Bug Summary

File:build/source/llvm/tools/llvm-readobj/ELFDumper.cpp
Warning:line 923, column 20
Branch condition evaluates to a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ELFDumper.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/llvm-readobj -I /build/source/llvm/tools/llvm-readobj -I include -I /build/source/llvm/include -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1675721604 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-02-07-030702-17298-1 -x c++ /build/source/llvm/tools/llvm-readobj/ELFDumper.cpp
1//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the ELF-specific dumper for llvm-readobj.
11///
12//===----------------------------------------------------------------------===//
13
14#include "ARMEHABIPrinter.h"
15#include "DwarfCFIEHPrinter.h"
16#include "ObjDumper.h"
17#include "StackMapPrinter.h"
18#include "llvm-readobj.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/MapVector.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/ADT/Twine.h"
31#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32#include "llvm/BinaryFormat/ELF.h"
33#include "llvm/BinaryFormat/MsgPackDocument.h"
34#include "llvm/Demangle/Demangle.h"
35#include "llvm/Object/Archive.h"
36#include "llvm/Object/ELF.h"
37#include "llvm/Object/ELFObjectFile.h"
38#include "llvm/Object/ELFTypes.h"
39#include "llvm/Object/Error.h"
40#include "llvm/Object/ObjectFile.h"
41#include "llvm/Object/RelocationResolver.h"
42#include "llvm/Object/StackMapParser.h"
43#include "llvm/Support/AMDGPUMetadata.h"
44#include "llvm/Support/ARMAttributeParser.h"
45#include "llvm/Support/ARMBuildAttributes.h"
46#include "llvm/Support/Casting.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Endian.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/Format.h"
51#include "llvm/Support/FormatVariadic.h"
52#include "llvm/Support/FormattedStream.h"
53#include "llvm/Support/LEB128.h"
54#include "llvm/Support/MSP430AttributeParser.h"
55#include "llvm/Support/MSP430Attributes.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/MipsABIFlags.h"
58#include "llvm/Support/RISCVAttributeParser.h"
59#include "llvm/Support/RISCVAttributes.h"
60#include "llvm/Support/ScopedPrinter.h"
61#include "llvm/Support/raw_ostream.h"
62#include <algorithm>
63#include <cinttypes>
64#include <cstddef>
65#include <cstdint>
66#include <cstdlib>
67#include <iterator>
68#include <memory>
69#include <optional>
70#include <string>
71#include <system_error>
72#include <vector>
73
74using namespace llvm;
75using namespace llvm::object;
76using namespace ELF;
77
78#define LLVM_READOBJ_ENUM_CASE(ns, enum)case ns::enum: return "enum"; \
79 case ns::enum: \
80 return #enum;
81
82#define ENUM_ENT(enum, altName){ "enum", altName, ELF::enum } \
83 { #enum, altName, ELF::enum }
84
85#define ENUM_ENT_1(enum){ "enum", "enum", ELF::enum } \
86 { #enum, #enum, ELF::enum }
87
88namespace {
89
90template <class ELFT> struct RelSymbol {
91 RelSymbol(const typename ELFT::Sym *S, StringRef N)
92 : Sym(S), Name(N.str()) {}
93 const typename ELFT::Sym *Sym;
94 std::string Name;
95};
96
97/// Represents a contiguous uniform range in the file. We cannot just create a
98/// range directly because when creating one of these from the .dynamic table
99/// the size, entity size and virtual address are different entries in arbitrary
100/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101struct DynRegionInfo {
102 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103 : Obj(&Owner), Dumper(&D) {}
104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105 uint64_t S, uint64_t ES)
106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107
108 /// Address in current address space.
109 const uint8_t *Addr = nullptr;
110 /// Size in bytes of the region.
111 uint64_t Size = 0;
112 /// Size of each entity in the region.
113 uint64_t EntSize = 0;
114
115 /// Owner object. Used for error reporting.
116 const Binary *Obj;
117 /// Dumper used for error reporting.
118 const ObjDumper *Dumper;
119 /// Error prefix. Used for error reporting to provide more information.
120 std::string Context;
121 /// Region size name. Used for error reporting.
122 StringRef SizePrintName = "size";
123 /// Entry size name. Used for error reporting. If this field is empty, errors
124 /// will not mention the entry size.
125 StringRef EntSizePrintName = "entry size";
126
127 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128 const Type *Start = reinterpret_cast<const Type *>(Addr);
129 if (!Start)
130 return {Start, Start};
131
132 const uint64_t Offset =
133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135
136 if (Size > ObjSize - Offset) {
137 Dumper->reportUniqueWarning(
138 "unable to read data at 0x" + Twine::utohexstr(Offset) +
139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140 "): it goes past the end of the file of size 0x" +
141 Twine::utohexstr(ObjSize));
142 return {Start, Start};
143 }
144
145 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146 return {Start, Start + (Size / EntSize)};
147
148 std::string Msg;
149 if (!Context.empty())
150 Msg += Context + " has ";
151
152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153 .str();
154 if (!EntSizePrintName.empty())
155 Msg +=
156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157 .str();
158
159 Dumper->reportUniqueWarning(Msg);
160 return {Start, Start};
161 }
162};
163
164struct GroupMember {
165 StringRef Name;
166 uint64_t Index;
167};
168
169struct GroupSection {
170 StringRef Name;
171 std::string Signature;
172 uint64_t ShName;
173 uint64_t Index;
174 uint32_t Link;
175 uint32_t Info;
176 uint32_t Type;
177 std::vector<GroupMember> Members;
178};
179
180namespace {
181
182struct NoteType {
183 uint32_t ID;
184 StringRef Name;
185};
186
187} // namespace
188
189template <class ELFT> class Relocation {
190public:
191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193 Offset(R.r_offset), Info(R.r_info) {}
194
195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197 Addend = R.r_addend;
198 }
199
200 uint32_t Type;
201 uint32_t Symbol;
202 typename ELFT::uint Offset;
203 typename ELFT::uint Info;
204 std::optional<int64_t> Addend;
205};
206
207template <class ELFT> class MipsGOTParser;
208
209template <typename ELFT> class ELFDumper : public ObjDumper {
210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
211
212public:
213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214
215 void printUnwindInfo() override;
216 void printNeededLibraries() override;
217 void printHashTable() override;
218 void printGnuHashTable() override;
219 void printLoadName() override;
220 void printVersionInfo() override;
221 void printArchSpecificInfo() override;
222 void printStackMap() const override;
223
224 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225
226 std::string describe(const Elf_Shdr &Sec) const;
227
228 unsigned getHashTableEntSize() const {
229 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
230 // sections. This violates the ELF specification.
231 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
232 Obj.getHeader().e_machine == ELF::EM_ALPHA)
233 return 8;
234 return 4;
235 }
236
237 Elf_Dyn_Range dynamic_table() const {
238 // A valid .dynamic section contains an array of entries terminated
239 // with a DT_NULL entry. However, sometimes the section content may
240 // continue past the DT_NULL entry, so to dump the section correctly,
241 // we first find the end of the entries by iterating over them.
242 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243
244 size_t Size = 0;
245 while (Size < Table.size())
246 if (Table[Size++].getTag() == DT_NULL)
247 break;
248
249 return Table.slice(0, Size);
250 }
251
252 Elf_Sym_Range dynamic_symbols() const {
253 if (!DynSymRegion)
254 return Elf_Sym_Range();
255 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
256 }
257
258 const Elf_Shdr *findSectionByName(StringRef Name) const;
259
260 StringRef getDynamicStringTable() const { return DynamicStringTable; }
261
262protected:
263 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
264 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
265 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266
267 void
268 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
269 function_ref<void(StringRef, uint64_t)> OnLibEntry);
270
271 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
272 const RelSymbol<ELFT> &RelSym) = 0;
273 virtual void printRelrReloc(const Elf_Relr &R) = 0;
274 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
275 const DynRegionInfo &Reg) {}
276 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
277 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
278 void printDynamicReloc(const Relocation<ELFT> &R);
279 void printDynamicRelocationsHelper();
280 void printRelocationsHelper(const Elf_Shdr &Sec);
281 void forEachRelocationDo(
282 const Elf_Shdr &Sec, bool RawRelr,
283 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
284 const Elf_Shdr &, const Elf_Shdr *)>
285 RelRelaFn,
286 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287
288 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
289 bool NonVisibilityBitsUsed) const {};
290 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
291 DataRegion<Elf_Word> ShndxTable,
292 std::optional<StringRef> StrTable, bool IsDynamic,
293 bool NonVisibilityBitsUsed) const = 0;
294
295 virtual void printMipsABIFlags() = 0;
296 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
297 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298
299 Expected<ArrayRef<Elf_Versym>>
300 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
301 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
302 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303
304 std::vector<GroupSection> getGroups();
305
306 // Returns the function symbol index for the given address. Matches the
307 // symbol's section with FunctionSec when specified.
308 // Returns std::nullopt if no function symbol can be found for the address or
309 // in case it is not defined in the specified section.
310 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
311 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
312 bool printFunctionStackSize(uint64_t SymValue,
313 std::optional<const Elf_Shdr *> FunctionSec,
314 const Elf_Shdr &StackSizeSec, DataExtractor Data,
315 uint64_t *Offset);
316 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
317 unsigned Ndx, const Elf_Shdr *SymTab,
318 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
319 const RelocationResolver &Resolver, DataExtractor Data);
320 virtual void printStackSizeEntry(uint64_t Size,
321 ArrayRef<std::string> FuncNames) = 0;
322
323 void printRelocatableStackSizes(std::function<void()> PrintHeader);
324 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
325
326 /// Retrieves sections with corresponding relocation sections based on
327 /// IsMatch.
328 void getSectionAndRelocations(
329 std::function<bool(const Elf_Shdr &)> IsMatch,
330 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
331
332 const object::ELFObjectFile<ELFT> &ObjF;
333 const ELFFile<ELFT> &Obj;
334 StringRef FileName;
335
336 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
337 uint64_t EntSize) {
338 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
339 return createError("offset (0x" + Twine::utohexstr(Offset) +
340 ") + size (0x" + Twine::utohexstr(Size) +
341 ") is greater than the file size (0x" +
342 Twine::utohexstr(Obj.getBufSize()) + ")");
343 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
344 }
345
346 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
347 support::endianness);
348 void printMipsReginfo();
349 void printMipsOptions();
350
351 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
352 void loadDynamicTable();
353 void parseDynamicTable();
354
355 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
356 bool &IsDefault) const;
357 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
358
359 DynRegionInfo DynRelRegion;
360 DynRegionInfo DynRelaRegion;
361 DynRegionInfo DynRelrRegion;
362 DynRegionInfo DynPLTRelRegion;
363 std::optional<DynRegionInfo> DynSymRegion;
364 DynRegionInfo DynSymTabShndxRegion;
365 DynRegionInfo DynamicTable;
366 StringRef DynamicStringTable;
367 const Elf_Hash *HashTable = nullptr;
368 const Elf_GnuHash *GnuHashTable = nullptr;
369 const Elf_Shdr *DotSymtabSec = nullptr;
370 const Elf_Shdr *DotDynsymSec = nullptr;
371 const Elf_Shdr *DotAddrsigSec = nullptr;
372 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
373 std::optional<uint64_t> SONameOffset;
374 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
375
376 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
377 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
378 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
379
380 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
381 DataRegion<Elf_Word> ShndxTable,
382 std::optional<StringRef> StrTable,
383 bool IsDynamic) const;
384 Expected<unsigned>
385 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
386 DataRegion<Elf_Word> ShndxTable) const;
387 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
388 unsigned SectionIndex) const;
389 std::string getStaticSymbolName(uint32_t Index) const;
390 StringRef getDynamicString(uint64_t Value) const;
391
392 void printSymbolsHelper(bool IsDynamic) const;
393 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
394
395 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
396 const Elf_Shdr *SymTab) const;
397
398 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
399
400private:
401 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
402};
403
404template <class ELFT>
405std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
406 return ::describe(Obj, Sec);
407}
408
409namespace {
410
411template <class ELFT> struct SymtabLink {
412 typename ELFT::SymRange Symbols;
413 StringRef StringTable;
414 const typename ELFT::Shdr *SymTab;
415};
416
417// Returns the linked symbol table, symbols and associated string table for a
418// given section.
419template <class ELFT>
420Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
421 const typename ELFT::Shdr &Sec,
422 unsigned ExpectedType) {
423 Expected<const typename ELFT::Shdr *> SymtabOrErr =
424 Obj.getSection(Sec.sh_link);
425 if (!SymtabOrErr)
426 return createError("invalid section linked to " + describe(Obj, Sec) +
427 ": " + toString(SymtabOrErr.takeError()));
428
429 if ((*SymtabOrErr)->sh_type != ExpectedType)
430 return createError(
431 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
432 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
433 ", but got " +
434 object::getELFSectionTypeName(Obj.getHeader().e_machine,
435 (*SymtabOrErr)->sh_type));
436
437 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
438 if (!StrTabOrErr)
439 return createError(
440 "can't get a string table for the symbol table linked to " +
441 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
442
443 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
444 if (!SymsOrErr)
445 return createError("unable to read symbols from the " + describe(Obj, Sec) +
446 ": " + toString(SymsOrErr.takeError()));
447
448 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
449}
450
451} // namespace
452
453template <class ELFT>
454Expected<ArrayRef<typename ELFT::Versym>>
455ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
456 StringRef *StrTab,
457 const Elf_Shdr **SymTabSec) const {
458 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec))(static_cast <bool> ((!SymTab && !StrTab &&
!SymTabSec) || (SymTab && StrTab && SymTabSec
)) ? void (0) : __assert_fail ("(!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 458, __extension__
__PRETTY_FUNCTION__))
;
459 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
460 sizeof(uint16_t) !=
461 0)
462 return createError("the " + describe(Sec) + " is misaligned");
463
464 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
465 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
466 if (!VersionsOrErr)
467 return createError("cannot read content of " + describe(Sec) + ": " +
468 toString(VersionsOrErr.takeError()));
469
470 Expected<SymtabLink<ELFT>> SymTabOrErr =
471 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
472 if (!SymTabOrErr) {
473 reportUniqueWarning(SymTabOrErr.takeError());
474 return *VersionsOrErr;
475 }
476
477 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
478 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
479 Twine(VersionsOrErr->size()) +
480 ") does not match the number of symbols (" +
481 Twine(SymTabOrErr->Symbols.size()) +
482 ") in the symbol table with index " +
483 Twine(Sec.sh_link));
484
485 if (SymTab) {
486 *SymTab = SymTabOrErr->Symbols;
487 *StrTab = SymTabOrErr->StringTable;
488 *SymTabSec = SymTabOrErr->SymTab;
489 }
490 return *VersionsOrErr;
491}
492
493template <class ELFT>
494void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
495 std::optional<StringRef> StrTable;
496 size_t Entries = 0;
497 Elf_Sym_Range Syms(nullptr, nullptr);
498 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
499
500 if (IsDynamic) {
501 StrTable = DynamicStringTable;
502 Syms = dynamic_symbols();
503 Entries = Syms.size();
504 } else if (DotSymtabSec) {
505 if (Expected<StringRef> StrTableOrErr =
506 Obj.getStringTableForSymtab(*DotSymtabSec))
507 StrTable = *StrTableOrErr;
508 else
509 reportUniqueWarning(
510 "unable to get the string table for the SHT_SYMTAB section: " +
511 toString(StrTableOrErr.takeError()));
512
513 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
514 Syms = *SymsOrErr;
515 else
516 reportUniqueWarning(
517 "unable to read symbols from the SHT_SYMTAB section: " +
518 toString(SymsOrErr.takeError()));
519 Entries = DotSymtabSec->getEntityCount();
520 }
521 if (Syms.empty())
522 return;
523
524 // The st_other field has 2 logical parts. The first two bits hold the symbol
525 // visibility (STV_*) and the remainder hold other platform-specific values.
526 bool NonVisibilityBitsUsed =
527 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
528
529 DataRegion<Elf_Word> ShndxTable =
530 IsDynamic ? DataRegion<Elf_Word>(
531 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
532 this->getElfObject().getELFFile().end())
533 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
534
535 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
536 for (const Elf_Sym &Sym : Syms)
537 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
538 NonVisibilityBitsUsed);
539}
540
541template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
542 formatted_raw_ostream &OS;
543
544public:
545 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
546
547 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
548 : ELFDumper<ELFT>(ObjF, Writer),
549 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
550 assert(&this->W.getOStream() == &llvm::fouts())(static_cast <bool> (&this->W.getOStream() == &
llvm::fouts()) ? void (0) : __assert_fail ("&this->W.getOStream() == &llvm::fouts()"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 550, __extension__
__PRETTY_FUNCTION__))
;
551 }
552
553 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
554 ArrayRef<std::string> InputFilenames,
555 const Archive *A) override;
556 void printFileHeaders() override;
557 void printGroupSections() override;
558 void printRelocations() override;
559 void printSectionHeaders() override;
560 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
561 void printHashSymbols() override;
562 void printSectionDetails() override;
563 void printDependentLibs() override;
564 void printDynamicTable() override;
565 void printDynamicRelocations() override;
566 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
567 bool NonVisibilityBitsUsed) const override;
568 void printProgramHeaders(bool PrintProgramHeaders,
569 cl::boolOrDefault PrintSectionMapping) override;
570 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
571 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
572 void printVersionDependencySection(const Elf_Shdr *Sec) override;
573 void printHashHistograms() override;
574 void printCGProfile() override;
575 void printBBAddrMaps() override;
576 void printAddrsig() override;
577 void printNotes() override;
578 void printELFLinkerOptions() override;
579 void printStackSizes() override;
580
581private:
582 void printHashHistogram(const Elf_Hash &HashTable);
583 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
584 void printHashTableSymbols(const Elf_Hash &HashTable);
585 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
586
587 struct Field {
588 std::string Str;
589 unsigned Column;
590
591 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
592 Field(unsigned Col) : Column(Col) {}
593 };
594
595 template <typename T, typename TEnum>
596 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
597 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
598 TEnum EnumMask3 = {}) const {
599 std::string Str;
600 for (const EnumEntry<TEnum> &Flag : EnumValues) {
601 if (Flag.Value == 0)
602 continue;
603
604 TEnum EnumMask{};
605 if (Flag.Value & EnumMask1)
606 EnumMask = EnumMask1;
607 else if (Flag.Value & EnumMask2)
608 EnumMask = EnumMask2;
609 else if (Flag.Value & EnumMask3)
610 EnumMask = EnumMask3;
611 bool IsEnum = (Flag.Value & EnumMask) != 0;
612 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
613 (IsEnum && (Value & EnumMask) == Flag.Value)) {
614 if (!Str.empty())
615 Str += ", ";
616 Str += Flag.AltName;
617 }
618 }
619 return Str;
620 }
621
622 formatted_raw_ostream &printField(struct Field F) const {
623 if (F.Column != 0)
624 OS.PadToColumn(F.Column);
625 OS << F.Str;
626 OS.flush();
627 return OS;
628 }
629 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
630 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
631 uint32_t Bucket);
632 void printRelrReloc(const Elf_Relr &R) override;
633 void printRelRelaReloc(const Relocation<ELFT> &R,
634 const RelSymbol<ELFT> &RelSym) override;
635 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
636 DataRegion<Elf_Word> ShndxTable,
637 std::optional<StringRef> StrTable, bool IsDynamic,
638 bool NonVisibilityBitsUsed) const override;
639 void printDynamicRelocHeader(unsigned Type, StringRef Name,
640 const DynRegionInfo &Reg) override;
641
642 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
643 DataRegion<Elf_Word> ShndxTable) const;
644 void printProgramHeaders() override;
645 void printSectionMapping() override;
646 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
647 const Twine &Label, unsigned EntriesNum);
648
649 void printStackSizeEntry(uint64_t Size,
650 ArrayRef<std::string> FuncNames) override;
651
652 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
653 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
654 void printMipsABIFlags() override;
655};
656
657template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
658public:
659 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
660
661 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
662 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
663
664 void printFileHeaders() override;
665 void printGroupSections() override;
666 void printRelocations() override;
667 void printSectionHeaders() override;
668 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
669 void printDependentLibs() override;
670 void printDynamicTable() override;
671 void printDynamicRelocations() override;
672 void printProgramHeaders(bool PrintProgramHeaders,
673 cl::boolOrDefault PrintSectionMapping) override;
674 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
675 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
676 void printVersionDependencySection(const Elf_Shdr *Sec) override;
677 void printHashHistograms() override;
678 void printCGProfile() override;
679 void printBBAddrMaps() override;
680 void printAddrsig() override;
681 void printNotes() override;
682 void printELFLinkerOptions() override;
683 void printStackSizes() override;
684
685private:
686 void printRelrReloc(const Elf_Relr &R) override;
687 void printRelRelaReloc(const Relocation<ELFT> &R,
688 const RelSymbol<ELFT> &RelSym) override;
689
690 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
691 DataRegion<Elf_Word> ShndxTable) const;
692 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
693 DataRegion<Elf_Word> ShndxTable,
694 std::optional<StringRef> StrTable, bool IsDynamic,
695 bool /*NonVisibilityBitsUsed*/) const override;
696 void printProgramHeaders() override;
697 void printSectionMapping() override {}
698 void printStackSizeEntry(uint64_t Size,
699 ArrayRef<std::string> FuncNames) override;
700
701 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
702 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
703 void printMipsABIFlags() override;
704
705protected:
706 ScopedPrinter &W;
707};
708
709// JSONELFDumper shares most of the same implementation as LLVMELFDumper except
710// it uses a JSONScopedPrinter.
711template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
712public:
713 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
714
715 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
716 : LLVMELFDumper<ELFT>(ObjF, Writer) {}
717
718 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
719 ArrayRef<std::string> InputFilenames,
720 const Archive *A) override;
721
722private:
723 std::unique_ptr<DictScope> FileScope;
724};
725
726} // end anonymous namespace
727
728namespace llvm {
729
730template <class ELFT>
731static std::unique_ptr<ObjDumper>
732createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
733 if (opts::Output == opts::GNU)
734 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
735 else if (opts::Output == opts::JSON)
736 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
737 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
738}
739
740std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
741 ScopedPrinter &Writer) {
742 // Little-endian 32-bit
743 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
744 return createELFDumper(*ELFObj, Writer);
745
746 // Big-endian 32-bit
747 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
748 return createELFDumper(*ELFObj, Writer);
749
750 // Little-endian 64-bit
751 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
752 return createELFDumper(*ELFObj, Writer);
753
754 // Big-endian 64-bit
755 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
756}
757
758} // end namespace llvm
759
760template <class ELFT>
761Expected<SmallVector<std::optional<VersionEntry>, 0> *>
762ELFDumper<ELFT>::getVersionMap() const {
763 // If the VersionMap has already been loaded or if there is no dynamic symtab
764 // or version table, there is nothing to do.
765 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
766 return &VersionMap;
767
768 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
769 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
770 if (MapOrErr)
771 VersionMap = *MapOrErr;
772 else
773 return MapOrErr.takeError();
774
775 return &VersionMap;
776}
777
778template <typename ELFT>
779Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
780 bool &IsDefault) const {
781 // This is a dynamic symbol. Look in the GNU symbol version table.
782 if (!SymbolVersionSection) {
31
Assuming field 'SymbolVersionSection' is non-null
783 // No version table.
784 IsDefault = false;
785 return "";
786 }
787
788 assert(DynSymRegion && "DynSymRegion has not been initialised")(static_cast <bool> (DynSymRegion && "DynSymRegion has not been initialised"
) ? void (0) : __assert_fail ("DynSymRegion && \"DynSymRegion has not been initialised\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 788, __extension__
__PRETTY_FUNCTION__))
;
32
Taking false branch
33
'?' condition is true
789 // Determine the position in the symbol table of this entry.
790 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
791 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
792 sizeof(Elf_Sym);
793
794 // Get the corresponding version index entry.
795 Expected<const Elf_Versym *> EntryOrErr =
796 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
797 if (!EntryOrErr)
34
Taking true branch
798 return EntryOrErr.takeError();
35
Returning without writing to 'IsDefault'
799
800 unsigned Version = (*EntryOrErr)->vs_index;
801 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
802 IsDefault = false;
803 return "";
804 }
805
806 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
807 getVersionMap();
808 if (!MapOrErr)
809 return MapOrErr.takeError();
810
811 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
812 Sym.st_shndx == ELF::SHN_UNDEF);
813}
814
815template <typename ELFT>
816Expected<RelSymbol<ELFT>>
817ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
818 const Elf_Shdr *SymTab) const {
819 if (R.Symbol == 0)
820 return RelSymbol<ELFT>(nullptr, "");
821
822 Expected<const Elf_Sym *> SymOrErr =
823 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
824 if (!SymOrErr)
825 return createError("unable to read an entry with index " + Twine(R.Symbol) +
826 " from " + describe(*SymTab) + ": " +
827 toString(SymOrErr.takeError()));
828 const Elf_Sym *Sym = *SymOrErr;
829 if (!Sym)
830 return RelSymbol<ELFT>(nullptr, "");
831
832 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
833 if (!StrTableOrErr)
834 return StrTableOrErr.takeError();
835
836 const Elf_Sym *FirstSym =
837 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
838 std::string SymbolName =
839 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
840 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
841 return RelSymbol<ELFT>(Sym, SymbolName);
842}
843
844template <typename ELFT>
845ArrayRef<typename ELFT::Word>
846ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
847 if (Symtab) {
848 auto It = ShndxTables.find(Symtab);
849 if (It != ShndxTables.end())
850 return It->second;
851 }
852 return {};
853}
854
855static std::string maybeDemangle(StringRef Name) {
856 return opts::Demangle ? demangle(std::string(Name)) : Name.str();
857}
858
859template <typename ELFT>
860std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
861 auto Warn = [&](Error E) -> std::string {
862 reportUniqueWarning("unable to read the name of symbol with index " +
863 Twine(Index) + ": " + toString(std::move(E)));
864 return "<?>";
865 };
866
867 Expected<const typename ELFT::Sym *> SymOrErr =
868 Obj.getSymbol(DotSymtabSec, Index);
869 if (!SymOrErr)
870 return Warn(SymOrErr.takeError());
871
872 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
873 if (!StrTabOrErr)
874 return Warn(StrTabOrErr.takeError());
875
876 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
877 if (!NameOrErr)
878 return Warn(NameOrErr.takeError());
879 return maybeDemangle(*NameOrErr);
880}
881
882template <typename ELFT>
883std::string ELFDumper<ELFT>::getFullSymbolName(
884 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
885 std::optional<StringRef> StrTable, bool IsDynamic) const {
886 if (!StrTable)
25
Taking false branch
887 return "<?>";
888
889 std::string SymbolName;
890 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
26
Taking true branch
891 SymbolName = maybeDemangle(*NameOrErr);
892 } else {
893 reportUniqueWarning(NameOrErr.takeError());
894 return "<?>";
895 }
896
897 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
27
Assuming the condition is false
898 Expected<unsigned> SectionIndex =
899 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
900 if (!SectionIndex) {
901 reportUniqueWarning(SectionIndex.takeError());
902 return "<?>";
903 }
904 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
905 if (!NameOrErr) {
906 reportUniqueWarning(NameOrErr.takeError());
907 return ("<section " + Twine(*SectionIndex) + ">").str();
908 }
909 return std::string(*NameOrErr);
910 }
911
912 if (!IsDynamic
27.1
'IsDynamic' is true
)
28
Taking false branch
913 return SymbolName;
914
915 bool IsDefault;
29
'IsDefault' declared without an initial value
916 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
30
Calling 'ELFDumper::getSymbolVersion'
36
Returning from 'ELFDumper::getSymbolVersion'
917 if (!VersionOrErr) {
37
Taking false branch
918 reportUniqueWarning(VersionOrErr.takeError());
919 return SymbolName + "@<corrupt>";
920 }
921
922 if (!VersionOrErr->empty()) {
38
Assuming the condition is true
39
Taking true branch
923 SymbolName += (IsDefault ? "@@" : "@");
40
Branch condition evaluates to a garbage value
924 SymbolName += *VersionOrErr;
925 }
926 return SymbolName;
927}
928
929template <typename ELFT>
930Expected<unsigned>
931ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
932 DataRegion<Elf_Word> ShndxTable) const {
933 unsigned Ndx = Symbol.st_shndx;
934 if (Ndx == SHN_XINDEX)
935 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
936 ShndxTable);
937 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
938 return Ndx;
939
940 auto CreateErr = [&](const Twine &Name,
941 std::optional<unsigned> Offset = std::nullopt) {
942 std::string Desc;
943 if (Offset)
944 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
945 else
946 Desc = Name.str();
947 return createError(
948 "unable to get section index for symbol with st_shndx = 0x" +
949 Twine::utohexstr(Ndx) + " (" + Desc + ")");
950 };
951
952 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
953 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
954 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
955 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
956 if (Ndx == ELF::SHN_UNDEF)
957 return CreateErr("SHN_UNDEF");
958 if (Ndx == ELF::SHN_ABS)
959 return CreateErr("SHN_ABS");
960 if (Ndx == ELF::SHN_COMMON)
961 return CreateErr("SHN_COMMON");
962 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
963}
964
965template <typename ELFT>
966Expected<StringRef>
967ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
968 unsigned SectionIndex) const {
969 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
970 if (!SecOrErr)
971 return SecOrErr.takeError();
972 return Obj.getSectionName(**SecOrErr);
973}
974
975template <class ELFO>
976static const typename ELFO::Elf_Shdr *
977findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
978 uint64_t Addr) {
979 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
980 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
981 return &Shdr;
982 return nullptr;
983}
984
985const EnumEntry<unsigned> ElfClass[] = {
986 {"None", "none", ELF::ELFCLASSNONE},
987 {"32-bit", "ELF32", ELF::ELFCLASS32},
988 {"64-bit", "ELF64", ELF::ELFCLASS64},
989};
990
991const EnumEntry<unsigned> ElfDataEncoding[] = {
992 {"None", "none", ELF::ELFDATANONE},
993 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
994 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
995};
996
997const EnumEntry<unsigned> ElfObjectFileType[] = {
998 {"None", "NONE (none)", ELF::ET_NONE},
999 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1000 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1001 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1002 {"Core", "CORE (Core file)", ELF::ET_CORE},
1003};
1004
1005const EnumEntry<unsigned> ElfOSABI[] = {
1006 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1007 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1008 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1009 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1010 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1011 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1012 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1013 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1014 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1015 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1016 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1017 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1018 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1019 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1020 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1021 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1022 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1023 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1024};
1025
1026const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1027 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1028 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1029 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1030};
1031
1032const EnumEntry<unsigned> ARMElfOSABI[] = {
1033 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1034};
1035
1036const EnumEntry<unsigned> C6000ElfOSABI[] = {
1037 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1038 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1039};
1040
1041const EnumEntry<unsigned> ElfMachineType[] = {
1042 ENUM_ENT(EM_NONE, "None"){ "EM_NONE", "None", ELF::EM_NONE },
1043 ENUM_ENT(EM_M32, "WE32100"){ "EM_M32", "WE32100", ELF::EM_M32 },
1044 ENUM_ENT(EM_SPARC, "Sparc"){ "EM_SPARC", "Sparc", ELF::EM_SPARC },
1045 ENUM_ENT(EM_386, "Intel 80386"){ "EM_386", "Intel 80386", ELF::EM_386 },
1046 ENUM_ENT(EM_68K, "MC68000"){ "EM_68K", "MC68000", ELF::EM_68K },
1047 ENUM_ENT(EM_88K, "MC88000"){ "EM_88K", "MC88000", ELF::EM_88K },
1048 ENUM_ENT(EM_IAMCU, "EM_IAMCU"){ "EM_IAMCU", "EM_IAMCU", ELF::EM_IAMCU },
1049 ENUM_ENT(EM_860, "Intel 80860"){ "EM_860", "Intel 80860", ELF::EM_860 },
1050 ENUM_ENT(EM_MIPS, "MIPS R3000"){ "EM_MIPS", "MIPS R3000", ELF::EM_MIPS },
1051 ENUM_ENT(EM_S370, "IBM System/370"){ "EM_S370", "IBM System/370", ELF::EM_S370 },
1052 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"){ "EM_MIPS_RS3_LE", "MIPS R3000 little-endian", ELF::EM_MIPS_RS3_LE
}
,
1053 ENUM_ENT(EM_PARISC, "HPPA"){ "EM_PARISC", "HPPA", ELF::EM_PARISC },
1054 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"){ "EM_VPP500", "Fujitsu VPP500", ELF::EM_VPP500 },
1055 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"){ "EM_SPARC32PLUS", "Sparc v8+", ELF::EM_SPARC32PLUS },
1056 ENUM_ENT(EM_960, "Intel 80960"){ "EM_960", "Intel 80960", ELF::EM_960 },
1057 ENUM_ENT(EM_PPC, "PowerPC"){ "EM_PPC", "PowerPC", ELF::EM_PPC },
1058 ENUM_ENT(EM_PPC64, "PowerPC64"){ "EM_PPC64", "PowerPC64", ELF::EM_PPC64 },
1059 ENUM_ENT(EM_S390, "IBM S/390"){ "EM_S390", "IBM S/390", ELF::EM_S390 },
1060 ENUM_ENT(EM_SPU, "SPU"){ "EM_SPU", "SPU", ELF::EM_SPU },
1061 ENUM_ENT(EM_V800, "NEC V800 series"){ "EM_V800", "NEC V800 series", ELF::EM_V800 },
1062 ENUM_ENT(EM_FR20, "Fujistsu FR20"){ "EM_FR20", "Fujistsu FR20", ELF::EM_FR20 },
1063 ENUM_ENT(EM_RH32, "TRW RH-32"){ "EM_RH32", "TRW RH-32", ELF::EM_RH32 },
1064 ENUM_ENT(EM_RCE, "Motorola RCE"){ "EM_RCE", "Motorola RCE", ELF::EM_RCE },
1065 ENUM_ENT(EM_ARM, "ARM"){ "EM_ARM", "ARM", ELF::EM_ARM },
1066 ENUM_ENT(EM_ALPHA, "EM_ALPHA"){ "EM_ALPHA", "EM_ALPHA", ELF::EM_ALPHA },
1067 ENUM_ENT(EM_SH, "Hitachi SH"){ "EM_SH", "Hitachi SH", ELF::EM_SH },
1068 ENUM_ENT(EM_SPARCV9, "Sparc v9"){ "EM_SPARCV9", "Sparc v9", ELF::EM_SPARCV9 },
1069 ENUM_ENT(EM_TRICORE, "Siemens Tricore"){ "EM_TRICORE", "Siemens Tricore", ELF::EM_TRICORE },
1070 ENUM_ENT(EM_ARC, "ARC"){ "EM_ARC", "ARC", ELF::EM_ARC },
1071 ENUM_ENT(EM_H8_300, "Hitachi H8/300"){ "EM_H8_300", "Hitachi H8/300", ELF::EM_H8_300 },
1072 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"){ "EM_H8_300H", "Hitachi H8/300H", ELF::EM_H8_300H },
1073 ENUM_ENT(EM_H8S, "Hitachi H8S"){ "EM_H8S", "Hitachi H8S", ELF::EM_H8S },
1074 ENUM_ENT(EM_H8_500, "Hitachi H8/500"){ "EM_H8_500", "Hitachi H8/500", ELF::EM_H8_500 },
1075 ENUM_ENT(EM_IA_64, "Intel IA-64"){ "EM_IA_64", "Intel IA-64", ELF::EM_IA_64 },
1076 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"){ "EM_MIPS_X", "Stanford MIPS-X", ELF::EM_MIPS_X },
1077 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"){ "EM_COLDFIRE", "Motorola Coldfire", ELF::EM_COLDFIRE },
1078 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"){ "EM_68HC12", "Motorola MC68HC12 Microcontroller", ELF::EM_68HC12
}
,
1079 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"){ "EM_MMA", "Fujitsu Multimedia Accelerator", ELF::EM_MMA },
1080 ENUM_ENT(EM_PCP, "Siemens PCP"){ "EM_PCP", "Siemens PCP", ELF::EM_PCP },
1081 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"){ "EM_NCPU", "Sony nCPU embedded RISC processor", ELF::EM_NCPU
}
,
1082 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"){ "EM_NDR1", "Denso NDR1 microprocesspr", ELF::EM_NDR1 },
1083 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"){ "EM_STARCORE", "Motorola Star*Core processor", ELF::EM_STARCORE
}
,
1084 ENUM_ENT(EM_ME16, "Toyota ME16 processor"){ "EM_ME16", "Toyota ME16 processor", ELF::EM_ME16 },
1085 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"){ "EM_ST100", "STMicroelectronics ST100 processor", ELF::EM_ST100
}
,
1086 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"){ "EM_TINYJ", "Advanced Logic Corp. TinyJ embedded processor"
, ELF::EM_TINYJ }
,
1087 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"){ "EM_X86_64", "Advanced Micro Devices X86-64", ELF::EM_X86_64
}
,
1088 ENUM_ENT(EM_PDSP, "Sony DSP processor"){ "EM_PDSP", "Sony DSP processor", ELF::EM_PDSP },
1089 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"){ "EM_PDP10", "Digital Equipment Corp. PDP-10", ELF::EM_PDP10
}
,
1090 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"){ "EM_PDP11", "Digital Equipment Corp. PDP-11", ELF::EM_PDP11
}
,
1091 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"){ "EM_FX66", "Siemens FX66 microcontroller", ELF::EM_FX66 },
1092 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"){ "EM_ST9PLUS", "STMicroelectronics ST9+ 8/16 bit microcontroller"
, ELF::EM_ST9PLUS }
,
1093 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"){ "EM_ST7", "STMicroelectronics ST7 8-bit microcontroller", ELF
::EM_ST7 }
,
1094 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"){ "EM_68HC16", "Motorola MC68HC16 Microcontroller", ELF::EM_68HC16
}
,
1095 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"){ "EM_68HC11", "Motorola MC68HC11 Microcontroller", ELF::EM_68HC11
}
,
1096 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"){ "EM_68HC08", "Motorola MC68HC08 Microcontroller", ELF::EM_68HC08
}
,
1097 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"){ "EM_68HC05", "Motorola MC68HC05 Microcontroller", ELF::EM_68HC05
}
,
1098 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"){ "EM_SVX", "Silicon Graphics SVx", ELF::EM_SVX },
1099 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"){ "EM_ST19", "STMicroelectronics ST19 8-bit microcontroller",
ELF::EM_ST19 }
,
1100 ENUM_ENT(EM_VAX, "Digital VAX"){ "EM_VAX", "Digital VAX", ELF::EM_VAX },
1101 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"){ "EM_CRIS", "Axis Communications 32-bit embedded processor",
ELF::EM_CRIS }
,
1102 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"){ "EM_JAVELIN", "Infineon Technologies 32-bit embedded cpu", ELF
::EM_JAVELIN }
,
1103 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"){ "EM_FIREPATH", "Element 14 64-bit DSP processor", ELF::EM_FIREPATH
}
,
1104 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"){ "EM_ZSP", "LSI Logic's 16-bit DSP processor", ELF::EM_ZSP },
1105 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"){ "EM_MMIX", "Donald Knuth's educational 64-bit processor", ELF
::EM_MMIX }
,
1106 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"){ "EM_HUANY", "Harvard Universitys's machine-independent object format"
, ELF::EM_HUANY }
,
1107 ENUM_ENT(EM_PRISM, "Vitesse Prism"){ "EM_PRISM", "Vitesse Prism", ELF::EM_PRISM },
1108 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"){ "EM_AVR", "Atmel AVR 8-bit microcontroller", ELF::EM_AVR },
1109 ENUM_ENT(EM_FR30, "Fujitsu FR30"){ "EM_FR30", "Fujitsu FR30", ELF::EM_FR30 },
1110 ENUM_ENT(EM_D10V, "Mitsubishi D10V"){ "EM_D10V", "Mitsubishi D10V", ELF::EM_D10V },
1111 ENUM_ENT(EM_D30V, "Mitsubishi D30V"){ "EM_D30V", "Mitsubishi D30V", ELF::EM_D30V },
1112 ENUM_ENT(EM_V850, "NEC v850"){ "EM_V850", "NEC v850", ELF::EM_V850 },
1113 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"){ "EM_M32R", "Renesas M32R (formerly Mitsubishi M32r)", ELF::
EM_M32R }
,
1114 ENUM_ENT(EM_MN10300, "Matsushita MN10300"){ "EM_MN10300", "Matsushita MN10300", ELF::EM_MN10300 },
1115 ENUM_ENT(EM_MN10200, "Matsushita MN10200"){ "EM_MN10200", "Matsushita MN10200", ELF::EM_MN10200 },
1116 ENUM_ENT(EM_PJ, "picoJava"){ "EM_PJ", "picoJava", ELF::EM_PJ },
1117 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"){ "EM_OPENRISC", "OpenRISC 32-bit embedded processor", ELF::EM_OPENRISC
}
,
1118 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"){ "EM_ARC_COMPACT", "EM_ARC_COMPACT", ELF::EM_ARC_COMPACT },
1119 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"){ "EM_XTENSA", "Tensilica Xtensa Processor", ELF::EM_XTENSA },
1120 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"){ "EM_VIDEOCORE", "Alphamosaic VideoCore processor", ELF::EM_VIDEOCORE
}
,
1121 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"){ "EM_TMM_GPP", "Thompson Multimedia General Purpose Processor"
, ELF::EM_TMM_GPP }
,
1122 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"){ "EM_NS32K", "National Semiconductor 32000 series", ELF::EM_NS32K
}
,
1123 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"){ "EM_TPC", "Tenor Network TPC processor", ELF::EM_TPC },
1124 ENUM_ENT(EM_SNP1K, "EM_SNP1K"){ "EM_SNP1K", "EM_SNP1K", ELF::EM_SNP1K },
1125 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"){ "EM_ST200", "STMicroelectronics ST200 microcontroller", ELF
::EM_ST200 }
,
1126 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"){ "EM_IP2K", "Ubicom IP2xxx 8-bit microcontrollers", ELF::EM_IP2K
}
,
1127 ENUM_ENT(EM_MAX, "MAX Processor"){ "EM_MAX", "MAX Processor", ELF::EM_MAX },
1128 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"){ "EM_CR", "National Semiconductor CompactRISC", ELF::EM_CR },
1129 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"){ "EM_F2MC16", "Fujitsu F2MC16", ELF::EM_F2MC16 },
1130 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"){ "EM_MSP430", "Texas Instruments msp430 microcontroller", ELF
::EM_MSP430 }
,
1131 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"){ "EM_BLACKFIN", "Analog Devices Blackfin", ELF::EM_BLACKFIN },
1132 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"){ "EM_SE_C33", "S1C33 Family of Seiko Epson processors", ELF::
EM_SE_C33 }
,
1133 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"){ "EM_SEP", "Sharp embedded microprocessor", ELF::EM_SEP },
1134 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"){ "EM_ARCA", "Arca RISC microprocessor", ELF::EM_ARCA },
1135 ENUM_ENT(EM_UNICORE, "Unicore"){ "EM_UNICORE", "Unicore", ELF::EM_UNICORE },
1136 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"){ "EM_EXCESS", "eXcess 16/32/64-bit configurable embedded CPU"
, ELF::EM_EXCESS }
,
1137 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"){ "EM_DXP", "Icera Semiconductor Inc. Deep Execution Processor"
, ELF::EM_DXP }
,
1138 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"){ "EM_ALTERA_NIOS2", "Altera Nios", ELF::EM_ALTERA_NIOS2 },
1139 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"){ "EM_CRX", "National Semiconductor CRX microprocessor", ELF::
EM_CRX }
,
1140 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"){ "EM_XGATE", "Motorola XGATE embedded processor", ELF::EM_XGATE
}
,
1141 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"){ "EM_C166", "Infineon Technologies xc16x", ELF::EM_C166 },
1142 ENUM_ENT(EM_M16C, "Renesas M16C"){ "EM_M16C", "Renesas M16C", ELF::EM_M16C },
1143 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"){ "EM_DSPIC30F", "Microchip Technology dsPIC30F Digital Signal Controller"
, ELF::EM_DSPIC30F }
,
1144 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"){ "EM_CE", "Freescale Communication Engine RISC core", ELF::EM_CE
}
,
1145 ENUM_ENT(EM_M32C, "Renesas M32C"){ "EM_M32C", "Renesas M32C", ELF::EM_M32C },
1146 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"){ "EM_TSK3000", "Altium TSK3000 core", ELF::EM_TSK3000 },
1147 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"){ "EM_RS08", "Freescale RS08 embedded processor", ELF::EM_RS08
}
,
1148 ENUM_ENT(EM_SHARC, "EM_SHARC"){ "EM_SHARC", "EM_SHARC", ELF::EM_SHARC },
1149 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"){ "EM_ECOG2", "Cyan Technology eCOG2 microprocessor", ELF::EM_ECOG2
}
,
1150 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"){ "EM_SCORE7", "SUNPLUS S+Core", ELF::EM_SCORE7 },
1151 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"){ "EM_DSP24", "New Japan Radio (NJR) 24-bit DSP Processor", ELF
::EM_DSP24 }
,
1152 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"){ "EM_VIDEOCORE3", "Broadcom VideoCore III processor", ELF::EM_VIDEOCORE3
}
,
1153 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"){ "EM_LATTICEMICO32", "Lattice Mico32", ELF::EM_LATTICEMICO32
}
,
1154 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"){ "EM_SE_C17", "Seiko Epson C17 family", ELF::EM_SE_C17 },
1155 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"){ "EM_TI_C6000", "Texas Instruments TMS320C6000 DSP family", ELF
::EM_TI_C6000 }
,
1156 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"){ "EM_TI_C2000", "Texas Instruments TMS320C2000 DSP family", ELF
::EM_TI_C2000 }
,
1157 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"){ "EM_TI_C5500", "Texas Instruments TMS320C55x DSP family", ELF
::EM_TI_C5500 }
,
1158 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"){ "EM_MMDSP_PLUS", "STMicroelectronics 64bit VLIW Data Signal Processor"
, ELF::EM_MMDSP_PLUS }
,
1159 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"){ "EM_CYPRESS_M8C", "Cypress M8C microprocessor", ELF::EM_CYPRESS_M8C
}
,
1160 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"){ "EM_R32C", "Renesas R32C series microprocessors", ELF::EM_R32C
}
,
1161 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"){ "EM_TRIMEDIA", "NXP Semiconductors TriMedia architecture family"
, ELF::EM_TRIMEDIA }
,
1162 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"){ "EM_HEXAGON", "Qualcomm Hexagon", ELF::EM_HEXAGON },
1163 ENUM_ENT(EM_8051, "Intel 8051 and variants"){ "EM_8051", "Intel 8051 and variants", ELF::EM_8051 },
1164 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"){ "EM_STXP7X", "STMicroelectronics STxP7x family", ELF::EM_STXP7X
}
,
1165 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"){ "EM_NDS32", "Andes Technology compact code size embedded RISC processor family"
, ELF::EM_NDS32 }
,
1166 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"){ "EM_ECOG1", "Cyan Technology eCOG1 microprocessor", ELF::EM_ECOG1
}
,
1167 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1168 // an identical number to EM_ECOG1.
1169 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"){ "EM_ECOG1X", "Cyan Technology eCOG1X family", ELF::EM_ECOG1X
}
,
1170 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"){ "EM_MAXQ30", "Dallas Semiconductor MAXQ30 Core microcontrollers"
, ELF::EM_MAXQ30 }
,
1171 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"){ "EM_XIMO16", "New Japan Radio (NJR) 16-bit DSP Processor", ELF
::EM_XIMO16 }
,
1172 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"){ "EM_MANIK", "M2000 Reconfigurable RISC Microprocessor", ELF
::EM_MANIK }
,
1173 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"){ "EM_CRAYNV2", "Cray Inc. NV2 vector architecture", ELF::EM_CRAYNV2
}
,
1174 ENUM_ENT(EM_RX, "Renesas RX"){ "EM_RX", "Renesas RX", ELF::EM_RX },
1175 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"){ "EM_METAG", "Imagination Technologies Meta processor architecture"
, ELF::EM_METAG }
,
1176 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"){ "EM_MCST_ELBRUS", "MCST Elbrus general purpose hardware architecture"
, ELF::EM_MCST_ELBRUS }
,
1177 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"){ "EM_ECOG16", "Cyan Technology eCOG16 family", ELF::EM_ECOG16
}
,
1178 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"){ "EM_CR16", "National Semiconductor CompactRISC 16-bit processor"
, ELF::EM_CR16 }
,
1179 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"){ "EM_ETPU", "Freescale Extended Time Processing Unit", ELF::
EM_ETPU }
,
1180 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"){ "EM_SLE9X", "Infineon Technologies SLE9X core", ELF::EM_SLE9X
}
,
1181 ENUM_ENT(EM_L10M, "EM_L10M"){ "EM_L10M", "EM_L10M", ELF::EM_L10M },
1182 ENUM_ENT(EM_K10M, "EM_K10M"){ "EM_K10M", "EM_K10M", ELF::EM_K10M },
1183 ENUM_ENT(EM_AARCH64, "AArch64"){ "EM_AARCH64", "AArch64", ELF::EM_AARCH64 },
1184 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"){ "EM_AVR32", "Atmel Corporation 32-bit microprocessor family"
, ELF::EM_AVR32 }
,
1185 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"){ "EM_STM8", "STMicroeletronics STM8 8-bit microcontroller", ELF
::EM_STM8 }
,
1186 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"){ "EM_TILE64", "Tilera TILE64 multicore architecture family",
ELF::EM_TILE64 }
,
1187 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"){ "EM_TILEPRO", "Tilera TILEPro multicore architecture family"
, ELF::EM_TILEPRO }
,
1188 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"){ "EM_MICROBLAZE", "Xilinx MicroBlaze 32-bit RISC soft processor core"
, ELF::EM_MICROBLAZE }
,
1189 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"){ "EM_CUDA", "NVIDIA CUDA architecture", ELF::EM_CUDA },
1190 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"){ "EM_TILEGX", "Tilera TILE-Gx multicore architecture family"
, ELF::EM_TILEGX }
,
1191 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"){ "EM_CLOUDSHIELD", "EM_CLOUDSHIELD", ELF::EM_CLOUDSHIELD },
1192 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"){ "EM_COREA_1ST", "EM_COREA_1ST", ELF::EM_COREA_1ST },
1193 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"){ "EM_COREA_2ND", "EM_COREA_2ND", ELF::EM_COREA_2ND },
1194 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"){ "EM_ARC_COMPACT2", "EM_ARC_COMPACT2", ELF::EM_ARC_COMPACT2 },
1195 ENUM_ENT(EM_OPEN8, "EM_OPEN8"){ "EM_OPEN8", "EM_OPEN8", ELF::EM_OPEN8 },
1196 ENUM_ENT(EM_RL78, "Renesas RL78"){ "EM_RL78", "Renesas RL78", ELF::EM_RL78 },
1197 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"){ "EM_VIDEOCORE5", "Broadcom VideoCore V processor", ELF::EM_VIDEOCORE5
}
,
1198 ENUM_ENT(EM_78KOR, "EM_78KOR"){ "EM_78KOR", "EM_78KOR", ELF::EM_78KOR },
1199 ENUM_ENT(EM_56800EX, "EM_56800EX"){ "EM_56800EX", "EM_56800EX", ELF::EM_56800EX },
1200 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"){ "EM_AMDGPU", "EM_AMDGPU", ELF::EM_AMDGPU },
1201 ENUM_ENT(EM_RISCV, "RISC-V"){ "EM_RISCV", "RISC-V", ELF::EM_RISCV },
1202 ENUM_ENT(EM_LANAI, "EM_LANAI"){ "EM_LANAI", "EM_LANAI", ELF::EM_LANAI },
1203 ENUM_ENT(EM_BPF, "EM_BPF"){ "EM_BPF", "EM_BPF", ELF::EM_BPF },
1204 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"){ "EM_VE", "NEC SX-Aurora Vector Engine", ELF::EM_VE },
1205 ENUM_ENT(EM_LOONGARCH, "LoongArch"){ "EM_LOONGARCH", "LoongArch", ELF::EM_LOONGARCH },
1206};
1207
1208const EnumEntry<unsigned> ElfSymbolBindings[] = {
1209 {"Local", "LOCAL", ELF::STB_LOCAL},
1210 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1211 {"Weak", "WEAK", ELF::STB_WEAK},
1212 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1213
1214const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1215 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1216 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1217 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1218 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1219
1220const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1221 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1222};
1223
1224static const char *getGroupType(uint32_t Flag) {
1225 if (Flag & ELF::GRP_COMDAT)
1226 return "COMDAT";
1227 else
1228 return "(unknown)";
1229}
1230
1231const EnumEntry<unsigned> ElfSectionFlags[] = {
1232 ENUM_ENT(SHF_WRITE, "W"){ "SHF_WRITE", "W", ELF::SHF_WRITE },
1233 ENUM_ENT(SHF_ALLOC, "A"){ "SHF_ALLOC", "A", ELF::SHF_ALLOC },
1234 ENUM_ENT(SHF_EXECINSTR, "X"){ "SHF_EXECINSTR", "X", ELF::SHF_EXECINSTR },
1235 ENUM_ENT(SHF_MERGE, "M"){ "SHF_MERGE", "M", ELF::SHF_MERGE },
1236 ENUM_ENT(SHF_STRINGS, "S"){ "SHF_STRINGS", "S", ELF::SHF_STRINGS },
1237 ENUM_ENT(SHF_INFO_LINK, "I"){ "SHF_INFO_LINK", "I", ELF::SHF_INFO_LINK },
1238 ENUM_ENT(SHF_LINK_ORDER, "L"){ "SHF_LINK_ORDER", "L", ELF::SHF_LINK_ORDER },
1239 ENUM_ENT(SHF_OS_NONCONFORMING, "O"){ "SHF_OS_NONCONFORMING", "O", ELF::SHF_OS_NONCONFORMING },
1240 ENUM_ENT(SHF_GROUP, "G"){ "SHF_GROUP", "G", ELF::SHF_GROUP },
1241 ENUM_ENT(SHF_TLS, "T"){ "SHF_TLS", "T", ELF::SHF_TLS },
1242 ENUM_ENT(SHF_COMPRESSED, "C"){ "SHF_COMPRESSED", "C", ELF::SHF_COMPRESSED },
1243 ENUM_ENT(SHF_EXCLUDE, "E"){ "SHF_EXCLUDE", "E", ELF::SHF_EXCLUDE },
1244};
1245
1246const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1247 ENUM_ENT(SHF_GNU_RETAIN, "R"){ "SHF_GNU_RETAIN", "R", ELF::SHF_GNU_RETAIN }
1248};
1249
1250const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1251 ENUM_ENT(SHF_SUNW_NODISCARD, "R"){ "SHF_SUNW_NODISCARD", "R", ELF::SHF_SUNW_NODISCARD }
1252};
1253
1254const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1255 ENUM_ENT(XCORE_SHF_CP_SECTION, ""){ "XCORE_SHF_CP_SECTION", "", ELF::XCORE_SHF_CP_SECTION },
1256 ENUM_ENT(XCORE_SHF_DP_SECTION, ""){ "XCORE_SHF_DP_SECTION", "", ELF::XCORE_SHF_DP_SECTION }
1257};
1258
1259const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1260 ENUM_ENT(SHF_ARM_PURECODE, "y"){ "SHF_ARM_PURECODE", "y", ELF::SHF_ARM_PURECODE }
1261};
1262
1263const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1264 ENUM_ENT(SHF_HEX_GPREL, ""){ "SHF_HEX_GPREL", "", ELF::SHF_HEX_GPREL }
1265};
1266
1267const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1268 ENUM_ENT(SHF_MIPS_NODUPES, ""){ "SHF_MIPS_NODUPES", "", ELF::SHF_MIPS_NODUPES },
1269 ENUM_ENT(SHF_MIPS_NAMES, ""){ "SHF_MIPS_NAMES", "", ELF::SHF_MIPS_NAMES },
1270 ENUM_ENT(SHF_MIPS_LOCAL, ""){ "SHF_MIPS_LOCAL", "", ELF::SHF_MIPS_LOCAL },
1271 ENUM_ENT(SHF_MIPS_NOSTRIP, ""){ "SHF_MIPS_NOSTRIP", "", ELF::SHF_MIPS_NOSTRIP },
1272 ENUM_ENT(SHF_MIPS_GPREL, ""){ "SHF_MIPS_GPREL", "", ELF::SHF_MIPS_GPREL },
1273 ENUM_ENT(SHF_MIPS_MERGE, ""){ "SHF_MIPS_MERGE", "", ELF::SHF_MIPS_MERGE },
1274 ENUM_ENT(SHF_MIPS_ADDR, ""){ "SHF_MIPS_ADDR", "", ELF::SHF_MIPS_ADDR },
1275 ENUM_ENT(SHF_MIPS_STRING, ""){ "SHF_MIPS_STRING", "", ELF::SHF_MIPS_STRING }
1276};
1277
1278const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1279 ENUM_ENT(SHF_X86_64_LARGE, "l"){ "SHF_X86_64_LARGE", "l", ELF::SHF_X86_64_LARGE }
1280};
1281
1282static std::vector<EnumEntry<unsigned>>
1283getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1284 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1285 std::end(ElfSectionFlags));
1286 switch (EOSAbi) {
1287 case ELFOSABI_SOLARIS:
1288 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1289 std::end(ElfSolarisSectionFlags));
1290 break;
1291 default:
1292 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1293 std::end(ElfGNUSectionFlags));
1294 break;
1295 }
1296 switch (EMachine) {
1297 case EM_ARM:
1298 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1299 std::end(ElfARMSectionFlags));
1300 break;
1301 case EM_HEXAGON:
1302 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1303 std::end(ElfHexagonSectionFlags));
1304 break;
1305 case EM_MIPS:
1306 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1307 std::end(ElfMipsSectionFlags));
1308 break;
1309 case EM_X86_64:
1310 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1311 std::end(ElfX86_64SectionFlags));
1312 break;
1313 case EM_XCORE:
1314 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1315 std::end(ElfXCoreSectionFlags));
1316 break;
1317 default:
1318 break;
1319 }
1320 return Ret;
1321}
1322
1323static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1324 uint64_t Flags) {
1325 // Here we are trying to build the flags string in the same way as GNU does.
1326 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1327 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1328 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1329 // "p". It only will print "E" when no other processor flag is set.
1330 std::string Str;
1331 bool HasUnknownFlag = false;
1332 bool HasOSFlag = false;
1333 bool HasProcFlag = false;
1334 std::vector<EnumEntry<unsigned>> FlagsList =
1335 getSectionFlagsForTarget(EOSAbi, EMachine);
1336 while (Flags) {
1337 // Take the least significant bit as a flag.
1338 uint64_t Flag = Flags & -Flags;
1339 Flags -= Flag;
1340
1341 // Find the flag in the known flags list.
1342 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1343 // Flags with empty names are not printed in GNU style output.
1344 return E.Value == Flag && !E.AltName.empty();
1345 });
1346 if (I != FlagsList.end()) {
1347 Str += I->AltName;
1348 continue;
1349 }
1350
1351 // If we did not find a matching regular flag, then we deal with an OS
1352 // specific flag, processor specific flag or an unknown flag.
1353 if (Flag & ELF::SHF_MASKOS) {
1354 HasOSFlag = true;
1355 Flags &= ~ELF::SHF_MASKOS;
1356 } else if (Flag & ELF::SHF_MASKPROC) {
1357 HasProcFlag = true;
1358 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1359 // bit if set so that it doesn't also get printed.
1360 Flags &= ~ELF::SHF_MASKPROC;
1361 } else {
1362 HasUnknownFlag = true;
1363 }
1364 }
1365
1366 // "o", "p" and "x" are printed last.
1367 if (HasOSFlag)
1368 Str += "o";
1369 if (HasProcFlag)
1370 Str += "p";
1371 if (HasUnknownFlag)
1372 Str += "x";
1373 return Str;
1374}
1375
1376static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1377 // Check potentially overlapped processor-specific program header type.
1378 switch (Arch) {
1379 case ELF::EM_ARM:
1380 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX)case ELF::PT_ARM_EXIDX: return "PT_ARM_EXIDX";; }
1381 break;
1382 case ELF::EM_MIPS:
1383 case ELF::EM_MIPS_RS3_LE:
1384 switch (Type) {
1385 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO)case ELF::PT_MIPS_REGINFO: return "PT_MIPS_REGINFO";;
1386 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC)case ELF::PT_MIPS_RTPROC: return "PT_MIPS_RTPROC";;
1387 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS)case ELF::PT_MIPS_OPTIONS: return "PT_MIPS_OPTIONS";;
1388 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS)case ELF::PT_MIPS_ABIFLAGS: return "PT_MIPS_ABIFLAGS";;
1389 }
1390 break;
1391 case ELF::EM_RISCV:
1392 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES)case ELF::PT_RISCV_ATTRIBUTES: return "PT_RISCV_ATTRIBUTES";; }
1393 }
1394
1395 switch (Type) {
1396 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL)case ELF::PT_NULL: return "PT_NULL";;
1397 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD)case ELF::PT_LOAD: return "PT_LOAD";;
1398 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC)case ELF::PT_DYNAMIC: return "PT_DYNAMIC";;
1399 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP)case ELF::PT_INTERP: return "PT_INTERP";;
1400 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE)case ELF::PT_NOTE: return "PT_NOTE";;
1401 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB)case ELF::PT_SHLIB: return "PT_SHLIB";;
1402 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR)case ELF::PT_PHDR: return "PT_PHDR";;
1403 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS)case ELF::PT_TLS: return "PT_TLS";;
1404
1405 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME)case ELF::PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";;
1406 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND)case ELF::PT_SUNW_UNWIND: return "PT_SUNW_UNWIND";;
1407
1408 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK)case ELF::PT_GNU_STACK: return "PT_GNU_STACK";;
1409 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO)case ELF::PT_GNU_RELRO: return "PT_GNU_RELRO";;
1410 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY)case ELF::PT_GNU_PROPERTY: return "PT_GNU_PROPERTY";;
1411
1412 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE)case ELF::PT_OPENBSD_MUTABLE: return "PT_OPENBSD_MUTABLE";;
1413 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE)case ELF::PT_OPENBSD_RANDOMIZE: return "PT_OPENBSD_RANDOMIZE"
;
;
1414 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED)case ELF::PT_OPENBSD_WXNEEDED: return "PT_OPENBSD_WXNEEDED";;
1415 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA)case ELF::PT_OPENBSD_BOOTDATA: return "PT_OPENBSD_BOOTDATA";;
1416 default:
1417 return "";
1418 }
1419}
1420
1421static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1422 StringRef Seg = segmentTypeToString(Arch, Type);
1423 if (Seg.empty())
1424 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1425
1426 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1427 if (Seg.consume_front("PT_ARM_"))
1428 return Seg.str();
1429
1430 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1431 if (Seg.consume_front("PT_MIPS_"))
1432 return Seg.str();
1433
1434 // E.g. "PT_RISCV_ATTRIBUTES"
1435 if (Seg.consume_front("PT_RISCV_"))
1436 return Seg.str();
1437
1438 // E.g. "PT_LOAD" -> "LOAD".
1439 assert(Seg.startswith("PT_"))(static_cast <bool> (Seg.startswith("PT_")) ? void (0) :
__assert_fail ("Seg.startswith(\"PT_\")", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 1439, __extension__ __PRETTY_FUNCTION__))
;
1440 return Seg.drop_front(3).str();
1441}
1442
1443const EnumEntry<unsigned> ElfSegmentFlags[] = {
1444 LLVM_READOBJ_ENUM_ENT(ELF, PF_X){ "PF_X", ELF::PF_X },
1445 LLVM_READOBJ_ENUM_ENT(ELF, PF_W){ "PF_W", ELF::PF_W },
1446 LLVM_READOBJ_ENUM_ENT(ELF, PF_R){ "PF_R", ELF::PF_R }
1447};
1448
1449const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1450 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"){ "EF_MIPS_NOREORDER", "noreorder", ELF::EF_MIPS_NOREORDER },
1451 ENUM_ENT(EF_MIPS_PIC, "pic"){ "EF_MIPS_PIC", "pic", ELF::EF_MIPS_PIC },
1452 ENUM_ENT(EF_MIPS_CPIC, "cpic"){ "EF_MIPS_CPIC", "cpic", ELF::EF_MIPS_CPIC },
1453 ENUM_ENT(EF_MIPS_ABI2, "abi2"){ "EF_MIPS_ABI2", "abi2", ELF::EF_MIPS_ABI2 },
1454 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"){ "EF_MIPS_32BITMODE", "32bitmode", ELF::EF_MIPS_32BITMODE },
1455 ENUM_ENT(EF_MIPS_FP64, "fp64"){ "EF_MIPS_FP64", "fp64", ELF::EF_MIPS_FP64 },
1456 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"){ "EF_MIPS_NAN2008", "nan2008", ELF::EF_MIPS_NAN2008 },
1457 ENUM_ENT(EF_MIPS_ABI_O32, "o32"){ "EF_MIPS_ABI_O32", "o32", ELF::EF_MIPS_ABI_O32 },
1458 ENUM_ENT(EF_MIPS_ABI_O64, "o64"){ "EF_MIPS_ABI_O64", "o64", ELF::EF_MIPS_ABI_O64 },
1459 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"){ "EF_MIPS_ABI_EABI32", "eabi32", ELF::EF_MIPS_ABI_EABI32 },
1460 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"){ "EF_MIPS_ABI_EABI64", "eabi64", ELF::EF_MIPS_ABI_EABI64 },
1461 ENUM_ENT(EF_MIPS_MACH_3900, "3900"){ "EF_MIPS_MACH_3900", "3900", ELF::EF_MIPS_MACH_3900 },
1462 ENUM_ENT(EF_MIPS_MACH_4010, "4010"){ "EF_MIPS_MACH_4010", "4010", ELF::EF_MIPS_MACH_4010 },
1463 ENUM_ENT(EF_MIPS_MACH_4100, "4100"){ "EF_MIPS_MACH_4100", "4100", ELF::EF_MIPS_MACH_4100 },
1464 ENUM_ENT(EF_MIPS_MACH_4650, "4650"){ "EF_MIPS_MACH_4650", "4650", ELF::EF_MIPS_MACH_4650 },
1465 ENUM_ENT(EF_MIPS_MACH_4120, "4120"){ "EF_MIPS_MACH_4120", "4120", ELF::EF_MIPS_MACH_4120 },
1466 ENUM_ENT(EF_MIPS_MACH_4111, "4111"){ "EF_MIPS_MACH_4111", "4111", ELF::EF_MIPS_MACH_4111 },
1467 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"){ "EF_MIPS_MACH_SB1", "sb1", ELF::EF_MIPS_MACH_SB1 },
1468 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"){ "EF_MIPS_MACH_OCTEON", "octeon", ELF::EF_MIPS_MACH_OCTEON },
1469 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"){ "EF_MIPS_MACH_XLR", "xlr", ELF::EF_MIPS_MACH_XLR },
1470 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"){ "EF_MIPS_MACH_OCTEON2", "octeon2", ELF::EF_MIPS_MACH_OCTEON2
}
,
1471 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"){ "EF_MIPS_MACH_OCTEON3", "octeon3", ELF::EF_MIPS_MACH_OCTEON3
}
,
1472 ENUM_ENT(EF_MIPS_MACH_5400, "5400"){ "EF_MIPS_MACH_5400", "5400", ELF::EF_MIPS_MACH_5400 },
1473 ENUM_ENT(EF_MIPS_MACH_5900, "5900"){ "EF_MIPS_MACH_5900", "5900", ELF::EF_MIPS_MACH_5900 },
1474 ENUM_ENT(EF_MIPS_MACH_5500, "5500"){ "EF_MIPS_MACH_5500", "5500", ELF::EF_MIPS_MACH_5500 },
1475 ENUM_ENT(EF_MIPS_MACH_9000, "9000"){ "EF_MIPS_MACH_9000", "9000", ELF::EF_MIPS_MACH_9000 },
1476 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"){ "EF_MIPS_MACH_LS2E", "loongson-2e", ELF::EF_MIPS_MACH_LS2E },
1477 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"){ "EF_MIPS_MACH_LS2F", "loongson-2f", ELF::EF_MIPS_MACH_LS2F },
1478 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"){ "EF_MIPS_MACH_LS3A", "loongson-3a", ELF::EF_MIPS_MACH_LS3A },
1479 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"){ "EF_MIPS_MICROMIPS", "micromips", ELF::EF_MIPS_MICROMIPS },
1480 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"){ "EF_MIPS_ARCH_ASE_M16", "mips16", ELF::EF_MIPS_ARCH_ASE_M16
}
,
1481 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"){ "EF_MIPS_ARCH_ASE_MDMX", "mdmx", ELF::EF_MIPS_ARCH_ASE_MDMX
}
,
1482 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"){ "EF_MIPS_ARCH_1", "mips1", ELF::EF_MIPS_ARCH_1 },
1483 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"){ "EF_MIPS_ARCH_2", "mips2", ELF::EF_MIPS_ARCH_2 },
1484 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"){ "EF_MIPS_ARCH_3", "mips3", ELF::EF_MIPS_ARCH_3 },
1485 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"){ "EF_MIPS_ARCH_4", "mips4", ELF::EF_MIPS_ARCH_4 },
1486 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"){ "EF_MIPS_ARCH_5", "mips5", ELF::EF_MIPS_ARCH_5 },
1487 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"){ "EF_MIPS_ARCH_32", "mips32", ELF::EF_MIPS_ARCH_32 },
1488 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"){ "EF_MIPS_ARCH_64", "mips64", ELF::EF_MIPS_ARCH_64 },
1489 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"){ "EF_MIPS_ARCH_32R2", "mips32r2", ELF::EF_MIPS_ARCH_32R2 },
1490 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"){ "EF_MIPS_ARCH_64R2", "mips64r2", ELF::EF_MIPS_ARCH_64R2 },
1491 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"){ "EF_MIPS_ARCH_32R6", "mips32r6", ELF::EF_MIPS_ARCH_32R6 },
1492 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6"){ "EF_MIPS_ARCH_64R6", "mips64r6", ELF::EF_MIPS_ARCH_64R6 }
1493};
1494
1495const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1496 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1497 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1498 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1499 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1500 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1501 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1502 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1503 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1504 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1505 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1506 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1507 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1508 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1509 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1510 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1511 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1512 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1513 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1514 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1515 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602){ "EF_AMDGPU_MACH_AMDGCN_GFX602", ELF::EF_AMDGPU_MACH_AMDGCN_GFX602
}
,
1516 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1517 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1518 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1519 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1520 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1521 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705){ "EF_AMDGPU_MACH_AMDGCN_GFX705", ELF::EF_AMDGPU_MACH_AMDGCN_GFX705
}
,
1522 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1523 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1524 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1525 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805){ "EF_AMDGPU_MACH_AMDGCN_GFX805", ELF::EF_AMDGPU_MACH_AMDGCN_GFX805
}
,
1526 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1527 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1528 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1529 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1530 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1531 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908){ "EF_AMDGPU_MACH_AMDGCN_GFX908", ELF::EF_AMDGPU_MACH_AMDGCN_GFX908
}
,
1532 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1533 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A){ "EF_AMDGPU_MACH_AMDGCN_GFX90A", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A
}
,
1534 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C){ "EF_AMDGPU_MACH_AMDGCN_GFX90C", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C
}
,
1535 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940){ "EF_AMDGPU_MACH_AMDGCN_GFX940", ELF::EF_AMDGPU_MACH_AMDGCN_GFX940
}
,
1536 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010){ "EF_AMDGPU_MACH_AMDGCN_GFX1010", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010
}
,
1537 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011){ "EF_AMDGPU_MACH_AMDGCN_GFX1011", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011
}
,
1538 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012){ "EF_AMDGPU_MACH_AMDGCN_GFX1012", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012
}
,
1539 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013){ "EF_AMDGPU_MACH_AMDGCN_GFX1013", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013
}
,
1540 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030){ "EF_AMDGPU_MACH_AMDGCN_GFX1030", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030
}
,
1541 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031){ "EF_AMDGPU_MACH_AMDGCN_GFX1031", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031
}
,
1542 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032){ "EF_AMDGPU_MACH_AMDGCN_GFX1032", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032
}
,
1543 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033){ "EF_AMDGPU_MACH_AMDGCN_GFX1033", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033
}
,
1544 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034){ "EF_AMDGPU_MACH_AMDGCN_GFX1034", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034
}
,
1545 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035){ "EF_AMDGPU_MACH_AMDGCN_GFX1035", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035
}
,
1546 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036){ "EF_AMDGPU_MACH_AMDGCN_GFX1036", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036
}
,
1547 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100){ "EF_AMDGPU_MACH_AMDGCN_GFX1100", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100
}
,
1548 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101){ "EF_AMDGPU_MACH_AMDGCN_GFX1101", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101
}
,
1549 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102){ "EF_AMDGPU_MACH_AMDGCN_GFX1102", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102
}
,
1550 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103){ "EF_AMDGPU_MACH_AMDGCN_GFX1103", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103
}
,
1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3){ "EF_AMDGPU_FEATURE_XNACK_V3", ELF::EF_AMDGPU_FEATURE_XNACK_V3
}
,
1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3){ "EF_AMDGPU_FEATURE_SRAMECC_V3", ELF::EF_AMDGPU_FEATURE_SRAMECC_V3
}
1553};
1554
1555const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE){ "EF_AMDGPU_MACH_NONE", ELF::EF_AMDGPU_MACH_NONE },
1557 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600){ "EF_AMDGPU_MACH_R600_R600", ELF::EF_AMDGPU_MACH_R600_R600 },
1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630){ "EF_AMDGPU_MACH_R600_R630", ELF::EF_AMDGPU_MACH_R600_R630 },
1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880){ "EF_AMDGPU_MACH_R600_RS880", ELF::EF_AMDGPU_MACH_R600_RS880
}
,
1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670){ "EF_AMDGPU_MACH_R600_RV670", ELF::EF_AMDGPU_MACH_R600_RV670
}
,
1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710){ "EF_AMDGPU_MACH_R600_RV710", ELF::EF_AMDGPU_MACH_R600_RV710
}
,
1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730){ "EF_AMDGPU_MACH_R600_RV730", ELF::EF_AMDGPU_MACH_R600_RV730
}
,
1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770){ "EF_AMDGPU_MACH_R600_RV770", ELF::EF_AMDGPU_MACH_R600_RV770
}
,
1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR){ "EF_AMDGPU_MACH_R600_CEDAR", ELF::EF_AMDGPU_MACH_R600_CEDAR
}
,
1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS){ "EF_AMDGPU_MACH_R600_CYPRESS", ELF::EF_AMDGPU_MACH_R600_CYPRESS
}
,
1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER){ "EF_AMDGPU_MACH_R600_JUNIPER", ELF::EF_AMDGPU_MACH_R600_JUNIPER
}
,
1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD){ "EF_AMDGPU_MACH_R600_REDWOOD", ELF::EF_AMDGPU_MACH_R600_REDWOOD
}
,
1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO){ "EF_AMDGPU_MACH_R600_SUMO", ELF::EF_AMDGPU_MACH_R600_SUMO },
1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS){ "EF_AMDGPU_MACH_R600_BARTS", ELF::EF_AMDGPU_MACH_R600_BARTS
}
,
1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS){ "EF_AMDGPU_MACH_R600_CAICOS", ELF::EF_AMDGPU_MACH_R600_CAICOS
}
,
1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN){ "EF_AMDGPU_MACH_R600_CAYMAN", ELF::EF_AMDGPU_MACH_R600_CAYMAN
}
,
1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS){ "EF_AMDGPU_MACH_R600_TURKS", ELF::EF_AMDGPU_MACH_R600_TURKS
}
,
1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600){ "EF_AMDGPU_MACH_AMDGCN_GFX600", ELF::EF_AMDGPU_MACH_AMDGCN_GFX600
}
,
1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601){ "EF_AMDGPU_MACH_AMDGCN_GFX601", ELF::EF_AMDGPU_MACH_AMDGCN_GFX601
}
,
1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602){ "EF_AMDGPU_MACH_AMDGCN_GFX602", ELF::EF_AMDGPU_MACH_AMDGCN_GFX602
}
,
1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700){ "EF_AMDGPU_MACH_AMDGCN_GFX700", ELF::EF_AMDGPU_MACH_AMDGCN_GFX700
}
,
1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701){ "EF_AMDGPU_MACH_AMDGCN_GFX701", ELF::EF_AMDGPU_MACH_AMDGCN_GFX701
}
,
1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702){ "EF_AMDGPU_MACH_AMDGCN_GFX702", ELF::EF_AMDGPU_MACH_AMDGCN_GFX702
}
,
1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703){ "EF_AMDGPU_MACH_AMDGCN_GFX703", ELF::EF_AMDGPU_MACH_AMDGCN_GFX703
}
,
1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704){ "EF_AMDGPU_MACH_AMDGCN_GFX704", ELF::EF_AMDGPU_MACH_AMDGCN_GFX704
}
,
1581 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705){ "EF_AMDGPU_MACH_AMDGCN_GFX705", ELF::EF_AMDGPU_MACH_AMDGCN_GFX705
}
,
1582 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801){ "EF_AMDGPU_MACH_AMDGCN_GFX801", ELF::EF_AMDGPU_MACH_AMDGCN_GFX801
}
,
1583 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802){ "EF_AMDGPU_MACH_AMDGCN_GFX802", ELF::EF_AMDGPU_MACH_AMDGCN_GFX802
}
,
1584 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803){ "EF_AMDGPU_MACH_AMDGCN_GFX803", ELF::EF_AMDGPU_MACH_AMDGCN_GFX803
}
,
1585 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805){ "EF_AMDGPU_MACH_AMDGCN_GFX805", ELF::EF_AMDGPU_MACH_AMDGCN_GFX805
}
,
1586 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810){ "EF_AMDGPU_MACH_AMDGCN_GFX810", ELF::EF_AMDGPU_MACH_AMDGCN_GFX810
}
,
1587 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900){ "EF_AMDGPU_MACH_AMDGCN_GFX900", ELF::EF_AMDGPU_MACH_AMDGCN_GFX900
}
,
1588 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902){ "EF_AMDGPU_MACH_AMDGCN_GFX902", ELF::EF_AMDGPU_MACH_AMDGCN_GFX902
}
,
1589 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904){ "EF_AMDGPU_MACH_AMDGCN_GFX904", ELF::EF_AMDGPU_MACH_AMDGCN_GFX904
}
,
1590 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906){ "EF_AMDGPU_MACH_AMDGCN_GFX906", ELF::EF_AMDGPU_MACH_AMDGCN_GFX906
}
,
1591 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908){ "EF_AMDGPU_MACH_AMDGCN_GFX908", ELF::EF_AMDGPU_MACH_AMDGCN_GFX908
}
,
1592 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909){ "EF_AMDGPU_MACH_AMDGCN_GFX909", ELF::EF_AMDGPU_MACH_AMDGCN_GFX909
}
,
1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A){ "EF_AMDGPU_MACH_AMDGCN_GFX90A", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A
}
,
1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C){ "EF_AMDGPU_MACH_AMDGCN_GFX90C", ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C
}
,
1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940){ "EF_AMDGPU_MACH_AMDGCN_GFX940", ELF::EF_AMDGPU_MACH_AMDGCN_GFX940
}
,
1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010){ "EF_AMDGPU_MACH_AMDGCN_GFX1010", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010
}
,
1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011){ "EF_AMDGPU_MACH_AMDGCN_GFX1011", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011
}
,
1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012){ "EF_AMDGPU_MACH_AMDGCN_GFX1012", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012
}
,
1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013){ "EF_AMDGPU_MACH_AMDGCN_GFX1013", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013
}
,
1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030){ "EF_AMDGPU_MACH_AMDGCN_GFX1030", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030
}
,
1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031){ "EF_AMDGPU_MACH_AMDGCN_GFX1031", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031
}
,
1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032){ "EF_AMDGPU_MACH_AMDGCN_GFX1032", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032
}
,
1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033){ "EF_AMDGPU_MACH_AMDGCN_GFX1033", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033
}
,
1604 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034){ "EF_AMDGPU_MACH_AMDGCN_GFX1034", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034
}
,
1605 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035){ "EF_AMDGPU_MACH_AMDGCN_GFX1035", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035
}
,
1606 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036){ "EF_AMDGPU_MACH_AMDGCN_GFX1036", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036
}
,
1607 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100){ "EF_AMDGPU_MACH_AMDGCN_GFX1100", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100
}
,
1608 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101){ "EF_AMDGPU_MACH_AMDGCN_GFX1101", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101
}
,
1609 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102){ "EF_AMDGPU_MACH_AMDGCN_GFX1102", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102
}
,
1610 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103){ "EF_AMDGPU_MACH_AMDGCN_GFX1103", ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103
}
,
1611 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4){ "EF_AMDGPU_FEATURE_XNACK_ANY_V4", ELF::EF_AMDGPU_FEATURE_XNACK_ANY_V4
}
,
1612 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4){ "EF_AMDGPU_FEATURE_XNACK_OFF_V4", ELF::EF_AMDGPU_FEATURE_XNACK_OFF_V4
}
,
1613 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4){ "EF_AMDGPU_FEATURE_XNACK_ON_V4", ELF::EF_AMDGPU_FEATURE_XNACK_ON_V4
}
,
1614 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4){ "EF_AMDGPU_FEATURE_SRAMECC_ANY_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_ANY_V4
}
,
1615 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4){ "EF_AMDGPU_FEATURE_SRAMECC_OFF_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_OFF_V4
}
,
1616 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4){ "EF_AMDGPU_FEATURE_SRAMECC_ON_V4", ELF::EF_AMDGPU_FEATURE_SRAMECC_ON_V4
}
1617};
1618
1619const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1620 ENUM_ENT(EF_RISCV_RVC, "RVC"){ "EF_RISCV_RVC", "RVC", ELF::EF_RISCV_RVC },
1621 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"){ "EF_RISCV_FLOAT_ABI_SINGLE", "single-float ABI", ELF::EF_RISCV_FLOAT_ABI_SINGLE
}
,
1622 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"){ "EF_RISCV_FLOAT_ABI_DOUBLE", "double-float ABI", ELF::EF_RISCV_FLOAT_ABI_DOUBLE
}
,
1623 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"){ "EF_RISCV_FLOAT_ABI_QUAD", "quad-float ABI", ELF::EF_RISCV_FLOAT_ABI_QUAD
}
,
1624 ENUM_ENT(EF_RISCV_RVE, "RVE"){ "EF_RISCV_RVE", "RVE", ELF::EF_RISCV_RVE },
1625 ENUM_ENT(EF_RISCV_TSO, "TSO"){ "EF_RISCV_TSO", "TSO", ELF::EF_RISCV_TSO },
1626};
1627
1628const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1629 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1){ "EF_AVR_ARCH_AVR1", ELF::EF_AVR_ARCH_AVR1 },
1630 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2){ "EF_AVR_ARCH_AVR2", ELF::EF_AVR_ARCH_AVR2 },
1631 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25){ "EF_AVR_ARCH_AVR25", ELF::EF_AVR_ARCH_AVR25 },
1632 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3){ "EF_AVR_ARCH_AVR3", ELF::EF_AVR_ARCH_AVR3 },
1633 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31){ "EF_AVR_ARCH_AVR31", ELF::EF_AVR_ARCH_AVR31 },
1634 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35){ "EF_AVR_ARCH_AVR35", ELF::EF_AVR_ARCH_AVR35 },
1635 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4){ "EF_AVR_ARCH_AVR4", ELF::EF_AVR_ARCH_AVR4 },
1636 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5){ "EF_AVR_ARCH_AVR5", ELF::EF_AVR_ARCH_AVR5 },
1637 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51){ "EF_AVR_ARCH_AVR51", ELF::EF_AVR_ARCH_AVR51 },
1638 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6){ "EF_AVR_ARCH_AVR6", ELF::EF_AVR_ARCH_AVR6 },
1639 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY){ "EF_AVR_ARCH_AVRTINY", ELF::EF_AVR_ARCH_AVRTINY },
1640 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1){ "EF_AVR_ARCH_XMEGA1", ELF::EF_AVR_ARCH_XMEGA1 },
1641 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2){ "EF_AVR_ARCH_XMEGA2", ELF::EF_AVR_ARCH_XMEGA2 },
1642 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3){ "EF_AVR_ARCH_XMEGA3", ELF::EF_AVR_ARCH_XMEGA3 },
1643 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4){ "EF_AVR_ARCH_XMEGA4", ELF::EF_AVR_ARCH_XMEGA4 },
1644 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5){ "EF_AVR_ARCH_XMEGA5", ELF::EF_AVR_ARCH_XMEGA5 },
1645 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6){ "EF_AVR_ARCH_XMEGA6", ELF::EF_AVR_ARCH_XMEGA6 },
1646 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7){ "EF_AVR_ARCH_XMEGA7", ELF::EF_AVR_ARCH_XMEGA7 },
1647 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"){ "EF_AVR_LINKRELAX_PREPARED", "relaxable", ELF::EF_AVR_LINKRELAX_PREPARED
}
,
1648};
1649
1650const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1651 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"){ "EF_LOONGARCH_ABI_SOFT_FLOAT", "SOFT-FLOAT", ELF::EF_LOONGARCH_ABI_SOFT_FLOAT
}
,
1652 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"){ "EF_LOONGARCH_ABI_SINGLE_FLOAT", "SINGLE-FLOAT", ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT
}
,
1653 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"){ "EF_LOONGARCH_ABI_DOUBLE_FLOAT", "DOUBLE-FLOAT", ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT
}
,
1654 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"){ "EF_LOONGARCH_OBJABI_V0", "OBJ-v0", ELF::EF_LOONGARCH_OBJABI_V0
}
,
1655 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"){ "EF_LOONGARCH_OBJABI_V1", "OBJ-v1", ELF::EF_LOONGARCH_OBJABI_V1
}
,
1656};
1657
1658static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1659 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE){ "EF_XTENSA_MACH_NONE", ELF::EF_XTENSA_MACH_NONE },
1660 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN){ "EF_XTENSA_XT_INSN", ELF::EF_XTENSA_XT_INSN },
1661 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT){ "EF_XTENSA_XT_LIT", ELF::EF_XTENSA_XT_LIT }
1662};
1663
1664const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1665 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL){ "STV_INTERNAL", ELF::STV_INTERNAL },
1666 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN){ "STV_HIDDEN", ELF::STV_HIDDEN },
1667 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED){ "STV_PROTECTED", ELF::STV_PROTECTED }
1668};
1669
1670const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1671 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1672 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1673 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC){ "STO_MIPS_PIC", ELF::STO_MIPS_PIC },
1674 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS){ "STO_MIPS_MICROMIPS", ELF::STO_MIPS_MICROMIPS }
1675};
1676
1677const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1678 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS){ "STO_AARCH64_VARIANT_PCS", ELF::STO_AARCH64_VARIANT_PCS }
1679};
1680
1681const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1682 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL){ "STO_MIPS_OPTIONAL", ELF::STO_MIPS_OPTIONAL },
1683 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT){ "STO_MIPS_PLT", ELF::STO_MIPS_PLT },
1684 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16){ "STO_MIPS_MIPS16", ELF::STO_MIPS_MIPS16 }
1685};
1686
1687const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1688 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC){ "STO_RISCV_VARIANT_CC", ELF::STO_RISCV_VARIANT_CC }};
1689
1690static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1691 switch (Odk) {
1692 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL)case ELF::ODK_NULL: return "ODK_NULL";;
1693 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO)case ELF::ODK_REGINFO: return "ODK_REGINFO";;
1694 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS)case ELF::ODK_EXCEPTIONS: return "ODK_EXCEPTIONS";;
1695 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD)case ELF::ODK_PAD: return "ODK_PAD";;
1696 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH)case ELF::ODK_HWPATCH: return "ODK_HWPATCH";;
1697 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL)case ELF::ODK_FILL: return "ODK_FILL";;
1698 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS)case ELF::ODK_TAGS: return "ODK_TAGS";;
1699 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND)case ELF::ODK_HWAND: return "ODK_HWAND";;
1700 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR)case ELF::ODK_HWOR: return "ODK_HWOR";;
1701 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP)case ELF::ODK_GP_GROUP: return "ODK_GP_GROUP";;
1702 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT)case ELF::ODK_IDENT: return "ODK_IDENT";;
1703 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE)case ELF::ODK_PAGESIZE: return "ODK_PAGESIZE";;
1704 default:
1705 return "Unknown";
1706 }
1707}
1708
1709template <typename ELFT>
1710std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1711ELFDumper<ELFT>::findDynamic() {
1712 // Try to locate the PT_DYNAMIC header.
1713 const Elf_Phdr *DynamicPhdr = nullptr;
1714 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1715 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1716 if (Phdr.p_type != ELF::PT_DYNAMIC)
1717 continue;
1718 DynamicPhdr = &Phdr;
1719 break;
1720 }
1721 } else {
1722 reportUniqueWarning(
1723 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1724 toString(PhdrsOrErr.takeError()));
1725 }
1726
1727 // Try to locate the .dynamic section in the sections header table.
1728 const Elf_Shdr *DynamicSec = nullptr;
1729 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1730 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1731 continue;
1732 DynamicSec = &Sec;
1733 break;
1734 }
1735
1736 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1737 ObjF.getMemoryBufferRef().getBufferSize()) ||
1738 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1739 DynamicPhdr->p_offset))) {
1740 reportUniqueWarning(
1741 "PT_DYNAMIC segment offset (0x" +
1742 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1743 Twine::utohexstr(DynamicPhdr->p_filesz) +
1744 ") exceeds the size of the file (0x" +
1745 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1746 // Don't use the broken dynamic header.
1747 DynamicPhdr = nullptr;
1748 }
1749
1750 if (DynamicPhdr && DynamicSec) {
1751 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1752 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1753 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1754 reportUniqueWarning(describe(*DynamicSec) +
1755 " is not contained within the "
1756 "PT_DYNAMIC segment");
1757
1758 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1759 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1760 "PT_DYNAMIC segment");
1761 }
1762
1763 return std::make_pair(DynamicPhdr, DynamicSec);
1764}
1765
1766template <typename ELFT>
1767void ELFDumper<ELFT>::loadDynamicTable() {
1768 const Elf_Phdr *DynamicPhdr;
1769 const Elf_Shdr *DynamicSec;
1770 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1771 if (!DynamicPhdr && !DynamicSec)
1772 return;
1773
1774 DynRegionInfo FromPhdr(ObjF, *this);
1775 bool IsPhdrTableValid = false;
1776 if (DynamicPhdr) {
1777 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1778 // validated in findDynamic() and so createDRI() is not expected to fail.
1779 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1780 sizeof(Elf_Dyn)));
1781 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1782 FromPhdr.EntSizePrintName = "";
1783 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1784 }
1785
1786 // Locate the dynamic table described in a section header.
1787 // Ignore sh_entsize and use the expected value for entry size explicitly.
1788 // This allows us to dump dynamic sections with a broken sh_entsize
1789 // field.
1790 DynRegionInfo FromSec(ObjF, *this);
1791 bool IsSecTableValid = false;
1792 if (DynamicSec) {
1793 Expected<DynRegionInfo> RegOrErr =
1794 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1795 if (RegOrErr) {
1796 FromSec = *RegOrErr;
1797 FromSec.Context = describe(*DynamicSec);
1798 FromSec.EntSizePrintName = "";
1799 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1800 } else {
1801 reportUniqueWarning("unable to read the dynamic table from " +
1802 describe(*DynamicSec) + ": " +
1803 toString(RegOrErr.takeError()));
1804 }
1805 }
1806
1807 // When we only have information from one of the SHT_DYNAMIC section header or
1808 // PT_DYNAMIC program header, just use that.
1809 if (!DynamicPhdr || !DynamicSec) {
1810 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1811 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1812 parseDynamicTable();
1813 } else {
1814 reportUniqueWarning("no valid dynamic table was found");
1815 }
1816 return;
1817 }
1818
1819 // At this point we have tables found from the section header and from the
1820 // dynamic segment. Usually they match, but we have to do sanity checks to
1821 // verify that.
1822
1823 if (FromPhdr.Addr != FromSec.Addr)
1824 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1825 "program header disagree about "
1826 "the location of the dynamic table");
1827
1828 if (!IsPhdrTableValid && !IsSecTableValid) {
1829 reportUniqueWarning("no valid dynamic table was found");
1830 return;
1831 }
1832
1833 // Information in the PT_DYNAMIC program header has priority over the
1834 // information in a section header.
1835 if (IsPhdrTableValid) {
1836 if (!IsSecTableValid)
1837 reportUniqueWarning(
1838 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1839 DynamicTable = FromPhdr;
1840 } else {
1841 reportUniqueWarning(
1842 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1843 DynamicTable = FromSec;
1844 }
1845
1846 parseDynamicTable();
1847}
1848
1849template <typename ELFT>
1850ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1851 ScopedPrinter &Writer)
1852 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1853 FileName(O.getFileName()), DynRelRegion(O, *this),
1854 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1855 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1856 DynamicTable(O, *this) {
1857 if (!O.IsContentValid())
1858 return;
1859
1860 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1861 for (const Elf_Shdr &Sec : Sections) {
1862 switch (Sec.sh_type) {
1863 case ELF::SHT_SYMTAB:
1864 if (!DotSymtabSec)
1865 DotSymtabSec = &Sec;
1866 break;
1867 case ELF::SHT_DYNSYM:
1868 if (!DotDynsymSec)
1869 DotDynsymSec = &Sec;
1870
1871 if (!DynSymRegion) {
1872 Expected<DynRegionInfo> RegOrErr =
1873 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1874 if (RegOrErr) {
1875 DynSymRegion = *RegOrErr;
1876 DynSymRegion->Context = describe(Sec);
1877
1878 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1879 DynamicStringTable = *E;
1880 else
1881 reportUniqueWarning("unable to get the string table for the " +
1882 describe(Sec) + ": " + toString(E.takeError()));
1883 } else {
1884 reportUniqueWarning("unable to read dynamic symbols from " +
1885 describe(Sec) + ": " +
1886 toString(RegOrErr.takeError()));
1887 }
1888 }
1889 break;
1890 case ELF::SHT_SYMTAB_SHNDX: {
1891 uint32_t SymtabNdx = Sec.sh_link;
1892 if (SymtabNdx >= Sections.size()) {
1893 reportUniqueWarning(
1894 "unable to get the associated symbol table for " + describe(Sec) +
1895 ": sh_link (" + Twine(SymtabNdx) +
1896 ") is greater than or equal to the total number of sections (" +
1897 Twine(Sections.size()) + ")");
1898 continue;
1899 }
1900
1901 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1902 Obj.getSHNDXTable(Sec)) {
1903 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1904 .second)
1905 reportUniqueWarning(
1906 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1907 describe(Sec));
1908 } else {
1909 reportUniqueWarning(ShndxTableOrErr.takeError());
1910 }
1911 break;
1912 }
1913 case ELF::SHT_GNU_versym:
1914 if (!SymbolVersionSection)
1915 SymbolVersionSection = &Sec;
1916 break;
1917 case ELF::SHT_GNU_verdef:
1918 if (!SymbolVersionDefSection)
1919 SymbolVersionDefSection = &Sec;
1920 break;
1921 case ELF::SHT_GNU_verneed:
1922 if (!SymbolVersionNeedSection)
1923 SymbolVersionNeedSection = &Sec;
1924 break;
1925 case ELF::SHT_LLVM_ADDRSIG:
1926 if (!DotAddrsigSec)
1927 DotAddrsigSec = &Sec;
1928 break;
1929 }
1930 }
1931
1932 loadDynamicTable();
1933}
1934
1935template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1936 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1937 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1938 this->reportUniqueWarning(Msg);
1939 return Error::success();
1940 });
1941 if (!MappedAddrOrError) {
1942 this->reportUniqueWarning("unable to parse DT_" +
1943 Obj.getDynamicTagAsString(Tag) + ": " +
1944 llvm::toString(MappedAddrOrError.takeError()));
1945 return nullptr;
1946 }
1947 return MappedAddrOrError.get();
1948 };
1949
1950 const char *StringTableBegin = nullptr;
1951 uint64_t StringTableSize = 0;
1952 std::optional<DynRegionInfo> DynSymFromTable;
1953 for (const Elf_Dyn &Dyn : dynamic_table()) {
1954 switch (Dyn.d_tag) {
1955 case ELF::DT_HASH:
1956 HashTable = reinterpret_cast<const Elf_Hash *>(
1957 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1958 break;
1959 case ELF::DT_GNU_HASH:
1960 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1961 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1962 break;
1963 case ELF::DT_STRTAB:
1964 StringTableBegin = reinterpret_cast<const char *>(
1965 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1966 break;
1967 case ELF::DT_STRSZ:
1968 StringTableSize = Dyn.getVal();
1969 break;
1970 case ELF::DT_SYMTAB: {
1971 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1972 // no program headers), we ignore its value.
1973 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1974 DynSymFromTable.emplace(ObjF, *this);
1975 DynSymFromTable->Addr = VA;
1976 DynSymFromTable->EntSize = sizeof(Elf_Sym);
1977 DynSymFromTable->EntSizePrintName = "";
1978 }
1979 break;
1980 }
1981 case ELF::DT_SYMENT: {
1982 uint64_t Val = Dyn.getVal();
1983 if (Val != sizeof(Elf_Sym))
1984 this->reportUniqueWarning("DT_SYMENT value of 0x" +
1985 Twine::utohexstr(Val) +
1986 " is not the size of a symbol (0x" +
1987 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1988 break;
1989 }
1990 case ELF::DT_RELA:
1991 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1992 break;
1993 case ELF::DT_RELASZ:
1994 DynRelaRegion.Size = Dyn.getVal();
1995 DynRelaRegion.SizePrintName = "DT_RELASZ value";
1996 break;
1997 case ELF::DT_RELAENT:
1998 DynRelaRegion.EntSize = Dyn.getVal();
1999 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2000 break;
2001 case ELF::DT_SONAME:
2002 SONameOffset = Dyn.getVal();
2003 break;
2004 case ELF::DT_REL:
2005 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2006 break;
2007 case ELF::DT_RELSZ:
2008 DynRelRegion.Size = Dyn.getVal();
2009 DynRelRegion.SizePrintName = "DT_RELSZ value";
2010 break;
2011 case ELF::DT_RELENT:
2012 DynRelRegion.EntSize = Dyn.getVal();
2013 DynRelRegion.EntSizePrintName = "DT_RELENT value";
2014 break;
2015 case ELF::DT_RELR:
2016 case ELF::DT_ANDROID_RELR:
2017 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2018 break;
2019 case ELF::DT_RELRSZ:
2020 case ELF::DT_ANDROID_RELRSZ:
2021 DynRelrRegion.Size = Dyn.getVal();
2022 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2023 ? "DT_RELRSZ value"
2024 : "DT_ANDROID_RELRSZ value";
2025 break;
2026 case ELF::DT_RELRENT:
2027 case ELF::DT_ANDROID_RELRENT:
2028 DynRelrRegion.EntSize = Dyn.getVal();
2029 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2030 ? "DT_RELRENT value"
2031 : "DT_ANDROID_RELRENT value";
2032 break;
2033 case ELF::DT_PLTREL:
2034 if (Dyn.getVal() == DT_REL)
2035 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2036 else if (Dyn.getVal() == DT_RELA)
2037 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2038 else
2039 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2040 Twine((uint64_t)Dyn.getVal()));
2041 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2042 break;
2043 case ELF::DT_JMPREL:
2044 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2045 break;
2046 case ELF::DT_PLTRELSZ:
2047 DynPLTRelRegion.Size = Dyn.getVal();
2048 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2049 break;
2050 case ELF::DT_SYMTAB_SHNDX:
2051 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2052 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2053 break;
2054 }
2055 }
2056
2057 if (StringTableBegin) {
2058 const uint64_t FileSize = Obj.getBufSize();
2059 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2060 if (StringTableSize > FileSize - Offset)
2061 reportUniqueWarning(
2062 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2063 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2064 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2065 else
2066 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2067 }
2068
2069 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2070 if (DynSymRegion) {
2071 // Often we find the information about the dynamic symbol table
2072 // location in the SHT_DYNSYM section header. However, the value in
2073 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2074 // locate .dynsym at runtime. The location we find in the section header
2075 // and the location we find here should match.
2076 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2077 reportUniqueWarning(
2078 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2079 "the location of the dynamic symbol table"));
2080
2081 // According to the ELF gABI: "The number of symbol table entries should
2082 // equal nchain". Check to see if the DT_HASH hash table nchain value
2083 // conflicts with the number of symbols in the dynamic symbol table
2084 // according to the section header.
2085 if (HashTable && IsHashTableSupported) {
2086 if (DynSymRegion->EntSize == 0)
2087 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2088 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2089 reportUniqueWarning(
2090 "hash table nchain (" + Twine(HashTable->nchain) +
2091 ") differs from symbol count derived from SHT_DYNSYM section "
2092 "header (" +
2093 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2094 }
2095 }
2096
2097 // Delay the creation of the actual dynamic symbol table until now, so that
2098 // checks can always be made against the section header-based properties,
2099 // without worrying about tag order.
2100 if (DynSymFromTable) {
2101 if (!DynSymRegion) {
2102 DynSymRegion = DynSymFromTable;
2103 } else {
2104 DynSymRegion->Addr = DynSymFromTable->Addr;
2105 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2106 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2107 }
2108 }
2109
2110 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2111 // present.
2112 if (HashTable && IsHashTableSupported && DynSymRegion) {
2113 const uint64_t FileSize = Obj.getBufSize();
2114 const uint64_t DerivedSize =
2115 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2116 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2117 if (DerivedSize > FileSize - Offset)
2118 reportUniqueWarning(
2119 "the size (0x" + Twine::utohexstr(DerivedSize) +
2120 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2121 ", derived from the hash table, goes past the end of the file (0x" +
2122 Twine::utohexstr(FileSize) + ") and will be ignored");
2123 else
2124 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2125 }
2126}
2127
2128template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2129 // Dump version symbol section.
2130 printVersionSymbolSection(SymbolVersionSection);
2131
2132 // Dump version definition section.
2133 printVersionDefinitionSection(SymbolVersionDefSection);
2134
2135 // Dump version dependency section.
2136 printVersionDependencySection(SymbolVersionNeedSection);
2137}
2138
2139#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2140 { #enum, prefix##_##enum }
2141
2142const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2143 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2144 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2145 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2146 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2147 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2148};
2149
2150const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2151 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2152 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2153 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2154 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2155 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2156 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2157 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2158 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2159 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2160 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2161 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2162 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2163 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2164 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2165 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2166 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2167 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2168 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2169 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2170 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2171 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2172 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2173 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2174 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2175 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2176 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2177 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2178};
2179
2180const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2181 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2182 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2183 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2184 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2185 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2186 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2187 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2188 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2189 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2190 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2191 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2192 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2193 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2194 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2195 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2196 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2197};
2198
2199#undef LLVM_READOBJ_DT_FLAG_ENT
2200
2201template <typename T, typename TFlag>
2202void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2203 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2204 for (const EnumEntry<TFlag> &Flag : Flags)
2205 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2206 SetFlags.push_back(Flag);
2207
2208 for (const EnumEntry<TFlag> &Flag : SetFlags)
2209 OS << Flag.Name << " ";
2210}
2211
2212template <class ELFT>
2213const typename ELFT::Shdr *
2214ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2215 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2216 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2217 if (*NameOrErr == Name)
2218 return &Shdr;
2219 } else {
2220 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2221 ": " + toString(NameOrErr.takeError()));
2222 }
2223 }
2224 return nullptr;
2225}
2226
2227template <class ELFT>
2228std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2229 uint64_t Value) const {
2230 auto FormatHexValue = [](uint64_t V) {
2231 std::string Str;
2232 raw_string_ostream OS(Str);
2233 const char *ConvChar =
2234 (opts::Output == opts::GNU) ? "0x%" PRIx64"l" "x" : "0x%" PRIX64"l" "X";
2235 OS << format(ConvChar, V);
2236 return OS.str();
2237 };
2238
2239 auto FormatFlags = [](uint64_t V,
2240 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2241 std::string Str;
2242 raw_string_ostream OS(Str);
2243 printFlags(V, Array, OS);
2244 return OS.str();
2245 };
2246
2247 // Handle custom printing of architecture specific tags
2248 switch (Obj.getHeader().e_machine) {
2249 case EM_AARCH64:
2250 switch (Type) {
2251 case DT_AARCH64_BTI_PLT:
2252 case DT_AARCH64_PAC_PLT:
2253 case DT_AARCH64_VARIANT_PCS:
2254 return std::to_string(Value);
2255 default:
2256 break;
2257 }
2258 break;
2259 case EM_HEXAGON:
2260 switch (Type) {
2261 case DT_HEXAGON_VER:
2262 return std::to_string(Value);
2263 case DT_HEXAGON_SYMSZ:
2264 case DT_HEXAGON_PLT:
2265 return FormatHexValue(Value);
2266 default:
2267 break;
2268 }
2269 break;
2270 case EM_MIPS:
2271 switch (Type) {
2272 case DT_MIPS_RLD_VERSION:
2273 case DT_MIPS_LOCAL_GOTNO:
2274 case DT_MIPS_SYMTABNO:
2275 case DT_MIPS_UNREFEXTNO:
2276 return std::to_string(Value);
2277 case DT_MIPS_TIME_STAMP:
2278 case DT_MIPS_ICHECKSUM:
2279 case DT_MIPS_IVERSION:
2280 case DT_MIPS_BASE_ADDRESS:
2281 case DT_MIPS_MSYM:
2282 case DT_MIPS_CONFLICT:
2283 case DT_MIPS_LIBLIST:
2284 case DT_MIPS_CONFLICTNO:
2285 case DT_MIPS_LIBLISTNO:
2286 case DT_MIPS_GOTSYM:
2287 case DT_MIPS_HIPAGENO:
2288 case DT_MIPS_RLD_MAP:
2289 case DT_MIPS_DELTA_CLASS:
2290 case DT_MIPS_DELTA_CLASS_NO:
2291 case DT_MIPS_DELTA_INSTANCE:
2292 case DT_MIPS_DELTA_RELOC:
2293 case DT_MIPS_DELTA_RELOC_NO:
2294 case DT_MIPS_DELTA_SYM:
2295 case DT_MIPS_DELTA_SYM_NO:
2296 case DT_MIPS_DELTA_CLASSSYM:
2297 case DT_MIPS_DELTA_CLASSSYM_NO:
2298 case DT_MIPS_CXX_FLAGS:
2299 case DT_MIPS_PIXIE_INIT:
2300 case DT_MIPS_SYMBOL_LIB:
2301 case DT_MIPS_LOCALPAGE_GOTIDX:
2302 case DT_MIPS_LOCAL_GOTIDX:
2303 case DT_MIPS_HIDDEN_GOTIDX:
2304 case DT_MIPS_PROTECTED_GOTIDX:
2305 case DT_MIPS_OPTIONS:
2306 case DT_MIPS_INTERFACE:
2307 case DT_MIPS_DYNSTR_ALIGN:
2308 case DT_MIPS_INTERFACE_SIZE:
2309 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2310 case DT_MIPS_PERF_SUFFIX:
2311 case DT_MIPS_COMPACT_SIZE:
2312 case DT_MIPS_GP_VALUE:
2313 case DT_MIPS_AUX_DYNAMIC:
2314 case DT_MIPS_PLTGOT:
2315 case DT_MIPS_RWPLT:
2316 case DT_MIPS_RLD_MAP_REL:
2317 case DT_MIPS_XHASH:
2318 return FormatHexValue(Value);
2319 case DT_MIPS_FLAGS:
2320 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2321 default:
2322 break;
2323 }
2324 break;
2325 default:
2326 break;
2327 }
2328
2329 switch (Type) {
2330 case DT_PLTREL:
2331 if (Value == DT_REL)
2332 return "REL";
2333 if (Value == DT_RELA)
2334 return "RELA";
2335 [[fallthrough]];
2336 case DT_PLTGOT:
2337 case DT_HASH:
2338 case DT_STRTAB:
2339 case DT_SYMTAB:
2340 case DT_RELA:
2341 case DT_INIT:
2342 case DT_FINI:
2343 case DT_REL:
2344 case DT_JMPREL:
2345 case DT_INIT_ARRAY:
2346 case DT_FINI_ARRAY:
2347 case DT_PREINIT_ARRAY:
2348 case DT_DEBUG:
2349 case DT_VERDEF:
2350 case DT_VERNEED:
2351 case DT_VERSYM:
2352 case DT_GNU_HASH:
2353 case DT_NULL:
2354 return FormatHexValue(Value);
2355 case DT_RELACOUNT:
2356 case DT_RELCOUNT:
2357 case DT_VERDEFNUM:
2358 case DT_VERNEEDNUM:
2359 return std::to_string(Value);
2360 case DT_PLTRELSZ:
2361 case DT_RELASZ:
2362 case DT_RELAENT:
2363 case DT_STRSZ:
2364 case DT_SYMENT:
2365 case DT_RELSZ:
2366 case DT_RELENT:
2367 case DT_INIT_ARRAYSZ:
2368 case DT_FINI_ARRAYSZ:
2369 case DT_PREINIT_ARRAYSZ:
2370 case DT_RELRSZ:
2371 case DT_RELRENT:
2372 case DT_ANDROID_RELSZ:
2373 case DT_ANDROID_RELASZ:
2374 return std::to_string(Value) + " (bytes)";
2375 case DT_NEEDED:
2376 case DT_SONAME:
2377 case DT_AUXILIARY:
2378 case DT_USED:
2379 case DT_FILTER:
2380 case DT_RPATH:
2381 case DT_RUNPATH: {
2382 const std::map<uint64_t, const char *> TagNames = {
2383 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2384 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2385 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2386 {DT_RUNPATH, "Library runpath"},
2387 };
2388
2389 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2390 .str();
2391 }
2392 case DT_FLAGS:
2393 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2394 case DT_FLAGS_1:
2395 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2396 default:
2397 return FormatHexValue(Value);
2398 }
2399}
2400
2401template <class ELFT>
2402StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2403 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2404 reportUniqueWarning("string table was not found");
2405 return "<?>";
2406 }
2407
2408 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2409 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2410 Msg);
2411 return "<?>";
2412 };
2413
2414 const uint64_t FileSize = Obj.getBufSize();
2415 const uint64_t Offset =
2416 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2417 if (DynamicStringTable.size() > FileSize - Offset)
2418 return WarnAndReturn(" with size 0x" +
2419 Twine::utohexstr(DynamicStringTable.size()) +
2420 " goes past the end of the file (0x" +
2421 Twine::utohexstr(FileSize) + ")",
2422 Offset);
2423
2424 if (Value >= DynamicStringTable.size())
2425 return WarnAndReturn(
2426 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2427 ": it goes past the end of the table (0x" +
2428 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2429 Offset);
2430
2431 if (DynamicStringTable.back() != '\0')
2432 return WarnAndReturn(": unable to read the string at 0x" +
2433 Twine::utohexstr(Offset + Value) +
2434 ": the string table is not null-terminated",
2435 Offset);
2436
2437 return DynamicStringTable.data() + Value;
2438}
2439
2440template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2441 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2442 Ctx.printUnwindInformation();
2443}
2444
2445// The namespace is needed to fix the compilation with GCC older than 7.0+.
2446namespace {
2447template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2448 if (Obj.getHeader().e_machine == EM_ARM) {
2449 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2450 DotSymtabSec);
2451 Ctx.PrintUnwindInformation();
2452 }
2453 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2454 Ctx.printUnwindInformation();
2455}
2456} // namespace
2457
2458template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2459 ListScope D(W, "NeededLibraries");
2460
2461 std::vector<StringRef> Libs;
2462 for (const auto &Entry : dynamic_table())
2463 if (Entry.d_tag == ELF::DT_NEEDED)
2464 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2465
2466 llvm::sort(Libs);
2467
2468 for (StringRef L : Libs)
2469 W.startLine() << L << "\n";
2470}
2471
2472template <class ELFT>
2473static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2474 const typename ELFT::Hash *H,
2475 bool *IsHeaderValid = nullptr) {
2476 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2477 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2478 if (Dumper.getHashTableEntSize() == 8) {
2479 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2480 return E.Value == Obj.getHeader().e_machine;
2481 });
2482 if (IsHeaderValid)
2483 *IsHeaderValid = false;
2484 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2485 " is not supported: it contains non-standard 8 "
2486 "byte entries on " +
2487 It->AltName + " platform");
2488 }
2489
2490 auto MakeError = [&](const Twine &Msg = "") {
2491 return createError("the hash table at offset 0x" +
2492 Twine::utohexstr(SecOffset) +
2493 " goes past the end of the file (0x" +
2494 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2495 };
2496
2497 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2498 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2499
2500 if (IsHeaderValid)
2501 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2502
2503 if (Obj.getBufSize() - SecOffset < HeaderSize)
2504 return MakeError();
2505
2506 if (Obj.getBufSize() - SecOffset - HeaderSize <
2507 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2508 return MakeError(", nbucket = " + Twine(H->nbucket) +
2509 ", nchain = " + Twine(H->nchain));
2510 return Error::success();
2511}
2512
2513template <class ELFT>
2514static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2515 const typename ELFT::GnuHash *GnuHashTable,
2516 bool *IsHeaderValid = nullptr) {
2517 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2518 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&(static_cast <bool> (TableData >= Obj.base() &&
TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"
) ? void (0) : __assert_fail ("TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && \"GnuHashTable must always point to a location inside the file\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2519, __extension__
__PRETTY_FUNCTION__))
2519 "GnuHashTable must always point to a location inside the file")(static_cast <bool> (TableData >= Obj.base() &&
TableData < Obj.base() + Obj.getBufSize() && "GnuHashTable must always point to a location inside the file"
) ? void (0) : __assert_fail ("TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && \"GnuHashTable must always point to a location inside the file\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2519, __extension__
__PRETTY_FUNCTION__))
;
2520
2521 uint64_t TableOffset = TableData - Obj.base();
2522 if (IsHeaderValid)
2523 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2524 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2525 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2526 Obj.getBufSize())
2527 return createError("unable to dump the SHT_GNU_HASH "
2528 "section at 0x" +
2529 Twine::utohexstr(TableOffset) +
2530 ": it goes past the end of the file");
2531 return Error::success();
2532}
2533
2534template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2535 DictScope D(W, "HashTable");
2536 if (!HashTable)
2537 return;
2538
2539 bool IsHeaderValid;
2540 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2541 if (IsHeaderValid) {
2542 W.printNumber("Num Buckets", HashTable->nbucket);
2543 W.printNumber("Num Chains", HashTable->nchain);
2544 }
2545
2546 if (Err) {
2547 reportUniqueWarning(std::move(Err));
2548 return;
2549 }
2550
2551 W.printList("Buckets", HashTable->buckets());
2552 W.printList("Chains", HashTable->chains());
2553}
2554
2555template <class ELFT>
2556static Expected<ArrayRef<typename ELFT::Word>>
2557getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2558 const typename ELFT::GnuHash *GnuHashTable) {
2559 if (!DynSymRegion)
2560 return createError("no dynamic symbol table found");
2561
2562 ArrayRef<typename ELFT::Sym> DynSymTable =
2563 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2564 size_t NumSyms = DynSymTable.size();
2565 if (!NumSyms)
2566 return createError("the dynamic symbol table is empty");
2567
2568 if (GnuHashTable->symndx < NumSyms)
2569 return GnuHashTable->values(NumSyms);
2570
2571 // A normal empty GNU hash table section produced by linker might have
2572 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2573 // and have dummy null values in the Bloom filter and in the buckets
2574 // vector (or no values at all). It happens because the value of symndx is not
2575 // important for dynamic loaders when the GNU hash table is empty. They just
2576 // skip the whole object during symbol lookup. In such cases, the symndx value
2577 // is irrelevant and we should not report a warning.
2578 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2579 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2580 return createError(
2581 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2582 ") is greater than or equal to the number of dynamic symbols (" +
2583 Twine(NumSyms) + ")");
2584 // There is no way to represent an array of (dynamic symbols count - symndx)
2585 // length.
2586 return ArrayRef<typename ELFT::Word>();
2587}
2588
2589template <typename ELFT>
2590void ELFDumper<ELFT>::printGnuHashTable() {
2591 DictScope D(W, "GnuHashTable");
2592 if (!GnuHashTable)
2593 return;
2594
2595 bool IsHeaderValid;
2596 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2597 if (IsHeaderValid) {
2598 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2599 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2600 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2601 W.printNumber("Shift Count", GnuHashTable->shift2);
2602 }
2603
2604 if (Err) {
2605 reportUniqueWarning(std::move(Err));
2606 return;
2607 }
2608
2609 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2610 W.printHexList("Bloom Filter", BloomFilter);
2611
2612 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2613 W.printList("Buckets", Buckets);
2614
2615 Expected<ArrayRef<Elf_Word>> Chains =
2616 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2617 if (!Chains) {
2618 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2619 "section: " +
2620 toString(Chains.takeError()));
2621 return;
2622 }
2623
2624 W.printHexList("Values", *Chains);
2625}
2626
2627template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2628 StringRef SOName = "<Not found>";
2629 if (SONameOffset)
2630 SOName = getDynamicString(*SONameOffset);
2631 W.printString("LoadName", SOName);
2632}
2633
2634template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2635 switch (Obj.getHeader().e_machine) {
2636 case EM_ARM:
2637 if (Obj.isLE())
2638 printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2639 std::make_unique<ARMAttributeParser>(&W),
2640 support::little);
2641 else
2642 reportUniqueWarning("attribute printing not implemented for big-endian "
2643 "ARM objects");
2644 break;
2645 case EM_RISCV:
2646 if (Obj.isLE())
2647 printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2648 std::make_unique<RISCVAttributeParser>(&W),
2649 support::little);
2650 else
2651 reportUniqueWarning("attribute printing not implemented for big-endian "
2652 "RISC-V objects");
2653 break;
2654 case EM_MSP430:
2655 printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2656 std::make_unique<MSP430AttributeParser>(&W),
2657 support::little);
2658 break;
2659 case EM_MIPS: {
2660 printMipsABIFlags();
2661 printMipsOptions();
2662 printMipsReginfo();
2663 MipsGOTParser<ELFT> Parser(*this);
2664 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2665 reportUniqueWarning(std::move(E));
2666 else if (!Parser.isGotEmpty())
2667 printMipsGOT(Parser);
2668
2669 if (Error E = Parser.findPLT(dynamic_table()))
2670 reportUniqueWarning(std::move(E));
2671 else if (!Parser.isPltEmpty())
2672 printMipsPLT(Parser);
2673 break;
2674 }
2675 default:
2676 break;
2677 }
2678}
2679
2680template <class ELFT>
2681void ELFDumper<ELFT>::printAttributes(
2682 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2683 support::endianness Endianness) {
2684 assert((AttrShType != ELF::SHT_NULL) && AttrParser &&(static_cast <bool> ((AttrShType != ELF::SHT_NULL) &&
AttrParser && "Incomplete ELF attribute implementation"
) ? void (0) : __assert_fail ("(AttrShType != ELF::SHT_NULL) && AttrParser && \"Incomplete ELF attribute implementation\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2685, __extension__
__PRETTY_FUNCTION__))
2685 "Incomplete ELF attribute implementation")(static_cast <bool> ((AttrShType != ELF::SHT_NULL) &&
AttrParser && "Incomplete ELF attribute implementation"
) ? void (0) : __assert_fail ("(AttrShType != ELF::SHT_NULL) && AttrParser && \"Incomplete ELF attribute implementation\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 2685, __extension__
__PRETTY_FUNCTION__))
;
2686 DictScope BA(W, "BuildAttributes");
2687 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2688 if (Sec.sh_type != AttrShType)
2689 continue;
2690
2691 ArrayRef<uint8_t> Contents;
2692 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2693 Obj.getSectionContents(Sec)) {
2694 Contents = *ContentOrErr;
2695 if (Contents.empty()) {
2696 reportUniqueWarning("the " + describe(Sec) + " is empty");
2697 continue;
2698 }
2699 } else {
2700 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2701 ": " + toString(ContentOrErr.takeError()));
2702 continue;
2703 }
2704
2705 W.printHex("FormatVersion", Contents[0]);
2706
2707 if (Error E = AttrParser->parse(Contents, Endianness))
2708 reportUniqueWarning("unable to dump attributes from the " +
2709 describe(Sec) + ": " + toString(std::move(E)));
2710 }
2711}
2712
2713namespace {
2714
2715template <class ELFT> class MipsGOTParser {
2716public:
2717 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword; using uintX_t = typename ELFT::uint; using Elf_Ehdr
= typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr;
using Elf_Sym = typename ELFT::Sym; using Elf_Dyn = typename
ELFT::Dyn; using Elf_Phdr = typename ELFT::Phdr; using Elf_Rel
= typename ELFT::Rel; using Elf_Rela = typename ELFT::Rela; using
Elf_Relr = typename ELFT::Relr; using Elf_Verdef = typename ELFT
::Verdef; using Elf_Verdaux = typename ELFT::Verdaux; using Elf_Verneed
= typename ELFT::Verneed; using Elf_Vernaux = typename ELFT::
Vernaux; using Elf_Versym = typename ELFT::Versym; using Elf_Hash
= typename ELFT::Hash; using Elf_GnuHash = typename ELFT::GnuHash
; using Elf_Chdr = typename ELFT::Chdr; using Elf_Nhdr = typename
ELFT::Nhdr; using Elf_Note = typename ELFT::Note; using Elf_Note_Iterator
= typename ELFT::NoteIterator; using Elf_CGProfile = typename
ELFT::CGProfile; using Elf_Dyn_Range = typename ELFT::DynRange
; using Elf_Shdr_Range = typename ELFT::ShdrRange; using Elf_Sym_Range
= typename ELFT::SymRange; using Elf_Rel_Range = typename ELFT
::RelRange; using Elf_Rela_Range = typename ELFT::RelaRange; using
Elf_Relr_Range = typename ELFT::RelrRange; using Elf_Phdr_Range
= typename ELFT::PhdrRange;
2718 using Entry = typename ELFT::Addr;
2719 using Entries = ArrayRef<Entry>;
2720
2721 const bool IsStatic;
2722 const ELFFile<ELFT> &Obj;
2723 const ELFDumper<ELFT> &Dumper;
2724
2725 MipsGOTParser(const ELFDumper<ELFT> &D);
2726 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2727 Error findPLT(Elf_Dyn_Range DynTable);
2728
2729 bool isGotEmpty() const { return GotEntries.empty(); }
2730 bool isPltEmpty() const { return PltEntries.empty(); }
2731
2732 uint64_t getGp() const;
2733
2734 const Entry *getGotLazyResolver() const;
2735 const Entry *getGotModulePointer() const;
2736 const Entry *getPltLazyResolver() const;
2737 const Entry *getPltModulePointer() const;
2738
2739 Entries getLocalEntries() const;
2740 Entries getGlobalEntries() const;
2741 Entries getOtherEntries() const;
2742 Entries getPltEntries() const;
2743
2744 uint64_t getGotAddress(const Entry * E) const;
2745 int64_t getGotOffset(const Entry * E) const;
2746 const Elf_Sym *getGotSym(const Entry *E) const;
2747
2748 uint64_t getPltAddress(const Entry * E) const;
2749 const Elf_Sym *getPltSym(const Entry *E) const;
2750
2751 StringRef getPltStrTable() const { return PltStrTable; }
2752 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2753
2754private:
2755 const Elf_Shdr *GotSec;
2756 size_t LocalNum;
2757 size_t GlobalNum;
2758
2759 const Elf_Shdr *PltSec;
2760 const Elf_Shdr *PltRelSec;
2761 const Elf_Shdr *PltSymTable;
2762 StringRef FileName;
2763
2764 Elf_Sym_Range GotDynSyms;
2765 StringRef PltStrTable;
2766
2767 Entries GotEntries;
2768 Entries PltEntries;
2769};
2770
2771} // end anonymous namespace
2772
2773template <class ELFT>
2774MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2775 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2776 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2777 PltRelSec(nullptr), PltSymTable(nullptr),
2778 FileName(D.getElfObject().getFileName()) {}
2779
2780template <class ELFT>
2781Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2782 Elf_Sym_Range DynSyms) {
2783 // See "Global Offset Table" in Chapter 5 in the following document
2784 // for detailed GOT description.
2785 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2786
2787 // Find static GOT secton.
2788 if (IsStatic) {
2789 GotSec = Dumper.findSectionByName(".got");
2790 if (!GotSec)
2791 return Error::success();
2792
2793 ArrayRef<uint8_t> Content =
2794 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2795 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2796 Content.size() / sizeof(Entry));
2797 LocalNum = GotEntries.size();
2798 return Error::success();
2799 }
2800
2801 // Lookup dynamic table tags which define the GOT layout.
2802 std::optional<uint64_t> DtPltGot;
2803 std::optional<uint64_t> DtLocalGotNum;
2804 std::optional<uint64_t> DtGotSym;
2805 for (const auto &Entry : DynTable) {
2806 switch (Entry.getTag()) {
2807 case ELF::DT_PLTGOT:
2808 DtPltGot = Entry.getVal();
2809 break;
2810 case ELF::DT_MIPS_LOCAL_GOTNO:
2811 DtLocalGotNum = Entry.getVal();
2812 break;
2813 case ELF::DT_MIPS_GOTSYM:
2814 DtGotSym = Entry.getVal();
2815 break;
2816 }
2817 }
2818
2819 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2820 return Error::success();
2821
2822 if (!DtPltGot)
2823 return createError("cannot find PLTGOT dynamic tag");
2824 if (!DtLocalGotNum)
2825 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2826 if (!DtGotSym)
2827 return createError("cannot find MIPS_GOTSYM dynamic tag");
2828
2829 size_t DynSymTotal = DynSyms.size();
2830 if (*DtGotSym > DynSymTotal)
2831 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2832 ") exceeds the number of dynamic symbols (" +
2833 Twine(DynSymTotal) + ")");
2834
2835 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2836 if (!GotSec)
2837 return createError("there is no non-empty GOT section at 0x" +
2838 Twine::utohexstr(*DtPltGot));
2839
2840 LocalNum = *DtLocalGotNum;
2841 GlobalNum = DynSymTotal - *DtGotSym;
2842
2843 ArrayRef<uint8_t> Content =
2844 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2845 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2846 Content.size() / sizeof(Entry));
2847 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2848
2849 return Error::success();
2850}
2851
2852template <class ELFT>
2853Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2854 // Lookup dynamic table tags which define the PLT layout.
2855 std::optional<uint64_t> DtMipsPltGot;
2856 std::optional<uint64_t> DtJmpRel;
2857 for (const auto &Entry : DynTable) {
2858 switch (Entry.getTag()) {
2859 case ELF::DT_MIPS_PLTGOT:
2860 DtMipsPltGot = Entry.getVal();
2861 break;
2862 case ELF::DT_JMPREL:
2863 DtJmpRel = Entry.getVal();
2864 break;
2865 }
2866 }
2867
2868 if (!DtMipsPltGot && !DtJmpRel)
2869 return Error::success();
2870
2871 // Find PLT section.
2872 if (!DtMipsPltGot)
2873 return createError("cannot find MIPS_PLTGOT dynamic tag");
2874 if (!DtJmpRel)
2875 return createError("cannot find JMPREL dynamic tag");
2876
2877 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2878 if (!PltSec)
2879 return createError("there is no non-empty PLTGOT section at 0x" +
2880 Twine::utohexstr(*DtMipsPltGot));
2881
2882 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2883 if (!PltRelSec)
2884 return createError("there is no non-empty RELPLT section at 0x" +
2885 Twine::utohexstr(*DtJmpRel));
2886
2887 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2888 Obj.getSectionContents(*PltSec))
2889 PltEntries =
2890 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2891 PltContentOrErr->size() / sizeof(Entry));
2892 else
2893 return createError("unable to read PLTGOT section content: " +
2894 toString(PltContentOrErr.takeError()));
2895
2896 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2897 Obj.getSection(PltRelSec->sh_link))
2898 PltSymTable = *PltSymTableOrErr;
2899 else
2900 return createError("unable to get a symbol table linked to the " +
2901 describe(Obj, *PltRelSec) + ": " +
2902 toString(PltSymTableOrErr.takeError()));
2903
2904 if (Expected<StringRef> StrTabOrErr =
2905 Obj.getStringTableForSymtab(*PltSymTable))
2906 PltStrTable = *StrTabOrErr;
2907 else
2908 return createError("unable to get a string table for the " +
2909 describe(Obj, *PltSymTable) + ": " +
2910 toString(StrTabOrErr.takeError()));
2911
2912 return Error::success();
2913}
2914
2915template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2916 return GotSec->sh_addr + 0x7ff0;
2917}
2918
2919template <class ELFT>
2920const typename MipsGOTParser<ELFT>::Entry *
2921MipsGOTParser<ELFT>::getGotLazyResolver() const {
2922 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2923}
2924
2925template <class ELFT>
2926const typename MipsGOTParser<ELFT>::Entry *
2927MipsGOTParser<ELFT>::getGotModulePointer() const {
2928 if (LocalNum < 2)
2929 return nullptr;
2930 const Entry &E = GotEntries[1];
2931 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2932 return nullptr;
2933 return &E;
2934}
2935
2936template <class ELFT>
2937typename MipsGOTParser<ELFT>::Entries
2938MipsGOTParser<ELFT>::getLocalEntries() const {
2939 size_t Skip = getGotModulePointer() ? 2 : 1;
2940 if (LocalNum - Skip <= 0)
2941 return Entries();
2942 return GotEntries.slice(Skip, LocalNum - Skip);
2943}
2944
2945template <class ELFT>
2946typename MipsGOTParser<ELFT>::Entries
2947MipsGOTParser<ELFT>::getGlobalEntries() const {
2948 if (GlobalNum == 0)
2949 return Entries();
2950 return GotEntries.slice(LocalNum, GlobalNum);
2951}
2952
2953template <class ELFT>
2954typename MipsGOTParser<ELFT>::Entries
2955MipsGOTParser<ELFT>::getOtherEntries() const {
2956 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2957 if (OtherNum == 0)
2958 return Entries();
2959 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2960}
2961
2962template <class ELFT>
2963uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2964 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2965 return GotSec->sh_addr + Offset;
2966}
2967
2968template <class ELFT>
2969int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2970 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2971 return Offset - 0x7ff0;
2972}
2973
2974template <class ELFT>
2975const typename MipsGOTParser<ELFT>::Elf_Sym *
2976MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2977 int64_t Offset = std::distance(GotEntries.data(), E);
2978 return &GotDynSyms[Offset - LocalNum];
2979}
2980
2981template <class ELFT>
2982const typename MipsGOTParser<ELFT>::Entry *
2983MipsGOTParser<ELFT>::getPltLazyResolver() const {
2984 return PltEntries.empty() ? nullptr : &PltEntries[0];
2985}
2986
2987template <class ELFT>
2988const typename MipsGOTParser<ELFT>::Entry *
2989MipsGOTParser<ELFT>::getPltModulePointer() const {
2990 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2991}
2992
2993template <class ELFT>
2994typename MipsGOTParser<ELFT>::Entries
2995MipsGOTParser<ELFT>::getPltEntries() const {
2996 if (PltEntries.size() <= 2)
2997 return Entries();
2998 return PltEntries.slice(2, PltEntries.size() - 2);
2999}
3000
3001template <class ELFT>
3002uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3003 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3004 return PltSec->sh_addr + Offset;
3005}
3006
3007template <class ELFT>
3008const typename MipsGOTParser<ELFT>::Elf_Sym *
3009MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3010 int64_t Offset = std::distance(getPltEntries().data(), E);
3011 if (PltRelSec->sh_type == ELF::SHT_REL) {
3012 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3013 return unwrapOrError(FileName,
3014 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3015 } else {
3016 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3017 return unwrapOrError(FileName,
3018 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3019 }
3020}
3021
3022const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3023 {"None", Mips::AFL_EXT_NONE},
3024 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
3025 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
3026 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3027 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3028 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3029 {"LSI R4010", Mips::AFL_EXT_4010},
3030 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
3031 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
3032 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
3033 {"MIPS R4650", Mips::AFL_EXT_4650},
3034 {"MIPS R5900", Mips::AFL_EXT_5900},
3035 {"MIPS R10000", Mips::AFL_EXT_10000},
3036 {"NEC VR4100", Mips::AFL_EXT_4100},
3037 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
3038 {"NEC VR4120", Mips::AFL_EXT_4120},
3039 {"NEC VR5400", Mips::AFL_EXT_5400},
3040 {"NEC VR5500", Mips::AFL_EXT_5500},
3041 {"RMI Xlr", Mips::AFL_EXT_XLR},
3042 {"Toshiba R3900", Mips::AFL_EXT_3900}
3043};
3044
3045const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3046 {"DSP", Mips::AFL_ASE_DSP},
3047 {"DSPR2", Mips::AFL_ASE_DSPR2},
3048 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3049 {"MCU", Mips::AFL_ASE_MCU},
3050 {"MDMX", Mips::AFL_ASE_MDMX},
3051 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3052 {"MT", Mips::AFL_ASE_MT},
3053 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3054 {"VZ", Mips::AFL_ASE_VIRT},
3055 {"MSA", Mips::AFL_ASE_MSA},
3056 {"MIPS16", Mips::AFL_ASE_MIPS16},
3057 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3058 {"XPA", Mips::AFL_ASE_XPA},
3059 {"CRC", Mips::AFL_ASE_CRC},
3060 {"GINV", Mips::AFL_ASE_GINV},
3061};
3062
3063const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3064 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3065 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3066 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3067 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3068 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3069 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3070 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3071 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3072 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3073 Mips::Val_GNU_MIPS_ABI_FP_64A}
3074};
3075
3076static const EnumEntry<unsigned> ElfMipsFlags1[] {
3077 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3078};
3079
3080static int getMipsRegisterSize(uint8_t Flag) {
3081 switch (Flag) {
3082 case Mips::AFL_REG_NONE:
3083 return 0;
3084 case Mips::AFL_REG_32:
3085 return 32;
3086 case Mips::AFL_REG_64:
3087 return 64;
3088 case Mips::AFL_REG_128:
3089 return 128;
3090 default:
3091 return -1;
3092 }
3093}
3094
3095template <class ELFT>
3096static void printMipsReginfoData(ScopedPrinter &W,
3097 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3098 W.printHex("GP", Reginfo.ri_gp_value);
3099 W.printHex("General Mask", Reginfo.ri_gprmask);
3100 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3101 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3102 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3103 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3104}
3105
3106template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3107 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3108 if (!RegInfoSec) {
3109 W.startLine() << "There is no .reginfo section in the file.\n";
3110 return;
3111 }
3112
3113 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3114 Obj.getSectionContents(*RegInfoSec);
3115 if (!ContentsOrErr) {
3116 this->reportUniqueWarning(
3117 "unable to read the content of the .reginfo section (" +
3118 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3119 return;
3120 }
3121
3122 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3123 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3124 Twine::utohexstr(ContentsOrErr->size()) + ")");
3125 return;
3126 }
3127
3128 DictScope GS(W, "MIPS RegInfo");
3129 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3130 ContentsOrErr->data()));
3131}
3132
3133template <class ELFT>
3134static Expected<const Elf_Mips_Options<ELFT> *>
3135readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3136 bool &IsSupported) {
3137 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3138 return createError("the .MIPS.options section has an invalid size (0x" +
3139 Twine::utohexstr(SecData.size()) + ")");
3140
3141 const Elf_Mips_Options<ELFT> *O =
3142 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3143 const uint8_t Size = O->size;
3144 if (Size > SecData.size()) {
3145 const uint64_t Offset = SecData.data() - SecBegin;
3146 const uint64_t SecSize = Offset + SecData.size();
3147 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3148 " at offset 0x" + Twine::utohexstr(Offset) +
3149 " goes past the end of the .MIPS.options "
3150 "section of size 0x" +
3151 Twine::utohexstr(SecSize));
3152 }
3153
3154 IsSupported = O->kind == ODK_REGINFO;
3155 const size_t ExpectedSize =
3156 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3157
3158 if (IsSupported)
3159 if (Size < ExpectedSize)
3160 return createError(
3161 "a .MIPS.options entry of kind " +
3162 Twine(getElfMipsOptionsOdkType(O->kind)) +
3163 " has an invalid size (0x" + Twine::utohexstr(Size) +
3164 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3165
3166 SecData = SecData.drop_front(Size);
3167 return O;
3168}
3169
3170template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3171 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3172 if (!MipsOpts) {
3173 W.startLine() << "There is no .MIPS.options section in the file.\n";
3174 return;
3175 }
3176
3177 DictScope GS(W, "MIPS Options");
3178
3179 ArrayRef<uint8_t> Data =
3180 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3181 const uint8_t *const SecBegin = Data.begin();
3182 while (!Data.empty()) {
3183 bool IsSupported;
3184 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3185 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3186 if (!OptsOrErr) {
3187 reportUniqueWarning(OptsOrErr.takeError());
3188 break;
3189 }
3190
3191 unsigned Kind = (*OptsOrErr)->kind;
3192 const char *Type = getElfMipsOptionsOdkType(Kind);
3193 if (!IsSupported) {
3194 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3195 << ")\n";
3196 continue;
3197 }
3198
3199 DictScope GS(W, Type);
3200 if (Kind == ODK_REGINFO)
3201 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3202 else
3203 llvm_unreachable("unexpected .MIPS.options section descriptor kind")::llvm::llvm_unreachable_internal("unexpected .MIPS.options section descriptor kind"
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3203)
;
3204 }
3205}
3206
3207template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3208 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3209 if (!StackMapSection)
3210 return;
3211
3212 auto Warn = [&](Error &&E) {
3213 this->reportUniqueWarning("unable to read the stack map from " +
3214 describe(*StackMapSection) + ": " +
3215 toString(std::move(E)));
3216 };
3217
3218 Expected<ArrayRef<uint8_t>> ContentOrErr =
3219 Obj.getSectionContents(*StackMapSection);
3220 if (!ContentOrErr) {
3221 Warn(ContentOrErr.takeError());
3222 return;
3223 }
3224
3225 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3226 *ContentOrErr)) {
3227 Warn(std::move(E));
3228 return;
3229 }
3230
3231 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3232}
3233
3234template <class ELFT>
3235void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3236 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3237 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3238 if (!Target)
3239 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3240 " in " + describe(Sec) + ": " +
3241 toString(Target.takeError()));
3242 else
3243 printRelRelaReloc(R, *Target);
3244}
3245
3246static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3247 StringRef Str2) {
3248 OS.PadToColumn(2u);
3249 OS << Str1;
3250 OS.PadToColumn(37u);
3251 OS << Str2 << "\n";
3252 OS.flush();
3253}
3254
3255template <class ELFT>
3256static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3257 StringRef FileName) {
3258 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3259 if (ElfHeader.e_shnum != 0)
3260 return to_string(ElfHeader.e_shnum);
3261
3262 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3263 if (!ArrOrErr) {
3264 // In this case we can ignore an error, because we have already reported a
3265 // warning about the broken section header table earlier.
3266 consumeError(ArrOrErr.takeError());
3267 return "<?>";
3268 }
3269
3270 if (ArrOrErr->empty())
3271 return "0";
3272 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3273}
3274
3275template <class ELFT>
3276static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3277 StringRef FileName) {
3278 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3279 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3280 return to_string(ElfHeader.e_shstrndx);
3281
3282 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3283 if (!ArrOrErr) {
3284 // In this case we can ignore an error, because we have already reported a
3285 // warning about the broken section header table earlier.
3286 consumeError(ArrOrErr.takeError());
3287 return "<?>";
3288 }
3289
3290 if (ArrOrErr->empty())
3291 return "65535 (corrupt: out of range)";
3292 return to_string(ElfHeader.e_shstrndx) + " (" +
3293 to_string((*ArrOrErr)[0].sh_link) + ")";
3294}
3295
3296static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3297 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3298 return E.Value == Type;
3299 });
3300 if (It != ArrayRef(ElfObjectFileType).end())
3301 return It;
3302 return nullptr;
3303}
3304
3305template <class ELFT>
3306void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3307 ArrayRef<std::string> InputFilenames,
3308 const Archive *A) {
3309 if (InputFilenames.size() > 1 || A) {
3310 this->W.startLine() << "\n";
3311 this->W.printString("File", FileStr);
3312 }
3313}
3314
3315template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3316 const Elf_Ehdr &e = this->Obj.getHeader();
3317 OS << "ELF Header:\n";
3318 OS << " Magic: ";
3319 std::string Str;
3320 for (int i = 0; i < ELF::EI_NIDENT; i++)
3321 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3322 OS << "\n";
3323 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3324 printFields(OS, "Class:", Str);
3325 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3326 printFields(OS, "Data:", Str);
3327 OS.PadToColumn(2u);
3328 OS << "Version:";
3329 OS.PadToColumn(37u);
3330 OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3331 if (e.e_version == ELF::EV_CURRENT)
3332 OS << " (current)";
3333 OS << "\n";
3334 Str = enumToString(e.e_ident[ELF::EI_OSABI], ArrayRef(ElfOSABI));
3335 printFields(OS, "OS/ABI:", Str);
3336 printFields(OS,
3337 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3338
3339 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3340 Str = E->AltName.str();
3341 } else {
3342 if (e.e_type >= ET_LOPROC)
3343 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3344 else if (e.e_type >= ET_LOOS)
3345 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3346 else
3347 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3348 }
3349 printFields(OS, "Type:", Str);
3350
3351 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3352 printFields(OS, "Machine:", Str);
3353 Str = "0x" + utohexstr(e.e_version);
3354 printFields(OS, "Version:", Str);
3355 Str = "0x" + utohexstr(e.e_entry);
3356 printFields(OS, "Entry point address:", Str);
3357 Str = to_string(e.e_phoff) + " (bytes into file)";
3358 printFields(OS, "Start of program headers:", Str);
3359 Str = to_string(e.e_shoff) + " (bytes into file)";
3360 printFields(OS, "Start of section headers:", Str);
3361 std::string ElfFlags;
3362 if (e.e_machine == EM_MIPS)
3363 ElfFlags = printFlags(
3364 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3365 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3366 else if (e.e_machine == EM_RISCV)
3367 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3368 else if (e.e_machine == EM_AVR)
3369 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3370 unsigned(ELF::EF_AVR_ARCH_MASK));
3371 else if (e.e_machine == EM_LOONGARCH)
3372 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3373 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3374 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3375 else if (e.e_machine == EM_XTENSA)
3376 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3377 unsigned(ELF::EF_XTENSA_MACH));
3378 Str = "0x" + utohexstr(e.e_flags);
3379 if (!ElfFlags.empty())
3380 Str = Str + ", " + ElfFlags;
3381 printFields(OS, "Flags:", Str);
3382 Str = to_string(e.e_ehsize) + " (bytes)";
3383 printFields(OS, "Size of this header:", Str);
3384 Str = to_string(e.e_phentsize) + " (bytes)";
3385 printFields(OS, "Size of program headers:", Str);
3386 Str = to_string(e.e_phnum);
3387 printFields(OS, "Number of program headers:", Str);
3388 Str = to_string(e.e_shentsize) + " (bytes)";
3389 printFields(OS, "Size of section headers:", Str);
3390 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3391 printFields(OS, "Number of section headers:", Str);
3392 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3393 printFields(OS, "Section header string table index:", Str);
3394}
3395
3396template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3397 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3398 const Elf_Shdr &Symtab) -> StringRef {
3399 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3400 if (!StrTableOrErr) {
3401 reportUniqueWarning("unable to get the string table for " +
3402 describe(Symtab) + ": " +
3403 toString(StrTableOrErr.takeError()));
3404 return "<?>";
3405 }
3406
3407 StringRef Strings = *StrTableOrErr;
3408 if (Sym.st_name >= Strings.size()) {
3409 reportUniqueWarning("unable to get the name of the symbol with index " +
3410 Twine(SymNdx) + ": st_name (0x" +
3411 Twine::utohexstr(Sym.st_name) +
3412 ") is past the end of the string table of size 0x" +
3413 Twine::utohexstr(Strings.size()));
3414 return "<?>";
3415 }
3416
3417 return StrTableOrErr->data() + Sym.st_name;
3418 };
3419
3420 std::vector<GroupSection> Ret;
3421 uint64_t I = 0;
3422 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3423 ++I;
3424 if (Sec.sh_type != ELF::SHT_GROUP)
3425 continue;
3426
3427 StringRef Signature = "<?>";
3428 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3429 if (Expected<const Elf_Sym *> SymOrErr =
3430 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3431 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3432 else
3433 reportUniqueWarning("unable to get the signature symbol for " +
3434 describe(Sec) + ": " +
3435 toString(SymOrErr.takeError()));
3436 } else {
3437 reportUniqueWarning("unable to get the symbol table for " +
3438 describe(Sec) + ": " +
3439 toString(SymtabOrErr.takeError()));
3440 }
3441
3442 ArrayRef<Elf_Word> Data;
3443 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3444 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3445 if (ContentsOrErr->empty())
3446 reportUniqueWarning("unable to read the section group flag from the " +
3447 describe(Sec) + ": the section is empty");
3448 else
3449 Data = *ContentsOrErr;
3450 } else {
3451 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3452 ": " + toString(ContentsOrErr.takeError()));
3453 }
3454
3455 Ret.push_back({getPrintableSectionName(Sec),
3456 maybeDemangle(Signature),
3457 Sec.sh_name,
3458 I - 1,
3459 Sec.sh_link,
3460 Sec.sh_info,
3461 Data.empty() ? Elf_Word(0) : Data[0],
3462 {}});
3463
3464 if (Data.empty())
3465 continue;
3466
3467 std::vector<GroupMember> &GM = Ret.back().Members;
3468 for (uint32_t Ndx : Data.slice(1)) {
3469 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3470 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3471 } else {
3472 reportUniqueWarning("unable to get the section with index " +
3473 Twine(Ndx) + " when dumping the " + describe(Sec) +
3474 ": " + toString(SecOrErr.takeError()));
3475 GM.push_back({"<?>", Ndx});
3476 }
3477 }
3478 }
3479 return Ret;
3480}
3481
3482static DenseMap<uint64_t, const GroupSection *>
3483mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3484 DenseMap<uint64_t, const GroupSection *> Ret;
3485 for (const GroupSection &G : Groups)
3486 for (const GroupMember &GM : G.Members)
3487 Ret.insert({GM.Index, &G});
3488 return Ret;
3489}
3490
3491template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3492 std::vector<GroupSection> V = this->getGroups();
3493 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3494 for (const GroupSection &G : V) {
3495 OS << "\n"
3496 << getGroupType(G.Type) << " group section ["
3497 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3498 << "] contains " << G.Members.size() << " sections:\n"
3499 << " [Index] Name\n";
3500 for (const GroupMember &GM : G.Members) {
3501 const GroupSection *MainGroup = Map[GM.Index];
3502 if (MainGroup != &G)
3503 this->reportUniqueWarning(
3504 "section with index " + Twine(GM.Index) +
3505 ", included in the group section with index " +
3506 Twine(MainGroup->Index) +
3507 ", was also found in the group section with index " +
3508 Twine(G.Index));
3509 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3510 }
3511 }
3512
3513 if (V.empty())
3514 OS << "There are no section groups in this file.\n";
3515}
3516
3517template <class ELFT>
3518void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3519 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3520}
3521
3522template <class ELFT>
3523void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3524 const RelSymbol<ELFT> &RelSym) {
3525 // First two fields are bit width dependent. The rest of them are fixed width.
3526 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3527 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3528 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3529
3530 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3531 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3532
3533 SmallString<32> RelocName;
3534 this->Obj.getRelocationTypeName(R.Type, RelocName);
3535 Fields[2].Str = RelocName.c_str();
3536
3537 if (RelSym.Sym)
3538 Fields[3].Str =
3539 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3540
3541 Fields[4].Str = std::string(RelSym.Name);
3542 for (const Field &F : Fields)
3543 printField(F);
3544
3545 std::string Addend;
3546 if (std::optional<int64_t> A = R.Addend) {
3547 int64_t RelAddend = *A;
3548 if (!RelSym.Name.empty()) {
3549 if (RelAddend < 0) {
3550 Addend = " - ";
3551 RelAddend = std::abs(RelAddend);
3552 } else {
3553 Addend = " + ";
3554 }
3555 }
3556 Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3557 }
3558 OS << Addend << "\n";
3559}
3560
3561template <class ELFT>
3562static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3563 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3564 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3565 if (ELFT::Is64Bits)
3566 OS << " ";
3567 else
3568 OS << " ";
3569 if (IsRelr && opts::RawRelr)
3570 OS << "Data ";
3571 else
3572 OS << "Offset";
3573 if (ELFT::Is64Bits)
3574 OS << " Info Type"
3575 << " Symbol's Value Symbol's Name";
3576 else
3577 OS << " Info Type Sym. Value Symbol's Name";
3578 if (IsRela)
3579 OS << " + Addend";
3580 OS << "\n";
3581}
3582
3583template <class ELFT>
3584void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3585 const DynRegionInfo &Reg) {
3586 uint64_t Offset = Reg.Addr - this->Obj.base();
3587 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3588 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3589 printRelocHeaderFields<ELFT>(OS, Type);
3590}
3591
3592template <class ELFT>
3593static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3594 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3595 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3596 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3597 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3598}
3599
3600template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3601 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3602 // Android's packed relocation section needs to be unpacked first
3603 // to get the actual number of entries.
3604 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3605 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3606 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3607 this->Obj.android_relas(Sec);
3608 if (!RelasOrErr)
3609 return RelasOrErr.takeError();
3610 return RelasOrErr->size();
3611 }
3612
3613 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3614 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3615 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3616 if (!RelrsOrErr)
3617 return RelrsOrErr.takeError();
3618 return this->Obj.decode_relrs(*RelrsOrErr).size();
3619 }
3620
3621 return Sec.getEntityCount();
3622 };
3623
3624 bool HasRelocSections = false;
3625 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3626 if (!isRelocationSec<ELFT>(Sec))
3627 continue;
3628 HasRelocSections = true;
3629
3630 std::string EntriesNum = "<?>";
3631 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3632 EntriesNum = std::to_string(*NumOrErr);
3633 else
3634 this->reportUniqueWarning("unable to get the number of relocations in " +
3635 this->describe(Sec) + ": " +
3636 toString(NumOrErr.takeError()));
3637
3638 uintX_t Offset = Sec.sh_offset;
3639 StringRef Name = this->getPrintableSectionName(Sec);
3640 OS << "\nRelocation section '" << Name << "' at offset 0x"
3641 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3642 << " entries:\n";
3643 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3644 this->printRelocationsHelper(Sec);
3645 }
3646 if (!HasRelocSections)
3647 OS << "\nThere are no relocations in this file.\n";
3648}
3649
3650// Print the offset of a particular section from anyone of the ranges:
3651// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3652// If 'Type' does not fall within any of those ranges, then a string is
3653// returned as '<unknown>' followed by the type value.
3654static std::string getSectionTypeOffsetString(unsigned Type) {
3655 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3656 return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3657 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3658 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3659 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3660 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3661 return "0x" + utohexstr(Type) + ": <unknown>";
3662}
3663
3664static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3665 StringRef Name = getELFSectionTypeName(Machine, Type);
3666
3667 // Handle SHT_GNU_* type names.
3668 if (Name.consume_front("SHT_GNU_")) {
3669 if (Name == "HASH")
3670 return "GNU_HASH";
3671 // E.g. SHT_GNU_verneed -> VERNEED.
3672 return Name.upper();
3673 }
3674
3675 if (Name == "SHT_SYMTAB_SHNDX")
3676 return "SYMTAB SECTION INDICES";
3677
3678 if (Name.consume_front("SHT_"))
3679 return Name.str();
3680 return getSectionTypeOffsetString(Type);
3681}
3682
3683static void printSectionDescription(formatted_raw_ostream &OS,
3684 unsigned EMachine) {
3685 OS << "Key to Flags:\n";
3686 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3687 "(info),\n";
3688 OS << " L (link order), O (extra OS processing required), G (group), T "
3689 "(TLS),\n";
3690 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3691 OS << " R (retain)";
3692
3693 if (EMachine == EM_X86_64)
3694 OS << ", l (large)";
3695 else if (EMachine == EM_ARM)
3696 OS << ", y (purecode)";
3697
3698 OS << ", p (processor specific)\n";
3699}
3700
3701template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3702 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3703 if (Sections.empty()) {
3704 OS << "\nThere are no sections in this file.\n";
3705 Expected<StringRef> SecStrTableOrErr =
3706 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
3707 if (!SecStrTableOrErr)
3708 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3709 return;
3710 }
3711 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3712 OS << "There are " << to_string(Sections.size())
3713 << " section headers, starting at offset "
3714 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3715 OS << "Section Headers:\n";
3716 Field Fields[11] = {
3717 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3718 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3719 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3720 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3721 for (const Field &F : Fields)
3722 printField(F);
3723 OS << "\n";
3724
3725 StringRef SecStrTable;
3726 if (Expected<StringRef> SecStrTableOrErr =
3727 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3728 SecStrTable = *SecStrTableOrErr;
3729 else
3730 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3731
3732 size_t SectionIndex = 0;
3733 for (const Elf_Shdr &Sec : Sections) {
3734 Fields[0].Str = to_string(SectionIndex);
3735 if (SecStrTable.empty())
3736 Fields[1].Str = "<no-strings>";
3737 else
3738 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3739 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3740 Fields[2].Str =
3741 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3742 Fields[3].Str =
3743 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3744 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3745 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3746 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3747 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3748 this->Obj.getHeader().e_machine, Sec.sh_flags);
3749 Fields[8].Str = to_string(Sec.sh_link);
3750 Fields[9].Str = to_string(Sec.sh_info);
3751 Fields[10].Str = to_string(Sec.sh_addralign);
3752
3753 OS.PadToColumn(Fields[0].Column);
3754 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3755 for (int i = 1; i < 7; i++)
3756 printField(Fields[i]);
3757 OS.PadToColumn(Fields[7].Column);
3758 OS << right_justify(Fields[7].Str, 3);
3759 OS.PadToColumn(Fields[8].Column);
3760 OS << right_justify(Fields[8].Str, 2);
3761 OS.PadToColumn(Fields[9].Column);
3762 OS << right_justify(Fields[9].Str, 3);
3763 OS.PadToColumn(Fields[10].Column);
3764 OS << right_justify(Fields[10].Str, 2);
3765 OS << "\n";
3766 ++SectionIndex;
3767 }
3768 printSectionDescription(OS, this->Obj.getHeader().e_machine);
3769}
3770
3771template <class ELFT>
3772void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3773 size_t Entries,
3774 bool NonVisibilityBitsUsed) const {
3775 StringRef Name;
3776 if (Symtab)
3777 Name = this->getPrintableSectionName(*Symtab);
3778 if (!Name.empty())
3779 OS << "\nSymbol table '" << Name << "'";
3780 else
3781 OS << "\nSymbol table for image";
3782 OS << " contains " << Entries << " entries:\n";
3783
3784 if (ELFT::Is64Bits)
3785 OS << " Num: Value Size Type Bind Vis";
3786 else
3787 OS << " Num: Value Size Type Bind Vis";
3788
3789 if (NonVisibilityBitsUsed)
3790 OS << " ";
3791 OS << " Ndx Name\n";
3792}
3793
3794template <class ELFT>
3795std::string
3796GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3797 unsigned SymIndex,
3798 DataRegion<Elf_Word> ShndxTable) const {
3799 unsigned SectionIndex = Symbol.st_shndx;
3800 switch (SectionIndex) {
3801 case ELF::SHN_UNDEF:
3802 return "UND";
3803 case ELF::SHN_ABS:
3804 return "ABS";
3805 case ELF::SHN_COMMON:
3806 return "COM";
3807 case ELF::SHN_XINDEX: {
3808 Expected<uint32_t> IndexOrErr =
3809 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3810 if (!IndexOrErr) {
3811 assert(Symbol.st_shndx == SHN_XINDEX &&(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3813, __extension__
__PRETTY_FUNCTION__))
3812 "getExtendedSymbolTableIndex should only fail due to an invalid "(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3813, __extension__
__PRETTY_FUNCTION__))
3813 "SHT_SYMTAB_SHNDX table/reference")(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference") ? void (0) : __assert_fail
("Symbol.st_shndx == SHN_XINDEX && \"getExtendedSymbolTableIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 3813, __extension__
__PRETTY_FUNCTION__))
;
3814 this->reportUniqueWarning(IndexOrErr.takeError());
3815 return "RSV[0xffff]";
3816 }
3817 return to_string(format_decimal(*IndexOrErr, 3));
3818 }
3819 default:
3820 // Find if:
3821 // Processor specific
3822 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3823 return std::string("PRC[0x") +
3824 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3825 // OS specific
3826 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3827 return std::string("OS[0x") +
3828 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3829 // Architecture reserved:
3830 if (SectionIndex >= ELF::SHN_LORESERVE &&
3831 SectionIndex <= ELF::SHN_HIRESERVE)
3832 return std::string("RSV[0x") +
3833 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3834 // A normal section with an index
3835 return to_string(format_decimal(SectionIndex, 3));
3836 }
3837}
3838
3839template <class ELFT>
3840void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3841 DataRegion<Elf_Word> ShndxTable,
3842 std::optional<StringRef> StrTable,
3843 bool IsDynamic,
3844 bool NonVisibilityBitsUsed) const {
3845 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3846 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
3847 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3848 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3849 Fields[1].Str =
3850 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3851 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3852
3853 unsigned char SymbolType = Symbol.getType();
3854 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3855 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3856 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
3857 else
3858 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
3859
3860 Fields[4].Str =
3861 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
3862 Fields[5].Str =
3863 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
3864
3865 if (Symbol.st_other & ~0x3) {
3866 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3867 uint8_t Other = Symbol.st_other & ~0x3;
3868 if (Other & STO_AARCH64_VARIANT_PCS) {
3869 Other &= ~STO_AARCH64_VARIANT_PCS;
3870 Fields[5].Str += " [VARIANT_PCS";
3871 if (Other != 0)
3872 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3873 Fields[5].Str.append("]");
3874 }
3875 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3876 uint8_t Other = Symbol.st_other & ~0x3;
3877 if (Other & STO_RISCV_VARIANT_CC) {
3878 Other &= ~STO_RISCV_VARIANT_CC;
3879 Fields[5].Str += " [VARIANT_CC";
3880 if (Other != 0)
3881 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3882 Fields[5].Str.append("]");
3883 }
3884 } else {
3885 Fields[5].Str +=
3886 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3887 }
3888 }
3889
3890 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3891 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3892
3893 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3894 StrTable, IsDynamic);
3895 for (const Field &Entry : Fields)
3896 printField(Entry);
3897 OS << "\n";
3898}
3899
3900template <class ELFT>
3901void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3902 unsigned SymIndex,
3903 DataRegion<Elf_Word> ShndxTable,
3904 StringRef StrTable,
3905 uint32_t Bucket) {
3906 unsigned Bias = ELFT::Is64Bits
20.1
'Is64Bits' is true
? 8 : 0;
21
'?' condition is true
3907 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
3908 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3909 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3910 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3911
3912 Fields[2].Str = to_string(
3913 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits
21.1
'Is64Bits' is true
? 16 : 8));
22
'?' condition is true
3914 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3915
3916 unsigned char SymbolType = Symbol->getType();
3917 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
23
Assuming the condition is false
3918 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3919 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
3920 else
3921 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
3922
3923 Fields[5].Str =
3924 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
3925 Fields[6].Str =
3926 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
3927 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3928 Fields[8].Str =
3929 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
24
Calling 'ELFDumper::getFullSymbolName'
3930
3931 for (const Field &Entry : Fields)
3932 printField(Entry);
3933 OS << "\n";
3934}
3935
3936template <class ELFT>
3937void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3938 bool PrintDynamicSymbols) {
3939 if (!PrintSymbols && !PrintDynamicSymbols)
3940 return;
3941 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3942 this->printSymbolsHelper(true);
3943 if (PrintSymbols)
3944 this->printSymbolsHelper(false);
3945}
3946
3947template <class ELFT>
3948void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3949 if (this->DynamicStringTable.empty())
5
Assuming the condition is false
6
Taking false branch
3950 return;
3951
3952 if (ELFT::Is64Bits
6.1
'Is64Bits' is true
)
7
Taking true branch
3953 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3954 else
3955 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3956 OS << "\n";
3957
3958 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3959 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
8
Assuming the condition is false
9
'?' condition is false
3960 if (!FirstSym
9.1
'FirstSym' is non-null
) {
10
Taking false branch
3961 this->reportUniqueWarning(
3962 Twine("unable to print symbols for the .hash table: the "
3963 "dynamic symbol table ") +
3964 (this->DynSymRegion ? "is empty" : "was not found"));
3965 return;
3966 }
3967
3968 DataRegion<Elf_Word> ShndxTable(
3969 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3970 auto Buckets = SysVHash.buckets();
3971 auto Chains = SysVHash.chains();
3972 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
11
Assuming the condition is true
12
Loop condition is true. Entering loop body
3973 if (Buckets[Buc] == ELF::STN_UNDEF)
13
Assuming the condition is false
14
Taking false branch
3974 continue;
3975 BitVector Visited(SysVHash.nchain);
3976 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
15
Assuming the condition is true
16
Loop condition is true. Entering loop body
3977 if (Ch == ELF::STN_UNDEF)
17
Assuming 'Ch' is not equal to STN_UNDEF
18
Taking false branch
3978 break;
3979
3980 if (Visited[Ch]) {
19
Taking false branch
3981 this->reportUniqueWarning(".hash section is invalid: bucket " +
3982 Twine(Ch) +
3983 ": a cycle was detected in the linked chain");
3984 break;
3985 }
3986
3987 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
20
Calling 'GNUELFDumper::printHashedSymbol'
3988 Buc);
3989 Visited[Ch] = true;
3990 }
3991 }
3992}
3993
3994template <class ELFT>
3995void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3996 if (this->DynamicStringTable.empty())
3997 return;
3998
3999 Elf_Sym_Range DynSyms = this->dynamic_symbols();
4000 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4001 if (!FirstSym) {
4002 this->reportUniqueWarning(
4003 Twine("unable to print symbols for the .gnu.hash table: the "
4004 "dynamic symbol table ") +
4005 (this->DynSymRegion ? "is empty" : "was not found"));
4006 return;
4007 }
4008
4009 auto GetSymbol = [&](uint64_t SymIndex,
4010 uint64_t SymsTotal) -> const Elf_Sym * {
4011 if (SymIndex >= SymsTotal) {
4012 this->reportUniqueWarning(
4013 "unable to print hashed symbol with index " + Twine(SymIndex) +
4014 ", which is greater than or equal to the number of dynamic symbols "
4015 "(" +
4016 Twine::utohexstr(SymsTotal) + ")");
4017 return nullptr;
4018 }
4019 return FirstSym + SymIndex;
4020 };
4021
4022 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4023 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4024 ArrayRef<Elf_Word> Values;
4025 if (!ValuesOrErr)
4026 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4027 "section: " +
4028 toString(ValuesOrErr.takeError()));
4029 else
4030 Values = *ValuesOrErr;
4031
4032 DataRegion<Elf_Word> ShndxTable(
4033 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4034 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4035 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4036 if (Buckets[Buc] == ELF::STN_UNDEF)
4037 continue;
4038 uint32_t Index = Buckets[Buc];
4039 // Print whole chain.
4040 while (true) {
4041 uint32_t SymIndex = Index++;
4042 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4043 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4044 Buc);
4045 else
4046 break;
4047
4048 if (SymIndex < GnuHash.symndx) {
4049 this->reportUniqueWarning(
4050 "unable to read the hash value for symbol with index " +
4051 Twine(SymIndex) +
4052 ", which is less than the index of the first hashed symbol (" +
4053 Twine(GnuHash.symndx) + ")");
4054 break;
4055 }
4056
4057 // Chain ends at symbol with stopper bit.
4058 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4059 break;
4060 }
4061 }
4062}
4063
4064template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4065 if (this->HashTable) {
1
Assuming field 'HashTable' is non-null
2
Taking true branch
4066 OS << "\n Symbol table of .hash for image:\n";
4067 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
3
Taking false branch
4068 this->reportUniqueWarning(std::move(E));
4069 else
4070 printHashTableSymbols(*this->HashTable);
4
Calling 'GNUELFDumper::printHashTableSymbols'
4071 }
4072
4073 // Try printing the .gnu.hash table.
4074 if (this->GnuHashTable) {
4075 OS << "\n Symbol table of .gnu.hash for image:\n";
4076 if (ELFT::Is64Bits)
4077 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4078 else
4079 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4080 OS << "\n";
4081
4082 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4083 this->reportUniqueWarning(std::move(E));
4084 else
4085 printGnuHashTableSymbols(*this->GnuHashTable);
4086 }
4087}
4088
4089template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4090 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4091 if (Sections.empty()) {
4092 OS << "\nThere are no sections in this file.\n";
4093 Expected<StringRef> SecStrTableOrErr =
4094 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4095 if (!SecStrTableOrErr)
4096 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4097 return;
4098 }
4099 OS << "There are " << to_string(Sections.size())
4100 << " section headers, starting at offset "
4101 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4102
4103 OS << "Section Headers:\n";
4104
4105 auto PrintFields = [&](ArrayRef<Field> V) {
4106 for (const Field &F : V)
4107 printField(F);
4108 OS << "\n";
4109 };
4110
4111 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4112
4113 constexpr bool Is64 = ELFT::Is64Bits;
4114 PrintFields({{"Type", 7},
4115 {Is64 ? "Address" : "Addr", 23},
4116 {"Off", Is64 ? 40 : 32},
4117 {"Size", Is64 ? 47 : 39},
4118 {"ES", Is64 ? 54 : 46},
4119 {"Lk", Is64 ? 59 : 51},
4120 {"Inf", Is64 ? 62 : 54},
4121 {"Al", Is64 ? 66 : 57}});
4122 PrintFields({{"Flags", 7}});
4123
4124 StringRef SecStrTable;
4125 if (Expected<StringRef> SecStrTableOrErr =
4126 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4127 SecStrTable = *SecStrTableOrErr;
4128 else
4129 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4130
4131 size_t SectionIndex = 0;
4132 const unsigned AddrSize = Is64 ? 16 : 8;
4133 for (const Elf_Shdr &S : Sections) {
4134 StringRef Name = "<?>";
4135 if (Expected<StringRef> NameOrErr =
4136 this->Obj.getSectionName(S, SecStrTable))
4137 Name = *NameOrErr;
4138 else
4139 this->reportUniqueWarning(NameOrErr.takeError());
4140
4141 OS.PadToColumn(2);
4142 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4143 PrintFields({{Name, 7}});
4144 PrintFields(
4145 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4146 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4147 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4148 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4149 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4150 {to_string(S.sh_link), Is64 ? 59 : 51},
4151 {to_string(S.sh_info), Is64 ? 63 : 55},
4152 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4153
4154 OS.PadToColumn(7);
4155 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4156
4157 DenseMap<unsigned, StringRef> FlagToName = {
4158 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4159 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4160 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4161 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4162 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4163 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4164
4165 uint64_t Flags = S.sh_flags;
4166 uint64_t UnknownFlags = 0;
4167 ListSeparator LS;
4168 while (Flags) {
4169 // Take the least significant bit as a flag.
4170 uint64_t Flag = Flags & -Flags;
4171 Flags -= Flag;
4172
4173 auto It = FlagToName.find(Flag);
4174 if (It != FlagToName.end())
4175 OS << LS << It->second;
4176 else
4177 UnknownFlags |= Flag;
4178 }
4179
4180 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4181 uint64_t FlagsToPrint = UnknownFlags & Mask;
4182 if (!FlagsToPrint)
4183 return;
4184
4185 OS << LS << Name << " ("
4186 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4187 UnknownFlags &= ~Mask;
4188 };
4189
4190 PrintUnknownFlags(SHF_MASKOS, "OS");
4191 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4192 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4193
4194 OS << "\n";
4195 ++SectionIndex;
4196
4197 if (!(S.sh_flags & SHF_COMPRESSED))
4198 continue;
4199 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4200 if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4201 consumeError(Data.takeError());
4202 reportWarning(createError("SHF_COMPRESSED section '" + Name +
4203 "' does not have an Elf_Chdr header"),
4204 this->FileName);
4205 OS.indent(7);
4206 OS << "[<corrupt>]";
4207 } else {
4208 OS.indent(7);
4209 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4210 if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4211 OS << "ZLIB";
4212 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4213 OS << "ZSTD";
4214 else
4215 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4216 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4217 << ", " << Chdr->ch_addralign;
4218 }
4219 OS << '\n';
4220 }
4221}
4222
4223static inline std::string printPhdrFlags(unsigned Flag) {
4224 std::string Str;
4225 Str = (Flag & PF_R) ? "R" : " ";
4226 Str += (Flag & PF_W) ? "W" : " ";
4227 Str += (Flag & PF_X) ? "E" : " ";
4228 return Str;
4229}
4230
4231template <class ELFT>
4232static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4233 const typename ELFT::Shdr &Sec) {
4234 if (Sec.sh_flags & ELF::SHF_TLS) {
4235 // .tbss must only be shown in the PT_TLS segment.
4236 if (Sec.sh_type == ELF::SHT_NOBITS)
4237 return Phdr.p_type == ELF::PT_TLS;
4238
4239 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4240 // segments.
4241 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4242 (Phdr.p_type == ELF::PT_GNU_RELRO);
4243 }
4244
4245 // PT_TLS must only have SHF_TLS sections.
4246 return Phdr.p_type != ELF::PT_TLS;
4247}
4248
4249template <class ELFT>
4250static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4251 const typename ELFT::Shdr &Sec) {
4252 // SHT_NOBITS sections don't need to have an offset inside the segment.
4253 if (Sec.sh_type == ELF::SHT_NOBITS)
4254 return true;
4255
4256 if (Sec.sh_offset < Phdr.p_offset)
4257 return false;
4258
4259 // Only non-empty sections can be at the end of a segment.
4260 if (Sec.sh_size == 0)
4261 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4262 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4263}
4264
4265// Check that an allocatable section belongs to a virtual address
4266// space of a segment.
4267template <class ELFT>
4268static bool checkVMA(const typename ELFT::Phdr &Phdr,
4269 const typename ELFT::Shdr &Sec) {
4270 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4271 return true;
4272
4273 if (Sec.sh_addr < Phdr.p_vaddr)
4274 return false;
4275
4276 bool IsTbss =
4277 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4278 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4279 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4280 // Only non-empty sections can be at the end of a segment.
4281 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4282 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4283 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4284}
4285
4286template <class ELFT>
4287static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4288 const typename ELFT::Shdr &Sec) {
4289 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4290 return true;
4291
4292 // We get here when we have an empty section. Only non-empty sections can be
4293 // at the start or at the end of PT_DYNAMIC.
4294 // Is section within the phdr both based on offset and VMA?
4295 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4296 (Sec.sh_offset > Phdr.p_offset &&
4297 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4298 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4299 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4300 return CheckOffset && CheckVA;
4301}
4302
4303template <class ELFT>
4304void GNUELFDumper<ELFT>::printProgramHeaders(
4305 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4306 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4307 // Exit early if no program header or section mapping details were requested.
4308 if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4309 return;
4310
4311 if (PrintProgramHeaders) {
4312 const Elf_Ehdr &Header = this->Obj.getHeader();
4313 if (Header.e_phnum == 0) {
4314 OS << "\nThere are no program headers in this file.\n";
4315 } else {
4316 printProgramHeaders();
4317 }
4318 }
4319
4320 if (ShouldPrintSectionMapping)
4321 printSectionMapping();
4322}
4323
4324template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4325 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4326 const Elf_Ehdr &Header = this->Obj.getHeader();
4327 Field Fields[8] = {2, 17, 26, 37 + Bias,
4328 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4329 OS << "\nElf file type is "
4330 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4331 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4332 << "There are " << Header.e_phnum << " program headers,"
4333 << " starting at offset " << Header.e_phoff << "\n\n"
4334 << "Program Headers:\n";
4335 if (ELFT::Is64Bits)
4336 OS << " Type Offset VirtAddr PhysAddr "
4337 << " FileSiz MemSiz Flg Align\n";
4338 else
4339 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4340 << "MemSiz Flg Align\n";
4341
4342 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4343 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4344
4345 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4346 if (!PhdrsOrErr) {
4347 this->reportUniqueWarning("unable to dump program headers: " +
4348 toString(PhdrsOrErr.takeError()));
4349 return;
4350 }
4351
4352 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4353 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4354 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4355 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4356 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4357 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4358 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4359 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4360 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4361 for (const Field &F : Fields)
4362 printField(F);
4363 if (Phdr.p_type == ELF::PT_INTERP) {
4364 OS << "\n";
4365 auto ReportBadInterp = [&](const Twine &Msg) {
4366 this->reportUniqueWarning(
4367 "unable to read program interpreter name at offset 0x" +
4368 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4369 };
4370
4371 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4372 ReportBadInterp("it goes past the end of the file (0x" +
4373 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4374 continue;
4375 }
4376
4377 const char *Data =
4378 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4379 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4380 size_t Len = strnlen(Data, MaxSize);
4381 if (Len == MaxSize) {
4382 ReportBadInterp("it is not null-terminated");
4383 continue;
4384 }
4385
4386 OS << " [Requesting program interpreter: ";
4387 OS << StringRef(Data, Len) << "]";
4388 }
4389 OS << "\n";
4390 }
4391}
4392
4393template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4394 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4395 DenseSet<const Elf_Shdr *> BelongsToSegment;
4396 int Phnum = 0;
4397
4398 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4399 if (!PhdrsOrErr) {
4400 this->reportUniqueWarning(
4401 "can't read program headers to build section to segment mapping: " +
4402 toString(PhdrsOrErr.takeError()));
4403 return;
4404 }
4405
4406 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4407 std::string Sections;
4408 OS << format(" %2.2d ", Phnum++);
4409 // Check if each section is in a segment and then print mapping.
4410 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4411 if (Sec.sh_type == ELF::SHT_NULL)
4412 continue;
4413
4414 // readelf additionally makes sure it does not print zero sized sections
4415 // at end of segments and for PT_DYNAMIC both start and end of section
4416 // .tbss must only be shown in PT_TLS section.
4417 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4418 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4419 Sections +=
4420 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4421 " ";
4422 BelongsToSegment.insert(&Sec);
4423 }
4424 }
4425 OS << Sections << "\n";
4426 OS.flush();
4427 }
4428
4429 // Display sections that do not belong to a segment.
4430 std::string Sections;
4431 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4432 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4433 Sections +=
4434 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4435 ' ';
4436 }
4437 if (!Sections.empty()) {
4438 OS << " None " << Sections << '\n';
4439 OS.flush();
4440 }
4441}
4442
4443namespace {
4444
4445template <class ELFT>
4446RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4447 const Relocation<ELFT> &Reloc) {
4448 using Elf_Sym = typename ELFT::Sym;
4449 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4450 const Twine &Reason) -> RelSymbol<ELFT> {
4451 Dumper.reportUniqueWarning(
4452 "unable to get name of the dynamic symbol with index " +
4453 Twine(Reloc.Symbol) + ": " + Reason);
4454 return {Sym, "<corrupt>"};
4455 };
4456
4457 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4458 const Elf_Sym *FirstSym = Symbols.begin();
4459 if (!FirstSym)
4460 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4461
4462 // We might have an object without a section header. In this case the size of
4463 // Symbols is zero, because there is no way to know the size of the dynamic
4464 // table. We should allow this case and not print a warning.
4465 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4466 return WarnAndReturn(
4467 nullptr,
4468 "index is greater than or equal to the number of dynamic symbols (" +
4469 Twine(Symbols.size()) + ")");
4470
4471 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4472 const uint64_t FileSize = Obj.getBufSize();
4473 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4474 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4475 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4476 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4477 " goes past the end of the file (0x" +
4478 Twine::utohexstr(FileSize) + ")");
4479
4480 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4481 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4482 if (!ErrOrName)
4483 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4484
4485 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4486}
4487} // namespace
4488
4489template <class ELFT>
4490static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4491 typename ELFT::DynRange Tags) {
4492 size_t Max = 0;
4493 for (const typename ELFT::Dyn &Dyn : Tags)
4494 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4495 return Max;
4496}
4497
4498template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4499 Elf_Dyn_Range Table = this->dynamic_table();
4500 if (Table.empty())
4501 return;
4502
4503 OS << "Dynamic section at offset "
4504 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4505 this->Obj.base(),
4506 1)
4507 << " contains " << Table.size() << " entries:\n";
4508
4509 // The type name is surrounded with round brackets, hence add 2.
4510 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4511 // The "Name/Value" column should be indented from the "Type" column by N
4512 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4513 // space (1) = 3.
4514 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4515 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4516
4517 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4518 for (auto Entry : Table) {
4519 uintX_t Tag = Entry.getTag();
4520 std::string Type =
4521 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4522 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4523 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4524 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4525 }
4526}
4527
4528template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4529 this->printDynamicRelocationsHelper();
4530}
4531
4532template <class ELFT>
4533void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4534 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4535}
4536
4537template <class ELFT>
4538void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4539 this->forEachRelocationDo(
4540 Sec, opts::RawRelr,
4541 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4542 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4543 [&](const Elf_Relr &R) { printRelrReloc(R); });
4544}
4545
4546template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4547 const bool IsMips64EL = this->Obj.isMips64EL();
4548 if (this->DynRelaRegion.Size > 0) {
4549 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4550 for (const Elf_Rela &Rela :
4551 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4552 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4553 }
4554
4555 if (this->DynRelRegion.Size > 0) {
4556 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4557 for (const Elf_Rel &Rel :
4558 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4559 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4560 }
4561
4562 if (this->DynRelrRegion.Size > 0) {
4563 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4564 Elf_Relr_Range Relrs =
4565 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4566 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4567 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4568 }
4569
4570 if (this->DynPLTRelRegion.Size) {
4571 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4572 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4573 for (const Elf_Rela &Rela :
4574 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4575 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4576 } else {
4577 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4578 for (const Elf_Rel &Rel :
4579 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4580 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4581 }
4582 }
4583}
4584
4585template <class ELFT>
4586void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4587 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4588 // Don't inline the SecName, because it might report a warning to stderr and
4589 // corrupt the output.
4590 StringRef SecName = this->getPrintableSectionName(Sec);
4591 OS << Label << " section '" << SecName << "' "
4592 << "contains " << EntriesNum << " entries:\n";
4593
4594 StringRef LinkedSecName = "<corrupt>";
4595 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4596 this->Obj.getSection(Sec.sh_link))
4597 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4598 else
4599 this->reportUniqueWarning("invalid section linked to " +
4600 this->describe(Sec) + ": " +
4601 toString(LinkedSecOrErr.takeError()));
4602
4603 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4604 << " Offset: " << format_hex(Sec.sh_offset, 8)
4605 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4606}
4607
4608template <class ELFT>
4609void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4610 if (!Sec)
4611 return;
4612
4613 printGNUVersionSectionProlog(*Sec, "Version symbols",
4614 Sec->sh_size / sizeof(Elf_Versym));
4615 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4616 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4617 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4618 if (!VerTableOrErr) {
4619 this->reportUniqueWarning(VerTableOrErr.takeError());
4620 return;
4621 }
4622
4623 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4624 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4625 this->getVersionMap())
4626 VersionMap = *MapOrErr;
4627 else
4628 this->reportUniqueWarning(MapOrErr.takeError());
4629
4630 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4631 std::vector<StringRef> Versions;
4632 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4633 unsigned Ndx = VerTable[I].vs_index;
4634 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4635 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4636 continue;
4637 }
4638
4639 if (!VersionMap) {
4640 Versions.emplace_back("<corrupt>");
4641 continue;
4642 }
4643
4644 bool IsDefault;
4645 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4646 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4647 if (!NameOrErr) {
4648 this->reportUniqueWarning("unable to get a version for entry " +
4649 Twine(I) + " of " + this->describe(*Sec) +
4650 ": " + toString(NameOrErr.takeError()));
4651 Versions.emplace_back("<corrupt>");
4652 continue;
4653 }
4654 Versions.emplace_back(*NameOrErr);
4655 }
4656
4657 // readelf prints 4 entries per line.
4658 uint64_t Entries = VerTable.size();
4659 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4660 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4661 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4662 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4663 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4664 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4665 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4666 }
4667 OS << '\n';
4668 }
4669 OS << '\n';
4670}
4671
4672static std::string versionFlagToString(unsigned Flags) {
4673 if (Flags == 0)
4674 return "none";
4675
4676 std::string Ret;
4677 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4678 if (!(Flags & Flag))
4679 return;
4680 if (!Ret.empty())
4681 Ret += " | ";
4682 Ret += Name;
4683 Flags &= ~Flag;
4684 };
4685
4686 AddFlag(VER_FLG_BASE, "BASE");
4687 AddFlag(VER_FLG_WEAK, "WEAK");
4688 AddFlag(VER_FLG_INFO, "INFO");
4689 AddFlag(~0, "<unknown>");
4690 return Ret;
4691}
4692
4693template <class ELFT>
4694void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4695 if (!Sec)
4696 return;
4697
4698 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4699
4700 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4701 if (!V) {
4702 this->reportUniqueWarning(V.takeError());
4703 return;
4704 }
4705
4706 for (const VerDef &Def : *V) {
4707 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4708 Def.Offset, Def.Version,
4709 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4710 Def.Name.data());
4711 unsigned I = 0;
4712 for (const VerdAux &Aux : Def.AuxV)
4713 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4714 Aux.Name.data());
4715 }
4716
4717 OS << '\n';
4718}
4719
4720template <class ELFT>
4721void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4722 if (!Sec)
4723 return;
4724
4725 unsigned VerneedNum = Sec->sh_info;
4726 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4727
4728 Expected<std::vector<VerNeed>> V =
4729 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4730 if (!V) {
4731 this->reportUniqueWarning(V.takeError());
4732 return;
4733 }
4734
4735 for (const VerNeed &VN : *V) {
4736 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4737 VN.Version, VN.File.data(), VN.Cnt);
4738 for (const VernAux &Aux : VN.AuxV)
4739 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
4740 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4741 Aux.Other);
4742 }
4743 OS << '\n';
4744}
4745
4746template <class ELFT>
4747void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4748 size_t NBucket = HashTable.nbucket;
4749 size_t NChain = HashTable.nchain;
4750 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4751 ArrayRef<Elf_Word> Chains = HashTable.chains();
4752 size_t TotalSyms = 0;
4753 // If hash table is correct, we have at least chains with 0 length
4754 size_t MaxChain = 1;
4755 size_t CumulativeNonZero = 0;
4756
4757 if (NChain == 0 || NBucket == 0)
4758 return;
4759
4760 std::vector<size_t> ChainLen(NBucket, 0);
4761 // Go over all buckets and and note chain lengths of each bucket (total
4762 // unique chain lengths).
4763 for (size_t B = 0; B < NBucket; B++) {
4764 BitVector Visited(NChain);
4765 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4766 if (C == ELF::STN_UNDEF)
4767 break;
4768 if (Visited[C]) {
4769 this->reportUniqueWarning(".hash section is invalid: bucket " +
4770 Twine(C) +
4771 ": a cycle was detected in the linked chain");
4772 break;
4773 }
4774 Visited[C] = true;
4775 if (MaxChain <= ++ChainLen[B])
4776 MaxChain++;
4777 }
4778 TotalSyms += ChainLen[B];
4779 }
4780
4781 if (!TotalSyms)
4782 return;
4783
4784 std::vector<size_t> Count(MaxChain, 0);
4785 // Count how long is the chain for each bucket
4786 for (size_t B = 0; B < NBucket; B++)
4787 ++Count[ChainLen[B]];
4788 // Print Number of buckets with each chain lengths and their cumulative
4789 // coverage of the symbols
4790 OS << "Histogram for bucket list length (total of " << NBucket
4791 << " buckets)\n"
4792 << " Length Number % of total Coverage\n";
4793 for (size_t I = 0; I < MaxChain; I++) {
4794 CumulativeNonZero += Count[I] * I;
4795 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4796 (Count[I] * 100.0) / NBucket,
4797 (CumulativeNonZero * 100.0) / TotalSyms);
4798 }
4799}
4800
4801template <class ELFT>
4802void GNUELFDumper<ELFT>::printGnuHashHistogram(
4803 const Elf_GnuHash &GnuHashTable) {
4804 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4805 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4806 if (!ChainsOrErr) {
4807 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4808 toString(ChainsOrErr.takeError()));
4809 return;
4810 }
4811
4812 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4813 size_t Symndx = GnuHashTable.symndx;
4814 size_t TotalSyms = 0;
4815 size_t MaxChain = 1;
4816 size_t CumulativeNonZero = 0;
4817
4818 size_t NBucket = GnuHashTable.nbuckets;
4819 if (Chains.empty() || NBucket == 0)
4820 return;
4821
4822 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4823 std::vector<size_t> ChainLen(NBucket, 0);
4824 for (size_t B = 0; B < NBucket; B++) {
4825 if (!Buckets[B])
4826 continue;
4827 size_t Len = 1;
4828 for (size_t C = Buckets[B] - Symndx;
4829 C < Chains.size() && (Chains[C] & 1) == 0; C++)
4830 if (MaxChain < ++Len)
4831 MaxChain++;
4832 ChainLen[B] = Len;
4833 TotalSyms += Len;
4834 }
4835 MaxChain++;
4836
4837 if (!TotalSyms)
4838 return;
4839
4840 std::vector<size_t> Count(MaxChain, 0);
4841 for (size_t B = 0; B < NBucket; B++)
4842 ++Count[ChainLen[B]];
4843 // Print Number of buckets with each chain lengths and their cumulative
4844 // coverage of the symbols
4845 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4846 << " buckets)\n"
4847 << " Length Number % of total Coverage\n";
4848 for (size_t I = 0; I < MaxChain; I++) {
4849 CumulativeNonZero += Count[I] * I;
4850 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4851 (Count[I] * 100.0) / NBucket,
4852 (CumulativeNonZero * 100.0) / TotalSyms);
4853 }
4854}
4855
4856// Hash histogram shows statistics of how efficient the hash was for the
4857// dynamic symbol table. The table shows the number of hash buckets for
4858// different lengths of chains as an absolute number and percentage of the total
4859// buckets, and the cumulative coverage of symbols for each set of buckets.
4860template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4861 // Print histogram for the .hash section.
4862 if (this->HashTable) {
4863 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4864 this->reportUniqueWarning(std::move(E));
4865 else
4866 printHashHistogram(*this->HashTable);
4867 }
4868
4869 // Print histogram for the .gnu.hash section.
4870 if (this->GnuHashTable) {
4871 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4872 this->reportUniqueWarning(std::move(E));
4873 else
4874 printGnuHashHistogram(*this->GnuHashTable);
4875 }
4876}
4877
4878template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4879 OS << "GNUStyle::printCGProfile not implemented\n";
4880}
4881
4882template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4883 OS << "GNUStyle::printBBAddrMaps not implemented\n";
4884}
4885
4886static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4887 std::vector<uint64_t> Ret;
4888 const uint8_t *Cur = Data.begin();
4889 const uint8_t *End = Data.end();
4890 while (Cur != End) {
4891 unsigned Size;
4892 const char *Err;
4893 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4894 if (Err)
4895 return createError(Err);
4896 Cur += Size;
4897 }
4898 return Ret;
4899}
4900
4901template <class ELFT>
4902static Expected<std::vector<uint64_t>>
4903decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4904 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4905 if (!ContentsOrErr)
4906 return ContentsOrErr.takeError();
4907
4908 if (Expected<std::vector<uint64_t>> SymsOrErr =
4909 toULEB128Array(*ContentsOrErr))
4910 return *SymsOrErr;
4911 else
4912 return createError("unable to decode " + describe(Obj, Sec) + ": " +
4913 toString(SymsOrErr.takeError()));
4914}
4915
4916template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4917 if (!this->DotAddrsigSec)
4918 return;
4919
4920 Expected<std::vector<uint64_t>> SymsOrErr =
4921 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4922 if (!SymsOrErr) {
4923 this->reportUniqueWarning(SymsOrErr.takeError());
4924 return;
4925 }
4926
4927 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4928 OS << "\nAddress-significant symbols section '" << Name << "'"
4929 << " contains " << SymsOrErr->size() << " entries:\n";
4930 OS << " Num: Name\n";
4931
4932 Field Fields[2] = {0, 8};
4933 size_t SymIndex = 0;
4934 for (uint64_t Sym : *SymsOrErr) {
4935 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4936 Fields[1].Str = this->getStaticSymbolName(Sym);
4937 for (const Field &Entry : Fields)
4938 printField(Entry);
4939 OS << "\n";
4940 }
4941}
4942
4943template <typename ELFT>
4944static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4945 ArrayRef<uint8_t> Data) {
4946 std::string str;
4947 raw_string_ostream OS(str);
4948 uint32_t PrData;
4949 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4950 if (PrData & Flag) {
4951 PrData &= ~Flag;
4952 OS << Name;
4953 if (PrData)
4954 OS << ", ";
4955 }
4956 };
4957
4958 switch (Type) {
4959 default:
4960 OS << format("<application-specific type 0x%x>", Type);
4961 return OS.str();
4962 case GNU_PROPERTY_STACK_SIZE: {
4963 OS << "stack size: ";
4964 if (DataSize == sizeof(typename ELFT::uint))
4965 OS << formatv("{0:x}",
4966 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4967 else
4968 OS << format("<corrupt length: 0x%x>", DataSize);
4969 return OS.str();
4970 }
4971 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4972 OS << "no copy on protected";
4973 if (DataSize)
4974 OS << format(" <corrupt length: 0x%x>", DataSize);
4975 return OS.str();
4976 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4977 case GNU_PROPERTY_X86_FEATURE_1_AND:
4978 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4979 : "x86 feature: ");
4980 if (DataSize != 4) {
4981 OS << format("<corrupt length: 0x%x>", DataSize);
4982 return OS.str();
4983 }
4984 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4985 if (PrData == 0) {
4986 OS << "<None>";
4987 return OS.str();
4988 }
4989 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4990 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4991 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4992 } else {
4993 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4994 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4995 }
4996 if (PrData)
4997 OS << format("<unknown flags: 0x%x>", PrData);
4998 return OS.str();
4999 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5000 case GNU_PROPERTY_X86_FEATURE_2_USED:
5001 OS << "x86 feature "
5002 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5003 if (DataSize != 4) {
5004 OS << format("<corrupt length: 0x%x>", DataSize);
5005 return OS.str();
5006 }
5007 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5008 if (PrData == 0) {
5009 OS << "<None>";
5010 return OS.str();
5011 }
5012 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5013 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5014 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5015 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5016 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5017 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5018 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5019 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5020 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5021 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5022 if (PrData)
5023 OS << format("<unknown flags: 0x%x>", PrData);
5024 return OS.str();
5025 case GNU_PROPERTY_X86_ISA_1_NEEDED:
5026 case GNU_PROPERTY_X86_ISA_1_USED:
5027 OS << "x86 ISA "
5028 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5029 if (DataSize != 4) {
5030 OS << format("<corrupt length: 0x%x>", DataSize);
5031 return OS.str();
5032 }
5033 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5034 if (PrData == 0) {
5035 OS << "<None>";
5036 return OS.str();
5037 }
5038 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5039 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5040 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5041 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5042 if (PrData)
5043 OS << format("<unknown flags: 0x%x>", PrData);
5044 return OS.str();
5045 }
5046}
5047
5048template <typename ELFT>
5049static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5050 using Elf_Word = typename ELFT::Word;
5051
5052 SmallVector<std::string, 4> Properties;
5053 while (Arr.size() >= 8) {
5054 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5055 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5056 Arr = Arr.drop_front(8);
5057
5058 // Take padding size into account if present.
5059 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5060 std::string str;
5061 raw_string_ostream OS(str);
5062 if (Arr.size() < PaddedSize) {
5063 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5064 Properties.push_back(OS.str());
5065 break;
5066 }
5067 Properties.push_back(
5068 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5069 Arr = Arr.drop_front(PaddedSize);
5070 }
5071
5072 if (!Arr.empty())
5073 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5074
5075 return Properties;
5076}
5077
5078struct GNUAbiTag {
5079 std::string OSName;
5080 std::string ABI;
5081 bool IsValid;
5082};
5083
5084template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5085 typedef typename ELFT::Word Elf_Word;
5086
5087 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5088 reinterpret_cast<const Elf_Word *>(Desc.end()));
5089
5090 if (Words.size() < 4)
5091 return {"", "", /*IsValid=*/false};
5092
5093 static const char *OSNames[] = {
5094 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5095 };
5096 StringRef OSName = "Unknown";
5097 if (Words[0] < std::size(OSNames))
5098 OSName = OSNames[Words[0]];
5099 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5100 std::string str;
5101 raw_string_ostream ABI(str);
5102 ABI << Major << "." << Minor << "." << Patch;
5103 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5104}
5105
5106static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5107 std::string str;
5108 raw_string_ostream OS(str);
5109 for (uint8_t B : Desc)
5110 OS << format_hex_no_prefix(B, 2);
5111 return OS.str();
5112}
5113
5114static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5115 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5116}
5117
5118template <typename ELFT>
5119static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5120 ArrayRef<uint8_t> Desc) {
5121 // Return true if we were able to pretty-print the note, false otherwise.
5122 switch (NoteType) {
5123 default:
5124 return false;
5125 case ELF::NT_GNU_ABI_TAG: {
5126 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5127 if (!AbiTag.IsValid)
5128 OS << " <corrupt GNU_ABI_TAG>";
5129 else
5130 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5131 break;
5132 }
5133 case ELF::NT_GNU_BUILD_ID: {
5134 OS << " Build ID: " << getGNUBuildId(Desc);
5135 break;
5136 }
5137 case ELF::NT_GNU_GOLD_VERSION:
5138 OS << " Version: " << getDescAsStringRef(Desc);
5139 break;
5140 case ELF::NT_GNU_PROPERTY_TYPE_0:
5141 OS << " Properties:";
5142 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5143 OS << " " << Property << "\n";
5144 break;
5145 }
5146 OS << '\n';
5147 return true;
5148}
5149
5150using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5151static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5152 ArrayRef<uint8_t> Desc) {
5153 AndroidNoteProperties Props;
5154 switch (NoteType) {
5155 case ELF::NT_ANDROID_TYPE_MEMTAG:
5156 if (Desc.empty()) {
5157 Props.emplace_back("Invalid .note.android.memtag", "");
5158 return Props;
5159 }
5160
5161 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5162 case NT_MEMTAG_LEVEL_NONE:
5163 Props.emplace_back("Tagging Mode", "NONE");
5164 break;
5165 case NT_MEMTAG_LEVEL_ASYNC:
5166 Props.emplace_back("Tagging Mode", "ASYNC");
5167 break;
5168 case NT_MEMTAG_LEVEL_SYNC:
5169 Props.emplace_back("Tagging Mode", "SYNC");
5170 break;
5171 default:
5172 Props.emplace_back(
5173 "Tagging Mode",
5174 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5175 .str());
5176 break;
5177 }
5178 Props.emplace_back("Heap",
5179 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5180 Props.emplace_back("Stack",
5181 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5182 break;
5183 default:
5184 return Props;
5185 }
5186 return Props;
5187}
5188
5189static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5190 ArrayRef<uint8_t> Desc) {
5191 // Return true if we were able to pretty-print the note, false otherwise.
5192 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5193 if (Props.empty())
5194 return false;
5195 for (const auto &KV : Props)
5196 OS << " " << KV.first << ": " << KV.second << '\n';
5197 OS << '\n';
5198 return true;
5199}
5200
5201template <typename ELFT>
5202static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5203 ArrayRef<uint8_t> Desc) {
5204 switch (NoteType) {
5205 default:
5206 return false;
5207 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5208 OS << " Version: " << getDescAsStringRef(Desc);
5209 break;
5210 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5211 OS << " Producer: " << getDescAsStringRef(Desc);
5212 break;
5213 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5214 OS << " Producer version: " << getDescAsStringRef(Desc);
5215 break;
5216 }
5217 OS << '\n';
5218 return true;
5219}
5220
5221const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5222 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5223 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5224 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5225 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5226 {"LA48", NT_FREEBSD_FCTL_LA48},
5227 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5228};
5229
5230struct FreeBSDNote {
5231 std::string Type;
5232 std::string Value;
5233};
5234
5235template <typename ELFT>
5236static std::optional<FreeBSDNote>
5237getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5238 if (IsCore)
5239 return std::nullopt; // No pretty-printing yet.
5240 switch (NoteType) {
5241 case ELF::NT_FREEBSD_ABI_TAG:
5242 if (Desc.size() != 4)
5243 return std::nullopt;
5244 return FreeBSDNote{
5245 "ABI tag",
5246 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5247 case ELF::NT_FREEBSD_ARCH_TAG:
5248 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5249 case ELF::NT_FREEBSD_FEATURE_CTL: {
5250 if (Desc.size() != 4)
5251 return std::nullopt;
5252 unsigned Value =
5253 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5254 std::string FlagsStr;
5255 raw_string_ostream OS(FlagsStr);
5256 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5257 if (OS.str().empty())
5258 OS << "0x" << utohexstr(Value);
5259 else
5260 OS << "(0x" << utohexstr(Value) << ")";
5261 return FreeBSDNote{"Feature flags", OS.str()};
5262 }
5263 default:
5264 return std::nullopt;
5265 }
5266}
5267
5268struct AMDNote {
5269 std::string Type;
5270 std::string Value;
5271};
5272
5273template <typename ELFT>
5274static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5275 switch (NoteType) {
5276 default:
5277 return {"", ""};
5278 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5279 struct CodeObjectVersion {
5280 uint32_t MajorVersion;
5281 uint32_t MinorVersion;
5282 };
5283 if (Desc.size() != sizeof(CodeObjectVersion))
5284 return {"AMD HSA Code Object Version",
5285 "Invalid AMD HSA Code Object Version"};
5286 std::string VersionString;
5287 raw_string_ostream StrOS(VersionString);
5288 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5289 StrOS << "[Major: " << Version->MajorVersion
5290 << ", Minor: " << Version->MinorVersion << "]";
5291 return {"AMD HSA Code Object Version", VersionString};
5292 }
5293 case ELF::NT_AMD_HSA_HSAIL: {
5294 struct HSAILProperties {
5295 uint32_t HSAILMajorVersion;
5296 uint32_t HSAILMinorVersion;
5297 uint8_t Profile;
5298 uint8_t MachineModel;
5299 uint8_t DefaultFloatRound;
5300 };
5301 if (Desc.size() != sizeof(HSAILProperties))
5302 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5303 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5304 std::string HSAILPropetiesString;
5305 raw_string_ostream StrOS(HSAILPropetiesString);
5306 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5307 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5308 << ", Profile: " << uint32_t(Properties->Profile)
5309 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5310 << ", Default Float Round: "
5311 << uint32_t(Properties->DefaultFloatRound) << "]";
5312 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5313 }
5314 case ELF::NT_AMD_HSA_ISA_VERSION: {
5315 struct IsaVersion {
5316 uint16_t VendorNameSize;
5317 uint16_t ArchitectureNameSize;
5318 uint32_t Major;
5319 uint32_t Minor;
5320 uint32_t Stepping;
5321 };
5322 if (Desc.size() < sizeof(IsaVersion))
5323 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5324 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5325 if (Desc.size() < sizeof(IsaVersion) +
5326 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5327 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5328 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5329 std::string IsaString;
5330 raw_string_ostream StrOS(IsaString);
5331 StrOS << "[Vendor: "
5332 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5333 << ", Architecture: "
5334 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5335 Isa->ArchitectureNameSize - 1)
5336 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5337 << ", Stepping: " << Isa->Stepping << "]";
5338 return {"AMD HSA ISA Version", IsaString};
5339 }
5340 case ELF::NT_AMD_HSA_METADATA: {
5341 if (Desc.size() == 0)
5342 return {"AMD HSA Metadata", ""};
5343 return {
5344 "AMD HSA Metadata",
5345 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5346 }
5347 case ELF::NT_AMD_HSA_ISA_NAME: {
5348 if (Desc.size() == 0)
5349 return {"AMD HSA ISA Name", ""};
5350 return {
5351 "AMD HSA ISA Name",
5352 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5353 }
5354 case ELF::NT_AMD_PAL_METADATA: {
5355 struct PALMetadata {
5356 uint32_t Key;
5357 uint32_t Value;
5358 };
5359 if (Desc.size() % sizeof(PALMetadata) != 0)
5360 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5361 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5362 std::string MetadataString;
5363 raw_string_ostream StrOS(MetadataString);
5364 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5365 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5366 }
5367 return {"AMD PAL Metadata", MetadataString};
5368 }
5369 }
5370}
5371
5372struct AMDGPUNote {
5373 std::string Type;
5374 std::string Value;
5375};
5376
5377template <typename ELFT>
5378static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5379 switch (NoteType) {
5380 default:
5381 return {"", ""};
5382 case ELF::NT_AMDGPU_METADATA: {
5383 StringRef MsgPackString =
5384 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5385 msgpack::Document MsgPackDoc;
5386 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5387 return {"", ""};
5388
5389 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5390 std::string MetadataString;
5391 if (!Verifier.verify(MsgPackDoc.getRoot()))
5392 MetadataString = "Invalid AMDGPU Metadata\n";
5393
5394 raw_string_ostream StrOS(MetadataString);
5395 if (MsgPackDoc.getRoot().isScalar()) {
5396 // TODO: passing a scalar root to toYAML() asserts:
5397 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5398 // "plain scalar documents are not supported")
5399 // To avoid this crash we print the raw data instead.
5400 return {"", ""};
5401 }
5402 MsgPackDoc.toYAML(StrOS);
5403 return {"AMDGPU Metadata", StrOS.str()};
5404 }
5405 }
5406}
5407
5408struct CoreFileMapping {
5409 uint64_t Start, End, Offset;
5410 StringRef Filename;
5411};
5412
5413struct CoreNote {
5414 uint64_t PageSize;
5415 std::vector<CoreFileMapping> Mappings;
5416};
5417
5418static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5419 // Expected format of the NT_FILE note description:
5420 // 1. # of file mappings (call it N)
5421 // 2. Page size
5422 // 3. N (start, end, offset) triples
5423 // 4. N packed filenames (null delimited)
5424 // Each field is an Elf_Addr, except for filenames which are char* strings.
5425
5426 CoreNote Ret;
5427 const int Bytes = Desc.getAddressSize();
5428
5429 if (!Desc.isValidOffsetForAddress(2))
5430 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5431 " is too short, expected at least 0x" +
5432 Twine::utohexstr(Bytes * 2));
5433 if (Desc.getData().back() != 0)
5434 return createError("the note is not NUL terminated");
5435
5436 uint64_t DescOffset = 0;
5437 uint64_t FileCount = Desc.getAddress(&DescOffset);
5438 Ret.PageSize = Desc.getAddress(&DescOffset);
5439
5440 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5441 return createError("unable to read file mappings (found " +
5442 Twine(FileCount) + "): the note of size 0x" +
5443 Twine::utohexstr(Desc.size()) + " is too short");
5444
5445 uint64_t FilenamesOffset = 0;
5446 DataExtractor Filenames(
5447 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5448 Desc.isLittleEndian(), Desc.getAddressSize());
5449
5450 Ret.Mappings.resize(FileCount);
5451 size_t I = 0;
5452 for (CoreFileMapping &Mapping : Ret.Mappings) {
5453 ++I;
5454 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5455 return createError(
5456 "unable to read the file name for the mapping with index " +
5457 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5458 " is truncated");
5459 Mapping.Start = Desc.getAddress(&DescOffset);
5460 Mapping.End = Desc.getAddress(&DescOffset);
5461 Mapping.Offset = Desc.getAddress(&DescOffset);
5462 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5463 }
5464
5465 return Ret;
5466}
5467
5468template <typename ELFT>
5469static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5470 // Length of "0x<address>" string.
5471 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5472
5473 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5474 OS << " " << right_justify("Start", FieldWidth) << " "
5475 << right_justify("End", FieldWidth) << " "
5476 << right_justify("Page Offset", FieldWidth) << '\n';
5477 for (const CoreFileMapping &Mapping : Note.Mappings) {
5478 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5479 << format_hex(Mapping.End, FieldWidth) << " "
5480 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5481 << Mapping.Filename << '\n';
5482 }
5483}
5484
5485const NoteType GenericNoteTypes[] = {
5486 {ELF::NT_VERSION, "NT_VERSION (version)"},
5487 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5488 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5489 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5490};
5491
5492const NoteType GNUNoteTypes[] = {
5493 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5494 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5495 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5496 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5497 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5498};
5499
5500const NoteType FreeBSDCoreNoteTypes[] = {
5501 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5502 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5503 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5504 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5505 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5506 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5507 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5508 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5509 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5510 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5511 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5512};
5513
5514const NoteType FreeBSDNoteTypes[] = {
5515 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5516 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5517 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5518 {ELF::NT_FREEBSD_FEATURE_CTL,
5519 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5520};
5521
5522const NoteType NetBSDCoreNoteTypes[] = {
5523 {ELF::NT_NETBSDCORE_PROCINFO,
5524 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5525 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5526 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5527};
5528
5529const NoteType OpenBSDCoreNoteTypes[] = {
5530 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5531 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5532 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5533 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5534 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5535};
5536
5537const NoteType AMDNoteTypes[] = {
5538 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5539 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5540 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5541 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5542 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5543 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5544 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5545};
5546
5547const NoteType AMDGPUNoteTypes[] = {
5548 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5549};
5550
5551const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5552 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5553 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5554 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5555 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5556 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5557 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5558};
5559
5560const NoteType AndroidNoteTypes[] = {
5561 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5562 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5563 {ELF::NT_ANDROID_TYPE_MEMTAG,
5564 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5565};
5566
5567const NoteType CoreNoteTypes[] = {
5568 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5569 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5570 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5571 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5572 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5573 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5574 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5575 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5576 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5577 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5578 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5579
5580 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5581 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5582 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5583 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5584 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5585 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5586 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5587 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5588 {ELF::NT_PPC_TM_CFPR,
5589 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5590 {ELF::NT_PPC_TM_CVMX,
5591 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5592 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5593 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5594 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5595 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5596 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5597
5598 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5599 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5600 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5601
5602 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5603 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5604 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5605 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5606 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5607 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5608 {ELF::NT_S390_LAST_BREAK,
5609 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5610 {ELF::NT_S390_SYSTEM_CALL,
5611 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5612 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5613 {ELF::NT_S390_VXRS_LOW,
5614 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5615 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5616 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5617 {ELF::NT_S390_GS_BC,
5618 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5619
5620 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5621 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5622 {ELF::NT_ARM_HW_BREAK,
5623 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5624 {ELF::NT_ARM_HW_WATCH,
5625 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5626
5627 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5628 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5629 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5630};
5631
5632template <class ELFT>
5633StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5634 uint32_t Type = Note.getType();
5635 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5636 for (const NoteType &N : V)
5637 if (N.ID == Type)
5638 return N.Name;
5639 return "";
5640 };
5641
5642 StringRef Name = Note.getName();
5643 if (Name == "GNU")
5644 return FindNote(GNUNoteTypes);
5645 if (Name == "FreeBSD") {
5646 if (ELFType == ELF::ET_CORE) {
5647 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5648 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5649 if (!Result.empty())
5650 return Result;
5651 return FindNote(CoreNoteTypes);
5652 } else {
5653 return FindNote(FreeBSDNoteTypes);
5654 }
5655 }
5656 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5657 StringRef Result = FindNote(NetBSDCoreNoteTypes);
5658 if (!Result.empty())
5659 return Result;
5660 return FindNote(CoreNoteTypes);
5661 }
5662 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5663 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5664 StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5665 if (!Result.empty())
5666 return Result;
5667 return FindNote(CoreNoteTypes);
5668 }
5669 if (Name == "AMD")
5670 return FindNote(AMDNoteTypes);
5671 if (Name == "AMDGPU")
5672 return FindNote(AMDGPUNoteTypes);
5673 if (Name == "LLVMOMPOFFLOAD")
5674 return FindNote(LLVMOMPOFFLOADNoteTypes);
5675 if (Name == "Android")
5676 return FindNote(AndroidNoteTypes);
5677
5678 if (ELFType == ELF::ET_CORE)
5679 return FindNote(CoreNoteTypes);
5680 return FindNote(GenericNoteTypes);
5681}
5682
5683template <class ELFT>
5684static void printNotesHelper(
5685 const ELFDumper<ELFT> &Dumper,
5686 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5687 typename ELFT::Addr)>
5688 StartNotesFn,
5689 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5690 llvm::function_ref<void()> FinishNotesFn) {
5691 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5692 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5693
5694 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5695 if (!IsCoreFile && !Sections.empty()) {
5696 for (const typename ELFT::Shdr &S : Sections) {
5697 if (S.sh_type != SHT_NOTE)
5698 continue;
5699 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5700 S.sh_size);
5701 Error Err = Error::success();
5702 size_t I = 0;
5703 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5704 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5705 Dumper.reportUniqueWarning(
5706 "unable to read note with index " + Twine(I) + " from the " +
5707 describe(Obj, S) + ": " + toString(std::move(E)));
5708 ++I;
5709 }
5710 if (Err)
5711 Dumper.reportUniqueWarning("unable to read notes from the " +
5712 describe(Obj, S) + ": " +
5713 toString(std::move(Err)));
5714 FinishNotesFn();
5715 }
5716 return;
5717 }
5718
5719 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5720 if (!PhdrsOrErr) {
5721 Dumper.reportUniqueWarning(
5722 "unable to read program headers to locate the PT_NOTE segment: " +
5723 toString(PhdrsOrErr.takeError()));
5724 return;
5725 }
5726
5727 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5728 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5729 if (P.p_type != PT_NOTE)
5730 continue;
5731 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz);
5732 Error Err = Error::success();
5733 size_t Index = 0;
5734 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5735 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5736 Dumper.reportUniqueWarning("unable to read note with index " +
5737 Twine(Index) +
5738 " from the PT_NOTE segment with index " +
5739 Twine(I) + ": " + toString(std::move(E)));
5740 ++Index;
5741 }
5742 if (Err)
5743 Dumper.reportUniqueWarning(
5744 "unable to read notes from the PT_NOTE segment with index " +
5745 Twine(I) + ": " + toString(std::move(Err)));
5746 FinishNotesFn();
5747 }
5748}
5749
5750template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5751 bool IsFirstHeader = true;
5752 auto PrintHeader = [&](std::optional<StringRef> SecName,
5753 const typename ELFT::Off Offset,
5754 const typename ELFT::Addr Size) {
5755 // Print a newline between notes sections to match GNU readelf.
5756 if (!IsFirstHeader) {
5757 OS << '\n';
5758 } else {
5759 IsFirstHeader = false;
5760 }
5761
5762 OS << "Displaying notes found ";
5763
5764 if (SecName)
5765 OS << "in: " << *SecName << "\n";
5766 else
5767 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5768 << format_hex(Size, 10) << ":\n";
5769
5770 OS << " Owner Data size \tDescription\n";
5771 };
5772
5773 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5774 StringRef Name = Note.getName();
5775 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5776 Elf_Word Type = Note.getType();
5777
5778 // Print the note owner/type.
5779 OS << " " << left_justify(Name, 20) << ' '
5780 << format_hex(Descriptor.size(), 10) << '\t';
5781
5782 StringRef NoteType =
5783 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5784 if (!NoteType.empty())
5785 OS << NoteType << '\n';
5786 else
5787 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5788
5789 // Print the description, or fallback to printing raw bytes for unknown
5790 // owners/if we fail to pretty-print the contents.
5791 if (Name == "GNU") {
5792 if (printGNUNote<ELFT>(OS, Type, Descriptor))
5793 return Error::success();
5794 } else if (Name == "FreeBSD") {
5795 if (std::optional<FreeBSDNote> N =
5796 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5797 OS << " " << N->Type << ": " << N->Value << '\n';
5798 return Error::success();
5799 }
5800 } else if (Name == "AMD") {
5801 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5802 if (!N.Type.empty()) {
5803 OS << " " << N.Type << ":\n " << N.Value << '\n';
5804 return Error::success();
5805 }
5806 } else if (Name == "AMDGPU") {
5807 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5808 if (!N.Type.empty()) {
5809 OS << " " << N.Type << ":\n " << N.Value << '\n';
5810 return Error::success();
5811 }
5812 } else if (Name == "LLVMOMPOFFLOAD") {
5813 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5814 return Error::success();
5815 } else if (Name == "CORE") {
5816 if (Type == ELF::NT_FILE) {
5817 DataExtractor DescExtractor(Descriptor,
5818 ELFT::TargetEndianness == support::little,
5819 sizeof(Elf_Addr));
5820 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5821 printCoreNote<ELFT>(OS, *NoteOrErr);
5822 return Error::success();
5823 } else {
5824 return NoteOrErr.takeError();
5825 }
5826 }
5827 } else if (Name == "Android") {
5828 if (printAndroidNote(OS, Type, Descriptor))
5829 return Error::success();
5830 }
5831 if (!Descriptor.empty()) {
5832 OS << " description data:";
5833 for (uint8_t B : Descriptor)
5834 OS << " " << format("%02x", B);
5835 OS << '\n';
5836 }
5837 return Error::success();
5838 };
5839
5840 printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5841}
5842
5843template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5844 OS << "printELFLinkerOptions not implemented!\n";
5845}
5846
5847template <class ELFT>
5848void ELFDumper<ELFT>::printDependentLibsHelper(
5849 function_ref<void(const Elf_Shdr &)> OnSectionStart,
5850 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5851 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5852 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5853 Twine(SecNdx) + " is broken: " + Msg);
5854 };
5855
5856 unsigned I = -1;
5857 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5858 ++I;
5859 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5860 continue;
5861
5862 OnSectionStart(Shdr);
5863
5864 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5865 if (!ContentsOrErr) {
5866 Warn(I, toString(ContentsOrErr.takeError()));
5867 continue;
5868 }
5869
5870 ArrayRef<uint8_t> Contents = *ContentsOrErr;
5871 if (!Contents.empty() && Contents.back() != 0) {
5872 Warn(I, "the content is not null-terminated");
5873 continue;
5874 }
5875
5876 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5877 StringRef Lib((const char *)I);
5878 OnLibEntry(Lib, I - Contents.begin());
5879 I += Lib.size() + 1;
5880 }
5881 }
5882}
5883
5884template <class ELFT>
5885void ELFDumper<ELFT>::forEachRelocationDo(
5886 const Elf_Shdr &Sec, bool RawRelr,
5887 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5888 const Elf_Shdr &, const Elf_Shdr *)>
5889 RelRelaFn,
5890 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5891 auto Warn = [&](Error &&E,
5892 const Twine &Prefix = "unable to read relocations from") {
5893 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5894 toString(std::move(E)));
5895 };
5896
5897 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5898 // For them we should not treat the value of the sh_link field as an index of
5899 // a symbol table.
5900 const Elf_Shdr *SymTab;
5901 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5902 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5903 if (!SymTabOrErr) {
5904 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5905 return;
5906 }
5907 SymTab = *SymTabOrErr;
5908 }
5909
5910 unsigned RelNdx = 0;
5911 const bool IsMips64EL = this->Obj.isMips64EL();
5912 switch (Sec.sh_type) {
5913 case ELF::SHT_REL:
5914 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5915 for (const Elf_Rel &R : *RangeOrErr)
5916 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5917 } else {
5918 Warn(RangeOrErr.takeError());
5919 }
5920 break;
5921 case ELF::SHT_RELA:
5922 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5923 for (const Elf_Rela &R : *RangeOrErr)
5924 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5925 } else {
5926 Warn(RangeOrErr.takeError());
5927 }
5928 break;
5929 case ELF::SHT_RELR:
5930 case ELF::SHT_ANDROID_RELR: {
5931 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5932 if (!RangeOrErr) {
5933 Warn(RangeOrErr.takeError());
5934 break;
5935 }
5936 if (RawRelr) {
5937 for (const Elf_Relr &R : *RangeOrErr)
5938 RelrFn(R);
5939 break;
5940 }
5941
5942 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5943 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5944 /*SymTab=*/nullptr);
5945 break;
5946 }
5947 case ELF::SHT_ANDROID_REL:
5948 case ELF::SHT_ANDROID_RELA:
5949 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5950 for (const Elf_Rela &R : *RelasOrErr)
5951 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5952 } else {
5953 Warn(RelasOrErr.takeError());
5954 }
5955 break;
5956 }
5957}
5958
5959template <class ELFT>
5960StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5961 StringRef Name = "<?>";
5962 if (Expected<StringRef> SecNameOrErr =
5963 Obj.getSectionName(Sec, this->WarningHandler))
5964 Name = *SecNameOrErr;
5965 else
5966 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5967 ": " + toString(SecNameOrErr.takeError()));
5968 return Name;
5969}
5970
5971template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5972 bool SectionStarted = false;
5973 struct NameOffset {
5974 StringRef Name;
5975 uint64_t Offset;
5976 };
5977 std::vector<NameOffset> SecEntries;
5978 NameOffset Current;
5979 auto PrintSection = [&]() {
5980 OS << "Dependent libraries section " << Current.Name << " at offset "
5981 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5982 << " entries:\n";
5983 for (NameOffset Entry : SecEntries)
5984 OS << " [" << format("%6" PRIx64"l" "x", Entry.Offset) << "] " << Entry.Name
5985 << "\n";
5986 OS << "\n";
5987 SecEntries.clear();
5988 };
5989
5990 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5991 if (SectionStarted)
5992 PrintSection();
5993 SectionStarted = true;
5994 Current.Offset = Shdr.sh_offset;
5995 Current.Name = this->getPrintableSectionName(Shdr);
5996 };
5997 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5998 SecEntries.push_back(NameOffset{Lib, Offset});
5999 };
6000
6001 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6002 if (SectionStarted)
6003 PrintSection();
6004}
6005
6006template <class ELFT>
6007SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6008 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6009 SmallVector<uint32_t> SymbolIndexes;
6010 if (!this->AddressToIndexMap) {
6011 // Populate the address to index map upon the first invocation of this
6012 // function.
6013 this->AddressToIndexMap.emplace();
6014 if (this->DotSymtabSec) {
6015 if (Expected<Elf_Sym_Range> SymsOrError =
6016 Obj.symbols(this->DotSymtabSec)) {
6017 uint32_t Index = (uint32_t)-1;
6018 for (const Elf_Sym &Sym : *SymsOrError) {
6019 ++Index;
6020
6021 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6022 continue;
6023
6024 Expected<uint64_t> SymAddrOrErr =
6025 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6026 if (!SymAddrOrErr) {
6027 std::string Name = this->getStaticSymbolName(Index);
6028 reportUniqueWarning("unable to get address of symbol '" + Name +
6029 "': " + toString(SymAddrOrErr.takeError()));
6030 return SymbolIndexes;
6031 }
6032
6033 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6034 }
6035 } else {
6036 reportUniqueWarning("unable to read the symbol table: " +
6037 toString(SymsOrError.takeError()));
6038 }
6039 }
6040 }
6041
6042 auto Symbols = this->AddressToIndexMap->find(SymValue);
6043 if (Symbols == this->AddressToIndexMap->end())
6044 return SymbolIndexes;
6045
6046 for (uint32_t Index : Symbols->second) {
6047 // Check if the symbol is in the right section. FunctionSec == None
6048 // means "any section".
6049 if (FunctionSec) {
6050 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6051 if (Expected<const Elf_Shdr *> SecOrErr =
6052 Obj.getSection(Sym, this->DotSymtabSec,
6053 this->getShndxTable(this->DotSymtabSec))) {
6054 if (*FunctionSec != *SecOrErr)
6055 continue;
6056 } else {
6057 std::string Name = this->getStaticSymbolName(Index);
6058 // Note: it is impossible to trigger this error currently, it is
6059 // untested.
6060 reportUniqueWarning("unable to get section of symbol '" + Name +
6061 "': " + toString(SecOrErr.takeError()));
6062 return SymbolIndexes;
6063 }
6064 }
6065
6066 SymbolIndexes.push_back(Index);
6067 }
6068
6069 return SymbolIndexes;
6070}
6071
6072template <class ELFT>
6073bool ELFDumper<ELFT>::printFunctionStackSize(
6074 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6075 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6076 SmallVector<uint32_t> FuncSymIndexes =
6077 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6078 if (FuncSymIndexes.empty())
6079 reportUniqueWarning(
6080 "could not identify function symbol for stack size entry in " +
6081 describe(StackSizeSec));
6082
6083 // Extract the size. The expectation is that Offset is pointing to the right
6084 // place, i.e. past the function address.
6085 Error Err = Error::success();
6086 uint64_t StackSize = Data.getULEB128(Offset, &Err);
6087 if (Err) {
6088 reportUniqueWarning("could not extract a valid stack size from " +
6089 describe(StackSizeSec) + ": " +
6090 toString(std::move(Err)));
6091 return false;
6092 }
6093
6094 if (FuncSymIndexes.empty()) {
6095 printStackSizeEntry(StackSize, {"?"});
6096 } else {
6097 SmallVector<std::string> FuncSymNames;
6098 for (uint32_t Index : FuncSymIndexes)
6099 FuncSymNames.push_back(this->getStaticSymbolName(Index));
6100 printStackSizeEntry(StackSize, FuncSymNames);
6101 }
6102
6103 return true;
6104}
6105
6106template <class ELFT>
6107void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6108 ArrayRef<std::string> FuncNames) {
6109 OS.PadToColumn(2);
6110 OS << format_decimal(Size, 11);
6111 OS.PadToColumn(18);
6112
6113 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6114}
6115
6116template <class ELFT>
6117void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6118 const Elf_Shdr &RelocSec, unsigned Ndx,
6119 const Elf_Shdr *SymTab,
6120 const Elf_Shdr *FunctionSec,
6121 const Elf_Shdr &StackSizeSec,
6122 const RelocationResolver &Resolver,
6123 DataExtractor Data) {
6124 // This function ignores potentially erroneous input, unless it is directly
6125 // related to stack size reporting.
6126 const Elf_Sym *Sym = nullptr;
6127 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6128 if (!TargetOrErr)
6129 reportUniqueWarning("unable to get the target of relocation with index " +
6130 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6131 toString(TargetOrErr.takeError()));
6132 else
6133 Sym = TargetOrErr->Sym;
6134
6135 uint64_t RelocSymValue = 0;
6136 if (Sym) {
6137 Expected<const Elf_Shdr *> SectionOrErr =
6138 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6139 if (!SectionOrErr) {
6140 reportUniqueWarning(
6141 "cannot identify the section for relocation symbol '" +
6142 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6143 } else if (*SectionOrErr != FunctionSec) {
6144 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6145 "' is not in the expected section");
6146 // Pretend that the symbol is in the correct section and report its
6147 // stack size anyway.
6148 FunctionSec = *SectionOrErr;
6149 }
6150
6151 RelocSymValue = Sym->st_value;
6152 }
6153
6154 uint64_t Offset = R.Offset;
6155 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6156 reportUniqueWarning("found invalid relocation offset (0x" +
6157 Twine::utohexstr(Offset) + ") into " +
6158 describe(StackSizeSec) +
6159 " while trying to extract a stack size entry");
6160 return;
6161 }
6162
6163 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6164 Data.getAddress(&Offset), R.Addend.value_or(0));
6165 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6166 &Offset);
6167}
6168
6169template <class ELFT>
6170void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6171 std::function<void()> PrintHeader) {
6172 // This function ignores potentially erroneous input, unless it is directly
6173 // related to stack size reporting.
6174 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6175 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6176 continue;
6177 PrintHeader();
6178 ArrayRef<uint8_t> Contents =
6179 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6180 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6181 uint64_t Offset = 0;
6182 while (Offset < Contents.size()) {
6183 // The function address is followed by a ULEB representing the stack
6184 // size. Check for an extra byte before we try to process the entry.
6185 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6186 reportUniqueWarning(
6187 describe(Sec) +
6188 " ended while trying to extract a stack size entry");
6189 break;
6190 }
6191 uint64_t SymValue = Data.getAddress(&Offset);
6192 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6193 Data, &Offset))
6194 break;
6195 }
6196 }
6197}
6198
6199template <class ELFT>
6200void ELFDumper<ELFT>::getSectionAndRelocations(
6201 std::function<bool(const Elf_Shdr &)> IsMatch,
6202 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6203 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6204 if (IsMatch(Sec))
6205 if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6206 .second)
6207 continue;
6208
6209 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6210 continue;
6211
6212 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6213 if (!RelSecOrErr) {
6214 reportUniqueWarning(describe(Sec) +
6215 ": failed to get a relocated section: " +
6216 toString(RelSecOrErr.takeError()));
6217 continue;
6218 }
6219 const Elf_Shdr *ContentsSec = *RelSecOrErr;
6220 if (IsMatch(*ContentsSec))
6221 SecToRelocMap[ContentsSec] = &Sec;
6222 }
6223}
6224
6225template <class ELFT>
6226void ELFDumper<ELFT>::printRelocatableStackSizes(
6227 std::function<void()> PrintHeader) {
6228 // Build a map between stack size sections and their corresponding relocation
6229 // sections.
6230 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6231 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6232 StringRef SectionName;
6233 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6234 SectionName = *NameOrErr;
6235 else
6236 consumeError(NameOrErr.takeError());
6237
6238 return SectionName == ".stack_sizes";
6239 };
6240 getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6241
6242 for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6243 PrintHeader();
6244 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6245 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6246
6247 // Warn about stack size sections without a relocation section.
6248 if (!RelocSec) {
6249 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6250 ") does not have a corresponding "
6251 "relocation section"),
6252 FileName);
6253 continue;
6254 }
6255
6256 // A .stack_sizes section header's sh_link field is supposed to point
6257 // to the section that contains the functions whose stack sizes are
6258 // described in it.
6259 const Elf_Shdr *FunctionSec = unwrapOrError(
6260 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6261
6262 SupportsRelocation IsSupportedFn;
6263 RelocationResolver Resolver;
6264 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6265 ArrayRef<uint8_t> Contents =
6266 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6267 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6268
6269 forEachRelocationDo(
6270 *RelocSec, /*RawRelr=*/false,
6271 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6272 const Elf_Shdr *SymTab) {
6273 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6274 reportUniqueWarning(
6275 describe(*RelocSec) +
6276 " contains an unsupported relocation with index " + Twine(Ndx) +
6277 ": " + Obj.getRelocationTypeName(R.Type));
6278 return;
6279 }
6280
6281 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6282 *StackSizesELFSec, Resolver, Data);
6283 },
6284 [](const Elf_Relr &) {
6285 llvm_unreachable("can't get here, because we only support "::llvm::llvm_unreachable_internal("can't get here, because we only support "
"SHT_REL/SHT_RELA sections", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 6286)
6286 "SHT_REL/SHT_RELA sections")::llvm::llvm_unreachable_internal("can't get here, because we only support "
"SHT_REL/SHT_RELA sections", "llvm/tools/llvm-readobj/ELFDumper.cpp"
, 6286)
;
6287 });
6288 }
6289}
6290
6291template <class ELFT>
6292void GNUELFDumper<ELFT>::printStackSizes() {
6293 bool HeaderHasBeenPrinted = false;
6294 auto PrintHeader = [&]() {
6295 if (HeaderHasBeenPrinted)
6296 return;
6297 OS << "\nStack Sizes:\n";
6298 OS.PadToColumn(9);
6299 OS << "Size";
6300 OS.PadToColumn(18);
6301 OS << "Functions\n";
6302 HeaderHasBeenPrinted = true;
6303 };
6304
6305 // For non-relocatable objects, look directly for sections whose name starts
6306 // with .stack_sizes and process the contents.
6307 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6308 this->printRelocatableStackSizes(PrintHeader);
6309 else
6310 this->printNonRelocatableStackSizes(PrintHeader);
6311}
6312
6313template <class ELFT>
6314void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6315 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6316 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6317 OS.PadToColumn(2);
6318 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6319 OS.PadToColumn(11 + Bias);
6320 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6321 OS.PadToColumn(22 + Bias);
6322 OS << format_hex_no_prefix(*E, 8 + Bias);
6323 OS.PadToColumn(31 + 2 * Bias);
6324 OS << Purpose << "\n";
6325 };
6326
6327 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6328 OS << " Canonical gp value: "
6329 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6330
6331 OS << " Reserved entries:\n";
6332 if (ELFT::Is64Bits)
6333 OS << " Address Access Initial Purpose\n";
6334 else
6335 OS << " Address Access Initial Purpose\n";
6336 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6337 if (Parser.getGotModulePointer())
6338 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6339
6340 if (!Parser.getLocalEntries().empty()) {
6341 OS << "\n";
6342 OS << " Local entries:\n";
6343 if (ELFT::Is64Bits)
6344 OS << " Address Access Initial\n";
6345 else
6346 OS << " Address Access Initial\n";
6347 for (auto &E : Parser.getLocalEntries())
6348 PrintEntry(&E, "");
6349 }
6350
6351 if (Parser.IsStatic)
6352 return;
6353
6354 if (!Parser.getGlobalEntries().empty()) {
6355 OS << "\n";
6356 OS << " Global entries:\n";
6357 if (ELFT::Is64Bits)
6358 OS << " Address Access Initial Sym.Val."
6359 << " Type Ndx Name\n";
6360 else
6361 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6362
6363 DataRegion<Elf_Word> ShndxTable(
6364 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6365 for (auto &E : Parser.getGlobalEntries()) {
6366 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6367 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6368 std::string SymName = this->getFullSymbolName(
6369 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6370
6371 OS.PadToColumn(2);
6372 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6373 OS.PadToColumn(11 + Bias);
6374 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6375 OS.PadToColumn(22 + Bias);
6376 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6377 OS.PadToColumn(31 + 2 * Bias);
6378 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6379 OS.PadToColumn(40 + 3 * Bias);
6380 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6381 OS.PadToColumn(48 + 3 * Bias);
6382 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6383 ShndxTable);
6384 OS.PadToColumn(52 + 3 * Bias);
6385 OS << SymName << "\n";
6386 }
6387 }
6388
6389 if (!Parser.getOtherEntries().empty())
6390 OS << "\n Number of TLS and multi-GOT entries "
6391 << Parser.getOtherEntries().size() << "\n";
6392}
6393
6394template <class ELFT>
6395void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6396 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6397 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6398 OS.PadToColumn(2);
6399 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6400 OS.PadToColumn(11 + Bias);
6401 OS << format_hex_no_prefix(*E, 8 + Bias);
6402 OS.PadToColumn(20 + 2 * Bias);
6403 OS << Purpose << "\n";
6404 };
6405
6406 OS << "PLT GOT:\n\n";
6407
6408 OS << " Reserved entries:\n";
6409 OS << " Address Initial Purpose\n";
6410 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6411 if (Parser.getPltModulePointer())
6412 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6413
6414 if (!Parser.getPltEntries().empty()) {
6415 OS << "\n";
6416 OS << " Entries:\n";
6417 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6418 DataRegion<Elf_Word> ShndxTable(
6419 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6420 for (auto &E : Parser.getPltEntries()) {
6421 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6422 const Elf_Sym &FirstSym = *cantFail(
6423 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6424 std::string SymName = this->getFullSymbolName(
6425 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6426
6427 OS.PadToColumn(2);
6428 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6429 OS.PadToColumn(11 + Bias);
6430 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6431 OS.PadToColumn(20 + 2 * Bias);
6432 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6433 OS.PadToColumn(29 + 3 * Bias);
6434 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6435 OS.PadToColumn(37 + 3 * Bias);
6436 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6437 ShndxTable);
6438 OS.PadToColumn(41 + 3 * Bias);
6439 OS << SymName << "\n";
6440 }
6441 }
6442}
6443
6444template <class ELFT>
6445Expected<const Elf_Mips_ABIFlags<ELFT> *>
6446getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6447 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6448 if (Sec == nullptr)
6449 return nullptr;
6450
6451 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6452 Expected<ArrayRef<uint8_t>> DataOrErr =
6453 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6454 if (!DataOrErr)
6455 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6456
6457 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6458 return createError(ErrPrefix + "it has a wrong size (" +
6459 Twine(DataOrErr->size()) + ")");
6460 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6461}
6462
6463template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6464 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6465 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6466 getMipsAbiFlagsSection(*this))
6467 Flags = *SecOrErr;
6468 else
6469 this->reportUniqueWarning(SecOrErr.takeError());
6470 if (!Flags)
6471 return;
6472
6473 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6474 OS << "ISA: MIPS" << int(Flags->isa_level);
6475 if (Flags->isa_rev > 1)
6476 OS << "r" << int(Flags->isa_rev);
6477 OS << "\n";
6478 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6479 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6480 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6481 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6482 << "\n";
6483 OS << "ISA Extension: "
6484 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6485 if (Flags->ases == 0)
6486 OS << "ASEs: None\n";
6487 else
6488 // FIXME: Print each flag on a separate line.
6489 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6490 << "\n";
6491 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6492 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6493 OS << "\n";
6494}
6495
6496template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6497 const Elf_Ehdr &E = this->Obj.getHeader();
6498 {
6499 DictScope D(W, "ElfHeader");
6500 {
6501 DictScope D(W, "Ident");
6502 W.printBinary("Magic",
6503 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6504 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6505 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6506 ArrayRef(ElfDataEncoding));
6507 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6508
6509 auto OSABI = ArrayRef(ElfOSABI);
6510 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6511 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6512 switch (E.e_machine) {
6513 case ELF::EM_AMDGPU:
6514 OSABI = ArrayRef(AMDGPUElfOSABI);
6515 break;
6516 case ELF::EM_ARM:
6517 OSABI = ArrayRef(ARMElfOSABI);
6518 break;
6519 case ELF::EM_TI_C6000:
6520 OSABI = ArrayRef(C6000ElfOSABI);
6521 break;
6522 }
6523 }
6524 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6525 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6526 W.printBinary("Unused",
6527 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6528 }
6529
6530 std::string TypeStr;
6531 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6532 TypeStr = Ent->Name.str();
6533 } else {
6534 if (E.e_type >= ET_LOPROC)
6535 TypeStr = "Processor Specific";
6536 else if (E.e_type >= ET_LOOS)
6537 TypeStr = "OS Specific";
6538 else
6539 TypeStr = "Unknown";
6540 }
6541 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6542
6543 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6544 W.printNumber("Version", E.e_version);
6545 W.printHex("Entry", E.e_entry);
6546 W.printHex("ProgramHeaderOffset", E.e_phoff);
6547 W.printHex("SectionHeaderOffset", E.e_shoff);
6548 if (E.e_machine == EM_MIPS)
6549 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6550 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6551 unsigned(ELF::EF_MIPS_MACH));
6552 else if (E.e_machine == EM_AMDGPU) {
6553 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6554 default:
6555 W.printHex("Flags", E.e_flags);
6556 break;
6557 case 0:
6558 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6559 [[fallthrough]];
6560 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6561 W.printFlags("Flags", E.e_flags,
6562 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6563 unsigned(ELF::EF_AMDGPU_MACH));
6564 break;
6565 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6566 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6567 W.printFlags("Flags", E.e_flags,
6568 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6569 unsigned(ELF::EF_AMDGPU_MACH),
6570 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6571 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6572 break;
6573 }
6574 } else if (E.e_machine == EM_RISCV)
6575 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6576 else if (E.e_machine == EM_AVR)
6577 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6578 unsigned(ELF::EF_AVR_ARCH_MASK));
6579 else if (E.e_machine == EM_LOONGARCH)
6580 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6581 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6582 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6583 else if (E.e_machine == EM_XTENSA)
6584 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6585 unsigned(ELF::EF_XTENSA_MACH));
6586 else
6587 W.printFlags("Flags", E.e_flags);
6588 W.printNumber("HeaderSize", E.e_ehsize);
6589 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6590 W.printNumber("ProgramHeaderCount", E.e_phnum);
6591 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6592 W.printString("SectionHeaderCount",
6593 getSectionHeadersNumString(this->Obj, this->FileName));
6594 W.printString("StringTableSectionIndex",
6595 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6596 }
6597}
6598
6599template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6600 DictScope Lists(W, "Groups");
6601 std::vector<GroupSection> V = this->getGroups();
6602 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6603 for (const GroupSection &G : V) {
6604 DictScope D(W, "Group");
6605 W.printNumber("Name", G.Name, G.ShName);
6606 W.printNumber("Index", G.Index);
6607 W.printNumber("Link", G.Link);
6608 W.printNumber("Info", G.Info);
6609 W.printHex("Type", getGroupType(G.Type), G.Type);
6610 W.startLine() << "Signature: " << G.Signature << "\n";
6611
6612 ListScope L(W, "Section(s) in group");
6613 for (const GroupMember &GM : G.Members) {
6614 const GroupSection *MainGroup = Map[GM.Index];
6615 if (MainGroup != &G)
6616 this->reportUniqueWarning(
6617 "section with index " + Twine(GM.Index) +
6618 ", included in the group section with index " +
6619 Twine(MainGroup->Index) +
6620 ", was also found in the group section with index " +
6621 Twine(G.Index));
6622 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6623 }
6624 }
6625
6626 if (V.empty())
6627 W.startLine() << "There are no group sections in the file.\n";
6628}
6629
6630template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6631 ListScope D(W, "Relocations");
6632
6633 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6634 if (!isRelocationSec<ELFT>(Sec))
6635 continue;
6636
6637 StringRef Name = this->getPrintableSectionName(Sec);
6638 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6639 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6640 W.indent();
6641 this->printRelocationsHelper(Sec);
6642 W.unindent();
6643 W.startLine() << "}\n";
6644 }
6645}
6646
6647template <class ELFT>
6648void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6649 W.startLine() << W.hex(R) << "\n";
6650}
6651
6652template <class ELFT>
6653void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6654 const RelSymbol<ELFT> &RelSym) {
6655 StringRef SymbolName = RelSym.Name;
6656 SmallString<32> RelocName;
6657 this->Obj.getRelocationTypeName(R.Type, RelocName);
6658
6659 if (opts::ExpandRelocs) {
6660 DictScope Group(W, "Relocation");
6661 W.printHex("Offset", R.Offset);
6662 W.printNumber("Type", RelocName, R.Type);
6663 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6664 if (R.Addend)
6665 W.printHex("Addend", (uintX_t)*R.Addend);
6666 } else {
6667 raw_ostream &OS = W.startLine();
6668 OS << W.hex(R.Offset) << " " << RelocName << " "
6669 << (!SymbolName.empty() ? SymbolName : "-");
6670 if (R.Addend)
6671 OS << " " << W.hex((uintX_t)*R.Addend);
6672 OS << "\n";
6673 }
6674}
6675
6676template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6677 ListScope SectionsD(W, "Sections");
6678
6679 int SectionIndex = -1;
6680 std::vector<EnumEntry<unsigned>> FlagsList =
6681 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6682 this->Obj.getHeader().e_machine);
6683 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6684 DictScope SectionD(W, "Section");
6685 W.printNumber("Index", ++SectionIndex);
6686 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6687 W.printHex("Type",
6688 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6689 Sec.sh_type),
6690 Sec.sh_type);
6691 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
6692 W.printHex("Address", Sec.sh_addr);
6693 W.printHex("Offset", Sec.sh_offset);
6694 W.printNumber("Size", Sec.sh_size);
6695 W.printNumber("Link", Sec.sh_link);
6696 W.printNumber("Info", Sec.sh_info);
6697 W.printNumber("AddressAlignment", Sec.sh_addralign);
6698 W.printNumber("EntrySize", Sec.sh_entsize);
6699
6700 if (opts::SectionRelocations) {
6701 ListScope D(W, "Relocations");
6702 this->printRelocationsHelper(Sec);
6703 }
6704
6705 if (opts::SectionSymbols) {
6706 ListScope D(W, "Symbols");
6707 if (this->DotSymtabSec) {
6708 StringRef StrTable = unwrapOrError(
6709 this->FileName,
6710 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6711 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6712
6713 typename ELFT::SymRange Symbols = unwrapOrError(
6714 this->FileName, this->Obj.symbols(this->DotSymtabSec));
6715 for (const Elf_Sym &Sym : Symbols) {
6716 const Elf_Shdr *SymSec = unwrapOrError(
6717 this->FileName,
6718 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6719 if (SymSec == &Sec)
6720 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6721 false);
6722 }
6723 }
6724 }
6725
6726 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6727 ArrayRef<uint8_t> Data =
6728 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6729 W.printBinaryBlock(
6730 "SectionData",
6731 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6732 }
6733 }
6734}
6735
6736template <class ELFT>
6737void LLVMELFDumper<ELFT>::printSymbolSection(
6738 const Elf_Sym &Symbol, unsigned SymIndex,
6739 DataRegion<Elf_Word> ShndxTable) const {
6740 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
6741 if (Symbol.isUndefined())
6742 return StringRef("Undefined");
6743 if (Symbol.isProcessorSpecific())
6744 return StringRef("Processor Specific");
6745 if (Symbol.isOSSpecific())
6746 return StringRef("Operating System Specific");
6747 if (Symbol.isAbsolute())
6748 return StringRef("Absolute");
6749 if (Symbol.isCommon())
6750 return StringRef("Common");
6751 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6752 return StringRef("Reserved");
6753 return std::nullopt;
6754 };
6755
6756 if (std::optional<StringRef> Type = GetSectionSpecialType()) {
6757 W.printHex("Section", *Type, Symbol.st_shndx);
6758 return;
6759 }
6760
6761 Expected<unsigned> SectionIndex =
6762 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6763 if (!SectionIndex) {
6764 assert(Symbol.st_shndx == SHN_XINDEX &&(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6766, __extension__
__PRETTY_FUNCTION__))
6765 "getSymbolSectionIndex should only fail due to an invalid "(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6766, __extension__
__PRETTY_FUNCTION__))
6766 "SHT_SYMTAB_SHNDX table/reference")(static_cast <bool> (Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid " "SHT_SYMTAB_SHNDX table/reference"
) ? void (0) : __assert_fail ("Symbol.st_shndx == SHN_XINDEX && \"getSymbolSectionIndex should only fail due to an invalid \" \"SHT_SYMTAB_SHNDX table/reference\""
, "llvm/tools/llvm-readobj/ELFDumper.cpp", 6766, __extension__
__PRETTY_FUNCTION__))
;
6767 this->reportUniqueWarning(SectionIndex.takeError());
6768 W.printHex("Section", "Reserved", SHN_XINDEX);
6769 return;
6770 }
6771
6772 Expected<StringRef> SectionName =
6773 this->getSymbolSectionName(Symbol, *SectionIndex);
6774 if (!SectionName) {
6775 // Don't report an invalid section name if the section headers are missing.
6776 // In such situations, all sections will be "invalid".
6777 if (!this->ObjF.sections().empty())
6778 this->reportUniqueWarning(SectionName.takeError());
6779 else
6780 consumeError(SectionName.takeError());
6781 W.printHex("Section", "<?>", *SectionIndex);
6782 } else {
6783 W.printHex("Section", *SectionName, *SectionIndex);
6784 }
6785}
6786
6787template <class ELFT>
6788void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6789 DataRegion<Elf_Word> ShndxTable,
6790 std::optional<StringRef> StrTable,
6791 bool IsDynamic,
6792 bool /*NonVisibilityBitsUsed*/) const {
6793 std::string FullSymbolName = this->getFullSymbolName(
6794 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6795 unsigned char SymbolType = Symbol.getType();
6796
6797 DictScope D(W, "Symbol");
6798 W.printNumber("Name", FullSymbolName, Symbol.st_name);
6799 W.printHex("Value", Symbol.st_value);
6800 W.printNumber("Size", Symbol.st_size);
6801 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
6802 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6803 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6804 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
6805 else
6806 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
6807 if (Symbol.st_other == 0)
6808 // Usually st_other flag is zero. Do not pollute the output
6809 // by flags enumeration in that case.
6810 W.printNumber("Other", 0);
6811 else {
6812 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6813 std::end(ElfSymOtherFlags));
6814 if (this->Obj.getHeader().e_machine == EM_MIPS) {
6815 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6816 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6817 // cases separately.
6818 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6819 SymOtherFlags.insert(SymOtherFlags.end(),
6820 std::begin(ElfMips16SymOtherFlags),
6821 std::end(ElfMips16SymOtherFlags));
6822 else
6823 SymOtherFlags.insert(SymOtherFlags.end(),
6824 std::begin(ElfMipsSymOtherFlags),
6825 std::end(ElfMipsSymOtherFlags));
6826 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6827 SymOtherFlags.insert(SymOtherFlags.end(),
6828 std::begin(ElfAArch64SymOtherFlags),
6829 std::end(ElfAArch64SymOtherFlags));
6830 } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6831 SymOtherFlags.insert(SymOtherFlags.end(),
6832 std::begin(ElfRISCVSymOtherFlags),
6833 std::end(ElfRISCVSymOtherFlags));
6834 }
6835 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
6836 }
6837 printSymbolSection(Symbol, SymIndex, ShndxTable);
6838}
6839
6840template <class ELFT>
6841void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6842 bool PrintDynamicSymbols) {
6843 if (PrintSymbols) {
6844 ListScope Group(W, "Symbols");
6845 this->printSymbolsHelper(false);
6846 }
6847 if (PrintDynamicSymbols) {
6848 ListScope Group(W, "DynamicSymbols");
6849 this->printSymbolsHelper(true);
6850 }
6851}
6852
6853template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6854 Elf_Dyn_Range Table = this->dynamic_table();
6855 if (Table.empty())
6856 return;
6857
6858 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6859
6860 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6861 // The "Name/Value" column should be indented from the "Type" column by N
6862 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6863 // space (1) = -3.
6864 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6865 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6866
6867 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6868 for (auto Entry : Table) {
6869 uintX_t Tag = Entry.getTag();
6870 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6871 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6872 << " "
6873 << format(ValueFmt.c_str(),
6874 this->Obj.getDynamicTagAsString(Tag).c_str())
6875 << Value << "\n";
6876 }
6877 W.startLine() << "]\n";
6878}
6879
6880template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6881 W.startLine() << "Dynamic Relocations {\n";
6882 W.indent();
6883 this->printDynamicRelocationsHelper();
6884 W.unindent();
6885 W.startLine() << "}\n";
6886}
6887
6888template <class ELFT>
6889void LLVMELFDumper<ELFT>::printProgramHeaders(
6890 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6891 if (PrintProgramHeaders)
6892 printProgramHeaders();
6893 if (PrintSectionMapping == cl::BOU_TRUE)
6894 printSectionMapping();
6895}
6896
6897template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6898 ListScope L(W, "ProgramHeaders");
6899
6900 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6901 if (!PhdrsOrErr) {
6902 this->reportUniqueWarning("unable to dump program headers: " +
6903 toString(PhdrsOrErr.takeError()));
6904 return;
6905 }
6906
6907 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6908 DictScope P(W, "ProgramHeader");
6909 StringRef Type =
6910 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6911
6912 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6913 W.printHex("Offset", Phdr.p_offset);
6914 W.printHex("VirtualAddress", Phdr.p_vaddr);
6915 W.printHex("PhysicalAddress", Phdr.p_paddr);
6916 W.printNumber("FileSize", Phdr.p_filesz);
6917 W.printNumber("MemSize", Phdr.p_memsz);
6918 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
6919 W.printNumber("Alignment", Phdr.p_align);
6920 }
6921}
6922
6923template <class ELFT>
6924void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6925 ListScope SS(W, "VersionSymbols");
6926 if (!Sec)
6927 return;
6928
6929 StringRef StrTable;
6930 ArrayRef<Elf_Sym> Syms;
6931 const Elf_Shdr *SymTabSec;
6932 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6933 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6934 if (!VerTableOrErr) {
6935 this->reportUniqueWarning(VerTableOrErr.takeError());
6936 return;
6937 }
6938
6939 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6940 return;
6941
6942 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6943 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6944 DictScope S(W, "Symbol");
6945 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6946 W.printString("Name",
6947 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6948 /*IsDynamic=*/true));
6949 }
6950}
6951
6952const EnumEntry<unsigned> SymVersionFlags[] = {
6953 {"Base", "BASE", VER_FLG_BASE},
6954 {"Weak", "WEAK", VER_FLG_WEAK},
6955 {"Info", "INFO", VER_FLG_INFO}};
6956
6957template <class ELFT>
6958void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6959 ListScope SD(W, "VersionDefinitions");
6960 if (!Sec)
6961 return;
6962
6963 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6964 if (!V) {
6965 this->reportUniqueWarning(V.takeError());
6966 return;
6967 }
6968
6969 for (const VerDef &D : *V) {
6970 DictScope Def(W, "Definition");
6971 W.printNumber("Version", D.Version);
6972 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
6973 W.printNumber("Index", D.Ndx);
6974 W.printNumber("Hash", D.Hash);
6975 W.printString("Name", D.Name.c_str());
6976 W.printList(
6977 "Predecessors", D.AuxV,
6978 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6979 }
6980}
6981
6982template <class ELFT>
6983void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6984 ListScope SD(W, "VersionRequirements");
6985 if (!Sec)
6986 return;
6987
6988 Expected<std::vector<VerNeed>> V =
6989 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6990 if (!V) {
6991 this->reportUniqueWarning(V.takeError());
6992 return;
6993 }
6994
6995 for (const VerNeed &VN : *V) {
6996 DictScope Entry(W, "Dependency");
6997 W.printNumber("Version", VN.Version);
6998 W.printNumber("Count", VN.Cnt);
6999 W.printString("FileName", VN.File.c_str());
7000
7001 ListScope L(W, "Entries");
7002 for (const VernAux &Aux : VN.AuxV) {
7003 DictScope Entry(W, "Entry");
7004 W.printNumber("Hash", Aux.Hash);
7005 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7006 W.printNumber("Index", Aux.Other);
7007 W.printString("Name", Aux.Name.c_str());
7008 }
7009 }
7010}
7011
7012template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
7013 W.startLine() << "Hash Histogram not implemented!\n";
7014}
7015
7016// Returns true if rel/rela section exists, and populates SymbolIndices.
7017// Otherwise returns false.
7018template <class ELFT>
7019static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7020 const ELFFile<ELFT> &Obj,
7021 const LLVMELFDumper<ELFT> *Dumper,
7022 SmallVector<uint32_t, 128> &SymbolIndices) {
7023 if (!CGRelSection) {
7024 Dumper->reportUniqueWarning(
7025 "relocation section for a call graph section doesn't exist");
7026 return false;
7027 }
7028
7029 if (CGRelSection->sh_type == SHT_REL) {
7030 typename ELFT::RelRange CGProfileRel;
7031 Expected<typename ELFT::RelRange> CGProfileRelOrError =
7032 Obj.rels(*CGRelSection);
7033 if (!CGProfileRelOrError) {
7034 Dumper->reportUniqueWarning("unable to load relocations for "
7035 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7036 toString(CGProfileRelOrError.takeError()));
7037 return false;
7038 }
7039
7040 CGProfileRel = *CGProfileRelOrError;
7041 for (const typename ELFT::Rel &Rel : CGProfileRel)
7042 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7043 } else {
7044 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7045 // the format to SHT_RELA
7046 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7047 typename ELFT::RelaRange CGProfileRela;
7048 Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7049 Obj.relas(*CGRelSection);
7050 if (!CGProfileRelaOrError) {
7051 Dumper->reportUniqueWarning("unable to load relocations for "
7052 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7053 toString(CGProfileRelaOrError.takeError()));
7054 return false;
7055 }
7056
7057 CGProfileRela = *CGProfileRelaOrError;
7058 for (const typename ELFT::Rela &Rela : CGProfileRela)
7059 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7060 }
7061
7062 return true;
7063}
7064
7065template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7066 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
7067
7068 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7069 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7070 };
7071 this->getSectionAndRelocations(IsMatch, SecToRelocMap);
7072
7073 for (const auto &CGMapEntry : SecToRelocMap) {
7074 const Elf_Shdr *CGSection = CGMapEntry.first;
7075 const Elf_Shdr *CGRelSection = CGMapEntry.second;
7076
7077 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7078 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7079 if (!CGProfileOrErr) {
7080 this->reportUniqueWarning(
7081 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7082 toString(CGProfileOrErr.takeError()));
7083 return;
7084 }
7085
7086 SmallVector<uint32_t, 128> SymbolIndices;
7087 bool UseReloc =
7088 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7089 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7090 this->reportUniqueWarning(
7091 "number of from/to pairs does not match number of frequencies");
7092 UseReloc = false;
7093 }
7094
7095 ListScope L(W, "CGProfile");
7096 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7097 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7098 DictScope D(W, "CGProfileEntry");
7099 if (UseReloc) {
7100 uint32_t From = SymbolIndices[I * 2];
7101 uint32_t To = SymbolIndices[I * 2 + 1];
7102 W.printNumber("From", this->getStaticSymbolName(From), From);
7103 W.printNumber("To", this->getStaticSymbolName(To), To);
7104 }
7105 W.printNumber("Weight", CGPE.cgp_weight);
7106 }
7107 }
7108}
7109
7110template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7111 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7112 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7113 if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP &&
7114 Sec.sh_type != SHT_LLVM_BB_ADDR_MAP_V0) {
7115 continue;
7116 }
7117 std::optional<const Elf_Shdr *> FunctionSec;
7118 if (IsRelocatable)
7119 FunctionSec =
7120 unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7121 ListScope L(W, "BBAddrMap");
7122 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7123 this->Obj.decodeBBAddrMap(Sec);
7124 if (!BBAddrMapOrErr) {
7125 this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7126 toString(BBAddrMapOrErr.takeError()));
7127 continue;
7128 }
7129 for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7130 DictScope D(W, "Function");
7131 W.printHex("At", AM.Addr);
7132 SmallVector<uint32_t> FuncSymIndex =
7133 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7134 std::string FuncName = "<?>";
7135 if (FuncSymIndex.empty())
7136 this->reportUniqueWarning(
7137 "could not identify function symbol for address (0x" +
7138 Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7139 else
7140 FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7141 W.printString("Name", FuncName);
7142
7143 ListScope L(W, "BB entries");
7144 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7145 DictScope L(W);
7146 W.printNumber("ID", BBE.ID);
7147 W.printHex("Offset", BBE.Offset);
7148 W.printHex("Size", BBE.Size);
7149 W.printBoolean("HasReturn", BBE.HasReturn);
7150 W.printBoolean("HasTailCall", BBE.HasTailCall);
7151 W.printBoolean("IsEHPad", BBE.IsEHPad);
7152 W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7153 }
7154 }
7155 }
7156}
7157
7158template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7159 ListScope L(W, "Addrsig");
7160 if (!this->DotAddrsigSec)
7161 return;
7162
7163 Expected<std::vector<uint64_t>> SymsOrErr =
7164 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7165 if (!SymsOrErr) {
7166 this->reportUniqueWarning(SymsOrErr.takeError());
7167 return;
7168 }
7169
7170 for (uint64_t Sym : *SymsOrErr)
7171 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7172}
7173
7174template <typename ELFT>
7175static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7176 ScopedPrinter &W) {
7177 // Return true if we were able to pretty-print the note, false otherwise.
7178 switch (NoteType) {
7179 default:
7180 return false;
7181 case ELF::NT_GNU_ABI_TAG: {
7182 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7183 if (!AbiTag.IsValid) {
7184 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7185 return false;
7186 } else {
7187 W.printString("OS", AbiTag.OSName);
7188 W.printString("ABI", AbiTag.ABI);
7189 }
7190 break;
7191 }
7192 case ELF::NT_GNU_BUILD_ID: {
7193 W.printString("Build ID", getGNUBuildId(Desc));
7194 break;
7195 }
7196 case ELF::NT_GNU_GOLD_VERSION:
7197 W.printString("Version", getDescAsStringRef(Desc));
7198 break;
7199 case ELF::NT_GNU_PROPERTY_TYPE_0:
7200 ListScope D(W, "Property");
7201 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7202 W.printString(Property);
7203 break;
7204 }
7205 return true;
7206}
7207
7208static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7209 ScopedPrinter &W) {
7210 // Return true if we were able to pretty-print the note, false otherwise.
7211 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7212 if (Props.empty())
7213 return false;
7214 for (const auto &KV : Props)
7215 W.printString(KV.first, KV.second);
7216 return true;
7217}
7218
7219template <typename ELFT>
7220static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7221 ArrayRef<uint8_t> Desc,
7222 ScopedPrinter &W) {
7223 switch (NoteType) {
7224 default:
7225 return false;
7226 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7227 W.printString("Version", getDescAsStringRef(Desc));
7228 break;
7229 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7230 W.printString("Producer", getDescAsStringRef(Desc));
7231 break;
7232 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7233 W.printString("Producer version", getDescAsStringRef(Desc));
7234 break;
7235 }
7236 return true;
7237}
7238
7239static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7240 W.printNumber("Page Size", Note.PageSize);
7241 for (const CoreFileMapping &Mapping : Note.Mappings) {
7242 ListScope D(W, "Mapping");
7243 W.printHex("Start", Mapping.Start);
7244 W.printHex("End", Mapping.End);
7245 W.printHex("Offset", Mapping.Offset);
7246 W.printString("Filename", Mapping.Filename);
7247 }
7248}
7249
7250template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7251 ListScope L(W, "Notes");
7252
7253 std::unique_ptr<DictScope> NoteScope;
7254 auto StartNotes = [&](std::optional<StringRef> SecName,
7255 const typename ELFT::Off Offset,
7256 const typename ELFT::Addr Size) {
7257 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7258 W.printString("Name", SecName ? *SecName : "<?>");
7259 W.printHex("Offset", Offset);
7260 W.printHex("Size", Size);
7261 };
7262
7263 auto EndNotes = [&] { NoteScope.reset(); };
7264
7265 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7266 DictScope D2(W, "Note");
7267 StringRef Name = Note.getName();
7268 ArrayRef<uint8_t> Descriptor = Note.getDesc();
7269 Elf_Word Type = Note.getType();
7270
7271 // Print the note owner/type.
7272 W.printString("Owner", Name);
7273 W.printHex("Data size", Descriptor.size());
7274
7275 StringRef NoteType =
7276 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7277 if (!NoteType.empty())
7278 W.printString("Type", NoteType);
7279 else
7280 W.printString("Type",
7281 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7282
7283 // Print the description, or fallback to printing raw bytes for unknown
7284 // owners/if we fail to pretty-print the contents.
7285 if (Name == "GNU") {
7286 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7287 return Error::success();
7288 } else if (Name == "FreeBSD") {
7289 if (std::optional<FreeBSDNote> N =
7290 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7291 W.printString(N->Type, N->Value);
7292 return Error::success();
7293 }
7294 } else if (Name == "AMD") {
7295 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7296 if (!N.Type.empty()) {
7297 W.printString(N.Type, N.Value);
7298 return Error::success();
7299 }
7300 } else if (Name == "AMDGPU") {
7301 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7302 if (!N.Type.empty()) {
7303 W.printString(N.Type, N.Value);
7304 return Error::success();
7305 }
7306 } else if (Name == "LLVMOMPOFFLOAD") {
7307 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7308 return Error::success();
7309 } else if (Name == "CORE") {
7310 if (Type == ELF::NT_FILE) {
7311 DataExtractor DescExtractor(Descriptor,
7312 ELFT::TargetEndianness == support::little,
7313 sizeof(Elf_Addr));
7314 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7315 printCoreNoteLLVMStyle(*N, W);
7316 return Error::success();
7317 } else {
7318 return N.takeError();
7319 }
7320 }
7321 } else if (Name == "Android") {
7322 if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7323 return Error::success();
7324 }
7325 if (!Descriptor.empty()) {
7326 W.printBinaryBlock("Description data", Descriptor);
7327 }
7328 return Error::success();
7329 };
7330
7331 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7332}
7333
7334template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7335 ListScope L(W, "LinkerOptions");
7336
7337 unsigned I = -1;
7338 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7339 ++I;
7340 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7341 continue;
7342
7343 Expected<ArrayRef<uint8_t>> ContentsOrErr =
7344 this->Obj.getSectionContents(Shdr);
7345 if (!ContentsOrErr) {
7346 this->reportUniqueWarning("unable to read the content of the "
7347 "SHT_LLVM_LINKER_OPTIONS section: " +
7348 toString(ContentsOrErr.takeError()));
7349 continue;
7350 }
7351 if (ContentsOrErr->empty())
7352 continue;
7353
7354 if (ContentsOrErr->back() != 0) {
7355 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7356 Twine(I) +
7357 " is broken: the "
7358 "content is not null-terminated");
7359 continue;
7360 }
7361
7362 SmallVector<StringRef, 16> Strings;
7363 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7364 if (Strings.size() % 2 != 0) {
7365 this->reportUniqueWarning(
7366 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7367 " is broken: an incomplete "
7368 "key-value pair was found. The last possible key was: \"" +
7369 Strings.back() + "\"");
7370 continue;
7371 }
7372
7373 for (size_t I = 0; I < Strings.size(); I += 2)
7374 W.printString(Strings[I], Strings[I + 1]);
7375 }
7376}
7377
7378template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7379 ListScope L(W, "DependentLibs");
7380 this->printDependentLibsHelper(
7381 [](const Elf_Shdr &) {},
7382 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7383}
7384
7385template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7386 ListScope L(W, "StackSizes");
7387 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7388 this->printRelocatableStackSizes([]() {});
7389 else
7390 this->printNonRelocatableStackSizes([]() {});
7391}
7392
7393template <class ELFT>
7394void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7395 ArrayRef<std::string> FuncNames) {
7396 DictScope D(W, "Entry");
7397 W.printList("Functions", FuncNames);
7398 W.printHex("Size", Size);
7399}
7400
7401template <class ELFT>
7402void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7403 auto PrintEntry = [&](const Elf_Addr *E) {
7404 W.printHex("Address", Parser.getGotAddress(E));
7405 W.printNumber("Access", Parser.getGotOffset(E));
7406 W.printHex("Initial", *E);
7407 };
7408
7409 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7410
7411 W.printHex("Canonical gp value", Parser.getGp());
7412 {
7413 ListScope RS(W, "Reserved entries");
7414 {
7415 DictScope D(W, "Entry");
7416 PrintEntry(Parser.getGotLazyResolver());
7417 W.printString("Purpose", StringRef("Lazy resolver"));
7418 }
7419
7420 if (Parser.getGotModulePointer()) {
7421 DictScope D(W, "Entry");
7422 PrintEntry(Parser.getGotModulePointer());
7423 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7424 }
7425 }
7426 {
7427 ListScope LS(W, "Local entries");
7428 for (auto &E : Parser.getLocalEntries()) {
7429 DictScope D(W, "Entry");
7430 PrintEntry(&E);
7431 }
7432 }
7433
7434 if (Parser.IsStatic)
7435 return;
7436
7437 {
7438 ListScope GS(W, "Global entries");
7439 for (auto &E : Parser.getGlobalEntries()) {
7440 DictScope D(W, "Entry");
7441
7442 PrintEntry(&E);
7443
7444 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7445 W.printHex("Value", Sym.st_value);
7446 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7447
7448 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7449 DataRegion<Elf_Word> ShndxTable(
7450 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7451 printSymbolSection(Sym, SymIndex, ShndxTable);
7452
7453 std::string SymName = this->getFullSymbolName(
7454 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7455 W.printNumber("Name", SymName, Sym.st_name);
7456 }
7457 }
7458
7459 W.printNumber("Number of TLS and multi-GOT entries",
7460 uint64_t(Parser.getOtherEntries().size()));
7461}
7462
7463template <class ELFT>
7464void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7465 auto PrintEntry = [&](const Elf_Addr *E) {
7466 W.printHex("Address", Parser.getPltAddress(E));
7467 W.printHex("Initial", *E);
7468 };
7469
7470 DictScope GS(W, "PLT GOT");
7471
7472 {
7473 ListScope RS(W, "Reserved entries");
7474 {
7475 DictScope D(W, "Entry");
7476 PrintEntry(Parser.getPltLazyResolver());
7477 W.printString("Purpose", StringRef("PLT lazy resolver"));
7478 }
7479
7480 if (auto E = Parser.getPltModulePointer()) {
7481 DictScope D(W, "Entry");
7482 PrintEntry(E);
7483 W.printString("Purpose", StringRef("Module pointer"));
7484 }
7485 }
7486 {
7487 ListScope LS(W, "Entries");
7488 DataRegion<Elf_Word> ShndxTable(
7489 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7490 for (auto &E : Parser.getPltEntries()) {
7491 DictScope D(W, "Entry");
7492 PrintEntry(&E);
7493
7494 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7495 W.printHex("Value", Sym.st_value);
7496 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7497 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7498 ShndxTable);
7499
7500 const Elf_Sym *FirstSym = cantFail(
7501 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7502 std::string SymName = this->getFullSymbolName(
7503 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7504 W.printNumber("Name", SymName, Sym.st_name);
7505 }
7506 }
7507}
7508
7509template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7510 const Elf_Mips_ABIFlags<ELFT> *Flags;
7511 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7512 getMipsAbiFlagsSection(*this)) {
7513 Flags = *SecOrErr;
7514 if (!Flags) {
7515 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7516 return;
7517 }
7518 } else {
7519 this->reportUniqueWarning(SecOrErr.takeError());
7520 return;
7521 }
7522
7523 raw_ostream &OS = W.getOStream();
7524 DictScope GS(W, "MIPS ABI Flags");
7525
7526 W.printNumber("Version", Flags->version);
7527 W.startLine() << "ISA: ";
7528 if (Flags->isa_rev <= 1)
7529 OS << format("MIPS%u", Flags->isa_level);
7530 else
7531 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7532 OS << "\n";
7533 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
7534 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
7535 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
7536 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7537 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7538 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7539 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
7540 W.printHex("Flags 2", Flags->flags2);
7541}
7542
7543template <class ELFT>
7544void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7545 ArrayRef<std::string> InputFilenames,
7546 const Archive *A) {
7547 FileScope = std::make_unique<DictScope>(this->W);
7548 DictScope D(this->W, "FileSummary");
7549 this->W.printString("File", FileStr);
7550 this->W.printString("Format", Obj.getFileFormatName());
7551 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7552 this->W.printString(
7553 "AddressSize",
7554 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7555 this->printLoadName();
7556}