File: | build/source/clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp |
Warning: | line 467, column 9 Value stored to 'ThrownType' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ExceptionAnalyzer.h" |
10 | |
11 | namespace clang::tidy::utils { |
12 | |
13 | void ExceptionAnalyzer::ExceptionInfo::registerException( |
14 | const Type *ExceptionType) { |
15 | assert(ExceptionType != nullptr && "Only valid types are accepted")(static_cast <bool> (ExceptionType != nullptr && "Only valid types are accepted") ? void (0) : __assert_fail ( "ExceptionType != nullptr && \"Only valid types are accepted\"" , "clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp", 15, __extension__ __PRETTY_FUNCTION__)); |
16 | Behaviour = State::Throwing; |
17 | ThrownExceptions.insert(ExceptionType); |
18 | } |
19 | |
20 | void ExceptionAnalyzer::ExceptionInfo::registerExceptions( |
21 | const Throwables &Exceptions) { |
22 | if (Exceptions.size() == 0) |
23 | return; |
24 | Behaviour = State::Throwing; |
25 | ThrownExceptions.insert(Exceptions.begin(), Exceptions.end()); |
26 | } |
27 | |
28 | ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge( |
29 | const ExceptionAnalyzer::ExceptionInfo &Other) { |
30 | // Only the following two cases require an update to the local |
31 | // 'Behaviour'. If the local entity is already throwing there will be no |
32 | // change and if the other entity is throwing the merged entity will throw |
33 | // as well. |
34 | // If one of both entities is 'Unknown' and the other one does not throw |
35 | // the merged entity is 'Unknown' as well. |
36 | if (Other.Behaviour == State::Throwing) |
37 | Behaviour = State::Throwing; |
38 | else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing) |
39 | Behaviour = State::Unknown; |
40 | |
41 | ContainsUnknown = ContainsUnknown || Other.ContainsUnknown; |
42 | ThrownExceptions.insert(Other.ThrownExceptions.begin(), |
43 | Other.ThrownExceptions.end()); |
44 | return *this; |
45 | } |
46 | |
47 | // FIXME: This could be ported to clang later. |
48 | namespace { |
49 | |
50 | bool isUnambiguousPublicBaseClass(const Type *DerivedType, |
51 | const Type *BaseType) { |
52 | const auto *DerivedClass = |
53 | DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl(); |
54 | const auto *BaseClass = |
55 | BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl(); |
56 | if (!DerivedClass || !BaseClass) |
57 | return false; |
58 | |
59 | CXXBasePaths Paths; |
60 | Paths.setOrigin(DerivedClass); |
61 | |
62 | bool IsPublicBaseClass = false; |
63 | DerivedClass->lookupInBases( |
64 | [&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS, |
65 | CXXBasePath &) { |
66 | if (BS->getType() |
67 | ->getCanonicalTypeUnqualified() |
68 | ->getAsCXXRecordDecl() == BaseClass && |
69 | BS->getAccessSpecifier() == AS_public) { |
70 | IsPublicBaseClass = true; |
71 | return true; |
72 | } |
73 | |
74 | return false; |
75 | }, |
76 | Paths); |
77 | |
78 | return !Paths.isAmbiguous(BaseType->getCanonicalTypeUnqualified()) && |
79 | IsPublicBaseClass; |
80 | } |
81 | |
82 | inline bool isPointerOrPointerToMember(const Type *T) { |
83 | return T->isPointerType() || T->isMemberPointerType(); |
84 | } |
85 | |
86 | std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) { |
87 | if (T->isAnyPointerType() || T->isMemberPointerType()) |
88 | return T->getPointeeType(); |
89 | |
90 | if (T->isArrayType()) |
91 | return T->getAsArrayTypeUnsafe()->getElementType(); |
92 | |
93 | return std::nullopt; |
94 | } |
95 | |
96 | bool isBaseOf(const Type *DerivedType, const Type *BaseType) { |
97 | const auto *DerivedClass = DerivedType->getAsCXXRecordDecl(); |
98 | const auto *BaseClass = BaseType->getAsCXXRecordDecl(); |
99 | if (!DerivedClass || !BaseClass) |
100 | return false; |
101 | |
102 | return !DerivedClass->forallBases( |
103 | [BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; }); |
104 | } |
105 | |
106 | // Check if T1 is more or Equally qualified than T2. |
107 | bool moreOrEquallyQualified(QualType T1, QualType T2) { |
108 | return T1.getQualifiers().isStrictSupersetOf(T2.getQualifiers()) || |
109 | T1.getQualifiers() == T2.getQualifiers(); |
110 | } |
111 | |
112 | bool isStandardPointerConvertible(QualType From, QualType To) { |
113 | assert((From->isPointerType() || From->isMemberPointerType()) &&(static_cast <bool> ((From->isPointerType() || From-> isMemberPointerType()) && (To->isPointerType() || To ->isMemberPointerType()) && "Pointer conversion should be performed on pointer types only." ) ? void (0) : __assert_fail ("(From->isPointerType() || From->isMemberPointerType()) && (To->isPointerType() || To->isMemberPointerType()) && \"Pointer conversion should be performed on pointer types only.\"" , "clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp", 115, __extension__ __PRETTY_FUNCTION__)) |
114 | (To->isPointerType() || To->isMemberPointerType()) &&(static_cast <bool> ((From->isPointerType() || From-> isMemberPointerType()) && (To->isPointerType() || To ->isMemberPointerType()) && "Pointer conversion should be performed on pointer types only." ) ? void (0) : __assert_fail ("(From->isPointerType() || From->isMemberPointerType()) && (To->isPointerType() || To->isMemberPointerType()) && \"Pointer conversion should be performed on pointer types only.\"" , "clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp", 115, __extension__ __PRETTY_FUNCTION__)) |
115 | "Pointer conversion should be performed on pointer types only.")(static_cast <bool> ((From->isPointerType() || From-> isMemberPointerType()) && (To->isPointerType() || To ->isMemberPointerType()) && "Pointer conversion should be performed on pointer types only." ) ? void (0) : __assert_fail ("(From->isPointerType() || From->isMemberPointerType()) && (To->isPointerType() || To->isMemberPointerType()) && \"Pointer conversion should be performed on pointer types only.\"" , "clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp", 115, __extension__ __PRETTY_FUNCTION__)); |
116 | |
117 | if (!moreOrEquallyQualified(To->getPointeeType(), From->getPointeeType())) |
118 | return false; |
119 | |
120 | // (1) |
121 | // A null pointer constant can be converted to a pointer type ... |
122 | // The conversion of a null pointer constant to a pointer to cv-qualified type |
123 | // is a single conversion, and not the sequence of a pointer conversion |
124 | // followed by a qualification conversion. A null pointer constant of integral |
125 | // type can be converted to a prvalue of type std::nullptr_t |
126 | if (To->isPointerType() && From->isNullPtrType()) |
127 | return true; |
128 | |
129 | // (2) |
130 | // A prvalue of type “pointer to cv T”, where T is an object type, can be |
131 | // converted to a prvalue of type “pointer to cv void”. |
132 | if (To->isVoidPointerType() && From->isObjectPointerType()) |
133 | return true; |
134 | |
135 | // (3) |
136 | // A prvalue of type “pointer to cv D”, where D is a complete class type, can |
137 | // be converted to a prvalue of type “pointer to cv B”, where B is a base |
138 | // class of D. If B is an inaccessible or ambiguous base class of D, a program |
139 | // that necessitates this conversion is ill-formed. |
140 | if (const auto *RD = From->getPointeeCXXRecordDecl()) { |
141 | if (RD->isCompleteDefinition() && |
142 | isBaseOf(From->getPointeeType().getTypePtr(), |
143 | To->getPointeeType().getTypePtr())) { |
144 | return true; |
145 | } |
146 | } |
147 | |
148 | return false; |
149 | } |
150 | |
151 | bool isFunctionPointerConvertible(QualType From, QualType To) { |
152 | if (!From->isFunctionPointerType() && !From->isFunctionType() && |
153 | !From->isMemberFunctionPointerType()) |
154 | return false; |
155 | |
156 | if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType()) |
157 | return false; |
158 | |
159 | if (To->isFunctionPointerType()) { |
160 | if (From->isFunctionPointerType()) |
161 | return To->getPointeeType() == From->getPointeeType(); |
162 | |
163 | if (From->isFunctionType()) |
164 | return To->getPointeeType() == From; |
165 | |
166 | return false; |
167 | } |
168 | |
169 | if (To->isMemberFunctionPointerType()) { |
170 | if (!From->isMemberFunctionPointerType()) |
171 | return false; |
172 | |
173 | const auto *FromMember = cast<MemberPointerType>(From); |
174 | const auto *ToMember = cast<MemberPointerType>(To); |
175 | |
176 | // Note: converting Derived::* to Base::* is a different kind of conversion, |
177 | // called Pointer-to-member conversion. |
178 | return FromMember->getClass() == ToMember->getClass() && |
179 | FromMember->getPointeeType() == ToMember->getPointeeType(); |
180 | } |
181 | |
182 | return false; |
183 | } |
184 | |
185 | // Checks if From is qualification convertible to To based on the current |
186 | // LangOpts. If From is any array, we perform the array to pointer conversion |
187 | // first. The function only performs checks based on C++ rules, which can differ |
188 | // from the C rules. |
189 | // |
190 | // The function should only be called in C++ mode. |
191 | bool isQualificationConvertiblePointer(QualType From, QualType To, |
192 | LangOptions LangOpts) { |
193 | |
194 | // [N4659 7.5 (1)] |
195 | // A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is |
196 | // cv_0 P_0 cv_1 P_1 ... cv_n−1 P_n−1 cv_n U” for n > 0, |
197 | // where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”, |
198 | // “pointer to member of class C_i of type”, “array of N_i”, or |
199 | // “array of unknown bound of”. |
200 | // |
201 | // If P_i designates an array, the cv-qualifiers cv_i+1 on the element type |
202 | // are also taken as the cv-qualifiers cvi of the array. |
203 | // |
204 | // The n-tuple of cv-qualifiers after the first one in the longest |
205 | // cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the |
206 | // cv-qualification signature of T. |
207 | |
208 | auto isValidP_i = [](QualType P) { |
209 | return P->isPointerType() || P->isMemberPointerType() || |
210 | P->isConstantArrayType() || P->isIncompleteArrayType(); |
211 | }; |
212 | |
213 | auto isSameP_i = [](QualType P1, QualType P2) { |
214 | if (P1->isPointerType()) |
215 | return P2->isPointerType(); |
216 | |
217 | if (P1->isMemberPointerType()) |
218 | return P2->isMemberPointerType() && |
219 | P1->getAs<MemberPointerType>()->getClass() == |
220 | P2->getAs<MemberPointerType>()->getClass(); |
221 | |
222 | if (P1->isConstantArrayType()) |
223 | return P2->isConstantArrayType() && |
224 | cast<ConstantArrayType>(P1)->getSize() == |
225 | cast<ConstantArrayType>(P2)->getSize(); |
226 | |
227 | if (P1->isIncompleteArrayType()) |
228 | return P2->isIncompleteArrayType(); |
229 | |
230 | return false; |
231 | }; |
232 | |
233 | // (2) |
234 | // Two types From and To are similar if they have cv-decompositions with the |
235 | // same n such that corresponding P_i components are the same [(added by |
236 | // N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown |
237 | // bound of”], and the types denoted by U are the same. |
238 | // |
239 | // (3) |
240 | // A prvalue expression of type From can be converted to type To if the |
241 | // following conditions are satisfied: |
242 | // - From and To are similar |
243 | // - For every i > 0, if const is in cv_i of From then const is in cv_i of |
244 | // To, and similarly for volatile. |
245 | // - [(derived from addition by N4849 7.3.5) If P_i of From is “array of |
246 | // unknown bound of”, P_i of To is “array of unknown bound of”.] |
247 | // - If the cv_i of From and cv_i of To are different, then const is in every |
248 | // cv_k of To for 0 < k < i. |
249 | |
250 | int I = 0; |
251 | bool ConstUntilI = true; |
252 | auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From, |
253 | const QualType &To) { |
254 | if (I > 1) { |
255 | if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI) |
256 | return false; |
257 | } |
258 | |
259 | if (I > 0) { |
260 | if (From.isConstQualified() && !To.isConstQualified()) |
261 | return false; |
262 | |
263 | if (From.isVolatileQualified() && !To.isVolatileQualified()) |
264 | return false; |
265 | |
266 | ConstUntilI = To.isConstQualified(); |
267 | } |
268 | |
269 | return true; |
270 | }; |
271 | |
272 | while (isValidP_i(From) && isValidP_i(To)) { |
273 | // Remove every sugar. |
274 | From = From.getCanonicalType(); |
275 | To = To.getCanonicalType(); |
276 | |
277 | if (!SatisfiesCVRules(From, To)) |
278 | return false; |
279 | |
280 | if (!isSameP_i(From, To)) { |
281 | if (LangOpts.CPlusPlus20) { |
282 | if (From->isConstantArrayType() && !To->isIncompleteArrayType()) |
283 | return false; |
284 | |
285 | if (From->isIncompleteArrayType() && !To->isIncompleteArrayType()) |
286 | return false; |
287 | |
288 | } else { |
289 | return false; |
290 | } |
291 | } |
292 | |
293 | ++I; |
294 | std::optional<QualType> FromPointeeOrElem = |
295 | getPointeeOrArrayElementQualType(From); |
296 | std::optional<QualType> ToPointeeOrElem = |
297 | getPointeeOrArrayElementQualType(To); |
298 | |
299 | assert(FromPointeeOrElem &&(static_cast <bool> (FromPointeeOrElem && "From pointer or array has no pointee or element!" ) ? void (0) : __assert_fail ("FromPointeeOrElem && \"From pointer or array has no pointee or element!\"" , "clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp", 300, __extension__ __PRETTY_FUNCTION__)) |
300 | "From pointer or array has no pointee or element!")(static_cast <bool> (FromPointeeOrElem && "From pointer or array has no pointee or element!" ) ? void (0) : __assert_fail ("FromPointeeOrElem && \"From pointer or array has no pointee or element!\"" , "clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp", 300, __extension__ __PRETTY_FUNCTION__)); |
301 | assert(ToPointeeOrElem && "To pointer or array has no pointee or element!")(static_cast <bool> (ToPointeeOrElem && "To pointer or array has no pointee or element!" ) ? void (0) : __assert_fail ("ToPointeeOrElem && \"To pointer or array has no pointee or element!\"" , "clang-tools-extra/clang-tidy/utils/ExceptionAnalyzer.cpp", 301, __extension__ __PRETTY_FUNCTION__)); |
302 | |
303 | From = *FromPointeeOrElem; |
304 | To = *ToPointeeOrElem; |
305 | } |
306 | |
307 | // In this case the length (n) of From and To are not the same. |
308 | if (isValidP_i(From) || isValidP_i(To)) |
309 | return false; |
310 | |
311 | // We hit U. |
312 | if (!SatisfiesCVRules(From, To)) |
313 | return false; |
314 | |
315 | return From.getTypePtr() == To.getTypePtr(); |
316 | } |
317 | } // namespace |
318 | |
319 | bool ExceptionAnalyzer::ExceptionInfo::filterByCatch( |
320 | const Type *HandlerTy, const ASTContext &Context) { |
321 | llvm::SmallVector<const Type *, 8> TypesToDelete; |
322 | for (const Type *ExceptionTy : ThrownExceptions) { |
323 | CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified(); |
324 | CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified(); |
325 | |
326 | // The handler is of type cv T or cv T& and E and T are the same type |
327 | // (ignoring the top-level cv-qualifiers) ... |
328 | if (ExceptionCanTy == HandlerCanTy) { |
329 | TypesToDelete.push_back(ExceptionTy); |
330 | } |
331 | |
332 | // The handler is of type cv T or cv T& and T is an unambiguous public base |
333 | // class of E ... |
334 | else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(), |
335 | HandlerCanTy->getTypePtr())) { |
336 | TypesToDelete.push_back(ExceptionTy); |
337 | } |
338 | |
339 | if (HandlerCanTy->getTypeClass() == Type::RValueReference || |
340 | (HandlerCanTy->getTypeClass() == Type::LValueReference && |
341 | !HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified())) |
342 | continue; |
343 | // The handler is of type cv T or const T& where T is a pointer or |
344 | // pointer-to-member type and E is a pointer or pointer-to-member type that |
345 | // can be converted to T by one or more of ... |
346 | if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) && |
347 | isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) { |
348 | // A standard pointer conversion not involving conversions to pointers to |
349 | // private or protected or ambiguous classes ... |
350 | if (isStandardPointerConvertible(ExceptionCanTy, HandlerCanTy) && |
351 | isUnambiguousPublicBaseClass( |
352 | ExceptionCanTy->getTypePtr()->getPointeeType().getTypePtr(), |
353 | HandlerCanTy->getTypePtr()->getPointeeType().getTypePtr())) { |
354 | TypesToDelete.push_back(ExceptionTy); |
355 | } |
356 | // A function pointer conversion ... |
357 | else if (isFunctionPointerConvertible(ExceptionCanTy, HandlerCanTy)) { |
358 | TypesToDelete.push_back(ExceptionTy); |
359 | } |
360 | // A a qualification conversion ... |
361 | else if (isQualificationConvertiblePointer(ExceptionCanTy, HandlerCanTy, |
362 | Context.getLangOpts())) { |
363 | TypesToDelete.push_back(ExceptionTy); |
364 | } |
365 | } |
366 | |
367 | // The handler is of type cv T or const T& where T is a pointer or |
368 | // pointer-to-member type and E is std::nullptr_t. |
369 | else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) && |
370 | ExceptionCanTy->isNullPtrType()) { |
371 | TypesToDelete.push_back(ExceptionTy); |
372 | } |
373 | } |
374 | |
375 | for (const Type *T : TypesToDelete) |
376 | ThrownExceptions.erase(T); |
377 | |
378 | reevaluateBehaviour(); |
379 | return TypesToDelete.size() > 0; |
380 | } |
381 | |
382 | ExceptionAnalyzer::ExceptionInfo & |
383 | ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions( |
384 | const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) { |
385 | llvm::SmallVector<const Type *, 8> TypesToDelete; |
386 | // Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible. |
387 | // Therefore this slightly hacky implementation is required. |
388 | for (const Type *T : ThrownExceptions) { |
389 | if (const auto *TD = T->getAsTagDecl()) { |
390 | if (TD->getDeclName().isIdentifier()) { |
391 | if ((IgnoreBadAlloc && |
392 | (TD->getName() == "bad_alloc" && TD->isInStdNamespace())) || |
393 | (IgnoredTypes.count(TD->getName()) > 0)) |
394 | TypesToDelete.push_back(T); |
395 | } |
396 | } |
397 | } |
398 | for (const Type *T : TypesToDelete) |
399 | ThrownExceptions.erase(T); |
400 | |
401 | reevaluateBehaviour(); |
402 | return *this; |
403 | } |
404 | |
405 | void ExceptionAnalyzer::ExceptionInfo::clear() { |
406 | Behaviour = State::NotThrowing; |
407 | ContainsUnknown = false; |
408 | ThrownExceptions.clear(); |
409 | } |
410 | |
411 | void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() { |
412 | if (ThrownExceptions.size() == 0) |
413 | if (ContainsUnknown) |
414 | Behaviour = State::Unknown; |
415 | else |
416 | Behaviour = State::NotThrowing; |
417 | else |
418 | Behaviour = State::Throwing; |
419 | } |
420 | |
421 | ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException( |
422 | const FunctionDecl *Func, |
423 | llvm::SmallSet<const FunctionDecl *, 32> &CallStack) { |
424 | if (CallStack.count(Func)) |
425 | return ExceptionInfo::createNonThrowing(); |
426 | |
427 | if (const Stmt *Body = Func->getBody()) { |
428 | CallStack.insert(Func); |
429 | ExceptionInfo Result = |
430 | throwsException(Body, ExceptionInfo::Throwables(), CallStack); |
431 | |
432 | // For a constructor, we also have to check the initializers. |
433 | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Func)) { |
434 | for (const CXXCtorInitializer *Init : Ctor->inits()) { |
435 | ExceptionInfo Excs = throwsException( |
436 | Init->getInit(), ExceptionInfo::Throwables(), CallStack); |
437 | Result.merge(Excs); |
438 | } |
439 | } |
440 | |
441 | CallStack.erase(Func); |
442 | return Result; |
443 | } |
444 | |
445 | auto Result = ExceptionInfo::createUnknown(); |
446 | if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) { |
447 | for (const QualType &Ex : FPT->exceptions()) |
448 | Result.registerException(Ex.getTypePtr()); |
449 | } |
450 | return Result; |
451 | } |
452 | |
453 | /// Analyzes a single statement on it's throwing behaviour. This is in principle |
454 | /// possible except some 'Unknown' functions are called. |
455 | ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException( |
456 | const Stmt *St, const ExceptionInfo::Throwables &Caught, |
457 | llvm::SmallSet<const FunctionDecl *, 32> &CallStack) { |
458 | auto Results = ExceptionInfo::createNonThrowing(); |
459 | if (!St) |
460 | return Results; |
461 | |
462 | if (const auto *Throw = dyn_cast<CXXThrowExpr>(St)) { |
463 | if (const auto *ThrownExpr = Throw->getSubExpr()) { |
464 | const auto *ThrownType = |
465 | ThrownExpr->getType()->getUnqualifiedDesugaredType(); |
466 | if (ThrownType->isReferenceType()) |
467 | ThrownType = ThrownType->castAs<ReferenceType>() |
Value stored to 'ThrownType' is never read | |
468 | ->getPointeeType() |
469 | ->getUnqualifiedDesugaredType(); |
470 | Results.registerException( |
471 | ThrownExpr->getType()->getUnqualifiedDesugaredType()); |
472 | } else |
473 | // A rethrow of a caught exception happens which makes it possible |
474 | // to throw all exception that are caught in the 'catch' clause of |
475 | // the parent try-catch block. |
476 | Results.registerExceptions(Caught); |
477 | } else if (const auto *Try = dyn_cast<CXXTryStmt>(St)) { |
478 | ExceptionInfo Uncaught = |
479 | throwsException(Try->getTryBlock(), Caught, CallStack); |
480 | for (unsigned I = 0; I < Try->getNumHandlers(); ++I) { |
481 | const CXXCatchStmt *Catch = Try->getHandler(I); |
482 | |
483 | // Everything is catched through 'catch(...)'. |
484 | if (!Catch->getExceptionDecl()) { |
485 | ExceptionInfo Rethrown = throwsException( |
486 | Catch->getHandlerBlock(), Uncaught.getExceptionTypes(), CallStack); |
487 | Results.merge(Rethrown); |
488 | Uncaught.clear(); |
489 | } else { |
490 | const auto *CaughtType = |
491 | Catch->getCaughtType()->getUnqualifiedDesugaredType(); |
492 | if (CaughtType->isReferenceType()) { |
493 | CaughtType = CaughtType->castAs<ReferenceType>() |
494 | ->getPointeeType() |
495 | ->getUnqualifiedDesugaredType(); |
496 | } |
497 | |
498 | // If the caught exception will catch multiple previously potential |
499 | // thrown types (because it's sensitive to inheritance) the throwing |
500 | // situation changes. First of all filter the exception types and |
501 | // analyze if the baseclass-exception is rethrown. |
502 | if (Uncaught.filterByCatch( |
503 | CaughtType, Catch->getExceptionDecl()->getASTContext())) { |
504 | ExceptionInfo::Throwables CaughtExceptions; |
505 | CaughtExceptions.insert(CaughtType); |
506 | ExceptionInfo Rethrown = throwsException(Catch->getHandlerBlock(), |
507 | CaughtExceptions, CallStack); |
508 | Results.merge(Rethrown); |
509 | } |
510 | } |
511 | } |
512 | Results.merge(Uncaught); |
513 | } else if (const auto *Call = dyn_cast<CallExpr>(St)) { |
514 | if (const FunctionDecl *Func = Call->getDirectCallee()) { |
515 | ExceptionInfo Excs = throwsException(Func, CallStack); |
516 | Results.merge(Excs); |
517 | } |
518 | } else if (const auto *Construct = dyn_cast<CXXConstructExpr>(St)) { |
519 | ExceptionInfo Excs = |
520 | throwsException(Construct->getConstructor(), CallStack); |
521 | Results.merge(Excs); |
522 | } else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(St)) { |
523 | ExceptionInfo Excs = |
524 | throwsException(DefaultInit->getExpr(), Caught, CallStack); |
525 | Results.merge(Excs); |
526 | } else { |
527 | for (const Stmt *Child : St->children()) { |
528 | ExceptionInfo Excs = throwsException(Child, Caught, CallStack); |
529 | Results.merge(Excs); |
530 | } |
531 | } |
532 | return Results; |
533 | } |
534 | |
535 | ExceptionAnalyzer::ExceptionInfo |
536 | ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) { |
537 | ExceptionInfo ExceptionList; |
538 | |
539 | // Check if the function has already been analyzed and reuse that result. |
540 | if (FunctionCache.count(Func) == 0) { |
541 | llvm::SmallSet<const FunctionDecl *, 32> CallStack; |
542 | ExceptionList = throwsException(Func, CallStack); |
543 | |
544 | // Cache the result of the analysis. This is done prior to filtering |
545 | // because it is best to keep as much information as possible. |
546 | // The results here might be relevant to different analysis passes |
547 | // with different needs as well. |
548 | FunctionCache.insert(std::make_pair(Func, ExceptionList)); |
549 | } else |
550 | ExceptionList = FunctionCache[Func]; |
551 | |
552 | return ExceptionList; |
553 | } |
554 | |
555 | ExceptionAnalyzer::ExceptionInfo |
556 | ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) { |
557 | llvm::SmallSet<const FunctionDecl *, 32> CallStack; |
558 | return throwsException(Stmt, ExceptionInfo::Throwables(), CallStack); |
559 | } |
560 | |
561 | template <typename T> |
562 | ExceptionAnalyzer::ExceptionInfo |
563 | ExceptionAnalyzer::analyzeDispatch(const T *Node) { |
564 | ExceptionInfo ExceptionList = analyzeImpl(Node); |
565 | |
566 | if (ExceptionList.getBehaviour() == State::NotThrowing || |
567 | ExceptionList.getBehaviour() == State::Unknown) |
568 | return ExceptionList; |
569 | |
570 | // Remove all ignored exceptions from the list of exceptions that can be |
571 | // thrown. |
572 | ExceptionList.filterIgnoredExceptions(IgnoredExceptions, IgnoreBadAlloc); |
573 | |
574 | return ExceptionList; |
575 | } |
576 | |
577 | ExceptionAnalyzer::ExceptionInfo |
578 | ExceptionAnalyzer::analyze(const FunctionDecl *Func) { |
579 | return analyzeDispatch(Func); |
580 | } |
581 | |
582 | ExceptionAnalyzer::ExceptionInfo |
583 | ExceptionAnalyzer::analyze(const Stmt *Stmt) { |
584 | return analyzeDispatch(Stmt); |
585 | } |
586 | |
587 | } // namespace clang::tidy::utils |