }
,
1046 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"){ "EM_XIMO16", "New Japan Radio (NJR) 16-bit DSP Processor", ELF
::EM_XIMO16 }
,
1047 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"){ "EM_MANIK", "M2000 Reconfigurable RISC Microprocessor", ELF
::EM_MANIK }
,
1048 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"){ "EM_CRAYNV2", "Cray Inc. NV2 vector architecture", ELF::EM_CRAYNV2
}
,
1049 ENUM_ENT(EM_RX, "Renesas RX"){ "EM_RX", "Renesas RX", ELF::EM_RX },
1050 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"){ "EM_METAG", "Imagination Technologies Meta processor architecture"
, ELF::EM_METAG }
,
1051 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"){ "EM_MCST_ELBRUS", "MCST Elbrus general purpose hardware architecture"
, ELF::EM_MCST_ELBRUS }
,
1052 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"){ "EM_ECOG16", "Cyan Technology eCOG16 family", ELF::EM_ECOG16
}
,
1053 ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"){ "EM_CR16", "Xilinx MicroBlaze", ELF::EM_CR16 },
1054 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"){ "EM_ETPU", "Freescale Extended Time Processing Unit", ELF::
EM_ETPU }
,
1055 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"){ "EM_SLE9X", "Infineon Technologies SLE9X core", ELF::EM_SLE9X
}
,
1056 ENUM_ENT(EM_L10M, "EM_L10M"){ "EM_L10M", "EM_L10M", ELF::EM_L10M },
1057 ENUM_ENT(EM_K10M, "EM_K10M"){ "EM_K10M", "EM_K10M", ELF::EM_K10M },
1058 ENUM_ENT(EM_AARCH64, "AArch64"){ "EM_AARCH64", "AArch64", ELF::EM_AARCH64 },
1059 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"){ "EM_AVR32", "Atmel Corporation 32-bit microprocessor family"
, ELF::EM_AVR32 }
,
1060 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"){ "EM_STM8", "STMicroeletronics STM8 8-bit microcontroller", ELF
::EM_STM8 }
,
1061 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"){ "EM_TILE64", "Tilera TILE64 multicore architecture family",
ELF::EM_TILE64 }
,
1062 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"){ "EM_TILEPRO", "Tilera TILEPro multicore architecture family"
, ELF::EM_TILEPRO }
,
1063 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"){ "EM_CUDA", "NVIDIA CUDA architecture", ELF::EM_CUDA },
1064 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"){ "EM_TILEGX", "Tilera TILE-Gx multicore architecture family"
, ELF::EM_TILEGX }
,
1065 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"){ "EM_CLOUDSHIELD", "EM_CLOUDSHIELD", ELF::EM_CLOUDSHIELD },
1066 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"){ "EM_COREA_1ST", "EM_COREA_1ST", ELF::EM_COREA_1ST },
1067 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"){ "EM_COREA_2ND", "EM_COREA_2ND", ELF::EM_COREA_2ND },
1068 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"){ "EM_ARC_COMPACT2", "EM_ARC_COMPACT2", ELF::EM_ARC_COMPACT2 },
1069 ENUM_ENT(EM_OPEN8, "EM_OPEN8"){ "EM_OPEN8", "EM_OPEN8", ELF::EM_OPEN8 },
1070 ENUM_ENT(EM_RL78, "Renesas RL78"){ "EM_RL78", "Renesas RL78", ELF::EM_RL78 },
1071 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"){ "EM_VIDEOCORE5", "Broadcom VideoCore V processor", ELF::EM_VIDEOCORE5
}
,
1072 ENUM_ENT(EM_78KOR, "EM_78KOR"){ "EM_78KOR", "EM_78KOR", ELF::EM_78KOR },
1073 ENUM_ENT(EM_56800EX, "EM_56800EX"){ "EM_56800EX", "EM_56800EX", ELF::EM_56800EX },
1074 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"){ "EM_AMDGPU", "EM_AMDGPU", ELF::EM_AMDGPU },
1075 ENUM_ENT(EM_RISCV, "RISC-V"){ "EM_RISCV", "RISC-V", ELF::EM_RISCV },
1076 ENUM_ENT(EM_LANAI, "EM_LANAI"){ "EM_LANAI", "EM_LANAI", ELF::EM_LANAI },
1077 ENUM_ENT(EM_BPF, "EM_BPF"){ "EM_BPF", "EM_BPF", ELF::EM_BPF },
1078};
1079
1080static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1081 {"Local", "LOCAL", ELF::STB_LOCAL},
1082 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1083 {"Weak", "WEAK", ELF::STB_WEAK},
1084 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1085
1086static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1087 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1088 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1089 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1090 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1091
1092static const EnumEntry<unsigned> ElfSymbolTypes[] = {
1093 {"None", "NOTYPE", ELF::STT_NOTYPE},
1094 {"Object", "OBJECT", ELF::STT_OBJECT},
1095 {"Function", "FUNC", ELF::STT_FUNC},
1096 {"Section", "SECTION", ELF::STT_SECTION},
1097 {"File", "FILE", ELF::STT_FILE},
1098 {"Common", "COMMON", ELF::STT_COMMON},
1099 {"TLS", "TLS", ELF::STT_TLS},
1100 {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC}};
1101
1102static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1103 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1104};
1105
1106static const char *getGroupType(uint32_t Flag) {
1107 if (Flag & ELF::GRP_COMDAT)
1108 return "COMDAT";
1109 else
1110 return "(unknown)";
1111}
1112
1113static const EnumEntry<unsigned> ElfSectionFlags[] = {
1114 ENUM_ENT(SHF_WRITE, "W"){ "SHF_WRITE", "W", ELF::SHF_WRITE },
1115 ENUM_ENT(SHF_ALLOC, "A"){ "SHF_ALLOC", "A", ELF::SHF_ALLOC },
1116 ENUM_ENT(SHF_EXCLUDE, "E"){ "SHF_EXCLUDE", "E", ELF::SHF_EXCLUDE },
1117 ENUM_ENT(SHF_EXECINSTR, "X"){ "SHF_EXECINSTR", "X", ELF::SHF_EXECINSTR },
1118 ENUM_ENT(SHF_MERGE, "M"){ "SHF_MERGE", "M", ELF::SHF_MERGE },
1119 ENUM_ENT(SHF_STRINGS, "S"){ "SHF_STRINGS", "S", ELF::SHF_STRINGS },
1120 ENUM_ENT(SHF_INFO_LINK, "I"){ "SHF_INFO_LINK", "I", ELF::SHF_INFO_LINK },
1121 ENUM_ENT(SHF_LINK_ORDER, "L"){ "SHF_LINK_ORDER", "L", ELF::SHF_LINK_ORDER },
1122 ENUM_ENT(SHF_OS_NONCONFORMING, "o"){ "SHF_OS_NONCONFORMING", "o", ELF::SHF_OS_NONCONFORMING },
1123 ENUM_ENT(SHF_GROUP, "G"){ "SHF_GROUP", "G", ELF::SHF_GROUP },
1124 ENUM_ENT(SHF_TLS, "T"){ "SHF_TLS", "T", ELF::SHF_TLS },
1125 ENUM_ENT(SHF_MASKOS, "o"){ "SHF_MASKOS", "o", ELF::SHF_MASKOS },
1126 ENUM_ENT(SHF_MASKPROC, "p"){ "SHF_MASKPROC", "p", ELF::SHF_MASKPROC },
1127 ENUM_ENT_1(SHF_COMPRESSED){ "SHF_COMPRESSED", "SHF_COMPRESSED", ELF::SHF_COMPRESSED },
1128};
1129
1130static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1131 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION){ "XCORE_SHF_CP_SECTION", ELF::XCORE_SHF_CP_SECTION },
1132 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION){ "XCORE_SHF_DP_SECTION", ELF::XCORE_SHF_DP_SECTION }
1133};
1134
1135static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1136 LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE){ "SHF_ARM_PURECODE", ELF::SHF_ARM_PURECODE }
1137};
1138
1139static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1140 LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL){ "SHF_HEX_GPREL", ELF::SHF_HEX_GPREL }
1141};
1142
1143static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1144 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES){ "SHF_MIPS_NODUPES", ELF::SHF_MIPS_NODUPES },
1145 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ){ "SHF_MIPS_NAMES", ELF::SHF_MIPS_NAMES },
1146 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ){ "SHF_MIPS_LOCAL", ELF::SHF_MIPS_LOCAL },
1147 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP){ "SHF_MIPS_NOSTRIP", ELF::SHF_MIPS_NOSTRIP },
1148 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ){ "SHF_MIPS_GPREL", ELF::SHF_MIPS_GPREL },
1149 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ){ "SHF_MIPS_MERGE", ELF::SHF_MIPS_MERGE },
1150 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ){ "SHF_MIPS_ADDR", ELF::SHF_MIPS_ADDR },
1151 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING ){ "SHF_MIPS_STRING", ELF::SHF_MIPS_STRING }
1152};
1153
1154static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1155 LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE){ "SHF_X86_64_LARGE", ELF::SHF_X86_64_LARGE }
1156};
1157
1158static std::string getGNUFlags(uint64_t Flags) {
1159 std::string Str;
1160 for (auto Entry : ElfSectionFlags) {
1161 uint64_t Flag = Entry.Value & Flags;
1162 Flags &= ~Entry.Value;
1163 switch (Flag) {
1164 case ELF::SHF_WRITE:
1165 case ELF::SHF_ALLOC:
1166 case ELF::SHF_EXECINSTR:
1167 case ELF::SHF_MERGE:
1168 case ELF::SHF_STRINGS:
1169 case ELF::SHF_INFO_LINK:
1170 case ELF::SHF_LINK_ORDER:
1171 case ELF::SHF_OS_NONCONFORMING:
1172 case ELF::SHF_GROUP:
1173 case ELF::SHF_TLS:
1174 case ELF::SHF_EXCLUDE:
1175 Str += Entry.AltName;
1176 break;
1177 default:
1178 if (Flag & ELF::SHF_MASKOS)
1179 Str += "o";
1180 else if (Flag & ELF::SHF_MASKPROC)
1181 Str += "p";
1182 else if (Flag)
1183 Str += "x";
1184 }
1185 }
1186 return Str;
1187}
1188
1189static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1190 // Check potentially overlapped processor-specific
1191 // program header type.
1192 switch (Arch) {
1193 case ELF::EM_ARM:
1194 switch (Type) {
1195 LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX)case ELF::PT_ARM_EXIDX: return "PT_ARM_EXIDX";;
1196 }
1197 break;
1198 case ELF::EM_MIPS:
1199 case ELF::EM_MIPS_RS3_LE:
1200 switch (Type) {
1201 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO)case ELF::PT_MIPS_REGINFO: return "PT_MIPS_REGINFO";;
1202 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC)case ELF::PT_MIPS_RTPROC: return "PT_MIPS_RTPROC";;
1203 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS)case ELF::PT_MIPS_OPTIONS: return "PT_MIPS_OPTIONS";;
1204 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS)case ELF::PT_MIPS_ABIFLAGS: return "PT_MIPS_ABIFLAGS";;
1205 }
1206 break;
1207 }
1208
1209 switch (Type) {
1210 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL )case ELF::PT_NULL: return "PT_NULL";;
1211 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD )case ELF::PT_LOAD: return "PT_LOAD";;
1212 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC)case ELF::PT_DYNAMIC: return "PT_DYNAMIC";;
1213 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP )case ELF::PT_INTERP: return "PT_INTERP";;
1214 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE )case ELF::PT_NOTE: return "PT_NOTE";;
1215 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB )case ELF::PT_SHLIB: return "PT_SHLIB";;
1216 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR )case ELF::PT_PHDR: return "PT_PHDR";;
1217 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS )case ELF::PT_TLS: return "PT_TLS";;
1218
1219 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME)case ELF::PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";;
1220 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND)case ELF::PT_SUNW_UNWIND: return "PT_SUNW_UNWIND";;
1221
1222 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK)case ELF::PT_GNU_STACK: return "PT_GNU_STACK";;
1223 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO)case ELF::PT_GNU_RELRO: return "PT_GNU_RELRO";;
1224
1225 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE)case ELF::PT_OPENBSD_RANDOMIZE: return "PT_OPENBSD_RANDOMIZE"
;
;
1226 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED)case ELF::PT_OPENBSD_WXNEEDED: return "PT_OPENBSD_WXNEEDED";;
1227 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA)case ELF::PT_OPENBSD_BOOTDATA: return "PT_OPENBSD_BOOTDATA";;
1228
1229 default: return "";
1230 }
1231}
1232
1233static std::string getElfPtType(unsigned Arch, unsigned Type) {
1234 switch (Type) {
1235 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)case ELF::PT_NULL: return std::string("PT_NULL").substr(3);
1236 LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)case ELF::PT_LOAD: return std::string("PT_LOAD").substr(3);
1237 LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)case ELF::PT_DYNAMIC: return std::string("PT_DYNAMIC").substr
(3);
1238 LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)case ELF::PT_INTERP: return std::string("PT_INTERP").substr(3
);
1239 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)case ELF::PT_NOTE: return std::string("PT_NOTE").substr(3);
1240 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)case ELF::PT_SHLIB: return std::string("PT_SHLIB").substr(3);
1241 LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)case ELF::PT_PHDR: return std::string("PT_PHDR").substr(3);
1242 LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)case ELF::PT_TLS: return std::string("PT_TLS").substr(3);
1243 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)case ELF::PT_GNU_EH_FRAME: return std::string("PT_GNU_EH_FRAME"
).substr(3);
1244 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)case ELF::PT_SUNW_UNWIND: return std::string("PT_SUNW_UNWIND"
).substr(3);
1245 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)case ELF::PT_GNU_STACK: return std::string("PT_GNU_STACK").substr
(3);
1246 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)case ELF::PT_GNU_RELRO: return std::string("PT_GNU_RELRO").substr
(3);
1247 default:
1248 // All machine specific PT_* types
1249 switch (Arch) {
1250 case ELF::EM_ARM:
1251 if (Type == ELF::PT_ARM_EXIDX)
1252 return "EXIDX";
1253 break;
1254 case ELF::EM_MIPS:
1255 case ELF::EM_MIPS_RS3_LE:
1256 switch (Type) {
1257 case PT_MIPS_REGINFO:
1258 return "REGINFO";
1259 case PT_MIPS_RTPROC:
1260 return "RTPROC";
1261 case PT_MIPS_OPTIONS:
1262 return "OPTIONS";
1263 case PT_MIPS_ABIFLAGS:
1264 return "ABIFLAGS";
1265 }
1266 break;
1267 }
1268 }
1269 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1270}
1271
1272static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1273 LLVM_READOBJ_ENUM_ENT(ELF, PF_X){ "PF_X", ELF::PF_X },
1274 LLVM_READOBJ_ENUM_ENT(ELF, PF_W){ "PF_W", ELF::PF_W },
1275 LLVM_READOBJ_ENUM_ENT(ELF, PF_R){ "PF_R", ELF::PF_R }
1276};
1277
1278static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1279 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"){ "EF_MIPS_NOREORDER", "noreorder", ELF::EF_MIPS_NOREORDER },
1280 ENUM_ENT(EF_MIPS_PIC, "pic"){ "EF_MIPS_PIC", "pic", ELF::EF_MIPS_PIC },
1281 ENUM_ENT(EF_MIPS_CPIC, "cpic"){ "EF_MIPS_CPIC", "cpic", ELF::EF_MIPS_CPIC },
1282 ENUM_ENT(EF_MIPS_ABI2, "abi2"){ "EF_MIPS_ABI2", "abi2", ELF::EF_MIPS_ABI2 },
1283 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"){ "EF_MIPS_32BITMODE", "32bitmode", ELF::EF_MIPS_32BITMODE },
1284 ENUM_ENT(EF_MIPS_FP64, "fp64"){ "EF_MIPS_FP64", "fp64", ELF::EF_MIPS_FP64 },
1285 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"){ "EF_MIPS_NAN2008", "nan2008", ELF::EF_MIPS_NAN2008 },
1286 ENUM_ENT(EF_MIPS_ABI_O32, "o32"){ "EF_MIPS_ABI_O32", "o32", ELF::EF_MIPS_ABI_O32 },
1287 ENUM_ENT(EF_MIPS_ABI_O64, "o64"){ "EF_MIPS_ABI_O64", "o64", ELF::EF_MIPS_ABI_O64 },
1288 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"){ "EF_MIPS_ABI_EABI32", "eabi32", ELF::EF_MIPS_ABI_EABI32 },
1289 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"){ "EF_MIPS_ABI_EABI64", "eabi64", ELF::EF_MIPS_ABI_EABI64 },
1290 ENUM_ENT(EF_MIPS_MACH_3900, "3900"){ "EF_MIPS_MACH_3900", "3900", ELF::EF_MIPS_MACH_3900 },
1291 ENUM_ENT(EF_MIPS_MACH_4010, "4010"){ "EF_MIPS_MACH_4010", "4010", ELF::EF_MIPS_MACH_4010 },
1292 ENUM_ENT(EF_MIPS_MACH_4100, "4100"){ "EF_MIPS_MACH_4100", "4100", ELF::EF_MIPS_MACH_4100 },
1293 ENUM_ENT(EF_MIPS_MACH_4650, "4650"){ "EF_MIPS_MACH_4650", "4650", ELF::EF_MIPS_MACH_4650 },
1294 ENUM_ENT(EF_MIPS_MACH_4120, "4120"){ "EF_MIPS_MACH_4120", "4120", ELF::EF_MIPS_MACH_4120 },
1295 ENUM_ENT(EF_MIPS_MACH_4111, "4111"){ "EF_MIPS_MACH_4111", "4111", ELF::EF_MIPS_MACH_4111 },
1296 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"){ "EF_MIPS_MACH_SB1", "sb1", ELF::EF_MIPS_MACH_SB1 },
1297 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"){ "EF_MIPS_MACH_OCTEON", "octeon", ELF::EF_MIPS_MACH_OCTEON },
1298 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"){ "EF_MIPS_MACH_XLR", "xlr", ELF::EF_MIPS_MACH_XLR },
1299 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"){ "EF_MIPS_MACH_OCTEON2", "octeon2", ELF::EF_MIPS_MACH_OCTEON2
}
,
1300 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"){ "EF_MIPS_MACH_OCTEON3", "octeon3", ELF::EF_MIPS_MACH_OCTEON3
}
,
1301 ENUM_ENT(EF_MIPS_MACH_5400, "5400"){ "EF_MIPS_MACH_5400", "5400", ELF::EF_MIPS_MACH_5400 },
1302 ENUM_ENT(EF_MIPS_MACH_5900, "5900"){ "EF_MIPS_MACH_5900", "5900", ELF::EF_MIPS_MACH_5900 },
1303 ENUM_ENT(EF_MIPS_MACH_5500, "5500"){ "EF_MIPS_MACH_5500", "5500", ELF::EF_MIPS_MACH_5500 },
1304 ENUM_ENT(EF_MIPS_MACH_9000, "9000"){ "EF_MIPS_MACH_9000", "9000", ELF::EF_MIPS_MACH_9000 },
1305 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"){ "EF_MIPS_MACH_LS2E", "loongson-2e", ELF::EF_MIPS_MACH_LS2E },
1306 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"){ "EF_MIPS_MACH_LS2F", "loongson-2f", ELF::EF_MIPS_MACH_LS2F },
1307 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"){ "EF_MIPS_MACH_LS3A", "loongson-3a", ELF::EF_MIPS_MACH_LS3A },
1308 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"){ "EF_MIPS_MICROMIPS", "micromips", ELF::EF_MIPS_MICROMIPS },
1309 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"){ "EF_MIPS_ARCH_ASE_M16", "mips16", ELF::EF_MIPS_ARCH_ASE_M16
}
,
1310 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"){ "EF_MIPS_ARCH_ASE_MDMX", "mdmx", ELF::EF_MIPS_ARCH_ASE_MDMX
}
,
1311 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"){ "EF_MIPS_ARCH_1", "mips1", ELF::EF_MIPS_ARCH_1 },
1312 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"){ "EF_MIPS_ARCH_2", "mips2", ELF::EF_MIPS_ARCH_2 },
1313 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"){ "EF_MIPS_ARCH_3", "mips3", ELF::EF_MIPS_ARCH_3 },
1314 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"){ "EF_MIPS_ARCH_4", "mips4", ELF::EF_MIPS_ARCH_4 },
1315 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"){ "EF_MIPS_ARCH_5", "mips5", ELF::EF_MIPS_ARCH_5 },
1316 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"){ "EF_MIPS_ARCH_32", "mips32", ELF::EF_MIPS_ARCH_32 },
1317 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"){ "EF_MIPS_ARCH_64", "mips64", ELF::EF_MIPS_ARCH_64 },
1318 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"){ "EF_MIPS_ARCH_32R2", "mips32r2", ELF::EF_MIPS_ARCH_32R2 },
1319 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"){ "EF_MIPS_ARCH_64R2", "mips64r2", ELF::EF_MIPS_ARCH_64R2 },
1320 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"){ "EF_MIPS_ARCH_32R6", "mips32r6", ELF::EF_MIPS_ARCH_32R6 },
1321 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6"){ "EF_MIPS_ARCH_64R6", "mips64r6", ELF::EF_MIPS_ARCH_64R6 }
1322};
1323
1324static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1325 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1326 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1327 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1328 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1329 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1330 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1331 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1332 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1333 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1334 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1335 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1336 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1337 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1338 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1339 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1340 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1341 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1342 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1343 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1344 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1345 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1346 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1347 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1348 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1349 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1350 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1351 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1352 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1353 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1354 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1355 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1356 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1357 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1358 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK){ "EF_AMDGPU_XNACK", ELF::EF_AMDGPU_XNACK }
1359};
1360
1361static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1362 ENUM_ENT(EF_RISCV_RVC, "RVC"){ "EF_RISCV_RVC", "RVC", ELF::EF_RISCV_RVC },
1363 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"){ "EF_RISCV_FLOAT_ABI_SINGLE", "single-float ABI", ELF::EF_RISCV_FLOAT_ABI_SINGLE
}
,
1364 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"){ "EF_RISCV_FLOAT_ABI_DOUBLE", "double-float ABI", ELF::EF_RISCV_FLOAT_ABI_DOUBLE
}
,
1365 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"){ "EF_RISCV_FLOAT_ABI_QUAD", "quad-float ABI", ELF::EF_RISCV_FLOAT_ABI_QUAD
}
,
1366 ENUM_ENT(EF_RISCV_RVE, "RVE"){ "EF_RISCV_RVE", "RVE", ELF::EF_RISCV_RVE }
1367};
1368
1369static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1370 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL){ "STV_INTERNAL", ELF::STV_INTERNAL },
1371 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN){ "STV_HIDDEN", ELF::STV_HIDDEN },
1372 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED){ "STV_PROTECTED", ELF::STV_PROTECTED }
1373};
1374
1375static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1376 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1377 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1378 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC){ "STO_MIPS_PIC", ELF::STO_MIPS_PIC },
1379 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS){ "STO_MIPS_MICROMIPS", ELF::STO_MIPS_MICROMIPS }
1380};
1381
1382static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1383 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1384 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1385 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16){ "STO_MIPS_MIPS16", ELF::STO_MIPS_MIPS16 }
1386};
1387
1388static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1389 switch (Odk) {
1390 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL)case ELF::ODK_NULL: return "ODK_NULL";;
1391 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO)case ELF::ODK_REGINFO: return "ODK_REGINFO";;
1392 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS)case ELF::ODK_EXCEPTIONS: return "ODK_EXCEPTIONS";;
1393 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD)case ELF::ODK_PAD: return "ODK_PAD";;
1394 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH)case ELF::ODK_HWPATCH: return "ODK_HWPATCH";;
1395 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL)case ELF::ODK_FILL: return "ODK_FILL";;
1396 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS)case ELF::ODK_TAGS: return "ODK_TAGS";;
1397 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND)case ELF::ODK_HWAND: return "ODK_HWAND";;
1398 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR)case ELF::ODK_HWOR: return "ODK_HWOR";;
1399 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP)case ELF::ODK_GP_GROUP: return "ODK_GP_GROUP";;
1400 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT)case ELF::ODK_IDENT: return "ODK_IDENT";;
1401 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE)case ELF::ODK_PAGESIZE: return "ODK_PAGESIZE";;
1402 default:
1403 return "Unknown";
1404 }
1405}
1406
1407template <typename ELFT>
1408ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer)
1409 : ObjDumper(Writer), Obj(Obj) {
1410 SmallVector<const Elf_Phdr *, 4> LoadSegments;
1411 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
1412 if (Phdr.p_type == ELF::PT_DYNAMIC) {
1413 DynamicTable = createDRIFrom(&Phdr, sizeof(Elf_Dyn));
1414 continue;
1415 }
1416 if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
1417 continue;
1418 LoadSegments.push_back(&Phdr);
1419 }
1420
1421 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
1422 switch (Sec.sh_type) {
1423 case ELF::SHT_SYMTAB:
1424 if (DotSymtabSec != nullptr)
1425 reportError("Multiple SHT_SYMTAB");
1426 DotSymtabSec = &Sec;
1427 break;
1428 case ELF::SHT_DYNSYM:
1429 if (DynSymRegion.Size)
1430 reportError("Multiple SHT_DYNSYM");
1431 DynSymRegion = createDRIFrom(&Sec);
1432 // This is only used (if Elf_Shdr present)for naming section in GNU style
1433 DynSymtabName = unwrapOrError(Obj->getSectionName(&Sec));
1434 DynamicStringTable = unwrapOrError(Obj->getStringTableForSymtab(Sec));
1435 break;
1436 case ELF::SHT_SYMTAB_SHNDX:
1437 ShndxTable = unwrapOrError(Obj->getSHNDXTable(Sec));
1438 break;
1439 case ELF::SHT_GNU_versym:
1440 if (dot_gnu_version_sec != nullptr)
1441 reportError("Multiple SHT_GNU_versym");
1442 dot_gnu_version_sec = &Sec;
1443 break;
1444 case ELF::SHT_GNU_verdef:
1445 if (dot_gnu_version_d_sec != nullptr)
1446 reportError("Multiple SHT_GNU_verdef");
1447 dot_gnu_version_d_sec = &Sec;
1448 break;
1449 case ELF::SHT_GNU_verneed:
1450 if (dot_gnu_version_r_sec != nullptr)
1451 reportError("Multiple SHT_GNU_verneed");
1452 dot_gnu_version_r_sec = &Sec;
1453 break;
1454 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1455 if (DotCGProfileSec != nullptr)
1456 reportError("Multiple .llvm.call-graph-profile");
1457 DotCGProfileSec = &Sec;
1458 break;
1459 case ELF::SHT_LLVM_ADDRSIG:
1460 if (DotAddrsigSec != nullptr)
1461 reportError("Multiple .llvm_addrsig");
1462 DotAddrsigSec = &Sec;
1463 break;
1464 }
1465 }
1466
1467 parseDynamicTable(LoadSegments);
1468
1469 if (opts::Output == opts::GNU)
1470 ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
1471 else
1472 ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
1473}
1474
1475template <typename ELFT>
1476void ELFDumper<ELFT>::parseDynamicTable(
1477 ArrayRef<const Elf_Phdr *> LoadSegments) {
1478 auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
1479 const Elf_Phdr *const *I =
1480 std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
1481 [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
1482 return VAddr < Phdr->p_vaddr;
1483 });
1484 if (I == LoadSegments.begin())
1485 report_fatal_error("Virtual address is not in any segment");
1486 --I;
1487 const Elf_Phdr &Phdr = **I;
1488 uint64_t Delta = VAddr - Phdr.p_vaddr;
1489 if (Delta >= Phdr.p_filesz)
1490 report_fatal_error("Virtual address is not in any segment");
1491 return Obj->base() + Phdr.p_offset + Delta;
1492 };
1493
1494 uint64_t SONameOffset = 0;
1495 const char *StringTableBegin = nullptr;
1496 uint64_t StringTableSize = 0;
1497 for (const Elf_Dyn &Dyn : dynamic_table()) {
1498 switch (Dyn.d_tag) {
1499 case ELF::DT_HASH:
1500 HashTable =
1501 reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
1502 break;
1503 case ELF::DT_GNU_HASH:
1504 GnuHashTable =
1505 reinterpret_cast<const Elf_GnuHash *>(toMappedAddr(Dyn.getPtr()));
1506 break;
1507 case ELF::DT_STRTAB:
1508 StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
1509 break;
1510 case ELF::DT_STRSZ:
1511 StringTableSize = Dyn.getVal();
1512 break;
1513 case ELF::DT_SYMTAB:
1514 DynSymRegion.Addr = toMappedAddr(Dyn.getPtr());
1515 DynSymRegion.EntSize = sizeof(Elf_Sym);
1516 break;
1517 case ELF::DT_RELA:
1518 DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
1519 break;
1520 case ELF::DT_RELASZ:
1521 DynRelaRegion.Size = Dyn.getVal();
1522 break;
1523 case ELF::DT_RELAENT:
1524 DynRelaRegion.EntSize = Dyn.getVal();
1525 break;
1526 case ELF::DT_SONAME:
1527 SONameOffset = Dyn.getVal();
1528 break;
1529 case ELF::DT_REL:
1530 DynRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1531 break;
1532 case ELF::DT_RELSZ:
1533 DynRelRegion.Size = Dyn.getVal();
1534 break;
1535 case ELF::DT_RELENT:
1536 DynRelRegion.EntSize = Dyn.getVal();
1537 break;
1538 case ELF::DT_RELR:
1539 case ELF::DT_ANDROID_RELR:
1540 DynRelrRegion.Addr = toMappedAddr(Dyn.getPtr());
1541 break;
1542 case ELF::DT_RELRSZ:
1543 case ELF::DT_ANDROID_RELRSZ:
1544 DynRelrRegion.Size = Dyn.getVal();
1545 break;
1546 case ELF::DT_RELRENT:
1547 case ELF::DT_ANDROID_RELRENT:
1548 DynRelrRegion.EntSize = Dyn.getVal();
1549 break;
1550 case ELF::DT_PLTREL:
1551 if (Dyn.getVal() == DT_REL)
1552 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1553 else if (Dyn.getVal() == DT_RELA)
1554 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1555 else
1556 reportError(Twine("unknown DT_PLTREL value of ") +
1557 Twine((uint64_t)Dyn.getVal()));
1558 break;
1559 case ELF::DT_JMPREL:
1560 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1561 break;
1562 case ELF::DT_PLTRELSZ:
1563 DynPLTRelRegion.Size = Dyn.getVal();
1564 break;
1565 }
1566 }
1567 if (StringTableBegin)
1568 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1569 if (SONameOffset)
1570 SOName = getDynamicString(SONameOffset);
1571}
1572
1573template <typename ELFT>
1574typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
1575 return DynRelRegion.getAsArrayRef<Elf_Rel>();
1576}
1577
1578template <typename ELFT>
1579typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
1580 return DynRelaRegion.getAsArrayRef<Elf_Rela>();
1581}
1582
1583template <typename ELFT>
1584typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
1585 return DynRelrRegion.getAsArrayRef<Elf_Relr>();
1586}
1587
1588template<class ELFT>
1589void ELFDumper<ELFT>::printFileHeaders() {
1590 ELFDumperStyle->printFileHeaders(Obj);
1591}
1592
1593template<class ELFT>
1594void ELFDumper<ELFT>::printSections() {
1595 ELFDumperStyle->printSections(Obj);
1596}
1597
1598template<class ELFT>
1599void ELFDumper<ELFT>::printRelocations() {
1600 ELFDumperStyle->printRelocations(Obj);
1601}
1602
1603template <class ELFT> void ELFDumper<ELFT>::printProgramHeaders() {
1604 ELFDumperStyle->printProgramHeaders(Obj);
1605}
1606
1607template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
1608 ELFDumperStyle->printDynamicRelocations(Obj);
1609}
1610
1611template<class ELFT>
1612void ELFDumper<ELFT>::printSymbols() {
1613 ELFDumperStyle->printSymbols(Obj);
1614}
1615
1616template<class ELFT>
1617void ELFDumper<ELFT>::printDynamicSymbols() {
1618 ELFDumperStyle->printDynamicSymbols(Obj);
1619}
1620
1621template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
1622 ELFDumperStyle->printHashHistogram(Obj);
1623}
1624
1625template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
1626 ELFDumperStyle->printCGProfile(Obj);
1627}
1628
1629template <class ELFT> void ELFDumper<ELFT>::printNotes() {
1630 ELFDumperStyle->printNotes(Obj);
1631}
1632
1633template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
1634 ELFDumperStyle->printELFLinkerOptions(Obj);
1635}
1636
1637static const char *getTypeString(unsigned Arch, uint64_t Type) {
1638#define DYNAMIC_TAG(n, v)
1639 switch (Arch) {
1640 case EM_HEXAGON:
1641 switch (Type) {
1642#define HEXAGON_DYNAMIC_TAG(name, value) \
1643 case DT_##name: \
1644 return #name;
1645#include "llvm/BinaryFormat/DynamicTags.def"
1646#undef HEXAGON_DYNAMIC_TAG
1647 }
1648 break;
1649
1650 case EM_MIPS:
1651 switch (Type) {
1652#define MIPS_DYNAMIC_TAG(name, value) \
1653 case DT_##name: \
1654 return #name;
1655#include "llvm/BinaryFormat/DynamicTags.def"
1656#undef MIPS_DYNAMIC_TAG
1657 }
1658 break;
1659
1660 case EM_PPC64:
1661 switch(Type) {
1662#define PPC64_DYNAMIC_TAG(name, value) \
1663 case DT_##name: \
1664 return #name;
1665#include "llvm/BinaryFormat/DynamicTags.def"
1666#undef PPC64_DYNAMIC_TAG
1667 }
1668 break;
1669 }
1670#undef DYNAMIC_TAG
1671 switch (Type) {
1672// Now handle all dynamic tags except the architecture specific ones
1673#define MIPS_DYNAMIC_TAG(name, value)
1674#define HEXAGON_DYNAMIC_TAG(name, value)
1675#define PPC64_DYNAMIC_TAG(name, value)
1676// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1677#define DYNAMIC_TAG_MARKER(name, value)
1678#define DYNAMIC_TAG(name, value) \
1679 case DT_##name: \
1680 return #name;
1681#include "llvm/BinaryFormat/DynamicTags.def"
1682#undef DYNAMIC_TAG
1683#undef MIPS_DYNAMIC_TAG
1684#undef HEXAGON_DYNAMIC_TAG
1685#undef PPC64_DYNAMIC_TAG
1686#undef DYNAMIC_TAG_MARKER
1687 default: return "unknown";
1688 }
1689}
1690
1691#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1692 { #enum, prefix##_##enum }
1693
1694static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1695 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1696 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1697 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1698 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1699 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1700};
1701
1702static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1703 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1704 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1705 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1706 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1707 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1708 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1709 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1710 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1711 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1712 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1713 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1714 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1715 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1716 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1717 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1718 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1719 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1720 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1721 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1722 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1723 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1724 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1725 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1726 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1727 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1728};
1729
1730static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1731 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1732 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1733 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1734 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1735 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1736 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1737 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1738 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1739 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1740 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1741 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1742 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1743 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1744 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1745 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1746 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1747};
1748
1749#undef LLVM_READOBJ_DT_FLAG_ENT
1750
1751template <typename T, typename TFlag>
1752void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1753 using FlagEntry = EnumEntry<TFlag>;
1754 using FlagVector = SmallVector<FlagEntry, 10>;
1755 FlagVector SetFlags;
1756
1757 for (const auto &Flag : Flags) {
1758 if (Flag.Value == 0)
1759 continue;
1760
1761 if ((Value & Flag.Value) == Flag.Value)
1762 SetFlags.push_back(Flag);
1763 }
1764
1765 for (const auto &Flag : SetFlags) {
1766 OS << Flag.Name << " ";
1767 }
1768}
1769
1770template <class ELFT>
1771StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
1772 if (Value >= DynamicStringTable.size())
1773 reportError("Invalid dynamic string table reference");
1774 return StringRef(DynamicStringTable.data() + Value);
1775}
1776
1777static void printLibrary(raw_ostream &OS, const Twine &Tag, const Twine &Name) {
1778 OS << Tag << ": [" << Name << "]";
1779}
1780
1781template <class ELFT>
1782void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
1783 raw_ostream &OS = W.getOStream();
1784 const char* ConvChar = (opts::Output == opts::GNU) ? "0x%" PRIx64"l" "x" : "0x%" PRIX64"l" "X";
1785 switch (Type) {
1786 case DT_PLTREL:
1787 if (Value == DT_REL) {
1788 OS << "REL";
1789 break;
1790 } else if (Value == DT_RELA) {
1791 OS << "RELA";
1792 break;
1793 }
1794 LLVM_FALLTHROUGH[[clang::fallthrough]];
1795 case DT_PLTGOT:
1796 case DT_HASH:
1797 case DT_STRTAB:
1798 case DT_SYMTAB:
1799 case DT_RELA:
1800 case DT_INIT:
1801 case DT_FINI:
1802 case DT_REL:
1803 case DT_JMPREL:
1804 case DT_INIT_ARRAY:
1805 case DT_FINI_ARRAY:
1806 case DT_PREINIT_ARRAY:
1807 case DT_DEBUG:
1808 case DT_VERDEF:
1809 case DT_VERNEED:
1810 case DT_VERSYM:
1811 case DT_GNU_HASH:
1812 case DT_NULL:
1813 case DT_MIPS_BASE_ADDRESS:
1814 case DT_MIPS_GOTSYM:
1815 case DT_MIPS_RLD_MAP:
1816 case DT_MIPS_RLD_MAP_REL:
1817 case DT_MIPS_PLTGOT:
1818 case DT_MIPS_OPTIONS:
1819 OS << format(ConvChar, Value);
1820 break;
1821 case DT_RELACOUNT:
1822 case DT_RELCOUNT:
1823 case DT_VERDEFNUM:
1824 case DT_VERNEEDNUM:
1825 case DT_MIPS_RLD_VERSION:
1826 case DT_MIPS_LOCAL_GOTNO:
1827 case DT_MIPS_SYMTABNO:
1828 case DT_MIPS_UNREFEXTNO:
1829 OS << Value;
1830 break;
1831 case DT_PLTRELSZ:
1832 case DT_RELASZ:
1833 case DT_RELAENT:
1834 case DT_STRSZ:
1835 case DT_SYMENT:
1836 case DT_RELSZ:
1837 case DT_RELENT:
1838 case DT_INIT_ARRAYSZ:
1839 case DT_FINI_ARRAYSZ:
1840 case DT_PREINIT_ARRAYSZ:
1841 case DT_ANDROID_RELSZ:
1842 case DT_ANDROID_RELASZ:
1843 OS << Value << " (bytes)";
1844 break;
1845 case DT_NEEDED:
1846 printLibrary(OS, "Shared library", getDynamicString(Value));
1847 break;
1848 case DT_SONAME:
1849 printLibrary(OS, "Library soname", getDynamicString(Value));
1850 break;
1851 case DT_AUXILIARY:
1852 printLibrary(OS, "Auxiliary library", getDynamicString(Value));
1853 break;
1854 case DT_FILTER:
1855 printLibrary(OS, "Filter library", getDynamicString(Value));
1856 break;
1857 case DT_RPATH:
1858 case DT_RUNPATH:
1859 OS << getDynamicString(Value);
1860 break;
1861 case DT_MIPS_FLAGS:
1862 printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
1863 break;
1864 case DT_FLAGS:
1865 printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
1866 break;
1867 case DT_FLAGS_1:
1868 printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
1869 break;
1870 default:
1871 OS << format(ConvChar, Value);
1872 break;
1873 }
1874}
1875
1876template<class ELFT>
1877void ELFDumper<ELFT>::printUnwindInfo() {
1878 const unsigned Machine = Obj->getHeader()->e_machine;
1879 if (Machine == EM_386 || Machine == EM_X86_64) {
1
Assuming 'Machine' is equal to EM_386
1880 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, Obj);
1881 return Ctx.printUnwindInformation();
2
Calling 'PrinterContext::printUnwindInformation'
1882 }
1883 W.startLine() << "UnwindInfo not implemented.\n";
1884}
1885
1886namespace {
1887
1888template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
1889 const unsigned Machine = Obj->getHeader()->e_machine;
1890 if (Machine == EM_ARM) {
1891 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, DotSymtabSec);
1892 return Ctx.PrintUnwindInformation();
1893 }
1894 W.startLine() << "UnwindInfo not implemented.\n";
1895}
1896
1897} // end anonymous namespace
1898
1899template<class ELFT>
1900void ELFDumper<ELFT>::printDynamicTable() {
1901 auto I = dynamic_table().begin();
1902 auto E = dynamic_table().end();
1903
1904 if (I == E)
1905 return;
1906
1907 --E;
1908 while (I != E && E->getTag() == ELF::DT_NULL)
1909 --E;
1910 if (E->getTag() != ELF::DT_NULL)
1911 ++E;
1912 ++E;
1913
1914 ptrdiff_t Total = std::distance(I, E);
1915 if (Total == 0)
1916 return;
1917
1918 raw_ostream &OS = W.getOStream();
1919 W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
1920
1921 bool Is64 = ELFT::Is64Bits;
1922
1923 W.startLine()
1924 << " Tag" << (Is64 ? " " : " ") << "Type"
1925 << " " << "Name/Value\n";
1926 while (I != E) {
1927 const Elf_Dyn &Entry = *I;
1928 uintX_t Tag = Entry.getTag();
1929 ++I;
1930 W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, opts::Output != opts::GNU) << " "
1931 << format("%-21s", getTypeString(Obj->getHeader()->e_machine, Tag));
1932 printValue(Tag, Entry.getVal());
1933 OS << "\n";
1934 }
1935
1936 W.startLine() << "]\n";
1937}
1938
1939template<class ELFT>
1940void ELFDumper<ELFT>::printNeededLibraries() {
1941 ListScope D(W, "NeededLibraries");
1942
1943 using LibsTy = std::vector<StringRef>;
1944 LibsTy Libs;
1945
1946 for (const auto &Entry : dynamic_table())
1947 if (Entry.d_tag == ELF::DT_NEEDED)
1948 Libs.push_back(getDynamicString(Entry.d_un.d_val));
1949
1950 std::stable_sort(Libs.begin(), Libs.end());
1951
1952 for (const auto &L : Libs)
1953 W.startLine() << L << "\n";
1954}
1955
1956
1957template <typename ELFT>
1958void ELFDumper<ELFT>::printHashTable() {
1959 DictScope D(W, "HashTable");
1960 if (!HashTable)
1961 return;
1962 W.printNumber("Num Buckets", HashTable->nbucket);
1963 W.printNumber("Num Chains", HashTable->nchain);
1964 W.printList("Buckets", HashTable->buckets());
1965 W.printList("Chains", HashTable->chains());
1966}
1967
1968template <typename ELFT>
1969void ELFDumper<ELFT>::printGnuHashTable() {
1970 DictScope D(W, "GnuHashTable");
1971 if (!GnuHashTable)
1972 return;
1973 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
1974 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
1975 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
1976 W.printNumber("Shift Count", GnuHashTable->shift2);
1977 W.printHexList("Bloom Filter", GnuHashTable->filter());
1978 W.printList("Buckets", GnuHashTable->buckets());
1979 Elf_Sym_Range Syms = dynamic_symbols();
1980 unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
1981 if (!NumSyms)
1982 reportError("No dynamic symbol section");
1983 W.printHexList("Values", GnuHashTable->values(NumSyms));
1984}
1985
1986template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
1987 W.printString("LoadName", SOName);
1988}
1989
1990template <class ELFT>
1991void ELFDumper<ELFT>::printAttributes() {
1992 W.startLine() << "Attributes not implemented.\n";
1993}
1994
1995namespace {
1996
1997template <> void ELFDumper<ELF32LE>::printAttributes() {
1998 if (Obj->getHeader()->e_machine != EM_ARM) {
1999 W.startLine() << "Attributes not implemented.\n";
2000 return;
2001 }
2002
2003 DictScope BA(W, "BuildAttributes");
2004 for (const ELFO::Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2005 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
2006 continue;
2007
2008 ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Sec));
2009 if (Contents[0] != ARMBuildAttrs::Format_Version) {
2010 errs() << "unrecognised FormatVersion: 0x"
2011 << Twine::utohexstr(Contents[0]) << '\n';
2012 continue;
2013 }
2014
2015 W.printHex("FormatVersion", Contents[0]);
2016 if (Contents.size() == 1)
2017 continue;
2018
2019 ARMAttributeParser(&W).Parse(Contents, true);
2020 }
2021}
2022
2023template <class ELFT> class MipsGOTParser {
2024public:
2025 TYPEDEF_ELF_TYPES(ELFT)using ELFO = ELFFile<ELFT>; using Elf_Addr = typename ELFT
::Addr; using Elf_Shdr = typename ELFT::Shdr; using Elf_Sym =
typename ELFT::Sym; using Elf_Dyn = typename ELFT::Dyn; using
Elf_Dyn_Range = typename ELFT::DynRange; using Elf_Rel = typename
ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using Elf_Relr
= typename ELFT::Relr; using Elf_Rel_Range = typename ELFT::
RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr = typename
ELFT::Phdr; using Elf_Half = typename ELFT::Half; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Word = typename ELFT::Word;
using Elf_Hash = typename ELFT::Hash; using Elf_GnuHash = typename
ELFT::GnuHash; using Elf_Note = typename ELFT::Note; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Versym = typename ELFT::
Versym; using Elf_Verneed = typename ELFT::Verneed; using Elf_Vernaux
= typename ELFT::Vernaux; using Elf_Verdef = typename ELFT::
Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_CGProfile
= typename ELFT::CGProfile; using uintX_t = typename ELFT::uint
;
2026 using Entry = typename ELFO::Elf_Addr;
2027 using Entries = ArrayRef<Entry>;
2028
2029 const bool IsStatic;
2030 const ELFO * const Obj;
2031
2032 MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2033
2034 bool hasGot() const { return !GotEntries.empty(); }
2035 bool hasPlt() const { return !PltEntries.empty(); }
2036
2037 uint64_t getGp() const;
2038
2039 const Entry *getGotLazyResolver() const;
2040 const Entry *getGotModulePointer() const;
2041 const Entry *getPltLazyResolver() const;
2042 const Entry *getPltModulePointer() const;
2043
2044 Entries getLocalEntries() const;
2045 Entries getGlobalEntries() const;
2046 Entries getOtherEntries() const;
2047 Entries getPltEntries() const;
2048
2049 uint64_t getGotAddress(const Entry * E) const;
2050 int64_t getGotOffset(const Entry * E) const;
2051 const Elf_Sym *getGotSym(const Entry *E) const;
2052
2053 uint64_t getPltAddress(const Entry * E) const;
2054 const Elf_Sym *getPltSym(const Entry *E) const;
2055
2056 StringRef getPltStrTable() const { return PltStrTable; }
2057
2058private:
2059 const Elf_Shdr *GotSec;
2060 size_t LocalNum;
2061 size_t GlobalNum;
2062
2063 const Elf_Shdr *PltSec;
2064 const Elf_Shdr *PltRelSec;
2065 const Elf_Shdr *PltSymTable;
2066 Elf_Sym_Range GotDynSyms;
2067 StringRef PltStrTable;
2068
2069 Entries GotEntries;
2070 Entries PltEntries;
2071};
2072
2073} // end anonymous namespace
2074
2075template <class ELFT>
2076MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable,
2077 Elf_Sym_Range DynSyms)
2078 : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
2079 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr) {
2080 // See "Global Offset Table" in Chapter 5 in the following document
2081 // for detailed GOT description.
2082 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2083
2084 // Find static GOT secton.
2085 if (IsStatic) {
2086 GotSec = findSectionByName(*Obj, ".got");
2087 if (!GotSec)
2088 reportError("Cannot find .got section");
2089
2090 ArrayRef<uint8_t> Content = unwrapOrError(Obj->getSectionContents(GotSec));
2091 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2092 Content.size() / sizeof(Entry));
2093 LocalNum = GotEntries.size();
2094 return;
2095 }
2096
2097 // Lookup dynamic table tags which define GOT/PLT layouts.
2098 Optional<uint64_t> DtPltGot;
2099 Optional<uint64_t> DtLocalGotNum;
2100 Optional<uint64_t> DtGotSym;
2101 Optional<uint64_t> DtMipsPltGot;
2102 Optional<uint64_t> DtJmpRel;
2103 for (const auto &Entry : DynTable) {
2104 switch (Entry.getTag()) {
2105 case ELF::DT_PLTGOT:
2106 DtPltGot = Entry.getVal();
2107 break;
2108 case ELF::DT_MIPS_LOCAL_GOTNO:
2109 DtLocalGotNum = Entry.getVal();
2110 break;
2111 case ELF::DT_MIPS_GOTSYM:
2112 DtGotSym = Entry.getVal();
2113 break;
2114 case ELF::DT_MIPS_PLTGOT:
2115 DtMipsPltGot = Entry.getVal();
2116 break;
2117 case ELF::DT_JMPREL:
2118 DtJmpRel = Entry.getVal();
2119 break;
2120 }
2121 }
2122
2123 // Find dynamic GOT section.
2124 if (DtPltGot || DtLocalGotNum || DtGotSym) {
2125 if (!DtPltGot)
2126 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2127 if (!DtLocalGotNum)
2128 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2129 if (!DtGotSym)
2130 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2131
2132 size_t DynSymTotal = DynSyms.size();
2133 if (*DtGotSym > DynSymTotal)
2134 reportError("MIPS_GOTSYM exceeds a number of dynamic symbols");
2135
2136 GotSec = findNotEmptySectionByAddress(Obj, *DtPltGot);
2137 if (!GotSec)
2138 reportError("There is no not empty GOT section at 0x" +
2139 Twine::utohexstr(*DtPltGot));
2140
2141 LocalNum = *DtLocalGotNum;
2142 GlobalNum = DynSymTotal - *DtGotSym;
2143
2144 ArrayRef<uint8_t> Content = unwrapOrError(Obj->getSectionContents(GotSec));
2145 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2146 Content.size() / sizeof(Entry));
2147 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2148 }
2149
2150 // Find PLT section.
2151 if (DtMipsPltGot || DtJmpRel) {
2152 if (!DtMipsPltGot)
2153 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2154 if (!DtJmpRel)
2155 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2156
2157 PltSec = findNotEmptySectionByAddress(Obj, *DtMipsPltGot);
2158 if (!PltSec)
2159 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2160 Twine::utohexstr(*DtMipsPltGot));
2161
2162 PltRelSec = findNotEmptySectionByAddress(Obj, *DtJmpRel);
2163 if (!PltRelSec)
2164 report_fatal_error("There is no not empty RELPLT section at 0x" +
2165 Twine::utohexstr(*DtJmpRel));
2166
2167 ArrayRef<uint8_t> PltContent =
2168 unwrapOrError(Obj->getSectionContents(PltSec));
2169 PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
2170 PltContent.size() / sizeof(Entry));
2171
2172 PltSymTable = unwrapOrError(Obj->getSection(PltRelSec->sh_link));
2173 PltStrTable = unwrapOrError(Obj->getStringTableForSymtab(*PltSymTable));
2174 }
2175}
2176
2177template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2178 return GotSec->sh_addr + 0x7ff0;
2179}
2180
2181template <class ELFT>
2182const typename MipsGOTParser<ELFT>::Entry *
2183MipsGOTParser<ELFT>::getGotLazyResolver() const {
2184 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2185}
2186
2187template <class ELFT>
2188const typename MipsGOTParser<ELFT>::Entry *
2189MipsGOTParser<ELFT>::getGotModulePointer() const {
2190 if (LocalNum < 2)
2191 return nullptr;
2192 const Entry &E = GotEntries[1];
2193 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2194 return nullptr;
2195 return &E;
2196}
2197
2198template <class ELFT>
2199typename MipsGOTParser<ELFT>::Entries
2200MipsGOTParser<ELFT>::getLocalEntries() const {
2201 size_t Skip = getGotModulePointer() ? 2 : 1;
2202 if (LocalNum - Skip <= 0)
2203 return Entries();
2204 return GotEntries.slice(Skip, LocalNum - Skip);
2205}
2206
2207template <class ELFT>
2208typename MipsGOTParser<ELFT>::Entries
2209MipsGOTParser<ELFT>::getGlobalEntries() const {
2210 if (GlobalNum == 0)
2211 return Entries();
2212 return GotEntries.slice(LocalNum, GlobalNum);
2213}
2214
2215template <class ELFT>
2216typename MipsGOTParser<ELFT>::Entries
2217MipsGOTParser<ELFT>::getOtherEntries() const {
2218 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2219 if (OtherNum == 0)
2220 return Entries();
2221 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2222}
2223
2224template <class ELFT>
2225uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2226 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2227 return GotSec->sh_addr + Offset;
2228}
2229
2230template <class ELFT>
2231int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2232 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2233 return Offset - 0x7ff0;
2234}
2235
2236template <class ELFT>
2237const typename MipsGOTParser<ELFT>::Elf_Sym *
2238MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2239 int64_t Offset = std::distance(GotEntries.data(), E);
2240 return &GotDynSyms[Offset - LocalNum];
2241}
2242
2243template <class ELFT>
2244const typename MipsGOTParser<ELFT>::Entry *
2245MipsGOTParser<ELFT>::getPltLazyResolver() const {
2246 return PltEntries.empty() ? nullptr : &PltEntries[0];
2247}
2248
2249template <class ELFT>
2250const typename MipsGOTParser<ELFT>::Entry *
2251MipsGOTParser<ELFT>::getPltModulePointer() const {
2252 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2253}
2254
2255template <class ELFT>
2256typename MipsGOTParser<ELFT>::Entries
2257MipsGOTParser<ELFT>::getPltEntries() const {
2258 if (PltEntries.size() <= 2)
2259 return Entries();
2260 return PltEntries.slice(2, PltEntries.size() - 2);
2261}
2262
2263template <class ELFT>
2264uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2265 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2266 return PltSec->sh_addr + Offset;
2267}
2268
2269template <class ELFT>
2270const typename MipsGOTParser<ELFT>::Elf_Sym *
2271MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2272 int64_t Offset = std::distance(getPltEntries().data(), E);
2273 if (PltRelSec->sh_type == ELF::SHT_REL) {
2274 Elf_Rel_Range Rels = unwrapOrError(Obj->rels(PltRelSec));
2275 return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2276 } else {
2277 Elf_Rela_Range Rels = unwrapOrError(Obj->relas(PltRelSec));
2278 return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2279 }
2280}
2281
2282template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
2283 if (Obj->getHeader()->e_machine != EM_MIPS)
2284 reportError("MIPS PLT GOT is available for MIPS targets only");
2285
2286 MipsGOTParser<ELFT> Parser(Obj, dynamic_table(), dynamic_symbols());
2287 if (Parser.hasGot())
2288 ELFDumperStyle->printMipsGOT(Parser);
2289 if (Parser.hasPlt())
2290 ELFDumperStyle->printMipsPLT(Parser);
2291}
2292
2293static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2294 {"None", Mips::AFL_EXT_NONE},
2295 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2296 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
2297 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2298 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2299 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2300 {"LSI R4010", Mips::AFL_EXT_4010},
2301 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
2302 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
2303 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
2304 {"MIPS R4650", Mips::AFL_EXT_4650},
2305 {"MIPS R5900", Mips::AFL_EXT_5900},
2306 {"MIPS R10000", Mips::AFL_EXT_10000},
2307 {"NEC VR4100", Mips::AFL_EXT_4100},
2308 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
2309 {"NEC VR4120", Mips::AFL_EXT_4120},
2310 {"NEC VR5400", Mips::AFL_EXT_5400},
2311 {"NEC VR5500", Mips::AFL_EXT_5500},
2312 {"RMI Xlr", Mips::AFL_EXT_XLR},
2313 {"Toshiba R3900", Mips::AFL_EXT_3900}
2314};
2315
2316static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2317 {"DSP", Mips::AFL_ASE_DSP},
2318 {"DSPR2", Mips::AFL_ASE_DSPR2},
2319 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2320 {"MCU", Mips::AFL_ASE_MCU},
2321 {"MDMX", Mips::AFL_ASE_MDMX},
2322 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
2323 {"MT", Mips::AFL_ASE_MT},
2324 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
2325 {"VZ", Mips::AFL_ASE_VIRT},
2326 {"MSA", Mips::AFL_ASE_MSA},
2327 {"MIPS16", Mips::AFL_ASE_MIPS16},
2328 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
2329 {"XPA", Mips::AFL_ASE_XPA},
2330 {"CRC", Mips::AFL_ASE_CRC},
2331 {"GINV", Mips::AFL_ASE_GINV},
2332};
2333
2334static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2335 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
2336 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2337 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2338 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2339 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2340 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2341 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
2342 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2343 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2344 Mips::Val_GNU_MIPS_ABI_FP_64A}
2345};
2346
2347static const EnumEntry<unsigned> ElfMipsFlags1[] {
2348 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2349};
2350
2351static int getMipsRegisterSize(uint8_t Flag) {
2352 switch (Flag) {
2353 case Mips::AFL_REG_NONE:
2354 return 0;
2355 case Mips::AFL_REG_32:
2356 return 32;
2357 case Mips::AFL_REG_64:
2358 return 64;
2359 case Mips::AFL_REG_128:
2360 return 128;
2361 default:
2362 return -1;
2363 }
2364}
2365
2366template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
2367 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
2368 if (!Shdr) {
2369 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2370 return;
2371 }
2372 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2373 if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
2374 W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2375 return;
2376 }
2377
2378 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
2379
2380 raw_ostream &OS = W.getOStream();
2381 DictScope GS(W, "MIPS ABI Flags");
2382
2383 W.printNumber("Version", Flags->version);
2384 W.startLine() << "ISA: ";
2385 if (Flags->isa_rev <= 1)
2386 OS << format("MIPS%u", Flags->isa_level);
2387 else
2388 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
2389 OS << "\n";
2390 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
2391 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
2392 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
2393 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
2394 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
2395 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
2396 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
2397 W.printHex("Flags 2", Flags->flags2);
2398}
2399
2400template <class ELFT>
2401static void printMipsReginfoData(ScopedPrinter &W,
2402 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2403 W.printHex("GP", Reginfo.ri_gp_value);
2404 W.printHex("General Mask", Reginfo.ri_gprmask);
2405 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
2406 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
2407 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
2408 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
2409}
2410
2411template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2412 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
2413 if (!Shdr) {
2414 W.startLine() << "There is no .reginfo section in the file.\n";
2415 return;
2416 }
2417 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2418 if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2419 W.startLine() << "The .reginfo section has a wrong size.\n";
2420 return;
2421 }
2422
2423 DictScope GS(W, "MIPS RegInfo");
2424 auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
2425 printMipsReginfoData(W, *Reginfo);
2426}
2427
2428template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
2429 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.options");
2430 if (!Shdr) {
2431 W.startLine() << "There is no .MIPS.options section in the file.\n";
2432 return;
2433 }
2434
2435 DictScope GS(W, "MIPS Options");
2436
2437 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2438 while (!Sec.empty()) {
2439 if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
2440 W.startLine() << "The .MIPS.options section has a wrong size.\n";
2441 return;
2442 }
2443 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
2444 DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
2445 switch (O->kind) {
2446 case ODK_REGINFO:
2447 printMipsReginfoData(W, O->getRegInfo());
2448 break;
2449 default:
2450 W.startLine() << "Unsupported MIPS options tag.\n";
2451 break;
2452 }
2453 Sec = Sec.slice(O->size);
2454 }
2455}
2456
2457template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2458 const Elf_Shdr *StackMapSection = nullptr;
2459 for (const auto &Sec : unwrapOrError(Obj->sections())) {
2460 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2461 if (Name == ".llvm_stackmaps") {
2462 StackMapSection = &Sec;
2463 break;
2464 }
2465 }
2466
2467 if (!StackMapSection)
2468 return;
2469
2470 ArrayRef<uint8_t> StackMapContentsArray =
2471 unwrapOrError(Obj->getSectionContents(StackMapSection));
2472
2473 prettyPrintStackMap(
2474 W, StackMapV2Parser<ELFT::TargetEndianness>(StackMapContentsArray));
2475}
2476
2477template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
2478 ELFDumperStyle->printGroupSections(Obj);
2479}
2480
2481template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
2482 ELFDumperStyle->printAddrsig(Obj);
2483}
2484
2485static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
2486 StringRef Str2) {
2487 OS.PadToColumn(2u);
2488 OS << Str1;
2489 OS.PadToColumn(37u);
2490 OS << Str2 << "\n";
2491 OS.flush();
2492}
2493
2494template <class ELFT>
2495static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj) {
2496 const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
2497 if (ElfHeader->e_shnum != 0)
2498 return to_string(ElfHeader->e_shnum);
2499
2500 ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(Obj->sections());
2501 if (Arr.empty())
2502 return "0";
2503 return "0 (" + to_string(Arr[0].sh_size) + ")";
2504}
2505
2506template <class ELFT>
2507static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj) {
2508 const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
2509 if (ElfHeader->e_shstrndx != SHN_XINDEX)
2510 return to_string(ElfHeader->e_shstrndx);
2511
2512 ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(Obj->sections());
2513 if (Arr.empty())
2514 return "65535 (corrupt: out of range)";
2515 return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) + ")";
2516}
2517
2518template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
2519 const Elf_Ehdr *e = Obj->getHeader();
2520 OS << "ELF Header:\n";
2521 OS << " Magic: ";
2522 std::string Str;
2523 for (int i = 0; i < ELF::EI_NIDENT; i++)
2524 OS << format(" %02x", static_cast<int>(e->e_ident[i]));
2525 OS << "\n";
2526 Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
2527 printFields(OS, "Class:", Str);
2528 Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
2529 printFields(OS, "Data:", Str);
2530 OS.PadToColumn(2u);
2531 OS << "Version:";
2532 OS.PadToColumn(37u);
2533 OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
2534 if (e->e_version == ELF::EV_CURRENT)
2535 OS << " (current)";
2536 OS << "\n";
2537 Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
2538 printFields(OS, "OS/ABI:", Str);
2539 Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
2540 printFields(OS, "ABI Version:", Str);
2541 Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
2542 printFields(OS, "Type:", Str);
2543 Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
2544 printFields(OS, "Machine:", Str);
2545 Str = "0x" + to_hexString(e->e_version);
2546 printFields(OS, "Version:", Str);
2547 Str = "0x" + to_hexString(e->e_entry);
2548 printFields(OS, "Entry point address:", Str);
2549 Str = to_string(e->e_phoff) + " (bytes into file)";
2550 printFields(OS, "Start of program headers:", Str);
2551 Str = to_string(e->e_shoff) + " (bytes into file)";
2552 printFields(OS, "Start of section headers:", Str);
2553 std::string ElfFlags;
2554 if (e->e_machine == EM_MIPS)
2555 ElfFlags =
2556 printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
2557 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
2558 unsigned(ELF::EF_MIPS_MACH));
2559 else if (e->e_machine == EM_RISCV)
2560 ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
2561 Str = "0x" + to_hexString(e->e_flags);
2562 if (!ElfFlags.empty())
2563 Str = Str + ", " + ElfFlags;
2564 printFields(OS, "Flags:", Str);
2565 Str = to_string(e->e_ehsize) + " (bytes)";
2566 printFields(OS, "Size of this header:", Str);
2567 Str = to_string(e->e_phentsize) + " (bytes)";
2568 printFields(OS, "Size of program headers:", Str);
2569 Str = to_string(e->e_phnum);
2570 printFields(OS, "Number of program headers:", Str);
2571 Str = to_string(e->e_shentsize) + " (bytes)";
2572 printFields(OS, "Size of section headers:", Str);
2573 Str = getSectionHeadersNumString(Obj);
2574 printFields(OS, "Number of section headers:", Str);
2575 Str = getSectionHeaderTableIndexString(Obj);
2576 printFields(OS, "Section header string table index:", Str);
2577}
2578
2579namespace {
2580struct GroupMember {
2581 StringRef Name;
2582 uint64_t Index;
2583};
2584
2585struct GroupSection {
2586 StringRef Name;
2587 StringRef Signature;
2588 uint64_t ShName;
2589 uint64_t Index;
2590 uint32_t Link;
2591 uint32_t Info;
2592 uint32_t Type;
2593 std::vector<GroupMember> Members;
2594};
2595
2596template <class ELFT>
2597std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj) {
2598 using Elf_Shdr = typename ELFT::Shdr;
2599 using Elf_Sym = typename ELFT::Sym;
2600 using Elf_Word = typename ELFT::Word;
2601
2602 std::vector<GroupSection> Ret;
2603 uint64_t I = 0;
2604 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2605 ++I;
2606 if (Sec.sh_type != ELF::SHT_GROUP)
2607 continue;
2608
2609 const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
2610 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
2611 const Elf_Sym *Sym =
2612 unwrapOrError(Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
2613 auto Data =
2614 unwrapOrError(Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
2615
2616 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2617 StringRef Signature = StrTable.data() + Sym->st_name;
2618 Ret.push_back({Name,
2619 Signature,
2620 Sec.sh_name,
2621 I - 1,
2622 Sec.sh_link,
2623 Sec.sh_info,
2624 Data[0],
2625 {}});
2626
2627 std::vector<GroupMember> &GM = Ret.back().Members;
2628 for (uint32_t Ndx : Data.slice(1)) {
2629 auto Sec = unwrapOrError(Obj->getSection(Ndx));
2630 const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
2631 GM.push_back({Name, Ndx});
2632 }
2633 }
2634 return Ret;
2635}
2636
2637DenseMap<uint64_t, const GroupSection *>
2638mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
2639 DenseMap<uint64_t, const GroupSection *> Ret;
2640 for (const GroupSection &G : Groups)
2641 for (const GroupMember &GM : G.Members)
2642 Ret.insert({GM.Index, &G});
2643 return Ret;
2644}
2645
2646} // namespace
2647
2648template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
2649 std::vector<GroupSection> V = getGroups<ELFT>(Obj);
2650 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
2651 for (const GroupSection &G : V) {
2652 OS << "\n"
2653 << getGroupType(G.Type) << " group section ["
2654 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
2655 << "] contains " << G.Members.size() << " sections:\n"
2656 << " [Index] Name\n";
2657 for (const GroupMember &GM : G.Members) {
2658 const GroupSection *MainGroup = Map[GM.Index];
2659 if (MainGroup != &G) {
2660 OS.flush();
2661 errs() << "Error: section [" << format_decimal(GM.Index, 5)
2662 << "] in group section [" << format_decimal(G.Index, 5)
2663 << "] already in group section ["
2664 << format_decimal(MainGroup->Index, 5) << "]";
2665 errs().flush();
2666 continue;
2667 }
2668 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
2669 }
2670 }
2671
2672 if (V.empty())
2673 OS << "There are no section groups in this file.\n";
2674}
2675
2676template <class ELFT>
2677void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
2678 const Elf_Rela &R, bool IsRela) {
2679 std::string Offset, Info, Addend, Value;
2680 SmallString<32> RelocName;
2681 StringRef TargetName;
2682 const Elf_Sym *Sym = nullptr;
2683 unsigned Width = ELFT::Is64Bits ? 16 : 8;
2684 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2685
2686 // First two fields are bit width dependent. The rest of them are after are
2687 // fixed width.
2688 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2689 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2690 Sym = unwrapOrError(Obj->getRelocationSymbol(&R, SymTab));
2691 if (Sym && Sym->getType() == ELF::STT_SECTION) {
2692 const Elf_Shdr *Sec = unwrapOrError(
2693 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
2694 TargetName = unwrapOrError(Obj->getSectionName(Sec));
2695 } else if (Sym) {
2696 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
2697 TargetName = unwrapOrError(Sym->getName(StrTable));
2698 }
2699
2700 if (Sym && IsRela) {
2701 if (R.r_addend < 0)
2702 Addend = " - ";
2703 else
2704 Addend = " + ";
2705 }
2706
2707 Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
2708 Info = to_string(format_hex_no_prefix(R.r_info, Width));
2709
2710 int64_t RelAddend = R.r_addend;
2711 if (IsRela)
2712 Addend += to_hexString(std::abs(RelAddend), false);
2713
2714 if (Sym)
2715 Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2716
2717 Fields[0].Str = Offset;
2718 Fields[1].Str = Info;
2719 Fields[2].Str = RelocName;
2720 Fields[3].Str = Value;
2721 Fields[4].Str = TargetName;
2722 for (auto &field : Fields)
2723 printField(field);
2724 OS << Addend;
2725 OS << "\n";
2726}
2727
2728template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) {
2729 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
2730 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
2731 if (ELFT::Is64Bits)
2732 OS << " ";
2733 else
2734 OS << " ";
2735 if (IsRelr && opts::RawRelr)
2736 OS << "Data ";
2737 else
2738 OS << "Offset";
2739 if (ELFT::Is64Bits)
2740 OS << " Info Type"
2741 << " Symbol's Value Symbol's Name";
2742 else
2743 OS << " Info Type Sym. Value Symbol's Name";
2744 if (IsRela)
2745 OS << " + Addend";
2746 OS << "\n";
2747}
2748
2749template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
2750 bool HasRelocSections = false;
2751 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2752 if (Sec.sh_type != ELF::SHT_REL &&
2753 Sec.sh_type != ELF::SHT_RELA &&
2754 Sec.sh_type != ELF::SHT_RELR &&
2755 Sec.sh_type != ELF::SHT_ANDROID_REL &&
2756 Sec.sh_type != ELF::SHT_ANDROID_RELA &&
2757 Sec.sh_type != ELF::SHT_ANDROID_RELR)
2758 continue;
2759 HasRelocSections = true;
2760 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2761 unsigned Entries = Sec.getEntityCount();
2762 std::vector<Elf_Rela> AndroidRelas;
2763 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
2764 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
2765 // Android's packed relocation section needs to be unpacked first
2766 // to get the actual number of entries.
2767 AndroidRelas = unwrapOrError(Obj->android_relas(&Sec));
2768 Entries = AndroidRelas.size();
2769 }
2770 std::vector<Elf_Rela> RelrRelas;
2771 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
2772 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
2773 // .relr.dyn relative relocation section needs to be unpacked first
2774 // to get the actual number of entries.
2775 Elf_Relr_Range Relrs = unwrapOrError(Obj->relrs(&Sec));
2776 RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs));
2777 Entries = RelrRelas.size();
2778 }
2779 uintX_t Offset = Sec.sh_offset;
2780 OS << "\nRelocation section '" << Name << "' at offset 0x"
2781 << to_hexString(Offset, false) << " contains " << Entries
2782 << " entries:\n";
2783 printRelocHeader(Sec.sh_type);
2784 const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec.sh_link));
2785 switch (Sec.sh_type) {
2786 case ELF::SHT_REL:
2787 for (const auto &R : unwrapOrError(Obj->rels(&Sec))) {
2788 Elf_Rela Rela;
2789 Rela.r_offset = R.r_offset;
2790 Rela.r_info = R.r_info;
2791 Rela.r_addend = 0;
2792 printRelocation(Obj, SymTab, Rela, false);
2793 }
2794 break;
2795 case ELF::SHT_RELA:
2796 for (const auto &R : unwrapOrError(Obj->relas(&Sec)))
2797 printRelocation(Obj, SymTab, R, true);
2798 break;
2799 case ELF::SHT_RELR:
2800 case ELF::SHT_ANDROID_RELR:
2801 if (opts::RawRelr)
2802 for (const auto &R : unwrapOrError(Obj->relrs(&Sec)))
2803 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8))
2804 << "\n";
2805 else
2806 for (const auto &R : RelrRelas)
2807 printRelocation(Obj, SymTab, R, false);
2808 break;
2809 case ELF::SHT_ANDROID_REL:
2810 case ELF::SHT_ANDROID_RELA:
2811 for (const auto &R : AndroidRelas)
2812 printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA);
2813 break;
2814 }
2815 }
2816 if (!HasRelocSections)
2817 OS << "\nThere are no relocations in this file.\n";
2818}
2819
2820std::string getSectionTypeString(unsigned Arch, unsigned Type) {
2821 using namespace ELF;
2822
2823 switch (Arch) {
2824 case EM_ARM:
2825 switch (Type) {
2826 case SHT_ARM_EXIDX:
2827 return "ARM_EXIDX";
2828 case SHT_ARM_PREEMPTMAP:
2829 return "ARM_PREEMPTMAP";
2830 case SHT_ARM_ATTRIBUTES:
2831 return "ARM_ATTRIBUTES";
2832 case SHT_ARM_DEBUGOVERLAY:
2833 return "ARM_DEBUGOVERLAY";
2834 case SHT_ARM_OVERLAYSECTION:
2835 return "ARM_OVERLAYSECTION";
2836 }
2837 break;
2838 case EM_X86_64:
2839 switch (Type) {
2840 case SHT_X86_64_UNWIND:
2841 return "X86_64_UNWIND";
2842 }
2843 break;
2844 case EM_MIPS:
2845 case EM_MIPS_RS3_LE:
2846 switch (Type) {
2847 case SHT_MIPS_REGINFO:
2848 return "MIPS_REGINFO";
2849 case SHT_MIPS_OPTIONS:
2850 return "MIPS_OPTIONS";
2851 case SHT_MIPS_ABIFLAGS:
2852 return "MIPS_ABIFLAGS";
2853 case SHT_MIPS_DWARF:
2854 return "SHT_MIPS_DWARF";
2855 }
2856 break;
2857 }
2858 switch (Type) {
2859 case SHT_NULL:
2860 return "NULL";
2861 case SHT_PROGBITS:
2862 return "PROGBITS";
2863 case SHT_SYMTAB:
2864 return "SYMTAB";
2865 case SHT_STRTAB:
2866 return "STRTAB";
2867 case SHT_RELA:
2868 return "RELA";
2869 case SHT_HASH:
2870 return "HASH";
2871 case SHT_DYNAMIC:
2872 return "DYNAMIC";
2873 case SHT_NOTE:
2874 return "NOTE";
2875 case SHT_NOBITS:
2876 return "NOBITS";
2877 case SHT_REL:
2878 return "REL";
2879 case SHT_SHLIB:
2880 return "SHLIB";
2881 case SHT_DYNSYM:
2882 return "DYNSYM";
2883 case SHT_INIT_ARRAY:
2884 return "INIT_ARRAY";
2885 case SHT_FINI_ARRAY:
2886 return "FINI_ARRAY";
2887 case SHT_PREINIT_ARRAY:
2888 return "PREINIT_ARRAY";
2889 case SHT_GROUP:
2890 return "GROUP";
2891 case SHT_SYMTAB_SHNDX:
2892 return "SYMTAB SECTION INDICES";
2893 case SHT_RELR:
2894 case SHT_ANDROID_RELR:
2895 return "RELR";
2896 case SHT_LLVM_ODRTAB:
2897 return "LLVM_ODRTAB";
2898 case SHT_LLVM_LINKER_OPTIONS:
2899 return "LLVM_LINKER_OPTIONS";
2900 case SHT_LLVM_CALL_GRAPH_PROFILE:
2901 return "LLVM_CALL_GRAPH_PROFILE";
2902 case SHT_LLVM_ADDRSIG:
2903 return "LLVM_ADDRSIG";
2904 // FIXME: Parse processor specific GNU attributes
2905 case SHT_GNU_ATTRIBUTES:
2906 return "ATTRIBUTES";
2907 case SHT_GNU_HASH:
2908 return "GNU_HASH";
2909 case SHT_GNU_verdef:
2910 return "VERDEF";
2911 case SHT_GNU_verneed:
2912 return "VERNEED";
2913 case SHT_GNU_versym:
2914 return "VERSYM";
2915 default:
2916 return "";
2917 }
2918 return "";
2919}
2920
2921template <class ELFT> void GNUStyle<ELFT>::printSections(const ELFO *Obj) {
2922 size_t SectionIndex = 0;
2923 std::string Number, Type, Size, Address, Offset, Flags, Link, Info, EntrySize,
2924 Alignment;
2925 unsigned Bias;
2926 unsigned Width;
2927
2928 if (ELFT::Is64Bits) {
2929 Bias = 0;
2930 Width = 16;
2931 } else {
2932 Bias = 8;
2933 Width = 8;
2934 }
2935
2936 ArrayRef<Elf_Shdr> Sections = unwrapOrError(Obj->sections());
2937 OS << "There are " << to_string(Sections.size())
2938 << " section headers, starting at offset "
2939 << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
2940 OS << "Section Headers:\n";
2941 Field Fields[11] = {{"[Nr]", 2},
2942 {"Name", 7},
2943 {"Type", 25},
2944 {"Address", 41},
2945 {"Off", 58 - Bias},
2946 {"Size", 65 - Bias},
2947 {"ES", 72 - Bias},
2948 {"Flg", 75 - Bias},
2949 {"Lk", 79 - Bias},
2950 {"Inf", 82 - Bias},
2951 {"Al", 86 - Bias}};
2952 for (auto &f : Fields)
2953 printField(f);
2954 OS << "\n";
2955
2956 for (const Elf_Shdr &Sec : Sections) {
2957 Number = to_string(SectionIndex);
2958 Fields[0].Str = Number;
2959 Fields[1].Str = unwrapOrError(Obj->getSectionName(&Sec));
2960 Type = getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
2961 Fields[2].Str = Type;
2962 Address = to_string(format_hex_no_prefix(Sec.sh_addr, Width));
2963 Fields[3].Str = Address;
2964 Offset = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
2965 Fields[4].Str = Offset;
2966 Size = to_string(format_hex_no_prefix(Sec.sh_size, 6));
2967 Fields[5].Str = Size;
2968 EntrySize = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
2969 Fields[6].Str = EntrySize;
2970 Flags = getGNUFlags(Sec.sh_flags);
2971 Fields[7].Str = Flags;
2972 Link = to_string(Sec.sh_link);
2973 Fields[8].Str = Link;
2974 Info = to_string(Sec.sh_info);
2975 Fields[9].Str = Info;
2976 Alignment = to_string(Sec.sh_addralign);
2977 Fields[10].Str = Alignment;
2978 OS.PadToColumn(Fields[0].Column);
2979 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
2980 for (int i = 1; i < 7; i++)
2981 printField(Fields[i]);
2982 OS.PadToColumn(Fields[7].Column);
2983 OS << right_justify(Fields[7].Str, 3);
2984 OS.PadToColumn(Fields[8].Column);
2985 OS << right_justify(Fields[8].Str, 2);
2986 OS.PadToColumn(Fields[9].Column);
2987 OS << right_justify(Fields[9].Str, 3);
2988 OS.PadToColumn(Fields[10].Column);
2989 OS << right_justify(Fields[10].Str, 2);
2990 OS << "\n";
2991 ++SectionIndex;
2992 }
2993 OS << "Key to Flags:\n"
2994 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
2995 "(large)\n"
2996 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
2997 x (unknown)\n"
2998 << " O (extra OS processing required) o (OS specific),\
2999 p (processor specific)\n";
3000}
3001
3002template <class ELFT>
3003void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
3004 size_t Entries) {
3005 if (!Name.empty())
3006 OS << "\nSymbol table '" << Name << "' contains " << Entries
3007 << " entries:\n";
3008 else
3009 OS << "\n Symbol table for image:\n";
3010
3011 if (ELFT::Is64Bits)
3012 OS << " Num: Value Size Type Bind Vis Ndx Name\n";
3013 else
3014 OS << " Num: Value Size Type Bind Vis Ndx Name\n";
3015}
3016
3017template <class ELFT>
3018std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
3019 const Elf_Sym *Symbol,
3020 const Elf_Sym *FirstSym) {
3021 unsigned SectionIndex = Symbol->st_shndx;
3022 switch (SectionIndex) {
3023 case ELF::SHN_UNDEF:
3024 return "UND";
3025 case ELF::SHN_ABS:
3026 return "ABS";
3027 case ELF::SHN_COMMON:
3028 return "COM";
3029 case ELF::SHN_XINDEX:
3030 SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex<ELFT>(
3031 Symbol, FirstSym, this->dumper()->getShndxTable()));
3032 LLVM_FALLTHROUGH[[clang::fallthrough]];
3033 default:
3034 // Find if:
3035 // Processor specific
3036 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3037 return std::string("PRC[0x") +
3038 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3039 // OS specific
3040 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3041 return std::string("OS[0x") +
3042 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3043 // Architecture reserved:
3044 if (SectionIndex >= ELF::SHN_LORESERVE &&
3045 SectionIndex <= ELF::SHN_HIRESERVE)
3046 return std::string("RSV[0x") +
3047 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3048 // A normal section with an index
3049 return to_string(format_decimal(SectionIndex, 3));
3050 }
3051}
3052
3053template <class ELFT>
3054void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
3055 const Elf_Sym *FirstSym, StringRef StrTable,
3056 bool IsDynamic) {
3057 static int Idx = 0;
3058 static bool Dynamic = true;
3059 size_t Width;
3060
3061 // If this function was called with a different value from IsDynamic
3062 // from last call, happens when we move from dynamic to static symbol
3063 // table, "Num" field should be reset.
3064 if (!Dynamic != !IsDynamic) {
3065 Idx = 0;
3066 Dynamic = false;
3067 }
3068 std::string Num, Name, Value, Size, Binding, Type, Visibility, Section;
3069 unsigned Bias = 0;
3070 if (ELFT::Is64Bits) {
3071 Bias = 8;
3072 Width = 16;
3073 } else {
3074 Bias = 0;
3075 Width = 8;
3076 }
3077 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
3078 31 + Bias, 38 + Bias, 47 + Bias, 51 + Bias};
3079 Num = to_string(format_decimal(Idx++, 6)) + ":";
3080 Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
3081 Size = to_string(format_decimal(Symbol->st_size, 5));
3082 unsigned char SymbolType = Symbol->getType();
3083 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3084 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3085 Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3086 else
3087 Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3088 unsigned Vis = Symbol->getVisibility();
3089 Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3090 Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
3091 Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3092 Name = this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
3093 Fields[0].Str = Num;
3094 Fields[1].Str = Value;
3095 Fields[2].Str = Size;
3096 Fields[3].Str = Type;
3097 Fields[4].Str = Binding;
3098 Fields[5].Str = Visibility;
3099 Fields[6].Str = Section;
3100 Fields[7].Str = Name;
3101 for (auto &Entry : Fields)
3102 printField(Entry);
3103 OS << "\n";
3104}
3105template <class ELFT>
3106void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
3107 uint32_t Sym, StringRef StrTable,
3108 uint32_t Bucket) {
3109 std::string Num, Buc, Name, Value, Size, Binding, Type, Visibility, Section;
3110 unsigned Width, Bias = 0;
3111 if (ELFT::Is64Bits) {
3112 Bias = 8;
3113 Width = 16;
3114 } else {
3115 Bias = 0;
3116 Width = 8;
3117 }
3118 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
3119 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3120 Num = to_string(format_decimal(Sym, 5));
3121 Buc = to_string(format_decimal(Bucket, 3)) + ":";
3122
3123 const auto Symbol = FirstSym + Sym;
3124 Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
3125 Size = to_string(format_decimal(Symbol->st_size, 5));
3126 unsigned char SymbolType = Symbol->getType();
3127 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3128 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3129 Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3130 else
3131 Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3132 unsigned Vis = Symbol->getVisibility();
3133 Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3134 Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
3135 Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3136 Name = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
3137 Fields[0].Str = Num;
3138 Fields[1].Str = Buc;
3139 Fields[2].Str = Value;
3140 Fields[3].Str = Size;
3141 Fields[4].Str = Type;
3142 Fields[5].Str = Binding;
3143 Fields[6].Str = Visibility;
3144 Fields[7].Str = Section;
3145 Fields[8].Str = Name;
3146 for (auto &Entry : Fields)
3147 printField(Entry);
3148 OS << "\n";
3149}
3150
3151template <class ELFT> void GNUStyle<ELFT>::printSymbols(const ELFO *Obj) {
3152 if (opts::DynamicSymbols)
3153 return;
3154 this->dumper()->printSymbolsHelper(true);
3155 this->dumper()->printSymbolsHelper(false);
3156}
3157
3158template <class ELFT>
3159void GNUStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
3160 if (this->dumper()->getDynamicStringTable().empty())
3161 return;
3162 auto StringTable = this->dumper()->getDynamicStringTable();
3163 auto DynSyms = this->dumper()->dynamic_symbols();
3164 auto GnuHash = this->dumper()->getGnuHashTable();
3165 auto SysVHash = this->dumper()->getHashTable();
3166
3167 // If no hash or .gnu.hash found, try using symbol table
3168 if (GnuHash == nullptr && SysVHash == nullptr)
3169 this->dumper()->printSymbolsHelper(true);
3170
3171 // Try printing .hash
3172 if (this->dumper()->getHashTable()) {
3173 OS << "\n Symbol table of .hash for image:\n";
3174 if (ELFT::Is64Bits)
3175 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3176 else
3177 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3178 OS << "\n";
3179
3180 uint32_t NBuckets = SysVHash->nbucket;
3181 uint32_t NChains = SysVHash->nchain;
3182 auto Buckets = SysVHash->buckets();
3183 auto Chains = SysVHash->chains();
3184 for (uint32_t Buc = 0; Buc < NBuckets; Buc++) {
3185 if (Buckets[Buc] == ELF::STN_UNDEF)
3186 continue;
3187 for (uint32_t Ch = Buckets[Buc]; Ch < NChains; Ch = Chains[Ch]) {
3188 if (Ch == ELF::STN_UNDEF)
3189 break;
3190 printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
3191 }
3192 }
3193 }
3194
3195 // Try printing .gnu.hash
3196 if (GnuHash) {
3197 OS << "\n Symbol table of .gnu.hash for image:\n";
3198 if (ELFT::Is64Bits)
3199 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3200 else
3201 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3202 OS << "\n";
3203 uint32_t NBuckets = GnuHash->nbuckets;
3204 auto Buckets = GnuHash->buckets();
3205 for (uint32_t Buc = 0; Buc < NBuckets; Buc++) {
3206 if (Buckets[Buc] == ELF::STN_UNDEF)
3207 continue;
3208 uint32_t Index = Buckets[Buc];
3209 uint32_t GnuHashable = Index - GnuHash->symndx;
3210 // Print whole chain
3211 while (true) {
3212 printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
3213 // Chain ends at symbol with stopper bit
3214 if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
3215 break;
3216 }
3217 }
3218 }
3219}
3220
3221static inline std::string printPhdrFlags(unsigned Flag) {
3222 std::string Str;
3223 Str = (Flag & PF_R) ? "R" : " ";
3224 Str += (Flag & PF_W) ? "W" : " ";
3225 Str += (Flag & PF_X) ? "E" : " ";
3226 return Str;
3227}
3228
3229// SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3230// PT_TLS must only have SHF_TLS sections
3231template <class ELFT>
3232bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
3233 const Elf_Shdr &Sec) {
3234 return (((Sec.sh_flags & ELF::SHF_TLS) &&
3235 ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
3236 (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
3237 (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
3238}
3239
3240// Non-SHT_NOBITS must have its offset inside the segment
3241// Only non-zero section can be at end of segment
3242template <class ELFT>
3243bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3244 if (Sec.sh_type == ELF::SHT_NOBITS)
3245 return true;
3246 bool IsSpecial =
3247 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3248 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3249 auto SectionSize =
3250 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3251 if (Sec.sh_offset >= Phdr.p_offset)
3252 return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
3253 /*only non-zero sized sections at end*/ &&
3254 (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
3255 return false;
3256}
3257
3258// SHF_ALLOC must have VMA inside segment
3259// Only non-zero section can be at end of segment
3260template <class ELFT>
3261bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3262 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
3263 return true;
3264 bool IsSpecial =
3265 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3266 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3267 auto SectionSize =
3268 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3269 if (Sec.sh_addr >= Phdr.p_vaddr)
3270 return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
3271 (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
3272 return false;
3273}
3274
3275// No section with zero size must be at start or end of PT_DYNAMIC
3276template <class ELFT>
3277bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3278 if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
3279 return true;
3280 // Is section within the phdr both based on offset and VMA ?
3281 return ((Sec.sh_type == ELF::SHT_NOBITS) ||
3282 (Sec.sh_offset > Phdr.p_offset &&
3283 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
3284 (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
3285 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
3286}
3287
3288template <class ELFT>
3289void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
3290 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3291 unsigned Width = ELFT::Is64Bits ? 18 : 10;
3292 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
3293 std::string Type, Offset, VMA, LMA, FileSz, MemSz, Flag, Align;
3294
3295 const Elf_Ehdr *Header = Obj->getHeader();
3296 Field Fields[8] = {2, 17, 26, 37 + Bias,
3297 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
3298 OS << "\nElf file type is "
3299 << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
3300 << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
3301 << "There are " << Header->e_phnum << " program headers,"
3302 << " starting at offset " << Header->e_phoff << "\n\n"
3303 << "Program Headers:\n";
3304 if (ELFT::Is64Bits)
3305 OS << " Type Offset VirtAddr PhysAddr "
3306 << " FileSiz MemSiz Flg Align\n";
3307 else
3308 OS << " Type Offset VirtAddr PhysAddr FileSiz "
3309 << "MemSiz Flg Align\n";
3310 for (const auto &Phdr : unwrapOrError(Obj->program_headers())) {
3311 Type = getElfPtType(Header->e_machine, Phdr.p_type);
3312 Offset = to_string(format_hex(Phdr.p_offset, 8));
3313 VMA = to_string(format_hex(Phdr.p_vaddr, Width));
3314 LMA = to_string(format_hex(Phdr.p_paddr, Width));
3315 FileSz = to_string(format_hex(Phdr.p_filesz, SizeWidth));
3316 MemSz = to_string(format_hex(Phdr.p_memsz, SizeWidth));
3317 Flag = printPhdrFlags(Phdr.p_flags);
3318 Align = to_string(format_hex(Phdr.p_align, 1));
3319 Fields[0].Str = Type;
3320 Fields[1].Str = Offset;
3321 Fields[2].Str = VMA;
3322 Fields[3].Str = LMA;
3323 Fields[4].Str = FileSz;
3324 Fields[5].Str = MemSz;
3325 Fields[6].Str = Flag;
3326 Fields[7].Str = Align;
3327 for (auto Field : Fields)
3328 printField(Field);
3329 if (Phdr.p_type == ELF::PT_INTERP) {
3330 OS << "\n [Requesting program interpreter: ";
3331 OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
3332 }
3333 OS << "\n";
3334 }
3335 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
3336 int Phnum = 0;
3337 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
3338 std::string Sections;
3339 OS << format(" %2.2d ", Phnum++);
3340 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3341 // Check if each section is in a segment and then print mapping.
3342 // readelf additionally makes sure it does not print zero sized sections
3343 // at end of segments and for PT_DYNAMIC both start and end of section
3344 // .tbss must only be shown in PT_TLS section.
3345 bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
3346 ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
3347 Phdr.p_type != ELF::PT_TLS;
3348 if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
3349 checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
3350 checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL))
3351 Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + " ";
3352 }
3353 OS << Sections << "\n";
3354 OS.flush();
3355 }
3356}
3357
3358template <class ELFT>
3359void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
3360 bool IsRela) {
3361 SmallString<32> RelocName;
3362 StringRef SymbolName;
3363 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3364 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3365 // First two fields are bit width dependent. The rest of them are after are
3366 // fixed width.
3367 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3368
3369 uint32_t SymIndex = R.getSymbol(Obj->isMips64EL());
3370 const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
3371 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
3372 SymbolName =
3373 unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
3374 std::string Addend, Info, Offset, Value;
3375 Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
3376 Info = to_string(format_hex_no_prefix(R.r_info, Width));
3377 Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
3378 int64_t RelAddend = R.r_addend;
3379 if (!SymbolName.empty() && IsRela) {
3380 if (R.r_addend < 0)
3381 Addend = " - ";
3382 else
3383 Addend = " + ";
3384 }
3385
3386 if (SymbolName.empty() && Sym->getValue() == 0)
3387 Value = "";
3388
3389 if (IsRela)
3390 Addend += to_string(format_hex_no_prefix(std::abs(RelAddend), 1));
3391
3392
3393 Fields[0].Str = Offset;
3394 Fields[1].Str = Info;
3395 Fields[2].Str = RelocName.c_str();
3396 Fields[3].Str = Value;
3397 Fields[4].Str = SymbolName;
3398 for (auto &Field : Fields)
3399 printField(Field);
3400 OS << Addend;
3401 OS << "\n";
3402}
3403
3404template <class ELFT>
3405void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3406 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3407 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3408 const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
3409 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3410 if (DynRelaRegion.Size > 0) {
3411 OS << "\n'RELA' relocation section at offset "
3412 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
3413 Obj->base(),
3414 1) << " contains " << DynRelaRegion.Size << " bytes:\n";
3415 printRelocHeader(ELF::SHT_RELA);
3416 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3417 printDynamicRelocation(Obj, Rela, true);
3418 }
3419 if (DynRelRegion.Size > 0) {
3420 OS << "\n'REL' relocation section at offset "
3421 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
3422 Obj->base(),
3423 1) << " contains " << DynRelRegion.Size << " bytes:\n";
3424 printRelocHeader(ELF::SHT_REL);
3425 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3426 Elf_Rela Rela;
3427 Rela.r_offset = Rel.r_offset;
3428 Rela.r_info = Rel.r_info;
3429 Rela.r_addend = 0;
3430 printDynamicRelocation(Obj, Rela, false);
3431 }
3432 }
3433 if (DynRelrRegion.Size > 0) {
3434 OS << "\n'RELR' relocation section at offset "
3435 << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) -
3436 Obj->base(),
3437 1) << " contains " << DynRelrRegion.Size << " bytes:\n";
3438 printRelocHeader(ELF::SHT_REL);
3439 Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
3440 std::vector<Elf_Rela> RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs));
3441 for (const Elf_Rela &Rela : RelrRelas) {
3442 printDynamicRelocation(Obj, Rela, false);
3443 }
3444 }
3445 if (DynPLTRelRegion.Size) {
3446 OS << "\n'PLT' relocation section at offset "
3447 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
3448 Obj->base(),
3449 1) << " contains " << DynPLTRelRegion.Size << " bytes:\n";
3450 }
3451 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
3452 printRelocHeader(ELF::SHT_RELA);
3453 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3454 printDynamicRelocation(Obj, Rela, true);
3455 } else {
3456 printRelocHeader(ELF::SHT_REL);
3457 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3458 Elf_Rela Rela;
3459 Rela.r_offset = Rel.r_offset;
3460 Rela.r_info = Rel.r_info;
3461 Rela.r_addend = 0;
3462 printDynamicRelocation(Obj, Rela, false);
3463 }
3464 }
3465}
3466
3467// Hash histogram shows statistics of how efficient the hash was for the
3468// dynamic symbol table. The table shows number of hash buckets for different
3469// lengths of chains as absolute number and percentage of the total buckets.
3470// Additionally cumulative coverage of symbols for each set of buckets.
3471template <class ELFT>
3472void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3473
3474 const Elf_Hash *HashTable = this->dumper()->getHashTable();
3475 const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable();
3476
3477 // Print histogram for .hash section
3478 if (HashTable) {
3479 size_t NBucket = HashTable->nbucket;
3480 size_t NChain = HashTable->nchain;
3481 ArrayRef<Elf_Word> Buckets = HashTable->buckets();
3482 ArrayRef<Elf_Word> Chains = HashTable->chains();
3483 size_t TotalSyms = 0;
3484 // If hash table is correct, we have at least chains with 0 length
3485 size_t MaxChain = 1;
3486 size_t CumulativeNonZero = 0;
3487
3488 if (NChain == 0 || NBucket == 0)
3489 return;
3490
3491 std::vector<size_t> ChainLen(NBucket, 0);
3492 // Go over all buckets and and note chain lengths of each bucket (total
3493 // unique chain lengths).
3494 for (size_t B = 0; B < NBucket; B++) {
3495 for (size_t C = Buckets[B]; C > 0 && C < NChain; C = Chains[C])
3496 if (MaxChain <= ++ChainLen[B])
3497 MaxChain++;
3498 TotalSyms += ChainLen[B];
3499 }
3500
3501 if (!TotalSyms)
3502 return;
3503
3504 std::vector<size_t> Count(MaxChain, 0) ;
3505 // Count how long is the chain for each bucket
3506 for (size_t B = 0; B < NBucket; B++)
3507 ++Count[ChainLen[B]];
3508 // Print Number of buckets with each chain lengths and their cumulative
3509 // coverage of the symbols
3510 OS << "Histogram for bucket list length (total of " << NBucket
3511 << " buckets)\n"
3512 << " Length Number % of total Coverage\n";
3513 for (size_t I = 0; I < MaxChain; I++) {
3514 CumulativeNonZero += Count[I] * I;
3515 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
3516 (Count[I] * 100.0) / NBucket,
3517 (CumulativeNonZero * 100.0) / TotalSyms);
3518 }
3519 }
3520
3521 // Print histogram for .gnu.hash section
3522 if (GnuHashTable) {
3523 size_t NBucket = GnuHashTable->nbuckets;
3524 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
3525 unsigned NumSyms = this->dumper()->dynamic_symbols().size();
3526 if (!NumSyms)
3527 return;
3528 ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
3529 size_t Symndx = GnuHashTable->symndx;
3530 size_t TotalSyms = 0;
3531 size_t MaxChain = 1;
3532 size_t CumulativeNonZero = 0;
3533
3534 if (Chains.empty() || NBucket == 0)
3535 return;
3536
3537 std::vector<size_t> ChainLen(NBucket, 0);
3538
3539 for (size_t B = 0; B < NBucket; B++) {
3540 if (!Buckets[B])
3541 continue;
3542 size_t Len = 1;
3543 for (size_t C = Buckets[B] - Symndx;
3544 C < Chains.size() && (Chains[C] & 1) == 0; C++)
3545 if (MaxChain < ++Len)
3546 MaxChain++;
3547 ChainLen[B] = Len;
3548 TotalSyms += Len;
3549 }
3550 MaxChain++;
3551
3552 if (!TotalSyms)
3553 return;
3554
3555 std::vector<size_t> Count(MaxChain, 0) ;
3556 for (size_t B = 0; B < NBucket; B++)
3557 ++Count[ChainLen[B]];
3558 // Print Number of buckets with each chain lengths and their cumulative
3559 // coverage of the symbols
3560 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3561 << " buckets)\n"
3562 << " Length Number % of total Coverage\n";
3563 for (size_t I = 0; I <MaxChain; I++) {
3564 CumulativeNonZero += Count[I] * I;
3565 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
3566 (Count[I] * 100.0) / NBucket,
3567 (CumulativeNonZero * 100.0) / TotalSyms);
3568 }
3569 }
3570}
3571
3572template <class ELFT>
3573void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
3574 OS << "GNUStyle::printCGProfile not implemented\n";
3575}
3576
3577template <class ELFT>
3578void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
3579 OS << "GNUStyle::printAddrsig not implemented\n";
3580}
3581
3582static std::string getGNUNoteTypeName(const uint32_t NT) {
3583 static const struct {
3584 uint32_t ID;
3585 const char *Name;
3586 } Notes[] = {
3587 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
3588 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
3589 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
3590 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
3591 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
3592 };
3593
3594 for (const auto &Note : Notes)
3595 if (Note.ID == NT)
3596 return std::string(Note.Name);
3597
3598 std::string string;
3599 raw_string_ostream OS(string);
3600 OS << format("Unknown note type (0x%08x)", NT);
3601 return OS.str();
3602}
3603
3604static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
3605 static const struct {
3606 uint32_t ID;
3607 const char *Name;
3608 } Notes[] = {
3609 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
3610 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
3611 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
3612 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
3613 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
3614 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
3615 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
3616 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
3617 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
3618 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
3619 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
3620 };
3621
3622 for (const auto &Note : Notes)
3623 if (Note.ID == NT)
3624 return std::string(Note.Name);
3625
3626 std::string string;
3627 raw_string_ostream OS(string);
3628 OS << format("Unknown note type (0x%08x)", NT);
3629 return OS.str();
3630}
3631
3632static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
3633 static const struct {
3634 uint32_t ID;
3635 const char *Name;
3636 } Notes[] = {
3637 {ELF::NT_AMD_AMDGPU_HSA_METADATA,
3638 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
3639 {ELF::NT_AMD_AMDGPU_ISA,
3640 "NT_AMD_AMDGPU_ISA (ISA Version)"},
3641 {ELF::NT_AMD_AMDGPU_PAL_METADATA,
3642 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}
3643 };
3644
3645 for (const auto &Note : Notes)
3646 if (Note.ID == NT)
3647 return std::string(Note.Name);
3648
3649 std::string string;
3650 raw_string_ostream OS(string);
3651 OS << format("Unknown note type (0x%08x)", NT);
3652 return OS.str();
3653}
3654
3655template <typename ELFT>
3656static void printGNUProperty(raw_ostream &OS, uint32_t Type, uint32_t DataSize,
3657 ArrayRef<uint8_t> Data) {
3658 switch (Type) {
3659 default:
3660 OS << format(" <application-specific type 0x%x>\n", Type);
3661 return;
3662 case GNU_PROPERTY_STACK_SIZE: {
3663 OS << " stack size: ";
3664 if (DataSize == sizeof(typename ELFT::uint))
3665 OS << format("0x%llx\n",
3666 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
3667 else
3668 OS << format("<corrupt length: 0x%x>\n", DataSize);
3669 break;
3670 }
3671 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
3672 OS << " no copy on protected";
3673 if (DataSize)
3674 OS << format(" <corrupt length: 0x%x>", DataSize);
3675 OS << "\n";
3676 break;
3677 case GNU_PROPERTY_X86_FEATURE_1_AND:
3678 OS << " X86 features: ";
3679 if (DataSize != 4 && DataSize != 8) {
3680 OS << format("<corrupt length: 0x%x>\n", DataSize);
3681 break;
3682 }
3683 uint64_t CFProtection =
3684 (DataSize == 4)
3685 ? support::endian::read32<ELFT::TargetEndianness>(Data.data())
3686 : support::endian::read64<ELFT::TargetEndianness>(Data.data());
3687 if (CFProtection == 0) {
3688 OS << "none\n";
3689 break;
3690 }
3691 if (CFProtection & GNU_PROPERTY_X86_FEATURE_1_IBT) {
3692 OS << "IBT";
3693 CFProtection &= ~GNU_PROPERTY_X86_FEATURE_1_IBT;
3694 if (CFProtection)
3695 OS << ", ";
3696 }
3697 if (CFProtection & GNU_PROPERTY_X86_FEATURE_1_SHSTK) {
3698 OS << "SHSTK";
3699 CFProtection &= ~GNU_PROPERTY_X86_FEATURE_1_SHSTK;
3700 if (CFProtection)
3701 OS << ", ";
3702 }
3703 if (CFProtection)
3704 OS << format("<unknown flags: 0x%llx>", CFProtection);
3705 OS << "\n";
3706 break;
3707 }
3708}
3709
3710template <typename ELFT>
3711static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
3712 ArrayRef<typename ELFT::Word> Words, size_t Size) {
3713 using Elf_Word = typename ELFT::Word;
3714
3715 switch (NoteType) {
3716 default:
3717 return;
3718 case ELF::NT_GNU_ABI_TAG: {
3719 static const char *OSNames[] = {
3720 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
3721 };
3722
3723 StringRef OSName = "Unknown";
3724 if (Words[0] < array_lengthof(OSNames))
3725 OSName = OSNames[Words[0]];
3726 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
3727
3728 if (Words.size() < 4)
3729 OS << " <corrupt GNU_ABI_TAG>";
3730 else
3731 OS << " OS: " << OSName << ", ABI: " << Major << "." << Minor << "."
3732 << Patch;
3733 break;
3734 }
3735 case ELF::NT_GNU_BUILD_ID: {
3736 OS << " Build ID: ";
3737 ArrayRef<uint8_t> ID(reinterpret_cast<const uint8_t *>(Words.data()), Size);
3738 for (const auto &B : ID)
3739 OS << format_hex_no_prefix(B, 2);
3740 break;
3741 }
3742 case ELF::NT_GNU_GOLD_VERSION:
3743 OS << " Version: "
3744 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3745 break;
3746 case ELF::NT_GNU_PROPERTY_TYPE_0:
3747 OS << " Properties:";
3748
3749 ArrayRef<uint8_t> Arr(reinterpret_cast<const uint8_t *>(Words.data()),
3750 Size);
3751 while (Arr.size() >= 8) {
3752 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
3753 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
3754 Arr = Arr.drop_front(8);
3755
3756 // Take padding size into account if present.
3757 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
3758 if (Arr.size() < PaddedSize) {
3759 OS << format(" <corrupt type (0x%x) datasz: 0x%x>\n", Type,
3760 DataSize);
3761 break;
3762 }
3763 printGNUProperty<ELFT>(OS, Type, DataSize, Arr.take_front(PaddedSize));
3764 Arr = Arr.drop_front(PaddedSize);
3765 }
3766
3767 if (!Arr.empty())
3768 OS << " <corrupted GNU_PROPERTY_TYPE_0>";
3769 break;
3770 }
3771 OS << '\n';
3772}
3773
3774template <typename ELFT>
3775static void printAMDGPUNote(raw_ostream &OS, uint32_t NoteType,
3776 ArrayRef<typename ELFT::Word> Words, size_t Size) {
3777 switch (NoteType) {
3778 default:
3779 return;
3780 case ELF::NT_AMD_AMDGPU_HSA_METADATA:
3781 OS << " HSA Metadata:\n"
3782 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3783 break;
3784 case ELF::NT_AMD_AMDGPU_ISA:
3785 OS << " ISA Version:\n"
3786 << " "
3787 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3788 break;
3789 case ELF::NT_AMD_AMDGPU_PAL_METADATA:
3790 const uint32_t *PALMetadataBegin = reinterpret_cast<const uint32_t *>(Words.data());
3791 const uint32_t *PALMetadataEnd = PALMetadataBegin + Size;
3792 std::vector<uint32_t> PALMetadata(PALMetadataBegin, PALMetadataEnd);
3793 std::string PALMetadataString;
3794 auto Error = AMDGPU::PALMD::toString(PALMetadata, PALMetadataString);
3795 OS << " PAL Metadata:\n";
3796 if (Error) {
3797 OS << " Invalid";
3798 return;
3799 }
3800 OS << PALMetadataString;
3801 break;
3802 }
3803 OS.flush();
3804}
3805
3806template <class ELFT>
3807void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
3808 const Elf_Ehdr *e = Obj->getHeader();
3809 bool IsCore = e->e_type == ELF::ET_CORE;
3810
3811 auto PrintHeader = [&](const typename ELFT::Off Offset,
3812 const typename ELFT::Addr Size) {
3813 OS << "Displaying notes found at file offset " << format_hex(Offset, 10)
3814 << " with length " << format_hex(Size, 10) << ":\n"
3815 << " Owner Data size\tDescription\n";
3816 };
3817
3818 auto ProcessNote = [&](const Elf_Note &Note) {
3819 StringRef Name = Note.getName();
3820 ArrayRef<Elf_Word> Descriptor = Note.getDesc();
3821 Elf_Word Type = Note.getType();
3822
3823 OS << " " << Name << std::string(22 - Name.size(), ' ')
3824 << format_hex(Descriptor.size(), 10) << '\t';
3825
3826 if (Name == "GNU") {
3827 OS << getGNUNoteTypeName(Type) << '\n';
3828 printGNUNote<ELFT>(OS, Type, Descriptor, Descriptor.size());
3829 } else if (Name == "FreeBSD") {
3830 OS << getFreeBSDNoteTypeName(Type) << '\n';
3831 } else if (Name == "AMD") {
3832 OS << getAMDGPUNoteTypeName(Type) << '\n';
3833 printAMDGPUNote<ELFT>(OS, Type, Descriptor, Descriptor.size());
3834 } else {
3835 OS << "Unknown note type: (" << format_hex(Type, 10) << ')';
3836 }
3837 OS << '\n';
3838 };
3839
3840 if (IsCore) {
3841 for (const auto &P : unwrapOrError(Obj->program_headers())) {
3842 if (P.p_type != PT_NOTE)
3843 continue;
3844 PrintHeader(P.p_offset, P.p_filesz);
3845 Error Err = Error::success();
3846 for (const auto &Note : Obj->notes(P, Err))
3847 ProcessNote(Note);
3848 if (Err)
3849 error(std::move(Err));
3850 }
3851 } else {
3852 for (const auto &S : unwrapOrError(Obj->sections())) {
3853 if (S.sh_type != SHT_NOTE)
3854 continue;
3855 PrintHeader(S.sh_offset, S.sh_size);
3856 Error Err = Error::success();
3857 for (const auto &Note : Obj->notes(S, Err))
3858 ProcessNote(Note);
3859 if (Err)
3860 error(std::move(Err));
3861 }
3862 }
3863}
3864
3865template <class ELFT>
3866void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
3867 OS << "printELFLinkerOptions not implemented!\n";
3868}
3869
3870template <class ELFT>
3871void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
3872 size_t Bias = ELFT::Is64Bits ? 8 : 0;
3873 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
3874 OS.PadToColumn(2);
3875 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
3876 OS.PadToColumn(11 + Bias);
3877 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
3878 OS.PadToColumn(22 + Bias);
3879 OS << format_hex_no_prefix(*E, 8 + Bias);
3880 OS.PadToColumn(31 + 2 * Bias);
3881 OS << Purpose << "\n";
3882 };
3883
3884 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
3885 OS << " Canonical gp value: "
3886 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
3887
3888 OS << " Reserved entries:\n";
3889 OS << " Address Access Initial Purpose\n";
3890 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
3891 if (Parser.getGotModulePointer())
3892 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
3893
3894 if (!Parser.getLocalEntries().empty()) {
3895 OS << "\n";
3896 OS << " Local entries:\n";
3897 OS << " Address Access Initial\n";
3898 for (auto &E : Parser.getLocalEntries())
3899 PrintEntry(&E, "");
3900 }
3901
3902 if (Parser.IsStatic)
3903 return;
3904
3905 if (!Parser.getGlobalEntries().empty()) {
3906 OS << "\n";
3907 OS << " Global entries:\n";
3908 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
3909 for (auto &E : Parser.getGlobalEntries()) {
3910 const Elf_Sym *Sym = Parser.getGotSym(&E);
3911 std::string SymName = this->dumper()->getFullSymbolName(
3912 Sym, this->dumper()->getDynamicStringTable(), false);
3913
3914 OS.PadToColumn(2);
3915 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
3916 OS.PadToColumn(11 + Bias);
3917 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
3918 OS.PadToColumn(22 + Bias);
3919 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
3920 OS.PadToColumn(31 + 2 * Bias);
3921 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
3922 OS.PadToColumn(40 + 3 * Bias);
3923 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
3924 OS.PadToColumn(48 + 3 * Bias);
3925 OS << getSymbolSectionNdx(Parser.Obj, Sym,
3926 this->dumper()->dynamic_symbols().begin());
3927 OS.PadToColumn(52 + 3 * Bias);
3928 OS << SymName << "\n";
3929 }
3930 }
3931
3932 if (!Parser.getOtherEntries().empty())
3933 OS << "\n Number of TLS and multi-GOT entries "
3934 << Parser.getOtherEntries().size() << "\n";
3935}
3936
3937template <class ELFT>
3938void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
3939 size_t Bias = ELFT::Is64Bits ? 8 : 0;
3940 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
3941 OS.PadToColumn(2);
3942 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
3943 OS.PadToColumn(11 + Bias);
3944 OS << format_hex_no_prefix(*E, 8 + Bias);
3945 OS.PadToColumn(20 + 2 * Bias);
3946 OS << Purpose << "\n";
3947 };
3948
3949 OS << "PLT GOT:\n\n";
3950
3951 OS << " Reserved entries:\n";
3952 OS << " Address Initial Purpose\n";
3953 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
3954 if (Parser.getPltModulePointer())
3955 PrintEntry(Parser.getGotModulePointer(), "Module pointer");
3956
3957 if (!Parser.getPltEntries().empty()) {
3958 OS << "\n";
3959 OS << " Entries:\n";
3960 OS << " Address Initial Sym.Val. Type Ndx Name\n";
3961 for (auto &E : Parser.getPltEntries()) {
3962 const Elf_Sym *Sym = Parser.getPltSym(&E);
3963 std::string SymName = this->dumper()->getFullSymbolName(
3964 Sym, this->dumper()->getDynamicStringTable(), false);
3965
3966 OS.PadToColumn(2);
3967 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
3968 OS.PadToColumn(11 + Bias);
3969 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
3970 OS.PadToColumn(20 + 2 * Bias);
3971 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
3972 OS.PadToColumn(29 + 3 * Bias);
3973 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
3974 OS.PadToColumn(37 + 3 * Bias);
3975 OS << getSymbolSectionNdx(Parser.Obj, Sym,
3976 this->dumper()->dynamic_symbols().begin());
3977 OS.PadToColumn(41 + 3 * Bias);
3978 OS << SymName << "\n";
3979 }
3980 }
3981}
3982
3983template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
3984 const Elf_Ehdr *e = Obj->getHeader();
3985 {
3986 DictScope D(W, "ElfHeader");
3987 {
3988 DictScope D(W, "Ident");
3989 W.printBinary("Magic", makeArrayRef(e->e_ident).slice(ELF::EI_MAG0, 4));
3990 W.printEnum("Class", e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3991 W.printEnum("DataEncoding", e->e_ident[ELF::EI_DATA],
3992 makeArrayRef(ElfDataEncoding));
3993 W.printNumber("FileVersion", e->e_ident[ELF::EI_VERSION]);
3994
3995 auto OSABI = makeArrayRef(ElfOSABI);
3996 if (e->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
3997 e->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
3998 switch (e->e_machine) {
3999 case ELF::EM_AMDGPU:
4000 OSABI = makeArrayRef(AMDGPUElfOSABI);
4001 break;
4002 case ELF::EM_ARM:
4003 OSABI = makeArrayRef(ARMElfOSABI);
4004 break;
4005 case ELF::EM_TI_C6000:
4006 OSABI = makeArrayRef(C6000ElfOSABI);
4007 break;
4008 }
4009 }
4010 W.printEnum("OS/ABI", e->e_ident[ELF::EI_OSABI], OSABI);
4011 W.printNumber("ABIVersion", e->e_ident[ELF::EI_ABIVERSION]);
4012 W.printBinary("Unused", makeArrayRef(e->e_ident).slice(ELF::EI_PAD));
4013 }
4014
4015 W.printEnum("Type", e->e_type, makeArrayRef(ElfObjectFileType));
4016 W.printEnum("Machine", e->e_machine, makeArrayRef(ElfMachineType));
4017 W.printNumber("Version", e->e_version);
4018 W.printHex("Entry", e->e_entry);
4019 W.printHex("ProgramHeaderOffset", e->e_phoff);
4020 W.printHex("SectionHeaderOffset", e->e_shoff);
4021 if (e->e_machine == EM_MIPS)
4022 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
4023 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
4024 unsigned(ELF::EF_MIPS_MACH));
4025 else if (e->e_machine == EM_AMDGPU)
4026 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
4027 unsigned(ELF::EF_AMDGPU_MACH));
4028 else if (e->e_machine == EM_RISCV)
4029 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
4030 else
4031 W.printFlags("Flags", e->e_flags);
4032 W.printNumber("HeaderSize", e->e_ehsize);
4033 W.printNumber("ProgramHeaderEntrySize", e->e_phentsize);
4034 W.printNumber("ProgramHeaderCount", e->e_phnum);
4035 W.printNumber("SectionHeaderEntrySize", e->e_shentsize);
4036 W.printString("SectionHeaderCount", getSectionHeadersNumString(Obj));
4037 W.printString("StringTableSectionIndex", getSectionHeaderTableIndexString(Obj));
4038 }
4039}
4040
4041template <class ELFT>
4042void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
4043 DictScope Lists(W, "Groups");
4044 std::vector<GroupSection> V = getGroups<ELFT>(Obj);
4045 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
4046 for (const GroupSection &G : V) {
4047 DictScope D(W, "Group");
4048 W.printNumber("Name", G.Name, G.ShName);
4049 W.printNumber("Index", G.Index);
4050 W.printNumber("Link", G.Link);
4051 W.printNumber("Info", G.Info);
4052 W.printHex("Type", getGroupType(G.Type), G.Type);
4053 W.startLine() << "Signature: " << G.Signature << "\n";
4054
4055 ListScope L(W, "Section(s) in group");
4056 for (const GroupMember &GM : G.Members) {
4057 const GroupSection *MainGroup = Map[GM.Index];
4058 if (MainGroup != &G) {
4059 W.flush();
4060 errs() << "Error: " << GM.Name << " (" << GM.Index
4061 << ") in a group " + G.Name + " (" << G.Index
4062 << ") is already in a group " + MainGroup->Name + " ("
4063 << MainGroup->Index << ")\n";
4064 errs().flush();
4065 continue;
4066 }
4067 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
4068 }
4069 }
4070
4071 if (V.empty())
4072 W.startLine() << "There are no group sections in the file.\n";
4073}
4074
4075template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
4076 ListScope D(W, "Relocations");
4077
4078 int SectionNumber = -1;
4079 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
4080 ++SectionNumber;
4081
4082 if (Sec.sh_type != ELF::SHT_REL &&
4083 Sec.sh_type != ELF::SHT_RELA &&
4084 Sec.sh_type != ELF::SHT_RELR &&
4085 Sec.sh_type != ELF::SHT_ANDROID_REL &&
4086 Sec.sh_type != ELF::SHT_ANDROID_RELA &&
4087 Sec.sh_type != ELF::SHT_ANDROID_RELR)
4088 continue;
4089
4090 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
4091
4092 W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
4093 W.indent();
4094
4095 printRelocations(&Sec, Obj);
4096
4097 W.unindent();
4098 W.startLine() << "}\n";
4099 }
4100}
4101
4102template <class ELFT>
4103void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
4104 const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec->sh_link));
4105
4106 switch (Sec->sh_type) {
4107 case ELF::SHT_REL:
4108 for (const Elf_Rel &R : unwrapOrError(Obj->rels(Sec))) {
4109 Elf_Rela Rela;
4110 Rela.r_offset = R.r_offset;
4111 Rela.r_info = R.r_info;
4112 Rela.r_addend = 0;
4113 printRelocation(Obj, Rela, SymTab);
4114 }
4115 break;
4116 case ELF::SHT_RELA:
4117 for (const Elf_Rela &R : unwrapOrError(Obj->relas(Sec)))
4118 printRelocation(Obj, R, SymTab);
4119 break;
4120 case ELF::SHT_RELR:
4121 case ELF::SHT_ANDROID_RELR: {
4122 Elf_Relr_Range Relrs = unwrapOrError(Obj->relrs(Sec));
4123 if (opts::RawRelr) {
4124 for (const Elf_Relr &R : Relrs)
4125 W.startLine() << W.hex(R) << "\n";
4126 } else {
4127 std::vector<Elf_Rela> RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs));
4128 for (const Elf_Rela &R : RelrRelas)
4129 printRelocation(Obj, R, SymTab);
4130 }
4131 break;
4132 }
4133 case ELF::SHT_ANDROID_REL:
4134 case ELF::SHT_ANDROID_RELA:
4135 for (const Elf_Rela &R : unwrapOrError(Obj->android_relas(Sec)))
4136 printRelocation(Obj, R, SymTab);
4137 break;
4138 }
4139}
4140
4141template <class ELFT>
4142void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
4143 const Elf_Shdr *SymTab) {
4144 SmallString<32> RelocName;
4145 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
4146 StringRef TargetName;
4147 const Elf_Sym *Sym = unwrapOrError(Obj->getRelocationSymbol(&Rel, SymTab));
4148 if (Sym && Sym->getType() == ELF::STT_SECTION) {
4149 const Elf_Shdr *Sec = unwrapOrError(
4150 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
4151 TargetName = unwrapOrError(Obj->getSectionName(Sec));
4152 } else if (Sym) {
4153 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
4154 TargetName = unwrapOrError(Sym->getName(StrTable));
4155 }
4156
4157 if (opts::ExpandRelocs) {
4158 DictScope Group(W, "Relocation");
4159 W.printHex("Offset", Rel.r_offset);
4160 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
4161 W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
4162 Rel.getSymbol(Obj->isMips64EL()));
4163 W.printHex("Addend", Rel.r_addend);
4164 } else {
4165 raw_ostream &OS = W.startLine();
4166 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
4167 << (!TargetName.empty() ? TargetName : "-") << " "
4168 << W.hex(Rel.r_addend) << "\n";
4169 }
4170}
4171
4172template <class ELFT> void LLVMStyle<ELFT>::printSections(const ELFO *Obj) {
4173 ListScope SectionsD(W, "Sections");
4174
4175 int SectionIndex = -1;
4176 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
4177 ++SectionIndex;
4178
4179 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
4180
4181 DictScope SectionD(W, "Section");
4182 W.printNumber("Index", SectionIndex);
4183 W.printNumber("Name", Name, Sec.sh_name);
4184 W.printHex(
4185 "Type",
4186 object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
4187 Sec.sh_type);
4188 std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
4189 std::end(ElfSectionFlags));
4190 switch (Obj->getHeader()->e_machine) {
4191 case EM_ARM:
4192 SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags),
4193 std::end(ElfARMSectionFlags));
4194 break;
4195 case EM_HEXAGON:
4196 SectionFlags.insert(SectionFlags.end(),
4197 std::begin(ElfHexagonSectionFlags),
4198 std::end(ElfHexagonSectionFlags));
4199 break;
4200 case EM_MIPS:
4201 SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
4202 std::end(ElfMipsSectionFlags));
4203 break;
4204 case EM_X86_64:
4205 SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
4206 std::end(ElfX86_64SectionFlags));
4207 break;
4208 case EM_XCORE:
4209 SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
4210 std::end(ElfXCoreSectionFlags));
4211 break;
4212 default:
4213 // Nothing to do.
4214 break;
4215 }
4216 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
4217 W.printHex("Address", Sec.sh_addr);
4218 W.printHex("Offset", Sec.sh_offset);
4219 W.printNumber("Size", Sec.sh_size);
4220 W.printNumber("Link", Sec.sh_link);
4221 W.printNumber("Info", Sec.sh_info);
4222 W.printNumber("AddressAlignment", Sec.sh_addralign);
4223 W.printNumber("EntrySize", Sec.sh_entsize);
4224
4225 if (opts::SectionRelocations) {
4226 ListScope D(W, "Relocations");
4227 printRelocations(&Sec, Obj);
4228 }
4229
4230 if (opts::SectionSymbols) {
4231 ListScope D(W, "Symbols");
4232 const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
4233 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
4234
4235 for (const Elf_Sym &Sym : unwrapOrError(Obj->symbols(Symtab))) {
4236 const Elf_Shdr *SymSec = unwrapOrError(
4237 Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
4238 if (SymSec == &Sec)
4239 printSymbol(Obj, &Sym, unwrapOrError(Obj->symbols(Symtab)).begin(),
4240 StrTable, false);
4241 }
4242 }
4243
4244 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
4245 ArrayRef<uint8_t> Data = unwrapOrError(Obj->getSectionContents(&Sec));
4246 W.printBinaryBlock("SectionData",
4247 StringRef((const char *)Data.data(), Data.size()));
4248 }
4249 }
4250}
4251
4252template <class ELFT>
4253void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
4254 const Elf_Sym *First, StringRef StrTable,
4255 bool IsDynamic) {
4256 unsigned SectionIndex = 0;
4257 StringRef SectionName;
4258 this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex);
4259 std::string FullSymbolName =
4260 this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
4261 unsigned char SymbolType = Symbol->getType();
4262
4263 DictScope D(W, "Symbol");
4264 W.printNumber("Name", FullSymbolName, Symbol->st_name);
4265 W.printHex("Value", Symbol->st_value);
4266 W.printNumber("Size", Symbol->st_size);
4267 W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
4268 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
4269 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4270 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
4271 else
4272 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
4273 if (Symbol->st_other == 0)
4274 // Usually st_other flag is zero. Do not pollute the output
4275 // by flags enumeration in that case.
4276 W.printNumber("Other", 0);
4277 else {
4278 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
4279 std::end(ElfSymOtherFlags));
4280 if (Obj->getHeader()->e_machine == EM_MIPS) {
4281 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
4282 // flag overlapped with other ST_MIPS_xxx flags. So consider both
4283 // cases separately.
4284 if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
4285 SymOtherFlags.insert(SymOtherFlags.end(),
4286 std::begin(ElfMips16SymOtherFlags),
4287 std::end(ElfMips16SymOtherFlags));
4288 else
4289 SymOtherFlags.insert(SymOtherFlags.end(),
4290 std::begin(ElfMipsSymOtherFlags),
4291 std::end(ElfMipsSymOtherFlags));
4292 }
4293 W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
4294 }
4295 W.printHex("Section", SectionName, SectionIndex);
4296}
4297
4298template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
4299 ListScope Group(W, "Symbols");
4300 this->dumper()->printSymbolsHelper(false);
4301}
4302
4303template <class ELFT>
4304void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
4305 ListScope Group(W, "DynamicSymbols");
4306 this->dumper()->printSymbolsHelper(true);
4307}
4308
4309template <class ELFT>
4310void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
4311 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
4312 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
4313 const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
4314 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
4315 if (DynRelRegion.Size && DynRelaRegion.Size)
4316 report_fatal_error("There are both REL and RELA dynamic relocations");
4317 W.startLine() << "Dynamic Relocations {\n";
4318 W.indent();
4319 if (DynRelaRegion.Size > 0)
4320 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
4321 printDynamicRelocation(Obj, Rela);
4322 else
4323 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
4324 Elf_Rela Rela;
4325 Rela.r_offset = Rel.r_offset;
4326 Rela.r_info = Rel.r_info;
4327 Rela.r_addend = 0;
4328 printDynamicRelocation(Obj, Rela);
4329 }
4330 if (DynRelrRegion.Size > 0) {
4331 Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
4332 std::vector<Elf_Rela> RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs));
4333 for (const Elf_Rela &Rela : RelrRelas)
4334 printDynamicRelocation(Obj, Rela);
4335 }
4336 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
4337 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
4338 printDynamicRelocation(Obj, Rela);
4339 else
4340 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
4341 Elf_Rela Rela;
4342 Rela.r_offset = Rel.r_offset;
4343 Rela.r_info = Rel.r_info;
4344 Rela.r_addend = 0;
4345 printDynamicRelocation(Obj, Rela);
4346 }
4347 W.unindent();
4348 W.startLine() << "}\n";
4349}
4350
4351template <class ELFT>
4352void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
4353 SmallString<32> RelocName;
4354 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
4355 StringRef SymbolName;
4356 uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
4357 const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
4358 SymbolName =
4359 unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
4360 if (opts::ExpandRelocs) {
4361 DictScope Group(W, "Relocation");
4362 W.printHex("Offset", Rel.r_offset);
4363 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
4364 W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
4365 W.printHex("Addend", Rel.r_addend);
4366 } else {
4367 raw_ostream &OS = W.startLine();
4368 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
4369 << (!SymbolName.empty() ? SymbolName : "-") << " "
4370 << W.hex(Rel.r_addend) << "\n";
4371 }
4372}
4373
4374template <class ELFT>
4375void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
4376 ListScope L(W, "ProgramHeaders");
4377
4378 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
4379 DictScope P(W, "ProgramHeader");
4380 W.printHex("Type",
4381 getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
4382 Phdr.p_type);
4383 W.printHex("Offset", Phdr.p_offset);
4384 W.printHex("VirtualAddress", Phdr.p_vaddr);
4385 W.printHex("PhysicalAddress", Phdr.p_paddr);
4386 W.printNumber("FileSize", Phdr.p_filesz);
4387 W.printNumber("MemSize", Phdr.p_memsz);
4388 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
4389 W.printNumber("Alignment", Phdr.p_align);
4390 }
4391}
4392
4393template <class ELFT>
4394void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
4395 W.startLine() << "Hash Histogram not implemented!\n";
4396}
4397
4398template <class ELFT>
4399void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
4400 ListScope L(W, "CGProfile");
4401 if (!this->dumper()->getDotCGProfileSec())
4402 return;
4403 auto CGProfile =
4404 unwrapOrError(Obj->template getSectionContentsAsArray<Elf_CGProfile>(
4405 this->dumper()->getDotCGProfileSec()));
4406 for (const Elf_CGProfile &CGPE : CGProfile) {
4407 DictScope D(W, "CGProfileEntry");
4408 W.printNumber("From", this->dumper()->getStaticSymbolName(CGPE.cgp_from),
4409 CGPE.cgp_from);
4410 W.printNumber("To", this->dumper()->getStaticSymbolName(CGPE.cgp_to),
4411 CGPE.cgp_to);
4412 W.printNumber("Weight", CGPE.cgp_weight);
4413 }
4414}
4415
4416template <class ELFT>
4417void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
4418 ListScope L(W, "Addrsig");
4419 if (!this->dumper()->getDotAddrsigSec())
4420 return;
4421 ArrayRef<uint8_t> Contents = unwrapOrError(
4422 Obj->getSectionContents(this->dumper()->getDotAddrsigSec()));
4423 const uint8_t *Cur = Contents.begin();
4424 const uint8_t *End = Contents.end();
4425 while (Cur != End) {
4426 unsigned Size;
4427 const char *Err;
4428 uint64_t SymIndex = decodeULEB128(Cur, &Size, End, &Err);
4429 if (Err)
4430 reportError(Err);
4431 W.printNumber("Sym", this->dumper()->getStaticSymbolName(SymIndex),
4432 SymIndex);
4433 Cur += Size;
4434 }
4435}
4436
4437template <class ELFT>
4438void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
4439 W.startLine() << "printNotes not implemented!\n";
4440}
4441
4442template <class ELFT>
4443void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
4444 ListScope L(W, "LinkerOptions");
4445
4446 for (const Elf_Shdr &Shdr : unwrapOrError(Obj->sections())) {
4447 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
4448 continue;
4449
4450 ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Shdr));
4451 for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) {
4452 StringRef Key = StringRef(reinterpret_cast<const char *>(P));
4453 StringRef Value =
4454 StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1);
4455
4456 W.printString(Key, Value);
4457
4458 P = P + Key.size() + Value.size() + 2;
4459 }
4460 }
4461}
4462
4463template <class ELFT>
4464void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
4465 auto PrintEntry = [&](const Elf_Addr *E) {
4466 W.printHex("Address", Parser.getGotAddress(E));
4467 W.printNumber("Access", Parser.getGotOffset(E));
4468 W.printHex("Initial", *E);
4469 };
4470
4471 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
4472
4473 W.printHex("Canonical gp value", Parser.getGp());
4474 {
4475 ListScope RS(W, "Reserved entries");
4476 {
4477 DictScope D(W, "Entry");
4478 PrintEntry(Parser.getGotLazyResolver());
4479 W.printString("Purpose", StringRef("Lazy resolver"));
4480 }
4481
4482 if (Parser.getGotModulePointer()) {
4483 DictScope D(W, "Entry");
4484 PrintEntry(Parser.getGotModulePointer());
4485 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
4486 }
4487 }
4488 {
4489 ListScope LS(W, "Local entries");
4490 for (auto &E : Parser.getLocalEntries()) {
4491 DictScope D(W, "Entry");
4492 PrintEntry(&E);
4493 }
4494 }
4495
4496 if (Parser.IsStatic)
4497 return;
4498
4499 {
4500 ListScope GS(W, "Global entries");
4501 for (auto &E : Parser.getGlobalEntries()) {
4502 DictScope D(W, "Entry");
4503
4504 PrintEntry(&E);
4505
4506 const Elf_Sym *Sym = Parser.getGotSym(&E);
4507 W.printHex("Value", Sym->st_value);
4508 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
4509
4510 unsigned SectionIndex = 0;
4511 StringRef SectionName;
4512 this->dumper()->getSectionNameIndex(
4513 Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
4514 SectionIndex);
4515 W.printHex("Section", SectionName, SectionIndex);
4516
4517 std::string SymName = this->dumper()->getFullSymbolName(
4518 Sym, this->dumper()->getDynamicStringTable(), true);
4519 W.printNumber("Name", SymName, Sym->st_name);
4520 }
4521 }
4522
4523 W.printNumber("Number of TLS and multi-GOT entries",
4524 uint64_t(Parser.getOtherEntries().size()));
4525}
4526
4527template <class ELFT>
4528void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
4529 auto PrintEntry = [&](const Elf_Addr *E) {
4530 W.printHex("Address", Parser.getPltAddress(E));
4531 W.printHex("Initial", *E);
4532 };
4533
4534 DictScope GS(W, "PLT GOT");
4535
4536 {
4537 ListScope RS(W, "Reserved entries");
4538 {
4539 DictScope D(W, "Entry");
4540 PrintEntry(Parser.getPltLazyResolver());
4541 W.printString("Purpose", StringRef("PLT lazy resolver"));
4542 }
4543
4544 if (auto E = Parser.getPltModulePointer()) {
4545 DictScope D(W, "Entry");
4546 PrintEntry(E);
4547 W.printString("Purpose", StringRef("Module pointer"));
4548 }
4549 }
4550 {
4551 ListScope LS(W, "Entries");
4552 for (auto &E : Parser.getPltEntries()) {
4553 DictScope D(W, "Entry");
4554 PrintEntry(&E);
4555
4556 const Elf_Sym *Sym = Parser.getPltSym(&E);
4557 W.printHex("Value", Sym->st_value);
4558 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
4559
4560 unsigned SectionIndex = 0;
4561 StringRef SectionName;
4562 this->dumper()->getSectionNameIndex(
4563 Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
4564 SectionIndex);
4565 W.printHex("Section", SectionName, SectionIndex);
4566
4567 std::string SymName =
4568 this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
4569 W.printNumber("Name", SymName, Sym->st_name);
4570 }
4571 }
4572}

/build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-readobj/DwarfCFIEHPrinter.h

1//===--- DwarfCFIEHPrinter.h - DWARF-based Unwind Information Printer -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_TOOLS_LLVM_READOBJ_DWARFCFIEHPRINTER_H
11#define LLVM_TOOLS_LLVM_READOBJ_DWARFCFIEHPRINTER_H
12
13#include "Error.h"
14#include "llvm-readobj.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/BinaryFormat/Dwarf.h"
17#include "llvm/Object/ELF.h"
18#include "llvm/Object/ELFTypes.h"
19#include "llvm/Support/Casting.h"
20#include "llvm/Support/ScopedPrinter.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
23#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
24#include "llvm/Support/Endian.h"
25#include "llvm/Support/Format.h"
26#include "llvm/Support/type_traits.h"
27
28namespace llvm {
29namespace DwarfCFIEH {
30
31template <typename ELFT>
32class PrinterContext {
33 ScopedPrinter &W;
34 const object::ELFFile<ELFT> *Obj;
35
36 void printEHFrameHdr(uint64_t Offset, uint64_t Address, uint64_t Size) const;
37
38 void printEHFrame(const typename ELFT::Shdr *EHFrameShdr) const;
39
40public:
41 PrinterContext(ScopedPrinter &W, const object::ELFFile<ELFT> *Obj)
42 : W(W), Obj(Obj) {}
43
44 void printUnwindInformation() const;
45};
46
47template <class ELFO>
48static const typename ELFO::Elf_Shdr *findSectionByAddress(const ELFO *Obj,
49 uint64_t Addr) {
50 auto Sections = Obj->sections();
51 if (Error E = Sections.takeError())
52 reportError(toString(std::move(E)));
53
54 for (const auto &Shdr : *Sections)
55 if (Shdr.sh_addr == Addr)
56 return &Shdr;
57 return nullptr;
58}
59
60template <typename ELFT>
61void PrinterContext<ELFT>::printUnwindInformation() const {
62 const typename ELFT::Phdr *EHFramePhdr = nullptr;
63
64 auto PHs = Obj->program_headers();
3
Calling 'ELFFile::program_headers'
65 if (Error E = PHs.takeError())
66 reportError(toString(std::move(E)));
67
68 for (const auto &Phdr : *PHs) {
69 if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) {
70 EHFramePhdr = &Phdr;
71 if (Phdr.p_memsz != Phdr.p_filesz)
72 reportError("p_memsz does not match p_filesz for GNU_EH_FRAME");
73 break;
74 }
75 }
76
77 if (EHFramePhdr)
78 printEHFrameHdr(EHFramePhdr->p_offset, EHFramePhdr->p_vaddr,
79 EHFramePhdr->p_memsz);
80
81 auto Sections = Obj->sections();
82 if (Error E = Sections.takeError())
83 reportError(toString(std::move(E)));
84
85 for (const auto &Shdr : *Sections) {
86 auto SectionName = Obj->getSectionName(&Shdr);
87 if (Error E = SectionName.takeError())
88 reportError(toString(std::move(E)));
89
90 if (*SectionName == ".eh_frame")
91 printEHFrame(&Shdr);
92 }
93}
94
95template <typename ELFT>
96void PrinterContext<ELFT>::printEHFrameHdr(uint64_t EHFrameHdrOffset,
97 uint64_t EHFrameHdrAddress,
98 uint64_t EHFrameHdrSize) const {
99 ListScope L(W, "EH_FRAME Header");
100 W.startLine() << format("Address: 0x%" PRIx64"l" "x" "\n", EHFrameHdrAddress);
101 W.startLine() << format("Offset: 0x%" PRIx64"l" "x" "\n", EHFrameHdrOffset);
102 W.startLine() << format("Size: 0x%" PRIx64"l" "x" "\n", EHFrameHdrSize);
103
104 const auto *EHFrameHdrShdr = findSectionByAddress(Obj, EHFrameHdrAddress);
105 if (EHFrameHdrShdr) {
106 auto SectionName = Obj->getSectionName(EHFrameHdrShdr);
107 if (Error E = SectionName.takeError())
108 reportError(toString(std::move(E)));
109
110 W.printString("Corresponding Section", *SectionName);
111 }
112
113 DataExtractor DE(
114 StringRef(reinterpret_cast<const char *>(Obj->base()) + EHFrameHdrOffset,
115 EHFrameHdrSize),
116 ELFT::TargetEndianness == support::endianness::little,
117 ELFT::Is64Bits ? 8 : 4);
118
119 DictScope D(W, "Header");
120 uint32_t Offset = 0;
121
122 auto Version = DE.getU8(&Offset);
123 W.printNumber("version", Version);
124 if (Version != 1)
125 reportError("only version 1 of .eh_frame_hdr is supported");
126
127 uint64_t EHFramePtrEnc = DE.getU8(&Offset);
128 W.startLine() << format("eh_frame_ptr_enc: 0x%" PRIx64"l" "x" "\n", EHFramePtrEnc);
129 if (EHFramePtrEnc != (dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4))
130 reportError("unexpected encoding eh_frame_ptr_enc");
131
132 uint64_t FDECountEnc = DE.getU8(&Offset);
133 W.startLine() << format("fde_count_enc: 0x%" PRIx64"l" "x" "\n", FDECountEnc);
134 if (FDECountEnc != dwarf::DW_EH_PE_udata4)
135 reportError("unexpected encoding fde_count_enc");
136
137 uint64_t TableEnc = DE.getU8(&Offset);
138 W.startLine() << format("table_enc: 0x%" PRIx64"l" "x" "\n", TableEnc);
139 if (TableEnc != (dwarf::DW_EH_PE_datarel | dwarf::DW_EH_PE_sdata4))
140 reportError("unexpected encoding table_enc");
141
142 auto EHFramePtr = DE.getSigned(&Offset, 4) + EHFrameHdrAddress + 4;
143 W.startLine() << format("eh_frame_ptr: 0x%" PRIx64"l" "x" "\n", EHFramePtr);
144
145 auto FDECount = DE.getUnsigned(&Offset, 4);
146 W.printNumber("fde_count", FDECount);
147
148 unsigned NumEntries = 0;
149 uint64_t PrevPC = 0;
150 while (Offset + 8 <= EHFrameHdrSize && NumEntries < FDECount) {
151 DictScope D(W, std::string("entry ") + std::to_string(NumEntries));
152
153 auto InitialPC = DE.getSigned(&Offset, 4) + EHFrameHdrAddress;
154 W.startLine() << format("initial_location: 0x%" PRIx64"l" "x" "\n", InitialPC);
155 auto Address = DE.getSigned(&Offset, 4) + EHFrameHdrAddress;
156 W.startLine() << format("address: 0x%" PRIx64"l" "x" "\n", Address);
157
158 if (InitialPC < PrevPC)
159 reportError("initial_location is out of order");
160
161 PrevPC = InitialPC;
162 ++NumEntries;
163 }
164}
165
166template <typename ELFT>
167void PrinterContext<ELFT>::printEHFrame(
168 const typename ELFT::Shdr *EHFrameShdr) const {
169 uint64_t Address = EHFrameShdr->sh_addr;
170 uint64_t ShOffset = EHFrameShdr->sh_offset;
171 W.startLine() << format(".eh_frame section at offset 0x%" PRIx64"l" "x"
172 " address 0x%" PRIx64"l" "x" ":\n",
173 ShOffset, Address);
174 W.indent();
175
176 auto Result = Obj->getSectionContents(EHFrameShdr);
177 if (Error E = Result.takeError())
178 reportError(toString(std::move(E)));
179
180 auto Contents = Result.get();
181 DWARFDataExtractor DE(
182 StringRef(reinterpret_cast<const char *>(Contents.data()),
183 Contents.size()),
184 ELFT::TargetEndianness == support::endianness::little,
185 ELFT::Is64Bits ? 8 : 4);
186 DWARFDebugFrame EHFrame(/*IsEH=*/true, /*EHFrameAddress=*/Address);
187 EHFrame.parse(DE);
188
189 for (const auto &Entry : EHFrame) {
190 if (const auto *CIE = dyn_cast<dwarf::CIE>(&Entry)) {
191 W.startLine() << format("[0x%" PRIx64"l" "x" "] CIE length=%" PRIu64"l" "u" "\n",
192 Address + CIE->getOffset(),
193 CIE->getLength());
194 W.indent();
195
196 W.printNumber("version", CIE->getVersion());
197 W.printString("augmentation", CIE->getAugmentationString());
198 W.printNumber("code_alignment_factor", CIE->getCodeAlignmentFactor());
199 W.printNumber("data_alignment_factor", CIE->getDataAlignmentFactor());
200 W.printNumber("return_address_register", CIE->getReturnAddressRegister());
201
202 W.getOStream() << "\n";
203 W.startLine() << "Program:\n";
204 W.indent();
205 CIE->cfis().dump(W.getOStream(), nullptr, W.getIndentLevel());
206 W.unindent();
207
208 W.unindent();
209 W.getOStream() << "\n";
210
211 } else if (const auto *FDE = dyn_cast<dwarf::FDE>(&Entry)) {
212 W.startLine() << format("[0x%" PRIx64"l" "x" "] FDE length=%" PRIu64"l" "u"
213 " cie=[0x%" PRIx64"l" "x" "]\n",
214 Address + FDE->getOffset(),
215 FDE->getLength(),
216 Address + FDE->getLinkedCIE()->getOffset());
217 W.indent();
218
219 W.startLine() << format("initial_location: 0x%" PRIx64"l" "x" "\n",
220 FDE->getInitialLocation());
221 W.startLine()
222 << format("address_range: 0x%" PRIx64"l" "x" " (end : 0x%" PRIx64"l" "x" ")\n",
223 FDE->getAddressRange(),
224 FDE->getInitialLocation() + FDE->getAddressRange());
225
226 W.getOStream() << "\n";
227 W.startLine() << "Program:\n";
228 W.indent();
229 FDE->cfis().dump(W.getOStream(), nullptr, W.getIndentLevel());
230 W.unindent();
231
232 W.unindent();
233 W.getOStream() << "\n";
234 } else {
235 llvm_unreachable("unexpected DWARF frame kind")::llvm::llvm_unreachable_internal("unexpected DWARF frame kind"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/llvm-readobj/DwarfCFIEHPrinter.h"
, 235)
;
236 }
237 }
238
239 W.unindent();
240}
241
242}
243}
244
245#endif

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Object/ELF.h

1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the ELFFile template class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_OBJECT_ELF_H
15#define LLVM_OBJECT_ELF_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/BinaryFormat/ELF.h"
21#include "llvm/Object/ELFTypes.h"
22#include "llvm/Object/Error.h"
23#include "llvm/Support/Endian.h"
24#include "llvm/Support/Error.h"
25#include <cassert>
26#include <cstddef>
27#include <cstdint>
28#include <limits>
29#include <utility>
30
31namespace llvm {
32namespace object {
33
34StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type);
35uint32_t getELFRelrRelocationType(uint32_t Machine);
36StringRef getELFSectionTypeName(uint32_t Machine, uint32_t Type);
37
38// Subclasses of ELFFile may need this for template instantiation
39inline std::pair<unsigned char, unsigned char>
40getElfArchType(StringRef Object) {
41 if (Object.size() < ELF::EI_NIDENT)
42 return std::make_pair((uint8_t)ELF::ELFCLASSNONE,
43 (uint8_t)ELF::ELFDATANONE);
44 return std::make_pair((uint8_t)Object[ELF::EI_CLASS],
45 (uint8_t)Object[ELF::EI_DATA]);
46}
47
48static inline Error createError(StringRef Err) {
49 return make_error<StringError>(Err, object_error::parse_failed);
8
Calling 'make_error<llvm::StringError, llvm::StringRef &, llvm::object::object_error>'
50}
51
52template <class ELFT>
53class ELFFile {
54public:
55 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword;
56 using uintX_t = typename ELFT::uint;
57 using Elf_Ehdr = typename ELFT::Ehdr;
58 using Elf_Shdr = typename ELFT::Shdr;
59 using Elf_Sym = typename ELFT::Sym;
60 using Elf_Dyn = typename ELFT::Dyn;
61 using Elf_Phdr = typename ELFT::Phdr;
62 using Elf_Rel = typename ELFT::Rel;
63 using Elf_Rela = typename ELFT::Rela;
64 using Elf_Relr = typename ELFT::Relr;
65 using Elf_Verdef = typename ELFT::Verdef;
66 using Elf_Verdaux = typename ELFT::Verdaux;
67 using Elf_Verneed = typename ELFT::Verneed;
68 using Elf_Vernaux = typename ELFT::Vernaux;
69 using Elf_Versym = typename ELFT::Versym;
70 using Elf_Hash = typename ELFT::Hash;
71 using Elf_GnuHash = typename ELFT::GnuHash;
72 using Elf_Nhdr = typename ELFT::Nhdr;
73 using Elf_Note = typename ELFT::Note;
74 using Elf_Note_Iterator = typename ELFT::NoteIterator;
75 using Elf_Dyn_Range = typename ELFT::DynRange;
76 using Elf_Shdr_Range = typename ELFT::ShdrRange;
77 using Elf_Sym_Range = typename ELFT::SymRange;
78 using Elf_Rel_Range = typename ELFT::RelRange;
79 using Elf_Rela_Range = typename ELFT::RelaRange;
80 using Elf_Relr_Range = typename ELFT::RelrRange;
81 using Elf_Phdr_Range = typename ELFT::PhdrRange;
82
83 const uint8_t *base() const {
84 return reinterpret_cast<const uint8_t *>(Buf.data());
85 }
86
87 size_t getBufSize() const { return Buf.size(); }
88
89private:
90 StringRef Buf;
91
92 ELFFile(StringRef Object);
93
94public:
95 const Elf_Ehdr *getHeader() const {
96 return reinterpret_cast<const Elf_Ehdr *>(base());
97 }
98
99 template <typename T>
100 Expected<const T *> getEntry(uint32_t Section, uint32_t Entry) const;
101 template <typename T>
102 Expected<const T *> getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
103
104 Expected<StringRef> getStringTable(const Elf_Shdr *Section) const;
105 Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section) const;
106 Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section,
107 Elf_Shdr_Range Sections) const;
108
109 Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section) const;
110 Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section,
111 Elf_Shdr_Range Sections) const;
112
113 StringRef getRelocationTypeName(uint32_t Type) const;
114 void getRelocationTypeName(uint32_t Type,
115 SmallVectorImpl<char> &Result) const;
116 uint32_t getRelrRelocationType() const;
117
118 const char *getDynamicTagAsString(unsigned Arch, uint64_t Type) const;
119 const char *getDynamicTagAsString(uint64_t Type) const;
120
121 /// Get the symbol for a given relocation.
122 Expected<const Elf_Sym *> getRelocationSymbol(const Elf_Rel *Rel,
123 const Elf_Shdr *SymTab) const;
124
125 static Expected<ELFFile> create(StringRef Object);
126
127 bool isMipsELF64() const {
128 return getHeader()->e_machine == ELF::EM_MIPS &&
129 getHeader()->getFileClass() == ELF::ELFCLASS64;
130 }
131
132 bool isMips64EL() const {
133 return isMipsELF64() &&
134 getHeader()->getDataEncoding() == ELF::ELFDATA2LSB;
135 }
136
137 Expected<Elf_Shdr_Range> sections() const;
138
139 Expected<Elf_Dyn_Range> dynamicEntries() const;
140
141 Expected<const uint8_t *> toMappedAddr(uint64_t VAddr) const;
142
143 Expected<Elf_Sym_Range> symbols(const Elf_Shdr *Sec) const {
144 if (!Sec)
145 return makeArrayRef<Elf_Sym>(nullptr, nullptr);
146 return getSectionContentsAsArray<Elf_Sym>(Sec);
147 }
148
149 Expected<Elf_Rela_Range> relas(const Elf_Shdr *Sec) const {
150 return getSectionContentsAsArray<Elf_Rela>(Sec);
151 }
152
153 Expected<Elf_Rel_Range> rels(const Elf_Shdr *Sec) const {
154 return getSectionContentsAsArray<Elf_Rel>(Sec);
155 }
156
157 Expected<Elf_Relr_Range> relrs(const Elf_Shdr *Sec) const {
158 return getSectionContentsAsArray<Elf_Relr>(Sec);
159 }
160
161 Expected<std::vector<Elf_Rela>> decode_relrs(Elf_Relr_Range relrs) const;
162
163 Expected<std::vector<Elf_Rela>> android_relas(const Elf_Shdr *Sec) const;
164
165 /// Iterate over program header table.
166 Expected<Elf_Phdr_Range> program_headers() const {
167 if (getHeader()->e_phnum && getHeader()->e_phentsize != sizeof(Elf_Phdr))
4
Assuming the condition is true
5
Assuming the condition is true
6
Taking true branch
168 return createError("invalid e_phentsize");
7
Calling 'createError'
169 if (getHeader()->e_phoff +
170 (getHeader()->e_phnum * getHeader()->e_phentsize) >
171 getBufSize())
172 return createError("program headers longer than binary");
173 auto *Begin =
174 reinterpret_cast<const Elf_Phdr *>(base() + getHeader()->e_phoff);
175 return makeArrayRef(Begin, Begin + getHeader()->e_phnum);
176 }
177
178 /// Get an iterator over notes in a program header.
179 ///
180 /// The program header must be of type \c PT_NOTE.
181 ///
182 /// \param Phdr the program header to iterate over.
183 /// \param Err [out] an error to support fallible iteration, which should
184 /// be checked after iteration ends.
185 Elf_Note_Iterator notes_begin(const Elf_Phdr &Phdr, Error &Err) const {
186 if (Phdr.p_type != ELF::PT_NOTE) {
187 Err = createError("attempt to iterate notes of non-note program header");
188 return Elf_Note_Iterator(Err);
189 }
190 if (Phdr.p_offset + Phdr.p_filesz > getBufSize()) {
191 Err = createError("invalid program header offset/size");
192 return Elf_Note_Iterator(Err);
193 }
194 return Elf_Note_Iterator(base() + Phdr.p_offset, Phdr.p_filesz, Err);
195 }
196
197 /// Get an iterator over notes in a section.
198 ///
199 /// The section must be of type \c SHT_NOTE.
200 ///
201 /// \param Shdr the section to iterate over.
202 /// \param Err [out] an error to support fallible iteration, which should
203 /// be checked after iteration ends.
204 Elf_Note_Iterator notes_begin(const Elf_Shdr &Shdr, Error &Err) const {
205 if (Shdr.sh_type != ELF::SHT_NOTE) {
206 Err = createError("attempt to iterate notes of non-note section");
207 return Elf_Note_Iterator(Err);
208 }
209 if (Shdr.sh_offset + Shdr.sh_size > getBufSize()) {
210 Err = createError("invalid section offset/size");
211 return Elf_Note_Iterator(Err);
212 }
213 return Elf_Note_Iterator(base() + Shdr.sh_offset, Shdr.sh_size, Err);
214 }
215
216 /// Get the end iterator for notes.
217 Elf_Note_Iterator notes_end() const {
218 return Elf_Note_Iterator();
219 }
220
221 /// Get an iterator range over notes of a program header.
222 ///
223 /// The program header must be of type \c PT_NOTE.
224 ///
225 /// \param Phdr the program header to iterate over.
226 /// \param Err [out] an error to support fallible iteration, which should
227 /// be checked after iteration ends.
228 iterator_range<Elf_Note_Iterator> notes(const Elf_Phdr &Phdr,
229 Error &Err) const {
230 return make_range(notes_begin(Phdr, Err), notes_end());
231 }
232
233 /// Get an iterator range over notes of a section.
234 ///
235 /// The section must be of type \c SHT_NOTE.
236 ///
237 /// \param Shdr the section to iterate over.
238 /// \param Err [out] an error to support fallible iteration, which should
239 /// be checked after iteration ends.
240 iterator_range<Elf_Note_Iterator> notes(const Elf_Shdr &Shdr,
241 Error &Err) const {
242 return make_range(notes_begin(Shdr, Err), notes_end());
243 }
244
245 Expected<StringRef> getSectionStringTable(Elf_Shdr_Range Sections) const;
246 Expected<uint32_t> getSectionIndex(const Elf_Sym *Sym, Elf_Sym_Range Syms,
247 ArrayRef<Elf_Word> ShndxTable) const;
248 Expected<const Elf_Shdr *> getSection(const Elf_Sym *Sym,
249 const Elf_Shdr *SymTab,
250 ArrayRef<Elf_Word> ShndxTable) const;
251 Expected<const Elf_Shdr *> getSection(const Elf_Sym *Sym,
252 Elf_Sym_Range Symtab,
253 ArrayRef<Elf_Word> ShndxTable) const;
254 Expected<const Elf_Shdr *> getSection(uint32_t Index) const;
255 Expected<const Elf_Shdr *> getSection(const StringRef SectionName) const;
256
257 Expected<const Elf_Sym *> getSymbol(const Elf_Shdr *Sec,
258 uint32_t Index) const;
259
260 Expected<StringRef> getSectionName(const Elf_Shdr *Section) const;
261 Expected<StringRef> getSectionName(const Elf_Shdr *Section,
262 StringRef DotShstrtab) const;
263 template <typename T>
264 Expected<ArrayRef<T>> getSectionContentsAsArray(const Elf_Shdr *Sec) const;
265 Expected<ArrayRef<uint8_t>> getSectionContents(const Elf_Shdr *Sec) const;
266};
267
268using ELF32LEFile = ELFFile<ELF32LE>;
269using ELF64LEFile = ELFFile<ELF64LE>;
270using ELF32BEFile = ELFFile<ELF32BE>;
271using ELF64BEFile = ELFFile<ELF64BE>;
272
273template <class ELFT>
274inline Expected<const typename ELFT::Shdr *>
275getSection(typename ELFT::ShdrRange Sections, uint32_t Index) {
276 if (Index >= Sections.size())
277 return createError("invalid section index");
278 return &Sections[Index];
279}
280
281template <class ELFT>
282inline Expected<uint32_t>
283getExtendedSymbolTableIndex(const typename ELFT::Sym *Sym,
284 const typename ELFT::Sym *FirstSym,
285 ArrayRef<typename ELFT::Word> ShndxTable) {
286 assert(Sym->st_shndx == ELF::SHN_XINDEX)((Sym->st_shndx == ELF::SHN_XINDEX) ? static_cast<void>
(0) : __assert_fail ("Sym->st_shndx == ELF::SHN_XINDEX", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Object/ELF.h"
, 286, __PRETTY_FUNCTION__))
;
287 unsigned Index = Sym - FirstSym;
288 if (Index >= ShndxTable.size())
289 return createError("index past the end of the symbol table");
290
291 // The size of the table was checked in getSHNDXTable.
292 return ShndxTable[Index];
293}
294
295template <class ELFT>
296Expected<uint32_t>
297ELFFile<ELFT>::getSectionIndex(const Elf_Sym *Sym, Elf_Sym_Range Syms,
298 ArrayRef<Elf_Word> ShndxTable) const {
299 uint32_t Index = Sym->st_shndx;
300 if (Index == ELF::SHN_XINDEX) {
301 auto ErrorOrIndex = getExtendedSymbolTableIndex<ELFT>(
302 Sym, Syms.begin(), ShndxTable);
303 if (!ErrorOrIndex)
304 return ErrorOrIndex.takeError();
305 return *ErrorOrIndex;
306 }
307 if (Index == ELF::SHN_UNDEF || Index >= ELF::SHN_LORESERVE)
308 return 0;
309 return Index;
310}
311
312template <class ELFT>
313Expected<const typename ELFT::Shdr *>
314ELFFile<ELFT>::getSection(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
315 ArrayRef<Elf_Word> ShndxTable) const {
316 auto SymsOrErr = symbols(SymTab);
317 if (!SymsOrErr)
318 return SymsOrErr.takeError();
319 return getSection(Sym, *SymsOrErr, ShndxTable);
320}
321
322template <class ELFT>
323Expected<const typename ELFT::Shdr *>
324ELFFile<ELFT>::getSection(const Elf_Sym *Sym, Elf_Sym_Range Symbols,
325 ArrayRef<Elf_Word> ShndxTable) const {
326 auto IndexOrErr = getSectionIndex(Sym, Symbols, ShndxTable);
327 if (!IndexOrErr)
328 return IndexOrErr.takeError();
329 uint32_t Index = *IndexOrErr;
330 if (Index == 0)
331 return nullptr;
332 return getSection(Index);
333}
334
335template <class ELFT>
336inline Expected<const typename ELFT::Sym *>
337getSymbol(typename ELFT::SymRange Symbols, uint32_t Index) {
338 if (Index >= Symbols.size())
339 return createError("invalid symbol index");
340 return &Symbols[Index];
341}
342
343template <class ELFT>
344Expected<const typename ELFT::Sym *>
345ELFFile<ELFT>::getSymbol(const Elf_Shdr *Sec, uint32_t Index) const {
346 auto SymtabOrErr = symbols(Sec);
347 if (!SymtabOrErr)
348 return SymtabOrErr.takeError();
349 return object::getSymbol<ELFT>(*SymtabOrErr, Index);
350}
351
352template <class ELFT>
353template <typename T>
354Expected<ArrayRef<T>>
355ELFFile<ELFT>::getSectionContentsAsArray(const Elf_Shdr *Sec) const {
356 if (Sec->sh_entsize != sizeof(T) && sizeof(T) != 1)
357 return createError("invalid sh_entsize");
358
359 uintX_t Offset = Sec->sh_offset;
360 uintX_t Size = Sec->sh_size;
361
362 if (Size % sizeof(T))
363 return createError("size is not a multiple of sh_entsize");
364 if ((std::numeric_limits<uintX_t>::max() - Offset < Size) ||
365 Offset + Size > Buf.size())
366 return createError("invalid section offset");
367
368 if (Offset % alignof(T))
369 return createError("unaligned data");
370
371 const T *Start = reinterpret_cast<const T *>(base() + Offset);
372 return makeArrayRef(Start, Size / sizeof(T));
373}
374
375template <class ELFT>
376Expected<ArrayRef<uint8_t>>
377ELFFile<ELFT>::getSectionContents(const Elf_Shdr *Sec) const {
378 return getSectionContentsAsArray<uint8_t>(Sec);
379}
380
381template <class ELFT>
382StringRef ELFFile<ELFT>::getRelocationTypeName(uint32_t Type) const {
383 return getELFRelocationTypeName(getHeader()->e_machine, Type);
384}
385
386template <class ELFT>
387void ELFFile<ELFT>::getRelocationTypeName(uint32_t Type,
388 SmallVectorImpl<char> &Result) const {
389 if (!isMipsELF64()) {
390 StringRef Name = getRelocationTypeName(Type);
391 Result.append(Name.begin(), Name.end());
392 } else {
393 // The Mips N64 ABI allows up to three operations to be specified per
394 // relocation record. Unfortunately there's no easy way to test for the
395 // presence of N64 ELFs as they have no special flag that identifies them
396 // as being N64. We can safely assume at the moment that all Mips
397 // ELFCLASS64 ELFs are N64. New Mips64 ABIs should provide enough
398 // information to disambiguate between old vs new ABIs.
399 uint8_t Type1 = (Type >> 0) & 0xFF;
400 uint8_t Type2 = (Type >> 8) & 0xFF;
401 uint8_t Type3 = (Type >> 16) & 0xFF;
402
403 // Concat all three relocation type names.
404 StringRef Name = getRelocationTypeName(Type1);
405 Result.append(Name.begin(), Name.end());
406
407 Name = getRelocationTypeName(Type2);
408 Result.append(1, '/');
409 Result.append(Name.begin(), Name.end());
410
411 Name = getRelocationTypeName(Type3);
412 Result.append(1, '/');
413 Result.append(Name.begin(), Name.end());
414 }
415}
416
417template <class ELFT>
418uint32_t ELFFile<ELFT>::getRelrRelocationType() const {
419 return getELFRelrRelocationType(getHeader()->e_machine);
420}
421
422template <class ELFT>
423Expected<const typename ELFT::Sym *>
424ELFFile<ELFT>::getRelocationSymbol(const Elf_Rel *Rel,
425 const Elf_Shdr *SymTab) const {
426 uint32_t Index = Rel->getSymbol(isMips64EL());
427 if (Index == 0)
428 return nullptr;
429 return getEntry<Elf_Sym>(SymTab, Index);
430}
431
432template <class ELFT>
433Expected<StringRef>
434ELFFile<ELFT>::getSectionStringTable(Elf_Shdr_Range Sections) const {
435 uint32_t Index = getHeader()->e_shstrndx;
436 if (Index == ELF::SHN_XINDEX)
437 Index = Sections[0].sh_link;
438
439 if (!Index) // no section string table.
440 return "";
441 if (Index >= Sections.size())
442 return createError("invalid section index");
443 return getStringTable(&Sections[Index]);
444}
445
446template <class ELFT> ELFFile<ELFT>::ELFFile(StringRef Object) : Buf(Object) {}
447
448template <class ELFT>
449Expected<ELFFile<ELFT>> ELFFile<ELFT>::create(StringRef Object) {
450 if (sizeof(Elf_Ehdr) > Object.size())
451 return createError("Invalid buffer");
452 return ELFFile(Object);
453}
454
455template <class ELFT>
456Expected<typename ELFT::ShdrRange> ELFFile<ELFT>::sections() const {
457 const uintX_t SectionTableOffset = getHeader()->e_shoff;
458 if (SectionTableOffset == 0)
459 return ArrayRef<Elf_Shdr>();
460
461 if (getHeader()->e_shentsize != sizeof(Elf_Shdr))
462 return createError(
463 "invalid section header entry size (e_shentsize) in ELF header");
464
465 const uint64_t FileSize = Buf.size();
466
467 if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
468 return createError("section header table goes past the end of the file");
469
470 // Invalid address alignment of section headers
471 if (SectionTableOffset & (alignof(Elf_Shdr) - 1))
472 return createError("invalid alignment of section headers");
473
474 const Elf_Shdr *First =
475 reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
476
477 uintX_t NumSections = getHeader()->e_shnum;
478 if (NumSections == 0)
479 NumSections = First->sh_size;
480
481 if (NumSections > UINT64_MAX(18446744073709551615UL) / sizeof(Elf_Shdr))
482 return createError("section table goes past the end of file");
483
484 const uint64_t SectionTableSize = NumSections * sizeof(Elf_Shdr);
485
486 // Section table goes past end of file!
487 if (SectionTableOffset + SectionTableSize > FileSize)
488 return createError("section table goes past the end of file");
489
490 return makeArrayRef(First, NumSections);
491}
492
493template <class ELFT>
494template <typename T>
495Expected<const T *> ELFFile<ELFT>::getEntry(uint32_t Section,
496 uint32_t Entry) const {
497 auto SecOrErr = getSection(Section);
498 if (!SecOrErr)
499 return SecOrErr.takeError();
500 return getEntry<T>(*SecOrErr, Entry);
501}
502
503template <class ELFT>
504template <typename T>
505Expected<const T *> ELFFile<ELFT>::getEntry(const Elf_Shdr *Section,
506 uint32_t Entry) const {
507 if (sizeof(T) != Section->sh_entsize)
508 return createError("invalid sh_entsize");
509 size_t Pos = Section->sh_offset + Entry * sizeof(T);
510 if (Pos + sizeof(T) > Buf.size())
511 return createError("invalid section offset");
512 return reinterpret_cast<const T *>(base() + Pos);
513}
514
515template <class ELFT>
516Expected<const typename ELFT::Shdr *>
517ELFFile<ELFT>::getSection(uint32_t Index) const {
518 auto TableOrErr = sections();
519 if (!TableOrErr)
520 return TableOrErr.takeError();
521 return object::getSection<ELFT>(*TableOrErr, Index);
522}
523
524template <class ELFT>
525Expected<const typename ELFT::Shdr *>
526ELFFile<ELFT>::getSection(const StringRef SectionName) const {
527 auto TableOrErr = sections();
528 if (!TableOrErr)
529 return TableOrErr.takeError();
530 for (auto &Sec : *TableOrErr) {
531 auto SecNameOrErr = getSectionName(&Sec);
532 if (!SecNameOrErr)
533 return SecNameOrErr.takeError();
534 if (*SecNameOrErr == SectionName)
535 return &Sec;
536 }
537 return createError("invalid section name");
538}
539
540template <class ELFT>
541Expected<StringRef>
542ELFFile<ELFT>::getStringTable(const Elf_Shdr *Section) const {
543 if (Section->sh_type != ELF::SHT_STRTAB)
544 return createError("invalid sh_type for string table, expected SHT_STRTAB");
545 auto V = getSectionContentsAsArray<char>(Section);
546 if (!V)
547 return V.takeError();
548 ArrayRef<char> Data = *V;
549 if (Data.empty())
550 return createError("empty string table");
551 if (Data.back() != '\0')
552 return createError("string table non-null terminated");
553 return StringRef(Data.begin(), Data.size());
554}
555
556template <class ELFT>
557Expected<ArrayRef<typename ELFT::Word>>
558ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section) const {
559 auto SectionsOrErr = sections();
560 if (!SectionsOrErr)
561 return SectionsOrErr.takeError();
562 return getSHNDXTable(Section, *SectionsOrErr);
563}
564
565template <class ELFT>
566Expected<ArrayRef<typename ELFT::Word>>
567ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section,
568 Elf_Shdr_Range Sections) const {
569 assert(Section.sh_type == ELF::SHT_SYMTAB_SHNDX)((Section.sh_type == ELF::SHT_SYMTAB_SHNDX) ? static_cast<
void> (0) : __assert_fail ("Section.sh_type == ELF::SHT_SYMTAB_SHNDX"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Object/ELF.h"
, 569, __PRETTY_FUNCTION__))
;
570 auto VOrErr = getSectionContentsAsArray<Elf_Word>(&Section);
571 if (!VOrErr)
572 return VOrErr.takeError();
573 ArrayRef<Elf_Word> V = *VOrErr;
574 auto SymTableOrErr = object::getSection<ELFT>(Sections, Section.sh_link);
575 if (!SymTableOrErr)
576 return SymTableOrErr.takeError();
577 const Elf_Shdr &SymTable = **SymTableOrErr;
578 if (SymTable.sh_type != ELF::SHT_SYMTAB &&
579 SymTable.sh_type != ELF::SHT_DYNSYM)
580 return createError("invalid sh_type");
581 if (V.size() != (SymTable.sh_size / sizeof(Elf_Sym)))
582 return createError("invalid section contents size");
583 return V;
584}
585
586template <class ELFT>
587Expected<StringRef>
588ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec) const {
589 auto SectionsOrErr = sections();
590 if (!SectionsOrErr)
591 return SectionsOrErr.takeError();
592 return getStringTableForSymtab(Sec, *SectionsOrErr);
593}
594
595template <class ELFT>
596Expected<StringRef>
597ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec,
598 Elf_Shdr_Range Sections) const {
599
600 if (Sec.sh_type != ELF::SHT_SYMTAB && Sec.sh_type != ELF::SHT_DYNSYM)
601 return createError(
602 "invalid sh_type for symbol table, expected SHT_SYMTAB or SHT_DYNSYM");
603 auto SectionOrErr = object::getSection<ELFT>(Sections, Sec.sh_link);
604 if (!SectionOrErr)
605 return SectionOrErr.takeError();
606 return getStringTable(*SectionOrErr);
607}
608
609template <class ELFT>
610Expected<StringRef>
611ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section) const {
612 auto SectionsOrErr = sections();
613 if (!SectionsOrErr)
614 return SectionsOrErr.takeError();
615 auto Table = getSectionStringTable(*SectionsOrErr);
616 if (!Table)
617 return Table.takeError();
618 return getSectionName(Section, *Table);
619}
620
621template <class ELFT>
622Expected<StringRef> ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section,
623 StringRef DotShstrtab) const {
624 uint32_t Offset = Section->sh_name;
625 if (Offset == 0)
626 return StringRef();
627 if (Offset >= DotShstrtab.size())
628 return createError("invalid string offset");
629 return StringRef(DotShstrtab.data() + Offset);
630}
631
632/// This function returns the hash value for a symbol in the .dynsym section
633/// Name of the API remains consistent as specified in the libelf
634/// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
635inline unsigned hashSysV(StringRef SymbolName) {
636 unsigned h = 0, g;
637 for (char C : SymbolName) {
638 h = (h << 4) + C;
639 g = h & 0xf0000000L;
640 if (g != 0)
641 h ^= g >> 24;
642 h &= ~g;
643 }
644 return h;
645}
646
647} // end namespace object
648} // end namespace llvm
649
650#endif // LLVM_OBJECT_ELF_H

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
13
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
9
Calling 'make_unique<llvm::StringError, llvm::StringRef &, llvm::object::object_error>'
11
Returned allocated memory
12
Calling constructor for 'Error'
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
394 return E2;
395 if (!E2)
396 return E1;
397 if (E1.isA<ErrorList>()) {
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
415 new ErrorList(E1.takePayload(), E2.takePayload())));
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This is useful in the base level of your program to allow clean termination
957/// (allowing clean deallocation of resources, etc.), while reporting error
958/// information to the user.
959void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner);
960
961/// Write all error messages (if any) in E to a string. The newline character
962/// is used to separate error messages.
963inline std::string toString(Error E) {
964 SmallVector<std::string, 2> Errors;
965 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
966 Errors.push_back(EI.message());
967 });
968 return join(Errors.begin(), Errors.end(), "\n");
969}
970
971/// Consume a Error without doing anything. This method should be used
972/// only where an error can be considered a reasonable and expected return
973/// value.
974///
975/// Uses of this method are potentially indicative of design problems: If it's
976/// legitimate to do nothing while processing an "error", the error-producer
977/// might be more clearly refactored to return an Optional<T>.
978inline void consumeError(Error Err) {
979 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
980}
981
982/// Helper for converting an Error to a bool.
983///
984/// This method returns true if Err is in an error state, or false if it is
985/// in a success state. Puts Err in a checked state in both cases (unlike
986/// Error::operator bool(), which only does this for success states).
987inline bool errorToBool(Error Err) {
988 bool IsError = static_cast<bool>(Err);
989 if (IsError)
990 consumeError(std::move(Err));
991 return IsError;
992}
993
994/// Helper for Errors used as out-parameters.
995///
996/// This helper is for use with the Error-as-out-parameter idiom, where an error
997/// is passed to a function or method by reference, rather than being returned.
998/// In such cases it is helpful to set the checked bit on entry to the function
999/// so that the error can be written to (unchecked Errors abort on assignment)
1000/// and clear the checked bit on exit so that clients cannot accidentally forget
1001/// to check the result. This helper performs these actions automatically using
1002/// RAII:
1003///
1004/// @code{.cpp}
1005/// Result foo(Error &Err) {
1006/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1007/// // <body of foo>
1008/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1009/// }
1010/// @endcode
1011///
1012/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1013/// used with optional Errors (Error pointers that are allowed to be null). If
1014/// ErrorAsOutParameter took an Error reference, an instance would have to be
1015/// created inside every condition that verified that Error was non-null. By
1016/// taking an Error pointer we can just create one instance at the top of the
1017/// function.
1018class ErrorAsOutParameter {
1019public:
1020 ErrorAsOutParameter(Error *Err) : Err(Err) {
1021 // Raise the checked bit if Err is success.
1022 if (Err)
1023 (void)!!*Err;
1024 }
1025
1026 ~ErrorAsOutParameter() {
1027 // Clear the checked bit.
1028 if (Err && !*Err)
1029 *Err = Error::success();
1030 }
1031
1032private:
1033 Error *Err;
1034};
1035
1036/// Helper for Expected<T>s used as out-parameters.
1037///
1038/// See ErrorAsOutParameter.
1039template <typename T>
1040class ExpectedAsOutParameter {
1041public:
1042 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1043 : ValOrErr(ValOrErr) {
1044 if (ValOrErr)
1045 (void)!!*ValOrErr;
1046 }
1047
1048 ~ExpectedAsOutParameter() {
1049 if (ValOrErr)
1050 ValOrErr->setUnchecked();
1051 }
1052
1053private:
1054 Expected<T> *ValOrErr;
1055};
1056
1057/// This class wraps a std::error_code in a Error.
1058///
1059/// This is useful if you're writing an interface that returns a Error
1060/// (or Expected) and you want to call code that still returns
1061/// std::error_codes.
1062class ECError : public ErrorInfo<ECError> {
1063 friend Error errorCodeToError(std::error_code);
1064
1065public:
1066 void setErrorCode(std::error_code EC) { this->EC = EC; }
1067 std::error_code convertToErrorCode() const override { return EC; }
1068 void log(raw_ostream &OS) const override { OS << EC.message(); }
1069
1070 // Used by ErrorInfo::classID.
1071 static char ID;
1072
1073protected:
1074 ECError() = default;
1075 ECError(std::error_code EC) : EC(EC) {}
1076
1077 std::error_code EC;
1078};
1079
1080/// The value returned by this function can be returned from convertToErrorCode
1081/// for Error values where no sensible translation to std::error_code exists.
1082/// It should only be used in this situation, and should never be used where a
1083/// sensible conversion to std::error_code is available, as attempts to convert
1084/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1085///error to try to convert such a value).
1086std::error_code inconvertibleErrorCode();
1087
1088/// Helper for converting an std::error_code to a Error.
1089Error errorCodeToError(std::error_code EC);
1090
1091/// Helper for converting an ECError to a std::error_code.
1092///
1093/// This method requires that Err be Error() or an ECError, otherwise it
1094/// will trigger a call to abort().
1095std::error_code errorToErrorCode(Error Err);
1096
1097/// Convert an ErrorOr<T> to an Expected<T>.
1098template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1099 if (auto EC = EO.getError())
1100 return errorCodeToError(EC);
1101 return std::move(*EO);
1102}
1103
1104/// Convert an Expected<T> to an ErrorOr<T>.
1105template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1106 if (auto Err = E.takeError())
1107 return errorToErrorCode(std::move(Err));
1108 return std::move(*E);
1109}
1110
1111/// This class wraps a string in an Error.
1112///
1113/// StringError is useful in cases where the client is not expected to be able
1114/// to consume the specific error message programmatically (for example, if the
1115/// error message is to be presented to the user).
1116///
1117/// StringError can also be used when additional information is to be printed
1118/// along with a error_code message. Depending on the constructor called, this
1119/// class can either display:
1120/// 1. the error_code message (ECError behavior)
1121/// 2. a string
1122/// 3. the error_code message and a string
1123///
1124/// These behaviors are useful when subtyping is required; for example, when a
1125/// specific library needs an explicit error type. In the example below,
1126/// PDBError is derived from StringError:
1127///
1128/// @code{.cpp}
1129/// Expected<int> foo() {
1130/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1131/// "Additional information");
1132/// }
1133/// @endcode
1134///
1135class StringError : public ErrorInfo<StringError> {
1136public:
1137 static char ID;
1138
1139 // Prints EC + S and converts to EC
1140 StringError(std::error_code EC, const Twine &S = Twine());
1141
1142 // Prints S and converts to EC
1143 StringError(const Twine &S, std::error_code EC);
1144
1145 void log(raw_ostream &OS) const override;
1146 std::error_code convertToErrorCode() const override;
1147
1148 const std::string &getMessage() const { return Msg; }
1149
1150private:
1151 std::string Msg;
1152 std::error_code EC;
1153 const bool PrintMsgOnly = false;
1154};
1155
1156/// Create formatted StringError object.
1157template <typename... Ts>
1158Error createStringError(std::error_code EC, char const *Fmt,
1159 const Ts &... Vals) {
1160 std::string Buffer;
1161 raw_string_ostream Stream(Buffer);
1162 Stream << format(Fmt, Vals...);
1163 return make_error<StringError>(Stream.str(), EC);
1164}
1165
1166Error createStringError(std::error_code EC, char const *Msg);
1167
1168/// This class wraps a filename and another Error.
1169///
1170/// In some cases, an error needs to live along a 'source' name, in order to
1171/// show more detailed information to the user.
1172class FileError final : public ErrorInfo<FileError> {
1173
1174 friend Error createFileError(std::string, Error);
1175
1176public:
1177 void log(raw_ostream &OS) const override {
1178 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1178, __PRETTY_FUNCTION__))
;
1179 OS << "'" << FileName << "': ";
1180 Err->log(OS);
1181 }
1182
1183 Error takeError() { return Error(std::move(Err)); }
1184
1185 std::error_code convertToErrorCode() const override;
1186
1187 // Used by ErrorInfo::classID.
1188 static char ID;
1189
1190private:
1191 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1192 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1192, __PRETTY_FUNCTION__))
;
1193 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1194, __PRETTY_FUNCTION__))
1194 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1194, __PRETTY_FUNCTION__))
;
1195 FileName = F;
1196 Err = std::move(E);
1197 }
1198
1199 static Error build(std::string F, Error E) {
1200 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1201 }
1202
1203 std::string FileName;
1204 std::unique_ptr<ErrorInfoBase> Err;
1205};
1206
1207/// Concatenate a source file path and/or name with an Error. The resulting
1208/// Error is unchecked.
1209inline Error createFileError(std::string F, Error E) {
1210 return FileError::build(F, std::move(E));
1211}
1212
1213Error createFileError(std::string F, ErrorSuccess) = delete;
1214
1215/// Helper for check-and-exit error handling.
1216///
1217/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1218///
1219class ExitOnError {
1220public:
1221 /// Create an error on exit helper.
1222 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1223 : Banner(std::move(Banner)),
1224 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1225
1226 /// Set the banner string for any errors caught by operator().
1227 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1228
1229 /// Set the exit-code mapper function.
1230 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1231 this->GetExitCode = std::move(GetExitCode);
1232 }
1233
1234 /// Check Err. If it's in a failure state log the error(s) and exit.
1235 void operator()(Error Err) const { checkError(std::move(Err)); }
1236
1237 /// Check E. If it's in a success state then return the contained value. If
1238 /// it's in a failure state log the error(s) and exit.
1239 template <typename T> T operator()(Expected<T> &&E) const {
1240 checkError(E.takeError());
1241 return std::move(*E);
1242 }
1243
1244 /// Check E. If it's in a success state then return the contained reference. If
1245 /// it's in a failure state log the error(s) and exit.
1246 template <typename T> T& operator()(Expected<T&> &&E) const {
1247 checkError(E.takeError());
1248 return *E;
1249 }
1250
1251private:
1252 void checkError(Error Err) const {
1253 if (Err) {
1254 int ExitCode = GetExitCode(Err);
1255 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1256 exit(ExitCode);
1257 }
1258 }
1259
1260 std::string Banner;
1261 std::function<int(const Error &)> GetExitCode;
1262};
1263
1264/// Conversion from Error to LLVMErrorRef for C error bindings.
1265inline LLVMErrorRef wrap(Error Err) {
1266 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1267}
1268
1269/// Conversion from LLVMErrorRef to Error for C error bindings.
1270inline Error unwrap(LLVMErrorRef ErrRef) {
1271 return Error(std::unique_ptr<ErrorInfoBase>(
1272 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1273}
1274
1275} // end namespace llvm
1276
1277#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Config/abi-breaking.h"
25#include "llvm/Support/ErrorHandling.h"
26#include <algorithm>
27#include <cassert>
28#include <cstddef>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <initializer_list>
33#include <iterator>
34#include <limits>
35#include <memory>
36#include <tuple>
37#include <type_traits>
38#include <utility>
39
40#ifdef EXPENSIVE_CHECKS
41#include <random> // for std::mt19937
42#endif
43
44namespace llvm {
45
46// Only used by compiler if both template types are the same. Useful when
47// using SFINAE to test for the existence of member functions.
48template <typename T, T> struct SameType;
49
50namespace detail {
51
52template <typename RangeT>
53using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54
55template <typename RangeT>
56using ValueOfRange = typename std::remove_reference<decltype(
57 *std::begin(std::declval<RangeT &>()))>::type;
58
59} // end namespace detail
60
61//===----------------------------------------------------------------------===//
62// Extra additions to <type_traits>
63//===----------------------------------------------------------------------===//
64
65template <typename T>
66struct negation : std::integral_constant<bool, !bool(T::value)> {};
67
68template <typename...> struct conjunction : std::true_type {};
69template <typename B1> struct conjunction<B1> : B1 {};
70template <typename B1, typename... Bn>
71struct conjunction<B1, Bn...>
72 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73
74//===----------------------------------------------------------------------===//
75// Extra additions to <functional>
76//===----------------------------------------------------------------------===//
77
78template <class Ty> struct identity {
79 using argument_type = Ty;
80
81 Ty &operator()(Ty &self) const {
82 return self;
83 }
84 const Ty &operator()(const Ty &self) const {
85 return self;
86 }
87};
88
89template <class Ty> struct less_ptr {
90 bool operator()(const Ty* left, const Ty* right) const {
91 return *left < *right;
92 }
93};
94
95template <class Ty> struct greater_ptr {
96 bool operator()(const Ty* left, const Ty* right) const {
97 return *right < *left;
98 }
99};
100
101/// An efficient, type-erasing, non-owning reference to a callable. This is
102/// intended for use as the type of a function parameter that is not used
103/// after the function in question returns.
104///
105/// This class does not own the callable, so it is not in general safe to store
106/// a function_ref.
107template<typename Fn> class function_ref;
108
109template<typename Ret, typename ...Params>
110class function_ref<Ret(Params...)> {
111 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
112 intptr_t callable;
113
114 template<typename Callable>
115 static Ret callback_fn(intptr_t callable, Params ...params) {
116 return (*reinterpret_cast<Callable*>(callable))(
117 std::forward<Params>(params)...);
118 }
119
120public:
121 function_ref() = default;
122 function_ref(std::nullptr_t) {}
123
124 template <typename Callable>
125 function_ref(Callable &&callable,
126 typename std::enable_if<
127 !std::is_same<typename std::remove_reference<Callable>::type,
128 function_ref>::value>::type * = nullptr)
129 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
130 callable(reinterpret_cast<intptr_t>(&callable)) {}
131
132 Ret operator()(Params ...params) const {
133 return callback(callable, std::forward<Params>(params)...);
134 }
135
136 operator bool() const { return callback; }
137};
138
139// deleter - Very very very simple method that is used to invoke operator
140// delete on something. It is used like this:
141//
142// for_each(V.begin(), B.end(), deleter<Interval>);
143template <class T>
144inline void deleter(T *Ptr) {
145 delete Ptr;
146}
147
148//===----------------------------------------------------------------------===//
149// Extra additions to <iterator>
150//===----------------------------------------------------------------------===//
151
152namespace adl_detail {
153
154using std::begin;
155
156template <typename ContainerTy>
157auto adl_begin(ContainerTy &&container)
158 -> decltype(begin(std::forward<ContainerTy>(container))) {
159 return begin(std::forward<ContainerTy>(container));
160}
161
162using std::end;
163
164template <typename ContainerTy>
165auto adl_end(ContainerTy &&container)
166 -> decltype(end(std::forward<ContainerTy>(container))) {
167 return end(std::forward<ContainerTy>(container));
168}
169
170using std::swap;
171
172template <typename T>
173void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
174 std::declval<T>()))) {
175 swap(std::forward<T>(lhs), std::forward<T>(rhs));
176}
177
178} // end namespace adl_detail
179
180template <typename ContainerTy>
181auto adl_begin(ContainerTy &&container)
182 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
183 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
184}
185
186template <typename ContainerTy>
187auto adl_end(ContainerTy &&container)
188 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
189 return adl_detail::adl_end(std::forward<ContainerTy>(container));
190}
191
192template <typename T>
193void adl_swap(T &&lhs, T &&rhs) noexcept(
194 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
195 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
196}
197
198// mapped_iterator - This is a simple iterator adapter that causes a function to
199// be applied whenever operator* is invoked on the iterator.
200
201template <typename ItTy, typename FuncTy,
202 typename FuncReturnTy =
203 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
204class mapped_iterator
205 : public iterator_adaptor_base<
206 mapped_iterator<ItTy, FuncTy>, ItTy,
207 typename std::iterator_traits<ItTy>::iterator_category,
208 typename std::remove_reference<FuncReturnTy>::type> {
209public:
210 mapped_iterator(ItTy U, FuncTy F)
211 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
212
213 ItTy getCurrent() { return this->I; }
214
215 FuncReturnTy operator*() { return F(*this->I); }
216
217private:
218 FuncTy F;
219};
220
221// map_iterator - Provide a convenient way to create mapped_iterators, just like
222// make_pair is useful for creating pairs...
223template <class ItTy, class FuncTy>
224inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
225 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
226}
227
228/// Helper to determine if type T has a member called rbegin().
229template <typename Ty> class has_rbegin_impl {
230 using yes = char[1];
231 using no = char[2];
232
233 template <typename Inner>
234 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
235
236 template <typename>
237 static no& test(...);
238
239public:
240 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
241};
242
243/// Metafunction to determine if T& or T has a member called rbegin().
244template <typename Ty>
245struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
246};
247
248// Returns an iterator_range over the given container which iterates in reverse.
249// Note that the container must have rbegin()/rend() methods for this to work.
250template <typename ContainerTy>
251auto reverse(ContainerTy &&C,
252 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
253 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
254 return make_range(C.rbegin(), C.rend());
255}
256
257// Returns a std::reverse_iterator wrapped around the given iterator.
258template <typename IteratorTy>
259std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
260 return std::reverse_iterator<IteratorTy>(It);
261}
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have begin()/end() methods which return
265// bidirectional iterators for this to work.
266template <typename ContainerTy>
267auto reverse(
268 ContainerTy &&C,
269 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
270 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
271 llvm::make_reverse_iterator(std::begin(C)))) {
272 return make_range(llvm::make_reverse_iterator(std::end(C)),
273 llvm::make_reverse_iterator(std::begin(C)));
274}
275
276/// An iterator adaptor that filters the elements of given inner iterators.
277///
278/// The predicate parameter should be a callable object that accepts the wrapped
279/// iterator's reference type and returns a bool. When incrementing or
280/// decrementing the iterator, it will call the predicate on each element and
281/// skip any where it returns false.
282///
283/// \code
284/// int A[] = { 1, 2, 3, 4 };
285/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
286/// // R contains { 1, 3 }.
287/// \endcode
288///
289/// Note: filter_iterator_base implements support for forward iteration.
290/// filter_iterator_impl exists to provide support for bidirectional iteration,
291/// conditional on whether the wrapped iterator supports it.
292template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
293class filter_iterator_base
294 : public iterator_adaptor_base<
295 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
296 WrappedIteratorT,
297 typename std::common_type<
298 IterTag, typename std::iterator_traits<
299 WrappedIteratorT>::iterator_category>::type> {
300 using BaseT = iterator_adaptor_base<
301 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
302 WrappedIteratorT,
303 typename std::common_type<
304 IterTag, typename std::iterator_traits<
305 WrappedIteratorT>::iterator_category>::type>;
306
307protected:
308 WrappedIteratorT End;
309 PredicateT Pred;
310
311 void findNextValid() {
312 while (this->I != End && !Pred(*this->I))
313 BaseT::operator++();
314 }
315
316 // Construct the iterator. The begin iterator needs to know where the end
317 // is, so that it can properly stop when it gets there. The end iterator only
318 // needs the predicate to support bidirectional iteration.
319 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
320 PredicateT Pred)
321 : BaseT(Begin), End(End), Pred(Pred) {
322 findNextValid();
323 }
324
325public:
326 using BaseT::operator++;
327
328 filter_iterator_base &operator++() {
329 BaseT::operator++();
330 findNextValid();
331 return *this;
332 }
333};
334
335/// Specialization of filter_iterator_base for forward iteration only.
336template <typename WrappedIteratorT, typename PredicateT,
337 typename IterTag = std::forward_iterator_tag>
338class filter_iterator_impl
339 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
340 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
341
342public:
343 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
344 PredicateT Pred)
345 : BaseT(Begin, End, Pred) {}
346};
347
348/// Specialization of filter_iterator_base for bidirectional iteration.
349template <typename WrappedIteratorT, typename PredicateT>
350class filter_iterator_impl<WrappedIteratorT, PredicateT,
351 std::bidirectional_iterator_tag>
352 : public filter_iterator_base<WrappedIteratorT, PredicateT,
353 std::bidirectional_iterator_tag> {
354 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
355 std::bidirectional_iterator_tag>;
356 void findPrevValid() {
357 while (!this->Pred(*this->I))
358 BaseT::operator--();
359 }
360
361public:
362 using BaseT::operator--;
363
364 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
365 PredicateT Pred)
366 : BaseT(Begin, End, Pred) {}
367
368 filter_iterator_impl &operator--() {
369 BaseT::operator--();
370 findPrevValid();
371 return *this;
372 }
373};
374
375namespace detail {
376
377template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
378 using type = std::forward_iterator_tag;
379};
380
381template <> struct fwd_or_bidi_tag_impl<true> {
382 using type = std::bidirectional_iterator_tag;
383};
384
385/// Helper which sets its type member to forward_iterator_tag if the category
386/// of \p IterT does not derive from bidirectional_iterator_tag, and to
387/// bidirectional_iterator_tag otherwise.
388template <typename IterT> struct fwd_or_bidi_tag {
389 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
390 std::bidirectional_iterator_tag,
391 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
392};
393
394} // namespace detail
395
396/// Defines filter_iterator to a suitable specialization of
397/// filter_iterator_impl, based on the underlying iterator's category.
398template <typename WrappedIteratorT, typename PredicateT>
399using filter_iterator = filter_iterator_impl<
400 WrappedIteratorT, PredicateT,
401 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
402
403/// Convenience function that takes a range of elements and a predicate,
404/// and return a new filter_iterator range.
405///
406/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
407/// lifetime of that temporary is not kept by the returned range object, and the
408/// temporary is going to be dropped on the floor after the make_iterator_range
409/// full expression that contains this function call.
410template <typename RangeT, typename PredicateT>
411iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
412make_filter_range(RangeT &&Range, PredicateT Pred) {
413 using FilterIteratorT =
414 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
415 return make_range(
416 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
417 std::end(std::forward<RangeT>(Range)), Pred),
418 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
419 std::end(std::forward<RangeT>(Range)), Pred));
420}
421
422/// A pseudo-iterator adaptor that is designed to implement "early increment"
423/// style loops.
424///
425/// This is *not a normal iterator* and should almost never be used directly. It
426/// is intended primarily to be used with range based for loops and some range
427/// algorithms.
428///
429/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
430/// somewhere between them. The constraints of these iterators are:
431///
432/// - On construction or after being incremented, it is comparable and
433/// dereferencable. It is *not* incrementable.
434/// - After being dereferenced, it is neither comparable nor dereferencable, it
435/// is only incrementable.
436///
437/// This means you can only dereference the iterator once, and you can only
438/// increment it once between dereferences.
439template <typename WrappedIteratorT>
440class early_inc_iterator_impl
441 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
442 WrappedIteratorT, std::input_iterator_tag> {
443 using BaseT =
444 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
445 WrappedIteratorT, std::input_iterator_tag>;
446
447 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
448
449protected:
450#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
451 bool IsEarlyIncremented = false;
452#endif
453
454public:
455 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
456
457 using BaseT::operator*;
458 typename BaseT::reference operator*() {
459#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
460 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 460, __PRETTY_FUNCTION__))
;
461 IsEarlyIncremented = true;
462#endif
463 return *(this->I)++;
464 }
465
466 using BaseT::operator++;
467 early_inc_iterator_impl &operator++() {
468#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
469 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 469, __PRETTY_FUNCTION__))
;
470 IsEarlyIncremented = false;
471#endif
472 return *this;
473 }
474
475 using BaseT::operator==;
476 bool operator==(const early_inc_iterator_impl &RHS) const {
477#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
478 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 478, __PRETTY_FUNCTION__))
;
479#endif
480 return BaseT::operator==(RHS);
481 }
482};
483
484/// Make a range that does early increment to allow mutation of the underlying
485/// range without disrupting iteration.
486///
487/// The underlying iterator will be incremented immediately after it is
488/// dereferenced, allowing deletion of the current node or insertion of nodes to
489/// not disrupt iteration provided they do not invalidate the *next* iterator --
490/// the current iterator can be invalidated.
491///
492/// This requires a very exact pattern of use that is only really suitable to
493/// range based for loops and other range algorithms that explicitly guarantee
494/// to dereference exactly once each element, and to increment exactly once each
495/// element.
496template <typename RangeT>
497iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
498make_early_inc_range(RangeT &&Range) {
499 using EarlyIncIteratorT =
500 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
501 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
502 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
503}
504
505// forward declarations required by zip_shortest/zip_first
506template <typename R, typename UnaryPredicate>
507bool all_of(R &&range, UnaryPredicate P);
508
509template <size_t... I> struct index_sequence;
510
511template <class... Ts> struct index_sequence_for;
512
513namespace detail {
514
515using std::declval;
516
517// We have to alias this since inlining the actual type at the usage site
518// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
519template<typename... Iters> struct ZipTupleType {
520 using type = std::tuple<decltype(*declval<Iters>())...>;
521};
522
523template <typename ZipType, typename... Iters>
524using zip_traits = iterator_facade_base<
525 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
526 typename std::iterator_traits<
527 Iters>::iterator_category...>::type,
528 // ^ TODO: Implement random access methods.
529 typename ZipTupleType<Iters...>::type,
530 typename std::iterator_traits<typename std::tuple_element<
531 0, std::tuple<Iters...>>::type>::difference_type,
532 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
533 // inner iterators have the same difference_type. It would fail if, for
534 // instance, the second field's difference_type were non-numeric while the
535 // first is.
536 typename ZipTupleType<Iters...>::type *,
537 typename ZipTupleType<Iters...>::type>;
538
539template <typename ZipType, typename... Iters>
540struct zip_common : public zip_traits<ZipType, Iters...> {
541 using Base = zip_traits<ZipType, Iters...>;
542 using value_type = typename Base::value_type;
543
544 std::tuple<Iters...> iterators;
545
546protected:
547 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
548 return value_type(*std::get<Ns>(iterators)...);
549 }
550
551 template <size_t... Ns>
552 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
553 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
554 }
555
556 template <size_t... Ns>
557 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
558 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
559 }
560
561public:
562 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
563
564 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
565
566 const value_type operator*() const {
567 return deref(index_sequence_for<Iters...>{});
568 }
569
570 ZipType &operator++() {
571 iterators = tup_inc(index_sequence_for<Iters...>{});
572 return *reinterpret_cast<ZipType *>(this);
573 }
574
575 ZipType &operator--() {
576 static_assert(Base::IsBidirectional,
577 "All inner iterators must be at least bidirectional.");
578 iterators = tup_dec(index_sequence_for<Iters...>{});
579 return *reinterpret_cast<ZipType *>(this);
580 }
581};
582
583template <typename... Iters>
584struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
585 using Base = zip_common<zip_first<Iters...>, Iters...>;
586
587 bool operator==(const zip_first<Iters...> &other) const {
588 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
589 }
590
591 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
592};
593
594template <typename... Iters>
595class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
596 template <size_t... Ns>
597 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
598 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
599 std::get<Ns>(other.iterators)...},
600 identity<bool>{});
601 }
602
603public:
604 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
605
606 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
607
608 bool operator==(const zip_shortest<Iters...> &other) const {
609 return !test(other, index_sequence_for<Iters...>{});
610 }
611};
612
613template <template <typename...> class ItType, typename... Args> class zippy {
614public:
615 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
616 using iterator_category = typename iterator::iterator_category;
617 using value_type = typename iterator::value_type;
618 using difference_type = typename iterator::difference_type;
619 using pointer = typename iterator::pointer;
620 using reference = typename iterator::reference;
621
622private:
623 std::tuple<Args...> ts;
624
625 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
626 return iterator(std::begin(std::get<Ns>(ts))...);
627 }
628 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
629 return iterator(std::end(std::get<Ns>(ts))...);
630 }
631
632public:
633 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
634
635 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
636 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
637};
638
639} // end namespace detail
640
641/// zip iterator for two or more iteratable types.
642template <typename T, typename U, typename... Args>
643detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
644 Args &&... args) {
645 return detail::zippy<detail::zip_shortest, T, U, Args...>(
646 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
647}
648
649/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
650/// be the shortest.
651template <typename T, typename U, typename... Args>
652detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
653 Args &&... args) {
654 return detail::zippy<detail::zip_first, T, U, Args...>(
655 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
656}
657
658/// Iterator wrapper that concatenates sequences together.
659///
660/// This can concatenate different iterators, even with different types, into
661/// a single iterator provided the value types of all the concatenated
662/// iterators expose `reference` and `pointer` types that can be converted to
663/// `ValueT &` and `ValueT *` respectively. It doesn't support more
664/// interesting/customized pointer or reference types.
665///
666/// Currently this only supports forward or higher iterator categories as
667/// inputs and always exposes a forward iterator interface.
668template <typename ValueT, typename... IterTs>
669class concat_iterator
670 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
671 std::forward_iterator_tag, ValueT> {
672 using BaseT = typename concat_iterator::iterator_facade_base;
673
674 /// We store both the current and end iterators for each concatenated
675 /// sequence in a tuple of pairs.
676 ///
677 /// Note that something like iterator_range seems nice at first here, but the
678 /// range properties are of little benefit and end up getting in the way
679 /// because we need to do mutation on the current iterators.
680 std::tuple<IterTs...> Begins;
681 std::tuple<IterTs...> Ends;
682
683 /// Attempts to increment a specific iterator.
684 ///
685 /// Returns true if it was able to increment the iterator. Returns false if
686 /// the iterator is already at the end iterator.
687 template <size_t Index> bool incrementHelper() {
688 auto &Begin = std::get<Index>(Begins);
689 auto &End = std::get<Index>(Ends);
690 if (Begin == End)
691 return false;
692
693 ++Begin;
694 return true;
695 }
696
697 /// Increments the first non-end iterator.
698 ///
699 /// It is an error to call this with all iterators at the end.
700 template <size_t... Ns> void increment(index_sequence<Ns...>) {
701 // Build a sequence of functions to increment each iterator if possible.
702 bool (concat_iterator::*IncrementHelperFns[])() = {
703 &concat_iterator::incrementHelper<Ns>...};
704
705 // Loop over them, and stop as soon as we succeed at incrementing one.
706 for (auto &IncrementHelperFn : IncrementHelperFns)
707 if ((this->*IncrementHelperFn)())
708 return;
709
710 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 710)
;
711 }
712
713 /// Returns null if the specified iterator is at the end. Otherwise,
714 /// dereferences the iterator and returns the address of the resulting
715 /// reference.
716 template <size_t Index> ValueT *getHelper() const {
717 auto &Begin = std::get<Index>(Begins);
718 auto &End = std::get<Index>(Ends);
719 if (Begin == End)
720 return nullptr;
721
722 return &*Begin;
723 }
724
725 /// Finds the first non-end iterator, dereferences, and returns the resulting
726 /// reference.
727 ///
728 /// It is an error to call this with all iterators at the end.
729 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
730 // Build a sequence of functions to get from iterator if possible.
731 ValueT *(concat_iterator::*GetHelperFns[])() const = {
732 &concat_iterator::getHelper<Ns>...};
733
734 // Loop over them, and return the first result we find.
735 for (auto &GetHelperFn : GetHelperFns)
736 if (ValueT *P = (this->*GetHelperFn)())
737 return *P;
738
739 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 739)
;
740 }
741
742public:
743 /// Constructs an iterator from a squence of ranges.
744 ///
745 /// We need the full range to know how to switch between each of the
746 /// iterators.
747 template <typename... RangeTs>
748 explicit concat_iterator(RangeTs &&... Ranges)
749 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
750
751 using BaseT::operator++;
752
753 concat_iterator &operator++() {
754 increment(index_sequence_for<IterTs...>());
755 return *this;
756 }
757
758 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
759
760 bool operator==(const concat_iterator &RHS) const {
761 return Begins == RHS.Begins && Ends == RHS.Ends;
762 }
763};
764
765namespace detail {
766
767/// Helper to store a sequence of ranges being concatenated and access them.
768///
769/// This is designed to facilitate providing actual storage when temporaries
770/// are passed into the constructor such that we can use it as part of range
771/// based for loops.
772template <typename ValueT, typename... RangeTs> class concat_range {
773public:
774 using iterator =
775 concat_iterator<ValueT,
776 decltype(std::begin(std::declval<RangeTs &>()))...>;
777
778private:
779 std::tuple<RangeTs...> Ranges;
780
781 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
782 return iterator(std::get<Ns>(Ranges)...);
783 }
784 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
785 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
786 std::end(std::get<Ns>(Ranges)))...);
787 }
788
789public:
790 concat_range(RangeTs &&... Ranges)
791 : Ranges(std::forward<RangeTs>(Ranges)...) {}
792
793 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
794 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
795};
796
797} // end namespace detail
798
799/// Concatenated range across two or more ranges.
800///
801/// The desired value type must be explicitly specified.
802template <typename ValueT, typename... RangeTs>
803detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
804 static_assert(sizeof...(RangeTs) > 1,
805 "Need more than one range to concatenate!");
806 return detail::concat_range<ValueT, RangeTs...>(
807 std::forward<RangeTs>(Ranges)...);
808}
809
810//===----------------------------------------------------------------------===//
811// Extra additions to <utility>
812//===----------------------------------------------------------------------===//
813
814/// Function object to check whether the first component of a std::pair
815/// compares less than the first component of another std::pair.
816struct less_first {
817 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
818 return lhs.first < rhs.first;
819 }
820};
821
822/// Function object to check whether the second component of a std::pair
823/// compares less than the second component of another std::pair.
824struct less_second {
825 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
826 return lhs.second < rhs.second;
827 }
828};
829
830/// \brief Function object to apply a binary function to the first component of
831/// a std::pair.
832template<typename FuncTy>
833struct on_first {
834 FuncTy func;
835
836 template <typename T>
837 auto operator()(const T &lhs, const T &rhs) const
838 -> decltype(func(lhs.first, rhs.first)) {
839 return func(lhs.first, rhs.first);
840 }
841};
842
843// A subset of N3658. More stuff can be added as-needed.
844
845/// Represents a compile-time sequence of integers.
846template <class T, T... I> struct integer_sequence {
847 using value_type = T;
848
849 static constexpr size_t size() { return sizeof...(I); }
850};
851
852/// Alias for the common case of a sequence of size_ts.
853template <size_t... I>
854struct index_sequence : integer_sequence<std::size_t, I...> {};
855
856template <std::size_t N, std::size_t... I>
857struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
858template <std::size_t... I>
859struct build_index_impl<0, I...> : index_sequence<I...> {};
860
861/// Creates a compile-time integer sequence for a parameter pack.
862template <class... Ts>
863struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
864
865/// Utility type to build an inheritance chain that makes it easy to rank
866/// overload candidates.
867template <int N> struct rank : rank<N - 1> {};
868template <> struct rank<0> {};
869
870/// traits class for checking whether type T is one of any of the given
871/// types in the variadic list.
872template <typename T, typename... Ts> struct is_one_of {
873 static const bool value = false;
874};
875
876template <typename T, typename U, typename... Ts>
877struct is_one_of<T, U, Ts...> {
878 static const bool value =
879 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
880};
881
882/// traits class for checking whether type T is a base class for all
883/// the given types in the variadic list.
884template <typename T, typename... Ts> struct are_base_of {
885 static const bool value = true;
886};
887
888template <typename T, typename U, typename... Ts>
889struct are_base_of<T, U, Ts...> {
890 static const bool value =
891 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
892};
893
894//===----------------------------------------------------------------------===//
895// Extra additions for arrays
896//===----------------------------------------------------------------------===//
897
898/// Find the length of an array.
899template <class T, std::size_t N>
900constexpr inline size_t array_lengthof(T (&)[N]) {
901 return N;
902}
903
904/// Adapt std::less<T> for array_pod_sort.
905template<typename T>
906inline int array_pod_sort_comparator(const void *P1, const void *P2) {
907 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
908 *reinterpret_cast<const T*>(P2)))
909 return -1;
910 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
911 *reinterpret_cast<const T*>(P1)))
912 return 1;
913 return 0;
914}
915
916/// get_array_pod_sort_comparator - This is an internal helper function used to
917/// get type deduction of T right.
918template<typename T>
919inline int (*get_array_pod_sort_comparator(const T &))
920 (const void*, const void*) {
921 return array_pod_sort_comparator<T>;
922}
923
924/// array_pod_sort - This sorts an array with the specified start and end
925/// extent. This is just like std::sort, except that it calls qsort instead of
926/// using an inlined template. qsort is slightly slower than std::sort, but
927/// most sorts are not performance critical in LLVM and std::sort has to be
928/// template instantiated for each type, leading to significant measured code
929/// bloat. This function should generally be used instead of std::sort where
930/// possible.
931///
932/// This function assumes that you have simple POD-like types that can be
933/// compared with std::less and can be moved with memcpy. If this isn't true,
934/// you should use std::sort.
935///
936/// NOTE: If qsort_r were portable, we could allow a custom comparator and
937/// default to std::less.
938template<class IteratorTy>
939inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
940 // Don't inefficiently call qsort with one element or trigger undefined
941 // behavior with an empty sequence.
942 auto NElts = End - Start;
943 if (NElts <= 1) return;
944#ifdef EXPENSIVE_CHECKS
945 std::mt19937 Generator(std::random_device{}());
946 std::shuffle(Start, End, Generator);
947#endif
948 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
949}
950
951template <class IteratorTy>
952inline void array_pod_sort(
953 IteratorTy Start, IteratorTy End,
954 int (*Compare)(
955 const typename std::iterator_traits<IteratorTy>::value_type *,
956 const typename std::iterator_traits<IteratorTy>::value_type *)) {
957 // Don't inefficiently call qsort with one element or trigger undefined
958 // behavior with an empty sequence.
959 auto NElts = End - Start;
960 if (NElts <= 1) return;
961#ifdef EXPENSIVE_CHECKS
962 std::mt19937 Generator(std::random_device{}());
963 std::shuffle(Start, End, Generator);
964#endif
965 qsort(&*Start, NElts, sizeof(*Start),
966 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
967}
968
969// Provide wrappers to std::sort which shuffle the elements before sorting
970// to help uncover non-deterministic behavior (PR35135).
971template <typename IteratorTy>
972inline void sort(IteratorTy Start, IteratorTy End) {
973#ifdef EXPENSIVE_CHECKS
974 std::mt19937 Generator(std::random_device{}());
975 std::shuffle(Start, End, Generator);
976#endif
977 std::sort(Start, End);
978}
979
980template <typename Container> inline void sort(Container &&C) {
981 llvm::sort(adl_begin(C), adl_end(C));
982}
983
984template <typename IteratorTy, typename Compare>
985inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
986#ifdef EXPENSIVE_CHECKS
987 std::mt19937 Generator(std::random_device{}());
988 std::shuffle(Start, End, Generator);
989#endif
990 std::sort(Start, End, Comp);
991}
992
993template <typename Container, typename Compare>
994inline void sort(Container &&C, Compare Comp) {
995 llvm::sort(adl_begin(C), adl_end(C), Comp);
996}
997
998//===----------------------------------------------------------------------===//
999// Extra additions to <algorithm>
1000//===----------------------------------------------------------------------===//
1001
1002/// For a container of pointers, deletes the pointers and then clears the
1003/// container.
1004template<typename Container>
1005void DeleteContainerPointers(Container &C) {
1006 for (auto V : C)
1007 delete V;
1008 C.clear();
1009}
1010
1011/// In a container of pairs (usually a map) whose second element is a pointer,
1012/// deletes the second elements and then clears the container.
1013template<typename Container>
1014void DeleteContainerSeconds(Container &C) {
1015 for (auto &V : C)
1016 delete V.second;
1017 C.clear();
1018}
1019
1020/// Get the size of a range. This is a wrapper function around std::distance
1021/// which is only enabled when the operation is O(1).
1022template <typename R>
1023auto size(R &&Range, typename std::enable_if<
1024 std::is_same<typename std::iterator_traits<decltype(
1025 Range.begin())>::iterator_category,
1026 std::random_access_iterator_tag>::value,
1027 void>::type * = nullptr)
1028 -> decltype(std::distance(Range.begin(), Range.end())) {
1029 return std::distance(Range.begin(), Range.end());
1030}
1031
1032/// Provide wrappers to std::for_each which take ranges instead of having to
1033/// pass begin/end explicitly.
1034template <typename R, typename UnaryPredicate>
1035UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1036 return std::for_each(adl_begin(Range), adl_end(Range), P);
1037}
1038
1039/// Provide wrappers to std::all_of which take ranges instead of having to pass
1040/// begin/end explicitly.
1041template <typename R, typename UnaryPredicate>
1042bool all_of(R &&Range, UnaryPredicate P) {
1043 return std::all_of(adl_begin(Range), adl_end(Range), P);
1044}
1045
1046/// Provide wrappers to std::any_of which take ranges instead of having to pass
1047/// begin/end explicitly.
1048template <typename R, typename UnaryPredicate>
1049bool any_of(R &&Range, UnaryPredicate P) {
1050 return std::any_of(adl_begin(Range), adl_end(Range), P);
1051}
1052
1053/// Provide wrappers to std::none_of which take ranges instead of having to pass
1054/// begin/end explicitly.
1055template <typename R, typename UnaryPredicate>
1056bool none_of(R &&Range, UnaryPredicate P) {
1057 return std::none_of(adl_begin(Range), adl_end(Range), P);
1058}
1059
1060/// Provide wrappers to std::find which take ranges instead of having to pass
1061/// begin/end explicitly.
1062template <typename R, typename T>
1063auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1064 return std::find(adl_begin(Range), adl_end(Range), Val);
1065}
1066
1067/// Provide wrappers to std::find_if which take ranges instead of having to pass
1068/// begin/end explicitly.
1069template <typename R, typename UnaryPredicate>
1070auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1071 return std::find_if(adl_begin(Range), adl_end(Range), P);
1072}
1073
1074template <typename R, typename UnaryPredicate>
1075auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1076 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1077}
1078
1079/// Provide wrappers to std::remove_if which take ranges instead of having to
1080/// pass begin/end explicitly.
1081template <typename R, typename UnaryPredicate>
1082auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1083 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1084}
1085
1086/// Provide wrappers to std::copy_if which take ranges instead of having to
1087/// pass begin/end explicitly.
1088template <typename R, typename OutputIt, typename UnaryPredicate>
1089OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1090 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1091}
1092
1093template <typename R, typename OutputIt>
1094OutputIt copy(R &&Range, OutputIt Out) {
1095 return std::copy(adl_begin(Range), adl_end(Range), Out);
1096}
1097
1098/// Wrapper function around std::find to detect if an element exists
1099/// in a container.
1100template <typename R, typename E>
1101bool is_contained(R &&Range, const E &Element) {
1102 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1103}
1104
1105/// Wrapper function around std::count to count the number of times an element
1106/// \p Element occurs in the given range \p Range.
1107template <typename R, typename E>
1108auto count(R &&Range, const E &Element) ->
1109 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1110 return std::count(adl_begin(Range), adl_end(Range), Element);
1111}
1112
1113/// Wrapper function around std::count_if to count the number of times an
1114/// element satisfying a given predicate occurs in a range.
1115template <typename R, typename UnaryPredicate>
1116auto count_if(R &&Range, UnaryPredicate P) ->
1117 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1118 return std::count_if(adl_begin(Range), adl_end(Range), P);
1119}
1120
1121/// Wrapper function around std::transform to apply a function to a range and
1122/// store the result elsewhere.
1123template <typename R, typename OutputIt, typename UnaryPredicate>
1124OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1125 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1126}
1127
1128/// Provide wrappers to std::partition which take ranges instead of having to
1129/// pass begin/end explicitly.
1130template <typename R, typename UnaryPredicate>
1131auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1132 return std::partition(adl_begin(Range), adl_end(Range), P);
1133}
1134
1135/// Provide wrappers to std::lower_bound which take ranges instead of having to
1136/// pass begin/end explicitly.
1137template <typename R, typename ForwardIt>
1138auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1139 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1140}
1141
1142template <typename R, typename ForwardIt, typename Compare>
1143auto lower_bound(R &&Range, ForwardIt I, Compare C)
1144 -> decltype(adl_begin(Range)) {
1145 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1146}
1147
1148/// Provide wrappers to std::upper_bound which take ranges instead of having to
1149/// pass begin/end explicitly.
1150template <typename R, typename ForwardIt>
1151auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1152 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1153}
1154
1155template <typename R, typename ForwardIt, typename Compare>
1156auto upper_bound(R &&Range, ForwardIt I, Compare C)
1157 -> decltype(adl_begin(Range)) {
1158 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1159}
1160/// Wrapper function around std::equal to detect if all elements
1161/// in a container are same.
1162template <typename R>
1163bool is_splat(R &&Range) {
1164 size_t range_size = size(Range);
1165 return range_size != 0 && (range_size == 1 ||
1166 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1167}
1168
1169/// Given a range of type R, iterate the entire range and return a
1170/// SmallVector with elements of the vector. This is useful, for example,
1171/// when you want to iterate a range and then sort the results.
1172template <unsigned Size, typename R>
1173SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1174to_vector(R &&Range) {
1175 return {adl_begin(Range), adl_end(Range)};
1176}
1177
1178/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1179/// `erase_if` which is equivalent to:
1180///
1181/// C.erase(remove_if(C, pred), C.end());
1182///
1183/// This version works for any container with an erase method call accepting
1184/// two iterators.
1185template <typename Container, typename UnaryPredicate>
1186void erase_if(Container &C, UnaryPredicate P) {
1187 C.erase(remove_if(C, P), C.end());
1188}
1189
1190//===----------------------------------------------------------------------===//
1191// Extra additions to <memory>
1192//===----------------------------------------------------------------------===//
1193
1194// Implement make_unique according to N3656.
1195
1196/// Constructs a `new T()` with the given args and returns a
1197/// `unique_ptr<T>` which owns the object.
1198///
1199/// Example:
1200///
1201/// auto p = make_unique<int>();
1202/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1203template <class T, class... Args>
1204typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1205make_unique(Args &&... args) {
1206 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
10
Memory is allocated
1207}
1208
1209/// Constructs a `new T[n]` with the given args and returns a
1210/// `unique_ptr<T[]>` which owns the object.
1211///
1212/// \param n size of the new array.
1213///
1214/// Example:
1215///
1216/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1217template <class T>
1218typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1219 std::unique_ptr<T>>::type
1220make_unique(size_t n) {
1221 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1222}
1223
1224/// This function isn't used and is only here to provide better compile errors.
1225template <class T, class... Args>
1226typename std::enable_if<std::extent<T>::value != 0>::type
1227make_unique(Args &&...) = delete;
1228
1229struct FreeDeleter {
1230 void operator()(void* v) {
1231 ::free(v);
1232 }
1233};
1234
1235template<typename First, typename Second>
1236struct pair_hash {
1237 size_t operator()(const std::pair<First, Second> &P) const {
1238 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1239 }
1240};
1241
1242/// A functor like C++14's std::less<void> in its absence.
1243struct less {
1244 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1245 return std::forward<A>(a) < std::forward<B>(b);
1246 }
1247};
1248
1249/// A functor like C++14's std::equal<void> in its absence.
1250struct equal {
1251 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1252 return std::forward<A>(a) == std::forward<B>(b);
1253 }
1254};
1255
1256/// Binary functor that adapts to any other binary functor after dereferencing
1257/// operands.
1258template <typename T> struct deref {
1259 T func;
1260
1261 // Could be further improved to cope with non-derivable functors and
1262 // non-binary functors (should be a variadic template member function
1263 // operator()).
1264 template <typename A, typename B>
1265 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1266 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1266, __PRETTY_FUNCTION__))
;
1267 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1267, __PRETTY_FUNCTION__))
;
1268 return func(*lhs, *rhs);
1269 }
1270};
1271
1272namespace detail {
1273
1274template <typename R> class enumerator_iter;
1275
1276template <typename R> struct result_pair {
1277 friend class enumerator_iter<R>;
1278
1279 result_pair() = default;
1280 result_pair(std::size_t Index, IterOfRange<R> Iter)
1281 : Index(Index), Iter(Iter) {}
1282
1283 result_pair<R> &operator=(const result_pair<R> &Other) {
1284 Index = Other.Index;
1285 Iter = Other.Iter;
1286 return *this;
1287 }
1288
1289 std::size_t index() const { return Index; }
1290 const ValueOfRange<R> &value() const { return *Iter; }
1291 ValueOfRange<R> &value() { return *Iter; }
1292
1293private:
1294 std::size_t Index = std::numeric_limits<std::size_t>::max();
1295 IterOfRange<R> Iter;
1296};
1297
1298template <typename R>
1299class enumerator_iter
1300 : public iterator_facade_base<
1301 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1302 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1303 typename std::iterator_traits<IterOfRange<R>>::pointer,
1304 typename std::iterator_traits<IterOfRange<R>>::reference> {
1305 using result_type = result_pair<R>;
1306
1307public:
1308 explicit enumerator_iter(IterOfRange<R> EndIter)
1309 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1310
1311 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1312 : Result(Index, Iter) {}
1313
1314 result_type &operator*() { return Result; }
1315 const result_type &operator*() const { return Result; }
1316
1317 enumerator_iter<R> &operator++() {
1318 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1318, __PRETTY_FUNCTION__))
;
1319 ++Result.Iter;
1320 ++Result.Index;
1321 return *this;
1322 }
1323
1324 bool operator==(const enumerator_iter<R> &RHS) const {
1325 // Don't compare indices here, only iterators. It's possible for an end
1326 // iterator to have different indices depending on whether it was created
1327 // by calling std::end() versus incrementing a valid iterator.
1328 return Result.Iter == RHS.Result.Iter;
1329 }
1330
1331 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1332 Result = Other.Result;
1333 return *this;
1334 }
1335
1336private:
1337 result_type Result;
1338};
1339
1340template <typename R> class enumerator {
1341public:
1342 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1343
1344 enumerator_iter<R> begin() {
1345 return enumerator_iter<R>(0, std::begin(TheRange));
1346 }
1347
1348 enumerator_iter<R> end() {
1349 return enumerator_iter<R>(std::end(TheRange));
1350 }
1351
1352private:
1353 R TheRange;
1354};
1355
1356} // end namespace detail
1357
1358/// Given an input range, returns a new range whose values are are pair (A,B)
1359/// such that A is the 0-based index of the item in the sequence, and B is
1360/// the value from the original sequence. Example:
1361///
1362/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1363/// for (auto X : enumerate(Items)) {
1364/// printf("Item %d - %c\n", X.index(), X.value());
1365/// }
1366///
1367/// Output:
1368/// Item 0 - A
1369/// Item 1 - B
1370/// Item 2 - C
1371/// Item 3 - D
1372///
1373template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1374 return detail::enumerator<R>(std::forward<R>(TheRange));
1375}
1376
1377namespace detail {
1378
1379template <typename F, typename Tuple, std::size_t... I>
1380auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1381 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1382 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1383}
1384
1385} // end namespace detail
1386
1387/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1388/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1389/// return the result.
1390template <typename F, typename Tuple>
1391auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1392 std::forward<F>(f), std::forward<Tuple>(t),
1393 build_index_impl<
1394 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1395 using Indices = build_index_impl<
1396 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1397
1398 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1399 Indices{});
1400}
1401
1402} // end namespace llvm
1403
1404#endif // LLVM_ADT_STLEXTRAS_H