Bug Summary

File:build/source/llvm/tools/llvm-readobj/ELFDumper.cpp
Warning:line 5948, column 9
4th function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ELFDumper.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16 -I tools/llvm-readobj -I /build/source/llvm/tools/llvm-readobj -I include -I /build/source/llvm/include -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1670969321 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-12-14-010809-15973-1 -x c++ /build/source/llvm/tools/llvm-readobj/ELFDumper.cpp
1//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the ELF-specific dumper for llvm-readobj.
11///
12//===----------------------------------------------------------------------===//
13
14#include "ARMEHABIPrinter.h"
15#include "DwarfCFIEHPrinter.h"
16#include "ObjDumper.h"
17#include "StackMapPrinter.h"
18#include "llvm-readobj.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/MapVector.h"
24#include "llvm/ADT/Optional.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/ADT/Twine.h"
32#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33#include "llvm/BinaryFormat/ELF.h"
34#include "llvm/BinaryFormat/MsgPackDocument.h"
35#include "llvm/Demangle/Demangle.h"
36#include "llvm/Object/Archive.h"
37#include "llvm/Object/ELF.h"
38#include "llvm/Object/ELFObjectFile.h"
39#include "llvm/Object/ELFTypes.h"
40#include "llvm/Object/Error.h"
41#include "llvm/Object/ObjectFile.h"
42#include "llvm/Object/RelocationResolver.h"
43#include "llvm/Object/StackMapParser.h"
44#include "llvm/Support/AMDGPUMetadata.h"
45#include "llvm/Support/ARMAttributeParser.h"
46#include "llvm/Support/ARMBuildAttributes.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Endian.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/Format.h"
52#include "llvm/Support/FormatVariadic.h"
53#include "llvm/Support/FormattedStream.h"
54#include "llvm/Support/LEB128.h"
55#include "llvm/Support/MSP430AttributeParser.h"
56#include "llvm/Support/MSP430Attributes.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/MipsABIFlags.h"
59#include "llvm/Support/RISCVAttributeParser.h"
60#include "llvm/Support/RISCVAttributes.h"
61#include "llvm/Support/ScopedPrinter.h"
62#include "llvm/Support/raw_ostream.h"
63#include <algorithm>
64#include <cinttypes>
65#include <cstddef>
66#include <cstdint>
67#include <cstdlib>
68#include <iterator>
69#include <memory>
70#include <optional>
71#include <string>
72#include <system_error>
73#include <vector>
74
75using namespace llvm;
76using namespace llvm::object;
77using namespace ELF;
78
79#define LLVM_READOBJ_ENUM_CASE(ns, enum)case ns::enum: return "enum"; \
80 case ns::enum: \
81 return #enum;
82
83#define ENUM_ENT(enum, altName){ "enum", altName, ELF::enum } \
84 { #enum, altName, ELF::enum }
85
86#define ENUM_ENT_1(enum){ "enum", "enum", ELF::enum } \
87 { #enum, #enum, ELF::enum }
88
89namespace {
90
91template <class ELFT> struct RelSymbol {
92 RelSymbol(const typename ELFT::Sym *S, StringRef N)
93 : Sym(S), Name(N.str()) {}
94 const typename ELFT::Sym *Sym;
95 std::string Name;
96};
97
98/// Represents a contiguous uniform range in the file. We cannot just create a
99/// range directly because when creating one of these from the .dynamic table
100/// the size, entity size and virtual address are different entries in arbitrary
101/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
102struct DynRegionInfo {
103 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
104 : Obj(&Owner), Dumper(&D) {}
105 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
106 uint64_t S, uint64_t ES)
107 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
108
109 /// Address in current address space.
110 const uint8_t *Addr = nullptr;
111 /// Size in bytes of the region.
112 uint64_t Size = 0;
113 /// Size of each entity in the region.
114 uint64_t EntSize = 0;
115
116 /// Owner object. Used for error reporting.
117 const Binary *Obj;
118 /// Dumper used for error reporting.
119 const ObjDumper *Dumper;
120 /// Error prefix. Used for error reporting to provide more information.
121 std::string Context;
122 /// Region size name. Used for error reporting.
123 StringRef SizePrintName = "size";
124 /// Entry size name. Used for error reporting. If this field is empty, errors
125 /// will not mention the entry size.
126 StringRef EntSizePrintName = "entry size";
127
128 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
129 const Type *Start = reinterpret_cast<const Type *>(Addr);
130 if (!Start)
131 return {Start, Start};
132
133 const uint64_t Offset =
134 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
135 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
136
137 if (Size > ObjSize - Offset) {
138 Dumper->reportUniqueWarning(
139 "unable to read data at 0x" + Twine::utohexstr(Offset) +
140 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
141 "): it goes past the end of the file of size 0x" +
142 Twine::utohexstr(ObjSize));
143 return {Start, Start};
144 }
145
146 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
147 return {Start, Start + (Size / EntSize)};
148
149 std::string Msg;
150 if (!Context.empty())
151 Msg += Context + " has ";
152
153 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
154 .str();
155 if (!EntSizePrintName.empty())
156 Msg +=
157 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
158 .str();
159
160 Dumper->reportUniqueWarning(Msg);
161 return {Start, Start};
162 }
163};
164
165struct GroupMember {
166 StringRef Name;
167 uint64_t Index;
168};
169
170struct GroupSection {
171 StringRef Name;
172 std::string Signature;
173 uint64_t ShName;
174 uint64_t Index;
175 uint32_t Link;
176 uint32_t Info;
177 uint32_t Type;
178 std::vector<GroupMember> Members;
179};
180
181namespace {
182
183struct NoteType {
184 uint32_t ID;
185 StringRef Name;
186};
187
188} // namespace
189
190template <class ELFT> class Relocation {
191public:
192 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
193 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
194 Offset(R.r_offset), Info(R.r_info) {}
195
196 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
197 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
198 Addend = R.r_addend;
199 }
200
201 uint32_t Type;
202 uint32_t Symbol;
203 typename ELFT::uint Offset;
204 typename ELFT::uint Info;
205 Optional<int64_t> Addend;
206};
207
208template <class ELFT> class MipsGOTParser;
209
210template <typename ELFT> class ELFDumper : public ObjDumper {
211 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
212
213public:
214 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
215
216 void printUnwindInfo() override;
217 void printNeededLibraries() override;
218 void printHashTable() override;
219 void printGnuHashTable() override;
220 void printLoadName() override;
221 void printVersionInfo() override;
222 void printArchSpecificInfo() override;
223 void printStackMap() const override;
224
225 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
226
227 std::string describe(const Elf_Shdr &Sec) const;
228
229 unsigned getHashTableEntSize() const {
230 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
231 // sections. This violates the ELF specification.
232 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
233 Obj.getHeader().e_machine == ELF::EM_ALPHA)
234 return 8;
235 return 4;
236 }
237
238 Elf_Dyn_Range dynamic_table() const {
239 // A valid .dynamic section contains an array of entries terminated
240 // with a DT_NULL entry. However, sometimes the section content may
241 // continue past the DT_NULL entry, so to dump the section correctly,
242 // we first find the end of the entries by iterating over them.
243 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
244
245 size_t Size = 0;
246 while (Size < Table.size())
247 if (Table[Size++].getTag() == DT_NULL)
248 break;
249
250 return Table.slice(0, Size);
251 }
252
253 Elf_Sym_Range dynamic_symbols() const {
254 if (!DynSymRegion)
255 return Elf_Sym_Range();
256 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
257 }
258
259 const Elf_Shdr *findSectionByName(StringRef Name) const;
260
261 StringRef getDynamicStringTable() const { return DynamicStringTable; }
262
263protected:
264 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
265 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
266 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
267
268 void
269 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
270 function_ref<void(StringRef, uint64_t)> OnLibEntry);
271
272 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
273 const RelSymbol<ELFT> &RelSym) = 0;
274 virtual void printRelrReloc(const Elf_Relr &R) = 0;
275 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
276 const DynRegionInfo &Reg) {}
277 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
278 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
279 void printDynamicReloc(const Relocation<ELFT> &R);
280 void printDynamicRelocationsHelper();
281 void printRelocationsHelper(const Elf_Shdr &Sec);
282 void forEachRelocationDo(
283 const Elf_Shdr &Sec, bool RawRelr,
284 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
285 const Elf_Shdr &, const Elf_Shdr *)>
286 RelRelaFn,
287 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
288
289 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
290 bool NonVisibilityBitsUsed) const {};
291 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
292 DataRegion<Elf_Word> ShndxTable,
293 Optional<StringRef> StrTable, bool IsDynamic,
294 bool NonVisibilityBitsUsed) const = 0;
295
296 virtual void printMipsABIFlags() = 0;
297 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
298 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
299
300 Expected<ArrayRef<Elf_Versym>>
301 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
302 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
303 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
304
305 std::vector<GroupSection> getGroups();
306
307 // Returns the function symbol index for the given address. Matches the
308 // symbol's section with FunctionSec when specified.
309 // Returns std::nullopt if no function symbol can be found for the address or
310 // in case it is not defined in the specified section.
311 SmallVector<uint32_t>
312 getSymbolIndexesForFunctionAddress(uint64_t SymValue,
313 Optional<const Elf_Shdr *> FunctionSec);
314 bool printFunctionStackSize(uint64_t SymValue,
315 Optional<const Elf_Shdr *> FunctionSec,
316 const Elf_Shdr &StackSizeSec, DataExtractor Data,
317 uint64_t *Offset);
318 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
319 unsigned Ndx, const Elf_Shdr *SymTab,
320 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
321 const RelocationResolver &Resolver, DataExtractor Data);
322 virtual void printStackSizeEntry(uint64_t Size,
323 ArrayRef<std::string> FuncNames) = 0;
324
325 void printRelocatableStackSizes(std::function<void()> PrintHeader);
326 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
327
328 /// Retrieves sections with corresponding relocation sections based on
329 /// IsMatch.
330 void getSectionAndRelocations(
331 std::function<bool(const Elf_Shdr &)> IsMatch,
332 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
333
334 const object::ELFObjectFile<ELFT> &ObjF;
335 const ELFFile<ELFT> &Obj;
336 StringRef FileName;
337
338 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
339 uint64_t EntSize) {
340 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
341 return createError("offset (0x" + Twine::utohexstr(Offset) +
342 ") + size (0x" + Twine::utohexstr(Size) +
343 ") is greater than the file size (0x" +
344 Twine::utohexstr(Obj.getBufSize()) + ")");
345 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
346 }
347
348 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
349 support::endianness);
350 void printMipsReginfo();
351 void printMipsOptions();
352
353 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
354 void loadDynamicTable();
355 void parseDynamicTable();
356
357 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
358 bool &IsDefault) const;
359 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
360
361 DynRegionInfo DynRelRegion;
362 DynRegionInfo DynRelaRegion;
363 DynRegionInfo DynRelrRegion;
364 DynRegionInfo DynPLTRelRegion;
365 Optional<DynRegionInfo> DynSymRegion;
366 DynRegionInfo DynSymTabShndxRegion;
367 DynRegionInfo DynamicTable;
368 StringRef DynamicStringTable;
369 const Elf_Hash *HashTable = nullptr;
370 const Elf_GnuHash *GnuHashTable = nullptr;
371 const Elf_Shdr *DotSymtabSec = nullptr;
372 const Elf_Shdr *DotDynsymSec = nullptr;
373 const Elf_Shdr *DotAddrsigSec = nullptr;
374 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
375 std::optional<uint64_t> SONameOffset;
376 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
377
378 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
379 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
380 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
381
382 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
383 DataRegion<Elf_Word> ShndxTable,
384 Optional<StringRef> StrTable,
385 bool IsDynamic) const;
386 Expected<unsigned>
387 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
388 DataRegion<Elf_Word> ShndxTable) const;
389 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
390 unsigned SectionIndex) const;
391 std::string getStaticSymbolName(uint32_t Index) const;
392 StringRef getDynamicString(uint64_t Value) const;
393
394 void printSymbolsHelper(bool IsDynamic) const;
395 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
396
397 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
398 const Elf_Shdr *SymTab) const;
399
400 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
401
402private:
403 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
404};
405
406template <class ELFT>
407std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
408 return ::describe(Obj, Sec);
409}
410
411namespace {
412
413template <class ELFT> struct SymtabLink {
414 typename ELFT::SymRange Symbols;
415 StringRef StringTable;
416 const typename ELFT::Shdr *SymTab;
417};
418
419// Returns the linked symbol table, symbols and associated string table for a
420// given section.
421template <class ELFT>
422Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
423 const typename ELFT::Shdr &Sec,
424 unsigned ExpectedType) {
425 Expected<const typename ELFT::Shdr *> SymtabOrErr =
426 Obj.getSection(Sec.sh_link);
427 if (!SymtabOrErr)
428 return createError("invalid section linked to " + describe(Obj, Sec) +
429 ": " + toString(SymtabOrErr.takeError()));
430
431 if ((*SymtabOrErr)->sh_type != ExpectedType)
432 return createError(
433 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
434 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
435 ", but got " +
436 object::getELFSectionTypeName(Obj.getHeader().e_machine,
437 (*SymtabOrErr)->sh_type));
438
439 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
440 if (!StrTabOrErr)
441 return createError(
442 "can't get a string table for the symbol table linked to " +
443 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
444
445 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
446 if (!SymsOrErr)
447 return createError("unable to read symbols from the " + describe(Obj, Sec) +
448 ": " + toString(SymsOrErr.takeError()));
449
450 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
451}
452
453} // namespace
454
455template <class ELFT>
456Expected<ArrayRef<typename ELFT::Versym>>
457ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
458 StringRef *StrTab,
459 const Elf_Shdr **SymTabSec) const {
460 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec))(static_cast <bool> ((!SymTab && !StrTab &&
!SymTabSec) || (SymTab && StrTab && SymTabSec
)) ? void (0) : __assert_fail ("(!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 460, __extension__
__PRETTY_FUNCTION__))
;
461 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
462 sizeof(uint16_t) !=
463 0)
464 return createError("the " + describe(Sec) + " is misaligned");
465
466 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
467 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
468 if (!VersionsOrErr)
469 return createError("cannot read content of " + describe(Sec) + ": " +
470 toString(VersionsOrErr.takeError()));
471
472 Expected<SymtabLink<ELFT>> SymTabOrErr =
473 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
474 if (!SymTabOrErr) {
475 reportUniqueWarning(SymTabOrErr.takeError());
476 return *VersionsOrErr;
477 }
478
479 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
480 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
481 Twine(VersionsOrErr->size()) +
482 ") does not match the number of symbols (" +
483 Twine(SymTabOrErr->Symbols.size()) +
484 ") in the symbol table with index " +
485 Twine(Sec.sh_link));
486
487 if (SymTab) {
488 *SymTab = SymTabOrErr->Symbols;
489 *StrTab = SymTabOrErr->StringTable;
490 *SymTabSec = SymTabOrErr->SymTab;
491 }
492 return *VersionsOrErr;
493}
494
495template <class ELFT>
496void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
497 Optional<StringRef> StrTable;
498 size_t Entries = 0;
499 Elf_Sym_Range Syms(nullptr, nullptr);
500 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
501
502 if (IsDynamic) {
503 StrTable = DynamicStringTable;
504 Syms = dynamic_symbols();
505 Entries = Syms.size();
506 } else if (DotSymtabSec) {
507 if (Expected<StringRef> StrTableOrErr =
508 Obj.getStringTableForSymtab(*DotSymtabSec))
509 StrTable = *StrTableOrErr;
510 else
511 reportUniqueWarning(
512 "unable to get the string table for the SHT_SYMTAB section: " +
513 toString(StrTableOrErr.takeError()));
514
515 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
516 Syms = *SymsOrErr;
517 else
518 reportUniqueWarning(
519 "unable to read symbols from the SHT_SYMTAB section: " +
520 toString(SymsOrErr.takeError()));
521 Entries = DotSymtabSec->getEntityCount();
522 }
523 if (Syms.empty())
524 return;
525
526 // The st_other field has 2 logical parts. The first two bits hold the symbol
527 // visibility (STV_*) and the remainder hold other platform-specific values.
528 bool NonVisibilityBitsUsed =
529 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
530
531 DataRegion<Elf_Word> ShndxTable =
532 IsDynamic ? DataRegion<Elf_Word>(
533 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
534 this->getElfObject().getELFFile().end())
535 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
536
537 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
538 for (const Elf_Sym &Sym : Syms)
539 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
540 NonVisibilityBitsUsed);
541}
542
543template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
544 formatted_raw_ostream &OS;
545
546public:
547 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
548
549 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
550 : ELFDumper<ELFT>(ObjF, Writer),
551 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
552 assert(&this->W.getOStream() == &llvm::fouts())(static_cast <bool> (&this->W.getOStream() == &
llvm::fouts()) ? void (0) : __assert_fail ("&this->W.getOStream() == &llvm::fouts()"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 552, __extension__
__PRETTY_FUNCTION__))
;
553 }
554
555 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
556 ArrayRef<std::string> InputFilenames,
557 const Archive *A) override;
558 void printFileHeaders() override;
559 void printGroupSections() override;
560 void printRelocations() override;
561 void printSectionHeaders() override;
562 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
563 void printHashSymbols() override;
564 void printSectionDetails() override;
565 void printDependentLibs() override;
566 void printDynamicTable() override;
567 void printDynamicRelocations() override;
568 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
569 bool NonVisibilityBitsUsed) const override;
570 void printProgramHeaders(bool PrintProgramHeaders,
571 cl::boolOrDefault PrintSectionMapping) override;
572 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
573 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
574 void printVersionDependencySection(const Elf_Shdr *Sec) override;
575 void printHashHistograms() override;
576 void printCGProfile() override;
577 void printBBAddrMaps() override;
578 void printAddrsig() override;
579 void printNotes() override;
580 void printELFLinkerOptions() override;
581 void printStackSizes() override;
582
583private:
584 void printHashHistogram(const Elf_Hash &HashTable);
585 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
586 void printHashTableSymbols(const Elf_Hash &HashTable);
587 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
588
589 struct Field {
590 std::string Str;
591 unsigned Column;
592
593 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
594 Field(unsigned Col) : Column(Col) {}
595 };
596
597 template <typename T, typename TEnum>
598 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
599 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
600 TEnum EnumMask3 = {}) const {
601 std::string Str;
602 for (const EnumEntry<TEnum> &Flag : EnumValues) {
603 if (Flag.Value == 0)
604 continue;
605
606 TEnum EnumMask{};
607 if (Flag.Value & EnumMask1)
608 EnumMask = EnumMask1;
609 else if (Flag.Value & EnumMask2)
610 EnumMask = EnumMask2;
611 else if (Flag.Value & EnumMask3)
612 EnumMask = EnumMask3;
613 bool IsEnum = (Flag.Value & EnumMask) != 0;
614 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
615 (IsEnum && (Value & EnumMask) == Flag.Value)) {
616 if (!Str.empty())
617 Str += ", ";
618 Str += Flag.AltName;
619 }
620 }
621 return Str;
622 }
623
624 formatted_raw_ostream &printField(struct Field F) const {
625 if (F.Column != 0)
626 OS.PadToColumn(F.Column);
627 OS << F.Str;
628 OS.flush();
629 return OS;
630 }
631 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
632 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
633 uint32_t Bucket);
634 void printRelrReloc(const Elf_Relr &R) override;
635 void printRelRelaReloc(const Relocation<ELFT> &R,
636 const RelSymbol<ELFT> &RelSym) override;
637 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
638 DataRegion<Elf_Word> ShndxTable,
639 Optional<StringRef> StrTable, bool IsDynamic,
640 bool NonVisibilityBitsUsed) const override;
641 void printDynamicRelocHeader(unsigned Type, StringRef Name,
642 const DynRegionInfo &Reg) override;
643
644 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
645 DataRegion<Elf_Word> ShndxTable) const;
646 void printProgramHeaders() override;
647 void printSectionMapping() override;
648 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
649 const Twine &Label, unsigned EntriesNum);
650
651 void printStackSizeEntry(uint64_t Size,
652 ArrayRef<std::string> FuncNames) override;
653
654 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
655 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
656 void printMipsABIFlags() override;
657};
658
659template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
660public:
661 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
662
663 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
664 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
665
666 void printFileHeaders() override;
667 void printGroupSections() override;
668 void printRelocations() override;
669 void printSectionHeaders() override;
670 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
671 void printDependentLibs() override;
672 void printDynamicTable() override;
673 void printDynamicRelocations() override;
674 void printProgramHeaders(bool PrintProgramHeaders,
675 cl::boolOrDefault PrintSectionMapping) override;
676 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
677 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
678 void printVersionDependencySection(const Elf_Shdr *Sec) override;
679 void printHashHistograms() override;
680 void printCGProfile() override;
681 void printBBAddrMaps() override;
682 void printAddrsig() override;
683 void printNotes() override;
684 void printELFLinkerOptions() override;
685 void printStackSizes() override;
686
687private:
688 void printRelrReloc(const Elf_Relr &R) override;
689 void printRelRelaReloc(const Relocation<ELFT> &R,
690 const RelSymbol<ELFT> &RelSym) override;
691
692 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
693 DataRegion<Elf_Word> ShndxTable) const;
694 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
695 DataRegion<Elf_Word> ShndxTable,
696 Optional<StringRef> StrTable, bool IsDynamic,
697 bool /*NonVisibilityBitsUsed*/) const override;
698 void printProgramHeaders() override;
699 void printSectionMapping() override {}
700 void printStackSizeEntry(uint64_t Size,
701 ArrayRef<std::string> FuncNames) override;
702
703 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
704 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
705 void printMipsABIFlags() override;
706
707protected:
708 ScopedPrinter &W;
709};
710
711// JSONELFDumper shares most of the same implementation as LLVMELFDumper except
712// it uses a JSONScopedPrinter.
713template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
714public:
715 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
716
717 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
718 : LLVMELFDumper<ELFT>(ObjF, Writer) {}
719
720 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
721 ArrayRef<std::string> InputFilenames,
722 const Archive *A) override;
723
724private:
725 std::unique_ptr<DictScope> FileScope;
726};
727
728} // end anonymous namespace
729
730namespace llvm {
731
732template <class ELFT>
733static std::unique_ptr<ObjDumper>
734createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
735 if (opts::Output == opts::GNU)
736 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
737 else if (opts::Output == opts::JSON)
738 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
739 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
740}
741
742std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
743 ScopedPrinter &Writer) {
744 // Little-endian 32-bit
745 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
746 return createELFDumper(*ELFObj, Writer);
747
748 // Big-endian 32-bit
749 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
750 return createELFDumper(*ELFObj, Writer);
751
752 // Little-endian 64-bit
753 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
754 return createELFDumper(*ELFObj, Writer);
755
756 // Big-endian 64-bit
757 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
758}
759
760} // end namespace llvm
761
762template <class ELFT>
763Expected<SmallVector<std::optional<VersionEntry>, 0> *>
764ELFDumper<ELFT>::getVersionMap() const {
765 // If the VersionMap has already been loaded or if there is no dynamic symtab
766 // or version table, there is nothing to do.
767 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
768 return &VersionMap;
769
770 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
771 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
772 if (MapOrErr)
773 VersionMap = *MapOrErr;
774 else
775 return MapOrErr.takeError();
776
777 return &VersionMap;
778}
779
780template <typename ELFT>
781Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
782 bool &IsDefault) const {
783 // This is a dynamic symbol. Look in the GNU symbol version table.
784 if (!SymbolVersionSection) {
785 // No version table.
786 IsDefault = false;
787 return "";
788 }
789
790 assert(DynSymRegion && "DynSymRegion has not been initialised")(static_cast <bool> (DynSymRegion && "DynSymRegion has not been initialised"
) ? void (0) : __assert_fail ("DynSymRegion && \"DynSymRegion has not been initialised\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 790, __extension__
__PRETTY_FUNCTION__))
;
791 // Determine the position in the symbol table of this entry.
792 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
793 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
794 sizeof(Elf_Sym);
795
796 // Get the corresponding version index entry.
797 Expected<const Elf_Versym *> EntryOrErr =
798 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
799 if (!EntryOrErr)
800 return EntryOrErr.takeError();
801
802 unsigned Version = (*EntryOrErr)->vs_index;
803 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
804 IsDefault = false;
805 return "";
806 }
807
808 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
809 getVersionMap();
810 if (!MapOrErr)
811 return MapOrErr.takeError();
812
813 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
814 Sym.st_shndx == ELF::SHN_UNDEF);
815}
816
817template <typename ELFT>
818Expected<RelSymbol<ELFT>>
819ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
820 const Elf_Shdr *SymTab) const {
821 if (R.Symbol == 0)
822 return RelSymbol<ELFT>(nullptr, "");
823
824 Expected<const Elf_Sym *> SymOrErr =
825 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
826 if (!SymOrErr)
827 return createError("unable to read an entry with index " + Twine(R.Symbol) +
828 " from " + describe(*SymTab) + ": " +
829 toString(SymOrErr.takeError()));
830 const Elf_Sym *Sym = *SymOrErr;
831 if (!Sym)
832 return RelSymbol<ELFT>(nullptr, "");
833
834 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
835 if (!StrTableOrErr)
836 return StrTableOrErr.takeError();
837
838 const Elf_Sym *FirstSym =
839 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
840 std::string SymbolName =
841 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
842 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
843 return RelSymbol<ELFT>(Sym, SymbolName);
844}
845
846template <typename ELFT>
847ArrayRef<typename ELFT::Word>
848ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
849 if (Symtab) {
850 auto It = ShndxTables.find(Symtab);
851 if (It != ShndxTables.end())
852 return It->second;
853 }
854 return {};
855}
856
857static std::string maybeDemangle(StringRef Name) {
858 return opts::Demangle ? demangle(std::string(Name)) : Name.str();
859}
860
861template <typename ELFT>
862std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
863 auto Warn = [&](Error E) -> std::string {
864 reportUniqueWarning("unable to read the name of symbol with index " +
865 Twine(Index) + ": " + toString(std::move(E)));
866 return "<?>";
867 };
868
869 Expected<const typename ELFT::Sym *> SymOrErr =
870 Obj.getSymbol(DotSymtabSec, Index);
871 if (!SymOrErr)
872 return Warn(SymOrErr.takeError());
873
874 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
875 if (!StrTabOrErr)
876 return Warn(StrTabOrErr.takeError());
877
878 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
879 if (!NameOrErr)
880 return Warn(NameOrErr.takeError());
881 return maybeDemangle(*NameOrErr);
882}
883
884template <typename ELFT>
885std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
886 unsigned SymIndex,
887 DataRegion<Elf_Word> ShndxTable,
888 Optional<StringRef> StrTable,
889 bool IsDynamic) const {
890 if (!StrTable)
891 return "<?>";
892
893 std::string SymbolName;
894 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
895 SymbolName = maybeDemangle(*NameOrErr);
896 } else {
897 reportUniqueWarning(NameOrErr.takeError());
898 return "<?>";
899 }
900
901 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
902 Expected<unsigned> SectionIndex =
903 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
904 if (!SectionIndex) {
905 reportUniqueWarning(SectionIndex.takeError());
906 return "<?>";
907 }
908 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
909 if (!NameOrErr) {
910 reportUniqueWarning(NameOrErr.takeError());
911 return ("<section " + Twine(*SectionIndex) + ">").str();
912 }
913 return std::string(*NameOrErr);
914 }
915
916 if (!IsDynamic)
917 return SymbolName;
918
919 bool IsDefault;
920 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
921 if (!VersionOrErr) {
922 reportUniqueWarning(VersionOrErr.takeError());
923 return SymbolName + "@<corrupt>";
924 }
925
926 if (!VersionOrErr->empty()) {
927 SymbolName += (IsDefault ? "@@" : "@");
928 SymbolName += *VersionOrErr;
929 }
930 return SymbolName;
931}
932
933template <typename ELFT>
934Expected<unsigned>
935ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
936 DataRegion<Elf_Word> ShndxTable) const {
937 unsigned Ndx = Symbol.st_shndx;
938 if (Ndx == SHN_XINDEX)
939 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
940 ShndxTable);
941 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
942 return Ndx;
943
944 auto CreateErr = [&](const Twine &Name,
945 std::optional<unsigned> Offset = std::nullopt) {
946 std::string Desc;
947 if (Offset)
948 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
949 else
950 Desc = Name.str();
951 return createError(
952 "unable to get section index for symbol with st_shndx = 0x" +
953 Twine::utohexstr(Ndx) + " (" + Desc + ")");
954 };
955
956 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
957 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
958 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
959 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
960 if (Ndx == ELF::SHN_UNDEF)
961 return CreateErr("SHN_UNDEF");
962 if (Ndx == ELF::SHN_ABS)
963 return CreateErr("SHN_ABS");
964 if (Ndx == ELF::SHN_COMMON)
965 return CreateErr("SHN_COMMON");
966 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
967}
968
969template <typename ELFT>
970Expected<StringRef>
971ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
972 unsigned SectionIndex) const {
973 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
974 if (!SecOrErr)
975 return SecOrErr.takeError();
976 return Obj.getSectionName(**SecOrErr);
977}
978
979template <class ELFO>
980static const typename ELFO::Elf_Shdr *
981findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
982 uint64_t Addr) {
983 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
984 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
985 return &Shdr;
986 return nullptr;
987}
988
989const EnumEntry<unsigned> ElfClass[] = {
990 {"None", "none", ELF::ELFCLASSNONE},
991 {"32-bit", "ELF32", ELF::ELFCLASS32},
992 {"64-bit", "ELF64", ELF::ELFCLASS64},
993};
994
995const EnumEntry<unsigned> ElfDataEncoding[] = {
996 {"None", "none", ELF::ELFDATANONE},
997 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
998 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
999};
1000
1001const EnumEntry<unsigned> ElfObjectFileType[] = {
1002 {"None", "NONE (none)", ELF::ET_NONE},
1003 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1004 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1005 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1006 {"Core", "CORE (Core file)", ELF::ET_CORE},
1007};
1008
1009const EnumEntry<unsigned> ElfOSABI[] = {
1010 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1011 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1012 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1013 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1014 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1015 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1016 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1017 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1018 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1019 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1020 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1021 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1022 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1023 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1024 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1025 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1026 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1027 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1028};
1029
1030const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1031 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1032 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1033 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1034};
1035
1036const EnumEntry<unsigned> ARMElfOSABI[] = {
1037 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1038};
1039
1040const EnumEntry<unsigned> C6000ElfOSABI[] = {
1041 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1042 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1043};
1044
1045const EnumEntry<unsigned> ElfMachineType[] = {
1046 ENUM_ENT(EM_NONE, "None"){ "EM_NONE", "None", ELF::EM_NONE },
1047 ENUM_ENT(EM_M32, "WE32100"){ "EM_M32", "WE32100", ELF::EM_M32 },
1048 ENUM_ENT(EM_SPARC, "Sparc"){ "EM_SPARC", "Sparc", ELF::EM_SPARC },
1049 ENUM_ENT(EM_386, "Intel 80386"){ "EM_386", "Intel 80386", ELF::EM_386 },
1050 ENUM_ENT(EM_68K, "MC68000"){ "EM_68K", "MC68000", ELF::EM_68K },
1051 ENUM_ENT(EM_88K, "MC88000"){ "EM_88K", "MC88000", ELF::EM_88K },
1052 ENUM_ENT(EM_IAMCU, "EM_IAMCU"){ "EM_IAMCU", "EM_IAMCU", ELF::EM_IAMCU },
1053 ENUM_ENT(EM_860, "Intel 80860"){ "EM_860", "Intel 80860", ELF::EM_860 },
1054 ENUM_ENT(EM_MIPS, "MIPS R3000"){ "EM_MIPS", "MIPS R3000", ELF::EM_MIPS },
1055 ENUM_ENT(EM_S370, "IBM System/370"){ "EM_S370", "IBM System/370", ELF::EM_S370 },
1056 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"){ "EM_MIPS_RS3_LE", "MIPS R3000 little-endian", ELF::EM_MIPS_RS3_LE
}
,
1057 ENUM_ENT(EM_PARISC, "HPPA"){ "EM_PARISC", "HPPA", ELF::EM_PARISC },
1058 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"){ "EM_VPP500", "Fujitsu VPP500", ELF::EM_VPP500 },
1059 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"){ "EM_SPARC32PLUS", "Sparc v8+", ELF::EM_SPARC32PLUS },
1060 ENUM_ENT(EM_960, "Intel 80960"){ "EM_960", "Intel 80960", ELF::EM_960 },
1061 ENUM_ENT(EM_PPC, "PowerPC"){ "EM_PPC", "PowerPC", ELF::EM_PPC },
1062 ENUM_ENT(EM_PPC64, "PowerPC64"){ "EM_PPC64", "PowerPC64", ELF::EM_PPC64 },
1063 ENUM_ENT(EM_S390, "IBM S/390"){ "EM_S390", "IBM S/390", ELF::EM_S390 },
1064 ENUM_ENT(EM_SPU, "SPU"){ "EM_SPU", "SPU", ELF::EM_SPU },
1065 ENUM_ENT(EM_V800, "NEC V800 series"){ "EM_V800", "NEC V800 series", ELF::EM_V800 },
1066 ENUM_ENT(EM_FR20, "Fujistsu FR20"){ "EM_FR20", "Fujistsu FR20", ELF::EM_FR20 },
1067 ENUM_ENT(EM_RH32, "TRW RH-32"){ "EM_RH32", "TRW RH-32", ELF::EM_RH32 },
1068 ENUM_ENT(EM_RCE, "Motorola RCE"){ "EM_RCE", "Motorola RCE", ELF::EM_RCE },
1069 ENUM_ENT(EM_ARM, "ARM"){ "EM_ARM", "ARM", ELF::EM_ARM },
1070 ENUM_ENT(EM_ALPHA, "EM_ALPHA"){ "EM_ALPHA", "EM_ALPHA", ELF::EM_ALPHA },
1071 ENUM_ENT(EM_SH, "Hitachi SH"){ "EM_SH", "Hitachi SH", ELF::EM_SH },
1072 ENUM_ENT(EM_SPARCV9, "Sparc v9"){ "EM_SPARCV9", "Sparc v9", ELF::EM_SPARCV9 },
1073 ENUM_ENT(EM_TRICORE, "Siemens Tricore"){ "EM_TRICORE", "Siemens Tricore", ELF::EM_TRICORE },
1074 ENUM_ENT(EM_ARC, "ARC"){ "EM_ARC", "ARC", ELF::EM_ARC },
1075 ENUM_ENT(EM_H8_300, "Hitachi H8/300"){ "EM_H8_300", "Hitachi H8/300", ELF::EM_H8_300 },
1076 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"){ "EM_H8_300H", "Hitachi H8/300H", ELF::EM_H8_300H },
1077 ENUM_ENT(EM_H8S, "Hitachi H8S"){ "EM_H8S", "Hitachi H8S", ELF::EM_H8S },
1078 ENUM_ENT(EM_H8_500, "Hitachi H8/500"){ "EM_H8_500", "Hitachi H8/500", ELF::EM_H8_500 },
1079 ENUM_ENT(EM_IA_64, "Intel IA-64"){ "EM_IA_64", "Intel IA-64", ELF::EM_IA_64 },
1080 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"){ "EM_MIPS_X", "Stanford MIPS-X", ELF::EM_MIPS_X },
1081 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"){ "EM_COLDFIRE", "Motorola Coldfire", ELF::EM_COLDFIRE },
1082 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"){ "EM_68HC12", "Motorola MC68HC12 Microcontroller", ELF::EM_68HC12
}
,
1083 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"){ "EM_MMA", "Fujitsu Multimedia Accelerator", ELF::EM_MMA },
1084 ENUM_ENT(EM_PCP, "Siemens PCP"){ "EM_PCP", "Siemens PCP", ELF::EM_PCP },
1085 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"){ "EM_NCPU", "Sony nCPU embedded RISC processor", ELF::EM_NCPU
}
,
1086 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"){ "EM_NDR1", "Denso NDR1 microprocesspr", ELF::EM_NDR1 },
1087 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"){ "EM_STARCORE", "Motorola Star*Core processor", ELF::EM_STARCORE
}
,
1088 ENUM_ENT(EM_ME16, "Toyota ME16 processor"){ "EM_ME16", "Toyota ME16 processor", ELF::EM_ME16 },
1089 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"){ "EM_ST100", "STMicroelectronics ST100 processor", ELF::EM_ST100
}
,
1090 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"){ "EM_TINYJ", "Advanced Logic Corp. TinyJ embedded processor"
, ELF::EM_TINYJ }
,
1091 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"){ "EM_X86_64", "Advanced Micro Devices X86-64", ELF::EM_X86_64
}
,
1092 ENUM_ENT(EM_PDSP, "Sony DSP processor"){ "EM_PDSP", "Sony DSP processor", ELF::EM_PDSP },
1093 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"){ "EM_PDP10", "Digital Equipment Corp. PDP-10", ELF::EM_PDP10
}
,
1094 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"){ "EM_PDP11", "Digital Equipment Corp. PDP-11", ELF::EM_PDP11
}
,
1095 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"){ "EM_FX66", "Siemens FX66 microcontroller", ELF::EM_FX66 },
1096 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"){ "EM_ST9PLUS", "STMicroelectronics ST9+ 8/16 bit microcontroller"
, ELF::EM_ST9PLUS }
,
1097 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"){ "EM_ST7", "STMicroelectronics ST7 8-bit microcontroller", ELF
::EM_ST7 }
,
1098 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"){ "EM_68HC16", "Motorola MC68HC16 Microcontroller", ELF::EM_68HC16
}
,
1099 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"){ "EM_68HC11", "Motorola MC68HC11 Microcontroller", ELF::EM_68HC11
}
,
1100 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"){ "EM_68HC08", "Motorola MC68HC08 Microcontroller", ELF::EM_68HC08
}
,
1101 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"){ "EM_68HC05", "Motorola MC68HC05 Microcontroller", ELF::EM_68HC05
}
,
1102 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"){ "EM_SVX", "Silicon Graphics SVx", ELF::EM_SVX },
1103 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"){ "EM_ST19", "STMicroelectronics ST19 8-bit microcontroller",
ELF::EM_ST19 }
,
1104 ENUM_ENT(EM_VAX, "Digital VAX"){ "EM_VAX", "Digital VAX", ELF::EM_VAX },
1105 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"){ "EM_CRIS", "Axis Communications 32-bit embedded processor",
ELF::EM_CRIS }
,
1106 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"){ "EM_JAVELIN", "Infineon Technologies 32-bit embedded cpu", ELF
::EM_JAVELIN }
,
1107 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"){ "EM_FIREPATH", "Element 14 64-bit DSP processor", ELF::EM_FIREPATH
}
,
1108 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"){ "EM_ZSP", "LSI Logic's 16-bit DSP processor", ELF::EM_ZSP },
1109 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"){ "EM_MMIX", "Donald Knuth's educational 64-bit processor", ELF
::EM_MMIX }
,
1110 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"){ "EM_HUANY", "Harvard Universitys's machine-independent object format"
, ELF::EM_HUANY }
,
1111 ENUM_ENT(EM_PRISM, "Vitesse Prism"){ "EM_PRISM", "Vitesse Prism", ELF::EM_PRISM },
1112 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"){ "EM_AVR", "Atmel AVR 8-bit microcontroller", ELF::EM_AVR },
1113 ENUM_ENT(EM_FR30, "Fujitsu FR30"){ "EM_FR30", "Fujitsu FR30", ELF::EM_FR30 },
1114 ENUM_ENT(EM_D10V, "Mitsubishi D10V"){ "EM_D10V", "Mitsubishi D10V", ELF::EM_D10V },
1115 ENUM_ENT(EM_D30V, "Mitsubishi D30V"){ "EM_D30V", "Mitsubishi D30V", ELF::EM_D30V },
1116 ENUM_ENT(EM_V850, "NEC v850"){ "EM_V850", "NEC v850", ELF::EM_V850 },
1117 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"){ "EM_M32R", "Renesas M32R (formerly Mitsubishi M32r)", ELF::
EM_M32R }
,
1118 ENUM_ENT(EM_MN10300, "Matsushita MN10300"){ "EM_MN10300", "Matsushita MN10300", ELF::EM_MN10300 },
1119 ENUM_ENT(EM_MN10200, "Matsushita MN10200"){ "EM_MN10200", "Matsushita MN10200", ELF::EM_MN10200 },
1120 ENUM_ENT(EM_PJ, "picoJava"){ "EM_PJ", "picoJava", ELF::EM_PJ },
1121 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"){ "EM_OPENRISC", "OpenRISC 32-bit embedded processor", ELF::EM_OPENRISC
}
,
1122 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"){ "EM_ARC_COMPACT", "EM_ARC_COMPACT", ELF::EM_ARC_COMPACT },
1123 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"){ "EM_XTENSA", "Tensilica Xtensa Processor", ELF::EM_XTENSA },
1124 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"){ "EM_VIDEOCORE", "Alphamosaic VideoCore processor", ELF::EM_VIDEOCORE
}
,
1125 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"){ "EM_TMM_GPP", "Thompson Multimedia General Purpose Processor"
, ELF::EM_TMM_GPP }
,
1126 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"){ "EM_NS32K", "National Semiconductor 32000 series", ELF::EM_NS32K
}
,
1127 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"){ "EM_TPC", "Tenor Network TPC processor", ELF::EM_TPC },
1128 ENUM_ENT(EM_SNP1K, "EM_SNP1K"){ "EM_SNP1K", "EM_SNP1K", ELF::EM_SNP1K },
1129 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"){ "EM_ST200", "STMicroelectronics ST200 microcontroller", ELF
::EM_ST200 }
,
1130 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"){ "EM_IP2K", "Ubicom IP2xxx 8-bit microcontrollers", ELF::EM_IP2K
}
,
1131 ENUM_ENT(EM_MAX, "MAX Processor"){ "EM_MAX", "MAX Processor", ELF::EM_MAX },
1132 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"){ "EM_CR", "National Semiconductor CompactRISC", ELF::EM_CR },
1133 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"){ "EM_F2MC16", "Fujitsu F2MC16", ELF::EM_F2MC16 },
1134 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"){ "EM_MSP430", "Texas Instruments msp430 microcontroller", ELF
::EM_MSP430 }
,
1135 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"){ "EM_BLACKFIN", "Analog Devices Blackfin", ELF::EM_BLACKFIN },
1136 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"){ "EM_SE_C33", "S1C33 Family of Seiko Epson processors", ELF::
EM_SE_C33 }
,
1137 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"){ "EM_SEP", "Sharp embedded microprocessor", ELF::EM_SEP },
1138 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"){ "EM_ARCA", "Arca RISC microprocessor", ELF::EM_ARCA },
1139 ENUM_ENT(EM_UNICORE, "Unicore"){ "EM_UNICORE", "Unicore", ELF::EM_UNICORE },
1140 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"){ "EM_EXCESS", "eXcess 16/32/64-bit configurable embedded CPU"
, ELF::EM_EXCESS }
,
1141 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"){ "EM_DXP", "Icera Semiconductor Inc. Deep Execution Processor"
, ELF::EM_DXP }
,
1142 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"){ "EM_ALTERA_NIOS2", "Altera Nios", ELF::EM_ALTERA_NIOS2 },
1143 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"){ "EM_CRX", "National Semiconductor CRX microprocessor", ELF::
EM_CRX }
,
1144 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"){ "EM_XGATE", "Motorola XGATE embedded processor", ELF::EM_XGATE
}
,
1145 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"){ "EM_C166", "Infineon Technologies xc16x", ELF::EM_C166 },
1146 ENUM_ENT(EM_M16C, "Renesas M16C"){ "EM_M16C", "Renesas M16C", ELF::EM_M16C },
1147 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"){ "EM_DSPIC30F", "Microchip Technology dsPIC30F Digital Signal Controller"
, ELF::EM_DSPIC30F }
,
1148 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"){ "EM_CE", "Freescale Communication Engine RISC core", ELF::EM_CE
}
,
1149 ENUM_ENT(EM_M32C, "Renesas M32C"){ "EM_M32C", "Renesas M32C", ELF::EM_M32C },
1150 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"){ "EM_TSK3000", "Altium TSK3000 core", ELF::EM_TSK3000 },
1151 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"){ "EM_RS08", "Freescale RS08 embedded processor", ELF::EM_RS08
}
,
1152 ENUM_ENT(EM_SHARC, "EM_SHARC"){ "EM_SHARC", "EM_SHARC", ELF::EM_SHARC },
1153 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"){ "EM_ECOG2", "Cyan Technology eCOG2 microprocessor", ELF::EM_ECOG2
}
,
1154 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"){ "EM_SCORE7", "SUNPLUS S+Core", ELF::EM_SCORE7 },
1155 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"){ "EM_DSP24", "New Japan Radio (NJR) 24-bit DSP Processor", ELF
::EM_DSP24 }
,
1156 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"){ "EM_VIDEOCORE3", "Broadcom VideoCore III processor", ELF::EM_VIDEOCORE3
}
,
1157 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"){ "EM_LATTICEMICO32", "Lattice Mico32", ELF::EM_LATTICEMICO32
}
,
1158 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"){ "EM_SE_C17", "Seiko Epson C17 family", ELF::EM_SE_C17 },
1159 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"){ "EM_TI_C6000", "Texas Instruments TMS320C6000 DSP family", ELF
::EM_TI_C6000 }
,
1160 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"){ "EM_TI_C2000", "Texas Instruments TMS320C2000 DSP family", ELF
::EM_TI_C2000 }
,
1161 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"){ "EM_TI_C5500", "Texas Instruments TMS320C55x DSP family", ELF
::EM_TI_C5500 }
,
1162 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"){ "EM_MMDSP_PLUS", "STMicroelectronics 64bit VLIW Data Signal Processor"
, ELF::EM_MMDSP_PLUS }
,
1163 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"){ "EM_CYPRESS_M8C", "Cypress M8C microprocessor", ELF::EM_CYPRESS_M8C
}
,
1164 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"){ "EM_R32C", "Renesas R32C series microprocessors", ELF::EM_R32C
}
,
1165 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"){ "EM_TRIMEDIA", "NXP Semiconductors TriMedia architecture family"
, ELF::EM_TRIMEDIA }
,
1166 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"){ "EM_HEXAGON", "Qualcomm Hexagon", ELF::EM_HEXAGON },
1167 ENUM_ENT(EM_8051, "Intel 8051 and variants"){ "EM_8051", "Intel 8051 and variants", ELF::EM_8051 },
1168 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"){ "EM_STXP7X", "STMicroelectronics STxP7x family", ELF::EM_STXP7X
}
,
1169 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"){ "EM_NDS32", "Andes Technology compact code size embedded RISC processor family"
, ELF::EM_NDS32 }
,
1170 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"){ "EM_ECOG1", "Cyan Technology eCOG1 microprocessor", ELF::EM_ECOG1
}
,
1171 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1172 // an identical number to EM_ECOG1.
1173 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"){ "EM_ECOG1X", "Cyan Technology eCOG1X family", ELF::EM_ECOG1X
}
,
1174 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"){ "EM_MAXQ30", "Dallas Semiconductor MAXQ30 Core microcontrollers"
, ELF::EM_MAXQ30 }
,
1175 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"){ "EM_XIMO16", "New Japan Radio (NJR) 16-bit DSP Processor", ELF
::EM_XIMO16 }
,
1176 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"){ "EM_MANIK", "M2000 Reconfigurable RISC Microprocessor", ELF
::EM_MANIK }
,
1177 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"){ "EM_CRAYNV2", "Cray Inc. NV2 vector architecture", ELF::EM_CRAYNV2
}
,
1178 ENUM_ENT(EM_RX, "Renesas RX"){ "EM_RX", "Renesas RX", ELF::EM_RX },
1179 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"){ "EM_METAG", "Imagination Technologies Meta processor architecture"
, ELF::EM_METAG }
,
1180 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"){ "EM_MCST_ELBRUS", "MCST Elbrus general purpose hardware architecture"
, ELF::EM_MCST_ELBRUS }
,
1181 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"){ "EM_ECOG16", "Cyan Technology eCOG16 family", ELF::EM_ECOG16
}
,
1182 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"){ "EM_CR16", "National Semiconductor CompactRISC 16-bit processor"
, ELF::EM_CR16 }
,
1183 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"){ "EM_ETPU", "Freescale Extended Time Processing Unit", ELF::
EM_ETPU }
,
1184 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"){ "EM_SLE9X", "Infineon Technologies SLE9X core", ELF::EM_SLE9X
}
,
1185 ENUM_ENT(EM_L10M, "EM_L10M"){ "EM_L10M", "EM_L10M", ELF::EM_L10M },
1186 ENUM_ENT(EM_K10M, "EM_K10M"){ "EM_K10M", "EM_K10M", ELF::EM_K10M },
1187 ENUM_ENT(EM_AARCH64, "AArch64"){ "EM_AARCH64", "AArch64", ELF::EM_AARCH64 },
1188 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"){ "EM_AVR32", "Atmel Corporation 32-bit microprocessor family"
, ELF::EM_AVR32 }
,
1189 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"){ "EM_STM8", "STMicroeletronics STM8 8-bit microcontroller", ELF
::EM_STM8 }
,
1190 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"){ "EM_TILE64", "Tilera TILE64 multicore architecture family",
ELF::EM_TILE64 }
,
1191 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"){ "EM_TILEPRO", "Tilera TILEPro multicore architecture family"
, ELF::EM_TILEPRO }
,
1192 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"){ "EM_MICROBLAZE", "Xilinx MicroBlaze 32-bit RISC soft processor core"
, ELF::EM_MICROBLAZE }
,
1193 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"){ "EM_CUDA", "NVIDIA CUDA architecture", ELF::EM_CUDA },
1194 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"){ "EM_TILEGX", "Tilera TILE-Gx multicore architecture family"
, ELF::EM_TILEGX }
,
1195 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"){ "EM_CLOUDSHIELD", "EM_CLOUDSHIELD", ELF::EM_CLOUDSHIELD },
1196 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"){ "EM_COREA_1ST", "EM_COREA_1ST", ELF::EM_COREA_1ST },
1197 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"){ "EM_COREA_2ND", "EM_COREA_2ND", ELF::EM_COREA_2ND },
1198 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"){ "EM_ARC_COMPACT2", "EM_ARC_COMPACT2", ELF::EM_ARC_COMPACT2 },
1199 ENUM_ENT(EM_OPEN8, "EM_OPEN8"){ "EM_OPEN8", "EM_OPEN8", ELF::EM_OPEN8 },
1200 ENUM_ENT(EM_RL78, "Renesas RL78"){ "EM_RL78", "Renesas RL78", ELF::EM_RL78 },
1201 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"){ "EM_VIDEOCORE5", "Broadcom VideoCore V processor", ELF::EM_VIDEOCORE5
}
,
1202 ENUM_ENT(EM_78KOR, "EM_78KOR"){ "EM_78KOR", "EM_78KOR", ELF::EM_78KOR },
1203 ENUM_ENT(EM_56800EX, "EM_56800EX"){ "EM_56800EX", "EM_56800EX", ELF::EM_56800EX },
1204 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"){ "EM_AMDGPU", "EM_AMDGPU", ELF::EM_AMDGPU },
1205 ENUM_ENT(EM_RISCV, "RISC-V"){ "EM_RISCV", "RISC-V", ELF::EM_RISCV },
1206 ENUM_ENT(EM_LANAI, "EM_LANAI"){ "EM_LANAI", "EM_LANAI", ELF::EM_LANAI },
1207 ENUM_ENT(EM_BPF, "EM_BPF"){ "EM_BPF", "EM_BPF", ELF::EM_BPF },
1208 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"){ "EM_VE", "NEC SX-Aurora Vector Engine", ELF::EM_VE },
1209 ENUM_ENT(EM_LOONGARCH, "LoongArch"){ "EM_LOONGARCH", "LoongArch", ELF::EM_LOONGARCH },
1210};
1211
1212const EnumEntry<unsigned> ElfSymbolBindings[] = {
1213 {"Local", "LOCAL", ELF::STB_LOCAL},
1214 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1215 {"Weak", "WEAK", ELF::STB_WEAK},
1216 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1217
1218const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1219 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1220 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1221 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1222 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1223
1224const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1225 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1226};
1227
1228static const char *getGroupType(uint32_t Flag) {
1229 if (Flag & ELF::GRP_COMDAT)
1230 return "COMDAT";
1231 else
1232 return "(unknown)";
1233}
1234
1235const EnumEntry<unsigned> ElfSectionFlags[] = {
1236 ENUM_ENT(SHF_WRITE, "W"){ "SHF_WRITE", "W", ELF::SHF_WRITE },
1237 ENUM_ENT(SHF_ALLOC, "A"){ "SHF_ALLOC", "A", ELF::SHF_ALLOC },
1238 ENUM_ENT(SHF_EXECINSTR, "X"){ "SHF_EXECINSTR", "X", ELF::SHF_EXECINSTR },
1239 ENUM_ENT(SHF_MERGE, "M"){ "SHF_MERGE", "M", ELF::SHF_MERGE },
1240 ENUM_ENT(SHF_STRINGS, "S"){ "SHF_STRINGS", "S", ELF::SHF_STRINGS },
1241 ENUM_ENT(SHF_INFO_LINK, "I"){ "SHF_INFO_LINK", "I", ELF::SHF_INFO_LINK },
1242 ENUM_ENT(SHF_LINK_ORDER, "L"){ "SHF_LINK_ORDER", "L", ELF::SHF_LINK_ORDER },
1243 ENUM_ENT(SHF_OS_NONCONFORMING, "O"){ "SHF_OS_NONCONFORMING", "O", ELF::SHF_OS_NONCONFORMING },
1244 ENUM_ENT(SHF_GROUP, "G"){ "SHF_GROUP", "G", ELF::SHF_GROUP },
1245 ENUM_ENT(SHF_TLS, "T"){ "SHF_TLS", "T", ELF::SHF_TLS },
1246 ENUM_ENT(SHF_COMPRESSED, "C"){ "SHF_COMPRESSED", "C", ELF::SHF_COMPRESSED },
1247 ENUM_ENT(SHF_EXCLUDE, "E"){ "SHF_EXCLUDE", "E", ELF::SHF_EXCLUDE },
1248};
1249
1250const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1251 ENUM_ENT(SHF_GNU_RETAIN, "R"){ "SHF_GNU_RETAIN", "R", ELF::SHF_GNU_RETAIN }
1252};
1253
1254const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1255 ENUM_ENT(SHF_SUNW_NODISCARD, "R"){ "SHF_SUNW_NODISCARD", "R", ELF::SHF_SUNW_NODISCARD }
1256};
1257
1258const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1259 ENUM_ENT(XCORE_SHF_CP_SECTION, ""){ "XCORE_SHF_CP_SECTION", "", ELF::XCORE_SHF_CP_SECTION },
1260 ENUM_ENT(XCORE_SHF_DP_SECTION, ""){ "XCORE_SHF_DP_SECTION", "", ELF::XCORE_SHF_DP_SECTION }
1261};
1262
1263const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1264 ENUM_ENT(SHF_ARM_PURECODE, "y"){ "SHF_ARM_PURECODE", "y", ELF::SHF_ARM_PURECODE }
1265};
1266
1267const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1268 ENUM_ENT(SHF_HEX_GPREL, ""){ "SHF_HEX_GPREL", "", ELF::SHF_HEX_GPREL }
1269};
1270
1271const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1272 ENUM_ENT(SHF_MIPS_NODUPES, ""){ "SHF_MIPS_NODUPES", "", ELF::SHF_MIPS_NODUPES },
1273 ENUM_ENT(SHF_MIPS_NAMES, ""){ "SHF_MIPS_NAMES", "", ELF::SHF_MIPS_NAMES },
1274 ENUM_ENT(SHF_MIPS_LOCAL, ""){ "SHF_MIPS_LOCAL", "", ELF::SHF_MIPS_LOCAL },
1275 ENUM_ENT(SHF_MIPS_NOSTRIP, ""){ "SHF_MIPS_NOSTRIP", "", ELF::SHF_MIPS_NOSTRIP },
1276 ENUM_ENT(SHF_MIPS_GPREL, ""){ "SHF_MIPS_GPREL", "", ELF::SHF_MIPS_GPREL },
1277 ENUM_ENT(SHF_MIPS_MERGE, ""){ "SHF_MIPS_MERGE", "", ELF::SHF_MIPS_MERGE },
1278 ENUM_ENT(SHF_MIPS_ADDR, ""){ "SHF_MIPS_ADDR", "", ELF::SHF_MIPS_ADDR },
1279 ENUM_ENT(SHF_MIPS_STRING, ""){ "SHF_MIPS_STRING", "", ELF::SHF_MIPS_STRING }
1280};
1281
1282const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1283 ENUM_ENT(SHF_X86_64_LARGE, "l"){ "SHF_X86_64_LARGE", "l", ELF::SHF_X86_64_LARGE }
1284};
1285
1286static std::vector<EnumEntry<unsigned>>
1287getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1288 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1289 std::end(ElfSectionFlags));
1290 switch (EOSAbi) {
1291 case ELFOSABI_SOLARIS:
1292 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1293 std::end(ElfSolarisSectionFlags));
1294 break;
1295 default:
1296 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1297 std::end(ElfGNUSectionFlags));
1298 break;
1299 }
1300 switch (EMachine) {
1301 case EM_ARM:
1302 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1303 std::end(ElfARMSectionFlags));
1304 break;
1305 case EM_HEXAGON:
1306 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1307 std::end(ElfHexagonSectionFlags));
1308 break;
1309 case EM_MIPS:
1310 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1311 std::end(ElfMipsSectionFlags));
1312 break;
1313 case EM_X86_64:
1314 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1315 std::end(ElfX86_64SectionFlags));
1316 break;
1317 case EM_XCORE:
1318 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1319 std::end(ElfXCoreSectionFlags));
1320 break;
1321 default:
1322 break;
1323 }
1324 return Ret;
1325}
1326
1327static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1328 uint64_t Flags) {
1329 // Here we are trying to build the flags string in the same way as GNU does.
1330 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1331 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1332 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1333 // "p". It only will print "E" when no other processor flag is set.
1334 std::string Str;
1335 bool HasUnknownFlag = false;
1336 bool HasOSFlag = false;
1337 bool HasProcFlag = false;
1338 std::vector<EnumEntry<unsigned>> FlagsList =
1339 getSectionFlagsForTarget(EOSAbi, EMachine);
1340 while (Flags) {
1341 // Take the least significant bit as a flag.
1342 uint64_t Flag = Flags & -Flags;
1343 Flags -= Flag;
1344
1345 // Find the flag in the known flags list.
1346 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1347 // Flags with empty names are not printed in GNU style output.
1348 return E.Value == Flag && !E.AltName.empty();
1349 });
1350 if (I != FlagsList.end()) {
1351 Str += I->AltName;
1352 continue;
1353 }
1354
1355 // If we did not find a matching regular flag, then we deal with an OS
1356 // specific flag, processor specific flag or an unknown flag.
1357 if (Flag & ELF::SHF_MASKOS) {
1358 HasOSFlag = true;
1359 Flags &= ~ELF::SHF_MASKOS;
1360 } else if (Flag & ELF::SHF_MASKPROC) {
1361 HasProcFlag = true;
1362 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1363 // bit if set so that it doesn't also get printed.
1364 Flags &= ~ELF::SHF_MASKPROC;
1365 } else {
1366 HasUnknownFlag = true;
1367 }
1368 }
1369
1370 // "o", "p" and "x" are printed last.
1371 if (HasOSFlag)
1372 Str += "o";
1373 if (HasProcFlag)
1374 Str += "p";
1375 if (HasUnknownFlag)
1376 Str += "x";
1377 return Str;
1378}
1379
1380static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1381 // Check potentially overlapped processor-specific program header type.
1382 switch (Arch) {
1383 case ELF::EM_ARM:
1384 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX)case ELF::PT_ARM_EXIDX: return "PT_ARM_EXIDX";; }
1385 break;
1386 case ELF::EM_MIPS:
1387 case ELF::EM_MIPS_RS3_LE:
1388 switch (Type) {
1389 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO)case ELF::PT_MIPS_REGINFO: return "PT_MIPS_REGINFO";;
1390 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC)case ELF::PT_MIPS_RTPROC: return "PT_MIPS_RTPROC";;
1391 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS)case ELF::PT_MIPS_OPTIONS: return "PT_MIPS_OPTIONS";;
1392 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS)case ELF::PT_MIPS_ABIFLAGS: return "PT_MIPS_ABIFLAGS";;
1393 }
1394 break;
1395 case ELF::EM_RISCV:
1396 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES)case ELF::PT_RISCV_ATTRIBUTES: return "PT_RISCV_ATTRIBUTES";; }
1397 }
1398
1399 switch (Type) {
1400 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL)case ELF::PT_NULL: return "PT_NULL";;
1401 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD)case ELF::PT_LOAD: return "PT_LOAD";;
1402 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC)case ELF::PT_DYNAMIC: return "PT_DYNAMIC";;
1403 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP)case ELF::PT_INTERP: return "PT_INTERP";;
1404 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE)case ELF::PT_NOTE: return "PT_NOTE";;
1405 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB)case ELF::PT_SHLIB: return "PT_SHLIB";;
1406 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR)case ELF::PT_PHDR: return "PT_PHDR";;
1407 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS)case ELF::PT_TLS: return "PT_TLS";;
1408
1409 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME)case ELF::PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";;
1410 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND)case ELF::PT_SUNW_UNWIND: return "PT_SUNW_UNWIND";;
1411
1412 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK)case ELF::PT_GNU_STACK: return "PT_GNU_STACK";;
1413 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO)case ELF::PT_GNU_RELRO: return "PT_GNU_RELRO";;
1414 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY)case ELF::PT_GNU_PROPERTY: return "PT_GNU_PROPERTY";;
1415
1416 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE)case ELF::PT_OPENBSD_MUTABLE: return "PT_OPENBSD_MUTABLE";;
1417 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE)case ELF::PT_OPENBSD_RANDOMIZE: return "PT_OPENBSD_RANDOMIZE"
;
;
1418 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED)case ELF::PT_OPENBSD_WXNEEDED: return "PT_OPENBSD_WXNEEDED";;
1419 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA)case ELF::PT_OPENBSD_BOOTDATA: return "PT_OPENBSD_BOOTDATA";;
1420 default:
1421 return "";
1422 }
1423}
1424
1425static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1426 StringRef Seg = segmentTypeToString(Arch, Type);
1427 if (Seg.empty())
1428 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1429
1430 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1431 if (Seg.consume_front("PT_ARM_"))
1432 return Seg.str();
1433
1434 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1435 if (Seg.consume_front("PT_MIPS_"))
1436 return Seg.str();
1437
1438 // E.g. "PT_RISCV_ATTRIBUTES"
1439 if (Seg.consume_front("PT_RISCV_"))
1440 return Seg.str();
1441
1442 // E.g. "PT_LOAD" -> "LOAD".
1443 assert(Seg.startswith("PT_"))(static_cast <bool> (Seg.startswith("PT_")) ? void (0) :
__assert_fail ("Seg.startswith(\"PT_\")", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 1443, __extension__ __PRETTY_FUNCTION__))
;
1444 return Seg.drop_front(3).str();
1445}
1446
1447const EnumEntry<unsigned> ElfSegmentFlags[] = {
1448 LLVM_READOBJ_ENUM_ENT(ELF, PF_X){ "PF_X", ELF::PF_X },
1449 LLVM_READOBJ_ENUM_ENT(ELF, PF_W){ "PF_W", ELF::PF_W },
1450 LLVM_READOBJ_ENUM_ENT(ELF, PF_R){ "PF_R", ELF::PF_R }
1451};
1452
1453const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1454 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"){ "EF_MIPS_NOREORDER", "noreorder", ELF::EF_MIPS_NOREORDER },
1455 ENUM_ENT(EF_MIPS_PIC, "pic"){ "EF_MIPS_PIC", "pic", ELF::EF_MIPS_PIC },
1456 ENUM_ENT(EF_MIPS_CPIC, "cpic"){ "EF_MIPS_CPIC", "cpic", ELF::EF_MIPS_CPIC },
1457 ENUM_ENT(EF_MIPS_ABI2, "abi2"){ "EF_MIPS_ABI2", "abi2", ELF::EF_MIPS_ABI2 },
1458 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"){ "EF_MIPS_32BITMODE", "32bitmode", ELF::EF_MIPS_32BITMODE },
1459 ENUM_ENT(EF_MIPS_FP64, "fp64"){ "EF_MIPS_FP64", "fp64", ELF::EF_MIPS_FP64 },
1460 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"){ "EF_MIPS_NAN2008", "nan2008", ELF::EF_MIPS_NAN2008 },
1461 ENUM_ENT(EF_MIPS_ABI_O32, "o32"){ "EF_MIPS_ABI_O32", "o32", ELF::EF_MIPS_ABI_O32 },
1462 ENUM_ENT(EF_MIPS_ABI_O64, "o64"){ "EF_MIPS_ABI_O64", "o64", ELF::EF_MIPS_ABI_O64 },
1463 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"){ "EF_MIPS_ABI_EABI32", "eabi32", ELF::EF_MIPS_ABI_EABI32 },
1464 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"){ "EF_MIPS_ABI_EABI64", "eabi64", ELF::EF_MIPS_ABI_EABI64 },
1465 ENUM_ENT(EF_MIPS_MACH_3900, "3900"){ "EF_MIPS_MACH_3900", "3900", ELF::EF_MIPS_MACH_3900 },
1466 ENUM_ENT(EF_MIPS_MACH_4010, "4010"){ "EF_MIPS_MACH_4010", "4010", ELF::EF_MIPS_MACH_4010 },
1467 ENUM_ENT(EF_MIPS_MACH_4100, "4100"){ "EF_MIPS_MACH_4100", "4100", ELF::EF_MIPS_MACH_4100 },
1468 ENUM_ENT(EF_MIPS_MACH_4650, "4650"){ "EF_MIPS_MACH_4650", "4650", ELF::EF_MIPS_MACH_4650 },
1469 ENUM_ENT(EF_MIPS_MACH_4120, "4120"){ "EF_MIPS_MACH_4120", "4120", ELF::EF_MIPS_MACH_4120 },
1470 ENUM_ENT(EF_MIPS_MACH_4111, "4111"){ "EF_MIPS_MACH_4111", "4111", ELF::EF_MIPS_MACH_4111 },
1471 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"){ "EF_MIPS_MACH_SB1", "sb1", ELF::EF_MIPS_MACH_SB1 },
1472 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"){ "EF_MIPS_MACH_OCTEON", "octeon", ELF::EF_MIPS_MACH_OCTEON },
1473 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"){ "EF_MIPS_MACH_XLR", "xlr", ELF::EF_MIPS_MACH_XLR },
1474 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"){ "EF_MIPS_MACH_OCTEON2", "octeon2", ELF::EF_MIPS_MACH_OCTEON2
}
,
1475 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"){ "EF_MIPS_MACH_OCTEON3", "octeon3", ELF::EF_MIPS_MACH_OCTEON3
}
,
1476 ENUM_ENT(EF_MIPS_MACH_5400, "5400"){ "EF_MIPS_MACH_5400", "5400", ELF::EF_MIPS_MACH_5400 },
1477 ENUM_ENT(EF_MIPS_MACH_5900, "5900"){ "EF_MIPS_MACH_5900", "5900", ELF::EF_MIPS_MACH_5900 },
1478 ENUM_ENT(EF_MIPS_MACH_5500, "5500"){ "EF_MIPS_MACH_5500", "5500", ELF::EF_MIPS_MACH_5500 },
1479 ENUM_ENT(EF_MIPS_MACH_9000, "9000"){ "EF_MIPS_MACH_9000", "9000", ELF::EF_MIPS_MACH_9000 },
1480 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"){ "EF_MIPS_MACH_LS2E", "loongson-2e", ELF::EF_MIPS_MACH_LS2E },
1481 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"){ "EF_MIPS_MACH_LS2F", "loongson-2f", ELF::EF_MIPS_MACH_LS2F },
1482 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"){ "EF_MIPS_MACH_LS3A", "loongson-3a", ELF::EF_MIPS_MACH_LS3A },
1483 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"){ "EF_MIPS_MICROMIPS", "micromips", ELF::EF_MIPS_MICROMIPS },
1484 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"){ "EF_MIPS_ARCH_ASE_M16", "mips16", ELF::EF_MIPS_ARCH_ASE_M16
}
,
1485 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"){ "EF_MIPS_ARCH_ASE_MDMX", "mdmx", ELF::EF_MIPS_ARCH_ASE_MDMX
}
,
1486 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"){ "EF_MIPS_ARCH_1", "mips1", ELF::EF_MIPS_ARCH_1 },
1487 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"){ "EF_MIPS_ARCH_2", "mips2", ELF::EF_MIPS_ARCH_2 },
1488 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"){ "EF_MIPS_ARCH_3", "mips3", ELF::EF_MIPS_ARCH_3 },
1489 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"){ "EF_MIPS_ARCH_4", "mips4", ELF::EF_MIPS_ARCH_4 },
1490 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"){ "EF_MIPS_ARCH_5", "mips5", ELF::EF_MIPS_ARCH_5 },
1491 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"){ "EF_MIPS_ARCH_32", "mips32", ELF::EF_MIPS_ARCH_32 },
1492 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"){ "EF_MIPS_ARCH_64", "mips64", ELF::EF_MIPS_ARCH_64 },
1493 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"){ "EF_MIPS_ARCH_32R2", "mips32r2", ELF::EF_MIPS_ARCH_32R2 },
1494 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"){ "EF_MIPS_ARCH_64R2", "mips64r2", ELF::EF_MIPS_ARCH_64R2 },
1495 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"){ "EF_MIPS_ARCH_32R6", "mips32r6", ELF::EF_MIPS_ARCH_32R6 },
1496 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6"){ "EF_MIPS_ARCH_64R6", "mips64r6", ELF::EF_MIPS_ARCH_64R6 }
1497};
1498
1499const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1500 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1501 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1502 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1503 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1504 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1505 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1506 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1507 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1508 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1509 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1510 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1511 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1512 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1513 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1514 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1515 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1516 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1517 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1518 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1519 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602){ "EF_AMDGPU_MACH_AMDGCN_GFX602", ELF::EF_AMDGPU_MACH_AMDGCN_GFX602
}
,
1520 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1521 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1522 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1523 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1524 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1525 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705){ "EF_AMDGPU_MACH_AMDGCN_GFX705", ELF::EF_AMDGPU_MACH_AMDGCN_GFX705
}
,
1526 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1527 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1528 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1529 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805){ "EF_AMDGPU_MACH_AMDGCN_GFX805", ELF::EF_AMDGPU_MACH_AMDGCN_GFX805
}
,
1530 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1531 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1532 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1533 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1534 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1535 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908){ "EF_AMDGPU_MACH_AMDGCN_GFX908", ELF::EF_AMDGPU_MACH_AMDGCN_GFX908
}
,
1536 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1537 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A){ "EF_AMDGPU_MACH_AMDGCN_GFX90A", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A
}
,
1538 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C){ "EF_AMDGPU_MACH_AMDGCN_GFX90C", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C
}
,
1539 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940){ "EF_AMDGPU_MACH_AMDGCN_GFX940", ELF::EF_AMDGPU_MACH_AMDGCN_GFX940
}
,
1540 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010){ "EF_AMDGPU_MACH_AMDGCN_GFX1010", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010
}
,
1541 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011){ "EF_AMDGPU_MACH_AMDGCN_GFX1011", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011
}
,
1542 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012){ "EF_AMDGPU_MACH_AMDGCN_GFX1012", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012
}
,
1543 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013){ "EF_AMDGPU_MACH_AMDGCN_GFX1013", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013
}
,
1544 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030){ "EF_AMDGPU_MACH_AMDGCN_GFX1030", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030
}
,
1545 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031){ "EF_AMDGPU_MACH_AMDGCN_GFX1031", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031
}
,
1546 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032){ "EF_AMDGPU_MACH_AMDGCN_GFX1032", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032
}
,
1547 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033){ "EF_AMDGPU_MACH_AMDGCN_GFX1033", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033
}
,
1548 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034){ "EF_AMDGPU_MACH_AMDGCN_GFX1034", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034
}
,
1549 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035){ "EF_AMDGPU_MACH_AMDGCN_GFX1035", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035
}
,
1550 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036){ "EF_AMDGPU_MACH_AMDGCN_GFX1036", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036
}
,
1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100){ "EF_AMDGPU_MACH_AMDGCN_GFX1100", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100
}
,
1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101){ "EF_AMDGPU_MACH_AMDGCN_GFX1101", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101
}
,
1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102){ "EF_AMDGPU_MACH_AMDGCN_GFX1102", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102
}
,
1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103){ "EF_AMDGPU_MACH_AMDGCN_GFX1103", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103
}
,
1555 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3){ "EF_AMDGPU_FEATURE_XNACK_V3", ELF::EF_AMDGPU_FEATURE_XNACK_V3
}
,
1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3){ "EF_AMDGPU_FEATURE_SRAMECC_V3", ELF::EF_AMDGPU_FEATURE_SRAMECC_V3
}
1557};
1558
1559const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602){ "EF_AMDGPU_MACH_AMDGCN_GFX602", ELF::EF_AMDGPU_MACH_AMDGCN_GFX602
}
,
1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1581 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1582 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1583 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1584 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1585 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705){ "EF_AMDGPU_MACH_AMDGCN_GFX705", ELF::EF_AMDGPU_MACH_AMDGCN_GFX705
}
,
1586 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1587 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1588 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1589 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805){ "EF_AMDGPU_MACH_AMDGCN_GFX805", ELF::EF_AMDGPU_MACH_AMDGCN_GFX805
}
,
1590 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1591 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1592 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908){ "EF_AMDGPU_MACH_AMDGCN_GFX908", ELF::EF_AMDGPU_MACH_AMDGCN_GFX908
}
,
1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A){ "EF_AMDGPU_MACH_AMDGCN_GFX90A", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A
}
,
1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C){ "EF_AMDGPU_MACH_AMDGCN_GFX90C", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C
}
,
1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940){ "EF_AMDGPU_MACH_AMDGCN_GFX940", ELF::EF_AMDGPU_MACH_AMDGCN_GFX940
}
,
1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010){ "EF_AMDGPU_MACH_AMDGCN_GFX1010", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010
}
,
1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011){ "EF_AMDGPU_MACH_AMDGCN_GFX1011", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011
}
,
1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012){ "EF_AMDGPU_MACH_AMDGCN_GFX1012", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012
}
,
1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013){ "EF_AMDGPU_MACH_AMDGCN_GFX1013", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013
}
,
1604 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030){ "EF_AMDGPU_MACH_AMDGCN_GFX1030", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030
}
,
1605 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031){ "EF_AMDGPU_MACH_AMDGCN_GFX1031", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031
}
,
1606 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032){ "EF_AMDGPU_MACH_AMDGCN_GFX1032", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032
}
,
1607 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033){ "EF_AMDGPU_MACH_AMDGCN_GFX1033", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033
}
,
1608 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034){ "EF_AMDGPU_MACH_AMDGCN_GFX1034", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034
}
,
1609 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035){ "EF_AMDGPU_MACH_AMDGCN_GFX1035", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035
}
,
1610 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036){ "EF_AMDGPU_MACH_AMDGCN_GFX1036", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036
}
,
1611 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100){ "EF_AMDGPU_MACH_AMDGCN_GFX1100", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100
}
,
1612 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101){ "EF_AMDGPU_MACH_AMDGCN_GFX1101", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101
}
,
1613 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102){ "EF_AMDGPU_MACH_AMDGCN_GFX1102", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102
}
,
1614 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103){ "EF_AMDGPU_MACH_AMDGCN_GFX1103", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103
}
,
1615 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4){ "EF_AMDGPU_FEATURE_XNACK_ANY_V4", ELF::EF_AMDGPU_FEATURE_XNACK_ANY_V4
}
,
1616 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4){ "EF_AMDGPU_FEATURE_XNACK_OFF_V4", ELF::EF_AMDGPU_FEATURE_XNACK_OFF_V4
}
,
1617 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4){ "EF_AMDGPU_FEATURE_XNACK_ON_V4", ELF::EF_AMDGPU_FEATURE_XNACK_ON_V4
}
,
1618 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4){ "EF_AMDGPU_FEATURE_SRAMECC_ANY_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_ANY_V4
}
,
1619 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4){ "EF_AMDGPU_FEATURE_SRAMECC_OFF_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_OFF_V4
}
,
1620 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4){ "EF_AMDGPU_FEATURE_SRAMECC_ON_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_ON_V4
}
1621};
1622
1623const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1624 ENUM_ENT(EF_RISCV_RVC, "RVC"){ "EF_RISCV_RVC", "RVC", ELF::EF_RISCV_RVC },
1625 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"){ "EF_RISCV_FLOAT_ABI_SINGLE", "single-float ABI", ELF::EF_RISCV_FLOAT_ABI_SINGLE
}
,
1626 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"){ "EF_RISCV_FLOAT_ABI_DOUBLE", "double-float ABI", ELF::EF_RISCV_FLOAT_ABI_DOUBLE
}
,
1627 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"){ "EF_RISCV_FLOAT_ABI_QUAD", "quad-float ABI", ELF::EF_RISCV_FLOAT_ABI_QUAD
}
,
1628 ENUM_ENT(EF_RISCV_RVE, "RVE"){ "EF_RISCV_RVE", "RVE", ELF::EF_RISCV_RVE },
1629 ENUM_ENT(EF_RISCV_TSO, "TSO"){ "EF_RISCV_TSO", "TSO", ELF::EF_RISCV_TSO },
1630};
1631
1632const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1633 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1){ "EF_AVR_ARCH_AVR1", ELF::EF_AVR_ARCH_AVR1 },
1634 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2){ "EF_AVR_ARCH_AVR2", ELF::EF_AVR_ARCH_AVR2 },
1635 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25){ "EF_AVR_ARCH_AVR25", ELF::EF_AVR_ARCH_AVR25 },
1636 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3){ "EF_AVR_ARCH_AVR3", ELF::EF_AVR_ARCH_AVR3 },
1637 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31){ "EF_AVR_ARCH_AVR31", ELF::EF_AVR_ARCH_AVR31 },
1638 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35){ "EF_AVR_ARCH_AVR35", ELF::EF_AVR_ARCH_AVR35 },
1639 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4){ "EF_AVR_ARCH_AVR4", ELF::EF_AVR_ARCH_AVR4 },
1640 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5){ "EF_AVR_ARCH_AVR5", ELF::EF_AVR_ARCH_AVR5 },
1641 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51){ "EF_AVR_ARCH_AVR51", ELF::EF_AVR_ARCH_AVR51 },
1642 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6){ "EF_AVR_ARCH_AVR6", ELF::EF_AVR_ARCH_AVR6 },
1643 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY){ "EF_AVR_ARCH_AVRTINY", ELF::EF_AVR_ARCH_AVRTINY },
1644 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1){ "EF_AVR_ARCH_XMEGA1", ELF::EF_AVR_ARCH_XMEGA1 },
1645 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2){ "EF_AVR_ARCH_XMEGA2", ELF::EF_AVR_ARCH_XMEGA2 },
1646 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3){ "EF_AVR_ARCH_XMEGA3", ELF::EF_AVR_ARCH_XMEGA3 },
1647 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4){ "EF_AVR_ARCH_XMEGA4", ELF::EF_AVR_ARCH_XMEGA4 },
1648 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5){ "EF_AVR_ARCH_XMEGA5", ELF::EF_AVR_ARCH_XMEGA5 },
1649 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6){ "EF_AVR_ARCH_XMEGA6", ELF::EF_AVR_ARCH_XMEGA6 },
1650 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7){ "EF_AVR_ARCH_XMEGA7", ELF::EF_AVR_ARCH_XMEGA7 },
1651 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"){ "EF_AVR_LINKRELAX_PREPARED", "relaxable", ELF::EF_AVR_LINKRELAX_PREPARED
}
,
1652};
1653
1654const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1655 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"){ "EF_LOONGARCH_ABI_SOFT_FLOAT", "SOFT-FLOAT", ELF::EF_LOONGARCH_ABI_SOFT_FLOAT
}
,
1656 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"){ "EF_LOONGARCH_ABI_SINGLE_FLOAT", "SINGLE-FLOAT", ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT
}
,
1657 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"){ "EF_LOONGARCH_ABI_DOUBLE_FLOAT", "DOUBLE-FLOAT", ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT
}
,
1658 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"){ "EF_LOONGARCH_OBJABI_V0", "OBJ-v0", ELF::EF_LOONGARCH_OBJABI_V0
}
,
1659 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"){ "EF_LOONGARCH_OBJABI_V1", "OBJ-v1", ELF::EF_LOONGARCH_OBJABI_V1
}
,
1660};
1661
1662
1663const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1664 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL){ "STV_INTERNAL", ELF::STV_INTERNAL },
1665 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN){ "STV_HIDDEN", ELF::STV_HIDDEN },
1666 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED){ "STV_PROTECTED", ELF::STV_PROTECTED }
1667};
1668
1669const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1670 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1671 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1672 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC){ "STO_MIPS_PIC", ELF::STO_MIPS_PIC },
1673 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS){ "STO_MIPS_MICROMIPS", ELF::STO_MIPS_MICROMIPS }
1674};
1675
1676const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1677 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS){ "STO_AARCH64_VARIANT_PCS", ELF::STO_AARCH64_VARIANT_PCS }
1678};
1679
1680const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1681 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1682 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1683 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16){ "STO_MIPS_MIPS16", ELF::STO_MIPS_MIPS16 }
1684};
1685
1686const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1687 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC){ "STO_RISCV_VARIANT_CC", ELF::STO_RISCV_VARIANT_CC }};
1688
1689static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1690 switch (Odk) {
1691 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL)case ELF::ODK_NULL: return "ODK_NULL";;
1692 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO)case ELF::ODK_REGINFO: return "ODK_REGINFO";;
1693 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS)case ELF::ODK_EXCEPTIONS: return "ODK_EXCEPTIONS";;
1694 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD)case ELF::ODK_PAD: return "ODK_PAD";;
1695 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH)case ELF::ODK_HWPATCH: return "ODK_HWPATCH";;
1696 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL)case ELF::ODK_FILL: return "ODK_FILL";;
1697 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS)case ELF::ODK_TAGS: return "ODK_TAGS";;
1698 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND)case ELF::ODK_HWAND: return "ODK_HWAND";;
1699 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR)case ELF::ODK_HWOR: return "ODK_HWOR";;
1700 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP)case ELF::ODK_GP_GROUP: return "ODK_GP_GROUP";;
1701 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT)case ELF::ODK_IDENT: return "ODK_IDENT";;
1702 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE)case ELF::ODK_PAGESIZE: return "ODK_PAGESIZE";;
1703 default:
1704 return "Unknown";
1705 }
1706}
1707
1708template <typename ELFT>
1709std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1710ELFDumper<ELFT>::findDynamic() {
1711 // Try to locate the PT_DYNAMIC header.
1712 const Elf_Phdr *DynamicPhdr = nullptr;
1713 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1714 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1715 if (Phdr.p_type != ELF::PT_DYNAMIC)
1716 continue;
1717 DynamicPhdr = &Phdr;
1718 break;
1719 }
1720 } else {
1721 reportUniqueWarning(
1722 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1723 toString(PhdrsOrErr.takeError()));
1724 }
1725
1726 // Try to locate the .dynamic section in the sections header table.
1727 const Elf_Shdr *DynamicSec = nullptr;
1728 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1729 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1730 continue;
1731 DynamicSec = &Sec;
1732 break;
1733 }
1734
1735 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1736 ObjF.getMemoryBufferRef().getBufferSize()) ||
1737 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1738 DynamicPhdr->p_offset))) {
1739 reportUniqueWarning(
1740 "PT_DYNAMIC segment offset (0x" +
1741 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1742 Twine::utohexstr(DynamicPhdr->p_filesz) +
1743 ") exceeds the size of the file (0x" +
1744 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1745 // Don't use the broken dynamic header.
1746 DynamicPhdr = nullptr;
1747 }
1748
1749 if (DynamicPhdr && DynamicSec) {
1750 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1751 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1752 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1753 reportUniqueWarning(describe(*DynamicSec) +
1754 " is not contained within the "
1755 "PT_DYNAMIC segment");
1756
1757 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1758 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1759 "PT_DYNAMIC segment");
1760 }
1761
1762 return std::make_pair(DynamicPhdr, DynamicSec);
1763}
1764
1765template <typename ELFT>
1766void ELFDumper<ELFT>::loadDynamicTable() {
1767 const Elf_Phdr *DynamicPhdr;
1768 const Elf_Shdr *DynamicSec;
1769 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1770 if (!DynamicPhdr && !DynamicSec)
1771 return;
1772
1773 DynRegionInfo FromPhdr(ObjF, *this);
1774 bool IsPhdrTableValid = false;
1775 if (DynamicPhdr) {
1776 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1777 // validated in findDynamic() and so createDRI() is not expected to fail.
1778 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1779 sizeof(Elf_Dyn)));
1780 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1781 FromPhdr.EntSizePrintName = "";
1782 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1783 }
1784
1785 // Locate the dynamic table described in a section header.
1786 // Ignore sh_entsize and use the expected value for entry size explicitly.
1787 // This allows us to dump dynamic sections with a broken sh_entsize
1788 // field.
1789 DynRegionInfo FromSec(ObjF, *this);
1790 bool IsSecTableValid = false;
1791 if (DynamicSec) {
1792 Expected<DynRegionInfo> RegOrErr =
1793 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1794 if (RegOrErr) {
1795 FromSec = *RegOrErr;
1796 FromSec.Context = describe(*DynamicSec);
1797 FromSec.EntSizePrintName = "";
1798 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1799 } else {
1800 reportUniqueWarning("unable to read the dynamic table from " +
1801 describe(*DynamicSec) + ": " +
1802 toString(RegOrErr.takeError()));
1803 }
1804 }
1805
1806 // When we only have information from one of the SHT_DYNAMIC section header or
1807 // PT_DYNAMIC program header, just use that.
1808 if (!DynamicPhdr || !DynamicSec) {
1809 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1810 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1811 parseDynamicTable();
1812 } else {
1813 reportUniqueWarning("no valid dynamic table was found");
1814 }
1815 return;
1816 }
1817
1818 // At this point we have tables found from the section header and from the
1819 // dynamic segment. Usually they match, but we have to do sanity checks to
1820 // verify that.
1821
1822 if (FromPhdr.Addr != FromSec.Addr)
1823 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1824 "program header disagree about "
1825 "the location of the dynamic table");
1826
1827 if (!IsPhdrTableValid && !IsSecTableValid) {
1828 reportUniqueWarning("no valid dynamic table was found");
1829 return;
1830 }
1831
1832 // Information in the PT_DYNAMIC program header has priority over the
1833 // information in a section header.
1834 if (IsPhdrTableValid) {
1835 if (!IsSecTableValid)
1836 reportUniqueWarning(
1837 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1838 DynamicTable = FromPhdr;
1839 } else {
1840 reportUniqueWarning(
1841 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1842 DynamicTable = FromSec;
1843 }
1844
1845 parseDynamicTable();
1846}
1847
1848template <typename ELFT>
1849ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1850 ScopedPrinter &Writer)
1851 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1852 FileName(O.getFileName()), DynRelRegion(O, *this),
1853 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1854 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1855 DynamicTable(O, *this) {
1856 if (!O.IsContentValid())
1857 return;
1858
1859 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1860 for (const Elf_Shdr &Sec : Sections) {
1861 switch (Sec.sh_type) {
1862 case ELF::SHT_SYMTAB:
1863 if (!DotSymtabSec)
1864 DotSymtabSec = &Sec;
1865 break;
1866 case ELF::SHT_DYNSYM:
1867 if (!DotDynsymSec)
1868 DotDynsymSec = &Sec;
1869
1870 if (!DynSymRegion) {
1871 Expected<DynRegionInfo> RegOrErr =
1872 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1873 if (RegOrErr) {
1874 DynSymRegion = *RegOrErr;
1875 DynSymRegion->Context = describe(Sec);
1876
1877 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1878 DynamicStringTable = *E;
1879 else
1880 reportUniqueWarning("unable to get the string table for the " +
1881 describe(Sec) + ": " + toString(E.takeError()));
1882 } else {
1883 reportUniqueWarning("unable to read dynamic symbols from " +
1884 describe(Sec) + ": " +
1885 toString(RegOrErr.takeError()));
1886 }
1887 }
1888 break;
1889 case ELF::SHT_SYMTAB_SHNDX: {
1890 uint32_t SymtabNdx = Sec.sh_link;
1891 if (SymtabNdx >= Sections.size()) {
1892 reportUniqueWarning(
1893 "unable to get the associated symbol table for " + describe(Sec) +
1894 ": sh_link (" + Twine(SymtabNdx) +
1895 ") is greater than or equal to the total number of sections (" +
1896 Twine(Sections.size()) + ")");
1897 continue;
1898 }
1899
1900 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1901 Obj.getSHNDXTable(Sec)) {
1902 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1903 .second)
1904 reportUniqueWarning(
1905 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1906 describe(Sec));
1907 } else {
1908 reportUniqueWarning(ShndxTableOrErr.takeError());
1909 }
1910 break;
1911 }
1912 case ELF::SHT_GNU_versym:
1913 if (!SymbolVersionSection)
1914 SymbolVersionSection = &Sec;
1915 break;
1916 case ELF::SHT_GNU_verdef:
1917 if (!SymbolVersionDefSection)
1918 SymbolVersionDefSection = &Sec;
1919 break;
1920 case ELF::SHT_GNU_verneed:
1921 if (!SymbolVersionNeedSection)
1922 SymbolVersionNeedSection = &Sec;
1923 break;
1924 case ELF::SHT_LLVM_ADDRSIG:
1925 if (!DotAddrsigSec)
1926 DotAddrsigSec = &Sec;
1927 break;
1928 }
1929 }
1930
1931 loadDynamicTable();
1932}
1933
1934template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1935 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1936 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1937 this->reportUniqueWarning(Msg);
1938 return Error::success();
1939 });
1940 if (!MappedAddrOrError) {
1941 this->reportUniqueWarning("unable to parse DT_" +
1942 Obj.getDynamicTagAsString(Tag) + ": " +
1943 llvm::toString(MappedAddrOrError.takeError()));
1944 return nullptr;
1945 }
1946 return MappedAddrOrError.get();
1947 };
1948
1949 const char *StringTableBegin = nullptr;
1950 uint64_t StringTableSize = 0;
1951 Optional<DynRegionInfo> DynSymFromTable;
1952 for (const Elf_Dyn &Dyn : dynamic_table()) {
1953 switch (Dyn.d_tag) {
1954 case ELF::DT_HASH:
1955 HashTable = reinterpret_cast<const Elf_Hash *>(
1956 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1957 break;
1958 case ELF::DT_GNU_HASH:
1959 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1960 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1961 break;
1962 case ELF::DT_STRTAB:
1963 StringTableBegin = reinterpret_cast<const char *>(
1964 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1965 break;
1966 case ELF::DT_STRSZ:
1967 StringTableSize = Dyn.getVal();
1968 break;
1969 case ELF::DT_SYMTAB: {
1970 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1971 // no program headers), we ignore its value.
1972 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1973 DynSymFromTable.emplace(ObjF, *this);
1974 DynSymFromTable->Addr = VA;
1975 DynSymFromTable->EntSize = sizeof(Elf_Sym);
1976 DynSymFromTable->EntSizePrintName = "";
1977 }
1978 break;
1979 }
1980 case ELF::DT_SYMENT: {
1981 uint64_t Val = Dyn.getVal();
1982 if (Val != sizeof(Elf_Sym))
1983 this->reportUniqueWarning("DT_SYMENT value of 0x" +
1984 Twine::utohexstr(Val) +
1985 " is not the size of a symbol (0x" +
1986 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1987 break;
1988 }
1989 case ELF::DT_RELA:
1990 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1991 break;
1992 case ELF::DT_RELASZ:
1993 DynRelaRegion.Size = Dyn.getVal();
1994 DynRelaRegion.SizePrintName = "DT_RELASZ value";
1995 break;
1996 case ELF::DT_RELAENT:
1997 DynRelaRegion.EntSize = Dyn.getVal();
1998 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1999 break;
2000 case ELF::DT_SONAME:
2001 SONameOffset = Dyn.getVal();
2002 break;
2003 case ELF::DT_REL:
2004 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2005 break;
2006 case ELF::DT_RELSZ:
2007 DynRelRegion.Size = Dyn.getVal();
2008 DynRelRegion.SizePrintName = "DT_RELSZ value";
2009 break;
2010 case ELF::DT_RELENT:
2011 DynRelRegion.EntSize = Dyn.getVal();
2012 DynRelRegion.EntSizePrintName = "DT_RELENT value";
2013 break;
2014 case ELF::DT_RELR:
2015 case ELF::DT_ANDROID_RELR:
2016 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2017 break;
2018 case ELF::DT_RELRSZ:
2019 case ELF::DT_ANDROID_RELRSZ:
2020 DynRelrRegion.Size = Dyn.getVal();
2021 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2022 ? "DT_RELRSZ value"
2023 : "DT_ANDROID_RELRSZ value";
2024 break;
2025 case ELF::DT_RELRENT:
2026 case ELF::DT_ANDROID_RELRENT:
2027 DynRelrRegion.EntSize = Dyn.getVal();
2028 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2029 ? "DT_RELRENT value"
2030 : "DT_ANDROID_RELRENT value";
2031 break;
2032 case ELF::DT_PLTREL:
2033 if (Dyn.getVal() == DT_REL)
2034 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2035 else if (Dyn.getVal() == DT_RELA)
2036 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2037 else
2038 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2039 Twine((uint64_t)Dyn.getVal()));
2040 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2041 break;
2042 case ELF::DT_JMPREL:
2043 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2044 break;
2045 case ELF::DT_PLTRELSZ:
2046 DynPLTRelRegion.Size = Dyn.getVal();
2047 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2048 break;
2049 case ELF::DT_SYMTAB_SHNDX:
2050 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2051 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2052 break;
2053 }
2054 }
2055
2056 if (StringTableBegin) {
2057 const uint64_t FileSize = Obj.getBufSize();
2058 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2059 if (StringTableSize > FileSize - Offset)
2060 reportUniqueWarning(
2061 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2062 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2063 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2064 else
2065 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2066 }
2067
2068 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2069 if (DynSymRegion) {
2070 // Often we find the information about the dynamic symbol table
2071 // location in the SHT_DYNSYM section header. However, the value in
2072 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2073 // locate .dynsym at runtime. The location we find in the section header
2074 // and the location we find here should match.
2075 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2076 reportUniqueWarning(
2077 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2078 "the location of the dynamic symbol table"));
2079
2080 // According to the ELF gABI: "The number of symbol table entries should
2081 // equal nchain". Check to see if the DT_HASH hash table nchain value
2082 // conflicts with the number of symbols in the dynamic symbol table
2083 // according to the section header.
2084 if (HashTable && IsHashTableSupported) {
2085 if (DynSymRegion->EntSize == 0)
2086 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2087 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2088 reportUniqueWarning(
2089 "hash table nchain (" + Twine(HashTable->nchain) +
2090 ") differs from symbol count derived from SHT_DYNSYM section "
2091 "header (" +
2092 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2093 }
2094 }
2095
2096 // Delay the creation of the actual dynamic symbol table until now, so that
2097 // checks can always be made against the section header-based properties,
2098 // without worrying about tag order.
2099 if (DynSymFromTable) {
2100 if (!DynSymRegion) {
2101 DynSymRegion = DynSymFromTable;
2102 } else {
2103 DynSymRegion->Addr = DynSymFromTable->Addr;
2104 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2105 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2106 }
2107 }
2108
2109 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2110 // present.
2111 if (HashTable && IsHashTableSupported && DynSymRegion) {
2112 const uint64_t FileSize = Obj.getBufSize();
2113 const uint64_t DerivedSize =
2114 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2115 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2116 if (DerivedSize > FileSize - Offset)
2117 reportUniqueWarning(
2118 "the size (0x" + Twine::utohexstr(DerivedSize) +
2119 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2120 ", derived from the hash table, goes past the end of the file (0x" +
2121 Twine::utohexstr(FileSize) + ") and will be ignored");
2122 else
2123 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2124 }
2125}
2126
2127template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2128 // Dump version symbol section.
2129 printVersionSymbolSection(SymbolVersionSection);
2130
2131 // Dump version definition section.
2132 printVersionDefinitionSection(SymbolVersionDefSection);
2133
2134 // Dump version dependency section.
2135 printVersionDependencySection(SymbolVersionNeedSection);
2136}
2137
2138#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2139 { #enum, prefix##_##enum }
2140
2141const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2142 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2143 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2144 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2145 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2146 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2147};
2148
2149const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2150 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2151 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2152 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2153 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2154 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2155 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2156 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2157 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2158 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2159 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2160 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2161 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2162 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2163 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2164 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2165 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2166 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2167 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2168 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2169 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2170 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2171 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2172 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2173 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2174 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2175 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2176 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2177};
2178
2179const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2180 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2181 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2182 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2183 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2184 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2185 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2186 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2187 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2188 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2189 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2190 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2191 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2192 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2193 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2194 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2195 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2196};
2197
2198#undef LLVM_READOBJ_DT_FLAG_ENT
2199
2200template <typename T, typename TFlag>
2201void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2202 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2203 for (const EnumEntry<TFlag> &Flag : Flags)
2204 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2205 SetFlags.push_back(Flag);
2206
2207 for (const EnumEntry<TFlag> &Flag : SetFlags)
2208 OS << Flag.Name << " ";
2209}
2210
2211template <class ELFT>
2212const typename ELFT::Shdr *
2213ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2214 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2215 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2216 if (*NameOrErr == Name)
2217 return &Shdr;
2218 } else {
2219 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2220 ": " + toString(NameOrErr.takeError()));
2221 }
2222 }
2223 return nullptr;
2224}
2225
2226template <class ELFT>
2227std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2228 uint64_t Value) const {
2229 auto FormatHexValue = [](uint64_t V) {
2230 std::string Str;
2231 raw_string_ostream OS(Str);
2232 const char *ConvChar =
2233 (opts::Output == opts::GNU) ? "0x%" PRIx64"l" "x" : "0x%" PRIX64"l" "X";
2234 OS << format(ConvChar, V);
2235 return OS.str();
2236 };
2237
2238 auto FormatFlags = [](uint64_t V,
2239 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2240 std::string Str;
2241 raw_string_ostream OS(Str);
2242 printFlags(V, Array, OS);
2243 return OS.str();
2244 };
2245
2246 // Handle custom printing of architecture specific tags
2247 switch (Obj.getHeader().e_machine) {
2248 case EM_AARCH64:
2249 switch (Type) {
2250 case DT_AARCH64_BTI_PLT:
2251 case DT_AARCH64_PAC_PLT:
2252 case DT_AARCH64_VARIANT_PCS:
2253 return std::to_string(Value);
2254 default:
2255 break;
2256 }
2257 break;
2258 case EM_HEXAGON:
2259 switch (Type) {
2260 case DT_HEXAGON_VER:
2261 return std::to_string(Value);
2262 case DT_HEXAGON_SYMSZ:
2263 case DT_HEXAGON_PLT:
2264 return FormatHexValue(Value);
2265 default:
2266 break;
2267 }
2268 break;
2269 case EM_MIPS:
2270 switch (Type) {
2271 case DT_MIPS_RLD_VERSION:
2272 case DT_MIPS_LOCAL_GOTNO:
2273 case DT_MIPS_SYMTABNO:
2274 case DT_MIPS_UNREFEXTNO:
2275 return std::to_string(Value);
2276 case DT_MIPS_TIME_STAMP:
2277 case DT_MIPS_ICHECKSUM:
2278 case DT_MIPS_IVERSION:
2279 case DT_MIPS_BASE_ADDRESS:
2280 case DT_MIPS_MSYM:
2281 case DT_MIPS_CONFLICT:
2282 case DT_MIPS_LIBLIST:
2283 case DT_MIPS_CONFLICTNO:
2284 case DT_MIPS_LIBLISTNO:
2285 case DT_MIPS_GOTSYM:
2286 case DT_MIPS_HIPAGENO:
2287 case DT_MIPS_RLD_MAP:
2288 case DT_MIPS_DELTA_CLASS:
2289 case DT_MIPS_DELTA_CLASS_NO:
2290 case DT_MIPS_DELTA_INSTANCE:
2291 case DT_MIPS_DELTA_RELOC:
2292 case DT_MIPS_DELTA_RELOC_NO:
2293 case DT_MIPS_DELTA_SYM:
2294 case DT_MIPS_DELTA_SYM_NO:
2295 case DT_MIPS_DELTA_CLASSSYM:
2296 case DT_MIPS_DELTA_CLASSSYM_NO:
2297 case DT_MIPS_CXX_FLAGS:
2298 case DT_MIPS_PIXIE_INIT:
2299 case DT_MIPS_SYMBOL_LIB:
2300 case DT_MIPS_LOCALPAGE_GOTIDX:
2301 case DT_MIPS_LOCAL_GOTIDX:
2302 case DT_MIPS_HIDDEN_GOTIDX:
2303 case DT_MIPS_PROTECTED_GOTIDX:
2304 case DT_MIPS_OPTIONS:
2305 case DT_MIPS_INTERFACE:
2306 case DT_MIPS_DYNSTR_ALIGN:
2307 case DT_MIPS_INTERFACE_SIZE:
2308 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2309 case DT_MIPS_PERF_SUFFIX:
2310 case DT_MIPS_COMPACT_SIZE:
2311 case DT_MIPS_GP_VALUE:
2312 case DT_MIPS_AUX_DYNAMIC:
2313 case DT_MIPS_PLTGOT:
2314 case DT_MIPS_RWPLT:
2315 case DT_MIPS_RLD_MAP_REL:
2316 case DT_MIPS_XHASH:
2317 return FormatHexValue(Value);
2318 case DT_MIPS_FLAGS:
2319 return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2320 default:
2321 break;
2322 }
2323 break;
2324 default:
2325 break;
2326 }
2327
2328 switch (Type) {
2329 case DT_PLTREL:
2330 if (Value == DT_REL)
2331 return "REL";
2332 if (Value == DT_RELA)
2333 return "RELA";
2334 [[fallthrough]];
2335 case DT_PLTGOT:
2336 case DT_HASH:
2337 case DT_STRTAB:
2338 case DT_SYMTAB:
2339 case DT_RELA:
2340 case DT_INIT:
2341 case DT_FINI:
2342 case DT_REL:
2343 case DT_JMPREL:
2344 case DT_INIT_ARRAY:
2345 case DT_FINI_ARRAY:
2346 case DT_PREINIT_ARRAY:
2347 case DT_DEBUG:
2348 case DT_VERDEF:
2349 case DT_VERNEED:
2350 case DT_VERSYM:
2351 case DT_GNU_HASH:
2352 case DT_NULL:
2353 return FormatHexValue(Value);
2354 case DT_RELACOUNT:
2355 case DT_RELCOUNT:
2356 case DT_VERDEFNUM:
2357 case DT_VERNEEDNUM:
2358 return std::to_string(Value);
2359 case DT_PLTRELSZ:
2360 case DT_RELASZ:
2361 case DT_RELAENT:
2362 case DT_STRSZ:
2363 case DT_SYMENT:
2364 case DT_RELSZ:
2365 case DT_RELENT:
2366 case DT_INIT_ARRAYSZ:
2367 case DT_FINI_ARRAYSZ:
2368 case DT_PREINIT_ARRAYSZ:
2369 case DT_RELRSZ:
2370 case DT_RELRENT:
2371 case DT_ANDROID_RELSZ:
2372 case DT_ANDROID_RELASZ:
2373 return std::to_string(Value) + " (bytes)";
2374 case DT_NEEDED:
2375 case DT_SONAME:
2376 case DT_AUXILIARY:
2377 case DT_USED:
2378 case DT_FILTER:
2379 case DT_RPATH:
2380 case DT_RUNPATH: {
2381 const std::map<uint64_t, const char *> TagNames = {
2382 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2383 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2384 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2385 {DT_RUNPATH, "Library runpath"},
2386 };
2387
2388 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2389 .str();
2390 }
2391 case DT_FLAGS:
2392 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2393 case DT_FLAGS_1:
2394 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2395 default:
2396 return FormatHexValue(Value);
2397 }
2398}
2399
2400template <class ELFT>
2401StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2402 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2403 reportUniqueWarning("string table was not found");
2404 return "<?>";
2405 }
2406
2407 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2408 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2409 Msg);
2410 return "<?>";
2411 };
2412
2413 const uint64_t FileSize = Obj.getBufSize();
2414 const uint64_t Offset =
2415 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2416 if (DynamicStringTable.size() > FileSize - Offset)
2417 return WarnAndReturn(" with size 0x" +
2418 Twine::utohexstr(DynamicStringTable.size()) +
2419 " goes past the end of the file (0x" +
2420 Twine::utohexstr(FileSize) + ")",
2421 Offset);
2422
2423 if (Value >= DynamicStringTable.size())
2424 return WarnAndReturn(
2425 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2426 ": it goes past the end of the table (0x" +
2427 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2428 Offset);
2429
2430 if (DynamicStringTable.back() != '\0')
2431 return WarnAndReturn(": unable to read the string at 0x" +
2432 Twine::utohexstr(Offset + Value) +
2433 ": the string table is not null-terminated",
2434 Offset);
2435
2436 return DynamicStringTable.data() + Value;
2437}
2438
2439template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2440 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2441 Ctx.printUnwindInformation();
2442}
2443
2444// The namespace is needed to fix the compilation with GCC older than 7.0+.
2445namespace {
2446template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2447 if (Obj.getHeader().e_machine == EM_ARM) {
2448 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2449 DotSymtabSec);
2450 Ctx.PrintUnwindInformation();
2451 }
2452 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2453 Ctx.printUnwindInformation();
2454}
2455} // namespace
2456
2457template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2458 ListScope D(W, "NeededLibraries");
2459
2460 std::vector<StringRef> Libs;
2461 for (const auto &Entry : dynamic_table())
2462 if (Entry.d_tag == ELF::DT_NEEDED)
2463 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2464
2465 llvm::sort(Libs);
2466
2467 for (StringRef L : Libs)
2468 W.startLine() << L << "\n";
2469}
2470
2471template <class ELFT>
2472static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2473 const typename ELFT::Hash *H,
2474 bool *IsHeaderValid = nullptr) {
2475 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2476 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2477 if (Dumper.getHashTableEntSize() == 8) {
2478 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2479 return E.Value == Obj.getHeader().e_machine;
2480 });
2481 if (IsHeaderValid)
2482 *IsHeaderValid = false;
2483 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2484 " is not supported: it contains non-standard 8 "
2485 "byte entries on " +
2486 It->AltName + " platform");
2487 }
2488
2489 auto MakeError = [&](const Twine &Msg = "") {
2490 return createError("the hash table at offset 0x" +
2491 Twine::utohexstr(SecOffset) +
2492 " goes past the end of the file (0x" +
2493 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2494 };
2495
2496 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2497 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2498
2499 if (IsHeaderValid)
2500 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2501
2502 if (Obj.getBufSize() - SecOffset < HeaderSize)
2503 return MakeError();
2504
2505 if (Obj.getBufSize() - SecOffset - HeaderSize <
2506 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2507 return MakeError(", nbucket = " + Twine(H->nbucket) +
2508 ", nchain = " + Twine(H->nchain));
2509 return Error::success();
2510}
2511
2512template <class ELFT>
2513static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2514 const typename ELFT::GnuHash *GnuHashTable,
2515 bool *IsHeaderValid = nullptr) {
2516 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2517 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&(static_cast <bool> (TableData >= Obj.base() &&
TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"
) ? void (0) : __assert_fail ("TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && \"GnuHashTable must always point to a location inside the file\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2518, __extension__
__PRETTY_FUNCTION__))
2518 "GnuHashTable must always point to a location inside the file")(static_cast <bool> (TableData >= Obj.base() &&
TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"
) ? void (0) : __assert_fail ("TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && \"GnuHashTable must always point to a location inside the file\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2518, __extension__
__PRETTY_FUNCTION__))
;
2519
2520 uint64_t TableOffset = TableData - Obj.base();
2521 if (IsHeaderValid)
2522 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2523 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2524 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2525 Obj.getBufSize())
2526 return createError("unable to dump the SHT_GNU_HASH "
2527 "section at 0x" +
2528 Twine::utohexstr(TableOffset) +
2529 ": it goes past the end of the file");
2530 return Error::success();
2531}
2532
2533template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2534 DictScope D(W, "HashTable");
2535 if (!HashTable)
2536 return;
2537
2538 bool IsHeaderValid;
2539 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2540 if (IsHeaderValid) {
2541 W.printNumber("Num Buckets", HashTable->nbucket);
2542 W.printNumber("Num Chains", HashTable->nchain);
2543 }
2544
2545 if (Err) {
2546 reportUniqueWarning(std::move(Err));
2547 return;
2548 }
2549
2550 W.printList("Buckets", HashTable->buckets());
2551 W.printList("Chains", HashTable->chains());
2552}
2553
2554template <class ELFT>
2555static Expected<ArrayRef<typename ELFT::Word>>
2556getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2557 const typename ELFT::GnuHash *GnuHashTable) {
2558 if (!DynSymRegion)
2559 return createError("no dynamic symbol table found");
2560
2561 ArrayRef<typename ELFT::Sym> DynSymTable =
2562 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2563 size_t NumSyms = DynSymTable.size();
2564 if (!NumSyms)
2565 return createError("the dynamic symbol table is empty");
2566
2567 if (GnuHashTable->symndx < NumSyms)
2568 return GnuHashTable->values(NumSyms);
2569
2570 // A normal empty GNU hash table section produced by linker might have
2571 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2572 // and have dummy null values in the Bloom filter and in the buckets
2573 // vector (or no values at all). It happens because the value of symndx is not
2574 // important for dynamic loaders when the GNU hash table is empty. They just
2575 // skip the whole object during symbol lookup. In such cases, the symndx value
2576 // is irrelevant and we should not report a warning.
2577 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2578 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2579 return createError(
2580 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2581 ") is greater than or equal to the number of dynamic symbols (" +
2582 Twine(NumSyms) + ")");
2583 // There is no way to represent an array of (dynamic symbols count - symndx)
2584 // length.
2585 return ArrayRef<typename ELFT::Word>();
2586}
2587
2588template <typename ELFT>
2589void ELFDumper<ELFT>::printGnuHashTable() {
2590 DictScope D(W, "GnuHashTable");
2591 if (!GnuHashTable)
2592 return;
2593
2594 bool IsHeaderValid;
2595 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2596 if (IsHeaderValid) {
2597 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2598 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2599 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2600 W.printNumber("Shift Count", GnuHashTable->shift2);
2601 }
2602
2603 if (Err) {
2604 reportUniqueWarning(std::move(Err));
2605 return;
2606 }
2607
2608 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2609 W.printHexList("Bloom Filter", BloomFilter);
2610
2611 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2612 W.printList("Buckets", Buckets);
2613
2614 Expected<ArrayRef<Elf_Word>> Chains =
2615 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2616 if (!Chains) {
2617 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2618 "section: " +
2619 toString(Chains.takeError()));
2620 return;
2621 }
2622
2623 W.printHexList("Values", *Chains);
2624}
2625
2626template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2627 StringRef SOName = "<Not found>";
2628 if (SONameOffset)
2629 SOName = getDynamicString(*SONameOffset);
2630 W.printString("LoadName", SOName);
2631}
2632
2633template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2634 switch (Obj.getHeader().e_machine) {
2635 case EM_ARM:
2636 if (Obj.isLE())
2637 printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2638 std::make_unique<ARMAttributeParser>(&W),
2639 support::little);
2640 else
2641 reportUniqueWarning("attribute printing not implemented for big-endian "
2642 "ARM objects");
2643 break;
2644 case EM_RISCV:
2645 if (Obj.isLE())
2646 printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2647 std::make_unique<RISCVAttributeParser>(&W),
2648 support::little);
2649 else
2650 reportUniqueWarning("attribute printing not implemented for big-endian "
2651 "RISC-V objects");
2652 break;
2653 case EM_MSP430:
2654 printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2655 std::make_unique<MSP430AttributeParser>(&W),
2656 support::little);
2657 break;
2658 case EM_MIPS: {
2659 printMipsABIFlags();
2660 printMipsOptions();
2661 printMipsReginfo();
2662 MipsGOTParser<ELFT> Parser(*this);
2663 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2664 reportUniqueWarning(std::move(E));
2665 else if (!Parser.isGotEmpty())
2666 printMipsGOT(Parser);
2667
2668 if (Error E = Parser.findPLT(dynamic_table()))
2669 reportUniqueWarning(std::move(E));
2670 else if (!Parser.isPltEmpty())
2671 printMipsPLT(Parser);
2672 break;
2673 }
2674 default:
2675 break;
2676 }
2677}
2678
2679template <class ELFT>
2680void ELFDumper<ELFT>::printAttributes(
2681 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2682 support::endianness Endianness) {
2683 assert((AttrShType != ELF::SHT_NULL) && AttrParser &&(static_cast <bool> ((AttrShType != ELF::SHT_NULL) &&
AttrParser && "Incomplete ELF attribute implementation"
) ? void (0) : __assert_fail ("(AttrShType != ELF::SHT_NULL) && AttrParser && \"Incomplete ELF attribute implementation\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2684, __extension__
__PRETTY_FUNCTION__))
2684 "Incomplete ELF attribute implementation")(static_cast <bool> ((AttrShType != ELF::SHT_NULL) &&
AttrParser && "Incomplete ELF attribute implementation"
) ? void (0) : __assert_fail ("(AttrShType != ELF::SHT_NULL) && AttrParser && \"Incomplete ELF attribute implementation\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2684, __extension__
__PRETTY_FUNCTION__))
;
2685 DictScope BA(W, "BuildAttributes");
2686 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2687 if (Sec.sh_type != AttrShType)
2688 continue;
2689
2690 ArrayRef<uint8_t> Contents;
2691 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2692 Obj.getSectionContents(Sec)) {
2693 Contents = *ContentOrErr;
2694 if (Contents.empty()) {
2695 reportUniqueWarning("the " + describe(Sec) + " is empty");
2696 continue;
2697 }
2698 } else {
2699 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2700 ": " + toString(ContentOrErr.takeError()));
2701 continue;
2702 }
2703
2704 W.printHex("FormatVersion", Contents[0]);
2705
2706 if (Error E = AttrParser->parse(Contents, Endianness))
2707 reportUniqueWarning("unable to dump attributes from the " +
2708 describe(Sec) + ": " + toString(std::move(E)));
2709 }
2710}
2711
2712namespace {
2713
2714template <class ELFT> class MipsGOTParser {
2715public:
2716 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
2717 using Entry = typename ELFT::Addr;
2718 using Entries = ArrayRef<Entry>;
2719
2720 const bool IsStatic;
2721 const ELFFile<ELFT> &Obj;
2722 const ELFDumper<ELFT> &Dumper;
2723
2724 MipsGOTParser(const ELFDumper<ELFT> &D);
2725 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2726 Error findPLT(Elf_Dyn_Range DynTable);
2727
2728 bool isGotEmpty() const { return GotEntries.empty(); }
2729 bool isPltEmpty() const { return PltEntries.empty(); }
2730
2731 uint64_t getGp() const;
2732
2733 const Entry *getGotLazyResolver() const;
2734 const Entry *getGotModulePointer() const;
2735 const Entry *getPltLazyResolver() const;
2736 const Entry *getPltModulePointer() const;
2737
2738 Entries getLocalEntries() const;
2739 Entries getGlobalEntries() const;
2740 Entries getOtherEntries() const;
2741 Entries getPltEntries() const;
2742
2743 uint64_t getGotAddress(const Entry * E) const;
2744 int64_t getGotOffset(const Entry * E) const;
2745 const Elf_Sym *getGotSym(const Entry *E) const;
2746
2747 uint64_t getPltAddress(const Entry * E) const;
2748 const Elf_Sym *getPltSym(const Entry *E) const;
2749
2750 StringRef getPltStrTable() const { return PltStrTable; }
2751 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2752
2753private:
2754 const Elf_Shdr *GotSec;
2755 size_t LocalNum;
2756 size_t GlobalNum;
2757
2758 const Elf_Shdr *PltSec;
2759 const Elf_Shdr *PltRelSec;
2760 const Elf_Shdr *PltSymTable;
2761 StringRef FileName;
2762
2763 Elf_Sym_Range GotDynSyms;
2764 StringRef PltStrTable;
2765
2766 Entries GotEntries;
2767 Entries PltEntries;
2768};
2769
2770} // end anonymous namespace
2771
2772template <class ELFT>
2773MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2774 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2775 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2776 PltRelSec(nullptr), PltSymTable(nullptr),
2777 FileName(D.getElfObject().getFileName()) {}
2778
2779template <class ELFT>
2780Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2781 Elf_Sym_Range DynSyms) {
2782 // See "Global Offset Table" in Chapter 5 in the following document
2783 // for detailed GOT description.
2784 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2785
2786 // Find static GOT secton.
2787 if (IsStatic) {
2788 GotSec = Dumper.findSectionByName(".got");
2789 if (!GotSec)
2790 return Error::success();
2791
2792 ArrayRef<uint8_t> Content =
2793 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2794 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2795 Content.size() / sizeof(Entry));
2796 LocalNum = GotEntries.size();
2797 return Error::success();
2798 }
2799
2800 // Lookup dynamic table tags which define the GOT layout.
2801 std::optional<uint64_t> DtPltGot;
2802 std::optional<uint64_t> DtLocalGotNum;
2803 std::optional<uint64_t> DtGotSym;
2804 for (const auto &Entry : DynTable) {
2805 switch (Entry.getTag()) {
2806 case ELF::DT_PLTGOT:
2807 DtPltGot = Entry.getVal();
2808 break;
2809 case ELF::DT_MIPS_LOCAL_GOTNO:
2810 DtLocalGotNum = Entry.getVal();
2811 break;
2812 case ELF::DT_MIPS_GOTSYM:
2813 DtGotSym = Entry.getVal();
2814 break;
2815 }
2816 }
2817
2818 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2819 return Error::success();
2820
2821 if (!DtPltGot)
2822 return createError("cannot find PLTGOT dynamic tag");
2823 if (!DtLocalGotNum)
2824 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2825 if (!DtGotSym)
2826 return createError("cannot find MIPS_GOTSYM dynamic tag");
2827
2828 size_t DynSymTotal = DynSyms.size();
2829 if (*DtGotSym > DynSymTotal)
2830 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2831 ") exceeds the number of dynamic symbols (" +
2832 Twine(DynSymTotal) + ")");
2833
2834 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2835 if (!GotSec)
2836 return createError("there is no non-empty GOT section at 0x" +
2837 Twine::utohexstr(*DtPltGot));
2838
2839 LocalNum = *DtLocalGotNum;
2840 GlobalNum = DynSymTotal - *DtGotSym;
2841
2842 ArrayRef<uint8_t> Content =
2843 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2844 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2845 Content.size() / sizeof(Entry));
2846 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2847
2848 return Error::success();
2849}
2850
2851template <class ELFT>
2852Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2853 // Lookup dynamic table tags which define the PLT layout.
2854 std::optional<uint64_t> DtMipsPltGot;
2855 std::optional<uint64_t> DtJmpRel;
2856 for (const auto &Entry : DynTable) {
2857 switch (Entry.getTag()) {
2858 case ELF::DT_MIPS_PLTGOT:
2859 DtMipsPltGot = Entry.getVal();
2860 break;
2861 case ELF::DT_JMPREL:
2862 DtJmpRel = Entry.getVal();
2863 break;
2864 }
2865 }
2866
2867 if (!DtMipsPltGot && !DtJmpRel)
2868 return Error::success();
2869
2870 // Find PLT section.
2871 if (!DtMipsPltGot)
2872 return createError("cannot find MIPS_PLTGOT dynamic tag");
2873 if (!DtJmpRel)
2874 return createError("cannot find JMPREL dynamic tag");
2875
2876 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2877 if (!PltSec)
2878 return createError("there is no non-empty PLTGOT section at 0x" +
2879 Twine::utohexstr(*DtMipsPltGot));
2880
2881 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2882 if (!PltRelSec)
2883 return createError("there is no non-empty RELPLT section at 0x" +
2884 Twine::utohexstr(*DtJmpRel));
2885
2886 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2887 Obj.getSectionContents(*PltSec))
2888 PltEntries =
2889 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2890 PltContentOrErr->size() / sizeof(Entry));
2891 else
2892 return createError("unable to read PLTGOT section content: " +
2893 toString(PltContentOrErr.takeError()));
2894
2895 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2896 Obj.getSection(PltRelSec->sh_link))
2897 PltSymTable = *PltSymTableOrErr;
2898 else
2899 return createError("unable to get a symbol table linked to the " +
2900 describe(Obj, *PltRelSec) + ": " +
2901 toString(PltSymTableOrErr.takeError()));
2902
2903 if (Expected<StringRef> StrTabOrErr =
2904 Obj.getStringTableForSymtab(*PltSymTable))
2905 PltStrTable = *StrTabOrErr;
2906 else
2907 return createError("unable to get a string table for the " +
2908 describe(Obj, *PltSymTable) + ": " +
2909 toString(StrTabOrErr.takeError()));
2910
2911 return Error::success();
2912}
2913
2914template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2915 return GotSec->sh_addr + 0x7ff0;
2916}
2917
2918template <class ELFT>
2919const typename MipsGOTParser<ELFT>::Entry *
2920MipsGOTParser<ELFT>::getGotLazyResolver() const {
2921 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2922}
2923
2924template <class ELFT>
2925const typename MipsGOTParser<ELFT>::Entry *
2926MipsGOTParser<ELFT>::getGotModulePointer() const {
2927 if (LocalNum < 2)
2928 return nullptr;
2929 const Entry &E = GotEntries[1];
2930 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2931 return nullptr;
2932 return &E;
2933}
2934
2935template <class ELFT>
2936typename MipsGOTParser<ELFT>::Entries
2937MipsGOTParser<ELFT>::getLocalEntries() const {
2938 size_t Skip = getGotModulePointer() ? 2 : 1;
2939 if (LocalNum - Skip <= 0)
2940 return Entries();
2941 return GotEntries.slice(Skip, LocalNum - Skip);
2942}
2943
2944template <class ELFT>
2945typename MipsGOTParser<ELFT>::Entries
2946MipsGOTParser<ELFT>::getGlobalEntries() const {
2947 if (GlobalNum == 0)
2948 return Entries();
2949 return GotEntries.slice(LocalNum, GlobalNum);
2950}
2951
2952template <class ELFT>
2953typename MipsGOTParser<ELFT>::Entries
2954MipsGOTParser<ELFT>::getOtherEntries() const {
2955 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2956 if (OtherNum == 0)
2957 return Entries();
2958 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2959}
2960
2961template <class ELFT>
2962uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2963 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2964 return GotSec->sh_addr + Offset;
2965}
2966
2967template <class ELFT>
2968int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2969 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2970 return Offset - 0x7ff0;
2971}
2972
2973template <class ELFT>
2974const typename MipsGOTParser<ELFT>::Elf_Sym *
2975MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2976 int64_t Offset = std::distance(GotEntries.data(), E);
2977 return &GotDynSyms[Offset - LocalNum];
2978}
2979
2980template <class ELFT>
2981const typename MipsGOTParser<ELFT>::Entry *
2982MipsGOTParser<ELFT>::getPltLazyResolver() const {
2983 return PltEntries.empty() ? nullptr : &PltEntries[0];
2984}
2985
2986template <class ELFT>
2987const typename MipsGOTParser<ELFT>::Entry *
2988MipsGOTParser<ELFT>::getPltModulePointer() const {
2989 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2990}
2991
2992template <class ELFT>
2993typename MipsGOTParser<ELFT>::Entries
2994MipsGOTParser<ELFT>::getPltEntries() const {
2995 if (PltEntries.size() <= 2)
2996 return Entries();
2997 return PltEntries.slice(2, PltEntries.size() - 2);
2998}
2999
3000template <class ELFT>
3001uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3002 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3003 return PltSec->sh_addr + Offset;
3004}
3005
3006template <class ELFT>
3007const typename MipsGOTParser<ELFT>::Elf_Sym *
3008MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3009 int64_t Offset = std::distance(getPltEntries().data(), E);
3010 if (PltRelSec->sh_type == ELF::SHT_REL) {
3011 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3012 return unwrapOrError(FileName,
3013 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3014 } else {
3015 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3016 return unwrapOrError(FileName,
3017 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3018 }
3019}
3020
3021const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3022 {"None", Mips::AFL_EXT_NONE},
3023 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
3024 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
3025 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3026 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3027 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3028 {"LSI R4010", Mips::AFL_EXT_4010},
3029 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
3030 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
3031 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
3032 {"MIPS R4650", Mips::AFL_EXT_4650},
3033 {"MIPS R5900", Mips::AFL_EXT_5900},
3034 {"MIPS R10000", Mips::AFL_EXT_10000},
3035 {"NEC VR4100", Mips::AFL_EXT_4100},
3036 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
3037 {"NEC VR4120", Mips::AFL_EXT_4120},
3038 {"NEC VR5400", Mips::AFL_EXT_5400},
3039 {"NEC VR5500", Mips::AFL_EXT_5500},
3040 {"RMI Xlr", Mips::AFL_EXT_XLR},
3041 {"Toshiba R3900", Mips::AFL_EXT_3900}
3042};
3043
3044const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3045 {"DSP", Mips::AFL_ASE_DSP},
3046 {"DSPR2", Mips::AFL_ASE_DSPR2},
3047 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3048 {"MCU", Mips::AFL_ASE_MCU},
3049 {"MDMX", Mips::AFL_ASE_MDMX},
3050 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3051 {"MT", Mips::AFL_ASE_MT},
3052 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3053 {"VZ", Mips::AFL_ASE_VIRT},
3054 {"MSA", Mips::AFL_ASE_MSA},
3055 {"MIPS16", Mips::AFL_ASE_MIPS16},
3056 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3057 {"XPA", Mips::AFL_ASE_XPA},
3058 {"CRC", Mips::AFL_ASE_CRC},
3059 {"GINV", Mips::AFL_ASE_GINV},
3060};
3061
3062const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3063 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3064 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3065 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3066 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3067 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3068 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3069 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3070 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3071 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3072 Mips::Val_GNU_MIPS_ABI_FP_64A}
3073};
3074
3075static const EnumEntry<unsigned> ElfMipsFlags1[] {
3076 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3077};
3078
3079static int getMipsRegisterSize(uint8_t Flag) {
3080 switch (Flag) {
3081 case Mips::AFL_REG_NONE:
3082 return 0;
3083 case Mips::AFL_REG_32:
3084 return 32;
3085 case Mips::AFL_REG_64:
3086 return 64;
3087 case Mips::AFL_REG_128:
3088 return 128;
3089 default:
3090 return -1;
3091 }
3092}
3093
3094template <class ELFT>
3095static void printMipsReginfoData(ScopedPrinter &W,
3096 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3097 W.printHex("GP", Reginfo.ri_gp_value);
3098 W.printHex("General Mask", Reginfo.ri_gprmask);
3099 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3100 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3101 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3102 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3103}
3104
3105template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3106 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3107 if (!RegInfoSec) {
3108 W.startLine() << "There is no .reginfo section in the file.\n";
3109 return;
3110 }
3111
3112 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3113 Obj.getSectionContents(*RegInfoSec);
3114 if (!ContentsOrErr) {
3115 this->reportUniqueWarning(
3116 "unable to read the content of the .reginfo section (" +
3117 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3118 return;
3119 }
3120
3121 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3122 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3123 Twine::utohexstr(ContentsOrErr->size()) + ")");
3124 return;
3125 }
3126
3127 DictScope GS(W, "MIPS RegInfo");
3128 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3129 ContentsOrErr->data()));
3130}
3131
3132template <class ELFT>
3133static Expected<const Elf_Mips_Options<ELFT> *>
3134readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3135 bool &IsSupported) {
3136 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3137 return createError("the .MIPS.options section has an invalid size (0x" +
3138 Twine::utohexstr(SecData.size()) + ")");
3139
3140 const Elf_Mips_Options<ELFT> *O =
3141 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3142 const uint8_t Size = O->size;
3143 if (Size > SecData.size()) {
3144 const uint64_t Offset = SecData.data() - SecBegin;
3145 const uint64_t SecSize = Offset + SecData.size();
3146 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3147 " at offset 0x" + Twine::utohexstr(Offset) +
3148 " goes past the end of the .MIPS.options "
3149 "section of size 0x" +
3150 Twine::utohexstr(SecSize));
3151 }
3152
3153 IsSupported = O->kind == ODK_REGINFO;
3154 const size_t ExpectedSize =
3155 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3156
3157 if (IsSupported)
3158 if (Size < ExpectedSize)
3159 return createError(
3160 "a .MIPS.options entry of kind " +
3161 Twine(getElfMipsOptionsOdkType(O->kind)) +
3162 " has an invalid size (0x" + Twine::utohexstr(Size) +
3163 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3164
3165 SecData = SecData.drop_front(Size);
3166 return O;
3167}
3168
3169template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3170 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3171 if (!MipsOpts) {
3172 W.startLine() << "There is no .MIPS.options section in the file.\n";
3173 return;
3174 }
3175
3176 DictScope GS(W, "MIPS Options");
3177
3178 ArrayRef<uint8_t> Data =
3179 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3180 const uint8_t *const SecBegin = Data.begin();
3181 while (!Data.empty()) {
3182 bool IsSupported;
3183 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3184 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3185 if (!OptsOrErr) {
3186 reportUniqueWarning(OptsOrErr.takeError());
3187 break;
3188 }
3189
3190 unsigned Kind = (*OptsOrErr)->kind;
3191 const char *Type = getElfMipsOptionsOdkType(Kind);
3192 if (!IsSupported) {
3193 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3194 << ")\n";
3195 continue;
3196 }
3197
3198 DictScope GS(W, Type);
3199 if (Kind == ODK_REGINFO)
3200 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3201 else
3202 llvm_unreachable("unexpected .MIPS.options section descriptor kind")::llvm::llvm_unreachable_internal("unexpected .MIPS.options section descriptor kind"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3202)
;
3203 }
3204}
3205
3206template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3207 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3208 if (!StackMapSection)
3209 return;
3210
3211 auto Warn = [&](Error &&E) {
3212 this->reportUniqueWarning("unable to read the stack map from " +
3213 describe(*StackMapSection) + ": " +
3214 toString(std::move(E)));
3215 };
3216
3217 Expected<ArrayRef<uint8_t>> ContentOrErr =
3218 Obj.getSectionContents(*StackMapSection);
3219 if (!ContentOrErr) {
3220 Warn(ContentOrErr.takeError());
3221 return;
3222 }
3223
3224 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3225 *ContentOrErr)) {
3226 Warn(std::move(E));
3227 return;
3228 }
3229
3230 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3231}
3232
3233template <class ELFT>
3234void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3235 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3236 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3237 if (!Target)
3238 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3239 " in " + describe(Sec) + ": " +
3240 toString(Target.takeError()));
3241 else
3242 printRelRelaReloc(R, *Target);
3243}
3244
3245static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3246 StringRef Str2) {
3247 OS.PadToColumn(2u);
3248 OS << Str1;
3249 OS.PadToColumn(37u);
3250 OS << Str2 << "\n";
3251 OS.flush();
3252}
3253
3254template <class ELFT>
3255static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3256 StringRef FileName) {
3257 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3258 if (ElfHeader.e_shnum != 0)
3259 return to_string(ElfHeader.e_shnum);
3260
3261 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3262 if (!ArrOrErr) {
3263 // In this case we can ignore an error, because we have already reported a
3264 // warning about the broken section header table earlier.
3265 consumeError(ArrOrErr.takeError());
3266 return "<?>";
3267 }
3268
3269 if (ArrOrErr->empty())
3270 return "0";
3271 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3272}
3273
3274template <class ELFT>
3275static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3276 StringRef FileName) {
3277 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3278 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3279 return to_string(ElfHeader.e_shstrndx);
3280
3281 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3282 if (!ArrOrErr) {
3283 // In this case we can ignore an error, because we have already reported a
3284 // warning about the broken section header table earlier.
3285 consumeError(ArrOrErr.takeError());
3286 return "<?>";
3287 }
3288
3289 if (ArrOrErr->empty())
3290 return "65535 (corrupt: out of range)";
3291 return to_string(ElfHeader.e_shstrndx) + " (" +
3292 to_string((*ArrOrErr)[0].sh_link) + ")";
3293}
3294
3295static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3296 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3297 return E.Value == Type;
3298 });
3299 if (It != makeArrayRef(ElfObjectFileType).end())
3300 return It;
3301 return nullptr;
3302}
3303
3304template <class ELFT>
3305void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3306 ArrayRef<std::string> InputFilenames,
3307 const Archive *A) {
3308 if (InputFilenames.size() > 1 || A) {
3309 this->W.startLine() << "\n";
3310 this->W.printString("File", FileStr);
3311 }
3312}
3313
3314template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3315 const Elf_Ehdr &e = this->Obj.getHeader();
3316 OS << "ELF Header:\n";
3317 OS << " Magic: ";
3318 std::string Str;
3319 for (int i = 0; i < ELF::EI_NIDENT; i++)
3320 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3321 OS << "\n";
3322 Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3323 printFields(OS, "Class:", Str);
3324 Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3325 printFields(OS, "Data:", Str);
3326 OS.PadToColumn(2u);
3327 OS << "Version:";
3328 OS.PadToColumn(37u);
3329 OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3330 if (e.e_version == ELF::EV_CURRENT)
3331 OS << " (current)";
3332 OS << "\n";
3333 Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3334 printFields(OS, "OS/ABI:", Str);
3335 printFields(OS,
3336 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3337
3338 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3339 Str = E->AltName.str();
3340 } else {
3341 if (e.e_type >= ET_LOPROC)
3342 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3343 else if (e.e_type >= ET_LOOS)
3344 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3345 else
3346 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3347 }
3348 printFields(OS, "Type:", Str);
3349
3350 Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType));
3351 printFields(OS, "Machine:", Str);
3352 Str = "0x" + utohexstr(e.e_version);
3353 printFields(OS, "Version:", Str);
3354 Str = "0x" + utohexstr(e.e_entry);
3355 printFields(OS, "Entry point address:", Str);
3356 Str = to_string(e.e_phoff) + " (bytes into file)";
3357 printFields(OS, "Start of program headers:", Str);
3358 Str = to_string(e.e_shoff) + " (bytes into file)";
3359 printFields(OS, "Start of section headers:", Str);
3360 std::string ElfFlags;
3361 if (e.e_machine == EM_MIPS)
3362 ElfFlags =
3363 printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3364 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3365 unsigned(ELF::EF_MIPS_MACH));
3366 else if (e.e_machine == EM_RISCV)
3367 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3368 else if (e.e_machine == EM_AVR)
3369 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3370 unsigned(ELF::EF_AVR_ARCH_MASK));
3371 else if (e.e_machine == EM_LOONGARCH)
3372 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderLoongArchFlags),
3373 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3374 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3375 Str = "0x" + utohexstr(e.e_flags);
3376 if (!ElfFlags.empty())
3377 Str = Str + ", " + ElfFlags;
3378 printFields(OS, "Flags:", Str);
3379 Str = to_string(e.e_ehsize) + " (bytes)";
3380 printFields(OS, "Size of this header:", Str);
3381 Str = to_string(e.e_phentsize) + " (bytes)";
3382 printFields(OS, "Size of program headers:", Str);
3383 Str = to_string(e.e_phnum);
3384 printFields(OS, "Number of program headers:", Str);
3385 Str = to_string(e.e_shentsize) + " (bytes)";
3386 printFields(OS, "Size of section headers:", Str);
3387 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3388 printFields(OS, "Number of section headers:", Str);
3389 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3390 printFields(OS, "Section header string table index:", Str);
3391}
3392
3393template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3394 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3395 const Elf_Shdr &Symtab) -> StringRef {
3396 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3397 if (!StrTableOrErr) {
3398 reportUniqueWarning("unable to get the string table for " +
3399 describe(Symtab) + ": " +
3400 toString(StrTableOrErr.takeError()));
3401 return "<?>";
3402 }
3403
3404 StringRef Strings = *StrTableOrErr;
3405 if (Sym.st_name >= Strings.size()) {
3406 reportUniqueWarning("unable to get the name of the symbol with index " +
3407 Twine(SymNdx) + ": st_name (0x" +
3408 Twine::utohexstr(Sym.st_name) +
3409 ") is past the end of the string table of size 0x" +
3410 Twine::utohexstr(Strings.size()));
3411 return "<?>";
3412 }
3413
3414 return StrTableOrErr->data() + Sym.st_name;
3415 };
3416
3417 std::vector<GroupSection> Ret;
3418 uint64_t I = 0;
3419 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3420 ++I;
3421 if (Sec.sh_type != ELF::SHT_GROUP)
3422 continue;
3423
3424 StringRef Signature = "<?>";
3425 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3426 if (Expected<const Elf_Sym *> SymOrErr =
3427 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3428 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3429 else
3430 reportUniqueWarning("unable to get the signature symbol for " +
3431 describe(Sec) + ": " +
3432 toString(SymOrErr.takeError()));
3433 } else {
3434 reportUniqueWarning("unable to get the symbol table for " +
3435 describe(Sec) + ": " +
3436 toString(SymtabOrErr.takeError()));
3437 }
3438
3439 ArrayRef<Elf_Word> Data;
3440 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3441 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3442 if (ContentsOrErr->empty())
3443 reportUniqueWarning("unable to read the section group flag from the " +
3444 describe(Sec) + ": the section is empty");
3445 else
3446 Data = *ContentsOrErr;
3447 } else {
3448 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3449 ": " + toString(ContentsOrErr.takeError()));
3450 }
3451
3452 Ret.push_back({getPrintableSectionName(Sec),
3453 maybeDemangle(Signature),
3454 Sec.sh_name,
3455 I - 1,
3456 Sec.sh_link,
3457 Sec.sh_info,
3458 Data.empty() ? Elf_Word(0) : Data[0],
3459 {}});
3460
3461 if (Data.empty())
3462 continue;
3463
3464 std::vector<GroupMember> &GM = Ret.back().Members;
3465 for (uint32_t Ndx : Data.slice(1)) {
3466 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3467 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3468 } else {
3469 reportUniqueWarning("unable to get the section with index " +
3470 Twine(Ndx) + " when dumping the " + describe(Sec) +
3471 ": " + toString(SecOrErr.takeError()));
3472 GM.push_back({"<?>", Ndx});
3473 }
3474 }
3475 }
3476 return Ret;
3477}
3478
3479static DenseMap<uint64_t, const GroupSection *>
3480mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3481 DenseMap<uint64_t, const GroupSection *> Ret;
3482 for (const GroupSection &G : Groups)
3483 for (const GroupMember &GM : G.Members)
3484 Ret.insert({GM.Index, &G});
3485 return Ret;
3486}
3487
3488template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3489 std::vector<GroupSection> V = this->getGroups();
3490 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3491 for (const GroupSection &G : V) {
3492 OS << "\n"
3493 << getGroupType(G.Type) << " group section ["
3494 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3495 << "] contains " << G.Members.size() << " sections:\n"
3496 << " [Index] Name\n";
3497 for (const GroupMember &GM : G.Members) {
3498 const GroupSection *MainGroup = Map[GM.Index];
3499 if (MainGroup != &G)
3500 this->reportUniqueWarning(
3501 "section with index " + Twine(GM.Index) +
3502 ", included in the group section with index " +
3503 Twine(MainGroup->Index) +
3504 ", was also found in the group section with index " +
3505 Twine(G.Index));
3506 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3507 }
3508 }
3509
3510 if (V.empty())
3511 OS << "There are no section groups in this file.\n";
3512}
3513
3514template <class ELFT>
3515void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3516 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3517}
3518
3519template <class ELFT>
3520void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3521 const RelSymbol<ELFT> &RelSym) {
3522 // First two fields are bit width dependent. The rest of them are fixed width.
3523 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3524 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3525 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3526
3527 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3528 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3529
3530 SmallString<32> RelocName;
3531 this->Obj.getRelocationTypeName(R.Type, RelocName);
3532 Fields[2].Str = RelocName.c_str();
3533
3534 if (RelSym.Sym)
3535 Fields[3].Str =
3536 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3537
3538 Fields[4].Str = std::string(RelSym.Name);
3539 for (const Field &F : Fields)
3540 printField(F);
3541
3542 std::string Addend;
3543 if (Optional<int64_t> A = R.Addend) {
3544 int64_t RelAddend = *A;
3545 if (!RelSym.Name.empty()) {
3546 if (RelAddend < 0) {
3547 Addend = " - ";
3548 RelAddend = std::abs(RelAddend);
3549 } else {
3550 Addend = " + ";
3551 }
3552 }
3553 Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3554 }
3555 OS << Addend << "\n";
3556}
3557
3558template <class ELFT>
3559static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3560 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3561 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3562 if (ELFT::Is64Bits)
3563 OS << " ";
3564 else
3565 OS << " ";
3566 if (IsRelr && opts::RawRelr)
3567 OS << "Data ";
3568 else
3569 OS << "Offset";
3570 if (ELFT::Is64Bits)
3571 OS << " Info Type"
3572 << " Symbol's Value Symbol's Name";
3573 else
3574 OS << " Info Type Sym. Value Symbol's Name";
3575 if (IsRela)
3576 OS << " + Addend";
3577 OS << "\n";
3578}
3579
3580template <class ELFT>
3581void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3582 const DynRegionInfo &Reg) {
3583 uint64_t Offset = Reg.Addr - this->Obj.base();
3584 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3585 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3586 printRelocHeaderFields<ELFT>(OS, Type);
3587}
3588
3589template <class ELFT>
3590static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3591 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3592 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3593 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3594 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3595}
3596
3597template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3598 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3599 // Android's packed relocation section needs to be unpacked first
3600 // to get the actual number of entries.
3601 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3602 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3603 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3604 this->Obj.android_relas(Sec);
3605 if (!RelasOrErr)
3606 return RelasOrErr.takeError();
3607 return RelasOrErr->size();
3608 }
3609
3610 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3611 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3612 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3613 if (!RelrsOrErr)
3614 return RelrsOrErr.takeError();
3615 return this->Obj.decode_relrs(*RelrsOrErr).size();
3616 }
3617
3618 return Sec.getEntityCount();
3619 };
3620
3621 bool HasRelocSections = false;
3622 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3623 if (!isRelocationSec<ELFT>(Sec))
3624 continue;
3625 HasRelocSections = true;
3626
3627 std::string EntriesNum = "<?>";
3628 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3629 EntriesNum = std::to_string(*NumOrErr);
3630 else
3631 this->reportUniqueWarning("unable to get the number of relocations in " +
3632 this->describe(Sec) + ": " +
3633 toString(NumOrErr.takeError()));
3634
3635 uintX_t Offset = Sec.sh_offset;
3636 StringRef Name = this->getPrintableSectionName(Sec);
3637 OS << "\nRelocation section '" << Name << "' at offset 0x"
3638 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3639 << " entries:\n";
3640 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3641 this->printRelocationsHelper(Sec);
3642 }
3643 if (!HasRelocSections)
3644 OS << "\nThere are no relocations in this file.\n";
3645}
3646
3647// Print the offset of a particular section from anyone of the ranges:
3648// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3649// If 'Type' does not fall within any of those ranges, then a string is
3650// returned as '<unknown>' followed by the type value.
3651static std::string getSectionTypeOffsetString(unsigned Type) {
3652 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3653 return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3654 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3655 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3656 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3657 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3658 return "0x" + utohexstr(Type) + ": <unknown>";
3659}
3660
3661static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3662 StringRef Name = getELFSectionTypeName(Machine, Type);
3663
3664 // Handle SHT_GNU_* type names.
3665 if (Name.consume_front("SHT_GNU_")) {
3666 if (Name == "HASH")
3667 return "GNU_HASH";
3668 // E.g. SHT_GNU_verneed -> VERNEED.
3669 return Name.upper();
3670 }
3671
3672 if (Name == "SHT_SYMTAB_SHNDX")
3673 return "SYMTAB SECTION INDICES";
3674
3675 if (Name.consume_front("SHT_"))
3676 return Name.str();
3677 return getSectionTypeOffsetString(Type);
3678}
3679
3680static void printSectionDescription(formatted_raw_ostream &OS,
3681 unsigned EMachine) {
3682 OS << "Key to Flags:\n";
3683 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3684 "(info),\n";
3685 OS << " L (link order), O (extra OS processing required), G (group), T "
3686 "(TLS),\n";
3687 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3688 OS << " R (retain)";
3689
3690 if (EMachine == EM_X86_64)
3691 OS << ", l (large)";
3692 else if (EMachine == EM_ARM)
3693 OS << ", y (purecode)";
3694
3695 OS << ", p (processor specific)\n";
3696}
3697
3698template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3699 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3700 if (Sections.empty()) {
3701 OS << "\nThere are no sections in this file.\n";
3702 Expected<StringRef> SecStrTableOrErr =
3703 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
3704 if (!SecStrTableOrErr)
3705 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3706 return;
3707 }
3708 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3709 OS << "There are " << to_string(Sections.size())
3710 << " section headers, starting at offset "
3711 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3712 OS << "Section Headers:\n";
3713 Field Fields[11] = {
3714 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3715 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3716 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3717 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3718 for (const Field &F : Fields)
3719 printField(F);
3720 OS << "\n";
3721
3722 StringRef SecStrTable;
3723 if (Expected<StringRef> SecStrTableOrErr =
3724 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3725 SecStrTable = *SecStrTableOrErr;
3726 else
3727 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3728
3729 size_t SectionIndex = 0;
3730 for (const Elf_Shdr &Sec : Sections) {
3731 Fields[0].Str = to_string(SectionIndex);
3732 if (SecStrTable.empty())
3733 Fields[1].Str = "<no-strings>";
3734 else
3735 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3736 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3737 Fields[2].Str =
3738 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3739 Fields[3].Str =
3740 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3741 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3742 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3743 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3744 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3745 this->Obj.getHeader().e_machine, Sec.sh_flags);
3746 Fields[8].Str = to_string(Sec.sh_link);
3747 Fields[9].Str = to_string(Sec.sh_info);
3748 Fields[10].Str = to_string(Sec.sh_addralign);
3749
3750 OS.PadToColumn(Fields[0].Column);
3751 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3752 for (int i = 1; i < 7; i++)
3753 printField(Fields[i]);
3754 OS.PadToColumn(Fields[7].Column);
3755 OS << right_justify(Fields[7].Str, 3);
3756 OS.PadToColumn(Fields[8].Column);
3757 OS << right_justify(Fields[8].Str, 2);
3758 OS.PadToColumn(Fields[9].Column);
3759 OS << right_justify(Fields[9].Str, 3);
3760 OS.PadToColumn(Fields[10].Column);
3761 OS << right_justify(Fields[10].Str, 2);
3762 OS << "\n";
3763 ++SectionIndex;
3764 }
3765 printSectionDescription(OS, this->Obj.getHeader().e_machine);
3766}
3767
3768template <class ELFT>
3769void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3770 size_t Entries,
3771 bool NonVisibilityBitsUsed) const {
3772 StringRef Name;
3773 if (Symtab)
3774 Name = this->getPrintableSectionName(*Symtab);
3775 if (!Name.empty())
3776 OS << "\nSymbol table '" << Name << "'";
3777 else
3778 OS << "\nSymbol table for image";
3779 OS << " contains " << Entries << " entries:\n";
3780
3781 if (ELFT::Is64Bits)
3782 OS << " Num: Value Size Type Bind Vis";
3783 else
3784 OS << " Num: Value Size Type Bind Vis";
3785
3786 if (NonVisibilityBitsUsed)
3787 OS << " ";
3788 OS << " Ndx Name\n";
3789}
3790
3791template <class ELFT>
3792std::string
3793GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3794 unsigned SymIndex,
3795 DataRegion<Elf_Word> ShndxTable) const {
3796 unsigned SectionIndex = Symbol.st_shndx;
3797 switch (SectionIndex) {
3798 case ELF::SHN_UNDEF:
3799 return "UND";
3800 case ELF::SHN_ABS:
3801 return "ABS";
3802 case ELF::SHN_COMMON:
3803 return "COM";
3804 case ELF::SHN_XINDEX: {
3805 Expected<uint32_t> IndexOrErr =
3806 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3807 if (!IndexOrErr) {
3808 assert(Symbol.st_shndx == SHN_XINDEX &&(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3810, __extension__
__PRETTY_FUNCTION__))
3809 "getExtendedSymbolTableIndex should only fail due to an invalid "(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3810, __extension__
__PRETTY_FUNCTION__))
3810 "SHT_SYMTAB_SHNDX table/reference")(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3810, __extension__
__PRETTY_FUNCTION__))
;
3811 this->reportUniqueWarning(IndexOrErr.takeError());
3812 return "RSV[0xffff]";
3813 }
3814 return to_string(format_decimal(*IndexOrErr, 3));
3815 }
3816 default:
3817 // Find if:
3818 // Processor specific
3819 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3820 return std::string("PRC[0x") +
3821 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3822 // OS specific
3823 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3824 return std::string("OS[0x") +
3825 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3826 // Architecture reserved:
3827 if (SectionIndex >= ELF::SHN_LORESERVE &&
3828 SectionIndex <= ELF::SHN_HIRESERVE)
3829 return std::string("RSV[0x") +
3830 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3831 // A normal section with an index
3832 return to_string(format_decimal(SectionIndex, 3));
3833 }
3834}
3835
3836template <class ELFT>
3837void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3838 DataRegion<Elf_Word> ShndxTable,
3839 Optional<StringRef> StrTable,
3840 bool IsDynamic,
3841 bool NonVisibilityBitsUsed) const {
3842 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3843 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
3844 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3845 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3846 Fields[1].Str =
3847 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3848 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3849
3850 unsigned char SymbolType = Symbol.getType();
3851 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3852 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3853 Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3854 else
3855 Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3856
3857 Fields[4].Str =
3858 enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3859 Fields[5].Str =
3860 enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3861
3862 if (Symbol.st_other & ~0x3) {
3863 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3864 uint8_t Other = Symbol.st_other & ~0x3;
3865 if (Other & STO_AARCH64_VARIANT_PCS) {
3866 Other &= ~STO_AARCH64_VARIANT_PCS;
3867 Fields[5].Str += " [VARIANT_PCS";
3868 if (Other != 0)
3869 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3870 Fields[5].Str.append("]");
3871 }
3872 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3873 uint8_t Other = Symbol.st_other & ~0x3;
3874 if (Other & STO_RISCV_VARIANT_CC) {
3875 Other &= ~STO_RISCV_VARIANT_CC;
3876 Fields[5].Str += " [VARIANT_CC";
3877 if (Other != 0)
3878 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3879 Fields[5].Str.append("]");
3880 }
3881 } else {
3882 Fields[5].Str +=
3883 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3884 }
3885 }
3886
3887 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3888 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3889
3890 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3891 StrTable, IsDynamic);
3892 for (const Field &Entry : Fields)
3893 printField(Entry);
3894 OS << "\n";
3895}
3896
3897template <class ELFT>
3898void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3899 unsigned SymIndex,
3900 DataRegion<Elf_Word> ShndxTable,
3901 StringRef StrTable,
3902 uint32_t Bucket) {
3903 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3904 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
3905 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3906 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3907 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3908
3909 Fields[2].Str = to_string(
3910 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3911 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3912
3913 unsigned char SymbolType = Symbol->getType();
3914 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3915 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3916 Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3917 else
3918 Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3919
3920 Fields[5].Str =
3921 enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3922 Fields[6].Str = enumToString(Symbol->getVisibility(),
3923 makeArrayRef(ElfSymbolVisibilities));
3924 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3925 Fields[8].Str =
3926 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3927
3928 for (const Field &Entry : Fields)
3929 printField(Entry);
3930 OS << "\n";
3931}
3932
3933template <class ELFT>
3934void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3935 bool PrintDynamicSymbols) {
3936 if (!PrintSymbols && !PrintDynamicSymbols)
3937 return;
3938 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3939 this->printSymbolsHelper(true);
3940 if (PrintSymbols)
3941 this->printSymbolsHelper(false);
3942}
3943
3944template <class ELFT>
3945void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3946 if (this->DynamicStringTable.empty())
3947 return;
3948
3949 if (ELFT::Is64Bits)
3950 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3951 else
3952 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3953 OS << "\n";
3954
3955 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3956 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3957 if (!FirstSym) {
3958 this->reportUniqueWarning(
3959 Twine("unable to print symbols for the .hash table: the "
3960 "dynamic symbol table ") +
3961 (this->DynSymRegion ? "is empty" : "was not found"));
3962 return;
3963 }
3964
3965 DataRegion<Elf_Word> ShndxTable(
3966 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3967 auto Buckets = SysVHash.buckets();
3968 auto Chains = SysVHash.chains();
3969 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3970 if (Buckets[Buc] == ELF::STN_UNDEF)
3971 continue;
3972 BitVector Visited(SysVHash.nchain);
3973 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3974 if (Ch == ELF::STN_UNDEF)
3975 break;
3976
3977 if (Visited[Ch]) {
3978 this->reportUniqueWarning(".hash section is invalid: bucket " +
3979 Twine(Ch) +
3980 ": a cycle was detected in the linked chain");
3981 break;
3982 }
3983
3984 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3985 Buc);
3986 Visited[Ch] = true;
3987 }
3988 }
3989}
3990
3991template <class ELFT>
3992void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3993 if (this->DynamicStringTable.empty())
3994 return;
3995
3996 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3997 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3998 if (!FirstSym) {
3999 this->reportUniqueWarning(
4000 Twine("unable to print symbols for the .gnu.hash table: the "
4001 "dynamic symbol table ") +
4002 (this->DynSymRegion ? "is empty" : "was not found"));
4003 return;
4004 }
4005
4006 auto GetSymbol = [&](uint64_t SymIndex,
4007 uint64_t SymsTotal) -> const Elf_Sym * {
4008 if (SymIndex >= SymsTotal) {
4009 this->reportUniqueWarning(
4010 "unable to print hashed symbol with index " + Twine(SymIndex) +
4011 ", which is greater than or equal to the number of dynamic symbols "
4012 "(" +
4013 Twine::utohexstr(SymsTotal) + ")");
4014 return nullptr;
4015 }
4016 return FirstSym + SymIndex;
4017 };
4018
4019 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4020 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4021 ArrayRef<Elf_Word> Values;
4022 if (!ValuesOrErr)
4023 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4024 "section: " +
4025 toString(ValuesOrErr.takeError()));
4026 else
4027 Values = *ValuesOrErr;
4028
4029 DataRegion<Elf_Word> ShndxTable(
4030 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4031 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4032 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4033 if (Buckets[Buc] == ELF::STN_UNDEF)
4034 continue;
4035 uint32_t Index = Buckets[Buc];
4036 // Print whole chain.
4037 while (true) {
4038 uint32_t SymIndex = Index++;
4039 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4040 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4041 Buc);
4042 else
4043 break;
4044
4045 if (SymIndex < GnuHash.symndx) {
4046 this->reportUniqueWarning(
4047 "unable to read the hash value for symbol with index " +
4048 Twine(SymIndex) +
4049 ", which is less than the index of the first hashed symbol (" +
4050 Twine(GnuHash.symndx) + ")");
4051 break;
4052 }
4053
4054 // Chain ends at symbol with stopper bit.
4055 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4056 break;
4057 }
4058 }
4059}
4060
4061template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4062 if (this->HashTable) {
4063 OS << "\n Symbol table of .hash for image:\n";
4064 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4065 this->reportUniqueWarning(std::move(E));
4066 else
4067 printHashTableSymbols(*this->HashTable);
4068 }
4069
4070 // Try printing the .gnu.hash table.
4071 if (this->GnuHashTable) {
4072 OS << "\n Symbol table of .gnu.hash for image:\n";
4073 if (ELFT::Is64Bits)
4074 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4075 else
4076 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4077 OS << "\n";
4078
4079 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4080 this->reportUniqueWarning(std::move(E));
4081 else
4082 printGnuHashTableSymbols(*this->GnuHashTable);
4083 }
4084}
4085
4086template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4087 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4088 if (Sections.empty()) {
4089 OS << "\nThere are no sections in this file.\n";
4090 Expected<StringRef> SecStrTableOrErr =
4091 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4092 if (!SecStrTableOrErr)
4093 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4094 return;
4095 }
4096 OS << "There are " << to_string(Sections.size())
4097 << " section headers, starting at offset "
4098 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4099
4100 OS << "Section Headers:\n";
4101
4102 auto PrintFields = [&](ArrayRef<Field> V) {
4103 for (const Field &F : V)
4104 printField(F);
4105 OS << "\n";
4106 };
4107
4108 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4109
4110 constexpr bool Is64 = ELFT::Is64Bits;
4111 PrintFields({{"Type", 7},
4112 {Is64 ? "Address" : "Addr", 23},
4113 {"Off", Is64 ? 40 : 32},
4114 {"Size", Is64 ? 47 : 39},
4115 {"ES", Is64 ? 54 : 46},
4116 {"Lk", Is64 ? 59 : 51},
4117 {"Inf", Is64 ? 62 : 54},
4118 {"Al", Is64 ? 66 : 57}});
4119 PrintFields({{"Flags", 7}});
4120
4121 StringRef SecStrTable;
4122 if (Expected<StringRef> SecStrTableOrErr =
4123 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4124 SecStrTable = *SecStrTableOrErr;
4125 else
4126 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4127
4128 size_t SectionIndex = 0;
4129 const unsigned AddrSize = Is64 ? 16 : 8;
4130 for (const Elf_Shdr &S : Sections) {
4131 StringRef Name = "<?>";
4132 if (Expected<StringRef> NameOrErr =
4133 this->Obj.getSectionName(S, SecStrTable))
4134 Name = *NameOrErr;
4135 else
4136 this->reportUniqueWarning(NameOrErr.takeError());
4137
4138 OS.PadToColumn(2);
4139 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4140 PrintFields({{Name, 7}});
4141 PrintFields(
4142 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4143 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4144 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4145 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4146 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4147 {to_string(S.sh_link), Is64 ? 59 : 51},
4148 {to_string(S.sh_info), Is64 ? 63 : 55},
4149 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4150
4151 OS.PadToColumn(7);
4152 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4153
4154 DenseMap<unsigned, StringRef> FlagToName = {
4155 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4156 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4157 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4158 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4159 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4160 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4161
4162 uint64_t Flags = S.sh_flags;
4163 uint64_t UnknownFlags = 0;
4164 ListSeparator LS;
4165 while (Flags) {
4166 // Take the least significant bit as a flag.
4167 uint64_t Flag = Flags & -Flags;
4168 Flags -= Flag;
4169
4170 auto It = FlagToName.find(Flag);
4171 if (It != FlagToName.end())
4172 OS << LS << It->second;
4173 else
4174 UnknownFlags |= Flag;
4175 }
4176
4177 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4178 uint64_t FlagsToPrint = UnknownFlags & Mask;
4179 if (!FlagsToPrint)
4180 return;
4181
4182 OS << LS << Name << " ("
4183 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4184 UnknownFlags &= ~Mask;
4185 };
4186
4187 PrintUnknownFlags(SHF_MASKOS, "OS");
4188 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4189 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4190
4191 OS << "\n";
4192 ++SectionIndex;
4193
4194 if (!(S.sh_flags & SHF_COMPRESSED))
4195 continue;
4196 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4197 if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4198 consumeError(Data.takeError());
4199 reportWarning(createError("SHF_COMPRESSED section '" + Name +
4200 "' does not have an Elf_Chdr header"),
4201 this->FileName);
4202 OS.indent(7);
4203 OS << "[<corrupt>]";
4204 } else {
4205 OS.indent(7);
4206 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4207 if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4208 OS << "ZLIB";
4209 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4210 OS << "ZSTD";
4211 else
4212 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4213 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4214 << ", " << Chdr->ch_addralign;
4215 }
4216 OS << '\n';
4217 }
4218}
4219
4220static inline std::string printPhdrFlags(unsigned Flag) {
4221 std::string Str;
4222 Str = (Flag & PF_R) ? "R" : " ";
4223 Str += (Flag & PF_W) ? "W" : " ";
4224 Str += (Flag & PF_X) ? "E" : " ";
4225 return Str;
4226}
4227
4228template <class ELFT>
4229static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4230 const typename ELFT::Shdr &Sec) {
4231 if (Sec.sh_flags & ELF::SHF_TLS) {
4232 // .tbss must only be shown in the PT_TLS segment.
4233 if (Sec.sh_type == ELF::SHT_NOBITS)
4234 return Phdr.p_type == ELF::PT_TLS;
4235
4236 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4237 // segments.
4238 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4239 (Phdr.p_type == ELF::PT_GNU_RELRO);
4240 }
4241
4242 // PT_TLS must only have SHF_TLS sections.
4243 return Phdr.p_type != ELF::PT_TLS;
4244}
4245
4246template <class ELFT>
4247static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4248 const typename ELFT::Shdr &Sec) {
4249 // SHT_NOBITS sections don't need to have an offset inside the segment.
4250 if (Sec.sh_type == ELF::SHT_NOBITS)
4251 return true;
4252
4253 if (Sec.sh_offset < Phdr.p_offset)
4254 return false;
4255
4256 // Only non-empty sections can be at the end of a segment.
4257 if (Sec.sh_size == 0)
4258 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4259 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4260}
4261
4262// Check that an allocatable section belongs to a virtual address
4263// space of a segment.
4264template <class ELFT>
4265static bool checkVMA(const typename ELFT::Phdr &Phdr,
4266 const typename ELFT::Shdr &Sec) {
4267 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4268 return true;
4269
4270 if (Sec.sh_addr < Phdr.p_vaddr)
4271 return false;
4272
4273 bool IsTbss =
4274 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4275 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4276 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4277 // Only non-empty sections can be at the end of a segment.
4278 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4279 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4280 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4281}
4282
4283template <class ELFT>
4284static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4285 const typename ELFT::Shdr &Sec) {
4286 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4287 return true;
4288
4289 // We get here when we have an empty section. Only non-empty sections can be
4290 // at the start or at the end of PT_DYNAMIC.
4291 // Is section within the phdr both based on offset and VMA?
4292 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4293 (Sec.sh_offset > Phdr.p_offset &&
4294 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4295 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4296 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4297 return CheckOffset && CheckVA;
4298}
4299
4300template <class ELFT>
4301void GNUELFDumper<ELFT>::printProgramHeaders(
4302 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4303 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4304 // Exit early if no program header or section mapping details were requested.
4305 if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4306 return;
4307
4308 if (PrintProgramHeaders) {
4309 const Elf_Ehdr &Header = this->Obj.getHeader();
4310 if (Header.e_phnum == 0) {
4311 OS << "\nThere are no program headers in this file.\n";
4312 } else {
4313 printProgramHeaders();
4314 }
4315 }
4316
4317 if (ShouldPrintSectionMapping)
4318 printSectionMapping();
4319}
4320
4321template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4322 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4323 const Elf_Ehdr &Header = this->Obj.getHeader();
4324 Field Fields[8] = {2, 17, 26, 37 + Bias,
4325 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4326 OS << "\nElf file type is "
4327 << enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4328 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4329 << "There are " << Header.e_phnum << " program headers,"
4330 << " starting at offset " << Header.e_phoff << "\n\n"
4331 << "Program Headers:\n";
4332 if (ELFT::Is64Bits)
4333 OS << " Type Offset VirtAddr PhysAddr "
4334 << " FileSiz MemSiz Flg Align\n";
4335 else
4336 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4337 << "MemSiz Flg Align\n";
4338
4339 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4340 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4341
4342 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4343 if (!PhdrsOrErr) {
4344 this->reportUniqueWarning("unable to dump program headers: " +
4345 toString(PhdrsOrErr.takeError()));
4346 return;
4347 }
4348
4349 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4350 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4351 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4352 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4353 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4354 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4355 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4356 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4357 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4358 for (const Field &F : Fields)
4359 printField(F);
4360 if (Phdr.p_type == ELF::PT_INTERP) {
4361 OS << "\n";
4362 auto ReportBadInterp = [&](const Twine &Msg) {
4363 this->reportUniqueWarning(
4364 "unable to read program interpreter name at offset 0x" +
4365 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4366 };
4367
4368 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4369 ReportBadInterp("it goes past the end of the file (0x" +
4370 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4371 continue;
4372 }
4373
4374 const char *Data =
4375 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4376 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4377 size_t Len = strnlen(Data, MaxSize);
4378 if (Len == MaxSize) {
4379 ReportBadInterp("it is not null-terminated");
4380 continue;
4381 }
4382
4383 OS << " [Requesting program interpreter: ";
4384 OS << StringRef(Data, Len) << "]";
4385 }
4386 OS << "\n";
4387 }
4388}
4389
4390template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4391 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4392 DenseSet<const Elf_Shdr *> BelongsToSegment;
4393 int Phnum = 0;
4394
4395 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4396 if (!PhdrsOrErr) {
4397 this->reportUniqueWarning(
4398 "can't read program headers to build section to segment mapping: " +
4399 toString(PhdrsOrErr.takeError()));
4400 return;
4401 }
4402
4403 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4404 std::string Sections;
4405 OS << format(" %2.2d ", Phnum++);
4406 // Check if each section is in a segment and then print mapping.
4407 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4408 if (Sec.sh_type == ELF::SHT_NULL)
4409 continue;
4410
4411 // readelf additionally makes sure it does not print zero sized sections
4412 // at end of segments and for PT_DYNAMIC both start and end of section
4413 // .tbss must only be shown in PT_TLS section.
4414 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4415 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4416 Sections +=
4417 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4418 " ";
4419 BelongsToSegment.insert(&Sec);
4420 }
4421 }
4422 OS << Sections << "\n";
4423 OS.flush();
4424 }
4425
4426 // Display sections that do not belong to a segment.
4427 std::string Sections;
4428 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4429 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4430 Sections +=
4431 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4432 ' ';
4433 }
4434 if (!Sections.empty()) {
4435 OS << " None " << Sections << '\n';
4436 OS.flush();
4437 }
4438}
4439
4440namespace {
4441
4442template <class ELFT>
4443RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4444 const Relocation<ELFT> &Reloc) {
4445 using Elf_Sym = typename ELFT::Sym;
4446 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4447 const Twine &Reason) -> RelSymbol<ELFT> {
4448 Dumper.reportUniqueWarning(
4449 "unable to get name of the dynamic symbol with index " +
4450 Twine(Reloc.Symbol) + ": " + Reason);
4451 return {Sym, "<corrupt>"};
4452 };
4453
4454 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4455 const Elf_Sym *FirstSym = Symbols.begin();
4456 if (!FirstSym)
4457 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4458
4459 // We might have an object without a section header. In this case the size of
4460 // Symbols is zero, because there is no way to know the size of the dynamic
4461 // table. We should allow this case and not print a warning.
4462 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4463 return WarnAndReturn(
4464 nullptr,
4465 "index is greater than or equal to the number of dynamic symbols (" +
4466 Twine(Symbols.size()) + ")");
4467
4468 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4469 const uint64_t FileSize = Obj.getBufSize();
4470 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4471 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4472 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4473 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4474 " goes past the end of the file (0x" +
4475 Twine::utohexstr(FileSize) + ")");
4476
4477 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4478 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4479 if (!ErrOrName)
4480 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4481
4482 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4483}
4484} // namespace
4485
4486template <class ELFT>
4487static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4488 typename ELFT::DynRange Tags) {
4489 size_t Max = 0;
4490 for (const typename ELFT::Dyn &Dyn : Tags)
4491 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4492 return Max;
4493}
4494
4495template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4496 Elf_Dyn_Range Table = this->dynamic_table();
4497 if (Table.empty())
4498 return;
4499
4500 OS << "Dynamic section at offset "
4501 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4502 this->Obj.base(),
4503 1)
4504 << " contains " << Table.size() << " entries:\n";
4505
4506 // The type name is surrounded with round brackets, hence add 2.
4507 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4508 // The "Name/Value" column should be indented from the "Type" column by N
4509 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4510 // space (1) = 3.
4511 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4512 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4513
4514 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4515 for (auto Entry : Table) {
4516 uintX_t Tag = Entry.getTag();
4517 std::string Type =
4518 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4519 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4520 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4521 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4522 }
4523}
4524
4525template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4526 this->printDynamicRelocationsHelper();
4527}
4528
4529template <class ELFT>
4530void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4531 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4532}
4533
4534template <class ELFT>
4535void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4536 this->forEachRelocationDo(
4
Calling 'ELFDumper::forEachRelocationDo'
4537 Sec, opts::RawRelr,
4538 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4539 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4540 [&](const Elf_Relr &R) { printRelrReloc(R); });
4541}
4542
4543template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4544 const bool IsMips64EL = this->Obj.isMips64EL();
4545 if (this->DynRelaRegion.Size > 0) {
4546 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4547 for (const Elf_Rela &Rela :
4548 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4549 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4550 }
4551
4552 if (this->DynRelRegion.Size > 0) {
4553 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4554 for (const Elf_Rel &Rel :
4555 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4556 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4557 }
4558
4559 if (this->DynRelrRegion.Size > 0) {
4560 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4561 Elf_Relr_Range Relrs =
4562 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4563 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4564 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4565 }
4566
4567 if (this->DynPLTRelRegion.Size) {
4568 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4569 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4570 for (const Elf_Rela &Rela :
4571 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4572 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4573 } else {
4574 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4575 for (const Elf_Rel &Rel :
4576 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4577 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4578 }
4579 }
4580}
4581
4582template <class ELFT>
4583void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4584 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4585 // Don't inline the SecName, because it might report a warning to stderr and
4586 // corrupt the output.
4587 StringRef SecName = this->getPrintableSectionName(Sec);
4588 OS << Label << " section '" << SecName << "' "
4589 << "contains " << EntriesNum << " entries:\n";
4590
4591 StringRef LinkedSecName = "<corrupt>";
4592 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4593 this->Obj.getSection(Sec.sh_link))
4594 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4595 else
4596 this->reportUniqueWarning("invalid section linked to " +
4597 this->describe(Sec) + ": " +
4598 toString(LinkedSecOrErr.takeError()));
4599
4600 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4601 << " Offset: " << format_hex(Sec.sh_offset, 8)
4602 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4603}
4604
4605template <class ELFT>
4606void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4607 if (!Sec)
4608 return;
4609
4610 printGNUVersionSectionProlog(*Sec, "Version symbols",
4611 Sec->sh_size / sizeof(Elf_Versym));
4612 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4613 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4614 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4615 if (!VerTableOrErr) {
4616 this->reportUniqueWarning(VerTableOrErr.takeError());
4617 return;
4618 }
4619
4620 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4621 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4622 this->getVersionMap())
4623 VersionMap = *MapOrErr;
4624 else
4625 this->reportUniqueWarning(MapOrErr.takeError());
4626
4627 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4628 std::vector<StringRef> Versions;
4629 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4630 unsigned Ndx = VerTable[I].vs_index;
4631 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4632 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4633 continue;
4634 }
4635
4636 if (!VersionMap) {
4637 Versions.emplace_back("<corrupt>");
4638 continue;
4639 }
4640
4641 bool IsDefault;
4642 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4643 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4644 if (!NameOrErr) {
4645 this->reportUniqueWarning("unable to get a version for entry " +
4646 Twine(I) + " of " + this->describe(*Sec) +
4647 ": " + toString(NameOrErr.takeError()));
4648 Versions.emplace_back("<corrupt>");
4649 continue;
4650 }
4651 Versions.emplace_back(*NameOrErr);
4652 }
4653
4654 // readelf prints 4 entries per line.
4655 uint64_t Entries = VerTable.size();
4656 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4657 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4658 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4659 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4660 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4661 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4662 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4663 }
4664 OS << '\n';
4665 }
4666 OS << '\n';
4667}
4668
4669static std::string versionFlagToString(unsigned Flags) {
4670 if (Flags == 0)
4671 return "none";
4672
4673 std::string Ret;
4674 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4675 if (!(Flags & Flag))
4676 return;
4677 if (!Ret.empty())
4678 Ret += " | ";
4679 Ret += Name;
4680 Flags &= ~Flag;
4681 };
4682
4683 AddFlag(VER_FLG_BASE, "BASE");
4684 AddFlag(VER_FLG_WEAK, "WEAK");
4685 AddFlag(VER_FLG_INFO, "INFO");
4686 AddFlag(~0, "<unknown>");
4687 return Ret;
4688}
4689
4690template <class ELFT>
4691void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4692 if (!Sec)
4693 return;
4694
4695 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4696
4697 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4698 if (!V) {
4699 this->reportUniqueWarning(V.takeError());
4700 return;
4701 }
4702
4703 for (const VerDef &Def : *V) {
4704 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4705 Def.Offset, Def.Version,
4706 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4707 Def.Name.data());
4708 unsigned I = 0;
4709 for (const VerdAux &Aux : Def.AuxV)
4710 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4711 Aux.Name.data());
4712 }
4713
4714 OS << '\n';
4715}
4716
4717template <class ELFT>
4718void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4719 if (!Sec)
4720 return;
4721
4722 unsigned VerneedNum = Sec->sh_info;
4723 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4724
4725 Expected<std::vector<VerNeed>> V =
4726 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4727 if (!V) {
4728 this->reportUniqueWarning(V.takeError());
4729 return;
4730 }
4731
4732 for (const VerNeed &VN : *V) {
4733 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4734 VN.Version, VN.File.data(), VN.Cnt);
4735 for (const VernAux &Aux : VN.AuxV)
4736 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
4737 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4738 Aux.Other);
4739 }
4740 OS << '\n';
4741}
4742
4743template <class ELFT>
4744void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4745 size_t NBucket = HashTable.nbucket;
4746 size_t NChain = HashTable.nchain;
4747 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4748 ArrayRef<Elf_Word> Chains = HashTable.chains();
4749 size_t TotalSyms = 0;
4750 // If hash table is correct, we have at least chains with 0 length
4751 size_t MaxChain = 1;
4752 size_t CumulativeNonZero = 0;
4753
4754 if (NChain == 0 || NBucket == 0)
4755 return;
4756
4757 std::vector<size_t> ChainLen(NBucket, 0);
4758 // Go over all buckets and and note chain lengths of each bucket (total
4759 // unique chain lengths).
4760 for (size_t B = 0; B < NBucket; B++) {
4761 BitVector Visited(NChain);
4762 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4763 if (C == ELF::STN_UNDEF)
4764 break;
4765 if (Visited[C]) {
4766 this->reportUniqueWarning(".hash section is invalid: bucket " +
4767 Twine(C) +
4768 ": a cycle was detected in the linked chain");
4769 break;
4770 }
4771 Visited[C] = true;
4772 if (MaxChain <= ++ChainLen[B])
4773 MaxChain++;
4774 }
4775 TotalSyms += ChainLen[B];
4776 }
4777
4778 if (!TotalSyms)
4779 return;
4780
4781 std::vector<size_t> Count(MaxChain, 0);
4782 // Count how long is the chain for each bucket
4783 for (size_t B = 0; B < NBucket; B++)
4784 ++Count[ChainLen[B]];
4785 // Print Number of buckets with each chain lengths and their cumulative
4786 // coverage of the symbols
4787 OS << "Histogram for bucket list length (total of " << NBucket
4788 << " buckets)\n"
4789 << " Length Number % of total Coverage\n";
4790 for (size_t I = 0; I < MaxChain; I++) {
4791 CumulativeNonZero += Count[I] * I;
4792 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4793 (Count[I] * 100.0) / NBucket,
4794 (CumulativeNonZero * 100.0) / TotalSyms);
4795 }
4796}
4797
4798template <class ELFT>
4799void GNUELFDumper<ELFT>::printGnuHashHistogram(
4800 const Elf_GnuHash &GnuHashTable) {
4801 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4802 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4803 if (!ChainsOrErr) {
4804 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4805 toString(ChainsOrErr.takeError()));
4806 return;
4807 }
4808
4809 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4810 size_t Symndx = GnuHashTable.symndx;
4811 size_t TotalSyms = 0;
4812 size_t MaxChain = 1;
4813 size_t CumulativeNonZero = 0;
4814
4815 size_t NBucket = GnuHashTable.nbuckets;
4816 if (Chains.empty() || NBucket == 0)
4817 return;
4818
4819 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4820 std::vector<size_t> ChainLen(NBucket, 0);
4821 for (size_t B = 0; B < NBucket; B++) {
4822 if (!Buckets[B])
4823 continue;
4824 size_t Len = 1;
4825 for (size_t C = Buckets[B] - Symndx;
4826 C < Chains.size() && (Chains[C] & 1) == 0; C++)
4827 if (MaxChain < ++Len)
4828 MaxChain++;
4829 ChainLen[B] = Len;
4830 TotalSyms += Len;
4831 }
4832 MaxChain++;
4833
4834 if (!TotalSyms)
4835 return;
4836
4837 std::vector<size_t> Count(MaxChain, 0);
4838 for (size_t B = 0; B < NBucket; B++)
4839 ++Count[ChainLen[B]];
4840 // Print Number of buckets with each chain lengths and their cumulative
4841 // coverage of the symbols
4842 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4843 << " buckets)\n"
4844 << " Length Number % of total Coverage\n";
4845 for (size_t I = 0; I < MaxChain; I++) {
4846 CumulativeNonZero += Count[I] * I;
4847 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4848 (Count[I] * 100.0) / NBucket,
4849 (CumulativeNonZero * 100.0) / TotalSyms);
4850 }
4851}
4852
4853// Hash histogram shows statistics of how efficient the hash was for the
4854// dynamic symbol table. The table shows the number of hash buckets for
4855// different lengths of chains as an absolute number and percentage of the total
4856// buckets, and the cumulative coverage of symbols for each set of buckets.
4857template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4858 // Print histogram for the .hash section.
4859 if (this->HashTable) {
4860 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4861 this->reportUniqueWarning(std::move(E));
4862 else
4863 printHashHistogram(*this->HashTable);
4864 }
4865
4866 // Print histogram for the .gnu.hash section.
4867 if (this->GnuHashTable) {
4868 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4869 this->reportUniqueWarning(std::move(E));
4870 else
4871 printGnuHashHistogram(*this->GnuHashTable);
4872 }
4873}
4874
4875template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4876 OS << "GNUStyle::printCGProfile not implemented\n";
4877}
4878
4879template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4880 OS << "GNUStyle::printBBAddrMaps not implemented\n";
4881}
4882
4883static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4884 std::vector<uint64_t> Ret;
4885 const uint8_t *Cur = Data.begin();
4886 const uint8_t *End = Data.end();
4887 while (Cur != End) {
4888 unsigned Size;
4889 const char *Err;
4890 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4891 if (Err)
4892 return createError(Err);
4893 Cur += Size;
4894 }
4895 return Ret;
4896}
4897
4898template <class ELFT>
4899static Expected<std::vector<uint64_t>>
4900decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4901 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4902 if (!ContentsOrErr)
4903 return ContentsOrErr.takeError();
4904
4905 if (Expected<std::vector<uint64_t>> SymsOrErr =
4906 toULEB128Array(*ContentsOrErr))
4907 return *SymsOrErr;
4908 else
4909 return createError("unable to decode " + describe(Obj, Sec) + ": " +
4910 toString(SymsOrErr.takeError()));
4911}
4912
4913template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4914 if (!this->DotAddrsigSec)
4915 return;
4916
4917 Expected<std::vector<uint64_t>> SymsOrErr =
4918 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4919 if (!SymsOrErr) {
4920 this->reportUniqueWarning(SymsOrErr.takeError());
4921 return;
4922 }
4923
4924 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4925 OS << "\nAddress-significant symbols section '" << Name << "'"
4926 << " contains " << SymsOrErr->size() << " entries:\n";
4927 OS << " Num: Name\n";
4928
4929 Field Fields[2] = {0, 8};
4930 size_t SymIndex = 0;
4931 for (uint64_t Sym : *SymsOrErr) {
4932 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4933 Fields[1].Str = this->getStaticSymbolName(Sym);
4934 for (const Field &Entry : Fields)
4935 printField(Entry);
4936 OS << "\n";
4937 }
4938}
4939
4940template <typename ELFT>
4941static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4942 ArrayRef<uint8_t> Data) {
4943 std::string str;
4944 raw_string_ostream OS(str);
4945 uint32_t PrData;
4946 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4947 if (PrData & Flag) {
4948 PrData &= ~Flag;
4949 OS << Name;
4950 if (PrData)
4951 OS << ", ";
4952 }
4953 };
4954
4955 switch (Type) {
4956 default:
4957 OS << format("<application-specific type 0x%x>", Type);
4958 return OS.str();
4959 case GNU_PROPERTY_STACK_SIZE: {
4960 OS << "stack size: ";
4961 if (DataSize == sizeof(typename ELFT::uint))
4962 OS << formatv("{0:x}",
4963 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4964 else
4965 OS << format("<corrupt length: 0x%x>", DataSize);
4966 return OS.str();
4967 }
4968 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4969 OS << "no copy on protected";
4970 if (DataSize)
4971 OS << format(" <corrupt length: 0x%x>", DataSize);
4972 return OS.str();
4973 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4974 case GNU_PROPERTY_X86_FEATURE_1_AND:
4975 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4976 : "x86 feature: ");
4977 if (DataSize != 4) {
4978 OS << format("<corrupt length: 0x%x>", DataSize);
4979 return OS.str();
4980 }
4981 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4982 if (PrData == 0) {
4983 OS << "<None>";
4984 return OS.str();
4985 }
4986 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4987 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4988 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4989 } else {
4990 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4991 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4992 }
4993 if (PrData)
4994 OS << format("<unknown flags: 0x%x>", PrData);
4995 return OS.str();
4996 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4997 case GNU_PROPERTY_X86_FEATURE_2_USED:
4998 OS << "x86 feature "
4999 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5000 if (DataSize != 4) {
5001 OS << format("<corrupt length: 0x%x>", DataSize);
5002 return OS.str();
5003 }
5004 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5005 if (PrData == 0) {
5006 OS << "<None>";
5007 return OS.str();
5008 }
5009 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5010 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5011 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5012 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5013 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5014 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5015 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5016 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5017 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5018 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5019 if (PrData)
5020 OS << format("<unknown flags: 0x%x>", PrData);
5021 return OS.str();
5022 case GNU_PROPERTY_X86_ISA_1_NEEDED:
5023 case GNU_PROPERTY_X86_ISA_1_USED:
5024 OS << "x86 ISA "
5025 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5026 if (DataSize != 4) {
5027 OS << format("<corrupt length: 0x%x>", DataSize);
5028 return OS.str();
5029 }
5030 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5031 if (PrData == 0) {
5032 OS << "<None>";
5033 return OS.str();
5034 }
5035 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5036 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5037 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5038 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5039 if (PrData)
5040 OS << format("<unknown flags: 0x%x>", PrData);
5041 return OS.str();
5042 }
5043}
5044
5045template <typename ELFT>
5046static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5047 using Elf_Word = typename ELFT::Word;
5048
5049 SmallVector<std::string, 4> Properties;
5050 while (Arr.size() >= 8) {
5051 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5052 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5053 Arr = Arr.drop_front(8);
5054
5055 // Take padding size into account if present.
5056 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5057 std::string str;
5058 raw_string_ostream OS(str);
5059 if (Arr.size() < PaddedSize) {
5060 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5061 Properties.push_back(OS.str());
5062 break;
5063 }
5064 Properties.push_back(
5065 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5066 Arr = Arr.drop_front(PaddedSize);
5067 }
5068
5069 if (!Arr.empty())
5070 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5071
5072 return Properties;
5073}
5074
5075struct GNUAbiTag {
5076 std::string OSName;
5077 std::string ABI;
5078 bool IsValid;
5079};
5080
5081template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5082 typedef typename ELFT::Word Elf_Word;
5083
5084 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5085 reinterpret_cast<const Elf_Word *>(Desc.end()));
5086
5087 if (Words.size() < 4)
5088 return {"", "", /*IsValid=*/false};
5089
5090 static const char *OSNames[] = {
5091 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5092 };
5093 StringRef OSName = "Unknown";
5094 if (Words[0] < std::size(OSNames))
5095 OSName = OSNames[Words[0]];
5096 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5097 std::string str;
5098 raw_string_ostream ABI(str);
5099 ABI << Major << "." << Minor << "." << Patch;
5100 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5101}
5102
5103static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5104 std::string str;
5105 raw_string_ostream OS(str);
5106 for (uint8_t B : Desc)
5107 OS << format_hex_no_prefix(B, 2);
5108 return OS.str();
5109}
5110
5111static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5112 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5113}
5114
5115template <typename ELFT>
5116static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5117 ArrayRef<uint8_t> Desc) {
5118 // Return true if we were able to pretty-print the note, false otherwise.
5119 switch (NoteType) {
5120 default:
5121 return false;
5122 case ELF::NT_GNU_ABI_TAG: {
5123 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5124 if (!AbiTag.IsValid)
5125 OS << " <corrupt GNU_ABI_TAG>";
5126 else
5127 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5128 break;
5129 }
5130 case ELF::NT_GNU_BUILD_ID: {
5131 OS << " Build ID: " << getGNUBuildId(Desc);
5132 break;
5133 }
5134 case ELF::NT_GNU_GOLD_VERSION:
5135 OS << " Version: " << getDescAsStringRef(Desc);
5136 break;
5137 case ELF::NT_GNU_PROPERTY_TYPE_0:
5138 OS << " Properties:";
5139 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5140 OS << " " << Property << "\n";
5141 break;
5142 }
5143 OS << '\n';
5144 return true;
5145}
5146
5147using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5148static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5149 ArrayRef<uint8_t> Desc) {
5150 AndroidNoteProperties Props;
5151 switch (NoteType) {
5152 case ELF::NT_ANDROID_TYPE_MEMTAG:
5153 if (Desc.empty()) {
5154 Props.emplace_back("Invalid .note.android.memtag", "");
5155 return Props;
5156 }
5157
5158 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5159 case NT_MEMTAG_LEVEL_NONE:
5160 Props.emplace_back("Tagging Mode", "NONE");
5161 break;
5162 case NT_MEMTAG_LEVEL_ASYNC:
5163 Props.emplace_back("Tagging Mode", "ASYNC");
5164 break;
5165 case NT_MEMTAG_LEVEL_SYNC:
5166 Props.emplace_back("Tagging Mode", "SYNC");
5167 break;
5168 default:
5169 Props.emplace_back(
5170 "Tagging Mode",
5171 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5172 .str());
5173 break;
5174 }
5175 Props.emplace_back("Heap",
5176 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5177 Props.emplace_back("Stack",
5178 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5179 break;
5180 default:
5181 return Props;
5182 }
5183 return Props;
5184}
5185
5186static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5187 ArrayRef<uint8_t> Desc) {
5188 // Return true if we were able to pretty-print the note, false otherwise.
5189 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5190 if (Props.empty())
5191 return false;
5192 for (const auto &KV : Props)
5193 OS << " " << KV.first << ": " << KV.second << '\n';
5194 OS << '\n';
5195 return true;
5196}
5197
5198template <typename ELFT>
5199static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5200 ArrayRef<uint8_t> Desc) {
5201 switch (NoteType) {
5202 default:
5203 return false;
5204 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5205 OS << " Version: " << getDescAsStringRef(Desc);
5206 break;
5207 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5208 OS << " Producer: " << getDescAsStringRef(Desc);
5209 break;
5210 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5211 OS << " Producer version: " << getDescAsStringRef(Desc);
5212 break;
5213 }
5214 OS << '\n';
5215 return true;
5216}
5217
5218const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5219 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5220 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5221 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5222 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5223 {"LA48", NT_FREEBSD_FCTL_LA48},
5224 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5225};
5226
5227struct FreeBSDNote {
5228 std::string Type;
5229 std::string Value;
5230};
5231
5232template <typename ELFT>
5233static Optional<FreeBSDNote>
5234getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5235 if (IsCore)
5236 return std::nullopt; // No pretty-printing yet.
5237 switch (NoteType) {
5238 case ELF::NT_FREEBSD_ABI_TAG:
5239 if (Desc.size() != 4)
5240 return std::nullopt;
5241 return FreeBSDNote{
5242 "ABI tag",
5243 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5244 case ELF::NT_FREEBSD_ARCH_TAG:
5245 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5246 case ELF::NT_FREEBSD_FEATURE_CTL: {
5247 if (Desc.size() != 4)
5248 return std::nullopt;
5249 unsigned Value =
5250 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5251 std::string FlagsStr;
5252 raw_string_ostream OS(FlagsStr);
5253 printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5254 if (OS.str().empty())
5255 OS << "0x" << utohexstr(Value);
5256 else
5257 OS << "(0x" << utohexstr(Value) << ")";
5258 return FreeBSDNote{"Feature flags", OS.str()};
5259 }
5260 default:
5261 return std::nullopt;
5262 }
5263}
5264
5265struct AMDNote {
5266 std::string Type;
5267 std::string Value;
5268};
5269
5270template <typename ELFT>
5271static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5272 switch (NoteType) {
5273 default:
5274 return {"", ""};
5275 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5276 struct CodeObjectVersion {
5277 uint32_t MajorVersion;
5278 uint32_t MinorVersion;
5279 };
5280 if (Desc.size() != sizeof(CodeObjectVersion))
5281 return {"AMD HSA Code Object Version",
5282 "Invalid AMD HSA Code Object Version"};
5283 std::string VersionString;
5284 raw_string_ostream StrOS(VersionString);
5285 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5286 StrOS << "[Major: " << Version->MajorVersion
5287 << ", Minor: " << Version->MinorVersion << "]";
5288 return {"AMD HSA Code Object Version", VersionString};
5289 }
5290 case ELF::NT_AMD_HSA_HSAIL: {
5291 struct HSAILProperties {
5292 uint32_t HSAILMajorVersion;
5293 uint32_t HSAILMinorVersion;
5294 uint8_t Profile;
5295 uint8_t MachineModel;
5296 uint8_t DefaultFloatRound;
5297 };
5298 if (Desc.size() != sizeof(HSAILProperties))
5299 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5300 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5301 std::string HSAILPropetiesString;
5302 raw_string_ostream StrOS(HSAILPropetiesString);
5303 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5304 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5305 << ", Profile: " << uint32_t(Properties->Profile)
5306 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5307 << ", Default Float Round: "
5308 << uint32_t(Properties->DefaultFloatRound) << "]";
5309 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5310 }
5311 case ELF::NT_AMD_HSA_ISA_VERSION: {
5312 struct IsaVersion {
5313 uint16_t VendorNameSize;
5314 uint16_t ArchitectureNameSize;
5315 uint32_t Major;
5316 uint32_t Minor;
5317 uint32_t Stepping;
5318 };
5319 if (Desc.size() < sizeof(IsaVersion))
5320 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5321 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5322 if (Desc.size() < sizeof(IsaVersion) +
5323 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5324 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5325 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5326 std::string IsaString;
5327 raw_string_ostream StrOS(IsaString);
5328 StrOS << "[Vendor: "
5329 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5330 << ", Architecture: "
5331 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5332 Isa->ArchitectureNameSize - 1)
5333 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5334 << ", Stepping: " << Isa->Stepping << "]";
5335 return {"AMD HSA ISA Version", IsaString};
5336 }
5337 case ELF::NT_AMD_HSA_METADATA: {
5338 if (Desc.size() == 0)
5339 return {"AMD HSA Metadata", ""};
5340 return {
5341 "AMD HSA Metadata",
5342 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5343 }
5344 case ELF::NT_AMD_HSA_ISA_NAME: {
5345 if (Desc.size() == 0)
5346 return {"AMD HSA ISA Name", ""};
5347 return {
5348 "AMD HSA ISA Name",
5349 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5350 }
5351 case ELF::NT_AMD_PAL_METADATA: {
5352 struct PALMetadata {
5353 uint32_t Key;
5354 uint32_t Value;
5355 };
5356 if (Desc.size() % sizeof(PALMetadata) != 0)
5357 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5358 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5359 std::string MetadataString;
5360 raw_string_ostream StrOS(MetadataString);
5361 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5362 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5363 }
5364 return {"AMD PAL Metadata", MetadataString};
5365 }
5366 }
5367}
5368
5369struct AMDGPUNote {
5370 std::string Type;
5371 std::string Value;
5372};
5373
5374template <typename ELFT>
5375static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5376 switch (NoteType) {
5377 default:
5378 return {"", ""};
5379 case ELF::NT_AMDGPU_METADATA: {
5380 StringRef MsgPackString =
5381 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5382 msgpack::Document MsgPackDoc;
5383 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5384 return {"", ""};
5385
5386 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5387 std::string MetadataString;
5388 if (!Verifier.verify(MsgPackDoc.getRoot()))
5389 MetadataString = "Invalid AMDGPU Metadata\n";
5390
5391 raw_string_ostream StrOS(MetadataString);
5392 if (MsgPackDoc.getRoot().isScalar()) {
5393 // TODO: passing a scalar root to toYAML() asserts:
5394 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5395 // "plain scalar documents are not supported")
5396 // To avoid this crash we print the raw data instead.
5397 return {"", ""};
5398 }
5399 MsgPackDoc.toYAML(StrOS);
5400 return {"AMDGPU Metadata", StrOS.str()};
5401 }
5402 }
5403}
5404
5405struct CoreFileMapping {
5406 uint64_t Start, End, Offset;
5407 StringRef Filename;
5408};
5409
5410struct CoreNote {
5411 uint64_t PageSize;
5412 std::vector<CoreFileMapping> Mappings;
5413};
5414
5415static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5416 // Expected format of the NT_FILE note description:
5417 // 1. # of file mappings (call it N)
5418 // 2. Page size
5419 // 3. N (start, end, offset) triples
5420 // 4. N packed filenames (null delimited)
5421 // Each field is an Elf_Addr, except for filenames which are char* strings.
5422
5423 CoreNote Ret;
5424 const int Bytes = Desc.getAddressSize();
5425
5426 if (!Desc.isValidOffsetForAddress(2))
5427 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5428 " is too short, expected at least 0x" +
5429 Twine::utohexstr(Bytes * 2));
5430 if (Desc.getData().back() != 0)
5431 return createError("the note is not NUL terminated");
5432
5433 uint64_t DescOffset = 0;
5434 uint64_t FileCount = Desc.getAddress(&DescOffset);
5435 Ret.PageSize = Desc.getAddress(&DescOffset);
5436
5437 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5438 return createError("unable to read file mappings (found " +
5439 Twine(FileCount) + "): the note of size 0x" +
5440 Twine::utohexstr(Desc.size()) + " is too short");
5441
5442 uint64_t FilenamesOffset = 0;
5443 DataExtractor Filenames(
5444 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5445 Desc.isLittleEndian(), Desc.getAddressSize());
5446
5447 Ret.Mappings.resize(FileCount);
5448 size_t I = 0;
5449 for (CoreFileMapping &Mapping : Ret.Mappings) {
5450 ++I;
5451 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5452 return createError(
5453 "unable to read the file name for the mapping with index " +
5454 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5455 " is truncated");
5456 Mapping.Start = Desc.getAddress(&DescOffset);
5457 Mapping.End = Desc.getAddress(&DescOffset);
5458 Mapping.Offset = Desc.getAddress(&DescOffset);
5459 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5460 }
5461
5462 return Ret;
5463}
5464
5465template <typename ELFT>
5466static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5467 // Length of "0x<address>" string.
5468 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5469
5470 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5471 OS << " " << right_justify("Start", FieldWidth) << " "
5472 << right_justify("End", FieldWidth) << " "
5473 << right_justify("Page Offset", FieldWidth) << '\n';
5474 for (const CoreFileMapping &Mapping : Note.Mappings) {
5475 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5476 << format_hex(Mapping.End, FieldWidth) << " "
5477 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5478 << Mapping.Filename << '\n';
5479 }
5480}
5481
5482const NoteType GenericNoteTypes[] = {
5483 {ELF::NT_VERSION, "NT_VERSION (version)"},
5484 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5485 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5486 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5487};
5488
5489const NoteType GNUNoteTypes[] = {
5490 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5491 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5492 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5493 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5494 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5495};
5496
5497const NoteType FreeBSDCoreNoteTypes[] = {
5498 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5499 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5500 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5501 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5502 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5503 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5504 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5505 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5506 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5507 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5508 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5509};
5510
5511const NoteType FreeBSDNoteTypes[] = {
5512 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5513 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5514 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5515 {ELF::NT_FREEBSD_FEATURE_CTL,
5516 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5517};
5518
5519const NoteType NetBSDCoreNoteTypes[] = {
5520 {ELF::NT_NETBSDCORE_PROCINFO,
5521 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5522 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5523 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5524};
5525
5526const NoteType OpenBSDCoreNoteTypes[] = {
5527 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5528 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5529 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5530 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5531 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5532};
5533
5534const NoteType AMDNoteTypes[] = {
5535 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5536 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5537 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5538 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5539 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5540 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5541 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5542};
5543
5544const NoteType AMDGPUNoteTypes[] = {
5545 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5546};
5547
5548const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5549 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5550 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5551 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5552 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5553 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5554 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5555};
5556
5557const NoteType AndroidNoteTypes[] = {
5558 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5559 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5560 {ELF::NT_ANDROID_TYPE_MEMTAG,
5561 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5562};
5563
5564const NoteType CoreNoteTypes[] = {
5565 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5566 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5567 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5568 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5569 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5570 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5571 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5572 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5573 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5574 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5575 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5576
5577 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5578 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5579 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5580 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5581 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5582 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5583 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5584 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5585 {ELF::NT_PPC_TM_CFPR,
5586 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5587 {ELF::NT_PPC_TM_CVMX,
5588 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5589 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5590 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5591 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5592 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5593 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5594
5595 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5596 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5597 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5598
5599 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5600 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5601 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5602 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5603 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5604 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5605 {ELF::NT_S390_LAST_BREAK,
5606 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5607 {ELF::NT_S390_SYSTEM_CALL,
5608 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5609 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5610 {ELF::NT_S390_VXRS_LOW,
5611 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5612 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5613 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5614 {ELF::NT_S390_GS_BC,
5615 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5616
5617 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5618 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5619 {ELF::NT_ARM_HW_BREAK,
5620 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5621 {ELF::NT_ARM_HW_WATCH,
5622 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5623
5624 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5625 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5626 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5627};
5628
5629template <class ELFT>
5630StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5631 uint32_t Type = Note.getType();
5632 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5633 for (const NoteType &N : V)
5634 if (N.ID == Type)
5635 return N.Name;
5636 return "";
5637 };
5638
5639 StringRef Name = Note.getName();
5640 if (Name == "GNU")
5641 return FindNote(GNUNoteTypes);
5642 if (Name == "FreeBSD") {
5643 if (ELFType == ELF::ET_CORE) {
5644 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5645 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5646 if (!Result.empty())
5647 return Result;
5648 return FindNote(CoreNoteTypes);
5649 } else {
5650 return FindNote(FreeBSDNoteTypes);
5651 }
5652 }
5653 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5654 StringRef Result = FindNote(NetBSDCoreNoteTypes);
5655 if (!Result.empty())
5656 return Result;
5657 return FindNote(CoreNoteTypes);
5658 }
5659 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5660 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5661 StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5662 if (!Result.empty())
5663 return Result;
5664 return FindNote(CoreNoteTypes);
5665 }
5666 if (Name == "AMD")
5667 return FindNote(AMDNoteTypes);
5668 if (Name == "AMDGPU")
5669 return FindNote(AMDGPUNoteTypes);
5670 if (Name == "LLVMOMPOFFLOAD")
5671 return FindNote(LLVMOMPOFFLOADNoteTypes);
5672 if (Name == "Android")
5673 return FindNote(AndroidNoteTypes);
5674
5675 if (ELFType == ELF::ET_CORE)
5676 return FindNote(CoreNoteTypes);
5677 return FindNote(GenericNoteTypes);
5678}
5679
5680template <class ELFT>
5681static void printNotesHelper(
5682 const ELFDumper<ELFT> &Dumper,
5683 llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5684 typename ELFT::Addr)>
5685 StartNotesFn,
5686 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5687 llvm::function_ref<void()> FinishNotesFn) {
5688 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5689 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5690
5691 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5692 if (!IsCoreFile && !Sections.empty()) {
5693 for (const typename ELFT::Shdr &S : Sections) {
5694 if (S.sh_type != SHT_NOTE)
5695 continue;
5696 StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5697 S.sh_size);
5698 Error Err = Error::success();
5699 size_t I = 0;
5700 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5701 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5702 Dumper.reportUniqueWarning(
5703 "unable to read note with index " + Twine(I) + " from the " +
5704 describe(Obj, S) + ": " + toString(std::move(E)));
5705 ++I;
5706 }
5707 if (Err)
5708 Dumper.reportUniqueWarning("unable to read notes from the " +
5709 describe(Obj, S) + ": " +
5710 toString(std::move(Err)));
5711 FinishNotesFn();
5712 }
5713 return;
5714 }
5715
5716 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5717 if (!PhdrsOrErr) {
5718 Dumper.reportUniqueWarning(
5719 "unable to read program headers to locate the PT_NOTE segment: " +
5720 toString(PhdrsOrErr.takeError()));
5721 return;
5722 }
5723
5724 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5725 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5726 if (P.p_type != PT_NOTE)
5727 continue;
5728 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz);
5729 Error Err = Error::success();
5730 size_t Index = 0;
5731 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5732 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5733 Dumper.reportUniqueWarning("unable to read note with index " +
5734 Twine(Index) +
5735 " from the PT_NOTE segment with index " +
5736 Twine(I) + ": " + toString(std::move(E)));
5737 ++Index;
5738 }
5739 if (Err)
5740 Dumper.reportUniqueWarning(
5741 "unable to read notes from the PT_NOTE segment with index " +
5742 Twine(I) + ": " + toString(std::move(Err)));
5743 FinishNotesFn();
5744 }
5745}
5746
5747template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5748 bool IsFirstHeader = true;
5749 auto PrintHeader = [&](Optional<StringRef> SecName,
5750 const typename ELFT::Off Offset,
5751 const typename ELFT::Addr Size) {
5752 // Print a newline between notes sections to match GNU readelf.
5753 if (!IsFirstHeader) {
5754 OS << '\n';
5755 } else {
5756 IsFirstHeader = false;
5757 }
5758
5759 OS << "Displaying notes found ";
5760
5761 if (SecName)
5762 OS << "in: " << *SecName << "\n";
5763 else
5764 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5765 << format_hex(Size, 10) << ":\n";
5766
5767 OS << " Owner Data size \tDescription\n";
5768 };
5769
5770 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5771 StringRef Name = Note.getName();
5772 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5773 Elf_Word Type = Note.getType();
5774
5775 // Print the note owner/type.
5776 OS << " " << left_justify(Name, 20) << ' '
5777 << format_hex(Descriptor.size(), 10) << '\t';
5778
5779 StringRef NoteType =
5780 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5781 if (!NoteType.empty())
5782 OS << NoteType << '\n';
5783 else
5784 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5785
5786 // Print the description, or fallback to printing raw bytes for unknown
5787 // owners/if we fail to pretty-print the contents.
5788 if (Name == "GNU") {
5789 if (printGNUNote<ELFT>(OS, Type, Descriptor))
5790 return Error::success();
5791 } else if (Name == "FreeBSD") {
5792 if (Optional<FreeBSDNote> N =
5793 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5794 OS << " " << N->Type << ": " << N->Value << '\n';
5795 return Error::success();
5796 }
5797 } else if (Name == "AMD") {
5798 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5799 if (!N.Type.empty()) {
5800 OS << " " << N.Type << ":\n " << N.Value << '\n';
5801 return Error::success();
5802 }
5803 } else if (Name == "AMDGPU") {
5804 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5805 if (!N.Type.empty()) {
5806 OS << " " << N.Type << ":\n " << N.Value << '\n';
5807 return Error::success();
5808 }
5809 } else if (Name == "LLVMOMPOFFLOAD") {
5810 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5811 return Error::success();
5812 } else if (Name == "CORE") {
5813 if (Type == ELF::NT_FILE) {
5814 DataExtractor DescExtractor(Descriptor,
5815 ELFT::TargetEndianness == support::little,
5816 sizeof(Elf_Addr));
5817 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5818 printCoreNote<ELFT>(OS, *NoteOrErr);
5819 return Error::success();
5820 } else {
5821 return NoteOrErr.takeError();
5822 }
5823 }
5824 } else if (Name == "Android") {
5825 if (printAndroidNote(OS, Type, Descriptor))
5826 return Error::success();
5827 }
5828 if (!Descriptor.empty()) {
5829 OS << " description data:";
5830 for (uint8_t B : Descriptor)
5831 OS << " " << format("%02x", B);
5832 OS << '\n';
5833 }
5834 return Error::success();
5835 };
5836
5837 printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5838}
5839
5840template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5841 OS << "printELFLinkerOptions not implemented!\n";
5842}
5843
5844template <class ELFT>
5845void ELFDumper<ELFT>::printDependentLibsHelper(
5846 function_ref<void(const Elf_Shdr &)> OnSectionStart,
5847 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5848 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5849 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5850 Twine(SecNdx) + " is broken: " + Msg);
5851 };
5852
5853 unsigned I = -1;
5854 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5855 ++I;
5856 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5857 continue;
5858
5859 OnSectionStart(Shdr);
5860
5861 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5862 if (!ContentsOrErr) {
5863 Warn(I, toString(ContentsOrErr.takeError()));
5864 continue;
5865 }
5866
5867 ArrayRef<uint8_t> Contents = *ContentsOrErr;
5868 if (!Contents.empty() && Contents.back() != 0) {
5869 Warn(I, "the content is not null-terminated");
5870 continue;
5871 }
5872
5873 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5874 StringRef Lib((const char *)I);
5875 OnLibEntry(Lib, I - Contents.begin());
5876 I += Lib.size() + 1;
5877 }
5878 }
5879}
5880
5881template <class ELFT>
5882void ELFDumper<ELFT>::forEachRelocationDo(
5883 const Elf_Shdr &Sec, bool RawRelr,
5884 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5885 const Elf_Shdr &, const Elf_Shdr *)>
5886 RelRelaFn,
5887 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5888 auto Warn = [&](Error &&E,
5889 const Twine &Prefix = "unable to read relocations from") {
5890 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5891 toString(std::move(E)));
5892 };
5893
5894 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5895 // For them we should not treat the value of the sh_link field as an index of
5896 // a symbol table.
5897 const Elf_Shdr *SymTab;
5
'SymTab' declared without an initial value
5898 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
6
Assuming the condition is false
5899 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5900 if (!SymTabOrErr) {
5901 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5902 return;
5903 }
5904 SymTab = *SymTabOrErr;
5905 }
5906
5907 unsigned RelNdx = 0;
5908 const bool IsMips64EL = this->Obj.isMips64EL();
5909 switch (Sec.sh_type) {
7
Control jumps to 'case SHT_ANDROID_RELA:' at line 5945
5910 case ELF::SHT_REL:
5911 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5912 for (const Elf_Rel &R : *RangeOrErr)
5913 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5914 } else {
5915 Warn(RangeOrErr.takeError());
5916 }
5917 break;
5918 case ELF::SHT_RELA:
5919 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5920 for (const Elf_Rela &R : *RangeOrErr)
5921 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5922 } else {
5923 Warn(RangeOrErr.takeError());
5924 }
5925 break;
5926 case ELF::SHT_RELR:
5927 case ELF::SHT_ANDROID_RELR: {
5928 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5929 if (!RangeOrErr) {
5930 Warn(RangeOrErr.takeError());
5931 break;
5932 }
5933 if (RawRelr) {
5934 for (const Elf_Relr &R : *RangeOrErr)
5935 RelrFn(R);
5936 break;
5937 }
5938
5939 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5940 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5941 /*SymTab=*/nullptr);
5942 break;
5943 }
5944 case ELF::SHT_ANDROID_REL:
5945 case ELF::SHT_ANDROID_RELA:
5946 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
8
Taking true branch
5947 for (const Elf_Rela &R : *RelasOrErr)
5948 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
9
4th function call argument is an uninitialized value
5949 } else {
5950 Warn(RelasOrErr.takeError());
5951 }
5952 break;
5953 }
5954}
5955
5956template <class ELFT>
5957StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5958 StringRef Name = "<?>";
5959 if (Expected<StringRef> SecNameOrErr =
5960 Obj.getSectionName(Sec, this->WarningHandler))
5961 Name = *SecNameOrErr;
5962 else
5963 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5964 ": " + toString(SecNameOrErr.takeError()));
5965 return Name;
5966}
5967
5968template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5969 bool SectionStarted = false;
5970 struct NameOffset {
5971 StringRef Name;
5972 uint64_t Offset;
5973 };
5974 std::vector<NameOffset> SecEntries;
5975 NameOffset Current;
5976 auto PrintSection = [&]() {
5977 OS << "Dependent libraries section " << Current.Name << " at offset "
5978 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5979 << " entries:\n";
5980 for (NameOffset Entry : SecEntries)
5981 OS << " [" << format("%6" PRIx64"l" "x", Entry.Offset) << "] " << Entry.Name
5982 << "\n";
5983 OS << "\n";
5984 SecEntries.clear();
5985 };
5986
5987 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5988 if (SectionStarted)
5989 PrintSection();
5990 SectionStarted = true;
5991 Current.Offset = Shdr.sh_offset;
5992 Current.Name = this->getPrintableSectionName(Shdr);
5993 };
5994 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5995 SecEntries.push_back(NameOffset{Lib, Offset});
5996 };
5997
5998 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5999 if (SectionStarted)
6000 PrintSection();
6001}
6002
6003template <class ELFT>
6004SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6005 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
6006 SmallVector<uint32_t> SymbolIndexes;
6007 if (!this->AddressToIndexMap) {
6008 // Populate the address to index map upon the first invocation of this
6009 // function.
6010 this->AddressToIndexMap.emplace();
6011 if (this->DotSymtabSec) {
6012 if (Expected<Elf_Sym_Range> SymsOrError =
6013 Obj.symbols(this->DotSymtabSec)) {
6014 uint32_t Index = (uint32_t)-1;
6015 for (const Elf_Sym &Sym : *SymsOrError) {
6016 ++Index;
6017
6018 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6019 continue;
6020
6021 Expected<uint64_t> SymAddrOrErr =
6022 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6023 if (!SymAddrOrErr) {
6024 std::string Name = this->getStaticSymbolName(Index);
6025 reportUniqueWarning("unable to get address of symbol '" + Name +
6026 "': " + toString(SymAddrOrErr.takeError()));
6027 return SymbolIndexes;
6028 }
6029
6030 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6031 }
6032 } else {
6033 reportUniqueWarning("unable to read the symbol table: " +
6034 toString(SymsOrError.takeError()));
6035 }
6036 }
6037 }
6038
6039 auto Symbols = this->AddressToIndexMap->find(SymValue);
6040 if (Symbols == this->AddressToIndexMap->end())
6041 return SymbolIndexes;
6042
6043 for (uint32_t Index : Symbols->second) {
6044 // Check if the symbol is in the right section. FunctionSec == None
6045 // means "any section".
6046 if (FunctionSec) {
6047 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6048 if (Expected<const Elf_Shdr *> SecOrErr =
6049 Obj.getSection(Sym, this->DotSymtabSec,
6050 this->getShndxTable(this->DotSymtabSec))) {
6051 if (*FunctionSec != *SecOrErr)
6052 continue;
6053 } else {
6054 std::string Name = this->getStaticSymbolName(Index);
6055 // Note: it is impossible to trigger this error currently, it is
6056 // untested.
6057 reportUniqueWarning("unable to get section of symbol '" + Name +
6058 "': " + toString(SecOrErr.takeError()));
6059 return SymbolIndexes;
6060 }
6061 }
6062
6063 SymbolIndexes.push_back(Index);
6064 }
6065
6066 return SymbolIndexes;
6067}
6068
6069template <class ELFT>
6070bool ELFDumper<ELFT>::printFunctionStackSize(
6071 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
6072 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6073 SmallVector<uint32_t> FuncSymIndexes =
6074 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6075 if (FuncSymIndexes.empty())
6076 reportUniqueWarning(
6077 "could not identify function symbol for stack size entry in " +
6078 describe(StackSizeSec));
6079
6080 // Extract the size. The expectation is that Offset is pointing to the right
6081 // place, i.e. past the function address.
6082 Error Err = Error::success();
6083 uint64_t StackSize = Data.getULEB128(Offset, &Err);
6084 if (Err) {
6085 reportUniqueWarning("could not extract a valid stack size from " +
6086 describe(StackSizeSec) + ": " +
6087 toString(std::move(Err)));
6088 return false;
6089 }
6090
6091 if (FuncSymIndexes.empty()) {
6092 printStackSizeEntry(StackSize, {"?"});
6093 } else {
6094 SmallVector<std::string> FuncSymNames;
6095 for (uint32_t Index : FuncSymIndexes)
6096 FuncSymNames.push_back(this->getStaticSymbolName(Index));
6097 printStackSizeEntry(StackSize, FuncSymNames);
6098 }
6099
6100 return true;
6101}
6102
6103template <class ELFT>
6104void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6105 ArrayRef<std::string> FuncNames) {
6106 OS.PadToColumn(2);
6107 OS << format_decimal(Size, 11);
6108 OS.PadToColumn(18);
6109
6110 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6111}
6112
6113template <class ELFT>
6114void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6115 const Elf_Shdr &RelocSec, unsigned Ndx,
6116 const Elf_Shdr *SymTab,
6117 const Elf_Shdr *FunctionSec,
6118 const Elf_Shdr &StackSizeSec,
6119 const RelocationResolver &Resolver,
6120 DataExtractor Data) {
6121 // This function ignores potentially erroneous input, unless it is directly
6122 // related to stack size reporting.
6123 const Elf_Sym *Sym = nullptr;
6124 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6125 if (!TargetOrErr)
6126 reportUniqueWarning("unable to get the target of relocation with index " +
6127 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6128 toString(TargetOrErr.takeError()));
6129 else
6130 Sym = TargetOrErr->Sym;
6131
6132 uint64_t RelocSymValue = 0;
6133 if (Sym) {
6134 Expected<const Elf_Shdr *> SectionOrErr =
6135 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6136 if (!SectionOrErr) {
6137 reportUniqueWarning(
6138 "cannot identify the section for relocation symbol '" +
6139 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6140 } else if (*SectionOrErr != FunctionSec) {
6141 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6142 "' is not in the expected section");
6143 // Pretend that the symbol is in the correct section and report its
6144 // stack size anyway.
6145 FunctionSec = *SectionOrErr;
6146 }
6147
6148 RelocSymValue = Sym->st_value;
6149 }
6150
6151 uint64_t Offset = R.Offset;
6152 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6153 reportUniqueWarning("found invalid relocation offset (0x" +
6154 Twine::utohexstr(Offset) + ") into " +
6155 describe(StackSizeSec) +
6156 " while trying to extract a stack size entry");
6157 return;
6158 }
6159
6160 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6161 Data.getAddress(&Offset), R.Addend.value_or(0));
6162 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6163 &Offset);
6164}
6165
6166template <class ELFT>
6167void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6168 std::function<void()> PrintHeader) {
6169 // This function ignores potentially erroneous input, unless it is directly
6170 // related to stack size reporting.
6171 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6172 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6173 continue;
6174 PrintHeader();
6175 ArrayRef<uint8_t> Contents =
6176 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6177 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6178 uint64_t Offset = 0;
6179 while (Offset < Contents.size()) {
6180 // The function address is followed by a ULEB representing the stack
6181 // size. Check for an extra byte before we try to process the entry.
6182 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6183 reportUniqueWarning(
6184 describe(Sec) +
6185 " ended while trying to extract a stack size entry");
6186 break;
6187 }
6188 uint64_t SymValue = Data.getAddress(&Offset);
6189 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6190 Data, &Offset))
6191 break;
6192 }
6193 }
6194}
6195
6196template <class ELFT>
6197void ELFDumper<ELFT>::getSectionAndRelocations(
6198 std::function<bool(const Elf_Shdr &)> IsMatch,
6199 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6200 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6201 if (IsMatch(Sec))
6202 if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6203 .second)
6204 continue;
6205
6206 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6207 continue;
6208
6209 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6210 if (!RelSecOrErr) {
6211 reportUniqueWarning(describe(Sec) +
6212 ": failed to get a relocated section: " +
6213 toString(RelSecOrErr.takeError()));
6214 continue;
6215 }
6216 const Elf_Shdr *ContentsSec = *RelSecOrErr;
6217 if (IsMatch(*ContentsSec))
6218 SecToRelocMap[ContentsSec] = &Sec;
6219 }
6220}
6221
6222template <class ELFT>
6223void ELFDumper<ELFT>::printRelocatableStackSizes(
6224 std::function<void()> PrintHeader) {
6225 // Build a map between stack size sections and their corresponding relocation
6226 // sections.
6227 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6228 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6229 StringRef SectionName;
6230 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6231 SectionName = *NameOrErr;
6232 else
6233 consumeError(NameOrErr.takeError());
6234
6235 return SectionName == ".stack_sizes";
6236 };
6237 getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6238
6239 for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6240 PrintHeader();
6241 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6242 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6243
6244 // Warn about stack size sections without a relocation section.
6245 if (!RelocSec) {
6246 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6247 ") does not have a corresponding "
6248 "relocation section"),
6249 FileName);
6250 continue;
6251 }
6252
6253 // A .stack_sizes section header's sh_link field is supposed to point
6254 // to the section that contains the functions whose stack sizes are
6255 // described in it.
6256 const Elf_Shdr *FunctionSec = unwrapOrError(
6257 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6258
6259 SupportsRelocation IsSupportedFn;
6260 RelocationResolver Resolver;
6261 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6262 ArrayRef<uint8_t> Contents =
6263 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6264 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6265
6266 forEachRelocationDo(
6267 *RelocSec, /*RawRelr=*/false,
6268 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6269 const Elf_Shdr *SymTab) {
6270 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6271 reportUniqueWarning(
6272 describe(*RelocSec) +
6273 " contains an unsupported relocation with index " + Twine(Ndx) +
6274 ": " + Obj.getRelocationTypeName(R.Type));
6275 return;
6276 }
6277
6278 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6279 *StackSizesELFSec, Resolver, Data);
6280 },
6281 [](const Elf_Relr &) {
6282 llvm_unreachable("can't get here, because we only support "::llvm::llvm_unreachable_internal("can't get here, because we only support "
"SHT_REL/SHT_RELA sections", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 6283)
6283 "SHT_REL/SHT_RELA sections")::llvm::llvm_unreachable_internal("can't get here, because we only support "
"SHT_REL/SHT_RELA sections", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 6283)
;
6284 });
6285 }
6286}
6287
6288template <class ELFT>
6289void GNUELFDumper<ELFT>::printStackSizes() {
6290 bool HeaderHasBeenPrinted = false;
6291 auto PrintHeader = [&]() {
6292 if (HeaderHasBeenPrinted)
6293 return;
6294 OS << "\nStack Sizes:\n";
6295 OS.PadToColumn(9);
6296 OS << "Size";
6297 OS.PadToColumn(18);
6298 OS << "Functions\n";
6299 HeaderHasBeenPrinted = true;
6300 };
6301
6302 // For non-relocatable objects, look directly for sections whose name starts
6303 // with .stack_sizes and process the contents.
6304 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6305 this->printRelocatableStackSizes(PrintHeader);
6306 else
6307 this->printNonRelocatableStackSizes(PrintHeader);
6308}
6309
6310template <class ELFT>
6311void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6312 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6313 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6314 OS.PadToColumn(2);
6315 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6316 OS.PadToColumn(11 + Bias);
6317 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6318 OS.PadToColumn(22 + Bias);
6319 OS << format_hex_no_prefix(*E, 8 + Bias);
6320 OS.PadToColumn(31 + 2 * Bias);
6321 OS << Purpose << "\n";
6322 };
6323
6324 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6325 OS << " Canonical gp value: "
6326 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6327
6328 OS << " Reserved entries:\n";
6329 if (ELFT::Is64Bits)
6330 OS << " Address Access Initial Purpose\n";
6331 else
6332 OS << " Address Access Initial Purpose\n";
6333 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6334 if (Parser.getGotModulePointer())
6335 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6336
6337 if (!Parser.getLocalEntries().empty()) {
6338 OS << "\n";
6339 OS << " Local entries:\n";
6340 if (ELFT::Is64Bits)
6341 OS << " Address Access Initial\n";
6342 else
6343 OS << " Address Access Initial\n";
6344 for (auto &E : Parser.getLocalEntries())
6345 PrintEntry(&E, "");
6346 }
6347
6348 if (Parser.IsStatic)
6349 return;
6350
6351 if (!Parser.getGlobalEntries().empty()) {
6352 OS << "\n";
6353 OS << " Global entries:\n";
6354 if (ELFT::Is64Bits)
6355 OS << " Address Access Initial Sym.Val."
6356 << " Type Ndx Name\n";
6357 else
6358 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6359
6360 DataRegion<Elf_Word> ShndxTable(
6361 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6362 for (auto &E : Parser.getGlobalEntries()) {
6363 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6364 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6365 std::string SymName = this->getFullSymbolName(
6366 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6367
6368 OS.PadToColumn(2);
6369 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6370 OS.PadToColumn(11 + Bias);
6371 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6372 OS.PadToColumn(22 + Bias);
6373 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6374 OS.PadToColumn(31 + 2 * Bias);
6375 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6376 OS.PadToColumn(40 + 3 * Bias);
6377 OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6378 OS.PadToColumn(48 + 3 * Bias);
6379 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6380 ShndxTable);
6381 OS.PadToColumn(52 + 3 * Bias);
6382 OS << SymName << "\n";
6383 }
6384 }
6385
6386 if (!Parser.getOtherEntries().empty())
6387 OS << "\n Number of TLS and multi-GOT entries "
6388 << Parser.getOtherEntries().size() << "\n";
6389}
6390
6391template <class ELFT>
6392void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6393 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6394 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6395 OS.PadToColumn(2);
6396 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6397 OS.PadToColumn(11 + Bias);
6398 OS << format_hex_no_prefix(*E, 8 + Bias);
6399 OS.PadToColumn(20 + 2 * Bias);
6400 OS << Purpose << "\n";
6401 };
6402
6403 OS << "PLT GOT:\n\n";
6404
6405 OS << " Reserved entries:\n";
6406 OS << " Address Initial Purpose\n";
6407 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6408 if (Parser.getPltModulePointer())
6409 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6410
6411 if (!Parser.getPltEntries().empty()) {
6412 OS << "\n";
6413 OS << " Entries:\n";
6414 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6415 DataRegion<Elf_Word> ShndxTable(
6416 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6417 for (auto &E : Parser.getPltEntries()) {
6418 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6419 const Elf_Sym &FirstSym = *cantFail(
6420 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6421 std::string SymName = this->getFullSymbolName(
6422 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6423
6424 OS.PadToColumn(2);
6425 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6426 OS.PadToColumn(11 + Bias);
6427 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6428 OS.PadToColumn(20 + 2 * Bias);
6429 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6430 OS.PadToColumn(29 + 3 * Bias);
6431 OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6432 OS.PadToColumn(37 + 3 * Bias);
6433 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6434 ShndxTable);
6435 OS.PadToColumn(41 + 3 * Bias);
6436 OS << SymName << "\n";
6437 }
6438 }
6439}
6440
6441template <class ELFT>
6442Expected<const Elf_Mips_ABIFlags<ELFT> *>
6443getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6444 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6445 if (Sec == nullptr)
6446 return nullptr;
6447
6448 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6449 Expected<ArrayRef<uint8_t>> DataOrErr =
6450 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6451 if (!DataOrErr)
6452 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6453
6454 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6455 return createError(ErrPrefix + "it has a wrong size (" +
6456 Twine(DataOrErr->size()) + ")");
6457 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6458}
6459
6460template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6461 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6462 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6463 getMipsAbiFlagsSection(*this))
6464 Flags = *SecOrErr;
6465 else
6466 this->reportUniqueWarning(SecOrErr.takeError());
6467 if (!Flags)
6468 return;
6469
6470 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6471 OS << "ISA: MIPS" << int(Flags->isa_level);
6472 if (Flags->isa_rev > 1)
6473 OS << "r" << int(Flags->isa_rev);
6474 OS << "\n";
6475 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6476 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6477 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6478 OS << "FP ABI: "
6479 << enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n";
6480 OS << "ISA Extension: "
6481 << enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6482 if (Flags->ases == 0)
6483 OS << "ASEs: None\n";
6484 else
6485 // FIXME: Print each flag on a separate line.
6486 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6487 << "\n";
6488 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6489 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6490 OS << "\n";
6491}
6492
6493template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6494 const Elf_Ehdr &E = this->Obj.getHeader();
6495 {
6496 DictScope D(W, "ElfHeader");
6497 {
6498 DictScope D(W, "Ident");
6499 W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6500 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6501 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6502 makeArrayRef(ElfDataEncoding));
6503 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6504
6505 auto OSABI = makeArrayRef(ElfOSABI);
6506 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6507 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6508 switch (E.e_machine) {
6509 case ELF::EM_AMDGPU:
6510 OSABI = makeArrayRef(AMDGPUElfOSABI);
6511 break;
6512 case ELF::EM_ARM:
6513 OSABI = makeArrayRef(ARMElfOSABI);
6514 break;
6515 case ELF::EM_TI_C6000:
6516 OSABI = makeArrayRef(C6000ElfOSABI);
6517 break;
6518 }
6519 }
6520 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6521 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6522 W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6523 }
6524
6525 std::string TypeStr;
6526 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6527 TypeStr = Ent->Name.str();
6528 } else {
6529 if (E.e_type >= ET_LOPROC)
6530 TypeStr = "Processor Specific";
6531 else if (E.e_type >= ET_LOOS)
6532 TypeStr = "OS Specific";
6533 else
6534 TypeStr = "Unknown";
6535 }
6536 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6537
6538 W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6539 W.printNumber("Version", E.e_version);
6540 W.printHex("Entry", E.e_entry);
6541 W.printHex("ProgramHeaderOffset", E.e_phoff);
6542 W.printHex("SectionHeaderOffset", E.e_shoff);
6543 if (E.e_machine == EM_MIPS)
6544 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6545 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6546 unsigned(ELF::EF_MIPS_MACH));
6547 else if (E.e_machine == EM_AMDGPU) {
6548 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6549 default:
6550 W.printHex("Flags", E.e_flags);
6551 break;
6552 case 0:
6553 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6554 [[fallthrough]];
6555 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6556 W.printFlags("Flags", E.e_flags,
6557 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6558 unsigned(ELF::EF_AMDGPU_MACH));
6559 break;
6560 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6561 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6562 W.printFlags("Flags", E.e_flags,
6563 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6564 unsigned(ELF::EF_AMDGPU_MACH),
6565 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6566 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6567 break;
6568 }
6569 } else if (E.e_machine == EM_RISCV)
6570 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6571 else if (E.e_machine == EM_AVR)
6572 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6573 unsigned(ELF::EF_AVR_ARCH_MASK));
6574 else if (E.e_machine == EM_LOONGARCH)
6575 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderLoongArchFlags),
6576 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6577 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6578 else
6579 W.printFlags("Flags", E.e_flags);
6580 W.printNumber("HeaderSize", E.e_ehsize);
6581 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6582 W.printNumber("ProgramHeaderCount", E.e_phnum);
6583 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6584 W.printString("SectionHeaderCount",
6585 getSectionHeadersNumString(this->Obj, this->FileName));
6586 W.printString("StringTableSectionIndex",
6587 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6588 }
6589}
6590
6591template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6592 DictScope Lists(W, "Groups");
6593 std::vector<GroupSection> V = this->getGroups();
6594 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6595 for (const GroupSection &G : V) {
6596 DictScope D(W, "Group");
6597 W.printNumber("Name", G.Name, G.ShName);
6598 W.printNumber("Index", G.Index);
6599 W.printNumber("Link", G.Link);
6600 W.printNumber("Info", G.Info);
6601 W.printHex("Type", getGroupType(G.Type), G.Type);
6602 W.startLine() << "Signature: " << G.Signature << "\n";
6603
6604 ListScope L(W, "Section(s) in group");
6605 for (const GroupMember &GM : G.Members) {
6606 const GroupSection *MainGroup = Map[GM.Index];
6607 if (MainGroup != &G)
6608 this->reportUniqueWarning(
6609 "section with index " + Twine(GM.Index) +
6610 ", included in the group section with index " +
6611 Twine(MainGroup->Index) +
6612 ", was also found in the group section with index " +
6613 Twine(G.Index));
6614 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6615 }
6616 }
6617
6618 if (V.empty())
6619 W.startLine() << "There are no group sections in the file.\n";
6620}
6621
6622template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6623 ListScope D(W, "Relocations");
6624
6625 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
1
Assuming '__begin0' is not equal to '__end0'
6626 if (!isRelocationSec<ELFT>(Sec))
2
Taking false branch
6627 continue;
6628
6629 StringRef Name = this->getPrintableSectionName(Sec);
6630 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6631 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6632 W.indent();
6633 this->printRelocationsHelper(Sec);
3
Calling 'ELFDumper::printRelocationsHelper'
6634 W.unindent();
6635 W.startLine() << "}\n";
6636 }
6637}
6638
6639template <class ELFT>
6640void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6641 W.startLine() << W.hex(R) << "\n";
6642}
6643
6644template <class ELFT>
6645void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6646 const RelSymbol<ELFT> &RelSym) {
6647 StringRef SymbolName = RelSym.Name;
6648 SmallString<32> RelocName;
6649 this->Obj.getRelocationTypeName(R.Type, RelocName);
6650
6651 if (opts::ExpandRelocs) {
6652 DictScope Group(W, "Relocation");
6653 W.printHex("Offset", R.Offset);
6654 W.printNumber("Type", RelocName, R.Type);
6655 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6656 if (R.Addend)
6657 W.printHex("Addend", (uintX_t)*R.Addend);
6658 } else {
6659 raw_ostream &OS = W.startLine();
6660 OS << W.hex(R.Offset) << " " << RelocName << " "
6661 << (!SymbolName.empty() ? SymbolName : "-");
6662 if (R.Addend)
6663 OS << " " << W.hex((uintX_t)*R.Addend);
6664 OS << "\n";
6665 }
6666}
6667
6668template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6669 ListScope SectionsD(W, "Sections");
6670
6671 int SectionIndex = -1;
6672 std::vector<EnumEntry<unsigned>> FlagsList =
6673 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6674 this->Obj.getHeader().e_machine);
6675 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6676 DictScope SectionD(W, "Section");
6677 W.printNumber("Index", ++SectionIndex);
6678 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6679 W.printHex("Type",
6680 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6681 Sec.sh_type),
6682 Sec.sh_type);
6683 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6684 W.printHex("Address", Sec.sh_addr);
6685 W.printHex("Offset", Sec.sh_offset);
6686 W.printNumber("Size", Sec.sh_size);
6687 W.printNumber("Link", Sec.sh_link);
6688 W.printNumber("Info", Sec.sh_info);
6689 W.printNumber("AddressAlignment", Sec.sh_addralign);
6690 W.printNumber("EntrySize", Sec.sh_entsize);
6691
6692 if (opts::SectionRelocations) {
6693 ListScope D(W, "Relocations");
6694 this->printRelocationsHelper(Sec);
6695 }
6696
6697 if (opts::SectionSymbols) {
6698 ListScope D(W, "Symbols");
6699 if (this->DotSymtabSec) {
6700 StringRef StrTable = unwrapOrError(
6701 this->FileName,
6702 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6703 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6704
6705 typename ELFT::SymRange Symbols = unwrapOrError(
6706 this->FileName, this->Obj.symbols(this->DotSymtabSec));
6707 for (const Elf_Sym &Sym : Symbols) {
6708 const Elf_Shdr *SymSec = unwrapOrError(
6709 this->FileName,
6710 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6711 if (SymSec == &Sec)
6712 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6713 false);
6714 }
6715 }
6716 }
6717
6718 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6719 ArrayRef<uint8_t> Data =
6720 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6721 W.printBinaryBlock(
6722 "SectionData",
6723 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6724 }
6725 }
6726}
6727
6728template <class ELFT>
6729void LLVMELFDumper<ELFT>::printSymbolSection(
6730 const Elf_Sym &Symbol, unsigned SymIndex,
6731 DataRegion<Elf_Word> ShndxTable) const {
6732 auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6733 if (Symbol.isUndefined())
6734 return StringRef("Undefined");
6735 if (Symbol.isProcessorSpecific())
6736 return StringRef("Processor Specific");
6737 if (Symbol.isOSSpecific())
6738 return StringRef("Operating System Specific");
6739 if (Symbol.isAbsolute())
6740 return StringRef("Absolute");
6741 if (Symbol.isCommon())
6742 return StringRef("Common");
6743 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6744 return StringRef("Reserved");
6745 return std::nullopt;
6746 };
6747
6748 if (Optional<StringRef> Type = GetSectionSpecialType()) {
6749 W.printHex("Section", *Type, Symbol.st_shndx);
6750 return;
6751 }
6752
6753 Expected<unsigned> SectionIndex =
6754 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6755 if (!SectionIndex) {
6756 assert(Symbol.st_shndx == SHN_XINDEX &&(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6758, __extension__
__PRETTY_FUNCTION__))
6757 "getSymbolSectionIndex should only fail due to an invalid "(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6758, __extension__
__PRETTY_FUNCTION__))
6758 "SHT_SYMTAB_SHNDX table/reference")(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6758, __extension__
__PRETTY_FUNCTION__))
;
6759 this->reportUniqueWarning(SectionIndex.takeError());
6760 W.printHex("Section", "Reserved", SHN_XINDEX);
6761 return;
6762 }
6763
6764 Expected<StringRef> SectionName =
6765 this->getSymbolSectionName(Symbol, *SectionIndex);
6766 if (!SectionName) {
6767 // Don't report an invalid section name if the section headers are missing.
6768 // In such situations, all sections will be "invalid".
6769 if (!this->ObjF.sections().empty())
6770 this->reportUniqueWarning(SectionName.takeError());
6771 else
6772 consumeError(SectionName.takeError());
6773 W.printHex("Section", "<?>", *SectionIndex);
6774 } else {
6775 W.printHex("Section", *SectionName, *SectionIndex);
6776 }
6777}
6778
6779template <class ELFT>
6780void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6781 DataRegion<Elf_Word> ShndxTable,
6782 Optional<StringRef> StrTable,
6783 bool IsDynamic,
6784 bool /*NonVisibilityBitsUsed*/) const {
6785 std::string FullSymbolName = this->getFullSymbolName(
6786 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6787 unsigned char SymbolType = Symbol.getType();
6788
6789 DictScope D(W, "Symbol");
6790 W.printNumber("Name", FullSymbolName, Symbol.st_name);
6791 W.printHex("Value", Symbol.st_value);
6792 W.printNumber("Size", Symbol.st_size);
6793 W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6794 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6795 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6796 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6797 else
6798 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6799 if (Symbol.st_other == 0)
6800 // Usually st_other flag is zero. Do not pollute the output
6801 // by flags enumeration in that case.
6802 W.printNumber("Other", 0);
6803 else {
6804 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6805 std::end(ElfSymOtherFlags));
6806 if (this->Obj.getHeader().e_machine == EM_MIPS) {
6807 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6808 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6809 // cases separately.
6810 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6811 SymOtherFlags.insert(SymOtherFlags.end(),
6812 std::begin(ElfMips16SymOtherFlags),
6813 std::end(ElfMips16SymOtherFlags));
6814 else
6815 SymOtherFlags.insert(SymOtherFlags.end(),
6816 std::begin(ElfMipsSymOtherFlags),
6817 std::end(ElfMipsSymOtherFlags));
6818 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6819 SymOtherFlags.insert(SymOtherFlags.end(),
6820 std::begin(ElfAArch64SymOtherFlags),
6821 std::end(ElfAArch64SymOtherFlags));
6822 } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6823 SymOtherFlags.insert(SymOtherFlags.end(),
6824 std::begin(ElfRISCVSymOtherFlags),
6825 std::end(ElfRISCVSymOtherFlags));
6826 }
6827 W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6828 }
6829 printSymbolSection(Symbol, SymIndex, ShndxTable);
6830}
6831
6832template <class ELFT>
6833void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6834 bool PrintDynamicSymbols) {
6835 if (PrintSymbols) {
6836 ListScope Group(W, "Symbols");
6837 this->printSymbolsHelper(false);
6838 }
6839 if (PrintDynamicSymbols) {
6840 ListScope Group(W, "DynamicSymbols");
6841 this->printSymbolsHelper(true);
6842 }
6843}
6844
6845template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6846 Elf_Dyn_Range Table = this->dynamic_table();
6847 if (Table.empty())
6848 return;
6849
6850 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6851
6852 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6853 // The "Name/Value" column should be indented from the "Type" column by N
6854 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6855 // space (1) = -3.
6856 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6857 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6858
6859 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6860 for (auto Entry : Table) {
6861 uintX_t Tag = Entry.getTag();
6862 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6863 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6864 << " "
6865 << format(ValueFmt.c_str(),
6866 this->Obj.getDynamicTagAsString(Tag).c_str())
6867 << Value << "\n";
6868 }
6869 W.startLine() << "]\n";
6870}
6871
6872template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6873 W.startLine() << "Dynamic Relocations {\n";
6874 W.indent();
6875 this->printDynamicRelocationsHelper();
6876 W.unindent();
6877 W.startLine() << "}\n";
6878}
6879
6880template <class ELFT>
6881void LLVMELFDumper<ELFT>::printProgramHeaders(
6882 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6883 if (PrintProgramHeaders)
6884 printProgramHeaders();
6885 if (PrintSectionMapping == cl::BOU_TRUE)
6886 printSectionMapping();
6887}
6888
6889template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6890 ListScope L(W, "ProgramHeaders");
6891
6892 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6893 if (!PhdrsOrErr) {
6894 this->reportUniqueWarning("unable to dump program headers: " +
6895 toString(PhdrsOrErr.takeError()));
6896 return;
6897 }
6898
6899 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6900 DictScope P(W, "ProgramHeader");
6901 StringRef Type =
6902 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6903
6904 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6905 W.printHex("Offset", Phdr.p_offset);
6906 W.printHex("VirtualAddress", Phdr.p_vaddr);
6907 W.printHex("PhysicalAddress", Phdr.p_paddr);
6908 W.printNumber("FileSize", Phdr.p_filesz);
6909 W.printNumber("MemSize", Phdr.p_memsz);
6910 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6911 W.printNumber("Alignment", Phdr.p_align);
6912 }
6913}
6914
6915template <class ELFT>
6916void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6917 ListScope SS(W, "VersionSymbols");
6918 if (!Sec)
6919 return;
6920
6921 StringRef StrTable;
6922 ArrayRef<Elf_Sym> Syms;
6923 const Elf_Shdr *SymTabSec;
6924 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6925 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6926 if (!VerTableOrErr) {
6927 this->reportUniqueWarning(VerTableOrErr.takeError());
6928 return;
6929 }
6930
6931 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6932 return;
6933
6934 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6935 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6936 DictScope S(W, "Symbol");
6937 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6938 W.printString("Name",
6939 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6940 /*IsDynamic=*/true));
6941 }
6942}
6943
6944const EnumEntry<unsigned> SymVersionFlags[] = {
6945 {"Base", "BASE", VER_FLG_BASE},
6946 {"Weak", "WEAK", VER_FLG_WEAK},
6947 {"Info", "INFO", VER_FLG_INFO}};
6948
6949template <class ELFT>
6950void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6951 ListScope SD(W, "VersionDefinitions");
6952 if (!Sec)
6953 return;
6954
6955 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6956 if (!V) {
6957 this->reportUniqueWarning(V.takeError());
6958 return;
6959 }
6960
6961 for (const VerDef &D : *V) {
6962 DictScope Def(W, "Definition");
6963 W.printNumber("Version", D.Version);
6964 W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6965 W.printNumber("Index", D.Ndx);
6966 W.printNumber("Hash", D.Hash);
6967 W.printString("Name", D.Name.c_str());
6968 W.printList(
6969 "Predecessors", D.AuxV,
6970 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6971 }
6972}
6973
6974template <class ELFT>
6975void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6976 ListScope SD(W, "VersionRequirements");
6977 if (!Sec)
6978 return;
6979
6980 Expected<std::vector<VerNeed>> V =
6981 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6982 if (!V) {
6983 this->reportUniqueWarning(V.takeError());
6984 return;
6985 }
6986
6987 for (const VerNeed &VN : *V) {
6988 DictScope Entry(W, "Dependency");
6989 W.printNumber("Version", VN.Version);
6990 W.printNumber("Count", VN.Cnt);
6991 W.printString("FileName", VN.File.c_str());
6992
6993 ListScope L(W, "Entries");
6994 for (const VernAux &Aux : VN.AuxV) {
6995 DictScope Entry(W, "Entry");
6996 W.printNumber("Hash", Aux.Hash);
6997 W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6998 W.printNumber("Index", Aux.Other);
6999 W.printString("Name", Aux.Name.c_str());
7000 }
7001 }
7002}
7003
7004template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
7005 W.startLine() << "Hash Histogram not implemented!\n";
7006}
7007
7008// Returns true if rel/rela section exists, and populates SymbolIndices.
7009// Otherwise returns false.
7010template <class ELFT>
7011static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7012 const ELFFile<ELFT> &Obj,
7013 const LLVMELFDumper<ELFT> *Dumper,
7014 SmallVector<uint32_t, 128> &SymbolIndices) {
7015 if (!CGRelSection) {
7016 Dumper->reportUniqueWarning(
7017 "relocation section for a call graph section doesn't exist");
7018 return false;
7019 }
7020
7021 if (CGRelSection->sh_type == SHT_REL) {
7022 typename ELFT::RelRange CGProfileRel;
7023 Expected<typename ELFT::RelRange> CGProfileRelOrError =
7024 Obj.rels(*CGRelSection);
7025 if (!CGProfileRelOrError) {
7026 Dumper->reportUniqueWarning("unable to load relocations for "
7027 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7028 toString(CGProfileRelOrError.takeError()));
7029 return false;
7030 }
7031
7032 CGProfileRel = *CGProfileRelOrError;
7033 for (const typename ELFT::Rel &Rel : CGProfileRel)
7034 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7035 } else {
7036 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7037 // the format to SHT_RELA
7038 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7039 typename ELFT::RelaRange CGProfileRela;
7040 Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7041 Obj.relas(*CGRelSection);
7042 if (!CGProfileRelaOrError) {
7043 Dumper->reportUniqueWarning("unable to load relocations for "
7044 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7045 toString(CGProfileRelaOrError.takeError()));
7046 return false;
7047 }
7048
7049 CGProfileRela = *CGProfileRelaOrError;
7050 for (const typename ELFT::Rela &Rela : CGProfileRela)
7051 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7052 }
7053
7054 return true;
7055}
7056
7057template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7058 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
7059
7060 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7061 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7062 };
7063 this->getSectionAndRelocations(IsMatch, SecToRelocMap);
7064
7065 for (const auto &CGMapEntry : SecToRelocMap) {
7066 const Elf_Shdr *CGSection = CGMapEntry.first;
7067 const Elf_Shdr *CGRelSection = CGMapEntry.second;
7068
7069 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7070 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7071 if (!CGProfileOrErr) {
7072 this->reportUniqueWarning(
7073 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7074 toString(CGProfileOrErr.takeError()));
7075 return;
7076 }
7077
7078 SmallVector<uint32_t, 128> SymbolIndices;
7079 bool UseReloc =
7080 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7081 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7082 this->reportUniqueWarning(
7083 "number of from/to pairs does not match number of frequencies");
7084 UseReloc = false;
7085 }
7086
7087 ListScope L(W, "CGProfile");
7088 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7089 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7090 DictScope D(W, "CGProfileEntry");
7091 if (UseReloc) {
7092 uint32_t From = SymbolIndices[I * 2];
7093 uint32_t To = SymbolIndices[I * 2 + 1];
7094 W.printNumber("From", this->getStaticSymbolName(From), From);
7095 W.printNumber("To", this->getStaticSymbolName(To), To);
7096 }
7097 W.printNumber("Weight", CGPE.cgp_weight);
7098 }
7099 }
7100}
7101
7102template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7103 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7104 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7105 if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP &&
7106 Sec.sh_type != SHT_LLVM_BB_ADDR_MAP_V0) {
7107 continue;
7108 }
7109 Optional<const Elf_Shdr *> FunctionSec;
7110 if (IsRelocatable)
7111 FunctionSec =
7112 unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7113 ListScope L(W, "BBAddrMap");
7114 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7115 this->Obj.decodeBBAddrMap(Sec);
7116 if (!BBAddrMapOrErr) {
7117 this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7118 toString(BBAddrMapOrErr.takeError()));
7119 continue;
7120 }
7121 for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7122 DictScope D(W, "Function");
7123 W.printHex("At", AM.Addr);
7124 SmallVector<uint32_t> FuncSymIndex =
7125 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7126 std::string FuncName = "<?>";
7127 if (FuncSymIndex.empty())
7128 this->reportUniqueWarning(
7129 "could not identify function symbol for address (0x" +
7130 Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7131 else
7132 FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7133 W.printString("Name", FuncName);
7134
7135 ListScope L(W, "BB entries");
7136 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7137 DictScope L(W);
7138 W.printHex("Offset", BBE.Offset);
7139 W.printHex("Size", BBE.Size);
7140 W.printBoolean("HasReturn", BBE.HasReturn);
7141 W.printBoolean("HasTailCall", BBE.HasTailCall);
7142 W.printBoolean("IsEHPad", BBE.IsEHPad);
7143 W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7144 }
7145 }
7146 }
7147}
7148
7149template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7150 ListScope L(W, "Addrsig");
7151 if (!this->DotAddrsigSec)
7152 return;
7153
7154 Expected<std::vector<uint64_t>> SymsOrErr =
7155 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7156 if (!SymsOrErr) {
7157 this->reportUniqueWarning(SymsOrErr.takeError());
7158 return;
7159 }
7160
7161 for (uint64_t Sym : *SymsOrErr)
7162 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7163}
7164
7165template <typename ELFT>
7166static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7167 ScopedPrinter &W) {
7168 // Return true if we were able to pretty-print the note, false otherwise.
7169 switch (NoteType) {
7170 default:
7171 return false;
7172 case ELF::NT_GNU_ABI_TAG: {
7173 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7174 if (!AbiTag.IsValid) {
7175 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7176 return false;
7177 } else {
7178 W.printString("OS", AbiTag.OSName);
7179 W.printString("ABI", AbiTag.ABI);
7180 }
7181 break;
7182 }
7183 case ELF::NT_GNU_BUILD_ID: {
7184 W.printString("Build ID", getGNUBuildId(Desc));
7185 break;
7186 }
7187 case ELF::NT_GNU_GOLD_VERSION:
7188 W.printString("Version", getDescAsStringRef(Desc));
7189 break;
7190 case ELF::NT_GNU_PROPERTY_TYPE_0:
7191 ListScope D(W, "Property");
7192 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7193 W.printString(Property);
7194 break;
7195 }
7196 return true;
7197}
7198
7199static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7200 ScopedPrinter &W) {
7201 // Return true if we were able to pretty-print the note, false otherwise.
7202 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7203 if (Props.empty())
7204 return false;
7205 for (const auto &KV : Props)
7206 W.printString(KV.first, KV.second);
7207 return true;
7208}
7209
7210template <typename ELFT>
7211static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7212 ArrayRef<uint8_t> Desc,
7213 ScopedPrinter &W) {
7214 switch (NoteType) {
7215 default:
7216 return false;
7217 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7218 W.printString("Version", getDescAsStringRef(Desc));
7219 break;
7220 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7221 W.printString("Producer", getDescAsStringRef(Desc));
7222 break;
7223 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7224 W.printString("Producer version", getDescAsStringRef(Desc));
7225 break;
7226 }
7227 return true;
7228}
7229
7230static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7231 W.printNumber("Page Size", Note.PageSize);
7232 for (const CoreFileMapping &Mapping : Note.Mappings) {
7233 ListScope D(W, "Mapping");
7234 W.printHex("Start", Mapping.Start);
7235 W.printHex("End", Mapping.End);
7236 W.printHex("Offset", Mapping.Offset);
7237 W.printString("Filename", Mapping.Filename);
7238 }
7239}
7240
7241template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7242 ListScope L(W, "Notes");
7243
7244 std::unique_ptr<DictScope> NoteScope;
7245 auto StartNotes = [&](Optional<StringRef> SecName,
7246 const typename ELFT::Off Offset,
7247 const typename ELFT::Addr Size) {
7248 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7249 W.printString("Name", SecName ? *SecName : "<?>");
7250 W.printHex("Offset", Offset);
7251 W.printHex("Size", Size);
7252 };
7253
7254 auto EndNotes = [&] { NoteScope.reset(); };
7255
7256 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7257 DictScope D2(W, "Note");
7258 StringRef Name = Note.getName();
7259 ArrayRef<uint8_t> Descriptor = Note.getDesc();
7260 Elf_Word Type = Note.getType();
7261
7262 // Print the note owner/type.
7263 W.printString("Owner", Name);
7264 W.printHex("Data size", Descriptor.size());
7265
7266 StringRef NoteType =
7267 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7268 if (!NoteType.empty())
7269 W.printString("Type", NoteType);
7270 else
7271 W.printString("Type",
7272 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7273
7274 // Print the description, or fallback to printing raw bytes for unknown
7275 // owners/if we fail to pretty-print the contents.
7276 if (Name == "GNU") {
7277 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7278 return Error::success();
7279 } else if (Name == "FreeBSD") {
7280 if (Optional<FreeBSDNote> N =
7281 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7282 W.printString(N->Type, N->Value);
7283 return Error::success();
7284 }
7285 } else if (Name == "AMD") {
7286 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7287 if (!N.Type.empty()) {
7288 W.printString(N.Type, N.Value);
7289 return Error::success();
7290 }
7291 } else if (Name == "AMDGPU") {
7292 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7293 if (!N.Type.empty()) {
7294 W.printString(N.Type, N.Value);
7295 return Error::success();
7296 }
7297 } else if (Name == "LLVMOMPOFFLOAD") {
7298 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7299 return Error::success();
7300 } else if (Name == "CORE") {
7301 if (Type == ELF::NT_FILE) {
7302 DataExtractor DescExtractor(Descriptor,
7303 ELFT::TargetEndianness == support::little,
7304 sizeof(Elf_Addr));
7305 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7306 printCoreNoteLLVMStyle(*N, W);
7307 return Error::success();
7308 } else {
7309 return N.takeError();
7310 }
7311 }
7312 } else if (Name == "Android") {
7313 if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7314 return Error::success();
7315 }
7316 if (!Descriptor.empty()) {
7317 W.printBinaryBlock("Description data", Descriptor);
7318 }
7319 return Error::success();
7320 };
7321
7322 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7323}
7324
7325template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7326 ListScope L(W, "LinkerOptions");
7327
7328 unsigned I = -1;
7329 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7330 ++I;
7331 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7332 continue;
7333
7334 Expected<ArrayRef<uint8_t>> ContentsOrErr =
7335 this->Obj.getSectionContents(Shdr);
7336 if (!ContentsOrErr) {
7337 this->reportUniqueWarning("unable to read the content of the "
7338 "SHT_LLVM_LINKER_OPTIONS section: " +
7339 toString(ContentsOrErr.takeError()));
7340 continue;
7341 }
7342 if (ContentsOrErr->empty())
7343 continue;
7344
7345 if (ContentsOrErr->back() != 0) {
7346 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7347 Twine(I) +
7348 " is broken: the "
7349 "content is not null-terminated");
7350 continue;
7351 }
7352
7353 SmallVector<StringRef, 16> Strings;
7354 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7355 if (Strings.size() % 2 != 0) {
7356 this->reportUniqueWarning(
7357 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7358 " is broken: an incomplete "
7359 "key-value pair was found. The last possible key was: \"" +
7360 Strings.back() + "\"");
7361 continue;
7362 }
7363
7364 for (size_t I = 0; I < Strings.size(); I += 2)
7365 W.printString(Strings[I], Strings[I + 1]);
7366 }
7367}
7368
7369template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7370 ListScope L(W, "DependentLibs");
7371 this->printDependentLibsHelper(
7372 [](const Elf_Shdr &) {},
7373 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7374}
7375
7376template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7377 ListScope L(W, "StackSizes");
7378 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7379 this->printRelocatableStackSizes([]() {});
7380 else
7381 this->printNonRelocatableStackSizes([]() {});
7382}
7383
7384template <class ELFT>
7385void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7386 ArrayRef<std::string> FuncNames) {
7387 DictScope D(W, "Entry");
7388 W.printList("Functions", FuncNames);
7389 W.printHex("Size", Size);
7390}
7391
7392template <class ELFT>
7393void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7394 auto PrintEntry = [&](const Elf_Addr *E) {
7395 W.printHex("Address", Parser.getGotAddress(E));
7396 W.printNumber("Access", Parser.getGotOffset(E));
7397 W.printHex("Initial", *E);
7398 };
7399
7400 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7401
7402 W.printHex("Canonical gp value", Parser.getGp());
7403 {
7404 ListScope RS(W, "Reserved entries");
7405 {
7406 DictScope D(W, "Entry");
7407 PrintEntry(Parser.getGotLazyResolver());
7408 W.printString("Purpose", StringRef("Lazy resolver"));
7409 }
7410
7411 if (Parser.getGotModulePointer()) {
7412 DictScope D(W, "Entry");
7413 PrintEntry(Parser.getGotModulePointer());
7414 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7415 }
7416 }
7417 {
7418 ListScope LS(W, "Local entries");
7419 for (auto &E : Parser.getLocalEntries()) {
7420 DictScope D(W, "Entry");
7421 PrintEntry(&E);
7422 }
7423 }
7424
7425 if (Parser.IsStatic)
7426 return;
7427
7428 {
7429 ListScope GS(W, "Global entries");
7430 for (auto &E : Parser.getGlobalEntries()) {
7431 DictScope D(W, "Entry");
7432
7433 PrintEntry(&E);
7434
7435 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7436 W.printHex("Value", Sym.st_value);
7437 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7438
7439 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7440 DataRegion<Elf_Word> ShndxTable(
7441 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7442 printSymbolSection(Sym, SymIndex, ShndxTable);
7443
7444 std::string SymName = this->getFullSymbolName(
7445 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7446 W.printNumber("Name", SymName, Sym.st_name);
7447 }
7448 }
7449
7450 W.printNumber("Number of TLS and multi-GOT entries",
7451 uint64_t(Parser.getOtherEntries().size()));
7452}
7453
7454template <class ELFT>
7455void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7456 auto PrintEntry = [&](const Elf_Addr *E) {
7457 W.printHex("Address", Parser.getPltAddress(E));
7458 W.printHex("Initial", *E);
7459 };
7460
7461 DictScope GS(W, "PLT GOT");
7462
7463 {
7464 ListScope RS(W, "Reserved entries");
7465 {
7466 DictScope D(W, "Entry");
7467 PrintEntry(Parser.getPltLazyResolver());
7468 W.printString("Purpose", StringRef("PLT lazy resolver"));
7469 }
7470
7471 if (auto E = Parser.getPltModulePointer()) {
7472 DictScope D(W, "Entry");
7473 PrintEntry(E);
7474 W.printString("Purpose", StringRef("Module pointer"));
7475 }
7476 }
7477 {
7478 ListScope LS(W, "Entries");
7479 DataRegion<Elf_Word> ShndxTable(
7480 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7481 for (auto &E : Parser.getPltEntries()) {
7482 DictScope D(W, "Entry");
7483 PrintEntry(&E);
7484
7485 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7486 W.printHex("Value", Sym.st_value);
7487 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7488 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7489 ShndxTable);
7490
7491 const Elf_Sym *FirstSym = cantFail(
7492 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7493 std::string SymName = this->getFullSymbolName(
7494 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7495 W.printNumber("Name", SymName, Sym.st_name);
7496 }
7497 }
7498}
7499
7500template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7501 const Elf_Mips_ABIFlags<ELFT> *Flags;
7502 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7503 getMipsAbiFlagsSection(*this)) {
7504 Flags = *SecOrErr;
7505 if (!Flags) {
7506 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7507 return;
7508 }
7509 } else {
7510 this->reportUniqueWarning(SecOrErr.takeError());
7511 return;
7512 }
7513
7514 raw_ostream &OS = W.getOStream();
7515 DictScope GS(W, "MIPS ABI Flags");
7516
7517 W.printNumber("Version", Flags->version);
7518 W.startLine() << "ISA: ";
7519 if (Flags->isa_rev <= 1)
7520 OS << format("MIPS%u", Flags->isa_level);
7521 else
7522 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7523 OS << "\n";
7524 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7525 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7526 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7527 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7528 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7529 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7530 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7531 W.printHex("Flags 2", Flags->flags2);
7532}
7533
7534template <class ELFT>
7535void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7536 ArrayRef<std::string> InputFilenames,
7537 const Archive *A) {
7538 FileScope = std::make_unique<DictScope>(this->W);
7539 DictScope D(this->W, "FileSummary");
7540 this->W.printString("File", FileStr);
7541 this->W.printString("Format", Obj.getFileFormatName());
7542 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7543 this->W.printString(
7544 "AddressSize",
7545 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7546 this->printLoadName();
7547}