Bug Summary

File:build/source/llvm/tools/llvm-readobj/ELFDumper.cpp
Warning:line 6181, column 9
4th function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ELFDumper.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/llvm-readobj -I /build/source/llvm/tools/llvm-readobj -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/tools/llvm-readobj/ELFDumper.cpp
1//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the ELF-specific dumper for llvm-readobj.
11///
12//===----------------------------------------------------------------------===//
13
14#include "ARMEHABIPrinter.h"
15#include "DwarfCFIEHPrinter.h"
16#include "ObjDumper.h"
17#include "StackMapPrinter.h"
18#include "llvm-readobj.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/MapVector.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/ADT/Twine.h"
31#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32#include "llvm/BinaryFormat/ELF.h"
33#include "llvm/BinaryFormat/MsgPackDocument.h"
34#include "llvm/Demangle/Demangle.h"
35#include "llvm/Object/Archive.h"
36#include "llvm/Object/ELF.h"
37#include "llvm/Object/ELFObjectFile.h"
38#include "llvm/Object/ELFTypes.h"
39#include "llvm/Object/Error.h"
40#include "llvm/Object/ObjectFile.h"
41#include "llvm/Object/RelocationResolver.h"
42#include "llvm/Object/StackMapParser.h"
43#include "llvm/Support/AMDGPUMetadata.h"
44#include "llvm/Support/ARMAttributeParser.h"
45#include "llvm/Support/ARMBuildAttributes.h"
46#include "llvm/Support/Casting.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Endian.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/Format.h"
51#include "llvm/Support/FormatVariadic.h"
52#include "llvm/Support/FormattedStream.h"
53#include "llvm/Support/LEB128.h"
54#include "llvm/Support/MSP430AttributeParser.h"
55#include "llvm/Support/MSP430Attributes.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/MipsABIFlags.h"
58#include "llvm/Support/RISCVAttributeParser.h"
59#include "llvm/Support/RISCVAttributes.h"
60#include "llvm/Support/ScopedPrinter.h"
61#include "llvm/Support/raw_ostream.h"
62#include <algorithm>
63#include <cinttypes>
64#include <cstddef>
65#include <cstdint>
66#include <cstdlib>
67#include <iterator>
68#include <memory>
69#include <optional>
70#include <string>
71#include <system_error>
72#include <vector>
73
74using namespace llvm;
75using namespace llvm::object;
76using namespace ELF;
77
78#define LLVM_READOBJ_ENUM_CASE(ns, enum)case ns::enum: return "enum"; \
79 case ns::enum: \
80 return #enum;
81
82#define ENUM_ENT(enum, altName){ "enum", altName, ELF::enum } \
83 { #enum, altName, ELF::enum }
84
85#define ENUM_ENT_1(enum){ "enum", "enum", ELF::enum } \
86 { #enum, #enum, ELF::enum }
87
88namespace {
89
90template <class ELFT> struct RelSymbol {
91 RelSymbol(const typename ELFT::Sym *S, StringRef N)
92 : Sym(S), Name(N.str()) {}
93 const typename ELFT::Sym *Sym;
94 std::string Name;
95};
96
97/// Represents a contiguous uniform range in the file. We cannot just create a
98/// range directly because when creating one of these from the .dynamic table
99/// the size, entity size and virtual address are different entries in arbitrary
100/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101struct DynRegionInfo {
102 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103 : Obj(&Owner), Dumper(&D) {}
104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105 uint64_t S, uint64_t ES)
106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107
108 /// Address in current address space.
109 const uint8_t *Addr = nullptr;
110 /// Size in bytes of the region.
111 uint64_t Size = 0;
112 /// Size of each entity in the region.
113 uint64_t EntSize = 0;
114
115 /// Owner object. Used for error reporting.
116 const Binary *Obj;
117 /// Dumper used for error reporting.
118 const ObjDumper *Dumper;
119 /// Error prefix. Used for error reporting to provide more information.
120 std::string Context;
121 /// Region size name. Used for error reporting.
122 StringRef SizePrintName = "size";
123 /// Entry size name. Used for error reporting. If this field is empty, errors
124 /// will not mention the entry size.
125 StringRef EntSizePrintName = "entry size";
126
127 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128 const Type *Start = reinterpret_cast<const Type *>(Addr);
129 if (!Start)
130 return {Start, Start};
131
132 const uint64_t Offset =
133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135
136 if (Size > ObjSize - Offset) {
137 Dumper->reportUniqueWarning(
138 "unable to read data at 0x" + Twine::utohexstr(Offset) +
139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140 "): it goes past the end of the file of size 0x" +
141 Twine::utohexstr(ObjSize));
142 return {Start, Start};
143 }
144
145 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146 return {Start, Start + (Size / EntSize)};
147
148 std::string Msg;
149 if (!Context.empty())
150 Msg += Context + " has ";
151
152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153 .str();
154 if (!EntSizePrintName.empty())
155 Msg +=
156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157 .str();
158
159 Dumper->reportUniqueWarning(Msg);
160 return {Start, Start};
161 }
162};
163
164struct GroupMember {
165 StringRef Name;
166 uint64_t Index;
167};
168
169struct GroupSection {
170 StringRef Name;
171 std::string Signature;
172 uint64_t ShName;
173 uint64_t Index;
174 uint32_t Link;
175 uint32_t Info;
176 uint32_t Type;
177 std::vector<GroupMember> Members;
178};
179
180namespace {
181
182struct NoteType {
183 uint32_t ID;
184 StringRef Name;
185};
186
187} // namespace
188
189template <class ELFT> class Relocation {
190public:
191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193 Offset(R.r_offset), Info(R.r_info) {}
194
195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197 Addend = R.r_addend;
198 }
199
200 uint32_t Type;
201 uint32_t Symbol;
202 typename ELFT::uint Offset;
203 typename ELFT::uint Info;
204 std::optional<int64_t> Addend;
205};
206
207template <class ELFT> class MipsGOTParser;
208
209template <typename ELFT> class ELFDumper : public ObjDumper {
210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
211
212public:
213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214
215 void printUnwindInfo() override;
216 void printNeededLibraries() override;
217 void printHashTable() override;
218 void printGnuHashTable() override;
219 void printLoadName() override;
220 void printVersionInfo() override;
221 void printArchSpecificInfo() override;
222 void printStackMap() const override;
223 void printMemtag() override;
224 ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr);
225
226 // Hash histogram shows statistics of how efficient the hash was for the
227 // dynamic symbol table. The table shows the number of hash buckets for
228 // different lengths of chains as an absolute number and percentage of the
229 // total buckets, and the cumulative coverage of symbols for each set of
230 // buckets.
231 void printHashHistograms() override;
232
233 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
234
235 std::string describe(const Elf_Shdr &Sec) const;
236
237 unsigned getHashTableEntSize() const {
238 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
239 // sections. This violates the ELF specification.
240 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
241 Obj.getHeader().e_machine == ELF::EM_ALPHA)
242 return 8;
243 return 4;
244 }
245
246 std::vector<EnumEntry<unsigned>>
247 getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const;
248
249 Elf_Dyn_Range dynamic_table() const {
250 // A valid .dynamic section contains an array of entries terminated
251 // with a DT_NULL entry. However, sometimes the section content may
252 // continue past the DT_NULL entry, so to dump the section correctly,
253 // we first find the end of the entries by iterating over them.
254 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
255
256 size_t Size = 0;
257 while (Size < Table.size())
258 if (Table[Size++].getTag() == DT_NULL)
259 break;
260
261 return Table.slice(0, Size);
262 }
263
264 Elf_Sym_Range dynamic_symbols() const {
265 if (!DynSymRegion)
266 return Elf_Sym_Range();
267 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
268 }
269
270 const Elf_Shdr *findSectionByName(StringRef Name) const;
271
272 StringRef getDynamicStringTable() const { return DynamicStringTable; }
273
274protected:
275 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
276 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
277 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
278
279 void
280 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
281 function_ref<void(StringRef, uint64_t)> OnLibEntry);
282
283 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
284 const RelSymbol<ELFT> &RelSym) = 0;
285 virtual void printRelrReloc(const Elf_Relr &R) = 0;
286 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
287 const DynRegionInfo &Reg) {}
288 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
289 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
290 void printDynamicReloc(const Relocation<ELFT> &R);
291 void printDynamicRelocationsHelper();
292 void printRelocationsHelper(const Elf_Shdr &Sec);
293 void forEachRelocationDo(
294 const Elf_Shdr &Sec, bool RawRelr,
295 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
296 const Elf_Shdr &, const Elf_Shdr *)>
297 RelRelaFn,
298 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
299
300 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
301 bool NonVisibilityBitsUsed) const {};
302 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
303 DataRegion<Elf_Word> ShndxTable,
304 std::optional<StringRef> StrTable, bool IsDynamic,
305 bool NonVisibilityBitsUsed) const = 0;
306
307 virtual void printMipsABIFlags() = 0;
308 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
309 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
310
311 virtual void printMemtag(
312 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
313 const ArrayRef<uint8_t> AndroidNoteDesc,
314 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0;
315
316 virtual void printHashHistogram(const Elf_Hash &HashTable) const;
317 virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const;
318 virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain,
319 size_t TotalSyms, ArrayRef<size_t> Count,
320 bool IsGnu) const = 0;
321
322 Expected<ArrayRef<Elf_Versym>>
323 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
324 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
325 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
326
327 std::vector<GroupSection> getGroups();
328
329 // Returns the function symbol index for the given address. Matches the
330 // symbol's section with FunctionSec when specified.
331 // Returns std::nullopt if no function symbol can be found for the address or
332 // in case it is not defined in the specified section.
333 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
334 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
335 bool printFunctionStackSize(uint64_t SymValue,
336 std::optional<const Elf_Shdr *> FunctionSec,
337 const Elf_Shdr &StackSizeSec, DataExtractor Data,
338 uint64_t *Offset);
339 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
340 unsigned Ndx, const Elf_Shdr *SymTab,
341 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
342 const RelocationResolver &Resolver, DataExtractor Data);
343 virtual void printStackSizeEntry(uint64_t Size,
344 ArrayRef<std::string> FuncNames) = 0;
345
346 void printRelocatableStackSizes(std::function<void()> PrintHeader);
347 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
348
349 const object::ELFObjectFile<ELFT> &ObjF;
350 const ELFFile<ELFT> &Obj;
351 StringRef FileName;
352
353 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
354 uint64_t EntSize) {
355 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
356 return createError("offset (0x" + Twine::utohexstr(Offset) +
357 ") + size (0x" + Twine::utohexstr(Size) +
358 ") is greater than the file size (0x" +
359 Twine::utohexstr(Obj.getBufSize()) + ")");
360 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
361 }
362
363 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
364 support::endianness);
365 void printMipsReginfo();
366 void printMipsOptions();
367
368 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
369 void loadDynamicTable();
370 void parseDynamicTable();
371
372 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
373 bool &IsDefault) const;
374 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
375
376 DynRegionInfo DynRelRegion;
377 DynRegionInfo DynRelaRegion;
378 DynRegionInfo DynRelrRegion;
379 DynRegionInfo DynPLTRelRegion;
380 std::optional<DynRegionInfo> DynSymRegion;
381 DynRegionInfo DynSymTabShndxRegion;
382 DynRegionInfo DynamicTable;
383 StringRef DynamicStringTable;
384 const Elf_Hash *HashTable = nullptr;
385 const Elf_GnuHash *GnuHashTable = nullptr;
386 const Elf_Shdr *DotSymtabSec = nullptr;
387 const Elf_Shdr *DotDynsymSec = nullptr;
388 const Elf_Shdr *DotAddrsigSec = nullptr;
389 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
390 std::optional<uint64_t> SONameOffset;
391 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
392
393 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
394 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
395 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
396
397 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
398 DataRegion<Elf_Word> ShndxTable,
399 std::optional<StringRef> StrTable,
400 bool IsDynamic) const;
401 Expected<unsigned>
402 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
403 DataRegion<Elf_Word> ShndxTable) const;
404 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
405 unsigned SectionIndex) const;
406 std::string getStaticSymbolName(uint32_t Index) const;
407 StringRef getDynamicString(uint64_t Value) const;
408
409 void printSymbolsHelper(bool IsDynamic) const;
410 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
411
412 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
413 const Elf_Shdr *SymTab) const;
414
415 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
416
417private:
418 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
419};
420
421template <class ELFT>
422std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
423 return ::describe(Obj, Sec);
424}
425
426namespace {
427
428template <class ELFT> struct SymtabLink {
429 typename ELFT::SymRange Symbols;
430 StringRef StringTable;
431 const typename ELFT::Shdr *SymTab;
432};
433
434// Returns the linked symbol table, symbols and associated string table for a
435// given section.
436template <class ELFT>
437Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
438 const typename ELFT::Shdr &Sec,
439 unsigned ExpectedType) {
440 Expected<const typename ELFT::Shdr *> SymtabOrErr =
441 Obj.getSection(Sec.sh_link);
442 if (!SymtabOrErr)
443 return createError("invalid section linked to " + describe(Obj, Sec) +
444 ": " + toString(SymtabOrErr.takeError()));
445
446 if ((*SymtabOrErr)->sh_type != ExpectedType)
447 return createError(
448 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
449 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
450 ", but got " +
451 object::getELFSectionTypeName(Obj.getHeader().e_machine,
452 (*SymtabOrErr)->sh_type));
453
454 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
455 if (!StrTabOrErr)
456 return createError(
457 "can't get a string table for the symbol table linked to " +
458 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
459
460 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
461 if (!SymsOrErr)
462 return createError("unable to read symbols from the " + describe(Obj, Sec) +
463 ": " + toString(SymsOrErr.takeError()));
464
465 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
466}
467
468} // namespace
469
470template <class ELFT>
471Expected<ArrayRef<typename ELFT::Versym>>
472ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
473 StringRef *StrTab,
474 const Elf_Shdr **SymTabSec) const {
475 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec))(static_cast <bool> ((!SymTab && !StrTab &&
!SymTabSec) || (SymTab && StrTab && SymTabSec
)) ? void (0) : __assert_fail ("(!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 475, __extension__
__PRETTY_FUNCTION__))
;
476 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
477 sizeof(uint16_t) !=
478 0)
479 return createError("the " + describe(Sec) + " is misaligned");
480
481 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
482 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
483 if (!VersionsOrErr)
484 return createError("cannot read content of " + describe(Sec) + ": " +
485 toString(VersionsOrErr.takeError()));
486
487 Expected<SymtabLink<ELFT>> SymTabOrErr =
488 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
489 if (!SymTabOrErr) {
490 reportUniqueWarning(SymTabOrErr.takeError());
491 return *VersionsOrErr;
492 }
493
494 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
495 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
496 Twine(VersionsOrErr->size()) +
497 ") does not match the number of symbols (" +
498 Twine(SymTabOrErr->Symbols.size()) +
499 ") in the symbol table with index " +
500 Twine(Sec.sh_link));
501
502 if (SymTab) {
503 *SymTab = SymTabOrErr->Symbols;
504 *StrTab = SymTabOrErr->StringTable;
505 *SymTabSec = SymTabOrErr->SymTab;
506 }
507 return *VersionsOrErr;
508}
509
510template <class ELFT>
511void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
512 std::optional<StringRef> StrTable;
513 size_t Entries = 0;
514 Elf_Sym_Range Syms(nullptr, nullptr);
515 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
516
517 if (IsDynamic) {
518 StrTable = DynamicStringTable;
519 Syms = dynamic_symbols();
520 Entries = Syms.size();
521 } else if (DotSymtabSec) {
522 if (Expected<StringRef> StrTableOrErr =
523 Obj.getStringTableForSymtab(*DotSymtabSec))
524 StrTable = *StrTableOrErr;
525 else
526 reportUniqueWarning(
527 "unable to get the string table for the SHT_SYMTAB section: " +
528 toString(StrTableOrErr.takeError()));
529
530 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
531 Syms = *SymsOrErr;
532 else
533 reportUniqueWarning(
534 "unable to read symbols from the SHT_SYMTAB section: " +
535 toString(SymsOrErr.takeError()));
536 Entries = DotSymtabSec->getEntityCount();
537 }
538 if (Syms.empty())
539 return;
540
541 // The st_other field has 2 logical parts. The first two bits hold the symbol
542 // visibility (STV_*) and the remainder hold other platform-specific values.
543 bool NonVisibilityBitsUsed =
544 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
545
546 DataRegion<Elf_Word> ShndxTable =
547 IsDynamic ? DataRegion<Elf_Word>(
548 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
549 this->getElfObject().getELFFile().end())
550 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
551
552 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
553 for (const Elf_Sym &Sym : Syms)
554 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
555 NonVisibilityBitsUsed);
556}
557
558template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
559 formatted_raw_ostream &OS;
560
561public:
562 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
563
564 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
565 : ELFDumper<ELFT>(ObjF, Writer),
566 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
567 assert(&this->W.getOStream() == &llvm::fouts())(static_cast <bool> (&this->W.getOStream() == &
llvm::fouts()) ? void (0) : __assert_fail ("&this->W.getOStream() == &llvm::fouts()"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 567, __extension__
__PRETTY_FUNCTION__))
;
568 }
569
570 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
571 ArrayRef<std::string> InputFilenames,
572 const Archive *A) override;
573 void printFileHeaders() override;
574 void printGroupSections() override;
575 void printRelocations() override;
576 void printSectionHeaders() override;
577 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
578 void printHashSymbols() override;
579 void printSectionDetails() override;
580 void printDependentLibs() override;
581 void printDynamicTable() override;
582 void printDynamicRelocations() override;
583 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
584 bool NonVisibilityBitsUsed) const override;
585 void printProgramHeaders(bool PrintProgramHeaders,
586 cl::boolOrDefault PrintSectionMapping) override;
587 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
588 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
589 void printVersionDependencySection(const Elf_Shdr *Sec) override;
590 void printCGProfile() override;
591 void printBBAddrMaps() override;
592 void printAddrsig() override;
593 void printNotes() override;
594 void printELFLinkerOptions() override;
595 void printStackSizes() override;
596 void printMemtag(
597 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
598 const ArrayRef<uint8_t> AndroidNoteDesc,
599 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
600 void printHashHistogramStats(size_t NBucket, size_t MaxChain,
601 size_t TotalSyms, ArrayRef<size_t> Count,
602 bool IsGnu) const override;
603
604private:
605 void printHashTableSymbols(const Elf_Hash &HashTable);
606 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
607
608 struct Field {
609 std::string Str;
610 unsigned Column;
611
612 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
613 Field(unsigned Col) : Column(Col) {}
614 };
615
616 template <typename T, typename TEnum>
617 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
618 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
619 TEnum EnumMask3 = {}) const {
620 std::string Str;
621 for (const EnumEntry<TEnum> &Flag : EnumValues) {
622 if (Flag.Value == 0)
623 continue;
624
625 TEnum EnumMask{};
626 if (Flag.Value & EnumMask1)
627 EnumMask = EnumMask1;
628 else if (Flag.Value & EnumMask2)
629 EnumMask = EnumMask2;
630 else if (Flag.Value & EnumMask3)
631 EnumMask = EnumMask3;
632 bool IsEnum = (Flag.Value & EnumMask) != 0;
633 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
634 (IsEnum && (Value & EnumMask) == Flag.Value)) {
635 if (!Str.empty())
636 Str += ", ";
637 Str += Flag.AltName;
638 }
639 }
640 return Str;
641 }
642
643 formatted_raw_ostream &printField(struct Field F) const {
644 if (F.Column != 0)
645 OS.PadToColumn(F.Column);
646 OS << F.Str;
647 OS.flush();
648 return OS;
649 }
650 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
651 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
652 uint32_t Bucket);
653 void printRelrReloc(const Elf_Relr &R) override;
654 void printRelRelaReloc(const Relocation<ELFT> &R,
655 const RelSymbol<ELFT> &RelSym) override;
656 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
657 DataRegion<Elf_Word> ShndxTable,
658 std::optional<StringRef> StrTable, bool IsDynamic,
659 bool NonVisibilityBitsUsed) const override;
660 void printDynamicRelocHeader(unsigned Type, StringRef Name,
661 const DynRegionInfo &Reg) override;
662
663 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
664 DataRegion<Elf_Word> ShndxTable) const;
665 void printProgramHeaders() override;
666 void printSectionMapping() override;
667 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
668 const Twine &Label, unsigned EntriesNum);
669
670 void printStackSizeEntry(uint64_t Size,
671 ArrayRef<std::string> FuncNames) override;
672
673 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
674 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
675 void printMipsABIFlags() override;
676};
677
678template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
679public:
680 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
681
682 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
683 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
684
685 void printFileHeaders() override;
686 void printGroupSections() override;
687 void printRelocations() override;
688 void printSectionHeaders() override;
689 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
690 void printDependentLibs() override;
691 void printDynamicTable() override;
692 void printDynamicRelocations() override;
693 void printProgramHeaders(bool PrintProgramHeaders,
694 cl::boolOrDefault PrintSectionMapping) override;
695 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
696 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
697 void printVersionDependencySection(const Elf_Shdr *Sec) override;
698 void printCGProfile() override;
699 void printBBAddrMaps() override;
700 void printAddrsig() override;
701 void printNotes() override;
702 void printELFLinkerOptions() override;
703 void printStackSizes() override;
704 void printMemtag(
705 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
706 const ArrayRef<uint8_t> AndroidNoteDesc,
707 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
708 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
709 DataRegion<Elf_Word> ShndxTable) const;
710 void printHashHistogramStats(size_t NBucket, size_t MaxChain,
711 size_t TotalSyms, ArrayRef<size_t> Count,
712 bool IsGnu) const override;
713
714private:
715 void printRelrReloc(const Elf_Relr &R) override;
716 void printRelRelaReloc(const Relocation<ELFT> &R,
717 const RelSymbol<ELFT> &RelSym) override;
718
719 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
720 DataRegion<Elf_Word> ShndxTable,
721 std::optional<StringRef> StrTable, bool IsDynamic,
722 bool /*NonVisibilityBitsUsed*/) const override;
723 void printProgramHeaders() override;
724 void printSectionMapping() override {}
725 void printStackSizeEntry(uint64_t Size,
726 ArrayRef<std::string> FuncNames) override;
727
728 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
729 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
730 void printMipsABIFlags() override;
731 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const;
732
733protected:
734 virtual std::string getGroupSectionHeaderName() const;
735 void printSymbolOtherField(const Elf_Sym &Symbol) const;
736 virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R,
737 StringRef SymbolName,
738 StringRef RelocName);
739 virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
740 StringRef SymbolName,
741 StringRef RelocName);
742 virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
743 const unsigned SecNdx);
744 virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const;
745 virtual void printEmptyGroupMessage() const;
746
747 ScopedPrinter &W;
748};
749
750// JSONELFDumper shares most of the same implementation as LLVMELFDumper except
751// it uses a JSONScopedPrinter.
752template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
753public:
754 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
755
756 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
757 : LLVMELFDumper<ELFT>(ObjF, Writer) {}
758
759 std::string getGroupSectionHeaderName() const override;
760
761 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
762 ArrayRef<std::string> InputFilenames,
763 const Archive *A) override;
764 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override;
765
766 void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
767 StringRef SymbolName,
768 StringRef RelocName) override;
769
770 void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
771 const unsigned SecNdx) override;
772
773 void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override;
774
775 void printEmptyGroupMessage() const override;
776
777private:
778 std::unique_ptr<DictScope> FileScope;
779};
780
781} // end anonymous namespace
782
783namespace llvm {
784
785template <class ELFT>
786static std::unique_ptr<ObjDumper>
787createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
788 if (opts::Output == opts::GNU)
789 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
790 else if (opts::Output == opts::JSON)
791 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
792 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
793}
794
795std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
796 ScopedPrinter &Writer) {
797 // Little-endian 32-bit
798 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
799 return createELFDumper(*ELFObj, Writer);
800
801 // Big-endian 32-bit
802 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
803 return createELFDumper(*ELFObj, Writer);
804
805 // Little-endian 64-bit
806 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
807 return createELFDumper(*ELFObj, Writer);
808
809 // Big-endian 64-bit
810 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
811}
812
813} // end namespace llvm
814
815template <class ELFT>
816Expected<SmallVector<std::optional<VersionEntry>, 0> *>
817ELFDumper<ELFT>::getVersionMap() const {
818 // If the VersionMap has already been loaded or if there is no dynamic symtab
819 // or version table, there is nothing to do.
820 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
821 return &VersionMap;
822
823 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
824 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
825 if (MapOrErr)
826 VersionMap = *MapOrErr;
827 else
828 return MapOrErr.takeError();
829
830 return &VersionMap;
831}
832
833template <typename ELFT>
834Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
835 bool &IsDefault) const {
836 // This is a dynamic symbol. Look in the GNU symbol version table.
837 if (!SymbolVersionSection) {
838 // No version table.
839 IsDefault = false;
840 return "";
841 }
842
843 assert(DynSymRegion && "DynSymRegion has not been initialised")(static_cast <bool> (DynSymRegion && "DynSymRegion has not been initialised"
) ? void (0) : __assert_fail ("DynSymRegion && \"DynSymRegion has not been initialised\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 843, __extension__
__PRETTY_FUNCTION__))
;
844 // Determine the position in the symbol table of this entry.
845 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
846 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
847 sizeof(Elf_Sym);
848
849 // Get the corresponding version index entry.
850 Expected<const Elf_Versym *> EntryOrErr =
851 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
852 if (!EntryOrErr)
853 return EntryOrErr.takeError();
854
855 unsigned Version = (*EntryOrErr)->vs_index;
856 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
857 IsDefault = false;
858 return "";
859 }
860
861 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
862 getVersionMap();
863 if (!MapOrErr)
864 return MapOrErr.takeError();
865
866 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
867 Sym.st_shndx == ELF::SHN_UNDEF);
868}
869
870template <typename ELFT>
871Expected<RelSymbol<ELFT>>
872ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
873 const Elf_Shdr *SymTab) const {
874 if (R.Symbol == 0)
875 return RelSymbol<ELFT>(nullptr, "");
876
877 Expected<const Elf_Sym *> SymOrErr =
878 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
879 if (!SymOrErr)
880 return createError("unable to read an entry with index " + Twine(R.Symbol) +
881 " from " + describe(*SymTab) + ": " +
882 toString(SymOrErr.takeError()));
883 const Elf_Sym *Sym = *SymOrErr;
884 if (!Sym)
885 return RelSymbol<ELFT>(nullptr, "");
886
887 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
888 if (!StrTableOrErr)
889 return StrTableOrErr.takeError();
890
891 const Elf_Sym *FirstSym =
892 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
893 std::string SymbolName =
894 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
895 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
896 return RelSymbol<ELFT>(Sym, SymbolName);
897}
898
899template <typename ELFT>
900ArrayRef<typename ELFT::Word>
901ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
902 if (Symtab) {
903 auto It = ShndxTables.find(Symtab);
904 if (It != ShndxTables.end())
905 return It->second;
906 }
907 return {};
908}
909
910static std::string maybeDemangle(StringRef Name) {
911 return opts::Demangle ? demangle(std::string(Name)) : Name.str();
912}
913
914template <typename ELFT>
915std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
916 auto Warn = [&](Error E) -> std::string {
917 reportUniqueWarning("unable to read the name of symbol with index " +
918 Twine(Index) + ": " + toString(std::move(E)));
919 return "<?>";
920 };
921
922 Expected<const typename ELFT::Sym *> SymOrErr =
923 Obj.getSymbol(DotSymtabSec, Index);
924 if (!SymOrErr)
925 return Warn(SymOrErr.takeError());
926
927 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
928 if (!StrTabOrErr)
929 return Warn(StrTabOrErr.takeError());
930
931 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
932 if (!NameOrErr)
933 return Warn(NameOrErr.takeError());
934 return maybeDemangle(*NameOrErr);
935}
936
937template <typename ELFT>
938std::string ELFDumper<ELFT>::getFullSymbolName(
939 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
940 std::optional<StringRef> StrTable, bool IsDynamic) const {
941 if (!StrTable)
942 return "<?>";
943
944 std::string SymbolName;
945 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
946 SymbolName = maybeDemangle(*NameOrErr);
947 } else {
948 reportUniqueWarning(NameOrErr.takeError());
949 return "<?>";
950 }
951
952 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
953 Expected<unsigned> SectionIndex =
954 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
955 if (!SectionIndex) {
956 reportUniqueWarning(SectionIndex.takeError());
957 return "<?>";
958 }
959 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
960 if (!NameOrErr) {
961 reportUniqueWarning(NameOrErr.takeError());
962 return ("<section " + Twine(*SectionIndex) + ">").str();
963 }
964 return std::string(*NameOrErr);
965 }
966
967 if (!IsDynamic)
968 return SymbolName;
969
970 bool IsDefault;
971 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
972 if (!VersionOrErr) {
973 reportUniqueWarning(VersionOrErr.takeError());
974 return SymbolName + "@<corrupt>";
975 }
976
977 if (!VersionOrErr->empty()) {
978 SymbolName += (IsDefault ? "@@" : "@");
979 SymbolName += *VersionOrErr;
980 }
981 return SymbolName;
982}
983
984template <typename ELFT>
985Expected<unsigned>
986ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
987 DataRegion<Elf_Word> ShndxTable) const {
988 unsigned Ndx = Symbol.st_shndx;
989 if (Ndx == SHN_XINDEX)
990 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
991 ShndxTable);
992 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
993 return Ndx;
994
995 auto CreateErr = [&](const Twine &Name,
996 std::optional<unsigned> Offset = std::nullopt) {
997 std::string Desc;
998 if (Offset)
999 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
1000 else
1001 Desc = Name.str();
1002 return createError(
1003 "unable to get section index for symbol with st_shndx = 0x" +
1004 Twine::utohexstr(Ndx) + " (" + Desc + ")");
1005 };
1006
1007 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
1008 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
1009 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
1010 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
1011 if (Ndx == ELF::SHN_UNDEF)
1012 return CreateErr("SHN_UNDEF");
1013 if (Ndx == ELF::SHN_ABS)
1014 return CreateErr("SHN_ABS");
1015 if (Ndx == ELF::SHN_COMMON)
1016 return CreateErr("SHN_COMMON");
1017 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
1018}
1019
1020template <typename ELFT>
1021Expected<StringRef>
1022ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
1023 unsigned SectionIndex) const {
1024 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
1025 if (!SecOrErr)
1026 return SecOrErr.takeError();
1027 return Obj.getSectionName(**SecOrErr);
1028}
1029
1030template <class ELFO>
1031static const typename ELFO::Elf_Shdr *
1032findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
1033 uint64_t Addr) {
1034 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
1035 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1036 return &Shdr;
1037 return nullptr;
1038}
1039
1040const EnumEntry<unsigned> ElfClass[] = {
1041 {"None", "none", ELF::ELFCLASSNONE},
1042 {"32-bit", "ELF32", ELF::ELFCLASS32},
1043 {"64-bit", "ELF64", ELF::ELFCLASS64},
1044};
1045
1046const EnumEntry<unsigned> ElfDataEncoding[] = {
1047 {"None", "none", ELF::ELFDATANONE},
1048 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1049 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
1050};
1051
1052const EnumEntry<unsigned> ElfObjectFileType[] = {
1053 {"None", "NONE (none)", ELF::ET_NONE},
1054 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1055 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1056 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1057 {"Core", "CORE (Core file)", ELF::ET_CORE},
1058};
1059
1060const EnumEntry<unsigned> ElfOSABI[] = {
1061 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1062 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1063 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1064 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1065 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1066 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1067 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1068 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1069 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1070 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1071 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1072 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1073 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1074 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1075 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1076 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1077 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1078 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1079};
1080
1081const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1082 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1083 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1084 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1085};
1086
1087const EnumEntry<unsigned> ARMElfOSABI[] = {
1088 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1089};
1090
1091const EnumEntry<unsigned> C6000ElfOSABI[] = {
1092 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1093 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1094};
1095
1096const EnumEntry<unsigned> ElfMachineType[] = {
1097 ENUM_ENT(EM_NONE, "None"){ "EM_NONE", "None", ELF::EM_NONE },
1098 ENUM_ENT(EM_M32, "WE32100"){ "EM_M32", "WE32100", ELF::EM_M32 },
1099 ENUM_ENT(EM_SPARC, "Sparc"){ "EM_SPARC", "Sparc", ELF::EM_SPARC },
1100 ENUM_ENT(EM_386, "Intel 80386"){ "EM_386", "Intel 80386", ELF::EM_386 },
1101 ENUM_ENT(EM_68K, "MC68000"){ "EM_68K", "MC68000", ELF::EM_68K },
1102 ENUM_ENT(EM_88K, "MC88000"){ "EM_88K", "MC88000", ELF::EM_88K },
1103 ENUM_ENT(EM_IAMCU, "EM_IAMCU"){ "EM_IAMCU", "EM_IAMCU", ELF::EM_IAMCU },
1104 ENUM_ENT(EM_860, "Intel 80860"){ "EM_860", "Intel 80860", ELF::EM_860 },
1105 ENUM_ENT(EM_MIPS, "MIPS R3000"){ "EM_MIPS", "MIPS R3000", ELF::EM_MIPS },
1106 ENUM_ENT(EM_S370, "IBM System/370"){ "EM_S370", "IBM System/370", ELF::EM_S370 },
1107 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"){ "EM_MIPS_RS3_LE", "MIPS R3000 little-endian", ELF::EM_MIPS_RS3_LE
}
,
1108 ENUM_ENT(EM_PARISC, "HPPA"){ "EM_PARISC", "HPPA", ELF::EM_PARISC },
1109 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"){ "EM_VPP500", "Fujitsu VPP500", ELF::EM_VPP500 },
1110 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"){ "EM_SPARC32PLUS", "Sparc v8+", ELF::EM_SPARC32PLUS },
1111 ENUM_ENT(EM_960, "Intel 80960"){ "EM_960", "Intel 80960", ELF::EM_960 },
1112 ENUM_ENT(EM_PPC, "PowerPC"){ "EM_PPC", "PowerPC", ELF::EM_PPC },
1113 ENUM_ENT(EM_PPC64, "PowerPC64"){ "EM_PPC64", "PowerPC64", ELF::EM_PPC64 },
1114 ENUM_ENT(EM_S390, "IBM S/390"){ "EM_S390", "IBM S/390", ELF::EM_S390 },
1115 ENUM_ENT(EM_SPU, "SPU"){ "EM_SPU", "SPU", ELF::EM_SPU },
1116 ENUM_ENT(EM_V800, "NEC V800 series"){ "EM_V800", "NEC V800 series", ELF::EM_V800 },
1117 ENUM_ENT(EM_FR20, "Fujistsu FR20"){ "EM_FR20", "Fujistsu FR20", ELF::EM_FR20 },
1118 ENUM_ENT(EM_RH32, "TRW RH-32"){ "EM_RH32", "TRW RH-32", ELF::EM_RH32 },
1119 ENUM_ENT(EM_RCE, "Motorola RCE"){ "EM_RCE", "Motorola RCE", ELF::EM_RCE },
1120 ENUM_ENT(EM_ARM, "ARM"){ "EM_ARM", "ARM", ELF::EM_ARM },
1121 ENUM_ENT(EM_ALPHA, "EM_ALPHA"){ "EM_ALPHA", "EM_ALPHA", ELF::EM_ALPHA },
1122 ENUM_ENT(EM_SH, "Hitachi SH"){ "EM_SH", "Hitachi SH", ELF::EM_SH },
1123 ENUM_ENT(EM_SPARCV9, "Sparc v9"){ "EM_SPARCV9", "Sparc v9", ELF::EM_SPARCV9 },
1124 ENUM_ENT(EM_TRICORE, "Siemens Tricore"){ "EM_TRICORE", "Siemens Tricore", ELF::EM_TRICORE },
1125 ENUM_ENT(EM_ARC, "ARC"){ "EM_ARC", "ARC", ELF::EM_ARC },
1126 ENUM_ENT(EM_H8_300, "Hitachi H8/300"){ "EM_H8_300", "Hitachi H8/300", ELF::EM_H8_300 },
1127 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"){ "EM_H8_300H", "Hitachi H8/300H", ELF::EM_H8_300H },
1128 ENUM_ENT(EM_H8S, "Hitachi H8S"){ "EM_H8S", "Hitachi H8S", ELF::EM_H8S },
1129 ENUM_ENT(EM_H8_500, "Hitachi H8/500"){ "EM_H8_500", "Hitachi H8/500", ELF::EM_H8_500 },
1130 ENUM_ENT(EM_IA_64, "Intel IA-64"){ "EM_IA_64", "Intel IA-64", ELF::EM_IA_64 },
1131 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"){ "EM_MIPS_X", "Stanford MIPS-X", ELF::EM_MIPS_X },
1132 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"){ "EM_COLDFIRE", "Motorola Coldfire", ELF::EM_COLDFIRE },
1133 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"){ "EM_68HC12", "Motorola MC68HC12 Microcontroller", ELF::EM_68HC12
}
,
1134 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"){ "EM_MMA", "Fujitsu Multimedia Accelerator", ELF::EM_MMA },
1135 ENUM_ENT(EM_PCP, "Siemens PCP"){ "EM_PCP", "Siemens PCP", ELF::EM_PCP },
1136 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"){ "EM_NCPU", "Sony nCPU embedded RISC processor", ELF::EM_NCPU
}
,
1137 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"){ "EM_NDR1", "Denso NDR1 microprocesspr", ELF::EM_NDR1 },
1138 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"){ "EM_STARCORE", "Motorola Star*Core processor", ELF::EM_STARCORE
}
,
1139 ENUM_ENT(EM_ME16, "Toyota ME16 processor"){ "EM_ME16", "Toyota ME16 processor", ELF::EM_ME16 },
1140 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"){ "EM_ST100", "STMicroelectronics ST100 processor", ELF::EM_ST100
}
,
1141 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"){ "EM_TINYJ", "Advanced Logic Corp. TinyJ embedded processor"
, ELF::EM_TINYJ }
,
1142 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"){ "EM_X86_64", "Advanced Micro Devices X86-64", ELF::EM_X86_64
}
,
1143 ENUM_ENT(EM_PDSP, "Sony DSP processor"){ "EM_PDSP", "Sony DSP processor", ELF::EM_PDSP },
1144 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"){ "EM_PDP10", "Digital Equipment Corp. PDP-10", ELF::EM_PDP10
}
,
1145 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"){ "EM_PDP11", "Digital Equipment Corp. PDP-11", ELF::EM_PDP11
}
,
1146 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"){ "EM_FX66", "Siemens FX66 microcontroller", ELF::EM_FX66 },
1147 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"){ "EM_ST9PLUS", "STMicroelectronics ST9+ 8/16 bit microcontroller"
, ELF::EM_ST9PLUS }
,
1148 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"){ "EM_ST7", "STMicroelectronics ST7 8-bit microcontroller", ELF
::EM_ST7 }
,
1149 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"){ "EM_68HC16", "Motorola MC68HC16 Microcontroller", ELF::EM_68HC16
}
,
1150 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"){ "EM_68HC11", "Motorola MC68HC11 Microcontroller", ELF::EM_68HC11
}
,
1151 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"){ "EM_68HC08", "Motorola MC68HC08 Microcontroller", ELF::EM_68HC08
}
,
1152 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"){ "EM_68HC05", "Motorola MC68HC05 Microcontroller", ELF::EM_68HC05
}
,
1153 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"){ "EM_SVX", "Silicon Graphics SVx", ELF::EM_SVX },
1154 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"){ "EM_ST19", "STMicroelectronics ST19 8-bit microcontroller",
ELF::EM_ST19 }
,
1155 ENUM_ENT(EM_VAX, "Digital VAX"){ "EM_VAX", "Digital VAX", ELF::EM_VAX },
1156 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"){ "EM_CRIS", "Axis Communications 32-bit embedded processor",
ELF::EM_CRIS }
,
1157 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"){ "EM_JAVELIN", "Infineon Technologies 32-bit embedded cpu", ELF
::EM_JAVELIN }
,
1158 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"){ "EM_FIREPATH", "Element 14 64-bit DSP processor", ELF::EM_FIREPATH
}
,
1159 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"){ "EM_ZSP", "LSI Logic's 16-bit DSP processor", ELF::EM_ZSP },
1160 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"){ "EM_MMIX", "Donald Knuth's educational 64-bit processor", ELF
::EM_MMIX }
,
1161 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"){ "EM_HUANY", "Harvard Universitys's machine-independent object format"
, ELF::EM_HUANY }
,
1162 ENUM_ENT(EM_PRISM, "Vitesse Prism"){ "EM_PRISM", "Vitesse Prism", ELF::EM_PRISM },
1163 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"){ "EM_AVR", "Atmel AVR 8-bit microcontroller", ELF::EM_AVR },
1164 ENUM_ENT(EM_FR30, "Fujitsu FR30"){ "EM_FR30", "Fujitsu FR30", ELF::EM_FR30 },
1165 ENUM_ENT(EM_D10V, "Mitsubishi D10V"){ "EM_D10V", "Mitsubishi D10V", ELF::EM_D10V },
1166 ENUM_ENT(EM_D30V, "Mitsubishi D30V"){ "EM_D30V", "Mitsubishi D30V", ELF::EM_D30V },
1167 ENUM_ENT(EM_V850, "NEC v850"){ "EM_V850", "NEC v850", ELF::EM_V850 },
1168 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"){ "EM_M32R", "Renesas M32R (formerly Mitsubishi M32r)", ELF::
EM_M32R }
,
1169 ENUM_ENT(EM_MN10300, "Matsushita MN10300"){ "EM_MN10300", "Matsushita MN10300", ELF::EM_MN10300 },
1170 ENUM_ENT(EM_MN10200, "Matsushita MN10200"){ "EM_MN10200", "Matsushita MN10200", ELF::EM_MN10200 },
1171 ENUM_ENT(EM_PJ, "picoJava"){ "EM_PJ", "picoJava", ELF::EM_PJ },
1172 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"){ "EM_OPENRISC", "OpenRISC 32-bit embedded processor", ELF::EM_OPENRISC
}
,
1173 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"){ "EM_ARC_COMPACT", "EM_ARC_COMPACT", ELF::EM_ARC_COMPACT },
1174 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"){ "EM_XTENSA", "Tensilica Xtensa Processor", ELF::EM_XTENSA },
1175 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"){ "EM_VIDEOCORE", "Alphamosaic VideoCore processor", ELF::EM_VIDEOCORE
}
,
1176 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"){ "EM_TMM_GPP", "Thompson Multimedia General Purpose Processor"
, ELF::EM_TMM_GPP }
,
1177 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"){ "EM_NS32K", "National Semiconductor 32000 series", ELF::EM_NS32K
}
,
1178 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"){ "EM_TPC", "Tenor Network TPC processor", ELF::EM_TPC },
1179 ENUM_ENT(EM_SNP1K, "EM_SNP1K"){ "EM_SNP1K", "EM_SNP1K", ELF::EM_SNP1K },
1180 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"){ "EM_ST200", "STMicroelectronics ST200 microcontroller", ELF
::EM_ST200 }
,
1181 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"){ "EM_IP2K", "Ubicom IP2xxx 8-bit microcontrollers", ELF::EM_IP2K
}
,
1182 ENUM_ENT(EM_MAX, "MAX Processor"){ "EM_MAX", "MAX Processor", ELF::EM_MAX },
1183 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"){ "EM_CR", "National Semiconductor CompactRISC", ELF::EM_CR },
1184 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"){ "EM_F2MC16", "Fujitsu F2MC16", ELF::EM_F2MC16 },
1185 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"){ "EM_MSP430", "Texas Instruments msp430 microcontroller", ELF
::EM_MSP430 }
,
1186 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"){ "EM_BLACKFIN", "Analog Devices Blackfin", ELF::EM_BLACKFIN },
1187 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"){ "EM_SE_C33", "S1C33 Family of Seiko Epson processors", ELF::
EM_SE_C33 }
,
1188 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"){ "EM_SEP", "Sharp embedded microprocessor", ELF::EM_SEP },
1189 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"){ "EM_ARCA", "Arca RISC microprocessor", ELF::EM_ARCA },
1190 ENUM_ENT(EM_UNICORE, "Unicore"){ "EM_UNICORE", "Unicore", ELF::EM_UNICORE },
1191 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"){ "EM_EXCESS", "eXcess 16/32/64-bit configurable embedded CPU"
, ELF::EM_EXCESS }
,
1192 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"){ "EM_DXP", "Icera Semiconductor Inc. Deep Execution Processor"
, ELF::EM_DXP }
,
1193 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"){ "EM_ALTERA_NIOS2", "Altera Nios", ELF::EM_ALTERA_NIOS2 },
1194 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"){ "EM_CRX", "National Semiconductor CRX microprocessor", ELF::
EM_CRX }
,
1195 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"){ "EM_XGATE", "Motorola XGATE embedded processor", ELF::EM_XGATE
}
,
1196 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"){ "EM_C166", "Infineon Technologies xc16x", ELF::EM_C166 },
1197 ENUM_ENT(EM_M16C, "Renesas M16C"){ "EM_M16C", "Renesas M16C", ELF::EM_M16C },
1198 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"){ "EM_DSPIC30F", "Microchip Technology dsPIC30F Digital Signal Controller"
, ELF::EM_DSPIC30F }
,
1199 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"){ "EM_CE", "Freescale Communication Engine RISC core", ELF::EM_CE
}
,
1200 ENUM_ENT(EM_M32C, "Renesas M32C"){ "EM_M32C", "Renesas M32C", ELF::EM_M32C },
1201 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"){ "EM_TSK3000", "Altium TSK3000 core", ELF::EM_TSK3000 },
1202 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"){ "EM_RS08", "Freescale RS08 embedded processor", ELF::EM_RS08
}
,
1203 ENUM_ENT(EM_SHARC, "EM_SHARC"){ "EM_SHARC", "EM_SHARC", ELF::EM_SHARC },
1204 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"){ "EM_ECOG2", "Cyan Technology eCOG2 microprocessor", ELF::EM_ECOG2
}
,
1205 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"){ "EM_SCORE7", "SUNPLUS S+Core", ELF::EM_SCORE7 },
1206 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"){ "EM_DSP24", "New Japan Radio (NJR) 24-bit DSP Processor", ELF
::EM_DSP24 }
,
1207 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"){ "EM_VIDEOCORE3", "Broadcom VideoCore III processor", ELF::EM_VIDEOCORE3
}
,
1208 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"){ "EM_LATTICEMICO32", "Lattice Mico32", ELF::EM_LATTICEMICO32
}
,
1209 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"){ "EM_SE_C17", "Seiko Epson C17 family", ELF::EM_SE_C17 },
1210 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"){ "EM_TI_C6000", "Texas Instruments TMS320C6000 DSP family", ELF
::EM_TI_C6000 }
,
1211 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"){ "EM_TI_C2000", "Texas Instruments TMS320C2000 DSP family", ELF
::EM_TI_C2000 }
,
1212 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"){ "EM_TI_C5500", "Texas Instruments TMS320C55x DSP family", ELF
::EM_TI_C5500 }
,
1213 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"){ "EM_MMDSP_PLUS", "STMicroelectronics 64bit VLIW Data Signal Processor"
, ELF::EM_MMDSP_PLUS }
,
1214 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"){ "EM_CYPRESS_M8C", "Cypress M8C microprocessor", ELF::EM_CYPRESS_M8C
}
,
1215 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"){ "EM_R32C", "Renesas R32C series microprocessors", ELF::EM_R32C
}
,
1216 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"){ "EM_TRIMEDIA", "NXP Semiconductors TriMedia architecture family"
, ELF::EM_TRIMEDIA }
,
1217 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"){ "EM_HEXAGON", "Qualcomm Hexagon", ELF::EM_HEXAGON },
1218 ENUM_ENT(EM_8051, "Intel 8051 and variants"){ "EM_8051", "Intel 8051 and variants", ELF::EM_8051 },
1219 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"){ "EM_STXP7X", "STMicroelectronics STxP7x family", ELF::EM_STXP7X
}
,
1220 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"){ "EM_NDS32", "Andes Technology compact code size embedded RISC processor family"
, ELF::EM_NDS32 }
,
1221 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"){ "EM_ECOG1", "Cyan Technology eCOG1 microprocessor", ELF::EM_ECOG1
}
,
1222 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1223 // an identical number to EM_ECOG1.
1224 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"){ "EM_ECOG1X", "Cyan Technology eCOG1X family", ELF::EM_ECOG1X
}
,
1225 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"){ "EM_MAXQ30", "Dallas Semiconductor MAXQ30 Core microcontrollers"
, ELF::EM_MAXQ30 }
,
1226 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"){ "EM_XIMO16", "New Japan Radio (NJR) 16-bit DSP Processor", ELF
::EM_XIMO16 }
,
1227 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"){ "EM_MANIK", "M2000 Reconfigurable RISC Microprocessor", ELF
::EM_MANIK }
,
1228 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"){ "EM_CRAYNV2", "Cray Inc. NV2 vector architecture", ELF::EM_CRAYNV2
}
,
1229 ENUM_ENT(EM_RX, "Renesas RX"){ "EM_RX", "Renesas RX", ELF::EM_RX },
1230 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"){ "EM_METAG", "Imagination Technologies Meta processor architecture"
, ELF::EM_METAG }
,
1231 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"){ "EM_MCST_ELBRUS", "MCST Elbrus general purpose hardware architecture"
, ELF::EM_MCST_ELBRUS }
,
1232 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"){ "EM_ECOG16", "Cyan Technology eCOG16 family", ELF::EM_ECOG16
}
,
1233 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"){ "EM_CR16", "National Semiconductor CompactRISC 16-bit processor"
, ELF::EM_CR16 }
,
1234 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"){ "EM_ETPU", "Freescale Extended Time Processing Unit", ELF::
EM_ETPU }
,
1235 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"){ "EM_SLE9X", "Infineon Technologies SLE9X core", ELF::EM_SLE9X
}
,
1236 ENUM_ENT(EM_L10M, "EM_L10M"){ "EM_L10M", "EM_L10M", ELF::EM_L10M },
1237 ENUM_ENT(EM_K10M, "EM_K10M"){ "EM_K10M", "EM_K10M", ELF::EM_K10M },
1238 ENUM_ENT(EM_AARCH64, "AArch64"){ "EM_AARCH64", "AArch64", ELF::EM_AARCH64 },
1239 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"){ "EM_AVR32", "Atmel Corporation 32-bit microprocessor family"
, ELF::EM_AVR32 }
,
1240 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"){ "EM_STM8", "STMicroeletronics STM8 8-bit microcontroller", ELF
::EM_STM8 }
,
1241 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"){ "EM_TILE64", "Tilera TILE64 multicore architecture family",
ELF::EM_TILE64 }
,
1242 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"){ "EM_TILEPRO", "Tilera TILEPro multicore architecture family"
, ELF::EM_TILEPRO }
,
1243 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"){ "EM_MICROBLAZE", "Xilinx MicroBlaze 32-bit RISC soft processor core"
, ELF::EM_MICROBLAZE }
,
1244 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"){ "EM_CUDA", "NVIDIA CUDA architecture", ELF::EM_CUDA },
1245 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"){ "EM_TILEGX", "Tilera TILE-Gx multicore architecture family"
, ELF::EM_TILEGX }
,
1246 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"){ "EM_CLOUDSHIELD", "EM_CLOUDSHIELD", ELF::EM_CLOUDSHIELD },
1247 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"){ "EM_COREA_1ST", "EM_COREA_1ST", ELF::EM_COREA_1ST },
1248 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"){ "EM_COREA_2ND", "EM_COREA_2ND", ELF::EM_COREA_2ND },
1249 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"){ "EM_ARC_COMPACT2", "EM_ARC_COMPACT2", ELF::EM_ARC_COMPACT2 },
1250 ENUM_ENT(EM_OPEN8, "EM_OPEN8"){ "EM_OPEN8", "EM_OPEN8", ELF::EM_OPEN8 },
1251 ENUM_ENT(EM_RL78, "Renesas RL78"){ "EM_RL78", "Renesas RL78", ELF::EM_RL78 },
1252 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"){ "EM_VIDEOCORE5", "Broadcom VideoCore V processor", ELF::EM_VIDEOCORE5
}
,
1253 ENUM_ENT(EM_78KOR, "EM_78KOR"){ "EM_78KOR", "EM_78KOR", ELF::EM_78KOR },
1254 ENUM_ENT(EM_56800EX, "EM_56800EX"){ "EM_56800EX", "EM_56800EX", ELF::EM_56800EX },
1255 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"){ "EM_AMDGPU", "EM_AMDGPU", ELF::EM_AMDGPU },
1256 ENUM_ENT(EM_RISCV, "RISC-V"){ "EM_RISCV", "RISC-V", ELF::EM_RISCV },
1257 ENUM_ENT(EM_LANAI, "EM_LANAI"){ "EM_LANAI", "EM_LANAI", ELF::EM_LANAI },
1258 ENUM_ENT(EM_BPF, "EM_BPF"){ "EM_BPF", "EM_BPF", ELF::EM_BPF },
1259 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"){ "EM_VE", "NEC SX-Aurora Vector Engine", ELF::EM_VE },
1260 ENUM_ENT(EM_LOONGARCH, "LoongArch"){ "EM_LOONGARCH", "LoongArch", ELF::EM_LOONGARCH },
1261};
1262
1263const EnumEntry<unsigned> ElfSymbolBindings[] = {
1264 {"Local", "LOCAL", ELF::STB_LOCAL},
1265 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1266 {"Weak", "WEAK", ELF::STB_WEAK},
1267 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1268
1269const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1270 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1271 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1272 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1273 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1274
1275const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1276 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1277};
1278
1279static const char *getGroupType(uint32_t Flag) {
1280 if (Flag & ELF::GRP_COMDAT)
1281 return "COMDAT";
1282 else
1283 return "(unknown)";
1284}
1285
1286const EnumEntry<unsigned> ElfSectionFlags[] = {
1287 ENUM_ENT(SHF_WRITE, "W"){ "SHF_WRITE", "W", ELF::SHF_WRITE },
1288 ENUM_ENT(SHF_ALLOC, "A"){ "SHF_ALLOC", "A", ELF::SHF_ALLOC },
1289 ENUM_ENT(SHF_EXECINSTR, "X"){ "SHF_EXECINSTR", "X", ELF::SHF_EXECINSTR },
1290 ENUM_ENT(SHF_MERGE, "M"){ "SHF_MERGE", "M", ELF::SHF_MERGE },
1291 ENUM_ENT(SHF_STRINGS, "S"){ "SHF_STRINGS", "S", ELF::SHF_STRINGS },
1292 ENUM_ENT(SHF_INFO_LINK, "I"){ "SHF_INFO_LINK", "I", ELF::SHF_INFO_LINK },
1293 ENUM_ENT(SHF_LINK_ORDER, "L"){ "SHF_LINK_ORDER", "L", ELF::SHF_LINK_ORDER },
1294 ENUM_ENT(SHF_OS_NONCONFORMING, "O"){ "SHF_OS_NONCONFORMING", "O", ELF::SHF_OS_NONCONFORMING },
1295 ENUM_ENT(SHF_GROUP, "G"){ "SHF_GROUP", "G", ELF::SHF_GROUP },
1296 ENUM_ENT(SHF_TLS, "T"){ "SHF_TLS", "T", ELF::SHF_TLS },
1297 ENUM_ENT(SHF_COMPRESSED, "C"){ "SHF_COMPRESSED", "C", ELF::SHF_COMPRESSED },
1298 ENUM_ENT(SHF_EXCLUDE, "E"){ "SHF_EXCLUDE", "E", ELF::SHF_EXCLUDE },
1299};
1300
1301const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1302 ENUM_ENT(SHF_GNU_RETAIN, "R"){ "SHF_GNU_RETAIN", "R", ELF::SHF_GNU_RETAIN }
1303};
1304
1305const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1306 ENUM_ENT(SHF_SUNW_NODISCARD, "R"){ "SHF_SUNW_NODISCARD", "R", ELF::SHF_SUNW_NODISCARD }
1307};
1308
1309const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1310 ENUM_ENT(XCORE_SHF_CP_SECTION, ""){ "XCORE_SHF_CP_SECTION", "", ELF::XCORE_SHF_CP_SECTION },
1311 ENUM_ENT(XCORE_SHF_DP_SECTION, ""){ "XCORE_SHF_DP_SECTION", "", ELF::XCORE_SHF_DP_SECTION }
1312};
1313
1314const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1315 ENUM_ENT(SHF_ARM_PURECODE, "y"){ "SHF_ARM_PURECODE", "y", ELF::SHF_ARM_PURECODE }
1316};
1317
1318const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1319 ENUM_ENT(SHF_HEX_GPREL, ""){ "SHF_HEX_GPREL", "", ELF::SHF_HEX_GPREL }
1320};
1321
1322const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1323 ENUM_ENT(SHF_MIPS_NODUPES, ""){ "SHF_MIPS_NODUPES", "", ELF::SHF_MIPS_NODUPES },
1324 ENUM_ENT(SHF_MIPS_NAMES, ""){ "SHF_MIPS_NAMES", "", ELF::SHF_MIPS_NAMES },
1325 ENUM_ENT(SHF_MIPS_LOCAL, ""){ "SHF_MIPS_LOCAL", "", ELF::SHF_MIPS_LOCAL },
1326 ENUM_ENT(SHF_MIPS_NOSTRIP, ""){ "SHF_MIPS_NOSTRIP", "", ELF::SHF_MIPS_NOSTRIP },
1327 ENUM_ENT(SHF_MIPS_GPREL, ""){ "SHF_MIPS_GPREL", "", ELF::SHF_MIPS_GPREL },
1328 ENUM_ENT(SHF_MIPS_MERGE, ""){ "SHF_MIPS_MERGE", "", ELF::SHF_MIPS_MERGE },
1329 ENUM_ENT(SHF_MIPS_ADDR, ""){ "SHF_MIPS_ADDR", "", ELF::SHF_MIPS_ADDR },
1330 ENUM_ENT(SHF_MIPS_STRING, ""){ "SHF_MIPS_STRING", "", ELF::SHF_MIPS_STRING }
1331};
1332
1333const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1334 ENUM_ENT(SHF_X86_64_LARGE, "l"){ "SHF_X86_64_LARGE", "l", ELF::SHF_X86_64_LARGE }
1335};
1336
1337static std::vector<EnumEntry<unsigned>>
1338getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1339 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1340 std::end(ElfSectionFlags));
1341 switch (EOSAbi) {
1342 case ELFOSABI_SOLARIS:
1343 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1344 std::end(ElfSolarisSectionFlags));
1345 break;
1346 default:
1347 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1348 std::end(ElfGNUSectionFlags));
1349 break;
1350 }
1351 switch (EMachine) {
1352 case EM_ARM:
1353 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1354 std::end(ElfARMSectionFlags));
1355 break;
1356 case EM_HEXAGON:
1357 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1358 std::end(ElfHexagonSectionFlags));
1359 break;
1360 case EM_MIPS:
1361 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1362 std::end(ElfMipsSectionFlags));
1363 break;
1364 case EM_X86_64:
1365 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1366 std::end(ElfX86_64SectionFlags));
1367 break;
1368 case EM_XCORE:
1369 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1370 std::end(ElfXCoreSectionFlags));
1371 break;
1372 default:
1373 break;
1374 }
1375 return Ret;
1376}
1377
1378static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1379 uint64_t Flags) {
1380 // Here we are trying to build the flags string in the same way as GNU does.
1381 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1382 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1383 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1384 // "p". It only will print "E" when no other processor flag is set.
1385 std::string Str;
1386 bool HasUnknownFlag = false;
1387 bool HasOSFlag = false;
1388 bool HasProcFlag = false;
1389 std::vector<EnumEntry<unsigned>> FlagsList =
1390 getSectionFlagsForTarget(EOSAbi, EMachine);
1391 while (Flags) {
1392 // Take the least significant bit as a flag.
1393 uint64_t Flag = Flags & -Flags;
1394 Flags -= Flag;
1395
1396 // Find the flag in the known flags list.
1397 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1398 // Flags with empty names are not printed in GNU style output.
1399 return E.Value == Flag && !E.AltName.empty();
1400 });
1401 if (I != FlagsList.end()) {
1402 Str += I->AltName;
1403 continue;
1404 }
1405
1406 // If we did not find a matching regular flag, then we deal with an OS
1407 // specific flag, processor specific flag or an unknown flag.
1408 if (Flag & ELF::SHF_MASKOS) {
1409 HasOSFlag = true;
1410 Flags &= ~ELF::SHF_MASKOS;
1411 } else if (Flag & ELF::SHF_MASKPROC) {
1412 HasProcFlag = true;
1413 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1414 // bit if set so that it doesn't also get printed.
1415 Flags &= ~ELF::SHF_MASKPROC;
1416 } else {
1417 HasUnknownFlag = true;
1418 }
1419 }
1420
1421 // "o", "p" and "x" are printed last.
1422 if (HasOSFlag)
1423 Str += "o";
1424 if (HasProcFlag)
1425 Str += "p";
1426 if (HasUnknownFlag)
1427 Str += "x";
1428 return Str;
1429}
1430
1431static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1432 // Check potentially overlapped processor-specific program header type.
1433 switch (Arch) {
1434 case ELF::EM_ARM:
1435 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX)case ELF::PT_ARM_EXIDX: return "PT_ARM_EXIDX";; }
1436 break;
1437 case ELF::EM_MIPS:
1438 case ELF::EM_MIPS_RS3_LE:
1439 switch (Type) {
1440 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO)case ELF::PT_MIPS_REGINFO: return "PT_MIPS_REGINFO";;
1441 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC)case ELF::PT_MIPS_RTPROC: return "PT_MIPS_RTPROC";;
1442 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS)case ELF::PT_MIPS_OPTIONS: return "PT_MIPS_OPTIONS";;
1443 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS)case ELF::PT_MIPS_ABIFLAGS: return "PT_MIPS_ABIFLAGS";;
1444 }
1445 break;
1446 case ELF::EM_RISCV:
1447 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES)case ELF::PT_RISCV_ATTRIBUTES: return "PT_RISCV_ATTRIBUTES";; }
1448 }
1449
1450 switch (Type) {
1451 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL)case ELF::PT_NULL: return "PT_NULL";;
1452 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD)case ELF::PT_LOAD: return "PT_LOAD";;
1453 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC)case ELF::PT_DYNAMIC: return "PT_DYNAMIC";;
1454 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP)case ELF::PT_INTERP: return "PT_INTERP";;
1455 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE)case ELF::PT_NOTE: return "PT_NOTE";;
1456 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB)case ELF::PT_SHLIB: return "PT_SHLIB";;
1457 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR)case ELF::PT_PHDR: return "PT_PHDR";;
1458 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS)case ELF::PT_TLS: return "PT_TLS";;
1459
1460 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME)case ELF::PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";;
1461 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND)case ELF::PT_SUNW_UNWIND: return "PT_SUNW_UNWIND";;
1462
1463 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK)case ELF::PT_GNU_STACK: return "PT_GNU_STACK";;
1464 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO)case ELF::PT_GNU_RELRO: return "PT_GNU_RELRO";;
1465 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY)case ELF::PT_GNU_PROPERTY: return "PT_GNU_PROPERTY";;
1466
1467 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE)case ELF::PT_OPENBSD_MUTABLE: return "PT_OPENBSD_MUTABLE";;
1468 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE)case ELF::PT_OPENBSD_RANDOMIZE: return "PT_OPENBSD_RANDOMIZE"
;
;
1469 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED)case ELF::PT_OPENBSD_WXNEEDED: return "PT_OPENBSD_WXNEEDED";;
1470 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA)case ELF::PT_OPENBSD_BOOTDATA: return "PT_OPENBSD_BOOTDATA";;
1471 default:
1472 return "";
1473 }
1474}
1475
1476static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1477 StringRef Seg = segmentTypeToString(Arch, Type);
1478 if (Seg.empty())
1479 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1480
1481 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1482 if (Seg.consume_front("PT_ARM_"))
1483 return Seg.str();
1484
1485 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1486 if (Seg.consume_front("PT_MIPS_"))
1487 return Seg.str();
1488
1489 // E.g. "PT_RISCV_ATTRIBUTES"
1490 if (Seg.consume_front("PT_RISCV_"))
1491 return Seg.str();
1492
1493 // E.g. "PT_LOAD" -> "LOAD".
1494 assert(Seg.startswith("PT_"))(static_cast <bool> (Seg.startswith("PT_")) ? void (0) :
__assert_fail ("Seg.startswith(\"PT_\")", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 1494, __extension__ __PRETTY_FUNCTION__))
;
1495 return Seg.drop_front(3).str();
1496}
1497
1498const EnumEntry<unsigned> ElfSegmentFlags[] = {
1499 LLVM_READOBJ_ENUM_ENT(ELF, PF_X){ "PF_X", ELF::PF_X },
1500 LLVM_READOBJ_ENUM_ENT(ELF, PF_W){ "PF_W", ELF::PF_W },
1501 LLVM_READOBJ_ENUM_ENT(ELF, PF_R){ "PF_R", ELF::PF_R }
1502};
1503
1504const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1505 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"){ "EF_MIPS_NOREORDER", "noreorder", ELF::EF_MIPS_NOREORDER },
1506 ENUM_ENT(EF_MIPS_PIC, "pic"){ "EF_MIPS_PIC", "pic", ELF::EF_MIPS_PIC },
1507 ENUM_ENT(EF_MIPS_CPIC, "cpic"){ "EF_MIPS_CPIC", "cpic", ELF::EF_MIPS_CPIC },
1508 ENUM_ENT(EF_MIPS_ABI2, "abi2"){ "EF_MIPS_ABI2", "abi2", ELF::EF_MIPS_ABI2 },
1509 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"){ "EF_MIPS_32BITMODE", "32bitmode", ELF::EF_MIPS_32BITMODE },
1510 ENUM_ENT(EF_MIPS_FP64, "fp64"){ "EF_MIPS_FP64", "fp64", ELF::EF_MIPS_FP64 },
1511 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"){ "EF_MIPS_NAN2008", "nan2008", ELF::EF_MIPS_NAN2008 },
1512 ENUM_ENT(EF_MIPS_ABI_O32, "o32"){ "EF_MIPS_ABI_O32", "o32", ELF::EF_MIPS_ABI_O32 },
1513 ENUM_ENT(EF_MIPS_ABI_O64, "o64"){ "EF_MIPS_ABI_O64", "o64", ELF::EF_MIPS_ABI_O64 },
1514 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"){ "EF_MIPS_ABI_EABI32", "eabi32", ELF::EF_MIPS_ABI_EABI32 },
1515 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"){ "EF_MIPS_ABI_EABI64", "eabi64", ELF::EF_MIPS_ABI_EABI64 },
1516 ENUM_ENT(EF_MIPS_MACH_3900, "3900"){ "EF_MIPS_MACH_3900", "3900", ELF::EF_MIPS_MACH_3900 },
1517 ENUM_ENT(EF_MIPS_MACH_4010, "4010"){ "EF_MIPS_MACH_4010", "4010", ELF::EF_MIPS_MACH_4010 },
1518 ENUM_ENT(EF_MIPS_MACH_4100, "4100"){ "EF_MIPS_MACH_4100", "4100", ELF::EF_MIPS_MACH_4100 },
1519 ENUM_ENT(EF_MIPS_MACH_4650, "4650"){ "EF_MIPS_MACH_4650", "4650", ELF::EF_MIPS_MACH_4650 },
1520 ENUM_ENT(EF_MIPS_MACH_4120, "4120"){ "EF_MIPS_MACH_4120", "4120", ELF::EF_MIPS_MACH_4120 },
1521 ENUM_ENT(EF_MIPS_MACH_4111, "4111"){ "EF_MIPS_MACH_4111", "4111", ELF::EF_MIPS_MACH_4111 },
1522 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"){ "EF_MIPS_MACH_SB1", "sb1", ELF::EF_MIPS_MACH_SB1 },
1523 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"){ "EF_MIPS_MACH_OCTEON", "octeon", ELF::EF_MIPS_MACH_OCTEON },
1524 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"){ "EF_MIPS_MACH_XLR", "xlr", ELF::EF_MIPS_MACH_XLR },
1525 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"){ "EF_MIPS_MACH_OCTEON2", "octeon2", ELF::EF_MIPS_MACH_OCTEON2
}
,
1526 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"){ "EF_MIPS_MACH_OCTEON3", "octeon3", ELF::EF_MIPS_MACH_OCTEON3
}
,
1527 ENUM_ENT(EF_MIPS_MACH_5400, "5400"){ "EF_MIPS_MACH_5400", "5400", ELF::EF_MIPS_MACH_5400 },
1528 ENUM_ENT(EF_MIPS_MACH_5900, "5900"){ "EF_MIPS_MACH_5900", "5900", ELF::EF_MIPS_MACH_5900 },
1529 ENUM_ENT(EF_MIPS_MACH_5500, "5500"){ "EF_MIPS_MACH_5500", "5500", ELF::EF_MIPS_MACH_5500 },
1530 ENUM_ENT(EF_MIPS_MACH_9000, "9000"){ "EF_MIPS_MACH_9000", "9000", ELF::EF_MIPS_MACH_9000 },
1531 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"){ "EF_MIPS_MACH_LS2E", "loongson-2e", ELF::EF_MIPS_MACH_LS2E },
1532 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"){ "EF_MIPS_MACH_LS2F", "loongson-2f", ELF::EF_MIPS_MACH_LS2F },
1533 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"){ "EF_MIPS_MACH_LS3A", "loongson-3a", ELF::EF_MIPS_MACH_LS3A },
1534 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"){ "EF_MIPS_MICROMIPS", "micromips", ELF::EF_MIPS_MICROMIPS },
1535 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"){ "EF_MIPS_ARCH_ASE_M16", "mips16", ELF::EF_MIPS_ARCH_ASE_M16
}
,
1536 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"){ "EF_MIPS_ARCH_ASE_MDMX", "mdmx", ELF::EF_MIPS_ARCH_ASE_MDMX
}
,
1537 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"){ "EF_MIPS_ARCH_1", "mips1", ELF::EF_MIPS_ARCH_1 },
1538 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"){ "EF_MIPS_ARCH_2", "mips2", ELF::EF_MIPS_ARCH_2 },
1539 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"){ "EF_MIPS_ARCH_3", "mips3", ELF::EF_MIPS_ARCH_3 },
1540 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"){ "EF_MIPS_ARCH_4", "mips4", ELF::EF_MIPS_ARCH_4 },
1541 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"){ "EF_MIPS_ARCH_5", "mips5", ELF::EF_MIPS_ARCH_5 },
1542 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"){ "EF_MIPS_ARCH_32", "mips32", ELF::EF_MIPS_ARCH_32 },
1543 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"){ "EF_MIPS_ARCH_64", "mips64", ELF::EF_MIPS_ARCH_64 },
1544 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"){ "EF_MIPS_ARCH_32R2", "mips32r2", ELF::EF_MIPS_ARCH_32R2 },
1545 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"){ "EF_MIPS_ARCH_64R2", "mips64r2", ELF::EF_MIPS_ARCH_64R2 },
1546 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"){ "EF_MIPS_ARCH_32R6", "mips32r6", ELF::EF_MIPS_ARCH_32R6 },
1547 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6"){ "EF_MIPS_ARCH_64R6", "mips64r6", ELF::EF_MIPS_ARCH_64R6 }
1548};
1549
1550const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1555 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1557 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602){ "EF_AMDGPU_MACH_AMDGCN_GFX602", ELF::EF_AMDGPU_MACH_AMDGCN_GFX602
}
,
1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705){ "EF_AMDGPU_MACH_AMDGCN_GFX705", ELF::EF_AMDGPU_MACH_AMDGCN_GFX705
}
,
1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805){ "EF_AMDGPU_MACH_AMDGCN_GFX805", ELF::EF_AMDGPU_MACH_AMDGCN_GFX805
}
,
1581 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1582 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1583 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1584 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1585 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1586 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908){ "EF_AMDGPU_MACH_AMDGCN_GFX908", ELF::EF_AMDGPU_MACH_AMDGCN_GFX908
}
,
1587 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1588 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A){ "EF_AMDGPU_MACH_AMDGCN_GFX90A", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A
}
,
1589 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C){ "EF_AMDGPU_MACH_AMDGCN_GFX90C", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C
}
,
1590 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940){ "EF_AMDGPU_MACH_AMDGCN_GFX940", ELF::EF_AMDGPU_MACH_AMDGCN_GFX940
}
,
1591 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010){ "EF_AMDGPU_MACH_AMDGCN_GFX1010", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010
}
,
1592 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011){ "EF_AMDGPU_MACH_AMDGCN_GFX1011", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011
}
,
1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012){ "EF_AMDGPU_MACH_AMDGCN_GFX1012", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012
}
,
1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013){ "EF_AMDGPU_MACH_AMDGCN_GFX1013", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013
}
,
1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030){ "EF_AMDGPU_MACH_AMDGCN_GFX1030", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030
}
,
1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031){ "EF_AMDGPU_MACH_AMDGCN_GFX1031", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031
}
,
1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032){ "EF_AMDGPU_MACH_AMDGCN_GFX1032", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032
}
,
1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033){ "EF_AMDGPU_MACH_AMDGCN_GFX1033", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033
}
,
1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034){ "EF_AMDGPU_MACH_AMDGCN_GFX1034", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034
}
,
1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035){ "EF_AMDGPU_MACH_AMDGCN_GFX1035", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035
}
,
1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036){ "EF_AMDGPU_MACH_AMDGCN_GFX1036", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036
}
,
1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100){ "EF_AMDGPU_MACH_AMDGCN_GFX1100", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100
}
,
1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101){ "EF_AMDGPU_MACH_AMDGCN_GFX1101", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101
}
,
1604 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102){ "EF_AMDGPU_MACH_AMDGCN_GFX1102", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102
}
,
1605 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103){ "EF_AMDGPU_MACH_AMDGCN_GFX1103", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103
}
,
1606 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3){ "EF_AMDGPU_FEATURE_XNACK_V3", ELF::EF_AMDGPU_FEATURE_XNACK_V3
}
,
1607 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3){ "EF_AMDGPU_FEATURE_SRAMECC_V3", ELF::EF_AMDGPU_FEATURE_SRAMECC_V3
}
1608};
1609
1610const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1611 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1612 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1613 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1614 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1615 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1616 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1617 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1618 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1619 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1620 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1621 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1622 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1623 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1624 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1625 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1626 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1627 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1628 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1629 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1630 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602){ "EF_AMDGPU_MACH_AMDGCN_GFX602", ELF::EF_AMDGPU_MACH_AMDGCN_GFX602
}
,
1631 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1632 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1633 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1634 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1635 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1636 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705){ "EF_AMDGPU_MACH_AMDGCN_GFX705", ELF::EF_AMDGPU_MACH_AMDGCN_GFX705
}
,
1637 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1638 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1639 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1640 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805){ "EF_AMDGPU_MACH_AMDGCN_GFX805", ELF::EF_AMDGPU_MACH_AMDGCN_GFX805
}
,
1641 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1642 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1643 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1644 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1645 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1646 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908){ "EF_AMDGPU_MACH_AMDGCN_GFX908", ELF::EF_AMDGPU_MACH_AMDGCN_GFX908
}
,
1647 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1648 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A){ "EF_AMDGPU_MACH_AMDGCN_GFX90A", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A
}
,
1649 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C){ "EF_AMDGPU_MACH_AMDGCN_GFX90C", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C
}
,
1650 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940){ "EF_AMDGPU_MACH_AMDGCN_GFX940", ELF::EF_AMDGPU_MACH_AMDGCN_GFX940
}
,
1651 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010){ "EF_AMDGPU_MACH_AMDGCN_GFX1010", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010
}
,
1652 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011){ "EF_AMDGPU_MACH_AMDGCN_GFX1011", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011
}
,
1653 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012){ "EF_AMDGPU_MACH_AMDGCN_GFX1012", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012
}
,
1654 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013){ "EF_AMDGPU_MACH_AMDGCN_GFX1013", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013
}
,
1655 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030){ "EF_AMDGPU_MACH_AMDGCN_GFX1030", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030
}
,
1656 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031){ "EF_AMDGPU_MACH_AMDGCN_GFX1031", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031
}
,
1657 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032){ "EF_AMDGPU_MACH_AMDGCN_GFX1032", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032
}
,
1658 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033){ "EF_AMDGPU_MACH_AMDGCN_GFX1033", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033
}
,
1659 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034){ "EF_AMDGPU_MACH_AMDGCN_GFX1034", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034
}
,
1660 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035){ "EF_AMDGPU_MACH_AMDGCN_GFX1035", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035
}
,
1661 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036){ "EF_AMDGPU_MACH_AMDGCN_GFX1036", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036
}
,
1662 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100){ "EF_AMDGPU_MACH_AMDGCN_GFX1100", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100
}
,
1663 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101){ "EF_AMDGPU_MACH_AMDGCN_GFX1101", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101
}
,
1664 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102){ "EF_AMDGPU_MACH_AMDGCN_GFX1102", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102
}
,
1665 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103){ "EF_AMDGPU_MACH_AMDGCN_GFX1103", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103
}
,
1666 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4){ "EF_AMDGPU_FEATURE_XNACK_ANY_V4", ELF::EF_AMDGPU_FEATURE_XNACK_ANY_V4
}
,
1667 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4){ "EF_AMDGPU_FEATURE_XNACK_OFF_V4", ELF::EF_AMDGPU_FEATURE_XNACK_OFF_V4
}
,
1668 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4){ "EF_AMDGPU_FEATURE_XNACK_ON_V4", ELF::EF_AMDGPU_FEATURE_XNACK_ON_V4
}
,
1669 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4){ "EF_AMDGPU_FEATURE_SRAMECC_ANY_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_ANY_V4
}
,
1670 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4){ "EF_AMDGPU_FEATURE_SRAMECC_OFF_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_OFF_V4
}
,
1671 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4){ "EF_AMDGPU_FEATURE_SRAMECC_ON_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_ON_V4
}
1672};
1673
1674const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1675 ENUM_ENT(EF_RISCV_RVC, "RVC"){ "EF_RISCV_RVC", "RVC", ELF::EF_RISCV_RVC },
1676 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"){ "EF_RISCV_FLOAT_ABI_SINGLE", "single-float ABI", ELF::EF_RISCV_FLOAT_ABI_SINGLE
}
,
1677 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"){ "EF_RISCV_FLOAT_ABI_DOUBLE", "double-float ABI", ELF::EF_RISCV_FLOAT_ABI_DOUBLE
}
,
1678 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"){ "EF_RISCV_FLOAT_ABI_QUAD", "quad-float ABI", ELF::EF_RISCV_FLOAT_ABI_QUAD
}
,
1679 ENUM_ENT(EF_RISCV_RVE, "RVE"){ "EF_RISCV_RVE", "RVE", ELF::EF_RISCV_RVE },
1680 ENUM_ENT(EF_RISCV_TSO, "TSO"){ "EF_RISCV_TSO", "TSO", ELF::EF_RISCV_TSO },
1681};
1682
1683const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1684 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1){ "EF_AVR_ARCH_AVR1", ELF::EF_AVR_ARCH_AVR1 },
1685 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2){ "EF_AVR_ARCH_AVR2", ELF::EF_AVR_ARCH_AVR2 },
1686 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25){ "EF_AVR_ARCH_AVR25", ELF::EF_AVR_ARCH_AVR25 },
1687 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3){ "EF_AVR_ARCH_AVR3", ELF::EF_AVR_ARCH_AVR3 },
1688 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31){ "EF_AVR_ARCH_AVR31", ELF::EF_AVR_ARCH_AVR31 },
1689 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35){ "EF_AVR_ARCH_AVR35", ELF::EF_AVR_ARCH_AVR35 },
1690 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4){ "EF_AVR_ARCH_AVR4", ELF::EF_AVR_ARCH_AVR4 },
1691 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5){ "EF_AVR_ARCH_AVR5", ELF::EF_AVR_ARCH_AVR5 },
1692 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51){ "EF_AVR_ARCH_AVR51", ELF::EF_AVR_ARCH_AVR51 },
1693 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6){ "EF_AVR_ARCH_AVR6", ELF::EF_AVR_ARCH_AVR6 },
1694 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY){ "EF_AVR_ARCH_AVRTINY", ELF::EF_AVR_ARCH_AVRTINY },
1695 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1){ "EF_AVR_ARCH_XMEGA1", ELF::EF_AVR_ARCH_XMEGA1 },
1696 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2){ "EF_AVR_ARCH_XMEGA2", ELF::EF_AVR_ARCH_XMEGA2 },
1697 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3){ "EF_AVR_ARCH_XMEGA3", ELF::EF_AVR_ARCH_XMEGA3 },
1698 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4){ "EF_AVR_ARCH_XMEGA4", ELF::EF_AVR_ARCH_XMEGA4 },
1699 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5){ "EF_AVR_ARCH_XMEGA5", ELF::EF_AVR_ARCH_XMEGA5 },
1700 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6){ "EF_AVR_ARCH_XMEGA6", ELF::EF_AVR_ARCH_XMEGA6 },
1701 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7){ "EF_AVR_ARCH_XMEGA7", ELF::EF_AVR_ARCH_XMEGA7 },
1702 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"){ "EF_AVR_LINKRELAX_PREPARED", "relaxable", ELF::EF_AVR_LINKRELAX_PREPARED
}
,
1703};
1704
1705const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1706 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"){ "EF_LOONGARCH_ABI_SOFT_FLOAT", "SOFT-FLOAT", ELF::EF_LOONGARCH_ABI_SOFT_FLOAT
}
,
1707 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"){ "EF_LOONGARCH_ABI_SINGLE_FLOAT", "SINGLE-FLOAT", ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT
}
,
1708 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"){ "EF_LOONGARCH_ABI_DOUBLE_FLOAT", "DOUBLE-FLOAT", ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT
}
,
1709 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"){ "EF_LOONGARCH_OBJABI_V0", "OBJ-v0", ELF::EF_LOONGARCH_OBJABI_V0
}
,
1710 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"){ "EF_LOONGARCH_OBJABI_V1", "OBJ-v1", ELF::EF_LOONGARCH_OBJABI_V1
}
,
1711};
1712
1713static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1714 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE){ "EF_XTENSA_MACH_NONE", ELF::EF_XTENSA_MACH_NONE },
1715 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN){ "EF_XTENSA_XT_INSN", ELF::EF_XTENSA_XT_INSN },
1716 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT){ "EF_XTENSA_XT_LIT", ELF::EF_XTENSA_XT_LIT }
1717};
1718
1719const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1720 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL){ "STV_INTERNAL", ELF::STV_INTERNAL },
1721 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN){ "STV_HIDDEN", ELF::STV_HIDDEN },
1722 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED){ "STV_PROTECTED", ELF::STV_PROTECTED }
1723};
1724
1725const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1726 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1727 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1728 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC){ "STO_MIPS_PIC", ELF::STO_MIPS_PIC },
1729 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS){ "STO_MIPS_MICROMIPS", ELF::STO_MIPS_MICROMIPS }
1730};
1731
1732const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1733 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS){ "STO_AARCH64_VARIANT_PCS", ELF::STO_AARCH64_VARIANT_PCS }
1734};
1735
1736const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1737 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1738 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1739 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16){ "STO_MIPS_MIPS16", ELF::STO_MIPS_MIPS16 }
1740};
1741
1742const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1743 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC){ "STO_RISCV_VARIANT_CC", ELF::STO_RISCV_VARIANT_CC }};
1744
1745static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1746 switch (Odk) {
1747 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL)case ELF::ODK_NULL: return "ODK_NULL";;
1748 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO)case ELF::ODK_REGINFO: return "ODK_REGINFO";;
1749 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS)case ELF::ODK_EXCEPTIONS: return "ODK_EXCEPTIONS";;
1750 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD)case ELF::ODK_PAD: return "ODK_PAD";;
1751 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH)case ELF::ODK_HWPATCH: return "ODK_HWPATCH";;
1752 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL)case ELF::ODK_FILL: return "ODK_FILL";;
1753 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS)case ELF::ODK_TAGS: return "ODK_TAGS";;
1754 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND)case ELF::ODK_HWAND: return "ODK_HWAND";;
1755 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR)case ELF::ODK_HWOR: return "ODK_HWOR";;
1756 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP)case ELF::ODK_GP_GROUP: return "ODK_GP_GROUP";;
1757 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT)case ELF::ODK_IDENT: return "ODK_IDENT";;
1758 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE)case ELF::ODK_PAGESIZE: return "ODK_PAGESIZE";;
1759 default:
1760 return "Unknown";
1761 }
1762}
1763
1764template <typename ELFT>
1765std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1766ELFDumper<ELFT>::findDynamic() {
1767 // Try to locate the PT_DYNAMIC header.
1768 const Elf_Phdr *DynamicPhdr = nullptr;
1769 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1770 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1771 if (Phdr.p_type != ELF::PT_DYNAMIC)
1772 continue;
1773 DynamicPhdr = &Phdr;
1774 break;
1775 }
1776 } else {
1777 reportUniqueWarning(
1778 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1779 toString(PhdrsOrErr.takeError()));
1780 }
1781
1782 // Try to locate the .dynamic section in the sections header table.
1783 const Elf_Shdr *DynamicSec = nullptr;
1784 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1785 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1786 continue;
1787 DynamicSec = &Sec;
1788 break;
1789 }
1790
1791 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1792 ObjF.getMemoryBufferRef().getBufferSize()) ||
1793 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1794 DynamicPhdr->p_offset))) {
1795 reportUniqueWarning(
1796 "PT_DYNAMIC segment offset (0x" +
1797 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1798 Twine::utohexstr(DynamicPhdr->p_filesz) +
1799 ") exceeds the size of the file (0x" +
1800 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1801 // Don't use the broken dynamic header.
1802 DynamicPhdr = nullptr;
1803 }
1804
1805 if (DynamicPhdr && DynamicSec) {
1806 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1807 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1808 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1809 reportUniqueWarning(describe(*DynamicSec) +
1810 " is not contained within the "
1811 "PT_DYNAMIC segment");
1812
1813 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1814 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1815 "PT_DYNAMIC segment");
1816 }
1817
1818 return std::make_pair(DynamicPhdr, DynamicSec);
1819}
1820
1821template <typename ELFT>
1822void ELFDumper<ELFT>::loadDynamicTable() {
1823 const Elf_Phdr *DynamicPhdr;
1824 const Elf_Shdr *DynamicSec;
1825 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1826 if (!DynamicPhdr && !DynamicSec)
1827 return;
1828
1829 DynRegionInfo FromPhdr(ObjF, *this);
1830 bool IsPhdrTableValid = false;
1831 if (DynamicPhdr) {
1832 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1833 // validated in findDynamic() and so createDRI() is not expected to fail.
1834 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1835 sizeof(Elf_Dyn)));
1836 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1837 FromPhdr.EntSizePrintName = "";
1838 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1839 }
1840
1841 // Locate the dynamic table described in a section header.
1842 // Ignore sh_entsize and use the expected value for entry size explicitly.
1843 // This allows us to dump dynamic sections with a broken sh_entsize
1844 // field.
1845 DynRegionInfo FromSec(ObjF, *this);
1846 bool IsSecTableValid = false;
1847 if (DynamicSec) {
1848 Expected<DynRegionInfo> RegOrErr =
1849 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1850 if (RegOrErr) {
1851 FromSec = *RegOrErr;
1852 FromSec.Context = describe(*DynamicSec);
1853 FromSec.EntSizePrintName = "";
1854 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1855 } else {
1856 reportUniqueWarning("unable to read the dynamic table from " +
1857 describe(*DynamicSec) + ": " +
1858 toString(RegOrErr.takeError()));
1859 }
1860 }
1861
1862 // When we only have information from one of the SHT_DYNAMIC section header or
1863 // PT_DYNAMIC program header, just use that.
1864 if (!DynamicPhdr || !DynamicSec) {
1865 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1866 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1867 parseDynamicTable();
1868 } else {
1869 reportUniqueWarning("no valid dynamic table was found");
1870 }
1871 return;
1872 }
1873
1874 // At this point we have tables found from the section header and from the
1875 // dynamic segment. Usually they match, but we have to do sanity checks to
1876 // verify that.
1877
1878 if (FromPhdr.Addr != FromSec.Addr)
1879 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1880 "program header disagree about "
1881 "the location of the dynamic table");
1882
1883 if (!IsPhdrTableValid && !IsSecTableValid) {
1884 reportUniqueWarning("no valid dynamic table was found");
1885 return;
1886 }
1887
1888 // Information in the PT_DYNAMIC program header has priority over the
1889 // information in a section header.
1890 if (IsPhdrTableValid) {
1891 if (!IsSecTableValid)
1892 reportUniqueWarning(
1893 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1894 DynamicTable = FromPhdr;
1895 } else {
1896 reportUniqueWarning(
1897 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1898 DynamicTable = FromSec;
1899 }
1900
1901 parseDynamicTable();
1902}
1903
1904template <typename ELFT>
1905ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1906 ScopedPrinter &Writer)
1907 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1908 FileName(O.getFileName()), DynRelRegion(O, *this),
1909 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1910 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1911 DynamicTable(O, *this) {
1912 if (!O.IsContentValid())
1913 return;
1914
1915 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1916 for (const Elf_Shdr &Sec : Sections) {
1917 switch (Sec.sh_type) {
1918 case ELF::SHT_SYMTAB:
1919 if (!DotSymtabSec)
1920 DotSymtabSec = &Sec;
1921 break;
1922 case ELF::SHT_DYNSYM:
1923 if (!DotDynsymSec)
1924 DotDynsymSec = &Sec;
1925
1926 if (!DynSymRegion) {
1927 Expected<DynRegionInfo> RegOrErr =
1928 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1929 if (RegOrErr) {
1930 DynSymRegion = *RegOrErr;
1931 DynSymRegion->Context = describe(Sec);
1932
1933 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1934 DynamicStringTable = *E;
1935 else
1936 reportUniqueWarning("unable to get the string table for the " +
1937 describe(Sec) + ": " + toString(E.takeError()));
1938 } else {
1939 reportUniqueWarning("unable to read dynamic symbols from " +
1940 describe(Sec) + ": " +
1941 toString(RegOrErr.takeError()));
1942 }
1943 }
1944 break;
1945 case ELF::SHT_SYMTAB_SHNDX: {
1946 uint32_t SymtabNdx = Sec.sh_link;
1947 if (SymtabNdx >= Sections.size()) {
1948 reportUniqueWarning(
1949 "unable to get the associated symbol table for " + describe(Sec) +
1950 ": sh_link (" + Twine(SymtabNdx) +
1951 ") is greater than or equal to the total number of sections (" +
1952 Twine(Sections.size()) + ")");
1953 continue;
1954 }
1955
1956 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1957 Obj.getSHNDXTable(Sec)) {
1958 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1959 .second)
1960 reportUniqueWarning(
1961 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1962 describe(Sec));
1963 } else {
1964 reportUniqueWarning(ShndxTableOrErr.takeError());
1965 }
1966 break;
1967 }
1968 case ELF::SHT_GNU_versym:
1969 if (!SymbolVersionSection)
1970 SymbolVersionSection = &Sec;
1971 break;
1972 case ELF::SHT_GNU_verdef:
1973 if (!SymbolVersionDefSection)
1974 SymbolVersionDefSection = &Sec;
1975 break;
1976 case ELF::SHT_GNU_verneed:
1977 if (!SymbolVersionNeedSection)
1978 SymbolVersionNeedSection = &Sec;
1979 break;
1980 case ELF::SHT_LLVM_ADDRSIG:
1981 if (!DotAddrsigSec)
1982 DotAddrsigSec = &Sec;
1983 break;
1984 }
1985 }
1986
1987 loadDynamicTable();
1988}
1989
1990template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1991 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1992 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1993 this->reportUniqueWarning(Msg);
1994 return Error::success();
1995 });
1996 if (!MappedAddrOrError) {
1997 this->reportUniqueWarning("unable to parse DT_" +
1998 Obj.getDynamicTagAsString(Tag) + ": " +
1999 llvm::toString(MappedAddrOrError.takeError()));
2000 return nullptr;
2001 }
2002 return MappedAddrOrError.get();
2003 };
2004
2005 const char *StringTableBegin = nullptr;
2006 uint64_t StringTableSize = 0;
2007 std::optional<DynRegionInfo> DynSymFromTable;
2008 for (const Elf_Dyn &Dyn : dynamic_table()) {
2009 switch (Dyn.d_tag) {
2010 case ELF::DT_HASH:
2011 HashTable = reinterpret_cast<const Elf_Hash *>(
2012 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2013 break;
2014 case ELF::DT_GNU_HASH:
2015 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2016 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2017 break;
2018 case ELF::DT_STRTAB:
2019 StringTableBegin = reinterpret_cast<const char *>(
2020 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2021 break;
2022 case ELF::DT_STRSZ:
2023 StringTableSize = Dyn.getVal();
2024 break;
2025 case ELF::DT_SYMTAB: {
2026 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2027 // no program headers), we ignore its value.
2028 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2029 DynSymFromTable.emplace(ObjF, *this);
2030 DynSymFromTable->Addr = VA;
2031 DynSymFromTable->EntSize = sizeof(Elf_Sym);
2032 DynSymFromTable->EntSizePrintName = "";
2033 }
2034 break;
2035 }
2036 case ELF::DT_SYMENT: {
2037 uint64_t Val = Dyn.getVal();
2038 if (Val != sizeof(Elf_Sym))
2039 this->reportUniqueWarning("DT_SYMENT value of 0x" +
2040 Twine::utohexstr(Val) +
2041 " is not the size of a symbol (0x" +
2042 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
2043 break;
2044 }
2045 case ELF::DT_RELA:
2046 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2047 break;
2048 case ELF::DT_RELASZ:
2049 DynRelaRegion.Size = Dyn.getVal();
2050 DynRelaRegion.SizePrintName = "DT_RELASZ value";
2051 break;
2052 case ELF::DT_RELAENT:
2053 DynRelaRegion.EntSize = Dyn.getVal();
2054 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2055 break;
2056 case ELF::DT_SONAME:
2057 SONameOffset = Dyn.getVal();
2058 break;
2059 case ELF::DT_REL:
2060 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2061 break;
2062 case ELF::DT_RELSZ:
2063 DynRelRegion.Size = Dyn.getVal();
2064 DynRelRegion.SizePrintName = "DT_RELSZ value";
2065 break;
2066 case ELF::DT_RELENT:
2067 DynRelRegion.EntSize = Dyn.getVal();
2068 DynRelRegion.EntSizePrintName = "DT_RELENT value";
2069 break;
2070 case ELF::DT_RELR:
2071 case ELF::DT_ANDROID_RELR:
2072 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2073 break;
2074 case ELF::DT_RELRSZ:
2075 case ELF::DT_ANDROID_RELRSZ:
2076 DynRelrRegion.Size = Dyn.getVal();
2077 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2078 ? "DT_RELRSZ value"
2079 : "DT_ANDROID_RELRSZ value";
2080 break;
2081 case ELF::DT_RELRENT:
2082 case ELF::DT_ANDROID_RELRENT:
2083 DynRelrRegion.EntSize = Dyn.getVal();
2084 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2085 ? "DT_RELRENT value"
2086 : "DT_ANDROID_RELRENT value";
2087 break;
2088 case ELF::DT_PLTREL:
2089 if (Dyn.getVal() == DT_REL)
2090 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2091 else if (Dyn.getVal() == DT_RELA)
2092 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2093 else
2094 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2095 Twine((uint64_t)Dyn.getVal()));
2096 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2097 break;
2098 case ELF::DT_JMPREL:
2099 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2100 break;
2101 case ELF::DT_PLTRELSZ:
2102 DynPLTRelRegion.Size = Dyn.getVal();
2103 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2104 break;
2105 case ELF::DT_SYMTAB_SHNDX:
2106 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2107 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2108 break;
2109 }
2110 }
2111
2112 if (StringTableBegin) {
2113 const uint64_t FileSize = Obj.getBufSize();
2114 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2115 if (StringTableSize > FileSize - Offset)
2116 reportUniqueWarning(
2117 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2118 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2119 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2120 else
2121 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2122 }
2123
2124 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2125 if (DynSymRegion) {
2126 // Often we find the information about the dynamic symbol table
2127 // location in the SHT_DYNSYM section header. However, the value in
2128 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2129 // locate .dynsym at runtime. The location we find in the section header
2130 // and the location we find here should match.
2131 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2132 reportUniqueWarning(
2133 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2134 "the location of the dynamic symbol table"));
2135
2136 // According to the ELF gABI: "The number of symbol table entries should
2137 // equal nchain". Check to see if the DT_HASH hash table nchain value
2138 // conflicts with the number of symbols in the dynamic symbol table
2139 // according to the section header.
2140 if (HashTable && IsHashTableSupported) {
2141 if (DynSymRegion->EntSize == 0)
2142 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2143 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2144 reportUniqueWarning(
2145 "hash table nchain (" + Twine(HashTable->nchain) +
2146 ") differs from symbol count derived from SHT_DYNSYM section "
2147 "header (" +
2148 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2149 }
2150 }
2151
2152 // Delay the creation of the actual dynamic symbol table until now, so that
2153 // checks can always be made against the section header-based properties,
2154 // without worrying about tag order.
2155 if (DynSymFromTable) {
2156 if (!DynSymRegion) {
2157 DynSymRegion = DynSymFromTable;
2158 } else {
2159 DynSymRegion->Addr = DynSymFromTable->Addr;
2160 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2161 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2162 }
2163 }
2164
2165 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2166 // present.
2167 if (HashTable && IsHashTableSupported && DynSymRegion) {
2168 const uint64_t FileSize = Obj.getBufSize();
2169 const uint64_t DerivedSize =
2170 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2171 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2172 if (DerivedSize > FileSize - Offset)
2173 reportUniqueWarning(
2174 "the size (0x" + Twine::utohexstr(DerivedSize) +
2175 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2176 ", derived from the hash table, goes past the end of the file (0x" +
2177 Twine::utohexstr(FileSize) + ") and will be ignored");
2178 else
2179 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2180 }
2181}
2182
2183template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2184 // Dump version symbol section.
2185 printVersionSymbolSection(SymbolVersionSection);
2186
2187 // Dump version definition section.
2188 printVersionDefinitionSection(SymbolVersionDefSection);
2189
2190 // Dump version dependency section.
2191 printVersionDependencySection(SymbolVersionNeedSection);
2192}
2193
2194#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2195 { #enum, prefix##_##enum }
2196
2197const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2198 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2199 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2200 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2201 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2202 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2203};
2204
2205const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2206 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2207 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2208 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2209 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2210 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2211 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2212 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2213 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2214 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2215 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2216 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2217 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2218 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2219 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2220 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2221 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2222 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2223 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2224 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2225 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2226 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2227 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2228 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2229 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2230 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2231 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2232 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2233};
2234
2235const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2236 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2237 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2238 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2239 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2240 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2241 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2242 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2243 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2244 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2245 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2246 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2247 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2248 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2249 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2250 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2251 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2252};
2253
2254#undef LLVM_READOBJ_DT_FLAG_ENT
2255
2256template <typename T, typename TFlag>
2257void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2258 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2259 for (const EnumEntry<TFlag> &Flag : Flags)
2260 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2261 SetFlags.push_back(Flag);
2262
2263 for (const EnumEntry<TFlag> &Flag : SetFlags)
2264 OS << Flag.Name << " ";
2265}
2266
2267template <class ELFT>
2268const typename ELFT::Shdr *
2269ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2270 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2271 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2272 if (*NameOrErr == Name)
2273 return &Shdr;
2274 } else {
2275 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2276 ": " + toString(NameOrErr.takeError()));
2277 }
2278 }
2279 return nullptr;
2280}
2281
2282template <class ELFT>
2283std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2284 uint64_t Value) const {
2285 auto FormatHexValue = [](uint64_t V) {
2286 std::string Str;
2287 raw_string_ostream OS(Str);
2288 const char *ConvChar =
2289 (opts::Output == opts::GNU) ? "0x%" PRIx64"l" "x" : "0x%" PRIX64"l" "X";
2290 OS << format(ConvChar, V);
2291 return OS.str();
2292 };
2293
2294 auto FormatFlags = [](uint64_t V,
2295 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2296 std::string Str;
2297 raw_string_ostream OS(Str);
2298 printFlags(V, Array, OS);
2299 return OS.str();
2300 };
2301
2302 // Handle custom printing of architecture specific tags
2303 switch (Obj.getHeader().e_machine) {
2304 case EM_AARCH64:
2305 switch (Type) {
2306 case DT_AARCH64_BTI_PLT:
2307 case DT_AARCH64_PAC_PLT:
2308 case DT_AARCH64_VARIANT_PCS:
2309 case DT_AARCH64_MEMTAG_GLOBALSSZ:
2310 return std::to_string(Value);
2311 case DT_AARCH64_MEMTAG_MODE:
2312 switch (Value) {
2313 case 0:
2314 return "Synchronous (0)";
2315 case 1:
2316 return "Asynchronous (1)";
2317 default:
2318 return (Twine("Unknown (") + Twine(Value) + ")").str();
2319 }
2320 case DT_AARCH64_MEMTAG_HEAP:
2321 case DT_AARCH64_MEMTAG_STACK:
2322 switch (Value) {
2323 case 0:
2324 return "Disabled (0)";
2325 case 1:
2326 return "Enabled (1)";
2327 default:
2328 return (Twine("Unknown (") + Twine(Value) + ")").str();
2329 }
2330 case DT_AARCH64_MEMTAG_GLOBALS:
2331 return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str();
2332 default:
2333 break;
2334 }
2335 break;
2336 case EM_HEXAGON:
2337 switch (Type) {
2338 case DT_HEXAGON_VER:
2339 return std::to_string(Value);
2340 case DT_HEXAGON_SYMSZ:
2341 case DT_HEXAGON_PLT:
2342 return FormatHexValue(Value);
2343 default:
2344 break;
2345 }
2346 break;
2347 case EM_MIPS:
2348 switch (Type) {
2349 case DT_MIPS_RLD_VERSION:
2350 case DT_MIPS_LOCAL_GOTNO:
2351 case DT_MIPS_SYMTABNO:
2352 case DT_MIPS_UNREFEXTNO:
2353 return std::to_string(Value);
2354 case DT_MIPS_TIME_STAMP:
2355 case DT_MIPS_ICHECKSUM:
2356 case DT_MIPS_IVERSION:
2357 case DT_MIPS_BASE_ADDRESS:
2358 case DT_MIPS_MSYM:
2359 case DT_MIPS_CONFLICT:
2360 case DT_MIPS_LIBLIST:
2361 case DT_MIPS_CONFLICTNO:
2362 case DT_MIPS_LIBLISTNO:
2363 case DT_MIPS_GOTSYM:
2364 case DT_MIPS_HIPAGENO:
2365 case DT_MIPS_RLD_MAP:
2366 case DT_MIPS_DELTA_CLASS:
2367 case DT_MIPS_DELTA_CLASS_NO:
2368 case DT_MIPS_DELTA_INSTANCE:
2369 case DT_MIPS_DELTA_RELOC:
2370 case DT_MIPS_DELTA_RELOC_NO:
2371 case DT_MIPS_DELTA_SYM:
2372 case DT_MIPS_DELTA_SYM_NO:
2373 case DT_MIPS_DELTA_CLASSSYM:
2374 case DT_MIPS_DELTA_CLASSSYM_NO:
2375 case DT_MIPS_CXX_FLAGS:
2376 case DT_MIPS_PIXIE_INIT:
2377 case DT_MIPS_SYMBOL_LIB:
2378 case DT_MIPS_LOCALPAGE_GOTIDX:
2379 case DT_MIPS_LOCAL_GOTIDX:
2380 case DT_MIPS_HIDDEN_GOTIDX:
2381 case DT_MIPS_PROTECTED_GOTIDX:
2382 case DT_MIPS_OPTIONS:
2383 case DT_MIPS_INTERFACE:
2384 case DT_MIPS_DYNSTR_ALIGN:
2385 case DT_MIPS_INTERFACE_SIZE:
2386 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2387 case DT_MIPS_PERF_SUFFIX:
2388 case DT_MIPS_COMPACT_SIZE:
2389 case DT_MIPS_GP_VALUE:
2390 case DT_MIPS_AUX_DYNAMIC:
2391 case DT_MIPS_PLTGOT:
2392 case DT_MIPS_RWPLT:
2393 case DT_MIPS_RLD_MAP_REL:
2394 case DT_MIPS_XHASH:
2395 return FormatHexValue(Value);
2396 case DT_MIPS_FLAGS:
2397 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2398 default:
2399 break;
2400 }
2401 break;
2402 default:
2403 break;
2404 }
2405
2406 switch (Type) {
2407 case DT_PLTREL:
2408 if (Value == DT_REL)
2409 return "REL";
2410 if (Value == DT_RELA)
2411 return "RELA";
2412 [[fallthrough]];
2413 case DT_PLTGOT:
2414 case DT_HASH:
2415 case DT_STRTAB:
2416 case DT_SYMTAB:
2417 case DT_RELA:
2418 case DT_INIT:
2419 case DT_FINI:
2420 case DT_REL:
2421 case DT_JMPREL:
2422 case DT_INIT_ARRAY:
2423 case DT_FINI_ARRAY:
2424 case DT_PREINIT_ARRAY:
2425 case DT_DEBUG:
2426 case DT_VERDEF:
2427 case DT_VERNEED:
2428 case DT_VERSYM:
2429 case DT_GNU_HASH:
2430 case DT_NULL:
2431 return FormatHexValue(Value);
2432 case DT_RELACOUNT:
2433 case DT_RELCOUNT:
2434 case DT_VERDEFNUM:
2435 case DT_VERNEEDNUM:
2436 return std::to_string(Value);
2437 case DT_PLTRELSZ:
2438 case DT_RELASZ:
2439 case DT_RELAENT:
2440 case DT_STRSZ:
2441 case DT_SYMENT:
2442 case DT_RELSZ:
2443 case DT_RELENT:
2444 case DT_INIT_ARRAYSZ:
2445 case DT_FINI_ARRAYSZ:
2446 case DT_PREINIT_ARRAYSZ:
2447 case DT_RELRSZ:
2448 case DT_RELRENT:
2449 case DT_ANDROID_RELSZ:
2450 case DT_ANDROID_RELASZ:
2451 return std::to_string(Value) + " (bytes)";
2452 case DT_NEEDED:
2453 case DT_SONAME:
2454 case DT_AUXILIARY:
2455 case DT_USED:
2456 case DT_FILTER:
2457 case DT_RPATH:
2458 case DT_RUNPATH: {
2459 const std::map<uint64_t, const char *> TagNames = {
2460 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2461 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2462 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2463 {DT_RUNPATH, "Library runpath"},
2464 };
2465
2466 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2467 .str();
2468 }
2469 case DT_FLAGS:
2470 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2471 case DT_FLAGS_1:
2472 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2473 default:
2474 return FormatHexValue(Value);
2475 }
2476}
2477
2478template <class ELFT>
2479StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2480 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2481 reportUniqueWarning("string table was not found");
2482 return "<?>";
2483 }
2484
2485 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2486 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2487 Msg);
2488 return "<?>";
2489 };
2490
2491 const uint64_t FileSize = Obj.getBufSize();
2492 const uint64_t Offset =
2493 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2494 if (DynamicStringTable.size() > FileSize - Offset)
2495 return WarnAndReturn(" with size 0x" +
2496 Twine::utohexstr(DynamicStringTable.size()) +
2497 " goes past the end of the file (0x" +
2498 Twine::utohexstr(FileSize) + ")",
2499 Offset);
2500
2501 if (Value >= DynamicStringTable.size())
2502 return WarnAndReturn(
2503 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2504 ": it goes past the end of the table (0x" +
2505 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2506 Offset);
2507
2508 if (DynamicStringTable.back() != '\0')
2509 return WarnAndReturn(": unable to read the string at 0x" +
2510 Twine::utohexstr(Offset + Value) +
2511 ": the string table is not null-terminated",
2512 Offset);
2513
2514 return DynamicStringTable.data() + Value;
2515}
2516
2517template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2518 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2519 Ctx.printUnwindInformation();
2520}
2521
2522// The namespace is needed to fix the compilation with GCC older than 7.0+.
2523namespace {
2524template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2525 if (Obj.getHeader().e_machine == EM_ARM) {
2526 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2527 DotSymtabSec);
2528 Ctx.PrintUnwindInformation();
2529 }
2530 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2531 Ctx.printUnwindInformation();
2532}
2533} // namespace
2534
2535template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2536 ListScope D(W, "NeededLibraries");
2537
2538 std::vector<StringRef> Libs;
2539 for (const auto &Entry : dynamic_table())
2540 if (Entry.d_tag == ELF::DT_NEEDED)
2541 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2542
2543 llvm::sort(Libs);
2544
2545 for (StringRef L : Libs)
2546 W.startLine() << L << "\n";
2547}
2548
2549template <class ELFT>
2550static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2551 const typename ELFT::Hash *H,
2552 bool *IsHeaderValid = nullptr) {
2553 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2554 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2555 if (Dumper.getHashTableEntSize() == 8) {
2556 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2557 return E.Value == Obj.getHeader().e_machine;
2558 });
2559 if (IsHeaderValid)
2560 *IsHeaderValid = false;
2561 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2562 " is not supported: it contains non-standard 8 "
2563 "byte entries on " +
2564 It->AltName + " platform");
2565 }
2566
2567 auto MakeError = [&](const Twine &Msg = "") {
2568 return createError("the hash table at offset 0x" +
2569 Twine::utohexstr(SecOffset) +
2570 " goes past the end of the file (0x" +
2571 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2572 };
2573
2574 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2575 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2576
2577 if (IsHeaderValid)
2578 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2579
2580 if (Obj.getBufSize() - SecOffset < HeaderSize)
2581 return MakeError();
2582
2583 if (Obj.getBufSize() - SecOffset - HeaderSize <
2584 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2585 return MakeError(", nbucket = " + Twine(H->nbucket) +
2586 ", nchain = " + Twine(H->nchain));
2587 return Error::success();
2588}
2589
2590template <class ELFT>
2591static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2592 const typename ELFT::GnuHash *GnuHashTable,
2593 bool *IsHeaderValid = nullptr) {
2594 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2595 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&(static_cast <bool> (TableData >= Obj.base() &&
TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"
) ? void (0) : __assert_fail ("TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && \"GnuHashTable must always point to a location inside the file\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2596, __extension__
__PRETTY_FUNCTION__))
2596 "GnuHashTable must always point to a location inside the file")(static_cast <bool> (TableData >= Obj.base() &&
TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"
) ? void (0) : __assert_fail ("TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && \"GnuHashTable must always point to a location inside the file\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2596, __extension__
__PRETTY_FUNCTION__))
;
2597
2598 uint64_t TableOffset = TableData - Obj.base();
2599 if (IsHeaderValid)
2600 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2601 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2602 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2603 Obj.getBufSize())
2604 return createError("unable to dump the SHT_GNU_HASH "
2605 "section at 0x" +
2606 Twine::utohexstr(TableOffset) +
2607 ": it goes past the end of the file");
2608 return Error::success();
2609}
2610
2611template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2612 DictScope D(W, "HashTable");
2613 if (!HashTable)
2614 return;
2615
2616 bool IsHeaderValid;
2617 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2618 if (IsHeaderValid) {
2619 W.printNumber("Num Buckets", HashTable->nbucket);
2620 W.printNumber("Num Chains", HashTable->nchain);
2621 }
2622
2623 if (Err) {
2624 reportUniqueWarning(std::move(Err));
2625 return;
2626 }
2627
2628 W.printList("Buckets", HashTable->buckets());
2629 W.printList("Chains", HashTable->chains());
2630}
2631
2632template <class ELFT>
2633static Expected<ArrayRef<typename ELFT::Word>>
2634getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2635 const typename ELFT::GnuHash *GnuHashTable) {
2636 if (!DynSymRegion)
2637 return createError("no dynamic symbol table found");
2638
2639 ArrayRef<typename ELFT::Sym> DynSymTable =
2640 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2641 size_t NumSyms = DynSymTable.size();
2642 if (!NumSyms)
2643 return createError("the dynamic symbol table is empty");
2644
2645 if (GnuHashTable->symndx < NumSyms)
2646 return GnuHashTable->values(NumSyms);
2647
2648 // A normal empty GNU hash table section produced by linker might have
2649 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2650 // and have dummy null values in the Bloom filter and in the buckets
2651 // vector (or no values at all). It happens because the value of symndx is not
2652 // important for dynamic loaders when the GNU hash table is empty. They just
2653 // skip the whole object during symbol lookup. In such cases, the symndx value
2654 // is irrelevant and we should not report a warning.
2655 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2656 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2657 return createError(
2658 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2659 ") is greater than or equal to the number of dynamic symbols (" +
2660 Twine(NumSyms) + ")");
2661 // There is no way to represent an array of (dynamic symbols count - symndx)
2662 // length.
2663 return ArrayRef<typename ELFT::Word>();
2664}
2665
2666template <typename ELFT>
2667void ELFDumper<ELFT>::printGnuHashTable() {
2668 DictScope D(W, "GnuHashTable");
2669 if (!GnuHashTable)
2670 return;
2671
2672 bool IsHeaderValid;
2673 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2674 if (IsHeaderValid) {
2675 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2676 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2677 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2678 W.printNumber("Shift Count", GnuHashTable->shift2);
2679 }
2680
2681 if (Err) {
2682 reportUniqueWarning(std::move(Err));
2683 return;
2684 }
2685
2686 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2687 W.printHexList("Bloom Filter", BloomFilter);
2688
2689 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2690 W.printList("Buckets", Buckets);
2691
2692 Expected<ArrayRef<Elf_Word>> Chains =
2693 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2694 if (!Chains) {
2695 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2696 "section: " +
2697 toString(Chains.takeError()));
2698 return;
2699 }
2700
2701 W.printHexList("Values", *Chains);
2702}
2703
2704template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2705 // Print histogram for the .hash section.
2706 if (this->HashTable) {
2707 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
2708 this->reportUniqueWarning(std::move(E));
2709 else
2710 printHashHistogram(*this->HashTable);
2711 }
2712
2713 // Print histogram for the .gnu.hash section.
2714 if (this->GnuHashTable) {
2715 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
2716 this->reportUniqueWarning(std::move(E));
2717 else
2718 printGnuHashHistogram(*this->GnuHashTable);
2719 }
2720}
2721
2722template <typename ELFT>
2723void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const {
2724 size_t NBucket = HashTable.nbucket;
2725 size_t NChain = HashTable.nchain;
2726 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
2727 ArrayRef<Elf_Word> Chains = HashTable.chains();
2728 size_t TotalSyms = 0;
2729 // If hash table is correct, we have at least chains with 0 length.
2730 size_t MaxChain = 1;
2731
2732 if (NChain == 0 || NBucket == 0)
2733 return;
2734
2735 std::vector<size_t> ChainLen(NBucket, 0);
2736 // Go over all buckets and and note chain lengths of each bucket (total
2737 // unique chain lengths).
2738 for (size_t B = 0; B < NBucket; ++B) {
2739 BitVector Visited(NChain);
2740 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
2741 if (C == ELF::STN_UNDEF)
2742 break;
2743 if (Visited[C]) {
2744 this->reportUniqueWarning(
2745 ".hash section is invalid: bucket " + Twine(C) +
2746 ": a cycle was detected in the linked chain");
2747 break;
2748 }
2749 Visited[C] = true;
2750 if (MaxChain <= ++ChainLen[B])
2751 ++MaxChain;
2752 }
2753 TotalSyms += ChainLen[B];
2754 }
2755
2756 if (!TotalSyms)
2757 return;
2758
2759 std::vector<size_t> Count(MaxChain, 0);
2760 // Count how long is the chain for each bucket.
2761 for (size_t B = 0; B < NBucket; B++)
2762 ++Count[ChainLen[B]];
2763 // Print Number of buckets with each chain lengths and their cumulative
2764 // coverage of the symbols.
2765 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false);
2766}
2767
2768template <class ELFT>
2769void ELFDumper<ELFT>::printGnuHashHistogram(
2770 const Elf_GnuHash &GnuHashTable) const {
2771 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
2772 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
2773 if (!ChainsOrErr) {
2774 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
2775 toString(ChainsOrErr.takeError()));
2776 return;
2777 }
2778
2779 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
2780 size_t Symndx = GnuHashTable.symndx;
2781 size_t TotalSyms = 0;
2782 size_t MaxChain = 1;
2783
2784 size_t NBucket = GnuHashTable.nbuckets;
2785 if (Chains.empty() || NBucket == 0)
2786 return;
2787
2788 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
2789 std::vector<size_t> ChainLen(NBucket, 0);
2790 for (size_t B = 0; B < NBucket; ++B) {
2791 if (!Buckets[B])
2792 continue;
2793 size_t Len = 1;
2794 for (size_t C = Buckets[B] - Symndx;
2795 C < Chains.size() && (Chains[C] & 1) == 0; ++C)
2796 if (MaxChain < ++Len)
2797 ++MaxChain;
2798 ChainLen[B] = Len;
2799 TotalSyms += Len;
2800 }
2801 ++MaxChain;
2802
2803 if (!TotalSyms)
2804 return;
2805
2806 std::vector<size_t> Count(MaxChain, 0);
2807 for (size_t B = 0; B < NBucket; ++B)
2808 ++Count[ChainLen[B]];
2809 // Print Number of buckets with each chain lengths and their cumulative
2810 // coverage of the symbols.
2811 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true);
2812}
2813
2814template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2815 StringRef SOName = "<Not found>";
2816 if (SONameOffset)
2817 SOName = getDynamicString(*SONameOffset);
2818 W.printString("LoadName", SOName);
2819}
2820
2821template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2822 switch (Obj.getHeader().e_machine) {
2823 case EM_ARM:
2824 if (Obj.isLE())
2825 printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2826 std::make_unique<ARMAttributeParser>(&W),
2827 support::little);
2828 else
2829 reportUniqueWarning("attribute printing not implemented for big-endian "
2830 "ARM objects");
2831 break;
2832 case EM_RISCV:
2833 if (Obj.isLE())
2834 printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2835 std::make_unique<RISCVAttributeParser>(&W),
2836 support::little);
2837 else
2838 reportUniqueWarning("attribute printing not implemented for big-endian "
2839 "RISC-V objects");
2840 break;
2841 case EM_MSP430:
2842 printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2843 std::make_unique<MSP430AttributeParser>(&W),
2844 support::little);
2845 break;
2846 case EM_MIPS: {
2847 printMipsABIFlags();
2848 printMipsOptions();
2849 printMipsReginfo();
2850 MipsGOTParser<ELFT> Parser(*this);
2851 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2852 reportUniqueWarning(std::move(E));
2853 else if (!Parser.isGotEmpty())
2854 printMipsGOT(Parser);
2855
2856 if (Error E = Parser.findPLT(dynamic_table()))
2857 reportUniqueWarning(std::move(E));
2858 else if (!Parser.isPltEmpty())
2859 printMipsPLT(Parser);
2860 break;
2861 }
2862 default:
2863 break;
2864 }
2865}
2866
2867template <class ELFT>
2868void ELFDumper<ELFT>::printAttributes(
2869 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2870 support::endianness Endianness) {
2871 assert((AttrShType != ELF::SHT_NULL) && AttrParser &&(static_cast <bool> ((AttrShType != ELF::SHT_NULL) &&
AttrParser && "Incomplete ELF attribute implementation"
) ? void (0) : __assert_fail ("(AttrShType != ELF::SHT_NULL) && AttrParser && \"Incomplete ELF attribute implementation\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2872, __extension__
__PRETTY_FUNCTION__))
2872 "Incomplete ELF attribute implementation")(static_cast <bool> ((AttrShType != ELF::SHT_NULL) &&
AttrParser && "Incomplete ELF attribute implementation"
) ? void (0) : __assert_fail ("(AttrShType != ELF::SHT_NULL) && AttrParser && \"Incomplete ELF attribute implementation\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2872, __extension__
__PRETTY_FUNCTION__))
;
2873 DictScope BA(W, "BuildAttributes");
2874 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2875 if (Sec.sh_type != AttrShType)
2876 continue;
2877
2878 ArrayRef<uint8_t> Contents;
2879 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2880 Obj.getSectionContents(Sec)) {
2881 Contents = *ContentOrErr;
2882 if (Contents.empty()) {
2883 reportUniqueWarning("the " + describe(Sec) + " is empty");
2884 continue;
2885 }
2886 } else {
2887 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2888 ": " + toString(ContentOrErr.takeError()));
2889 continue;
2890 }
2891
2892 W.printHex("FormatVersion", Contents[0]);
2893
2894 if (Error E = AttrParser->parse(Contents, Endianness))
2895 reportUniqueWarning("unable to dump attributes from the " +
2896 describe(Sec) + ": " + toString(std::move(E)));
2897 }
2898}
2899
2900namespace {
2901
2902template <class ELFT> class MipsGOTParser {
2903public:
2904 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
2905 using Entry = typename ELFT::Addr;
2906 using Entries = ArrayRef<Entry>;
2907
2908 const bool IsStatic;
2909 const ELFFile<ELFT> &Obj;
2910 const ELFDumper<ELFT> &Dumper;
2911
2912 MipsGOTParser(const ELFDumper<ELFT> &D);
2913 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2914 Error findPLT(Elf_Dyn_Range DynTable);
2915
2916 bool isGotEmpty() const { return GotEntries.empty(); }
2917 bool isPltEmpty() const { return PltEntries.empty(); }
2918
2919 uint64_t getGp() const;
2920
2921 const Entry *getGotLazyResolver() const;
2922 const Entry *getGotModulePointer() const;
2923 const Entry *getPltLazyResolver() const;
2924 const Entry *getPltModulePointer() const;
2925
2926 Entries getLocalEntries() const;
2927 Entries getGlobalEntries() const;
2928 Entries getOtherEntries() const;
2929 Entries getPltEntries() const;
2930
2931 uint64_t getGotAddress(const Entry * E) const;
2932 int64_t getGotOffset(const Entry * E) const;
2933 const Elf_Sym *getGotSym(const Entry *E) const;
2934
2935 uint64_t getPltAddress(const Entry * E) const;
2936 const Elf_Sym *getPltSym(const Entry *E) const;
2937
2938 StringRef getPltStrTable() const { return PltStrTable; }
2939 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2940
2941private:
2942 const Elf_Shdr *GotSec;
2943 size_t LocalNum;
2944 size_t GlobalNum;
2945
2946 const Elf_Shdr *PltSec;
2947 const Elf_Shdr *PltRelSec;
2948 const Elf_Shdr *PltSymTable;
2949 StringRef FileName;
2950
2951 Elf_Sym_Range GotDynSyms;
2952 StringRef PltStrTable;
2953
2954 Entries GotEntries;
2955 Entries PltEntries;
2956};
2957
2958} // end anonymous namespace
2959
2960template <class ELFT>
2961MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2962 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2963 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2964 PltRelSec(nullptr), PltSymTable(nullptr),
2965 FileName(D.getElfObject().getFileName()) {}
2966
2967template <class ELFT>
2968Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2969 Elf_Sym_Range DynSyms) {
2970 // See "Global Offset Table" in Chapter 5 in the following document
2971 // for detailed GOT description.
2972 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2973
2974 // Find static GOT secton.
2975 if (IsStatic) {
2976 GotSec = Dumper.findSectionByName(".got");
2977 if (!GotSec)
2978 return Error::success();
2979
2980 ArrayRef<uint8_t> Content =
2981 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2982 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2983 Content.size() / sizeof(Entry));
2984 LocalNum = GotEntries.size();
2985 return Error::success();
2986 }
2987
2988 // Lookup dynamic table tags which define the GOT layout.
2989 std::optional<uint64_t> DtPltGot;
2990 std::optional<uint64_t> DtLocalGotNum;
2991 std::optional<uint64_t> DtGotSym;
2992 for (const auto &Entry : DynTable) {
2993 switch (Entry.getTag()) {
2994 case ELF::DT_PLTGOT:
2995 DtPltGot = Entry.getVal();
2996 break;
2997 case ELF::DT_MIPS_LOCAL_GOTNO:
2998 DtLocalGotNum = Entry.getVal();
2999 break;
3000 case ELF::DT_MIPS_GOTSYM:
3001 DtGotSym = Entry.getVal();
3002 break;
3003 }
3004 }
3005
3006 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
3007 return Error::success();
3008
3009 if (!DtPltGot)
3010 return createError("cannot find PLTGOT dynamic tag");
3011 if (!DtLocalGotNum)
3012 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3013 if (!DtGotSym)
3014 return createError("cannot find MIPS_GOTSYM dynamic tag");
3015
3016 size_t DynSymTotal = DynSyms.size();
3017 if (*DtGotSym > DynSymTotal)
3018 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
3019 ") exceeds the number of dynamic symbols (" +
3020 Twine(DynSymTotal) + ")");
3021
3022 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
3023 if (!GotSec)
3024 return createError("there is no non-empty GOT section at 0x" +
3025 Twine::utohexstr(*DtPltGot));
3026
3027 LocalNum = *DtLocalGotNum;
3028 GlobalNum = DynSymTotal - *DtGotSym;
3029
3030 ArrayRef<uint8_t> Content =
3031 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3032 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3033 Content.size() / sizeof(Entry));
3034 GotDynSyms = DynSyms.drop_front(*DtGotSym);
3035
3036 return Error::success();
3037}
3038
3039template <class ELFT>
3040Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
3041 // Lookup dynamic table tags which define the PLT layout.
3042 std::optional<uint64_t> DtMipsPltGot;
3043 std::optional<uint64_t> DtJmpRel;
3044 for (const auto &Entry : DynTable) {
3045 switch (Entry.getTag()) {
3046 case ELF::DT_MIPS_PLTGOT:
3047 DtMipsPltGot = Entry.getVal();
3048 break;
3049 case ELF::DT_JMPREL:
3050 DtJmpRel = Entry.getVal();
3051 break;
3052 }
3053 }
3054
3055 if (!DtMipsPltGot && !DtJmpRel)
3056 return Error::success();
3057
3058 // Find PLT section.
3059 if (!DtMipsPltGot)
3060 return createError("cannot find MIPS_PLTGOT dynamic tag");
3061 if (!DtJmpRel)
3062 return createError("cannot find JMPREL dynamic tag");
3063
3064 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
3065 if (!PltSec)
3066 return createError("there is no non-empty PLTGOT section at 0x" +
3067 Twine::utohexstr(*DtMipsPltGot));
3068
3069 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
3070 if (!PltRelSec)
3071 return createError("there is no non-empty RELPLT section at 0x" +
3072 Twine::utohexstr(*DtJmpRel));
3073
3074 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
3075 Obj.getSectionContents(*PltSec))
3076 PltEntries =
3077 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
3078 PltContentOrErr->size() / sizeof(Entry));
3079 else
3080 return createError("unable to read PLTGOT section content: " +
3081 toString(PltContentOrErr.takeError()));
3082
3083 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
3084 Obj.getSection(PltRelSec->sh_link))
3085 PltSymTable = *PltSymTableOrErr;
3086 else
3087 return createError("unable to get a symbol table linked to the " +
3088 describe(Obj, *PltRelSec) + ": " +
3089 toString(PltSymTableOrErr.takeError()));
3090
3091 if (Expected<StringRef> StrTabOrErr =
3092 Obj.getStringTableForSymtab(*PltSymTable))
3093 PltStrTable = *StrTabOrErr;
3094 else
3095 return createError("unable to get a string table for the " +
3096 describe(Obj, *PltSymTable) + ": " +
3097 toString(StrTabOrErr.takeError()));
3098
3099 return Error::success();
3100}
3101
3102template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3103 return GotSec->sh_addr + 0x7ff0;
3104}
3105
3106template <class ELFT>
3107const typename MipsGOTParser<ELFT>::Entry *
3108MipsGOTParser<ELFT>::getGotLazyResolver() const {
3109 return LocalNum > 0 ? &GotEntries[0] : nullptr;
3110}
3111
3112template <class ELFT>
3113const typename MipsGOTParser<ELFT>::Entry *
3114MipsGOTParser<ELFT>::getGotModulePointer() const {
3115 if (LocalNum < 2)
3116 return nullptr;
3117 const Entry &E = GotEntries[1];
3118 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3119 return nullptr;
3120 return &E;
3121}
3122
3123template <class ELFT>
3124typename MipsGOTParser<ELFT>::Entries
3125MipsGOTParser<ELFT>::getLocalEntries() const {
3126 size_t Skip = getGotModulePointer() ? 2 : 1;
3127 if (LocalNum - Skip <= 0)
3128 return Entries();
3129 return GotEntries.slice(Skip, LocalNum - Skip);
3130}
3131
3132template <class ELFT>
3133typename MipsGOTParser<ELFT>::Entries
3134MipsGOTParser<ELFT>::getGlobalEntries() const {
3135 if (GlobalNum == 0)
3136 return Entries();
3137 return GotEntries.slice(LocalNum, GlobalNum);
3138}
3139
3140template <class ELFT>
3141typename MipsGOTParser<ELFT>::Entries
3142MipsGOTParser<ELFT>::getOtherEntries() const {
3143 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3144 if (OtherNum == 0)
3145 return Entries();
3146 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3147}
3148
3149template <class ELFT>
3150uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3151 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3152 return GotSec->sh_addr + Offset;
3153}
3154
3155template <class ELFT>
3156int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3157 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3158 return Offset - 0x7ff0;
3159}
3160
3161template <class ELFT>
3162const typename MipsGOTParser<ELFT>::Elf_Sym *
3163MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3164 int64_t Offset = std::distance(GotEntries.data(), E);
3165 return &GotDynSyms[Offset - LocalNum];
3166}
3167
3168template <class ELFT>
3169const typename MipsGOTParser<ELFT>::Entry *
3170MipsGOTParser<ELFT>::getPltLazyResolver() const {
3171 return PltEntries.empty() ? nullptr : &PltEntries[0];
3172}
3173
3174template <class ELFT>
3175const typename MipsGOTParser<ELFT>::Entry *
3176MipsGOTParser<ELFT>::getPltModulePointer() const {
3177 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3178}
3179
3180template <class ELFT>
3181typename MipsGOTParser<ELFT>::Entries
3182MipsGOTParser<ELFT>::getPltEntries() const {
3183 if (PltEntries.size() <= 2)
3184 return Entries();
3185 return PltEntries.slice(2, PltEntries.size() - 2);
3186}
3187
3188template <class ELFT>
3189uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3190 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3191 return PltSec->sh_addr + Offset;
3192}
3193
3194template <class ELFT>
3195const typename MipsGOTParser<ELFT>::Elf_Sym *
3196MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3197 int64_t Offset = std::distance(getPltEntries().data(), E);
3198 if (PltRelSec->sh_type == ELF::SHT_REL) {
3199 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3200 return unwrapOrError(FileName,
3201 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3202 } else {
3203 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3204 return unwrapOrError(FileName,
3205 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3206 }
3207}
3208
3209const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3210 {"None", Mips::AFL_EXT_NONE},
3211 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
3212 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
3213 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3214 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3215 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3216 {"LSI R4010", Mips::AFL_EXT_4010},
3217 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
3218 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
3219 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
3220 {"MIPS R4650", Mips::AFL_EXT_4650},
3221 {"MIPS R5900", Mips::AFL_EXT_5900},
3222 {"MIPS R10000", Mips::AFL_EXT_10000},
3223 {"NEC VR4100", Mips::AFL_EXT_4100},
3224 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
3225 {"NEC VR4120", Mips::AFL_EXT_4120},
3226 {"NEC VR5400", Mips::AFL_EXT_5400},
3227 {"NEC VR5500", Mips::AFL_EXT_5500},
3228 {"RMI Xlr", Mips::AFL_EXT_XLR},
3229 {"Toshiba R3900", Mips::AFL_EXT_3900}
3230};
3231
3232const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3233 {"DSP", Mips::AFL_ASE_DSP},
3234 {"DSPR2", Mips::AFL_ASE_DSPR2},
3235 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3236 {"MCU", Mips::AFL_ASE_MCU},
3237 {"MDMX", Mips::AFL_ASE_MDMX},
3238 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3239 {"MT", Mips::AFL_ASE_MT},
3240 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3241 {"VZ", Mips::AFL_ASE_VIRT},
3242 {"MSA", Mips::AFL_ASE_MSA},
3243 {"MIPS16", Mips::AFL_ASE_MIPS16},
3244 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3245 {"XPA", Mips::AFL_ASE_XPA},
3246 {"CRC", Mips::AFL_ASE_CRC},
3247 {"GINV", Mips::AFL_ASE_GINV},
3248};
3249
3250const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3251 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3252 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3253 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3254 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3255 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3256 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3257 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3258 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3259 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3260 Mips::Val_GNU_MIPS_ABI_FP_64A}
3261};
3262
3263static const EnumEntry<unsigned> ElfMipsFlags1[] {
3264 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3265};
3266
3267static int getMipsRegisterSize(uint8_t Flag) {
3268 switch (Flag) {
3269 case Mips::AFL_REG_NONE:
3270 return 0;
3271 case Mips::AFL_REG_32:
3272 return 32;
3273 case Mips::AFL_REG_64:
3274 return 64;
3275 case Mips::AFL_REG_128:
3276 return 128;
3277 default:
3278 return -1;
3279 }
3280}
3281
3282template <class ELFT>
3283static void printMipsReginfoData(ScopedPrinter &W,
3284 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3285 W.printHex("GP", Reginfo.ri_gp_value);
3286 W.printHex("General Mask", Reginfo.ri_gprmask);
3287 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3288 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3289 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3290 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3291}
3292
3293template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3294 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3295 if (!RegInfoSec) {
3296 W.startLine() << "There is no .reginfo section in the file.\n";
3297 return;
3298 }
3299
3300 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3301 Obj.getSectionContents(*RegInfoSec);
3302 if (!ContentsOrErr) {
3303 this->reportUniqueWarning(
3304 "unable to read the content of the .reginfo section (" +
3305 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3306 return;
3307 }
3308
3309 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3310 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3311 Twine::utohexstr(ContentsOrErr->size()) + ")");
3312 return;
3313 }
3314
3315 DictScope GS(W, "MIPS RegInfo");
3316 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3317 ContentsOrErr->data()));
3318}
3319
3320template <class ELFT>
3321static Expected<const Elf_Mips_Options<ELFT> *>
3322readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3323 bool &IsSupported) {
3324 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3325 return createError("the .MIPS.options section has an invalid size (0x" +
3326 Twine::utohexstr(SecData.size()) + ")");
3327
3328 const Elf_Mips_Options<ELFT> *O =
3329 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3330 const uint8_t Size = O->size;
3331 if (Size > SecData.size()) {
3332 const uint64_t Offset = SecData.data() - SecBegin;
3333 const uint64_t SecSize = Offset + SecData.size();
3334 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3335 " at offset 0x" + Twine::utohexstr(Offset) +
3336 " goes past the end of the .MIPS.options "
3337 "section of size 0x" +
3338 Twine::utohexstr(SecSize));
3339 }
3340
3341 IsSupported = O->kind == ODK_REGINFO;
3342 const size_t ExpectedSize =
3343 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3344
3345 if (IsSupported)
3346 if (Size < ExpectedSize)
3347 return createError(
3348 "a .MIPS.options entry of kind " +
3349 Twine(getElfMipsOptionsOdkType(O->kind)) +
3350 " has an invalid size (0x" + Twine::utohexstr(Size) +
3351 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3352
3353 SecData = SecData.drop_front(Size);
3354 return O;
3355}
3356
3357template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3358 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3359 if (!MipsOpts) {
3360 W.startLine() << "There is no .MIPS.options section in the file.\n";
3361 return;
3362 }
3363
3364 DictScope GS(W, "MIPS Options");
3365
3366 ArrayRef<uint8_t> Data =
3367 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3368 const uint8_t *const SecBegin = Data.begin();
3369 while (!Data.empty()) {
3370 bool IsSupported;
3371 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3372 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3373 if (!OptsOrErr) {
3374 reportUniqueWarning(OptsOrErr.takeError());
3375 break;
3376 }
3377
3378 unsigned Kind = (*OptsOrErr)->kind;
3379 const char *Type = getElfMipsOptionsOdkType(Kind);
3380 if (!IsSupported) {
3381 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3382 << ")\n";
3383 continue;
3384 }
3385
3386 DictScope GS(W, Type);
3387 if (Kind == ODK_REGINFO)
3388 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3389 else
3390 llvm_unreachable("unexpected .MIPS.options section descriptor kind")::llvm::llvm_unreachable_internal("unexpected .MIPS.options section descriptor kind"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3390)
;
3391 }
3392}
3393
3394template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3395 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3396 if (!StackMapSection)
3397 return;
3398
3399 auto Warn = [&](Error &&E) {
3400 this->reportUniqueWarning("unable to read the stack map from " +
3401 describe(*StackMapSection) + ": " +
3402 toString(std::move(E)));
3403 };
3404
3405 Expected<ArrayRef<uint8_t>> ContentOrErr =
3406 Obj.getSectionContents(*StackMapSection);
3407 if (!ContentOrErr) {
3408 Warn(ContentOrErr.takeError());
3409 return;
3410 }
3411
3412 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3413 *ContentOrErr)) {
3414 Warn(std::move(E));
3415 return;
3416 }
3417
3418 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3419}
3420
3421template <class ELFT>
3422void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3423 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3424 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3425 if (!Target)
3426 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3427 " in " + describe(Sec) + ": " +
3428 toString(Target.takeError()));
3429 else
3430 printRelRelaReloc(R, *Target);
3431}
3432
3433template <class ELFT>
3434std::vector<EnumEntry<unsigned>>
3435ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header,
3436 const Elf_Sym &Symbol) const {
3437 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
3438 std::end(ElfSymOtherFlags));
3439 if (Header.e_machine == EM_MIPS) {
3440 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16
3441 // flag overlap with other ST_MIPS_xxx flags. So consider both
3442 // cases separately.
3443 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
3444 SymOtherFlags.insert(SymOtherFlags.end(),
3445 std::begin(ElfMips16SymOtherFlags),
3446 std::end(ElfMips16SymOtherFlags));
3447 else
3448 SymOtherFlags.insert(SymOtherFlags.end(),
3449 std::begin(ElfMipsSymOtherFlags),
3450 std::end(ElfMipsSymOtherFlags));
3451 } else if (Header.e_machine == EM_AARCH64) {
3452 SymOtherFlags.insert(SymOtherFlags.end(),
3453 std::begin(ElfAArch64SymOtherFlags),
3454 std::end(ElfAArch64SymOtherFlags));
3455 } else if (Header.e_machine == EM_RISCV) {
3456 SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags),
3457 std::end(ElfRISCVSymOtherFlags));
3458 }
3459 return SymOtherFlags;
3460}
3461
3462static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3463 StringRef Str2) {
3464 OS.PadToColumn(2u);
3465 OS << Str1;
3466 OS.PadToColumn(37u);
3467 OS << Str2 << "\n";
3468 OS.flush();
3469}
3470
3471template <class ELFT>
3472static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3473 StringRef FileName) {
3474 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3475 if (ElfHeader.e_shnum != 0)
3476 return to_string(ElfHeader.e_shnum);
3477
3478 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3479 if (!ArrOrErr) {
3480 // In this case we can ignore an error, because we have already reported a
3481 // warning about the broken section header table earlier.
3482 consumeError(ArrOrErr.takeError());
3483 return "<?>";
3484 }
3485
3486 if (ArrOrErr->empty())
3487 return "0";
3488 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3489}
3490
3491template <class ELFT>
3492static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3493 StringRef FileName) {
3494 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3495 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3496 return to_string(ElfHeader.e_shstrndx);
3497
3498 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3499 if (!ArrOrErr) {
3500 // In this case we can ignore an error, because we have already reported a
3501 // warning about the broken section header table earlier.
3502 consumeError(ArrOrErr.takeError());
3503 return "<?>";
3504 }
3505
3506 if (ArrOrErr->empty())
3507 return "65535 (corrupt: out of range)";
3508 return to_string(ElfHeader.e_shstrndx) + " (" +
3509 to_string((*ArrOrErr)[0].sh_link) + ")";
3510}
3511
3512static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3513 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3514 return E.Value == Type;
3515 });
3516 if (It != ArrayRef(ElfObjectFileType).end())
3517 return It;
3518 return nullptr;
3519}
3520
3521template <class ELFT>
3522void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3523 ArrayRef<std::string> InputFilenames,
3524 const Archive *A) {
3525 if (InputFilenames.size() > 1 || A) {
3526 this->W.startLine() << "\n";
3527 this->W.printString("File", FileStr);
3528 }
3529}
3530
3531template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3532 const Elf_Ehdr &e = this->Obj.getHeader();
3533 OS << "ELF Header:\n";
3534 OS << " Magic: ";
3535 std::string Str;
3536 for (int i = 0; i < ELF::EI_NIDENT; i++)
3537 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3538 OS << "\n";
3539 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3540 printFields(OS, "Class:", Str);
3541 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3542 printFields(OS, "Data:", Str);
3543 OS.PadToColumn(2u);
3544 OS << "Version:";
3545 OS.PadToColumn(37u);
3546 OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3547 if (e.e_version == ELF::EV_CURRENT)
3548 OS << " (current)";
3549 OS << "\n";
3550 Str = enumToString(e.e_ident[ELF::EI_OSABI], ArrayRef(ElfOSABI));
3551 printFields(OS, "OS/ABI:", Str);
3552 printFields(OS,
3553 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3554
3555 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3556 Str = E->AltName.str();
3557 } else {
3558 if (e.e_type >= ET_LOPROC)
3559 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3560 else if (e.e_type >= ET_LOOS)
3561 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3562 else
3563 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3564 }
3565 printFields(OS, "Type:", Str);
3566
3567 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3568 printFields(OS, "Machine:", Str);
3569 Str = "0x" + utohexstr(e.e_version);
3570 printFields(OS, "Version:", Str);
3571 Str = "0x" + utohexstr(e.e_entry);
3572 printFields(OS, "Entry point address:", Str);
3573 Str = to_string(e.e_phoff) + " (bytes into file)";
3574 printFields(OS, "Start of program headers:", Str);
3575 Str = to_string(e.e_shoff) + " (bytes into file)";
3576 printFields(OS, "Start of section headers:", Str);
3577 std::string ElfFlags;
3578 if (e.e_machine == EM_MIPS)
3579 ElfFlags = printFlags(
3580 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3581 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3582 else if (e.e_machine == EM_RISCV)
3583 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3584 else if (e.e_machine == EM_AVR)
3585 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3586 unsigned(ELF::EF_AVR_ARCH_MASK));
3587 else if (e.e_machine == EM_LOONGARCH)
3588 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3589 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3590 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3591 else if (e.e_machine == EM_XTENSA)
3592 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3593 unsigned(ELF::EF_XTENSA_MACH));
3594 Str = "0x" + utohexstr(e.e_flags);
3595 if (!ElfFlags.empty())
3596 Str = Str + ", " + ElfFlags;
3597 printFields(OS, "Flags:", Str);
3598 Str = to_string(e.e_ehsize) + " (bytes)";
3599 printFields(OS, "Size of this header:", Str);
3600 Str = to_string(e.e_phentsize) + " (bytes)";
3601 printFields(OS, "Size of program headers:", Str);
3602 Str = to_string(e.e_phnum);
3603 printFields(OS, "Number of program headers:", Str);
3604 Str = to_string(e.e_shentsize) + " (bytes)";
3605 printFields(OS, "Size of section headers:", Str);
3606 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3607 printFields(OS, "Number of section headers:", Str);
3608 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3609 printFields(OS, "Section header string table index:", Str);
3610}
3611
3612template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3613 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3614 const Elf_Shdr &Symtab) -> StringRef {
3615 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3616 if (!StrTableOrErr) {
3617 reportUniqueWarning("unable to get the string table for " +
3618 describe(Symtab) + ": " +
3619 toString(StrTableOrErr.takeError()));
3620 return "<?>";
3621 }
3622
3623 StringRef Strings = *StrTableOrErr;
3624 if (Sym.st_name >= Strings.size()) {
3625 reportUniqueWarning("unable to get the name of the symbol with index " +
3626 Twine(SymNdx) + ": st_name (0x" +
3627 Twine::utohexstr(Sym.st_name) +
3628 ") is past the end of the string table of size 0x" +
3629 Twine::utohexstr(Strings.size()));
3630 return "<?>";
3631 }
3632
3633 return StrTableOrErr->data() + Sym.st_name;
3634 };
3635
3636 std::vector<GroupSection> Ret;
3637 uint64_t I = 0;
3638 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3639 ++I;
3640 if (Sec.sh_type != ELF::SHT_GROUP)
3641 continue;
3642
3643 StringRef Signature = "<?>";
3644 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3645 if (Expected<const Elf_Sym *> SymOrErr =
3646 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3647 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3648 else
3649 reportUniqueWarning("unable to get the signature symbol for " +
3650 describe(Sec) + ": " +
3651 toString(SymOrErr.takeError()));
3652 } else {
3653 reportUniqueWarning("unable to get the symbol table for " +
3654 describe(Sec) + ": " +
3655 toString(SymtabOrErr.takeError()));
3656 }
3657
3658 ArrayRef<Elf_Word> Data;
3659 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3660 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3661 if (ContentsOrErr->empty())
3662 reportUniqueWarning("unable to read the section group flag from the " +
3663 describe(Sec) + ": the section is empty");
3664 else
3665 Data = *ContentsOrErr;
3666 } else {
3667 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3668 ": " + toString(ContentsOrErr.takeError()));
3669 }
3670
3671 Ret.push_back({getPrintableSectionName(Sec),
3672 maybeDemangle(Signature),
3673 Sec.sh_name,
3674 I - 1,
3675 Sec.sh_link,
3676 Sec.sh_info,
3677 Data.empty() ? Elf_Word(0) : Data[0],
3678 {}});
3679
3680 if (Data.empty())
3681 continue;
3682
3683 std::vector<GroupMember> &GM = Ret.back().Members;
3684 for (uint32_t Ndx : Data.slice(1)) {
3685 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3686 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3687 } else {
3688 reportUniqueWarning("unable to get the section with index " +
3689 Twine(Ndx) + " when dumping the " + describe(Sec) +
3690 ": " + toString(SecOrErr.takeError()));
3691 GM.push_back({"<?>", Ndx});
3692 }
3693 }
3694 }
3695 return Ret;
3696}
3697
3698static DenseMap<uint64_t, const GroupSection *>
3699mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3700 DenseMap<uint64_t, const GroupSection *> Ret;
3701 for (const GroupSection &G : Groups)
3702 for (const GroupMember &GM : G.Members)
3703 Ret.insert({GM.Index, &G});
3704 return Ret;
3705}
3706
3707template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3708 std::vector<GroupSection> V = this->getGroups();
3709 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3710 for (const GroupSection &G : V) {
3711 OS << "\n"
3712 << getGroupType(G.Type) << " group section ["
3713 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3714 << "] contains " << G.Members.size() << " sections:\n"
3715 << " [Index] Name\n";
3716 for (const GroupMember &GM : G.Members) {
3717 const GroupSection *MainGroup = Map[GM.Index];
3718 if (MainGroup != &G)
3719 this->reportUniqueWarning(
3720 "section with index " + Twine(GM.Index) +
3721 ", included in the group section with index " +
3722 Twine(MainGroup->Index) +
3723 ", was also found in the group section with index " +
3724 Twine(G.Index));
3725 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3726 }
3727 }
3728
3729 if (V.empty())
3730 OS << "There are no section groups in this file.\n";
3731}
3732
3733template <class ELFT>
3734void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3735 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3736}
3737
3738template <class ELFT>
3739void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3740 const RelSymbol<ELFT> &RelSym) {
3741 // First two fields are bit width dependent. The rest of them are fixed width.
3742 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3743 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3744 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3745
3746 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3747 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3748
3749 SmallString<32> RelocName;
3750 this->Obj.getRelocationTypeName(R.Type, RelocName);
3751 Fields[2].Str = RelocName.c_str();
3752
3753 if (RelSym.Sym)
3754 Fields[3].Str =
3755 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3756
3757 Fields[4].Str = std::string(RelSym.Name);
3758 for (const Field &F : Fields)
3759 printField(F);
3760
3761 std::string Addend;
3762 if (std::optional<int64_t> A = R.Addend) {
3763 int64_t RelAddend = *A;
3764 if (!RelSym.Name.empty()) {
3765 if (RelAddend < 0) {
3766 Addend = " - ";
3767 RelAddend = std::abs(RelAddend);
3768 } else {
3769 Addend = " + ";
3770 }
3771 }
3772 Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3773 }
3774 OS << Addend << "\n";
3775}
3776
3777template <class ELFT>
3778static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3779 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3780 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3781 if (ELFT::Is64Bits)
3782 OS << " ";
3783 else
3784 OS << " ";
3785 if (IsRelr && opts::RawRelr)
3786 OS << "Data ";
3787 else
3788 OS << "Offset";
3789 if (ELFT::Is64Bits)
3790 OS << " Info Type"
3791 << " Symbol's Value Symbol's Name";
3792 else
3793 OS << " Info Type Sym. Value Symbol's Name";
3794 if (IsRela)
3795 OS << " + Addend";
3796 OS << "\n";
3797}
3798
3799template <class ELFT>
3800void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3801 const DynRegionInfo &Reg) {
3802 uint64_t Offset = Reg.Addr - this->Obj.base();
3803 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3804 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3805 printRelocHeaderFields<ELFT>(OS, Type);
3806}
3807
3808template <class ELFT>
3809static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3810 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3811 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3812 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3813 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3814}
3815
3816template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3817 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3818 // Android's packed relocation section needs to be unpacked first
3819 // to get the actual number of entries.
3820 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3821 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3822 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3823 this->Obj.android_relas(Sec);
3824 if (!RelasOrErr)
3825 return RelasOrErr.takeError();
3826 return RelasOrErr->size();
3827 }
3828
3829 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3830 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3831 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3832 if (!RelrsOrErr)
3833 return RelrsOrErr.takeError();
3834 return this->Obj.decode_relrs(*RelrsOrErr).size();
3835 }
3836
3837 return Sec.getEntityCount();
3838 };
3839
3840 bool HasRelocSections = false;
3841 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3842 if (!isRelocationSec<ELFT>(Sec))
3843 continue;
3844 HasRelocSections = true;
3845
3846 std::string EntriesNum = "<?>";
3847 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3848 EntriesNum = std::to_string(*NumOrErr);
3849 else
3850 this->reportUniqueWarning("unable to get the number of relocations in " +
3851 this->describe(Sec) + ": " +
3852 toString(NumOrErr.takeError()));
3853
3854 uintX_t Offset = Sec.sh_offset;
3855 StringRef Name = this->getPrintableSectionName(Sec);
3856 OS << "\nRelocation section '" << Name << "' at offset 0x"
3857 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3858 << " entries:\n";
3859 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3860 this->printRelocationsHelper(Sec);
3861 }
3862 if (!HasRelocSections)
3863 OS << "\nThere are no relocations in this file.\n";
3864}
3865
3866// Print the offset of a particular section from anyone of the ranges:
3867// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3868// If 'Type' does not fall within any of those ranges, then a string is
3869// returned as '<unknown>' followed by the type value.
3870static std::string getSectionTypeOffsetString(unsigned Type) {
3871 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3872 return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3873 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3874 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3875 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3876 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3877 return "0x" + utohexstr(Type) + ": <unknown>";
3878}
3879
3880static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3881 StringRef Name = getELFSectionTypeName(Machine, Type);
3882
3883 // Handle SHT_GNU_* type names.
3884 if (Name.consume_front("SHT_GNU_")) {
3885 if (Name == "HASH")
3886 return "GNU_HASH";
3887 // E.g. SHT_GNU_verneed -> VERNEED.
3888 return Name.upper();
3889 }
3890
3891 if (Name == "SHT_SYMTAB_SHNDX")
3892 return "SYMTAB SECTION INDICES";
3893
3894 if (Name.consume_front("SHT_"))
3895 return Name.str();
3896 return getSectionTypeOffsetString(Type);
3897}
3898
3899static void printSectionDescription(formatted_raw_ostream &OS,
3900 unsigned EMachine) {
3901 OS << "Key to Flags:\n";
3902 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3903 "(info),\n";
3904 OS << " L (link order), O (extra OS processing required), G (group), T "
3905 "(TLS),\n";
3906 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3907 OS << " R (retain)";
3908
3909 if (EMachine == EM_X86_64)
3910 OS << ", l (large)";
3911 else if (EMachine == EM_ARM)
3912 OS << ", y (purecode)";
3913
3914 OS << ", p (processor specific)\n";
3915}
3916
3917template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3918 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3919 if (Sections.empty()) {
3920 OS << "\nThere are no sections in this file.\n";
3921 Expected<StringRef> SecStrTableOrErr =
3922 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
3923 if (!SecStrTableOrErr)
3924 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3925 return;
3926 }
3927 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3928 OS << "There are " << to_string(Sections.size())
3929 << " section headers, starting at offset "
3930 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3931 OS << "Section Headers:\n";
3932 Field Fields[11] = {
3933 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3934 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3935 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3936 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3937 for (const Field &F : Fields)
3938 printField(F);
3939 OS << "\n";
3940
3941 StringRef SecStrTable;
3942 if (Expected<StringRef> SecStrTableOrErr =
3943 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3944 SecStrTable = *SecStrTableOrErr;
3945 else
3946 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3947
3948 size_t SectionIndex = 0;
3949 for (const Elf_Shdr &Sec : Sections) {
3950 Fields[0].Str = to_string(SectionIndex);
3951 if (SecStrTable.empty())
3952 Fields[1].Str = "<no-strings>";
3953 else
3954 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3955 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3956 Fields[2].Str =
3957 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3958 Fields[3].Str =
3959 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3960 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3961 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3962 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3963 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3964 this->Obj.getHeader().e_machine, Sec.sh_flags);
3965 Fields[8].Str = to_string(Sec.sh_link);
3966 Fields[9].Str = to_string(Sec.sh_info);
3967 Fields[10].Str = to_string(Sec.sh_addralign);
3968
3969 OS.PadToColumn(Fields[0].Column);
3970 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3971 for (int i = 1; i < 7; i++)
3972 printField(Fields[i]);
3973 OS.PadToColumn(Fields[7].Column);
3974 OS << right_justify(Fields[7].Str, 3);
3975 OS.PadToColumn(Fields[8].Column);
3976 OS << right_justify(Fields[8].Str, 2);
3977 OS.PadToColumn(Fields[9].Column);
3978 OS << right_justify(Fields[9].Str, 3);
3979 OS.PadToColumn(Fields[10].Column);
3980 OS << right_justify(Fields[10].Str, 2);
3981 OS << "\n";
3982 ++SectionIndex;
3983 }
3984 printSectionDescription(OS, this->Obj.getHeader().e_machine);
3985}
3986
3987template <class ELFT>
3988void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3989 size_t Entries,
3990 bool NonVisibilityBitsUsed) const {
3991 StringRef Name;
3992 if (Symtab)
3993 Name = this->getPrintableSectionName(*Symtab);
3994 if (!Name.empty())
3995 OS << "\nSymbol table '" << Name << "'";
3996 else
3997 OS << "\nSymbol table for image";
3998 OS << " contains " << Entries << " entries:\n";
3999
4000 if (ELFT::Is64Bits)
4001 OS << " Num: Value Size Type Bind Vis";
4002 else
4003 OS << " Num: Value Size Type Bind Vis";
4004
4005 if (NonVisibilityBitsUsed)
4006 OS << " ";
4007 OS << " Ndx Name\n";
4008}
4009
4010template <class ELFT>
4011std::string
4012GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
4013 unsigned SymIndex,
4014 DataRegion<Elf_Word> ShndxTable) const {
4015 unsigned SectionIndex = Symbol.st_shndx;
4016 switch (SectionIndex) {
4017 case ELF::SHN_UNDEF:
4018 return "UND";
4019 case ELF::SHN_ABS:
4020 return "ABS";
4021 case ELF::SHN_COMMON:
4022 return "COM";
4023 case ELF::SHN_XINDEX: {
4024 Expected<uint32_t> IndexOrErr =
4025 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
4026 if (!IndexOrErr) {
4027 assert(Symbol.st_shndx == SHN_XINDEX &&(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 4029, __extension__
__PRETTY_FUNCTION__))
4028 "getExtendedSymbolTableIndex should only fail due to an invalid "(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 4029, __extension__
__PRETTY_FUNCTION__))
4029 "SHT_SYMTAB_SHNDX table/reference")(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 4029, __extension__
__PRETTY_FUNCTION__))
;
4030 this->reportUniqueWarning(IndexOrErr.takeError());
4031 return "RSV[0xffff]";
4032 }
4033 return to_string(format_decimal(*IndexOrErr, 3));
4034 }
4035 default:
4036 // Find if:
4037 // Processor specific
4038 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
4039 return std::string("PRC[0x") +
4040 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4041 // OS specific
4042 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
4043 return std::string("OS[0x") +
4044 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4045 // Architecture reserved:
4046 if (SectionIndex >= ELF::SHN_LORESERVE &&
4047 SectionIndex <= ELF::SHN_HIRESERVE)
4048 return std::string("RSV[0x") +
4049 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4050 // A normal section with an index
4051 return to_string(format_decimal(SectionIndex, 3));
4052 }
4053}
4054
4055template <class ELFT>
4056void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
4057 DataRegion<Elf_Word> ShndxTable,
4058 std::optional<StringRef> StrTable,
4059 bool IsDynamic,
4060 bool NonVisibilityBitsUsed) const {
4061 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4062 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
4063 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
4064 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
4065 Fields[1].Str =
4066 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
4067 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
4068
4069 unsigned char SymbolType = Symbol.getType();
4070 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4071 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4072 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4073 else
4074 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4075
4076 Fields[4].Str =
4077 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
4078 Fields[5].Str =
4079 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
4080
4081 if (Symbol.st_other & ~0x3) {
4082 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
4083 uint8_t Other = Symbol.st_other & ~0x3;
4084 if (Other & STO_AARCH64_VARIANT_PCS) {
4085 Other &= ~STO_AARCH64_VARIANT_PCS;
4086 Fields[5].Str += " [VARIANT_PCS";
4087 if (Other != 0)
4088 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4089 Fields[5].Str.append("]");
4090 }
4091 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
4092 uint8_t Other = Symbol.st_other & ~0x3;
4093 if (Other & STO_RISCV_VARIANT_CC) {
4094 Other &= ~STO_RISCV_VARIANT_CC;
4095 Fields[5].Str += " [VARIANT_CC";
4096 if (Other != 0)
4097 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4098 Fields[5].Str.append("]");
4099 }
4100 } else {
4101 Fields[5].Str +=
4102 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
4103 }
4104 }
4105
4106 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
4107 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
4108
4109 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
4110 StrTable, IsDynamic);
4111 for (const Field &Entry : Fields)
4112 printField(Entry);
4113 OS << "\n";
4114}
4115
4116template <class ELFT>
4117void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
4118 unsigned SymIndex,
4119 DataRegion<Elf_Word> ShndxTable,
4120 StringRef StrTable,
4121 uint32_t Bucket) {
4122 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4123 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
4124 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
4125 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
4126 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
4127
4128 Fields[2].Str = to_string(
4129 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4130 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
4131
4132 unsigned char SymbolType = Symbol->getType();
4133 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4134 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4135 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4136 else
4137 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4138
4139 Fields[5].Str =
4140 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
4141 Fields[6].Str =
4142 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
4143 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
4144 Fields[8].Str =
4145 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
4146
4147 for (const Field &Entry : Fields)
4148 printField(Entry);
4149 OS << "\n";
4150}
4151
4152template <class ELFT>
4153void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
4154 bool PrintDynamicSymbols) {
4155 if (!PrintSymbols && !PrintDynamicSymbols)
4156 return;
4157 // GNU readelf prints both the .dynsym and .symtab with --symbols.
4158 this->printSymbolsHelper(true);
4159 if (PrintSymbols)
4160 this->printSymbolsHelper(false);
4161}
4162
4163template <class ELFT>
4164void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
4165 if (this->DynamicStringTable.empty())
4166 return;
4167
4168 if (ELFT::Is64Bits)
4169 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4170 else
4171 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4172 OS << "\n";
4173
4174 Elf_Sym_Range DynSyms = this->dynamic_symbols();
4175 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4176 if (!FirstSym) {
4177 this->reportUniqueWarning(
4178 Twine("unable to print symbols for the .hash table: the "
4179 "dynamic symbol table ") +
4180 (this->DynSymRegion ? "is empty" : "was not found"));
4181 return;
4182 }
4183
4184 DataRegion<Elf_Word> ShndxTable(
4185 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4186 auto Buckets = SysVHash.buckets();
4187 auto Chains = SysVHash.chains();
4188 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
4189 if (Buckets[Buc] == ELF::STN_UNDEF)
4190 continue;
4191 BitVector Visited(SysVHash.nchain);
4192 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
4193 if (Ch == ELF::STN_UNDEF)
4194 break;
4195
4196 if (Visited[Ch]) {
4197 this->reportUniqueWarning(".hash section is invalid: bucket " +
4198 Twine(Ch) +
4199 ": a cycle was detected in the linked chain");
4200 break;
4201 }
4202
4203 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
4204 Buc);
4205 Visited[Ch] = true;
4206 }
4207 }
4208}
4209
4210template <class ELFT>
4211void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
4212 if (this->DynamicStringTable.empty())
4213 return;
4214
4215 Elf_Sym_Range DynSyms = this->dynamic_symbols();
4216 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4217 if (!FirstSym) {
4218 this->reportUniqueWarning(
4219 Twine("unable to print symbols for the .gnu.hash table: the "
4220 "dynamic symbol table ") +
4221 (this->DynSymRegion ? "is empty" : "was not found"));
4222 return;
4223 }
4224
4225 auto GetSymbol = [&](uint64_t SymIndex,
4226 uint64_t SymsTotal) -> const Elf_Sym * {
4227 if (SymIndex >= SymsTotal) {
4228 this->reportUniqueWarning(
4229 "unable to print hashed symbol with index " + Twine(SymIndex) +
4230 ", which is greater than or equal to the number of dynamic symbols "
4231 "(" +
4232 Twine::utohexstr(SymsTotal) + ")");
4233 return nullptr;
4234 }
4235 return FirstSym + SymIndex;
4236 };
4237
4238 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4239 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4240 ArrayRef<Elf_Word> Values;
4241 if (!ValuesOrErr)
4242 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4243 "section: " +
4244 toString(ValuesOrErr.takeError()));
4245 else
4246 Values = *ValuesOrErr;
4247
4248 DataRegion<Elf_Word> ShndxTable(
4249 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4250 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4251 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4252 if (Buckets[Buc] == ELF::STN_UNDEF)
4253 continue;
4254 uint32_t Index = Buckets[Buc];
4255 // Print whole chain.
4256 while (true) {
4257 uint32_t SymIndex = Index++;
4258 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4259 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4260 Buc);
4261 else
4262 break;
4263
4264 if (SymIndex < GnuHash.symndx) {
4265 this->reportUniqueWarning(
4266 "unable to read the hash value for symbol with index " +
4267 Twine(SymIndex) +
4268 ", which is less than the index of the first hashed symbol (" +
4269 Twine(GnuHash.symndx) + ")");
4270 break;
4271 }
4272
4273 // Chain ends at symbol with stopper bit.
4274 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4275 break;
4276 }
4277 }
4278}
4279
4280template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4281 if (this->HashTable) {
4282 OS << "\n Symbol table of .hash for image:\n";
4283 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4284 this->reportUniqueWarning(std::move(E));
4285 else
4286 printHashTableSymbols(*this->HashTable);
4287 }
4288
4289 // Try printing the .gnu.hash table.
4290 if (this->GnuHashTable) {
4291 OS << "\n Symbol table of .gnu.hash for image:\n";
4292 if (ELFT::Is64Bits)
4293 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4294 else
4295 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4296 OS << "\n";
4297
4298 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4299 this->reportUniqueWarning(std::move(E));
4300 else
4301 printGnuHashTableSymbols(*this->GnuHashTable);
4302 }
4303}
4304
4305template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4306 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4307 if (Sections.empty()) {
4308 OS << "\nThere are no sections in this file.\n";
4309 Expected<StringRef> SecStrTableOrErr =
4310 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4311 if (!SecStrTableOrErr)
4312 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4313 return;
4314 }
4315 OS << "There are " << to_string(Sections.size())
4316 << " section headers, starting at offset "
4317 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4318
4319 OS << "Section Headers:\n";
4320
4321 auto PrintFields = [&](ArrayRef<Field> V) {
4322 for (const Field &F : V)
4323 printField(F);
4324 OS << "\n";
4325 };
4326
4327 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4328
4329 constexpr bool Is64 = ELFT::Is64Bits;
4330 PrintFields({{"Type", 7},
4331 {Is64 ? "Address" : "Addr", 23},
4332 {"Off", Is64 ? 40 : 32},
4333 {"Size", Is64 ? 47 : 39},
4334 {"ES", Is64 ? 54 : 46},
4335 {"Lk", Is64 ? 59 : 51},
4336 {"Inf", Is64 ? 62 : 54},
4337 {"Al", Is64 ? 66 : 57}});
4338 PrintFields({{"Flags", 7}});
4339
4340 StringRef SecStrTable;
4341 if (Expected<StringRef> SecStrTableOrErr =
4342 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4343 SecStrTable = *SecStrTableOrErr;
4344 else
4345 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4346
4347 size_t SectionIndex = 0;
4348 const unsigned AddrSize = Is64 ? 16 : 8;
4349 for (const Elf_Shdr &S : Sections) {
4350 StringRef Name = "<?>";
4351 if (Expected<StringRef> NameOrErr =
4352 this->Obj.getSectionName(S, SecStrTable))
4353 Name = *NameOrErr;
4354 else
4355 this->reportUniqueWarning(NameOrErr.takeError());
4356
4357 OS.PadToColumn(2);
4358 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4359 PrintFields({{Name, 7}});
4360 PrintFields(
4361 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4362 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4363 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4364 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4365 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4366 {to_string(S.sh_link), Is64 ? 59 : 51},
4367 {to_string(S.sh_info), Is64 ? 63 : 55},
4368 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4369
4370 OS.PadToColumn(7);
4371 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4372
4373 DenseMap<unsigned, StringRef> FlagToName = {
4374 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4375 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4376 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4377 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4378 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4379 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4380
4381 uint64_t Flags = S.sh_flags;
4382 uint64_t UnknownFlags = 0;
4383 ListSeparator LS;
4384 while (Flags) {
4385 // Take the least significant bit as a flag.
4386 uint64_t Flag = Flags & -Flags;
4387 Flags -= Flag;
4388
4389 auto It = FlagToName.find(Flag);
4390 if (It != FlagToName.end())
4391 OS << LS << It->second;
4392 else
4393 UnknownFlags |= Flag;
4394 }
4395
4396 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4397 uint64_t FlagsToPrint = UnknownFlags & Mask;
4398 if (!FlagsToPrint)
4399 return;
4400
4401 OS << LS << Name << " ("
4402 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4403 UnknownFlags &= ~Mask;
4404 };
4405
4406 PrintUnknownFlags(SHF_MASKOS, "OS");
4407 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4408 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4409
4410 OS << "\n";
4411 ++SectionIndex;
4412
4413 if (!(S.sh_flags & SHF_COMPRESSED))
4414 continue;
4415 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4416 if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4417 consumeError(Data.takeError());
4418 reportWarning(createError("SHF_COMPRESSED section '" + Name +
4419 "' does not have an Elf_Chdr header"),
4420 this->FileName);
4421 OS.indent(7);
4422 OS << "[<corrupt>]";
4423 } else {
4424 OS.indent(7);
4425 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4426 if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4427 OS << "ZLIB";
4428 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4429 OS << "ZSTD";
4430 else
4431 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4432 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4433 << ", " << Chdr->ch_addralign;
4434 }
4435 OS << '\n';
4436 }
4437}
4438
4439static inline std::string printPhdrFlags(unsigned Flag) {
4440 std::string Str;
4441 Str = (Flag & PF_R) ? "R" : " ";
4442 Str += (Flag & PF_W) ? "W" : " ";
4443 Str += (Flag & PF_X) ? "E" : " ";
4444 return Str;
4445}
4446
4447template <class ELFT>
4448static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4449 const typename ELFT::Shdr &Sec) {
4450 if (Sec.sh_flags & ELF::SHF_TLS) {
4451 // .tbss must only be shown in the PT_TLS segment.
4452 if (Sec.sh_type == ELF::SHT_NOBITS)
4453 return Phdr.p_type == ELF::PT_TLS;
4454
4455 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4456 // segments.
4457 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4458 (Phdr.p_type == ELF::PT_GNU_RELRO);
4459 }
4460
4461 // PT_TLS must only have SHF_TLS sections.
4462 return Phdr.p_type != ELF::PT_TLS;
4463}
4464
4465template <class ELFT>
4466static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4467 const typename ELFT::Shdr &Sec) {
4468 // SHT_NOBITS sections don't need to have an offset inside the segment.
4469 if (Sec.sh_type == ELF::SHT_NOBITS)
4470 return true;
4471
4472 if (Sec.sh_offset < Phdr.p_offset)
4473 return false;
4474
4475 // Only non-empty sections can be at the end of a segment.
4476 if (Sec.sh_size == 0)
4477 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4478 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4479}
4480
4481// Check that an allocatable section belongs to a virtual address
4482// space of a segment.
4483template <class ELFT>
4484static bool checkVMA(const typename ELFT::Phdr &Phdr,
4485 const typename ELFT::Shdr &Sec) {
4486 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4487 return true;
4488
4489 if (Sec.sh_addr < Phdr.p_vaddr)
4490 return false;
4491
4492 bool IsTbss =
4493 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4494 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4495 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4496 // Only non-empty sections can be at the end of a segment.
4497 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4498 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4499 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4500}
4501
4502template <class ELFT>
4503static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4504 const typename ELFT::Shdr &Sec) {
4505 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4506 return true;
4507
4508 // We get here when we have an empty section. Only non-empty sections can be
4509 // at the start or at the end of PT_DYNAMIC.
4510 // Is section within the phdr both based on offset and VMA?
4511 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4512 (Sec.sh_offset > Phdr.p_offset &&
4513 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4514 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4515 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4516 return CheckOffset && CheckVA;
4517}
4518
4519template <class ELFT>
4520void GNUELFDumper<ELFT>::printProgramHeaders(
4521 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4522 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4523 // Exit early if no program header or section mapping details were requested.
4524 if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4525 return;
4526
4527 if (PrintProgramHeaders) {
4528 const Elf_Ehdr &Header = this->Obj.getHeader();
4529 if (Header.e_phnum == 0) {
4530 OS << "\nThere are no program headers in this file.\n";
4531 } else {
4532 printProgramHeaders();
4533 }
4534 }
4535
4536 if (ShouldPrintSectionMapping)
4537 printSectionMapping();
4538}
4539
4540template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4541 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4542 const Elf_Ehdr &Header = this->Obj.getHeader();
4543 Field Fields[8] = {2, 17, 26, 37 + Bias,
4544 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4545 OS << "\nElf file type is "
4546 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4547 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4548 << "There are " << Header.e_phnum << " program headers,"
4549 << " starting at offset " << Header.e_phoff << "\n\n"
4550 << "Program Headers:\n";
4551 if (ELFT::Is64Bits)
4552 OS << " Type Offset VirtAddr PhysAddr "
4553 << " FileSiz MemSiz Flg Align\n";
4554 else
4555 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4556 << "MemSiz Flg Align\n";
4557
4558 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4559 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4560
4561 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4562 if (!PhdrsOrErr) {
4563 this->reportUniqueWarning("unable to dump program headers: " +
4564 toString(PhdrsOrErr.takeError()));
4565 return;
4566 }
4567
4568 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4569 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4570 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4571 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4572 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4573 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4574 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4575 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4576 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4577 for (const Field &F : Fields)
4578 printField(F);
4579 if (Phdr.p_type == ELF::PT_INTERP) {
4580 OS << "\n";
4581 auto ReportBadInterp = [&](const Twine &Msg) {
4582 this->reportUniqueWarning(
4583 "unable to read program interpreter name at offset 0x" +
4584 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4585 };
4586
4587 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4588 ReportBadInterp("it goes past the end of the file (0x" +
4589 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4590 continue;
4591 }
4592
4593 const char *Data =
4594 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4595 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4596 size_t Len = strnlen(Data, MaxSize);
4597 if (Len == MaxSize) {
4598 ReportBadInterp("it is not null-terminated");
4599 continue;
4600 }
4601
4602 OS << " [Requesting program interpreter: ";
4603 OS << StringRef(Data, Len) << "]";
4604 }
4605 OS << "\n";
4606 }
4607}
4608
4609template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4610 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4611 DenseSet<const Elf_Shdr *> BelongsToSegment;
4612 int Phnum = 0;
4613
4614 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4615 if (!PhdrsOrErr) {
4616 this->reportUniqueWarning(
4617 "can't read program headers to build section to segment mapping: " +
4618 toString(PhdrsOrErr.takeError()));
4619 return;
4620 }
4621
4622 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4623 std::string Sections;
4624 OS << format(" %2.2d ", Phnum++);
4625 // Check if each section is in a segment and then print mapping.
4626 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4627 if (Sec.sh_type == ELF::SHT_NULL)
4628 continue;
4629
4630 // readelf additionally makes sure it does not print zero sized sections
4631 // at end of segments and for PT_DYNAMIC both start and end of section
4632 // .tbss must only be shown in PT_TLS section.
4633 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4634 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4635 Sections +=
4636 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4637 " ";
4638 BelongsToSegment.insert(&Sec);
4639 }
4640 }
4641 OS << Sections << "\n";
4642 OS.flush();
4643 }
4644
4645 // Display sections that do not belong to a segment.
4646 std::string Sections;
4647 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4648 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4649 Sections +=
4650 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4651 ' ';
4652 }
4653 if (!Sections.empty()) {
4654 OS << " None " << Sections << '\n';
4655 OS.flush();
4656 }
4657}
4658
4659namespace {
4660
4661template <class ELFT>
4662RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4663 const Relocation<ELFT> &Reloc) {
4664 using Elf_Sym = typename ELFT::Sym;
4665 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4666 const Twine &Reason) -> RelSymbol<ELFT> {
4667 Dumper.reportUniqueWarning(
4668 "unable to get name of the dynamic symbol with index " +
4669 Twine(Reloc.Symbol) + ": " + Reason);
4670 return {Sym, "<corrupt>"};
4671 };
4672
4673 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4674 const Elf_Sym *FirstSym = Symbols.begin();
4675 if (!FirstSym)
4676 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4677
4678 // We might have an object without a section header. In this case the size of
4679 // Symbols is zero, because there is no way to know the size of the dynamic
4680 // table. We should allow this case and not print a warning.
4681 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4682 return WarnAndReturn(
4683 nullptr,
4684 "index is greater than or equal to the number of dynamic symbols (" +
4685 Twine(Symbols.size()) + ")");
4686
4687 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4688 const uint64_t FileSize = Obj.getBufSize();
4689 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4690 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4691 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4692 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4693 " goes past the end of the file (0x" +
4694 Twine::utohexstr(FileSize) + ")");
4695
4696 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4697 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4698 if (!ErrOrName)
4699 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4700
4701 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4702}
4703} // namespace
4704
4705template <class ELFT>
4706static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4707 typename ELFT::DynRange Tags) {
4708 size_t Max = 0;
4709 for (const typename ELFT::Dyn &Dyn : Tags)
4710 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4711 return Max;
4712}
4713
4714template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4715 Elf_Dyn_Range Table = this->dynamic_table();
4716 if (Table.empty())
4717 return;
4718
4719 OS << "Dynamic section at offset "
4720 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4721 this->Obj.base(),
4722 1)
4723 << " contains " << Table.size() << " entries:\n";
4724
4725 // The type name is surrounded with round brackets, hence add 2.
4726 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4727 // The "Name/Value" column should be indented from the "Type" column by N
4728 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4729 // space (1) = 3.
4730 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4731 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4732
4733 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4734 for (auto Entry : Table) {
4735 uintX_t Tag = Entry.getTag();
4736 std::string Type =
4737 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4738 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4739 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4740 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4741 }
4742}
4743
4744template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4745 this->printDynamicRelocationsHelper();
4746}
4747
4748template <class ELFT>
4749void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4750 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4751}
4752
4753template <class ELFT>
4754void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4755 this->forEachRelocationDo(
2
Calling 'ELFDumper::forEachRelocationDo'
4756 Sec, opts::RawRelr,
4757 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4758 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4759 [&](const Elf_Relr &R) { printRelrReloc(R); });
4760}
4761
4762template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4763 const bool IsMips64EL = this->Obj.isMips64EL();
4764 if (this->DynRelaRegion.Size > 0) {
4765 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4766 for (const Elf_Rela &Rela :
4767 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4768 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4769 }
4770
4771 if (this->DynRelRegion.Size > 0) {
4772 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4773 for (const Elf_Rel &Rel :
4774 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4775 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4776 }
4777
4778 if (this->DynRelrRegion.Size > 0) {
4779 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4780 Elf_Relr_Range Relrs =
4781 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4782 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4783 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4784 }
4785
4786 if (this->DynPLTRelRegion.Size) {
4787 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4788 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4789 for (const Elf_Rela &Rela :
4790 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4791 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4792 } else {
4793 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4794 for (const Elf_Rel &Rel :
4795 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4796 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4797 }
4798 }
4799}
4800
4801template <class ELFT>
4802void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4803 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4804 // Don't inline the SecName, because it might report a warning to stderr and
4805 // corrupt the output.
4806 StringRef SecName = this->getPrintableSectionName(Sec);
4807 OS << Label << " section '" << SecName << "' "
4808 << "contains " << EntriesNum << " entries:\n";
4809
4810 StringRef LinkedSecName = "<corrupt>";
4811 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4812 this->Obj.getSection(Sec.sh_link))
4813 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4814 else
4815 this->reportUniqueWarning("invalid section linked to " +
4816 this->describe(Sec) + ": " +
4817 toString(LinkedSecOrErr.takeError()));
4818
4819 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4820 << " Offset: " << format_hex(Sec.sh_offset, 8)
4821 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4822}
4823
4824template <class ELFT>
4825void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4826 if (!Sec)
4827 return;
4828
4829 printGNUVersionSectionProlog(*Sec, "Version symbols",
4830 Sec->sh_size / sizeof(Elf_Versym));
4831 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4832 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4833 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4834 if (!VerTableOrErr) {
4835 this->reportUniqueWarning(VerTableOrErr.takeError());
4836 return;
4837 }
4838
4839 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4840 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4841 this->getVersionMap())
4842 VersionMap = *MapOrErr;
4843 else
4844 this->reportUniqueWarning(MapOrErr.takeError());
4845
4846 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4847 std::vector<StringRef> Versions;
4848 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4849 unsigned Ndx = VerTable[I].vs_index;
4850 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4851 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4852 continue;
4853 }
4854
4855 if (!VersionMap) {
4856 Versions.emplace_back("<corrupt>");
4857 continue;
4858 }
4859
4860 bool IsDefault;
4861 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4862 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4863 if (!NameOrErr) {
4864 this->reportUniqueWarning("unable to get a version for entry " +
4865 Twine(I) + " of " + this->describe(*Sec) +
4866 ": " + toString(NameOrErr.takeError()));
4867 Versions.emplace_back("<corrupt>");
4868 continue;
4869 }
4870 Versions.emplace_back(*NameOrErr);
4871 }
4872
4873 // readelf prints 4 entries per line.
4874 uint64_t Entries = VerTable.size();
4875 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4876 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4877 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4878 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4879 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4880 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4881 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4882 }
4883 OS << '\n';
4884 }
4885 OS << '\n';
4886}
4887
4888static std::string versionFlagToString(unsigned Flags) {
4889 if (Flags == 0)
4890 return "none";
4891
4892 std::string Ret;
4893 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4894 if (!(Flags & Flag))
4895 return;
4896 if (!Ret.empty())
4897 Ret += " | ";
4898 Ret += Name;
4899 Flags &= ~Flag;
4900 };
4901
4902 AddFlag(VER_FLG_BASE, "BASE");
4903 AddFlag(VER_FLG_WEAK, "WEAK");
4904 AddFlag(VER_FLG_INFO, "INFO");
4905 AddFlag(~0, "<unknown>");
4906 return Ret;
4907}
4908
4909template <class ELFT>
4910void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4911 if (!Sec)
4912 return;
4913
4914 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4915
4916 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4917 if (!V) {
4918 this->reportUniqueWarning(V.takeError());
4919 return;
4920 }
4921
4922 for (const VerDef &Def : *V) {
4923 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4924 Def.Offset, Def.Version,
4925 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4926 Def.Name.data());
4927 unsigned I = 0;
4928 for (const VerdAux &Aux : Def.AuxV)
4929 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4930 Aux.Name.data());
4931 }
4932
4933 OS << '\n';
4934}
4935
4936template <class ELFT>
4937void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4938 if (!Sec)
4939 return;
4940
4941 unsigned VerneedNum = Sec->sh_info;
4942 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4943
4944 Expected<std::vector<VerNeed>> V =
4945 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4946 if (!V) {
4947 this->reportUniqueWarning(V.takeError());
4948 return;
4949 }
4950
4951 for (const VerNeed &VN : *V) {
4952 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4953 VN.Version, VN.File.data(), VN.Cnt);
4954 for (const VernAux &Aux : VN.AuxV)
4955 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
4956 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4957 Aux.Other);
4958 }
4959 OS << '\n';
4960}
4961
4962template <class ELFT>
4963void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
4964 size_t MaxChain,
4965 size_t TotalSyms,
4966 ArrayRef<size_t> Count,
4967 bool IsGnu) const {
4968 size_t CumulativeNonZero = 0;
4969 OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "")
4970 << " bucket list length (total of " << NBucket << " buckets)\n"
4971 << " Length Number % of total Coverage\n";
4972 for (size_t I = 0; I < MaxChain; ++I) {
4973 CumulativeNonZero += Count[I] * I;
4974 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4975 (Count[I] * 100.0) / NBucket,
4976 (CumulativeNonZero * 100.0) / TotalSyms);
4977 }
4978}
4979
4980template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4981 OS << "GNUStyle::printCGProfile not implemented\n";
4982}
4983
4984template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4985 OS << "GNUStyle::printBBAddrMaps not implemented\n";
4986}
4987
4988static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4989 std::vector<uint64_t> Ret;
4990 const uint8_t *Cur = Data.begin();
4991 const uint8_t *End = Data.end();
4992 while (Cur != End) {
4993 unsigned Size;
4994 const char *Err;
4995 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4996 if (Err)
4997 return createError(Err);
4998 Cur += Size;
4999 }
5000 return Ret;
5001}
5002
5003template <class ELFT>
5004static Expected<std::vector<uint64_t>>
5005decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
5006 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
5007 if (!ContentsOrErr)
5008 return ContentsOrErr.takeError();
5009
5010 if (Expected<std::vector<uint64_t>> SymsOrErr =
5011 toULEB128Array(*ContentsOrErr))
5012 return *SymsOrErr;
5013 else
5014 return createError("unable to decode " + describe(Obj, Sec) + ": " +
5015 toString(SymsOrErr.takeError()));
5016}
5017
5018template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
5019 if (!this->DotAddrsigSec)
5020 return;
5021
5022 Expected<std::vector<uint64_t>> SymsOrErr =
5023 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
5024 if (!SymsOrErr) {
5025 this->reportUniqueWarning(SymsOrErr.takeError());
5026 return;
5027 }
5028
5029 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
5030 OS << "\nAddress-significant symbols section '" << Name << "'"
5031 << " contains " << SymsOrErr->size() << " entries:\n";
5032 OS << " Num: Name\n";
5033
5034 Field Fields[2] = {0, 8};
5035 size_t SymIndex = 0;
5036 for (uint64_t Sym : *SymsOrErr) {
5037 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
5038 Fields[1].Str = this->getStaticSymbolName(Sym);
5039 for (const Field &Entry : Fields)
5040 printField(Entry);
5041 OS << "\n";
5042 }
5043}
5044
5045template <typename ELFT>
5046static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
5047 ArrayRef<uint8_t> Data) {
5048 std::string str;
5049 raw_string_ostream OS(str);
5050 uint32_t PrData;
5051 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
5052 if (PrData & Flag) {
5053 PrData &= ~Flag;
5054 OS << Name;
5055 if (PrData)
5056 OS << ", ";
5057 }
5058 };
5059
5060 switch (Type) {
5061 default:
5062 OS << format("<application-specific type 0x%x>", Type);
5063 return OS.str();
5064 case GNU_PROPERTY_STACK_SIZE: {
5065 OS << "stack size: ";
5066 if (DataSize == sizeof(typename ELFT::uint))
5067 OS << formatv("{0:x}",
5068 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
5069 else
5070 OS << format("<corrupt length: 0x%x>", DataSize);
5071 return OS.str();
5072 }
5073 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
5074 OS << "no copy on protected";
5075 if (DataSize)
5076 OS << format(" <corrupt length: 0x%x>", DataSize);
5077 return OS.str();
5078 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
5079 case GNU_PROPERTY_X86_FEATURE_1_AND:
5080 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
5081 : "x86 feature: ");
5082 if (DataSize != 4) {
5083 OS << format("<corrupt length: 0x%x>", DataSize);
5084 return OS.str();
5085 }
5086 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5087 if (PrData == 0) {
5088 OS << "<None>";
5089 return OS.str();
5090 }
5091 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
5092 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
5093 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
5094 } else {
5095 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
5096 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
5097 }
5098 if (PrData)
5099 OS << format("<unknown flags: 0x%x>", PrData);
5100 return OS.str();
5101 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5102 case GNU_PROPERTY_X86_FEATURE_2_USED:
5103 OS << "x86 feature "
5104 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5105 if (DataSize != 4) {
5106 OS << format("<corrupt length: 0x%x>", DataSize);
5107 return OS.str();
5108 }
5109 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5110 if (PrData == 0) {
5111 OS << "<None>";
5112 return OS.str();
5113 }
5114 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5115 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5116 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5117 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5118 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5119 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5120 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5121 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5122 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5123 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5124 if (PrData)
5125 OS << format("<unknown flags: 0x%x>", PrData);
5126 return OS.str();
5127 case GNU_PROPERTY_X86_ISA_1_NEEDED:
5128 case GNU_PROPERTY_X86_ISA_1_USED:
5129 OS << "x86 ISA "
5130 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5131 if (DataSize != 4) {
5132 OS << format("<corrupt length: 0x%x>", DataSize);
5133 return OS.str();
5134 }
5135 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5136 if (PrData == 0) {
5137 OS << "<None>";
5138 return OS.str();
5139 }
5140 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5141 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5142 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5143 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5144 if (PrData)
5145 OS << format("<unknown flags: 0x%x>", PrData);
5146 return OS.str();
5147 }
5148}
5149
5150template <typename ELFT>
5151static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5152 using Elf_Word = typename ELFT::Word;
5153
5154 SmallVector<std::string, 4> Properties;
5155 while (Arr.size() >= 8) {
5156 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5157 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5158 Arr = Arr.drop_front(8);
5159
5160 // Take padding size into account if present.
5161 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5162 std::string str;
5163 raw_string_ostream OS(str);
5164 if (Arr.size() < PaddedSize) {
5165 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5166 Properties.push_back(OS.str());
5167 break;
5168 }
5169 Properties.push_back(
5170 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5171 Arr = Arr.drop_front(PaddedSize);
5172 }
5173
5174 if (!Arr.empty())
5175 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5176
5177 return Properties;
5178}
5179
5180struct GNUAbiTag {
5181 std::string OSName;
5182 std::string ABI;
5183 bool IsValid;
5184};
5185
5186template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5187 typedef typename ELFT::Word Elf_Word;
5188
5189 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5190 reinterpret_cast<const Elf_Word *>(Desc.end()));
5191
5192 if (Words.size() < 4)
5193 return {"", "", /*IsValid=*/false};
5194
5195 static const char *OSNames[] = {
5196 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5197 };
5198 StringRef OSName = "Unknown";
5199 if (Words[0] < std::size(OSNames))
5200 OSName = OSNames[Words[0]];
5201 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5202 std::string str;
5203 raw_string_ostream ABI(str);
5204 ABI << Major << "." << Minor << "." << Patch;
5205 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5206}
5207
5208static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5209 std::string str;
5210 raw_string_ostream OS(str);
5211 for (uint8_t B : Desc)
5212 OS << format_hex_no_prefix(B, 2);
5213 return OS.str();
5214}
5215
5216static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5217 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5218}
5219
5220template <typename ELFT>
5221static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5222 ArrayRef<uint8_t> Desc) {
5223 // Return true if we were able to pretty-print the note, false otherwise.
5224 switch (NoteType) {
5225 default:
5226 return false;
5227 case ELF::NT_GNU_ABI_TAG: {
5228 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5229 if (!AbiTag.IsValid)
5230 OS << " <corrupt GNU_ABI_TAG>";
5231 else
5232 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5233 break;
5234 }
5235 case ELF::NT_GNU_BUILD_ID: {
5236 OS << " Build ID: " << getGNUBuildId(Desc);
5237 break;
5238 }
5239 case ELF::NT_GNU_GOLD_VERSION:
5240 OS << " Version: " << getDescAsStringRef(Desc);
5241 break;
5242 case ELF::NT_GNU_PROPERTY_TYPE_0:
5243 OS << " Properties:";
5244 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5245 OS << " " << Property << "\n";
5246 break;
5247 }
5248 OS << '\n';
5249 return true;
5250}
5251
5252using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5253static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5254 ArrayRef<uint8_t> Desc) {
5255 AndroidNoteProperties Props;
5256 switch (NoteType) {
5257 case ELF::NT_ANDROID_TYPE_MEMTAG:
5258 if (Desc.empty()) {
5259 Props.emplace_back("Invalid .note.android.memtag", "");
5260 return Props;
5261 }
5262
5263 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5264 case NT_MEMTAG_LEVEL_NONE:
5265 Props.emplace_back("Tagging Mode", "NONE");
5266 break;
5267 case NT_MEMTAG_LEVEL_ASYNC:
5268 Props.emplace_back("Tagging Mode", "ASYNC");
5269 break;
5270 case NT_MEMTAG_LEVEL_SYNC:
5271 Props.emplace_back("Tagging Mode", "SYNC");
5272 break;
5273 default:
5274 Props.emplace_back(
5275 "Tagging Mode",
5276 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5277 .str());
5278 break;
5279 }
5280 Props.emplace_back("Heap",
5281 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5282 Props.emplace_back("Stack",
5283 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5284 break;
5285 default:
5286 return Props;
5287 }
5288 return Props;
5289}
5290
5291static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5292 ArrayRef<uint8_t> Desc) {
5293 // Return true if we were able to pretty-print the note, false otherwise.
5294 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5295 if (Props.empty())
5296 return false;
5297 for (const auto &KV : Props)
5298 OS << " " << KV.first << ": " << KV.second << '\n';
5299 return true;
5300}
5301
5302template <class ELFT>
5303void GNUELFDumper<ELFT>::printMemtag(
5304 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
5305 const ArrayRef<uint8_t> AndroidNoteDesc,
5306 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
5307 OS << "Memtag Dynamic Entries:\n";
5308 if (DynamicEntries.empty())
5309 OS << " < none found >\n";
5310 for (const auto &DynamicEntryKV : DynamicEntries)
5311 OS << " " << DynamicEntryKV.first << ": " << DynamicEntryKV.second
5312 << "\n";
5313
5314 if (!AndroidNoteDesc.empty()) {
5315 OS << "Memtag Android Note:\n";
5316 printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc);
5317 }
5318
5319 if (Descriptors.empty())
5320 return;
5321
5322 OS << "Memtag Global Descriptors:\n";
5323 for (const auto &[Addr, BytesToTag] : Descriptors) {
5324 OS << " 0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x"
5325 << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n";
5326 }
5327}
5328
5329template <typename ELFT>
5330static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5331 ArrayRef<uint8_t> Desc) {
5332 switch (NoteType) {
5333 default:
5334 return false;
5335 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5336 OS << " Version: " << getDescAsStringRef(Desc);
5337 break;
5338 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5339 OS << " Producer: " << getDescAsStringRef(Desc);
5340 break;
5341 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5342 OS << " Producer version: " << getDescAsStringRef(Desc);
5343 break;
5344 }
5345 OS << '\n';
5346 return true;
5347}
5348
5349const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5350 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5351 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5352 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5353 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5354 {"LA48", NT_FREEBSD_FCTL_LA48},
5355 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5356};
5357
5358struct FreeBSDNote {
5359 std::string Type;
5360 std::string Value;
5361};
5362
5363template <typename ELFT>
5364static std::optional<FreeBSDNote>
5365getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5366 if (IsCore)
5367 return std::nullopt; // No pretty-printing yet.
5368 switch (NoteType) {
5369 case ELF::NT_FREEBSD_ABI_TAG:
5370 if (Desc.size() != 4)
5371 return std::nullopt;
5372 return FreeBSDNote{
5373 "ABI tag",
5374 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5375 case ELF::NT_FREEBSD_ARCH_TAG:
5376 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5377 case ELF::NT_FREEBSD_FEATURE_CTL: {
5378 if (Desc.size() != 4)
5379 return std::nullopt;
5380 unsigned Value =
5381 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5382 std::string FlagsStr;
5383 raw_string_ostream OS(FlagsStr);
5384 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5385 if (OS.str().empty())
5386 OS << "0x" << utohexstr(Value);
5387 else
5388 OS << "(0x" << utohexstr(Value) << ")";
5389 return FreeBSDNote{"Feature flags", OS.str()};
5390 }
5391 default:
5392 return std::nullopt;
5393 }
5394}
5395
5396struct AMDNote {
5397 std::string Type;
5398 std::string Value;
5399};
5400
5401template <typename ELFT>
5402static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5403 switch (NoteType) {
5404 default:
5405 return {"", ""};
5406 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5407 struct CodeObjectVersion {
5408 uint32_t MajorVersion;
5409 uint32_t MinorVersion;
5410 };
5411 if (Desc.size() != sizeof(CodeObjectVersion))
5412 return {"AMD HSA Code Object Version",
5413 "Invalid AMD HSA Code Object Version"};
5414 std::string VersionString;
5415 raw_string_ostream StrOS(VersionString);
5416 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5417 StrOS << "[Major: " << Version->MajorVersion
5418 << ", Minor: " << Version->MinorVersion << "]";
5419 return {"AMD HSA Code Object Version", VersionString};
5420 }
5421 case ELF::NT_AMD_HSA_HSAIL: {
5422 struct HSAILProperties {
5423 uint32_t HSAILMajorVersion;
5424 uint32_t HSAILMinorVersion;
5425 uint8_t Profile;
5426 uint8_t MachineModel;
5427 uint8_t DefaultFloatRound;
5428 };
5429 if (Desc.size() != sizeof(HSAILProperties))
5430 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5431 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5432 std::string HSAILPropetiesString;
5433 raw_string_ostream StrOS(HSAILPropetiesString);
5434 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5435 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5436 << ", Profile: " << uint32_t(Properties->Profile)
5437 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5438 << ", Default Float Round: "
5439 << uint32_t(Properties->DefaultFloatRound) << "]";
5440 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5441 }
5442 case ELF::NT_AMD_HSA_ISA_VERSION: {
5443 struct IsaVersion {
5444 uint16_t VendorNameSize;
5445 uint16_t ArchitectureNameSize;
5446 uint32_t Major;
5447 uint32_t Minor;
5448 uint32_t Stepping;
5449 };
5450 if (Desc.size() < sizeof(IsaVersion))
5451 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5452 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5453 if (Desc.size() < sizeof(IsaVersion) +
5454 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5455 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5456 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5457 std::string IsaString;
5458 raw_string_ostream StrOS(IsaString);
5459 StrOS << "[Vendor: "
5460 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5461 << ", Architecture: "
5462 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5463 Isa->ArchitectureNameSize - 1)
5464 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5465 << ", Stepping: " << Isa->Stepping << "]";
5466 return {"AMD HSA ISA Version", IsaString};
5467 }
5468 case ELF::NT_AMD_HSA_METADATA: {
5469 if (Desc.size() == 0)
5470 return {"AMD HSA Metadata", ""};
5471 return {
5472 "AMD HSA Metadata",
5473 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5474 }
5475 case ELF::NT_AMD_HSA_ISA_NAME: {
5476 if (Desc.size() == 0)
5477 return {"AMD HSA ISA Name", ""};
5478 return {
5479 "AMD HSA ISA Name",
5480 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5481 }
5482 case ELF::NT_AMD_PAL_METADATA: {
5483 struct PALMetadata {
5484 uint32_t Key;
5485 uint32_t Value;
5486 };
5487 if (Desc.size() % sizeof(PALMetadata) != 0)
5488 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5489 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5490 std::string MetadataString;
5491 raw_string_ostream StrOS(MetadataString);
5492 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5493 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5494 }
5495 return {"AMD PAL Metadata", MetadataString};
5496 }
5497 }
5498}
5499
5500struct AMDGPUNote {
5501 std::string Type;
5502 std::string Value;
5503};
5504
5505template <typename ELFT>
5506static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5507 switch (NoteType) {
5508 default:
5509 return {"", ""};
5510 case ELF::NT_AMDGPU_METADATA: {
5511 StringRef MsgPackString =
5512 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5513 msgpack::Document MsgPackDoc;
5514 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5515 return {"", ""};
5516
5517 std::string MetadataString;
5518
5519 // FIXME: Metadata Verifier only works with AMDHSA.
5520 // This is an ugly workaround to avoid the verifier for other MD
5521 // formats (e.g. amdpal)
5522 if (MsgPackString.find("amdhsa.") != StringRef::npos) {
5523 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5524 if (!Verifier.verify(MsgPackDoc.getRoot()))
5525 MetadataString = "Invalid AMDGPU Metadata\n";
5526 }
5527
5528 raw_string_ostream StrOS(MetadataString);
5529 if (MsgPackDoc.getRoot().isScalar()) {
5530 // TODO: passing a scalar root to toYAML() asserts:
5531 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5532 // "plain scalar documents are not supported")
5533 // To avoid this crash we print the raw data instead.
5534 return {"", ""};
5535 }
5536 MsgPackDoc.toYAML(StrOS);
5537 return {"AMDGPU Metadata", StrOS.str()};
5538 }
5539 }
5540}
5541
5542struct CoreFileMapping {
5543 uint64_t Start, End, Offset;
5544 StringRef Filename;
5545};
5546
5547struct CoreNote {
5548 uint64_t PageSize;
5549 std::vector<CoreFileMapping> Mappings;
5550};
5551
5552static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5553 // Expected format of the NT_FILE note description:
5554 // 1. # of file mappings (call it N)
5555 // 2. Page size
5556 // 3. N (start, end, offset) triples
5557 // 4. N packed filenames (null delimited)
5558 // Each field is an Elf_Addr, except for filenames which are char* strings.
5559
5560 CoreNote Ret;
5561 const int Bytes = Desc.getAddressSize();
5562
5563 if (!Desc.isValidOffsetForAddress(2))
5564 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5565 " is too short, expected at least 0x" +
5566 Twine::utohexstr(Bytes * 2));
5567 if (Desc.getData().back() != 0)
5568 return createError("the note is not NUL terminated");
5569
5570 uint64_t DescOffset = 0;
5571 uint64_t FileCount = Desc.getAddress(&DescOffset);
5572 Ret.PageSize = Desc.getAddress(&DescOffset);
5573
5574 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5575 return createError("unable to read file mappings (found " +
5576 Twine(FileCount) + "): the note of size 0x" +
5577 Twine::utohexstr(Desc.size()) + " is too short");
5578
5579 uint64_t FilenamesOffset = 0;
5580 DataExtractor Filenames(
5581 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5582 Desc.isLittleEndian(), Desc.getAddressSize());
5583
5584 Ret.Mappings.resize(FileCount);
5585 size_t I = 0;
5586 for (CoreFileMapping &Mapping : Ret.Mappings) {
5587 ++I;
5588 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5589 return createError(
5590 "unable to read the file name for the mapping with index " +
5591 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5592 " is truncated");
5593 Mapping.Start = Desc.getAddress(&DescOffset);
5594 Mapping.End = Desc.getAddress(&DescOffset);
5595 Mapping.Offset = Desc.getAddress(&DescOffset);
5596 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5597 }
5598
5599 return Ret;
5600}
5601
5602template <typename ELFT>
5603static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5604 // Length of "0x<address>" string.
5605 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5606
5607 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5608 OS << " " << right_justify("Start", FieldWidth) << " "
5609 << right_justify("End", FieldWidth) << " "
5610 << right_justify("Page Offset", FieldWidth) << '\n';
5611 for (const CoreFileMapping &Mapping : Note.Mappings) {
5612 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5613 << format_hex(Mapping.End, FieldWidth) << " "
5614 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5615 << Mapping.Filename << '\n';
5616 }
5617}
5618
5619const NoteType GenericNoteTypes[] = {
5620 {ELF::NT_VERSION, "NT_VERSION (version)"},
5621 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5622 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5623 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5624};
5625
5626const NoteType GNUNoteTypes[] = {
5627 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5628 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5629 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5630 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5631 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5632};
5633
5634const NoteType FreeBSDCoreNoteTypes[] = {
5635 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5636 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5637 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5638 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5639 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5640 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5641 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5642 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5643 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5644 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5645 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5646};
5647
5648const NoteType FreeBSDNoteTypes[] = {
5649 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5650 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5651 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5652 {ELF::NT_FREEBSD_FEATURE_CTL,
5653 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5654};
5655
5656const NoteType NetBSDCoreNoteTypes[] = {
5657 {ELF::NT_NETBSDCORE_PROCINFO,
5658 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5659 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5660 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5661};
5662
5663const NoteType OpenBSDCoreNoteTypes[] = {
5664 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5665 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5666 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5667 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5668 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5669};
5670
5671const NoteType AMDNoteTypes[] = {
5672 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5673 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5674 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5675 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5676 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5677 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5678 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5679};
5680
5681const NoteType AMDGPUNoteTypes[] = {
5682 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5683};
5684
5685const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5686 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5687 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5688 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5689 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5690 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5691 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5692};
5693
5694const NoteType AndroidNoteTypes[] = {
5695 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5696 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5697 {ELF::NT_ANDROID_TYPE_MEMTAG,
5698 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5699};
5700
5701const NoteType CoreNoteTypes[] = {
5702 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5703 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5704 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5705 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5706 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5707 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5708 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5709 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5710 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5711 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5712 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5713
5714 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5715 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5716 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5717 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5718 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5719 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5720 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5721 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5722 {ELF::NT_PPC_TM_CFPR,
5723 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5724 {ELF::NT_PPC_TM_CVMX,
5725 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5726 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5727 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5728 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5729 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5730 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5731
5732 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5733 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5734 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5735
5736 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5737 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5738 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5739 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5740 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5741 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5742 {ELF::NT_S390_LAST_BREAK,
5743 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5744 {ELF::NT_S390_SYSTEM_CALL,
5745 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5746 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5747 {ELF::NT_S390_VXRS_LOW,
5748 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5749 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5750 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5751 {ELF::NT_S390_GS_BC,
5752 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5753
5754 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5755 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5756 {ELF::NT_ARM_HW_BREAK,
5757 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5758 {ELF::NT_ARM_HW_WATCH,
5759 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5760 {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"},
5761 {ELF::NT_ARM_PAC_MASK,
5762 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"},
5763 {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"},
5764 {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"},
5765 {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"},
5766
5767 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5768 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5769 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5770};
5771
5772template <class ELFT>
5773StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5774 uint32_t Type = Note.getType();
5775 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5776 for (const NoteType &N : V)
5777 if (N.ID == Type)
5778 return N.Name;
5779 return "";
5780 };
5781
5782 StringRef Name = Note.getName();
5783 if (Name == "GNU")
5784 return FindNote(GNUNoteTypes);
5785 if (Name == "FreeBSD") {
5786 if (ELFType == ELF::ET_CORE) {
5787 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5788 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5789 if (!Result.empty())
5790 return Result;
5791 return FindNote(CoreNoteTypes);
5792 } else {
5793 return FindNote(FreeBSDNoteTypes);
5794 }
5795 }
5796 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5797 StringRef Result = FindNote(NetBSDCoreNoteTypes);
5798 if (!Result.empty())
5799 return Result;
5800 return FindNote(CoreNoteTypes);
5801 }
5802 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5803 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5804 StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5805 if (!Result.empty())
5806 return Result;
5807 return FindNote(CoreNoteTypes);
5808 }
5809 if (Name == "AMD")
5810 return FindNote(AMDNoteTypes);
5811 if (Name == "AMDGPU")
5812 return FindNote(AMDGPUNoteTypes);
5813 if (Name == "LLVMOMPOFFLOAD")
5814 return FindNote(LLVMOMPOFFLOADNoteTypes);
5815 if (Name == "Android")
5816 return FindNote(AndroidNoteTypes);
5817
5818 if (ELFType == ELF::ET_CORE)
5819 return FindNote(CoreNoteTypes);
5820 return FindNote(GenericNoteTypes);
5821}
5822
5823template <class ELFT>
5824static void processNotesHelper(
5825 const ELFDumper<ELFT> &Dumper,
5826 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5827 typename ELFT::Addr)>
5828 StartNotesFn,
5829 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5830 llvm::function_ref<void()> FinishNotesFn) {
5831 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5832 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5833
5834 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5835 if (!IsCoreFile && !Sections.empty()) {
5836 for (const typename ELFT::Shdr &S : Sections) {
5837 if (S.sh_type != SHT_NOTE)
5838 continue;
5839 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5840 S.sh_size);
5841 Error Err = Error::success();
5842 size_t I = 0;
5843 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5844 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5845 Dumper.reportUniqueWarning(
5846 "unable to read note with index " + Twine(I) + " from the " +
5847 describe(Obj, S) + ": " + toString(std::move(E)));
5848 ++I;
5849 }
5850 if (Err)
5851 Dumper.reportUniqueWarning("unable to read notes from the " +
5852 describe(Obj, S) + ": " +
5853 toString(std::move(Err)));
5854 FinishNotesFn();
5855 }
5856 return;
5857 }
5858
5859 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5860 if (!PhdrsOrErr) {
5861 Dumper.reportUniqueWarning(
5862 "unable to read program headers to locate the PT_NOTE segment: " +
5863 toString(PhdrsOrErr.takeError()));
5864 return;
5865 }
5866
5867 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5868 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5869 if (P.p_type != PT_NOTE)
5870 continue;
5871 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz);
5872 Error Err = Error::success();
5873 size_t Index = 0;
5874 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5875 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5876 Dumper.reportUniqueWarning("unable to read note with index " +
5877 Twine(Index) +
5878 " from the PT_NOTE segment with index " +
5879 Twine(I) + ": " + toString(std::move(E)));
5880 ++Index;
5881 }
5882 if (Err)
5883 Dumper.reportUniqueWarning(
5884 "unable to read notes from the PT_NOTE segment with index " +
5885 Twine(I) + ": " + toString(std::move(Err)));
5886 FinishNotesFn();
5887 }
5888}
5889
5890template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5891 bool IsFirstHeader = true;
5892 auto PrintHeader = [&](std::optional<StringRef> SecName,
5893 const typename ELFT::Off Offset,
5894 const typename ELFT::Addr Size) {
5895 // Print a newline between notes sections to match GNU readelf.
5896 if (!IsFirstHeader) {
5897 OS << '\n';
5898 } else {
5899 IsFirstHeader = false;
5900 }
5901
5902 OS << "Displaying notes found ";
5903
5904 if (SecName)
5905 OS << "in: " << *SecName << "\n";
5906 else
5907 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5908 << format_hex(Size, 10) << ":\n";
5909
5910 OS << " Owner Data size \tDescription\n";
5911 };
5912
5913 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5914 StringRef Name = Note.getName();
5915 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5916 Elf_Word Type = Note.getType();
5917
5918 // Print the note owner/type.
5919 OS << " " << left_justify(Name, 20) << ' '
5920 << format_hex(Descriptor.size(), 10) << '\t';
5921
5922 StringRef NoteType =
5923 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5924 if (!NoteType.empty())
5925 OS << NoteType << '\n';
5926 else
5927 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5928
5929 // Print the description, or fallback to printing raw bytes for unknown
5930 // owners/if we fail to pretty-print the contents.
5931 if (Name == "GNU") {
5932 if (printGNUNote<ELFT>(OS, Type, Descriptor))
5933 return Error::success();
5934 } else if (Name == "FreeBSD") {
5935 if (std::optional<FreeBSDNote> N =
5936 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5937 OS << " " << N->Type << ": " << N->Value << '\n';
5938 return Error::success();
5939 }
5940 } else if (Name == "AMD") {
5941 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5942 if (!N.Type.empty()) {
5943 OS << " " << N.Type << ":\n " << N.Value << '\n';
5944 return Error::success();
5945 }
5946 } else if (Name == "AMDGPU") {
5947 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5948 if (!N.Type.empty()) {
5949 OS << " " << N.Type << ":\n " << N.Value << '\n';
5950 return Error::success();
5951 }
5952 } else if (Name == "LLVMOMPOFFLOAD") {
5953 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5954 return Error::success();
5955 } else if (Name == "CORE") {
5956 if (Type == ELF::NT_FILE) {
5957 DataExtractor DescExtractor(Descriptor,
5958 ELFT::TargetEndianness == support::little,
5959 sizeof(Elf_Addr));
5960 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5961 printCoreNote<ELFT>(OS, *NoteOrErr);
5962 return Error::success();
5963 } else {
5964 return NoteOrErr.takeError();
5965 }
5966 }
5967 } else if (Name == "Android") {
5968 if (printAndroidNote(OS, Type, Descriptor))
5969 return Error::success();
5970 }
5971 if (!Descriptor.empty()) {
5972 OS << " description data:";
5973 for (uint8_t B : Descriptor)
5974 OS << " " << format("%02x", B);
5975 OS << '\n';
5976 }
5977 return Error::success();
5978 };
5979
5980 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader,
5981 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {});
5982}
5983
5984template <class ELFT>
5985ArrayRef<uint8_t>
5986ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) {
5987 for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) {
5988 if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC)
5989 continue;
5990 if (Sec.sh_addr != ExpectedAddr) {
5991 reportUniqueWarning(
5992 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" +
5993 Twine::utohexstr(Sec.sh_addr) +
5994 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" +
5995 Twine::utohexstr(ExpectedAddr));
5996 return ArrayRef<uint8_t>();
5997 }
5998 Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec);
5999 if (auto E = Contents.takeError()) {
6000 reportUniqueWarning(
6001 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " +
6002 toString(std::move(E)));
6003 return ArrayRef<uint8_t>();
6004 }
6005 return Contents.get();
6006 }
6007 return ArrayRef<uint8_t>();
6008}
6009
6010// Reserve the lower three bits of the first byte of the step distance when
6011// encoding the memtag descriptors. Found to be the best overall size tradeoff
6012// when compiling Android T with full MTE globals enabled.
6013constexpr uint64_t MemtagStepVarintReservedBits = 3;
6014constexpr uint64_t MemtagGranuleSize = 16;
6015
6016template <typename ELFT> void ELFDumper<ELFT>::printMemtag() {
6017 if (Obj.getHeader().e_machine != EM_AARCH64) return;
6018 std::vector<std::pair<std::string, std::string>> DynamicEntries;
6019 uint64_t MemtagGlobalsSz = 0;
6020 uint64_t MemtagGlobals = 0;
6021 for (const typename ELFT::Dyn &Entry : dynamic_table()) {
6022 uintX_t Tag = Entry.getTag();
6023 switch (Tag) {
6024 case DT_AARCH64_MEMTAG_GLOBALSSZ:
6025 MemtagGlobalsSz = Entry.getVal();
6026 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6027 getDynamicEntry(Tag, Entry.getVal()));
6028 break;
6029 case DT_AARCH64_MEMTAG_GLOBALS:
6030 MemtagGlobals = Entry.getVal();
6031 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6032 getDynamicEntry(Tag, Entry.getVal()));
6033 break;
6034 case DT_AARCH64_MEMTAG_MODE:
6035 case DT_AARCH64_MEMTAG_HEAP:
6036 case DT_AARCH64_MEMTAG_STACK:
6037 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6038 getDynamicEntry(Tag, Entry.getVal()));
6039 break;
6040 }
6041 }
6042
6043 ArrayRef<uint8_t> AndroidNoteDesc;
6044 auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6045 if (Note.getName() == "Android" &&
6046 Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG)
6047 AndroidNoteDesc = Note.getDesc();
6048 return Error::success();
6049 };
6050
6051 processNotesHelper(
6052 *this,
6053 /*StartNotesFn=*/
6054 [](std::optional<StringRef>, const typename ELFT::Off,
6055 const typename ELFT::Addr) {},
6056 /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {});
6057
6058 ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals);
6059 if (Contents.size() != MemtagGlobalsSz) {
6060 reportUniqueWarning(
6061 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" +
6062 Twine::utohexstr(MemtagGlobalsSz) +
6063 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" +
6064 Twine::utohexstr(Contents.size()) + ")");
6065 Contents = ArrayRef<uint8_t>();
6066 }
6067
6068 std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors;
6069 uint64_t Address = 0;
6070 // See the AArch64 MemtagABI document for a description of encoding scheme:
6071 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
6072 for (size_t I = 0; I < Contents.size();) {
6073 const char *Error = nullptr;
6074 unsigned DecodedBytes = 0;
6075 uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes,
6076 Contents.end(), &Error);
6077 I += DecodedBytes;
6078 if (Error) {
6079 reportUniqueWarning(
6080 "error decoding distance uleb, " + Twine(DecodedBytes) +
6081 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6082 GlobalDescriptors.clear();
6083 break;
6084 }
6085 uint64_t Distance = Value >> MemtagStepVarintReservedBits;
6086 uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1);
6087 if (GranulesToTag == 0) {
6088 GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes,
6089 Contents.end(), &Error) +
6090 1;
6091 I += DecodedBytes;
6092 if (Error) {
6093 reportUniqueWarning(
6094 "error decoding size-only uleb, " + Twine(DecodedBytes) +
6095 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6096 GlobalDescriptors.clear();
6097 break;
6098 }
6099 }
6100 Address += Distance * MemtagGranuleSize;
6101 GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize);
6102 Address += GranulesToTag * MemtagGranuleSize;
6103 }
6104
6105 printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors);
6106}
6107
6108template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
6109 OS << "printELFLinkerOptions not implemented!\n";
6110}
6111
6112template <class ELFT>
6113void ELFDumper<ELFT>::printDependentLibsHelper(
6114 function_ref<void(const Elf_Shdr &)> OnSectionStart,
6115 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
6116 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
6117 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6118 Twine(SecNdx) + " is broken: " + Msg);
6119 };
6120
6121 unsigned I = -1;
6122 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
6123 ++I;
6124 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
6125 continue;
6126
6127 OnSectionStart(Shdr);
6128
6129 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
6130 if (!ContentsOrErr) {
6131 Warn(I, toString(ContentsOrErr.takeError()));
6132 continue;
6133 }
6134
6135 ArrayRef<uint8_t> Contents = *ContentsOrErr;
6136 if (!Contents.empty() && Contents.back() != 0) {
6137 Warn(I, "the content is not null-terminated");
6138 continue;
6139 }
6140
6141 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
6142 StringRef Lib((const char *)I);
6143 OnLibEntry(Lib, I - Contents.begin());
6144 I += Lib.size() + 1;
6145 }
6146 }
6147}
6148
6149template <class ELFT>
6150void ELFDumper<ELFT>::forEachRelocationDo(
6151 const Elf_Shdr &Sec, bool RawRelr,
6152 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
6153 const Elf_Shdr &, const Elf_Shdr *)>
6154 RelRelaFn,
6155 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
6156 auto Warn = [&](Error &&E,
6157 const Twine &Prefix = "unable to read relocations from") {
6158 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
6159 toString(std::move(E)));
6160 };
6161
6162 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
6163 // For them we should not treat the value of the sh_link field as an index of
6164 // a symbol table.
6165 const Elf_Shdr *SymTab;
3
'SymTab' declared without an initial value
6166 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
4
Assuming the condition is false
6167 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
6168 if (!SymTabOrErr) {
6169 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
6170 return;
6171 }
6172 SymTab = *SymTabOrErr;
6173 }
6174
6175 unsigned RelNdx = 0;
6176 const bool IsMips64EL = this->Obj.isMips64EL();
6177 switch (Sec.sh_type) {
5
Control jumps to 'case SHT_REL:' at line 6178
6178 case ELF::SHT_REL:
6179 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
6
Taking true branch
6180 for (const Elf_Rel &R : *RangeOrErr)
7
Assuming '__begin0' is not equal to '__end0'
6181 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
8
4th function call argument is an uninitialized value
6182 } else {
6183 Warn(RangeOrErr.takeError());
6184 }
6185 break;
6186 case ELF::SHT_RELA:
6187 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
6188 for (const Elf_Rela &R : *RangeOrErr)
6189 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6190 } else {
6191 Warn(RangeOrErr.takeError());
6192 }
6193 break;
6194 case ELF::SHT_RELR:
6195 case ELF::SHT_ANDROID_RELR: {
6196 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
6197 if (!RangeOrErr) {
6198 Warn(RangeOrErr.takeError());
6199 break;
6200 }
6201 if (RawRelr) {
6202 for (const Elf_Relr &R : *RangeOrErr)
6203 RelrFn(R);
6204 break;
6205 }
6206
6207 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
6208 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
6209 /*SymTab=*/nullptr);
6210 break;
6211 }
6212 case ELF::SHT_ANDROID_REL:
6213 case ELF::SHT_ANDROID_RELA:
6214 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
6215 for (const Elf_Rela &R : *RelasOrErr)
6216 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6217 } else {
6218 Warn(RelasOrErr.takeError());
6219 }
6220 break;
6221 }
6222}
6223
6224template <class ELFT>
6225StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
6226 StringRef Name = "<?>";
6227 if (Expected<StringRef> SecNameOrErr =
6228 Obj.getSectionName(Sec, this->WarningHandler))
6229 Name = *SecNameOrErr;
6230 else
6231 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
6232 ": " + toString(SecNameOrErr.takeError()));
6233 return Name;
6234}
6235
6236template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
6237 bool SectionStarted = false;
6238 struct NameOffset {
6239 StringRef Name;
6240 uint64_t Offset;
6241 };
6242 std::vector<NameOffset> SecEntries;
6243 NameOffset Current;
6244 auto PrintSection = [&]() {
6245 OS << "Dependent libraries section " << Current.Name << " at offset "
6246 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
6247 << " entries:\n";
6248 for (NameOffset Entry : SecEntries)
6249 OS << " [" << format("%6" PRIx64"l" "x", Entry.Offset) << "] " << Entry.Name
6250 << "\n";
6251 OS << "\n";
6252 SecEntries.clear();
6253 };
6254
6255 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
6256 if (SectionStarted)
6257 PrintSection();
6258 SectionStarted = true;
6259 Current.Offset = Shdr.sh_offset;
6260 Current.Name = this->getPrintableSectionName(Shdr);
6261 };
6262 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
6263 SecEntries.push_back(NameOffset{Lib, Offset});
6264 };
6265
6266 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6267 if (SectionStarted)
6268 PrintSection();
6269}
6270
6271template <class ELFT>
6272SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6273 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6274 SmallVector<uint32_t> SymbolIndexes;
6275 if (!this->AddressToIndexMap) {
6276 // Populate the address to index map upon the first invocation of this
6277 // function.
6278 this->AddressToIndexMap.emplace();
6279 if (this->DotSymtabSec) {
6280 if (Expected<Elf_Sym_Range> SymsOrError =
6281 Obj.symbols(this->DotSymtabSec)) {
6282 uint32_t Index = (uint32_t)-1;
6283 for (const Elf_Sym &Sym : *SymsOrError) {
6284 ++Index;
6285
6286 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6287 continue;
6288
6289 Expected<uint64_t> SymAddrOrErr =
6290 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6291 if (!SymAddrOrErr) {
6292 std::string Name = this->getStaticSymbolName(Index);
6293 reportUniqueWarning("unable to get address of symbol '" + Name +
6294 "': " + toString(SymAddrOrErr.takeError()));
6295 return SymbolIndexes;
6296 }
6297
6298 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6299 }
6300 } else {
6301 reportUniqueWarning("unable to read the symbol table: " +
6302 toString(SymsOrError.takeError()));
6303 }
6304 }
6305 }
6306
6307 auto Symbols = this->AddressToIndexMap->find(SymValue);
6308 if (Symbols == this->AddressToIndexMap->end())
6309 return SymbolIndexes;
6310
6311 for (uint32_t Index : Symbols->second) {
6312 // Check if the symbol is in the right section. FunctionSec == None
6313 // means "any section".
6314 if (FunctionSec) {
6315 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6316 if (Expected<const Elf_Shdr *> SecOrErr =
6317 Obj.getSection(Sym, this->DotSymtabSec,
6318 this->getShndxTable(this->DotSymtabSec))) {
6319 if (*FunctionSec != *SecOrErr)
6320 continue;
6321 } else {
6322 std::string Name = this->getStaticSymbolName(Index);
6323 // Note: it is impossible to trigger this error currently, it is
6324 // untested.
6325 reportUniqueWarning("unable to get section of symbol '" + Name +
6326 "': " + toString(SecOrErr.takeError()));
6327 return SymbolIndexes;
6328 }
6329 }
6330
6331 SymbolIndexes.push_back(Index);
6332 }
6333
6334 return SymbolIndexes;
6335}
6336
6337template <class ELFT>
6338bool ELFDumper<ELFT>::printFunctionStackSize(
6339 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6340 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6341 SmallVector<uint32_t> FuncSymIndexes =
6342 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6343 if (FuncSymIndexes.empty())
6344 reportUniqueWarning(
6345 "could not identify function symbol for stack size entry in " +
6346 describe(StackSizeSec));
6347
6348 // Extract the size. The expectation is that Offset is pointing to the right
6349 // place, i.e. past the function address.
6350 Error Err = Error::success();
6351 uint64_t StackSize = Data.getULEB128(Offset, &Err);
6352 if (Err) {
6353 reportUniqueWarning("could not extract a valid stack size from " +
6354 describe(StackSizeSec) + ": " +
6355 toString(std::move(Err)));
6356 return false;
6357 }
6358
6359 if (FuncSymIndexes.empty()) {
6360 printStackSizeEntry(StackSize, {"?"});
6361 } else {
6362 SmallVector<std::string> FuncSymNames;
6363 for (uint32_t Index : FuncSymIndexes)
6364 FuncSymNames.push_back(this->getStaticSymbolName(Index));
6365 printStackSizeEntry(StackSize, FuncSymNames);
6366 }
6367
6368 return true;
6369}
6370
6371template <class ELFT>
6372void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6373 ArrayRef<std::string> FuncNames) {
6374 OS.PadToColumn(2);
6375 OS << format_decimal(Size, 11);
6376 OS.PadToColumn(18);
6377
6378 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6379}
6380
6381template <class ELFT>
6382void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6383 const Elf_Shdr &RelocSec, unsigned Ndx,
6384 const Elf_Shdr *SymTab,
6385 const Elf_Shdr *FunctionSec,
6386 const Elf_Shdr &StackSizeSec,
6387 const RelocationResolver &Resolver,
6388 DataExtractor Data) {
6389 // This function ignores potentially erroneous input, unless it is directly
6390 // related to stack size reporting.
6391 const Elf_Sym *Sym = nullptr;
6392 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6393 if (!TargetOrErr)
6394 reportUniqueWarning("unable to get the target of relocation with index " +
6395 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6396 toString(TargetOrErr.takeError()));
6397 else
6398 Sym = TargetOrErr->Sym;
6399
6400 uint64_t RelocSymValue = 0;
6401 if (Sym) {
6402 Expected<const Elf_Shdr *> SectionOrErr =
6403 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6404 if (!SectionOrErr) {
6405 reportUniqueWarning(
6406 "cannot identify the section for relocation symbol '" +
6407 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6408 } else if (*SectionOrErr != FunctionSec) {
6409 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6410 "' is not in the expected section");
6411 // Pretend that the symbol is in the correct section and report its
6412 // stack size anyway.
6413 FunctionSec = *SectionOrErr;
6414 }
6415
6416 RelocSymValue = Sym->st_value;
6417 }
6418
6419 uint64_t Offset = R.Offset;
6420 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6421 reportUniqueWarning("found invalid relocation offset (0x" +
6422 Twine::utohexstr(Offset) + ") into " +
6423 describe(StackSizeSec) +
6424 " while trying to extract a stack size entry");
6425 return;
6426 }
6427
6428 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6429 Data.getAddress(&Offset), R.Addend.value_or(0));
6430 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6431 &Offset);
6432}
6433
6434template <class ELFT>
6435void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6436 std::function<void()> PrintHeader) {
6437 // This function ignores potentially erroneous input, unless it is directly
6438 // related to stack size reporting.
6439 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6440 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6441 continue;
6442 PrintHeader();
6443 ArrayRef<uint8_t> Contents =
6444 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6445 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6446 uint64_t Offset = 0;
6447 while (Offset < Contents.size()) {
6448 // The function address is followed by a ULEB representing the stack
6449 // size. Check for an extra byte before we try to process the entry.
6450 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6451 reportUniqueWarning(
6452 describe(Sec) +
6453 " ended while trying to extract a stack size entry");
6454 break;
6455 }
6456 uint64_t SymValue = Data.getAddress(&Offset);
6457 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6458 Data, &Offset))
6459 break;
6460 }
6461 }
6462}
6463
6464template <class ELFT>
6465void ELFDumper<ELFT>::printRelocatableStackSizes(
6466 std::function<void()> PrintHeader) {
6467 // Build a map between stack size sections and their corresponding relocation
6468 // sections.
6469 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6470 StringRef SectionName;
6471 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6472 SectionName = *NameOrErr;
6473 else
6474 consumeError(NameOrErr.takeError());
6475
6476 return SectionName == ".stack_sizes";
6477 };
6478
6479 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>>
6480 StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch);
6481 if (!StackSizeRelocMapOrErr) {
6482 reportUniqueWarning("unable to get stack size map section(s): " +
6483 toString(StackSizeRelocMapOrErr.takeError()));
6484 return;
6485 }
6486
6487 for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) {
6488 PrintHeader();
6489 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6490 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6491
6492 // Warn about stack size sections without a relocation section.
6493 if (!RelocSec) {
6494 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6495 ") does not have a corresponding "
6496 "relocation section"),
6497 FileName);
6498 continue;
6499 }
6500
6501 // A .stack_sizes section header's sh_link field is supposed to point
6502 // to the section that contains the functions whose stack sizes are
6503 // described in it.
6504 const Elf_Shdr *FunctionSec = unwrapOrError(
6505 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6506
6507 SupportsRelocation IsSupportedFn;
6508 RelocationResolver Resolver;
6509 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6510 ArrayRef<uint8_t> Contents =
6511 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6512 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6513
6514 forEachRelocationDo(
6515 *RelocSec, /*RawRelr=*/false,
6516 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6517 const Elf_Shdr *SymTab) {
6518 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6519 reportUniqueWarning(
6520 describe(*RelocSec) +
6521 " contains an unsupported relocation with index " + Twine(Ndx) +
6522 ": " + Obj.getRelocationTypeName(R.Type));
6523 return;
6524 }
6525
6526 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6527 *StackSizesELFSec, Resolver, Data);
6528 },
6529 [](const Elf_Relr &) {
6530 llvm_unreachable("can't get here, because we only support "::llvm::llvm_unreachable_internal("can't get here, because we only support "
"SHT_REL/SHT_RELA sections", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 6531)
6531 "SHT_REL/SHT_RELA sections")::llvm::llvm_unreachable_internal("can't get here, because we only support "
"SHT_REL/SHT_RELA sections", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 6531)
;
6532 });
6533 }
6534}
6535
6536template <class ELFT>
6537void GNUELFDumper<ELFT>::printStackSizes() {
6538 bool HeaderHasBeenPrinted = false;
6539 auto PrintHeader = [&]() {
6540 if (HeaderHasBeenPrinted)
6541 return;
6542 OS << "\nStack Sizes:\n";
6543 OS.PadToColumn(9);
6544 OS << "Size";
6545 OS.PadToColumn(18);
6546 OS << "Functions\n";
6547 HeaderHasBeenPrinted = true;
6548 };
6549
6550 // For non-relocatable objects, look directly for sections whose name starts
6551 // with .stack_sizes and process the contents.
6552 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6553 this->printRelocatableStackSizes(PrintHeader);
6554 else
6555 this->printNonRelocatableStackSizes(PrintHeader);
6556}
6557
6558template <class ELFT>
6559void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6560 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6561 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6562 OS.PadToColumn(2);
6563 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6564 OS.PadToColumn(11 + Bias);
6565 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6566 OS.PadToColumn(22 + Bias);
6567 OS << format_hex_no_prefix(*E, 8 + Bias);
6568 OS.PadToColumn(31 + 2 * Bias);
6569 OS << Purpose << "\n";
6570 };
6571
6572 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6573 OS << " Canonical gp value: "
6574 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6575
6576 OS << " Reserved entries:\n";
6577 if (ELFT::Is64Bits)
6578 OS << " Address Access Initial Purpose\n";
6579 else
6580 OS << " Address Access Initial Purpose\n";
6581 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6582 if (Parser.getGotModulePointer())
6583 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6584
6585 if (!Parser.getLocalEntries().empty()) {
6586 OS << "\n";
6587 OS << " Local entries:\n";
6588 if (ELFT::Is64Bits)
6589 OS << " Address Access Initial\n";
6590 else
6591 OS << " Address Access Initial\n";
6592 for (auto &E : Parser.getLocalEntries())
6593 PrintEntry(&E, "");
6594 }
6595
6596 if (Parser.IsStatic)
6597 return;
6598
6599 if (!Parser.getGlobalEntries().empty()) {
6600 OS << "\n";
6601 OS << " Global entries:\n";
6602 if (ELFT::Is64Bits)
6603 OS << " Address Access Initial Sym.Val."
6604 << " Type Ndx Name\n";
6605 else
6606 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6607
6608 DataRegion<Elf_Word> ShndxTable(
6609 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6610 for (auto &E : Parser.getGlobalEntries()) {
6611 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6612 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6613 std::string SymName = this->getFullSymbolName(
6614 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6615
6616 OS.PadToColumn(2);
6617 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6618 OS.PadToColumn(11 + Bias);
6619 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6620 OS.PadToColumn(22 + Bias);
6621 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6622 OS.PadToColumn(31 + 2 * Bias);
6623 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6624 OS.PadToColumn(40 + 3 * Bias);
6625 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6626 OS.PadToColumn(48 + 3 * Bias);
6627 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6628 ShndxTable);
6629 OS.PadToColumn(52 + 3 * Bias);
6630 OS << SymName << "\n";
6631 }
6632 }
6633
6634 if (!Parser.getOtherEntries().empty())
6635 OS << "\n Number of TLS and multi-GOT entries "
6636 << Parser.getOtherEntries().size() << "\n";
6637}
6638
6639template <class ELFT>
6640void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6641 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6642 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6643 OS.PadToColumn(2);
6644 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6645 OS.PadToColumn(11 + Bias);
6646 OS << format_hex_no_prefix(*E, 8 + Bias);
6647 OS.PadToColumn(20 + 2 * Bias);
6648 OS << Purpose << "\n";
6649 };
6650
6651 OS << "PLT GOT:\n\n";
6652
6653 OS << " Reserved entries:\n";
6654 OS << " Address Initial Purpose\n";
6655 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6656 if (Parser.getPltModulePointer())
6657 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6658
6659 if (!Parser.getPltEntries().empty()) {
6660 OS << "\n";
6661 OS << " Entries:\n";
6662 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6663 DataRegion<Elf_Word> ShndxTable(
6664 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6665 for (auto &E : Parser.getPltEntries()) {
6666 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6667 const Elf_Sym &FirstSym = *cantFail(
6668 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6669 std::string SymName = this->getFullSymbolName(
6670 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6671
6672 OS.PadToColumn(2);
6673 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6674 OS.PadToColumn(11 + Bias);
6675 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6676 OS.PadToColumn(20 + 2 * Bias);
6677 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6678 OS.PadToColumn(29 + 3 * Bias);
6679 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6680 OS.PadToColumn(37 + 3 * Bias);
6681 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6682 ShndxTable);
6683 OS.PadToColumn(41 + 3 * Bias);
6684 OS << SymName << "\n";
6685 }
6686 }
6687}
6688
6689template <class ELFT>
6690Expected<const Elf_Mips_ABIFlags<ELFT> *>
6691getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6692 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6693 if (Sec == nullptr)
6694 return nullptr;
6695
6696 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6697 Expected<ArrayRef<uint8_t>> DataOrErr =
6698 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6699 if (!DataOrErr)
6700 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6701
6702 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6703 return createError(ErrPrefix + "it has a wrong size (" +
6704 Twine(DataOrErr->size()) + ")");
6705 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6706}
6707
6708template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6709 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6710 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6711 getMipsAbiFlagsSection(*this))
6712 Flags = *SecOrErr;
6713 else
6714 this->reportUniqueWarning(SecOrErr.takeError());
6715 if (!Flags)
6716 return;
6717
6718 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6719 OS << "ISA: MIPS" << int(Flags->isa_level);
6720 if (Flags->isa_rev > 1)
6721 OS << "r" << int(Flags->isa_rev);
6722 OS << "\n";
6723 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6724 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6725 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6726 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6727 << "\n";
6728 OS << "ISA Extension: "
6729 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6730 if (Flags->ases == 0)
6731 OS << "ASEs: None\n";
6732 else
6733 // FIXME: Print each flag on a separate line.
6734 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6735 << "\n";
6736 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6737 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6738 OS << "\n";
6739}
6740
6741template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6742 const Elf_Ehdr &E = this->Obj.getHeader();
6743 {
6744 DictScope D(W, "ElfHeader");
6745 {
6746 DictScope D(W, "Ident");
6747 W.printBinary("Magic",
6748 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6749 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6750 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6751 ArrayRef(ElfDataEncoding));
6752 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6753
6754 auto OSABI = ArrayRef(ElfOSABI);
6755 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6756 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6757 switch (E.e_machine) {
6758 case ELF::EM_AMDGPU:
6759 OSABI = ArrayRef(AMDGPUElfOSABI);
6760 break;
6761 case ELF::EM_ARM:
6762 OSABI = ArrayRef(ARMElfOSABI);
6763 break;
6764 case ELF::EM_TI_C6000:
6765 OSABI = ArrayRef(C6000ElfOSABI);
6766 break;
6767 }
6768 }
6769 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6770 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6771 W.printBinary("Unused",
6772 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6773 }
6774
6775 std::string TypeStr;
6776 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6777 TypeStr = Ent->Name.str();
6778 } else {
6779 if (E.e_type >= ET_LOPROC)
6780 TypeStr = "Processor Specific";
6781 else if (E.e_type >= ET_LOOS)
6782 TypeStr = "OS Specific";
6783 else
6784 TypeStr = "Unknown";
6785 }
6786 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6787
6788 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6789 W.printNumber("Version", E.e_version);
6790 W.printHex("Entry", E.e_entry);
6791 W.printHex("ProgramHeaderOffset", E.e_phoff);
6792 W.printHex("SectionHeaderOffset", E.e_shoff);
6793 if (E.e_machine == EM_MIPS)
6794 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6795 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6796 unsigned(ELF::EF_MIPS_MACH));
6797 else if (E.e_machine == EM_AMDGPU) {
6798 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6799 default:
6800 W.printHex("Flags", E.e_flags);
6801 break;
6802 case 0:
6803 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6804 [[fallthrough]];
6805 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6806 W.printFlags("Flags", E.e_flags,
6807 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6808 unsigned(ELF::EF_AMDGPU_MACH));
6809 break;
6810 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6811 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6812 W.printFlags("Flags", E.e_flags,
6813 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6814 unsigned(ELF::EF_AMDGPU_MACH),
6815 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6816 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6817 break;
6818 }
6819 } else if (E.e_machine == EM_RISCV)
6820 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6821 else if (E.e_machine == EM_AVR)
6822 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6823 unsigned(ELF::EF_AVR_ARCH_MASK));
6824 else if (E.e_machine == EM_LOONGARCH)
6825 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6826 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6827 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6828 else if (E.e_machine == EM_XTENSA)
6829 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6830 unsigned(ELF::EF_XTENSA_MACH));
6831 else
6832 W.printFlags("Flags", E.e_flags);
6833 W.printNumber("HeaderSize", E.e_ehsize);
6834 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6835 W.printNumber("ProgramHeaderCount", E.e_phnum);
6836 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6837 W.printString("SectionHeaderCount",
6838 getSectionHeadersNumString(this->Obj, this->FileName));
6839 W.printString("StringTableSectionIndex",
6840 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6841 }
6842}
6843
6844template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6845 DictScope Lists(W, "Groups");
6846 std::vector<GroupSection> V = this->getGroups();
6847 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6848 for (const GroupSection &G : V) {
6849 DictScope D(W, "Group");
6850 W.printNumber("Name", G.Name, G.ShName);
6851 W.printNumber("Index", G.Index);
6852 W.printNumber("Link", G.Link);
6853 W.printNumber("Info", G.Info);
6854 W.printHex("Type", getGroupType(G.Type), G.Type);
6855 W.printString("Signature", G.Signature);
6856
6857 ListScope L(W, getGroupSectionHeaderName());
6858 for (const GroupMember &GM : G.Members) {
6859 const GroupSection *MainGroup = Map[GM.Index];
6860 if (MainGroup != &G)
6861 this->reportUniqueWarning(
6862 "section with index " + Twine(GM.Index) +
6863 ", included in the group section with index " +
6864 Twine(MainGroup->Index) +
6865 ", was also found in the group section with index " +
6866 Twine(G.Index));
6867 printSectionGroupMembers(GM.Name, GM.Index);
6868 }
6869 }
6870
6871 if (V.empty())
6872 printEmptyGroupMessage();
6873}
6874
6875template <class ELFT>
6876std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const {
6877 return "Section(s) in group";
6878}
6879
6880template <class ELFT>
6881void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
6882 uint64_t Idx) const {
6883 W.startLine() << Name << " (" << Idx << ")\n";
6884}
6885
6886template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6887 ListScope D(W, "Relocations");
6888
6889 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6890 if (!isRelocationSec<ELFT>(Sec))
6891 continue;
6892
6893 StringRef Name = this->getPrintableSectionName(Sec);
6894 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6895 printRelocationSectionInfo(Sec, Name, SecNdx);
6896 }
6897}
6898
6899template <class ELFT>
6900void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6901 W.startLine() << W.hex(R) << "\n";
6902}
6903
6904template <class ELFT>
6905void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R,
6906 StringRef SymbolName,
6907 StringRef RelocName) {
6908 DictScope Group(W, "Relocation");
6909 W.printHex("Offset", R.Offset);
6910 W.printNumber("Type", RelocName, R.Type);
6911 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6912 if (R.Addend)
6913 W.printHex("Addend", (uintX_t)*R.Addend);
6914}
6915
6916template <class ELFT>
6917void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
6918 StringRef SymbolName,
6919 StringRef RelocName) {
6920 raw_ostream &OS = W.startLine();
6921 OS << W.hex(R.Offset) << " " << RelocName << " "
6922 << (!SymbolName.empty() ? SymbolName : "-");
6923 if (R.Addend)
6924 OS << " " << W.hex((uintX_t)*R.Addend);
6925 OS << "\n";
6926}
6927
6928template <class ELFT>
6929void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
6930 StringRef Name,
6931 const unsigned SecNdx) {
6932 DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str());
6933 this->printRelocationsHelper(Sec);
6934}
6935
6936template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const {
6937 W.startLine() << "There are no group sections in the file.\n";
6938}
6939
6940template <class ELFT>
6941void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6942 const RelSymbol<ELFT> &RelSym) {
6943 StringRef SymbolName = RelSym.Name;
6944 SmallString<32> RelocName;
6945 this->Obj.getRelocationTypeName(R.Type, RelocName);
6946
6947 if (opts::ExpandRelocs) {
6948 printExpandedRelRelaReloc(R, SymbolName, RelocName);
6949 } else {
6950 printDefaultRelRelaReloc(R, SymbolName, RelocName);
6951 }
6952}
6953
6954template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6955 ListScope SectionsD(W, "Sections");
6956
6957 int SectionIndex = -1;
6958 std::vector<EnumEntry<unsigned>> FlagsList =
6959 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6960 this->Obj.getHeader().e_machine);
6961 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6962 DictScope SectionD(W, "Section");
6963 W.printNumber("Index", ++SectionIndex);
6964 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6965 W.printHex("Type",
6966 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6967 Sec.sh_type),
6968 Sec.sh_type);
6969 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
6970 W.printHex("Address", Sec.sh_addr);
6971 W.printHex("Offset", Sec.sh_offset);
6972 W.printNumber("Size", Sec.sh_size);
6973 W.printNumber("Link", Sec.sh_link);
6974 W.printNumber("Info", Sec.sh_info);
6975 W.printNumber("AddressAlignment", Sec.sh_addralign);
6976 W.printNumber("EntrySize", Sec.sh_entsize);
6977
6978 if (opts::SectionRelocations) {
6979 ListScope D(W, "Relocations");
6980 this->printRelocationsHelper(Sec);
6981 }
6982
6983 if (opts::SectionSymbols) {
6984 ListScope D(W, "Symbols");
6985 if (this->DotSymtabSec) {
6986 StringRef StrTable = unwrapOrError(
6987 this->FileName,
6988 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6989 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6990
6991 typename ELFT::SymRange Symbols = unwrapOrError(
6992 this->FileName, this->Obj.symbols(this->DotSymtabSec));
6993 for (const Elf_Sym &Sym : Symbols) {
6994 const Elf_Shdr *SymSec = unwrapOrError(
6995 this->FileName,
6996 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6997 if (SymSec == &Sec)
6998 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6999 false);
7000 }
7001 }
7002 }
7003
7004 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
7005 ArrayRef<uint8_t> Data =
7006 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
7007 W.printBinaryBlock(
7008 "SectionData",
7009 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
7010 }
7011 }
7012}
7013
7014template <class ELFT>
7015void LLVMELFDumper<ELFT>::printSymbolSection(
7016 const Elf_Sym &Symbol, unsigned SymIndex,
7017 DataRegion<Elf_Word> ShndxTable) const {
7018 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
7019 if (Symbol.isUndefined())
7020 return StringRef("Undefined");
7021 if (Symbol.isProcessorSpecific())
7022 return StringRef("Processor Specific");
7023 if (Symbol.isOSSpecific())
7024 return StringRef("Operating System Specific");
7025 if (Symbol.isAbsolute())
7026 return StringRef("Absolute");
7027 if (Symbol.isCommon())
7028 return StringRef("Common");
7029 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
7030 return StringRef("Reserved");
7031 return std::nullopt;
7032 };
7033
7034 if (std::optional<StringRef> Type = GetSectionSpecialType()) {
7035 W.printHex("Section", *Type, Symbol.st_shndx);
7036 return;
7037 }
7038
7039 Expected<unsigned> SectionIndex =
7040 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
7041 if (!SectionIndex) {
7042 assert(Symbol.st_shndx == SHN_XINDEX &&(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 7044, __extension__
__PRETTY_FUNCTION__))
7043 "getSymbolSectionIndex should only fail due to an invalid "(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 7044, __extension__
__PRETTY_FUNCTION__))
7044 "SHT_SYMTAB_SHNDX table/reference")(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 7044, __extension__
__PRETTY_FUNCTION__))
;
7045 this->reportUniqueWarning(SectionIndex.takeError());
7046 W.printHex("Section", "Reserved", SHN_XINDEX);
7047 return;
7048 }
7049
7050 Expected<StringRef> SectionName =
7051 this->getSymbolSectionName(Symbol, *SectionIndex);
7052 if (!SectionName) {
7053 // Don't report an invalid section name if the section headers are missing.
7054 // In such situations, all sections will be "invalid".
7055 if (!this->ObjF.sections().empty())
7056 this->reportUniqueWarning(SectionName.takeError());
7057 else
7058 consumeError(SectionName.takeError());
7059 W.printHex("Section", "<?>", *SectionIndex);
7060 } else {
7061 W.printHex("Section", *SectionName, *SectionIndex);
7062 }
7063}
7064
7065template <class ELFT>
7066void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const {
7067 std::vector<EnumEntry<unsigned>> SymOtherFlags =
7068 this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol);
7069 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
7070}
7071
7072template <class ELFT>
7073void LLVMELFDumper<ELFT>::printZeroSymbolOtherField(
7074 const Elf_Sym &Symbol) const {
7075 assert(Symbol.st_other == 0 && "non-zero Other Field")(static_cast <bool> (Symbol.st_other == 0 && "non-zero Other Field"
) ? void (0) : __assert_fail ("Symbol.st_other == 0 && \"non-zero Other Field\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 7075, __extension__
__PRETTY_FUNCTION__))
;
7076 // Usually st_other flag is zero. Do not pollute the output
7077 // by flags enumeration in that case.
7078 W.printNumber("Other", 0);
7079}
7080
7081template <class ELFT>
7082void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
7083 DataRegion<Elf_Word> ShndxTable,
7084 std::optional<StringRef> StrTable,
7085 bool IsDynamic,
7086 bool /*NonVisibilityBitsUsed*/) const {
7087 std::string FullSymbolName = this->getFullSymbolName(
7088 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
7089 unsigned char SymbolType = Symbol.getType();
7090
7091 DictScope D(W, "Symbol");
7092 W.printNumber("Name", FullSymbolName, Symbol.st_name);
7093 W.printHex("Value", Symbol.st_value);
7094 W.printNumber("Size", Symbol.st_size);
7095 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
7096 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
7097 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
7098 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
7099 else
7100 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
7101 if (Symbol.st_other == 0)
7102 printZeroSymbolOtherField(Symbol);
7103 else
7104 printSymbolOtherField(Symbol);
7105 printSymbolSection(Symbol, SymIndex, ShndxTable);
7106}
7107
7108template <class ELFT>
7109void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
7110 bool PrintDynamicSymbols) {
7111 if (PrintSymbols) {
7112 ListScope Group(W, "Symbols");
7113 this->printSymbolsHelper(false);
7114 }
7115 if (PrintDynamicSymbols) {
7116 ListScope Group(W, "DynamicSymbols");
7117 this->printSymbolsHelper(true);
7118 }
7119}
7120
7121template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
7122 Elf_Dyn_Range Table = this->dynamic_table();
7123 if (Table.empty())
7124 return;
7125
7126 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
7127
7128 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
7129 // The "Name/Value" column should be indented from the "Type" column by N
7130 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
7131 // space (1) = -3.
7132 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
7133 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
7134
7135 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
7136 for (auto Entry : Table) {
7137 uintX_t Tag = Entry.getTag();
7138 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
7139 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
7140 << " "
7141 << format(ValueFmt.c_str(),
7142 this->Obj.getDynamicTagAsString(Tag).c_str())
7143 << Value << "\n";
7144 }
7145 W.startLine() << "]\n";
7146}
7147
7148template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
7149 W.startLine() << "Dynamic Relocations {\n";
7150 W.indent();
7151 this->printDynamicRelocationsHelper();
7152 W.unindent();
7153 W.startLine() << "}\n";
7154}
7155
7156template <class ELFT>
7157void LLVMELFDumper<ELFT>::printProgramHeaders(
7158 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
7159 if (PrintProgramHeaders)
7160 printProgramHeaders();
7161 if (PrintSectionMapping == cl::BOU_TRUE)
7162 printSectionMapping();
7163}
7164
7165template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
7166 ListScope L(W, "ProgramHeaders");
7167
7168 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
7169 if (!PhdrsOrErr) {
7170 this->reportUniqueWarning("unable to dump program headers: " +
7171 toString(PhdrsOrErr.takeError()));
7172 return;
7173 }
7174
7175 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
7176 DictScope P(W, "ProgramHeader");
7177 StringRef Type =
7178 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
7179
7180 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
7181 W.printHex("Offset", Phdr.p_offset);
7182 W.printHex("VirtualAddress", Phdr.p_vaddr);
7183 W.printHex("PhysicalAddress", Phdr.p_paddr);
7184 W.printNumber("FileSize", Phdr.p_filesz);
7185 W.printNumber("MemSize", Phdr.p_memsz);
7186 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
7187 W.printNumber("Alignment", Phdr.p_align);
7188 }
7189}
7190
7191template <class ELFT>
7192void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
7193 ListScope SS(W, "VersionSymbols");
7194 if (!Sec)
7195 return;
7196
7197 StringRef StrTable;
7198 ArrayRef<Elf_Sym> Syms;
7199 const Elf_Shdr *SymTabSec;
7200 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
7201 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
7202 if (!VerTableOrErr) {
7203 this->reportUniqueWarning(VerTableOrErr.takeError());
7204 return;
7205 }
7206
7207 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
7208 return;
7209
7210 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
7211 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
7212 DictScope S(W, "Symbol");
7213 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
7214 W.printString("Name",
7215 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
7216 /*IsDynamic=*/true));
7217 }
7218}
7219
7220const EnumEntry<unsigned> SymVersionFlags[] = {
7221 {"Base", "BASE", VER_FLG_BASE},
7222 {"Weak", "WEAK", VER_FLG_WEAK},
7223 {"Info", "INFO", VER_FLG_INFO}};
7224
7225template <class ELFT>
7226void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
7227 ListScope SD(W, "VersionDefinitions");
7228 if (!Sec)
7229 return;
7230
7231 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
7232 if (!V) {
7233 this->reportUniqueWarning(V.takeError());
7234 return;
7235 }
7236
7237 for (const VerDef &D : *V) {
7238 DictScope Def(W, "Definition");
7239 W.printNumber("Version", D.Version);
7240 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
7241 W.printNumber("Index", D.Ndx);
7242 W.printNumber("Hash", D.Hash);
7243 W.printString("Name", D.Name.c_str());
7244 W.printList(
7245 "Predecessors", D.AuxV,
7246 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
7247 }
7248}
7249
7250template <class ELFT>
7251void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
7252 ListScope SD(W, "VersionRequirements");
7253 if (!Sec)
7254 return;
7255
7256 Expected<std::vector<VerNeed>> V =
7257 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
7258 if (!V) {
7259 this->reportUniqueWarning(V.takeError());
7260 return;
7261 }
7262
7263 for (const VerNeed &VN : *V) {
7264 DictScope Entry(W, "Dependency");
7265 W.printNumber("Version", VN.Version);
7266 W.printNumber("Count", VN.Cnt);
7267 W.printString("FileName", VN.File.c_str());
7268
7269 ListScope L(W, "Entries");
7270 for (const VernAux &Aux : VN.AuxV) {
7271 DictScope Entry(W, "Entry");
7272 W.printNumber("Hash", Aux.Hash);
7273 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7274 W.printNumber("Index", Aux.Other);
7275 W.printString("Name", Aux.Name.c_str());
7276 }
7277 }
7278}
7279
7280template <class ELFT>
7281void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
7282 size_t MaxChain,
7283 size_t TotalSyms,
7284 ArrayRef<size_t> Count,
7285 bool IsGnu) const {
7286 StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram";
7287 StringRef BucketName = IsGnu ? "Bucket" : "Chain";
7288 StringRef ListName = IsGnu ? "Buckets" : "Chains";
7289 DictScope Outer(W, HistName);
7290 W.printNumber("TotalBuckets", NBucket);
7291 ListScope Buckets(W, ListName);
7292 size_t CumulativeNonZero = 0;
7293 for (size_t I = 0; I < MaxChain; ++I) {
7294 CumulativeNonZero += Count[I] * I;
7295 DictScope Bucket(W, BucketName);
7296 W.printNumber("Length", I);
7297 W.printNumber("Count", Count[I]);
7298 W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket);
7299 W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms);
7300 }
7301}
7302
7303// Returns true if rel/rela section exists, and populates SymbolIndices.
7304// Otherwise returns false.
7305template <class ELFT>
7306static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7307 const ELFFile<ELFT> &Obj,
7308 const LLVMELFDumper<ELFT> *Dumper,
7309 SmallVector<uint32_t, 128> &SymbolIndices) {
7310 if (!CGRelSection) {
7311 Dumper->reportUniqueWarning(
7312 "relocation section for a call graph section doesn't exist");
7313 return false;
7314 }
7315
7316 if (CGRelSection->sh_type == SHT_REL) {
7317 typename ELFT::RelRange CGProfileRel;
7318 Expected<typename ELFT::RelRange> CGProfileRelOrError =
7319 Obj.rels(*CGRelSection);
7320 if (!CGProfileRelOrError) {
7321 Dumper->reportUniqueWarning("unable to load relocations for "
7322 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7323 toString(CGProfileRelOrError.takeError()));
7324 return false;
7325 }
7326
7327 CGProfileRel = *CGProfileRelOrError;
7328 for (const typename ELFT::Rel &Rel : CGProfileRel)
7329 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7330 } else {
7331 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7332 // the format to SHT_RELA
7333 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7334 typename ELFT::RelaRange CGProfileRela;
7335 Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7336 Obj.relas(*CGRelSection);
7337 if (!CGProfileRelaOrError) {
7338 Dumper->reportUniqueWarning("unable to load relocations for "
7339 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7340 toString(CGProfileRelaOrError.takeError()));
7341 return false;
7342 }
7343
7344 CGProfileRela = *CGProfileRelaOrError;
7345 for (const typename ELFT::Rela &Rela : CGProfileRela)
7346 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7347 }
7348
7349 return true;
7350}
7351
7352template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7353 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7354 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7355 };
7356
7357 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr =
7358 this->Obj.getSectionAndRelocations(IsMatch);
7359 if (!SecToRelocMapOrErr) {
7360 this->reportUniqueWarning("unable to get CG Profile section(s): " +
7361 toString(SecToRelocMapOrErr.takeError()));
7362 return;
7363 }
7364
7365 for (const auto &CGMapEntry : *SecToRelocMapOrErr) {
7366 const Elf_Shdr *CGSection = CGMapEntry.first;
7367 const Elf_Shdr *CGRelSection = CGMapEntry.second;
7368
7369 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7370 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7371 if (!CGProfileOrErr) {
7372 this->reportUniqueWarning(
7373 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7374 toString(CGProfileOrErr.takeError()));
7375 return;
7376 }
7377
7378 SmallVector<uint32_t, 128> SymbolIndices;
7379 bool UseReloc =
7380 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7381 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7382 this->reportUniqueWarning(
7383 "number of from/to pairs does not match number of frequencies");
7384 UseReloc = false;
7385 }
7386
7387 ListScope L(W, "CGProfile");
7388 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7389 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7390 DictScope D(W, "CGProfileEntry");
7391 if (UseReloc) {
7392 uint32_t From = SymbolIndices[I * 2];
7393 uint32_t To = SymbolIndices[I * 2 + 1];
7394 W.printNumber("From", this->getStaticSymbolName(From), From);
7395 W.printNumber("To", this->getStaticSymbolName(To), To);
7396 }
7397 W.printNumber("Weight", CGPE.cgp_weight);
7398 }
7399 }
7400}
7401
7402template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7403 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7404 using Elf_Shdr = typename ELFT::Shdr;
7405 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7406 return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP ||
7407 Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP_V0;
7408 };
7409 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr =
7410 this->Obj.getSectionAndRelocations(IsMatch);
7411 if (!SecRelocMapOrErr) {
7412 this->reportUniqueWarning(
7413 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " +
7414 toString(SecRelocMapOrErr.takeError()));
7415 return;
7416 }
7417 for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) {
7418 std::optional<const Elf_Shdr *> FunctionSec;
7419 if (IsRelocatable)
7420 FunctionSec =
7421 unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link));
7422 ListScope L(W, "BBAddrMap");
7423 if (IsRelocatable && !RelocSec) {
7424 this->reportUniqueWarning("unable to get relocation section for " +
7425 this->describe(*Sec));
7426 continue;
7427 }
7428 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7429 this->Obj.decodeBBAddrMap(*Sec, RelocSec);
7430 if (!BBAddrMapOrErr) {
7431 this->reportUniqueWarning("unable to dump " + this->describe(*Sec) +
7432 ": " + toString(BBAddrMapOrErr.takeError()));
7433 continue;
7434 }
7435 for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7436 DictScope D(W, "Function");
7437 W.printHex("At", AM.Addr);
7438 SmallVector<uint32_t> FuncSymIndex =
7439 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7440 std::string FuncName = "<?>";
7441 if (FuncSymIndex.empty())
7442 this->reportUniqueWarning(
7443 "could not identify function symbol for address (0x" +
7444 Twine::utohexstr(AM.Addr) + ") in " + this->describe(*Sec));
7445 else
7446 FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7447 W.printString("Name", FuncName);
7448
7449 ListScope L(W, "BB entries");
7450 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7451 DictScope L(W);
7452 W.printNumber("ID", BBE.ID);
7453 W.printHex("Offset", BBE.Offset);
7454 W.printHex("Size", BBE.Size);
7455 W.printBoolean("HasReturn", BBE.hasReturn());
7456 W.printBoolean("HasTailCall", BBE.hasTailCall());
7457 W.printBoolean("IsEHPad", BBE.isEHPad());
7458 W.printBoolean("CanFallThrough", BBE.canFallThrough());
7459 }
7460 }
7461 }
7462}
7463
7464template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7465 ListScope L(W, "Addrsig");
7466 if (!this->DotAddrsigSec)
7467 return;
7468
7469 Expected<std::vector<uint64_t>> SymsOrErr =
7470 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7471 if (!SymsOrErr) {
7472 this->reportUniqueWarning(SymsOrErr.takeError());
7473 return;
7474 }
7475
7476 for (uint64_t Sym : *SymsOrErr)
7477 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7478}
7479
7480template <typename ELFT>
7481static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7482 ScopedPrinter &W) {
7483 // Return true if we were able to pretty-print the note, false otherwise.
7484 switch (NoteType) {
7485 default:
7486 return false;
7487 case ELF::NT_GNU_ABI_TAG: {
7488 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7489 if (!AbiTag.IsValid) {
7490 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7491 return false;
7492 } else {
7493 W.printString("OS", AbiTag.OSName);
7494 W.printString("ABI", AbiTag.ABI);
7495 }
7496 break;
7497 }
7498 case ELF::NT_GNU_BUILD_ID: {
7499 W.printString("Build ID", getGNUBuildId(Desc));
7500 break;
7501 }
7502 case ELF::NT_GNU_GOLD_VERSION:
7503 W.printString("Version", getDescAsStringRef(Desc));
7504 break;
7505 case ELF::NT_GNU_PROPERTY_TYPE_0:
7506 ListScope D(W, "Property");
7507 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7508 W.printString(Property);
7509 break;
7510 }
7511 return true;
7512}
7513
7514static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7515 ScopedPrinter &W) {
7516 // Return true if we were able to pretty-print the note, false otherwise.
7517 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7518 if (Props.empty())
7519 return false;
7520 for (const auto &KV : Props)
7521 W.printString(KV.first, KV.second);
7522 return true;
7523}
7524
7525template <class ELFT>
7526void LLVMELFDumper<ELFT>::printMemtag(
7527 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
7528 const ArrayRef<uint8_t> AndroidNoteDesc,
7529 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
7530 {
7531 ListScope L(W, "Memtag Dynamic Entries:");
7532 if (DynamicEntries.empty())
7533 W.printString("< none found >");
7534 for (const auto &DynamicEntryKV : DynamicEntries)
7535 W.printString(DynamicEntryKV.first, DynamicEntryKV.second);
7536 }
7537
7538 if (!AndroidNoteDesc.empty()) {
7539 ListScope L(W, "Memtag Android Note:");
7540 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W);
7541 }
7542
7543 if (Descriptors.empty())
7544 return;
7545
7546 {
7547 ListScope L(W, "Memtag Global Descriptors:");
7548 for (const auto &[Addr, BytesToTag] : Descriptors) {
7549 W.printHex("0x" + utohexstr(Addr), BytesToTag);
7550 }
7551 }
7552}
7553
7554template <typename ELFT>
7555static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7556 ArrayRef<uint8_t> Desc,
7557 ScopedPrinter &W) {
7558 switch (NoteType) {
7559 default:
7560 return false;
7561 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7562 W.printString("Version", getDescAsStringRef(Desc));
7563 break;
7564 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7565 W.printString("Producer", getDescAsStringRef(Desc));
7566 break;
7567 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7568 W.printString("Producer version", getDescAsStringRef(Desc));
7569 break;
7570 }
7571 return true;
7572}
7573
7574static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7575 W.printNumber("Page Size", Note.PageSize);
7576 for (const CoreFileMapping &Mapping : Note.Mappings) {
7577 ListScope D(W, "Mapping");
7578 W.printHex("Start", Mapping.Start);
7579 W.printHex("End", Mapping.End);
7580 W.printHex("Offset", Mapping.Offset);
7581 W.printString("Filename", Mapping.Filename);
7582 }
7583}
7584
7585template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7586 ListScope L(W, "Notes");
7587
7588 std::unique_ptr<DictScope> NoteScope;
7589 auto StartNotes = [&](std::optional<StringRef> SecName,
7590 const typename ELFT::Off Offset,
7591 const typename ELFT::Addr Size) {
7592 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7593 W.printString("Name", SecName ? *SecName : "<?>");
7594 W.printHex("Offset", Offset);
7595 W.printHex("Size", Size);
7596 };
7597
7598 auto EndNotes = [&] { NoteScope.reset(); };
7599
7600 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7601 DictScope D2(W, "Note");
7602 StringRef Name = Note.getName();
7603 ArrayRef<uint8_t> Descriptor = Note.getDesc();
7604 Elf_Word Type = Note.getType();
7605
7606 // Print the note owner/type.
7607 W.printString("Owner", Name);
7608 W.printHex("Data size", Descriptor.size());
7609
7610 StringRef NoteType =
7611 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7612 if (!NoteType.empty())
7613 W.printString("Type", NoteType);
7614 else
7615 W.printString("Type",
7616 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7617
7618 // Print the description, or fallback to printing raw bytes for unknown
7619 // owners/if we fail to pretty-print the contents.
7620 if (Name == "GNU") {
7621 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7622 return Error::success();
7623 } else if (Name == "FreeBSD") {
7624 if (std::optional<FreeBSDNote> N =
7625 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7626 W.printString(N->Type, N->Value);
7627 return Error::success();
7628 }
7629 } else if (Name == "AMD") {
7630 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7631 if (!N.Type.empty()) {
7632 W.printString(N.Type, N.Value);
7633 return Error::success();
7634 }
7635 } else if (Name == "AMDGPU") {
7636 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7637 if (!N.Type.empty()) {
7638 W.printString(N.Type, N.Value);
7639 return Error::success();
7640 }
7641 } else if (Name == "LLVMOMPOFFLOAD") {
7642 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7643 return Error::success();
7644 } else if (Name == "CORE") {
7645 if (Type == ELF::NT_FILE) {
7646 DataExtractor DescExtractor(Descriptor,
7647 ELFT::TargetEndianness == support::little,
7648 sizeof(Elf_Addr));
7649 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7650 printCoreNoteLLVMStyle(*N, W);
7651 return Error::success();
7652 } else {
7653 return N.takeError();
7654 }
7655 }
7656 } else if (Name == "Android") {
7657 if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7658 return Error::success();
7659 }
7660 if (!Descriptor.empty()) {
7661 W.printBinaryBlock("Description data", Descriptor);
7662 }
7663 return Error::success();
7664 };
7665
7666 processNotesHelper(*this, /*StartNotesFn=*/StartNotes,
7667 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes);
7668}
7669
7670template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7671 ListScope L(W, "LinkerOptions");
7672
7673 unsigned I = -1;
7674 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7675 ++I;
7676 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7677 continue;
7678
7679 Expected<ArrayRef<uint8_t>> ContentsOrErr =
7680 this->Obj.getSectionContents(Shdr);
7681 if (!ContentsOrErr) {
7682 this->reportUniqueWarning("unable to read the content of the "
7683 "SHT_LLVM_LINKER_OPTIONS section: " +
7684 toString(ContentsOrErr.takeError()));
7685 continue;
7686 }
7687 if (ContentsOrErr->empty())
7688 continue;
7689
7690 if (ContentsOrErr->back() != 0) {
7691 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7692 Twine(I) +
7693 " is broken: the "
7694 "content is not null-terminated");
7695 continue;
7696 }
7697
7698 SmallVector<StringRef, 16> Strings;
7699 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7700 if (Strings.size() % 2 != 0) {
7701 this->reportUniqueWarning(
7702 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7703 " is broken: an incomplete "
7704 "key-value pair was found. The last possible key was: \"" +
7705 Strings.back() + "\"");
7706 continue;
7707 }
7708
7709 for (size_t I = 0; I < Strings.size(); I += 2)
7710 W.printString(Strings[I], Strings[I + 1]);
7711 }
7712}
7713
7714template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7715 ListScope L(W, "DependentLibs");
7716 this->printDependentLibsHelper(
7717 [](const Elf_Shdr &) {},
7718 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7719}
7720
7721template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7722 ListScope L(W, "StackSizes");
7723 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7724 this->printRelocatableStackSizes([]() {});
7725 else
7726 this->printNonRelocatableStackSizes([]() {});
7727}
7728
7729template <class ELFT>
7730void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7731 ArrayRef<std::string> FuncNames) {
7732 DictScope D(W, "Entry");
7733 W.printList("Functions", FuncNames);
7734 W.printHex("Size", Size);
7735}
7736
7737template <class ELFT>
7738void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7739 auto PrintEntry = [&](const Elf_Addr *E) {
7740 W.printHex("Address", Parser.getGotAddress(E));
7741 W.printNumber("Access", Parser.getGotOffset(E));
7742 W.printHex("Initial", *E);
7743 };
7744
7745 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7746
7747 W.printHex("Canonical gp value", Parser.getGp());
7748 {
7749 ListScope RS(W, "Reserved entries");
7750 {
7751 DictScope D(W, "Entry");
7752 PrintEntry(Parser.getGotLazyResolver());
7753 W.printString("Purpose", StringRef("Lazy resolver"));
7754 }
7755
7756 if (Parser.getGotModulePointer()) {
7757 DictScope D(W, "Entry");
7758 PrintEntry(Parser.getGotModulePointer());
7759 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7760 }
7761 }
7762 {
7763 ListScope LS(W, "Local entries");
7764 for (auto &E : Parser.getLocalEntries()) {
7765 DictScope D(W, "Entry");
7766 PrintEntry(&E);
7767 }
7768 }
7769
7770 if (Parser.IsStatic)
7771 return;
7772
7773 {
7774 ListScope GS(W, "Global entries");
7775 for (auto &E : Parser.getGlobalEntries()) {
7776 DictScope D(W, "Entry");
7777
7778 PrintEntry(&E);
7779
7780 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7781 W.printHex("Value", Sym.st_value);
7782 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7783
7784 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7785 DataRegion<Elf_Word> ShndxTable(
7786 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7787 printSymbolSection(Sym, SymIndex, ShndxTable);
7788
7789 std::string SymName = this->getFullSymbolName(
7790 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7791 W.printNumber("Name", SymName, Sym.st_name);
7792 }
7793 }
7794
7795 W.printNumber("Number of TLS and multi-GOT entries",
7796 uint64_t(Parser.getOtherEntries().size()));
7797}
7798
7799template <class ELFT>
7800void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7801 auto PrintEntry = [&](const Elf_Addr *E) {
7802 W.printHex("Address", Parser.getPltAddress(E));
7803 W.printHex("Initial", *E);
7804 };
7805
7806 DictScope GS(W, "PLT GOT");
7807
7808 {
7809 ListScope RS(W, "Reserved entries");
7810 {
7811 DictScope D(W, "Entry");
7812 PrintEntry(Parser.getPltLazyResolver());
7813 W.printString("Purpose", StringRef("PLT lazy resolver"));
7814 }
7815
7816 if (auto E = Parser.getPltModulePointer()) {
7817 DictScope D(W, "Entry");
7818 PrintEntry(E);
7819 W.printString("Purpose", StringRef("Module pointer"));
7820 }
7821 }
7822 {
7823 ListScope LS(W, "Entries");
7824 DataRegion<Elf_Word> ShndxTable(
7825 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7826 for (auto &E : Parser.getPltEntries()) {
7827 DictScope D(W, "Entry");
7828 PrintEntry(&E);
7829
7830 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7831 W.printHex("Value", Sym.st_value);
7832 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7833 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7834 ShndxTable);
7835
7836 const Elf_Sym *FirstSym = cantFail(
7837 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7838 std::string SymName = this->getFullSymbolName(
7839 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7840 W.printNumber("Name", SymName, Sym.st_name);
7841 }
7842 }
7843}
7844
7845template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7846 const Elf_Mips_ABIFlags<ELFT> *Flags;
7847 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7848 getMipsAbiFlagsSection(*this)) {
7849 Flags = *SecOrErr;
7850 if (!Flags) {
7851 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7852 return;
7853 }
7854 } else {
7855 this->reportUniqueWarning(SecOrErr.takeError());
7856 return;
7857 }
7858
7859 raw_ostream &OS = W.getOStream();
7860 DictScope GS(W, "MIPS ABI Flags");
7861
7862 W.printNumber("Version", Flags->version);
7863 W.startLine() << "ISA: ";
7864 if (Flags->isa_rev <= 1)
7865 OS << format("MIPS%u", Flags->isa_level);
7866 else
7867 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7868 OS << "\n";
7869 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
7870 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
7871 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
7872 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7873 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7874 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7875 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
7876 W.printHex("Flags 2", Flags->flags2);
7877}
7878
7879template <class ELFT>
7880void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7881 ArrayRef<std::string> InputFilenames,
7882 const Archive *A) {
7883 FileScope = std::make_unique<DictScope>(this->W);
7884 DictScope D(this->W, "FileSummary");
7885 this->W.printString("File", FileStr);
7886 this->W.printString("Format", Obj.getFileFormatName());
7887 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7888 this->W.printString(
7889 "AddressSize",
7890 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7891 this->printLoadName();
7892}
7893
7894template <class ELFT>
7895void JSONELFDumper<ELFT>::printZeroSymbolOtherField(
7896 const Elf_Sym &Symbol) const {
7897 // We want the JSON format to be uniform, since it is machine readable, so
7898 // always print the `Other` field the same way.
7899 this->printSymbolOtherField(Symbol);
7900}
7901
7902template <class ELFT>
7903void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
7904 StringRef SymbolName,
7905 StringRef RelocName) {
7906 this->printExpandedRelRelaReloc(R, SymbolName, RelocName);
7907}
7908
7909template <class ELFT>
7910void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
7911 StringRef Name,
7912 const unsigned SecNdx) {
7913 DictScope Group(this->W);
7914 this->W.printNumber("SectionIndex", SecNdx);
7915 ListScope D(this->W, "Relocs");
7916 this->printRelocationsHelper(Sec);
1
Calling 'ELFDumper::printRelocationsHelper'
7917}
7918
7919template <class ELFT>
7920std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const {
7921 return "GroupSections";
7922}
7923
7924template <class ELFT>
7925void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
7926 uint64_t Idx) const {
7927 DictScope Grp(this->W);
7928 this->W.printString("Name", Name);
7929 this->W.printNumber("Index", Idx);
7930}
7931
7932template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const {
7933 // JSON output does not need to print anything for empty groups
7934}