Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/tools/llvm-readobj/ELFDumper.cpp
Warning:line 5835, column 9
4th function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ELFDumper.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/llvm-readobj -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/tools/llvm-readobj -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/tools/llvm-readobj/ELFDumper.cpp
1//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the ELF-specific dumper for llvm-readobj.
11///
12//===----------------------------------------------------------------------===//
13
14#include "ARMEHABIPrinter.h"
15#include "DwarfCFIEHPrinter.h"
16#include "ObjDumper.h"
17#include "StackMapPrinter.h"
18#include "llvm-readobj.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/MapVector.h"
24#include "llvm/ADT/Optional.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/ADT/Twine.h"
32#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33#include "llvm/BinaryFormat/ELF.h"
34#include "llvm/BinaryFormat/MsgPackDocument.h"
35#include "llvm/Demangle/Demangle.h"
36#include "llvm/Object/Archive.h"
37#include "llvm/Object/ELF.h"
38#include "llvm/Object/ELFObjectFile.h"
39#include "llvm/Object/ELFTypes.h"
40#include "llvm/Object/Error.h"
41#include "llvm/Object/ObjectFile.h"
42#include "llvm/Object/RelocationResolver.h"
43#include "llvm/Object/StackMapParser.h"
44#include "llvm/Support/AMDGPUMetadata.h"
45#include "llvm/Support/ARMAttributeParser.h"
46#include "llvm/Support/ARMBuildAttributes.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Endian.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/Format.h"
52#include "llvm/Support/FormatVariadic.h"
53#include "llvm/Support/FormattedStream.h"
54#include "llvm/Support/LEB128.h"
55#include "llvm/Support/MSP430AttributeParser.h"
56#include "llvm/Support/MSP430Attributes.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/MipsABIFlags.h"
59#include "llvm/Support/RISCVAttributeParser.h"
60#include "llvm/Support/RISCVAttributes.h"
61#include "llvm/Support/ScopedPrinter.h"
62#include "llvm/Support/raw_ostream.h"
63#include <algorithm>
64#include <cinttypes>
65#include <cstddef>
66#include <cstdint>
67#include <cstdlib>
68#include <iterator>
69#include <memory>
70#include <string>
71#include <system_error>
72#include <vector>
73
74using namespace llvm;
75using namespace llvm::object;
76using namespace ELF;
77
78#define LLVM_READOBJ_ENUM_CASE(ns, enum)case ns::enum: return "enum"; \
79 case ns::enum: \
80 return #enum;
81
82#define ENUM_ENT(enum, altName){ "enum", altName, ELF::enum } \
83 { #enum, altName, ELF::enum }
84
85#define ENUM_ENT_1(enum){ "enum", "enum", ELF::enum } \
86 { #enum, #enum, ELF::enum }
87
88namespace {
89
90template <class ELFT> struct RelSymbol {
91 RelSymbol(const typename ELFT::Sym *S, StringRef N)
92 : Sym(S), Name(N.str()) {}
93 const typename ELFT::Sym *Sym;
94 std::string Name;
95};
96
97/// Represents a contiguous uniform range in the file. We cannot just create a
98/// range directly because when creating one of these from the .dynamic table
99/// the size, entity size and virtual address are different entries in arbitrary
100/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101struct DynRegionInfo {
102 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103 : Obj(&Owner), Dumper(&D) {}
104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105 uint64_t S, uint64_t ES)
106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107
108 /// Address in current address space.
109 const uint8_t *Addr = nullptr;
110 /// Size in bytes of the region.
111 uint64_t Size = 0;
112 /// Size of each entity in the region.
113 uint64_t EntSize = 0;
114
115 /// Owner object. Used for error reporting.
116 const Binary *Obj;
117 /// Dumper used for error reporting.
118 const ObjDumper *Dumper;
119 /// Error prefix. Used for error reporting to provide more information.
120 std::string Context;
121 /// Region size name. Used for error reporting.
122 StringRef SizePrintName = "size";
123 /// Entry size name. Used for error reporting. If this field is empty, errors
124 /// will not mention the entry size.
125 StringRef EntSizePrintName = "entry size";
126
127 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128 const Type *Start = reinterpret_cast<const Type *>(Addr);
129 if (!Start)
130 return {Start, Start};
131
132 const uint64_t Offset =
133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135
136 if (Size > ObjSize - Offset) {
137 Dumper->reportUniqueWarning(
138 "unable to read data at 0x" + Twine::utohexstr(Offset) +
139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140 "): it goes past the end of the file of size 0x" +
141 Twine::utohexstr(ObjSize));
142 return {Start, Start};
143 }
144
145 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146 return {Start, Start + (Size / EntSize)};
147
148 std::string Msg;
149 if (!Context.empty())
150 Msg += Context + " has ";
151
152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153 .str();
154 if (!EntSizePrintName.empty())
155 Msg +=
156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157 .str();
158
159 Dumper->reportUniqueWarning(Msg);
160 return {Start, Start};
161 }
162};
163
164struct GroupMember {
165 StringRef Name;
166 uint64_t Index;
167};
168
169struct GroupSection {
170 StringRef Name;
171 std::string Signature;
172 uint64_t ShName;
173 uint64_t Index;
174 uint32_t Link;
175 uint32_t Info;
176 uint32_t Type;
177 std::vector<GroupMember> Members;
178};
179
180namespace {
181
182struct NoteType {
183 uint32_t ID;
184 StringRef Name;
185};
186
187} // namespace
188
189template <class ELFT> class Relocation {
190public:
191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193 Offset(R.r_offset), Info(R.r_info) {}
194
195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197 Addend = R.r_addend;
198 }
199
200 uint32_t Type;
201 uint32_t Symbol;
202 typename ELFT::uint Offset;
203 typename ELFT::uint Info;
204 Optional<int64_t> Addend;
205};
206
207template <class ELFT> class MipsGOTParser;
208
209template <typename ELFT> class ELFDumper : public ObjDumper {
210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename
ELFT::Note; using Elf_Note_Iterator = typename ELFT::NoteIterator
; using Elf_CGProfile = typename ELFT::CGProfile; using Elf_Dyn_Range
= typename ELFT::DynRange; using Elf_Shdr_Range = typename ELFT
::ShdrRange; using Elf_Sym_Range = typename ELFT::SymRange; using
Elf_Rel_Range = typename ELFT::RelRange; using Elf_Rela_Range
= typename ELFT::RelaRange; using Elf_Relr_Range = typename ELFT
::RelrRange; using Elf_Phdr_Range = typename ELFT::PhdrRange;
211
212public:
213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214
215 void printUnwindInfo() override;
216 void printNeededLibraries() override;
217 void printHashTable() override;
218 void printGnuHashTable() override;
219 void printLoadName() override;
220 void printVersionInfo() override;
221 void printArchSpecificInfo() override;
222 void printStackMap() const override;
223
224 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225
226 std::string describe(const Elf_Shdr &Sec) const;
227
228 unsigned getHashTableEntSize() const {
229 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
230 // sections. This violates the ELF specification.
231 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
232 Obj.getHeader().e_machine == ELF::EM_ALPHA)
233 return 8;
234 return 4;
235 }
236
237 Elf_Dyn_Range dynamic_table() const {
238 // A valid .dynamic section contains an array of entries terminated
239 // with a DT_NULL entry. However, sometimes the section content may
240 // continue past the DT_NULL entry, so to dump the section correctly,
241 // we first find the end of the entries by iterating over them.
242 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243
244 size_t Size = 0;
245 while (Size < Table.size())
246 if (Table[Size++].getTag() == DT_NULL)
247 break;
248
249 return Table.slice(0, Size);
250 }
251
252 Elf_Sym_Range dynamic_symbols() const {
253 if (!DynSymRegion)
254 return Elf_Sym_Range();
255 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
256 }
257
258 const Elf_Shdr *findSectionByName(StringRef Name) const;
259
260 StringRef getDynamicStringTable() const { return DynamicStringTable; }
261
262protected:
263 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
264 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
265 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266
267 void
268 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
269 function_ref<void(StringRef, uint64_t)> OnLibEntry);
270
271 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
272 const RelSymbol<ELFT> &RelSym) = 0;
273 virtual void printRelrReloc(const Elf_Relr &R) = 0;
274 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
275 const DynRegionInfo &Reg) {}
276 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
277 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
278 void printDynamicReloc(const Relocation<ELFT> &R);
279 void printDynamicRelocationsHelper();
280 void printRelocationsHelper(const Elf_Shdr &Sec);
281 void forEachRelocationDo(
282 const Elf_Shdr &Sec, bool RawRelr,
283 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
284 const Elf_Shdr &, const Elf_Shdr *)>
285 RelRelaFn,
286 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287
288 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
289 bool NonVisibilityBitsUsed) const {};
290 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
291 DataRegion<Elf_Word> ShndxTable,
292 Optional<StringRef> StrTable, bool IsDynamic,
293 bool NonVisibilityBitsUsed) const = 0;
294
295 virtual void printMipsABIFlags() = 0;
296 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
297 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298
299 Expected<ArrayRef<Elf_Versym>>
300 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
301 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
302 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303
304 std::vector<GroupSection> getGroups();
305
306 // Returns the function symbol index for the given address. Matches the
307 // symbol's section with FunctionSec when specified.
308 // Returns None if no function symbol can be found for the address or in case
309 // it is not defined in the specified section.
310 SmallVector<uint32_t>
311 getSymbolIndexesForFunctionAddress(uint64_t SymValue,
312 Optional<const Elf_Shdr *> FunctionSec);
313 bool printFunctionStackSize(uint64_t SymValue,
314 Optional<const Elf_Shdr *> FunctionSec,
315 const Elf_Shdr &StackSizeSec, DataExtractor Data,
316 uint64_t *Offset);
317 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
318 unsigned Ndx, const Elf_Shdr *SymTab,
319 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
320 const RelocationResolver &Resolver, DataExtractor Data);
321 virtual void printStackSizeEntry(uint64_t Size,
322 ArrayRef<std::string> FuncNames) = 0;
323
324 void printRelocatableStackSizes(std::function<void()> PrintHeader);
325 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
326
327 /// Retrieves sections with corresponding relocation sections based on
328 /// IsMatch.
329 void getSectionAndRelocations(
330 std::function<bool(const Elf_Shdr &)> IsMatch,
331 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
332
333 const object::ELFObjectFile<ELFT> &ObjF;
334 const ELFFile<ELFT> &Obj;
335 StringRef FileName;
336
337 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
338 uint64_t EntSize) {
339 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
340 return createError("offset (0x" + Twine::utohexstr(Offset) +
341 ") + size (0x" + Twine::utohexstr(Size) +
342 ") is greater than the file size (0x" +
343 Twine::utohexstr(Obj.getBufSize()) + ")");
344 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
345 }
346
347 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
348 support::endianness);
349 void printMipsReginfo();
350 void printMipsOptions();
351
352 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
353 void loadDynamicTable();
354 void parseDynamicTable();
355
356 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
357 bool &IsDefault) const;
358 Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
359
360 DynRegionInfo DynRelRegion;
361 DynRegionInfo DynRelaRegion;
362 DynRegionInfo DynRelrRegion;
363 DynRegionInfo DynPLTRelRegion;
364 Optional<DynRegionInfo> DynSymRegion;
365 DynRegionInfo DynSymTabShndxRegion;
366 DynRegionInfo DynamicTable;
367 StringRef DynamicStringTable;
368 const Elf_Hash *HashTable = nullptr;
369 const Elf_GnuHash *GnuHashTable = nullptr;
370 const Elf_Shdr *DotSymtabSec = nullptr;
371 const Elf_Shdr *DotDynsymSec = nullptr;
372 const Elf_Shdr *DotAddrsigSec = nullptr;
373 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
374 Optional<uint64_t> SONameOffset;
375 Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
376
377 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
378 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
379 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
380
381 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
382 DataRegion<Elf_Word> ShndxTable,
383 Optional<StringRef> StrTable,
384 bool IsDynamic) const;
385 Expected<unsigned>
386 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
387 DataRegion<Elf_Word> ShndxTable) const;
388 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
389 unsigned SectionIndex) const;
390 std::string getStaticSymbolName(uint32_t Index) const;
391 StringRef getDynamicString(uint64_t Value) const;
392
393 void printSymbolsHelper(bool IsDynamic) const;
394 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
395
396 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
397 const Elf_Shdr *SymTab) const;
398
399 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
400
401private:
402 mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
403};
404
405template <class ELFT>
406std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
407 return ::describe(Obj, Sec);
408}
409
410namespace {
411
412template <class ELFT> struct SymtabLink {
413 typename ELFT::SymRange Symbols;
414 StringRef StringTable;
415 const typename ELFT::Shdr *SymTab;
416};
417
418// Returns the linked symbol table, symbols and associated string table for a
419// given section.
420template <class ELFT>
421Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
422 const typename ELFT::Shdr &Sec,
423 unsigned ExpectedType) {
424 Expected<const typename ELFT::Shdr *> SymtabOrErr =
425 Obj.getSection(Sec.sh_link);
426 if (!SymtabOrErr)
427 return createError("invalid section linked to " + describe(Obj, Sec) +
428 ": " + toString(SymtabOrErr.takeError()));
429
430 if ((*SymtabOrErr)->sh_type != ExpectedType)
431 return createError(
432 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
433 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
434 ", but got " +
435 object::getELFSectionTypeName(Obj.getHeader().e_machine,
436 (*SymtabOrErr)->sh_type));
437
438 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
439 if (!StrTabOrErr)
440 return createError(
441 "can't get a string table for the symbol table linked to " +
442 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
443
444 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
445 if (!SymsOrErr)
446 return createError("unable to read symbols from the " + describe(Obj, Sec) +
447 ": " + toString(SymsOrErr.takeError()));
448
449 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
450}
451
452} // namespace
453
454template <class ELFT>
455Expected<ArrayRef<typename ELFT::Versym>>
456ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
457 StringRef *StrTab,
458 const Elf_Shdr **SymTabSec) const {
459 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec))(static_cast <bool> ((!SymTab && !StrTab &&
!SymTabSec) || (SymTab && StrTab && SymTabSec
)) ? void (0) : __assert_fail ("(!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 459, __extension__
__PRETTY_FUNCTION__))
;
460 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
461 sizeof(uint16_t) !=
462 0)
463 return createError("the " + describe(Sec) + " is misaligned");
464
465 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
466 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
467 if (!VersionsOrErr)
468 return createError("cannot read content of " + describe(Sec) + ": " +
469 toString(VersionsOrErr.takeError()));
470
471 Expected<SymtabLink<ELFT>> SymTabOrErr =
472 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
473 if (!SymTabOrErr) {
474 reportUniqueWarning(SymTabOrErr.takeError());
475 return *VersionsOrErr;
476 }
477
478 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
479 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
480 Twine(VersionsOrErr->size()) +
481 ") does not match the number of symbols (" +
482 Twine(SymTabOrErr->Symbols.size()) +
483 ") in the symbol table with index " +
484 Twine(Sec.sh_link));
485
486 if (SymTab) {
487 *SymTab = SymTabOrErr->Symbols;
488 *StrTab = SymTabOrErr->StringTable;
489 *SymTabSec = SymTabOrErr->SymTab;
490 }
491 return *VersionsOrErr;
492}
493
494template <class ELFT>
495void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
496 Optional<StringRef> StrTable;
497 size_t Entries = 0;
498 Elf_Sym_Range Syms(nullptr, nullptr);
499 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
500
501 if (IsDynamic) {
502 StrTable = DynamicStringTable;
503 Syms = dynamic_symbols();
504 Entries = Syms.size();
505 } else if (DotSymtabSec) {
506 if (Expected<StringRef> StrTableOrErr =
507 Obj.getStringTableForSymtab(*DotSymtabSec))
508 StrTable = *StrTableOrErr;
509 else
510 reportUniqueWarning(
511 "unable to get the string table for the SHT_SYMTAB section: " +
512 toString(StrTableOrErr.takeError()));
513
514 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
515 Syms = *SymsOrErr;
516 else
517 reportUniqueWarning(
518 "unable to read symbols from the SHT_SYMTAB section: " +
519 toString(SymsOrErr.takeError()));
520 Entries = DotSymtabSec->getEntityCount();
521 }
522 if (Syms.empty())
523 return;
524
525 // The st_other field has 2 logical parts. The first two bits hold the symbol
526 // visibility (STV_*) and the remainder hold other platform-specific values.
527 bool NonVisibilityBitsUsed =
528 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
529
530 DataRegion<Elf_Word> ShndxTable =
531 IsDynamic ? DataRegion<Elf_Word>(
532 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
533 this->getElfObject().getELFFile().end())
534 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
535
536 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
537 for (const Elf_Sym &Sym : Syms)
538 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
539 NonVisibilityBitsUsed);
540}
541
542template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
543 formatted_raw_ostream &OS;
544
545public:
546 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename
ELFT::Note; using Elf_Note_Iterator = typename ELFT::NoteIterator
; using Elf_CGProfile = typename ELFT::CGProfile; using Elf_Dyn_Range
= typename ELFT::DynRange; using Elf_Shdr_Range = typename ELFT
::ShdrRange; using Elf_Sym_Range = typename ELFT::SymRange; using
Elf_Rel_Range = typename ELFT::RelRange; using Elf_Rela_Range
= typename ELFT::RelaRange; using Elf_Relr_Range = typename ELFT
::RelrRange; using Elf_Phdr_Range = typename ELFT::PhdrRange;
547
548 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
549 : ELFDumper<ELFT>(ObjF, Writer),
550 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
551 assert(&this->W.getOStream() == &llvm::fouts())(static_cast <bool> (&this->W.getOStream() == &
llvm::fouts()) ? void (0) : __assert_fail ("&this->W.getOStream() == &llvm::fouts()"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 551, __extension__
__PRETTY_FUNCTION__))
;
552 }
553
554 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
555 ArrayRef<std::string> InputFilenames,
556 const Archive *A) override;
557 void printFileHeaders() override;
558 void printGroupSections() override;
559 void printRelocations() override;
560 void printSectionHeaders() override;
561 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
562 void printHashSymbols() override;
563 void printSectionDetails() override;
564 void printDependentLibs() override;
565 void printDynamicTable() override;
566 void printDynamicRelocations() override;
567 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
568 bool NonVisibilityBitsUsed) const override;
569 void printProgramHeaders(bool PrintProgramHeaders,
570 cl::boolOrDefault PrintSectionMapping) override;
571 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
572 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
573 void printVersionDependencySection(const Elf_Shdr *Sec) override;
574 void printHashHistograms() override;
575 void printCGProfile() override;
576 void printBBAddrMaps() override;
577 void printAddrsig() override;
578 void printNotes() override;
579 void printELFLinkerOptions() override;
580 void printStackSizes() override;
581
582private:
583 void printHashHistogram(const Elf_Hash &HashTable);
584 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
585 void printHashTableSymbols(const Elf_Hash &HashTable);
586 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
587
588 struct Field {
589 std::string Str;
590 unsigned Column;
591
592 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
593 Field(unsigned Col) : Column(Col) {}
594 };
595
596 template <typename T, typename TEnum>
597 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
598 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
599 TEnum EnumMask3 = {}) const {
600 std::string Str;
601 for (const EnumEntry<TEnum> &Flag : EnumValues) {
602 if (Flag.Value == 0)
603 continue;
604
605 TEnum EnumMask{};
606 if (Flag.Value & EnumMask1)
607 EnumMask = EnumMask1;
608 else if (Flag.Value & EnumMask2)
609 EnumMask = EnumMask2;
610 else if (Flag.Value & EnumMask3)
611 EnumMask = EnumMask3;
612 bool IsEnum = (Flag.Value & EnumMask) != 0;
613 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
614 (IsEnum && (Value & EnumMask) == Flag.Value)) {
615 if (!Str.empty())
616 Str += ", ";
617 Str += Flag.AltName;
618 }
619 }
620 return Str;
621 }
622
623 formatted_raw_ostream &printField(struct Field F) const {
624 if (F.Column != 0)
625 OS.PadToColumn(F.Column);
626 OS << F.Str;
627 OS.flush();
628 return OS;
629 }
630 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
631 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
632 uint32_t Bucket);
633 void printRelrReloc(const Elf_Relr &R) override;
634 void printRelRelaReloc(const Relocation<ELFT> &R,
635 const RelSymbol<ELFT> &RelSym) override;
636 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
637 DataRegion<Elf_Word> ShndxTable,
638 Optional<StringRef> StrTable, bool IsDynamic,
639 bool NonVisibilityBitsUsed) const override;
640 void printDynamicRelocHeader(unsigned Type, StringRef Name,
641 const DynRegionInfo &Reg) override;
642
643 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
644 DataRegion<Elf_Word> ShndxTable) const;
645 void printProgramHeaders() override;
646 void printSectionMapping() override;
647 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
648 const Twine &Label, unsigned EntriesNum);
649
650 void printStackSizeEntry(uint64_t Size,
651 ArrayRef<std::string> FuncNames) override;
652
653 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
654 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
655 void printMipsABIFlags() override;
656};
657
658template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
659public:
660 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename
ELFT::Note; using Elf_Note_Iterator = typename ELFT::NoteIterator
; using Elf_CGProfile = typename ELFT::CGProfile; using Elf_Dyn_Range
= typename ELFT::DynRange; using Elf_Shdr_Range = typename ELFT
::ShdrRange; using Elf_Sym_Range = typename ELFT::SymRange; using
Elf_Rel_Range = typename ELFT::RelRange; using Elf_Rela_Range
= typename ELFT::RelaRange; using Elf_Relr_Range = typename ELFT
::RelrRange; using Elf_Phdr_Range = typename ELFT::PhdrRange;
661
662 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
663 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
664
665 void printFileHeaders() override;
666 void printGroupSections() override;
667 void printRelocations() override;
668 void printSectionHeaders() override;
669 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
670 void printDependentLibs() override;
671 void printDynamicTable() override;
672 void printDynamicRelocations() override;
673 void printProgramHeaders(bool PrintProgramHeaders,
674 cl::boolOrDefault PrintSectionMapping) override;
675 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
676 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
677 void printVersionDependencySection(const Elf_Shdr *Sec) override;
678 void printHashHistograms() override;
679 void printCGProfile() override;
680 void printBBAddrMaps() override;
681 void printAddrsig() override;
682 void printNotes() override;
683 void printELFLinkerOptions() override;
684 void printStackSizes() override;
685
686private:
687 void printRelrReloc(const Elf_Relr &R) override;
688 void printRelRelaReloc(const Relocation<ELFT> &R,
689 const RelSymbol<ELFT> &RelSym) override;
690
691 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
692 DataRegion<Elf_Word> ShndxTable) const;
693 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
694 DataRegion<Elf_Word> ShndxTable,
695 Optional<StringRef> StrTable, bool IsDynamic,
696 bool /*NonVisibilityBitsUsed*/) const override;
697 void printProgramHeaders() override;
698 void printSectionMapping() override {}
699 void printStackSizeEntry(uint64_t Size,
700 ArrayRef<std::string> FuncNames) override;
701
702 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
703 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
704 void printMipsABIFlags() override;
705
706protected:
707 ScopedPrinter &W;
708};
709
710// JSONELFDumper shares most of the same implementation as LLVMELFDumper except
711// it uses a JSONScopedPrinter.
712template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
713public:
714 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename
ELFT::Note; using Elf_Note_Iterator = typename ELFT::NoteIterator
; using Elf_CGProfile = typename ELFT::CGProfile; using Elf_Dyn_Range
= typename ELFT::DynRange; using Elf_Shdr_Range = typename ELFT
::ShdrRange; using Elf_Sym_Range = typename ELFT::SymRange; using
Elf_Rel_Range = typename ELFT::RelRange; using Elf_Rela_Range
= typename ELFT::RelaRange; using Elf_Relr_Range = typename ELFT
::RelrRange; using Elf_Phdr_Range = typename ELFT::PhdrRange;
715
716 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
717 : LLVMELFDumper<ELFT>(ObjF, Writer) {}
718
719 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
720 ArrayRef<std::string> InputFilenames,
721 const Archive *A) override;
722
723private:
724 std::unique_ptr<DictScope> FileScope;
725};
726
727} // end anonymous namespace
728
729namespace llvm {
730
731template <class ELFT>
732static std::unique_ptr<ObjDumper>
733createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
734 if (opts::Output == opts::GNU)
735 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
736 else if (opts::Output == opts::JSON)
737 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
738 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
739}
740
741std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
742 ScopedPrinter &Writer) {
743 // Little-endian 32-bit
744 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
745 return createELFDumper(*ELFObj, Writer);
746
747 // Big-endian 32-bit
748 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
749 return createELFDumper(*ELFObj, Writer);
750
751 // Little-endian 64-bit
752 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
753 return createELFDumper(*ELFObj, Writer);
754
755 // Big-endian 64-bit
756 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
757}
758
759} // end namespace llvm
760
761template <class ELFT>
762Expected<SmallVector<Optional<VersionEntry>, 0> *>
763ELFDumper<ELFT>::getVersionMap() const {
764 // If the VersionMap has already been loaded or if there is no dynamic symtab
765 // or version table, there is nothing to do.
766 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
767 return &VersionMap;
768
769 Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
770 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
771 if (MapOrErr)
772 VersionMap = *MapOrErr;
773 else
774 return MapOrErr.takeError();
775
776 return &VersionMap;
777}
778
779template <typename ELFT>
780Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
781 bool &IsDefault) const {
782 // This is a dynamic symbol. Look in the GNU symbol version table.
783 if (!SymbolVersionSection) {
784 // No version table.
785 IsDefault = false;
786 return "";
787 }
788
789 assert(DynSymRegion && "DynSymRegion has not been initialised")(static_cast <bool> (DynSymRegion && "DynSymRegion has not been initialised"
) ? void (0) : __assert_fail ("DynSymRegion && \"DynSymRegion has not been initialised\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 789, __extension__
__PRETTY_FUNCTION__))
;
790 // Determine the position in the symbol table of this entry.
791 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
792 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
793 sizeof(Elf_Sym);
794
795 // Get the corresponding version index entry.
796 Expected<const Elf_Versym *> EntryOrErr =
797 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
798 if (!EntryOrErr)
799 return EntryOrErr.takeError();
800
801 unsigned Version = (*EntryOrErr)->vs_index;
802 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
803 IsDefault = false;
804 return "";
805 }
806
807 Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
808 getVersionMap();
809 if (!MapOrErr)
810 return MapOrErr.takeError();
811
812 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
813 Sym.st_shndx == ELF::SHN_UNDEF);
814}
815
816template <typename ELFT>
817Expected<RelSymbol<ELFT>>
818ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
819 const Elf_Shdr *SymTab) const {
820 if (R.Symbol == 0)
821 return RelSymbol<ELFT>(nullptr, "");
822
823 Expected<const Elf_Sym *> SymOrErr =
824 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
825 if (!SymOrErr)
826 return createError("unable to read an entry with index " + Twine(R.Symbol) +
827 " from " + describe(*SymTab) + ": " +
828 toString(SymOrErr.takeError()));
829 const Elf_Sym *Sym = *SymOrErr;
830 if (!Sym)
831 return RelSymbol<ELFT>(nullptr, "");
832
833 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
834 if (!StrTableOrErr)
835 return StrTableOrErr.takeError();
836
837 const Elf_Sym *FirstSym =
838 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
839 std::string SymbolName =
840 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
841 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
842 return RelSymbol<ELFT>(Sym, SymbolName);
843}
844
845template <typename ELFT>
846ArrayRef<typename ELFT::Word>
847ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
848 if (Symtab) {
849 auto It = ShndxTables.find(Symtab);
850 if (It != ShndxTables.end())
851 return It->second;
852 }
853 return {};
854}
855
856static std::string maybeDemangle(StringRef Name) {
857 return opts::Demangle ? demangle(std::string(Name)) : Name.str();
858}
859
860template <typename ELFT>
861std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
862 auto Warn = [&](Error E) -> std::string {
863 reportUniqueWarning("unable to read the name of symbol with index " +
864 Twine(Index) + ": " + toString(std::move(E)));
865 return "<?>";
866 };
867
868 Expected<const typename ELFT::Sym *> SymOrErr =
869 Obj.getSymbol(DotSymtabSec, Index);
870 if (!SymOrErr)
871 return Warn(SymOrErr.takeError());
872
873 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
874 if (!StrTabOrErr)
875 return Warn(StrTabOrErr.takeError());
876
877 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
878 if (!NameOrErr)
879 return Warn(NameOrErr.takeError());
880 return maybeDemangle(*NameOrErr);
881}
882
883template <typename ELFT>
884std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
885 unsigned SymIndex,
886 DataRegion<Elf_Word> ShndxTable,
887 Optional<StringRef> StrTable,
888 bool IsDynamic) const {
889 if (!StrTable)
890 return "<?>";
891
892 std::string SymbolName;
893 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
894 SymbolName = maybeDemangle(*NameOrErr);
895 } else {
896 reportUniqueWarning(NameOrErr.takeError());
897 return "<?>";
898 }
899
900 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
901 Expected<unsigned> SectionIndex =
902 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
903 if (!SectionIndex) {
904 reportUniqueWarning(SectionIndex.takeError());
905 return "<?>";
906 }
907 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
908 if (!NameOrErr) {
909 reportUniqueWarning(NameOrErr.takeError());
910 return ("<section " + Twine(*SectionIndex) + ">").str();
911 }
912 return std::string(*NameOrErr);
913 }
914
915 if (!IsDynamic)
916 return SymbolName;
917
918 bool IsDefault;
919 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
920 if (!VersionOrErr) {
921 reportUniqueWarning(VersionOrErr.takeError());
922 return SymbolName + "@<corrupt>";
923 }
924
925 if (!VersionOrErr->empty()) {
926 SymbolName += (IsDefault ? "@@" : "@");
927 SymbolName += *VersionOrErr;
928 }
929 return SymbolName;
930}
931
932template <typename ELFT>
933Expected<unsigned>
934ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
935 DataRegion<Elf_Word> ShndxTable) const {
936 unsigned Ndx = Symbol.st_shndx;
937 if (Ndx == SHN_XINDEX)
938 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
939 ShndxTable);
940 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
941 return Ndx;
942
943 auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
944 std::string Desc;
945 if (Offset)
946 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
947 else
948 Desc = Name.str();
949 return createError(
950 "unable to get section index for symbol with st_shndx = 0x" +
951 Twine::utohexstr(Ndx) + " (" + Desc + ")");
952 };
953
954 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
955 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
956 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
957 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
958 if (Ndx == ELF::SHN_UNDEF)
959 return CreateErr("SHN_UNDEF");
960 if (Ndx == ELF::SHN_ABS)
961 return CreateErr("SHN_ABS");
962 if (Ndx == ELF::SHN_COMMON)
963 return CreateErr("SHN_COMMON");
964 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
965}
966
967template <typename ELFT>
968Expected<StringRef>
969ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
970 unsigned SectionIndex) const {
971 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
972 if (!SecOrErr)
973 return SecOrErr.takeError();
974 return Obj.getSectionName(**SecOrErr);
975}
976
977template <class ELFO>
978static const typename ELFO::Elf_Shdr *
979findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
980 uint64_t Addr) {
981 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
982 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
983 return &Shdr;
984 return nullptr;
985}
986
987const EnumEntry<unsigned> ElfClass[] = {
988 {"None", "none", ELF::ELFCLASSNONE},
989 {"32-bit", "ELF32", ELF::ELFCLASS32},
990 {"64-bit", "ELF64", ELF::ELFCLASS64},
991};
992
993const EnumEntry<unsigned> ElfDataEncoding[] = {
994 {"None", "none", ELF::ELFDATANONE},
995 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
996 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
997};
998
999const EnumEntry<unsigned> ElfObjectFileType[] = {
1000 {"None", "NONE (none)", ELF::ET_NONE},
1001 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1002 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1003 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1004 {"Core", "CORE (Core file)", ELF::ET_CORE},
1005};
1006
1007const EnumEntry<unsigned> ElfOSABI[] = {
1008 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1009 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1010 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1011 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1012 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1013 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1014 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1015 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1016 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1017 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1018 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1019 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1020 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1021 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1022 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1023 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1024 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1025 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1026};
1027
1028const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1029 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1030 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1031 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1032};
1033
1034const EnumEntry<unsigned> ARMElfOSABI[] = {
1035 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1036};
1037
1038const EnumEntry<unsigned> C6000ElfOSABI[] = {
1039 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1040 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1041};
1042
1043const EnumEntry<unsigned> ElfMachineType[] = {
1044 ENUM_ENT(EM_NONE, "None"){ "EM_NONE", "None", ELF::EM_NONE },
1045 ENUM_ENT(EM_M32, "WE32100"){ "EM_M32", "WE32100", ELF::EM_M32 },
1046 ENUM_ENT(EM_SPARC, "Sparc"){ "EM_SPARC", "Sparc", ELF::EM_SPARC },
1047 ENUM_ENT(EM_386, "Intel 80386"){ "EM_386", "Intel 80386", ELF::EM_386 },
1048 ENUM_ENT(EM_68K, "MC68000"){ "EM_68K", "MC68000", ELF::EM_68K },
1049 ENUM_ENT(EM_88K, "MC88000"){ "EM_88K", "MC88000", ELF::EM_88K },
1050 ENUM_ENT(EM_IAMCU, "EM_IAMCU"){ "EM_IAMCU", "EM_IAMCU", ELF::EM_IAMCU },
1051 ENUM_ENT(EM_860, "Intel 80860"){ "EM_860", "Intel 80860", ELF::EM_860 },
1052 ENUM_ENT(EM_MIPS, "MIPS R3000"){ "EM_MIPS", "MIPS R3000", ELF::EM_MIPS },
1053 ENUM_ENT(EM_S370, "IBM System/370"){ "EM_S370", "IBM System/370", ELF::EM_S370 },
1054 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"){ "EM_MIPS_RS3_LE", "MIPS R3000 little-endian", ELF::EM_MIPS_RS3_LE
}
,
1055 ENUM_ENT(EM_PARISC, "HPPA"){ "EM_PARISC", "HPPA", ELF::EM_PARISC },
1056 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"){ "EM_VPP500", "Fujitsu VPP500", ELF::EM_VPP500 },
1057 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"){ "EM_SPARC32PLUS", "Sparc v8+", ELF::EM_SPARC32PLUS },
1058 ENUM_ENT(EM_960, "Intel 80960"){ "EM_960", "Intel 80960", ELF::EM_960 },
1059 ENUM_ENT(EM_PPC, "PowerPC"){ "EM_PPC", "PowerPC", ELF::EM_PPC },
1060 ENUM_ENT(EM_PPC64, "PowerPC64"){ "EM_PPC64", "PowerPC64", ELF::EM_PPC64 },
1061 ENUM_ENT(EM_S390, "IBM S/390"){ "EM_S390", "IBM S/390", ELF::EM_S390 },
1062 ENUM_ENT(EM_SPU, "SPU"){ "EM_SPU", "SPU", ELF::EM_SPU },
1063 ENUM_ENT(EM_V800, "NEC V800 series"){ "EM_V800", "NEC V800 series", ELF::EM_V800 },
1064 ENUM_ENT(EM_FR20, "Fujistsu FR20"){ "EM_FR20", "Fujistsu FR20", ELF::EM_FR20 },
1065 ENUM_ENT(EM_RH32, "TRW RH-32"){ "EM_RH32", "TRW RH-32", ELF::EM_RH32 },
1066 ENUM_ENT(EM_RCE, "Motorola RCE"){ "EM_RCE", "Motorola RCE", ELF::EM_RCE },
1067 ENUM_ENT(EM_ARM, "ARM"){ "EM_ARM", "ARM", ELF::EM_ARM },
1068 ENUM_ENT(EM_ALPHA, "EM_ALPHA"){ "EM_ALPHA", "EM_ALPHA", ELF::EM_ALPHA },
1069 ENUM_ENT(EM_SH, "Hitachi SH"){ "EM_SH", "Hitachi SH", ELF::EM_SH },
1070 ENUM_ENT(EM_SPARCV9, "Sparc v9"){ "EM_SPARCV9", "Sparc v9", ELF::EM_SPARCV9 },
1071 ENUM_ENT(EM_TRICORE, "Siemens Tricore"){ "EM_TRICORE", "Siemens Tricore", ELF::EM_TRICORE },
1072 ENUM_ENT(EM_ARC, "ARC"){ "EM_ARC", "ARC", ELF::EM_ARC },
1073 ENUM_ENT(EM_H8_300, "Hitachi H8/300"){ "EM_H8_300", "Hitachi H8/300", ELF::EM_H8_300 },
1074 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"){ "EM_H8_300H", "Hitachi H8/300H", ELF::EM_H8_300H },
1075 ENUM_ENT(EM_H8S, "Hitachi H8S"){ "EM_H8S", "Hitachi H8S", ELF::EM_H8S },
1076 ENUM_ENT(EM_H8_500, "Hitachi H8/500"){ "EM_H8_500", "Hitachi H8/500", ELF::EM_H8_500 },
1077 ENUM_ENT(EM_IA_64, "Intel IA-64"){ "EM_IA_64", "Intel IA-64", ELF::EM_IA_64 },
1078 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"){ "EM_MIPS_X", "Stanford MIPS-X", ELF::EM_MIPS_X },
1079 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"){ "EM_COLDFIRE", "Motorola Coldfire", ELF::EM_COLDFIRE },
1080 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"){ "EM_68HC12", "Motorola MC68HC12 Microcontroller", ELF::EM_68HC12
}
,
1081 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"){ "EM_MMA", "Fujitsu Multimedia Accelerator", ELF::EM_MMA },
1082 ENUM_ENT(EM_PCP, "Siemens PCP"){ "EM_PCP", "Siemens PCP", ELF::EM_PCP },
1083 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"){ "EM_NCPU", "Sony nCPU embedded RISC processor", ELF::EM_NCPU
}
,
1084 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"){ "EM_NDR1", "Denso NDR1 microprocesspr", ELF::EM_NDR1 },
1085 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"){ "EM_STARCORE", "Motorola Star*Core processor", ELF::EM_STARCORE
}
,
1086 ENUM_ENT(EM_ME16, "Toyota ME16 processor"){ "EM_ME16", "Toyota ME16 processor", ELF::EM_ME16 },
1087 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"){ "EM_ST100", "STMicroelectronics ST100 processor", ELF::EM_ST100
}
,
1088 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"){ "EM_TINYJ", "Advanced Logic Corp. TinyJ embedded processor"
, ELF::EM_TINYJ }
,
1089 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"){ "EM_X86_64", "Advanced Micro Devices X86-64", ELF::EM_X86_64
}
,
1090 ENUM_ENT(EM_PDSP, "Sony DSP processor"){ "EM_PDSP", "Sony DSP processor", ELF::EM_PDSP },
1091 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"){ "EM_PDP10", "Digital Equipment Corp. PDP-10", ELF::EM_PDP10
}
,
1092 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"){ "EM_PDP11", "Digital Equipment Corp. PDP-11", ELF::EM_PDP11
}
,
1093 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"){ "EM_FX66", "Siemens FX66 microcontroller", ELF::EM_FX66 },
1094 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"){ "EM_ST9PLUS", "STMicroelectronics ST9+ 8/16 bit microcontroller"
, ELF::EM_ST9PLUS }
,
1095 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"){ "EM_ST7", "STMicroelectronics ST7 8-bit microcontroller", ELF
::EM_ST7 }
,
1096 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"){ "EM_68HC16", "Motorola MC68HC16 Microcontroller", ELF::EM_68HC16
}
,
1097 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"){ "EM_68HC11", "Motorola MC68HC11 Microcontroller", ELF::EM_68HC11
}
,
1098 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"){ "EM_68HC08", "Motorola MC68HC08 Microcontroller", ELF::EM_68HC08
}
,
1099 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"){ "EM_68HC05", "Motorola MC68HC05 Microcontroller", ELF::EM_68HC05
}
,
1100 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"){ "EM_SVX", "Silicon Graphics SVx", ELF::EM_SVX },
1101 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"){ "EM_ST19", "STMicroelectronics ST19 8-bit microcontroller",
ELF::EM_ST19 }
,
1102 ENUM_ENT(EM_VAX, "Digital VAX"){ "EM_VAX", "Digital VAX", ELF::EM_VAX },
1103 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"){ "EM_CRIS", "Axis Communications 32-bit embedded processor",
ELF::EM_CRIS }
,
1104 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"){ "EM_JAVELIN", "Infineon Technologies 32-bit embedded cpu", ELF
::EM_JAVELIN }
,
1105 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"){ "EM_FIREPATH", "Element 14 64-bit DSP processor", ELF::EM_FIREPATH
}
,
1106 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"){ "EM_ZSP", "LSI Logic's 16-bit DSP processor", ELF::EM_ZSP },
1107 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"){ "EM_MMIX", "Donald Knuth's educational 64-bit processor", ELF
::EM_MMIX }
,
1108 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"){ "EM_HUANY", "Harvard Universitys's machine-independent object format"
, ELF::EM_HUANY }
,
1109 ENUM_ENT(EM_PRISM, "Vitesse Prism"){ "EM_PRISM", "Vitesse Prism", ELF::EM_PRISM },
1110 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"){ "EM_AVR", "Atmel AVR 8-bit microcontroller", ELF::EM_AVR },
1111 ENUM_ENT(EM_FR30, "Fujitsu FR30"){ "EM_FR30", "Fujitsu FR30", ELF::EM_FR30 },
1112 ENUM_ENT(EM_D10V, "Mitsubishi D10V"){ "EM_D10V", "Mitsubishi D10V", ELF::EM_D10V },
1113 ENUM_ENT(EM_D30V, "Mitsubishi D30V"){ "EM_D30V", "Mitsubishi D30V", ELF::EM_D30V },
1114 ENUM_ENT(EM_V850, "NEC v850"){ "EM_V850", "NEC v850", ELF::EM_V850 },
1115 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"){ "EM_M32R", "Renesas M32R (formerly Mitsubishi M32r)", ELF::
EM_M32R }
,
1116 ENUM_ENT(EM_MN10300, "Matsushita MN10300"){ "EM_MN10300", "Matsushita MN10300", ELF::EM_MN10300 },
1117 ENUM_ENT(EM_MN10200, "Matsushita MN10200"){ "EM_MN10200", "Matsushita MN10200", ELF::EM_MN10200 },
1118 ENUM_ENT(EM_PJ, "picoJava"){ "EM_PJ", "picoJava", ELF::EM_PJ },
1119 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"){ "EM_OPENRISC", "OpenRISC 32-bit embedded processor", ELF::EM_OPENRISC
}
,
1120 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"){ "EM_ARC_COMPACT", "EM_ARC_COMPACT", ELF::EM_ARC_COMPACT },
1121 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"){ "EM_XTENSA", "Tensilica Xtensa Processor", ELF::EM_XTENSA },
1122 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"){ "EM_VIDEOCORE", "Alphamosaic VideoCore processor", ELF::EM_VIDEOCORE
}
,
1123 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"){ "EM_TMM_GPP", "Thompson Multimedia General Purpose Processor"
, ELF::EM_TMM_GPP }
,
1124 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"){ "EM_NS32K", "National Semiconductor 32000 series", ELF::EM_NS32K
}
,
1125 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"){ "EM_TPC", "Tenor Network TPC processor", ELF::EM_TPC },
1126 ENUM_ENT(EM_SNP1K, "EM_SNP1K"){ "EM_SNP1K", "EM_SNP1K", ELF::EM_SNP1K },
1127 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"){ "EM_ST200", "STMicroelectronics ST200 microcontroller", ELF
::EM_ST200 }
,
1128 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"){ "EM_IP2K", "Ubicom IP2xxx 8-bit microcontrollers", ELF::EM_IP2K
}
,
1129 ENUM_ENT(EM_MAX, "MAX Processor"){ "EM_MAX", "MAX Processor", ELF::EM_MAX },
1130 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"){ "EM_CR", "National Semiconductor CompactRISC", ELF::EM_CR },
1131 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"){ "EM_F2MC16", "Fujitsu F2MC16", ELF::EM_F2MC16 },
1132 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"){ "EM_MSP430", "Texas Instruments msp430 microcontroller", ELF
::EM_MSP430 }
,
1133 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"){ "EM_BLACKFIN", "Analog Devices Blackfin", ELF::EM_BLACKFIN },
1134 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"){ "EM_SE_C33", "S1C33 Family of Seiko Epson processors", ELF::
EM_SE_C33 }
,
1135 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"){ "EM_SEP", "Sharp embedded microprocessor", ELF::EM_SEP },
1136 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"){ "EM_ARCA", "Arca RISC microprocessor", ELF::EM_ARCA },
1137 ENUM_ENT(EM_UNICORE, "Unicore"){ "EM_UNICORE", "Unicore", ELF::EM_UNICORE },
1138 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"){ "EM_EXCESS", "eXcess 16/32/64-bit configurable embedded CPU"
, ELF::EM_EXCESS }
,
1139 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"){ "EM_DXP", "Icera Semiconductor Inc. Deep Execution Processor"
, ELF::EM_DXP }
,
1140 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"){ "EM_ALTERA_NIOS2", "Altera Nios", ELF::EM_ALTERA_NIOS2 },
1141 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"){ "EM_CRX", "National Semiconductor CRX microprocessor", ELF::
EM_CRX }
,
1142 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"){ "EM_XGATE", "Motorola XGATE embedded processor", ELF::EM_XGATE
}
,
1143 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"){ "EM_C166", "Infineon Technologies xc16x", ELF::EM_C166 },
1144 ENUM_ENT(EM_M16C, "Renesas M16C"){ "EM_M16C", "Renesas M16C", ELF::EM_M16C },
1145 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"){ "EM_DSPIC30F", "Microchip Technology dsPIC30F Digital Signal Controller"
, ELF::EM_DSPIC30F }
,
1146 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"){ "EM_CE", "Freescale Communication Engine RISC core", ELF::EM_CE
}
,
1147 ENUM_ENT(EM_M32C, "Renesas M32C"){ "EM_M32C", "Renesas M32C", ELF::EM_M32C },
1148 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"){ "EM_TSK3000", "Altium TSK3000 core", ELF::EM_TSK3000 },
1149 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"){ "EM_RS08", "Freescale RS08 embedded processor", ELF::EM_RS08
}
,
1150 ENUM_ENT(EM_SHARC, "EM_SHARC"){ "EM_SHARC", "EM_SHARC", ELF::EM_SHARC },
1151 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"){ "EM_ECOG2", "Cyan Technology eCOG2 microprocessor", ELF::EM_ECOG2
}
,
1152 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"){ "EM_SCORE7", "SUNPLUS S+Core", ELF::EM_SCORE7 },
1153 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"){ "EM_DSP24", "New Japan Radio (NJR) 24-bit DSP Processor", ELF
::EM_DSP24 }
,
1154 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"){ "EM_VIDEOCORE3", "Broadcom VideoCore III processor", ELF::EM_VIDEOCORE3
}
,
1155 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"){ "EM_LATTICEMICO32", "Lattice Mico32", ELF::EM_LATTICEMICO32
}
,
1156 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"){ "EM_SE_C17", "Seiko Epson C17 family", ELF::EM_SE_C17 },
1157 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"){ "EM_TI_C6000", "Texas Instruments TMS320C6000 DSP family", ELF
::EM_TI_C6000 }
,
1158 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"){ "EM_TI_C2000", "Texas Instruments TMS320C2000 DSP family", ELF
::EM_TI_C2000 }
,
1159 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"){ "EM_TI_C5500", "Texas Instruments TMS320C55x DSP family", ELF
::EM_TI_C5500 }
,
1160 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"){ "EM_MMDSP_PLUS", "STMicroelectronics 64bit VLIW Data Signal Processor"
, ELF::EM_MMDSP_PLUS }
,
1161 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"){ "EM_CYPRESS_M8C", "Cypress M8C microprocessor", ELF::EM_CYPRESS_M8C
}
,
1162 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"){ "EM_R32C", "Renesas R32C series microprocessors", ELF::EM_R32C
}
,
1163 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"){ "EM_TRIMEDIA", "NXP Semiconductors TriMedia architecture family"
, ELF::EM_TRIMEDIA }
,
1164 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"){ "EM_HEXAGON", "Qualcomm Hexagon", ELF::EM_HEXAGON },
1165 ENUM_ENT(EM_8051, "Intel 8051 and variants"){ "EM_8051", "Intel 8051 and variants", ELF::EM_8051 },
1166 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"){ "EM_STXP7X", "STMicroelectronics STxP7x family", ELF::EM_STXP7X
}
,
1167 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"){ "EM_NDS32", "Andes Technology compact code size embedded RISC processor family"
, ELF::EM_NDS32 }
,
1168 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"){ "EM_ECOG1", "Cyan Technology eCOG1 microprocessor", ELF::EM_ECOG1
}
,
1169 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1170 // an identical number to EM_ECOG1.
1171 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"){ "EM_ECOG1X", "Cyan Technology eCOG1X family", ELF::EM_ECOG1X
}
,
1172 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"){ "EM_MAXQ30", "Dallas Semiconductor MAXQ30 Core microcontrollers"
, ELF::EM_MAXQ30 }
,
1173 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"){ "EM_XIMO16", "New Japan Radio (NJR) 16-bit DSP Processor", ELF
::EM_XIMO16 }
,
1174 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"){ "EM_MANIK", "M2000 Reconfigurable RISC Microprocessor", ELF
::EM_MANIK }
,
1175 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"){ "EM_CRAYNV2", "Cray Inc. NV2 vector architecture", ELF::EM_CRAYNV2
}
,
1176 ENUM_ENT(EM_RX, "Renesas RX"){ "EM_RX", "Renesas RX", ELF::EM_RX },
1177 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"){ "EM_METAG", "Imagination Technologies Meta processor architecture"
, ELF::EM_METAG }
,
1178 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"){ "EM_MCST_ELBRUS", "MCST Elbrus general purpose hardware architecture"
, ELF::EM_MCST_ELBRUS }
,
1179 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"){ "EM_ECOG16", "Cyan Technology eCOG16 family", ELF::EM_ECOG16
}
,
1180 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"){ "EM_CR16", "National Semiconductor CompactRISC 16-bit processor"
, ELF::EM_CR16 }
,
1181 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"){ "EM_ETPU", "Freescale Extended Time Processing Unit", ELF::
EM_ETPU }
,
1182 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"){ "EM_SLE9X", "Infineon Technologies SLE9X core", ELF::EM_SLE9X
}
,
1183 ENUM_ENT(EM_L10M, "EM_L10M"){ "EM_L10M", "EM_L10M", ELF::EM_L10M },
1184 ENUM_ENT(EM_K10M, "EM_K10M"){ "EM_K10M", "EM_K10M", ELF::EM_K10M },
1185 ENUM_ENT(EM_AARCH64, "AArch64"){ "EM_AARCH64", "AArch64", ELF::EM_AARCH64 },
1186 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"){ "EM_AVR32", "Atmel Corporation 32-bit microprocessor family"
, ELF::EM_AVR32 }
,
1187 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"){ "EM_STM8", "STMicroeletronics STM8 8-bit microcontroller", ELF
::EM_STM8 }
,
1188 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"){ "EM_TILE64", "Tilera TILE64 multicore architecture family",
ELF::EM_TILE64 }
,
1189 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"){ "EM_TILEPRO", "Tilera TILEPro multicore architecture family"
, ELF::EM_TILEPRO }
,
1190 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"){ "EM_MICROBLAZE", "Xilinx MicroBlaze 32-bit RISC soft processor core"
, ELF::EM_MICROBLAZE }
,
1191 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"){ "EM_CUDA", "NVIDIA CUDA architecture", ELF::EM_CUDA },
1192 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"){ "EM_TILEGX", "Tilera TILE-Gx multicore architecture family"
, ELF::EM_TILEGX }
,
1193 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"){ "EM_CLOUDSHIELD", "EM_CLOUDSHIELD", ELF::EM_CLOUDSHIELD },
1194 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"){ "EM_COREA_1ST", "EM_COREA_1ST", ELF::EM_COREA_1ST },
1195 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"){ "EM_COREA_2ND", "EM_COREA_2ND", ELF::EM_COREA_2ND },
1196 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"){ "EM_ARC_COMPACT2", "EM_ARC_COMPACT2", ELF::EM_ARC_COMPACT2 },
1197 ENUM_ENT(EM_OPEN8, "EM_OPEN8"){ "EM_OPEN8", "EM_OPEN8", ELF::EM_OPEN8 },
1198 ENUM_ENT(EM_RL78, "Renesas RL78"){ "EM_RL78", "Renesas RL78", ELF::EM_RL78 },
1199 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"){ "EM_VIDEOCORE5", "Broadcom VideoCore V processor", ELF::EM_VIDEOCORE5
}
,
1200 ENUM_ENT(EM_78KOR, "EM_78KOR"){ "EM_78KOR", "EM_78KOR", ELF::EM_78KOR },
1201 ENUM_ENT(EM_56800EX, "EM_56800EX"){ "EM_56800EX", "EM_56800EX", ELF::EM_56800EX },
1202 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"){ "EM_AMDGPU", "EM_AMDGPU", ELF::EM_AMDGPU },
1203 ENUM_ENT(EM_RISCV, "RISC-V"){ "EM_RISCV", "RISC-V", ELF::EM_RISCV },
1204 ENUM_ENT(EM_LANAI, "EM_LANAI"){ "EM_LANAI", "EM_LANAI", ELF::EM_LANAI },
1205 ENUM_ENT(EM_BPF, "EM_BPF"){ "EM_BPF", "EM_BPF", ELF::EM_BPF },
1206 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"){ "EM_VE", "NEC SX-Aurora Vector Engine", ELF::EM_VE },
1207 ENUM_ENT(EM_LOONGARCH, "LoongArch"){ "EM_LOONGARCH", "LoongArch", ELF::EM_LOONGARCH },
1208};
1209
1210const EnumEntry<unsigned> ElfSymbolBindings[] = {
1211 {"Local", "LOCAL", ELF::STB_LOCAL},
1212 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1213 {"Weak", "WEAK", ELF::STB_WEAK},
1214 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1215
1216const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1217 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1218 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1219 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1220 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1221
1222const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1223 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1224};
1225
1226static const char *getGroupType(uint32_t Flag) {
1227 if (Flag & ELF::GRP_COMDAT)
1228 return "COMDAT";
1229 else
1230 return "(unknown)";
1231}
1232
1233const EnumEntry<unsigned> ElfSectionFlags[] = {
1234 ENUM_ENT(SHF_WRITE, "W"){ "SHF_WRITE", "W", ELF::SHF_WRITE },
1235 ENUM_ENT(SHF_ALLOC, "A"){ "SHF_ALLOC", "A", ELF::SHF_ALLOC },
1236 ENUM_ENT(SHF_EXECINSTR, "X"){ "SHF_EXECINSTR", "X", ELF::SHF_EXECINSTR },
1237 ENUM_ENT(SHF_MERGE, "M"){ "SHF_MERGE", "M", ELF::SHF_MERGE },
1238 ENUM_ENT(SHF_STRINGS, "S"){ "SHF_STRINGS", "S", ELF::SHF_STRINGS },
1239 ENUM_ENT(SHF_INFO_LINK, "I"){ "SHF_INFO_LINK", "I", ELF::SHF_INFO_LINK },
1240 ENUM_ENT(SHF_LINK_ORDER, "L"){ "SHF_LINK_ORDER", "L", ELF::SHF_LINK_ORDER },
1241 ENUM_ENT(SHF_OS_NONCONFORMING, "O"){ "SHF_OS_NONCONFORMING", "O", ELF::SHF_OS_NONCONFORMING },
1242 ENUM_ENT(SHF_GROUP, "G"){ "SHF_GROUP", "G", ELF::SHF_GROUP },
1243 ENUM_ENT(SHF_TLS, "T"){ "SHF_TLS", "T", ELF::SHF_TLS },
1244 ENUM_ENT(SHF_COMPRESSED, "C"){ "SHF_COMPRESSED", "C", ELF::SHF_COMPRESSED },
1245 ENUM_ENT(SHF_EXCLUDE, "E"){ "SHF_EXCLUDE", "E", ELF::SHF_EXCLUDE },
1246};
1247
1248const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1249 ENUM_ENT(SHF_GNU_RETAIN, "R"){ "SHF_GNU_RETAIN", "R", ELF::SHF_GNU_RETAIN }
1250};
1251
1252const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1253 ENUM_ENT(SHF_SUNW_NODISCARD, "R"){ "SHF_SUNW_NODISCARD", "R", ELF::SHF_SUNW_NODISCARD }
1254};
1255
1256const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1257 ENUM_ENT(XCORE_SHF_CP_SECTION, ""){ "XCORE_SHF_CP_SECTION", "", ELF::XCORE_SHF_CP_SECTION },
1258 ENUM_ENT(XCORE_SHF_DP_SECTION, ""){ "XCORE_SHF_DP_SECTION", "", ELF::XCORE_SHF_DP_SECTION }
1259};
1260
1261const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1262 ENUM_ENT(SHF_ARM_PURECODE, "y"){ "SHF_ARM_PURECODE", "y", ELF::SHF_ARM_PURECODE }
1263};
1264
1265const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1266 ENUM_ENT(SHF_HEX_GPREL, ""){ "SHF_HEX_GPREL", "", ELF::SHF_HEX_GPREL }
1267};
1268
1269const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1270 ENUM_ENT(SHF_MIPS_NODUPES, ""){ "SHF_MIPS_NODUPES", "", ELF::SHF_MIPS_NODUPES },
1271 ENUM_ENT(SHF_MIPS_NAMES, ""){ "SHF_MIPS_NAMES", "", ELF::SHF_MIPS_NAMES },
1272 ENUM_ENT(SHF_MIPS_LOCAL, ""){ "SHF_MIPS_LOCAL", "", ELF::SHF_MIPS_LOCAL },
1273 ENUM_ENT(SHF_MIPS_NOSTRIP, ""){ "SHF_MIPS_NOSTRIP", "", ELF::SHF_MIPS_NOSTRIP },
1274 ENUM_ENT(SHF_MIPS_GPREL, ""){ "SHF_MIPS_GPREL", "", ELF::SHF_MIPS_GPREL },
1275 ENUM_ENT(SHF_MIPS_MERGE, ""){ "SHF_MIPS_MERGE", "", ELF::SHF_MIPS_MERGE },
1276 ENUM_ENT(SHF_MIPS_ADDR, ""){ "SHF_MIPS_ADDR", "", ELF::SHF_MIPS_ADDR },
1277 ENUM_ENT(SHF_MIPS_STRING, ""){ "SHF_MIPS_STRING", "", ELF::SHF_MIPS_STRING }
1278};
1279
1280const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1281 ENUM_ENT(SHF_X86_64_LARGE, "l"){ "SHF_X86_64_LARGE", "l", ELF::SHF_X86_64_LARGE }
1282};
1283
1284static std::vector<EnumEntry<unsigned>>
1285getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1286 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1287 std::end(ElfSectionFlags));
1288 switch (EOSAbi) {
1289 case ELFOSABI_SOLARIS:
1290 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1291 std::end(ElfSolarisSectionFlags));
1292 break;
1293 default:
1294 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1295 std::end(ElfGNUSectionFlags));
1296 break;
1297 }
1298 switch (EMachine) {
1299 case EM_ARM:
1300 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1301 std::end(ElfARMSectionFlags));
1302 break;
1303 case EM_HEXAGON:
1304 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1305 std::end(ElfHexagonSectionFlags));
1306 break;
1307 case EM_MIPS:
1308 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1309 std::end(ElfMipsSectionFlags));
1310 break;
1311 case EM_X86_64:
1312 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1313 std::end(ElfX86_64SectionFlags));
1314 break;
1315 case EM_XCORE:
1316 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1317 std::end(ElfXCoreSectionFlags));
1318 break;
1319 default:
1320 break;
1321 }
1322 return Ret;
1323}
1324
1325static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1326 uint64_t Flags) {
1327 // Here we are trying to build the flags string in the same way as GNU does.
1328 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1329 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1330 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1331 // "p". It only will print "E" when no other processor flag is set.
1332 std::string Str;
1333 bool HasUnknownFlag = false;
1334 bool HasOSFlag = false;
1335 bool HasProcFlag = false;
1336 std::vector<EnumEntry<unsigned>> FlagsList =
1337 getSectionFlagsForTarget(EOSAbi, EMachine);
1338 while (Flags) {
1339 // Take the least significant bit as a flag.
1340 uint64_t Flag = Flags & -Flags;
1341 Flags -= Flag;
1342
1343 // Find the flag in the known flags list.
1344 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1345 // Flags with empty names are not printed in GNU style output.
1346 return E.Value == Flag && !E.AltName.empty();
1347 });
1348 if (I != FlagsList.end()) {
1349 Str += I->AltName;
1350 continue;
1351 }
1352
1353 // If we did not find a matching regular flag, then we deal with an OS
1354 // specific flag, processor specific flag or an unknown flag.
1355 if (Flag & ELF::SHF_MASKOS) {
1356 HasOSFlag = true;
1357 Flags &= ~ELF::SHF_MASKOS;
1358 } else if (Flag & ELF::SHF_MASKPROC) {
1359 HasProcFlag = true;
1360 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1361 // bit if set so that it doesn't also get printed.
1362 Flags &= ~ELF::SHF_MASKPROC;
1363 } else {
1364 HasUnknownFlag = true;
1365 }
1366 }
1367
1368 // "o", "p" and "x" are printed last.
1369 if (HasOSFlag)
1370 Str += "o";
1371 if (HasProcFlag)
1372 Str += "p";
1373 if (HasUnknownFlag)
1374 Str += "x";
1375 return Str;
1376}
1377
1378static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1379 // Check potentially overlapped processor-specific program header type.
1380 switch (Arch) {
1381 case ELF::EM_ARM:
1382 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX)case ELF::PT_ARM_EXIDX: return "PT_ARM_EXIDX";; }
1383 break;
1384 case ELF::EM_MIPS:
1385 case ELF::EM_MIPS_RS3_LE:
1386 switch (Type) {
1387 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO)case ELF::PT_MIPS_REGINFO: return "PT_MIPS_REGINFO";;
1388 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC)case ELF::PT_MIPS_RTPROC: return "PT_MIPS_RTPROC";;
1389 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS)case ELF::PT_MIPS_OPTIONS: return "PT_MIPS_OPTIONS";;
1390 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS)case ELF::PT_MIPS_ABIFLAGS: return "PT_MIPS_ABIFLAGS";;
1391 }
1392 break;
1393 }
1394
1395 switch (Type) {
1396 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL)case ELF::PT_NULL: return "PT_NULL";;
1397 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD)case ELF::PT_LOAD: return "PT_LOAD";;
1398 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC)case ELF::PT_DYNAMIC: return "PT_DYNAMIC";;
1399 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP)case ELF::PT_INTERP: return "PT_INTERP";;
1400 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE)case ELF::PT_NOTE: return "PT_NOTE";;
1401 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB)case ELF::PT_SHLIB: return "PT_SHLIB";;
1402 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR)case ELF::PT_PHDR: return "PT_PHDR";;
1403 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS)case ELF::PT_TLS: return "PT_TLS";;
1404
1405 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME)case ELF::PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";;
1406 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND)case ELF::PT_SUNW_UNWIND: return "PT_SUNW_UNWIND";;
1407
1408 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK)case ELF::PT_GNU_STACK: return "PT_GNU_STACK";;
1409 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO)case ELF::PT_GNU_RELRO: return "PT_GNU_RELRO";;
1410 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY)case ELF::PT_GNU_PROPERTY: return "PT_GNU_PROPERTY";;
1411
1412 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE)case ELF::PT_OPENBSD_RANDOMIZE: return "PT_OPENBSD_RANDOMIZE"
;
;
1413 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED)case ELF::PT_OPENBSD_WXNEEDED: return "PT_OPENBSD_WXNEEDED";;
1414 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA)case ELF::PT_OPENBSD_BOOTDATA: return "PT_OPENBSD_BOOTDATA";;
1415 default:
1416 return "";
1417 }
1418}
1419
1420static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1421 StringRef Seg = segmentTypeToString(Arch, Type);
1422 if (Seg.empty())
1423 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1424
1425 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1426 if (Seg.startswith("PT_ARM_"))
1427 return Seg.drop_front(7).str();
1428
1429 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1430 if (Seg.startswith("PT_MIPS_"))
1431 return Seg.drop_front(8).str();
1432
1433 // E.g. "PT_LOAD" -> "LOAD".
1434 assert(Seg.startswith("PT_"))(static_cast <bool> (Seg.startswith("PT_")) ? void (0) :
__assert_fail ("Seg.startswith(\"PT_\")", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 1434, __extension__ __PRETTY_FUNCTION__))
;
1435 return Seg.drop_front(3).str();
1436}
1437
1438const EnumEntry<unsigned> ElfSegmentFlags[] = {
1439 LLVM_READOBJ_ENUM_ENT(ELF, PF_X){ "PF_X", ELF::PF_X },
1440 LLVM_READOBJ_ENUM_ENT(ELF, PF_W){ "PF_W", ELF::PF_W },
1441 LLVM_READOBJ_ENUM_ENT(ELF, PF_R){ "PF_R", ELF::PF_R }
1442};
1443
1444const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1445 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"){ "EF_MIPS_NOREORDER", "noreorder", ELF::EF_MIPS_NOREORDER },
1446 ENUM_ENT(EF_MIPS_PIC, "pic"){ "EF_MIPS_PIC", "pic", ELF::EF_MIPS_PIC },
1447 ENUM_ENT(EF_MIPS_CPIC, "cpic"){ "EF_MIPS_CPIC", "cpic", ELF::EF_MIPS_CPIC },
1448 ENUM_ENT(EF_MIPS_ABI2, "abi2"){ "EF_MIPS_ABI2", "abi2", ELF::EF_MIPS_ABI2 },
1449 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"){ "EF_MIPS_32BITMODE", "32bitmode", ELF::EF_MIPS_32BITMODE },
1450 ENUM_ENT(EF_MIPS_FP64, "fp64"){ "EF_MIPS_FP64", "fp64", ELF::EF_MIPS_FP64 },
1451 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"){ "EF_MIPS_NAN2008", "nan2008", ELF::EF_MIPS_NAN2008 },
1452 ENUM_ENT(EF_MIPS_ABI_O32, "o32"){ "EF_MIPS_ABI_O32", "o32", ELF::EF_MIPS_ABI_O32 },
1453 ENUM_ENT(EF_MIPS_ABI_O64, "o64"){ "EF_MIPS_ABI_O64", "o64", ELF::EF_MIPS_ABI_O64 },
1454 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"){ "EF_MIPS_ABI_EABI32", "eabi32", ELF::EF_MIPS_ABI_EABI32 },
1455 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"){ "EF_MIPS_ABI_EABI64", "eabi64", ELF::EF_MIPS_ABI_EABI64 },
1456 ENUM_ENT(EF_MIPS_MACH_3900, "3900"){ "EF_MIPS_MACH_3900", "3900", ELF::EF_MIPS_MACH_3900 },
1457 ENUM_ENT(EF_MIPS_MACH_4010, "4010"){ "EF_MIPS_MACH_4010", "4010", ELF::EF_MIPS_MACH_4010 },
1458 ENUM_ENT(EF_MIPS_MACH_4100, "4100"){ "EF_MIPS_MACH_4100", "4100", ELF::EF_MIPS_MACH_4100 },
1459 ENUM_ENT(EF_MIPS_MACH_4650, "4650"){ "EF_MIPS_MACH_4650", "4650", ELF::EF_MIPS_MACH_4650 },
1460 ENUM_ENT(EF_MIPS_MACH_4120, "4120"){ "EF_MIPS_MACH_4120", "4120", ELF::EF_MIPS_MACH_4120 },
1461 ENUM_ENT(EF_MIPS_MACH_4111, "4111"){ "EF_MIPS_MACH_4111", "4111", ELF::EF_MIPS_MACH_4111 },
1462 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"){ "EF_MIPS_MACH_SB1", "sb1", ELF::EF_MIPS_MACH_SB1 },
1463 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"){ "EF_MIPS_MACH_OCTEON", "octeon", ELF::EF_MIPS_MACH_OCTEON },
1464 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"){ "EF_MIPS_MACH_XLR", "xlr", ELF::EF_MIPS_MACH_XLR },
1465 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"){ "EF_MIPS_MACH_OCTEON2", "octeon2", ELF::EF_MIPS_MACH_OCTEON2
}
,
1466 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"){ "EF_MIPS_MACH_OCTEON3", "octeon3", ELF::EF_MIPS_MACH_OCTEON3
}
,
1467 ENUM_ENT(EF_MIPS_MACH_5400, "5400"){ "EF_MIPS_MACH_5400", "5400", ELF::EF_MIPS_MACH_5400 },
1468 ENUM_ENT(EF_MIPS_MACH_5900, "5900"){ "EF_MIPS_MACH_5900", "5900", ELF::EF_MIPS_MACH_5900 },
1469 ENUM_ENT(EF_MIPS_MACH_5500, "5500"){ "EF_MIPS_MACH_5500", "5500", ELF::EF_MIPS_MACH_5500 },
1470 ENUM_ENT(EF_MIPS_MACH_9000, "9000"){ "EF_MIPS_MACH_9000", "9000", ELF::EF_MIPS_MACH_9000 },
1471 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"){ "EF_MIPS_MACH_LS2E", "loongson-2e", ELF::EF_MIPS_MACH_LS2E },
1472 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"){ "EF_MIPS_MACH_LS2F", "loongson-2f", ELF::EF_MIPS_MACH_LS2F },
1473 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"){ "EF_MIPS_MACH_LS3A", "loongson-3a", ELF::EF_MIPS_MACH_LS3A },
1474 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"){ "EF_MIPS_MICROMIPS", "micromips", ELF::EF_MIPS_MICROMIPS },
1475 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"){ "EF_MIPS_ARCH_ASE_M16", "mips16", ELF::EF_MIPS_ARCH_ASE_M16
}
,
1476 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"){ "EF_MIPS_ARCH_ASE_MDMX", "mdmx", ELF::EF_MIPS_ARCH_ASE_MDMX
}
,
1477 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"){ "EF_MIPS_ARCH_1", "mips1", ELF::EF_MIPS_ARCH_1 },
1478 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"){ "EF_MIPS_ARCH_2", "mips2", ELF::EF_MIPS_ARCH_2 },
1479 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"){ "EF_MIPS_ARCH_3", "mips3", ELF::EF_MIPS_ARCH_3 },
1480 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"){ "EF_MIPS_ARCH_4", "mips4", ELF::EF_MIPS_ARCH_4 },
1481 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"){ "EF_MIPS_ARCH_5", "mips5", ELF::EF_MIPS_ARCH_5 },
1482 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"){ "EF_MIPS_ARCH_32", "mips32", ELF::EF_MIPS_ARCH_32 },
1483 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"){ "EF_MIPS_ARCH_64", "mips64", ELF::EF_MIPS_ARCH_64 },
1484 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"){ "EF_MIPS_ARCH_32R2", "mips32r2", ELF::EF_MIPS_ARCH_32R2 },
1485 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"){ "EF_MIPS_ARCH_64R2", "mips64r2", ELF::EF_MIPS_ARCH_64R2 },
1486 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"){ "EF_MIPS_ARCH_32R6", "mips32r6", ELF::EF_MIPS_ARCH_32R6 },
1487 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6"){ "EF_MIPS_ARCH_64R6", "mips64r6", ELF::EF_MIPS_ARCH_64R6 }
1488};
1489
1490const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1491 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1492 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1493 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1494 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1495 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1496 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1497 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1498 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1499 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1500 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1501 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1502 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1503 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1504 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1505 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1506 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1507 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1508 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1509 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1510 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602){ "EF_AMDGPU_MACH_AMDGCN_GFX602", ELF::EF_AMDGPU_MACH_AMDGCN_GFX602
}
,
1511 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1512 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1513 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1514 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1515 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1516 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705){ "EF_AMDGPU_MACH_AMDGCN_GFX705", ELF::EF_AMDGPU_MACH_AMDGCN_GFX705
}
,
1517 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1518 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1519 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1520 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805){ "EF_AMDGPU_MACH_AMDGCN_GFX805", ELF::EF_AMDGPU_MACH_AMDGCN_GFX805
}
,
1521 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1522 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1523 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1524 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1525 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1526 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908){ "EF_AMDGPU_MACH_AMDGCN_GFX908", ELF::EF_AMDGPU_MACH_AMDGCN_GFX908
}
,
1527 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1528 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A){ "EF_AMDGPU_MACH_AMDGCN_GFX90A", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A
}
,
1529 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C){ "EF_AMDGPU_MACH_AMDGCN_GFX90C", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C
}
,
1530 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940){ "EF_AMDGPU_MACH_AMDGCN_GFX940", ELF::EF_AMDGPU_MACH_AMDGCN_GFX940
}
,
1531 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010){ "EF_AMDGPU_MACH_AMDGCN_GFX1010", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010
}
,
1532 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011){ "EF_AMDGPU_MACH_AMDGCN_GFX1011", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011
}
,
1533 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012){ "EF_AMDGPU_MACH_AMDGCN_GFX1012", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012
}
,
1534 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013){ "EF_AMDGPU_MACH_AMDGCN_GFX1013", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013
}
,
1535 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030){ "EF_AMDGPU_MACH_AMDGCN_GFX1030", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030
}
,
1536 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031){ "EF_AMDGPU_MACH_AMDGCN_GFX1031", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031
}
,
1537 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032){ "EF_AMDGPU_MACH_AMDGCN_GFX1032", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032
}
,
1538 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033){ "EF_AMDGPU_MACH_AMDGCN_GFX1033", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033
}
,
1539 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034){ "EF_AMDGPU_MACH_AMDGCN_GFX1034", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034
}
,
1540 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035){ "EF_AMDGPU_MACH_AMDGCN_GFX1035", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035
}
,
1541 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036){ "EF_AMDGPU_MACH_AMDGCN_GFX1036", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036
}
,
1542 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3){ "EF_AMDGPU_FEATURE_XNACK_V3", ELF::EF_AMDGPU_FEATURE_XNACK_V3
}
,
1543 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3){ "EF_AMDGPU_FEATURE_SRAMECC_V3", ELF::EF_AMDGPU_FEATURE_SRAMECC_V3
}
1544};
1545
1546const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1547 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1548 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1549 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1550 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1555 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1557 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602){ "EF_AMDGPU_MACH_AMDGCN_GFX602", ELF::EF_AMDGPU_MACH_AMDGCN_GFX602
}
,
1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705){ "EF_AMDGPU_MACH_AMDGCN_GFX705", ELF::EF_AMDGPU_MACH_AMDGCN_GFX705
}
,
1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805){ "EF_AMDGPU_MACH_AMDGCN_GFX805", ELF::EF_AMDGPU_MACH_AMDGCN_GFX805
}
,
1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1581 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1582 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908){ "EF_AMDGPU_MACH_AMDGCN_GFX908", ELF::EF_AMDGPU_MACH_AMDGCN_GFX908
}
,
1583 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1584 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A){ "EF_AMDGPU_MACH_AMDGCN_GFX90A", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A
}
,
1585 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C){ "EF_AMDGPU_MACH_AMDGCN_GFX90C", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C
}
,
1586 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940){ "EF_AMDGPU_MACH_AMDGCN_GFX940", ELF::EF_AMDGPU_MACH_AMDGCN_GFX940
}
,
1587 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010){ "EF_AMDGPU_MACH_AMDGCN_GFX1010", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010
}
,
1588 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011){ "EF_AMDGPU_MACH_AMDGCN_GFX1011", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011
}
,
1589 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012){ "EF_AMDGPU_MACH_AMDGCN_GFX1012", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012
}
,
1590 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013){ "EF_AMDGPU_MACH_AMDGCN_GFX1013", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013
}
,
1591 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030){ "EF_AMDGPU_MACH_AMDGCN_GFX1030", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030
}
,
1592 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031){ "EF_AMDGPU_MACH_AMDGCN_GFX1031", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031
}
,
1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032){ "EF_AMDGPU_MACH_AMDGCN_GFX1032", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032
}
,
1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033){ "EF_AMDGPU_MACH_AMDGCN_GFX1033", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033
}
,
1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034){ "EF_AMDGPU_MACH_AMDGCN_GFX1034", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034
}
,
1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035){ "EF_AMDGPU_MACH_AMDGCN_GFX1035", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035
}
,
1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036){ "EF_AMDGPU_MACH_AMDGCN_GFX1036", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036
}
,
1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4){ "EF_AMDGPU_FEATURE_XNACK_ANY_V4", ELF::EF_AMDGPU_FEATURE_XNACK_ANY_V4
}
,
1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4){ "EF_AMDGPU_FEATURE_XNACK_OFF_V4", ELF::EF_AMDGPU_FEATURE_XNACK_OFF_V4
}
,
1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4){ "EF_AMDGPU_FEATURE_XNACK_ON_V4", ELF::EF_AMDGPU_FEATURE_XNACK_ON_V4
}
,
1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4){ "EF_AMDGPU_FEATURE_SRAMECC_ANY_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_ANY_V4
}
,
1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4){ "EF_AMDGPU_FEATURE_SRAMECC_OFF_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_OFF_V4
}
,
1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4){ "EF_AMDGPU_FEATURE_SRAMECC_ON_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_ON_V4
}
1604};
1605
1606const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1607 ENUM_ENT(EF_RISCV_RVC, "RVC"){ "EF_RISCV_RVC", "RVC", ELF::EF_RISCV_RVC },
1608 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"){ "EF_RISCV_FLOAT_ABI_SINGLE", "single-float ABI", ELF::EF_RISCV_FLOAT_ABI_SINGLE
}
,
1609 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"){ "EF_RISCV_FLOAT_ABI_DOUBLE", "double-float ABI", ELF::EF_RISCV_FLOAT_ABI_DOUBLE
}
,
1610 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"){ "EF_RISCV_FLOAT_ABI_QUAD", "quad-float ABI", ELF::EF_RISCV_FLOAT_ABI_QUAD
}
,
1611 ENUM_ENT(EF_RISCV_RVE, "RVE"){ "EF_RISCV_RVE", "RVE", ELF::EF_RISCV_RVE },
1612 ENUM_ENT(EF_RISCV_TSO, "TSO"){ "EF_RISCV_TSO", "TSO", ELF::EF_RISCV_TSO },
1613};
1614
1615const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1616 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1){ "EF_AVR_ARCH_AVR1", ELF::EF_AVR_ARCH_AVR1 },
1617 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2){ "EF_AVR_ARCH_AVR2", ELF::EF_AVR_ARCH_AVR2 },
1618 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25){ "EF_AVR_ARCH_AVR25", ELF::EF_AVR_ARCH_AVR25 },
1619 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3){ "EF_AVR_ARCH_AVR3", ELF::EF_AVR_ARCH_AVR3 },
1620 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31){ "EF_AVR_ARCH_AVR31", ELF::EF_AVR_ARCH_AVR31 },
1621 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35){ "EF_AVR_ARCH_AVR35", ELF::EF_AVR_ARCH_AVR35 },
1622 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4){ "EF_AVR_ARCH_AVR4", ELF::EF_AVR_ARCH_AVR4 },
1623 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5){ "EF_AVR_ARCH_AVR5", ELF::EF_AVR_ARCH_AVR5 },
1624 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51){ "EF_AVR_ARCH_AVR51", ELF::EF_AVR_ARCH_AVR51 },
1625 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6){ "EF_AVR_ARCH_AVR6", ELF::EF_AVR_ARCH_AVR6 },
1626 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY){ "EF_AVR_ARCH_AVRTINY", ELF::EF_AVR_ARCH_AVRTINY },
1627 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1){ "EF_AVR_ARCH_XMEGA1", ELF::EF_AVR_ARCH_XMEGA1 },
1628 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2){ "EF_AVR_ARCH_XMEGA2", ELF::EF_AVR_ARCH_XMEGA2 },
1629 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3){ "EF_AVR_ARCH_XMEGA3", ELF::EF_AVR_ARCH_XMEGA3 },
1630 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4){ "EF_AVR_ARCH_XMEGA4", ELF::EF_AVR_ARCH_XMEGA4 },
1631 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5){ "EF_AVR_ARCH_XMEGA5", ELF::EF_AVR_ARCH_XMEGA5 },
1632 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6){ "EF_AVR_ARCH_XMEGA6", ELF::EF_AVR_ARCH_XMEGA6 },
1633 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7){ "EF_AVR_ARCH_XMEGA7", ELF::EF_AVR_ARCH_XMEGA7 },
1634 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"){ "EF_AVR_LINKRELAX_PREPARED", "relaxable", ELF::EF_AVR_LINKRELAX_PREPARED
}
,
1635};
1636
1637
1638const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1639 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL){ "STV_INTERNAL", ELF::STV_INTERNAL },
1640 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN){ "STV_HIDDEN", ELF::STV_HIDDEN },
1641 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED){ "STV_PROTECTED", ELF::STV_PROTECTED }
1642};
1643
1644const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1645 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1646 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1647 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC){ "STO_MIPS_PIC", ELF::STO_MIPS_PIC },
1648 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS){ "STO_MIPS_MICROMIPS", ELF::STO_MIPS_MICROMIPS }
1649};
1650
1651const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1652 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS){ "STO_AARCH64_VARIANT_PCS", ELF::STO_AARCH64_VARIANT_PCS }
1653};
1654
1655const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1656 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1657 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1658 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16){ "STO_MIPS_MIPS16", ELF::STO_MIPS_MIPS16 }
1659};
1660
1661const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1662 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC){ "STO_RISCV_VARIANT_CC", ELF::STO_RISCV_VARIANT_CC }};
1663
1664static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1665 switch (Odk) {
1666 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL)case ELF::ODK_NULL: return "ODK_NULL";;
1667 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO)case ELF::ODK_REGINFO: return "ODK_REGINFO";;
1668 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS)case ELF::ODK_EXCEPTIONS: return "ODK_EXCEPTIONS";;
1669 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD)case ELF::ODK_PAD: return "ODK_PAD";;
1670 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH)case ELF::ODK_HWPATCH: return "ODK_HWPATCH";;
1671 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL)case ELF::ODK_FILL: return "ODK_FILL";;
1672 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS)case ELF::ODK_TAGS: return "ODK_TAGS";;
1673 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND)case ELF::ODK_HWAND: return "ODK_HWAND";;
1674 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR)case ELF::ODK_HWOR: return "ODK_HWOR";;
1675 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP)case ELF::ODK_GP_GROUP: return "ODK_GP_GROUP";;
1676 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT)case ELF::ODK_IDENT: return "ODK_IDENT";;
1677 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE)case ELF::ODK_PAGESIZE: return "ODK_PAGESIZE";;
1678 default:
1679 return "Unknown";
1680 }
1681}
1682
1683template <typename ELFT>
1684std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1685ELFDumper<ELFT>::findDynamic() {
1686 // Try to locate the PT_DYNAMIC header.
1687 const Elf_Phdr *DynamicPhdr = nullptr;
1688 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1689 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1690 if (Phdr.p_type != ELF::PT_DYNAMIC)
1691 continue;
1692 DynamicPhdr = &Phdr;
1693 break;
1694 }
1695 } else {
1696 reportUniqueWarning(
1697 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1698 toString(PhdrsOrErr.takeError()));
1699 }
1700
1701 // Try to locate the .dynamic section in the sections header table.
1702 const Elf_Shdr *DynamicSec = nullptr;
1703 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1704 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1705 continue;
1706 DynamicSec = &Sec;
1707 break;
1708 }
1709
1710 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1711 ObjF.getMemoryBufferRef().getBufferSize()) ||
1712 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1713 DynamicPhdr->p_offset))) {
1714 reportUniqueWarning(
1715 "PT_DYNAMIC segment offset (0x" +
1716 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1717 Twine::utohexstr(DynamicPhdr->p_filesz) +
1718 ") exceeds the size of the file (0x" +
1719 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1720 // Don't use the broken dynamic header.
1721 DynamicPhdr = nullptr;
1722 }
1723
1724 if (DynamicPhdr && DynamicSec) {
1725 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1726 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1727 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1728 reportUniqueWarning(describe(*DynamicSec) +
1729 " is not contained within the "
1730 "PT_DYNAMIC segment");
1731
1732 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1733 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1734 "PT_DYNAMIC segment");
1735 }
1736
1737 return std::make_pair(DynamicPhdr, DynamicSec);
1738}
1739
1740template <typename ELFT>
1741void ELFDumper<ELFT>::loadDynamicTable() {
1742 const Elf_Phdr *DynamicPhdr;
1743 const Elf_Shdr *DynamicSec;
1744 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1745 if (!DynamicPhdr && !DynamicSec)
1746 return;
1747
1748 DynRegionInfo FromPhdr(ObjF, *this);
1749 bool IsPhdrTableValid = false;
1750 if (DynamicPhdr) {
1751 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1752 // validated in findDynamic() and so createDRI() is not expected to fail.
1753 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1754 sizeof(Elf_Dyn)));
1755 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1756 FromPhdr.EntSizePrintName = "";
1757 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1758 }
1759
1760 // Locate the dynamic table described in a section header.
1761 // Ignore sh_entsize and use the expected value for entry size explicitly.
1762 // This allows us to dump dynamic sections with a broken sh_entsize
1763 // field.
1764 DynRegionInfo FromSec(ObjF, *this);
1765 bool IsSecTableValid = false;
1766 if (DynamicSec) {
1767 Expected<DynRegionInfo> RegOrErr =
1768 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1769 if (RegOrErr) {
1770 FromSec = *RegOrErr;
1771 FromSec.Context = describe(*DynamicSec);
1772 FromSec.EntSizePrintName = "";
1773 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1774 } else {
1775 reportUniqueWarning("unable to read the dynamic table from " +
1776 describe(*DynamicSec) + ": " +
1777 toString(RegOrErr.takeError()));
1778 }
1779 }
1780
1781 // When we only have information from one of the SHT_DYNAMIC section header or
1782 // PT_DYNAMIC program header, just use that.
1783 if (!DynamicPhdr || !DynamicSec) {
1784 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1785 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1786 parseDynamicTable();
1787 } else {
1788 reportUniqueWarning("no valid dynamic table was found");
1789 }
1790 return;
1791 }
1792
1793 // At this point we have tables found from the section header and from the
1794 // dynamic segment. Usually they match, but we have to do sanity checks to
1795 // verify that.
1796
1797 if (FromPhdr.Addr != FromSec.Addr)
1798 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1799 "program header disagree about "
1800 "the location of the dynamic table");
1801
1802 if (!IsPhdrTableValid && !IsSecTableValid) {
1803 reportUniqueWarning("no valid dynamic table was found");
1804 return;
1805 }
1806
1807 // Information in the PT_DYNAMIC program header has priority over the
1808 // information in a section header.
1809 if (IsPhdrTableValid) {
1810 if (!IsSecTableValid)
1811 reportUniqueWarning(
1812 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1813 DynamicTable = FromPhdr;
1814 } else {
1815 reportUniqueWarning(
1816 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1817 DynamicTable = FromSec;
1818 }
1819
1820 parseDynamicTable();
1821}
1822
1823template <typename ELFT>
1824ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1825 ScopedPrinter &Writer)
1826 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1827 FileName(O.getFileName()), DynRelRegion(O, *this),
1828 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1829 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1830 DynamicTable(O, *this) {
1831 if (!O.IsContentValid())
1832 return;
1833
1834 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1835 for (const Elf_Shdr &Sec : Sections) {
1836 switch (Sec.sh_type) {
1837 case ELF::SHT_SYMTAB:
1838 if (!DotSymtabSec)
1839 DotSymtabSec = &Sec;
1840 break;
1841 case ELF::SHT_DYNSYM:
1842 if (!DotDynsymSec)
1843 DotDynsymSec = &Sec;
1844
1845 if (!DynSymRegion) {
1846 Expected<DynRegionInfo> RegOrErr =
1847 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1848 if (RegOrErr) {
1849 DynSymRegion = *RegOrErr;
1850 DynSymRegion->Context = describe(Sec);
1851
1852 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1853 DynamicStringTable = *E;
1854 else
1855 reportUniqueWarning("unable to get the string table for the " +
1856 describe(Sec) + ": " + toString(E.takeError()));
1857 } else {
1858 reportUniqueWarning("unable to read dynamic symbols from " +
1859 describe(Sec) + ": " +
1860 toString(RegOrErr.takeError()));
1861 }
1862 }
1863 break;
1864 case ELF::SHT_SYMTAB_SHNDX: {
1865 uint32_t SymtabNdx = Sec.sh_link;
1866 if (SymtabNdx >= Sections.size()) {
1867 reportUniqueWarning(
1868 "unable to get the associated symbol table for " + describe(Sec) +
1869 ": sh_link (" + Twine(SymtabNdx) +
1870 ") is greater than or equal to the total number of sections (" +
1871 Twine(Sections.size()) + ")");
1872 continue;
1873 }
1874
1875 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1876 Obj.getSHNDXTable(Sec)) {
1877 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1878 .second)
1879 reportUniqueWarning(
1880 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1881 describe(Sec));
1882 } else {
1883 reportUniqueWarning(ShndxTableOrErr.takeError());
1884 }
1885 break;
1886 }
1887 case ELF::SHT_GNU_versym:
1888 if (!SymbolVersionSection)
1889 SymbolVersionSection = &Sec;
1890 break;
1891 case ELF::SHT_GNU_verdef:
1892 if (!SymbolVersionDefSection)
1893 SymbolVersionDefSection = &Sec;
1894 break;
1895 case ELF::SHT_GNU_verneed:
1896 if (!SymbolVersionNeedSection)
1897 SymbolVersionNeedSection = &Sec;
1898 break;
1899 case ELF::SHT_LLVM_ADDRSIG:
1900 if (!DotAddrsigSec)
1901 DotAddrsigSec = &Sec;
1902 break;
1903 }
1904 }
1905
1906 loadDynamicTable();
1907}
1908
1909template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1910 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1911 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1912 this->reportUniqueWarning(Msg);
1913 return Error::success();
1914 });
1915 if (!MappedAddrOrError) {
1916 this->reportUniqueWarning("unable to parse DT_" +
1917 Obj.getDynamicTagAsString(Tag) + ": " +
1918 llvm::toString(MappedAddrOrError.takeError()));
1919 return nullptr;
1920 }
1921 return MappedAddrOrError.get();
1922 };
1923
1924 const char *StringTableBegin = nullptr;
1925 uint64_t StringTableSize = 0;
1926 Optional<DynRegionInfo> DynSymFromTable;
1927 for (const Elf_Dyn &Dyn : dynamic_table()) {
1928 switch (Dyn.d_tag) {
1929 case ELF::DT_HASH:
1930 HashTable = reinterpret_cast<const Elf_Hash *>(
1931 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1932 break;
1933 case ELF::DT_GNU_HASH:
1934 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1935 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1936 break;
1937 case ELF::DT_STRTAB:
1938 StringTableBegin = reinterpret_cast<const char *>(
1939 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1940 break;
1941 case ELF::DT_STRSZ:
1942 StringTableSize = Dyn.getVal();
1943 break;
1944 case ELF::DT_SYMTAB: {
1945 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1946 // no program headers), we ignore its value.
1947 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1948 DynSymFromTable.emplace(ObjF, *this);
1949 DynSymFromTable->Addr = VA;
1950 DynSymFromTable->EntSize = sizeof(Elf_Sym);
1951 DynSymFromTable->EntSizePrintName = "";
1952 }
1953 break;
1954 }
1955 case ELF::DT_SYMENT: {
1956 uint64_t Val = Dyn.getVal();
1957 if (Val != sizeof(Elf_Sym))
1958 this->reportUniqueWarning("DT_SYMENT value of 0x" +
1959 Twine::utohexstr(Val) +
1960 " is not the size of a symbol (0x" +
1961 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1962 break;
1963 }
1964 case ELF::DT_RELA:
1965 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1966 break;
1967 case ELF::DT_RELASZ:
1968 DynRelaRegion.Size = Dyn.getVal();
1969 DynRelaRegion.SizePrintName = "DT_RELASZ value";
1970 break;
1971 case ELF::DT_RELAENT:
1972 DynRelaRegion.EntSize = Dyn.getVal();
1973 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1974 break;
1975 case ELF::DT_SONAME:
1976 SONameOffset = Dyn.getVal();
1977 break;
1978 case ELF::DT_REL:
1979 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1980 break;
1981 case ELF::DT_RELSZ:
1982 DynRelRegion.Size = Dyn.getVal();
1983 DynRelRegion.SizePrintName = "DT_RELSZ value";
1984 break;
1985 case ELF::DT_RELENT:
1986 DynRelRegion.EntSize = Dyn.getVal();
1987 DynRelRegion.EntSizePrintName = "DT_RELENT value";
1988 break;
1989 case ELF::DT_RELR:
1990 case ELF::DT_ANDROID_RELR:
1991 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1992 break;
1993 case ELF::DT_RELRSZ:
1994 case ELF::DT_ANDROID_RELRSZ:
1995 DynRelrRegion.Size = Dyn.getVal();
1996 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
1997 ? "DT_RELRSZ value"
1998 : "DT_ANDROID_RELRSZ value";
1999 break;
2000 case ELF::DT_RELRENT:
2001 case ELF::DT_ANDROID_RELRENT:
2002 DynRelrRegion.EntSize = Dyn.getVal();
2003 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2004 ? "DT_RELRENT value"
2005 : "DT_ANDROID_RELRENT value";
2006 break;
2007 case ELF::DT_PLTREL:
2008 if (Dyn.getVal() == DT_REL)
2009 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2010 else if (Dyn.getVal() == DT_RELA)
2011 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2012 else
2013 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2014 Twine((uint64_t)Dyn.getVal()));
2015 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2016 break;
2017 case ELF::DT_JMPREL:
2018 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2019 break;
2020 case ELF::DT_PLTRELSZ:
2021 DynPLTRelRegion.Size = Dyn.getVal();
2022 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2023 break;
2024 case ELF::DT_SYMTAB_SHNDX:
2025 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2026 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2027 break;
2028 }
2029 }
2030
2031 if (StringTableBegin) {
2032 const uint64_t FileSize = Obj.getBufSize();
2033 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2034 if (StringTableSize > FileSize - Offset)
2035 reportUniqueWarning(
2036 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2037 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2038 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2039 else
2040 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2041 }
2042
2043 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2044 if (DynSymRegion) {
2045 // Often we find the information about the dynamic symbol table
2046 // location in the SHT_DYNSYM section header. However, the value in
2047 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2048 // locate .dynsym at runtime. The location we find in the section header
2049 // and the location we find here should match.
2050 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2051 reportUniqueWarning(
2052 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2053 "the location of the dynamic symbol table"));
2054
2055 // According to the ELF gABI: "The number of symbol table entries should
2056 // equal nchain". Check to see if the DT_HASH hash table nchain value
2057 // conflicts with the number of symbols in the dynamic symbol table
2058 // according to the section header.
2059 if (HashTable && IsHashTableSupported) {
2060 if (DynSymRegion->EntSize == 0)
2061 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2062 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2063 reportUniqueWarning(
2064 "hash table nchain (" + Twine(HashTable->nchain) +
2065 ") differs from symbol count derived from SHT_DYNSYM section "
2066 "header (" +
2067 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2068 }
2069 }
2070
2071 // Delay the creation of the actual dynamic symbol table until now, so that
2072 // checks can always be made against the section header-based properties,
2073 // without worrying about tag order.
2074 if (DynSymFromTable) {
2075 if (!DynSymRegion) {
2076 DynSymRegion = DynSymFromTable;
2077 } else {
2078 DynSymRegion->Addr = DynSymFromTable->Addr;
2079 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2080 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2081 }
2082 }
2083
2084 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2085 // present.
2086 if (HashTable && IsHashTableSupported && DynSymRegion) {
2087 const uint64_t FileSize = Obj.getBufSize();
2088 const uint64_t DerivedSize =
2089 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2090 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2091 if (DerivedSize > FileSize - Offset)
2092 reportUniqueWarning(
2093 "the size (0x" + Twine::utohexstr(DerivedSize) +
2094 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2095 ", derived from the hash table, goes past the end of the file (0x" +
2096 Twine::utohexstr(FileSize) + ") and will be ignored");
2097 else
2098 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2099 }
2100}
2101
2102template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2103 // Dump version symbol section.
2104 printVersionSymbolSection(SymbolVersionSection);
2105
2106 // Dump version definition section.
2107 printVersionDefinitionSection(SymbolVersionDefSection);
2108
2109 // Dump version dependency section.
2110 printVersionDependencySection(SymbolVersionNeedSection);
2111}
2112
2113#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2114 { #enum, prefix##_##enum }
2115
2116const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2117 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2118 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2119 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2120 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2121 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2122};
2123
2124const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2125 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2126 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2127 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2128 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2129 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2130 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2131 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2132 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2133 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2134 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2135 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2136 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2137 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2138 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2139 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2140 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2141 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2142 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2143 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2144 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2145 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2146 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2147 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2148 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2149 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2150 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2151 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2152};
2153
2154const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2155 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2156 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2157 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2158 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2159 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2160 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2161 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2162 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2163 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2164 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2165 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2166 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2167 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2168 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2169 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2170 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2171};
2172
2173#undef LLVM_READOBJ_DT_FLAG_ENT
2174
2175template <typename T, typename TFlag>
2176void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2177 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2178 for (const EnumEntry<TFlag> &Flag : Flags)
2179 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2180 SetFlags.push_back(Flag);
2181
2182 for (const EnumEntry<TFlag> &Flag : SetFlags)
2183 OS << Flag.Name << " ";
2184}
2185
2186template <class ELFT>
2187const typename ELFT::Shdr *
2188ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2189 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2190 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2191 if (*NameOrErr == Name)
2192 return &Shdr;
2193 } else {
2194 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2195 ": " + toString(NameOrErr.takeError()));
2196 }
2197 }
2198 return nullptr;
2199}
2200
2201template <class ELFT>
2202std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2203 uint64_t Value) const {
2204 auto FormatHexValue = [](uint64_t V) {
2205 std::string Str;
2206 raw_string_ostream OS(Str);
2207 const char *ConvChar =
2208 (opts::Output == opts::GNU) ? "0x%" PRIx64"l" "x" : "0x%" PRIX64"l" "X";
2209 OS << format(ConvChar, V);
2210 return OS.str();
2211 };
2212
2213 auto FormatFlags = [](uint64_t V,
2214 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2215 std::string Str;
2216 raw_string_ostream OS(Str);
2217 printFlags(V, Array, OS);
2218 return OS.str();
2219 };
2220
2221 // Handle custom printing of architecture specific tags
2222 switch (Obj.getHeader().e_machine) {
2223 case EM_AARCH64:
2224 switch (Type) {
2225 case DT_AARCH64_BTI_PLT:
2226 case DT_AARCH64_PAC_PLT:
2227 case DT_AARCH64_VARIANT_PCS:
2228 return std::to_string(Value);
2229 default:
2230 break;
2231 }
2232 break;
2233 case EM_HEXAGON:
2234 switch (Type) {
2235 case DT_HEXAGON_VER:
2236 return std::to_string(Value);
2237 case DT_HEXAGON_SYMSZ:
2238 case DT_HEXAGON_PLT:
2239 return FormatHexValue(Value);
2240 default:
2241 break;
2242 }
2243 break;
2244 case EM_MIPS:
2245 switch (Type) {
2246 case DT_MIPS_RLD_VERSION:
2247 case DT_MIPS_LOCAL_GOTNO:
2248 case DT_MIPS_SYMTABNO:
2249 case DT_MIPS_UNREFEXTNO:
2250 return std::to_string(Value);
2251 case DT_MIPS_TIME_STAMP:
2252 case DT_MIPS_ICHECKSUM:
2253 case DT_MIPS_IVERSION:
2254 case DT_MIPS_BASE_ADDRESS:
2255 case DT_MIPS_MSYM:
2256 case DT_MIPS_CONFLICT:
2257 case DT_MIPS_LIBLIST:
2258 case DT_MIPS_CONFLICTNO:
2259 case DT_MIPS_LIBLISTNO:
2260 case DT_MIPS_GOTSYM:
2261 case DT_MIPS_HIPAGENO:
2262 case DT_MIPS_RLD_MAP:
2263 case DT_MIPS_DELTA_CLASS:
2264 case DT_MIPS_DELTA_CLASS_NO:
2265 case DT_MIPS_DELTA_INSTANCE:
2266 case DT_MIPS_DELTA_RELOC:
2267 case DT_MIPS_DELTA_RELOC_NO:
2268 case DT_MIPS_DELTA_SYM:
2269 case DT_MIPS_DELTA_SYM_NO:
2270 case DT_MIPS_DELTA_CLASSSYM:
2271 case DT_MIPS_DELTA_CLASSSYM_NO:
2272 case DT_MIPS_CXX_FLAGS:
2273 case DT_MIPS_PIXIE_INIT:
2274 case DT_MIPS_SYMBOL_LIB:
2275 case DT_MIPS_LOCALPAGE_GOTIDX:
2276 case DT_MIPS_LOCAL_GOTIDX:
2277 case DT_MIPS_HIDDEN_GOTIDX:
2278 case DT_MIPS_PROTECTED_GOTIDX:
2279 case DT_MIPS_OPTIONS:
2280 case DT_MIPS_INTERFACE:
2281 case DT_MIPS_DYNSTR_ALIGN:
2282 case DT_MIPS_INTERFACE_SIZE:
2283 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2284 case DT_MIPS_PERF_SUFFIX:
2285 case DT_MIPS_COMPACT_SIZE:
2286 case DT_MIPS_GP_VALUE:
2287 case DT_MIPS_AUX_DYNAMIC:
2288 case DT_MIPS_PLTGOT:
2289 case DT_MIPS_RWPLT:
2290 case DT_MIPS_RLD_MAP_REL:
2291 case DT_MIPS_XHASH:
2292 return FormatHexValue(Value);
2293 case DT_MIPS_FLAGS:
2294 return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2295 default:
2296 break;
2297 }
2298 break;
2299 default:
2300 break;
2301 }
2302
2303 switch (Type) {
2304 case DT_PLTREL:
2305 if (Value == DT_REL)
2306 return "REL";
2307 if (Value == DT_RELA)
2308 return "RELA";
2309 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2310 case DT_PLTGOT:
2311 case DT_HASH:
2312 case DT_STRTAB:
2313 case DT_SYMTAB:
2314 case DT_RELA:
2315 case DT_INIT:
2316 case DT_FINI:
2317 case DT_REL:
2318 case DT_JMPREL:
2319 case DT_INIT_ARRAY:
2320 case DT_FINI_ARRAY:
2321 case DT_PREINIT_ARRAY:
2322 case DT_DEBUG:
2323 case DT_VERDEF:
2324 case DT_VERNEED:
2325 case DT_VERSYM:
2326 case DT_GNU_HASH:
2327 case DT_NULL:
2328 return FormatHexValue(Value);
2329 case DT_RELACOUNT:
2330 case DT_RELCOUNT:
2331 case DT_VERDEFNUM:
2332 case DT_VERNEEDNUM:
2333 return std::to_string(Value);
2334 case DT_PLTRELSZ:
2335 case DT_RELASZ:
2336 case DT_RELAENT:
2337 case DT_STRSZ:
2338 case DT_SYMENT:
2339 case DT_RELSZ:
2340 case DT_RELENT:
2341 case DT_INIT_ARRAYSZ:
2342 case DT_FINI_ARRAYSZ:
2343 case DT_PREINIT_ARRAYSZ:
2344 case DT_RELRSZ:
2345 case DT_RELRENT:
2346 case DT_ANDROID_RELSZ:
2347 case DT_ANDROID_RELASZ:
2348 return std::to_string(Value) + " (bytes)";
2349 case DT_NEEDED:
2350 case DT_SONAME:
2351 case DT_AUXILIARY:
2352 case DT_USED:
2353 case DT_FILTER:
2354 case DT_RPATH:
2355 case DT_RUNPATH: {
2356 const std::map<uint64_t, const char *> TagNames = {
2357 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2358 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2359 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2360 {DT_RUNPATH, "Library runpath"},
2361 };
2362
2363 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2364 .str();
2365 }
2366 case DT_FLAGS:
2367 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2368 case DT_FLAGS_1:
2369 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2370 default:
2371 return FormatHexValue(Value);
2372 }
2373}
2374
2375template <class ELFT>
2376StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2377 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2378 reportUniqueWarning("string table was not found");
2379 return "<?>";
2380 }
2381
2382 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2383 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2384 Msg);
2385 return "<?>";
2386 };
2387
2388 const uint64_t FileSize = Obj.getBufSize();
2389 const uint64_t Offset =
2390 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2391 if (DynamicStringTable.size() > FileSize - Offset)
2392 return WarnAndReturn(" with size 0x" +
2393 Twine::utohexstr(DynamicStringTable.size()) +
2394 " goes past the end of the file (0x" +
2395 Twine::utohexstr(FileSize) + ")",
2396 Offset);
2397
2398 if (Value >= DynamicStringTable.size())
2399 return WarnAndReturn(
2400 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2401 ": it goes past the end of the table (0x" +
2402 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2403 Offset);
2404
2405 if (DynamicStringTable.back() != '\0')
2406 return WarnAndReturn(": unable to read the string at 0x" +
2407 Twine::utohexstr(Offset + Value) +
2408 ": the string table is not null-terminated",
2409 Offset);
2410
2411 return DynamicStringTable.data() + Value;
2412}
2413
2414template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2415 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2416 Ctx.printUnwindInformation();
2417}
2418
2419// The namespace is needed to fix the compilation with GCC older than 7.0+.
2420namespace {
2421template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2422 if (Obj.getHeader().e_machine == EM_ARM) {
2423 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2424 DotSymtabSec);
2425 Ctx.PrintUnwindInformation();
2426 }
2427 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2428 Ctx.printUnwindInformation();
2429}
2430} // namespace
2431
2432template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2433 ListScope D(W, "NeededLibraries");
2434
2435 std::vector<StringRef> Libs;
2436 for (const auto &Entry : dynamic_table())
2437 if (Entry.d_tag == ELF::DT_NEEDED)
2438 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2439
2440 llvm::sort(Libs);
2441
2442 for (StringRef L : Libs)
2443 W.startLine() << L << "\n";
2444}
2445
2446template <class ELFT>
2447static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2448 const typename ELFT::Hash *H,
2449 bool *IsHeaderValid = nullptr) {
2450 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2451 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2452 if (Dumper.getHashTableEntSize() == 8) {
2453 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2454 return E.Value == Obj.getHeader().e_machine;
2455 });
2456 if (IsHeaderValid)
2457 *IsHeaderValid = false;
2458 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2459 " is not supported: it contains non-standard 8 "
2460 "byte entries on " +
2461 It->AltName + " platform");
2462 }
2463
2464 auto MakeError = [&](const Twine &Msg = "") {
2465 return createError("the hash table at offset 0x" +
2466 Twine::utohexstr(SecOffset) +
2467 " goes past the end of the file (0x" +
2468 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2469 };
2470
2471 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2472 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2473
2474 if (IsHeaderValid)
2475 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2476
2477 if (Obj.getBufSize() - SecOffset < HeaderSize)
2478 return MakeError();
2479
2480 if (Obj.getBufSize() - SecOffset - HeaderSize <
2481 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2482 return MakeError(", nbucket = " + Twine(H->nbucket) +
2483 ", nchain = " + Twine(H->nchain));
2484 return Error::success();
2485}
2486
2487template <class ELFT>
2488static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2489 const typename ELFT::GnuHash *GnuHashTable,
2490 bool *IsHeaderValid = nullptr) {
2491 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2492 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&(static_cast <bool> (TableData >= Obj.base() &&
TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"
) ? void (0) : __assert_fail ("TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && \"GnuHashTable must always point to a location inside the file\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2493, __extension__
__PRETTY_FUNCTION__))
2493 "GnuHashTable must always point to a location inside the file")(static_cast <bool> (TableData >= Obj.base() &&
TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"
) ? void (0) : __assert_fail ("TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && \"GnuHashTable must always point to a location inside the file\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2493, __extension__
__PRETTY_FUNCTION__))
;
2494
2495 uint64_t TableOffset = TableData - Obj.base();
2496 if (IsHeaderValid)
2497 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2498 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2499 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2500 Obj.getBufSize())
2501 return createError("unable to dump the SHT_GNU_HASH "
2502 "section at 0x" +
2503 Twine::utohexstr(TableOffset) +
2504 ": it goes past the end of the file");
2505 return Error::success();
2506}
2507
2508template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2509 DictScope D(W, "HashTable");
2510 if (!HashTable)
2511 return;
2512
2513 bool IsHeaderValid;
2514 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2515 if (IsHeaderValid) {
2516 W.printNumber("Num Buckets", HashTable->nbucket);
2517 W.printNumber("Num Chains", HashTable->nchain);
2518 }
2519
2520 if (Err) {
2521 reportUniqueWarning(std::move(Err));
2522 return;
2523 }
2524
2525 W.printList("Buckets", HashTable->buckets());
2526 W.printList("Chains", HashTable->chains());
2527}
2528
2529template <class ELFT>
2530static Expected<ArrayRef<typename ELFT::Word>>
2531getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2532 const typename ELFT::GnuHash *GnuHashTable) {
2533 if (!DynSymRegion)
2534 return createError("no dynamic symbol table found");
2535
2536 ArrayRef<typename ELFT::Sym> DynSymTable =
2537 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2538 size_t NumSyms = DynSymTable.size();
2539 if (!NumSyms)
2540 return createError("the dynamic symbol table is empty");
2541
2542 if (GnuHashTable->symndx < NumSyms)
2543 return GnuHashTable->values(NumSyms);
2544
2545 // A normal empty GNU hash table section produced by linker might have
2546 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2547 // and have dummy null values in the Bloom filter and in the buckets
2548 // vector (or no values at all). It happens because the value of symndx is not
2549 // important for dynamic loaders when the GNU hash table is empty. They just
2550 // skip the whole object during symbol lookup. In such cases, the symndx value
2551 // is irrelevant and we should not report a warning.
2552 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2553 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2554 return createError(
2555 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2556 ") is greater than or equal to the number of dynamic symbols (" +
2557 Twine(NumSyms) + ")");
2558 // There is no way to represent an array of (dynamic symbols count - symndx)
2559 // length.
2560 return ArrayRef<typename ELFT::Word>();
2561}
2562
2563template <typename ELFT>
2564void ELFDumper<ELFT>::printGnuHashTable() {
2565 DictScope D(W, "GnuHashTable");
2566 if (!GnuHashTable)
2567 return;
2568
2569 bool IsHeaderValid;
2570 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2571 if (IsHeaderValid) {
2572 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2573 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2574 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2575 W.printNumber("Shift Count", GnuHashTable->shift2);
2576 }
2577
2578 if (Err) {
2579 reportUniqueWarning(std::move(Err));
2580 return;
2581 }
2582
2583 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2584 W.printHexList("Bloom Filter", BloomFilter);
2585
2586 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2587 W.printList("Buckets", Buckets);
2588
2589 Expected<ArrayRef<Elf_Word>> Chains =
2590 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2591 if (!Chains) {
2592 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2593 "section: " +
2594 toString(Chains.takeError()));
2595 return;
2596 }
2597
2598 W.printHexList("Values", *Chains);
2599}
2600
2601template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2602 StringRef SOName = "<Not found>";
2603 if (SONameOffset)
2604 SOName = getDynamicString(*SONameOffset);
2605 W.printString("LoadName", SOName);
2606}
2607
2608template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2609 switch (Obj.getHeader().e_machine) {
2610 case EM_ARM:
2611 if (Obj.isLE())
2612 printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2613 std::make_unique<ARMAttributeParser>(&W),
2614 support::little);
2615 else
2616 reportUniqueWarning("attribute printing not implemented for big-endian "
2617 "ARM objects");
2618 break;
2619 case EM_RISCV:
2620 if (Obj.isLE())
2621 printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2622 std::make_unique<RISCVAttributeParser>(&W),
2623 support::little);
2624 else
2625 reportUniqueWarning("attribute printing not implemented for big-endian "
2626 "RISC-V objects");
2627 break;
2628 case EM_MSP430:
2629 printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2630 std::make_unique<MSP430AttributeParser>(&W),
2631 support::little);
2632 break;
2633 case EM_MIPS: {
2634 printMipsABIFlags();
2635 printMipsOptions();
2636 printMipsReginfo();
2637 MipsGOTParser<ELFT> Parser(*this);
2638 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2639 reportUniqueWarning(std::move(E));
2640 else if (!Parser.isGotEmpty())
2641 printMipsGOT(Parser);
2642
2643 if (Error E = Parser.findPLT(dynamic_table()))
2644 reportUniqueWarning(std::move(E));
2645 else if (!Parser.isPltEmpty())
2646 printMipsPLT(Parser);
2647 break;
2648 }
2649 default:
2650 break;
2651 }
2652}
2653
2654template <class ELFT>
2655void ELFDumper<ELFT>::printAttributes(
2656 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2657 support::endianness Endianness) {
2658 assert((AttrShType != ELF::SHT_NULL) && AttrParser &&(static_cast <bool> ((AttrShType != ELF::SHT_NULL) &&
AttrParser && "Incomplete ELF attribute implementation"
) ? void (0) : __assert_fail ("(AttrShType != ELF::SHT_NULL) && AttrParser && \"Incomplete ELF attribute implementation\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2659, __extension__
__PRETTY_FUNCTION__))
2659 "Incomplete ELF attribute implementation")(static_cast <bool> ((AttrShType != ELF::SHT_NULL) &&
AttrParser && "Incomplete ELF attribute implementation"
) ? void (0) : __assert_fail ("(AttrShType != ELF::SHT_NULL) && AttrParser && \"Incomplete ELF attribute implementation\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2659, __extension__
__PRETTY_FUNCTION__))
;
2660 DictScope BA(W, "BuildAttributes");
2661 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2662 if (Sec.sh_type != AttrShType)
2663 continue;
2664
2665 ArrayRef<uint8_t> Contents;
2666 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2667 Obj.getSectionContents(Sec)) {
2668 Contents = *ContentOrErr;
2669 if (Contents.empty()) {
2670 reportUniqueWarning("the " + describe(Sec) + " is empty");
2671 continue;
2672 }
2673 } else {
2674 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2675 ": " + toString(ContentOrErr.takeError()));
2676 continue;
2677 }
2678
2679 W.printHex("FormatVersion", Contents[0]);
2680
2681 if (Error E = AttrParser->parse(Contents, Endianness))
2682 reportUniqueWarning("unable to dump attributes from the " +
2683 describe(Sec) + ": " + toString(std::move(E)));
2684 }
2685}
2686
2687namespace {
2688
2689template <class ELFT> class MipsGOTParser {
2690public:
2691 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Nhdr = typename ELFT::Nhdr; using Elf_Note = typename
ELFT::Note; using Elf_Note_Iterator = typename ELFT::NoteIterator
; using Elf_CGProfile = typename ELFT::CGProfile; using Elf_Dyn_Range
= typename ELFT::DynRange; using Elf_Shdr_Range = typename ELFT
::ShdrRange; using Elf_Sym_Range = typename ELFT::SymRange; using
Elf_Rel_Range = typename ELFT::RelRange; using Elf_Rela_Range
= typename ELFT::RelaRange; using Elf_Relr_Range = typename ELFT
::RelrRange; using Elf_Phdr_Range = typename ELFT::PhdrRange;
2692 using Entry = typename ELFT::Addr;
2693 using Entries = ArrayRef<Entry>;
2694
2695 const bool IsStatic;
2696 const ELFFile<ELFT> &Obj;
2697 const ELFDumper<ELFT> &Dumper;
2698
2699 MipsGOTParser(const ELFDumper<ELFT> &D);
2700 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2701 Error findPLT(Elf_Dyn_Range DynTable);
2702
2703 bool isGotEmpty() const { return GotEntries.empty(); }
2704 bool isPltEmpty() const { return PltEntries.empty(); }
2705
2706 uint64_t getGp() const;
2707
2708 const Entry *getGotLazyResolver() const;
2709 const Entry *getGotModulePointer() const;
2710 const Entry *getPltLazyResolver() const;
2711 const Entry *getPltModulePointer() const;
2712
2713 Entries getLocalEntries() const;
2714 Entries getGlobalEntries() const;
2715 Entries getOtherEntries() const;
2716 Entries getPltEntries() const;
2717
2718 uint64_t getGotAddress(const Entry * E) const;
2719 int64_t getGotOffset(const Entry * E) const;
2720 const Elf_Sym *getGotSym(const Entry *E) const;
2721
2722 uint64_t getPltAddress(const Entry * E) const;
2723 const Elf_Sym *getPltSym(const Entry *E) const;
2724
2725 StringRef getPltStrTable() const { return PltStrTable; }
2726 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2727
2728private:
2729 const Elf_Shdr *GotSec;
2730 size_t LocalNum;
2731 size_t GlobalNum;
2732
2733 const Elf_Shdr *PltSec;
2734 const Elf_Shdr *PltRelSec;
2735 const Elf_Shdr *PltSymTable;
2736 StringRef FileName;
2737
2738 Elf_Sym_Range GotDynSyms;
2739 StringRef PltStrTable;
2740
2741 Entries GotEntries;
2742 Entries PltEntries;
2743};
2744
2745} // end anonymous namespace
2746
2747template <class ELFT>
2748MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2749 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2750 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2751 PltRelSec(nullptr), PltSymTable(nullptr),
2752 FileName(D.getElfObject().getFileName()) {}
2753
2754template <class ELFT>
2755Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2756 Elf_Sym_Range DynSyms) {
2757 // See "Global Offset Table" in Chapter 5 in the following document
2758 // for detailed GOT description.
2759 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2760
2761 // Find static GOT secton.
2762 if (IsStatic) {
2763 GotSec = Dumper.findSectionByName(".got");
2764 if (!GotSec)
2765 return Error::success();
2766
2767 ArrayRef<uint8_t> Content =
2768 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2769 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2770 Content.size() / sizeof(Entry));
2771 LocalNum = GotEntries.size();
2772 return Error::success();
2773 }
2774
2775 // Lookup dynamic table tags which define the GOT layout.
2776 Optional<uint64_t> DtPltGot;
2777 Optional<uint64_t> DtLocalGotNum;
2778 Optional<uint64_t> DtGotSym;
2779 for (const auto &Entry : DynTable) {
2780 switch (Entry.getTag()) {
2781 case ELF::DT_PLTGOT:
2782 DtPltGot = Entry.getVal();
2783 break;
2784 case ELF::DT_MIPS_LOCAL_GOTNO:
2785 DtLocalGotNum = Entry.getVal();
2786 break;
2787 case ELF::DT_MIPS_GOTSYM:
2788 DtGotSym = Entry.getVal();
2789 break;
2790 }
2791 }
2792
2793 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2794 return Error::success();
2795
2796 if (!DtPltGot)
2797 return createError("cannot find PLTGOT dynamic tag");
2798 if (!DtLocalGotNum)
2799 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2800 if (!DtGotSym)
2801 return createError("cannot find MIPS_GOTSYM dynamic tag");
2802
2803 size_t DynSymTotal = DynSyms.size();
2804 if (*DtGotSym > DynSymTotal)
2805 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2806 ") exceeds the number of dynamic symbols (" +
2807 Twine(DynSymTotal) + ")");
2808
2809 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2810 if (!GotSec)
2811 return createError("there is no non-empty GOT section at 0x" +
2812 Twine::utohexstr(*DtPltGot));
2813
2814 LocalNum = *DtLocalGotNum;
2815 GlobalNum = DynSymTotal - *DtGotSym;
2816
2817 ArrayRef<uint8_t> Content =
2818 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2819 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2820 Content.size() / sizeof(Entry));
2821 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2822
2823 return Error::success();
2824}
2825
2826template <class ELFT>
2827Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2828 // Lookup dynamic table tags which define the PLT layout.
2829 Optional<uint64_t> DtMipsPltGot;
2830 Optional<uint64_t> DtJmpRel;
2831 for (const auto &Entry : DynTable) {
2832 switch (Entry.getTag()) {
2833 case ELF::DT_MIPS_PLTGOT:
2834 DtMipsPltGot = Entry.getVal();
2835 break;
2836 case ELF::DT_JMPREL:
2837 DtJmpRel = Entry.getVal();
2838 break;
2839 }
2840 }
2841
2842 if (!DtMipsPltGot && !DtJmpRel)
2843 return Error::success();
2844
2845 // Find PLT section.
2846 if (!DtMipsPltGot)
2847 return createError("cannot find MIPS_PLTGOT dynamic tag");
2848 if (!DtJmpRel)
2849 return createError("cannot find JMPREL dynamic tag");
2850
2851 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2852 if (!PltSec)
2853 return createError("there is no non-empty PLTGOT section at 0x" +
2854 Twine::utohexstr(*DtMipsPltGot));
2855
2856 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2857 if (!PltRelSec)
2858 return createError("there is no non-empty RELPLT section at 0x" +
2859 Twine::utohexstr(*DtJmpRel));
2860
2861 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2862 Obj.getSectionContents(*PltSec))
2863 PltEntries =
2864 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2865 PltContentOrErr->size() / sizeof(Entry));
2866 else
2867 return createError("unable to read PLTGOT section content: " +
2868 toString(PltContentOrErr.takeError()));
2869
2870 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2871 Obj.getSection(PltRelSec->sh_link))
2872 PltSymTable = *PltSymTableOrErr;
2873 else
2874 return createError("unable to get a symbol table linked to the " +
2875 describe(Obj, *PltRelSec) + ": " +
2876 toString(PltSymTableOrErr.takeError()));
2877
2878 if (Expected<StringRef> StrTabOrErr =
2879 Obj.getStringTableForSymtab(*PltSymTable))
2880 PltStrTable = *StrTabOrErr;
2881 else
2882 return createError("unable to get a string table for the " +
2883 describe(Obj, *PltSymTable) + ": " +
2884 toString(StrTabOrErr.takeError()));
2885
2886 return Error::success();
2887}
2888
2889template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2890 return GotSec->sh_addr + 0x7ff0;
2891}
2892
2893template <class ELFT>
2894const typename MipsGOTParser<ELFT>::Entry *
2895MipsGOTParser<ELFT>::getGotLazyResolver() const {
2896 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2897}
2898
2899template <class ELFT>
2900const typename MipsGOTParser<ELFT>::Entry *
2901MipsGOTParser<ELFT>::getGotModulePointer() const {
2902 if (LocalNum < 2)
2903 return nullptr;
2904 const Entry &E = GotEntries[1];
2905 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2906 return nullptr;
2907 return &E;
2908}
2909
2910template <class ELFT>
2911typename MipsGOTParser<ELFT>::Entries
2912MipsGOTParser<ELFT>::getLocalEntries() const {
2913 size_t Skip = getGotModulePointer() ? 2 : 1;
2914 if (LocalNum - Skip <= 0)
2915 return Entries();
2916 return GotEntries.slice(Skip, LocalNum - Skip);
2917}
2918
2919template <class ELFT>
2920typename MipsGOTParser<ELFT>::Entries
2921MipsGOTParser<ELFT>::getGlobalEntries() const {
2922 if (GlobalNum == 0)
2923 return Entries();
2924 return GotEntries.slice(LocalNum, GlobalNum);
2925}
2926
2927template <class ELFT>
2928typename MipsGOTParser<ELFT>::Entries
2929MipsGOTParser<ELFT>::getOtherEntries() const {
2930 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2931 if (OtherNum == 0)
2932 return Entries();
2933 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2934}
2935
2936template <class ELFT>
2937uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2938 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2939 return GotSec->sh_addr + Offset;
2940}
2941
2942template <class ELFT>
2943int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2944 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2945 return Offset - 0x7ff0;
2946}
2947
2948template <class ELFT>
2949const typename MipsGOTParser<ELFT>::Elf_Sym *
2950MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2951 int64_t Offset = std::distance(GotEntries.data(), E);
2952 return &GotDynSyms[Offset - LocalNum];
2953}
2954
2955template <class ELFT>
2956const typename MipsGOTParser<ELFT>::Entry *
2957MipsGOTParser<ELFT>::getPltLazyResolver() const {
2958 return PltEntries.empty() ? nullptr : &PltEntries[0];
2959}
2960
2961template <class ELFT>
2962const typename MipsGOTParser<ELFT>::Entry *
2963MipsGOTParser<ELFT>::getPltModulePointer() const {
2964 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2965}
2966
2967template <class ELFT>
2968typename MipsGOTParser<ELFT>::Entries
2969MipsGOTParser<ELFT>::getPltEntries() const {
2970 if (PltEntries.size() <= 2)
2971 return Entries();
2972 return PltEntries.slice(2, PltEntries.size() - 2);
2973}
2974
2975template <class ELFT>
2976uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2977 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2978 return PltSec->sh_addr + Offset;
2979}
2980
2981template <class ELFT>
2982const typename MipsGOTParser<ELFT>::Elf_Sym *
2983MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2984 int64_t Offset = std::distance(getPltEntries().data(), E);
2985 if (PltRelSec->sh_type == ELF::SHT_REL) {
2986 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
2987 return unwrapOrError(FileName,
2988 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2989 } else {
2990 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
2991 return unwrapOrError(FileName,
2992 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2993 }
2994}
2995
2996const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2997 {"None", Mips::AFL_EXT_NONE},
2998 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2999 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
3000 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3001 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3002 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3003 {"LSI R4010", Mips::AFL_EXT_4010},
3004 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
3005 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
3006 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
3007 {"MIPS R4650", Mips::AFL_EXT_4650},
3008 {"MIPS R5900", Mips::AFL_EXT_5900},
3009 {"MIPS R10000", Mips::AFL_EXT_10000},
3010 {"NEC VR4100", Mips::AFL_EXT_4100},
3011 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
3012 {"NEC VR4120", Mips::AFL_EXT_4120},
3013 {"NEC VR5400", Mips::AFL_EXT_5400},
3014 {"NEC VR5500", Mips::AFL_EXT_5500},
3015 {"RMI Xlr", Mips::AFL_EXT_XLR},
3016 {"Toshiba R3900", Mips::AFL_EXT_3900}
3017};
3018
3019const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3020 {"DSP", Mips::AFL_ASE_DSP},
3021 {"DSPR2", Mips::AFL_ASE_DSPR2},
3022 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3023 {"MCU", Mips::AFL_ASE_MCU},
3024 {"MDMX", Mips::AFL_ASE_MDMX},
3025 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3026 {"MT", Mips::AFL_ASE_MT},
3027 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3028 {"VZ", Mips::AFL_ASE_VIRT},
3029 {"MSA", Mips::AFL_ASE_MSA},
3030 {"MIPS16", Mips::AFL_ASE_MIPS16},
3031 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3032 {"XPA", Mips::AFL_ASE_XPA},
3033 {"CRC", Mips::AFL_ASE_CRC},
3034 {"GINV", Mips::AFL_ASE_GINV},
3035};
3036
3037const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3038 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3039 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3040 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3041 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3042 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3043 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3044 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3045 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3046 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3047 Mips::Val_GNU_MIPS_ABI_FP_64A}
3048};
3049
3050static const EnumEntry<unsigned> ElfMipsFlags1[] {
3051 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3052};
3053
3054static int getMipsRegisterSize(uint8_t Flag) {
3055 switch (Flag) {
3056 case Mips::AFL_REG_NONE:
3057 return 0;
3058 case Mips::AFL_REG_32:
3059 return 32;
3060 case Mips::AFL_REG_64:
3061 return 64;
3062 case Mips::AFL_REG_128:
3063 return 128;
3064 default:
3065 return -1;
3066 }
3067}
3068
3069template <class ELFT>
3070static void printMipsReginfoData(ScopedPrinter &W,
3071 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3072 W.printHex("GP", Reginfo.ri_gp_value);
3073 W.printHex("General Mask", Reginfo.ri_gprmask);
3074 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3075 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3076 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3077 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3078}
3079
3080template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3081 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3082 if (!RegInfoSec) {
3083 W.startLine() << "There is no .reginfo section in the file.\n";
3084 return;
3085 }
3086
3087 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3088 Obj.getSectionContents(*RegInfoSec);
3089 if (!ContentsOrErr) {
3090 this->reportUniqueWarning(
3091 "unable to read the content of the .reginfo section (" +
3092 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3093 return;
3094 }
3095
3096 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3097 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3098 Twine::utohexstr(ContentsOrErr->size()) + ")");
3099 return;
3100 }
3101
3102 DictScope GS(W, "MIPS RegInfo");
3103 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3104 ContentsOrErr->data()));
3105}
3106
3107template <class ELFT>
3108static Expected<const Elf_Mips_Options<ELFT> *>
3109readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3110 bool &IsSupported) {
3111 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3112 return createError("the .MIPS.options section has an invalid size (0x" +
3113 Twine::utohexstr(SecData.size()) + ")");
3114
3115 const Elf_Mips_Options<ELFT> *O =
3116 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3117 const uint8_t Size = O->size;
3118 if (Size > SecData.size()) {
3119 const uint64_t Offset = SecData.data() - SecBegin;
3120 const uint64_t SecSize = Offset + SecData.size();
3121 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3122 " at offset 0x" + Twine::utohexstr(Offset) +
3123 " goes past the end of the .MIPS.options "
3124 "section of size 0x" +
3125 Twine::utohexstr(SecSize));
3126 }
3127
3128 IsSupported = O->kind == ODK_REGINFO;
3129 const size_t ExpectedSize =
3130 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3131
3132 if (IsSupported)
3133 if (Size < ExpectedSize)
3134 return createError(
3135 "a .MIPS.options entry of kind " +
3136 Twine(getElfMipsOptionsOdkType(O->kind)) +
3137 " has an invalid size (0x" + Twine::utohexstr(Size) +
3138 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3139
3140 SecData = SecData.drop_front(Size);
3141 return O;
3142}
3143
3144template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3145 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3146 if (!MipsOpts) {
3147 W.startLine() << "There is no .MIPS.options section in the file.\n";
3148 return;
3149 }
3150
3151 DictScope GS(W, "MIPS Options");
3152
3153 ArrayRef<uint8_t> Data =
3154 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3155 const uint8_t *const SecBegin = Data.begin();
3156 while (!Data.empty()) {
3157 bool IsSupported;
3158 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3159 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3160 if (!OptsOrErr) {
3161 reportUniqueWarning(OptsOrErr.takeError());
3162 break;
3163 }
3164
3165 unsigned Kind = (*OptsOrErr)->kind;
3166 const char *Type = getElfMipsOptionsOdkType(Kind);
3167 if (!IsSupported) {
3168 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3169 << ")\n";
3170 continue;
3171 }
3172
3173 DictScope GS(W, Type);
3174 if (Kind == ODK_REGINFO)
3175 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3176 else
3177 llvm_unreachable("unexpected .MIPS.options section descriptor kind")::llvm::llvm_unreachable_internal("unexpected .MIPS.options section descriptor kind"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3177)
;
3178 }
3179}
3180
3181template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3182 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3183 if (!StackMapSection)
3184 return;
3185
3186 auto Warn = [&](Error &&E) {
3187 this->reportUniqueWarning("unable to read the stack map from " +
3188 describe(*StackMapSection) + ": " +
3189 toString(std::move(E)));
3190 };
3191
3192 Expected<ArrayRef<uint8_t>> ContentOrErr =
3193 Obj.getSectionContents(*StackMapSection);
3194 if (!ContentOrErr) {
3195 Warn(ContentOrErr.takeError());
3196 return;
3197 }
3198
3199 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3200 *ContentOrErr)) {
3201 Warn(std::move(E));
3202 return;
3203 }
3204
3205 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3206}
3207
3208template <class ELFT>
3209void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3210 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3211 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3212 if (!Target)
3213 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3214 " in " + describe(Sec) + ": " +
3215 toString(Target.takeError()));
3216 else
3217 printRelRelaReloc(R, *Target);
3218}
3219
3220static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3221 StringRef Str2) {
3222 OS.PadToColumn(2u);
3223 OS << Str1;
3224 OS.PadToColumn(37u);
3225 OS << Str2 << "\n";
3226 OS.flush();
3227}
3228
3229template <class ELFT>
3230static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3231 StringRef FileName) {
3232 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3233 if (ElfHeader.e_shnum != 0)
3234 return to_string(ElfHeader.e_shnum);
3235
3236 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3237 if (!ArrOrErr) {
3238 // In this case we can ignore an error, because we have already reported a
3239 // warning about the broken section header table earlier.
3240 consumeError(ArrOrErr.takeError());
3241 return "<?>";
3242 }
3243
3244 if (ArrOrErr->empty())
3245 return "0";
3246 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3247}
3248
3249template <class ELFT>
3250static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3251 StringRef FileName) {
3252 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3253 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3254 return to_string(ElfHeader.e_shstrndx);
3255
3256 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3257 if (!ArrOrErr) {
3258 // In this case we can ignore an error, because we have already reported a
3259 // warning about the broken section header table earlier.
3260 consumeError(ArrOrErr.takeError());
3261 return "<?>";
3262 }
3263
3264 if (ArrOrErr->empty())
3265 return "65535 (corrupt: out of range)";
3266 return to_string(ElfHeader.e_shstrndx) + " (" +
3267 to_string((*ArrOrErr)[0].sh_link) + ")";
3268}
3269
3270static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3271 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3272 return E.Value == Type;
3273 });
3274 if (It != makeArrayRef(ElfObjectFileType).end())
3275 return It;
3276 return nullptr;
3277}
3278
3279template <class ELFT>
3280void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3281 ArrayRef<std::string> InputFilenames,
3282 const Archive *A) {
3283 if (InputFilenames.size() > 1 || A) {
3284 this->W.startLine() << "\n";
3285 this->W.printString("File", FileStr);
3286 }
3287}
3288
3289template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3290 const Elf_Ehdr &e = this->Obj.getHeader();
3291 OS << "ELF Header:\n";
3292 OS << " Magic: ";
3293 std::string Str;
3294 for (int i = 0; i < ELF::EI_NIDENT; i++)
3295 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3296 OS << "\n";
3297 Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3298 printFields(OS, "Class:", Str);
3299 Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3300 printFields(OS, "Data:", Str);
3301 OS.PadToColumn(2u);
3302 OS << "Version:";
3303 OS.PadToColumn(37u);
3304 OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
3305 if (e.e_version == ELF::EV_CURRENT)
3306 OS << " (current)";
3307 OS << "\n";
3308 Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3309 printFields(OS, "OS/ABI:", Str);
3310 printFields(OS,
3311 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3312
3313 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3314 Str = E->AltName.str();
3315 } else {
3316 if (e.e_type >= ET_LOPROC)
3317 Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")";
3318 else if (e.e_type >= ET_LOOS)
3319 Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")";
3320 else
3321 Str = "<unknown>: " + to_hexString(e.e_type, false);
3322 }
3323 printFields(OS, "Type:", Str);
3324
3325 Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType));
3326 printFields(OS, "Machine:", Str);
3327 Str = "0x" + to_hexString(e.e_version);
3328 printFields(OS, "Version:", Str);
3329 Str = "0x" + to_hexString(e.e_entry);
3330 printFields(OS, "Entry point address:", Str);
3331 Str = to_string(e.e_phoff) + " (bytes into file)";
3332 printFields(OS, "Start of program headers:", Str);
3333 Str = to_string(e.e_shoff) + " (bytes into file)";
3334 printFields(OS, "Start of section headers:", Str);
3335 std::string ElfFlags;
3336 if (e.e_machine == EM_MIPS)
3337 ElfFlags =
3338 printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3339 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3340 unsigned(ELF::EF_MIPS_MACH));
3341 else if (e.e_machine == EM_RISCV)
3342 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3343 else if (e.e_machine == EM_AVR)
3344 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3345 unsigned(ELF::EF_AVR_ARCH_MASK));
3346 Str = "0x" + to_hexString(e.e_flags);
3347 if (!ElfFlags.empty())
3348 Str = Str + ", " + ElfFlags;
3349 printFields(OS, "Flags:", Str);
3350 Str = to_string(e.e_ehsize) + " (bytes)";
3351 printFields(OS, "Size of this header:", Str);
3352 Str = to_string(e.e_phentsize) + " (bytes)";
3353 printFields(OS, "Size of program headers:", Str);
3354 Str = to_string(e.e_phnum);
3355 printFields(OS, "Number of program headers:", Str);
3356 Str = to_string(e.e_shentsize) + " (bytes)";
3357 printFields(OS, "Size of section headers:", Str);
3358 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3359 printFields(OS, "Number of section headers:", Str);
3360 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3361 printFields(OS, "Section header string table index:", Str);
3362}
3363
3364template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3365 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3366 const Elf_Shdr &Symtab) -> StringRef {
3367 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3368 if (!StrTableOrErr) {
3369 reportUniqueWarning("unable to get the string table for " +
3370 describe(Symtab) + ": " +
3371 toString(StrTableOrErr.takeError()));
3372 return "<?>";
3373 }
3374
3375 StringRef Strings = *StrTableOrErr;
3376 if (Sym.st_name >= Strings.size()) {
3377 reportUniqueWarning("unable to get the name of the symbol with index " +
3378 Twine(SymNdx) + ": st_name (0x" +
3379 Twine::utohexstr(Sym.st_name) +
3380 ") is past the end of the string table of size 0x" +
3381 Twine::utohexstr(Strings.size()));
3382 return "<?>";
3383 }
3384
3385 return StrTableOrErr->data() + Sym.st_name;
3386 };
3387
3388 std::vector<GroupSection> Ret;
3389 uint64_t I = 0;
3390 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3391 ++I;
3392 if (Sec.sh_type != ELF::SHT_GROUP)
3393 continue;
3394
3395 StringRef Signature = "<?>";
3396 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3397 if (Expected<const Elf_Sym *> SymOrErr =
3398 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3399 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3400 else
3401 reportUniqueWarning("unable to get the signature symbol for " +
3402 describe(Sec) + ": " +
3403 toString(SymOrErr.takeError()));
3404 } else {
3405 reportUniqueWarning("unable to get the symbol table for " +
3406 describe(Sec) + ": " +
3407 toString(SymtabOrErr.takeError()));
3408 }
3409
3410 ArrayRef<Elf_Word> Data;
3411 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3412 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3413 if (ContentsOrErr->empty())
3414 reportUniqueWarning("unable to read the section group flag from the " +
3415 describe(Sec) + ": the section is empty");
3416 else
3417 Data = *ContentsOrErr;
3418 } else {
3419 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3420 ": " + toString(ContentsOrErr.takeError()));
3421 }
3422
3423 Ret.push_back({getPrintableSectionName(Sec),
3424 maybeDemangle(Signature),
3425 Sec.sh_name,
3426 I - 1,
3427 Sec.sh_link,
3428 Sec.sh_info,
3429 Data.empty() ? Elf_Word(0) : Data[0],
3430 {}});
3431
3432 if (Data.empty())
3433 continue;
3434
3435 std::vector<GroupMember> &GM = Ret.back().Members;
3436 for (uint32_t Ndx : Data.slice(1)) {
3437 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3438 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3439 } else {
3440 reportUniqueWarning("unable to get the section with index " +
3441 Twine(Ndx) + " when dumping the " + describe(Sec) +
3442 ": " + toString(SecOrErr.takeError()));
3443 GM.push_back({"<?>", Ndx});
3444 }
3445 }
3446 }
3447 return Ret;
3448}
3449
3450static DenseMap<uint64_t, const GroupSection *>
3451mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3452 DenseMap<uint64_t, const GroupSection *> Ret;
3453 for (const GroupSection &G : Groups)
3454 for (const GroupMember &GM : G.Members)
3455 Ret.insert({GM.Index, &G});
3456 return Ret;
3457}
3458
3459template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3460 std::vector<GroupSection> V = this->getGroups();
3461 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3462 for (const GroupSection &G : V) {
3463 OS << "\n"
3464 << getGroupType(G.Type) << " group section ["
3465 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3466 << "] contains " << G.Members.size() << " sections:\n"
3467 << " [Index] Name\n";
3468 for (const GroupMember &GM : G.Members) {
3469 const GroupSection *MainGroup = Map[GM.Index];
3470 if (MainGroup != &G)
3471 this->reportUniqueWarning(
3472 "section with index " + Twine(GM.Index) +
3473 ", included in the group section with index " +
3474 Twine(MainGroup->Index) +
3475 ", was also found in the group section with index " +
3476 Twine(G.Index));
3477 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3478 }
3479 }
3480
3481 if (V.empty())
3482 OS << "There are no section groups in this file.\n";
3483}
3484
3485template <class ELFT>
3486void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3487 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3488}
3489
3490template <class ELFT>
3491void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3492 const RelSymbol<ELFT> &RelSym) {
3493 // First two fields are bit width dependent. The rest of them are fixed width.
3494 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3495 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3496 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3497
3498 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3499 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3500
3501 SmallString<32> RelocName;
3502 this->Obj.getRelocationTypeName(R.Type, RelocName);
3503 Fields[2].Str = RelocName.c_str();
3504
3505 if (RelSym.Sym)
3506 Fields[3].Str =
3507 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3508
3509 Fields[4].Str = std::string(RelSym.Name);
3510 for (const Field &F : Fields)
3511 printField(F);
3512
3513 std::string Addend;
3514 if (Optional<int64_t> A = R.Addend) {
3515 int64_t RelAddend = *A;
3516 if (!RelSym.Name.empty()) {
3517 if (RelAddend < 0) {
3518 Addend = " - ";
3519 RelAddend = std::abs(RelAddend);
3520 } else {
3521 Addend = " + ";
3522 }
3523 }
3524 Addend += to_hexString(RelAddend, false);
3525 }
3526 OS << Addend << "\n";
3527}
3528
3529template <class ELFT>
3530static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3531 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3532 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3533 if (ELFT::Is64Bits)
3534 OS << " ";
3535 else
3536 OS << " ";
3537 if (IsRelr && opts::RawRelr)
3538 OS << "Data ";
3539 else
3540 OS << "Offset";
3541 if (ELFT::Is64Bits)
3542 OS << " Info Type"
3543 << " Symbol's Value Symbol's Name";
3544 else
3545 OS << " Info Type Sym. Value Symbol's Name";
3546 if (IsRela)
3547 OS << " + Addend";
3548 OS << "\n";
3549}
3550
3551template <class ELFT>
3552void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3553 const DynRegionInfo &Reg) {
3554 uint64_t Offset = Reg.Addr - this->Obj.base();
3555 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3556 << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
3557 printRelocHeaderFields<ELFT>(OS, Type);
3558}
3559
3560template <class ELFT>
3561static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3562 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3563 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3564 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3565 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3566}
3567
3568template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3569 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3570 // Android's packed relocation section needs to be unpacked first
3571 // to get the actual number of entries.
3572 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3573 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3574 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3575 this->Obj.android_relas(Sec);
3576 if (!RelasOrErr)
3577 return RelasOrErr.takeError();
3578 return RelasOrErr->size();
3579 }
3580
3581 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3582 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3583 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3584 if (!RelrsOrErr)
3585 return RelrsOrErr.takeError();
3586 return this->Obj.decode_relrs(*RelrsOrErr).size();
3587 }
3588
3589 return Sec.getEntityCount();
3590 };
3591
3592 bool HasRelocSections = false;
3593 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3594 if (!isRelocationSec<ELFT>(Sec))
3595 continue;
3596 HasRelocSections = true;
3597
3598 std::string EntriesNum = "<?>";
3599 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3600 EntriesNum = std::to_string(*NumOrErr);
3601 else
3602 this->reportUniqueWarning("unable to get the number of relocations in " +
3603 this->describe(Sec) + ": " +
3604 toString(NumOrErr.takeError()));
3605
3606 uintX_t Offset = Sec.sh_offset;
3607 StringRef Name = this->getPrintableSectionName(Sec);
3608 OS << "\nRelocation section '" << Name << "' at offset 0x"
3609 << to_hexString(Offset, false) << " contains " << EntriesNum
3610 << " entries:\n";
3611 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3612 this->printRelocationsHelper(Sec);
3613 }
3614 if (!HasRelocSections)
3615 OS << "\nThere are no relocations in this file.\n";
3616}
3617
3618// Print the offset of a particular section from anyone of the ranges:
3619// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3620// If 'Type' does not fall within any of those ranges, then a string is
3621// returned as '<unknown>' followed by the type value.
3622static std::string getSectionTypeOffsetString(unsigned Type) {
3623 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3624 return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3625 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3626 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3627 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3628 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3629 return "0x" + to_hexString(Type) + ": <unknown>";
3630}
3631
3632static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3633 StringRef Name = getELFSectionTypeName(Machine, Type);
3634
3635 // Handle SHT_GNU_* type names.
3636 if (Name.startswith("SHT_GNU_")) {
3637 if (Name == "SHT_GNU_HASH")
3638 return "GNU_HASH";
3639 // E.g. SHT_GNU_verneed -> VERNEED.
3640 return Name.drop_front(8).upper();
3641 }
3642
3643 if (Name == "SHT_SYMTAB_SHNDX")
3644 return "SYMTAB SECTION INDICES";
3645
3646 if (Name.startswith("SHT_"))
3647 return Name.drop_front(4).str();
3648 return getSectionTypeOffsetString(Type);
3649}
3650
3651static void printSectionDescription(formatted_raw_ostream &OS,
3652 unsigned EMachine) {
3653 OS << "Key to Flags:\n";
3654 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3655 "(info),\n";
3656 OS << " L (link order), O (extra OS processing required), G (group), T "
3657 "(TLS),\n";
3658 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3659 OS << " R (retain)";
3660
3661 if (EMachine == EM_X86_64)
3662 OS << ", l (large)";
3663 else if (EMachine == EM_ARM)
3664 OS << ", y (purecode)";
3665
3666 OS << ", p (processor specific)\n";
3667}
3668
3669template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3670 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3671 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3672 OS << "There are " << to_string(Sections.size())
3673 << " section headers, starting at offset "
3674 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3675 OS << "Section Headers:\n";
3676 Field Fields[11] = {
3677 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3678 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3679 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3680 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3681 for (const Field &F : Fields)
3682 printField(F);
3683 OS << "\n";
3684
3685 StringRef SecStrTable;
3686 if (Expected<StringRef> SecStrTableOrErr =
3687 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3688 SecStrTable = *SecStrTableOrErr;
3689 else
3690 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3691
3692 size_t SectionIndex = 0;
3693 for (const Elf_Shdr &Sec : Sections) {
3694 Fields[0].Str = to_string(SectionIndex);
3695 if (SecStrTable.empty())
3696 Fields[1].Str = "<no-strings>";
3697 else
3698 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3699 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3700 Fields[2].Str =
3701 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3702 Fields[3].Str =
3703 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3704 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3705 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3706 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3707 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3708 this->Obj.getHeader().e_machine, Sec.sh_flags);
3709 Fields[8].Str = to_string(Sec.sh_link);
3710 Fields[9].Str = to_string(Sec.sh_info);
3711 Fields[10].Str = to_string(Sec.sh_addralign);
3712
3713 OS.PadToColumn(Fields[0].Column);
3714 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3715 for (int i = 1; i < 7; i++)
3716 printField(Fields[i]);
3717 OS.PadToColumn(Fields[7].Column);
3718 OS << right_justify(Fields[7].Str, 3);
3719 OS.PadToColumn(Fields[8].Column);
3720 OS << right_justify(Fields[8].Str, 2);
3721 OS.PadToColumn(Fields[9].Column);
3722 OS << right_justify(Fields[9].Str, 3);
3723 OS.PadToColumn(Fields[10].Column);
3724 OS << right_justify(Fields[10].Str, 2);
3725 OS << "\n";
3726 ++SectionIndex;
3727 }
3728 printSectionDescription(OS, this->Obj.getHeader().e_machine);
3729}
3730
3731template <class ELFT>
3732void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3733 size_t Entries,
3734 bool NonVisibilityBitsUsed) const {
3735 StringRef Name;
3736 if (Symtab)
3737 Name = this->getPrintableSectionName(*Symtab);
3738 if (!Name.empty())
3739 OS << "\nSymbol table '" << Name << "'";
3740 else
3741 OS << "\nSymbol table for image";
3742 OS << " contains " << Entries << " entries:\n";
3743
3744 if (ELFT::Is64Bits)
3745 OS << " Num: Value Size Type Bind Vis";
3746 else
3747 OS << " Num: Value Size Type Bind Vis";
3748
3749 if (NonVisibilityBitsUsed)
3750 OS << " ";
3751 OS << " Ndx Name\n";
3752}
3753
3754template <class ELFT>
3755std::string
3756GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3757 unsigned SymIndex,
3758 DataRegion<Elf_Word> ShndxTable) const {
3759 unsigned SectionIndex = Symbol.st_shndx;
3760 switch (SectionIndex) {
3761 case ELF::SHN_UNDEF:
3762 return "UND";
3763 case ELF::SHN_ABS:
3764 return "ABS";
3765 case ELF::SHN_COMMON:
3766 return "COM";
3767 case ELF::SHN_XINDEX: {
3768 Expected<uint32_t> IndexOrErr =
3769 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3770 if (!IndexOrErr) {
3771 assert(Symbol.st_shndx == SHN_XINDEX &&(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3773, __extension__
__PRETTY_FUNCTION__))
3772 "getExtendedSymbolTableIndex should only fail due to an invalid "(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3773, __extension__
__PRETTY_FUNCTION__))
3773 "SHT_SYMTAB_SHNDX table/reference")(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3773, __extension__
__PRETTY_FUNCTION__))
;
3774 this->reportUniqueWarning(IndexOrErr.takeError());
3775 return "RSV[0xffff]";
3776 }
3777 return to_string(format_decimal(*IndexOrErr, 3));
3778 }
3779 default:
3780 // Find if:
3781 // Processor specific
3782 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3783 return std::string("PRC[0x") +
3784 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3785 // OS specific
3786 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3787 return std::string("OS[0x") +
3788 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3789 // Architecture reserved:
3790 if (SectionIndex >= ELF::SHN_LORESERVE &&
3791 SectionIndex <= ELF::SHN_HIRESERVE)
3792 return std::string("RSV[0x") +
3793 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3794 // A normal section with an index
3795 return to_string(format_decimal(SectionIndex, 3));
3796 }
3797}
3798
3799template <class ELFT>
3800void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3801 DataRegion<Elf_Word> ShndxTable,
3802 Optional<StringRef> StrTable,
3803 bool IsDynamic,
3804 bool NonVisibilityBitsUsed) const {
3805 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3806 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
3807 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3808 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3809 Fields[1].Str =
3810 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3811 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3812
3813 unsigned char SymbolType = Symbol.getType();
3814 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3815 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3816 Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3817 else
3818 Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3819
3820 Fields[4].Str =
3821 enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3822 Fields[5].Str =
3823 enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3824
3825 if (Symbol.st_other & ~0x3) {
3826 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3827 uint8_t Other = Symbol.st_other & ~0x3;
3828 if (Other & STO_AARCH64_VARIANT_PCS) {
3829 Other &= ~STO_AARCH64_VARIANT_PCS;
3830 Fields[5].Str += " [VARIANT_PCS";
3831 if (Other != 0)
3832 Fields[5].Str.append(" | " + to_hexString(Other, false));
3833 Fields[5].Str.append("]");
3834 }
3835 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3836 uint8_t Other = Symbol.st_other & ~0x3;
3837 if (Other & STO_RISCV_VARIANT_CC) {
3838 Other &= ~STO_RISCV_VARIANT_CC;
3839 Fields[5].Str += " [VARIANT_CC";
3840 if (Other != 0)
3841 Fields[5].Str.append(" | " + to_hexString(Other, false));
3842 Fields[5].Str.append("]");
3843 }
3844 } else {
3845 Fields[5].Str +=
3846 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3847 }
3848 }
3849
3850 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3851 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3852
3853 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3854 StrTable, IsDynamic);
3855 for (const Field &Entry : Fields)
3856 printField(Entry);
3857 OS << "\n";
3858}
3859
3860template <class ELFT>
3861void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3862 unsigned SymIndex,
3863 DataRegion<Elf_Word> ShndxTable,
3864 StringRef StrTable,
3865 uint32_t Bucket) {
3866 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3867 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
3868 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3869 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3870 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3871
3872 Fields[2].Str = to_string(
3873 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3874 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3875
3876 unsigned char SymbolType = Symbol->getType();
3877 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3878 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3879 Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3880 else
3881 Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3882
3883 Fields[5].Str =
3884 enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3885 Fields[6].Str = enumToString(Symbol->getVisibility(),
3886 makeArrayRef(ElfSymbolVisibilities));
3887 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3888 Fields[8].Str =
3889 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3890
3891 for (const Field &Entry : Fields)
3892 printField(Entry);
3893 OS << "\n";
3894}
3895
3896template <class ELFT>
3897void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3898 bool PrintDynamicSymbols) {
3899 if (!PrintSymbols && !PrintDynamicSymbols)
3900 return;
3901 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3902 this->printSymbolsHelper(true);
3903 if (PrintSymbols)
3904 this->printSymbolsHelper(false);
3905}
3906
3907template <class ELFT>
3908void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3909 if (this->DynamicStringTable.empty())
3910 return;
3911
3912 if (ELFT::Is64Bits)
3913 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3914 else
3915 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3916 OS << "\n";
3917
3918 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3919 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3920 if (!FirstSym) {
3921 this->reportUniqueWarning(
3922 Twine("unable to print symbols for the .hash table: the "
3923 "dynamic symbol table ") +
3924 (this->DynSymRegion ? "is empty" : "was not found"));
3925 return;
3926 }
3927
3928 DataRegion<Elf_Word> ShndxTable(
3929 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3930 auto Buckets = SysVHash.buckets();
3931 auto Chains = SysVHash.chains();
3932 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3933 if (Buckets[Buc] == ELF::STN_UNDEF)
3934 continue;
3935 BitVector Visited(SysVHash.nchain);
3936 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3937 if (Ch == ELF::STN_UNDEF)
3938 break;
3939
3940 if (Visited[Ch]) {
3941 this->reportUniqueWarning(".hash section is invalid: bucket " +
3942 Twine(Ch) +
3943 ": a cycle was detected in the linked chain");
3944 break;
3945 }
3946
3947 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3948 Buc);
3949 Visited[Ch] = true;
3950 }
3951 }
3952}
3953
3954template <class ELFT>
3955void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3956 if (this->DynamicStringTable.empty())
3957 return;
3958
3959 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3960 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3961 if (!FirstSym) {
3962 this->reportUniqueWarning(
3963 Twine("unable to print symbols for the .gnu.hash table: the "
3964 "dynamic symbol table ") +
3965 (this->DynSymRegion ? "is empty" : "was not found"));
3966 return;
3967 }
3968
3969 auto GetSymbol = [&](uint64_t SymIndex,
3970 uint64_t SymsTotal) -> const Elf_Sym * {
3971 if (SymIndex >= SymsTotal) {
3972 this->reportUniqueWarning(
3973 "unable to print hashed symbol with index " + Twine(SymIndex) +
3974 ", which is greater than or equal to the number of dynamic symbols "
3975 "(" +
3976 Twine::utohexstr(SymsTotal) + ")");
3977 return nullptr;
3978 }
3979 return FirstSym + SymIndex;
3980 };
3981
3982 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
3983 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
3984 ArrayRef<Elf_Word> Values;
3985 if (!ValuesOrErr)
3986 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
3987 "section: " +
3988 toString(ValuesOrErr.takeError()));
3989 else
3990 Values = *ValuesOrErr;
3991
3992 DataRegion<Elf_Word> ShndxTable(
3993 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3994 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
3995 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
3996 if (Buckets[Buc] == ELF::STN_UNDEF)
3997 continue;
3998 uint32_t Index = Buckets[Buc];
3999 // Print whole chain.
4000 while (true) {
4001 uint32_t SymIndex = Index++;
4002 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4003 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4004 Buc);
4005 else
4006 break;
4007
4008 if (SymIndex < GnuHash.symndx) {
4009 this->reportUniqueWarning(
4010 "unable to read the hash value for symbol with index " +
4011 Twine(SymIndex) +
4012 ", which is less than the index of the first hashed symbol (" +
4013 Twine(GnuHash.symndx) + ")");
4014 break;
4015 }
4016
4017 // Chain ends at symbol with stopper bit.
4018 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4019 break;
4020 }
4021 }
4022}
4023
4024template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4025 if (this->HashTable) {
4026 OS << "\n Symbol table of .hash for image:\n";
4027 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4028 this->reportUniqueWarning(std::move(E));
4029 else
4030 printHashTableSymbols(*this->HashTable);
4031 }
4032
4033 // Try printing the .gnu.hash table.
4034 if (this->GnuHashTable) {
4035 OS << "\n Symbol table of .gnu.hash for image:\n";
4036 if (ELFT::Is64Bits)
4037 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4038 else
4039 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4040 OS << "\n";
4041
4042 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4043 this->reportUniqueWarning(std::move(E));
4044 else
4045 printGnuHashTableSymbols(*this->GnuHashTable);
4046 }
4047}
4048
4049template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4050 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4051 OS << "There are " << to_string(Sections.size())
4052 << " section headers, starting at offset "
4053 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
4054
4055 OS << "Section Headers:\n";
4056
4057 auto PrintFields = [&](ArrayRef<Field> V) {
4058 for (const Field &F : V)
4059 printField(F);
4060 OS << "\n";
4061 };
4062
4063 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4064
4065 constexpr bool Is64 = ELFT::Is64Bits;
4066 PrintFields({{"Type", 7},
4067 {Is64 ? "Address" : "Addr", 23},
4068 {"Off", Is64 ? 40 : 32},
4069 {"Size", Is64 ? 47 : 39},
4070 {"ES", Is64 ? 54 : 46},
4071 {"Lk", Is64 ? 59 : 51},
4072 {"Inf", Is64 ? 62 : 54},
4073 {"Al", Is64 ? 66 : 57}});
4074 PrintFields({{"Flags", 7}});
4075
4076 StringRef SecStrTable;
4077 if (Expected<StringRef> SecStrTableOrErr =
4078 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4079 SecStrTable = *SecStrTableOrErr;
4080 else
4081 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4082
4083 size_t SectionIndex = 0;
4084 const unsigned AddrSize = Is64 ? 16 : 8;
4085 for (const Elf_Shdr &S : Sections) {
4086 StringRef Name = "<?>";
4087 if (Expected<StringRef> NameOrErr =
4088 this->Obj.getSectionName(S, SecStrTable))
4089 Name = *NameOrErr;
4090 else
4091 this->reportUniqueWarning(NameOrErr.takeError());
4092
4093 OS.PadToColumn(2);
4094 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4095 PrintFields({{Name, 7}});
4096 PrintFields(
4097 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4098 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4099 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4100 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4101 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4102 {to_string(S.sh_link), Is64 ? 59 : 51},
4103 {to_string(S.sh_info), Is64 ? 63 : 55},
4104 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4105
4106 OS.PadToColumn(7);
4107 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4108
4109 DenseMap<unsigned, StringRef> FlagToName = {
4110 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4111 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4112 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4113 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4114 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4115 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4116
4117 uint64_t Flags = S.sh_flags;
4118 uint64_t UnknownFlags = 0;
4119 ListSeparator LS;
4120 while (Flags) {
4121 // Take the least significant bit as a flag.
4122 uint64_t Flag = Flags & -Flags;
4123 Flags -= Flag;
4124
4125 auto It = FlagToName.find(Flag);
4126 if (It != FlagToName.end())
4127 OS << LS << It->second;
4128 else
4129 UnknownFlags |= Flag;
4130 }
4131
4132 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4133 uint64_t FlagsToPrint = UnknownFlags & Mask;
4134 if (!FlagsToPrint)
4135 return;
4136
4137 OS << LS << Name << " ("
4138 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4139 UnknownFlags &= ~Mask;
4140 };
4141
4142 PrintUnknownFlags(SHF_MASKOS, "OS");
4143 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4144 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4145
4146 OS << "\n";
4147 ++SectionIndex;
4148 }
4149}
4150
4151static inline std::string printPhdrFlags(unsigned Flag) {
4152 std::string Str;
4153 Str = (Flag & PF_R) ? "R" : " ";
4154 Str += (Flag & PF_W) ? "W" : " ";
4155 Str += (Flag & PF_X) ? "E" : " ";
4156 return Str;
4157}
4158
4159template <class ELFT>
4160static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4161 const typename ELFT::Shdr &Sec) {
4162 if (Sec.sh_flags & ELF::SHF_TLS) {
4163 // .tbss must only be shown in the PT_TLS segment.
4164 if (Sec.sh_type == ELF::SHT_NOBITS)
4165 return Phdr.p_type == ELF::PT_TLS;
4166
4167 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4168 // segments.
4169 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4170 (Phdr.p_type == ELF::PT_GNU_RELRO);
4171 }
4172
4173 // PT_TLS must only have SHF_TLS sections.
4174 return Phdr.p_type != ELF::PT_TLS;
4175}
4176
4177template <class ELFT>
4178static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4179 const typename ELFT::Shdr &Sec) {
4180 // SHT_NOBITS sections don't need to have an offset inside the segment.
4181 if (Sec.sh_type == ELF::SHT_NOBITS)
4182 return true;
4183
4184 if (Sec.sh_offset < Phdr.p_offset)
4185 return false;
4186
4187 // Only non-empty sections can be at the end of a segment.
4188 if (Sec.sh_size == 0)
4189 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4190 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4191}
4192
4193// Check that an allocatable section belongs to a virtual address
4194// space of a segment.
4195template <class ELFT>
4196static bool checkVMA(const typename ELFT::Phdr &Phdr,
4197 const typename ELFT::Shdr &Sec) {
4198 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4199 return true;
4200
4201 if (Sec.sh_addr < Phdr.p_vaddr)
4202 return false;
4203
4204 bool IsTbss =
4205 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4206 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4207 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4208 // Only non-empty sections can be at the end of a segment.
4209 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4210 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4211 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4212}
4213
4214template <class ELFT>
4215static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4216 const typename ELFT::Shdr &Sec) {
4217 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4218 return true;
4219
4220 // We get here when we have an empty section. Only non-empty sections can be
4221 // at the start or at the end of PT_DYNAMIC.
4222 // Is section within the phdr both based on offset and VMA?
4223 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4224 (Sec.sh_offset > Phdr.p_offset &&
4225 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4226 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4227 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4228 return CheckOffset && CheckVA;
4229}
4230
4231template <class ELFT>
4232void GNUELFDumper<ELFT>::printProgramHeaders(
4233 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4234 if (PrintProgramHeaders)
4235 printProgramHeaders();
4236
4237 // Display the section mapping along with the program headers, unless
4238 // -section-mapping is explicitly set to false.
4239 if (PrintSectionMapping != cl::BOU_FALSE)
4240 printSectionMapping();
4241}
4242
4243template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4244 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4245 const Elf_Ehdr &Header = this->Obj.getHeader();
4246 Field Fields[8] = {2, 17, 26, 37 + Bias,
4247 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4248 OS << "\nElf file type is "
4249 << enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4250 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4251 << "There are " << Header.e_phnum << " program headers,"
4252 << " starting at offset " << Header.e_phoff << "\n\n"
4253 << "Program Headers:\n";
4254 if (ELFT::Is64Bits)
4255 OS << " Type Offset VirtAddr PhysAddr "
4256 << " FileSiz MemSiz Flg Align\n";
4257 else
4258 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4259 << "MemSiz Flg Align\n";
4260
4261 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4262 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4263
4264 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4265 if (!PhdrsOrErr) {
4266 this->reportUniqueWarning("unable to dump program headers: " +
4267 toString(PhdrsOrErr.takeError()));
4268 return;
4269 }
4270
4271 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4272 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4273 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4274 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4275 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4276 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4277 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4278 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4279 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4280 for (const Field &F : Fields)
4281 printField(F);
4282 if (Phdr.p_type == ELF::PT_INTERP) {
4283 OS << "\n";
4284 auto ReportBadInterp = [&](const Twine &Msg) {
4285 this->reportUniqueWarning(
4286 "unable to read program interpreter name at offset 0x" +
4287 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4288 };
4289
4290 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4291 ReportBadInterp("it goes past the end of the file (0x" +
4292 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4293 continue;
4294 }
4295
4296 const char *Data =
4297 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4298 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4299 size_t Len = strnlen(Data, MaxSize);
4300 if (Len == MaxSize) {
4301 ReportBadInterp("it is not null-terminated");
4302 continue;
4303 }
4304
4305 OS << " [Requesting program interpreter: ";
4306 OS << StringRef(Data, Len) << "]";
4307 }
4308 OS << "\n";
4309 }
4310}
4311
4312template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4313 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4314 DenseSet<const Elf_Shdr *> BelongsToSegment;
4315 int Phnum = 0;
4316
4317 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4318 if (!PhdrsOrErr) {
4319 this->reportUniqueWarning(
4320 "can't read program headers to build section to segment mapping: " +
4321 toString(PhdrsOrErr.takeError()));
4322 return;
4323 }
4324
4325 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4326 std::string Sections;
4327 OS << format(" %2.2d ", Phnum++);
4328 // Check if each section is in a segment and then print mapping.
4329 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4330 if (Sec.sh_type == ELF::SHT_NULL)
4331 continue;
4332
4333 // readelf additionally makes sure it does not print zero sized sections
4334 // at end of segments and for PT_DYNAMIC both start and end of section
4335 // .tbss must only be shown in PT_TLS section.
4336 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4337 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4338 Sections +=
4339 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4340 " ";
4341 BelongsToSegment.insert(&Sec);
4342 }
4343 }
4344 OS << Sections << "\n";
4345 OS.flush();
4346 }
4347
4348 // Display sections that do not belong to a segment.
4349 std::string Sections;
4350 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4351 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4352 Sections +=
4353 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4354 ' ';
4355 }
4356 if (!Sections.empty()) {
4357 OS << " None " << Sections << '\n';
4358 OS.flush();
4359 }
4360}
4361
4362namespace {
4363
4364template <class ELFT>
4365RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4366 const Relocation<ELFT> &Reloc) {
4367 using Elf_Sym = typename ELFT::Sym;
4368 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4369 const Twine &Reason) -> RelSymbol<ELFT> {
4370 Dumper.reportUniqueWarning(
4371 "unable to get name of the dynamic symbol with index " +
4372 Twine(Reloc.Symbol) + ": " + Reason);
4373 return {Sym, "<corrupt>"};
4374 };
4375
4376 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4377 const Elf_Sym *FirstSym = Symbols.begin();
4378 if (!FirstSym)
4379 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4380
4381 // We might have an object without a section header. In this case the size of
4382 // Symbols is zero, because there is no way to know the size of the dynamic
4383 // table. We should allow this case and not print a warning.
4384 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4385 return WarnAndReturn(
4386 nullptr,
4387 "index is greater than or equal to the number of dynamic symbols (" +
4388 Twine(Symbols.size()) + ")");
4389
4390 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4391 const uint64_t FileSize = Obj.getBufSize();
4392 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4393 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4394 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4395 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4396 " goes past the end of the file (0x" +
4397 Twine::utohexstr(FileSize) + ")");
4398
4399 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4400 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4401 if (!ErrOrName)
4402 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4403
4404 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4405}
4406} // namespace
4407
4408template <class ELFT>
4409static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4410 typename ELFT::DynRange Tags) {
4411 size_t Max = 0;
4412 for (const typename ELFT::Dyn &Dyn : Tags)
4413 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4414 return Max;
4415}
4416
4417template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4418 Elf_Dyn_Range Table = this->dynamic_table();
4419 if (Table.empty())
4420 return;
4421
4422 OS << "Dynamic section at offset "
4423 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4424 this->Obj.base(),
4425 1)
4426 << " contains " << Table.size() << " entries:\n";
4427
4428 // The type name is surrounded with round brackets, hence add 2.
4429 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4430 // The "Name/Value" column should be indented from the "Type" column by N
4431 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4432 // space (1) = 3.
4433 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4434 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4435
4436 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4437 for (auto Entry : Table) {
4438 uintX_t Tag = Entry.getTag();
4439 std::string Type =
4440 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4441 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4442 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4443 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4444 }
4445}
4446
4447template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4448 this->printDynamicRelocationsHelper();
4449}
4450
4451template <class ELFT>
4452void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4453 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4454}
4455
4456template <class ELFT>
4457void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4458 this->forEachRelocationDo(
4
Calling 'ELFDumper::forEachRelocationDo'
4459 Sec, opts::RawRelr,
4460 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4461 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4462 [&](const Elf_Relr &R) { printRelrReloc(R); });
4463}
4464
4465template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4466 const bool IsMips64EL = this->Obj.isMips64EL();
4467 if (this->DynRelaRegion.Size > 0) {
4468 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4469 for (const Elf_Rela &Rela :
4470 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4471 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4472 }
4473
4474 if (this->DynRelRegion.Size > 0) {
4475 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4476 for (const Elf_Rel &Rel :
4477 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4478 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4479 }
4480
4481 if (this->DynRelrRegion.Size > 0) {
4482 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4483 Elf_Relr_Range Relrs =
4484 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4485 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4486 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4487 }
4488
4489 if (this->DynPLTRelRegion.Size) {
4490 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4491 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4492 for (const Elf_Rela &Rela :
4493 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4494 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4495 } else {
4496 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4497 for (const Elf_Rel &Rel :
4498 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4499 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4500 }
4501 }
4502}
4503
4504template <class ELFT>
4505void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4506 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4507 // Don't inline the SecName, because it might report a warning to stderr and
4508 // corrupt the output.
4509 StringRef SecName = this->getPrintableSectionName(Sec);
4510 OS << Label << " section '" << SecName << "' "
4511 << "contains " << EntriesNum << " entries:\n";
4512
4513 StringRef LinkedSecName = "<corrupt>";
4514 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4515 this->Obj.getSection(Sec.sh_link))
4516 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4517 else
4518 this->reportUniqueWarning("invalid section linked to " +
4519 this->describe(Sec) + ": " +
4520 toString(LinkedSecOrErr.takeError()));
4521
4522 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4523 << " Offset: " << format_hex(Sec.sh_offset, 8)
4524 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4525}
4526
4527template <class ELFT>
4528void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4529 if (!Sec)
4530 return;
4531
4532 printGNUVersionSectionProlog(*Sec, "Version symbols",
4533 Sec->sh_size / sizeof(Elf_Versym));
4534 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4535 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4536 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4537 if (!VerTableOrErr) {
4538 this->reportUniqueWarning(VerTableOrErr.takeError());
4539 return;
4540 }
4541
4542 SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
4543 if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
4544 this->getVersionMap())
4545 VersionMap = *MapOrErr;
4546 else
4547 this->reportUniqueWarning(MapOrErr.takeError());
4548
4549 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4550 std::vector<StringRef> Versions;
4551 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4552 unsigned Ndx = VerTable[I].vs_index;
4553 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4554 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4555 continue;
4556 }
4557
4558 if (!VersionMap) {
4559 Versions.emplace_back("<corrupt>");
4560 continue;
4561 }
4562
4563 bool IsDefault;
4564 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4565 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
4566 if (!NameOrErr) {
4567 this->reportUniqueWarning("unable to get a version for entry " +
4568 Twine(I) + " of " + this->describe(*Sec) +
4569 ": " + toString(NameOrErr.takeError()));
4570 Versions.emplace_back("<corrupt>");
4571 continue;
4572 }
4573 Versions.emplace_back(*NameOrErr);
4574 }
4575
4576 // readelf prints 4 entries per line.
4577 uint64_t Entries = VerTable.size();
4578 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4579 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4580 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4581 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4582 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4583 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4584 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4585 }
4586 OS << '\n';
4587 }
4588 OS << '\n';
4589}
4590
4591static std::string versionFlagToString(unsigned Flags) {
4592 if (Flags == 0)
4593 return "none";
4594
4595 std::string Ret;
4596 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4597 if (!(Flags & Flag))
4598 return;
4599 if (!Ret.empty())
4600 Ret += " | ";
4601 Ret += Name;
4602 Flags &= ~Flag;
4603 };
4604
4605 AddFlag(VER_FLG_BASE, "BASE");
4606 AddFlag(VER_FLG_WEAK, "WEAK");
4607 AddFlag(VER_FLG_INFO, "INFO");
4608 AddFlag(~0, "<unknown>");
4609 return Ret;
4610}
4611
4612template <class ELFT>
4613void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4614 if (!Sec)
4615 return;
4616
4617 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4618
4619 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4620 if (!V) {
4621 this->reportUniqueWarning(V.takeError());
4622 return;
4623 }
4624
4625 for (const VerDef &Def : *V) {
4626 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4627 Def.Offset, Def.Version,
4628 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4629 Def.Name.data());
4630 unsigned I = 0;
4631 for (const VerdAux &Aux : Def.AuxV)
4632 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4633 Aux.Name.data());
4634 }
4635
4636 OS << '\n';
4637}
4638
4639template <class ELFT>
4640void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4641 if (!Sec)
4642 return;
4643
4644 unsigned VerneedNum = Sec->sh_info;
4645 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4646
4647 Expected<std::vector<VerNeed>> V =
4648 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4649 if (!V) {
4650 this->reportUniqueWarning(V.takeError());
4651 return;
4652 }
4653
4654 for (const VerNeed &VN : *V) {
4655 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4656 VN.Version, VN.File.data(), VN.Cnt);
4657 for (const VernAux &Aux : VN.AuxV)
4658 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
4659 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4660 Aux.Other);
4661 }
4662 OS << '\n';
4663}
4664
4665template <class ELFT>
4666void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4667 size_t NBucket = HashTable.nbucket;
4668 size_t NChain = HashTable.nchain;
4669 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4670 ArrayRef<Elf_Word> Chains = HashTable.chains();
4671 size_t TotalSyms = 0;
4672 // If hash table is correct, we have at least chains with 0 length
4673 size_t MaxChain = 1;
4674 size_t CumulativeNonZero = 0;
4675
4676 if (NChain == 0 || NBucket == 0)
4677 return;
4678
4679 std::vector<size_t> ChainLen(NBucket, 0);
4680 // Go over all buckets and and note chain lengths of each bucket (total
4681 // unique chain lengths).
4682 for (size_t B = 0; B < NBucket; B++) {
4683 BitVector Visited(NChain);
4684 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4685 if (C == ELF::STN_UNDEF)
4686 break;
4687 if (Visited[C]) {
4688 this->reportUniqueWarning(".hash section is invalid: bucket " +
4689 Twine(C) +
4690 ": a cycle was detected in the linked chain");
4691 break;
4692 }
4693 Visited[C] = true;
4694 if (MaxChain <= ++ChainLen[B])
4695 MaxChain++;
4696 }
4697 TotalSyms += ChainLen[B];
4698 }
4699
4700 if (!TotalSyms)
4701 return;
4702
4703 std::vector<size_t> Count(MaxChain, 0);
4704 // Count how long is the chain for each bucket
4705 for (size_t B = 0; B < NBucket; B++)
4706 ++Count[ChainLen[B]];
4707 // Print Number of buckets with each chain lengths and their cumulative
4708 // coverage of the symbols
4709 OS << "Histogram for bucket list length (total of " << NBucket
4710 << " buckets)\n"
4711 << " Length Number % of total Coverage\n";
4712 for (size_t I = 0; I < MaxChain; I++) {
4713 CumulativeNonZero += Count[I] * I;
4714 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4715 (Count[I] * 100.0) / NBucket,
4716 (CumulativeNonZero * 100.0) / TotalSyms);
4717 }
4718}
4719
4720template <class ELFT>
4721void GNUELFDumper<ELFT>::printGnuHashHistogram(
4722 const Elf_GnuHash &GnuHashTable) {
4723 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4724 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4725 if (!ChainsOrErr) {
4726 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4727 toString(ChainsOrErr.takeError()));
4728 return;
4729 }
4730
4731 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4732 size_t Symndx = GnuHashTable.symndx;
4733 size_t TotalSyms = 0;
4734 size_t MaxChain = 1;
4735 size_t CumulativeNonZero = 0;
4736
4737 size_t NBucket = GnuHashTable.nbuckets;
4738 if (Chains.empty() || NBucket == 0)
4739 return;
4740
4741 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4742 std::vector<size_t> ChainLen(NBucket, 0);
4743 for (size_t B = 0; B < NBucket; B++) {
4744 if (!Buckets[B])
4745 continue;
4746 size_t Len = 1;
4747 for (size_t C = Buckets[B] - Symndx;
4748 C < Chains.size() && (Chains[C] & 1) == 0; C++)
4749 if (MaxChain < ++Len)
4750 MaxChain++;
4751 ChainLen[B] = Len;
4752 TotalSyms += Len;
4753 }
4754 MaxChain++;
4755
4756 if (!TotalSyms)
4757 return;
4758
4759 std::vector<size_t> Count(MaxChain, 0);
4760 for (size_t B = 0; B < NBucket; B++)
4761 ++Count[ChainLen[B]];
4762 // Print Number of buckets with each chain lengths and their cumulative
4763 // coverage of the symbols
4764 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4765 << " buckets)\n"
4766 << " Length Number % of total Coverage\n";
4767 for (size_t I = 0; I < MaxChain; I++) {
4768 CumulativeNonZero += Count[I] * I;
4769 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4770 (Count[I] * 100.0) / NBucket,
4771 (CumulativeNonZero * 100.0) / TotalSyms);
4772 }
4773}
4774
4775// Hash histogram shows statistics of how efficient the hash was for the
4776// dynamic symbol table. The table shows the number of hash buckets for
4777// different lengths of chains as an absolute number and percentage of the total
4778// buckets, and the cumulative coverage of symbols for each set of buckets.
4779template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4780 // Print histogram for the .hash section.
4781 if (this->HashTable) {
4782 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4783 this->reportUniqueWarning(std::move(E));
4784 else
4785 printHashHistogram(*this->HashTable);
4786 }
4787
4788 // Print histogram for the .gnu.hash section.
4789 if (this->GnuHashTable) {
4790 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4791 this->reportUniqueWarning(std::move(E));
4792 else
4793 printGnuHashHistogram(*this->GnuHashTable);
4794 }
4795}
4796
4797template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4798 OS << "GNUStyle::printCGProfile not implemented\n";
4799}
4800
4801template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4802 OS << "GNUStyle::printBBAddrMaps not implemented\n";
4803}
4804
4805static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4806 std::vector<uint64_t> Ret;
4807 const uint8_t *Cur = Data.begin();
4808 const uint8_t *End = Data.end();
4809 while (Cur != End) {
4810 unsigned Size;
4811 const char *Err;
4812 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4813 if (Err)
4814 return createError(Err);
4815 Cur += Size;
4816 }
4817 return Ret;
4818}
4819
4820template <class ELFT>
4821static Expected<std::vector<uint64_t>>
4822decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4823 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4824 if (!ContentsOrErr)
4825 return ContentsOrErr.takeError();
4826
4827 if (Expected<std::vector<uint64_t>> SymsOrErr =
4828 toULEB128Array(*ContentsOrErr))
4829 return *SymsOrErr;
4830 else
4831 return createError("unable to decode " + describe(Obj, Sec) + ": " +
4832 toString(SymsOrErr.takeError()));
4833}
4834
4835template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4836 if (!this->DotAddrsigSec)
4837 return;
4838
4839 Expected<std::vector<uint64_t>> SymsOrErr =
4840 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4841 if (!SymsOrErr) {
4842 this->reportUniqueWarning(SymsOrErr.takeError());
4843 return;
4844 }
4845
4846 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4847 OS << "\nAddress-significant symbols section '" << Name << "'"
4848 << " contains " << SymsOrErr->size() << " entries:\n";
4849 OS << " Num: Name\n";
4850
4851 Field Fields[2] = {0, 8};
4852 size_t SymIndex = 0;
4853 for (uint64_t Sym : *SymsOrErr) {
4854 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4855 Fields[1].Str = this->getStaticSymbolName(Sym);
4856 for (const Field &Entry : Fields)
4857 printField(Entry);
4858 OS << "\n";
4859 }
4860}
4861
4862template <typename ELFT>
4863static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4864 ArrayRef<uint8_t> Data) {
4865 std::string str;
4866 raw_string_ostream OS(str);
4867 uint32_t PrData;
4868 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4869 if (PrData & Flag) {
4870 PrData &= ~Flag;
4871 OS << Name;
4872 if (PrData)
4873 OS << ", ";
4874 }
4875 };
4876
4877 switch (Type) {
4878 default:
4879 OS << format("<application-specific type 0x%x>", Type);
4880 return OS.str();
4881 case GNU_PROPERTY_STACK_SIZE: {
4882 OS << "stack size: ";
4883 if (DataSize == sizeof(typename ELFT::uint))
4884 OS << formatv("{0:x}",
4885 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4886 else
4887 OS << format("<corrupt length: 0x%x>", DataSize);
4888 return OS.str();
4889 }
4890 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4891 OS << "no copy on protected";
4892 if (DataSize)
4893 OS << format(" <corrupt length: 0x%x>", DataSize);
4894 return OS.str();
4895 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4896 case GNU_PROPERTY_X86_FEATURE_1_AND:
4897 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4898 : "x86 feature: ");
4899 if (DataSize != 4) {
4900 OS << format("<corrupt length: 0x%x>", DataSize);
4901 return OS.str();
4902 }
4903 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4904 if (PrData == 0) {
4905 OS << "<None>";
4906 return OS.str();
4907 }
4908 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4909 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4910 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4911 } else {
4912 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4913 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4914 }
4915 if (PrData)
4916 OS << format("<unknown flags: 0x%x>", PrData);
4917 return OS.str();
4918 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4919 case GNU_PROPERTY_X86_FEATURE_2_USED:
4920 OS << "x86 feature "
4921 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4922 if (DataSize != 4) {
4923 OS << format("<corrupt length: 0x%x>", DataSize);
4924 return OS.str();
4925 }
4926 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4927 if (PrData == 0) {
4928 OS << "<None>";
4929 return OS.str();
4930 }
4931 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4932 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4933 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4934 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4935 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4936 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4937 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4938 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4939 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4940 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4941 if (PrData)
4942 OS << format("<unknown flags: 0x%x>", PrData);
4943 return OS.str();
4944 case GNU_PROPERTY_X86_ISA_1_NEEDED:
4945 case GNU_PROPERTY_X86_ISA_1_USED:
4946 OS << "x86 ISA "
4947 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4948 if (DataSize != 4) {
4949 OS << format("<corrupt length: 0x%x>", DataSize);
4950 return OS.str();
4951 }
4952 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4953 if (PrData == 0) {
4954 OS << "<None>";
4955 return OS.str();
4956 }
4957 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
4958 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
4959 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
4960 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
4961 if (PrData)
4962 OS << format("<unknown flags: 0x%x>", PrData);
4963 return OS.str();
4964 }
4965}
4966
4967template <typename ELFT>
4968static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4969 using Elf_Word = typename ELFT::Word;
4970
4971 SmallVector<std::string, 4> Properties;
4972 while (Arr.size() >= 8) {
4973 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4974 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4975 Arr = Arr.drop_front(8);
4976
4977 // Take padding size into account if present.
4978 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4979 std::string str;
4980 raw_string_ostream OS(str);
4981 if (Arr.size() < PaddedSize) {
4982 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4983 Properties.push_back(OS.str());
4984 break;
4985 }
4986 Properties.push_back(
4987 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4988 Arr = Arr.drop_front(PaddedSize);
4989 }
4990
4991 if (!Arr.empty())
4992 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4993
4994 return Properties;
4995}
4996
4997struct GNUAbiTag {
4998 std::string OSName;
4999 std::string ABI;
5000 bool IsValid;
5001};
5002
5003template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5004 typedef typename ELFT::Word Elf_Word;
5005
5006 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5007 reinterpret_cast<const Elf_Word *>(Desc.end()));
5008
5009 if (Words.size() < 4)
5010 return {"", "", /*IsValid=*/false};
5011
5012 static const char *OSNames[] = {
5013 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5014 };
5015 StringRef OSName = "Unknown";
5016 if (Words[0] < array_lengthof(OSNames))
5017 OSName = OSNames[Words[0]];
5018 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5019 std::string str;
5020 raw_string_ostream ABI(str);
5021 ABI << Major << "." << Minor << "." << Patch;
5022 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5023}
5024
5025static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5026 std::string str;
5027 raw_string_ostream OS(str);
5028 for (uint8_t B : Desc)
5029 OS << format_hex_no_prefix(B, 2);
5030 return OS.str();
5031}
5032
5033static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5034 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5035}
5036
5037template <typename ELFT>
5038static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5039 ArrayRef<uint8_t> Desc) {
5040 // Return true if we were able to pretty-print the note, false otherwise.
5041 switch (NoteType) {
5042 default:
5043 return false;
5044 case ELF::NT_GNU_ABI_TAG: {
5045 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5046 if (!AbiTag.IsValid)
5047 OS << " <corrupt GNU_ABI_TAG>";
5048 else
5049 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5050 break;
5051 }
5052 case ELF::NT_GNU_BUILD_ID: {
5053 OS << " Build ID: " << getGNUBuildId(Desc);
5054 break;
5055 }
5056 case ELF::NT_GNU_GOLD_VERSION:
5057 OS << " Version: " << getDescAsStringRef(Desc);
5058 break;
5059 case ELF::NT_GNU_PROPERTY_TYPE_0:
5060 OS << " Properties:";
5061 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5062 OS << " " << Property << "\n";
5063 break;
5064 }
5065 OS << '\n';
5066 return true;
5067}
5068
5069using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5070static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5071 ArrayRef<uint8_t> Desc) {
5072 AndroidNoteProperties Props;
5073 switch (NoteType) {
5074 case ELF::NT_ANDROID_TYPE_MEMTAG:
5075 if (Desc.empty()) {
5076 Props.emplace_back("Invalid .note.android.memtag", "");
5077 return Props;
5078 }
5079
5080 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5081 case NT_MEMTAG_LEVEL_NONE:
5082 Props.emplace_back("Tagging Mode", "NONE");
5083 break;
5084 case NT_MEMTAG_LEVEL_ASYNC:
5085 Props.emplace_back("Tagging Mode", "ASYNC");
5086 break;
5087 case NT_MEMTAG_LEVEL_SYNC:
5088 Props.emplace_back("Tagging Mode", "SYNC");
5089 break;
5090 default:
5091 Props.emplace_back(
5092 "Tagging Mode",
5093 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5094 .str());
5095 break;
5096 }
5097 Props.emplace_back("Heap",
5098 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5099 Props.emplace_back("Stack",
5100 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5101 break;
5102 default:
5103 return Props;
5104 }
5105 return Props;
5106}
5107
5108static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5109 ArrayRef<uint8_t> Desc) {
5110 // Return true if we were able to pretty-print the note, false otherwise.
5111 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5112 if (Props.empty())
5113 return false;
5114 for (const auto &KV : Props)
5115 OS << " " << KV.first << ": " << KV.second << '\n';
5116 OS << '\n';
5117 return true;
5118}
5119
5120template <typename ELFT>
5121static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5122 ArrayRef<uint8_t> Desc) {
5123 switch (NoteType) {
5124 default:
5125 return false;
5126 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5127 OS << " Version: " << getDescAsStringRef(Desc);
5128 break;
5129 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5130 OS << " Producer: " << getDescAsStringRef(Desc);
5131 break;
5132 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5133 OS << " Producer version: " << getDescAsStringRef(Desc);
5134 break;
5135 }
5136 OS << '\n';
5137 return true;
5138}
5139
5140const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5141 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5142 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5143 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5144 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5145 {"LA48", NT_FREEBSD_FCTL_LA48},
5146 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5147};
5148
5149struct FreeBSDNote {
5150 std::string Type;
5151 std::string Value;
5152};
5153
5154template <typename ELFT>
5155static Optional<FreeBSDNote>
5156getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5157 if (IsCore)
5158 return None; // No pretty-printing yet.
5159 switch (NoteType) {
5160 case ELF::NT_FREEBSD_ABI_TAG:
5161 if (Desc.size() != 4)
5162 return None;
5163 return FreeBSDNote{
5164 "ABI tag",
5165 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5166 case ELF::NT_FREEBSD_ARCH_TAG:
5167 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5168 case ELF::NT_FREEBSD_FEATURE_CTL: {
5169 if (Desc.size() != 4)
5170 return None;
5171 unsigned Value =
5172 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5173 std::string FlagsStr;
5174 raw_string_ostream OS(FlagsStr);
5175 printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5176 if (OS.str().empty())
5177 OS << "0x" << utohexstr(Value);
5178 else
5179 OS << "(0x" << utohexstr(Value) << ")";
5180 return FreeBSDNote{"Feature flags", OS.str()};
5181 }
5182 default:
5183 return None;
5184 }
5185}
5186
5187struct AMDNote {
5188 std::string Type;
5189 std::string Value;
5190};
5191
5192template <typename ELFT>
5193static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5194 switch (NoteType) {
5195 default:
5196 return {"", ""};
5197 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5198 struct CodeObjectVersion {
5199 uint32_t MajorVersion;
5200 uint32_t MinorVersion;
5201 };
5202 if (Desc.size() != sizeof(CodeObjectVersion))
5203 return {"AMD HSA Code Object Version",
5204 "Invalid AMD HSA Code Object Version"};
5205 std::string VersionString;
5206 raw_string_ostream StrOS(VersionString);
5207 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5208 StrOS << "[Major: " << Version->MajorVersion
5209 << ", Minor: " << Version->MinorVersion << "]";
5210 return {"AMD HSA Code Object Version", VersionString};
5211 }
5212 case ELF::NT_AMD_HSA_HSAIL: {
5213 struct HSAILProperties {
5214 uint32_t HSAILMajorVersion;
5215 uint32_t HSAILMinorVersion;
5216 uint8_t Profile;
5217 uint8_t MachineModel;
5218 uint8_t DefaultFloatRound;
5219 };
5220 if (Desc.size() != sizeof(HSAILProperties))
5221 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5222 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5223 std::string HSAILPropetiesString;
5224 raw_string_ostream StrOS(HSAILPropetiesString);
5225 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5226 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5227 << ", Profile: " << uint32_t(Properties->Profile)
5228 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5229 << ", Default Float Round: "
5230 << uint32_t(Properties->DefaultFloatRound) << "]";
5231 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5232 }
5233 case ELF::NT_AMD_HSA_ISA_VERSION: {
5234 struct IsaVersion {
5235 uint16_t VendorNameSize;
5236 uint16_t ArchitectureNameSize;
5237 uint32_t Major;
5238 uint32_t Minor;
5239 uint32_t Stepping;
5240 };
5241 if (Desc.size() < sizeof(IsaVersion))
5242 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5243 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5244 if (Desc.size() < sizeof(IsaVersion) +
5245 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5246 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5247 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5248 std::string IsaString;
5249 raw_string_ostream StrOS(IsaString);
5250 StrOS << "[Vendor: "
5251 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5252 << ", Architecture: "
5253 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5254 Isa->ArchitectureNameSize - 1)
5255 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5256 << ", Stepping: " << Isa->Stepping << "]";
5257 return {"AMD HSA ISA Version", IsaString};
5258 }
5259 case ELF::NT_AMD_HSA_METADATA: {
5260 if (Desc.size() == 0)
5261 return {"AMD HSA Metadata", ""};
5262 return {
5263 "AMD HSA Metadata",
5264 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5265 }
5266 case ELF::NT_AMD_HSA_ISA_NAME: {
5267 if (Desc.size() == 0)
5268 return {"AMD HSA ISA Name", ""};
5269 return {
5270 "AMD HSA ISA Name",
5271 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5272 }
5273 case ELF::NT_AMD_PAL_METADATA: {
5274 struct PALMetadata {
5275 uint32_t Key;
5276 uint32_t Value;
5277 };
5278 if (Desc.size() % sizeof(PALMetadata) != 0)
5279 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5280 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5281 std::string MetadataString;
5282 raw_string_ostream StrOS(MetadataString);
5283 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5284 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5285 }
5286 return {"AMD PAL Metadata", MetadataString};
5287 }
5288 }
5289}
5290
5291struct AMDGPUNote {
5292 std::string Type;
5293 std::string Value;
5294};
5295
5296template <typename ELFT>
5297static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5298 switch (NoteType) {
5299 default:
5300 return {"", ""};
5301 case ELF::NT_AMDGPU_METADATA: {
5302 StringRef MsgPackString =
5303 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5304 msgpack::Document MsgPackDoc;
5305 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5306 return {"", ""};
5307
5308 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5309 std::string MetadataString;
5310 if (!Verifier.verify(MsgPackDoc.getRoot()))
5311 MetadataString = "Invalid AMDGPU Metadata\n";
5312
5313 raw_string_ostream StrOS(MetadataString);
5314 if (MsgPackDoc.getRoot().isScalar()) {
5315 // TODO: passing a scalar root to toYAML() asserts:
5316 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5317 // "plain scalar documents are not supported")
5318 // To avoid this crash we print the raw data instead.
5319 return {"", ""};
5320 }
5321 MsgPackDoc.toYAML(StrOS);
5322 return {"AMDGPU Metadata", StrOS.str()};
5323 }
5324 }
5325}
5326
5327struct CoreFileMapping {
5328 uint64_t Start, End, Offset;
5329 StringRef Filename;
5330};
5331
5332struct CoreNote {
5333 uint64_t PageSize;
5334 std::vector<CoreFileMapping> Mappings;
5335};
5336
5337static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5338 // Expected format of the NT_FILE note description:
5339 // 1. # of file mappings (call it N)
5340 // 2. Page size
5341 // 3. N (start, end, offset) triples
5342 // 4. N packed filenames (null delimited)
5343 // Each field is an Elf_Addr, except for filenames which are char* strings.
5344
5345 CoreNote Ret;
5346 const int Bytes = Desc.getAddressSize();
5347
5348 if (!Desc.isValidOffsetForAddress(2))
5349 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5350 " is too short, expected at least 0x" +
5351 Twine::utohexstr(Bytes * 2));
5352 if (Desc.getData().back() != 0)
5353 return createError("the note is not NUL terminated");
5354
5355 uint64_t DescOffset = 0;
5356 uint64_t FileCount = Desc.getAddress(&DescOffset);
5357 Ret.PageSize = Desc.getAddress(&DescOffset);
5358
5359 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5360 return createError("unable to read file mappings (found " +
5361 Twine(FileCount) + "): the note of size 0x" +
5362 Twine::utohexstr(Desc.size()) + " is too short");
5363
5364 uint64_t FilenamesOffset = 0;
5365 DataExtractor Filenames(
5366 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5367 Desc.isLittleEndian(), Desc.getAddressSize());
5368
5369 Ret.Mappings.resize(FileCount);
5370 size_t I = 0;
5371 for (CoreFileMapping &Mapping : Ret.Mappings) {
5372 ++I;
5373 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5374 return createError(
5375 "unable to read the file name for the mapping with index " +
5376 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5377 " is truncated");
5378 Mapping.Start = Desc.getAddress(&DescOffset);
5379 Mapping.End = Desc.getAddress(&DescOffset);
5380 Mapping.Offset = Desc.getAddress(&DescOffset);
5381 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5382 }
5383
5384 return Ret;
5385}
5386
5387template <typename ELFT>
5388static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5389 // Length of "0x<address>" string.
5390 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5391
5392 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5393 OS << " " << right_justify("Start", FieldWidth) << " "
5394 << right_justify("End", FieldWidth) << " "
5395 << right_justify("Page Offset", FieldWidth) << '\n';
5396 for (const CoreFileMapping &Mapping : Note.Mappings) {
5397 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5398 << format_hex(Mapping.End, FieldWidth) << " "
5399 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5400 << Mapping.Filename << '\n';
5401 }
5402}
5403
5404const NoteType GenericNoteTypes[] = {
5405 {ELF::NT_VERSION, "NT_VERSION (version)"},
5406 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5407 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5408 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5409};
5410
5411const NoteType GNUNoteTypes[] = {
5412 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5413 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5414 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5415 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5416 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5417};
5418
5419const NoteType FreeBSDCoreNoteTypes[] = {
5420 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5421 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5422 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5423 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5424 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5425 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5426 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5427 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5428 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5429 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5430 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5431};
5432
5433const NoteType FreeBSDNoteTypes[] = {
5434 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5435 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5436 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5437 {ELF::NT_FREEBSD_FEATURE_CTL,
5438 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5439};
5440
5441const NoteType NetBSDCoreNoteTypes[] = {
5442 {ELF::NT_NETBSDCORE_PROCINFO,
5443 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5444 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5445 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5446};
5447
5448const NoteType OpenBSDCoreNoteTypes[] = {
5449 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5450 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5451 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5452 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5453 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5454};
5455
5456const NoteType AMDNoteTypes[] = {
5457 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5458 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5459 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5460 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5461 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5462 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5463 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5464};
5465
5466const NoteType AMDGPUNoteTypes[] = {
5467 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5468};
5469
5470const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5471 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5472 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5473 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5474 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5475 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5476 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5477};
5478
5479const NoteType AndroidNoteTypes[] = {
5480 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5481 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5482 {ELF::NT_ANDROID_TYPE_MEMTAG,
5483 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5484};
5485
5486const NoteType CoreNoteTypes[] = {
5487 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5488 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5489 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5490 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5491 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5492 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5493 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5494 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5495 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5496 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5497 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5498
5499 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5500 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5501 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5502 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5503 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5504 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5505 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5506 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5507 {ELF::NT_PPC_TM_CFPR,
5508 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5509 {ELF::NT_PPC_TM_CVMX,
5510 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5511 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5512 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5513 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5514 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5515 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5516
5517 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5518 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5519 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5520
5521 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5522 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5523 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5524 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5525 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5526 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5527 {ELF::NT_S390_LAST_BREAK,
5528 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5529 {ELF::NT_S390_SYSTEM_CALL,
5530 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5531 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5532 {ELF::NT_S390_VXRS_LOW,
5533 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5534 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5535 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5536 {ELF::NT_S390_GS_BC,
5537 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5538
5539 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5540 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5541 {ELF::NT_ARM_HW_BREAK,
5542 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5543 {ELF::NT_ARM_HW_WATCH,
5544 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5545
5546 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5547 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5548 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5549};
5550
5551template <class ELFT>
5552StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5553 uint32_t Type = Note.getType();
5554 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5555 for (const NoteType &N : V)
5556 if (N.ID == Type)
5557 return N.Name;
5558 return "";
5559 };
5560
5561 StringRef Name = Note.getName();
5562 if (Name == "GNU")
5563 return FindNote(GNUNoteTypes);
5564 if (Name == "FreeBSD") {
5565 if (ELFType == ELF::ET_CORE) {
5566 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5567 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5568 if (!Result.empty())
5569 return Result;
5570 return FindNote(CoreNoteTypes);
5571 } else {
5572 return FindNote(FreeBSDNoteTypes);
5573 }
5574 }
5575 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5576 StringRef Result = FindNote(NetBSDCoreNoteTypes);
5577 if (!Result.empty())
5578 return Result;
5579 return FindNote(CoreNoteTypes);
5580 }
5581 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5582 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5583 StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5584 if (!Result.empty())
5585 return Result;
5586 return FindNote(CoreNoteTypes);
5587 }
5588 if (Name == "AMD")
5589 return FindNote(AMDNoteTypes);
5590 if (Name == "AMDGPU")
5591 return FindNote(AMDGPUNoteTypes);
5592 if (Name == "LLVMOMPOFFLOAD")
5593 return FindNote(LLVMOMPOFFLOADNoteTypes);
5594 if (Name == "Android")
5595 return FindNote(AndroidNoteTypes);
5596
5597 if (ELFType == ELF::ET_CORE)
5598 return FindNote(CoreNoteTypes);
5599 return FindNote(GenericNoteTypes);
5600}
5601
5602template <class ELFT>
5603static void printNotesHelper(
5604 const ELFDumper<ELFT> &Dumper,
5605 llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5606 typename ELFT::Addr)>
5607 StartNotesFn,
5608 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5609 llvm::function_ref<void()> FinishNotesFn) {
5610 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5611 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5612
5613 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5614 if (!IsCoreFile && !Sections.empty()) {
5615 for (const typename ELFT::Shdr &S : Sections) {
5616 if (S.sh_type != SHT_NOTE)
5617 continue;
5618 StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5619 S.sh_size);
5620 Error Err = Error::success();
5621 size_t I = 0;
5622 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5623 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5624 Dumper.reportUniqueWarning(
5625 "unable to read note with index " + Twine(I) + " from the " +
5626 describe(Obj, S) + ": " + toString(std::move(E)));
5627 ++I;
5628 }
5629 if (Err)
5630 Dumper.reportUniqueWarning("unable to read notes from the " +
5631 describe(Obj, S) + ": " +
5632 toString(std::move(Err)));
5633 FinishNotesFn();
5634 }
5635 return;
5636 }
5637
5638 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5639 if (!PhdrsOrErr) {
5640 Dumper.reportUniqueWarning(
5641 "unable to read program headers to locate the PT_NOTE segment: " +
5642 toString(PhdrsOrErr.takeError()));
5643 return;
5644 }
5645
5646 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5647 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5648 if (P.p_type != PT_NOTE)
5649 continue;
5650 StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5651 Error Err = Error::success();
5652 size_t Index = 0;
5653 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5654 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5655 Dumper.reportUniqueWarning("unable to read note with index " +
5656 Twine(Index) +
5657 " from the PT_NOTE segment with index " +
5658 Twine(I) + ": " + toString(std::move(E)));
5659 ++Index;
5660 }
5661 if (Err)
5662 Dumper.reportUniqueWarning(
5663 "unable to read notes from the PT_NOTE segment with index " +
5664 Twine(I) + ": " + toString(std::move(Err)));
5665 FinishNotesFn();
5666 }
5667}
5668
5669template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5670 bool IsFirstHeader = true;
5671 auto PrintHeader = [&](Optional<StringRef> SecName,
5672 const typename ELFT::Off Offset,
5673 const typename ELFT::Addr Size) {
5674 // Print a newline between notes sections to match GNU readelf.
5675 if (!IsFirstHeader) {
5676 OS << '\n';
5677 } else {
5678 IsFirstHeader = false;
5679 }
5680
5681 OS << "Displaying notes found ";
5682
5683 if (SecName)
5684 OS << "in: " << *SecName << "\n";
5685 else
5686 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5687 << format_hex(Size, 10) << ":\n";
5688
5689 OS << " Owner Data size \tDescription\n";
5690 };
5691
5692 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5693 StringRef Name = Note.getName();
5694 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5695 Elf_Word Type = Note.getType();
5696
5697 // Print the note owner/type.
5698 OS << " " << left_justify(Name, 20) << ' '
5699 << format_hex(Descriptor.size(), 10) << '\t';
5700
5701 StringRef NoteType =
5702 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5703 if (!NoteType.empty())
5704 OS << NoteType << '\n';
5705 else
5706 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5707
5708 // Print the description, or fallback to printing raw bytes for unknown
5709 // owners/if we fail to pretty-print the contents.
5710 if (Name == "GNU") {
5711 if (printGNUNote<ELFT>(OS, Type, Descriptor))
5712 return Error::success();
5713 } else if (Name == "FreeBSD") {
5714 if (Optional<FreeBSDNote> N =
5715 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5716 OS << " " << N->Type << ": " << N->Value << '\n';
5717 return Error::success();
5718 }
5719 } else if (Name == "AMD") {
5720 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5721 if (!N.Type.empty()) {
5722 OS << " " << N.Type << ":\n " << N.Value << '\n';
5723 return Error::success();
5724 }
5725 } else if (Name == "AMDGPU") {
5726 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5727 if (!N.Type.empty()) {
5728 OS << " " << N.Type << ":\n " << N.Value << '\n';
5729 return Error::success();
5730 }
5731 } else if (Name == "LLVMOMPOFFLOAD") {
5732 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5733 return Error::success();
5734 } else if (Name == "CORE") {
5735 if (Type == ELF::NT_FILE) {
5736 DataExtractor DescExtractor(Descriptor,
5737 ELFT::TargetEndianness == support::little,
5738 sizeof(Elf_Addr));
5739 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5740 printCoreNote<ELFT>(OS, *NoteOrErr);
5741 return Error::success();
5742 } else {
5743 return NoteOrErr.takeError();
5744 }
5745 }
5746 } else if (Name == "Android") {
5747 if (printAndroidNote(OS, Type, Descriptor))
5748 return Error::success();
5749 }
5750 if (!Descriptor.empty()) {
5751 OS << " description data:";
5752 for (uint8_t B : Descriptor)
5753 OS << " " << format("%02x", B);
5754 OS << '\n';
5755 }
5756 return Error::success();
5757 };
5758
5759 printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5760}
5761
5762template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5763 OS << "printELFLinkerOptions not implemented!\n";
5764}
5765
5766template <class ELFT>
5767void ELFDumper<ELFT>::printDependentLibsHelper(
5768 function_ref<void(const Elf_Shdr &)> OnSectionStart,
5769 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5770 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5771 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5772 Twine(SecNdx) + " is broken: " + Msg);
5773 };
5774
5775 unsigned I = -1;
5776 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5777 ++I;
5778 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5779 continue;
5780
5781 OnSectionStart(Shdr);
5782
5783 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5784 if (!ContentsOrErr) {
5785 Warn(I, toString(ContentsOrErr.takeError()));
5786 continue;
5787 }
5788
5789 ArrayRef<uint8_t> Contents = *ContentsOrErr;
5790 if (!Contents.empty() && Contents.back() != 0) {
5791 Warn(I, "the content is not null-terminated");
5792 continue;
5793 }
5794
5795 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5796 StringRef Lib((const char *)I);
5797 OnLibEntry(Lib, I - Contents.begin());
5798 I += Lib.size() + 1;
5799 }
5800 }
5801}
5802
5803template <class ELFT>
5804void ELFDumper<ELFT>::forEachRelocationDo(
5805 const Elf_Shdr &Sec, bool RawRelr,
5806 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5807 const Elf_Shdr &, const Elf_Shdr *)>
5808 RelRelaFn,
5809 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5810 auto Warn = [&](Error &&E,
5811 const Twine &Prefix = "unable to read relocations from") {
5812 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5813 toString(std::move(E)));
5814 };
5815
5816 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5817 // For them we should not treat the value of the sh_link field as an index of
5818 // a symbol table.
5819 const Elf_Shdr *SymTab;
5
'SymTab' declared without an initial value
5820 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
6
Assuming the condition is false
5821 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5822 if (!SymTabOrErr) {
5823 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5824 return;
5825 }
5826 SymTab = *SymTabOrErr;
5827 }
5828
5829 unsigned RelNdx = 0;
5830 const bool IsMips64EL = this->Obj.isMips64EL();
5831 switch (Sec.sh_type) {
7
Control jumps to 'case SHT_REL:' at line 5832
5832 case ELF::SHT_REL:
5833 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
8
Taking true branch
5834 for (const Elf_Rel &R : *RangeOrErr)
9
Assuming '__begin0' is not equal to '__end0'
5835 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
10
4th function call argument is an uninitialized value
5836 } else {
5837 Warn(RangeOrErr.takeError());
5838 }
5839 break;
5840 case ELF::SHT_RELA:
5841 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5842 for (const Elf_Rela &R : *RangeOrErr)
5843 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5844 } else {
5845 Warn(RangeOrErr.takeError());
5846 }
5847 break;
5848 case ELF::SHT_RELR:
5849 case ELF::SHT_ANDROID_RELR: {
5850 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5851 if (!RangeOrErr) {
5852 Warn(RangeOrErr.takeError());
5853 break;
5854 }
5855 if (RawRelr) {
5856 for (const Elf_Relr &R : *RangeOrErr)
5857 RelrFn(R);
5858 break;
5859 }
5860
5861 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5862 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5863 /*SymTab=*/nullptr);
5864 break;
5865 }
5866 case ELF::SHT_ANDROID_REL:
5867 case ELF::SHT_ANDROID_RELA:
5868 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5869 for (const Elf_Rela &R : *RelasOrErr)
5870 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5871 } else {
5872 Warn(RelasOrErr.takeError());
5873 }
5874 break;
5875 }
5876}
5877
5878template <class ELFT>
5879StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5880 StringRef Name = "<?>";
5881 if (Expected<StringRef> SecNameOrErr =
5882 Obj.getSectionName(Sec, this->WarningHandler))
5883 Name = *SecNameOrErr;
5884 else
5885 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5886 ": " + toString(SecNameOrErr.takeError()));
5887 return Name;
5888}
5889
5890template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5891 bool SectionStarted = false;
5892 struct NameOffset {
5893 StringRef Name;
5894 uint64_t Offset;
5895 };
5896 std::vector<NameOffset> SecEntries;
5897 NameOffset Current;
5898 auto PrintSection = [&]() {
5899 OS << "Dependent libraries section " << Current.Name << " at offset "
5900 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5901 << " entries:\n";
5902 for (NameOffset Entry : SecEntries)
5903 OS << " [" << format("%6" PRIx64"l" "x", Entry.Offset) << "] " << Entry.Name
5904 << "\n";
5905 OS << "\n";
5906 SecEntries.clear();
5907 };
5908
5909 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5910 if (SectionStarted)
5911 PrintSection();
5912 SectionStarted = true;
5913 Current.Offset = Shdr.sh_offset;
5914 Current.Name = this->getPrintableSectionName(Shdr);
5915 };
5916 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5917 SecEntries.push_back(NameOffset{Lib, Offset});
5918 };
5919
5920 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5921 if (SectionStarted)
5922 PrintSection();
5923}
5924
5925template <class ELFT>
5926SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
5927 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
5928 SmallVector<uint32_t> SymbolIndexes;
5929 if (!this->AddressToIndexMap.hasValue()) {
5930 // Populate the address to index map upon the first invocation of this
5931 // function.
5932 this->AddressToIndexMap.emplace();
5933 if (this->DotSymtabSec) {
5934 if (Expected<Elf_Sym_Range> SymsOrError =
5935 Obj.symbols(this->DotSymtabSec)) {
5936 uint32_t Index = (uint32_t)-1;
5937 for (const Elf_Sym &Sym : *SymsOrError) {
5938 ++Index;
5939
5940 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5941 continue;
5942
5943 Expected<uint64_t> SymAddrOrErr =
5944 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
5945 if (!SymAddrOrErr) {
5946 std::string Name = this->getStaticSymbolName(Index);
5947 reportUniqueWarning("unable to get address of symbol '" + Name +
5948 "': " + toString(SymAddrOrErr.takeError()));
5949 return SymbolIndexes;
5950 }
5951
5952 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
5953 }
5954 } else {
5955 reportUniqueWarning("unable to read the symbol table: " +
5956 toString(SymsOrError.takeError()));
5957 }
5958 }
5959 }
5960
5961 auto Symbols = this->AddressToIndexMap->find(SymValue);
5962 if (Symbols == this->AddressToIndexMap->end())
5963 return SymbolIndexes;
5964
5965 for (uint32_t Index : Symbols->second) {
5966 // Check if the symbol is in the right section. FunctionSec == None
5967 // means "any section".
5968 if (FunctionSec) {
5969 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
5970 if (Expected<const Elf_Shdr *> SecOrErr =
5971 Obj.getSection(Sym, this->DotSymtabSec,
5972 this->getShndxTable(this->DotSymtabSec))) {
5973 if (*FunctionSec != *SecOrErr)
5974 continue;
5975 } else {
5976 std::string Name = this->getStaticSymbolName(Index);
5977 // Note: it is impossible to trigger this error currently, it is
5978 // untested.
5979 reportUniqueWarning("unable to get section of symbol '" + Name +
5980 "': " + toString(SecOrErr.takeError()));
5981 return SymbolIndexes;
5982 }
5983 }
5984
5985 SymbolIndexes.push_back(Index);
5986 }
5987
5988 return SymbolIndexes;
5989}
5990
5991template <class ELFT>
5992bool ELFDumper<ELFT>::printFunctionStackSize(
5993 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
5994 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
5995 SmallVector<uint32_t> FuncSymIndexes =
5996 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
5997 if (FuncSymIndexes.empty())
5998 reportUniqueWarning(
5999 "could not identify function symbol for stack size entry in " +
6000 describe(StackSizeSec));
6001
6002 // Extract the size. The expectation is that Offset is pointing to the right
6003 // place, i.e. past the function address.
6004 Error Err = Error::success();
6005 uint64_t StackSize = Data.getULEB128(Offset, &Err);
6006 if (Err) {
6007 reportUniqueWarning("could not extract a valid stack size from " +
6008 describe(StackSizeSec) + ": " +
6009 toString(std::move(Err)));
6010 return false;
6011 }
6012
6013 if (FuncSymIndexes.empty()) {
6014 printStackSizeEntry(StackSize, {"?"});
6015 } else {
6016 SmallVector<std::string> FuncSymNames;
6017 for (uint32_t Index : FuncSymIndexes)
6018 FuncSymNames.push_back(this->getStaticSymbolName(Index));
6019 printStackSizeEntry(StackSize, FuncSymNames);
6020 }
6021
6022 return true;
6023}
6024
6025template <class ELFT>
6026void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6027 ArrayRef<std::string> FuncNames) {
6028 OS.PadToColumn(2);
6029 OS << format_decimal(Size, 11);
6030 OS.PadToColumn(18);
6031
6032 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6033}
6034
6035template <class ELFT>
6036void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6037 const Elf_Shdr &RelocSec, unsigned Ndx,
6038 const Elf_Shdr *SymTab,
6039 const Elf_Shdr *FunctionSec,
6040 const Elf_Shdr &StackSizeSec,
6041 const RelocationResolver &Resolver,
6042 DataExtractor Data) {
6043 // This function ignores potentially erroneous input, unless it is directly
6044 // related to stack size reporting.
6045 const Elf_Sym *Sym = nullptr;
6046 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6047 if (!TargetOrErr)
6048 reportUniqueWarning("unable to get the target of relocation with index " +
6049 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6050 toString(TargetOrErr.takeError()));
6051 else
6052 Sym = TargetOrErr->Sym;
6053
6054 uint64_t RelocSymValue = 0;
6055 if (Sym) {
6056 Expected<const Elf_Shdr *> SectionOrErr =
6057 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6058 if (!SectionOrErr) {
6059 reportUniqueWarning(
6060 "cannot identify the section for relocation symbol '" +
6061 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6062 } else if (*SectionOrErr != FunctionSec) {
6063 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6064 "' is not in the expected section");
6065 // Pretend that the symbol is in the correct section and report its
6066 // stack size anyway.
6067 FunctionSec = *SectionOrErr;
6068 }
6069
6070 RelocSymValue = Sym->st_value;
6071 }
6072
6073 uint64_t Offset = R.Offset;
6074 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6075 reportUniqueWarning("found invalid relocation offset (0x" +
6076 Twine::utohexstr(Offset) + ") into " +
6077 describe(StackSizeSec) +
6078 " while trying to extract a stack size entry");
6079 return;
6080 }
6081
6082 uint64_t SymValue =
6083 Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
6084 R.Addend.getValueOr(0));
6085 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6086 &Offset);
6087}
6088
6089template <class ELFT>
6090void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6091 std::function<void()> PrintHeader) {
6092 // This function ignores potentially erroneous input, unless it is directly
6093 // related to stack size reporting.
6094 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6095 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6096 continue;
6097 PrintHeader();
6098 ArrayRef<uint8_t> Contents =
6099 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6100 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6101 uint64_t Offset = 0;
6102 while (Offset < Contents.size()) {
6103 // The function address is followed by a ULEB representing the stack
6104 // size. Check for an extra byte before we try to process the entry.
6105 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6106 reportUniqueWarning(
6107 describe(Sec) +
6108 " ended while trying to extract a stack size entry");
6109 break;
6110 }
6111 uint64_t SymValue = Data.getAddress(&Offset);
6112 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
6113 &Offset))
6114 break;
6115 }
6116 }
6117}
6118
6119template <class ELFT>
6120void ELFDumper<ELFT>::getSectionAndRelocations(
6121 std::function<bool(const Elf_Shdr &)> IsMatch,
6122 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6123 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6124 if (IsMatch(Sec))
6125 if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6126 .second)
6127 continue;
6128
6129 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6130 continue;
6131
6132 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6133 if (!RelSecOrErr) {
6134 reportUniqueWarning(describe(Sec) +
6135 ": failed to get a relocated section: " +
6136 toString(RelSecOrErr.takeError()));
6137 continue;
6138 }
6139 const Elf_Shdr *ContentsSec = *RelSecOrErr;
6140 if (IsMatch(*ContentsSec))
6141 SecToRelocMap[ContentsSec] = &Sec;
6142 }
6143}
6144
6145template <class ELFT>
6146void ELFDumper<ELFT>::printRelocatableStackSizes(
6147 std::function<void()> PrintHeader) {
6148 // Build a map between stack size sections and their corresponding relocation
6149 // sections.
6150 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6151 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6152 StringRef SectionName;
6153 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6154 SectionName = *NameOrErr;
6155 else
6156 consumeError(NameOrErr.takeError());
6157
6158 return SectionName == ".stack_sizes";
6159 };
6160 getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6161
6162 for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6163 PrintHeader();
6164 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6165 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6166
6167 // Warn about stack size sections without a relocation section.
6168 if (!RelocSec) {
6169 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6170 ") does not have a corresponding "
6171 "relocation section"),
6172 FileName);
6173 continue;
6174 }
6175
6176 // A .stack_sizes section header's sh_link field is supposed to point
6177 // to the section that contains the functions whose stack sizes are
6178 // described in it.
6179 const Elf_Shdr *FunctionSec = unwrapOrError(
6180 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6181
6182 SupportsRelocation IsSupportedFn;
6183 RelocationResolver Resolver;
6184 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6185 ArrayRef<uint8_t> Contents =
6186 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6187 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6188
6189 forEachRelocationDo(
6190 *RelocSec, /*RawRelr=*/false,
6191 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6192 const Elf_Shdr *SymTab) {
6193 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6194 reportUniqueWarning(
6195 describe(*RelocSec) +
6196 " contains an unsupported relocation with index " + Twine(Ndx) +
6197 ": " + Obj.getRelocationTypeName(R.Type));
6198 return;
6199 }
6200
6201 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6202 *StackSizesELFSec, Resolver, Data);
6203 },
6204 [](const Elf_Relr &) {
6205 llvm_unreachable("can't get here, because we only support "::llvm::llvm_unreachable_internal("can't get here, because we only support "
"SHT_REL/SHT_RELA sections", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 6206)
6206 "SHT_REL/SHT_RELA sections")::llvm::llvm_unreachable_internal("can't get here, because we only support "
"SHT_REL/SHT_RELA sections", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 6206)
;
6207 });
6208 }
6209}
6210
6211template <class ELFT>
6212void GNUELFDumper<ELFT>::printStackSizes() {
6213 bool HeaderHasBeenPrinted = false;
6214 auto PrintHeader = [&]() {
6215 if (HeaderHasBeenPrinted)
6216 return;
6217 OS << "\nStack Sizes:\n";
6218 OS.PadToColumn(9);
6219 OS << "Size";
6220 OS.PadToColumn(18);
6221 OS << "Functions\n";
6222 HeaderHasBeenPrinted = true;
6223 };
6224
6225 // For non-relocatable objects, look directly for sections whose name starts
6226 // with .stack_sizes and process the contents.
6227 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6228 this->printRelocatableStackSizes(PrintHeader);
6229 else
6230 this->printNonRelocatableStackSizes(PrintHeader);
6231}
6232
6233template <class ELFT>
6234void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6235 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6236 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6237 OS.PadToColumn(2);
6238 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6239 OS.PadToColumn(11 + Bias);
6240 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6241 OS.PadToColumn(22 + Bias);
6242 OS << format_hex_no_prefix(*E, 8 + Bias);
6243 OS.PadToColumn(31 + 2 * Bias);
6244 OS << Purpose << "\n";
6245 };
6246
6247 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6248 OS << " Canonical gp value: "
6249 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6250
6251 OS << " Reserved entries:\n";
6252 if (ELFT::Is64Bits)
6253 OS << " Address Access Initial Purpose\n";
6254 else
6255 OS << " Address Access Initial Purpose\n";
6256 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6257 if (Parser.getGotModulePointer())
6258 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6259
6260 if (!Parser.getLocalEntries().empty()) {
6261 OS << "\n";
6262 OS << " Local entries:\n";
6263 if (ELFT::Is64Bits)
6264 OS << " Address Access Initial\n";
6265 else
6266 OS << " Address Access Initial\n";
6267 for (auto &E : Parser.getLocalEntries())
6268 PrintEntry(&E, "");
6269 }
6270
6271 if (Parser.IsStatic)
6272 return;
6273
6274 if (!Parser.getGlobalEntries().empty()) {
6275 OS << "\n";
6276 OS << " Global entries:\n";
6277 if (ELFT::Is64Bits)
6278 OS << " Address Access Initial Sym.Val."
6279 << " Type Ndx Name\n";
6280 else
6281 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6282
6283 DataRegion<Elf_Word> ShndxTable(
6284 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6285 for (auto &E : Parser.getGlobalEntries()) {
6286 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6287 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6288 std::string SymName = this->getFullSymbolName(
6289 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6290
6291 OS.PadToColumn(2);
6292 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6293 OS.PadToColumn(11 + Bias);
6294 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6295 OS.PadToColumn(22 + Bias);
6296 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6297 OS.PadToColumn(31 + 2 * Bias);
6298 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6299 OS.PadToColumn(40 + 3 * Bias);
6300 OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6301 OS.PadToColumn(48 + 3 * Bias);
6302 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6303 ShndxTable);
6304 OS.PadToColumn(52 + 3 * Bias);
6305 OS << SymName << "\n";
6306 }
6307 }
6308
6309 if (!Parser.getOtherEntries().empty())
6310 OS << "\n Number of TLS and multi-GOT entries "
6311 << Parser.getOtherEntries().size() << "\n";
6312}
6313
6314template <class ELFT>
6315void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6316 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6317 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6318 OS.PadToColumn(2);
6319 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6320 OS.PadToColumn(11 + Bias);
6321 OS << format_hex_no_prefix(*E, 8 + Bias);
6322 OS.PadToColumn(20 + 2 * Bias);
6323 OS << Purpose << "\n";
6324 };
6325
6326 OS << "PLT GOT:\n\n";
6327
6328 OS << " Reserved entries:\n";
6329 OS << " Address Initial Purpose\n";
6330 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6331 if (Parser.getPltModulePointer())
6332 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6333
6334 if (!Parser.getPltEntries().empty()) {
6335 OS << "\n";
6336 OS << " Entries:\n";
6337 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6338 DataRegion<Elf_Word> ShndxTable(
6339 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6340 for (auto &E : Parser.getPltEntries()) {
6341 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6342 const Elf_Sym &FirstSym = *cantFail(
6343 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6344 std::string SymName = this->getFullSymbolName(
6345 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6346
6347 OS.PadToColumn(2);
6348 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6349 OS.PadToColumn(11 + Bias);
6350 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6351 OS.PadToColumn(20 + 2 * Bias);
6352 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6353 OS.PadToColumn(29 + 3 * Bias);
6354 OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6355 OS.PadToColumn(37 + 3 * Bias);
6356 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6357 ShndxTable);
6358 OS.PadToColumn(41 + 3 * Bias);
6359 OS << SymName << "\n";
6360 }
6361 }
6362}
6363
6364template <class ELFT>
6365Expected<const Elf_Mips_ABIFlags<ELFT> *>
6366getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6367 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6368 if (Sec == nullptr)
6369 return nullptr;
6370
6371 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6372 Expected<ArrayRef<uint8_t>> DataOrErr =
6373 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6374 if (!DataOrErr)
6375 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6376
6377 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6378 return createError(ErrPrefix + "it has a wrong size (" +
6379 Twine(DataOrErr->size()) + ")");
6380 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6381}
6382
6383template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6384 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6385 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6386 getMipsAbiFlagsSection(*this))
6387 Flags = *SecOrErr;
6388 else
6389 this->reportUniqueWarning(SecOrErr.takeError());
6390 if (!Flags)
6391 return;
6392
6393 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6394 OS << "ISA: MIPS" << int(Flags->isa_level);
6395 if (Flags->isa_rev > 1)
6396 OS << "r" << int(Flags->isa_rev);
6397 OS << "\n";
6398 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6399 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6400 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6401 OS << "FP ABI: "
6402 << enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n";
6403 OS << "ISA Extension: "
6404 << enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6405 if (Flags->ases == 0)
6406 OS << "ASEs: None\n";
6407 else
6408 // FIXME: Print each flag on a separate line.
6409 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6410 << "\n";
6411 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6412 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6413 OS << "\n";
6414}
6415
6416template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6417 const Elf_Ehdr &E = this->Obj.getHeader();
6418 {
6419 DictScope D(W, "ElfHeader");
6420 {
6421 DictScope D(W, "Ident");
6422 W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6423 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6424 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6425 makeArrayRef(ElfDataEncoding));
6426 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6427
6428 auto OSABI = makeArrayRef(ElfOSABI);
6429 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6430 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6431 switch (E.e_machine) {
6432 case ELF::EM_AMDGPU:
6433 OSABI = makeArrayRef(AMDGPUElfOSABI);
6434 break;
6435 case ELF::EM_ARM:
6436 OSABI = makeArrayRef(ARMElfOSABI);
6437 break;
6438 case ELF::EM_TI_C6000:
6439 OSABI = makeArrayRef(C6000ElfOSABI);
6440 break;
6441 }
6442 }
6443 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6444 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6445 W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6446 }
6447
6448 std::string TypeStr;
6449 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6450 TypeStr = Ent->Name.str();
6451 } else {
6452 if (E.e_type >= ET_LOPROC)
6453 TypeStr = "Processor Specific";
6454 else if (E.e_type >= ET_LOOS)
6455 TypeStr = "OS Specific";
6456 else
6457 TypeStr = "Unknown";
6458 }
6459 W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")");
6460
6461 W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6462 W.printNumber("Version", E.e_version);
6463 W.printHex("Entry", E.e_entry);
6464 W.printHex("ProgramHeaderOffset", E.e_phoff);
6465 W.printHex("SectionHeaderOffset", E.e_shoff);
6466 if (E.e_machine == EM_MIPS)
6467 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6468 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6469 unsigned(ELF::EF_MIPS_MACH));
6470 else if (E.e_machine == EM_AMDGPU) {
6471 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6472 default:
6473 W.printHex("Flags", E.e_flags);
6474 break;
6475 case 0:
6476 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6477 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6478 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6479 W.printFlags("Flags", E.e_flags,
6480 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6481 unsigned(ELF::EF_AMDGPU_MACH));
6482 break;
6483 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6484 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6485 W.printFlags("Flags", E.e_flags,
6486 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6487 unsigned(ELF::EF_AMDGPU_MACH),
6488 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6489 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6490 break;
6491 }
6492 } else if (E.e_machine == EM_RISCV)
6493 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6494 else if (E.e_machine == EM_AVR)
6495 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6496 unsigned(ELF::EF_AVR_ARCH_MASK));
6497 else
6498 W.printFlags("Flags", E.e_flags);
6499 W.printNumber("HeaderSize", E.e_ehsize);
6500 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6501 W.printNumber("ProgramHeaderCount", E.e_phnum);
6502 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6503 W.printString("SectionHeaderCount",
6504 getSectionHeadersNumString(this->Obj, this->FileName));
6505 W.printString("StringTableSectionIndex",
6506 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6507 }
6508}
6509
6510template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6511 DictScope Lists(W, "Groups");
6512 std::vector<GroupSection> V = this->getGroups();
6513 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6514 for (const GroupSection &G : V) {
6515 DictScope D(W, "Group");
6516 W.printNumber("Name", G.Name, G.ShName);
6517 W.printNumber("Index", G.Index);
6518 W.printNumber("Link", G.Link);
6519 W.printNumber("Info", G.Info);
6520 W.printHex("Type", getGroupType(G.Type), G.Type);
6521 W.startLine() << "Signature: " << G.Signature << "\n";
6522
6523 ListScope L(W, "Section(s) in group");
6524 for (const GroupMember &GM : G.Members) {
6525 const GroupSection *MainGroup = Map[GM.Index];
6526 if (MainGroup != &G)
6527 this->reportUniqueWarning(
6528 "section with index " + Twine(GM.Index) +
6529 ", included in the group section with index " +
6530 Twine(MainGroup->Index) +
6531 ", was also found in the group section with index " +
6532 Twine(G.Index));
6533 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6534 }
6535 }
6536
6537 if (V.empty())
6538 W.startLine() << "There are no group sections in the file.\n";
6539}
6540
6541template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6542 ListScope D(W, "Relocations");
6543
6544 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
1
Assuming '__begin0' is not equal to '__end0'
6545 if (!isRelocationSec<ELFT>(Sec))
2
Taking false branch
6546 continue;
6547
6548 StringRef Name = this->getPrintableSectionName(Sec);
6549 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6550 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6551 W.indent();
6552 this->printRelocationsHelper(Sec);
3
Calling 'ELFDumper::printRelocationsHelper'
6553 W.unindent();
6554 W.startLine() << "}\n";
6555 }
6556}
6557
6558template <class ELFT>
6559void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6560 W.startLine() << W.hex(R) << "\n";
6561}
6562
6563template <class ELFT>
6564void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6565 const RelSymbol<ELFT> &RelSym) {
6566 StringRef SymbolName = RelSym.Name;
6567 SmallString<32> RelocName;
6568 this->Obj.getRelocationTypeName(R.Type, RelocName);
6569
6570 if (opts::ExpandRelocs) {
6571 DictScope Group(W, "Relocation");
6572 W.printHex("Offset", R.Offset);
6573 W.printNumber("Type", RelocName, R.Type);
6574 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6575 if (R.Addend)
6576 W.printHex("Addend", (uintX_t)*R.Addend);
6577 } else {
6578 raw_ostream &OS = W.startLine();
6579 OS << W.hex(R.Offset) << " " << RelocName << " "
6580 << (!SymbolName.empty() ? SymbolName : "-");
6581 if (R.Addend)
6582 OS << " " << W.hex((uintX_t)*R.Addend);
6583 OS << "\n";
6584 }
6585}
6586
6587template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6588 ListScope SectionsD(W, "Sections");
6589
6590 int SectionIndex = -1;
6591 std::vector<EnumEntry<unsigned>> FlagsList =
6592 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6593 this->Obj.getHeader().e_machine);
6594 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6595 DictScope SectionD(W, "Section");
6596 W.printNumber("Index", ++SectionIndex);
6597 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6598 W.printHex("Type",
6599 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6600 Sec.sh_type),
6601 Sec.sh_type);
6602 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6603 W.printHex("Address", Sec.sh_addr);
6604 W.printHex("Offset", Sec.sh_offset);
6605 W.printNumber("Size", Sec.sh_size);
6606 W.printNumber("Link", Sec.sh_link);
6607 W.printNumber("Info", Sec.sh_info);
6608 W.printNumber("AddressAlignment", Sec.sh_addralign);
6609 W.printNumber("EntrySize", Sec.sh_entsize);
6610
6611 if (opts::SectionRelocations) {
6612 ListScope D(W, "Relocations");
6613 this->printRelocationsHelper(Sec);
6614 }
6615
6616 if (opts::SectionSymbols) {
6617 ListScope D(W, "Symbols");
6618 if (this->DotSymtabSec) {
6619 StringRef StrTable = unwrapOrError(
6620 this->FileName,
6621 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6622 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6623
6624 typename ELFT::SymRange Symbols = unwrapOrError(
6625 this->FileName, this->Obj.symbols(this->DotSymtabSec));
6626 for (const Elf_Sym &Sym : Symbols) {
6627 const Elf_Shdr *SymSec = unwrapOrError(
6628 this->FileName,
6629 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6630 if (SymSec == &Sec)
6631 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6632 false);
6633 }
6634 }
6635 }
6636
6637 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6638 ArrayRef<uint8_t> Data =
6639 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6640 W.printBinaryBlock(
6641 "SectionData",
6642 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6643 }
6644 }
6645}
6646
6647template <class ELFT>
6648void LLVMELFDumper<ELFT>::printSymbolSection(
6649 const Elf_Sym &Symbol, unsigned SymIndex,
6650 DataRegion<Elf_Word> ShndxTable) const {
6651 auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6652 if (Symbol.isUndefined())
6653 return StringRef("Undefined");
6654 if (Symbol.isProcessorSpecific())
6655 return StringRef("Processor Specific");
6656 if (Symbol.isOSSpecific())
6657 return StringRef("Operating System Specific");
6658 if (Symbol.isAbsolute())
6659 return StringRef("Absolute");
6660 if (Symbol.isCommon())
6661 return StringRef("Common");
6662 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6663 return StringRef("Reserved");
6664 return None;
6665 };
6666
6667 if (Optional<StringRef> Type = GetSectionSpecialType()) {
6668 W.printHex("Section", *Type, Symbol.st_shndx);
6669 return;
6670 }
6671
6672 Expected<unsigned> SectionIndex =
6673 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6674 if (!SectionIndex) {
6675 assert(Symbol.st_shndx == SHN_XINDEX &&(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6677, __extension__
__PRETTY_FUNCTION__))
6676 "getSymbolSectionIndex should only fail due to an invalid "(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6677, __extension__
__PRETTY_FUNCTION__))
6677 "SHT_SYMTAB_SHNDX table/reference")(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6677, __extension__
__PRETTY_FUNCTION__))
;
6678 this->reportUniqueWarning(SectionIndex.takeError());
6679 W.printHex("Section", "Reserved", SHN_XINDEX);
6680 return;
6681 }
6682
6683 Expected<StringRef> SectionName =
6684 this->getSymbolSectionName(Symbol, *SectionIndex);
6685 if (!SectionName) {
6686 // Don't report an invalid section name if the section headers are missing.
6687 // In such situations, all sections will be "invalid".
6688 if (!this->ObjF.sections().empty())
6689 this->reportUniqueWarning(SectionName.takeError());
6690 else
6691 consumeError(SectionName.takeError());
6692 W.printHex("Section", "<?>", *SectionIndex);
6693 } else {
6694 W.printHex("Section", *SectionName, *SectionIndex);
6695 }
6696}
6697
6698template <class ELFT>
6699void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6700 DataRegion<Elf_Word> ShndxTable,
6701 Optional<StringRef> StrTable,
6702 bool IsDynamic,
6703 bool /*NonVisibilityBitsUsed*/) const {
6704 std::string FullSymbolName = this->getFullSymbolName(
6705 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6706 unsigned char SymbolType = Symbol.getType();
6707
6708 DictScope D(W, "Symbol");
6709 W.printNumber("Name", FullSymbolName, Symbol.st_name);
6710 W.printHex("Value", Symbol.st_value);
6711 W.printNumber("Size", Symbol.st_size);
6712 W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6713 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6714 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6715 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6716 else
6717 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6718 if (Symbol.st_other == 0)
6719 // Usually st_other flag is zero. Do not pollute the output
6720 // by flags enumeration in that case.
6721 W.printNumber("Other", 0);
6722 else {
6723 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6724 std::end(ElfSymOtherFlags));
6725 if (this->Obj.getHeader().e_machine == EM_MIPS) {
6726 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6727 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6728 // cases separately.
6729 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6730 SymOtherFlags.insert(SymOtherFlags.end(),
6731 std::begin(ElfMips16SymOtherFlags),
6732 std::end(ElfMips16SymOtherFlags));
6733 else
6734 SymOtherFlags.insert(SymOtherFlags.end(),
6735 std::begin(ElfMipsSymOtherFlags),
6736 std::end(ElfMipsSymOtherFlags));
6737 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6738 SymOtherFlags.insert(SymOtherFlags.end(),
6739 std::begin(ElfAArch64SymOtherFlags),
6740 std::end(ElfAArch64SymOtherFlags));
6741 } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6742 SymOtherFlags.insert(SymOtherFlags.end(),
6743 std::begin(ElfRISCVSymOtherFlags),
6744 std::end(ElfRISCVSymOtherFlags));
6745 }
6746 W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6747 }
6748 printSymbolSection(Symbol, SymIndex, ShndxTable);
6749}
6750
6751template <class ELFT>
6752void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6753 bool PrintDynamicSymbols) {
6754 if (PrintSymbols) {
6755 ListScope Group(W, "Symbols");
6756 this->printSymbolsHelper(false);
6757 }
6758 if (PrintDynamicSymbols) {
6759 ListScope Group(W, "DynamicSymbols");
6760 this->printSymbolsHelper(true);
6761 }
6762}
6763
6764template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6765 Elf_Dyn_Range Table = this->dynamic_table();
6766 if (Table.empty())
6767 return;
6768
6769 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6770
6771 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6772 // The "Name/Value" column should be indented from the "Type" column by N
6773 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6774 // space (1) = -3.
6775 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6776 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6777
6778 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6779 for (auto Entry : Table) {
6780 uintX_t Tag = Entry.getTag();
6781 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6782 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6783 << " "
6784 << format(ValueFmt.c_str(),
6785 this->Obj.getDynamicTagAsString(Tag).c_str())
6786 << Value << "\n";
6787 }
6788 W.startLine() << "]\n";
6789}
6790
6791template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6792 W.startLine() << "Dynamic Relocations {\n";
6793 W.indent();
6794 this->printDynamicRelocationsHelper();
6795 W.unindent();
6796 W.startLine() << "}\n";
6797}
6798
6799template <class ELFT>
6800void LLVMELFDumper<ELFT>::printProgramHeaders(
6801 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6802 if (PrintProgramHeaders)
6803 printProgramHeaders();
6804 if (PrintSectionMapping == cl::BOU_TRUE)
6805 printSectionMapping();
6806}
6807
6808template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6809 ListScope L(W, "ProgramHeaders");
6810
6811 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6812 if (!PhdrsOrErr) {
6813 this->reportUniqueWarning("unable to dump program headers: " +
6814 toString(PhdrsOrErr.takeError()));
6815 return;
6816 }
6817
6818 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6819 DictScope P(W, "ProgramHeader");
6820 StringRef Type =
6821 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6822
6823 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6824 W.printHex("Offset", Phdr.p_offset);
6825 W.printHex("VirtualAddress", Phdr.p_vaddr);
6826 W.printHex("PhysicalAddress", Phdr.p_paddr);
6827 W.printNumber("FileSize", Phdr.p_filesz);
6828 W.printNumber("MemSize", Phdr.p_memsz);
6829 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6830 W.printNumber("Alignment", Phdr.p_align);
6831 }
6832}
6833
6834template <class ELFT>
6835void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6836 ListScope SS(W, "VersionSymbols");
6837 if (!Sec)
6838 return;
6839
6840 StringRef StrTable;
6841 ArrayRef<Elf_Sym> Syms;
6842 const Elf_Shdr *SymTabSec;
6843 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6844 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6845 if (!VerTableOrErr) {
6846 this->reportUniqueWarning(VerTableOrErr.takeError());
6847 return;
6848 }
6849
6850 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6851 return;
6852
6853 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6854 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6855 DictScope S(W, "Symbol");
6856 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6857 W.printString("Name",
6858 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6859 /*IsDynamic=*/true));
6860 }
6861}
6862
6863const EnumEntry<unsigned> SymVersionFlags[] = {
6864 {"Base", "BASE", VER_FLG_BASE},
6865 {"Weak", "WEAK", VER_FLG_WEAK},
6866 {"Info", "INFO", VER_FLG_INFO}};
6867
6868template <class ELFT>
6869void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6870 ListScope SD(W, "VersionDefinitions");
6871 if (!Sec)
6872 return;
6873
6874 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6875 if (!V) {
6876 this->reportUniqueWarning(V.takeError());
6877 return;
6878 }
6879
6880 for (const VerDef &D : *V) {
6881 DictScope Def(W, "Definition");
6882 W.printNumber("Version", D.Version);
6883 W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6884 W.printNumber("Index", D.Ndx);
6885 W.printNumber("Hash", D.Hash);
6886 W.printString("Name", D.Name.c_str());
6887 W.printList(
6888 "Predecessors", D.AuxV,
6889 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6890 }
6891}
6892
6893template <class ELFT>
6894void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6895 ListScope SD(W, "VersionRequirements");
6896 if (!Sec)
6897 return;
6898
6899 Expected<std::vector<VerNeed>> V =
6900 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6901 if (!V) {
6902 this->reportUniqueWarning(V.takeError());
6903 return;
6904 }
6905
6906 for (const VerNeed &VN : *V) {
6907 DictScope Entry(W, "Dependency");
6908 W.printNumber("Version", VN.Version);
6909 W.printNumber("Count", VN.Cnt);
6910 W.printString("FileName", VN.File.c_str());
6911
6912 ListScope L(W, "Entries");
6913 for (const VernAux &Aux : VN.AuxV) {
6914 DictScope Entry(W, "Entry");
6915 W.printNumber("Hash", Aux.Hash);
6916 W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6917 W.printNumber("Index", Aux.Other);
6918 W.printString("Name", Aux.Name.c_str());
6919 }
6920 }
6921}
6922
6923template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
6924 W.startLine() << "Hash Histogram not implemented!\n";
6925}
6926
6927// Returns true if rel/rela section exists, and populates SymbolIndices.
6928// Otherwise returns false.
6929template <class ELFT>
6930static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
6931 const ELFFile<ELFT> &Obj,
6932 const LLVMELFDumper<ELFT> *Dumper,
6933 SmallVector<uint32_t, 128> &SymbolIndices) {
6934 if (!CGRelSection) {
6935 Dumper->reportUniqueWarning(
6936 "relocation section for a call graph section doesn't exist");
6937 return false;
6938 }
6939
6940 if (CGRelSection->sh_type == SHT_REL) {
6941 typename ELFT::RelRange CGProfileRel;
6942 Expected<typename ELFT::RelRange> CGProfileRelOrError =
6943 Obj.rels(*CGRelSection);
6944 if (!CGProfileRelOrError) {
6945 Dumper->reportUniqueWarning("unable to load relocations for "
6946 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6947 toString(CGProfileRelOrError.takeError()));
6948 return false;
6949 }
6950
6951 CGProfileRel = *CGProfileRelOrError;
6952 for (const typename ELFT::Rel &Rel : CGProfileRel)
6953 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
6954 } else {
6955 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
6956 // the format to SHT_RELA
6957 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
6958 typename ELFT::RelaRange CGProfileRela;
6959 Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
6960 Obj.relas(*CGRelSection);
6961 if (!CGProfileRelaOrError) {
6962 Dumper->reportUniqueWarning("unable to load relocations for "
6963 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6964 toString(CGProfileRelaOrError.takeError()));
6965 return false;
6966 }
6967
6968 CGProfileRela = *CGProfileRelaOrError;
6969 for (const typename ELFT::Rela &Rela : CGProfileRela)
6970 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
6971 }
6972
6973 return true;
6974}
6975
6976template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
6977 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
6978
6979 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
6980 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
6981 };
6982 this->getSectionAndRelocations(IsMatch, SecToRelocMap);
6983
6984 for (const auto &CGMapEntry : SecToRelocMap) {
6985 const Elf_Shdr *CGSection = CGMapEntry.first;
6986 const Elf_Shdr *CGRelSection = CGMapEntry.second;
6987
6988 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
6989 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
6990 if (!CGProfileOrErr) {
6991 this->reportUniqueWarning(
6992 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6993 toString(CGProfileOrErr.takeError()));
6994 return;
6995 }
6996
6997 SmallVector<uint32_t, 128> SymbolIndices;
6998 bool UseReloc =
6999 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7000 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7001 this->reportUniqueWarning(
7002 "number of from/to pairs does not match number of frequencies");
7003 UseReloc = false;
7004 }
7005
7006 ListScope L(W, "CGProfile");
7007 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7008 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7009 DictScope D(W, "CGProfileEntry");
7010 if (UseReloc) {
7011 uint32_t From = SymbolIndices[I * 2];
7012 uint32_t To = SymbolIndices[I * 2 + 1];
7013 W.printNumber("From", this->getStaticSymbolName(From), From);
7014 W.printNumber("To", this->getStaticSymbolName(To), To);
7015 }
7016 W.printNumber("Weight", CGPE.cgp_weight);
7017 }
7018 }
7019}
7020
7021template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7022 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7023 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7024 if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP)
7025 continue;
7026 Optional<const Elf_Shdr *> FunctionSec = None;
7027 if (IsRelocatable)
7028 FunctionSec =
7029 unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7030 ListScope L(W, "BBAddrMap");
7031 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7032 this->Obj.decodeBBAddrMap(Sec);
7033 if (!BBAddrMapOrErr) {
7034 this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7035 toString(BBAddrMapOrErr.takeError()));
7036 continue;
7037 }
7038 for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7039 DictScope D(W, "Function");
7040 W.printHex("At", AM.Addr);
7041 SmallVector<uint32_t> FuncSymIndex =
7042 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7043 std::string FuncName = "<?>";
7044 if (FuncSymIndex.empty())
7045 this->reportUniqueWarning(
7046 "could not identify function symbol for address (0x" +
7047 Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7048 else
7049 FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7050 W.printString("Name", FuncName);
7051
7052 ListScope L(W, "BB entries");
7053 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7054 DictScope L(W);
7055 W.printHex("Offset", BBE.Offset);
7056 W.printHex("Size", BBE.Size);
7057 W.printBoolean("HasReturn", BBE.HasReturn);
7058 W.printBoolean("HasTailCall", BBE.HasTailCall);
7059 W.printBoolean("IsEHPad", BBE.IsEHPad);
7060 W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7061 }
7062 }
7063 }
7064}
7065
7066template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7067 ListScope L(W, "Addrsig");
7068 if (!this->DotAddrsigSec)
7069 return;
7070
7071 Expected<std::vector<uint64_t>> SymsOrErr =
7072 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7073 if (!SymsOrErr) {
7074 this->reportUniqueWarning(SymsOrErr.takeError());
7075 return;
7076 }
7077
7078 for (uint64_t Sym : *SymsOrErr)
7079 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7080}
7081
7082template <typename ELFT>
7083static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7084 ScopedPrinter &W) {
7085 // Return true if we were able to pretty-print the note, false otherwise.
7086 switch (NoteType) {
7087 default:
7088 return false;
7089 case ELF::NT_GNU_ABI_TAG: {
7090 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7091 if (!AbiTag.IsValid) {
7092 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7093 return false;
7094 } else {
7095 W.printString("OS", AbiTag.OSName);
7096 W.printString("ABI", AbiTag.ABI);
7097 }
7098 break;
7099 }
7100 case ELF::NT_GNU_BUILD_ID: {
7101 W.printString("Build ID", getGNUBuildId(Desc));
7102 break;
7103 }
7104 case ELF::NT_GNU_GOLD_VERSION:
7105 W.printString("Version", getDescAsStringRef(Desc));
7106 break;
7107 case ELF::NT_GNU_PROPERTY_TYPE_0:
7108 ListScope D(W, "Property");
7109 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7110 W.printString(Property);
7111 break;
7112 }
7113 return true;
7114}
7115
7116static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7117 ScopedPrinter &W) {
7118 // Return true if we were able to pretty-print the note, false otherwise.
7119 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7120 if (Props.empty())
7121 return false;
7122 for (const auto &KV : Props)
7123 W.printString(KV.first, KV.second);
7124 return true;
7125}
7126
7127template <typename ELFT>
7128static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7129 ArrayRef<uint8_t> Desc,
7130 ScopedPrinter &W) {
7131 switch (NoteType) {
7132 default:
7133 return false;
7134 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7135 W.printString("Version", getDescAsStringRef(Desc));
7136 break;
7137 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7138 W.printString("Producer", getDescAsStringRef(Desc));
7139 break;
7140 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7141 W.printString("Producer version", getDescAsStringRef(Desc));
7142 break;
7143 }
7144 return true;
7145}
7146
7147static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7148 W.printNumber("Page Size", Note.PageSize);
7149 for (const CoreFileMapping &Mapping : Note.Mappings) {
7150 ListScope D(W, "Mapping");
7151 W.printHex("Start", Mapping.Start);
7152 W.printHex("End", Mapping.End);
7153 W.printHex("Offset", Mapping.Offset);
7154 W.printString("Filename", Mapping.Filename);
7155 }
7156}
7157
7158template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7159 ListScope L(W, "Notes");
7160
7161 std::unique_ptr<DictScope> NoteScope;
7162 auto StartNotes = [&](Optional<StringRef> SecName,
7163 const typename ELFT::Off Offset,
7164 const typename ELFT::Addr Size) {
7165 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7166 W.printString("Name", SecName ? *SecName : "<?>");
7167 W.printHex("Offset", Offset);
7168 W.printHex("Size", Size);
7169 };
7170
7171 auto EndNotes = [&] { NoteScope.reset(); };
7172
7173 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7174 DictScope D2(W, "Note");
7175 StringRef Name = Note.getName();
7176 ArrayRef<uint8_t> Descriptor = Note.getDesc();
7177 Elf_Word Type = Note.getType();
7178
7179 // Print the note owner/type.
7180 W.printString("Owner", Name);
7181 W.printHex("Data size", Descriptor.size());
7182
7183 StringRef NoteType =
7184 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7185 if (!NoteType.empty())
7186 W.printString("Type", NoteType);
7187 else
7188 W.printString("Type",
7189 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7190
7191 // Print the description, or fallback to printing raw bytes for unknown
7192 // owners/if we fail to pretty-print the contents.
7193 if (Name == "GNU") {
7194 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7195 return Error::success();
7196 } else if (Name == "FreeBSD") {
7197 if (Optional<FreeBSDNote> N =
7198 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7199 W.printString(N->Type, N->Value);
7200 return Error::success();
7201 }
7202 } else if (Name == "AMD") {
7203 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7204 if (!N.Type.empty()) {
7205 W.printString(N.Type, N.Value);
7206 return Error::success();
7207 }
7208 } else if (Name == "AMDGPU") {
7209 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7210 if (!N.Type.empty()) {
7211 W.printString(N.Type, N.Value);
7212 return Error::success();
7213 }
7214 } else if (Name == "LLVMOMPOFFLOAD") {
7215 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7216 return Error::success();
7217 } else if (Name == "CORE") {
7218 if (Type == ELF::NT_FILE) {
7219 DataExtractor DescExtractor(Descriptor,
7220 ELFT::TargetEndianness == support::little,
7221 sizeof(Elf_Addr));
7222 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7223 printCoreNoteLLVMStyle(*N, W);
7224 return Error::success();
7225 } else {
7226 return N.takeError();
7227 }
7228 }
7229 } else if (Name == "Android") {
7230 if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7231 return Error::success();
7232 }
7233 if (!Descriptor.empty()) {
7234 W.printBinaryBlock("Description data", Descriptor);
7235 }
7236 return Error::success();
7237 };
7238
7239 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7240}
7241
7242template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7243 ListScope L(W, "LinkerOptions");
7244
7245 unsigned I = -1;
7246 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7247 ++I;
7248 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7249 continue;
7250
7251 Expected<ArrayRef<uint8_t>> ContentsOrErr =
7252 this->Obj.getSectionContents(Shdr);
7253 if (!ContentsOrErr) {
7254 this->reportUniqueWarning("unable to read the content of the "
7255 "SHT_LLVM_LINKER_OPTIONS section: " +
7256 toString(ContentsOrErr.takeError()));
7257 continue;
7258 }
7259 if (ContentsOrErr->empty())
7260 continue;
7261
7262 if (ContentsOrErr->back() != 0) {
7263 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7264 Twine(I) +
7265 " is broken: the "
7266 "content is not null-terminated");
7267 continue;
7268 }
7269
7270 SmallVector<StringRef, 16> Strings;
7271 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7272 if (Strings.size() % 2 != 0) {
7273 this->reportUniqueWarning(
7274 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7275 " is broken: an incomplete "
7276 "key-value pair was found. The last possible key was: \"" +
7277 Strings.back() + "\"");
7278 continue;
7279 }
7280
7281 for (size_t I = 0; I < Strings.size(); I += 2)
7282 W.printString(Strings[I], Strings[I + 1]);
7283 }
7284}
7285
7286template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7287 ListScope L(W, "DependentLibs");
7288 this->printDependentLibsHelper(
7289 [](const Elf_Shdr &) {},
7290 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7291}
7292
7293template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7294 ListScope L(W, "StackSizes");
7295 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7296 this->printRelocatableStackSizes([]() {});
7297 else
7298 this->printNonRelocatableStackSizes([]() {});
7299}
7300
7301template <class ELFT>
7302void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7303 ArrayRef<std::string> FuncNames) {
7304 DictScope D(W, "Entry");
7305 W.printList("Functions", FuncNames);
7306 W.printHex("Size", Size);
7307}
7308
7309template <class ELFT>
7310void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7311 auto PrintEntry = [&](const Elf_Addr *E) {
7312 W.printHex("Address", Parser.getGotAddress(E));
7313 W.printNumber("Access", Parser.getGotOffset(E));
7314 W.printHex("Initial", *E);
7315 };
7316
7317 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7318
7319 W.printHex("Canonical gp value", Parser.getGp());
7320 {
7321 ListScope RS(W, "Reserved entries");
7322 {
7323 DictScope D(W, "Entry");
7324 PrintEntry(Parser.getGotLazyResolver());
7325 W.printString("Purpose", StringRef("Lazy resolver"));
7326 }
7327
7328 if (Parser.getGotModulePointer()) {
7329 DictScope D(W, "Entry");
7330 PrintEntry(Parser.getGotModulePointer());
7331 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7332 }
7333 }
7334 {
7335 ListScope LS(W, "Local entries");
7336 for (auto &E : Parser.getLocalEntries()) {
7337 DictScope D(W, "Entry");
7338 PrintEntry(&E);
7339 }
7340 }
7341
7342 if (Parser.IsStatic)
7343 return;
7344
7345 {
7346 ListScope GS(W, "Global entries");
7347 for (auto &E : Parser.getGlobalEntries()) {
7348 DictScope D(W, "Entry");
7349
7350 PrintEntry(&E);
7351
7352 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7353 W.printHex("Value", Sym.st_value);
7354 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7355
7356 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7357 DataRegion<Elf_Word> ShndxTable(
7358 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7359 printSymbolSection(Sym, SymIndex, ShndxTable);
7360
7361 std::string SymName = this->getFullSymbolName(
7362 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7363 W.printNumber("Name", SymName, Sym.st_name);
7364 }
7365 }
7366
7367 W.printNumber("Number of TLS and multi-GOT entries",
7368 uint64_t(Parser.getOtherEntries().size()));
7369}
7370
7371template <class ELFT>
7372void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7373 auto PrintEntry = [&](const Elf_Addr *E) {
7374 W.printHex("Address", Parser.getPltAddress(E));
7375 W.printHex("Initial", *E);
7376 };
7377
7378 DictScope GS(W, "PLT GOT");
7379
7380 {
7381 ListScope RS(W, "Reserved entries");
7382 {
7383 DictScope D(W, "Entry");
7384 PrintEntry(Parser.getPltLazyResolver());
7385 W.printString("Purpose", StringRef("PLT lazy resolver"));
7386 }
7387
7388 if (auto E = Parser.getPltModulePointer()) {
7389 DictScope D(W, "Entry");
7390 PrintEntry(E);
7391 W.printString("Purpose", StringRef("Module pointer"));
7392 }
7393 }
7394 {
7395 ListScope LS(W, "Entries");
7396 DataRegion<Elf_Word> ShndxTable(
7397 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7398 for (auto &E : Parser.getPltEntries()) {
7399 DictScope D(W, "Entry");
7400 PrintEntry(&E);
7401
7402 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7403 W.printHex("Value", Sym.st_value);
7404 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7405 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7406 ShndxTable);
7407
7408 const Elf_Sym *FirstSym = cantFail(
7409 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7410 std::string SymName = this->getFullSymbolName(
7411 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7412 W.printNumber("Name", SymName, Sym.st_name);
7413 }
7414 }
7415}
7416
7417template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7418 const Elf_Mips_ABIFlags<ELFT> *Flags;
7419 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7420 getMipsAbiFlagsSection(*this)) {
7421 Flags = *SecOrErr;
7422 if (!Flags) {
7423 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7424 return;
7425 }
7426 } else {
7427 this->reportUniqueWarning(SecOrErr.takeError());
7428 return;
7429 }
7430
7431 raw_ostream &OS = W.getOStream();
7432 DictScope GS(W, "MIPS ABI Flags");
7433
7434 W.printNumber("Version", Flags->version);
7435 W.startLine() << "ISA: ";
7436 if (Flags->isa_rev <= 1)
7437 OS << format("MIPS%u", Flags->isa_level);
7438 else
7439 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7440 OS << "\n";
7441 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7442 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7443 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7444 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7445 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7446 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7447 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7448 W.printHex("Flags 2", Flags->flags2);
7449}
7450
7451template <class ELFT>
7452void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7453 ArrayRef<std::string> InputFilenames,
7454 const Archive *A) {
7455 FileScope = std::make_unique<DictScope>(this->W, FileStr);
7456 DictScope D(this->W, "FileSummary");
7457 this->W.printString("File", FileStr);
7458 this->W.printString("Format", Obj.getFileFormatName());
7459 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7460 this->W.printString(
7461 "AddressSize",
7462 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7463 this->printLoadName();
7464}