Bug Summary

File:build/source/llvm/include/llvm/Support/Endian.h
Warning:line 66, column 3
Null pointer passed to 2nd parameter expecting 'nonnull'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name MCPseudoProbe.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/MC -I /build/source/llvm/lib/MC -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/MC/MCPseudoProbe.cpp

/build/source/llvm/lib/MC/MCPseudoProbe.cpp

1//===- lib/MC/MCPseudoProbe.cpp - Pseudo probe encoding support ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/MC/MCPseudoProbe.h"
10#include "llvm/ADT/STLExtras.h"
11#include "llvm/MC/MCAsmInfo.h"
12#include "llvm/MC/MCContext.h"
13#include "llvm/MC/MCExpr.h"
14#include "llvm/MC/MCFragment.h"
15#include "llvm/MC/MCObjectFileInfo.h"
16#include "llvm/MC/MCObjectStreamer.h"
17#include "llvm/MC/MCSymbol.h"
18#include "llvm/Support/Endian.h"
19#include "llvm/Support/LEB128.h"
20#include "llvm/Support/MD5.h"
21#include "llvm/Support/raw_ostream.h"
22#include <algorithm>
23#include <cassert>
24#include <limits>
25#include <memory>
26#include <sstream>
27#include <vector>
28
29#define DEBUG_TYPE"mcpseudoprobe" "mcpseudoprobe"
30
31using namespace llvm;
32using namespace support;
33
34#ifndef NDEBUG
35int MCPseudoProbeTable::DdgPrintIndent = 0;
36#endif
37
38static const MCExpr *buildSymbolDiff(MCObjectStreamer *MCOS, const MCSymbol *A,
39 const MCSymbol *B) {
40 MCContext &Context = MCOS->getContext();
41 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
42 const MCExpr *ARef = MCSymbolRefExpr::create(A, Variant, Context);
43 const MCExpr *BRef = MCSymbolRefExpr::create(B, Variant, Context);
44 const MCExpr *AddrDelta =
45 MCBinaryExpr::create(MCBinaryExpr::Sub, ARef, BRef, Context);
46 return AddrDelta;
47}
48
49void MCPseudoProbe::emit(MCObjectStreamer *MCOS,
50 const MCPseudoProbe *LastProbe) const {
51 bool IsSentinel = isSentinelProbe(getAttributes());
52 assert((LastProbe || IsSentinel) &&(static_cast <bool> ((LastProbe || IsSentinel) &&
"Last probe should not be null for non-sentinel probes") ? void
(0) : __assert_fail ("(LastProbe || IsSentinel) && \"Last probe should not be null for non-sentinel probes\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 53, __extension__ __PRETTY_FUNCTION__
))
53 "Last probe should not be null for non-sentinel probes")(static_cast <bool> ((LastProbe || IsSentinel) &&
"Last probe should not be null for non-sentinel probes") ? void
(0) : __assert_fail ("(LastProbe || IsSentinel) && \"Last probe should not be null for non-sentinel probes\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 53, __extension__ __PRETTY_FUNCTION__
))
;
54
55 // Emit Index
56 MCOS->emitULEB128IntValue(Index);
57 // Emit Type and the flag:
58 // Type (bit 0 to 3), with bit 4 to 6 for attributes.
59 // Flag (bit 7, 0 - code address, 1 - address delta). This indicates whether
60 // the following field is a symbolic code address or an address delta.
61 assert(Type <= 0xF && "Probe type too big to encode, exceeding 15")(static_cast <bool> (Type <= 0xF && "Probe type too big to encode, exceeding 15"
) ? void (0) : __assert_fail ("Type <= 0xF && \"Probe type too big to encode, exceeding 15\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 61, __extension__ __PRETTY_FUNCTION__
))
;
62 assert(Attributes <= 0x7 &&(static_cast <bool> (Attributes <= 0x7 && "Probe attributes too big to encode, exceeding 7"
) ? void (0) : __assert_fail ("Attributes <= 0x7 && \"Probe attributes too big to encode, exceeding 7\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 63, __extension__ __PRETTY_FUNCTION__
))
63 "Probe attributes too big to encode, exceeding 7")(static_cast <bool> (Attributes <= 0x7 && "Probe attributes too big to encode, exceeding 7"
) ? void (0) : __assert_fail ("Attributes <= 0x7 && \"Probe attributes too big to encode, exceeding 7\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 63, __extension__ __PRETTY_FUNCTION__
))
;
64 uint8_t PackedType = Type | (Attributes << 4);
65 uint8_t Flag =
66 !IsSentinel ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
67 MCOS->emitInt8(Flag | PackedType);
68
69 if (!IsSentinel) {
70 // Emit the delta between the address label and LastProbe.
71 const MCExpr *AddrDelta =
72 buildSymbolDiff(MCOS, Label, LastProbe->getLabel());
73 int64_t Delta;
74 if (AddrDelta->evaluateAsAbsolute(Delta, MCOS->getAssemblerPtr())) {
75 MCOS->emitSLEB128IntValue(Delta);
76 } else {
77 MCOS->insert(new MCPseudoProbeAddrFragment(AddrDelta));
78 }
79 } else {
80 // Emit the GUID of the split function that the sentinel probe represents.
81 MCOS->emitInt64(Guid);
82 }
83
84 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Probe: " << Index << "\n"; };
} } while (false)
85 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Probe: " << Index << "\n"; };
} } while (false)
86 dbgs() << "Probe: " << Index << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Probe: " << Index << "\n"; };
} } while (false)
87 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Probe: " << Index << "\n"; };
} } while (false)
;
88}
89
90void MCPseudoProbeInlineTree::addPseudoProbe(
91 const MCPseudoProbe &Probe, const MCPseudoProbeInlineStack &InlineStack) {
92 // The function should not be called on the root.
93 assert(isRoot() && "Should only be called on root")(static_cast <bool> (isRoot() && "Should only be called on root"
) ? void (0) : __assert_fail ("isRoot() && \"Should only be called on root\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 93, __extension__ __PRETTY_FUNCTION__
))
;
94
95 // When it comes here, the input look like:
96 // Probe: GUID of C, ...
97 // InlineStack: [88, A], [66, B]
98 // which means, Function A inlines function B at call site with a probe id of
99 // 88, and B inlines C at probe 66. The tri-tree expects a tree path like {[0,
100 // A], [88, B], [66, C]} to locate the tree node where the probe should be
101 // added. Note that the edge [0, A] means A is the top-level function we are
102 // emitting probes for.
103
104 // Make a [0, A] edge.
105 // An empty inline stack means the function that the probe originates from
106 // is a top-level function.
107 InlineSite Top;
108 if (InlineStack.empty()) {
109 Top = InlineSite(Probe.getGuid(), 0);
110 } else {
111 Top = InlineSite(std::get<0>(InlineStack.front()), 0);
112 }
113
114 auto *Cur = getOrAddNode(Top);
115
116 // Make interior edges by walking the inline stack. Once it's done, Cur should
117 // point to the node that the probe originates from.
118 if (!InlineStack.empty()) {
119 auto Iter = InlineStack.begin();
120 auto Index = std::get<1>(*Iter);
121 Iter++;
122 for (; Iter != InlineStack.end(); Iter++) {
123 // Make an edge by using the previous probe id and current GUID.
124 Cur = Cur->getOrAddNode(InlineSite(std::get<0>(*Iter), Index));
125 Index = std::get<1>(*Iter);
126 }
127 Cur = Cur->getOrAddNode(InlineSite(Probe.getGuid(), Index));
128 }
129
130 Cur->Probes.push_back(Probe);
131}
132
133void MCPseudoProbeInlineTree::emit(MCObjectStreamer *MCOS,
134 const MCPseudoProbe *&LastProbe) {
135 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Group [\n"; MCPseudoProbeTable::DdgPrintIndent
+= 2; }; } } while (false)
136 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Group [\n"; MCPseudoProbeTable::DdgPrintIndent
+= 2; }; } } while (false)
137 dbgs() << "Group [\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Group [\n"; MCPseudoProbeTable::DdgPrintIndent
+= 2; }; } } while (false)
138 MCPseudoProbeTable::DdgPrintIndent += 2;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Group [\n"; MCPseudoProbeTable::DdgPrintIndent
+= 2; }; } } while (false)
139 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "Group [\n"; MCPseudoProbeTable::DdgPrintIndent
+= 2; }; } } while (false)
;
140 assert(!isRoot() && "Root should be handled seperately")(static_cast <bool> (!isRoot() && "Root should be handled seperately"
) ? void (0) : __assert_fail ("!isRoot() && \"Root should be handled seperately\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 140, __extension__ __PRETTY_FUNCTION__
))
;
141
142 // Emit probes grouped by GUID.
143 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "GUID: " << Guid << "\n"; }; }
} while (false)
144 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "GUID: " << Guid << "\n"; }; }
} while (false)
145 dbgs() << "GUID: " << Guid << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "GUID: " << Guid << "\n"; }; }
} while (false)
146 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "GUID: " << Guid << "\n"; }; }
} while (false)
;
147 // Emit Guid
148 MCOS->emitInt64(Guid);
149 // Emit number of probes in this node, including a sentinel probe for
150 // top-level functions if needed.
151 bool NeedSentinel = false;
152 if (Parent->isRoot()) {
153 assert(isSentinelProbe(LastProbe->getAttributes()) &&(static_cast <bool> (isSentinelProbe(LastProbe->getAttributes
()) && "Starting probe of a top-level function should be a sentinel probe"
) ? void (0) : __assert_fail ("isSentinelProbe(LastProbe->getAttributes()) && \"Starting probe of a top-level function should be a sentinel probe\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 154, __extension__ __PRETTY_FUNCTION__
))
154 "Starting probe of a top-level function should be a sentinel probe")(static_cast <bool> (isSentinelProbe(LastProbe->getAttributes
()) && "Starting probe of a top-level function should be a sentinel probe"
) ? void (0) : __assert_fail ("isSentinelProbe(LastProbe->getAttributes()) && \"Starting probe of a top-level function should be a sentinel probe\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 154, __extension__ __PRETTY_FUNCTION__
))
;
155 // The main body of a split function doesn't need a sentinel probe.
156 if (LastProbe->getGuid() != Guid)
157 NeedSentinel = true;
158 }
159
160 MCOS->emitULEB128IntValue(Probes.size() + NeedSentinel);
161 // Emit number of direct inlinees
162 MCOS->emitULEB128IntValue(Children.size());
163 // Emit sentinel probe for top-level functions
164 if (NeedSentinel)
165 LastProbe->emit(MCOS, nullptr);
166
167 // Emit probes in this group
168 for (const auto &Probe : Probes) {
169 Probe.emit(MCOS, LastProbe);
170 LastProbe = &Probe;
171 }
172
173 // Emit sorted descendant. InlineSite is unique for each pair, so there will
174 // be no ordering of Inlinee based on MCPseudoProbeInlineTree*
175 using InlineeType = std::pair<InlineSite, MCPseudoProbeInlineTree *>;
176 auto Comparer = [](const InlineeType &A, const InlineeType &B) {
177 return A.first < B.first;
178 };
179 std::vector<InlineeType> Inlinees;
180 for (const auto &Child : Children)
181 Inlinees.emplace_back(Child.first, Child.second.get());
182 std::sort(Inlinees.begin(), Inlinees.end(), Comparer);
183
184 for (const auto &Inlinee : Inlinees) {
185 // Emit probe index
186 MCOS->emitULEB128IntValue(std::get<1>(Inlinee.first));
187 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "InlineSite: " << std::get<1>(
Inlinee.first) << "\n"; }; } } while (false)
188 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "InlineSite: " << std::get<1>(
Inlinee.first) << "\n"; }; } } while (false)
189 dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "InlineSite: " << std::get<1>(
Inlinee.first) << "\n"; }; } } while (false)
190 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { dbgs().indent(MCPseudoProbeTable::DdgPrintIndent
); dbgs() << "InlineSite: " << std::get<1>(
Inlinee.first) << "\n"; }; } } while (false)
;
191 // Emit the group
192 Inlinee.second->emit(MCOS, LastProbe);
193 }
194
195 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { MCPseudoProbeTable::DdgPrintIndent -= 2
; dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); dbgs() <<
"]\n"; }; } } while (false)
196 MCPseudoProbeTable::DdgPrintIndent -= 2;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { MCPseudoProbeTable::DdgPrintIndent -= 2
; dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); dbgs() <<
"]\n"; }; } } while (false)
197 dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { MCPseudoProbeTable::DdgPrintIndent -= 2
; dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); dbgs() <<
"]\n"; }; } } while (false)
198 dbgs() << "]\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { MCPseudoProbeTable::DdgPrintIndent -= 2
; dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); dbgs() <<
"]\n"; }; } } while (false)
199 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { { MCPseudoProbeTable::DdgPrintIndent -= 2
; dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); dbgs() <<
"]\n"; }; } } while (false)
;
200}
201
202void MCPseudoProbeSections::emit(MCObjectStreamer *MCOS) {
203 MCContext &Ctx = MCOS->getContext();
204 for (auto &ProbeSec : MCProbeDivisions) {
205 const auto *FuncSym = ProbeSec.first;
206 const auto &Root = ProbeSec.second;
207 if (auto *S = Ctx.getObjectFileInfo()->getPseudoProbeSection(
208 FuncSym->getSection())) {
209 // Switch to the .pseudoprobe section or a comdat group.
210 MCOS->switchSection(S);
211 // Emit probes grouped by GUID.
212 // Emit sorted descendant. InlineSite is unique for each pair, so there
213 // will be no ordering of Inlinee based on MCPseudoProbeInlineTree*
214 using InlineeType = std::pair<InlineSite, MCPseudoProbeInlineTree *>;
215 auto Comparer = [](const InlineeType &A, const InlineeType &B) {
216 return A.first < B.first;
217 };
218 std::vector<InlineeType> Inlinees;
219 for (const auto &Child : Root.getChildren())
220 Inlinees.emplace_back(Child.first, Child.second.get());
221 std::sort(Inlinees.begin(), Inlinees.end(), Comparer);
222
223 for (const auto &Inlinee : Inlinees) {
224 // Emit the group guarded by a sentinel probe.
225 MCPseudoProbe SentinelProbe(const_cast<MCSymbol *>(FuncSym),
226 MD5Hash(FuncSym->getName()),
227 (uint32_t)PseudoProbeReservedId::Invalid,
228 (uint32_t)PseudoProbeType::Block,
229 (uint32_t)PseudoProbeAttributes::Sentinel);
230 const MCPseudoProbe *Probe = &SentinelProbe;
231 Inlinee.second->emit(MCOS, Probe);
232 }
233 }
234 }
235}
236
237//
238// This emits the pseudo probe tables.
239//
240void MCPseudoProbeTable::emit(MCObjectStreamer *MCOS) {
241 MCContext &Ctx = MCOS->getContext();
242 auto &ProbeTable = Ctx.getMCPseudoProbeTable();
243
244 // Bail out early so we don't switch to the pseudo_probe section needlessly
245 // and in doing so create an unnecessary (if empty) section.
246 auto &ProbeSections = ProbeTable.getProbeSections();
247 if (ProbeSections.empty())
248 return;
249
250 LLVM_DEBUG(MCPseudoProbeTable::DdgPrintIndent = 0)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("mcpseudoprobe")) { MCPseudoProbeTable::DdgPrintIndent = 0; }
} while (false)
;
251
252 // Put out the probe.
253 ProbeSections.emit(MCOS);
254}
255
256static StringRef getProbeFNameForGUID(const GUIDProbeFunctionMap &GUID2FuncMAP,
257 uint64_t GUID) {
258 auto It = GUID2FuncMAP.find(GUID);
259 assert(It != GUID2FuncMAP.end() &&(static_cast <bool> (It != GUID2FuncMAP.end() &&
"Probe function must exist for a valid GUID") ? void (0) : __assert_fail
("It != GUID2FuncMAP.end() && \"Probe function must exist for a valid GUID\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 260, __extension__ __PRETTY_FUNCTION__
))
260 "Probe function must exist for a valid GUID")(static_cast <bool> (It != GUID2FuncMAP.end() &&
"Probe function must exist for a valid GUID") ? void (0) : __assert_fail
("It != GUID2FuncMAP.end() && \"Probe function must exist for a valid GUID\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 260, __extension__ __PRETTY_FUNCTION__
))
;
261 return It->second.FuncName;
262}
263
264void MCPseudoProbeFuncDesc::print(raw_ostream &OS) {
265 OS << "GUID: " << FuncGUID << " Name: " << FuncName << "\n";
266 OS << "Hash: " << FuncHash << "\n";
267}
268
269void MCDecodedPseudoProbe::getInlineContext(
270 SmallVectorImpl<MCPseduoProbeFrameLocation> &ContextStack,
271 const GUIDProbeFunctionMap &GUID2FuncMAP) const {
272 uint32_t Begin = ContextStack.size();
273 MCDecodedPseudoProbeInlineTree *Cur = InlineTree;
274 // It will add the string of each node's inline site during iteration.
275 // Note that it won't include the probe's belonging function(leaf location)
276 while (Cur->hasInlineSite()) {
277 StringRef FuncName = getProbeFNameForGUID(GUID2FuncMAP, Cur->Parent->Guid);
278 ContextStack.emplace_back(
279 MCPseduoProbeFrameLocation(FuncName, std::get<1>(Cur->ISite)));
280 Cur = static_cast<MCDecodedPseudoProbeInlineTree *>(Cur->Parent);
281 }
282 // Make the ContextStack in caller-callee order
283 std::reverse(ContextStack.begin() + Begin, ContextStack.end());
284}
285
286std::string MCDecodedPseudoProbe::getInlineContextStr(
287 const GUIDProbeFunctionMap &GUID2FuncMAP) const {
288 std::ostringstream OContextStr;
289 SmallVector<MCPseduoProbeFrameLocation, 16> ContextStack;
290 getInlineContext(ContextStack, GUID2FuncMAP);
291 for (auto &Cxt : ContextStack) {
292 if (OContextStr.str().size())
293 OContextStr << " @ ";
294 OContextStr << Cxt.first.str() << ":" << Cxt.second;
295 }
296 return OContextStr.str();
297}
298
299static const char *PseudoProbeTypeStr[3] = {"Block", "IndirectCall",
300 "DirectCall"};
301
302void MCDecodedPseudoProbe::print(raw_ostream &OS,
303 const GUIDProbeFunctionMap &GUID2FuncMAP,
304 bool ShowName) const {
305 OS << "FUNC: ";
306 if (ShowName) {
307 StringRef FuncName = getProbeFNameForGUID(GUID2FuncMAP, Guid);
308 OS << FuncName.str() << " ";
309 } else {
310 OS << Guid << " ";
311 }
312 OS << "Index: " << Index << " ";
313 OS << "Type: " << PseudoProbeTypeStr[static_cast<uint8_t>(Type)] << " ";
314 std::string InlineContextStr = getInlineContextStr(GUID2FuncMAP);
315 if (InlineContextStr.size()) {
316 OS << "Inlined: @ ";
317 OS << InlineContextStr;
318 }
319 OS << "\n";
320}
321
322template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readUnencodedNumber() {
323 if (Data + sizeof(T) > End) {
26
Taking false branch
324 return std::error_code();
325 }
326 T Val = endian::readNext<T, little, unaligned>(Data);
27
Calling 'readNext<unsigned char, llvm::support::little, 1UL, unsigned char>'
327 return ErrorOr<T>(Val);
328}
329
330template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readUnsignedNumber() {
331 unsigned NumBytesRead = 0;
332 uint64_t Val = decodeULEB128(Data, &NumBytesRead);
333 if (Val > std::numeric_limits<T>::max() || (Data + NumBytesRead > End)) {
334 return std::error_code();
335 }
336 Data += NumBytesRead;
337 return ErrorOr<T>(static_cast<T>(Val));
338}
339
340template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readSignedNumber() {
341 unsigned NumBytesRead = 0;
342 int64_t Val = decodeSLEB128(Data, &NumBytesRead);
343 if (Val > std::numeric_limits<T>::max() || (Data + NumBytesRead > End)) {
344 return std::error_code();
345 }
346 Data += NumBytesRead;
347 return ErrorOr<T>(static_cast<T>(Val));
348}
349
350ErrorOr<StringRef> MCPseudoProbeDecoder::readString(uint32_t Size) {
351 StringRef Str(reinterpret_cast<const char *>(Data), Size);
352 if (Data + Size > End) {
353 return std::error_code();
354 }
355 Data += Size;
356 return ErrorOr<StringRef>(Str);
357}
358
359bool MCPseudoProbeDecoder::buildGUID2FuncDescMap(const uint8_t *Start,
360 std::size_t Size) {
361 // The pseudo_probe_desc section has a format like:
362 // .section .pseudo_probe_desc,"",@progbits
363 // .quad -5182264717993193164 // GUID
364 // .quad 4294967295 // Hash
365 // .uleb 3 // Name size
366 // .ascii "foo" // Name
367 // .quad -2624081020897602054
368 // .quad 174696971957
369 // .uleb 34
370 // .ascii "main"
371
372 Data = Start;
373 End = Data + Size;
374
375 while (Data < End) {
376 auto ErrorOrGUID = readUnencodedNumber<uint64_t>();
377 if (!ErrorOrGUID)
378 return false;
379
380 auto ErrorOrHash = readUnencodedNumber<uint64_t>();
381 if (!ErrorOrHash)
382 return false;
383
384 auto ErrorOrNameSize = readUnsignedNumber<uint32_t>();
385 if (!ErrorOrNameSize)
386 return false;
387 uint32_t NameSize = std::move(*ErrorOrNameSize);
388
389 auto ErrorOrName = readString(NameSize);
390 if (!ErrorOrName)
391 return false;
392
393 uint64_t GUID = std::move(*ErrorOrGUID);
394 uint64_t Hash = std::move(*ErrorOrHash);
395 StringRef Name = std::move(*ErrorOrName);
396
397 // Initialize PseudoProbeFuncDesc and populate it into GUID2FuncDescMap
398 GUID2FuncDescMap.emplace(GUID, MCPseudoProbeFuncDesc(GUID, Hash, Name));
399 }
400 assert(Data == End && "Have unprocessed data in pseudo_probe_desc section")(static_cast <bool> (Data == End && "Have unprocessed data in pseudo_probe_desc section"
) ? void (0) : __assert_fail ("Data == End && \"Have unprocessed data in pseudo_probe_desc section\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 400, __extension__ __PRETTY_FUNCTION__
))
;
401 return true;
402}
403
404bool MCPseudoProbeDecoder::buildAddress2ProbeMap(
405 MCDecodedPseudoProbeInlineTree *Cur, uint64_t &LastAddr,
406 const Uint64Set &GuidFilter, const Uint64Map &FuncStartAddrs) {
407 // The pseudo_probe section encodes an inline forest and each tree has a
408 // format defined in MCPseudoProbe.h
409
410 uint32_t Index = 0;
411 bool IsTopLevelFunc = Cur == &DummyInlineRoot;
412 if (IsTopLevelFunc
2.1
'IsTopLevelFunc' is true
2.1
'IsTopLevelFunc' is true
) {
3
Taking true branch
15
Assuming 'IsTopLevelFunc' is false
16
Taking false branch
413 // Use a sequential id for top level inliner.
414 Index = Cur->getChildren().size();
415 } else {
416 // Read inline site for inlinees
417 auto ErrorOrIndex = readUnsignedNumber<uint32_t>();
418 if (!ErrorOrIndex)
17
Taking false branch
419 return false;
420 Index = std::move(*ErrorOrIndex);
421 }
422
423 // Read guid
424 auto ErrorOrCurGuid = readUnencodedNumber<uint64_t>();
425 if (!ErrorOrCurGuid)
4
Taking false branch
18
Taking false branch
426 return false;
427 uint64_t Guid = std::move(*ErrorOrCurGuid);
428
429 // Decide if top-level node should be disgarded.
430 if (IsTopLevelFunc
4.1
'IsTopLevelFunc' is true
18.1
'IsTopLevelFunc' is false
4.1
'IsTopLevelFunc' is true
18.1
'IsTopLevelFunc' is false
&& !GuidFilter.empty() && !GuidFilter.count(Guid))
5
Assuming the condition is false
431 Cur = nullptr;
432
433 // If the incoming node is null, all its children nodes should be disgarded.
434 if (Cur
5.1
'Cur' is non-null
18.2
'Cur' is non-null
5.1
'Cur' is non-null
18.2
'Cur' is non-null
) {
6
Taking true branch
19
Taking true branch
435 // Switch/add to a new tree node(inlinee)
436 Cur = Cur->getOrAddNode(std::make_tuple(Guid, Index));
437 Cur->Guid = Guid;
438 if (IsTopLevelFunc
6.1
'IsTopLevelFunc' is true
19.1
'IsTopLevelFunc' is false
6.1
'IsTopLevelFunc' is true
19.1
'IsTopLevelFunc' is false
&& !EncodingIsAddrBased) {
7
Assuming field 'EncodingIsAddrBased' is true
8
Taking false branch
439 if (auto V = FuncStartAddrs.lookup(Guid))
440 LastAddr = V;
441 }
442 }
443
444 // Read number of probes in the current node.
445 auto ErrorOrNodeCount = readUnsignedNumber<uint32_t>();
446 if (!ErrorOrNodeCount)
9
Taking false branch
20
Taking false branch
447 return false;
448 uint32_t NodeCount = std::move(*ErrorOrNodeCount);
449 // Read number of direct inlinees
450 auto ErrorOrCurChildrenToProcess = readUnsignedNumber<uint32_t>();
451 if (!ErrorOrCurChildrenToProcess)
10
Taking false branch
21
Taking false branch
452 return false;
453 // Read all probes in this node
454 for (std::size_t I = 0; I < NodeCount; I++) {
11
Loop condition is false. Execution continues on line 504
22
Assuming 'I' is < 'NodeCount'
23
Loop condition is true. Entering loop body
455 // Read index
456 auto ErrorOrIndex = readUnsignedNumber<uint32_t>();
457 if (!ErrorOrIndex)
24
Taking false branch
458 return false;
459 uint32_t Index = std::move(*ErrorOrIndex);
460 // Read type | flag.
461 auto ErrorOrValue = readUnencodedNumber<uint8_t>();
25
Calling 'MCPseudoProbeDecoder::readUnencodedNumber'
462 if (!ErrorOrValue)
463 return false;
464 uint8_t Value = std::move(*ErrorOrValue);
465 uint8_t Kind = Value & 0xf;
466 uint8_t Attr = (Value & 0x70) >> 4;
467 // Read address
468 uint64_t Addr = 0;
469 if (Value & 0x80) {
470 auto ErrorOrOffset = readSignedNumber<int64_t>();
471 if (!ErrorOrOffset)
472 return false;
473 int64_t Offset = std::move(*ErrorOrOffset);
474 Addr = LastAddr + Offset;
475 } else {
476 auto ErrorOrAddr = readUnencodedNumber<int64_t>();
477 if (!ErrorOrAddr)
478 return false;
479 Addr = std::move(*ErrorOrAddr);
480 if (isSentinelProbe(Attr)) {
481 // For sentinel probe, the addr field actually stores the GUID of the
482 // split function. Convert it to the real address.
483 if (auto V = FuncStartAddrs.lookup(Addr))
484 Addr = V;
485 } else {
486 // For now we assume all probe encoding should be either based on
487 // leading probe address or function start address.
488 // The scheme is for downwards compatibility.
489 // TODO: retire this scheme once compatibility is no longer an issue.
490 EncodingIsAddrBased = true;
491 }
492 }
493
494 if (Cur && !isSentinelProbe(Attr)) {
495 // Populate Address2ProbesMap
496 auto &Probes = Address2ProbesMap[Addr];
497 Probes.emplace_back(Addr, Cur->Guid, Index, PseudoProbeType(Kind), Attr,
498 Cur);
499 Cur->addProbes(&Probes.back());
500 }
501 LastAddr = Addr;
502 }
503
504 uint32_t ChildrenToProcess = std::move(*ErrorOrCurChildrenToProcess);
505 for (uint32_t I = 0; I < ChildrenToProcess; I++) {
12
Assuming 'I' is < 'ChildrenToProcess'
13
Loop condition is true. Entering loop body
506 buildAddress2ProbeMap(Cur, LastAddr, GuidFilter, FuncStartAddrs);
14
Calling 'MCPseudoProbeDecoder::buildAddress2ProbeMap'
507 }
508
509 return true;
510}
511
512bool MCPseudoProbeDecoder::buildAddress2ProbeMap(
513 const uint8_t *Start, std::size_t Size, const Uint64Set &GuidFilter,
514 const Uint64Map &FuncStartAddrs) {
515 Data = Start;
516 End = Data + Size;
517 uint64_t LastAddr = 0;
518 while (Data < End)
1
Loop condition is true. Entering loop body
519 buildAddress2ProbeMap(&DummyInlineRoot, LastAddr, GuidFilter,
2
Calling 'MCPseudoProbeDecoder::buildAddress2ProbeMap'
520 FuncStartAddrs);
521 assert(Data == End && "Have unprocessed data in pseudo_probe section")(static_cast <bool> (Data == End && "Have unprocessed data in pseudo_probe section"
) ? void (0) : __assert_fail ("Data == End && \"Have unprocessed data in pseudo_probe section\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 521, __extension__ __PRETTY_FUNCTION__
))
;
522 return true;
523}
524
525void MCPseudoProbeDecoder::printGUID2FuncDescMap(raw_ostream &OS) {
526 OS << "Pseudo Probe Desc:\n";
527 // Make the output deterministic
528 std::map<uint64_t, MCPseudoProbeFuncDesc> OrderedMap(GUID2FuncDescMap.begin(),
529 GUID2FuncDescMap.end());
530 for (auto &I : OrderedMap) {
531 I.second.print(OS);
532 }
533}
534
535void MCPseudoProbeDecoder::printProbeForAddress(raw_ostream &OS,
536 uint64_t Address) {
537 auto It = Address2ProbesMap.find(Address);
538 if (It != Address2ProbesMap.end()) {
539 for (auto &Probe : It->second) {
540 OS << " [Probe]:\t";
541 Probe.print(OS, GUID2FuncDescMap, true);
542 }
543 }
544}
545
546void MCPseudoProbeDecoder::printProbesForAllAddresses(raw_ostream &OS) {
547 std::vector<uint64_t> Addresses;
548 for (auto Entry : Address2ProbesMap)
549 Addresses.push_back(Entry.first);
550 llvm::sort(Addresses);
551 for (auto K : Addresses) {
552 OS << "Address:\t";
553 OS << K;
554 OS << "\n";
555 printProbeForAddress(OS, K);
556 }
557}
558
559const MCDecodedPseudoProbe *
560MCPseudoProbeDecoder::getCallProbeForAddr(uint64_t Address) const {
561 auto It = Address2ProbesMap.find(Address);
562 if (It == Address2ProbesMap.end())
563 return nullptr;
564 const auto &Probes = It->second;
565
566 const MCDecodedPseudoProbe *CallProbe = nullptr;
567 for (const auto &Probe : Probes) {
568 if (Probe.isCall()) {
569 assert(!CallProbe &&(static_cast <bool> (!CallProbe && "There should be only one call probe corresponding to address "
"which is a callsite.") ? void (0) : __assert_fail ("!CallProbe && \"There should be only one call probe corresponding to address \" \"which is a callsite.\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 571, __extension__ __PRETTY_FUNCTION__
))
570 "There should be only one call probe corresponding to address "(static_cast <bool> (!CallProbe && "There should be only one call probe corresponding to address "
"which is a callsite.") ? void (0) : __assert_fail ("!CallProbe && \"There should be only one call probe corresponding to address \" \"which is a callsite.\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 571, __extension__ __PRETTY_FUNCTION__
))
571 "which is a callsite.")(static_cast <bool> (!CallProbe && "There should be only one call probe corresponding to address "
"which is a callsite.") ? void (0) : __assert_fail ("!CallProbe && \"There should be only one call probe corresponding to address \" \"which is a callsite.\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 571, __extension__ __PRETTY_FUNCTION__
))
;
572 CallProbe = &Probe;
573 }
574 }
575 return CallProbe;
576}
577
578const MCPseudoProbeFuncDesc *
579MCPseudoProbeDecoder::getFuncDescForGUID(uint64_t GUID) const {
580 auto It = GUID2FuncDescMap.find(GUID);
581 assert(It != GUID2FuncDescMap.end() && "Function descriptor doesn't exist")(static_cast <bool> (It != GUID2FuncDescMap.end() &&
"Function descriptor doesn't exist") ? void (0) : __assert_fail
("It != GUID2FuncDescMap.end() && \"Function descriptor doesn't exist\""
, "llvm/lib/MC/MCPseudoProbe.cpp", 581, __extension__ __PRETTY_FUNCTION__
))
;
582 return &It->second;
583}
584
585void MCPseudoProbeDecoder::getInlineContextForProbe(
586 const MCDecodedPseudoProbe *Probe,
587 SmallVectorImpl<MCPseduoProbeFrameLocation> &InlineContextStack,
588 bool IncludeLeaf) const {
589 Probe->getInlineContext(InlineContextStack, GUID2FuncDescMap);
590 if (!IncludeLeaf)
591 return;
592 // Note that the context from probe doesn't include leaf frame,
593 // hence we need to retrieve and prepend leaf if requested.
594 const auto *FuncDesc = getFuncDescForGUID(Probe->getGuid());
595 InlineContextStack.emplace_back(
596 MCPseduoProbeFrameLocation(FuncDesc->FuncName, Probe->getIndex()));
597}
598
599const MCPseudoProbeFuncDesc *MCPseudoProbeDecoder::getInlinerDescForProbe(
600 const MCDecodedPseudoProbe *Probe) const {
601 MCDecodedPseudoProbeInlineTree *InlinerNode = Probe->getInlineTreeNode();
602 if (!InlinerNode->hasInlineSite())
603 return nullptr;
604 return getFuncDescForGUID(InlinerNode->Parent->Guid);
605}

/build/source/llvm/include/llvm/Support/Endian.h

1//===- Endian.h - Utilities for IO with endian specific data ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares generic functions to read and write endian specific data.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ENDIAN_H
14#define LLVM_SUPPORT_ENDIAN_H
15
16#include "llvm/Support/Compiler.h"
17#include "llvm/Support/SwapByteOrder.h"
18#include <cassert>
19#include <cstddef>
20#include <cstdint>
21#include <cstring>
22#include <type_traits>
23
24namespace llvm {
25namespace support {
26
27enum endianness {big, little, native};
28
29// These are named values for common alignments.
30enum {aligned = 0, unaligned = 1};
31
32namespace detail {
33
34/// ::value is either alignment, or alignof(T) if alignment is 0.
35template<class T, int alignment>
36struct PickAlignment {
37 enum { value = alignment == 0 ? alignof(T) : alignment };
38};
39
40} // end namespace detail
41
42namespace endian {
43
44constexpr endianness system_endianness() {
45 return sys::IsBigEndianHost ? big : little;
46}
47
48template <typename value_type>
49inline value_type byte_swap(value_type value, endianness endian) {
50 if ((endian != native) && (endian != system_endianness()))
51 sys::swapByteOrder(value);
52 return value;
53}
54
55/// Swap the bytes of value to match the given endianness.
56template<typename value_type, endianness endian>
57inline value_type byte_swap(value_type value) {
58 return byte_swap(value, endian);
59}
60
61/// Read a value of a particular endianness from memory.
62template <typename value_type, std::size_t alignment>
63inline value_type read(const void *memory, endianness endian) {
64 value_type ret;
65
66 memcpy(&ret,
30
Null pointer passed to 2nd parameter expecting 'nonnull'
67 LLVM_ASSUME_ALIGNED(__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
68 memory, (detail::PickAlignment<value_type, alignment>::value))__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
,
69 sizeof(value_type));
70 return byte_swap<value_type>(ret, endian);
71}
72
73template<typename value_type,
74 endianness endian,
75 std::size_t alignment>
76inline value_type read(const void *memory) {
77 return read<value_type, alignment>(memory, endian);
78}
79
80/// Read a value of a particular endianness from a buffer, and increment the
81/// buffer past that value.
82template <typename value_type, std::size_t alignment, typename CharT>
83inline value_type readNext(const CharT *&memory, endianness endian) {
84 value_type ret = read<value_type, alignment>(memory, endian);
29
Calling 'read<unsigned char, 1UL>'
85 memory += sizeof(value_type);
86 return ret;
87}
88
89template<typename value_type, endianness endian, std::size_t alignment,
90 typename CharT>
91inline value_type readNext(const CharT *&memory) {
92 return readNext<value_type, alignment, CharT>(memory, endian);
28
Calling 'readNext<unsigned char, 1UL, unsigned char>'
93}
94
95/// Write a value to memory with a particular endianness.
96template <typename value_type, std::size_t alignment>
97inline void write(void *memory, value_type value, endianness endian) {
98 value = byte_swap<value_type>(value, endian);
99 memcpy(LLVM_ASSUME_ALIGNED(__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
100 memory, (detail::PickAlignment<value_type, alignment>::value))__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
,
101 &value, sizeof(value_type));
102}
103
104template<typename value_type,
105 endianness endian,
106 std::size_t alignment>
107inline void write(void *memory, value_type value) {
108 write<value_type, alignment>(memory, value, endian);
109}
110
111template <typename value_type>
112using make_unsigned_t = std::make_unsigned_t<value_type>;
113
114/// Read a value of a particular endianness from memory, for a location
115/// that starts at the given bit offset within the first byte.
116template <typename value_type, endianness endian, std::size_t alignment>
117inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) {
118 assert(startBit < 8)(static_cast <bool> (startBit < 8) ? void (0) : __assert_fail
("startBit < 8", "llvm/include/llvm/Support/Endian.h", 118
, __extension__ __PRETTY_FUNCTION__))
;
119 if (startBit == 0)
120 return read<value_type, endian, alignment>(memory);
121 else {
122 // Read two values and compose the result from them.
123 value_type val[2];
124 memcpy(&val[0],
125 LLVM_ASSUME_ALIGNED(__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
126 memory, (detail::PickAlignment<value_type, alignment>::value))__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
,
127 sizeof(value_type) * 2);
128 val[0] = byte_swap<value_type, endian>(val[0]);
129 val[1] = byte_swap<value_type, endian>(val[1]);
130
131 // Shift bits from the lower value into place.
132 make_unsigned_t<value_type> lowerVal = val[0] >> startBit;
133 // Mask off upper bits after right shift in case of signed type.
134 make_unsigned_t<value_type> numBitsFirstVal =
135 (sizeof(value_type) * 8) - startBit;
136 lowerVal &= ((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1;
137
138 // Get the bits from the upper value.
139 make_unsigned_t<value_type> upperVal =
140 val[1] & (((make_unsigned_t<value_type>)1 << startBit) - 1);
141 // Shift them in to place.
142 upperVal <<= numBitsFirstVal;
143
144 return lowerVal | upperVal;
145 }
146}
147
148/// Write a value to memory with a particular endianness, for a location
149/// that starts at the given bit offset within the first byte.
150template <typename value_type, endianness endian, std::size_t alignment>
151inline void writeAtBitAlignment(void *memory, value_type value,
152 uint64_t startBit) {
153 assert(startBit < 8)(static_cast <bool> (startBit < 8) ? void (0) : __assert_fail
("startBit < 8", "llvm/include/llvm/Support/Endian.h", 153
, __extension__ __PRETTY_FUNCTION__))
;
154 if (startBit == 0)
155 write<value_type, endian, alignment>(memory, value);
156 else {
157 // Read two values and shift the result into them.
158 value_type val[2];
159 memcpy(&val[0],
160 LLVM_ASSUME_ALIGNED(__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
161 memory, (detail::PickAlignment<value_type, alignment>::value))__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
,
162 sizeof(value_type) * 2);
163 val[0] = byte_swap<value_type, endian>(val[0]);
164 val[1] = byte_swap<value_type, endian>(val[1]);
165
166 // Mask off any existing bits in the upper part of the lower value that
167 // we want to replace.
168 val[0] &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
169 make_unsigned_t<value_type> numBitsFirstVal =
170 (sizeof(value_type) * 8) - startBit;
171 make_unsigned_t<value_type> lowerVal = value;
172 if (startBit > 0) {
173 // Mask off the upper bits in the new value that are not going to go into
174 // the lower value. This avoids a left shift of a negative value, which
175 // is undefined behavior.
176 lowerVal &= (((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1);
177 // Now shift the new bits into place
178 lowerVal <<= startBit;
179 }
180 val[0] |= lowerVal;
181
182 // Mask off any existing bits in the lower part of the upper value that
183 // we want to replace.
184 val[1] &= ~(((make_unsigned_t<value_type>)1 << startBit) - 1);
185 // Next shift the bits that go into the upper value into position.
186 make_unsigned_t<value_type> upperVal = value >> numBitsFirstVal;
187 // Mask off upper bits after right shift in case of signed type.
188 upperVal &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
189 val[1] |= upperVal;
190
191 // Finally, rewrite values.
192 val[0] = byte_swap<value_type, endian>(val[0]);
193 val[1] = byte_swap<value_type, endian>(val[1]);
194 memcpy(LLVM_ASSUME_ALIGNED(__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
195 memory, (detail::PickAlignment<value_type, alignment>::value))__builtin_assume_aligned(memory, (detail::PickAlignment<value_type
, alignment>::value))
,
196 &val[0], sizeof(value_type) * 2);
197 }
198}
199
200} // end namespace endian
201
202namespace detail {
203
204template <typename ValueType, endianness Endian, std::size_t Alignment,
205 std::size_t ALIGN = PickAlignment<ValueType, Alignment>::value>
206struct packed_endian_specific_integral {
207 using value_type = ValueType;
208 static constexpr endianness endian = Endian;
209 static constexpr std::size_t alignment = Alignment;
210
211 packed_endian_specific_integral() = default;
212
213 explicit packed_endian_specific_integral(value_type val) { *this = val; }
214
215 operator value_type() const {
216 return endian::read<value_type, endian, alignment>(
217 (const void*)Value.buffer);
218 }
219
220 void operator=(value_type newValue) {
221 endian::write<value_type, endian, alignment>(
222 (void*)Value.buffer, newValue);
223 }
224
225 packed_endian_specific_integral &operator+=(value_type newValue) {
226 *this = *this + newValue;
227 return *this;
228 }
229
230 packed_endian_specific_integral &operator-=(value_type newValue) {
231 *this = *this - newValue;
232 return *this;
233 }
234
235 packed_endian_specific_integral &operator|=(value_type newValue) {
236 *this = *this | newValue;
237 return *this;
238 }
239
240 packed_endian_specific_integral &operator&=(value_type newValue) {
241 *this = *this & newValue;
242 return *this;
243 }
244
245private:
246 struct {
247 alignas(ALIGN) char buffer[sizeof(value_type)];
248 } Value;
249
250public:
251 struct ref {
252 explicit ref(void *Ptr) : Ptr(Ptr) {}
253
254 operator value_type() const {
255 return endian::read<value_type, endian, alignment>(Ptr);
256 }
257
258 void operator=(value_type NewValue) {
259 endian::write<value_type, endian, alignment>(Ptr, NewValue);
260 }
261
262 private:
263 void *Ptr;
264 };
265};
266
267} // end namespace detail
268
269using ulittle16_t =
270 detail::packed_endian_specific_integral<uint16_t, little, unaligned>;
271using ulittle32_t =
272 detail::packed_endian_specific_integral<uint32_t, little, unaligned>;
273using ulittle64_t =
274 detail::packed_endian_specific_integral<uint64_t, little, unaligned>;
275
276using little16_t =
277 detail::packed_endian_specific_integral<int16_t, little, unaligned>;
278using little32_t =
279 detail::packed_endian_specific_integral<int32_t, little, unaligned>;
280using little64_t =
281 detail::packed_endian_specific_integral<int64_t, little, unaligned>;
282
283using aligned_ulittle16_t =
284 detail::packed_endian_specific_integral<uint16_t, little, aligned>;
285using aligned_ulittle32_t =
286 detail::packed_endian_specific_integral<uint32_t, little, aligned>;
287using aligned_ulittle64_t =
288 detail::packed_endian_specific_integral<uint64_t, little, aligned>;
289
290using aligned_little16_t =
291 detail::packed_endian_specific_integral<int16_t, little, aligned>;
292using aligned_little32_t =
293 detail::packed_endian_specific_integral<int32_t, little, aligned>;
294using aligned_little64_t =
295 detail::packed_endian_specific_integral<int64_t, little, aligned>;
296
297using ubig16_t =
298 detail::packed_endian_specific_integral<uint16_t, big, unaligned>;
299using ubig32_t =
300 detail::packed_endian_specific_integral<uint32_t, big, unaligned>;
301using ubig64_t =
302 detail::packed_endian_specific_integral<uint64_t, big, unaligned>;
303
304using big16_t =
305 detail::packed_endian_specific_integral<int16_t, big, unaligned>;
306using big32_t =
307 detail::packed_endian_specific_integral<int32_t, big, unaligned>;
308using big64_t =
309 detail::packed_endian_specific_integral<int64_t, big, unaligned>;
310
311using aligned_ubig16_t =
312 detail::packed_endian_specific_integral<uint16_t, big, aligned>;
313using aligned_ubig32_t =
314 detail::packed_endian_specific_integral<uint32_t, big, aligned>;
315using aligned_ubig64_t =
316 detail::packed_endian_specific_integral<uint64_t, big, aligned>;
317
318using aligned_big16_t =
319 detail::packed_endian_specific_integral<int16_t, big, aligned>;
320using aligned_big32_t =
321 detail::packed_endian_specific_integral<int32_t, big, aligned>;
322using aligned_big64_t =
323 detail::packed_endian_specific_integral<int64_t, big, aligned>;
324
325using unaligned_uint16_t =
326 detail::packed_endian_specific_integral<uint16_t, native, unaligned>;
327using unaligned_uint32_t =
328 detail::packed_endian_specific_integral<uint32_t, native, unaligned>;
329using unaligned_uint64_t =
330 detail::packed_endian_specific_integral<uint64_t, native, unaligned>;
331
332using unaligned_int16_t =
333 detail::packed_endian_specific_integral<int16_t, native, unaligned>;
334using unaligned_int32_t =
335 detail::packed_endian_specific_integral<int32_t, native, unaligned>;
336using unaligned_int64_t =
337 detail::packed_endian_specific_integral<int64_t, native, unaligned>;
338
339template <typename T>
340using little_t = detail::packed_endian_specific_integral<T, little, unaligned>;
341template <typename T>
342using big_t = detail::packed_endian_specific_integral<T, big, unaligned>;
343
344template <typename T>
345using aligned_little_t =
346 detail::packed_endian_specific_integral<T, little, aligned>;
347template <typename T>
348using aligned_big_t = detail::packed_endian_specific_integral<T, big, aligned>;
349
350namespace endian {
351
352template <typename T> inline T read(const void *P, endianness E) {
353 return read<T, unaligned>(P, E);
354}
355
356template <typename T, endianness E> inline T read(const void *P) {
357 return *(const detail::packed_endian_specific_integral<T, E, unaligned> *)P;
358}
359
360inline uint16_t read16(const void *P, endianness E) {
361 return read<uint16_t>(P, E);
362}
363inline uint32_t read32(const void *P, endianness E) {
364 return read<uint32_t>(P, E);
365}
366inline uint64_t read64(const void *P, endianness E) {
367 return read<uint64_t>(P, E);
368}
369
370template <endianness E> inline uint16_t read16(const void *P) {
371 return read<uint16_t, E>(P);
372}
373template <endianness E> inline uint32_t read32(const void *P) {
374 return read<uint32_t, E>(P);
375}
376template <endianness E> inline uint64_t read64(const void *P) {
377 return read<uint64_t, E>(P);
378}
379
380inline uint16_t read16le(const void *P) { return read16<little>(P); }
381inline uint32_t read32le(const void *P) { return read32<little>(P); }
382inline uint64_t read64le(const void *P) { return read64<little>(P); }
383inline uint16_t read16be(const void *P) { return read16<big>(P); }
384inline uint32_t read32be(const void *P) { return read32<big>(P); }
385inline uint64_t read64be(const void *P) { return read64<big>(P); }
386
387template <typename T> inline void write(void *P, T V, endianness E) {
388 write<T, unaligned>(P, V, E);
389}
390
391template <typename T, endianness E> inline void write(void *P, T V) {
392 *(detail::packed_endian_specific_integral<T, E, unaligned> *)P = V;
393}
394
395inline void write16(void *P, uint16_t V, endianness E) {
396 write<uint16_t>(P, V, E);
397}
398inline void write32(void *P, uint32_t V, endianness E) {
399 write<uint32_t>(P, V, E);
400}
401inline void write64(void *P, uint64_t V, endianness E) {
402 write<uint64_t>(P, V, E);
403}
404
405template <endianness E> inline void write16(void *P, uint16_t V) {
406 write<uint16_t, E>(P, V);
407}
408template <endianness E> inline void write32(void *P, uint32_t V) {
409 write<uint32_t, E>(P, V);
410}
411template <endianness E> inline void write64(void *P, uint64_t V) {
412 write<uint64_t, E>(P, V);
413}
414
415inline void write16le(void *P, uint16_t V) { write16<little>(P, V); }
416inline void write32le(void *P, uint32_t V) { write32<little>(P, V); }
417inline void write64le(void *P, uint64_t V) { write64<little>(P, V); }
418inline void write16be(void *P, uint16_t V) { write16<big>(P, V); }
419inline void write32be(void *P, uint32_t V) { write32<big>(P, V); }
420inline void write64be(void *P, uint64_t V) { write64<big>(P, V); }
421
422} // end namespace endian
423
424} // end namespace support
425} // end namespace llvm
426
427#endif // LLVM_SUPPORT_ENDIAN_H