Bug Summary

File:build/source/clang/lib/AST/Expr.cpp
Warning:line 911, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Expr.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/AST -I /build/source/clang/lib/AST -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1680300532 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-04-01-083001-16331-1 -x c++ /build/source/clang/lib/AST/Expr.cpp
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/ComputeDependence.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/DependenceFlags.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/IgnoreExpr.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CharInfo.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Lexer.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
43const Expr *Expr::getBestDynamicClassTypeExpr() const {
44 const Expr *E = this;
45 while (true) {
46 E = E->IgnoreParenBaseCasts();
47
48 // Follow the RHS of a comma operator.
49 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50 if (BO->getOpcode() == BO_Comma) {
51 E = BO->getRHS();
52 continue;
53 }
54 }
55
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58 E = MTE->getSubExpr();
59 continue;
60 }
61
62 break;
63 }
64
65 return E;
66}
67
68const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69 const Expr *E = getBestDynamicClassTypeExpr();
70 QualType DerivedType = E->getType();
71 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72 DerivedType = PTy->getPointeeType();
73
74 if (DerivedType->isDependentType())
75 return nullptr;
76
77 const RecordType *Ty = DerivedType->castAs<RecordType>();
78 Decl *D = Ty->getDecl();
79 return cast<CXXRecordDecl>(D);
80}
81
82const Expr *Expr::skipRValueSubobjectAdjustments(
83 SmallVectorImpl<const Expr *> &CommaLHSs,
84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85 const Expr *E = this;
86 while (true) {
87 E = E->IgnoreParens();
88
89 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
90 if ((CE->getCastKind() == CK_DerivedToBase ||
91 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92 E->getType()->isRecordType()) {
93 E = CE->getSubExpr();
94 auto *Derived =
95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
96 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
97 continue;
98 }
99
100 if (CE->getCastKind() == CK_NoOp) {
101 E = CE->getSubExpr();
102 continue;
103 }
104 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
105 if (!ME->isArrow()) {
106 assert(ME->getBase()->getType()->isRecordType())(static_cast <bool> (ME->getBase()->getType()->
isRecordType()) ? void (0) : __assert_fail ("ME->getBase()->getType()->isRecordType()"
, "clang/lib/AST/Expr.cpp", 106, __extension__ __PRETTY_FUNCTION__
))
;
107 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109 E = ME->getBase();
110 Adjustments.push_back(SubobjectAdjustment(Field));
111 continue;
112 }
113 }
114 }
115 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
116 if (BO->getOpcode() == BO_PtrMemD) {
117 assert(BO->getRHS()->isPRValue())(static_cast <bool> (BO->getRHS()->isPRValue()) ?
void (0) : __assert_fail ("BO->getRHS()->isPRValue()",
"clang/lib/AST/Expr.cpp", 117, __extension__ __PRETTY_FUNCTION__
))
;
118 E = BO->getLHS();
119 const MemberPointerType *MPT =
120 BO->getRHS()->getType()->getAs<MemberPointerType>();
121 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
122 continue;
123 }
124 if (BO->getOpcode() == BO_Comma) {
125 CommaLHSs.push_back(BO->getLHS());
126 E = BO->getRHS();
127 continue;
128 }
129 }
130
131 // Nothing changed.
132 break;
133 }
134 return E;
135}
136
137bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
138 const Expr *E = IgnoreParens();
139
140 // If this value has _Bool type, it is obvious 0/1.
141 if (E->getType()->isBooleanType()) return true;
142 // If this is a non-scalar-integer type, we don't care enough to try.
143 if (!E->getType()->isIntegralOrEnumerationType()) return false;
144
145 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
146 switch (UO->getOpcode()) {
147 case UO_Plus:
148 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
149 case UO_LNot:
150 return true;
151 default:
152 return false;
153 }
154 }
155
156 // Only look through implicit casts. If the user writes
157 // '(int) (a && b)' treat it as an arbitrary int.
158 // FIXME: Should we look through any cast expression in !Semantic mode?
159 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
160 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
161
162 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
163 switch (BO->getOpcode()) {
164 default: return false;
165 case BO_LT: // Relational operators.
166 case BO_GT:
167 case BO_LE:
168 case BO_GE:
169 case BO_EQ: // Equality operators.
170 case BO_NE:
171 case BO_LAnd: // AND operator.
172 case BO_LOr: // Logical OR operator.
173 return true;
174
175 case BO_And: // Bitwise AND operator.
176 case BO_Xor: // Bitwise XOR operator.
177 case BO_Or: // Bitwise OR operator.
178 // Handle things like (x==2)|(y==12).
179 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
180 BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
181
182 case BO_Comma:
183 case BO_Assign:
184 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
185 }
186 }
187
188 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
189 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
190 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
191
192 if (isa<ObjCBoolLiteralExpr>(E))
193 return true;
194
195 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
196 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
197
198 if (const FieldDecl *FD = E->getSourceBitField())
199 if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
200 !FD->getBitWidth()->isValueDependent() &&
201 FD->getBitWidthValue(FD->getASTContext()) == 1)
202 return true;
203
204 return false;
205}
206
207bool Expr::isFlexibleArrayMemberLike(
208 ASTContext &Context,
209 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
210 bool IgnoreTemplateOrMacroSubstitution) const {
211
212 // For compatibility with existing code, we treat arrays of length 0 or
213 // 1 as flexible array members.
214 const auto *CAT = Context.getAsConstantArrayType(getType());
215 if (CAT) {
216 llvm::APInt Size = CAT->getSize();
217
218 using FAMKind = LangOptions::StrictFlexArraysLevelKind;
219
220 if (StrictFlexArraysLevel == FAMKind::IncompleteOnly)
221 return false;
222
223 // GCC extension, only allowed to represent a FAM.
224 if (Size == 0)
225 return true;
226
227 if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1))
228 return false;
229
230 if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2))
231 return false;
232 } else if (!Context.getAsIncompleteArrayType(getType()))
233 return false;
234
235 const Expr *E = IgnoreParens();
236
237 const NamedDecl *ND = nullptr;
238 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
239 ND = DRE->getDecl();
240 else if (const auto *ME = dyn_cast<MemberExpr>(E))
241 ND = ME->getMemberDecl();
242 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
243 return IRE->getDecl()->getNextIvar() == nullptr;
244
245 if (!ND)
246 return false;
247
248 // A flexible array member must be the last member in the class.
249 // FIXME: If the base type of the member expr is not FD->getParent(),
250 // this should not be treated as a flexible array member access.
251 if (const auto *FD = dyn_cast<FieldDecl>(ND)) {
252 // GCC treats an array memeber of a union as an FAM if the size is one or
253 // zero.
254 if (CAT) {
255 llvm::APInt Size = CAT->getSize();
256 if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne()))
257 return true;
258 }
259
260 // Don't consider sizes resulting from macro expansions or template argument
261 // substitution to form C89 tail-padded arrays.
262 if (IgnoreTemplateOrMacroSubstitution) {
263 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
264 while (TInfo) {
265 TypeLoc TL = TInfo->getTypeLoc();
266 // Look through typedefs.
267 if (TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>()) {
268 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
269 TInfo = TDL->getTypeSourceInfo();
270 continue;
271 }
272 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
273 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
274 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
275 return false;
276 }
277 break;
278 }
279 }
280
281 RecordDecl::field_iterator FI(
282 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
283 return ++FI == FD->getParent()->field_end();
284 }
285
286 return false;
287}
288
289const ValueDecl *
290Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
291 Expr::EvalResult Eval;
292
293 if (EvaluateAsConstantExpr(Eval, Context)) {
294 APValue &Value = Eval.Val;
295
296 if (Value.isMemberPointer())
297 return Value.getMemberPointerDecl();
298
299 if (Value.isLValue() && Value.getLValueOffset().isZero())
300 return Value.getLValueBase().dyn_cast<const ValueDecl *>();
301 }
302
303 return nullptr;
304}
305
306// Amusing macro metaprogramming hack: check whether a class provides
307// a more specific implementation of getExprLoc().
308//
309// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
310namespace {
311 /// This implementation is used when a class provides a custom
312 /// implementation of getExprLoc.
313 template <class E, class T>
314 SourceLocation getExprLocImpl(const Expr *expr,
315 SourceLocation (T::*v)() const) {
316 return static_cast<const E*>(expr)->getExprLoc();
317 }
318
319 /// This implementation is used when a class doesn't provide
320 /// a custom implementation of getExprLoc. Overload resolution
321 /// should pick it over the implementation above because it's
322 /// more specialized according to function template partial ordering.
323 template <class E>
324 SourceLocation getExprLocImpl(const Expr *expr,
325 SourceLocation (Expr::*v)() const) {
326 return static_cast<const E *>(expr)->getBeginLoc();
327 }
328}
329
330SourceLocation Expr::getExprLoc() const {
331 switch (getStmtClass()) {
332 case Stmt::NoStmtClass: llvm_unreachable("statement without class")::llvm::llvm_unreachable_internal("statement without class", "clang/lib/AST/Expr.cpp"
, 332)
;
333#define ABSTRACT_STMT(type)
334#define STMT(type, base) \
335 case Stmt::type##Class: break;
336#define EXPR(type, base) \
337 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
338#include "clang/AST/StmtNodes.inc"
339 }
340 llvm_unreachable("unknown expression kind")::llvm::llvm_unreachable_internal("unknown expression kind", "clang/lib/AST/Expr.cpp"
, 340)
;
341}
342
343//===----------------------------------------------------------------------===//
344// Primary Expressions.
345//===----------------------------------------------------------------------===//
346
347static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
348 assert((Kind == ConstantExpr::RSK_APValue ||(static_cast <bool> ((Kind == ConstantExpr::RSK_APValue
|| Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::
RSK_None) && "Invalid StorageKind Value") ? void (0) :
__assert_fail ("(Kind == ConstantExpr::RSK_APValue || Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && \"Invalid StorageKind Value\""
, "clang/lib/AST/Expr.cpp", 350, __extension__ __PRETTY_FUNCTION__
))
349 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&(static_cast <bool> ((Kind == ConstantExpr::RSK_APValue
|| Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::
RSK_None) && "Invalid StorageKind Value") ? void (0) :
__assert_fail ("(Kind == ConstantExpr::RSK_APValue || Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && \"Invalid StorageKind Value\""
, "clang/lib/AST/Expr.cpp", 350, __extension__ __PRETTY_FUNCTION__
))
350 "Invalid StorageKind Value")(static_cast <bool> ((Kind == ConstantExpr::RSK_APValue
|| Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::
RSK_None) && "Invalid StorageKind Value") ? void (0) :
__assert_fail ("(Kind == ConstantExpr::RSK_APValue || Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && \"Invalid StorageKind Value\""
, "clang/lib/AST/Expr.cpp", 350, __extension__ __PRETTY_FUNCTION__
))
;
351 (void)Kind;
352}
353
354ConstantExpr::ResultStorageKind
355ConstantExpr::getStorageKind(const APValue &Value) {
356 switch (Value.getKind()) {
357 case APValue::None:
358 case APValue::Indeterminate:
359 return ConstantExpr::RSK_None;
360 case APValue::Int:
361 if (!Value.getInt().needsCleanup())
362 return ConstantExpr::RSK_Int64;
363 [[fallthrough]];
364 default:
365 return ConstantExpr::RSK_APValue;
366 }
367}
368
369ConstantExpr::ResultStorageKind
370ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
371 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
372 return ConstantExpr::RSK_Int64;
373 return ConstantExpr::RSK_APValue;
374}
375
376ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
377 bool IsImmediateInvocation)
378 : FullExpr(ConstantExprClass, SubExpr) {
379 ConstantExprBits.ResultKind = StorageKind;
380 ConstantExprBits.APValueKind = APValue::None;
381 ConstantExprBits.IsUnsigned = false;
382 ConstantExprBits.BitWidth = 0;
383 ConstantExprBits.HasCleanup = false;
384 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
385
386 if (StorageKind == ConstantExpr::RSK_APValue)
387 ::new (getTrailingObjects<APValue>()) APValue();
388}
389
390ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
391 ResultStorageKind StorageKind,
392 bool IsImmediateInvocation) {
393 assert(!isa<ConstantExpr>(E))(static_cast <bool> (!isa<ConstantExpr>(E)) ? void
(0) : __assert_fail ("!isa<ConstantExpr>(E)", "clang/lib/AST/Expr.cpp"
, 393, __extension__ __PRETTY_FUNCTION__))
;
394 AssertResultStorageKind(StorageKind);
395
396 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
397 StorageKind == ConstantExpr::RSK_APValue,
398 StorageKind == ConstantExpr::RSK_Int64);
399 void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
400 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
401}
402
403ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
404 const APValue &Result) {
405 ResultStorageKind StorageKind = getStorageKind(Result);
406 ConstantExpr *Self = Create(Context, E, StorageKind);
407 Self->SetResult(Result, Context);
408 return Self;
409}
410
411ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
412 : FullExpr(ConstantExprClass, Empty) {
413 ConstantExprBits.ResultKind = StorageKind;
414
415 if (StorageKind == ConstantExpr::RSK_APValue)
416 ::new (getTrailingObjects<APValue>()) APValue();
417}
418
419ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
420 ResultStorageKind StorageKind) {
421 AssertResultStorageKind(StorageKind);
422
423 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
424 StorageKind == ConstantExpr::RSK_APValue,
425 StorageKind == ConstantExpr::RSK_Int64);
426 void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
427 return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
428}
429
430void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
431 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&(static_cast <bool> ((unsigned)getStorageKind(Value) <=
ConstantExprBits.ResultKind && "Invalid storage for this value kind"
) ? void (0) : __assert_fail ("(unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && \"Invalid storage for this value kind\""
, "clang/lib/AST/Expr.cpp", 432, __extension__ __PRETTY_FUNCTION__
))
432 "Invalid storage for this value kind")(static_cast <bool> ((unsigned)getStorageKind(Value) <=
ConstantExprBits.ResultKind && "Invalid storage for this value kind"
) ? void (0) : __assert_fail ("(unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && \"Invalid storage for this value kind\""
, "clang/lib/AST/Expr.cpp", 432, __extension__ __PRETTY_FUNCTION__
))
;
433 ConstantExprBits.APValueKind = Value.getKind();
434 switch (ConstantExprBits.ResultKind) {
435 case RSK_None:
436 return;
437 case RSK_Int64:
438 Int64Result() = *Value.getInt().getRawData();
439 ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
440 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
441 return;
442 case RSK_APValue:
443 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
444 ConstantExprBits.HasCleanup = true;
445 Context.addDestruction(&APValueResult());
446 }
447 APValueResult() = std::move(Value);
448 return;
449 }
450 llvm_unreachable("Invalid ResultKind Bits")::llvm::llvm_unreachable_internal("Invalid ResultKind Bits", "clang/lib/AST/Expr.cpp"
, 450)
;
451}
452
453llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
454 switch (ConstantExprBits.ResultKind) {
455 case ConstantExpr::RSK_APValue:
456 return APValueResult().getInt();
457 case ConstantExpr::RSK_Int64:
458 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
459 ConstantExprBits.IsUnsigned);
460 default:
461 llvm_unreachable("invalid Accessor")::llvm::llvm_unreachable_internal("invalid Accessor", "clang/lib/AST/Expr.cpp"
, 461)
;
462 }
463}
464
465APValue ConstantExpr::getAPValueResult() const {
466
467 switch (ConstantExprBits.ResultKind) {
468 case ConstantExpr::RSK_APValue:
469 return APValueResult();
470 case ConstantExpr::RSK_Int64:
471 return APValue(
472 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
473 ConstantExprBits.IsUnsigned));
474 case ConstantExpr::RSK_None:
475 if (ConstantExprBits.APValueKind == APValue::Indeterminate)
476 return APValue::IndeterminateValue();
477 return APValue();
478 }
479 llvm_unreachable("invalid ResultKind")::llvm::llvm_unreachable_internal("invalid ResultKind", "clang/lib/AST/Expr.cpp"
, 479)
;
480}
481
482DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
483 bool RefersToEnclosingVariableOrCapture, QualType T,
484 ExprValueKind VK, SourceLocation L,
485 const DeclarationNameLoc &LocInfo,
486 NonOdrUseReason NOUR)
487 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
488 DeclRefExprBits.HasQualifier = false;
489 DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
490 DeclRefExprBits.HasFoundDecl = false;
491 DeclRefExprBits.HadMultipleCandidates = false;
492 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
493 RefersToEnclosingVariableOrCapture;
494 DeclRefExprBits.NonOdrUseReason = NOUR;
495 DeclRefExprBits.Loc = L;
496 setDependence(computeDependence(this, Ctx));
497}
498
499DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
500 NestedNameSpecifierLoc QualifierLoc,
501 SourceLocation TemplateKWLoc, ValueDecl *D,
502 bool RefersToEnclosingVariableOrCapture,
503 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
504 const TemplateArgumentListInfo *TemplateArgs,
505 QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
506 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
507 DNLoc(NameInfo.getInfo()) {
508 DeclRefExprBits.Loc = NameInfo.getLoc();
509 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
510 if (QualifierLoc)
511 new (getTrailingObjects<NestedNameSpecifierLoc>())
512 NestedNameSpecifierLoc(QualifierLoc);
513 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
514 if (FoundD)
515 *getTrailingObjects<NamedDecl *>() = FoundD;
516 DeclRefExprBits.HasTemplateKWAndArgsInfo
517 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
518 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
519 RefersToEnclosingVariableOrCapture;
520 DeclRefExprBits.NonOdrUseReason = NOUR;
521 if (TemplateArgs) {
522 auto Deps = TemplateArgumentDependence::None;
523 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
524 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
525 Deps);
526 assert(!(Deps & TemplateArgumentDependence::Dependent) &&(static_cast <bool> (!(Deps & TemplateArgumentDependence
::Dependent) && "built a DeclRefExpr with dependent template args"
) ? void (0) : __assert_fail ("!(Deps & TemplateArgumentDependence::Dependent) && \"built a DeclRefExpr with dependent template args\""
, "clang/lib/AST/Expr.cpp", 527, __extension__ __PRETTY_FUNCTION__
))
527 "built a DeclRefExpr with dependent template args")(static_cast <bool> (!(Deps & TemplateArgumentDependence
::Dependent) && "built a DeclRefExpr with dependent template args"
) ? void (0) : __assert_fail ("!(Deps & TemplateArgumentDependence::Dependent) && \"built a DeclRefExpr with dependent template args\""
, "clang/lib/AST/Expr.cpp", 527, __extension__ __PRETTY_FUNCTION__
))
;
528 } else if (TemplateKWLoc.isValid()) {
529 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
530 TemplateKWLoc);
531 }
532 DeclRefExprBits.HadMultipleCandidates = 0;
533 setDependence(computeDependence(this, Ctx));
534}
535
536DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
537 NestedNameSpecifierLoc QualifierLoc,
538 SourceLocation TemplateKWLoc, ValueDecl *D,
539 bool RefersToEnclosingVariableOrCapture,
540 SourceLocation NameLoc, QualType T,
541 ExprValueKind VK, NamedDecl *FoundD,
542 const TemplateArgumentListInfo *TemplateArgs,
543 NonOdrUseReason NOUR) {
544 return Create(Context, QualifierLoc, TemplateKWLoc, D,
545 RefersToEnclosingVariableOrCapture,
546 DeclarationNameInfo(D->getDeclName(), NameLoc),
547 T, VK, FoundD, TemplateArgs, NOUR);
548}
549
550DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
551 NestedNameSpecifierLoc QualifierLoc,
552 SourceLocation TemplateKWLoc, ValueDecl *D,
553 bool RefersToEnclosingVariableOrCapture,
554 const DeclarationNameInfo &NameInfo,
555 QualType T, ExprValueKind VK,
556 NamedDecl *FoundD,
557 const TemplateArgumentListInfo *TemplateArgs,
558 NonOdrUseReason NOUR) {
559 // Filter out cases where the found Decl is the same as the value refenenced.
560 if (D == FoundD)
561 FoundD = nullptr;
562
563 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
564 std::size_t Size =
565 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
566 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
567 QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
568 HasTemplateKWAndArgsInfo ? 1 : 0,
569 TemplateArgs ? TemplateArgs->size() : 0);
570
571 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
572 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
573 RefersToEnclosingVariableOrCapture, NameInfo,
574 FoundD, TemplateArgs, T, VK, NOUR);
575}
576
577DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
578 bool HasQualifier,
579 bool HasFoundDecl,
580 bool HasTemplateKWAndArgsInfo,
581 unsigned NumTemplateArgs) {
582 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo)(static_cast <bool> (NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo
) ? void (0) : __assert_fail ("NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo"
, "clang/lib/AST/Expr.cpp", 582, __extension__ __PRETTY_FUNCTION__
))
;
583 std::size_t Size =
584 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
585 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
586 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
587 NumTemplateArgs);
588 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
589 return new (Mem) DeclRefExpr(EmptyShell());
590}
591
592void DeclRefExpr::setDecl(ValueDecl *NewD) {
593 D = NewD;
594 if (getType()->isUndeducedType())
595 setType(NewD->getType());
596 setDependence(computeDependence(this, NewD->getASTContext()));
597}
598
599SourceLocation DeclRefExpr::getBeginLoc() const {
600 if (hasQualifier())
601 return getQualifierLoc().getBeginLoc();
602 return getNameInfo().getBeginLoc();
603}
604SourceLocation DeclRefExpr::getEndLoc() const {
605 if (hasExplicitTemplateArgs())
606 return getRAngleLoc();
607 return getNameInfo().getEndLoc();
608}
609
610SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
611 SourceLocation LParen,
612 SourceLocation RParen,
613 QualType ResultTy,
614 TypeSourceInfo *TSI)
615 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
616 OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
617 setTypeSourceInfo(TSI);
618 setDependence(computeDependence(this));
619}
620
621SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
622 QualType ResultTy)
623 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
624
625SYCLUniqueStableNameExpr *
626SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
627 SourceLocation LParen, SourceLocation RParen,
628 TypeSourceInfo *TSI) {
629 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
630 return new (Ctx)
631 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
632}
633
634SYCLUniqueStableNameExpr *
635SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
636 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
637 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
638}
639
640std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
641 return SYCLUniqueStableNameExpr::ComputeName(Context,
642 getTypeSourceInfo()->getType());
643}
644
645std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
646 QualType Ty) {
647 auto MangleCallback = [](ASTContext &Ctx,
648 const NamedDecl *ND) -> std::optional<unsigned> {
649 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
650 return RD->getDeviceLambdaManglingNumber();
651 return std::nullopt;
652 };
653
654 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
655 Context, Context.getDiagnostics(), MangleCallback)};
656
657 std::string Buffer;
658 Buffer.reserve(128);
659 llvm::raw_string_ostream Out(Buffer);
660 Ctx->mangleTypeName(Ty, Out);
661
662 return Out.str();
663}
664
665PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
666 StringLiteral *SL)
667 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
668 PredefinedExprBits.Kind = IK;
669 assert((getIdentKind() == IK) &&(static_cast <bool> ((getIdentKind() == IK) && "IdentKind do not fit in PredefinedExprBitfields!"
) ? void (0) : __assert_fail ("(getIdentKind() == IK) && \"IdentKind do not fit in PredefinedExprBitfields!\""
, "clang/lib/AST/Expr.cpp", 670, __extension__ __PRETTY_FUNCTION__
))
670 "IdentKind do not fit in PredefinedExprBitfields!")(static_cast <bool> ((getIdentKind() == IK) && "IdentKind do not fit in PredefinedExprBitfields!"
) ? void (0) : __assert_fail ("(getIdentKind() == IK) && \"IdentKind do not fit in PredefinedExprBitfields!\""
, "clang/lib/AST/Expr.cpp", 670, __extension__ __PRETTY_FUNCTION__
))
;
671 bool HasFunctionName = SL != nullptr;
672 PredefinedExprBits.HasFunctionName = HasFunctionName;
673 PredefinedExprBits.Loc = L;
674 if (HasFunctionName)
675 setFunctionName(SL);
676 setDependence(computeDependence(this));
677}
678
679PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
680 : Expr(PredefinedExprClass, Empty) {
681 PredefinedExprBits.HasFunctionName = HasFunctionName;
682}
683
684PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
685 QualType FNTy, IdentKind IK,
686 StringLiteral *SL) {
687 bool HasFunctionName = SL != nullptr;
688 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
689 alignof(PredefinedExpr));
690 return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
691}
692
693PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
694 bool HasFunctionName) {
695 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
696 alignof(PredefinedExpr));
697 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
698}
699
700StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
701 switch (IK) {
702 case Func:
703 return "__func__";
704 case Function:
705 return "__FUNCTION__";
706 case FuncDName:
707 return "__FUNCDNAME__";
708 case LFunction:
709 return "L__FUNCTION__";
710 case PrettyFunction:
711 return "__PRETTY_FUNCTION__";
712 case FuncSig:
713 return "__FUNCSIG__";
714 case LFuncSig:
715 return "L__FUNCSIG__";
716 case PrettyFunctionNoVirtual:
717 break;
718 }
719 llvm_unreachable("Unknown ident kind for PredefinedExpr")::llvm::llvm_unreachable_internal("Unknown ident kind for PredefinedExpr"
, "clang/lib/AST/Expr.cpp", 719)
;
720}
721
722// FIXME: Maybe this should use DeclPrinter with a special "print predefined
723// expr" policy instead.
724std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
725 ASTContext &Context = CurrentDecl->getASTContext();
726
727 if (IK == PredefinedExpr::FuncDName) {
1
Assuming 'IK' is not equal to FuncDName
2
Taking false branch
728 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
729 std::unique_ptr<MangleContext> MC;
730 MC.reset(Context.createMangleContext());
731
732 if (MC->shouldMangleDeclName(ND)) {
733 SmallString<256> Buffer;
734 llvm::raw_svector_ostream Out(Buffer);
735 GlobalDecl GD;
736 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
737 GD = GlobalDecl(CD, Ctor_Base);
738 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
739 GD = GlobalDecl(DD, Dtor_Base);
740 else if (ND->hasAttr<CUDAGlobalAttr>())
741 GD = GlobalDecl(cast<FunctionDecl>(ND));
742 else
743 GD = GlobalDecl(ND);
744 MC->mangleName(GD, Out);
745
746 if (!Buffer.empty() && Buffer.front() == '\01')
747 return std::string(Buffer.substr(1));
748 return std::string(Buffer.str());
749 }
750 return std::string(ND->getIdentifier()->getName());
751 }
752 return "";
753 }
754 if (isa<BlockDecl>(CurrentDecl)) {
3
Assuming 'CurrentDecl' is not a 'BlockDecl'
4
Taking false branch
755 // For blocks we only emit something if it is enclosed in a function
756 // For top-level block we'd like to include the name of variable, but we
757 // don't have it at this point.
758 auto DC = CurrentDecl->getDeclContext();
759 if (DC->isFileContext())
760 return "";
761
762 SmallString<256> Buffer;
763 llvm::raw_svector_ostream Out(Buffer);
764 if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
765 // For nested blocks, propagate up to the parent.
766 Out << ComputeName(IK, DCBlock);
767 else if (auto *DCDecl = dyn_cast<Decl>(DC))
768 Out << ComputeName(IK, DCDecl) << "_block_invoke";
769 return std::string(Out.str());
770 }
771 if (const FunctionDecl *FD
5.1
'FD' is non-null
= dyn_cast<FunctionDecl>(CurrentDecl)) {
5
Assuming 'CurrentDecl' is a 'CastReturnType'
772 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
6
Assuming 'IK' is equal to PrettyFunction
773 IK != FuncSig && IK != LFuncSig)
774 return FD->getNameAsString();
775
776 SmallString<256> Name;
777 llvm::raw_svector_ostream Out(Name);
778
779 if (const CXXMethodDecl *MD
7.1
'MD' is null
= dyn_cast<CXXMethodDecl>(FD)) {
7
Assuming 'FD' is not a 'CastReturnType'
8
Taking false branch
780 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
781 Out << "virtual ";
782 if (MD->isStatic())
783 Out << "static ";
784 }
785
786 PrintingPolicy Policy(Context.getLangOpts());
787 std::string Proto;
788 llvm::raw_string_ostream POut(Proto);
789
790 const FunctionDecl *Decl = FD;
791 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
9
Assuming 'Pattern' is null
10
Taking false branch
792 Decl = Pattern;
793 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
11
Assuming the object is not a 'const class clang::FunctionType *'
12
'AFT' initialized to a null pointer value
794 const FunctionProtoType *FT = nullptr;
795 if (FD->hasWrittenPrototype())
13
Assuming the condition is false
796 FT = dyn_cast<FunctionProtoType>(AFT);
797
798 if (IK
13.1
'IK' is not equal to FuncSig
== FuncSig || IK
13.2
'IK' is not equal to LFuncSig
== LFuncSig) {
14
Taking false branch
799 switch (AFT->getCallConv()) {
800 case CC_C: POut << "__cdecl "; break;
801 case CC_X86StdCall: POut << "__stdcall "; break;
802 case CC_X86FastCall: POut << "__fastcall "; break;
803 case CC_X86ThisCall: POut << "__thiscall "; break;
804 case CC_X86VectorCall: POut << "__vectorcall "; break;
805 case CC_X86RegCall: POut << "__regcall "; break;
806 // Only bother printing the conventions that MSVC knows about.
807 default: break;
808 }
809 }
810
811 FD->printQualifiedName(POut, Policy);
812
813 POut << "(";
814 if (FT
14.1
'FT' is null
) {
15
Taking false branch
815 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
816 if (i) POut << ", ";
817 POut << Decl->getParamDecl(i)->getType().stream(Policy);
818 }
819
820 if (FT->isVariadic()) {
821 if (FD->getNumParams()) POut << ", ";
822 POut << "...";
823 } else if ((IK == FuncSig || IK == LFuncSig ||
824 !Context.getLangOpts().CPlusPlus) &&
825 !Decl->getNumParams()) {
826 POut << "void";
827 }
828 }
829 POut << ")";
830
831 if (const CXXMethodDecl *MD
16.1
'MD' is null
= dyn_cast<CXXMethodDecl>(FD)) {
16
'FD' is not a 'CXXMethodDecl'
17
Taking false branch
832 assert(FT && "We must have a written prototype in this case.")(static_cast <bool> (FT && "We must have a written prototype in this case."
) ? void (0) : __assert_fail ("FT && \"We must have a written prototype in this case.\""
, "clang/lib/AST/Expr.cpp", 832, __extension__ __PRETTY_FUNCTION__
))
;
833 if (FT->isConst())
834 POut << " const";
835 if (FT->isVolatile())
836 POut << " volatile";
837 RefQualifierKind Ref = MD->getRefQualifier();
838 if (Ref == RQ_LValue)
839 POut << " &";
840 else if (Ref == RQ_RValue)
841 POut << " &&";
842 }
843
844 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
845 SpecsTy Specs;
846 const DeclContext *Ctx = FD->getDeclContext();
847 while (Ctx && isa<NamedDecl>(Ctx)) {
18
Assuming 'Ctx' is null
848 const ClassTemplateSpecializationDecl *Spec
849 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
850 if (Spec && !Spec->isExplicitSpecialization())
851 Specs.push_back(Spec);
852 Ctx = Ctx->getParent();
853 }
854
855 std::string TemplateParams;
856 llvm::raw_string_ostream TOut(TemplateParams);
857 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
858 const TemplateParameterList *Params =
859 D->getSpecializedTemplate()->getTemplateParameters();
860 const TemplateArgumentList &Args = D->getTemplateArgs();
861 assert(Params->size() == Args.size())(static_cast <bool> (Params->size() == Args.size()) ?
void (0) : __assert_fail ("Params->size() == Args.size()"
, "clang/lib/AST/Expr.cpp", 861, __extension__ __PRETTY_FUNCTION__
))
;
862 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
863 StringRef Param = Params->getParam(i)->getName();
864 if (Param.empty()) continue;
865 TOut << Param << " = ";
866 Args.get(i).print(Policy, TOut,
867 TemplateParameterList::shouldIncludeTypeForArgument(
868 Policy, Params, i));
869 TOut << ", ";
870 }
871 }
872
873 FunctionTemplateSpecializationInfo *FSI
874 = FD->getTemplateSpecializationInfo();
875 if (FSI && !FSI->isExplicitSpecialization()) {
19
Assuming 'FSI' is null
876 const TemplateParameterList* Params
877 = FSI->getTemplate()->getTemplateParameters();
878 const TemplateArgumentList* Args = FSI->TemplateArguments;
879 assert(Params->size() == Args->size())(static_cast <bool> (Params->size() == Args->size
()) ? void (0) : __assert_fail ("Params->size() == Args->size()"
, "clang/lib/AST/Expr.cpp", 879, __extension__ __PRETTY_FUNCTION__
))
;
880 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
881 StringRef Param = Params->getParam(i)->getName();
882 if (Param.empty()) continue;
883 TOut << Param << " = ";
884 Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
885 TOut << ", ";
886 }
887 }
888
889 TOut.flush();
890 if (!TemplateParams.empty()) {
20
Assuming the condition is false
21
Taking false branch
891 // remove the trailing comma and space
892 TemplateParams.resize(TemplateParams.size() - 2);
893 POut << " [" << TemplateParams << "]";
894 }
895
896 POut.flush();
897
898 // Print "auto" for all deduced return types. This includes C++1y return
899 // type deduction and lambdas. For trailing return types resolve the
900 // decltype expression. Otherwise print the real type when this is
901 // not a constructor or destructor.
902 if (isa<CXXMethodDecl>(FD) &&
22
'FD' is not a 'CXXMethodDecl'
903 cast<CXXMethodDecl>(FD)->getParent()->isLambda())
904 Proto = "auto " + Proto;
905 else if (FT
22.1
'FT' is null
&& FT->getReturnType()->getAs<DecltypeType>())
906 FT->getReturnType()
907 ->getAs<DecltypeType>()
908 ->getUnderlyingType()
909 .getAsStringInternal(Proto, Policy);
910 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
23
Assuming 'FD' is not a 'CXXConstructorDecl'
24
Assuming 'FD' is not a 'CXXDestructorDecl'
25
Taking true branch
911 AFT->getReturnType().getAsStringInternal(Proto, Policy);
26
Called C++ object pointer is null
912
913 Out << Proto;
914
915 return std::string(Name);
916 }
917 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
918 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
919 // Skip to its enclosing function or method, but not its enclosing
920 // CapturedDecl.
921 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
922 const Decl *D = Decl::castFromDeclContext(DC);
923 return ComputeName(IK, D);
924 }
925 llvm_unreachable("CapturedDecl not inside a function or method")::llvm::llvm_unreachable_internal("CapturedDecl not inside a function or method"
, "clang/lib/AST/Expr.cpp", 925)
;
926 }
927 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
928 SmallString<256> Name;
929 llvm::raw_svector_ostream Out(Name);
930 Out << (MD->isInstanceMethod() ? '-' : '+');
931 Out << '[';
932
933 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
934 // a null check to avoid a crash.
935 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
936 Out << *ID;
937
938 if (const ObjCCategoryImplDecl *CID =
939 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
940 Out << '(' << *CID << ')';
941
942 Out << ' ';
943 MD->getSelector().print(Out);
944 Out << ']';
945
946 return std::string(Name);
947 }
948 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
949 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
950 return "top level";
951 }
952 return "";
953}
954
955void APNumericStorage::setIntValue(const ASTContext &C,
956 const llvm::APInt &Val) {
957 if (hasAllocation())
958 C.Deallocate(pVal);
959
960 BitWidth = Val.getBitWidth();
961 unsigned NumWords = Val.getNumWords();
962 const uint64_t* Words = Val.getRawData();
963 if (NumWords > 1) {
964 pVal = new (C) uint64_t[NumWords];
965 std::copy(Words, Words + NumWords, pVal);
966 } else if (NumWords == 1)
967 VAL = Words[0];
968 else
969 VAL = 0;
970}
971
972IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
973 QualType type, SourceLocation l)
974 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
975 assert(type->isIntegerType() && "Illegal type in IntegerLiteral")(static_cast <bool> (type->isIntegerType() &&
"Illegal type in IntegerLiteral") ? void (0) : __assert_fail
("type->isIntegerType() && \"Illegal type in IntegerLiteral\""
, "clang/lib/AST/Expr.cpp", 975, __extension__ __PRETTY_FUNCTION__
))
;
976 assert(V.getBitWidth() == C.getIntWidth(type) &&(static_cast <bool> (V.getBitWidth() == C.getIntWidth(type
) && "Integer type is not the correct size for constant."
) ? void (0) : __assert_fail ("V.getBitWidth() == C.getIntWidth(type) && \"Integer type is not the correct size for constant.\""
, "clang/lib/AST/Expr.cpp", 977, __extension__ __PRETTY_FUNCTION__
))
977 "Integer type is not the correct size for constant.")(static_cast <bool> (V.getBitWidth() == C.getIntWidth(type
) && "Integer type is not the correct size for constant."
) ? void (0) : __assert_fail ("V.getBitWidth() == C.getIntWidth(type) && \"Integer type is not the correct size for constant.\""
, "clang/lib/AST/Expr.cpp", 977, __extension__ __PRETTY_FUNCTION__
))
;
978 setValue(C, V);
979 setDependence(ExprDependence::None);
980}
981
982IntegerLiteral *
983IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
984 QualType type, SourceLocation l) {
985 return new (C) IntegerLiteral(C, V, type, l);
986}
987
988IntegerLiteral *
989IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
990 return new (C) IntegerLiteral(Empty);
991}
992
993FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
994 QualType type, SourceLocation l,
995 unsigned Scale)
996 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
997 Scale(Scale) {
998 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral")(static_cast <bool> (type->isFixedPointType() &&
"Illegal type in FixedPointLiteral") ? void (0) : __assert_fail
("type->isFixedPointType() && \"Illegal type in FixedPointLiteral\""
, "clang/lib/AST/Expr.cpp", 998, __extension__ __PRETTY_FUNCTION__
))
;
999 assert(V.getBitWidth() == C.getTypeInfo(type).Width &&(static_cast <bool> (V.getBitWidth() == C.getTypeInfo(type
).Width && "Fixed point type is not the correct size for constant."
) ? void (0) : __assert_fail ("V.getBitWidth() == C.getTypeInfo(type).Width && \"Fixed point type is not the correct size for constant.\""
, "clang/lib/AST/Expr.cpp", 1000, __extension__ __PRETTY_FUNCTION__
))
1000 "Fixed point type is not the correct size for constant.")(static_cast <bool> (V.getBitWidth() == C.getTypeInfo(type
).Width && "Fixed point type is not the correct size for constant."
) ? void (0) : __assert_fail ("V.getBitWidth() == C.getTypeInfo(type).Width && \"Fixed point type is not the correct size for constant.\""
, "clang/lib/AST/Expr.cpp", 1000, __extension__ __PRETTY_FUNCTION__
))
;
1001 setValue(C, V);
1002 setDependence(ExprDependence::None);
1003}
1004
1005FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
1006 const llvm::APInt &V,
1007 QualType type,
1008 SourceLocation l,
1009 unsigned Scale) {
1010 return new (C) FixedPointLiteral(C, V, type, l, Scale);
1011}
1012
1013FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1014 EmptyShell Empty) {
1015 return new (C) FixedPointLiteral(Empty);
1016}
1017
1018std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1019 // Currently the longest decimal number that can be printed is the max for an
1020 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1021 // which is 43 characters.
1022 SmallString<64> S;
1023 FixedPointValueToString(
1024 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
1025 return std::string(S.str());
1026}
1027
1028void CharacterLiteral::print(unsigned Val, CharacterKind Kind,
1029 raw_ostream &OS) {
1030 switch (Kind) {
1031 case CharacterLiteral::Ascii:
1032 break; // no prefix.
1033 case CharacterLiteral::Wide:
1034 OS << 'L';
1035 break;
1036 case CharacterLiteral::UTF8:
1037 OS << "u8";
1038 break;
1039 case CharacterLiteral::UTF16:
1040 OS << 'u';
1041 break;
1042 case CharacterLiteral::UTF32:
1043 OS << 'U';
1044 break;
1045 }
1046
1047 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1048 if (!Escaped.empty()) {
1049 OS << "'" << Escaped << "'";
1050 } else {
1051 // A character literal might be sign-extended, which
1052 // would result in an invalid \U escape sequence.
1053 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1054 // are not correctly handled.
1055 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
1056 Val &= 0xFFu;
1057 if (Val < 256 && isPrintable((unsigned char)Val))
1058 OS << "'" << (char)Val << "'";
1059 else if (Val < 256)
1060 OS << "'\\x" << llvm::format("%02x", Val) << "'";
1061 else if (Val <= 0xFFFF)
1062 OS << "'\\u" << llvm::format("%04x", Val) << "'";
1063 else
1064 OS << "'\\U" << llvm::format("%08x", Val) << "'";
1065 }
1066}
1067
1068FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1069 bool isexact, QualType Type, SourceLocation L)
1070 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1071 setSemantics(V.getSemantics());
1072 FloatingLiteralBits.IsExact = isexact;
1073 setValue(C, V);
1074 setDependence(ExprDependence::None);
1075}
1076
1077FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1078 : Expr(FloatingLiteralClass, Empty) {
1079 setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1080 FloatingLiteralBits.IsExact = false;
1081}
1082
1083FloatingLiteral *
1084FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1085 bool isexact, QualType Type, SourceLocation L) {
1086 return new (C) FloatingLiteral(C, V, isexact, Type, L);
1087}
1088
1089FloatingLiteral *
1090FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1091 return new (C) FloatingLiteral(C, Empty);
1092}
1093
1094/// getValueAsApproximateDouble - This returns the value as an inaccurate
1095/// double. Note that this may cause loss of precision, but is useful for
1096/// debugging dumps, etc.
1097double FloatingLiteral::getValueAsApproximateDouble() const {
1098 llvm::APFloat V = getValue();
1099 bool ignored;
1100 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1101 &ignored);
1102 return V.convertToDouble();
1103}
1104
1105unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1106 StringKind SK) {
1107 unsigned CharByteWidth = 0;
1108 switch (SK) {
1109 case Ordinary:
1110 case UTF8:
1111 CharByteWidth = Target.getCharWidth();
1112 break;
1113 case Wide:
1114 CharByteWidth = Target.getWCharWidth();
1115 break;
1116 case UTF16:
1117 CharByteWidth = Target.getChar16Width();
1118 break;
1119 case UTF32:
1120 CharByteWidth = Target.getChar32Width();
1121 break;
1122 }
1123 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple")(static_cast <bool> ((CharByteWidth & 7) == 0 &&
"Assumes character size is byte multiple") ? void (0) : __assert_fail
("(CharByteWidth & 7) == 0 && \"Assumes character size is byte multiple\""
, "clang/lib/AST/Expr.cpp", 1123, __extension__ __PRETTY_FUNCTION__
))
;
1124 CharByteWidth /= 8;
1125 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&(static_cast <bool> ((CharByteWidth == 1 || CharByteWidth
== 2 || CharByteWidth == 4) && "The only supported character byte widths are 1,2 and 4!"
) ? void (0) : __assert_fail ("(CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && \"The only supported character byte widths are 1,2 and 4!\""
, "clang/lib/AST/Expr.cpp", 1126, __extension__ __PRETTY_FUNCTION__
))
1126 "The only supported character byte widths are 1,2 and 4!")(static_cast <bool> ((CharByteWidth == 1 || CharByteWidth
== 2 || CharByteWidth == 4) && "The only supported character byte widths are 1,2 and 4!"
) ? void (0) : __assert_fail ("(CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && \"The only supported character byte widths are 1,2 and 4!\""
, "clang/lib/AST/Expr.cpp", 1126, __extension__ __PRETTY_FUNCTION__
))
;
1127 return CharByteWidth;
1128}
1129
1130StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1131 StringKind Kind, bool Pascal, QualType Ty,
1132 const SourceLocation *Loc,
1133 unsigned NumConcatenated)
1134 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1135 assert(Ctx.getAsConstantArrayType(Ty) &&(static_cast <bool> (Ctx.getAsConstantArrayType(Ty) &&
"StringLiteral must be of constant array type!") ? void (0) :
__assert_fail ("Ctx.getAsConstantArrayType(Ty) && \"StringLiteral must be of constant array type!\""
, "clang/lib/AST/Expr.cpp", 1136, __extension__ __PRETTY_FUNCTION__
))
1136 "StringLiteral must be of constant array type!")(static_cast <bool> (Ctx.getAsConstantArrayType(Ty) &&
"StringLiteral must be of constant array type!") ? void (0) :
__assert_fail ("Ctx.getAsConstantArrayType(Ty) && \"StringLiteral must be of constant array type!\""
, "clang/lib/AST/Expr.cpp", 1136, __extension__ __PRETTY_FUNCTION__
))
;
1137 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1138 unsigned ByteLength = Str.size();
1139 assert((ByteLength % CharByteWidth == 0) &&(static_cast <bool> ((ByteLength % CharByteWidth == 0) &&
"The size of the data must be a multiple of CharByteWidth!")
? void (0) : __assert_fail ("(ByteLength % CharByteWidth == 0) && \"The size of the data must be a multiple of CharByteWidth!\""
, "clang/lib/AST/Expr.cpp", 1140, __extension__ __PRETTY_FUNCTION__
))
1140 "The size of the data must be a multiple of CharByteWidth!")(static_cast <bool> ((ByteLength % CharByteWidth == 0) &&
"The size of the data must be a multiple of CharByteWidth!")
? void (0) : __assert_fail ("(ByteLength % CharByteWidth == 0) && \"The size of the data must be a multiple of CharByteWidth!\""
, "clang/lib/AST/Expr.cpp", 1140, __extension__ __PRETTY_FUNCTION__
))
;
1141
1142 // Avoid the expensive division. The compiler should be able to figure it
1143 // out by itself. However as of clang 7, even with the appropriate
1144 // llvm_unreachable added just here, it is not able to do so.
1145 unsigned Length;
1146 switch (CharByteWidth) {
1147 case 1:
1148 Length = ByteLength;
1149 break;
1150 case 2:
1151 Length = ByteLength / 2;
1152 break;
1153 case 4:
1154 Length = ByteLength / 4;
1155 break;
1156 default:
1157 llvm_unreachable("Unsupported character width!")::llvm::llvm_unreachable_internal("Unsupported character width!"
, "clang/lib/AST/Expr.cpp", 1157)
;
1158 }
1159
1160 StringLiteralBits.Kind = Kind;
1161 StringLiteralBits.CharByteWidth = CharByteWidth;
1162 StringLiteralBits.IsPascal = Pascal;
1163 StringLiteralBits.NumConcatenated = NumConcatenated;
1164 *getTrailingObjects<unsigned>() = Length;
1165
1166 // Initialize the trailing array of SourceLocation.
1167 // This is safe since SourceLocation is POD-like.
1168 std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1169 NumConcatenated * sizeof(SourceLocation));
1170
1171 // Initialize the trailing array of char holding the string data.
1172 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1173
1174 setDependence(ExprDependence::None);
1175}
1176
1177StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1178 unsigned Length, unsigned CharByteWidth)
1179 : Expr(StringLiteralClass, Empty) {
1180 StringLiteralBits.CharByteWidth = CharByteWidth;
1181 StringLiteralBits.NumConcatenated = NumConcatenated;
1182 *getTrailingObjects<unsigned>() = Length;
1183}
1184
1185StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1186 StringKind Kind, bool Pascal, QualType Ty,
1187 const SourceLocation *Loc,
1188 unsigned NumConcatenated) {
1189 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1190 1, NumConcatenated, Str.size()),
1191 alignof(StringLiteral));
1192 return new (Mem)
1193 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1194}
1195
1196StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1197 unsigned NumConcatenated,
1198 unsigned Length,
1199 unsigned CharByteWidth) {
1200 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1201 1, NumConcatenated, Length * CharByteWidth),
1202 alignof(StringLiteral));
1203 return new (Mem)
1204 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1205}
1206
1207void StringLiteral::outputString(raw_ostream &OS) const {
1208 switch (getKind()) {
1209 case Ordinary:
1210 break; // no prefix.
1211 case Wide: OS << 'L'; break;
1212 case UTF8: OS << "u8"; break;
1213 case UTF16: OS << 'u'; break;
1214 case UTF32: OS << 'U'; break;
1215 }
1216 OS << '"';
1217 static const char Hex[] = "0123456789ABCDEF";
1218
1219 unsigned LastSlashX = getLength();
1220 for (unsigned I = 0, N = getLength(); I != N; ++I) {
1221 uint32_t Char = getCodeUnit(I);
1222 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1223 if (Escaped.empty()) {
1224 // FIXME: Convert UTF-8 back to codepoints before rendering.
1225
1226 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1227 // Leave invalid surrogates alone; we'll use \x for those.
1228 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1229 Char <= 0xdbff) {
1230 uint32_t Trail = getCodeUnit(I + 1);
1231 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1232 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1233 ++I;
1234 }
1235 }
1236
1237 if (Char > 0xff) {
1238 // If this is a wide string, output characters over 0xff using \x
1239 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1240 // codepoint: use \x escapes for invalid codepoints.
1241 if (getKind() == Wide ||
1242 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1243 // FIXME: Is this the best way to print wchar_t?
1244 OS << "\\x";
1245 int Shift = 28;
1246 while ((Char >> Shift) == 0)
1247 Shift -= 4;
1248 for (/**/; Shift >= 0; Shift -= 4)
1249 OS << Hex[(Char >> Shift) & 15];
1250 LastSlashX = I;
1251 continue;
1252 }
1253
1254 if (Char > 0xffff)
1255 OS << "\\U00"
1256 << Hex[(Char >> 20) & 15]
1257 << Hex[(Char >> 16) & 15];
1258 else
1259 OS << "\\u";
1260 OS << Hex[(Char >> 12) & 15]
1261 << Hex[(Char >> 8) & 15]
1262 << Hex[(Char >> 4) & 15]
1263 << Hex[(Char >> 0) & 15];
1264 continue;
1265 }
1266
1267 // If we used \x... for the previous character, and this character is a
1268 // hexadecimal digit, prevent it being slurped as part of the \x.
1269 if (LastSlashX + 1 == I) {
1270 switch (Char) {
1271 case '0': case '1': case '2': case '3': case '4':
1272 case '5': case '6': case '7': case '8': case '9':
1273 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1274 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1275 OS << "\"\"";
1276 }
1277 }
1278
1279 assert(Char <= 0xff &&(static_cast <bool> (Char <= 0xff && "Characters above 0xff should already have been handled."
) ? void (0) : __assert_fail ("Char <= 0xff && \"Characters above 0xff should already have been handled.\""
, "clang/lib/AST/Expr.cpp", 1280, __extension__ __PRETTY_FUNCTION__
))
1280 "Characters above 0xff should already have been handled.")(static_cast <bool> (Char <= 0xff && "Characters above 0xff should already have been handled."
) ? void (0) : __assert_fail ("Char <= 0xff && \"Characters above 0xff should already have been handled.\""
, "clang/lib/AST/Expr.cpp", 1280, __extension__ __PRETTY_FUNCTION__
))
;
1281
1282 if (isPrintable(Char))
1283 OS << (char)Char;
1284 else // Output anything hard as an octal escape.
1285 OS << '\\'
1286 << (char)('0' + ((Char >> 6) & 7))
1287 << (char)('0' + ((Char >> 3) & 7))
1288 << (char)('0' + ((Char >> 0) & 7));
1289 } else {
1290 // Handle some common non-printable cases to make dumps prettier.
1291 OS << Escaped;
1292 }
1293 }
1294 OS << '"';
1295}
1296
1297/// getLocationOfByte - Return a source location that points to the specified
1298/// byte of this string literal.
1299///
1300/// Strings are amazingly complex. They can be formed from multiple tokens and
1301/// can have escape sequences in them in addition to the usual trigraph and
1302/// escaped newline business. This routine handles this complexity.
1303///
1304/// The *StartToken sets the first token to be searched in this function and
1305/// the *StartTokenByteOffset is the byte offset of the first token. Before
1306/// returning, it updates the *StartToken to the TokNo of the token being found
1307/// and sets *StartTokenByteOffset to the byte offset of the token in the
1308/// string.
1309/// Using these two parameters can reduce the time complexity from O(n^2) to
1310/// O(n) if one wants to get the location of byte for all the tokens in a
1311/// string.
1312///
1313SourceLocation
1314StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1315 const LangOptions &Features,
1316 const TargetInfo &Target, unsigned *StartToken,
1317 unsigned *StartTokenByteOffset) const {
1318 assert((getKind() == StringLiteral::Ordinary ||(static_cast <bool> ((getKind() == StringLiteral::Ordinary
|| getKind() == StringLiteral::UTF8) && "Only narrow string literals are currently supported"
) ? void (0) : __assert_fail ("(getKind() == StringLiteral::Ordinary || getKind() == StringLiteral::UTF8) && \"Only narrow string literals are currently supported\""
, "clang/lib/AST/Expr.cpp", 1320, __extension__ __PRETTY_FUNCTION__
))
1319 getKind() == StringLiteral::UTF8) &&(static_cast <bool> ((getKind() == StringLiteral::Ordinary
|| getKind() == StringLiteral::UTF8) && "Only narrow string literals are currently supported"
) ? void (0) : __assert_fail ("(getKind() == StringLiteral::Ordinary || getKind() == StringLiteral::UTF8) && \"Only narrow string literals are currently supported\""
, "clang/lib/AST/Expr.cpp", 1320, __extension__ __PRETTY_FUNCTION__
))
1320 "Only narrow string literals are currently supported")(static_cast <bool> ((getKind() == StringLiteral::Ordinary
|| getKind() == StringLiteral::UTF8) && "Only narrow string literals are currently supported"
) ? void (0) : __assert_fail ("(getKind() == StringLiteral::Ordinary || getKind() == StringLiteral::UTF8) && \"Only narrow string literals are currently supported\""
, "clang/lib/AST/Expr.cpp", 1320, __extension__ __PRETTY_FUNCTION__
))
;
1321
1322 // Loop over all of the tokens in this string until we find the one that
1323 // contains the byte we're looking for.
1324 unsigned TokNo = 0;
1325 unsigned StringOffset = 0;
1326 if (StartToken)
1327 TokNo = *StartToken;
1328 if (StartTokenByteOffset) {
1329 StringOffset = *StartTokenByteOffset;
1330 ByteNo -= StringOffset;
1331 }
1332 while (true) {
1333 assert(TokNo < getNumConcatenated() && "Invalid byte number!")(static_cast <bool> (TokNo < getNumConcatenated() &&
"Invalid byte number!") ? void (0) : __assert_fail ("TokNo < getNumConcatenated() && \"Invalid byte number!\""
, "clang/lib/AST/Expr.cpp", 1333, __extension__ __PRETTY_FUNCTION__
))
;
1334 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1335
1336 // Get the spelling of the string so that we can get the data that makes up
1337 // the string literal, not the identifier for the macro it is potentially
1338 // expanded through.
1339 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1340
1341 // Re-lex the token to get its length and original spelling.
1342 std::pair<FileID, unsigned> LocInfo =
1343 SM.getDecomposedLoc(StrTokSpellingLoc);
1344 bool Invalid = false;
1345 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1346 if (Invalid) {
1347 if (StartTokenByteOffset != nullptr)
1348 *StartTokenByteOffset = StringOffset;
1349 if (StartToken != nullptr)
1350 *StartToken = TokNo;
1351 return StrTokSpellingLoc;
1352 }
1353
1354 const char *StrData = Buffer.data()+LocInfo.second;
1355
1356 // Create a lexer starting at the beginning of this token.
1357 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1358 Buffer.begin(), StrData, Buffer.end());
1359 Token TheTok;
1360 TheLexer.LexFromRawLexer(TheTok);
1361
1362 // Use the StringLiteralParser to compute the length of the string in bytes.
1363 StringLiteralParser SLP(TheTok, SM, Features, Target);
1364 unsigned TokNumBytes = SLP.GetStringLength();
1365
1366 // If the byte is in this token, return the location of the byte.
1367 if (ByteNo < TokNumBytes ||
1368 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1369 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1370
1371 // Now that we know the offset of the token in the spelling, use the
1372 // preprocessor to get the offset in the original source.
1373 if (StartTokenByteOffset != nullptr)
1374 *StartTokenByteOffset = StringOffset;
1375 if (StartToken != nullptr)
1376 *StartToken = TokNo;
1377 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1378 }
1379
1380 // Move to the next string token.
1381 StringOffset += TokNumBytes;
1382 ++TokNo;
1383 ByteNo -= TokNumBytes;
1384 }
1385}
1386
1387/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1388/// corresponds to, e.g. "sizeof" or "[pre]++".
1389StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1390 switch (Op) {
1391#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1392#include "clang/AST/OperationKinds.def"
1393 }
1394 llvm_unreachable("Unknown unary operator")::llvm::llvm_unreachable_internal("Unknown unary operator", "clang/lib/AST/Expr.cpp"
, 1394)
;
1395}
1396
1397UnaryOperatorKind
1398UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1399 switch (OO) {
1400 default: llvm_unreachable("No unary operator for overloaded function")::llvm::llvm_unreachable_internal("No unary operator for overloaded function"
, "clang/lib/AST/Expr.cpp", 1400)
;
1401 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1402 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1403 case OO_Amp: return UO_AddrOf;
1404 case OO_Star: return UO_Deref;
1405 case OO_Plus: return UO_Plus;
1406 case OO_Minus: return UO_Minus;
1407 case OO_Tilde: return UO_Not;
1408 case OO_Exclaim: return UO_LNot;
1409 case OO_Coawait: return UO_Coawait;
1410 }
1411}
1412
1413OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1414 switch (Opc) {
1415 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1416 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1417 case UO_AddrOf: return OO_Amp;
1418 case UO_Deref: return OO_Star;
1419 case UO_Plus: return OO_Plus;
1420 case UO_Minus: return OO_Minus;
1421 case UO_Not: return OO_Tilde;
1422 case UO_LNot: return OO_Exclaim;
1423 case UO_Coawait: return OO_Coawait;
1424 default: return OO_None;
1425 }
1426}
1427
1428
1429//===----------------------------------------------------------------------===//
1430// Postfix Operators.
1431//===----------------------------------------------------------------------===//
1432
1433CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1434 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1435 SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1436 unsigned MinNumArgs, ADLCallKind UsesADL)
1437 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1438 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1439 unsigned NumPreArgs = PreArgs.size();
1440 CallExprBits.NumPreArgs = NumPreArgs;
1441 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!")(static_cast <bool> ((NumPreArgs == getNumPreArgs()) &&
"NumPreArgs overflow!") ? void (0) : __assert_fail ("(NumPreArgs == getNumPreArgs()) && \"NumPreArgs overflow!\""
, "clang/lib/AST/Expr.cpp", 1441, __extension__ __PRETTY_FUNCTION__
))
;
1442
1443 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1444 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1445 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&(static_cast <bool> ((CallExprBits.OffsetToTrailingObjects
== OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"
) ? void (0) : __assert_fail ("(CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && \"OffsetToTrailingObjects overflow!\""
, "clang/lib/AST/Expr.cpp", 1446, __extension__ __PRETTY_FUNCTION__
))
1446 "OffsetToTrailingObjects overflow!")(static_cast <bool> ((CallExprBits.OffsetToTrailingObjects
== OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"
) ? void (0) : __assert_fail ("(CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && \"OffsetToTrailingObjects overflow!\""
, "clang/lib/AST/Expr.cpp", 1446, __extension__ __PRETTY_FUNCTION__
))
;
1447
1448 CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1449
1450 setCallee(Fn);
1451 for (unsigned I = 0; I != NumPreArgs; ++I)
1452 setPreArg(I, PreArgs[I]);
1453 for (unsigned I = 0; I != Args.size(); ++I)
1454 setArg(I, Args[I]);
1455 for (unsigned I = Args.size(); I != NumArgs; ++I)
1456 setArg(I, nullptr);
1457
1458 this->computeDependence();
1459
1460 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1461 if (hasStoredFPFeatures())
1462 setStoredFPFeatures(FPFeatures);
1463}
1464
1465CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1466 bool HasFPFeatures, EmptyShell Empty)
1467 : Expr(SC, Empty), NumArgs(NumArgs) {
1468 CallExprBits.NumPreArgs = NumPreArgs;
1469 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!")(static_cast <bool> ((NumPreArgs == getNumPreArgs()) &&
"NumPreArgs overflow!") ? void (0) : __assert_fail ("(NumPreArgs == getNumPreArgs()) && \"NumPreArgs overflow!\""
, "clang/lib/AST/Expr.cpp", 1469, __extension__ __PRETTY_FUNCTION__
))
;
1470
1471 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1472 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1473 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&(static_cast <bool> ((CallExprBits.OffsetToTrailingObjects
== OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"
) ? void (0) : __assert_fail ("(CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && \"OffsetToTrailingObjects overflow!\""
, "clang/lib/AST/Expr.cpp", 1474, __extension__ __PRETTY_FUNCTION__
))
1474 "OffsetToTrailingObjects overflow!")(static_cast <bool> ((CallExprBits.OffsetToTrailingObjects
== OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"
) ? void (0) : __assert_fail ("(CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && \"OffsetToTrailingObjects overflow!\""
, "clang/lib/AST/Expr.cpp", 1474, __extension__ __PRETTY_FUNCTION__
))
;
1475 CallExprBits.HasFPFeatures = HasFPFeatures;
1476}
1477
1478CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1479 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1480 SourceLocation RParenLoc,
1481 FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1482 ADLCallKind UsesADL) {
1483 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1484 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1485 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1486 void *Mem =
1487 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1488 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1489 RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1490}
1491
1492CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1493 ExprValueKind VK, SourceLocation RParenLoc,
1494 ADLCallKind UsesADL) {
1495 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&(static_cast <bool> (!(reinterpret_cast<uintptr_t>
(Mem) % alignof(CallExpr)) && "Misaligned memory in CallExpr::CreateTemporary!"
) ? void (0) : __assert_fail ("!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && \"Misaligned memory in CallExpr::CreateTemporary!\""
, "clang/lib/AST/Expr.cpp", 1496, __extension__ __PRETTY_FUNCTION__
))
1496 "Misaligned memory in CallExpr::CreateTemporary!")(static_cast <bool> (!(reinterpret_cast<uintptr_t>
(Mem) % alignof(CallExpr)) && "Misaligned memory in CallExpr::CreateTemporary!"
) ? void (0) : __assert_fail ("!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && \"Misaligned memory in CallExpr::CreateTemporary!\""
, "clang/lib/AST/Expr.cpp", 1496, __extension__ __PRETTY_FUNCTION__
))
;
1497 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1498 VK, RParenLoc, FPOptionsOverride(),
1499 /*MinNumArgs=*/0, UsesADL);
1500}
1501
1502CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1503 bool HasFPFeatures, EmptyShell Empty) {
1504 unsigned SizeOfTrailingObjects =
1505 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1506 void *Mem =
1507 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1508 return new (Mem)
1509 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1510}
1511
1512unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1513 switch (SC) {
1514 case CallExprClass:
1515 return sizeof(CallExpr);
1516 case CXXOperatorCallExprClass:
1517 return sizeof(CXXOperatorCallExpr);
1518 case CXXMemberCallExprClass:
1519 return sizeof(CXXMemberCallExpr);
1520 case UserDefinedLiteralClass:
1521 return sizeof(UserDefinedLiteral);
1522 case CUDAKernelCallExprClass:
1523 return sizeof(CUDAKernelCallExpr);
1524 default:
1525 llvm_unreachable("unexpected class deriving from CallExpr!")::llvm::llvm_unreachable_internal("unexpected class deriving from CallExpr!"
, "clang/lib/AST/Expr.cpp", 1525)
;
1526 }
1527}
1528
1529Decl *Expr::getReferencedDeclOfCallee() {
1530 Expr *CEE = IgnoreParenImpCasts();
1531
1532 while (SubstNonTypeTemplateParmExpr *NTTP =
1533 dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1534 CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1535 }
1536
1537 // If we're calling a dereference, look at the pointer instead.
1538 while (true) {
1539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1540 if (BO->isPtrMemOp()) {
1541 CEE = BO->getRHS()->IgnoreParenImpCasts();
1542 continue;
1543 }
1544 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1545 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1546 UO->getOpcode() == UO_Plus) {
1547 CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1548 continue;
1549 }
1550 }
1551 break;
1552 }
1553
1554 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1555 return DRE->getDecl();
1556 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1557 return ME->getMemberDecl();
1558 if (auto *BE = dyn_cast<BlockExpr>(CEE))
1559 return BE->getBlockDecl();
1560
1561 return nullptr;
1562}
1563
1564/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1565unsigned CallExpr::getBuiltinCallee() const {
1566 auto *FDecl = getDirectCallee();
1567 return FDecl ? FDecl->getBuiltinID() : 0;
1568}
1569
1570bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1571 if (unsigned BI = getBuiltinCallee())
1572 return Ctx.BuiltinInfo.isUnevaluated(BI);
1573 return false;
1574}
1575
1576QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1577 const Expr *Callee = getCallee();
1578 QualType CalleeType = Callee->getType();
1579 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1580 CalleeType = FnTypePtr->getPointeeType();
1581 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1582 CalleeType = BPT->getPointeeType();
1583 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1584 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1585 return Ctx.VoidTy;
1586
1587 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1588 return Ctx.DependentTy;
1589
1590 // This should never be overloaded and so should never return null.
1591 CalleeType = Expr::findBoundMemberType(Callee);
1592 assert(!CalleeType.isNull())(static_cast <bool> (!CalleeType.isNull()) ? void (0) :
__assert_fail ("!CalleeType.isNull()", "clang/lib/AST/Expr.cpp"
, 1592, __extension__ __PRETTY_FUNCTION__))
;
1593 } else if (CalleeType->isDependentType() ||
1594 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1595 return Ctx.DependentTy;
1596 }
1597
1598 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1599 return FnType->getReturnType();
1600}
1601
1602const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1603 // If the return type is a struct, union, or enum that is marked nodiscard,
1604 // then return the return type attribute.
1605 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1606 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1607 return A;
1608
1609 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1610 TD = TD->desugar()->getAs<TypedefType>())
1611 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1612 return A;
1613
1614 // Otherwise, see if the callee is marked nodiscard and return that attribute
1615 // instead.
1616 const Decl *D = getCalleeDecl();
1617 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1618}
1619
1620SourceLocation CallExpr::getBeginLoc() const {
1621 if (isa<CXXOperatorCallExpr>(this))
1622 return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1623
1624 SourceLocation begin = getCallee()->getBeginLoc();
1625 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1626 begin = getArg(0)->getBeginLoc();
1627 return begin;
1628}
1629SourceLocation CallExpr::getEndLoc() const {
1630 if (isa<CXXOperatorCallExpr>(this))
1631 return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1632
1633 SourceLocation end = getRParenLoc();
1634 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1635 end = getArg(getNumArgs() - 1)->getEndLoc();
1636 return end;
1637}
1638
1639OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1640 SourceLocation OperatorLoc,
1641 TypeSourceInfo *tsi,
1642 ArrayRef<OffsetOfNode> comps,
1643 ArrayRef<Expr*> exprs,
1644 SourceLocation RParenLoc) {
1645 void *Mem = C.Allocate(
1646 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1647
1648 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1649 RParenLoc);
1650}
1651
1652OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1653 unsigned numComps, unsigned numExprs) {
1654 void *Mem =
1655 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1656 return new (Mem) OffsetOfExpr(numComps, numExprs);
1657}
1658
1659OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1660 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1661 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1662 SourceLocation RParenLoc)
1663 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1664 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1665 NumComps(comps.size()), NumExprs(exprs.size()) {
1666 for (unsigned i = 0; i != comps.size(); ++i)
1667 setComponent(i, comps[i]);
1668 for (unsigned i = 0; i != exprs.size(); ++i)
1669 setIndexExpr(i, exprs[i]);
1670
1671 setDependence(computeDependence(this));
1672}
1673
1674IdentifierInfo *OffsetOfNode::getFieldName() const {
1675 assert(getKind() == Field || getKind() == Identifier)(static_cast <bool> (getKind() == Field || getKind() ==
Identifier) ? void (0) : __assert_fail ("getKind() == Field || getKind() == Identifier"
, "clang/lib/AST/Expr.cpp", 1675, __extension__ __PRETTY_FUNCTION__
))
;
1676 if (getKind() == Field)
1677 return getField()->getIdentifier();
1678
1679 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1680}
1681
1682UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1683 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1684 SourceLocation op, SourceLocation rp)
1685 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1686 OpLoc(op), RParenLoc(rp) {
1687 assert(ExprKind <= UETT_Last && "invalid enum value!")(static_cast <bool> (ExprKind <= UETT_Last &&
"invalid enum value!") ? void (0) : __assert_fail ("ExprKind <= UETT_Last && \"invalid enum value!\""
, "clang/lib/AST/Expr.cpp", 1687, __extension__ __PRETTY_FUNCTION__
))
;
1688 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1689 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&(static_cast <bool> (static_cast<unsigned>(ExprKind
) == UnaryExprOrTypeTraitExprBits.Kind && "UnaryExprOrTypeTraitExprBits.Kind overflow!"
) ? void (0) : __assert_fail ("static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && \"UnaryExprOrTypeTraitExprBits.Kind overflow!\""
, "clang/lib/AST/Expr.cpp", 1690, __extension__ __PRETTY_FUNCTION__
))
1690 "UnaryExprOrTypeTraitExprBits.Kind overflow!")(static_cast <bool> (static_cast<unsigned>(ExprKind
) == UnaryExprOrTypeTraitExprBits.Kind && "UnaryExprOrTypeTraitExprBits.Kind overflow!"
) ? void (0) : __assert_fail ("static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && \"UnaryExprOrTypeTraitExprBits.Kind overflow!\""
, "clang/lib/AST/Expr.cpp", 1690, __extension__ __PRETTY_FUNCTION__
))
;
1691 UnaryExprOrTypeTraitExprBits.IsType = false;
1692 Argument.Ex = E;
1693 setDependence(computeDependence(this));
1694}
1695
1696MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1697 ValueDecl *MemberDecl,
1698 const DeclarationNameInfo &NameInfo, QualType T,
1699 ExprValueKind VK, ExprObjectKind OK,
1700 NonOdrUseReason NOUR)
1701 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1702 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1703 assert(!NameInfo.getName() ||(static_cast <bool> (!NameInfo.getName() || MemberDecl->
getDeclName() == NameInfo.getName()) ? void (0) : __assert_fail
("!NameInfo.getName() || MemberDecl->getDeclName() == NameInfo.getName()"
, "clang/lib/AST/Expr.cpp", 1704, __extension__ __PRETTY_FUNCTION__
))
1704 MemberDecl->getDeclName() == NameInfo.getName())(static_cast <bool> (!NameInfo.getName() || MemberDecl->
getDeclName() == NameInfo.getName()) ? void (0) : __assert_fail
("!NameInfo.getName() || MemberDecl->getDeclName() == NameInfo.getName()"
, "clang/lib/AST/Expr.cpp", 1704, __extension__ __PRETTY_FUNCTION__
))
;
1705 MemberExprBits.IsArrow = IsArrow;
1706 MemberExprBits.HasQualifierOrFoundDecl = false;
1707 MemberExprBits.HasTemplateKWAndArgsInfo = false;
1708 MemberExprBits.HadMultipleCandidates = false;
1709 MemberExprBits.NonOdrUseReason = NOUR;
1710 MemberExprBits.OperatorLoc = OperatorLoc;
1711 setDependence(computeDependence(this));
1712}
1713
1714MemberExpr *MemberExpr::Create(
1715 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1716 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1717 ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1718 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1719 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1720 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1721 FoundDecl.getAccess() != MemberDecl->getAccess();
1722 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1723 std::size_t Size =
1724 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1725 TemplateArgumentLoc>(
1726 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1727 TemplateArgs ? TemplateArgs->size() : 0);
1728
1729 void *Mem = C.Allocate(Size, alignof(MemberExpr));
1730 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1731 NameInfo, T, VK, OK, NOUR);
1732
1733 // FIXME: remove remaining dependence computation to computeDependence().
1734 auto Deps = E->getDependence();
1735 if (HasQualOrFound) {
1736 // FIXME: Wrong. We should be looking at the member declaration we found.
1737 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1738 Deps |= ExprDependence::TypeValueInstantiation;
1739 else if (QualifierLoc &&
1740 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1741 Deps |= ExprDependence::Instantiation;
1742
1743 E->MemberExprBits.HasQualifierOrFoundDecl = true;
1744
1745 MemberExprNameQualifier *NQ =
1746 E->getTrailingObjects<MemberExprNameQualifier>();
1747 NQ->QualifierLoc = QualifierLoc;
1748 NQ->FoundDecl = FoundDecl;
1749 }
1750
1751 E->MemberExprBits.HasTemplateKWAndArgsInfo =
1752 TemplateArgs || TemplateKWLoc.isValid();
1753
1754 if (TemplateArgs) {
1755 auto TemplateArgDeps = TemplateArgumentDependence::None;
1756 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1757 TemplateKWLoc, *TemplateArgs,
1758 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1759 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1760 Deps |= ExprDependence::Instantiation;
1761 } else if (TemplateKWLoc.isValid()) {
1762 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1763 TemplateKWLoc);
1764 }
1765 E->setDependence(Deps);
1766
1767 return E;
1768}
1769
1770MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1771 bool HasQualifier, bool HasFoundDecl,
1772 bool HasTemplateKWAndArgsInfo,
1773 unsigned NumTemplateArgs) {
1774 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&(static_cast <bool> ((!NumTemplateArgs || HasTemplateKWAndArgsInfo
) && "template args but no template arg info?") ? void
(0) : __assert_fail ("(!NumTemplateArgs || HasTemplateKWAndArgsInfo) && \"template args but no template arg info?\""
, "clang/lib/AST/Expr.cpp", 1775, __extension__ __PRETTY_FUNCTION__
))
1775 "template args but no template arg info?")(static_cast <bool> ((!NumTemplateArgs || HasTemplateKWAndArgsInfo
) && "template args but no template arg info?") ? void
(0) : __assert_fail ("(!NumTemplateArgs || HasTemplateKWAndArgsInfo) && \"template args but no template arg info?\""
, "clang/lib/AST/Expr.cpp", 1775, __extension__ __PRETTY_FUNCTION__
))
;
1776 bool HasQualOrFound = HasQualifier || HasFoundDecl;
1777 std::size_t Size =
1778 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1779 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1780 HasTemplateKWAndArgsInfo ? 1 : 0,
1781 NumTemplateArgs);
1782 void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1783 return new (Mem) MemberExpr(EmptyShell());
1784}
1785
1786void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1787 MemberDecl = NewD;
1788 if (getType()->isUndeducedType())
1789 setType(NewD->getType());
1790 setDependence(computeDependence(this));
1791}
1792
1793SourceLocation MemberExpr::getBeginLoc() const {
1794 if (isImplicitAccess()) {
1795 if (hasQualifier())
1796 return getQualifierLoc().getBeginLoc();
1797 return MemberLoc;
1798 }
1799
1800 // FIXME: We don't want this to happen. Rather, we should be able to
1801 // detect all kinds of implicit accesses more cleanly.
1802 SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1803 if (BaseStartLoc.isValid())
1804 return BaseStartLoc;
1805 return MemberLoc;
1806}
1807SourceLocation MemberExpr::getEndLoc() const {
1808 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1809 if (hasExplicitTemplateArgs())
1810 EndLoc = getRAngleLoc();
1811 else if (EndLoc.isInvalid())
1812 EndLoc = getBase()->getEndLoc();
1813 return EndLoc;
1814}
1815
1816bool CastExpr::CastConsistency() const {
1817 switch (getCastKind()) {
1818 case CK_DerivedToBase:
1819 case CK_UncheckedDerivedToBase:
1820 case CK_DerivedToBaseMemberPointer:
1821 case CK_BaseToDerived:
1822 case CK_BaseToDerivedMemberPointer:
1823 assert(!path_empty() && "Cast kind should have a base path!")(static_cast <bool> (!path_empty() && "Cast kind should have a base path!"
) ? void (0) : __assert_fail ("!path_empty() && \"Cast kind should have a base path!\""
, "clang/lib/AST/Expr.cpp", 1823, __extension__ __PRETTY_FUNCTION__
))
;
1824 break;
1825
1826 case CK_CPointerToObjCPointerCast:
1827 assert(getType()->isObjCObjectPointerType())(static_cast <bool> (getType()->isObjCObjectPointerType
()) ? void (0) : __assert_fail ("getType()->isObjCObjectPointerType()"
, "clang/lib/AST/Expr.cpp", 1827, __extension__ __PRETTY_FUNCTION__
))
;
1828 assert(getSubExpr()->getType()->isPointerType())(static_cast <bool> (getSubExpr()->getType()->isPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isPointerType()"
, "clang/lib/AST/Expr.cpp", 1828, __extension__ __PRETTY_FUNCTION__
))
;
1829 goto CheckNoBasePath;
1830
1831 case CK_BlockPointerToObjCPointerCast:
1832 assert(getType()->isObjCObjectPointerType())(static_cast <bool> (getType()->isObjCObjectPointerType
()) ? void (0) : __assert_fail ("getType()->isObjCObjectPointerType()"
, "clang/lib/AST/Expr.cpp", 1832, __extension__ __PRETTY_FUNCTION__
))
;
1833 assert(getSubExpr()->getType()->isBlockPointerType())(static_cast <bool> (getSubExpr()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1833, __extension__ __PRETTY_FUNCTION__
))
;
1834 goto CheckNoBasePath;
1835
1836 case CK_ReinterpretMemberPointer:
1837 assert(getType()->isMemberPointerType())(static_cast <bool> (getType()->isMemberPointerType(
)) ? void (0) : __assert_fail ("getType()->isMemberPointerType()"
, "clang/lib/AST/Expr.cpp", 1837, __extension__ __PRETTY_FUNCTION__
))
;
1838 assert(getSubExpr()->getType()->isMemberPointerType())(static_cast <bool> (getSubExpr()->getType()->isMemberPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isMemberPointerType()"
, "clang/lib/AST/Expr.cpp", 1838, __extension__ __PRETTY_FUNCTION__
))
;
1839 goto CheckNoBasePath;
1840
1841 case CK_BitCast:
1842 // Arbitrary casts to C pointer types count as bitcasts.
1843 // Otherwise, we should only have block and ObjC pointer casts
1844 // here if they stay within the type kind.
1845 if (!getType()->isPointerType()) {
1846 assert(getType()->isObjCObjectPointerType() ==(static_cast <bool> (getType()->isObjCObjectPointerType
() == getSubExpr()->getType()->isObjCObjectPointerType(
)) ? void (0) : __assert_fail ("getType()->isObjCObjectPointerType() == getSubExpr()->getType()->isObjCObjectPointerType()"
, "clang/lib/AST/Expr.cpp", 1847, __extension__ __PRETTY_FUNCTION__
))
1847 getSubExpr()->getType()->isObjCObjectPointerType())(static_cast <bool> (getType()->isObjCObjectPointerType
() == getSubExpr()->getType()->isObjCObjectPointerType(
)) ? void (0) : __assert_fail ("getType()->isObjCObjectPointerType() == getSubExpr()->getType()->isObjCObjectPointerType()"
, "clang/lib/AST/Expr.cpp", 1847, __extension__ __PRETTY_FUNCTION__
))
;
1848 assert(getType()->isBlockPointerType() ==(static_cast <bool> (getType()->isBlockPointerType()
== getSubExpr()->getType()->isBlockPointerType()) ? void
(0) : __assert_fail ("getType()->isBlockPointerType() == getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1849, __extension__ __PRETTY_FUNCTION__
))
1849 getSubExpr()->getType()->isBlockPointerType())(static_cast <bool> (getType()->isBlockPointerType()
== getSubExpr()->getType()->isBlockPointerType()) ? void
(0) : __assert_fail ("getType()->isBlockPointerType() == getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1849, __extension__ __PRETTY_FUNCTION__
))
;
1850 }
1851 goto CheckNoBasePath;
1852
1853 case CK_AnyPointerToBlockPointerCast:
1854 assert(getType()->isBlockPointerType())(static_cast <bool> (getType()->isBlockPointerType()
) ? void (0) : __assert_fail ("getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1854, __extension__ __PRETTY_FUNCTION__
))
;
1855 assert(getSubExpr()->getType()->isAnyPointerType() &&(static_cast <bool> (getSubExpr()->getType()->isAnyPointerType
() && !getSubExpr()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isAnyPointerType() && !getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1856, __extension__ __PRETTY_FUNCTION__
))
1856 !getSubExpr()->getType()->isBlockPointerType())(static_cast <bool> (getSubExpr()->getType()->isAnyPointerType
() && !getSubExpr()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isAnyPointerType() && !getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1856, __extension__ __PRETTY_FUNCTION__
))
;
1857 goto CheckNoBasePath;
1858
1859 case CK_CopyAndAutoreleaseBlockObject:
1860 assert(getType()->isBlockPointerType())(static_cast <bool> (getType()->isBlockPointerType()
) ? void (0) : __assert_fail ("getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1860, __extension__ __PRETTY_FUNCTION__
))
;
1861 assert(getSubExpr()->getType()->isBlockPointerType())(static_cast <bool> (getSubExpr()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1861, __extension__ __PRETTY_FUNCTION__
))
;
1862 goto CheckNoBasePath;
1863
1864 case CK_FunctionToPointerDecay:
1865 assert(getType()->isPointerType())(static_cast <bool> (getType()->isPointerType()) ? void
(0) : __assert_fail ("getType()->isPointerType()", "clang/lib/AST/Expr.cpp"
, 1865, __extension__ __PRETTY_FUNCTION__))
;
1866 assert(getSubExpr()->getType()->isFunctionType())(static_cast <bool> (getSubExpr()->getType()->isFunctionType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isFunctionType()"
, "clang/lib/AST/Expr.cpp", 1866, __extension__ __PRETTY_FUNCTION__
))
;
1867 goto CheckNoBasePath;
1868
1869 case CK_AddressSpaceConversion: {
1870 auto Ty = getType();
1871 auto SETy = getSubExpr()->getType();
1872 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy))(static_cast <bool> (getValueKindForType(Ty) == Expr::getValueKindForType
(SETy)) ? void (0) : __assert_fail ("getValueKindForType(Ty) == Expr::getValueKindForType(SETy)"
, "clang/lib/AST/Expr.cpp", 1872, __extension__ __PRETTY_FUNCTION__
))
;
1873 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1874 Ty = Ty->getPointeeType();
1875 SETy = SETy->getPointeeType();
1876 }
1877 assert((Ty->isDependentType() || SETy->isDependentType()) ||(static_cast <bool> ((Ty->isDependentType() || SETy->
isDependentType()) || (!Ty.isNull() && !SETy.isNull()
&& Ty.getAddressSpace() != SETy.getAddressSpace())) ?
void (0) : __assert_fail ("(Ty->isDependentType() || SETy->isDependentType()) || (!Ty.isNull() && !SETy.isNull() && Ty.getAddressSpace() != SETy.getAddressSpace())"
, "clang/lib/AST/Expr.cpp", 1879, __extension__ __PRETTY_FUNCTION__
))
1878 (!Ty.isNull() && !SETy.isNull() &&(static_cast <bool> ((Ty->isDependentType() || SETy->
isDependentType()) || (!Ty.isNull() && !SETy.isNull()
&& Ty.getAddressSpace() != SETy.getAddressSpace())) ?
void (0) : __assert_fail ("(Ty->isDependentType() || SETy->isDependentType()) || (!Ty.isNull() && !SETy.isNull() && Ty.getAddressSpace() != SETy.getAddressSpace())"
, "clang/lib/AST/Expr.cpp", 1879, __extension__ __PRETTY_FUNCTION__
))
1879 Ty.getAddressSpace() != SETy.getAddressSpace()))(static_cast <bool> ((Ty->isDependentType() || SETy->
isDependentType()) || (!Ty.isNull() && !SETy.isNull()
&& Ty.getAddressSpace() != SETy.getAddressSpace())) ?
void (0) : __assert_fail ("(Ty->isDependentType() || SETy->isDependentType()) || (!Ty.isNull() && !SETy.isNull() && Ty.getAddressSpace() != SETy.getAddressSpace())"
, "clang/lib/AST/Expr.cpp", 1879, __extension__ __PRETTY_FUNCTION__
))
;
1880 goto CheckNoBasePath;
1881 }
1882 // These should not have an inheritance path.
1883 case CK_Dynamic:
1884 case CK_ToUnion:
1885 case CK_ArrayToPointerDecay:
1886 case CK_NullToMemberPointer:
1887 case CK_NullToPointer:
1888 case CK_ConstructorConversion:
1889 case CK_IntegralToPointer:
1890 case CK_PointerToIntegral:
1891 case CK_ToVoid:
1892 case CK_VectorSplat:
1893 case CK_IntegralCast:
1894 case CK_BooleanToSignedIntegral:
1895 case CK_IntegralToFloating:
1896 case CK_FloatingToIntegral:
1897 case CK_FloatingCast:
1898 case CK_ObjCObjectLValueCast:
1899 case CK_FloatingRealToComplex:
1900 case CK_FloatingComplexToReal:
1901 case CK_FloatingComplexCast:
1902 case CK_FloatingComplexToIntegralComplex:
1903 case CK_IntegralRealToComplex:
1904 case CK_IntegralComplexToReal:
1905 case CK_IntegralComplexCast:
1906 case CK_IntegralComplexToFloatingComplex:
1907 case CK_ARCProduceObject:
1908 case CK_ARCConsumeObject:
1909 case CK_ARCReclaimReturnedObject:
1910 case CK_ARCExtendBlockObject:
1911 case CK_ZeroToOCLOpaqueType:
1912 case CK_IntToOCLSampler:
1913 case CK_FloatingToFixedPoint:
1914 case CK_FixedPointToFloating:
1915 case CK_FixedPointCast:
1916 case CK_FixedPointToIntegral:
1917 case CK_IntegralToFixedPoint:
1918 case CK_MatrixCast:
1919 assert(!getType()->isBooleanType() && "unheralded conversion to bool")(static_cast <bool> (!getType()->isBooleanType() &&
"unheralded conversion to bool") ? void (0) : __assert_fail (
"!getType()->isBooleanType() && \"unheralded conversion to bool\""
, "clang/lib/AST/Expr.cpp", 1919, __extension__ __PRETTY_FUNCTION__
))
;
1920 goto CheckNoBasePath;
1921
1922 case CK_Dependent:
1923 case CK_LValueToRValue:
1924 case CK_NoOp:
1925 case CK_AtomicToNonAtomic:
1926 case CK_NonAtomicToAtomic:
1927 case CK_PointerToBoolean:
1928 case CK_IntegralToBoolean:
1929 case CK_FloatingToBoolean:
1930 case CK_MemberPointerToBoolean:
1931 case CK_FloatingComplexToBoolean:
1932 case CK_IntegralComplexToBoolean:
1933 case CK_LValueBitCast: // -> bool&
1934 case CK_LValueToRValueBitCast:
1935 case CK_UserDefinedConversion: // operator bool()
1936 case CK_BuiltinFnToFnPtr:
1937 case CK_FixedPointToBoolean:
1938 CheckNoBasePath:
1939 assert(path_empty() && "Cast kind should not have a base path!")(static_cast <bool> (path_empty() && "Cast kind should not have a base path!"
) ? void (0) : __assert_fail ("path_empty() && \"Cast kind should not have a base path!\""
, "clang/lib/AST/Expr.cpp", 1939, __extension__ __PRETTY_FUNCTION__
))
;
1940 break;
1941 }
1942 return true;
1943}
1944
1945const char *CastExpr::getCastKindName(CastKind CK) {
1946 switch (CK) {
1947#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1948#include "clang/AST/OperationKinds.def"
1949 }
1950 llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/AST/Expr.cpp"
, 1950)
;
1951}
1952
1953namespace {
1954// Skip over implicit nodes produced as part of semantic analysis.
1955// Designed for use with IgnoreExprNodes.
1956Expr *ignoreImplicitSemaNodes(Expr *E) {
1957 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1958 return Materialize->getSubExpr();
1959
1960 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1961 return Binder->getSubExpr();
1962
1963 if (auto *Full = dyn_cast<FullExpr>(E))
1964 return Full->getSubExpr();
1965
1966 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E);
1967 CPLIE && CPLIE->getInitExprs().size() == 1)
1968 return CPLIE->getInitExprs()[0];
1969
1970 return E;
1971}
1972} // namespace
1973
1974Expr *CastExpr::getSubExprAsWritten() {
1975 const Expr *SubExpr = nullptr;
1976
1977 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1978 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1979
1980 // Conversions by constructor and conversion functions have a
1981 // subexpression describing the call; strip it off.
1982 if (E->getCastKind() == CK_ConstructorConversion) {
1983 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
1984 ignoreImplicitSemaNodes);
1985 } else if (E->getCastKind() == CK_UserDefinedConversion) {
1986 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&(static_cast <bool> ((isa<CXXMemberCallExpr>(SubExpr
) || isa<BlockExpr>(SubExpr)) && "Unexpected SubExpr for CK_UserDefinedConversion."
) ? void (0) : __assert_fail ("(isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && \"Unexpected SubExpr for CK_UserDefinedConversion.\""
, "clang/lib/AST/Expr.cpp", 1987, __extension__ __PRETTY_FUNCTION__
))
1987 "Unexpected SubExpr for CK_UserDefinedConversion.")(static_cast <bool> ((isa<CXXMemberCallExpr>(SubExpr
) || isa<BlockExpr>(SubExpr)) && "Unexpected SubExpr for CK_UserDefinedConversion."
) ? void (0) : __assert_fail ("(isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && \"Unexpected SubExpr for CK_UserDefinedConversion.\""
, "clang/lib/AST/Expr.cpp", 1987, __extension__ __PRETTY_FUNCTION__
))
;
1988 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1989 SubExpr = MCE->getImplicitObjectArgument();
1990 }
1991 }
1992
1993 return const_cast<Expr *>(SubExpr);
1994}
1995
1996NamedDecl *CastExpr::getConversionFunction() const {
1997 const Expr *SubExpr = nullptr;
1998
1999 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
2000 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
2001
2002 if (E->getCastKind() == CK_ConstructorConversion)
2003 return cast<CXXConstructExpr>(SubExpr)->getConstructor();
2004
2005 if (E->getCastKind() == CK_UserDefinedConversion) {
2006 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2007 return MCE->getMethodDecl();
2008 }
2009 }
2010
2011 return nullptr;
2012}
2013
2014CXXBaseSpecifier **CastExpr::path_buffer() {
2015 switch (getStmtClass()) {
2016#define ABSTRACT_STMT(x)
2017#define CASTEXPR(Type, Base) \
2018 case Stmt::Type##Class: \
2019 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2020#define STMT(Type, Base)
2021#include "clang/AST/StmtNodes.inc"
2022 default:
2023 llvm_unreachable("non-cast expressions not possible here")::llvm::llvm_unreachable_internal("non-cast expressions not possible here"
, "clang/lib/AST/Expr.cpp", 2023)
;
2024 }
2025}
2026
2027const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2028 QualType opType) {
2029 auto RD = unionType->castAs<RecordType>()->getDecl();
2030 return getTargetFieldForToUnionCast(RD, opType);
2031}
2032
2033const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2034 QualType OpType) {
2035 auto &Ctx = RD->getASTContext();
2036 RecordDecl::field_iterator Field, FieldEnd;
2037 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2038 Field != FieldEnd; ++Field) {
2039 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2040 !Field->isUnnamedBitfield()) {
2041 return *Field;
2042 }
2043 }
2044 return nullptr;
2045}
2046
2047FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2048 assert(hasStoredFPFeatures())(static_cast <bool> (hasStoredFPFeatures()) ? void (0) :
__assert_fail ("hasStoredFPFeatures()", "clang/lib/AST/Expr.cpp"
, 2048, __extension__ __PRETTY_FUNCTION__))
;
2049 switch (getStmtClass()) {
2050 case ImplicitCastExprClass:
2051 return static_cast<ImplicitCastExpr *>(this)
2052 ->getTrailingObjects<FPOptionsOverride>();
2053 case CStyleCastExprClass:
2054 return static_cast<CStyleCastExpr *>(this)
2055 ->getTrailingObjects<FPOptionsOverride>();
2056 case CXXFunctionalCastExprClass:
2057 return static_cast<CXXFunctionalCastExpr *>(this)
2058 ->getTrailingObjects<FPOptionsOverride>();
2059 case CXXStaticCastExprClass:
2060 return static_cast<CXXStaticCastExpr *>(this)
2061 ->getTrailingObjects<FPOptionsOverride>();
2062 default:
2063 llvm_unreachable("Cast does not have FPFeatures")::llvm::llvm_unreachable_internal("Cast does not have FPFeatures"
, "clang/lib/AST/Expr.cpp", 2063)
;
2064 }
2065}
2066
2067ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2068 CastKind Kind, Expr *Operand,
2069 const CXXCastPath *BasePath,
2070 ExprValueKind VK,
2071 FPOptionsOverride FPO) {
2072 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2073 void *Buffer =
2074 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2075 PathSize, FPO.requiresTrailingStorage()));
2076 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2077 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2078 assert((Kind != CK_LValueToRValue ||(static_cast <bool> ((Kind != CK_LValueToRValue || !(T->
isNullPtrType() || T->getAsCXXRecordDecl())) && "invalid type for lvalue-to-rvalue conversion"
) ? void (0) : __assert_fail ("(Kind != CK_LValueToRValue || !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && \"invalid type for lvalue-to-rvalue conversion\""
, "clang/lib/AST/Expr.cpp", 2080, __extension__ __PRETTY_FUNCTION__
))
2079 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&(static_cast <bool> ((Kind != CK_LValueToRValue || !(T->
isNullPtrType() || T->getAsCXXRecordDecl())) && "invalid type for lvalue-to-rvalue conversion"
) ? void (0) : __assert_fail ("(Kind != CK_LValueToRValue || !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && \"invalid type for lvalue-to-rvalue conversion\""
, "clang/lib/AST/Expr.cpp", 2080, __extension__ __PRETTY_FUNCTION__
))
2080 "invalid type for lvalue-to-rvalue conversion")(static_cast <bool> ((Kind != CK_LValueToRValue || !(T->
isNullPtrType() || T->getAsCXXRecordDecl())) && "invalid type for lvalue-to-rvalue conversion"
) ? void (0) : __assert_fail ("(Kind != CK_LValueToRValue || !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && \"invalid type for lvalue-to-rvalue conversion\""
, "clang/lib/AST/Expr.cpp", 2080, __extension__ __PRETTY_FUNCTION__
))
;
2081 ImplicitCastExpr *E =
2082 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2083 if (PathSize)
2084 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2085 E->getTrailingObjects<CXXBaseSpecifier *>());
2086 return E;
2087}
2088
2089ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2090 unsigned PathSize,
2091 bool HasFPFeatures) {
2092 void *Buffer =
2093 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2094 PathSize, HasFPFeatures));
2095 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2096}
2097
2098CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2099 ExprValueKind VK, CastKind K, Expr *Op,
2100 const CXXCastPath *BasePath,
2101 FPOptionsOverride FPO,
2102 TypeSourceInfo *WrittenTy,
2103 SourceLocation L, SourceLocation R) {
2104 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2105 void *Buffer =
2106 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2107 PathSize, FPO.requiresTrailingStorage()));
2108 CStyleCastExpr *E =
2109 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2110 if (PathSize)
2111 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2112 E->getTrailingObjects<CXXBaseSpecifier *>());
2113 return E;
2114}
2115
2116CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2117 unsigned PathSize,
2118 bool HasFPFeatures) {
2119 void *Buffer =
2120 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2121 PathSize, HasFPFeatures));
2122 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2123}
2124
2125/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2126/// corresponds to, e.g. "<<=".
2127StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2128 switch (Op) {
2129#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2130#include "clang/AST/OperationKinds.def"
2131 }
2132 llvm_unreachable("Invalid OpCode!")::llvm::llvm_unreachable_internal("Invalid OpCode!", "clang/lib/AST/Expr.cpp"
, 2132)
;
2133}
2134
2135BinaryOperatorKind
2136BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2137 switch (OO) {
2138 default: llvm_unreachable("Not an overloadable binary operator")::llvm::llvm_unreachable_internal("Not an overloadable binary operator"
, "clang/lib/AST/Expr.cpp", 2138)
;
2139 case OO_Plus: return BO_Add;
2140 case OO_Minus: return BO_Sub;
2141 case OO_Star: return BO_Mul;
2142 case OO_Slash: return BO_Div;
2143 case OO_Percent: return BO_Rem;
2144 case OO_Caret: return BO_Xor;
2145 case OO_Amp: return BO_And;
2146 case OO_Pipe: return BO_Or;
2147 case OO_Equal: return BO_Assign;
2148 case OO_Spaceship: return BO_Cmp;
2149 case OO_Less: return BO_LT;
2150 case OO_Greater: return BO_GT;
2151 case OO_PlusEqual: return BO_AddAssign;
2152 case OO_MinusEqual: return BO_SubAssign;
2153 case OO_StarEqual: return BO_MulAssign;
2154 case OO_SlashEqual: return BO_DivAssign;
2155 case OO_PercentEqual: return BO_RemAssign;
2156 case OO_CaretEqual: return BO_XorAssign;
2157 case OO_AmpEqual: return BO_AndAssign;
2158 case OO_PipeEqual: return BO_OrAssign;
2159 case OO_LessLess: return BO_Shl;
2160 case OO_GreaterGreater: return BO_Shr;
2161 case OO_LessLessEqual: return BO_ShlAssign;
2162 case OO_GreaterGreaterEqual: return BO_ShrAssign;
2163 case OO_EqualEqual: return BO_EQ;
2164 case OO_ExclaimEqual: return BO_NE;
2165 case OO_LessEqual: return BO_LE;
2166 case OO_GreaterEqual: return BO_GE;
2167 case OO_AmpAmp: return BO_LAnd;
2168 case OO_PipePipe: return BO_LOr;
2169 case OO_Comma: return BO_Comma;
2170 case OO_ArrowStar: return BO_PtrMemI;
2171 }
2172}
2173
2174OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2175 static const OverloadedOperatorKind OverOps[] = {
2176 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2177 OO_Star, OO_Slash, OO_Percent,
2178 OO_Plus, OO_Minus,
2179 OO_LessLess, OO_GreaterGreater,
2180 OO_Spaceship,
2181 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2182 OO_EqualEqual, OO_ExclaimEqual,
2183 OO_Amp,
2184 OO_Caret,
2185 OO_Pipe,
2186 OO_AmpAmp,
2187 OO_PipePipe,
2188 OO_Equal, OO_StarEqual,
2189 OO_SlashEqual, OO_PercentEqual,
2190 OO_PlusEqual, OO_MinusEqual,
2191 OO_LessLessEqual, OO_GreaterGreaterEqual,
2192 OO_AmpEqual, OO_CaretEqual,
2193 OO_PipeEqual,
2194 OO_Comma
2195 };
2196 return OverOps[Opc];
2197}
2198
2199bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2200 Opcode Opc,
2201 Expr *LHS, Expr *RHS) {
2202 if (Opc != BO_Add)
2203 return false;
2204
2205 // Check that we have one pointer and one integer operand.
2206 Expr *PExp;
2207 if (LHS->getType()->isPointerType()) {
2208 if (!RHS->getType()->isIntegerType())
2209 return false;
2210 PExp = LHS;
2211 } else if (RHS->getType()->isPointerType()) {
2212 if (!LHS->getType()->isIntegerType())
2213 return false;
2214 PExp = RHS;
2215 } else {
2216 return false;
2217 }
2218
2219 // Check that the pointer is a nullptr.
2220 if (!PExp->IgnoreParenCasts()
2221 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2222 return false;
2223
2224 // Check that the pointee type is char-sized.
2225 const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2226 if (!PTy || !PTy->getPointeeType()->isCharType())
2227 return false;
2228
2229 return true;
2230}
2231
2232SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2233 QualType ResultTy, SourceLocation BLoc,
2234 SourceLocation RParenLoc,
2235 DeclContext *ParentContext)
2236 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2237 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2238 SourceLocExprBits.Kind = Kind;
2239 setDependence(ExprDependence::None);
2240}
2241
2242StringRef SourceLocExpr::getBuiltinStr() const {
2243 switch (getIdentKind()) {
2244 case File:
2245 return "__builtin_FILE";
2246 case FileName:
2247 return "__builtin_FILE_NAME";
2248 case Function:
2249 return "__builtin_FUNCTION";
2250 case Line:
2251 return "__builtin_LINE";
2252 case Column:
2253 return "__builtin_COLUMN";
2254 case SourceLocStruct:
2255 return "__builtin_source_location";
2256 }
2257 llvm_unreachable("unexpected IdentKind!")::llvm::llvm_unreachable_internal("unexpected IdentKind!", "clang/lib/AST/Expr.cpp"
, 2257)
;
2258}
2259
2260APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2261 const Expr *DefaultExpr) const {
2262 SourceLocation Loc;
2263 const DeclContext *Context;
2264
2265 std::tie(Loc,
2266 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2267 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2268 return {DIE->getUsedLocation(), DIE->getUsedContext()};
2269 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2270 return {DAE->getUsedLocation(), DAE->getUsedContext()};
2271 return {this->getLocation(), this->getParentContext()};
2272 }();
2273
2274 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2275 Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2276
2277 auto MakeStringLiteral = [&](StringRef Tmp) {
2278 using LValuePathEntry = APValue::LValuePathEntry;
2279 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2280 // Decay the string to a pointer to the first character.
2281 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2282 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2283 };
2284
2285 switch (getIdentKind()) {
2286 case SourceLocExpr::FileName: {
2287 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2288 // the last part of __builtin_FILE().
2289 SmallString<256> FileName;
2290 clang::Preprocessor::processPathToFileName(
2291 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo());
2292 return MakeStringLiteral(FileName);
2293 }
2294 case SourceLocExpr::File: {
2295 SmallString<256> Path(PLoc.getFilename());
2296 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2297 Ctx.getTargetInfo());
2298 return MakeStringLiteral(Path);
2299 }
2300 case SourceLocExpr::Function: {
2301 const auto *CurDecl = dyn_cast<Decl>(Context);
2302 return MakeStringLiteral(
2303 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2304 : std::string(""));
2305 }
2306 case SourceLocExpr::Line:
2307 case SourceLocExpr::Column: {
2308 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2309 /*isUnsigned=*/true);
2310 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2311 : PLoc.getColumn();
2312 return APValue(IntVal);
2313 }
2314 case SourceLocExpr::SourceLocStruct: {
2315 // Fill in a std::source_location::__impl structure, by creating an
2316 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2317 // that.
2318 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2319 assert(ImplDecl)(static_cast <bool> (ImplDecl) ? void (0) : __assert_fail
("ImplDecl", "clang/lib/AST/Expr.cpp", 2319, __extension__ __PRETTY_FUNCTION__
))
;
2320
2321 // Construct an APValue for the __impl struct, and get or create a Decl
2322 // corresponding to that. Note that we've already verified that the shape of
2323 // the ImplDecl type is as expected.
2324
2325 APValue Value(APValue::UninitStruct(), 0, 4);
2326 for (FieldDecl *F : ImplDecl->fields()) {
2327 StringRef Name = F->getName();
2328 if (Name == "_M_file_name") {
2329 SmallString<256> Path(PLoc.getFilename());
2330 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2331 Ctx.getTargetInfo());
2332 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2333 } else if (Name == "_M_function_name") {
2334 // Note: this emits the PrettyFunction name -- different than what
2335 // __builtin_FUNCTION() above returns!
2336 const auto *CurDecl = dyn_cast<Decl>(Context);
2337 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2338 CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2339 ? StringRef(PredefinedExpr::ComputeName(
2340 PredefinedExpr::PrettyFunction, CurDecl))
2341 : "");
2342 } else if (Name == "_M_line") {
2343 QualType Ty = F->getType();
2344 llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2345 Ty->hasUnsignedIntegerRepresentation());
2346 IntVal = PLoc.getLine();
2347 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2348 } else if (Name == "_M_column") {
2349 QualType Ty = F->getType();
2350 llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2351 Ty->hasUnsignedIntegerRepresentation());
2352 IntVal = PLoc.getColumn();
2353 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2354 }
2355 }
2356
2357 UnnamedGlobalConstantDecl *GV =
2358 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2359
2360 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2361 false);
2362 }
2363 }
2364 llvm_unreachable("unhandled case")::llvm::llvm_unreachable_internal("unhandled case", "clang/lib/AST/Expr.cpp"
, 2364)
;
2365}
2366
2367InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2368 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2369 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2370 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2371 RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2372 sawArrayRangeDesignator(false);
2373 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2374
2375 setDependence(computeDependence(this));
2376}
2377
2378void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2379 if (NumInits > InitExprs.size())
2380 InitExprs.reserve(C, NumInits);
2381}
2382
2383void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2384 InitExprs.resize(C, NumInits, nullptr);
2385}
2386
2387Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2388 if (Init >= InitExprs.size()) {
2389 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2390 setInit(Init, expr);
2391 return nullptr;
2392 }
2393
2394 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2395 setInit(Init, expr);
2396 return Result;
2397}
2398
2399void InitListExpr::setArrayFiller(Expr *filler) {
2400 assert(!hasArrayFiller() && "Filler already set!")(static_cast <bool> (!hasArrayFiller() && "Filler already set!"
) ? void (0) : __assert_fail ("!hasArrayFiller() && \"Filler already set!\""
, "clang/lib/AST/Expr.cpp", 2400, __extension__ __PRETTY_FUNCTION__
))
;
2401 ArrayFillerOrUnionFieldInit = filler;
2402 // Fill out any "holes" in the array due to designated initializers.
2403 Expr **inits = getInits();
2404 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2405 if (inits[i] == nullptr)
2406 inits[i] = filler;
2407}
2408
2409bool InitListExpr::isStringLiteralInit() const {
2410 if (getNumInits() != 1)
2411 return false;
2412 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2413 if (!AT || !AT->getElementType()->isIntegerType())
2414 return false;
2415 // It is possible for getInit() to return null.
2416 const Expr *Init = getInit(0);
2417 if (!Init)
2418 return false;
2419 Init = Init->IgnoreParenImpCasts();
2420 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2421}
2422
2423bool InitListExpr::isTransparent() const {
2424 assert(isSemanticForm() && "syntactic form never semantically transparent")(static_cast <bool> (isSemanticForm() && "syntactic form never semantically transparent"
) ? void (0) : __assert_fail ("isSemanticForm() && \"syntactic form never semantically transparent\""
, "clang/lib/AST/Expr.cpp", 2424, __extension__ __PRETTY_FUNCTION__
))
;
2425
2426 // A glvalue InitListExpr is always just sugar.
2427 if (isGLValue()) {
2428 assert(getNumInits() == 1 && "multiple inits in glvalue init list")(static_cast <bool> (getNumInits() == 1 && "multiple inits in glvalue init list"
) ? void (0) : __assert_fail ("getNumInits() == 1 && \"multiple inits in glvalue init list\""
, "clang/lib/AST/Expr.cpp", 2428, __extension__ __PRETTY_FUNCTION__
))
;
2429 return true;
2430 }
2431
2432 // Otherwise, we're sugar if and only if we have exactly one initializer that
2433 // is of the same type.
2434 if (getNumInits() != 1 || !getInit(0))
2435 return false;
2436
2437 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2438 // transparent struct copy.
2439 if (!getInit(0)->isPRValue() && getType()->isRecordType())
2440 return false;
2441
2442 return getType().getCanonicalType() ==
2443 getInit(0)->getType().getCanonicalType();
2444}
2445
2446bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2447 assert(isSyntacticForm() && "only test syntactic form as zero initializer")(static_cast <bool> (isSyntacticForm() && "only test syntactic form as zero initializer"
) ? void (0) : __assert_fail ("isSyntacticForm() && \"only test syntactic form as zero initializer\""
, "clang/lib/AST/Expr.cpp", 2447, __extension__ __PRETTY_FUNCTION__
))
;
2448
2449 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2450 return false;
2451 }
2452
2453 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2454 return Lit && Lit->getValue() == 0;
2455}
2456
2457SourceLocation InitListExpr::getBeginLoc() const {
2458 if (InitListExpr *SyntacticForm = getSyntacticForm())
2459 return SyntacticForm->getBeginLoc();
2460 SourceLocation Beg = LBraceLoc;
2461 if (Beg.isInvalid()) {
2462 // Find the first non-null initializer.
2463 for (InitExprsTy::const_iterator I = InitExprs.begin(),
2464 E = InitExprs.end();
2465 I != E; ++I) {
2466 if (Stmt *S = *I) {
2467 Beg = S->getBeginLoc();
2468 break;
2469 }
2470 }
2471 }
2472 return Beg;
2473}
2474
2475SourceLocation InitListExpr::getEndLoc() const {
2476 if (InitListExpr *SyntacticForm = getSyntacticForm())
2477 return SyntacticForm->getEndLoc();
2478 SourceLocation End = RBraceLoc;
2479 if (End.isInvalid()) {
2480 // Find the first non-null initializer from the end.
2481 for (Stmt *S : llvm::reverse(InitExprs)) {
2482 if (S) {
2483 End = S->getEndLoc();
2484 break;
2485 }
2486 }
2487 }
2488 return End;
2489}
2490
2491/// getFunctionType - Return the underlying function type for this block.
2492///
2493const FunctionProtoType *BlockExpr::getFunctionType() const {
2494 // The block pointer is never sugared, but the function type might be.
2495 return cast<BlockPointerType>(getType())
2496 ->getPointeeType()->castAs<FunctionProtoType>();
2497}
2498
2499SourceLocation BlockExpr::getCaretLocation() const {
2500 return TheBlock->getCaretLocation();
2501}
2502const Stmt *BlockExpr::getBody() const {
2503 return TheBlock->getBody();
2504}
2505Stmt *BlockExpr::getBody() {
2506 return TheBlock->getBody();
2507}
2508
2509
2510//===----------------------------------------------------------------------===//
2511// Generic Expression Routines
2512//===----------------------------------------------------------------------===//
2513
2514bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2515 // In C++11, discarded-value expressions of a certain form are special,
2516 // according to [expr]p10:
2517 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2518 // expression is a glvalue of volatile-qualified type and it has
2519 // one of the following forms:
2520 if (!isGLValue() || !getType().isVolatileQualified())
2521 return false;
2522
2523 const Expr *E = IgnoreParens();
2524
2525 // - id-expression (5.1.1),
2526 if (isa<DeclRefExpr>(E))
2527 return true;
2528
2529 // - subscripting (5.2.1),
2530 if (isa<ArraySubscriptExpr>(E))
2531 return true;
2532
2533 // - class member access (5.2.5),
2534 if (isa<MemberExpr>(E))
2535 return true;
2536
2537 // - indirection (5.3.1),
2538 if (auto *UO = dyn_cast<UnaryOperator>(E))
2539 if (UO->getOpcode() == UO_Deref)
2540 return true;
2541
2542 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2543 // - pointer-to-member operation (5.5),
2544 if (BO->isPtrMemOp())
2545 return true;
2546
2547 // - comma expression (5.18) where the right operand is one of the above.
2548 if (BO->getOpcode() == BO_Comma)
2549 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2550 }
2551
2552 // - conditional expression (5.16) where both the second and the third
2553 // operands are one of the above, or
2554 if (auto *CO = dyn_cast<ConditionalOperator>(E))
2555 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2556 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2557 // The related edge case of "*x ?: *x".
2558 if (auto *BCO =
2559 dyn_cast<BinaryConditionalOperator>(E)) {
2560 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2561 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2562 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2563 }
2564
2565 // Objective-C++ extensions to the rule.
2566 if (isa<ObjCIvarRefExpr>(E))
2567 return true;
2568 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2569 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2570 return true;
2571 }
2572
2573 return false;
2574}
2575
2576/// isUnusedResultAWarning - Return true if this immediate expression should
2577/// be warned about if the result is unused. If so, fill in Loc and Ranges
2578/// with location to warn on and the source range[s] to report with the
2579/// warning.
2580bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2581 SourceRange &R1, SourceRange &R2,
2582 ASTContext &Ctx) const {
2583 // Don't warn if the expr is type dependent. The type could end up
2584 // instantiating to void.
2585 if (isTypeDependent())
2586 return false;
2587
2588 switch (getStmtClass()) {
2589 default:
2590 if (getType()->isVoidType())
2591 return false;
2592 WarnE = this;
2593 Loc = getExprLoc();
2594 R1 = getSourceRange();
2595 return true;
2596 case ParenExprClass:
2597 return cast<ParenExpr>(this)->getSubExpr()->
2598 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2599 case GenericSelectionExprClass:
2600 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2601 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2602 case CoawaitExprClass:
2603 case CoyieldExprClass:
2604 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2605 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2606 case ChooseExprClass:
2607 return cast<ChooseExpr>(this)->getChosenSubExpr()->
2608 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2609 case UnaryOperatorClass: {
2610 const UnaryOperator *UO = cast<UnaryOperator>(this);
2611
2612 switch (UO->getOpcode()) {
2613 case UO_Plus:
2614 case UO_Minus:
2615 case UO_AddrOf:
2616 case UO_Not:
2617 case UO_LNot:
2618 case UO_Deref:
2619 break;
2620 case UO_Coawait:
2621 // This is just the 'operator co_await' call inside the guts of a
2622 // dependent co_await call.
2623 case UO_PostInc:
2624 case UO_PostDec:
2625 case UO_PreInc:
2626 case UO_PreDec: // ++/--
2627 return false; // Not a warning.
2628 case UO_Real:
2629 case UO_Imag:
2630 // accessing a piece of a volatile complex is a side-effect.
2631 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2632 .isVolatileQualified())
2633 return false;
2634 break;
2635 case UO_Extension:
2636 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2637 }
2638 WarnE = this;
2639 Loc = UO->getOperatorLoc();
2640 R1 = UO->getSubExpr()->getSourceRange();
2641 return true;
2642 }
2643 case BinaryOperatorClass: {
2644 const BinaryOperator *BO = cast<BinaryOperator>(this);
2645 switch (BO->getOpcode()) {
2646 default:
2647 break;
2648 // Consider the RHS of comma for side effects. LHS was checked by
2649 // Sema::CheckCommaOperands.
2650 case BO_Comma:
2651 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2652 // lvalue-ness) of an assignment written in a macro.
2653 if (IntegerLiteral *IE =
2654 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2655 if (IE->getValue() == 0)
2656 return false;
2657 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2658 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2659 case BO_LAnd:
2660 case BO_LOr:
2661 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2662 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2663 return false;
2664 break;
2665 }
2666 if (BO->isAssignmentOp())
2667 return false;
2668 WarnE = this;
2669 Loc = BO->getOperatorLoc();
2670 R1 = BO->getLHS()->getSourceRange();
2671 R2 = BO->getRHS()->getSourceRange();
2672 return true;
2673 }
2674 case CompoundAssignOperatorClass:
2675 case VAArgExprClass:
2676 case AtomicExprClass:
2677 return false;
2678
2679 case ConditionalOperatorClass: {
2680 // If only one of the LHS or RHS is a warning, the operator might
2681 // be being used for control flow. Only warn if both the LHS and
2682 // RHS are warnings.
2683 const auto *Exp = cast<ConditionalOperator>(this);
2684 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2685 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2686 }
2687 case BinaryConditionalOperatorClass: {
2688 const auto *Exp = cast<BinaryConditionalOperator>(this);
2689 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2690 }
2691
2692 case MemberExprClass:
2693 WarnE = this;
2694 Loc = cast<MemberExpr>(this)->getMemberLoc();
2695 R1 = SourceRange(Loc, Loc);
2696 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2697 return true;
2698
2699 case ArraySubscriptExprClass:
2700 WarnE = this;
2701 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2702 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2703 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2704 return true;
2705
2706 case CXXOperatorCallExprClass: {
2707 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2708 // overloads as there is no reasonable way to define these such that they
2709 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2710 // warning: operators == and != are commonly typo'ed, and so warning on them
2711 // provides additional value as well. If this list is updated,
2712 // DiagnoseUnusedComparison should be as well.
2713 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2714 switch (Op->getOperator()) {
2715 default:
2716 break;
2717 case OO_EqualEqual:
2718 case OO_ExclaimEqual:
2719 case OO_Less:
2720 case OO_Greater:
2721 case OO_GreaterEqual:
2722 case OO_LessEqual:
2723 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2724 Op->getCallReturnType(Ctx)->isVoidType())
2725 break;
2726 WarnE = this;
2727 Loc = Op->getOperatorLoc();
2728 R1 = Op->getSourceRange();
2729 return true;
2730 }
2731
2732 // Fallthrough for generic call handling.
2733 [[fallthrough]];
2734 }
2735 case CallExprClass:
2736 case CXXMemberCallExprClass:
2737 case UserDefinedLiteralClass: {
2738 // If this is a direct call, get the callee.
2739 const CallExpr *CE = cast<CallExpr>(this);
2740 if (const Decl *FD = CE->getCalleeDecl()) {
2741 // If the callee has attribute pure, const, or warn_unused_result, warn
2742 // about it. void foo() { strlen("bar"); } should warn.
2743 //
2744 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2745 // updated to match for QoI.
2746 if (CE->hasUnusedResultAttr(Ctx) ||
2747 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2748 WarnE = this;
2749 Loc = CE->getCallee()->getBeginLoc();
2750 R1 = CE->getCallee()->getSourceRange();
2751
2752 if (unsigned NumArgs = CE->getNumArgs())
2753 R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2754 CE->getArg(NumArgs - 1)->getEndLoc());
2755 return true;
2756 }
2757 }
2758 return false;
2759 }
2760
2761 // If we don't know precisely what we're looking at, let's not warn.
2762 case UnresolvedLookupExprClass:
2763 case CXXUnresolvedConstructExprClass:
2764 case RecoveryExprClass:
2765 return false;
2766
2767 case CXXTemporaryObjectExprClass:
2768 case CXXConstructExprClass: {
2769 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2770 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2771 if (Type->hasAttr<WarnUnusedAttr>() ||
2772 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2773 WarnE = this;
2774 Loc = getBeginLoc();
2775 R1 = getSourceRange();
2776 return true;
2777 }
2778 }
2779
2780 const auto *CE = cast<CXXConstructExpr>(this);
2781 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2782 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2783 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2784 WarnE = this;
2785 Loc = getBeginLoc();
2786 R1 = getSourceRange();
2787
2788 if (unsigned NumArgs = CE->getNumArgs())
2789 R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2790 CE->getArg(NumArgs - 1)->getEndLoc());
2791 return true;
2792 }
2793 }
2794
2795 return false;
2796 }
2797
2798 case ObjCMessageExprClass: {
2799 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2800 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2801 ME->isInstanceMessage() &&
2802 !ME->getType()->isVoidType() &&
2803 ME->getMethodFamily() == OMF_init) {
2804 WarnE = this;
2805 Loc = getExprLoc();
2806 R1 = ME->getSourceRange();
2807 return true;
2808 }
2809
2810 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2811 if (MD->hasAttr<WarnUnusedResultAttr>()) {
2812 WarnE = this;
2813 Loc = getExprLoc();
2814 return true;
2815 }
2816
2817 return false;
2818 }
2819
2820 case ObjCPropertyRefExprClass:
2821 case ObjCSubscriptRefExprClass:
2822 WarnE = this;
2823 Loc = getExprLoc();
2824 R1 = getSourceRange();
2825 return true;
2826
2827 case PseudoObjectExprClass: {
2828 const auto *POE = cast<PseudoObjectExpr>(this);
2829
2830 // For some syntactic forms, we should always warn.
2831 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2832 POE->getSyntacticForm())) {
2833 WarnE = this;
2834 Loc = getExprLoc();
2835 R1 = getSourceRange();
2836 return true;
2837 }
2838
2839 // For others, we should never warn.
2840 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2841 if (BO->isAssignmentOp())
2842 return false;
2843 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2844 if (UO->isIncrementDecrementOp())
2845 return false;
2846
2847 // Otherwise, warn if the result expression would warn.
2848 const Expr *Result = POE->getResultExpr();
2849 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2850 }
2851
2852 case StmtExprClass: {
2853 // Statement exprs don't logically have side effects themselves, but are
2854 // sometimes used in macros in ways that give them a type that is unused.
2855 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2856 // however, if the result of the stmt expr is dead, we don't want to emit a
2857 // warning.
2858 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2859 if (!CS->body_empty()) {
2860 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2861 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2862 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2863 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2864 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2865 }
2866
2867 if (getType()->isVoidType())
2868 return false;
2869 WarnE = this;
2870 Loc = cast<StmtExpr>(this)->getLParenLoc();
2871 R1 = getSourceRange();
2872 return true;
2873 }
2874 case CXXFunctionalCastExprClass:
2875 case CStyleCastExprClass: {
2876 // Ignore an explicit cast to void, except in C++98 if the operand is a
2877 // volatile glvalue for which we would trigger an implicit read in any
2878 // other language mode. (Such an implicit read always happens as part of
2879 // the lvalue conversion in C, and happens in C++ for expressions of all
2880 // forms where it seems likely the user intended to trigger a volatile
2881 // load.)
2882 const CastExpr *CE = cast<CastExpr>(this);
2883 const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2884 if (CE->getCastKind() == CK_ToVoid) {
2885 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2886 SubE->isReadIfDiscardedInCPlusPlus11()) {
2887 // Suppress the "unused value" warning for idiomatic usage of
2888 // '(void)var;' used to suppress "unused variable" warnings.
2889 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2890 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2891 if (!VD->isExternallyVisible())
2892 return false;
2893
2894 // The lvalue-to-rvalue conversion would have no effect for an array.
2895 // It's implausible that the programmer expected this to result in a
2896 // volatile array load, so don't warn.
2897 if (SubE->getType()->isArrayType())
2898 return false;
2899
2900 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2901 }
2902 return false;
2903 }
2904
2905 // If this is a cast to a constructor conversion, check the operand.
2906 // Otherwise, the result of the cast is unused.
2907 if (CE->getCastKind() == CK_ConstructorConversion)
2908 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2909 if (CE->getCastKind() == CK_Dependent)
2910 return false;
2911
2912 WarnE = this;
2913 if (const CXXFunctionalCastExpr *CXXCE =
2914 dyn_cast<CXXFunctionalCastExpr>(this)) {
2915 Loc = CXXCE->getBeginLoc();
2916 R1 = CXXCE->getSubExpr()->getSourceRange();
2917 } else {
2918 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2919 Loc = CStyleCE->getLParenLoc();
2920 R1 = CStyleCE->getSubExpr()->getSourceRange();
2921 }
2922 return true;
2923 }
2924 case ImplicitCastExprClass: {
2925 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2926
2927 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2928 if (ICE->getCastKind() == CK_LValueToRValue &&
2929 ICE->getSubExpr()->getType().isVolatileQualified())
2930 return false;
2931
2932 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2933 }
2934 case CXXDefaultArgExprClass:
2935 return (cast<CXXDefaultArgExpr>(this)
2936 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2937 case CXXDefaultInitExprClass:
2938 return (cast<CXXDefaultInitExpr>(this)
2939 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2940
2941 case CXXNewExprClass:
2942 // FIXME: In theory, there might be new expressions that don't have side
2943 // effects (e.g. a placement new with an uninitialized POD).
2944 case CXXDeleteExprClass:
2945 return false;
2946 case MaterializeTemporaryExprClass:
2947 return cast<MaterializeTemporaryExpr>(this)
2948 ->getSubExpr()
2949 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2950 case CXXBindTemporaryExprClass:
2951 return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2952 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2953 case ExprWithCleanupsClass:
2954 return cast<ExprWithCleanups>(this)->getSubExpr()
2955 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2956 }
2957}
2958
2959/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2960/// returns true, if it is; false otherwise.
2961bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2962 const Expr *E = IgnoreParens();
2963 switch (E->getStmtClass()) {
2964 default:
2965 return false;
2966 case ObjCIvarRefExprClass:
2967 return true;
2968 case Expr::UnaryOperatorClass:
2969 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2970 case ImplicitCastExprClass:
2971 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2972 case MaterializeTemporaryExprClass:
2973 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2974 Ctx);
2975 case CStyleCastExprClass:
2976 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2977 case DeclRefExprClass: {
2978 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2979
2980 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2981 if (VD->hasGlobalStorage())
2982 return true;
2983 QualType T = VD->getType();
2984 // dereferencing to a pointer is always a gc'able candidate,
2985 // unless it is __weak.
2986 return T->isPointerType() &&
2987 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2988 }
2989 return false;
2990 }
2991 case MemberExprClass: {
2992 const MemberExpr *M = cast<MemberExpr>(E);
2993 return M->getBase()->isOBJCGCCandidate(Ctx);
2994 }
2995 case ArraySubscriptExprClass:
2996 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2997 }
2998}
2999
3000bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
3001 if (isTypeDependent())
3002 return false;
3003 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
3004}
3005
3006QualType Expr::findBoundMemberType(const Expr *expr) {
3007 assert(expr->hasPlaceholderType(BuiltinType::BoundMember))(static_cast <bool> (expr->hasPlaceholderType(BuiltinType
::BoundMember)) ? void (0) : __assert_fail ("expr->hasPlaceholderType(BuiltinType::BoundMember)"
, "clang/lib/AST/Expr.cpp", 3007, __extension__ __PRETTY_FUNCTION__
))
;
3008
3009 // Bound member expressions are always one of these possibilities:
3010 // x->m x.m x->*y x.*y
3011 // (possibly parenthesized)
3012
3013 expr = expr->IgnoreParens();
3014 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
3015 assert(isa<CXXMethodDecl>(mem->getMemberDecl()))(static_cast <bool> (isa<CXXMethodDecl>(mem->getMemberDecl
())) ? void (0) : __assert_fail ("isa<CXXMethodDecl>(mem->getMemberDecl())"
, "clang/lib/AST/Expr.cpp", 3015, __extension__ __PRETTY_FUNCTION__
))
;
3016 return mem->getMemberDecl()->getType();
3017 }
3018
3019 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3020 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3021 ->getPointeeType();
3022 assert(type->isFunctionType())(static_cast <bool> (type->isFunctionType()) ? void (
0) : __assert_fail ("type->isFunctionType()", "clang/lib/AST/Expr.cpp"
, 3022, __extension__ __PRETTY_FUNCTION__))
;
3023 return type;
3024 }
3025
3026 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr))(static_cast <bool> (isa<UnresolvedMemberExpr>(expr
) || isa<CXXPseudoDestructorExpr>(expr)) ? void (0) : __assert_fail
("isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)"
, "clang/lib/AST/Expr.cpp", 3026, __extension__ __PRETTY_FUNCTION__
))
;
3027 return QualType();
3028}
3029
3030Expr *Expr::IgnoreImpCasts() {
3031 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
3032}
3033
3034Expr *Expr::IgnoreCasts() {
3035 return IgnoreExprNodes(this, IgnoreCastsSingleStep);
3036}
3037
3038Expr *Expr::IgnoreImplicit() {
3039 return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
3040}
3041
3042Expr *Expr::IgnoreImplicitAsWritten() {
3043 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
3044}
3045
3046Expr *Expr::IgnoreParens() {
3047 return IgnoreExprNodes(this, IgnoreParensSingleStep);
3048}
3049
3050Expr *Expr::IgnoreParenImpCasts() {
3051 return IgnoreExprNodes(this, IgnoreParensSingleStep,
3052 IgnoreImplicitCastsExtraSingleStep);
3053}
3054
3055Expr *Expr::IgnoreParenCasts() {
3056 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
3057}
3058
3059Expr *Expr::IgnoreConversionOperatorSingleStep() {
3060 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3061 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
3062 return MCE->getImplicitObjectArgument();
3063 }
3064 return this;
3065}
3066
3067Expr *Expr::IgnoreParenLValueCasts() {
3068 return IgnoreExprNodes(this, IgnoreParensSingleStep,
3069 IgnoreLValueCastsSingleStep);
3070}
3071
3072Expr *Expr::IgnoreParenBaseCasts() {
3073 return IgnoreExprNodes(this, IgnoreParensSingleStep,
3074 IgnoreBaseCastsSingleStep);
3075}
3076
3077Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3078 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3079 if (auto *CE = dyn_cast<CastExpr>(E)) {
3080 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3081 // ptr<->int casts of the same width. We also ignore all identity casts.
3082 Expr *SubExpr = CE->getSubExpr();
3083 bool IsIdentityCast =
3084 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3085 bool IsSameWidthCast = (E->getType()->isPointerType() ||
3086 E->getType()->isIntegralType(Ctx)) &&
3087 (SubExpr->getType()->isPointerType() ||
3088 SubExpr->getType()->isIntegralType(Ctx)) &&
3089 (Ctx.getTypeSize(E->getType()) ==
3090 Ctx.getTypeSize(SubExpr->getType()));
3091
3092 if (IsIdentityCast || IsSameWidthCast)
3093 return SubExpr;
3094 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3095 return NTTP->getReplacement();
3096
3097 return E;
3098 };
3099 return IgnoreExprNodes(this, IgnoreParensSingleStep,
3100 IgnoreNoopCastsSingleStep);
3101}
3102
3103Expr *Expr::IgnoreUnlessSpelledInSource() {
3104 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3105 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3106 auto *SE = Cast->getSubExpr();
3107 if (SE->getSourceRange() == E->getSourceRange())
3108 return SE;
3109 }
3110
3111 if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3112 auto NumArgs = C->getNumArgs();
3113 if (NumArgs == 1 ||
3114 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3115 Expr *A = C->getArg(0);
3116 if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3117 return A;
3118 }
3119 }
3120 return E;
3121 };
3122 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3123 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3124 Expr *ExprNode = C->getImplicitObjectArgument();
3125 if (ExprNode->getSourceRange() == E->getSourceRange()) {
3126 return ExprNode;
3127 }
3128 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3129 if (PE->getSourceRange() == C->getSourceRange()) {
3130 return cast<Expr>(PE);
3131 }
3132 }
3133 ExprNode = ExprNode->IgnoreParenImpCasts();
3134 if (ExprNode->getSourceRange() == E->getSourceRange())
3135 return ExprNode;
3136 }
3137 return E;
3138 };
3139 return IgnoreExprNodes(
3140 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3141 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3142 IgnoreImplicitMemberCallSingleStep);
3143}
3144
3145bool Expr::isDefaultArgument() const {
3146 const Expr *E = this;
3147 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3148 E = M->getSubExpr();
3149
3150 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3151 E = ICE->getSubExprAsWritten();
3152
3153 return isa<CXXDefaultArgExpr>(E);
3154}
3155
3156/// Skip over any no-op casts and any temporary-binding
3157/// expressions.
3158static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3159 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3160 E = M->getSubExpr();
3161
3162 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3163 if (ICE->getCastKind() == CK_NoOp)
3164 E = ICE->getSubExpr();
3165 else
3166 break;
3167 }
3168
3169 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3170 E = BE->getSubExpr();
3171
3172 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3173 if (ICE->getCastKind() == CK_NoOp)
3174 E = ICE->getSubExpr();
3175 else
3176 break;
3177 }
3178
3179 return E->IgnoreParens();
3180}
3181
3182/// isTemporaryObject - Determines if this expression produces a
3183/// temporary of the given class type.
3184bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3185 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3186 return false;
3187
3188 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3189
3190 // Temporaries are by definition pr-values of class type.
3191 if (!E->Classify(C).isPRValue()) {
3192 // In this context, property reference is a message call and is pr-value.
3193 if (!isa<ObjCPropertyRefExpr>(E))
3194 return false;
3195 }
3196
3197 // Black-list a few cases which yield pr-values of class type that don't
3198 // refer to temporaries of that type:
3199
3200 // - implicit derived-to-base conversions
3201 if (isa<ImplicitCastExpr>(E)) {
3202 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3203 case CK_DerivedToBase:
3204 case CK_UncheckedDerivedToBase:
3205 return false;
3206 default:
3207 break;
3208 }
3209 }
3210
3211 // - member expressions (all)
3212 if (isa<MemberExpr>(E))
3213 return false;
3214
3215 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3216 if (BO->isPtrMemOp())
3217 return false;
3218
3219 // - opaque values (all)
3220 if (isa<OpaqueValueExpr>(E))
3221 return false;
3222
3223 return true;
3224}
3225
3226bool Expr::isImplicitCXXThis() const {
3227 const Expr *E = this;
3228
3229 // Strip away parentheses and casts we don't care about.
3230 while (true) {
3231 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3232 E = Paren->getSubExpr();
3233 continue;
3234 }
3235
3236 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3237 if (ICE->getCastKind() == CK_NoOp ||
3238 ICE->getCastKind() == CK_LValueToRValue ||
3239 ICE->getCastKind() == CK_DerivedToBase ||
3240 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3241 E = ICE->getSubExpr();
3242 continue;
3243 }
3244 }
3245
3246 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3247 if (UnOp->getOpcode() == UO_Extension) {
3248 E = UnOp->getSubExpr();
3249 continue;
3250 }
3251 }
3252
3253 if (const MaterializeTemporaryExpr *M
3254 = dyn_cast<MaterializeTemporaryExpr>(E)) {
3255 E = M->getSubExpr();
3256 continue;
3257 }
3258
3259 break;
3260 }
3261
3262 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3263 return This->isImplicit();
3264
3265 return false;
3266}
3267
3268/// hasAnyTypeDependentArguments - Determines if any of the expressions
3269/// in Exprs is type-dependent.
3270bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3271 for (unsigned I = 0; I < Exprs.size(); ++I)
3272 if (Exprs[I]->isTypeDependent())
3273 return true;
3274
3275 return false;
3276}
3277
3278bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3279 const Expr **Culprit) const {
3280 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/Expr.cpp", 3281, __extension__ __PRETTY_FUNCTION__
))
3281 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/Expr.cpp", 3281, __extension__ __PRETTY_FUNCTION__
))
;
3282
3283 // This function is attempting whether an expression is an initializer
3284 // which can be evaluated at compile-time. It very closely parallels
3285 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3286 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3287 // to isEvaluatable most of the time.
3288 //
3289 // If we ever capture reference-binding directly in the AST, we can
3290 // kill the second parameter.
3291
3292 if (IsForRef) {
3293 EvalResult Result;
3294 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3295 return true;
3296 if (Culprit)
3297 *Culprit = this;
3298 return false;
3299 }
3300
3301 switch (getStmtClass()) {
3302 default: break;
3303 case Stmt::ExprWithCleanupsClass:
3304 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3305 Ctx, IsForRef, Culprit);
3306 case StringLiteralClass:
3307 case ObjCEncodeExprClass:
3308 return true;
3309 case CXXTemporaryObjectExprClass:
3310 case CXXConstructExprClass: {
3311 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3312
3313 if (CE->getConstructor()->isTrivial() &&
3314 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3315 // Trivial default constructor
3316 if (!CE->getNumArgs()) return true;
3317
3318 // Trivial copy constructor
3319 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument")(static_cast <bool> (CE->getNumArgs() == 1 &&
"trivial ctor with > 1 argument") ? void (0) : __assert_fail
("CE->getNumArgs() == 1 && \"trivial ctor with > 1 argument\""
, "clang/lib/AST/Expr.cpp", 3319, __extension__ __PRETTY_FUNCTION__
))
;
3320 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3321 }
3322
3323 break;
3324 }
3325 case ConstantExprClass: {
3326 // FIXME: We should be able to return "true" here, but it can lead to extra
3327 // error messages. E.g. in Sema/array-init.c.
3328 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3329 return Exp->isConstantInitializer(Ctx, false, Culprit);
3330 }
3331 case CompoundLiteralExprClass: {
3332 // This handles gcc's extension that allows global initializers like
3333 // "struct x {int x;} x = (struct x) {};".
3334 // FIXME: This accepts other cases it shouldn't!
3335 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3336 return Exp->isConstantInitializer(Ctx, false, Culprit);
3337 }
3338 case DesignatedInitUpdateExprClass: {
3339 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3340 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3341 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3342 }
3343 case InitListExprClass: {
3344 const InitListExpr *ILE = cast<InitListExpr>(this);
3345 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form")(static_cast <bool> (ILE->isSemanticForm() &&
"InitListExpr must be in semantic form") ? void (0) : __assert_fail
("ILE->isSemanticForm() && \"InitListExpr must be in semantic form\""
, "clang/lib/AST/Expr.cpp", 3345, __extension__ __PRETTY_FUNCTION__
))
;
3346 if (ILE->getType()->isArrayType()) {
3347 unsigned numInits = ILE->getNumInits();
3348 for (unsigned i = 0; i < numInits; i++) {
3349 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3350 return false;
3351 }
3352 return true;
3353 }
3354
3355 if (ILE->getType()->isRecordType()) {
3356 unsigned ElementNo = 0;
3357 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3358 for (const auto *Field : RD->fields()) {
3359 // If this is a union, skip all the fields that aren't being initialized.
3360 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3361 continue;
3362
3363 // Don't emit anonymous bitfields, they just affect layout.
3364 if (Field->isUnnamedBitfield())
3365 continue;
3366
3367 if (ElementNo < ILE->getNumInits()) {
3368 const Expr *Elt = ILE->getInit(ElementNo++);
3369 if (Field->isBitField()) {
3370 // Bitfields have to evaluate to an integer.
3371 EvalResult Result;
3372 if (!Elt->EvaluateAsInt(Result, Ctx)) {
3373 if (Culprit)
3374 *Culprit = Elt;
3375 return false;
3376 }
3377 } else {
3378 bool RefType = Field->getType()->isReferenceType();
3379 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3380 return false;
3381 }
3382 }
3383 }
3384 return true;
3385 }
3386
3387 break;
3388 }
3389 case ImplicitValueInitExprClass:
3390 case NoInitExprClass:
3391 return true;
3392 case ParenExprClass:
3393 return cast<ParenExpr>(this)->getSubExpr()
3394 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3395 case GenericSelectionExprClass:
3396 return cast<GenericSelectionExpr>(this)->getResultExpr()
3397 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3398 case ChooseExprClass:
3399 if (cast<ChooseExpr>(this)->isConditionDependent()) {
3400 if (Culprit)
3401 *Culprit = this;
3402 return false;
3403 }
3404 return cast<ChooseExpr>(this)->getChosenSubExpr()
3405 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3406 case UnaryOperatorClass: {
3407 const UnaryOperator* Exp = cast<UnaryOperator>(this);
3408 if (Exp->getOpcode() == UO_Extension)
3409 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3410 break;
3411 }
3412 case CXXFunctionalCastExprClass:
3413 case CXXStaticCastExprClass:
3414 case ImplicitCastExprClass:
3415 case CStyleCastExprClass:
3416 case ObjCBridgedCastExprClass:
3417 case CXXDynamicCastExprClass:
3418 case CXXReinterpretCastExprClass:
3419 case CXXAddrspaceCastExprClass:
3420 case CXXConstCastExprClass: {
3421 const CastExpr *CE = cast<CastExpr>(this);
3422
3423 // Handle misc casts we want to ignore.
3424 if (CE->getCastKind() == CK_NoOp ||
3425 CE->getCastKind() == CK_LValueToRValue ||
3426 CE->getCastKind() == CK_ToUnion ||
3427 CE->getCastKind() == CK_ConstructorConversion ||
3428 CE->getCastKind() == CK_NonAtomicToAtomic ||
3429 CE->getCastKind() == CK_AtomicToNonAtomic ||
3430 CE->getCastKind() == CK_IntToOCLSampler)
3431 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3432
3433 break;
3434 }
3435 case MaterializeTemporaryExprClass:
3436 return cast<MaterializeTemporaryExpr>(this)
3437 ->getSubExpr()
3438 ->isConstantInitializer(Ctx, false, Culprit);
3439
3440 case SubstNonTypeTemplateParmExprClass:
3441 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3442 ->isConstantInitializer(Ctx, false, Culprit);
3443 case CXXDefaultArgExprClass:
3444 return cast<CXXDefaultArgExpr>(this)->getExpr()
3445 ->isConstantInitializer(Ctx, false, Culprit);
3446 case CXXDefaultInitExprClass:
3447 return cast<CXXDefaultInitExpr>(this)->getExpr()
3448 ->isConstantInitializer(Ctx, false, Culprit);
3449 }
3450 // Allow certain forms of UB in constant initializers: signed integer
3451 // overflow and floating-point division by zero. We'll give a warning on
3452 // these, but they're common enough that we have to accept them.
3453 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3454 return true;
3455 if (Culprit)
3456 *Culprit = this;
3457 return false;
3458}
3459
3460bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3461 unsigned BuiltinID = getBuiltinCallee();
3462 if (BuiltinID != Builtin::BI__assume &&
3463 BuiltinID != Builtin::BI__builtin_assume)
3464 return false;
3465
3466 const Expr* Arg = getArg(0);
3467 bool ArgVal;
3468 return !Arg->isValueDependent() &&
3469 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3470}
3471
3472bool CallExpr::isCallToStdMove() const {
3473 return getBuiltinCallee() == Builtin::BImove;
3474}
3475
3476namespace {
3477 /// Look for any side effects within a Stmt.
3478 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3479 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3480 const bool IncludePossibleEffects;
3481 bool HasSideEffects;
3482
3483 public:
3484 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3485 : Inherited(Context),
3486 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3487
3488 bool hasSideEffects() const { return HasSideEffects; }
3489
3490 void VisitDecl(const Decl *D) {
3491 if (!D)
3492 return;
3493
3494 // We assume the caller checks subexpressions (eg, the initializer, VLA
3495 // bounds) for side-effects on our behalf.
3496 if (auto *VD = dyn_cast<VarDecl>(D)) {
3497 // Registering a destructor is a side-effect.
3498 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3499 VD->needsDestruction(Context))
3500 HasSideEffects = true;
3501 }
3502 }
3503
3504 void VisitDeclStmt(const DeclStmt *DS) {
3505 for (auto *D : DS->decls())
3506 VisitDecl(D);
3507 Inherited::VisitDeclStmt(DS);
3508 }
3509
3510 void VisitExpr(const Expr *E) {
3511 if (!HasSideEffects &&
3512 E->HasSideEffects(Context, IncludePossibleEffects))
3513 HasSideEffects = true;
3514 }
3515 };
3516}
3517
3518bool Expr::HasSideEffects(const ASTContext &Ctx,
3519 bool IncludePossibleEffects) const {
3520 // In circumstances where we care about definite side effects instead of
3521 // potential side effects, we want to ignore expressions that are part of a
3522 // macro expansion as a potential side effect.
3523 if (!IncludePossibleEffects && getExprLoc().isMacroID())
3524 return false;
3525
3526 switch (getStmtClass()) {
3527 case NoStmtClass:
3528 #define ABSTRACT_STMT(Type)
3529 #define STMT(Type, Base) case Type##Class:
3530 #define EXPR(Type, Base)
3531 #include "clang/AST/StmtNodes.inc"
3532 llvm_unreachable("unexpected Expr kind")::llvm::llvm_unreachable_internal("unexpected Expr kind", "clang/lib/AST/Expr.cpp"
, 3532)
;
3533
3534 case DependentScopeDeclRefExprClass:
3535 case CXXUnresolvedConstructExprClass:
3536 case CXXDependentScopeMemberExprClass:
3537 case UnresolvedLookupExprClass:
3538 case UnresolvedMemberExprClass:
3539 case PackExpansionExprClass:
3540 case SubstNonTypeTemplateParmPackExprClass:
3541 case FunctionParmPackExprClass:
3542 case TypoExprClass:
3543 case RecoveryExprClass:
3544 case CXXFoldExprClass:
3545 // Make a conservative assumption for dependent nodes.
3546 return IncludePossibleEffects;
3547
3548 case DeclRefExprClass:
3549 case ObjCIvarRefExprClass:
3550 case PredefinedExprClass:
3551 case IntegerLiteralClass:
3552 case FixedPointLiteralClass:
3553 case FloatingLiteralClass:
3554 case ImaginaryLiteralClass:
3555 case StringLiteralClass:
3556 case CharacterLiteralClass:
3557 case OffsetOfExprClass:
3558 case ImplicitValueInitExprClass:
3559 case UnaryExprOrTypeTraitExprClass:
3560 case AddrLabelExprClass:
3561 case GNUNullExprClass:
3562 case ArrayInitIndexExprClass:
3563 case NoInitExprClass:
3564 case CXXBoolLiteralExprClass:
3565 case CXXNullPtrLiteralExprClass:
3566 case CXXThisExprClass:
3567 case CXXScalarValueInitExprClass:
3568 case TypeTraitExprClass:
3569 case ArrayTypeTraitExprClass:
3570 case ExpressionTraitExprClass:
3571 case CXXNoexceptExprClass:
3572 case SizeOfPackExprClass:
3573 case ObjCStringLiteralClass:
3574 case ObjCEncodeExprClass:
3575 case ObjCBoolLiteralExprClass:
3576 case ObjCAvailabilityCheckExprClass:
3577 case CXXUuidofExprClass:
3578 case OpaqueValueExprClass:
3579 case SourceLocExprClass:
3580 case ConceptSpecializationExprClass:
3581 case RequiresExprClass:
3582 case SYCLUniqueStableNameExprClass:
3583 // These never have a side-effect.
3584 return false;
3585
3586 case ConstantExprClass:
3587 // FIXME: Move this into the "return false;" block above.
3588 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3589 Ctx, IncludePossibleEffects);
3590
3591 case CallExprClass:
3592 case CXXOperatorCallExprClass:
3593 case CXXMemberCallExprClass:
3594 case CUDAKernelCallExprClass:
3595 case UserDefinedLiteralClass: {
3596 // We don't know a call definitely has side effects, except for calls
3597 // to pure/const functions that definitely don't.
3598 // If the call itself is considered side-effect free, check the operands.
3599 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3600 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3601 if (IsPure || !IncludePossibleEffects)
3602 break;
3603 return true;
3604 }
3605
3606 case BlockExprClass:
3607 case CXXBindTemporaryExprClass:
3608 if (!IncludePossibleEffects)
3609 break;
3610 return true;
3611
3612 case MSPropertyRefExprClass:
3613 case MSPropertySubscriptExprClass:
3614 case CompoundAssignOperatorClass:
3615 case VAArgExprClass:
3616 case AtomicExprClass:
3617 case CXXThrowExprClass:
3618 case CXXNewExprClass:
3619 case CXXDeleteExprClass:
3620 case CoawaitExprClass:
3621 case DependentCoawaitExprClass:
3622 case CoyieldExprClass:
3623 // These always have a side-effect.
3624 return true;
3625
3626 case StmtExprClass: {
3627 // StmtExprs have a side-effect if any substatement does.
3628 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3629 Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3630 return Finder.hasSideEffects();
3631 }
3632
3633 case ExprWithCleanupsClass:
3634 if (IncludePossibleEffects)
3635 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3636 return true;
3637 break;
3638
3639 case ParenExprClass:
3640 case ArraySubscriptExprClass:
3641 case MatrixSubscriptExprClass:
3642 case OMPArraySectionExprClass:
3643 case OMPArrayShapingExprClass:
3644 case OMPIteratorExprClass:
3645 case MemberExprClass:
3646 case ConditionalOperatorClass:
3647 case BinaryConditionalOperatorClass:
3648 case CompoundLiteralExprClass:
3649 case ExtVectorElementExprClass:
3650 case DesignatedInitExprClass:
3651 case DesignatedInitUpdateExprClass:
3652 case ArrayInitLoopExprClass:
3653 case ParenListExprClass:
3654 case CXXPseudoDestructorExprClass:
3655 case CXXRewrittenBinaryOperatorClass:
3656 case CXXStdInitializerListExprClass:
3657 case SubstNonTypeTemplateParmExprClass:
3658 case MaterializeTemporaryExprClass:
3659 case ShuffleVectorExprClass:
3660 case ConvertVectorExprClass:
3661 case AsTypeExprClass:
3662 case CXXParenListInitExprClass:
3663 // These have a side-effect if any subexpression does.
3664 break;
3665
3666 case UnaryOperatorClass:
3667 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3668 return true;
3669 break;
3670
3671 case BinaryOperatorClass:
3672 if (cast<BinaryOperator>(this)->isAssignmentOp())
3673 return true;
3674 break;
3675
3676 case InitListExprClass:
3677 // FIXME: The children for an InitListExpr doesn't include the array filler.
3678 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3679 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3680 return true;
3681 break;
3682
3683 case GenericSelectionExprClass:
3684 return cast<GenericSelectionExpr>(this)->getResultExpr()->
3685 HasSideEffects(Ctx, IncludePossibleEffects);
3686
3687 case ChooseExprClass:
3688 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3689 Ctx, IncludePossibleEffects);
3690
3691 case CXXDefaultArgExprClass:
3692 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3693 Ctx, IncludePossibleEffects);
3694
3695 case CXXDefaultInitExprClass: {
3696 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3697 if (const Expr *E = FD->getInClassInitializer())
3698 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3699 // If we've not yet parsed the initializer, assume it has side-effects.
3700 return true;
3701 }
3702
3703 case CXXDynamicCastExprClass: {
3704 // A dynamic_cast expression has side-effects if it can throw.
3705 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3706 if (DCE->getTypeAsWritten()->isReferenceType() &&
3707 DCE->getCastKind() == CK_Dynamic)
3708 return true;
3709 }
3710 [[fallthrough]];
3711 case ImplicitCastExprClass:
3712 case CStyleCastExprClass:
3713 case CXXStaticCastExprClass:
3714 case CXXReinterpretCastExprClass:
3715 case CXXConstCastExprClass:
3716 case CXXAddrspaceCastExprClass:
3717 case CXXFunctionalCastExprClass:
3718 case BuiltinBitCastExprClass: {
3719 // While volatile reads are side-effecting in both C and C++, we treat them
3720 // as having possible (not definite) side-effects. This allows idiomatic
3721 // code to behave without warning, such as sizeof(*v) for a volatile-
3722 // qualified pointer.
3723 if (!IncludePossibleEffects)
3724 break;
3725
3726 const CastExpr *CE = cast<CastExpr>(this);
3727 if (CE->getCastKind() == CK_LValueToRValue &&
3728 CE->getSubExpr()->getType().isVolatileQualified())
3729 return true;
3730 break;
3731 }
3732
3733 case CXXTypeidExprClass:
3734 // typeid might throw if its subexpression is potentially-evaluated, so has
3735 // side-effects in that case whether or not its subexpression does.
3736 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3737
3738 case CXXConstructExprClass:
3739 case CXXTemporaryObjectExprClass: {
3740 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3741 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3742 return true;
3743 // A trivial constructor does not add any side-effects of its own. Just look
3744 // at its arguments.
3745 break;
3746 }
3747
3748 case CXXInheritedCtorInitExprClass: {
3749 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3750 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3751 return true;
3752 break;
3753 }
3754
3755 case LambdaExprClass: {
3756 const LambdaExpr *LE = cast<LambdaExpr>(this);
3757 for (Expr *E : LE->capture_inits())
3758 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3759 return true;
3760 return false;
3761 }
3762
3763 case PseudoObjectExprClass: {
3764 // Only look for side-effects in the semantic form, and look past
3765 // OpaqueValueExpr bindings in that form.
3766 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3767 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3768 E = PO->semantics_end();
3769 I != E; ++I) {
3770 const Expr *Subexpr = *I;
3771 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3772 Subexpr = OVE->getSourceExpr();
3773 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3774 return true;
3775 }
3776 return false;
3777 }
3778
3779 case ObjCBoxedExprClass:
3780 case ObjCArrayLiteralClass:
3781 case ObjCDictionaryLiteralClass:
3782 case ObjCSelectorExprClass:
3783 case ObjCProtocolExprClass:
3784 case ObjCIsaExprClass:
3785 case ObjCIndirectCopyRestoreExprClass:
3786 case ObjCSubscriptRefExprClass:
3787 case ObjCBridgedCastExprClass:
3788 case ObjCMessageExprClass:
3789 case ObjCPropertyRefExprClass:
3790 // FIXME: Classify these cases better.
3791 if (IncludePossibleEffects)
3792 return true;
3793 break;
3794 }
3795
3796 // Recurse to children.
3797 for (const Stmt *SubStmt : children())
3798 if (SubStmt &&
3799 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3800 return true;
3801
3802 return false;
3803}
3804
3805FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3806 if (auto Call = dyn_cast<CallExpr>(this))
3807 return Call->getFPFeaturesInEffect(LO);
3808 if (auto UO = dyn_cast<UnaryOperator>(this))
3809 return UO->getFPFeaturesInEffect(LO);
3810 if (auto BO = dyn_cast<BinaryOperator>(this))
3811 return BO->getFPFeaturesInEffect(LO);
3812 if (auto Cast = dyn_cast<CastExpr>(this))
3813 return Cast->getFPFeaturesInEffect(LO);
3814 return FPOptions::defaultWithoutTrailingStorage(LO);
3815}
3816
3817namespace {
3818 /// Look for a call to a non-trivial function within an expression.
3819 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3820 {
3821 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3822
3823 bool NonTrivial;
3824
3825 public:
3826 explicit NonTrivialCallFinder(const ASTContext &Context)
3827 : Inherited(Context), NonTrivial(false) { }
3828
3829 bool hasNonTrivialCall() const { return NonTrivial; }
3830
3831 void VisitCallExpr(const CallExpr *E) {
3832 if (const CXXMethodDecl *Method
3833 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3834 if (Method->isTrivial()) {
3835 // Recurse to children of the call.
3836 Inherited::VisitStmt(E);
3837 return;
3838 }
3839 }
3840
3841 NonTrivial = true;
3842 }
3843
3844 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3845 if (E->getConstructor()->isTrivial()) {
3846 // Recurse to children of the call.
3847 Inherited::VisitStmt(E);
3848 return;
3849 }
3850
3851 NonTrivial = true;
3852 }
3853
3854 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3855 if (E->getTemporary()->getDestructor()->isTrivial()) {
3856 Inherited::VisitStmt(E);
3857 return;
3858 }
3859
3860 NonTrivial = true;
3861 }
3862 };
3863}
3864
3865bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3866 NonTrivialCallFinder Finder(Ctx);
3867 Finder.Visit(this);
3868 return Finder.hasNonTrivialCall();
3869}
3870
3871/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3872/// pointer constant or not, as well as the specific kind of constant detected.
3873/// Null pointer constants can be integer constant expressions with the
3874/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3875/// (a GNU extension).
3876Expr::NullPointerConstantKind
3877Expr::isNullPointerConstant(ASTContext &Ctx,
3878 NullPointerConstantValueDependence NPC) const {
3879 if (isValueDependent() &&
3880 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3881 // Error-dependent expr should never be a null pointer.
3882 if (containsErrors())
3883 return NPCK_NotNull;
3884 switch (NPC) {
3885 case NPC_NeverValueDependent:
3886 llvm_unreachable("Unexpected value dependent expression!")::llvm::llvm_unreachable_internal("Unexpected value dependent expression!"
, "clang/lib/AST/Expr.cpp", 3886)
;
3887 case NPC_ValueDependentIsNull:
3888 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3889 return NPCK_ZeroExpression;
3890 else
3891 return NPCK_NotNull;
3892
3893 case NPC_ValueDependentIsNotNull:
3894 return NPCK_NotNull;
3895 }
3896 }
3897
3898 // Strip off a cast to void*, if it exists. Except in C++.
3899 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3900 if (!Ctx.getLangOpts().CPlusPlus) {
3901 // Check that it is a cast to void*.
3902 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3903 QualType Pointee = PT->getPointeeType();
3904 Qualifiers Qs = Pointee.getQualifiers();
3905 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3906 // has non-default address space it is not treated as nullptr.
3907 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3908 // since it cannot be assigned to a pointer to constant address space.
3909 if (Ctx.getLangOpts().OpenCL &&
3910 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3911 Qs.removeAddressSpace();
3912
3913 if (Pointee->isVoidType() && Qs.empty() && // to void*
3914 CE->getSubExpr()->getType()->isIntegerType()) // from int
3915 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3916 }
3917 }
3918 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3919 // Ignore the ImplicitCastExpr type entirely.
3920 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3921 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3922 // Accept ((void*)0) as a null pointer constant, as many other
3923 // implementations do.
3924 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3925 } else if (const GenericSelectionExpr *GE =
3926 dyn_cast<GenericSelectionExpr>(this)) {
3927 if (GE->isResultDependent())
3928 return NPCK_NotNull;
3929 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3930 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3931 if (CE->isConditionDependent())
3932 return NPCK_NotNull;
3933 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3934 } else if (const CXXDefaultArgExpr *DefaultArg
3935 = dyn_cast<CXXDefaultArgExpr>(this)) {
3936 // See through default argument expressions.
3937 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3938 } else if (const CXXDefaultInitExpr *DefaultInit
3939 = dyn_cast<CXXDefaultInitExpr>(this)) {
3940 // See through default initializer expressions.
3941 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3942 } else if (isa<GNUNullExpr>(this)) {
3943 // The GNU __null extension is always a null pointer constant.
3944 return NPCK_GNUNull;
3945 } else if (const MaterializeTemporaryExpr *M
3946 = dyn_cast<MaterializeTemporaryExpr>(this)) {
3947 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3948 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3949 if (const Expr *Source = OVE->getSourceExpr())
3950 return Source->isNullPointerConstant(Ctx, NPC);
3951 }
3952
3953 // If the expression has no type information, it cannot be a null pointer
3954 // constant.
3955 if (getType().isNull())
3956 return NPCK_NotNull;
3957
3958 // C++11/C2x nullptr_t is always a null pointer constant.
3959 if (getType()->isNullPtrType())
3960 return NPCK_CXX11_nullptr;
3961
3962 if (const RecordType *UT = getType()->getAsUnionType())
3963 if (!Ctx.getLangOpts().CPlusPlus11 &&
3964 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3965 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3966 const Expr *InitExpr = CLE->getInitializer();
3967 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3968 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3969 }
3970 // This expression must be an integer type.
3971 if (!getType()->isIntegerType() ||
3972 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3973 return NPCK_NotNull;
3974
3975 if (Ctx.getLangOpts().CPlusPlus11) {
3976 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3977 // value zero or a prvalue of type std::nullptr_t.
3978 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3979 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3980 if (Lit && !Lit->getValue())
3981 return NPCK_ZeroLiteral;
3982 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3983 return NPCK_NotNull;
3984 } else {
3985 // If we have an integer constant expression, we need to *evaluate* it and
3986 // test for the value 0.
3987 if (!isIntegerConstantExpr(Ctx))
3988 return NPCK_NotNull;
3989 }
3990
3991 if (EvaluateKnownConstInt(Ctx) != 0)
3992 return NPCK_NotNull;
3993
3994 if (isa<IntegerLiteral>(this))
3995 return NPCK_ZeroLiteral;
3996 return NPCK_ZeroExpression;
3997}
3998
3999/// If this expression is an l-value for an Objective C
4000/// property, find the underlying property reference expression.
4001const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
4002 const Expr *E = this;
4003 while (true) {
4004 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&(static_cast <bool> ((E->isLValue() && E->
getObjectKind() == OK_ObjCProperty) && "expression is not a property reference"
) ? void (0) : __assert_fail ("(E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && \"expression is not a property reference\""
, "clang/lib/AST/Expr.cpp", 4005, __extension__ __PRETTY_FUNCTION__
))
4005 "expression is not a property reference")(static_cast <bool> ((E->isLValue() && E->
getObjectKind() == OK_ObjCProperty) && "expression is not a property reference"
) ? void (0) : __assert_fail ("(E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && \"expression is not a property reference\""
, "clang/lib/AST/Expr.cpp", 4005, __extension__ __PRETTY_FUNCTION__
))
;
4006 E = E->IgnoreParenCasts();
4007 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4008 if (BO->getOpcode() == BO_Comma) {
4009 E = BO->getRHS();
4010 continue;
4011 }
4012 }
4013
4014 break;
4015 }
4016
4017 return cast<ObjCPropertyRefExpr>(E);
4018}
4019
4020bool Expr::isObjCSelfExpr() const {
4021 const Expr *E = IgnoreParenImpCasts();
4022
4023 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4024 if (!DRE)
4025 return false;
4026
4027 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4028 if (!Param)
4029 return false;
4030
4031 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4032 if (!M)
4033 return false;
4034
4035 return M->getSelfDecl() == Param;
4036}
4037
4038FieldDecl *Expr::getSourceBitField() {
4039 Expr *E = this->IgnoreParens();
4040
4041 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4042 if (ICE->getCastKind() == CK_LValueToRValue ||
4043 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4044 E = ICE->getSubExpr()->IgnoreParens();
4045 else
4046 break;
4047 }
4048
4049 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4050 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4051 if (Field->isBitField())
4052 return Field;
4053
4054 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4055 FieldDecl *Ivar = IvarRef->getDecl();
4056 if (Ivar->isBitField())
4057 return Ivar;
4058 }
4059
4060 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4061 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4062 if (Field->isBitField())
4063 return Field;
4064
4065 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4066 if (Expr *E = BD->getBinding())
4067 return E->getSourceBitField();
4068 }
4069
4070 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4071 if (BinOp->isAssignmentOp() && BinOp->getLHS())
4072 return BinOp->getLHS()->getSourceBitField();
4073
4074 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4075 return BinOp->getRHS()->getSourceBitField();
4076 }
4077
4078 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4079 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4080 return UnOp->getSubExpr()->getSourceBitField();
4081
4082 return nullptr;
4083}
4084
4085bool Expr::refersToVectorElement() const {
4086 // FIXME: Why do we not just look at the ObjectKind here?
4087 const Expr *E = this->IgnoreParens();
4088
4089 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4090 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4091 E = ICE->getSubExpr()->IgnoreParens();
4092 else
4093 break;
4094 }
4095
4096 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4097 return ASE->getBase()->getType()->isVectorType();
4098
4099 if (isa<ExtVectorElementExpr>(E))
4100 return true;
4101
4102 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4103 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4104 if (auto *E = BD->getBinding())
4105 return E->refersToVectorElement();
4106
4107 return false;
4108}
4109
4110bool Expr::refersToGlobalRegisterVar() const {
4111 const Expr *E = this->IgnoreParenImpCasts();
4112
4113 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4114 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4115 if (VD->getStorageClass() == SC_Register &&
4116 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4117 return true;
4118
4119 return false;
4120}
4121
4122bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4123 E1 = E1->IgnoreParens();
4124 E2 = E2->IgnoreParens();
4125
4126 if (E1->getStmtClass() != E2->getStmtClass())
4127 return false;
4128
4129 switch (E1->getStmtClass()) {
4130 default:
4131 return false;
4132 case CXXThisExprClass:
4133 return true;
4134 case DeclRefExprClass: {
4135 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4136 // template parameters.
4137 const auto *DRE1 = cast<DeclRefExpr>(E1);
4138 const auto *DRE2 = cast<DeclRefExpr>(E2);
4139 return DRE1->isPRValue() && DRE2->isPRValue() &&
4140 DRE1->getDecl() == DRE2->getDecl();
4141 }
4142 case ImplicitCastExprClass: {
4143 // Peel off implicit casts.
4144 while (true) {
4145 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4146 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4147 if (!ICE1 || !ICE2)
4148 return false;
4149 if (ICE1->getCastKind() != ICE2->getCastKind())
4150 return false;
4151 E1 = ICE1->getSubExpr()->IgnoreParens();
4152 E2 = ICE2->getSubExpr()->IgnoreParens();
4153 // The final cast must be one of these types.
4154 if (ICE1->getCastKind() == CK_LValueToRValue ||
4155 ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4156 ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4157 break;
4158 }
4159 }
4160
4161 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4162 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4163 if (DRE1 && DRE2)
4164 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4165
4166 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4167 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4168 if (Ivar1 && Ivar2) {
4169 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4170 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4171 }
4172
4173 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4174 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4175 if (Array1 && Array2) {
4176 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4177 return false;
4178
4179 auto Idx1 = Array1->getIdx();
4180 auto Idx2 = Array2->getIdx();
4181 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4182 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4183 if (Integer1 && Integer2) {
4184 if (!llvm::APInt::isSameValue(Integer1->getValue(),
4185 Integer2->getValue()))
4186 return false;
4187 } else {
4188 if (!isSameComparisonOperand(Idx1, Idx2))
4189 return false;
4190 }
4191
4192 return true;
4193 }
4194
4195 // Walk the MemberExpr chain.
4196 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4197 const auto *ME1 = cast<MemberExpr>(E1);
4198 const auto *ME2 = cast<MemberExpr>(E2);
4199 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4200 return false;
4201 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4202 if (D->isStaticDataMember())
4203 return true;
4204 E1 = ME1->getBase()->IgnoreParenImpCasts();
4205 E2 = ME2->getBase()->IgnoreParenImpCasts();
4206 }
4207
4208 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4209 return true;
4210
4211 // A static member variable can end the MemberExpr chain with either
4212 // a MemberExpr or a DeclRefExpr.
4213 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4214 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4215 return DRE->getDecl();
4216 if (const auto *ME = dyn_cast<MemberExpr>(E))
4217 return ME->getMemberDecl();
4218 return nullptr;
4219 };
4220
4221 const ValueDecl *VD1 = getAnyDecl(E1);
4222 const ValueDecl *VD2 = getAnyDecl(E2);
4223 return declaresSameEntity(VD1, VD2);
4224 }
4225 }
4226}
4227
4228/// isArrow - Return true if the base expression is a pointer to vector,
4229/// return false if the base expression is a vector.
4230bool ExtVectorElementExpr::isArrow() const {
4231 return getBase()->getType()->isPointerType();
4232}
4233
4234unsigned ExtVectorElementExpr::getNumElements() const {
4235 if (const VectorType *VT = getType()->getAs<VectorType>())
4236 return VT->getNumElements();
4237 return 1;
4238}
4239
4240/// containsDuplicateElements - Return true if any element access is repeated.
4241bool ExtVectorElementExpr::containsDuplicateElements() const {
4242 // FIXME: Refactor this code to an accessor on the AST node which returns the
4243 // "type" of component access, and share with code below and in Sema.
4244 StringRef Comp = Accessor->getName();
4245
4246 // Halving swizzles do not contain duplicate elements.
4247 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4248 return false;
4249
4250 // Advance past s-char prefix on hex swizzles.
4251 if (Comp[0] == 's' || Comp[0] == 'S')
4252 Comp = Comp.substr(1);
4253
4254 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4255 if (Comp.substr(i + 1).contains(Comp[i]))
4256 return true;
4257
4258 return false;
4259}
4260
4261/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4262void ExtVectorElementExpr::getEncodedElementAccess(
4263 SmallVectorImpl<uint32_t> &Elts) const {
4264 StringRef Comp = Accessor->getName();
4265 bool isNumericAccessor = false;
4266 if (Comp[0] == 's' || Comp[0] == 'S') {
4267 Comp = Comp.substr(1);
4268 isNumericAccessor = true;
4269 }
4270
4271 bool isHi = Comp == "hi";
4272 bool isLo = Comp == "lo";
4273 bool isEven = Comp == "even";
4274 bool isOdd = Comp == "odd";
4275
4276 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4277 uint64_t Index;
4278
4279 if (isHi)
4280 Index = e + i;
4281 else if (isLo)
4282 Index = i;
4283 else if (isEven)
4284 Index = 2 * i;
4285 else if (isOdd)
4286 Index = 2 * i + 1;
4287 else
4288 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4289
4290 Elts.push_back(Index);
4291 }
4292}
4293
4294ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4295 QualType Type, SourceLocation BLoc,
4296 SourceLocation RP)
4297 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4298 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4299 SubExprs = new (C) Stmt*[args.size()];
4300 for (unsigned i = 0; i != args.size(); i++)
4301 SubExprs[i] = args[i];
4302
4303 setDependence(computeDependence(this));
4304}
4305
4306void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4307 if (SubExprs) C.Deallocate(SubExprs);
4308
4309 this->NumExprs = Exprs.size();
4310 SubExprs = new (C) Stmt*[NumExprs];
4311 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4312}
4313
4314GenericSelectionExpr::GenericSelectionExpr(
4315 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4316 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4317 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4318 bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4319 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4320 AssocExprs[ResultIndex]->getValueKind(),
4321 AssocExprs[ResultIndex]->getObjectKind()),
4322 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4323 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4324 assert(AssocTypes.size() == AssocExprs.size() &&(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4326, __extension__ __PRETTY_FUNCTION__
))
4325 "Must have the same number of association expressions"(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4326, __extension__ __PRETTY_FUNCTION__
))
4326 " and TypeSourceInfo!")(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4326, __extension__ __PRETTY_FUNCTION__
))
;
4327 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!")(static_cast <bool> (ResultIndex < NumAssocs &&
"ResultIndex is out-of-bounds!") ? void (0) : __assert_fail (
"ResultIndex < NumAssocs && \"ResultIndex is out-of-bounds!\""
, "clang/lib/AST/Expr.cpp", 4327, __extension__ __PRETTY_FUNCTION__
))
;
4328
4329 GenericSelectionExprBits.GenericLoc = GenericLoc;
4330 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4331 std::copy(AssocExprs.begin(), AssocExprs.end(),
4332 getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4333 std::copy(AssocTypes.begin(), AssocTypes.end(),
4334 getTrailingObjects<TypeSourceInfo *>());
4335
4336 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4337}
4338
4339GenericSelectionExpr::GenericSelectionExpr(
4340 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4341 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4342 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4343 bool ContainsUnexpandedParameterPack)
4344 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4345 OK_Ordinary),
4346 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4347 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4348 assert(AssocTypes.size() == AssocExprs.size() &&(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4350, __extension__ __PRETTY_FUNCTION__
))
4349 "Must have the same number of association expressions"(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4350, __extension__ __PRETTY_FUNCTION__
))
4350 " and TypeSourceInfo!")(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4350, __extension__ __PRETTY_FUNCTION__
))
;
4351
4352 GenericSelectionExprBits.GenericLoc = GenericLoc;
4353 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4354 std::copy(AssocExprs.begin(), AssocExprs.end(),
4355 getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4356 std::copy(AssocTypes.begin(), AssocTypes.end(),
4357 getTrailingObjects<TypeSourceInfo *>());
4358
4359 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4360}
4361
4362GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4363 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4364
4365GenericSelectionExpr *GenericSelectionExpr::Create(
4366 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4367 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4368 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4369 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4370 unsigned NumAssocs = AssocExprs.size();
4371 void *Mem = Context.Allocate(
4372 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4373 alignof(GenericSelectionExpr));
4374 return new (Mem) GenericSelectionExpr(
4375 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4376 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4377}
4378
4379GenericSelectionExpr *GenericSelectionExpr::Create(
4380 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4381 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4382 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4383 bool ContainsUnexpandedParameterPack) {
4384 unsigned NumAssocs = AssocExprs.size();
4385 void *Mem = Context.Allocate(
4386 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4387 alignof(GenericSelectionExpr));
4388 return new (Mem) GenericSelectionExpr(
4389 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4390 RParenLoc, ContainsUnexpandedParameterPack);
4391}
4392
4393GenericSelectionExpr *
4394GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4395 unsigned NumAssocs) {
4396 void *Mem = Context.Allocate(
4397 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4398 alignof(GenericSelectionExpr));
4399 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4400}
4401
4402//===----------------------------------------------------------------------===//
4403// DesignatedInitExpr
4404//===----------------------------------------------------------------------===//
4405
4406IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4407 assert(Kind == FieldDesignator && "Only valid on a field designator")(static_cast <bool> (Kind == FieldDesignator &&
"Only valid on a field designator") ? void (0) : __assert_fail
("Kind == FieldDesignator && \"Only valid on a field designator\""
, "clang/lib/AST/Expr.cpp", 4407, __extension__ __PRETTY_FUNCTION__
))
;
4408 if (Field.NameOrField & 0x01)
4409 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4410 return getField()->getIdentifier();
4411}
4412
4413DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4414 llvm::ArrayRef<Designator> Designators,
4415 SourceLocation EqualOrColonLoc,
4416 bool GNUSyntax,
4417 ArrayRef<Expr *> IndexExprs, Expr *Init)
4418 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4419 Init->getObjectKind()),
4420 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4421 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4422 this->Designators = new (C) Designator[NumDesignators];
4423
4424 // Record the initializer itself.
4425 child_iterator Child = child_begin();
4426 *Child++ = Init;
4427
4428 // Copy the designators and their subexpressions, computing
4429 // value-dependence along the way.
4430 unsigned IndexIdx = 0;
4431 for (unsigned I = 0; I != NumDesignators; ++I) {
4432 this->Designators[I] = Designators[I];
4433 if (this->Designators[I].isArrayDesignator()) {
4434 // Copy the index expressions into permanent storage.
4435 *Child++ = IndexExprs[IndexIdx++];
4436 } else if (this->Designators[I].isArrayRangeDesignator()) {
4437 // Copy the start/end expressions into permanent storage.
4438 *Child++ = IndexExprs[IndexIdx++];
4439 *Child++ = IndexExprs[IndexIdx++];
4440 }
4441 }
4442
4443 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions")(static_cast <bool> (IndexIdx == IndexExprs.size() &&
"Wrong number of index expressions") ? void (0) : __assert_fail
("IndexIdx == IndexExprs.size() && \"Wrong number of index expressions\""
, "clang/lib/AST/Expr.cpp", 4443, __extension__ __PRETTY_FUNCTION__
))
;
4444 setDependence(computeDependence(this));
4445}
4446
4447DesignatedInitExpr *
4448DesignatedInitExpr::Create(const ASTContext &C,
4449 llvm::ArrayRef<Designator> Designators,
4450 ArrayRef<Expr*> IndexExprs,
4451 SourceLocation ColonOrEqualLoc,
4452 bool UsesColonSyntax, Expr *Init) {
4453 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4454 alignof(DesignatedInitExpr));
4455 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4456 ColonOrEqualLoc, UsesColonSyntax,
4457 IndexExprs, Init);
4458}
4459
4460DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4461 unsigned NumIndexExprs) {
4462 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4463 alignof(DesignatedInitExpr));
4464 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4465}
4466
4467void DesignatedInitExpr::setDesignators(const ASTContext &C,
4468 const Designator *Desigs,
4469 unsigned NumDesigs) {
4470 Designators = new (C) Designator[NumDesigs];
4471 NumDesignators = NumDesigs;
4472 for (unsigned I = 0; I != NumDesigs; ++I)
4473 Designators[I] = Desigs[I];
4474}
4475
4476SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4477 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4478 if (size() == 1)
4479 return DIE->getDesignator(0)->getSourceRange();
4480 return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4481 DIE->getDesignator(size() - 1)->getEndLoc());
4482}
4483
4484SourceLocation DesignatedInitExpr::getBeginLoc() const {
4485 SourceLocation StartLoc;
4486 auto *DIE = const_cast<DesignatedInitExpr *>(this);
4487 Designator &First = *DIE->getDesignator(0);
4488 if (First.isFieldDesignator())
4489 StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4490 else
4491 StartLoc = First.ArrayOrRange.LBracketLoc;
4492 return StartLoc;
4493}
4494
4495SourceLocation DesignatedInitExpr::getEndLoc() const {
4496 return getInit()->getEndLoc();
4497}
4498
4499Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4500 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator")(static_cast <bool> (D.Kind == Designator::ArrayDesignator
&& "Requires array designator") ? void (0) : __assert_fail
("D.Kind == Designator::ArrayDesignator && \"Requires array designator\""
, "clang/lib/AST/Expr.cpp", 4500, __extension__ __PRETTY_FUNCTION__
))
;
4501 return getSubExpr(D.ArrayOrRange.Index + 1);
4502}
4503
4504Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4505 assert(D.Kind == Designator::ArrayRangeDesignator &&(static_cast <bool> (D.Kind == Designator::ArrayRangeDesignator
&& "Requires array range designator") ? void (0) : __assert_fail
("D.Kind == Designator::ArrayRangeDesignator && \"Requires array range designator\""
, "clang/lib/AST/Expr.cpp", 4506, __extension__ __PRETTY_FUNCTION__
))
4506 "Requires array range designator")(static_cast <bool> (D.Kind == Designator::ArrayRangeDesignator
&& "Requires array range designator") ? void (0) : __assert_fail
("D.Kind == Designator::ArrayRangeDesignator && \"Requires array range designator\""
, "clang/lib/AST/Expr.cpp", 4506, __extension__ __PRETTY_FUNCTION__
))
;
4507 return getSubExpr(D.ArrayOrRange.Index + 1);
4508}
4509
4510Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4511 assert(D.Kind == Designator::ArrayRangeDesignator &&(static_cast <bool> (D.Kind == Designator::ArrayRangeDesignator
&& "Requires array range designator") ? void (0) : __assert_fail
("D.Kind == Designator::ArrayRangeDesignator && \"Requires array range designator\""
, "clang/lib/AST/Expr.cpp", 4512, __extension__ __PRETTY_FUNCTION__
))
4512 "Requires array range designator")(static_cast <bool> (D.Kind == Designator::ArrayRangeDesignator
&& "Requires array range designator") ? void (0) : __assert_fail
("D.Kind == Designator::ArrayRangeDesignator && \"Requires array range designator\""
, "clang/lib/AST/Expr.cpp", 4512, __extension__ __PRETTY_FUNCTION__
))
;
4513 return getSubExpr(D.ArrayOrRange.Index + 2);
4514}
4515
4516/// Replaces the designator at index @p Idx with the series
4517/// of designators in [First, Last).
4518void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4519 const Designator *First,
4520 const Designator *Last) {
4521 unsigned NumNewDesignators = Last - First;
4522 if (NumNewDesignators == 0) {
4523 std::copy_backward(Designators + Idx + 1,
4524 Designators + NumDesignators,
4525 Designators + Idx);
4526 --NumNewDesignators;
4527 return;
4528 }
4529 if (NumNewDesignators == 1) {
4530 Designators[Idx] = *First;
4531 return;
4532 }
4533
4534 Designator *NewDesignators
4535 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4536 std::copy(Designators, Designators + Idx, NewDesignators);
4537 std::copy(First, Last, NewDesignators + Idx);
4538 std::copy(Designators + Idx + 1, Designators + NumDesignators,
4539 NewDesignators + Idx + NumNewDesignators);
4540 Designators = NewDesignators;
4541 NumDesignators = NumDesignators - 1 + NumNewDesignators;
4542}
4543
4544DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4545 SourceLocation lBraceLoc,
4546 Expr *baseExpr,
4547 SourceLocation rBraceLoc)
4548 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4549 OK_Ordinary) {
4550 BaseAndUpdaterExprs[0] = baseExpr;
4551
4552 InitListExpr *ILE =
4553 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4554 ILE->setType(baseExpr->getType());
4555 BaseAndUpdaterExprs[1] = ILE;
4556
4557 // FIXME: this is wrong, set it correctly.
4558 setDependence(ExprDependence::None);
4559}
4560
4561SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4562 return getBase()->getBeginLoc();
4563}
4564
4565SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4566 return getBase()->getEndLoc();
4567}
4568
4569ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4570 SourceLocation RParenLoc)
4571 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4572 LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4573 ParenListExprBits.NumExprs = Exprs.size();
4574
4575 for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4576 getTrailingObjects<Stmt *>()[I] = Exprs[I];
4577 setDependence(computeDependence(this));
4578}
4579
4580ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4581 : Expr(ParenListExprClass, Empty) {
4582 ParenListExprBits.NumExprs = NumExprs;
4583}
4584
4585ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4586 SourceLocation LParenLoc,
4587 ArrayRef<Expr *> Exprs,
4588 SourceLocation RParenLoc) {
4589 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4590 alignof(ParenListExpr));
4591 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4592}
4593
4594ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4595 unsigned NumExprs) {
4596 void *Mem =
4597 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4598 return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4599}
4600
4601BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4602 Opcode opc, QualType ResTy, ExprValueKind VK,
4603 ExprObjectKind OK, SourceLocation opLoc,
4604 FPOptionsOverride FPFeatures)
4605 : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4606 BinaryOperatorBits.Opc = opc;
4607 assert(!isCompoundAssignmentOp() &&(static_cast <bool> (!isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments") ? void
(0) : __assert_fail ("!isCompoundAssignmentOp() && \"Use CompoundAssignOperator for compound assignments\""
, "clang/lib/AST/Expr.cpp", 4608, __extension__ __PRETTY_FUNCTION__
))
4608 "Use CompoundAssignOperator for compound assignments")(static_cast <bool> (!isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments") ? void
(0) : __assert_fail ("!isCompoundAssignmentOp() && \"Use CompoundAssignOperator for compound assignments\""
, "clang/lib/AST/Expr.cpp", 4608, __extension__ __PRETTY_FUNCTION__
))
;
4609 BinaryOperatorBits.OpLoc = opLoc;
4610 SubExprs[LHS] = lhs;
4611 SubExprs[RHS] = rhs;
4612 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4613 if (hasStoredFPFeatures())
4614 setStoredFPFeatures(FPFeatures);
4615 setDependence(computeDependence(this));
4616}
4617
4618BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4619 Opcode opc, QualType ResTy, ExprValueKind VK,
4620 ExprObjectKind OK, SourceLocation opLoc,
4621 FPOptionsOverride FPFeatures, bool dead2)
4622 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4623 BinaryOperatorBits.Opc = opc;
4624 assert(isCompoundAssignmentOp() &&(static_cast <bool> (isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments") ? void
(0) : __assert_fail ("isCompoundAssignmentOp() && \"Use CompoundAssignOperator for compound assignments\""
, "clang/lib/AST/Expr.cpp", 4625, __extension__ __PRETTY_FUNCTION__
))
4625 "Use CompoundAssignOperator for compound assignments")(static_cast <bool> (isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments") ? void
(0) : __assert_fail ("isCompoundAssignmentOp() && \"Use CompoundAssignOperator for compound assignments\""
, "clang/lib/AST/Expr.cpp", 4625, __extension__ __PRETTY_FUNCTION__
))
;
4626 BinaryOperatorBits.OpLoc = opLoc;
4627 SubExprs[LHS] = lhs;
4628 SubExprs[RHS] = rhs;
4629 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4630 if (hasStoredFPFeatures())
4631 setStoredFPFeatures(FPFeatures);
4632 setDependence(computeDependence(this));
4633}
4634
4635BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4636 bool HasFPFeatures) {
4637 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4638 void *Mem =
4639 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4640 return new (Mem) BinaryOperator(EmptyShell());
4641}
4642
4643BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4644 Expr *rhs, Opcode opc, QualType ResTy,
4645 ExprValueKind VK, ExprObjectKind OK,
4646 SourceLocation opLoc,
4647 FPOptionsOverride FPFeatures) {
4648 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4649 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4650 void *Mem =
4651 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4652 return new (Mem)
4653 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4654}
4655
4656CompoundAssignOperator *
4657CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4658 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4659 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4660 alignof(CompoundAssignOperator));
4661 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4662}
4663
4664CompoundAssignOperator *
4665CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4666 Opcode opc, QualType ResTy, ExprValueKind VK,
4667 ExprObjectKind OK, SourceLocation opLoc,
4668 FPOptionsOverride FPFeatures,
4669 QualType CompLHSType, QualType CompResultType) {
4670 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4671 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4672 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4673 alignof(CompoundAssignOperator));
4674 return new (Mem)
4675 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4676 CompLHSType, CompResultType);
4677}
4678
4679UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4680 bool hasFPFeatures) {
4681 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4682 alignof(UnaryOperator));
4683 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4684}
4685
4686UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4687 QualType type, ExprValueKind VK, ExprObjectKind OK,
4688 SourceLocation l, bool CanOverflow,
4689 FPOptionsOverride FPFeatures)
4690 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4691 UnaryOperatorBits.Opc = opc;
4692 UnaryOperatorBits.CanOverflow = CanOverflow;
4693 UnaryOperatorBits.Loc = l;
4694 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4695 if (hasStoredFPFeatures())
4696 setStoredFPFeatures(FPFeatures);
4697 setDependence(computeDependence(this, Ctx));
4698}
4699
4700UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4701 Opcode opc, QualType type,
4702 ExprValueKind VK, ExprObjectKind OK,
4703 SourceLocation l, bool CanOverflow,
4704 FPOptionsOverride FPFeatures) {
4705 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4706 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4707 void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4708 return new (Mem)
4709 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4710}
4711
4712const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4713 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4714 e = ewc->getSubExpr();
4715 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4716 e = m->getSubExpr();
4717 e = cast<CXXConstructExpr>(e)->getArg(0);
4718 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4719 e = ice->getSubExpr();
4720 return cast<OpaqueValueExpr>(e);
4721}
4722
4723PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4724 EmptyShell sh,
4725 unsigned numSemanticExprs) {
4726 void *buffer =
4727 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4728 alignof(PseudoObjectExpr));
4729 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4730}
4731
4732PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4733 : Expr(PseudoObjectExprClass, shell) {
4734 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4735}
4736
4737PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4738 ArrayRef<Expr*> semantics,
4739 unsigned resultIndex) {
4740 assert(syntax && "no syntactic expression!")(static_cast <bool> (syntax && "no syntactic expression!"
) ? void (0) : __assert_fail ("syntax && \"no syntactic expression!\""
, "clang/lib/AST/Expr.cpp", 4740, __extension__ __PRETTY_FUNCTION__
))
;
4741 assert(semantics.size() && "no semantic expressions!")(static_cast <bool> (semantics.size() && "no semantic expressions!"
) ? void (0) : __assert_fail ("semantics.size() && \"no semantic expressions!\""
, "clang/lib/AST/Expr.cpp", 4741, __extension__ __PRETTY_FUNCTION__
))
;
4742
4743 QualType type;
4744 ExprValueKind VK;
4745 if (resultIndex == NoResult) {
4746 type = C.VoidTy;
4747 VK = VK_PRValue;
4748 } else {
4749 assert(resultIndex < semantics.size())(static_cast <bool> (resultIndex < semantics.size())
? void (0) : __assert_fail ("resultIndex < semantics.size()"
, "clang/lib/AST/Expr.cpp", 4749, __extension__ __PRETTY_FUNCTION__
))
;
4750 type = semantics[resultIndex]->getType();
4751 VK = semantics[resultIndex]->getValueKind();
4752 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary)(static_cast <bool> (semantics[resultIndex]->getObjectKind
() == OK_Ordinary) ? void (0) : __assert_fail ("semantics[resultIndex]->getObjectKind() == OK_Ordinary"
, "clang/lib/AST/Expr.cpp", 4752, __extension__ __PRETTY_FUNCTION__
))
;
4753 }
4754
4755 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4756 alignof(PseudoObjectExpr));
4757 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4758 resultIndex);
4759}
4760
4761PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4762 Expr *syntax, ArrayRef<Expr *> semantics,
4763 unsigned resultIndex)
4764 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4765 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4766 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4767
4768 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4769 Expr *E = (i == 0 ? syntax : semantics[i-1]);
4770 getSubExprsBuffer()[i] = E;
4771
4772 if (isa<OpaqueValueExpr>(E))
4773 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&(static_cast <bool> (cast<OpaqueValueExpr>(E)->
getSourceExpr() != nullptr && "opaque-value semantic expressions for pseudo-object "
"operations must have sources") ? void (0) : __assert_fail (
"cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && \"opaque-value semantic expressions for pseudo-object \" \"operations must have sources\""
, "clang/lib/AST/Expr.cpp", 4775, __extension__ __PRETTY_FUNCTION__
))
4774 "opaque-value semantic expressions for pseudo-object "(static_cast <bool> (cast<OpaqueValueExpr>(E)->
getSourceExpr() != nullptr && "opaque-value semantic expressions for pseudo-object "
"operations must have sources") ? void (0) : __assert_fail (
"cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && \"opaque-value semantic expressions for pseudo-object \" \"operations must have sources\""
, "clang/lib/AST/Expr.cpp", 4775, __extension__ __PRETTY_FUNCTION__
))
4775 "operations must have sources")(static_cast <bool> (cast<OpaqueValueExpr>(E)->
getSourceExpr() != nullptr && "opaque-value semantic expressions for pseudo-object "
"operations must have sources") ? void (0) : __assert_fail (
"cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && \"opaque-value semantic expressions for pseudo-object \" \"operations must have sources\""
, "clang/lib/AST/Expr.cpp", 4775, __extension__ __PRETTY_FUNCTION__
))
;
4776 }
4777
4778 setDependence(computeDependence(this));
4779}
4780
4781//===----------------------------------------------------------------------===//
4782// Child Iterators for iterating over subexpressions/substatements
4783//===----------------------------------------------------------------------===//
4784
4785// UnaryExprOrTypeTraitExpr
4786Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4787 const_child_range CCR =
4788 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4789 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4790}
4791
4792Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4793 // If this is of a type and the type is a VLA type (and not a typedef), the
4794 // size expression of the VLA needs to be treated as an executable expression.
4795 // Why isn't this weirdness documented better in StmtIterator?
4796 if (isArgumentType()) {
4797 if (const VariableArrayType *T =
4798 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4799 return const_child_range(const_child_iterator(T), const_child_iterator());
4800 return const_child_range(const_child_iterator(), const_child_iterator());
4801 }
4802 return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4803}
4804
4805AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4806 AtomicOp op, SourceLocation RP)
4807 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4808 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4809 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions")(static_cast <bool> (args.size() == getNumSubExprs(op) &&
"wrong number of subexpressions") ? void (0) : __assert_fail
("args.size() == getNumSubExprs(op) && \"wrong number of subexpressions\""
, "clang/lib/AST/Expr.cpp", 4809, __extension__ __PRETTY_FUNCTION__
))
;
4810 for (unsigned i = 0; i != args.size(); i++)
4811 SubExprs[i] = args[i];
4812 setDependence(computeDependence(this));
4813}
4814
4815unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4816 switch (Op) {
4817 case AO__c11_atomic_init:
4818 case AO__opencl_atomic_init:
4819 case AO__c11_atomic_load:
4820 case AO__atomic_load_n:
4821 return 2;
4822
4823 case AO__opencl_atomic_load:
4824 case AO__hip_atomic_load:
4825 case AO__c11_atomic_store:
4826 case AO__c11_atomic_exchange:
4827 case AO__atomic_load:
4828 case AO__atomic_store:
4829 case AO__atomic_store_n:
4830 case AO__atomic_exchange_n:
4831 case AO__c11_atomic_fetch_add:
4832 case AO__c11_atomic_fetch_sub:
4833 case AO__c11_atomic_fetch_and:
4834 case AO__c11_atomic_fetch_or:
4835 case AO__c11_atomic_fetch_xor:
4836 case AO__c11_atomic_fetch_nand:
4837 case AO__c11_atomic_fetch_max:
4838 case AO__c11_atomic_fetch_min:
4839 case AO__atomic_fetch_add:
4840 case AO__atomic_fetch_sub:
4841 case AO__atomic_fetch_and:
4842 case AO__atomic_fetch_or:
4843 case AO__atomic_fetch_xor:
4844 case AO__atomic_fetch_nand:
4845 case AO__atomic_add_fetch:
4846 case AO__atomic_sub_fetch:
4847 case AO__atomic_and_fetch:
4848 case AO__atomic_or_fetch:
4849 case AO__atomic_xor_fetch:
4850 case AO__atomic_nand_fetch:
4851 case AO__atomic_min_fetch:
4852 case AO__atomic_max_fetch:
4853 case AO__atomic_fetch_min:
4854 case AO__atomic_fetch_max:
4855 return 3;
4856
4857 case AO__hip_atomic_exchange:
4858 case AO__hip_atomic_fetch_add:
4859 case AO__hip_atomic_fetch_and:
4860 case AO__hip_atomic_fetch_or:
4861 case AO__hip_atomic_fetch_xor:
4862 case AO__hip_atomic_fetch_min:
4863 case AO__hip_atomic_fetch_max:
4864 case AO__opencl_atomic_store:
4865 case AO__hip_atomic_store:
4866 case AO__opencl_atomic_exchange:
4867 case AO__opencl_atomic_fetch_add:
4868 case AO__opencl_atomic_fetch_sub:
4869 case AO__opencl_atomic_fetch_and:
4870 case AO__opencl_atomic_fetch_or:
4871 case AO__opencl_atomic_fetch_xor:
4872 case AO__opencl_atomic_fetch_min:
4873 case AO__opencl_atomic_fetch_max:
4874 case AO__atomic_exchange:
4875 return 4;
4876
4877 case AO__c11_atomic_compare_exchange_strong:
4878 case AO__c11_atomic_compare_exchange_weak:
4879 return 5;
4880 case AO__hip_atomic_compare_exchange_strong:
4881 case AO__opencl_atomic_compare_exchange_strong:
4882 case AO__opencl_atomic_compare_exchange_weak:
4883 case AO__hip_atomic_compare_exchange_weak:
4884 case AO__atomic_compare_exchange:
4885 case AO__atomic_compare_exchange_n:
4886 return 6;
4887 }
4888 llvm_unreachable("unknown atomic op")::llvm::llvm_unreachable_internal("unknown atomic op", "clang/lib/AST/Expr.cpp"
, 4888)
;
4889}
4890
4891QualType AtomicExpr::getValueType() const {
4892 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4893 if (auto AT = T->getAs<AtomicType>())
4894 return AT->getValueType();
4895 return T;
4896}
4897
4898QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4899 unsigned ArraySectionCount = 0;
4900 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4901 Base = OASE->getBase();
4902 ++ArraySectionCount;
4903 }
4904 while (auto *ASE =
4905 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4906 Base = ASE->getBase();
4907 ++ArraySectionCount;
4908 }
4909 Base = Base->IgnoreParenImpCasts();
4910 auto OriginalTy = Base->getType();
4911 if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4912 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4913 OriginalTy = PVD->getOriginalType().getNonReferenceType();
4914
4915 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4916 if (OriginalTy->isAnyPointerType())
4917 OriginalTy = OriginalTy->getPointeeType();
4918 else {
4919 assert (OriginalTy->isArrayType())(static_cast <bool> (OriginalTy->isArrayType()) ? void
(0) : __assert_fail ("OriginalTy->isArrayType()", "clang/lib/AST/Expr.cpp"
, 4919, __extension__ __PRETTY_FUNCTION__))
;
4920 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4921 }
4922 }
4923 return OriginalTy;
4924}
4925
4926RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4927 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4928 : Expr(RecoveryExprClass, T.getNonReferenceType(),
4929 T->isDependentType() ? VK_LValue : getValueKindForType(T),
4930 OK_Ordinary),
4931 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4932 assert(!T.isNull())(static_cast <bool> (!T.isNull()) ? void (0) : __assert_fail
("!T.isNull()", "clang/lib/AST/Expr.cpp", 4932, __extension__
__PRETTY_FUNCTION__))
;
4933 assert(!llvm::is_contained(SubExprs, nullptr))(static_cast <bool> (!llvm::is_contained(SubExprs, nullptr
)) ? void (0) : __assert_fail ("!llvm::is_contained(SubExprs, nullptr)"
, "clang/lib/AST/Expr.cpp", 4933, __extension__ __PRETTY_FUNCTION__
))
;
4934
4935 llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4936 setDependence(computeDependence(this));
4937}
4938
4939RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4940 SourceLocation BeginLoc,
4941 SourceLocation EndLoc,
4942 ArrayRef<Expr *> SubExprs) {
4943 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4944 alignof(RecoveryExpr));
4945 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4946}
4947
4948RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4949 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4950 alignof(RecoveryExpr));
4951 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4952}
4953
4954void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4955 assert((static_cast <bool> (NumDims == Dims.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == Dims.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4957, __extension__ __PRETTY_FUNCTION__
))
4956 NumDims == Dims.size() &&(static_cast <bool> (NumDims == Dims.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == Dims.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4957, __extension__ __PRETTY_FUNCTION__
))
4957 "Preallocated number of dimensions is different from the provided one.")(static_cast <bool> (NumDims == Dims.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == Dims.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4957, __extension__ __PRETTY_FUNCTION__
))
;
4958 llvm::copy(Dims, getTrailingObjects<Expr *>());
4959}
4960
4961void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4962 assert((static_cast <bool> (NumDims == BR.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == BR.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4964, __extension__ __PRETTY_FUNCTION__
))
4963 NumDims == BR.size() &&(static_cast <bool> (NumDims == BR.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == BR.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4964, __extension__ __PRETTY_FUNCTION__
))
4964 "Preallocated number of dimensions is different from the provided one.")(static_cast <bool> (NumDims == BR.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == BR.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4964, __extension__ __PRETTY_FUNCTION__
))
;
4965 llvm::copy(BR, getTrailingObjects<SourceRange>());
4966}
4967
4968OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4969 SourceLocation L, SourceLocation R,
4970 ArrayRef<Expr *> Dims)
4971 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4972 RPLoc(R), NumDims(Dims.size()) {
4973 setBase(Op);
4974 setDimensions(Dims);
4975 setDependence(computeDependence(this));
4976}
4977
4978OMPArrayShapingExpr *
4979OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4980 SourceLocation L, SourceLocation R,
4981 ArrayRef<Expr *> Dims,
4982 ArrayRef<SourceRange> BracketRanges) {
4983 assert(Dims.size() == BracketRanges.size() &&(static_cast <bool> (Dims.size() == BracketRanges.size(
) && "Different number of dimensions and brackets ranges."
) ? void (0) : __assert_fail ("Dims.size() == BracketRanges.size() && \"Different number of dimensions and brackets ranges.\""
, "clang/lib/AST/Expr.cpp", 4984, __extension__ __PRETTY_FUNCTION__
))
4984 "Different number of dimensions and brackets ranges.")(static_cast <bool> (Dims.size() == BracketRanges.size(
) && "Different number of dimensions and brackets ranges."
) ? void (0) : __assert_fail ("Dims.size() == BracketRanges.size() && \"Different number of dimensions and brackets ranges.\""
, "clang/lib/AST/Expr.cpp", 4984, __extension__ __PRETTY_FUNCTION__
))
;
4985 void *Mem = Context.Allocate(
4986 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4987 alignof(OMPArrayShapingExpr));
4988 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4989 E->setBracketsRanges(BracketRanges);
4990 return E;
4991}
4992
4993OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4994 unsigned NumDims) {
4995 void *Mem = Context.Allocate(
4996 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4997 alignof(OMPArrayShapingExpr));
4998 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4999}
5000
5001void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5002 assert(I < NumIterators &&(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5003, __extension__ __PRETTY_FUNCTION__
))
5003 "Idx is greater or equal the number of iterators definitions.")(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5003, __extension__ __PRETTY_FUNCTION__
))
;
5004 getTrailingObjects<Decl *>()[I] = D;
5005}
5006
5007void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5008 assert(I < NumIterators &&(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5009, __extension__ __PRETTY_FUNCTION__
))
5009 "Idx is greater or equal the number of iterators definitions.")(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5009, __extension__ __PRETTY_FUNCTION__
))
;
5010 getTrailingObjects<
5011 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5012 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5013}
5014
5015void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5016 SourceLocation ColonLoc, Expr *End,
5017 SourceLocation SecondColonLoc,
5018 Expr *Step) {
5019 assert(I < NumIterators &&(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5020, __extension__ __PRETTY_FUNCTION__
))
5020 "Idx is greater or equal the number of iterators definitions.")(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5020, __extension__ __PRETTY_FUNCTION__
))
;
5021 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5022 static_cast<int>(RangeExprOffset::Begin)] =
5023 Begin;
5024 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5025 static_cast<int>(RangeExprOffset::End)] = End;
5026 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5027 static_cast<int>(RangeExprOffset::Step)] = Step;
5028 getTrailingObjects<
5029 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5030 static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5031 ColonLoc;
5032 getTrailingObjects<
5033 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5034 static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5035 SecondColonLoc;
5036}
5037
5038Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5039 return getTrailingObjects<Decl *>()[I];
5040}
5041
5042OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5043 IteratorRange Res;
5044 Res.Begin =
5045 getTrailingObjects<Expr *>()[I * static_cast<int>(
5046 RangeExprOffset::Total) +
5047 static_cast<int>(RangeExprOffset::Begin)];
5048 Res.End =
5049 getTrailingObjects<Expr *>()[I * static_cast<int>(
5050 RangeExprOffset::Total) +
5051 static_cast<int>(RangeExprOffset::End)];
5052 Res.Step =
5053 getTrailingObjects<Expr *>()[I * static_cast<int>(
5054 RangeExprOffset::Total) +
5055 static_cast<int>(RangeExprOffset::Step)];
5056 return Res;
5057}
5058
5059SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5060 return getTrailingObjects<
5061 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5062 static_cast<int>(RangeLocOffset::AssignLoc)];
5063}
5064
5065SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5066 return getTrailingObjects<
5067 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5068 static_cast<int>(RangeLocOffset::FirstColonLoc)];
5069}
5070
5071SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5072 return getTrailingObjects<
5073 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5074 static_cast<int>(RangeLocOffset::SecondColonLoc)];
5075}
5076
5077void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5078 getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5079}
5080
5081OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5082 return getTrailingObjects<OMPIteratorHelperData>()[I];
5083}
5084
5085const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5086 return getTrailingObjects<OMPIteratorHelperData>()[I];
5087}
5088
5089OMPIteratorExpr::OMPIteratorExpr(
5090 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5091 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5092 ArrayRef<OMPIteratorHelperData> Helpers)
5093 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5094 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5095 NumIterators(Data.size()) {
5096 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5097 const IteratorDefinition &D = Data[I];
5098 setIteratorDeclaration(I, D.IteratorDecl);
5099 setAssignmentLoc(I, D.AssignmentLoc);
5100 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5101 D.SecondColonLoc, D.Range.Step);
5102 setHelper(I, Helpers[I]);
5103 }
5104 setDependence(computeDependence(this));
5105}
5106
5107OMPIteratorExpr *
5108OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5109 SourceLocation IteratorKwLoc, SourceLocation L,
5110 SourceLocation R,
5111 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5112 ArrayRef<OMPIteratorHelperData> Helpers) {
5113 assert(Data.size() == Helpers.size() &&(static_cast <bool> (Data.size() == Helpers.size() &&
"Data and helpers must have the same size.") ? void (0) : __assert_fail
("Data.size() == Helpers.size() && \"Data and helpers must have the same size.\""
, "clang/lib/AST/Expr.cpp", 5114, __extension__ __PRETTY_FUNCTION__
))
5114 "Data and helpers must have the same size.")(static_cast <bool> (Data.size() == Helpers.size() &&
"Data and helpers must have the same size.") ? void (0) : __assert_fail
("Data.size() == Helpers.size() && \"Data and helpers must have the same size.\""
, "clang/lib/AST/Expr.cpp", 5114, __extension__ __PRETTY_FUNCTION__
))
;
5115 void *Mem = Context.Allocate(
5116 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5117 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5118 Data.size() * static_cast<int>(RangeLocOffset::Total),
5119 Helpers.size()),
5120 alignof(OMPIteratorExpr));
5121 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5122}
5123
5124OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5125 unsigned NumIterators) {
5126 void *Mem = Context.Allocate(
5127 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5128 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5129 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5130 alignof(OMPIteratorExpr));
5131 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5132}