Bug Summary

File:build/source/clang/lib/AST/Expr.cpp
Warning:line 911, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name Expr.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/clang/lib/AST -I /build/source/clang/lib/AST -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/clang/lib/AST/Expr.cpp
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/ComputeDependence.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/DependenceFlags.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/IgnoreExpr.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CharInfo.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Lexer.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
43const Expr *Expr::getBestDynamicClassTypeExpr() const {
44 const Expr *E = this;
45 while (true) {
46 E = E->IgnoreParenBaseCasts();
47
48 // Follow the RHS of a comma operator.
49 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50 if (BO->getOpcode() == BO_Comma) {
51 E = BO->getRHS();
52 continue;
53 }
54 }
55
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58 E = MTE->getSubExpr();
59 continue;
60 }
61
62 break;
63 }
64
65 return E;
66}
67
68const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69 const Expr *E = getBestDynamicClassTypeExpr();
70 QualType DerivedType = E->getType();
71 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72 DerivedType = PTy->getPointeeType();
73
74 if (DerivedType->isDependentType())
75 return nullptr;
76
77 const RecordType *Ty = DerivedType->castAs<RecordType>();
78 Decl *D = Ty->getDecl();
79 return cast<CXXRecordDecl>(D);
80}
81
82const Expr *Expr::skipRValueSubobjectAdjustments(
83 SmallVectorImpl<const Expr *> &CommaLHSs,
84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85 const Expr *E = this;
86 while (true) {
87 E = E->IgnoreParens();
88
89 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
90 if ((CE->getCastKind() == CK_DerivedToBase ||
91 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92 E->getType()->isRecordType()) {
93 E = CE->getSubExpr();
94 auto *Derived =
95 cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
96 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
97 continue;
98 }
99
100 if (CE->getCastKind() == CK_NoOp) {
101 E = CE->getSubExpr();
102 continue;
103 }
104 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
105 if (!ME->isArrow()) {
106 assert(ME->getBase()->getType()->isRecordType())(static_cast <bool> (ME->getBase()->getType()->
isRecordType()) ? void (0) : __assert_fail ("ME->getBase()->getType()->isRecordType()"
, "clang/lib/AST/Expr.cpp", 106, __extension__ __PRETTY_FUNCTION__
))
;
107 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109 E = ME->getBase();
110 Adjustments.push_back(SubobjectAdjustment(Field));
111 continue;
112 }
113 }
114 }
115 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
116 if (BO->getOpcode() == BO_PtrMemD) {
117 assert(BO->getRHS()->isPRValue())(static_cast <bool> (BO->getRHS()->isPRValue()) ?
void (0) : __assert_fail ("BO->getRHS()->isPRValue()",
"clang/lib/AST/Expr.cpp", 117, __extension__ __PRETTY_FUNCTION__
))
;
118 E = BO->getLHS();
119 const MemberPointerType *MPT =
120 BO->getRHS()->getType()->getAs<MemberPointerType>();
121 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
122 continue;
123 }
124 if (BO->getOpcode() == BO_Comma) {
125 CommaLHSs.push_back(BO->getLHS());
126 E = BO->getRHS();
127 continue;
128 }
129 }
130
131 // Nothing changed.
132 break;
133 }
134 return E;
135}
136
137bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
138 const Expr *E = IgnoreParens();
139
140 // If this value has _Bool type, it is obvious 0/1.
141 if (E->getType()->isBooleanType()) return true;
142 // If this is a non-scalar-integer type, we don't care enough to try.
143 if (!E->getType()->isIntegralOrEnumerationType()) return false;
144
145 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
146 switch (UO->getOpcode()) {
147 case UO_Plus:
148 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
149 case UO_LNot:
150 return true;
151 default:
152 return false;
153 }
154 }
155
156 // Only look through implicit casts. If the user writes
157 // '(int) (a && b)' treat it as an arbitrary int.
158 // FIXME: Should we look through any cast expression in !Semantic mode?
159 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
160 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
161
162 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
163 switch (BO->getOpcode()) {
164 default: return false;
165 case BO_LT: // Relational operators.
166 case BO_GT:
167 case BO_LE:
168 case BO_GE:
169 case BO_EQ: // Equality operators.
170 case BO_NE:
171 case BO_LAnd: // AND operator.
172 case BO_LOr: // Logical OR operator.
173 return true;
174
175 case BO_And: // Bitwise AND operator.
176 case BO_Xor: // Bitwise XOR operator.
177 case BO_Or: // Bitwise OR operator.
178 // Handle things like (x==2)|(y==12).
179 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
180 BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
181
182 case BO_Comma:
183 case BO_Assign:
184 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
185 }
186 }
187
188 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
189 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
190 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
191
192 if (isa<ObjCBoolLiteralExpr>(E))
193 return true;
194
195 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
196 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
197
198 if (const FieldDecl *FD = E->getSourceBitField())
199 if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
200 !FD->getBitWidth()->isValueDependent() &&
201 FD->getBitWidthValue(FD->getASTContext()) == 1)
202 return true;
203
204 return false;
205}
206
207bool Expr::isFlexibleArrayMemberLike(
208 ASTContext &Context,
209 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
210 bool IgnoreTemplateOrMacroSubstitution) const {
211
212 // For compatibility with existing code, we treat arrays of length 0 or
213 // 1 as flexible array members.
214 const auto *CAT = Context.getAsConstantArrayType(getType());
215 if (CAT) {
216 llvm::APInt Size = CAT->getSize();
217
218 using FAMKind = LangOptions::StrictFlexArraysLevelKind;
219
220 if (StrictFlexArraysLevel == FAMKind::IncompleteOnly)
221 return false;
222
223 // GCC extension, only allowed to represent a FAM.
224 if (Size == 0)
225 return true;
226
227 if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1))
228 return false;
229
230 if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2))
231 return false;
232 } else if (!Context.getAsIncompleteArrayType(getType()))
233 return false;
234
235 const Expr *E = IgnoreParens();
236
237 const NamedDecl *ND = nullptr;
238 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
239 ND = DRE->getDecl();
240 else if (const auto *ME = dyn_cast<MemberExpr>(E))
241 ND = ME->getMemberDecl();
242 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
243 return IRE->getDecl()->getNextIvar() == nullptr;
244
245 if (!ND)
246 return false;
247
248 // A flexible array member must be the last member in the class.
249 // FIXME: If the base type of the member expr is not FD->getParent(),
250 // this should not be treated as a flexible array member access.
251 if (const auto *FD = dyn_cast<FieldDecl>(ND)) {
252 // GCC treats an array memeber of a union as an FAM if the size is one or
253 // zero.
254 if (CAT) {
255 llvm::APInt Size = CAT->getSize();
256 if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne()))
257 return true;
258 }
259
260 // Don't consider sizes resulting from macro expansions or template argument
261 // substitution to form C89 tail-padded arrays.
262 if (IgnoreTemplateOrMacroSubstitution) {
263 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
264 while (TInfo) {
265 TypeLoc TL = TInfo->getTypeLoc();
266 // Look through typedefs.
267 if (TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>()) {
268 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
269 TInfo = TDL->getTypeSourceInfo();
270 continue;
271 }
272 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
273 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
274 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
275 return false;
276 }
277 break;
278 }
279 }
280
281 RecordDecl::field_iterator FI(
282 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
283 return ++FI == FD->getParent()->field_end();
284 }
285
286 return false;
287}
288
289const ValueDecl *
290Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
291 Expr::EvalResult Eval;
292
293 if (EvaluateAsConstantExpr(Eval, Context)) {
294 APValue &Value = Eval.Val;
295
296 if (Value.isMemberPointer())
297 return Value.getMemberPointerDecl();
298
299 if (Value.isLValue() && Value.getLValueOffset().isZero())
300 return Value.getLValueBase().dyn_cast<const ValueDecl *>();
301 }
302
303 return nullptr;
304}
305
306// Amusing macro metaprogramming hack: check whether a class provides
307// a more specific implementation of getExprLoc().
308//
309// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
310namespace {
311 /// This implementation is used when a class provides a custom
312 /// implementation of getExprLoc.
313 template <class E, class T>
314 SourceLocation getExprLocImpl(const Expr *expr,
315 SourceLocation (T::*v)() const) {
316 return static_cast<const E*>(expr)->getExprLoc();
317 }
318
319 /// This implementation is used when a class doesn't provide
320 /// a custom implementation of getExprLoc. Overload resolution
321 /// should pick it over the implementation above because it's
322 /// more specialized according to function template partial ordering.
323 template <class E>
324 SourceLocation getExprLocImpl(const Expr *expr,
325 SourceLocation (Expr::*v)() const) {
326 return static_cast<const E *>(expr)->getBeginLoc();
327 }
328}
329
330SourceLocation Expr::getExprLoc() const {
331 switch (getStmtClass()) {
332 case Stmt::NoStmtClass: llvm_unreachable("statement without class")::llvm::llvm_unreachable_internal("statement without class", "clang/lib/AST/Expr.cpp"
, 332)
;
333#define ABSTRACT_STMT(type)
334#define STMT(type, base) \
335 case Stmt::type##Class: break;
336#define EXPR(type, base) \
337 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
338#include "clang/AST/StmtNodes.inc"
339 }
340 llvm_unreachable("unknown expression kind")::llvm::llvm_unreachable_internal("unknown expression kind", "clang/lib/AST/Expr.cpp"
, 340)
;
341}
342
343//===----------------------------------------------------------------------===//
344// Primary Expressions.
345//===----------------------------------------------------------------------===//
346
347static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
348 assert((Kind == ConstantExpr::RSK_APValue ||(static_cast <bool> ((Kind == ConstantExpr::RSK_APValue
|| Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::
RSK_None) && "Invalid StorageKind Value") ? void (0) :
__assert_fail ("(Kind == ConstantExpr::RSK_APValue || Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && \"Invalid StorageKind Value\""
, "clang/lib/AST/Expr.cpp", 350, __extension__ __PRETTY_FUNCTION__
))
349 Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&(static_cast <bool> ((Kind == ConstantExpr::RSK_APValue
|| Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::
RSK_None) && "Invalid StorageKind Value") ? void (0) :
__assert_fail ("(Kind == ConstantExpr::RSK_APValue || Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && \"Invalid StorageKind Value\""
, "clang/lib/AST/Expr.cpp", 350, __extension__ __PRETTY_FUNCTION__
))
350 "Invalid StorageKind Value")(static_cast <bool> ((Kind == ConstantExpr::RSK_APValue
|| Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::
RSK_None) && "Invalid StorageKind Value") ? void (0) :
__assert_fail ("(Kind == ConstantExpr::RSK_APValue || Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && \"Invalid StorageKind Value\""
, "clang/lib/AST/Expr.cpp", 350, __extension__ __PRETTY_FUNCTION__
))
;
351 (void)Kind;
352}
353
354ConstantExpr::ResultStorageKind
355ConstantExpr::getStorageKind(const APValue &Value) {
356 switch (Value.getKind()) {
357 case APValue::None:
358 case APValue::Indeterminate:
359 return ConstantExpr::RSK_None;
360 case APValue::Int:
361 if (!Value.getInt().needsCleanup())
362 return ConstantExpr::RSK_Int64;
363 [[fallthrough]];
364 default:
365 return ConstantExpr::RSK_APValue;
366 }
367}
368
369ConstantExpr::ResultStorageKind
370ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
371 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
372 return ConstantExpr::RSK_Int64;
373 return ConstantExpr::RSK_APValue;
374}
375
376ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
377 bool IsImmediateInvocation)
378 : FullExpr(ConstantExprClass, SubExpr) {
379 ConstantExprBits.ResultKind = StorageKind;
380 ConstantExprBits.APValueKind = APValue::None;
381 ConstantExprBits.IsUnsigned = false;
382 ConstantExprBits.BitWidth = 0;
383 ConstantExprBits.HasCleanup = false;
384 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
385
386 if (StorageKind == ConstantExpr::RSK_APValue)
387 ::new (getTrailingObjects<APValue>()) APValue();
388}
389
390ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
391 ResultStorageKind StorageKind,
392 bool IsImmediateInvocation) {
393 assert(!isa<ConstantExpr>(E))(static_cast <bool> (!isa<ConstantExpr>(E)) ? void
(0) : __assert_fail ("!isa<ConstantExpr>(E)", "clang/lib/AST/Expr.cpp"
, 393, __extension__ __PRETTY_FUNCTION__))
;
394 AssertResultStorageKind(StorageKind);
395
396 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
397 StorageKind == ConstantExpr::RSK_APValue,
398 StorageKind == ConstantExpr::RSK_Int64);
399 void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
400 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
401}
402
403ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
404 const APValue &Result) {
405 ResultStorageKind StorageKind = getStorageKind(Result);
406 ConstantExpr *Self = Create(Context, E, StorageKind);
407 Self->SetResult(Result, Context);
408 return Self;
409}
410
411ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
412 : FullExpr(ConstantExprClass, Empty) {
413 ConstantExprBits.ResultKind = StorageKind;
414
415 if (StorageKind == ConstantExpr::RSK_APValue)
416 ::new (getTrailingObjects<APValue>()) APValue();
417}
418
419ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
420 ResultStorageKind StorageKind) {
421 AssertResultStorageKind(StorageKind);
422
423 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
424 StorageKind == ConstantExpr::RSK_APValue,
425 StorageKind == ConstantExpr::RSK_Int64);
426 void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
427 return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
428}
429
430void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
431 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&(static_cast <bool> ((unsigned)getStorageKind(Value) <=
ConstantExprBits.ResultKind && "Invalid storage for this value kind"
) ? void (0) : __assert_fail ("(unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && \"Invalid storage for this value kind\""
, "clang/lib/AST/Expr.cpp", 432, __extension__ __PRETTY_FUNCTION__
))
432 "Invalid storage for this value kind")(static_cast <bool> ((unsigned)getStorageKind(Value) <=
ConstantExprBits.ResultKind && "Invalid storage for this value kind"
) ? void (0) : __assert_fail ("(unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && \"Invalid storage for this value kind\""
, "clang/lib/AST/Expr.cpp", 432, __extension__ __PRETTY_FUNCTION__
))
;
433 ConstantExprBits.APValueKind = Value.getKind();
434 switch (ConstantExprBits.ResultKind) {
435 case RSK_None:
436 return;
437 case RSK_Int64:
438 Int64Result() = *Value.getInt().getRawData();
439 ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
440 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
441 return;
442 case RSK_APValue:
443 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
444 ConstantExprBits.HasCleanup = true;
445 Context.addDestruction(&APValueResult());
446 }
447 APValueResult() = std::move(Value);
448 return;
449 }
450 llvm_unreachable("Invalid ResultKind Bits")::llvm::llvm_unreachable_internal("Invalid ResultKind Bits", "clang/lib/AST/Expr.cpp"
, 450)
;
451}
452
453llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
454 switch (ConstantExprBits.ResultKind) {
455 case ConstantExpr::RSK_APValue:
456 return APValueResult().getInt();
457 case ConstantExpr::RSK_Int64:
458 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
459 ConstantExprBits.IsUnsigned);
460 default:
461 llvm_unreachable("invalid Accessor")::llvm::llvm_unreachable_internal("invalid Accessor", "clang/lib/AST/Expr.cpp"
, 461)
;
462 }
463}
464
465APValue ConstantExpr::getAPValueResult() const {
466
467 switch (ConstantExprBits.ResultKind) {
468 case ConstantExpr::RSK_APValue:
469 return APValueResult();
470 case ConstantExpr::RSK_Int64:
471 return APValue(
472 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
473 ConstantExprBits.IsUnsigned));
474 case ConstantExpr::RSK_None:
475 if (ConstantExprBits.APValueKind == APValue::Indeterminate)
476 return APValue::IndeterminateValue();
477 return APValue();
478 }
479 llvm_unreachable("invalid ResultKind")::llvm::llvm_unreachable_internal("invalid ResultKind", "clang/lib/AST/Expr.cpp"
, 479)
;
480}
481
482DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
483 bool RefersToEnclosingVariableOrCapture, QualType T,
484 ExprValueKind VK, SourceLocation L,
485 const DeclarationNameLoc &LocInfo,
486 NonOdrUseReason NOUR)
487 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
488 DeclRefExprBits.HasQualifier = false;
489 DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
490 DeclRefExprBits.HasFoundDecl = false;
491 DeclRefExprBits.HadMultipleCandidates = false;
492 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
493 RefersToEnclosingVariableOrCapture;
494 DeclRefExprBits.NonOdrUseReason = NOUR;
495 DeclRefExprBits.Loc = L;
496 setDependence(computeDependence(this, Ctx));
497}
498
499DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
500 NestedNameSpecifierLoc QualifierLoc,
501 SourceLocation TemplateKWLoc, ValueDecl *D,
502 bool RefersToEnclosingVariableOrCapture,
503 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
504 const TemplateArgumentListInfo *TemplateArgs,
505 QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
506 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
507 DNLoc(NameInfo.getInfo()) {
508 DeclRefExprBits.Loc = NameInfo.getLoc();
509 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
510 if (QualifierLoc)
511 new (getTrailingObjects<NestedNameSpecifierLoc>())
512 NestedNameSpecifierLoc(QualifierLoc);
513 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
514 if (FoundD)
515 *getTrailingObjects<NamedDecl *>() = FoundD;
516 DeclRefExprBits.HasTemplateKWAndArgsInfo
517 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
518 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
519 RefersToEnclosingVariableOrCapture;
520 DeclRefExprBits.NonOdrUseReason = NOUR;
521 if (TemplateArgs) {
522 auto Deps = TemplateArgumentDependence::None;
523 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
524 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
525 Deps);
526 assert(!(Deps & TemplateArgumentDependence::Dependent) &&(static_cast <bool> (!(Deps & TemplateArgumentDependence
::Dependent) && "built a DeclRefExpr with dependent template args"
) ? void (0) : __assert_fail ("!(Deps & TemplateArgumentDependence::Dependent) && \"built a DeclRefExpr with dependent template args\""
, "clang/lib/AST/Expr.cpp", 527, __extension__ __PRETTY_FUNCTION__
))
527 "built a DeclRefExpr with dependent template args")(static_cast <bool> (!(Deps & TemplateArgumentDependence
::Dependent) && "built a DeclRefExpr with dependent template args"
) ? void (0) : __assert_fail ("!(Deps & TemplateArgumentDependence::Dependent) && \"built a DeclRefExpr with dependent template args\""
, "clang/lib/AST/Expr.cpp", 527, __extension__ __PRETTY_FUNCTION__
))
;
528 } else if (TemplateKWLoc.isValid()) {
529 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
530 TemplateKWLoc);
531 }
532 DeclRefExprBits.HadMultipleCandidates = 0;
533 setDependence(computeDependence(this, Ctx));
534}
535
536DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
537 NestedNameSpecifierLoc QualifierLoc,
538 SourceLocation TemplateKWLoc, ValueDecl *D,
539 bool RefersToEnclosingVariableOrCapture,
540 SourceLocation NameLoc, QualType T,
541 ExprValueKind VK, NamedDecl *FoundD,
542 const TemplateArgumentListInfo *TemplateArgs,
543 NonOdrUseReason NOUR) {
544 return Create(Context, QualifierLoc, TemplateKWLoc, D,
545 RefersToEnclosingVariableOrCapture,
546 DeclarationNameInfo(D->getDeclName(), NameLoc),
547 T, VK, FoundD, TemplateArgs, NOUR);
548}
549
550DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
551 NestedNameSpecifierLoc QualifierLoc,
552 SourceLocation TemplateKWLoc, ValueDecl *D,
553 bool RefersToEnclosingVariableOrCapture,
554 const DeclarationNameInfo &NameInfo,
555 QualType T, ExprValueKind VK,
556 NamedDecl *FoundD,
557 const TemplateArgumentListInfo *TemplateArgs,
558 NonOdrUseReason NOUR) {
559 // Filter out cases where the found Decl is the same as the value refenenced.
560 if (D == FoundD)
561 FoundD = nullptr;
562
563 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
564 std::size_t Size =
565 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
566 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
567 QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
568 HasTemplateKWAndArgsInfo ? 1 : 0,
569 TemplateArgs ? TemplateArgs->size() : 0);
570
571 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
572 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
573 RefersToEnclosingVariableOrCapture, NameInfo,
574 FoundD, TemplateArgs, T, VK, NOUR);
575}
576
577DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
578 bool HasQualifier,
579 bool HasFoundDecl,
580 bool HasTemplateKWAndArgsInfo,
581 unsigned NumTemplateArgs) {
582 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo)(static_cast <bool> (NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo
) ? void (0) : __assert_fail ("NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo"
, "clang/lib/AST/Expr.cpp", 582, __extension__ __PRETTY_FUNCTION__
))
;
583 std::size_t Size =
584 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
585 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
586 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
587 NumTemplateArgs);
588 void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
589 return new (Mem) DeclRefExpr(EmptyShell());
590}
591
592void DeclRefExpr::setDecl(ValueDecl *NewD) {
593 D = NewD;
594 if (getType()->isUndeducedType())
595 setType(NewD->getType());
596 setDependence(computeDependence(this, NewD->getASTContext()));
597}
598
599SourceLocation DeclRefExpr::getBeginLoc() const {
600 if (hasQualifier())
601 return getQualifierLoc().getBeginLoc();
602 return getNameInfo().getBeginLoc();
603}
604SourceLocation DeclRefExpr::getEndLoc() const {
605 if (hasExplicitTemplateArgs())
606 return getRAngleLoc();
607 return getNameInfo().getEndLoc();
608}
609
610SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
611 SourceLocation LParen,
612 SourceLocation RParen,
613 QualType ResultTy,
614 TypeSourceInfo *TSI)
615 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
616 OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
617 setTypeSourceInfo(TSI);
618 setDependence(computeDependence(this));
619}
620
621SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
622 QualType ResultTy)
623 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
624
625SYCLUniqueStableNameExpr *
626SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
627 SourceLocation LParen, SourceLocation RParen,
628 TypeSourceInfo *TSI) {
629 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
630 return new (Ctx)
631 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
632}
633
634SYCLUniqueStableNameExpr *
635SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
636 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
637 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
638}
639
640std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
641 return SYCLUniqueStableNameExpr::ComputeName(Context,
642 getTypeSourceInfo()->getType());
643}
644
645std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
646 QualType Ty) {
647 auto MangleCallback = [](ASTContext &Ctx,
648 const NamedDecl *ND) -> std::optional<unsigned> {
649 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
650 return RD->getDeviceLambdaManglingNumber();
651 return std::nullopt;
652 };
653
654 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
655 Context, Context.getDiagnostics(), MangleCallback)};
656
657 std::string Buffer;
658 Buffer.reserve(128);
659 llvm::raw_string_ostream Out(Buffer);
660 Ctx->mangleTypeName(Ty, Out);
661
662 return Out.str();
663}
664
665PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
666 StringLiteral *SL)
667 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
668 PredefinedExprBits.Kind = IK;
669 assert((getIdentKind() == IK) &&(static_cast <bool> ((getIdentKind() == IK) && "IdentKind do not fit in PredefinedExprBitfields!"
) ? void (0) : __assert_fail ("(getIdentKind() == IK) && \"IdentKind do not fit in PredefinedExprBitfields!\""
, "clang/lib/AST/Expr.cpp", 670, __extension__ __PRETTY_FUNCTION__
))
670 "IdentKind do not fit in PredefinedExprBitfields!")(static_cast <bool> ((getIdentKind() == IK) && "IdentKind do not fit in PredefinedExprBitfields!"
) ? void (0) : __assert_fail ("(getIdentKind() == IK) && \"IdentKind do not fit in PredefinedExprBitfields!\""
, "clang/lib/AST/Expr.cpp", 670, __extension__ __PRETTY_FUNCTION__
))
;
671 bool HasFunctionName = SL != nullptr;
672 PredefinedExprBits.HasFunctionName = HasFunctionName;
673 PredefinedExprBits.Loc = L;
674 if (HasFunctionName)
675 setFunctionName(SL);
676 setDependence(computeDependence(this));
677}
678
679PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
680 : Expr(PredefinedExprClass, Empty) {
681 PredefinedExprBits.HasFunctionName = HasFunctionName;
682}
683
684PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
685 QualType FNTy, IdentKind IK,
686 StringLiteral *SL) {
687 bool HasFunctionName = SL != nullptr;
688 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
689 alignof(PredefinedExpr));
690 return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
691}
692
693PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
694 bool HasFunctionName) {
695 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
696 alignof(PredefinedExpr));
697 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
698}
699
700StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
701 switch (IK) {
702 case Func:
703 return "__func__";
704 case Function:
705 return "__FUNCTION__";
706 case FuncDName:
707 return "__FUNCDNAME__";
708 case LFunction:
709 return "L__FUNCTION__";
710 case PrettyFunction:
711 return "__PRETTY_FUNCTION__";
712 case FuncSig:
713 return "__FUNCSIG__";
714 case LFuncSig:
715 return "L__FUNCSIG__";
716 case PrettyFunctionNoVirtual:
717 break;
718 }
719 llvm_unreachable("Unknown ident kind for PredefinedExpr")::llvm::llvm_unreachable_internal("Unknown ident kind for PredefinedExpr"
, "clang/lib/AST/Expr.cpp", 719)
;
720}
721
722// FIXME: Maybe this should use DeclPrinter with a special "print predefined
723// expr" policy instead.
724std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
725 ASTContext &Context = CurrentDecl->getASTContext();
726
727 if (IK == PredefinedExpr::FuncDName) {
1
Assuming 'IK' is not equal to FuncDName
2
Taking false branch
728 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
729 std::unique_ptr<MangleContext> MC;
730 MC.reset(Context.createMangleContext());
731
732 if (MC->shouldMangleDeclName(ND)) {
733 SmallString<256> Buffer;
734 llvm::raw_svector_ostream Out(Buffer);
735 GlobalDecl GD;
736 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
737 GD = GlobalDecl(CD, Ctor_Base);
738 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
739 GD = GlobalDecl(DD, Dtor_Base);
740 else if (ND->hasAttr<CUDAGlobalAttr>())
741 GD = GlobalDecl(cast<FunctionDecl>(ND));
742 else
743 GD = GlobalDecl(ND);
744 MC->mangleName(GD, Out);
745
746 if (!Buffer.empty() && Buffer.front() == '\01')
747 return std::string(Buffer.substr(1));
748 return std::string(Buffer.str());
749 }
750 return std::string(ND->getIdentifier()->getName());
751 }
752 return "";
753 }
754 if (isa<BlockDecl>(CurrentDecl)) {
3
Assuming 'CurrentDecl' is not a 'BlockDecl'
4
Taking false branch
755 // For blocks we only emit something if it is enclosed in a function
756 // For top-level block we'd like to include the name of variable, but we
757 // don't have it at this point.
758 auto DC = CurrentDecl->getDeclContext();
759 if (DC->isFileContext())
760 return "";
761
762 SmallString<256> Buffer;
763 llvm::raw_svector_ostream Out(Buffer);
764 if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
765 // For nested blocks, propagate up to the parent.
766 Out << ComputeName(IK, DCBlock);
767 else if (auto *DCDecl = dyn_cast<Decl>(DC))
768 Out << ComputeName(IK, DCDecl) << "_block_invoke";
769 return std::string(Out.str());
770 }
771 if (const FunctionDecl *FD
5.1
'FD' is non-null
= dyn_cast<FunctionDecl>(CurrentDecl)) {
5
Assuming 'CurrentDecl' is a 'CastReturnType'
772 if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
6
Assuming 'IK' is equal to PrettyFunction
773 IK != FuncSig && IK != LFuncSig)
774 return FD->getNameAsString();
775
776 SmallString<256> Name;
777 llvm::raw_svector_ostream Out(Name);
778
779 if (const CXXMethodDecl *MD
7.1
'MD' is null
= dyn_cast<CXXMethodDecl>(FD)) {
7
Assuming 'FD' is not a 'CastReturnType'
8
Taking false branch
780 if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
781 Out << "virtual ";
782 if (MD->isStatic())
783 Out << "static ";
784 }
785
786 PrintingPolicy Policy(Context.getLangOpts());
787 std::string Proto;
788 llvm::raw_string_ostream POut(Proto);
789
790 const FunctionDecl *Decl = FD;
791 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
9
Assuming 'Pattern' is null
10
Taking false branch
792 Decl = Pattern;
793 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
11
Assuming the object is not a 'const class clang::FunctionType *'
12
'AFT' initialized to a null pointer value
794 const FunctionProtoType *FT = nullptr;
795 if (FD->hasWrittenPrototype())
13
Assuming the condition is false
796 FT = dyn_cast<FunctionProtoType>(AFT);
797
798 if (IK
13.1
'IK' is not equal to FuncSig
== FuncSig || IK
13.2
'IK' is not equal to LFuncSig
== LFuncSig) {
14
Taking false branch
799 switch (AFT->getCallConv()) {
800 case CC_C: POut << "__cdecl "; break;
801 case CC_X86StdCall: POut << "__stdcall "; break;
802 case CC_X86FastCall: POut << "__fastcall "; break;
803 case CC_X86ThisCall: POut << "__thiscall "; break;
804 case CC_X86VectorCall: POut << "__vectorcall "; break;
805 case CC_X86RegCall: POut << "__regcall "; break;
806 // Only bother printing the conventions that MSVC knows about.
807 default: break;
808 }
809 }
810
811 FD->printQualifiedName(POut, Policy);
812
813 POut << "(";
814 if (FT
14.1
'FT' is null
) {
15
Taking false branch
815 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
816 if (i) POut << ", ";
817 POut << Decl->getParamDecl(i)->getType().stream(Policy);
818 }
819
820 if (FT->isVariadic()) {
821 if (FD->getNumParams()) POut << ", ";
822 POut << "...";
823 } else if ((IK == FuncSig || IK == LFuncSig ||
824 !Context.getLangOpts().CPlusPlus) &&
825 !Decl->getNumParams()) {
826 POut << "void";
827 }
828 }
829 POut << ")";
830
831 if (const CXXMethodDecl *MD
16.1
'MD' is null
= dyn_cast<CXXMethodDecl>(FD)) {
16
'FD' is not a 'CXXMethodDecl'
17
Taking false branch
832 assert(FT && "We must have a written prototype in this case.")(static_cast <bool> (FT && "We must have a written prototype in this case."
) ? void (0) : __assert_fail ("FT && \"We must have a written prototype in this case.\""
, "clang/lib/AST/Expr.cpp", 832, __extension__ __PRETTY_FUNCTION__
))
;
833 if (FT->isConst())
834 POut << " const";
835 if (FT->isVolatile())
836 POut << " volatile";
837 RefQualifierKind Ref = MD->getRefQualifier();
838 if (Ref == RQ_LValue)
839 POut << " &";
840 else if (Ref == RQ_RValue)
841 POut << " &&";
842 }
843
844 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
845 SpecsTy Specs;
846 const DeclContext *Ctx = FD->getDeclContext();
847 while (Ctx && isa<NamedDecl>(Ctx)) {
18
Assuming 'Ctx' is null
848 const ClassTemplateSpecializationDecl *Spec
849 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
850 if (Spec && !Spec->isExplicitSpecialization())
851 Specs.push_back(Spec);
852 Ctx = Ctx->getParent();
853 }
854
855 std::string TemplateParams;
856 llvm::raw_string_ostream TOut(TemplateParams);
857 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
858 const TemplateParameterList *Params =
859 D->getSpecializedTemplate()->getTemplateParameters();
860 const TemplateArgumentList &Args = D->getTemplateArgs();
861 assert(Params->size() == Args.size())(static_cast <bool> (Params->size() == Args.size()) ?
void (0) : __assert_fail ("Params->size() == Args.size()"
, "clang/lib/AST/Expr.cpp", 861, __extension__ __PRETTY_FUNCTION__
))
;
862 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
863 StringRef Param = Params->getParam(i)->getName();
864 if (Param.empty()) continue;
865 TOut << Param << " = ";
866 Args.get(i).print(Policy, TOut,
867 TemplateParameterList::shouldIncludeTypeForArgument(
868 Policy, Params, i));
869 TOut << ", ";
870 }
871 }
872
873 FunctionTemplateSpecializationInfo *FSI
874 = FD->getTemplateSpecializationInfo();
875 if (FSI && !FSI->isExplicitSpecialization()) {
19
Assuming 'FSI' is null
876 const TemplateParameterList* Params
877 = FSI->getTemplate()->getTemplateParameters();
878 const TemplateArgumentList* Args = FSI->TemplateArguments;
879 assert(Params->size() == Args->size())(static_cast <bool> (Params->size() == Args->size
()) ? void (0) : __assert_fail ("Params->size() == Args->size()"
, "clang/lib/AST/Expr.cpp", 879, __extension__ __PRETTY_FUNCTION__
))
;
880 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
881 StringRef Param = Params->getParam(i)->getName();
882 if (Param.empty()) continue;
883 TOut << Param << " = ";
884 Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
885 TOut << ", ";
886 }
887 }
888
889 TOut.flush();
890 if (!TemplateParams.empty()) {
20
Assuming the condition is false
21
Taking false branch
891 // remove the trailing comma and space
892 TemplateParams.resize(TemplateParams.size() - 2);
893 POut << " [" << TemplateParams << "]";
894 }
895
896 POut.flush();
897
898 // Print "auto" for all deduced return types. This includes C++1y return
899 // type deduction and lambdas. For trailing return types resolve the
900 // decltype expression. Otherwise print the real type when this is
901 // not a constructor or destructor.
902 if (isa<CXXMethodDecl>(FD) &&
22
'FD' is not a 'CXXMethodDecl'
903 cast<CXXMethodDecl>(FD)->getParent()->isLambda())
904 Proto = "auto " + Proto;
905 else if (FT
22.1
'FT' is null
&& FT->getReturnType()->getAs<DecltypeType>())
906 FT->getReturnType()
907 ->getAs<DecltypeType>()
908 ->getUnderlyingType()
909 .getAsStringInternal(Proto, Policy);
910 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
23
Assuming 'FD' is not a 'CXXConstructorDecl'
24
Assuming 'FD' is not a 'CXXDestructorDecl'
25
Taking true branch
911 AFT->getReturnType().getAsStringInternal(Proto, Policy);
26
Called C++ object pointer is null
912
913 Out << Proto;
914
915 return std::string(Name);
916 }
917 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
918 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
919 // Skip to its enclosing function or method, but not its enclosing
920 // CapturedDecl.
921 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
922 const Decl *D = Decl::castFromDeclContext(DC);
923 return ComputeName(IK, D);
924 }
925 llvm_unreachable("CapturedDecl not inside a function or method")::llvm::llvm_unreachable_internal("CapturedDecl not inside a function or method"
, "clang/lib/AST/Expr.cpp", 925)
;
926 }
927 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
928 SmallString<256> Name;
929 llvm::raw_svector_ostream Out(Name);
930 Out << (MD->isInstanceMethod() ? '-' : '+');
931 Out << '[';
932
933 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
934 // a null check to avoid a crash.
935 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
936 Out << *ID;
937
938 if (const ObjCCategoryImplDecl *CID =
939 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
940 Out << '(' << *CID << ')';
941
942 Out << ' ';
943 MD->getSelector().print(Out);
944 Out << ']';
945
946 return std::string(Name);
947 }
948 if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
949 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
950 return "top level";
951 }
952 return "";
953}
954
955void APNumericStorage::setIntValue(const ASTContext &C,
956 const llvm::APInt &Val) {
957 if (hasAllocation())
958 C.Deallocate(pVal);
959
960 BitWidth = Val.getBitWidth();
961 unsigned NumWords = Val.getNumWords();
962 const uint64_t* Words = Val.getRawData();
963 if (NumWords > 1) {
964 pVal = new (C) uint64_t[NumWords];
965 std::copy(Words, Words + NumWords, pVal);
966 } else if (NumWords == 1)
967 VAL = Words[0];
968 else
969 VAL = 0;
970}
971
972IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
973 QualType type, SourceLocation l)
974 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
975 assert(type->isIntegerType() && "Illegal type in IntegerLiteral")(static_cast <bool> (type->isIntegerType() &&
"Illegal type in IntegerLiteral") ? void (0) : __assert_fail
("type->isIntegerType() && \"Illegal type in IntegerLiteral\""
, "clang/lib/AST/Expr.cpp", 975, __extension__ __PRETTY_FUNCTION__
))
;
976 assert(V.getBitWidth() == C.getIntWidth(type) &&(static_cast <bool> (V.getBitWidth() == C.getIntWidth(type
) && "Integer type is not the correct size for constant."
) ? void (0) : __assert_fail ("V.getBitWidth() == C.getIntWidth(type) && \"Integer type is not the correct size for constant.\""
, "clang/lib/AST/Expr.cpp", 977, __extension__ __PRETTY_FUNCTION__
))
977 "Integer type is not the correct size for constant.")(static_cast <bool> (V.getBitWidth() == C.getIntWidth(type
) && "Integer type is not the correct size for constant."
) ? void (0) : __assert_fail ("V.getBitWidth() == C.getIntWidth(type) && \"Integer type is not the correct size for constant.\""
, "clang/lib/AST/Expr.cpp", 977, __extension__ __PRETTY_FUNCTION__
))
;
978 setValue(C, V);
979 setDependence(ExprDependence::None);
980}
981
982IntegerLiteral *
983IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
984 QualType type, SourceLocation l) {
985 return new (C) IntegerLiteral(C, V, type, l);
986}
987
988IntegerLiteral *
989IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
990 return new (C) IntegerLiteral(Empty);
991}
992
993FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
994 QualType type, SourceLocation l,
995 unsigned Scale)
996 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
997 Scale(Scale) {
998 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral")(static_cast <bool> (type->isFixedPointType() &&
"Illegal type in FixedPointLiteral") ? void (0) : __assert_fail
("type->isFixedPointType() && \"Illegal type in FixedPointLiteral\""
, "clang/lib/AST/Expr.cpp", 998, __extension__ __PRETTY_FUNCTION__
))
;
999 assert(V.getBitWidth() == C.getTypeInfo(type).Width &&(static_cast <bool> (V.getBitWidth() == C.getTypeInfo(type
).Width && "Fixed point type is not the correct size for constant."
) ? void (0) : __assert_fail ("V.getBitWidth() == C.getTypeInfo(type).Width && \"Fixed point type is not the correct size for constant.\""
, "clang/lib/AST/Expr.cpp", 1000, __extension__ __PRETTY_FUNCTION__
))
1000 "Fixed point type is not the correct size for constant.")(static_cast <bool> (V.getBitWidth() == C.getTypeInfo(type
).Width && "Fixed point type is not the correct size for constant."
) ? void (0) : __assert_fail ("V.getBitWidth() == C.getTypeInfo(type).Width && \"Fixed point type is not the correct size for constant.\""
, "clang/lib/AST/Expr.cpp", 1000, __extension__ __PRETTY_FUNCTION__
))
;
1001 setValue(C, V);
1002 setDependence(ExprDependence::None);
1003}
1004
1005FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
1006 const llvm::APInt &V,
1007 QualType type,
1008 SourceLocation l,
1009 unsigned Scale) {
1010 return new (C) FixedPointLiteral(C, V, type, l, Scale);
1011}
1012
1013FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1014 EmptyShell Empty) {
1015 return new (C) FixedPointLiteral(Empty);
1016}
1017
1018std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1019 // Currently the longest decimal number that can be printed is the max for an
1020 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1021 // which is 43 characters.
1022 SmallString<64> S;
1023 FixedPointValueToString(
1024 S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
1025 return std::string(S.str());
1026}
1027
1028void CharacterLiteral::print(unsigned Val, CharacterKind Kind,
1029 raw_ostream &OS) {
1030 switch (Kind) {
1031 case CharacterLiteral::Ascii:
1032 break; // no prefix.
1033 case CharacterLiteral::Wide:
1034 OS << 'L';
1035 break;
1036 case CharacterLiteral::UTF8:
1037 OS << "u8";
1038 break;
1039 case CharacterLiteral::UTF16:
1040 OS << 'u';
1041 break;
1042 case CharacterLiteral::UTF32:
1043 OS << 'U';
1044 break;
1045 }
1046
1047 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1048 if (!Escaped.empty()) {
1049 OS << "'" << Escaped << "'";
1050 } else {
1051 // A character literal might be sign-extended, which
1052 // would result in an invalid \U escape sequence.
1053 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1054 // are not correctly handled.
1055 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
1056 Val &= 0xFFu;
1057 if (Val < 256 && isPrintable((unsigned char)Val))
1058 OS << "'" << (char)Val << "'";
1059 else if (Val < 256)
1060 OS << "'\\x" << llvm::format("%02x", Val) << "'";
1061 else if (Val <= 0xFFFF)
1062 OS << "'\\u" << llvm::format("%04x", Val) << "'";
1063 else
1064 OS << "'\\U" << llvm::format("%08x", Val) << "'";
1065 }
1066}
1067
1068FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1069 bool isexact, QualType Type, SourceLocation L)
1070 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1071 setSemantics(V.getSemantics());
1072 FloatingLiteralBits.IsExact = isexact;
1073 setValue(C, V);
1074 setDependence(ExprDependence::None);
1075}
1076
1077FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1078 : Expr(FloatingLiteralClass, Empty) {
1079 setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1080 FloatingLiteralBits.IsExact = false;
1081}
1082
1083FloatingLiteral *
1084FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1085 bool isexact, QualType Type, SourceLocation L) {
1086 return new (C) FloatingLiteral(C, V, isexact, Type, L);
1087}
1088
1089FloatingLiteral *
1090FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1091 return new (C) FloatingLiteral(C, Empty);
1092}
1093
1094/// getValueAsApproximateDouble - This returns the value as an inaccurate
1095/// double. Note that this may cause loss of precision, but is useful for
1096/// debugging dumps, etc.
1097double FloatingLiteral::getValueAsApproximateDouble() const {
1098 llvm::APFloat V = getValue();
1099 bool ignored;
1100 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1101 &ignored);
1102 return V.convertToDouble();
1103}
1104
1105unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1106 StringKind SK) {
1107 unsigned CharByteWidth = 0;
1108 switch (SK) {
1109 case Ordinary:
1110 case UTF8:
1111 CharByteWidth = Target.getCharWidth();
1112 break;
1113 case Wide:
1114 CharByteWidth = Target.getWCharWidth();
1115 break;
1116 case UTF16:
1117 CharByteWidth = Target.getChar16Width();
1118 break;
1119 case UTF32:
1120 CharByteWidth = Target.getChar32Width();
1121 break;
1122 }
1123 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple")(static_cast <bool> ((CharByteWidth & 7) == 0 &&
"Assumes character size is byte multiple") ? void (0) : __assert_fail
("(CharByteWidth & 7) == 0 && \"Assumes character size is byte multiple\""
, "clang/lib/AST/Expr.cpp", 1123, __extension__ __PRETTY_FUNCTION__
))
;
1124 CharByteWidth /= 8;
1125 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&(static_cast <bool> ((CharByteWidth == 1 || CharByteWidth
== 2 || CharByteWidth == 4) && "The only supported character byte widths are 1,2 and 4!"
) ? void (0) : __assert_fail ("(CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && \"The only supported character byte widths are 1,2 and 4!\""
, "clang/lib/AST/Expr.cpp", 1126, __extension__ __PRETTY_FUNCTION__
))
1126 "The only supported character byte widths are 1,2 and 4!")(static_cast <bool> ((CharByteWidth == 1 || CharByteWidth
== 2 || CharByteWidth == 4) && "The only supported character byte widths are 1,2 and 4!"
) ? void (0) : __assert_fail ("(CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && \"The only supported character byte widths are 1,2 and 4!\""
, "clang/lib/AST/Expr.cpp", 1126, __extension__ __PRETTY_FUNCTION__
))
;
1127 return CharByteWidth;
1128}
1129
1130StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1131 StringKind Kind, bool Pascal, QualType Ty,
1132 const SourceLocation *Loc,
1133 unsigned NumConcatenated)
1134 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1135 assert(Ctx.getAsConstantArrayType(Ty) &&(static_cast <bool> (Ctx.getAsConstantArrayType(Ty) &&
"StringLiteral must be of constant array type!") ? void (0) :
__assert_fail ("Ctx.getAsConstantArrayType(Ty) && \"StringLiteral must be of constant array type!\""
, "clang/lib/AST/Expr.cpp", 1136, __extension__ __PRETTY_FUNCTION__
))
1136 "StringLiteral must be of constant array type!")(static_cast <bool> (Ctx.getAsConstantArrayType(Ty) &&
"StringLiteral must be of constant array type!") ? void (0) :
__assert_fail ("Ctx.getAsConstantArrayType(Ty) && \"StringLiteral must be of constant array type!\""
, "clang/lib/AST/Expr.cpp", 1136, __extension__ __PRETTY_FUNCTION__
))
;
1137 unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1138 unsigned ByteLength = Str.size();
1139 assert((ByteLength % CharByteWidth == 0) &&(static_cast <bool> ((ByteLength % CharByteWidth == 0) &&
"The size of the data must be a multiple of CharByteWidth!")
? void (0) : __assert_fail ("(ByteLength % CharByteWidth == 0) && \"The size of the data must be a multiple of CharByteWidth!\""
, "clang/lib/AST/Expr.cpp", 1140, __extension__ __PRETTY_FUNCTION__
))
1140 "The size of the data must be a multiple of CharByteWidth!")(static_cast <bool> ((ByteLength % CharByteWidth == 0) &&
"The size of the data must be a multiple of CharByteWidth!")
? void (0) : __assert_fail ("(ByteLength % CharByteWidth == 0) && \"The size of the data must be a multiple of CharByteWidth!\""
, "clang/lib/AST/Expr.cpp", 1140, __extension__ __PRETTY_FUNCTION__
))
;
1141
1142 // Avoid the expensive division. The compiler should be able to figure it
1143 // out by itself. However as of clang 7, even with the appropriate
1144 // llvm_unreachable added just here, it is not able to do so.
1145 unsigned Length;
1146 switch (CharByteWidth) {
1147 case 1:
1148 Length = ByteLength;
1149 break;
1150 case 2:
1151 Length = ByteLength / 2;
1152 break;
1153 case 4:
1154 Length = ByteLength / 4;
1155 break;
1156 default:
1157 llvm_unreachable("Unsupported character width!")::llvm::llvm_unreachable_internal("Unsupported character width!"
, "clang/lib/AST/Expr.cpp", 1157)
;
1158 }
1159
1160 StringLiteralBits.Kind = Kind;
1161 StringLiteralBits.CharByteWidth = CharByteWidth;
1162 StringLiteralBits.IsPascal = Pascal;
1163 StringLiteralBits.NumConcatenated = NumConcatenated;
1164 *getTrailingObjects<unsigned>() = Length;
1165
1166 // Initialize the trailing array of SourceLocation.
1167 // This is safe since SourceLocation is POD-like.
1168 std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1169 NumConcatenated * sizeof(SourceLocation));
1170
1171 // Initialize the trailing array of char holding the string data.
1172 std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1173
1174 setDependence(ExprDependence::None);
1175}
1176
1177StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1178 unsigned Length, unsigned CharByteWidth)
1179 : Expr(StringLiteralClass, Empty) {
1180 StringLiteralBits.CharByteWidth = CharByteWidth;
1181 StringLiteralBits.NumConcatenated = NumConcatenated;
1182 *getTrailingObjects<unsigned>() = Length;
1183}
1184
1185StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1186 StringKind Kind, bool Pascal, QualType Ty,
1187 const SourceLocation *Loc,
1188 unsigned NumConcatenated) {
1189 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1190 1, NumConcatenated, Str.size()),
1191 alignof(StringLiteral));
1192 return new (Mem)
1193 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1194}
1195
1196StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1197 unsigned NumConcatenated,
1198 unsigned Length,
1199 unsigned CharByteWidth) {
1200 void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1201 1, NumConcatenated, Length * CharByteWidth),
1202 alignof(StringLiteral));
1203 return new (Mem)
1204 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1205}
1206
1207void StringLiteral::outputString(raw_ostream &OS) const {
1208 switch (getKind()) {
1209 case Ordinary:
1210 break; // no prefix.
1211 case Wide: OS << 'L'; break;
1212 case UTF8: OS << "u8"; break;
1213 case UTF16: OS << 'u'; break;
1214 case UTF32: OS << 'U'; break;
1215 }
1216 OS << '"';
1217 static const char Hex[] = "0123456789ABCDEF";
1218
1219 unsigned LastSlashX = getLength();
1220 for (unsigned I = 0, N = getLength(); I != N; ++I) {
1221 uint32_t Char = getCodeUnit(I);
1222 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1223 if (Escaped.empty()) {
1224 // FIXME: Convert UTF-8 back to codepoints before rendering.
1225
1226 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1227 // Leave invalid surrogates alone; we'll use \x for those.
1228 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1229 Char <= 0xdbff) {
1230 uint32_t Trail = getCodeUnit(I + 1);
1231 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1232 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1233 ++I;
1234 }
1235 }
1236
1237 if (Char > 0xff) {
1238 // If this is a wide string, output characters over 0xff using \x
1239 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1240 // codepoint: use \x escapes for invalid codepoints.
1241 if (getKind() == Wide ||
1242 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1243 // FIXME: Is this the best way to print wchar_t?
1244 OS << "\\x";
1245 int Shift = 28;
1246 while ((Char >> Shift) == 0)
1247 Shift -= 4;
1248 for (/**/; Shift >= 0; Shift -= 4)
1249 OS << Hex[(Char >> Shift) & 15];
1250 LastSlashX = I;
1251 continue;
1252 }
1253
1254 if (Char > 0xffff)
1255 OS << "\\U00"
1256 << Hex[(Char >> 20) & 15]
1257 << Hex[(Char >> 16) & 15];
1258 else
1259 OS << "\\u";
1260 OS << Hex[(Char >> 12) & 15]
1261 << Hex[(Char >> 8) & 15]
1262 << Hex[(Char >> 4) & 15]
1263 << Hex[(Char >> 0) & 15];
1264 continue;
1265 }
1266
1267 // If we used \x... for the previous character, and this character is a
1268 // hexadecimal digit, prevent it being slurped as part of the \x.
1269 if (LastSlashX + 1 == I) {
1270 switch (Char) {
1271 case '0': case '1': case '2': case '3': case '4':
1272 case '5': case '6': case '7': case '8': case '9':
1273 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1274 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1275 OS << "\"\"";
1276 }
1277 }
1278
1279 assert(Char <= 0xff &&(static_cast <bool> (Char <= 0xff && "Characters above 0xff should already have been handled."
) ? void (0) : __assert_fail ("Char <= 0xff && \"Characters above 0xff should already have been handled.\""
, "clang/lib/AST/Expr.cpp", 1280, __extension__ __PRETTY_FUNCTION__
))
1280 "Characters above 0xff should already have been handled.")(static_cast <bool> (Char <= 0xff && "Characters above 0xff should already have been handled."
) ? void (0) : __assert_fail ("Char <= 0xff && \"Characters above 0xff should already have been handled.\""
, "clang/lib/AST/Expr.cpp", 1280, __extension__ __PRETTY_FUNCTION__
))
;
1281
1282 if (isPrintable(Char))
1283 OS << (char)Char;
1284 else // Output anything hard as an octal escape.
1285 OS << '\\'
1286 << (char)('0' + ((Char >> 6) & 7))
1287 << (char)('0' + ((Char >> 3) & 7))
1288 << (char)('0' + ((Char >> 0) & 7));
1289 } else {
1290 // Handle some common non-printable cases to make dumps prettier.
1291 OS << Escaped;
1292 }
1293 }
1294 OS << '"';
1295}
1296
1297/// getLocationOfByte - Return a source location that points to the specified
1298/// byte of this string literal.
1299///
1300/// Strings are amazingly complex. They can be formed from multiple tokens and
1301/// can have escape sequences in them in addition to the usual trigraph and
1302/// escaped newline business. This routine handles this complexity.
1303///
1304/// The *StartToken sets the first token to be searched in this function and
1305/// the *StartTokenByteOffset is the byte offset of the first token. Before
1306/// returning, it updates the *StartToken to the TokNo of the token being found
1307/// and sets *StartTokenByteOffset to the byte offset of the token in the
1308/// string.
1309/// Using these two parameters can reduce the time complexity from O(n^2) to
1310/// O(n) if one wants to get the location of byte for all the tokens in a
1311/// string.
1312///
1313SourceLocation
1314StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1315 const LangOptions &Features,
1316 const TargetInfo &Target, unsigned *StartToken,
1317 unsigned *StartTokenByteOffset) const {
1318 assert((getKind() == StringLiteral::Ordinary ||(static_cast <bool> ((getKind() == StringLiteral::Ordinary
|| getKind() == StringLiteral::UTF8) && "Only narrow string literals are currently supported"
) ? void (0) : __assert_fail ("(getKind() == StringLiteral::Ordinary || getKind() == StringLiteral::UTF8) && \"Only narrow string literals are currently supported\""
, "clang/lib/AST/Expr.cpp", 1320, __extension__ __PRETTY_FUNCTION__
))
1319 getKind() == StringLiteral::UTF8) &&(static_cast <bool> ((getKind() == StringLiteral::Ordinary
|| getKind() == StringLiteral::UTF8) && "Only narrow string literals are currently supported"
) ? void (0) : __assert_fail ("(getKind() == StringLiteral::Ordinary || getKind() == StringLiteral::UTF8) && \"Only narrow string literals are currently supported\""
, "clang/lib/AST/Expr.cpp", 1320, __extension__ __PRETTY_FUNCTION__
))
1320 "Only narrow string literals are currently supported")(static_cast <bool> ((getKind() == StringLiteral::Ordinary
|| getKind() == StringLiteral::UTF8) && "Only narrow string literals are currently supported"
) ? void (0) : __assert_fail ("(getKind() == StringLiteral::Ordinary || getKind() == StringLiteral::UTF8) && \"Only narrow string literals are currently supported\""
, "clang/lib/AST/Expr.cpp", 1320, __extension__ __PRETTY_FUNCTION__
))
;
1321
1322 // Loop over all of the tokens in this string until we find the one that
1323 // contains the byte we're looking for.
1324 unsigned TokNo = 0;
1325 unsigned StringOffset = 0;
1326 if (StartToken)
1327 TokNo = *StartToken;
1328 if (StartTokenByteOffset) {
1329 StringOffset = *StartTokenByteOffset;
1330 ByteNo -= StringOffset;
1331 }
1332 while (true) {
1333 assert(TokNo < getNumConcatenated() && "Invalid byte number!")(static_cast <bool> (TokNo < getNumConcatenated() &&
"Invalid byte number!") ? void (0) : __assert_fail ("TokNo < getNumConcatenated() && \"Invalid byte number!\""
, "clang/lib/AST/Expr.cpp", 1333, __extension__ __PRETTY_FUNCTION__
))
;
1334 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1335
1336 // Get the spelling of the string so that we can get the data that makes up
1337 // the string literal, not the identifier for the macro it is potentially
1338 // expanded through.
1339 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1340
1341 // Re-lex the token to get its length and original spelling.
1342 std::pair<FileID, unsigned> LocInfo =
1343 SM.getDecomposedLoc(StrTokSpellingLoc);
1344 bool Invalid = false;
1345 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1346 if (Invalid) {
1347 if (StartTokenByteOffset != nullptr)
1348 *StartTokenByteOffset = StringOffset;
1349 if (StartToken != nullptr)
1350 *StartToken = TokNo;
1351 return StrTokSpellingLoc;
1352 }
1353
1354 const char *StrData = Buffer.data()+LocInfo.second;
1355
1356 // Create a lexer starting at the beginning of this token.
1357 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1358 Buffer.begin(), StrData, Buffer.end());
1359 Token TheTok;
1360 TheLexer.LexFromRawLexer(TheTok);
1361
1362 // Use the StringLiteralParser to compute the length of the string in bytes.
1363 StringLiteralParser SLP(TheTok, SM, Features, Target);
1364 unsigned TokNumBytes = SLP.GetStringLength();
1365
1366 // If the byte is in this token, return the location of the byte.
1367 if (ByteNo < TokNumBytes ||
1368 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1369 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1370
1371 // Now that we know the offset of the token in the spelling, use the
1372 // preprocessor to get the offset in the original source.
1373 if (StartTokenByteOffset != nullptr)
1374 *StartTokenByteOffset = StringOffset;
1375 if (StartToken != nullptr)
1376 *StartToken = TokNo;
1377 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1378 }
1379
1380 // Move to the next string token.
1381 StringOffset += TokNumBytes;
1382 ++TokNo;
1383 ByteNo -= TokNumBytes;
1384 }
1385}
1386
1387/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1388/// corresponds to, e.g. "sizeof" or "[pre]++".
1389StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1390 switch (Op) {
1391#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1392#include "clang/AST/OperationKinds.def"
1393 }
1394 llvm_unreachable("Unknown unary operator")::llvm::llvm_unreachable_internal("Unknown unary operator", "clang/lib/AST/Expr.cpp"
, 1394)
;
1395}
1396
1397UnaryOperatorKind
1398UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1399 switch (OO) {
1400 default: llvm_unreachable("No unary operator for overloaded function")::llvm::llvm_unreachable_internal("No unary operator for overloaded function"
, "clang/lib/AST/Expr.cpp", 1400)
;
1401 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1402 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1403 case OO_Amp: return UO_AddrOf;
1404 case OO_Star: return UO_Deref;
1405 case OO_Plus: return UO_Plus;
1406 case OO_Minus: return UO_Minus;
1407 case OO_Tilde: return UO_Not;
1408 case OO_Exclaim: return UO_LNot;
1409 case OO_Coawait: return UO_Coawait;
1410 }
1411}
1412
1413OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1414 switch (Opc) {
1415 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1416 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1417 case UO_AddrOf: return OO_Amp;
1418 case UO_Deref: return OO_Star;
1419 case UO_Plus: return OO_Plus;
1420 case UO_Minus: return OO_Minus;
1421 case UO_Not: return OO_Tilde;
1422 case UO_LNot: return OO_Exclaim;
1423 case UO_Coawait: return OO_Coawait;
1424 default: return OO_None;
1425 }
1426}
1427
1428
1429//===----------------------------------------------------------------------===//
1430// Postfix Operators.
1431//===----------------------------------------------------------------------===//
1432
1433CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1434 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1435 SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1436 unsigned MinNumArgs, ADLCallKind UsesADL)
1437 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1438 NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1439 unsigned NumPreArgs = PreArgs.size();
1440 CallExprBits.NumPreArgs = NumPreArgs;
1441 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!")(static_cast <bool> ((NumPreArgs == getNumPreArgs()) &&
"NumPreArgs overflow!") ? void (0) : __assert_fail ("(NumPreArgs == getNumPreArgs()) && \"NumPreArgs overflow!\""
, "clang/lib/AST/Expr.cpp", 1441, __extension__ __PRETTY_FUNCTION__
))
;
1442
1443 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1444 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1445 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&(static_cast <bool> ((CallExprBits.OffsetToTrailingObjects
== OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"
) ? void (0) : __assert_fail ("(CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && \"OffsetToTrailingObjects overflow!\""
, "clang/lib/AST/Expr.cpp", 1446, __extension__ __PRETTY_FUNCTION__
))
1446 "OffsetToTrailingObjects overflow!")(static_cast <bool> ((CallExprBits.OffsetToTrailingObjects
== OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"
) ? void (0) : __assert_fail ("(CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && \"OffsetToTrailingObjects overflow!\""
, "clang/lib/AST/Expr.cpp", 1446, __extension__ __PRETTY_FUNCTION__
))
;
1447
1448 CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1449
1450 setCallee(Fn);
1451 for (unsigned I = 0; I != NumPreArgs; ++I)
1452 setPreArg(I, PreArgs[I]);
1453 for (unsigned I = 0; I != Args.size(); ++I)
1454 setArg(I, Args[I]);
1455 for (unsigned I = Args.size(); I != NumArgs; ++I)
1456 setArg(I, nullptr);
1457
1458 this->computeDependence();
1459
1460 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1461 if (hasStoredFPFeatures())
1462 setStoredFPFeatures(FPFeatures);
1463}
1464
1465CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1466 bool HasFPFeatures, EmptyShell Empty)
1467 : Expr(SC, Empty), NumArgs(NumArgs) {
1468 CallExprBits.NumPreArgs = NumPreArgs;
1469 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!")(static_cast <bool> ((NumPreArgs == getNumPreArgs()) &&
"NumPreArgs overflow!") ? void (0) : __assert_fail ("(NumPreArgs == getNumPreArgs()) && \"NumPreArgs overflow!\""
, "clang/lib/AST/Expr.cpp", 1469, __extension__ __PRETTY_FUNCTION__
))
;
1470
1471 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1472 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1473 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&(static_cast <bool> ((CallExprBits.OffsetToTrailingObjects
== OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"
) ? void (0) : __assert_fail ("(CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && \"OffsetToTrailingObjects overflow!\""
, "clang/lib/AST/Expr.cpp", 1474, __extension__ __PRETTY_FUNCTION__
))
1474 "OffsetToTrailingObjects overflow!")(static_cast <bool> ((CallExprBits.OffsetToTrailingObjects
== OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"
) ? void (0) : __assert_fail ("(CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && \"OffsetToTrailingObjects overflow!\""
, "clang/lib/AST/Expr.cpp", 1474, __extension__ __PRETTY_FUNCTION__
))
;
1475 CallExprBits.HasFPFeatures = HasFPFeatures;
1476}
1477
1478CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1479 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1480 SourceLocation RParenLoc,
1481 FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1482 ADLCallKind UsesADL) {
1483 unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1484 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1485 /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1486 void *Mem =
1487 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1488 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1489 RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1490}
1491
1492CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1493 ExprValueKind VK, SourceLocation RParenLoc,
1494 ADLCallKind UsesADL) {
1495 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&(static_cast <bool> (!(reinterpret_cast<uintptr_t>
(Mem) % alignof(CallExpr)) && "Misaligned memory in CallExpr::CreateTemporary!"
) ? void (0) : __assert_fail ("!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && \"Misaligned memory in CallExpr::CreateTemporary!\""
, "clang/lib/AST/Expr.cpp", 1496, __extension__ __PRETTY_FUNCTION__
))
1496 "Misaligned memory in CallExpr::CreateTemporary!")(static_cast <bool> (!(reinterpret_cast<uintptr_t>
(Mem) % alignof(CallExpr)) && "Misaligned memory in CallExpr::CreateTemporary!"
) ? void (0) : __assert_fail ("!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && \"Misaligned memory in CallExpr::CreateTemporary!\""
, "clang/lib/AST/Expr.cpp", 1496, __extension__ __PRETTY_FUNCTION__
))
;
1497 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1498 VK, RParenLoc, FPOptionsOverride(),
1499 /*MinNumArgs=*/0, UsesADL);
1500}
1501
1502CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1503 bool HasFPFeatures, EmptyShell Empty) {
1504 unsigned SizeOfTrailingObjects =
1505 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1506 void *Mem =
1507 Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1508 return new (Mem)
1509 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1510}
1511
1512unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1513 switch (SC) {
1514 case CallExprClass:
1515 return sizeof(CallExpr);
1516 case CXXOperatorCallExprClass:
1517 return sizeof(CXXOperatorCallExpr);
1518 case CXXMemberCallExprClass:
1519 return sizeof(CXXMemberCallExpr);
1520 case UserDefinedLiteralClass:
1521 return sizeof(UserDefinedLiteral);
1522 case CUDAKernelCallExprClass:
1523 return sizeof(CUDAKernelCallExpr);
1524 default:
1525 llvm_unreachable("unexpected class deriving from CallExpr!")::llvm::llvm_unreachable_internal("unexpected class deriving from CallExpr!"
, "clang/lib/AST/Expr.cpp", 1525)
;
1526 }
1527}
1528
1529Decl *Expr::getReferencedDeclOfCallee() {
1530 Expr *CEE = IgnoreParenImpCasts();
1531
1532 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE))
1533 CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1534
1535 // If we're calling a dereference, look at the pointer instead.
1536 while (true) {
1537 if (auto *BO = dyn_cast<BinaryOperator>(CEE)) {
1538 if (BO->isPtrMemOp()) {
1539 CEE = BO->getRHS()->IgnoreParenImpCasts();
1540 continue;
1541 }
1542 } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) {
1543 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1544 UO->getOpcode() == UO_Plus) {
1545 CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1546 continue;
1547 }
1548 }
1549 break;
1550 }
1551
1552 if (auto *DRE = dyn_cast<DeclRefExpr>(CEE))
1553 return DRE->getDecl();
1554 if (auto *ME = dyn_cast<MemberExpr>(CEE))
1555 return ME->getMemberDecl();
1556 if (auto *BE = dyn_cast<BlockExpr>(CEE))
1557 return BE->getBlockDecl();
1558
1559 return nullptr;
1560}
1561
1562/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1563unsigned CallExpr::getBuiltinCallee() const {
1564 const auto *FDecl = getDirectCallee();
1565 return FDecl ? FDecl->getBuiltinID() : 0;
1566}
1567
1568bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1569 if (unsigned BI = getBuiltinCallee())
1570 return Ctx.BuiltinInfo.isUnevaluated(BI);
1571 return false;
1572}
1573
1574QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1575 const Expr *Callee = getCallee();
1576 QualType CalleeType = Callee->getType();
1577 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1578 CalleeType = FnTypePtr->getPointeeType();
1579 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1580 CalleeType = BPT->getPointeeType();
1581 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1582 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1583 return Ctx.VoidTy;
1584
1585 if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1586 return Ctx.DependentTy;
1587
1588 // This should never be overloaded and so should never return null.
1589 CalleeType = Expr::findBoundMemberType(Callee);
1590 assert(!CalleeType.isNull())(static_cast <bool> (!CalleeType.isNull()) ? void (0) :
__assert_fail ("!CalleeType.isNull()", "clang/lib/AST/Expr.cpp"
, 1590, __extension__ __PRETTY_FUNCTION__))
;
1591 } else if (CalleeType->isDependentType() ||
1592 CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1593 return Ctx.DependentTy;
1594 }
1595
1596 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1597 return FnType->getReturnType();
1598}
1599
1600const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1601 // If the return type is a struct, union, or enum that is marked nodiscard,
1602 // then return the return type attribute.
1603 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1604 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1605 return A;
1606
1607 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1608 TD = TD->desugar()->getAs<TypedefType>())
1609 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1610 return A;
1611
1612 // Otherwise, see if the callee is marked nodiscard and return that attribute
1613 // instead.
1614 const Decl *D = getCalleeDecl();
1615 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1616}
1617
1618SourceLocation CallExpr::getBeginLoc() const {
1619 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1620 return OCE->getBeginLoc();
1621
1622 SourceLocation begin = getCallee()->getBeginLoc();
1623 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1624 begin = getArg(0)->getBeginLoc();
1625 return begin;
1626}
1627SourceLocation CallExpr::getEndLoc() const {
1628 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1629 return OCE->getEndLoc();
1630
1631 SourceLocation end = getRParenLoc();
1632 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1633 end = getArg(getNumArgs() - 1)->getEndLoc();
1634 return end;
1635}
1636
1637OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1638 SourceLocation OperatorLoc,
1639 TypeSourceInfo *tsi,
1640 ArrayRef<OffsetOfNode> comps,
1641 ArrayRef<Expr*> exprs,
1642 SourceLocation RParenLoc) {
1643 void *Mem = C.Allocate(
1644 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1645
1646 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1647 RParenLoc);
1648}
1649
1650OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1651 unsigned numComps, unsigned numExprs) {
1652 void *Mem =
1653 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1654 return new (Mem) OffsetOfExpr(numComps, numExprs);
1655}
1656
1657OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1658 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1659 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1660 SourceLocation RParenLoc)
1661 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1662 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1663 NumComps(comps.size()), NumExprs(exprs.size()) {
1664 for (unsigned i = 0; i != comps.size(); ++i)
1665 setComponent(i, comps[i]);
1666 for (unsigned i = 0; i != exprs.size(); ++i)
1667 setIndexExpr(i, exprs[i]);
1668
1669 setDependence(computeDependence(this));
1670}
1671
1672IdentifierInfo *OffsetOfNode::getFieldName() const {
1673 assert(getKind() == Field || getKind() == Identifier)(static_cast <bool> (getKind() == Field || getKind() ==
Identifier) ? void (0) : __assert_fail ("getKind() == Field || getKind() == Identifier"
, "clang/lib/AST/Expr.cpp", 1673, __extension__ __PRETTY_FUNCTION__
))
;
1674 if (getKind() == Field)
1675 return getField()->getIdentifier();
1676
1677 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1678}
1679
1680UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1681 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1682 SourceLocation op, SourceLocation rp)
1683 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1684 OpLoc(op), RParenLoc(rp) {
1685 assert(ExprKind <= UETT_Last && "invalid enum value!")(static_cast <bool> (ExprKind <= UETT_Last &&
"invalid enum value!") ? void (0) : __assert_fail ("ExprKind <= UETT_Last && \"invalid enum value!\""
, "clang/lib/AST/Expr.cpp", 1685, __extension__ __PRETTY_FUNCTION__
))
;
1686 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1687 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&(static_cast <bool> (static_cast<unsigned>(ExprKind
) == UnaryExprOrTypeTraitExprBits.Kind && "UnaryExprOrTypeTraitExprBits.Kind overflow!"
) ? void (0) : __assert_fail ("static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && \"UnaryExprOrTypeTraitExprBits.Kind overflow!\""
, "clang/lib/AST/Expr.cpp", 1688, __extension__ __PRETTY_FUNCTION__
))
1688 "UnaryExprOrTypeTraitExprBits.Kind overflow!")(static_cast <bool> (static_cast<unsigned>(ExprKind
) == UnaryExprOrTypeTraitExprBits.Kind && "UnaryExprOrTypeTraitExprBits.Kind overflow!"
) ? void (0) : __assert_fail ("static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && \"UnaryExprOrTypeTraitExprBits.Kind overflow!\""
, "clang/lib/AST/Expr.cpp", 1688, __extension__ __PRETTY_FUNCTION__
))
;
1689 UnaryExprOrTypeTraitExprBits.IsType = false;
1690 Argument.Ex = E;
1691 setDependence(computeDependence(this));
1692}
1693
1694MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1695 ValueDecl *MemberDecl,
1696 const DeclarationNameInfo &NameInfo, QualType T,
1697 ExprValueKind VK, ExprObjectKind OK,
1698 NonOdrUseReason NOUR)
1699 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1700 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1701 assert(!NameInfo.getName() ||(static_cast <bool> (!NameInfo.getName() || MemberDecl->
getDeclName() == NameInfo.getName()) ? void (0) : __assert_fail
("!NameInfo.getName() || MemberDecl->getDeclName() == NameInfo.getName()"
, "clang/lib/AST/Expr.cpp", 1702, __extension__ __PRETTY_FUNCTION__
))
1702 MemberDecl->getDeclName() == NameInfo.getName())(static_cast <bool> (!NameInfo.getName() || MemberDecl->
getDeclName() == NameInfo.getName()) ? void (0) : __assert_fail
("!NameInfo.getName() || MemberDecl->getDeclName() == NameInfo.getName()"
, "clang/lib/AST/Expr.cpp", 1702, __extension__ __PRETTY_FUNCTION__
))
;
1703 MemberExprBits.IsArrow = IsArrow;
1704 MemberExprBits.HasQualifierOrFoundDecl = false;
1705 MemberExprBits.HasTemplateKWAndArgsInfo = false;
1706 MemberExprBits.HadMultipleCandidates = false;
1707 MemberExprBits.NonOdrUseReason = NOUR;
1708 MemberExprBits.OperatorLoc = OperatorLoc;
1709 setDependence(computeDependence(this));
1710}
1711
1712MemberExpr *MemberExpr::Create(
1713 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1714 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1715 ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1716 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1717 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1718 bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1719 FoundDecl.getAccess() != MemberDecl->getAccess();
1720 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1721 std::size_t Size =
1722 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1723 TemplateArgumentLoc>(
1724 HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1725 TemplateArgs ? TemplateArgs->size() : 0);
1726
1727 void *Mem = C.Allocate(Size, alignof(MemberExpr));
1728 MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1729 NameInfo, T, VK, OK, NOUR);
1730
1731 // FIXME: remove remaining dependence computation to computeDependence().
1732 auto Deps = E->getDependence();
1733 if (HasQualOrFound) {
1734 // FIXME: Wrong. We should be looking at the member declaration we found.
1735 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1736 Deps |= ExprDependence::TypeValueInstantiation;
1737 else if (QualifierLoc &&
1738 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1739 Deps |= ExprDependence::Instantiation;
1740
1741 E->MemberExprBits.HasQualifierOrFoundDecl = true;
1742
1743 MemberExprNameQualifier *NQ =
1744 E->getTrailingObjects<MemberExprNameQualifier>();
1745 NQ->QualifierLoc = QualifierLoc;
1746 NQ->FoundDecl = FoundDecl;
1747 }
1748
1749 E->MemberExprBits.HasTemplateKWAndArgsInfo =
1750 TemplateArgs || TemplateKWLoc.isValid();
1751
1752 if (TemplateArgs) {
1753 auto TemplateArgDeps = TemplateArgumentDependence::None;
1754 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1755 TemplateKWLoc, *TemplateArgs,
1756 E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1757 if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1758 Deps |= ExprDependence::Instantiation;
1759 } else if (TemplateKWLoc.isValid()) {
1760 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1761 TemplateKWLoc);
1762 }
1763 E->setDependence(Deps);
1764
1765 return E;
1766}
1767
1768MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1769 bool HasQualifier, bool HasFoundDecl,
1770 bool HasTemplateKWAndArgsInfo,
1771 unsigned NumTemplateArgs) {
1772 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&(static_cast <bool> ((!NumTemplateArgs || HasTemplateKWAndArgsInfo
) && "template args but no template arg info?") ? void
(0) : __assert_fail ("(!NumTemplateArgs || HasTemplateKWAndArgsInfo) && \"template args but no template arg info?\""
, "clang/lib/AST/Expr.cpp", 1773, __extension__ __PRETTY_FUNCTION__
))
1773 "template args but no template arg info?")(static_cast <bool> ((!NumTemplateArgs || HasTemplateKWAndArgsInfo
) && "template args but no template arg info?") ? void
(0) : __assert_fail ("(!NumTemplateArgs || HasTemplateKWAndArgsInfo) && \"template args but no template arg info?\""
, "clang/lib/AST/Expr.cpp", 1773, __extension__ __PRETTY_FUNCTION__
))
;
1774 bool HasQualOrFound = HasQualifier || HasFoundDecl;
1775 std::size_t Size =
1776 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1777 TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1778 HasTemplateKWAndArgsInfo ? 1 : 0,
1779 NumTemplateArgs);
1780 void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1781 return new (Mem) MemberExpr(EmptyShell());
1782}
1783
1784void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1785 MemberDecl = NewD;
1786 if (getType()->isUndeducedType())
1787 setType(NewD->getType());
1788 setDependence(computeDependence(this));
1789}
1790
1791SourceLocation MemberExpr::getBeginLoc() const {
1792 if (isImplicitAccess()) {
1793 if (hasQualifier())
1794 return getQualifierLoc().getBeginLoc();
1795 return MemberLoc;
1796 }
1797
1798 // FIXME: We don't want this to happen. Rather, we should be able to
1799 // detect all kinds of implicit accesses more cleanly.
1800 SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1801 if (BaseStartLoc.isValid())
1802 return BaseStartLoc;
1803 return MemberLoc;
1804}
1805SourceLocation MemberExpr::getEndLoc() const {
1806 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1807 if (hasExplicitTemplateArgs())
1808 EndLoc = getRAngleLoc();
1809 else if (EndLoc.isInvalid())
1810 EndLoc = getBase()->getEndLoc();
1811 return EndLoc;
1812}
1813
1814bool CastExpr::CastConsistency() const {
1815 switch (getCastKind()) {
1816 case CK_DerivedToBase:
1817 case CK_UncheckedDerivedToBase:
1818 case CK_DerivedToBaseMemberPointer:
1819 case CK_BaseToDerived:
1820 case CK_BaseToDerivedMemberPointer:
1821 assert(!path_empty() && "Cast kind should have a base path!")(static_cast <bool> (!path_empty() && "Cast kind should have a base path!"
) ? void (0) : __assert_fail ("!path_empty() && \"Cast kind should have a base path!\""
, "clang/lib/AST/Expr.cpp", 1821, __extension__ __PRETTY_FUNCTION__
))
;
1822 break;
1823
1824 case CK_CPointerToObjCPointerCast:
1825 assert(getType()->isObjCObjectPointerType())(static_cast <bool> (getType()->isObjCObjectPointerType
()) ? void (0) : __assert_fail ("getType()->isObjCObjectPointerType()"
, "clang/lib/AST/Expr.cpp", 1825, __extension__ __PRETTY_FUNCTION__
))
;
1826 assert(getSubExpr()->getType()->isPointerType())(static_cast <bool> (getSubExpr()->getType()->isPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isPointerType()"
, "clang/lib/AST/Expr.cpp", 1826, __extension__ __PRETTY_FUNCTION__
))
;
1827 goto CheckNoBasePath;
1828
1829 case CK_BlockPointerToObjCPointerCast:
1830 assert(getType()->isObjCObjectPointerType())(static_cast <bool> (getType()->isObjCObjectPointerType
()) ? void (0) : __assert_fail ("getType()->isObjCObjectPointerType()"
, "clang/lib/AST/Expr.cpp", 1830, __extension__ __PRETTY_FUNCTION__
))
;
1831 assert(getSubExpr()->getType()->isBlockPointerType())(static_cast <bool> (getSubExpr()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1831, __extension__ __PRETTY_FUNCTION__
))
;
1832 goto CheckNoBasePath;
1833
1834 case CK_ReinterpretMemberPointer:
1835 assert(getType()->isMemberPointerType())(static_cast <bool> (getType()->isMemberPointerType(
)) ? void (0) : __assert_fail ("getType()->isMemberPointerType()"
, "clang/lib/AST/Expr.cpp", 1835, __extension__ __PRETTY_FUNCTION__
))
;
1836 assert(getSubExpr()->getType()->isMemberPointerType())(static_cast <bool> (getSubExpr()->getType()->isMemberPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isMemberPointerType()"
, "clang/lib/AST/Expr.cpp", 1836, __extension__ __PRETTY_FUNCTION__
))
;
1837 goto CheckNoBasePath;
1838
1839 case CK_BitCast:
1840 // Arbitrary casts to C pointer types count as bitcasts.
1841 // Otherwise, we should only have block and ObjC pointer casts
1842 // here if they stay within the type kind.
1843 if (!getType()->isPointerType()) {
1844 assert(getType()->isObjCObjectPointerType() ==(static_cast <bool> (getType()->isObjCObjectPointerType
() == getSubExpr()->getType()->isObjCObjectPointerType(
)) ? void (0) : __assert_fail ("getType()->isObjCObjectPointerType() == getSubExpr()->getType()->isObjCObjectPointerType()"
, "clang/lib/AST/Expr.cpp", 1845, __extension__ __PRETTY_FUNCTION__
))
1845 getSubExpr()->getType()->isObjCObjectPointerType())(static_cast <bool> (getType()->isObjCObjectPointerType
() == getSubExpr()->getType()->isObjCObjectPointerType(
)) ? void (0) : __assert_fail ("getType()->isObjCObjectPointerType() == getSubExpr()->getType()->isObjCObjectPointerType()"
, "clang/lib/AST/Expr.cpp", 1845, __extension__ __PRETTY_FUNCTION__
))
;
1846 assert(getType()->isBlockPointerType() ==(static_cast <bool> (getType()->isBlockPointerType()
== getSubExpr()->getType()->isBlockPointerType()) ? void
(0) : __assert_fail ("getType()->isBlockPointerType() == getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1847, __extension__ __PRETTY_FUNCTION__
))
1847 getSubExpr()->getType()->isBlockPointerType())(static_cast <bool> (getType()->isBlockPointerType()
== getSubExpr()->getType()->isBlockPointerType()) ? void
(0) : __assert_fail ("getType()->isBlockPointerType() == getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1847, __extension__ __PRETTY_FUNCTION__
))
;
1848 }
1849 goto CheckNoBasePath;
1850
1851 case CK_AnyPointerToBlockPointerCast:
1852 assert(getType()->isBlockPointerType())(static_cast <bool> (getType()->isBlockPointerType()
) ? void (0) : __assert_fail ("getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1852, __extension__ __PRETTY_FUNCTION__
))
;
1853 assert(getSubExpr()->getType()->isAnyPointerType() &&(static_cast <bool> (getSubExpr()->getType()->isAnyPointerType
() && !getSubExpr()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isAnyPointerType() && !getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1854, __extension__ __PRETTY_FUNCTION__
))
1854 !getSubExpr()->getType()->isBlockPointerType())(static_cast <bool> (getSubExpr()->getType()->isAnyPointerType
() && !getSubExpr()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isAnyPointerType() && !getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1854, __extension__ __PRETTY_FUNCTION__
))
;
1855 goto CheckNoBasePath;
1856
1857 case CK_CopyAndAutoreleaseBlockObject:
1858 assert(getType()->isBlockPointerType())(static_cast <bool> (getType()->isBlockPointerType()
) ? void (0) : __assert_fail ("getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1858, __extension__ __PRETTY_FUNCTION__
))
;
1859 assert(getSubExpr()->getType()->isBlockPointerType())(static_cast <bool> (getSubExpr()->getType()->isBlockPointerType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isBlockPointerType()"
, "clang/lib/AST/Expr.cpp", 1859, __extension__ __PRETTY_FUNCTION__
))
;
1860 goto CheckNoBasePath;
1861
1862 case CK_FunctionToPointerDecay:
1863 assert(getType()->isPointerType())(static_cast <bool> (getType()->isPointerType()) ? void
(0) : __assert_fail ("getType()->isPointerType()", "clang/lib/AST/Expr.cpp"
, 1863, __extension__ __PRETTY_FUNCTION__))
;
1864 assert(getSubExpr()->getType()->isFunctionType())(static_cast <bool> (getSubExpr()->getType()->isFunctionType
()) ? void (0) : __assert_fail ("getSubExpr()->getType()->isFunctionType()"
, "clang/lib/AST/Expr.cpp", 1864, __extension__ __PRETTY_FUNCTION__
))
;
1865 goto CheckNoBasePath;
1866
1867 case CK_AddressSpaceConversion: {
1868 auto Ty = getType();
1869 auto SETy = getSubExpr()->getType();
1870 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy))(static_cast <bool> (getValueKindForType(Ty) == Expr::getValueKindForType
(SETy)) ? void (0) : __assert_fail ("getValueKindForType(Ty) == Expr::getValueKindForType(SETy)"
, "clang/lib/AST/Expr.cpp", 1870, __extension__ __PRETTY_FUNCTION__
))
;
1871 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1872 Ty = Ty->getPointeeType();
1873 SETy = SETy->getPointeeType();
1874 }
1875 assert((Ty->isDependentType() || SETy->isDependentType()) ||(static_cast <bool> ((Ty->isDependentType() || SETy->
isDependentType()) || (!Ty.isNull() && !SETy.isNull()
&& Ty.getAddressSpace() != SETy.getAddressSpace())) ?
void (0) : __assert_fail ("(Ty->isDependentType() || SETy->isDependentType()) || (!Ty.isNull() && !SETy.isNull() && Ty.getAddressSpace() != SETy.getAddressSpace())"
, "clang/lib/AST/Expr.cpp", 1877, __extension__ __PRETTY_FUNCTION__
))
1876 (!Ty.isNull() && !SETy.isNull() &&(static_cast <bool> ((Ty->isDependentType() || SETy->
isDependentType()) || (!Ty.isNull() && !SETy.isNull()
&& Ty.getAddressSpace() != SETy.getAddressSpace())) ?
void (0) : __assert_fail ("(Ty->isDependentType() || SETy->isDependentType()) || (!Ty.isNull() && !SETy.isNull() && Ty.getAddressSpace() != SETy.getAddressSpace())"
, "clang/lib/AST/Expr.cpp", 1877, __extension__ __PRETTY_FUNCTION__
))
1877 Ty.getAddressSpace() != SETy.getAddressSpace()))(static_cast <bool> ((Ty->isDependentType() || SETy->
isDependentType()) || (!Ty.isNull() && !SETy.isNull()
&& Ty.getAddressSpace() != SETy.getAddressSpace())) ?
void (0) : __assert_fail ("(Ty->isDependentType() || SETy->isDependentType()) || (!Ty.isNull() && !SETy.isNull() && Ty.getAddressSpace() != SETy.getAddressSpace())"
, "clang/lib/AST/Expr.cpp", 1877, __extension__ __PRETTY_FUNCTION__
))
;
1878 goto CheckNoBasePath;
1879 }
1880 // These should not have an inheritance path.
1881 case CK_Dynamic:
1882 case CK_ToUnion:
1883 case CK_ArrayToPointerDecay:
1884 case CK_NullToMemberPointer:
1885 case CK_NullToPointer:
1886 case CK_ConstructorConversion:
1887 case CK_IntegralToPointer:
1888 case CK_PointerToIntegral:
1889 case CK_ToVoid:
1890 case CK_VectorSplat:
1891 case CK_IntegralCast:
1892 case CK_BooleanToSignedIntegral:
1893 case CK_IntegralToFloating:
1894 case CK_FloatingToIntegral:
1895 case CK_FloatingCast:
1896 case CK_ObjCObjectLValueCast:
1897 case CK_FloatingRealToComplex:
1898 case CK_FloatingComplexToReal:
1899 case CK_FloatingComplexCast:
1900 case CK_FloatingComplexToIntegralComplex:
1901 case CK_IntegralRealToComplex:
1902 case CK_IntegralComplexToReal:
1903 case CK_IntegralComplexCast:
1904 case CK_IntegralComplexToFloatingComplex:
1905 case CK_ARCProduceObject:
1906 case CK_ARCConsumeObject:
1907 case CK_ARCReclaimReturnedObject:
1908 case CK_ARCExtendBlockObject:
1909 case CK_ZeroToOCLOpaqueType:
1910 case CK_IntToOCLSampler:
1911 case CK_FloatingToFixedPoint:
1912 case CK_FixedPointToFloating:
1913 case CK_FixedPointCast:
1914 case CK_FixedPointToIntegral:
1915 case CK_IntegralToFixedPoint:
1916 case CK_MatrixCast:
1917 assert(!getType()->isBooleanType() && "unheralded conversion to bool")(static_cast <bool> (!getType()->isBooleanType() &&
"unheralded conversion to bool") ? void (0) : __assert_fail (
"!getType()->isBooleanType() && \"unheralded conversion to bool\""
, "clang/lib/AST/Expr.cpp", 1917, __extension__ __PRETTY_FUNCTION__
))
;
1918 goto CheckNoBasePath;
1919
1920 case CK_Dependent:
1921 case CK_LValueToRValue:
1922 case CK_NoOp:
1923 case CK_AtomicToNonAtomic:
1924 case CK_NonAtomicToAtomic:
1925 case CK_PointerToBoolean:
1926 case CK_IntegralToBoolean:
1927 case CK_FloatingToBoolean:
1928 case CK_MemberPointerToBoolean:
1929 case CK_FloatingComplexToBoolean:
1930 case CK_IntegralComplexToBoolean:
1931 case CK_LValueBitCast: // -> bool&
1932 case CK_LValueToRValueBitCast:
1933 case CK_UserDefinedConversion: // operator bool()
1934 case CK_BuiltinFnToFnPtr:
1935 case CK_FixedPointToBoolean:
1936 CheckNoBasePath:
1937 assert(path_empty() && "Cast kind should not have a base path!")(static_cast <bool> (path_empty() && "Cast kind should not have a base path!"
) ? void (0) : __assert_fail ("path_empty() && \"Cast kind should not have a base path!\""
, "clang/lib/AST/Expr.cpp", 1937, __extension__ __PRETTY_FUNCTION__
))
;
1938 break;
1939 }
1940 return true;
1941}
1942
1943const char *CastExpr::getCastKindName(CastKind CK) {
1944 switch (CK) {
1945#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1946#include "clang/AST/OperationKinds.def"
1947 }
1948 llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "clang/lib/AST/Expr.cpp"
, 1948)
;
1949}
1950
1951namespace {
1952// Skip over implicit nodes produced as part of semantic analysis.
1953// Designed for use with IgnoreExprNodes.
1954static Expr *ignoreImplicitSemaNodes(Expr *E) {
1955 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1956 return Materialize->getSubExpr();
1957
1958 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1959 return Binder->getSubExpr();
1960
1961 if (auto *Full = dyn_cast<FullExpr>(E))
1962 return Full->getSubExpr();
1963
1964 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E);
1965 CPLIE && CPLIE->getInitExprs().size() == 1)
1966 return CPLIE->getInitExprs()[0];
1967
1968 return E;
1969}
1970} // namespace
1971
1972Expr *CastExpr::getSubExprAsWritten() {
1973 const Expr *SubExpr = nullptr;
1974
1975 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1976 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1977
1978 // Conversions by constructor and conversion functions have a
1979 // subexpression describing the call; strip it off.
1980 if (E->getCastKind() == CK_ConstructorConversion) {
1981 SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
1982 ignoreImplicitSemaNodes);
1983 } else if (E->getCastKind() == CK_UserDefinedConversion) {
1984 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&(static_cast <bool> ((isa<CXXMemberCallExpr>(SubExpr
) || isa<BlockExpr>(SubExpr)) && "Unexpected SubExpr for CK_UserDefinedConversion."
) ? void (0) : __assert_fail ("(isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && \"Unexpected SubExpr for CK_UserDefinedConversion.\""
, "clang/lib/AST/Expr.cpp", 1985, __extension__ __PRETTY_FUNCTION__
))
1985 "Unexpected SubExpr for CK_UserDefinedConversion.")(static_cast <bool> ((isa<CXXMemberCallExpr>(SubExpr
) || isa<BlockExpr>(SubExpr)) && "Unexpected SubExpr for CK_UserDefinedConversion."
) ? void (0) : __assert_fail ("(isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) && \"Unexpected SubExpr for CK_UserDefinedConversion.\""
, "clang/lib/AST/Expr.cpp", 1985, __extension__ __PRETTY_FUNCTION__
))
;
1986 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1987 SubExpr = MCE->getImplicitObjectArgument();
1988 }
1989 }
1990
1991 return const_cast<Expr *>(SubExpr);
1992}
1993
1994NamedDecl *CastExpr::getConversionFunction() const {
1995 const Expr *SubExpr = nullptr;
1996
1997 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1998 SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1999
2000 if (E->getCastKind() == CK_ConstructorConversion)
2001 return cast<CXXConstructExpr>(SubExpr)->getConstructor();
2002
2003 if (E->getCastKind() == CK_UserDefinedConversion) {
2004 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2005 return MCE->getMethodDecl();
2006 }
2007 }
2008
2009 return nullptr;
2010}
2011
2012CXXBaseSpecifier **CastExpr::path_buffer() {
2013 switch (getStmtClass()) {
2014#define ABSTRACT_STMT(x)
2015#define CASTEXPR(Type, Base) \
2016 case Stmt::Type##Class: \
2017 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2018#define STMT(Type, Base)
2019#include "clang/AST/StmtNodes.inc"
2020 default:
2021 llvm_unreachable("non-cast expressions not possible here")::llvm::llvm_unreachable_internal("non-cast expressions not possible here"
, "clang/lib/AST/Expr.cpp", 2021)
;
2022 }
2023}
2024
2025const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2026 QualType opType) {
2027 auto RD = unionType->castAs<RecordType>()->getDecl();
2028 return getTargetFieldForToUnionCast(RD, opType);
2029}
2030
2031const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2032 QualType OpType) {
2033 auto &Ctx = RD->getASTContext();
2034 RecordDecl::field_iterator Field, FieldEnd;
2035 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2036 Field != FieldEnd; ++Field) {
2037 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2038 !Field->isUnnamedBitfield()) {
2039 return *Field;
2040 }
2041 }
2042 return nullptr;
2043}
2044
2045FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2046 assert(hasStoredFPFeatures())(static_cast <bool> (hasStoredFPFeatures()) ? void (0) :
__assert_fail ("hasStoredFPFeatures()", "clang/lib/AST/Expr.cpp"
, 2046, __extension__ __PRETTY_FUNCTION__))
;
2047 switch (getStmtClass()) {
2048 case ImplicitCastExprClass:
2049 return static_cast<ImplicitCastExpr *>(this)
2050 ->getTrailingObjects<FPOptionsOverride>();
2051 case CStyleCastExprClass:
2052 return static_cast<CStyleCastExpr *>(this)
2053 ->getTrailingObjects<FPOptionsOverride>();
2054 case CXXFunctionalCastExprClass:
2055 return static_cast<CXXFunctionalCastExpr *>(this)
2056 ->getTrailingObjects<FPOptionsOverride>();
2057 case CXXStaticCastExprClass:
2058 return static_cast<CXXStaticCastExpr *>(this)
2059 ->getTrailingObjects<FPOptionsOverride>();
2060 default:
2061 llvm_unreachable("Cast does not have FPFeatures")::llvm::llvm_unreachable_internal("Cast does not have FPFeatures"
, "clang/lib/AST/Expr.cpp", 2061)
;
2062 }
2063}
2064
2065ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2066 CastKind Kind, Expr *Operand,
2067 const CXXCastPath *BasePath,
2068 ExprValueKind VK,
2069 FPOptionsOverride FPO) {
2070 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2071 void *Buffer =
2072 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2073 PathSize, FPO.requiresTrailingStorage()));
2074 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2075 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2076 assert((Kind != CK_LValueToRValue ||(static_cast <bool> ((Kind != CK_LValueToRValue || !(T->
isNullPtrType() || T->getAsCXXRecordDecl())) && "invalid type for lvalue-to-rvalue conversion"
) ? void (0) : __assert_fail ("(Kind != CK_LValueToRValue || !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && \"invalid type for lvalue-to-rvalue conversion\""
, "clang/lib/AST/Expr.cpp", 2078, __extension__ __PRETTY_FUNCTION__
))
2077 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&(static_cast <bool> ((Kind != CK_LValueToRValue || !(T->
isNullPtrType() || T->getAsCXXRecordDecl())) && "invalid type for lvalue-to-rvalue conversion"
) ? void (0) : __assert_fail ("(Kind != CK_LValueToRValue || !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && \"invalid type for lvalue-to-rvalue conversion\""
, "clang/lib/AST/Expr.cpp", 2078, __extension__ __PRETTY_FUNCTION__
))
2078 "invalid type for lvalue-to-rvalue conversion")(static_cast <bool> ((Kind != CK_LValueToRValue || !(T->
isNullPtrType() || T->getAsCXXRecordDecl())) && "invalid type for lvalue-to-rvalue conversion"
) ? void (0) : __assert_fail ("(Kind != CK_LValueToRValue || !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && \"invalid type for lvalue-to-rvalue conversion\""
, "clang/lib/AST/Expr.cpp", 2078, __extension__ __PRETTY_FUNCTION__
))
;
2079 ImplicitCastExpr *E =
2080 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2081 if (PathSize)
2082 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2083 E->getTrailingObjects<CXXBaseSpecifier *>());
2084 return E;
2085}
2086
2087ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2088 unsigned PathSize,
2089 bool HasFPFeatures) {
2090 void *Buffer =
2091 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2092 PathSize, HasFPFeatures));
2093 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2094}
2095
2096CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2097 ExprValueKind VK, CastKind K, Expr *Op,
2098 const CXXCastPath *BasePath,
2099 FPOptionsOverride FPO,
2100 TypeSourceInfo *WrittenTy,
2101 SourceLocation L, SourceLocation R) {
2102 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2103 void *Buffer =
2104 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2105 PathSize, FPO.requiresTrailingStorage()));
2106 CStyleCastExpr *E =
2107 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2108 if (PathSize)
2109 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2110 E->getTrailingObjects<CXXBaseSpecifier *>());
2111 return E;
2112}
2113
2114CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2115 unsigned PathSize,
2116 bool HasFPFeatures) {
2117 void *Buffer =
2118 C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2119 PathSize, HasFPFeatures));
2120 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2121}
2122
2123/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2124/// corresponds to, e.g. "<<=".
2125StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2126 switch (Op) {
2127#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2128#include "clang/AST/OperationKinds.def"
2129 }
2130 llvm_unreachable("Invalid OpCode!")::llvm::llvm_unreachable_internal("Invalid OpCode!", "clang/lib/AST/Expr.cpp"
, 2130)
;
2131}
2132
2133BinaryOperatorKind
2134BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2135 switch (OO) {
2136 default: llvm_unreachable("Not an overloadable binary operator")::llvm::llvm_unreachable_internal("Not an overloadable binary operator"
, "clang/lib/AST/Expr.cpp", 2136)
;
2137 case OO_Plus: return BO_Add;
2138 case OO_Minus: return BO_Sub;
2139 case OO_Star: return BO_Mul;
2140 case OO_Slash: return BO_Div;
2141 case OO_Percent: return BO_Rem;
2142 case OO_Caret: return BO_Xor;
2143 case OO_Amp: return BO_And;
2144 case OO_Pipe: return BO_Or;
2145 case OO_Equal: return BO_Assign;
2146 case OO_Spaceship: return BO_Cmp;
2147 case OO_Less: return BO_LT;
2148 case OO_Greater: return BO_GT;
2149 case OO_PlusEqual: return BO_AddAssign;
2150 case OO_MinusEqual: return BO_SubAssign;
2151 case OO_StarEqual: return BO_MulAssign;
2152 case OO_SlashEqual: return BO_DivAssign;
2153 case OO_PercentEqual: return BO_RemAssign;
2154 case OO_CaretEqual: return BO_XorAssign;
2155 case OO_AmpEqual: return BO_AndAssign;
2156 case OO_PipeEqual: return BO_OrAssign;
2157 case OO_LessLess: return BO_Shl;
2158 case OO_GreaterGreater: return BO_Shr;
2159 case OO_LessLessEqual: return BO_ShlAssign;
2160 case OO_GreaterGreaterEqual: return BO_ShrAssign;
2161 case OO_EqualEqual: return BO_EQ;
2162 case OO_ExclaimEqual: return BO_NE;
2163 case OO_LessEqual: return BO_LE;
2164 case OO_GreaterEqual: return BO_GE;
2165 case OO_AmpAmp: return BO_LAnd;
2166 case OO_PipePipe: return BO_LOr;
2167 case OO_Comma: return BO_Comma;
2168 case OO_ArrowStar: return BO_PtrMemI;
2169 }
2170}
2171
2172OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2173 static const OverloadedOperatorKind OverOps[] = {
2174 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2175 OO_Star, OO_Slash, OO_Percent,
2176 OO_Plus, OO_Minus,
2177 OO_LessLess, OO_GreaterGreater,
2178 OO_Spaceship,
2179 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2180 OO_EqualEqual, OO_ExclaimEqual,
2181 OO_Amp,
2182 OO_Caret,
2183 OO_Pipe,
2184 OO_AmpAmp,
2185 OO_PipePipe,
2186 OO_Equal, OO_StarEqual,
2187 OO_SlashEqual, OO_PercentEqual,
2188 OO_PlusEqual, OO_MinusEqual,
2189 OO_LessLessEqual, OO_GreaterGreaterEqual,
2190 OO_AmpEqual, OO_CaretEqual,
2191 OO_PipeEqual,
2192 OO_Comma
2193 };
2194 return OverOps[Opc];
2195}
2196
2197bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2198 Opcode Opc,
2199 const Expr *LHS,
2200 const Expr *RHS) {
2201 if (Opc != BO_Add)
2202 return false;
2203
2204 // Check that we have one pointer and one integer operand.
2205 const Expr *PExp;
2206 if (LHS->getType()->isPointerType()) {
2207 if (!RHS->getType()->isIntegerType())
2208 return false;
2209 PExp = LHS;
2210 } else if (RHS->getType()->isPointerType()) {
2211 if (!LHS->getType()->isIntegerType())
2212 return false;
2213 PExp = RHS;
2214 } else {
2215 return false;
2216 }
2217
2218 // Check that the pointer is a nullptr.
2219 if (!PExp->IgnoreParenCasts()
2220 ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2221 return false;
2222
2223 // Check that the pointee type is char-sized.
2224 const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2225 if (!PTy || !PTy->getPointeeType()->isCharType())
2226 return false;
2227
2228 return true;
2229}
2230
2231SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2232 QualType ResultTy, SourceLocation BLoc,
2233 SourceLocation RParenLoc,
2234 DeclContext *ParentContext)
2235 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2236 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2237 SourceLocExprBits.Kind = Kind;
2238 setDependence(ExprDependence::None);
2239}
2240
2241StringRef SourceLocExpr::getBuiltinStr() const {
2242 switch (getIdentKind()) {
2243 case File:
2244 return "__builtin_FILE";
2245 case FileName:
2246 return "__builtin_FILE_NAME";
2247 case Function:
2248 return "__builtin_FUNCTION";
2249 case Line:
2250 return "__builtin_LINE";
2251 case Column:
2252 return "__builtin_COLUMN";
2253 case SourceLocStruct:
2254 return "__builtin_source_location";
2255 }
2256 llvm_unreachable("unexpected IdentKind!")::llvm::llvm_unreachable_internal("unexpected IdentKind!", "clang/lib/AST/Expr.cpp"
, 2256)
;
2257}
2258
2259APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2260 const Expr *DefaultExpr) const {
2261 SourceLocation Loc;
2262 const DeclContext *Context;
2263
2264 std::tie(Loc,
2265 Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2266 if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2267 return {DIE->getUsedLocation(), DIE->getUsedContext()};
2268 if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2269 return {DAE->getUsedLocation(), DAE->getUsedContext()};
2270 return {this->getLocation(), this->getParentContext()};
2271 }();
2272
2273 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2274 Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2275
2276 auto MakeStringLiteral = [&](StringRef Tmp) {
2277 using LValuePathEntry = APValue::LValuePathEntry;
2278 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2279 // Decay the string to a pointer to the first character.
2280 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2281 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2282 };
2283
2284 switch (getIdentKind()) {
2285 case SourceLocExpr::FileName: {
2286 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2287 // the last part of __builtin_FILE().
2288 SmallString<256> FileName;
2289 clang::Preprocessor::processPathToFileName(
2290 FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo());
2291 return MakeStringLiteral(FileName);
2292 }
2293 case SourceLocExpr::File: {
2294 SmallString<256> Path(PLoc.getFilename());
2295 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2296 Ctx.getTargetInfo());
2297 return MakeStringLiteral(Path);
2298 }
2299 case SourceLocExpr::Function: {
2300 const auto *CurDecl = dyn_cast<Decl>(Context);
2301 return MakeStringLiteral(
2302 CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2303 : std::string(""));
2304 }
2305 case SourceLocExpr::Line:
2306 case SourceLocExpr::Column: {
2307 llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2308 /*isUnsigned=*/true);
2309 IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2310 : PLoc.getColumn();
2311 return APValue(IntVal);
2312 }
2313 case SourceLocExpr::SourceLocStruct: {
2314 // Fill in a std::source_location::__impl structure, by creating an
2315 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2316 // that.
2317 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2318 assert(ImplDecl)(static_cast <bool> (ImplDecl) ? void (0) : __assert_fail
("ImplDecl", "clang/lib/AST/Expr.cpp", 2318, __extension__ __PRETTY_FUNCTION__
))
;
2319
2320 // Construct an APValue for the __impl struct, and get or create a Decl
2321 // corresponding to that. Note that we've already verified that the shape of
2322 // the ImplDecl type is as expected.
2323
2324 APValue Value(APValue::UninitStruct(), 0, 4);
2325 for (FieldDecl *F : ImplDecl->fields()) {
2326 StringRef Name = F->getName();
2327 if (Name == "_M_file_name") {
2328 SmallString<256> Path(PLoc.getFilename());
2329 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2330 Ctx.getTargetInfo());
2331 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2332 } else if (Name == "_M_function_name") {
2333 // Note: this emits the PrettyFunction name -- different than what
2334 // __builtin_FUNCTION() above returns!
2335 const auto *CurDecl = dyn_cast<Decl>(Context);
2336 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2337 CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2338 ? StringRef(PredefinedExpr::ComputeName(
2339 PredefinedExpr::PrettyFunction, CurDecl))
2340 : "");
2341 } else if (Name == "_M_line") {
2342 QualType Ty = F->getType();
2343 llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2344 Ty->hasUnsignedIntegerRepresentation());
2345 IntVal = PLoc.getLine();
2346 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2347 } else if (Name == "_M_column") {
2348 QualType Ty = F->getType();
2349 llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2350 Ty->hasUnsignedIntegerRepresentation());
2351 IntVal = PLoc.getColumn();
2352 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2353 }
2354 }
2355
2356 UnnamedGlobalConstantDecl *GV =
2357 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2358
2359 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2360 false);
2361 }
2362 }
2363 llvm_unreachable("unhandled case")::llvm::llvm_unreachable_internal("unhandled case", "clang/lib/AST/Expr.cpp"
, 2363)
;
2364}
2365
2366InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2367 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2368 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2369 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2370 RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2371 sawArrayRangeDesignator(false);
2372 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2373
2374 setDependence(computeDependence(this));
2375}
2376
2377void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2378 if (NumInits > InitExprs.size())
2379 InitExprs.reserve(C, NumInits);
2380}
2381
2382void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2383 InitExprs.resize(C, NumInits, nullptr);
2384}
2385
2386Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2387 if (Init >= InitExprs.size()) {
2388 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2389 setInit(Init, expr);
2390 return nullptr;
2391 }
2392
2393 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2394 setInit(Init, expr);
2395 return Result;
2396}
2397
2398void InitListExpr::setArrayFiller(Expr *filler) {
2399 assert(!hasArrayFiller() && "Filler already set!")(static_cast <bool> (!hasArrayFiller() && "Filler already set!"
) ? void (0) : __assert_fail ("!hasArrayFiller() && \"Filler already set!\""
, "clang/lib/AST/Expr.cpp", 2399, __extension__ __PRETTY_FUNCTION__
))
;
2400 ArrayFillerOrUnionFieldInit = filler;
2401 // Fill out any "holes" in the array due to designated initializers.
2402 Expr **inits = getInits();
2403 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2404 if (inits[i] == nullptr)
2405 inits[i] = filler;
2406}
2407
2408bool InitListExpr::isStringLiteralInit() const {
2409 if (getNumInits() != 1)
2410 return false;
2411 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2412 if (!AT || !AT->getElementType()->isIntegerType())
2413 return false;
2414 // It is possible for getInit() to return null.
2415 const Expr *Init = getInit(0);
2416 if (!Init)
2417 return false;
2418 Init = Init->IgnoreParenImpCasts();
2419 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2420}
2421
2422bool InitListExpr::isTransparent() const {
2423 assert(isSemanticForm() && "syntactic form never semantically transparent")(static_cast <bool> (isSemanticForm() && "syntactic form never semantically transparent"
) ? void (0) : __assert_fail ("isSemanticForm() && \"syntactic form never semantically transparent\""
, "clang/lib/AST/Expr.cpp", 2423, __extension__ __PRETTY_FUNCTION__
))
;
2424
2425 // A glvalue InitListExpr is always just sugar.
2426 if (isGLValue()) {
2427 assert(getNumInits() == 1 && "multiple inits in glvalue init list")(static_cast <bool> (getNumInits() == 1 && "multiple inits in glvalue init list"
) ? void (0) : __assert_fail ("getNumInits() == 1 && \"multiple inits in glvalue init list\""
, "clang/lib/AST/Expr.cpp", 2427, __extension__ __PRETTY_FUNCTION__
))
;
2428 return true;
2429 }
2430
2431 // Otherwise, we're sugar if and only if we have exactly one initializer that
2432 // is of the same type.
2433 if (getNumInits() != 1 || !getInit(0))
2434 return false;
2435
2436 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2437 // transparent struct copy.
2438 if (!getInit(0)->isPRValue() && getType()->isRecordType())
2439 return false;
2440
2441 return getType().getCanonicalType() ==
2442 getInit(0)->getType().getCanonicalType();
2443}
2444
2445bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2446 assert(isSyntacticForm() && "only test syntactic form as zero initializer")(static_cast <bool> (isSyntacticForm() && "only test syntactic form as zero initializer"
) ? void (0) : __assert_fail ("isSyntacticForm() && \"only test syntactic form as zero initializer\""
, "clang/lib/AST/Expr.cpp", 2446, __extension__ __PRETTY_FUNCTION__
))
;
2447
2448 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2449 return false;
2450 }
2451
2452 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2453 return Lit && Lit->getValue() == 0;
2454}
2455
2456SourceLocation InitListExpr::getBeginLoc() const {
2457 if (InitListExpr *SyntacticForm = getSyntacticForm())
2458 return SyntacticForm->getBeginLoc();
2459 SourceLocation Beg = LBraceLoc;
2460 if (Beg.isInvalid()) {
2461 // Find the first non-null initializer.
2462 for (InitExprsTy::const_iterator I = InitExprs.begin(),
2463 E = InitExprs.end();
2464 I != E; ++I) {
2465 if (Stmt *S = *I) {
2466 Beg = S->getBeginLoc();
2467 break;
2468 }
2469 }
2470 }
2471 return Beg;
2472}
2473
2474SourceLocation InitListExpr::getEndLoc() const {
2475 if (InitListExpr *SyntacticForm = getSyntacticForm())
2476 return SyntacticForm->getEndLoc();
2477 SourceLocation End = RBraceLoc;
2478 if (End.isInvalid()) {
2479 // Find the first non-null initializer from the end.
2480 for (Stmt *S : llvm::reverse(InitExprs)) {
2481 if (S) {
2482 End = S->getEndLoc();
2483 break;
2484 }
2485 }
2486 }
2487 return End;
2488}
2489
2490/// getFunctionType - Return the underlying function type for this block.
2491///
2492const FunctionProtoType *BlockExpr::getFunctionType() const {
2493 // The block pointer is never sugared, but the function type might be.
2494 return cast<BlockPointerType>(getType())
2495 ->getPointeeType()->castAs<FunctionProtoType>();
2496}
2497
2498SourceLocation BlockExpr::getCaretLocation() const {
2499 return TheBlock->getCaretLocation();
2500}
2501const Stmt *BlockExpr::getBody() const {
2502 return TheBlock->getBody();
2503}
2504Stmt *BlockExpr::getBody() {
2505 return TheBlock->getBody();
2506}
2507
2508
2509//===----------------------------------------------------------------------===//
2510// Generic Expression Routines
2511//===----------------------------------------------------------------------===//
2512
2513bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2514 // In C++11, discarded-value expressions of a certain form are special,
2515 // according to [expr]p10:
2516 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2517 // expression is a glvalue of volatile-qualified type and it has
2518 // one of the following forms:
2519 if (!isGLValue() || !getType().isVolatileQualified())
2520 return false;
2521
2522 const Expr *E = IgnoreParens();
2523
2524 // - id-expression (5.1.1),
2525 if (isa<DeclRefExpr>(E))
2526 return true;
2527
2528 // - subscripting (5.2.1),
2529 if (isa<ArraySubscriptExpr>(E))
2530 return true;
2531
2532 // - class member access (5.2.5),
2533 if (isa<MemberExpr>(E))
2534 return true;
2535
2536 // - indirection (5.3.1),
2537 if (auto *UO = dyn_cast<UnaryOperator>(E))
2538 if (UO->getOpcode() == UO_Deref)
2539 return true;
2540
2541 if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2542 // - pointer-to-member operation (5.5),
2543 if (BO->isPtrMemOp())
2544 return true;
2545
2546 // - comma expression (5.18) where the right operand is one of the above.
2547 if (BO->getOpcode() == BO_Comma)
2548 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2549 }
2550
2551 // - conditional expression (5.16) where both the second and the third
2552 // operands are one of the above, or
2553 if (auto *CO = dyn_cast<ConditionalOperator>(E))
2554 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2555 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2556 // The related edge case of "*x ?: *x".
2557 if (auto *BCO =
2558 dyn_cast<BinaryConditionalOperator>(E)) {
2559 if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2560 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2561 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2562 }
2563
2564 // Objective-C++ extensions to the rule.
2565 if (isa<ObjCIvarRefExpr>(E))
2566 return true;
2567 if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2568 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2569 return true;
2570 }
2571
2572 return false;
2573}
2574
2575/// isUnusedResultAWarning - Return true if this immediate expression should
2576/// be warned about if the result is unused. If so, fill in Loc and Ranges
2577/// with location to warn on and the source range[s] to report with the
2578/// warning.
2579bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2580 SourceRange &R1, SourceRange &R2,
2581 ASTContext &Ctx) const {
2582 // Don't warn if the expr is type dependent. The type could end up
2583 // instantiating to void.
2584 if (isTypeDependent())
2585 return false;
2586
2587 switch (getStmtClass()) {
2588 default:
2589 if (getType()->isVoidType())
2590 return false;
2591 WarnE = this;
2592 Loc = getExprLoc();
2593 R1 = getSourceRange();
2594 return true;
2595 case ParenExprClass:
2596 return cast<ParenExpr>(this)->getSubExpr()->
2597 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2598 case GenericSelectionExprClass:
2599 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2600 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2601 case CoawaitExprClass:
2602 case CoyieldExprClass:
2603 return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2604 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2605 case ChooseExprClass:
2606 return cast<ChooseExpr>(this)->getChosenSubExpr()->
2607 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2608 case UnaryOperatorClass: {
2609 const UnaryOperator *UO = cast<UnaryOperator>(this);
2610
2611 switch (UO->getOpcode()) {
2612 case UO_Plus:
2613 case UO_Minus:
2614 case UO_AddrOf:
2615 case UO_Not:
2616 case UO_LNot:
2617 case UO_Deref:
2618 break;
2619 case UO_Coawait:
2620 // This is just the 'operator co_await' call inside the guts of a
2621 // dependent co_await call.
2622 case UO_PostInc:
2623 case UO_PostDec:
2624 case UO_PreInc:
2625 case UO_PreDec: // ++/--
2626 return false; // Not a warning.
2627 case UO_Real:
2628 case UO_Imag:
2629 // accessing a piece of a volatile complex is a side-effect.
2630 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2631 .isVolatileQualified())
2632 return false;
2633 break;
2634 case UO_Extension:
2635 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2636 }
2637 WarnE = this;
2638 Loc = UO->getOperatorLoc();
2639 R1 = UO->getSubExpr()->getSourceRange();
2640 return true;
2641 }
2642 case BinaryOperatorClass: {
2643 const BinaryOperator *BO = cast<BinaryOperator>(this);
2644 switch (BO->getOpcode()) {
2645 default:
2646 break;
2647 // Consider the RHS of comma for side effects. LHS was checked by
2648 // Sema::CheckCommaOperands.
2649 case BO_Comma:
2650 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2651 // lvalue-ness) of an assignment written in a macro.
2652 if (IntegerLiteral *IE =
2653 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2654 if (IE->getValue() == 0)
2655 return false;
2656 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2657 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2658 case BO_LAnd:
2659 case BO_LOr:
2660 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2661 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2662 return false;
2663 break;
2664 }
2665 if (BO->isAssignmentOp())
2666 return false;
2667 WarnE = this;
2668 Loc = BO->getOperatorLoc();
2669 R1 = BO->getLHS()->getSourceRange();
2670 R2 = BO->getRHS()->getSourceRange();
2671 return true;
2672 }
2673 case CompoundAssignOperatorClass:
2674 case VAArgExprClass:
2675 case AtomicExprClass:
2676 return false;
2677
2678 case ConditionalOperatorClass: {
2679 // If only one of the LHS or RHS is a warning, the operator might
2680 // be being used for control flow. Only warn if both the LHS and
2681 // RHS are warnings.
2682 const auto *Exp = cast<ConditionalOperator>(this);
2683 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2684 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2685 }
2686 case BinaryConditionalOperatorClass: {
2687 const auto *Exp = cast<BinaryConditionalOperator>(this);
2688 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2689 }
2690
2691 case MemberExprClass:
2692 WarnE = this;
2693 Loc = cast<MemberExpr>(this)->getMemberLoc();
2694 R1 = SourceRange(Loc, Loc);
2695 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2696 return true;
2697
2698 case ArraySubscriptExprClass:
2699 WarnE = this;
2700 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2701 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2702 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2703 return true;
2704
2705 case CXXOperatorCallExprClass: {
2706 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2707 // overloads as there is no reasonable way to define these such that they
2708 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2709 // warning: operators == and != are commonly typo'ed, and so warning on them
2710 // provides additional value as well. If this list is updated,
2711 // DiagnoseUnusedComparison should be as well.
2712 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2713 switch (Op->getOperator()) {
2714 default:
2715 break;
2716 case OO_EqualEqual:
2717 case OO_ExclaimEqual:
2718 case OO_Less:
2719 case OO_Greater:
2720 case OO_GreaterEqual:
2721 case OO_LessEqual:
2722 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2723 Op->getCallReturnType(Ctx)->isVoidType())
2724 break;
2725 WarnE = this;
2726 Loc = Op->getOperatorLoc();
2727 R1 = Op->getSourceRange();
2728 return true;
2729 }
2730
2731 // Fallthrough for generic call handling.
2732 [[fallthrough]];
2733 }
2734 case CallExprClass:
2735 case CXXMemberCallExprClass:
2736 case UserDefinedLiteralClass: {
2737 // If this is a direct call, get the callee.
2738 const CallExpr *CE = cast<CallExpr>(this);
2739 if (const Decl *FD = CE->getCalleeDecl()) {
2740 // If the callee has attribute pure, const, or warn_unused_result, warn
2741 // about it. void foo() { strlen("bar"); } should warn.
2742 //
2743 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2744 // updated to match for QoI.
2745 if (CE->hasUnusedResultAttr(Ctx) ||
2746 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2747 WarnE = this;
2748 Loc = CE->getCallee()->getBeginLoc();
2749 R1 = CE->getCallee()->getSourceRange();
2750
2751 if (unsigned NumArgs = CE->getNumArgs())
2752 R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2753 CE->getArg(NumArgs - 1)->getEndLoc());
2754 return true;
2755 }
2756 }
2757 return false;
2758 }
2759
2760 // If we don't know precisely what we're looking at, let's not warn.
2761 case UnresolvedLookupExprClass:
2762 case CXXUnresolvedConstructExprClass:
2763 case RecoveryExprClass:
2764 return false;
2765
2766 case CXXTemporaryObjectExprClass:
2767 case CXXConstructExprClass: {
2768 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2769 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2770 if (Type->hasAttr<WarnUnusedAttr>() ||
2771 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2772 WarnE = this;
2773 Loc = getBeginLoc();
2774 R1 = getSourceRange();
2775 return true;
2776 }
2777 }
2778
2779 const auto *CE = cast<CXXConstructExpr>(this);
2780 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2781 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2782 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2783 WarnE = this;
2784 Loc = getBeginLoc();
2785 R1 = getSourceRange();
2786
2787 if (unsigned NumArgs = CE->getNumArgs())
2788 R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2789 CE->getArg(NumArgs - 1)->getEndLoc());
2790 return true;
2791 }
2792 }
2793
2794 return false;
2795 }
2796
2797 case ObjCMessageExprClass: {
2798 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2799 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2800 ME->isInstanceMessage() &&
2801 !ME->getType()->isVoidType() &&
2802 ME->getMethodFamily() == OMF_init) {
2803 WarnE = this;
2804 Loc = getExprLoc();
2805 R1 = ME->getSourceRange();
2806 return true;
2807 }
2808
2809 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2810 if (MD->hasAttr<WarnUnusedResultAttr>()) {
2811 WarnE = this;
2812 Loc = getExprLoc();
2813 return true;
2814 }
2815
2816 return false;
2817 }
2818
2819 case ObjCPropertyRefExprClass:
2820 case ObjCSubscriptRefExprClass:
2821 WarnE = this;
2822 Loc = getExprLoc();
2823 R1 = getSourceRange();
2824 return true;
2825
2826 case PseudoObjectExprClass: {
2827 const auto *POE = cast<PseudoObjectExpr>(this);
2828
2829 // For some syntactic forms, we should always warn.
2830 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2831 POE->getSyntacticForm())) {
2832 WarnE = this;
2833 Loc = getExprLoc();
2834 R1 = getSourceRange();
2835 return true;
2836 }
2837
2838 // For others, we should never warn.
2839 if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2840 if (BO->isAssignmentOp())
2841 return false;
2842 if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2843 if (UO->isIncrementDecrementOp())
2844 return false;
2845
2846 // Otherwise, warn if the result expression would warn.
2847 const Expr *Result = POE->getResultExpr();
2848 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2849 }
2850
2851 case StmtExprClass: {
2852 // Statement exprs don't logically have side effects themselves, but are
2853 // sometimes used in macros in ways that give them a type that is unused.
2854 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2855 // however, if the result of the stmt expr is dead, we don't want to emit a
2856 // warning.
2857 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2858 if (!CS->body_empty()) {
2859 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2860 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2861 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2862 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2863 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2864 }
2865
2866 if (getType()->isVoidType())
2867 return false;
2868 WarnE = this;
2869 Loc = cast<StmtExpr>(this)->getLParenLoc();
2870 R1 = getSourceRange();
2871 return true;
2872 }
2873 case CXXFunctionalCastExprClass:
2874 case CStyleCastExprClass: {
2875 // Ignore an explicit cast to void, except in C++98 if the operand is a
2876 // volatile glvalue for which we would trigger an implicit read in any
2877 // other language mode. (Such an implicit read always happens as part of
2878 // the lvalue conversion in C, and happens in C++ for expressions of all
2879 // forms where it seems likely the user intended to trigger a volatile
2880 // load.)
2881 const CastExpr *CE = cast<CastExpr>(this);
2882 const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2883 if (CE->getCastKind() == CK_ToVoid) {
2884 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2885 SubE->isReadIfDiscardedInCPlusPlus11()) {
2886 // Suppress the "unused value" warning for idiomatic usage of
2887 // '(void)var;' used to suppress "unused variable" warnings.
2888 if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2889 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2890 if (!VD->isExternallyVisible())
2891 return false;
2892
2893 // The lvalue-to-rvalue conversion would have no effect for an array.
2894 // It's implausible that the programmer expected this to result in a
2895 // volatile array load, so don't warn.
2896 if (SubE->getType()->isArrayType())
2897 return false;
2898
2899 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2900 }
2901 return false;
2902 }
2903
2904 // If this is a cast to a constructor conversion, check the operand.
2905 // Otherwise, the result of the cast is unused.
2906 if (CE->getCastKind() == CK_ConstructorConversion)
2907 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2908 if (CE->getCastKind() == CK_Dependent)
2909 return false;
2910
2911 WarnE = this;
2912 if (const CXXFunctionalCastExpr *CXXCE =
2913 dyn_cast<CXXFunctionalCastExpr>(this)) {
2914 Loc = CXXCE->getBeginLoc();
2915 R1 = CXXCE->getSubExpr()->getSourceRange();
2916 } else {
2917 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2918 Loc = CStyleCE->getLParenLoc();
2919 R1 = CStyleCE->getSubExpr()->getSourceRange();
2920 }
2921 return true;
2922 }
2923 case ImplicitCastExprClass: {
2924 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2925
2926 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2927 if (ICE->getCastKind() == CK_LValueToRValue &&
2928 ICE->getSubExpr()->getType().isVolatileQualified())
2929 return false;
2930
2931 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2932 }
2933 case CXXDefaultArgExprClass:
2934 return (cast<CXXDefaultArgExpr>(this)
2935 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2936 case CXXDefaultInitExprClass:
2937 return (cast<CXXDefaultInitExpr>(this)
2938 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2939
2940 case CXXNewExprClass:
2941 // FIXME: In theory, there might be new expressions that don't have side
2942 // effects (e.g. a placement new with an uninitialized POD).
2943 case CXXDeleteExprClass:
2944 return false;
2945 case MaterializeTemporaryExprClass:
2946 return cast<MaterializeTemporaryExpr>(this)
2947 ->getSubExpr()
2948 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2949 case CXXBindTemporaryExprClass:
2950 return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2951 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2952 case ExprWithCleanupsClass:
2953 return cast<ExprWithCleanups>(this)->getSubExpr()
2954 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2955 }
2956}
2957
2958/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2959/// returns true, if it is; false otherwise.
2960bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2961 const Expr *E = IgnoreParens();
2962 switch (E->getStmtClass()) {
2963 default:
2964 return false;
2965 case ObjCIvarRefExprClass:
2966 return true;
2967 case Expr::UnaryOperatorClass:
2968 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2969 case ImplicitCastExprClass:
2970 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2971 case MaterializeTemporaryExprClass:
2972 return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2973 Ctx);
2974 case CStyleCastExprClass:
2975 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2976 case DeclRefExprClass: {
2977 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2978
2979 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2980 if (VD->hasGlobalStorage())
2981 return true;
2982 QualType T = VD->getType();
2983 // dereferencing to a pointer is always a gc'able candidate,
2984 // unless it is __weak.
2985 return T->isPointerType() &&
2986 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2987 }
2988 return false;
2989 }
2990 case MemberExprClass: {
2991 const MemberExpr *M = cast<MemberExpr>(E);
2992 return M->getBase()->isOBJCGCCandidate(Ctx);
2993 }
2994 case ArraySubscriptExprClass:
2995 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2996 }
2997}
2998
2999bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
3000 if (isTypeDependent())
3001 return false;
3002 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
3003}
3004
3005QualType Expr::findBoundMemberType(const Expr *expr) {
3006 assert(expr->hasPlaceholderType(BuiltinType::BoundMember))(static_cast <bool> (expr->hasPlaceholderType(BuiltinType
::BoundMember)) ? void (0) : __assert_fail ("expr->hasPlaceholderType(BuiltinType::BoundMember)"
, "clang/lib/AST/Expr.cpp", 3006, __extension__ __PRETTY_FUNCTION__
))
;
3007
3008 // Bound member expressions are always one of these possibilities:
3009 // x->m x.m x->*y x.*y
3010 // (possibly parenthesized)
3011
3012 expr = expr->IgnoreParens();
3013 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
3014 assert(isa<CXXMethodDecl>(mem->getMemberDecl()))(static_cast <bool> (isa<CXXMethodDecl>(mem->getMemberDecl
())) ? void (0) : __assert_fail ("isa<CXXMethodDecl>(mem->getMemberDecl())"
, "clang/lib/AST/Expr.cpp", 3014, __extension__ __PRETTY_FUNCTION__
))
;
3015 return mem->getMemberDecl()->getType();
3016 }
3017
3018 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3019 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3020 ->getPointeeType();
3021 assert(type->isFunctionType())(static_cast <bool> (type->isFunctionType()) ? void (
0) : __assert_fail ("type->isFunctionType()", "clang/lib/AST/Expr.cpp"
, 3021, __extension__ __PRETTY_FUNCTION__))
;
3022 return type;
3023 }
3024
3025 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr))(static_cast <bool> (isa<UnresolvedMemberExpr>(expr
) || isa<CXXPseudoDestructorExpr>(expr)) ? void (0) : __assert_fail
("isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)"
, "clang/lib/AST/Expr.cpp", 3025, __extension__ __PRETTY_FUNCTION__
))
;
3026 return QualType();
3027}
3028
3029Expr *Expr::IgnoreImpCasts() {
3030 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
3031}
3032
3033Expr *Expr::IgnoreCasts() {
3034 return IgnoreExprNodes(this, IgnoreCastsSingleStep);
3035}
3036
3037Expr *Expr::IgnoreImplicit() {
3038 return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
3039}
3040
3041Expr *Expr::IgnoreImplicitAsWritten() {
3042 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
3043}
3044
3045Expr *Expr::IgnoreParens() {
3046 return IgnoreExprNodes(this, IgnoreParensSingleStep);
3047}
3048
3049Expr *Expr::IgnoreParenImpCasts() {
3050 return IgnoreExprNodes(this, IgnoreParensSingleStep,
3051 IgnoreImplicitCastsExtraSingleStep);
3052}
3053
3054Expr *Expr::IgnoreParenCasts() {
3055 return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
3056}
3057
3058Expr *Expr::IgnoreConversionOperatorSingleStep() {
3059 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3060 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
3061 return MCE->getImplicitObjectArgument();
3062 }
3063 return this;
3064}
3065
3066Expr *Expr::IgnoreParenLValueCasts() {
3067 return IgnoreExprNodes(this, IgnoreParensSingleStep,
3068 IgnoreLValueCastsSingleStep);
3069}
3070
3071Expr *Expr::IgnoreParenBaseCasts() {
3072 return IgnoreExprNodes(this, IgnoreParensSingleStep,
3073 IgnoreBaseCastsSingleStep);
3074}
3075
3076Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3077 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3078 if (auto *CE = dyn_cast<CastExpr>(E)) {
3079 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3080 // ptr<->int casts of the same width. We also ignore all identity casts.
3081 Expr *SubExpr = CE->getSubExpr();
3082 bool IsIdentityCast =
3083 Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3084 bool IsSameWidthCast = (E->getType()->isPointerType() ||
3085 E->getType()->isIntegralType(Ctx)) &&
3086 (SubExpr->getType()->isPointerType() ||
3087 SubExpr->getType()->isIntegralType(Ctx)) &&
3088 (Ctx.getTypeSize(E->getType()) ==
3089 Ctx.getTypeSize(SubExpr->getType()));
3090
3091 if (IsIdentityCast || IsSameWidthCast)
3092 return SubExpr;
3093 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3094 return NTTP->getReplacement();
3095
3096 return E;
3097 };
3098 return IgnoreExprNodes(this, IgnoreParensSingleStep,
3099 IgnoreNoopCastsSingleStep);
3100}
3101
3102Expr *Expr::IgnoreUnlessSpelledInSource() {
3103 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3104 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3105 auto *SE = Cast->getSubExpr();
3106 if (SE->getSourceRange() == E->getSourceRange())
3107 return SE;
3108 }
3109
3110 if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3111 auto NumArgs = C->getNumArgs();
3112 if (NumArgs == 1 ||
3113 (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3114 Expr *A = C->getArg(0);
3115 if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3116 return A;
3117 }
3118 }
3119 return E;
3120 };
3121 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3122 if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3123 Expr *ExprNode = C->getImplicitObjectArgument();
3124 if (ExprNode->getSourceRange() == E->getSourceRange()) {
3125 return ExprNode;
3126 }
3127 if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3128 if (PE->getSourceRange() == C->getSourceRange()) {
3129 return cast<Expr>(PE);
3130 }
3131 }
3132 ExprNode = ExprNode->IgnoreParenImpCasts();
3133 if (ExprNode->getSourceRange() == E->getSourceRange())
3134 return ExprNode;
3135 }
3136 return E;
3137 };
3138 return IgnoreExprNodes(
3139 this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3140 IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3141 IgnoreImplicitMemberCallSingleStep);
3142}
3143
3144bool Expr::isDefaultArgument() const {
3145 const Expr *E = this;
3146 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3147 E = M->getSubExpr();
3148
3149 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3150 E = ICE->getSubExprAsWritten();
3151
3152 return isa<CXXDefaultArgExpr>(E);
3153}
3154
3155/// Skip over any no-op casts and any temporary-binding
3156/// expressions.
3157static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3158 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3159 E = M->getSubExpr();
3160
3161 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3162 if (ICE->getCastKind() == CK_NoOp)
3163 E = ICE->getSubExpr();
3164 else
3165 break;
3166 }
3167
3168 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3169 E = BE->getSubExpr();
3170
3171 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3172 if (ICE->getCastKind() == CK_NoOp)
3173 E = ICE->getSubExpr();
3174 else
3175 break;
3176 }
3177
3178 return E->IgnoreParens();
3179}
3180
3181/// isTemporaryObject - Determines if this expression produces a
3182/// temporary of the given class type.
3183bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3184 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3185 return false;
3186
3187 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3188
3189 // Temporaries are by definition pr-values of class type.
3190 if (!E->Classify(C).isPRValue()) {
3191 // In this context, property reference is a message call and is pr-value.
3192 if (!isa<ObjCPropertyRefExpr>(E))
3193 return false;
3194 }
3195
3196 // Black-list a few cases which yield pr-values of class type that don't
3197 // refer to temporaries of that type:
3198
3199 // - implicit derived-to-base conversions
3200 if (isa<ImplicitCastExpr>(E)) {
3201 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3202 case CK_DerivedToBase:
3203 case CK_UncheckedDerivedToBase:
3204 return false;
3205 default:
3206 break;
3207 }
3208 }
3209
3210 // - member expressions (all)
3211 if (isa<MemberExpr>(E))
3212 return false;
3213
3214 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3215 if (BO->isPtrMemOp())
3216 return false;
3217
3218 // - opaque values (all)
3219 if (isa<OpaqueValueExpr>(E))
3220 return false;
3221
3222 return true;
3223}
3224
3225bool Expr::isImplicitCXXThis() const {
3226 const Expr *E = this;
3227
3228 // Strip away parentheses and casts we don't care about.
3229 while (true) {
3230 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3231 E = Paren->getSubExpr();
3232 continue;
3233 }
3234
3235 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3236 if (ICE->getCastKind() == CK_NoOp ||
3237 ICE->getCastKind() == CK_LValueToRValue ||
3238 ICE->getCastKind() == CK_DerivedToBase ||
3239 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3240 E = ICE->getSubExpr();
3241 continue;
3242 }
3243 }
3244
3245 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3246 if (UnOp->getOpcode() == UO_Extension) {
3247 E = UnOp->getSubExpr();
3248 continue;
3249 }
3250 }
3251
3252 if (const MaterializeTemporaryExpr *M
3253 = dyn_cast<MaterializeTemporaryExpr>(E)) {
3254 E = M->getSubExpr();
3255 continue;
3256 }
3257
3258 break;
3259 }
3260
3261 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3262 return This->isImplicit();
3263
3264 return false;
3265}
3266
3267/// hasAnyTypeDependentArguments - Determines if any of the expressions
3268/// in Exprs is type-dependent.
3269bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3270 for (unsigned I = 0; I < Exprs.size(); ++I)
3271 if (Exprs[I]->isTypeDependent())
3272 return true;
3273
3274 return false;
3275}
3276
3277bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3278 const Expr **Culprit) const {
3279 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/Expr.cpp", 3280, __extension__ __PRETTY_FUNCTION__
))
3280 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/Expr.cpp", 3280, __extension__ __PRETTY_FUNCTION__
))
;
3281
3282 // This function is attempting whether an expression is an initializer
3283 // which can be evaluated at compile-time. It very closely parallels
3284 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3285 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3286 // to isEvaluatable most of the time.
3287 //
3288 // If we ever capture reference-binding directly in the AST, we can
3289 // kill the second parameter.
3290
3291 if (IsForRef) {
3292 EvalResult Result;
3293 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3294 return true;
3295 if (Culprit)
3296 *Culprit = this;
3297 return false;
3298 }
3299
3300 switch (getStmtClass()) {
3301 default: break;
3302 case Stmt::ExprWithCleanupsClass:
3303 return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3304 Ctx, IsForRef, Culprit);
3305 case StringLiteralClass:
3306 case ObjCEncodeExprClass:
3307 return true;
3308 case CXXTemporaryObjectExprClass:
3309 case CXXConstructExprClass: {
3310 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3311
3312 if (CE->getConstructor()->isTrivial() &&
3313 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3314 // Trivial default constructor
3315 if (!CE->getNumArgs()) return true;
3316
3317 // Trivial copy constructor
3318 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument")(static_cast <bool> (CE->getNumArgs() == 1 &&
"trivial ctor with > 1 argument") ? void (0) : __assert_fail
("CE->getNumArgs() == 1 && \"trivial ctor with > 1 argument\""
, "clang/lib/AST/Expr.cpp", 3318, __extension__ __PRETTY_FUNCTION__
))
;
3319 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3320 }
3321
3322 break;
3323 }
3324 case ConstantExprClass: {
3325 // FIXME: We should be able to return "true" here, but it can lead to extra
3326 // error messages. E.g. in Sema/array-init.c.
3327 const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3328 return Exp->isConstantInitializer(Ctx, false, Culprit);
3329 }
3330 case CompoundLiteralExprClass: {
3331 // This handles gcc's extension that allows global initializers like
3332 // "struct x {int x;} x = (struct x) {};".
3333 // FIXME: This accepts other cases it shouldn't!
3334 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3335 return Exp->isConstantInitializer(Ctx, false, Culprit);
3336 }
3337 case DesignatedInitUpdateExprClass: {
3338 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3339 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3340 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3341 }
3342 case InitListExprClass: {
3343 const InitListExpr *ILE = cast<InitListExpr>(this);
3344 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form")(static_cast <bool> (ILE->isSemanticForm() &&
"InitListExpr must be in semantic form") ? void (0) : __assert_fail
("ILE->isSemanticForm() && \"InitListExpr must be in semantic form\""
, "clang/lib/AST/Expr.cpp", 3344, __extension__ __PRETTY_FUNCTION__
))
;
3345 if (ILE->getType()->isArrayType()) {
3346 unsigned numInits = ILE->getNumInits();
3347 for (unsigned i = 0; i < numInits; i++) {
3348 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3349 return false;
3350 }
3351 return true;
3352 }
3353
3354 if (ILE->getType()->isRecordType()) {
3355 unsigned ElementNo = 0;
3356 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3357 for (const auto *Field : RD->fields()) {
3358 // If this is a union, skip all the fields that aren't being initialized.
3359 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3360 continue;
3361
3362 // Don't emit anonymous bitfields, they just affect layout.
3363 if (Field->isUnnamedBitfield())
3364 continue;
3365
3366 if (ElementNo < ILE->getNumInits()) {
3367 const Expr *Elt = ILE->getInit(ElementNo++);
3368 if (Field->isBitField()) {
3369 // Bitfields have to evaluate to an integer.
3370 EvalResult Result;
3371 if (!Elt->EvaluateAsInt(Result, Ctx)) {
3372 if (Culprit)
3373 *Culprit = Elt;
3374 return false;
3375 }
3376 } else {
3377 bool RefType = Field->getType()->isReferenceType();
3378 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3379 return false;
3380 }
3381 }
3382 }
3383 return true;
3384 }
3385
3386 break;
3387 }
3388 case ImplicitValueInitExprClass:
3389 case NoInitExprClass:
3390 return true;
3391 case ParenExprClass:
3392 return cast<ParenExpr>(this)->getSubExpr()
3393 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3394 case GenericSelectionExprClass:
3395 return cast<GenericSelectionExpr>(this)->getResultExpr()
3396 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3397 case ChooseExprClass:
3398 if (cast<ChooseExpr>(this)->isConditionDependent()) {
3399 if (Culprit)
3400 *Culprit = this;
3401 return false;
3402 }
3403 return cast<ChooseExpr>(this)->getChosenSubExpr()
3404 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3405 case UnaryOperatorClass: {
3406 const UnaryOperator* Exp = cast<UnaryOperator>(this);
3407 if (Exp->getOpcode() == UO_Extension)
3408 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3409 break;
3410 }
3411 case CXXFunctionalCastExprClass:
3412 case CXXStaticCastExprClass:
3413 case ImplicitCastExprClass:
3414 case CStyleCastExprClass:
3415 case ObjCBridgedCastExprClass:
3416 case CXXDynamicCastExprClass:
3417 case CXXReinterpretCastExprClass:
3418 case CXXAddrspaceCastExprClass:
3419 case CXXConstCastExprClass: {
3420 const CastExpr *CE = cast<CastExpr>(this);
3421
3422 // Handle misc casts we want to ignore.
3423 if (CE->getCastKind() == CK_NoOp ||
3424 CE->getCastKind() == CK_LValueToRValue ||
3425 CE->getCastKind() == CK_ToUnion ||
3426 CE->getCastKind() == CK_ConstructorConversion ||
3427 CE->getCastKind() == CK_NonAtomicToAtomic ||
3428 CE->getCastKind() == CK_AtomicToNonAtomic ||
3429 CE->getCastKind() == CK_NullToPointer ||
3430 CE->getCastKind() == CK_IntToOCLSampler)
3431 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3432
3433 break;
3434 }
3435 case MaterializeTemporaryExprClass:
3436 return cast<MaterializeTemporaryExpr>(this)
3437 ->getSubExpr()
3438 ->isConstantInitializer(Ctx, false, Culprit);
3439
3440 case SubstNonTypeTemplateParmExprClass:
3441 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3442 ->isConstantInitializer(Ctx, false, Culprit);
3443 case CXXDefaultArgExprClass:
3444 return cast<CXXDefaultArgExpr>(this)->getExpr()
3445 ->isConstantInitializer(Ctx, false, Culprit);
3446 case CXXDefaultInitExprClass:
3447 return cast<CXXDefaultInitExpr>(this)->getExpr()
3448 ->isConstantInitializer(Ctx, false, Culprit);
3449 }
3450 // Allow certain forms of UB in constant initializers: signed integer
3451 // overflow and floating-point division by zero. We'll give a warning on
3452 // these, but they're common enough that we have to accept them.
3453 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3454 return true;
3455 if (Culprit)
3456 *Culprit = this;
3457 return false;
3458}
3459
3460bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3461 unsigned BuiltinID = getBuiltinCallee();
3462 if (BuiltinID != Builtin::BI__assume &&
3463 BuiltinID != Builtin::BI__builtin_assume)
3464 return false;
3465
3466 const Expr* Arg = getArg(0);
3467 bool ArgVal;
3468 return !Arg->isValueDependent() &&
3469 Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3470}
3471
3472bool CallExpr::isCallToStdMove() const {
3473 return getBuiltinCallee() == Builtin::BImove;
3474}
3475
3476namespace {
3477 /// Look for any side effects within a Stmt.
3478 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3479 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3480 const bool IncludePossibleEffects;
3481 bool HasSideEffects;
3482
3483 public:
3484 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3485 : Inherited(Context),
3486 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3487
3488 bool hasSideEffects() const { return HasSideEffects; }
3489
3490 void VisitDecl(const Decl *D) {
3491 if (!D)
3492 return;
3493
3494 // We assume the caller checks subexpressions (eg, the initializer, VLA
3495 // bounds) for side-effects on our behalf.
3496 if (auto *VD = dyn_cast<VarDecl>(D)) {
3497 // Registering a destructor is a side-effect.
3498 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3499 VD->needsDestruction(Context))
3500 HasSideEffects = true;
3501 }
3502 }
3503
3504 void VisitDeclStmt(const DeclStmt *DS) {
3505 for (auto *D : DS->decls())
3506 VisitDecl(D);
3507 Inherited::VisitDeclStmt(DS);
3508 }
3509
3510 void VisitExpr(const Expr *E) {
3511 if (!HasSideEffects &&
3512 E->HasSideEffects(Context, IncludePossibleEffects))
3513 HasSideEffects = true;
3514 }
3515 };
3516}
3517
3518bool Expr::HasSideEffects(const ASTContext &Ctx,
3519 bool IncludePossibleEffects) const {
3520 // In circumstances where we care about definite side effects instead of
3521 // potential side effects, we want to ignore expressions that are part of a
3522 // macro expansion as a potential side effect.
3523 if (!IncludePossibleEffects && getExprLoc().isMacroID())
3524 return false;
3525
3526 switch (getStmtClass()) {
3527 case NoStmtClass:
3528 #define ABSTRACT_STMT(Type)
3529 #define STMT(Type, Base) case Type##Class:
3530 #define EXPR(Type, Base)
3531 #include "clang/AST/StmtNodes.inc"
3532 llvm_unreachable("unexpected Expr kind")::llvm::llvm_unreachable_internal("unexpected Expr kind", "clang/lib/AST/Expr.cpp"
, 3532)
;
3533
3534 case DependentScopeDeclRefExprClass:
3535 case CXXUnresolvedConstructExprClass:
3536 case CXXDependentScopeMemberExprClass:
3537 case UnresolvedLookupExprClass:
3538 case UnresolvedMemberExprClass:
3539 case PackExpansionExprClass:
3540 case SubstNonTypeTemplateParmPackExprClass:
3541 case FunctionParmPackExprClass:
3542 case TypoExprClass:
3543 case RecoveryExprClass:
3544 case CXXFoldExprClass:
3545 // Make a conservative assumption for dependent nodes.
3546 return IncludePossibleEffects;
3547
3548 case DeclRefExprClass:
3549 case ObjCIvarRefExprClass:
3550 case PredefinedExprClass:
3551 case IntegerLiteralClass:
3552 case FixedPointLiteralClass:
3553 case FloatingLiteralClass:
3554 case ImaginaryLiteralClass:
3555 case StringLiteralClass:
3556 case CharacterLiteralClass:
3557 case OffsetOfExprClass:
3558 case ImplicitValueInitExprClass:
3559 case UnaryExprOrTypeTraitExprClass:
3560 case AddrLabelExprClass:
3561 case GNUNullExprClass:
3562 case ArrayInitIndexExprClass:
3563 case NoInitExprClass:
3564 case CXXBoolLiteralExprClass:
3565 case CXXNullPtrLiteralExprClass:
3566 case CXXThisExprClass:
3567 case CXXScalarValueInitExprClass:
3568 case TypeTraitExprClass:
3569 case ArrayTypeTraitExprClass:
3570 case ExpressionTraitExprClass:
3571 case CXXNoexceptExprClass:
3572 case SizeOfPackExprClass:
3573 case ObjCStringLiteralClass:
3574 case ObjCEncodeExprClass:
3575 case ObjCBoolLiteralExprClass:
3576 case ObjCAvailabilityCheckExprClass:
3577 case CXXUuidofExprClass:
3578 case OpaqueValueExprClass:
3579 case SourceLocExprClass:
3580 case ConceptSpecializationExprClass:
3581 case RequiresExprClass:
3582 case SYCLUniqueStableNameExprClass:
3583 // These never have a side-effect.
3584 return false;
3585
3586 case ConstantExprClass:
3587 // FIXME: Move this into the "return false;" block above.
3588 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3589 Ctx, IncludePossibleEffects);
3590
3591 case CallExprClass:
3592 case CXXOperatorCallExprClass:
3593 case CXXMemberCallExprClass:
3594 case CUDAKernelCallExprClass:
3595 case UserDefinedLiteralClass: {
3596 // We don't know a call definitely has side effects, except for calls
3597 // to pure/const functions that definitely don't.
3598 // If the call itself is considered side-effect free, check the operands.
3599 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3600 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3601 if (IsPure || !IncludePossibleEffects)
3602 break;
3603 return true;
3604 }
3605
3606 case BlockExprClass:
3607 case CXXBindTemporaryExprClass:
3608 if (!IncludePossibleEffects)
3609 break;
3610 return true;
3611
3612 case MSPropertyRefExprClass:
3613 case MSPropertySubscriptExprClass:
3614 case CompoundAssignOperatorClass:
3615 case VAArgExprClass:
3616 case AtomicExprClass:
3617 case CXXThrowExprClass:
3618 case CXXNewExprClass:
3619 case CXXDeleteExprClass:
3620 case CoawaitExprClass:
3621 case DependentCoawaitExprClass:
3622 case CoyieldExprClass:
3623 // These always have a side-effect.
3624 return true;
3625
3626 case StmtExprClass: {
3627 // StmtExprs have a side-effect if any substatement does.
3628 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3629 Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3630 return Finder.hasSideEffects();
3631 }
3632
3633 case ExprWithCleanupsClass:
3634 if (IncludePossibleEffects)
3635 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3636 return true;
3637 break;
3638
3639 case ParenExprClass:
3640 case ArraySubscriptExprClass:
3641 case MatrixSubscriptExprClass:
3642 case OMPArraySectionExprClass:
3643 case OMPArrayShapingExprClass:
3644 case OMPIteratorExprClass:
3645 case MemberExprClass:
3646 case ConditionalOperatorClass:
3647 case BinaryConditionalOperatorClass:
3648 case CompoundLiteralExprClass:
3649 case ExtVectorElementExprClass:
3650 case DesignatedInitExprClass:
3651 case DesignatedInitUpdateExprClass:
3652 case ArrayInitLoopExprClass:
3653 case ParenListExprClass:
3654 case CXXPseudoDestructorExprClass:
3655 case CXXRewrittenBinaryOperatorClass:
3656 case CXXStdInitializerListExprClass:
3657 case SubstNonTypeTemplateParmExprClass:
3658 case MaterializeTemporaryExprClass:
3659 case ShuffleVectorExprClass:
3660 case ConvertVectorExprClass:
3661 case AsTypeExprClass:
3662 case CXXParenListInitExprClass:
3663 // These have a side-effect if any subexpression does.
3664 break;
3665
3666 case UnaryOperatorClass:
3667 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3668 return true;
3669 break;
3670
3671 case BinaryOperatorClass:
3672 if (cast<BinaryOperator>(this)->isAssignmentOp())
3673 return true;
3674 break;
3675
3676 case InitListExprClass:
3677 // FIXME: The children for an InitListExpr doesn't include the array filler.
3678 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3679 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3680 return true;
3681 break;
3682
3683 case GenericSelectionExprClass:
3684 return cast<GenericSelectionExpr>(this)->getResultExpr()->
3685 HasSideEffects(Ctx, IncludePossibleEffects);
3686
3687 case ChooseExprClass:
3688 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3689 Ctx, IncludePossibleEffects);
3690
3691 case CXXDefaultArgExprClass:
3692 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3693 Ctx, IncludePossibleEffects);
3694
3695 case CXXDefaultInitExprClass: {
3696 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3697 if (const Expr *E = FD->getInClassInitializer())
3698 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3699 // If we've not yet parsed the initializer, assume it has side-effects.
3700 return true;
3701 }
3702
3703 case CXXDynamicCastExprClass: {
3704 // A dynamic_cast expression has side-effects if it can throw.
3705 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3706 if (DCE->getTypeAsWritten()->isReferenceType() &&
3707 DCE->getCastKind() == CK_Dynamic)
3708 return true;
3709 }
3710 [[fallthrough]];
3711 case ImplicitCastExprClass:
3712 case CStyleCastExprClass:
3713 case CXXStaticCastExprClass:
3714 case CXXReinterpretCastExprClass:
3715 case CXXConstCastExprClass:
3716 case CXXAddrspaceCastExprClass:
3717 case CXXFunctionalCastExprClass:
3718 case BuiltinBitCastExprClass: {
3719 // While volatile reads are side-effecting in both C and C++, we treat them
3720 // as having possible (not definite) side-effects. This allows idiomatic
3721 // code to behave without warning, such as sizeof(*v) for a volatile-
3722 // qualified pointer.
3723 if (!IncludePossibleEffects)
3724 break;
3725
3726 const CastExpr *CE = cast<CastExpr>(this);
3727 if (CE->getCastKind() == CK_LValueToRValue &&
3728 CE->getSubExpr()->getType().isVolatileQualified())
3729 return true;
3730 break;
3731 }
3732
3733 case CXXTypeidExprClass:
3734 // typeid might throw if its subexpression is potentially-evaluated, so has
3735 // side-effects in that case whether or not its subexpression does.
3736 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3737
3738 case CXXConstructExprClass:
3739 case CXXTemporaryObjectExprClass: {
3740 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3741 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3742 return true;
3743 // A trivial constructor does not add any side-effects of its own. Just look
3744 // at its arguments.
3745 break;
3746 }
3747
3748 case CXXInheritedCtorInitExprClass: {
3749 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3750 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3751 return true;
3752 break;
3753 }
3754
3755 case LambdaExprClass: {
3756 const LambdaExpr *LE = cast<LambdaExpr>(this);
3757 for (Expr *E : LE->capture_inits())
3758 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3759 return true;
3760 return false;
3761 }
3762
3763 case PseudoObjectExprClass: {
3764 // Only look for side-effects in the semantic form, and look past
3765 // OpaqueValueExpr bindings in that form.
3766 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3767 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3768 E = PO->semantics_end();
3769 I != E; ++I) {
3770 const Expr *Subexpr = *I;
3771 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3772 Subexpr = OVE->getSourceExpr();
3773 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3774 return true;
3775 }
3776 return false;
3777 }
3778
3779 case ObjCBoxedExprClass:
3780 case ObjCArrayLiteralClass:
3781 case ObjCDictionaryLiteralClass:
3782 case ObjCSelectorExprClass:
3783 case ObjCProtocolExprClass:
3784 case ObjCIsaExprClass:
3785 case ObjCIndirectCopyRestoreExprClass:
3786 case ObjCSubscriptRefExprClass:
3787 case ObjCBridgedCastExprClass:
3788 case ObjCMessageExprClass:
3789 case ObjCPropertyRefExprClass:
3790 // FIXME: Classify these cases better.
3791 if (IncludePossibleEffects)
3792 return true;
3793 break;
3794 }
3795
3796 // Recurse to children.
3797 for (const Stmt *SubStmt : children())
3798 if (SubStmt &&
3799 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3800 return true;
3801
3802 return false;
3803}
3804
3805FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3806 if (auto Call = dyn_cast<CallExpr>(this))
3807 return Call->getFPFeaturesInEffect(LO);
3808 if (auto UO = dyn_cast<UnaryOperator>(this))
3809 return UO->getFPFeaturesInEffect(LO);
3810 if (auto BO = dyn_cast<BinaryOperator>(this))
3811 return BO->getFPFeaturesInEffect(LO);
3812 if (auto Cast = dyn_cast<CastExpr>(this))
3813 return Cast->getFPFeaturesInEffect(LO);
3814 return FPOptions::defaultWithoutTrailingStorage(LO);
3815}
3816
3817namespace {
3818 /// Look for a call to a non-trivial function within an expression.
3819 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3820 {
3821 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3822
3823 bool NonTrivial;
3824
3825 public:
3826 explicit NonTrivialCallFinder(const ASTContext &Context)
3827 : Inherited(Context), NonTrivial(false) { }
3828
3829 bool hasNonTrivialCall() const { return NonTrivial; }
3830
3831 void VisitCallExpr(const CallExpr *E) {
3832 if (const CXXMethodDecl *Method
3833 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3834 if (Method->isTrivial()) {
3835 // Recurse to children of the call.
3836 Inherited::VisitStmt(E);
3837 return;
3838 }
3839 }
3840
3841 NonTrivial = true;
3842 }
3843
3844 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3845 if (E->getConstructor()->isTrivial()) {
3846 // Recurse to children of the call.
3847 Inherited::VisitStmt(E);
3848 return;
3849 }
3850
3851 NonTrivial = true;
3852 }
3853
3854 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3855 if (E->getTemporary()->getDestructor()->isTrivial()) {
3856 Inherited::VisitStmt(E);
3857 return;
3858 }
3859
3860 NonTrivial = true;
3861 }
3862 };
3863}
3864
3865bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3866 NonTrivialCallFinder Finder(Ctx);
3867 Finder.Visit(this);
3868 return Finder.hasNonTrivialCall();
3869}
3870
3871/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3872/// pointer constant or not, as well as the specific kind of constant detected.
3873/// Null pointer constants can be integer constant expressions with the
3874/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3875/// (a GNU extension).
3876Expr::NullPointerConstantKind
3877Expr::isNullPointerConstant(ASTContext &Ctx,
3878 NullPointerConstantValueDependence NPC) const {
3879 if (isValueDependent() &&
3880 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3881 // Error-dependent expr should never be a null pointer.
3882 if (containsErrors())
3883 return NPCK_NotNull;
3884 switch (NPC) {
3885 case NPC_NeverValueDependent:
3886 llvm_unreachable("Unexpected value dependent expression!")::llvm::llvm_unreachable_internal("Unexpected value dependent expression!"
, "clang/lib/AST/Expr.cpp", 3886)
;
3887 case NPC_ValueDependentIsNull:
3888 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3889 return NPCK_ZeroExpression;
3890 else
3891 return NPCK_NotNull;
3892
3893 case NPC_ValueDependentIsNotNull:
3894 return NPCK_NotNull;
3895 }
3896 }
3897
3898 // Strip off a cast to void*, if it exists. Except in C++.
3899 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3900 if (!Ctx.getLangOpts().CPlusPlus) {
3901 // Check that it is a cast to void*.
3902 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3903 QualType Pointee = PT->getPointeeType();
3904 Qualifiers Qs = Pointee.getQualifiers();
3905 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3906 // has non-default address space it is not treated as nullptr.
3907 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3908 // since it cannot be assigned to a pointer to constant address space.
3909 if (Ctx.getLangOpts().OpenCL &&
3910 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3911 Qs.removeAddressSpace();
3912
3913 if (Pointee->isVoidType() && Qs.empty() && // to void*
3914 CE->getSubExpr()->getType()->isIntegerType()) // from int
3915 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3916 }
3917 }
3918 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3919 // Ignore the ImplicitCastExpr type entirely.
3920 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3921 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3922 // Accept ((void*)0) as a null pointer constant, as many other
3923 // implementations do.
3924 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3925 } else if (const GenericSelectionExpr *GE =
3926 dyn_cast<GenericSelectionExpr>(this)) {
3927 if (GE->isResultDependent())
3928 return NPCK_NotNull;
3929 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3930 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3931 if (CE->isConditionDependent())
3932 return NPCK_NotNull;
3933 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3934 } else if (const CXXDefaultArgExpr *DefaultArg
3935 = dyn_cast<CXXDefaultArgExpr>(this)) {
3936 // See through default argument expressions.
3937 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3938 } else if (const CXXDefaultInitExpr *DefaultInit
3939 = dyn_cast<CXXDefaultInitExpr>(this)) {
3940 // See through default initializer expressions.
3941 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3942 } else if (isa<GNUNullExpr>(this)) {
3943 // The GNU __null extension is always a null pointer constant.
3944 return NPCK_GNUNull;
3945 } else if (const MaterializeTemporaryExpr *M
3946 = dyn_cast<MaterializeTemporaryExpr>(this)) {
3947 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3948 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3949 if (const Expr *Source = OVE->getSourceExpr())
3950 return Source->isNullPointerConstant(Ctx, NPC);
3951 }
3952
3953 // If the expression has no type information, it cannot be a null pointer
3954 // constant.
3955 if (getType().isNull())
3956 return NPCK_NotNull;
3957
3958 // C++11/C2x nullptr_t is always a null pointer constant.
3959 if (getType()->isNullPtrType())
3960 return NPCK_CXX11_nullptr;
3961
3962 if (const RecordType *UT = getType()->getAsUnionType())
3963 if (!Ctx.getLangOpts().CPlusPlus11 &&
3964 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3965 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3966 const Expr *InitExpr = CLE->getInitializer();
3967 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3968 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3969 }
3970 // This expression must be an integer type.
3971 if (!getType()->isIntegerType() ||
3972 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3973 return NPCK_NotNull;
3974
3975 if (Ctx.getLangOpts().CPlusPlus11) {
3976 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3977 // value zero or a prvalue of type std::nullptr_t.
3978 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3979 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3980 if (Lit && !Lit->getValue())
3981 return NPCK_ZeroLiteral;
3982 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3983 return NPCK_NotNull;
3984 } else {
3985 // If we have an integer constant expression, we need to *evaluate* it and
3986 // test for the value 0.
3987 if (!isIntegerConstantExpr(Ctx))
3988 return NPCK_NotNull;
3989 }
3990
3991 if (EvaluateKnownConstInt(Ctx) != 0)
3992 return NPCK_NotNull;
3993
3994 if (isa<IntegerLiteral>(this))
3995 return NPCK_ZeroLiteral;
3996 return NPCK_ZeroExpression;
3997}
3998
3999/// If this expression is an l-value for an Objective C
4000/// property, find the underlying property reference expression.
4001const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
4002 const Expr *E = this;
4003 while (true) {
4004 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&(static_cast <bool> ((E->isLValue() && E->
getObjectKind() == OK_ObjCProperty) && "expression is not a property reference"
) ? void (0) : __assert_fail ("(E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && \"expression is not a property reference\""
, "clang/lib/AST/Expr.cpp", 4005, __extension__ __PRETTY_FUNCTION__
))
4005 "expression is not a property reference")(static_cast <bool> ((E->isLValue() && E->
getObjectKind() == OK_ObjCProperty) && "expression is not a property reference"
) ? void (0) : __assert_fail ("(E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && \"expression is not a property reference\""
, "clang/lib/AST/Expr.cpp", 4005, __extension__ __PRETTY_FUNCTION__
))
;
4006 E = E->IgnoreParenCasts();
4007 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4008 if (BO->getOpcode() == BO_Comma) {
4009 E = BO->getRHS();
4010 continue;
4011 }
4012 }
4013
4014 break;
4015 }
4016
4017 return cast<ObjCPropertyRefExpr>(E);
4018}
4019
4020bool Expr::isObjCSelfExpr() const {
4021 const Expr *E = IgnoreParenImpCasts();
4022
4023 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4024 if (!DRE)
4025 return false;
4026
4027 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4028 if (!Param)
4029 return false;
4030
4031 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4032 if (!M)
4033 return false;
4034
4035 return M->getSelfDecl() == Param;
4036}
4037
4038FieldDecl *Expr::getSourceBitField() {
4039 Expr *E = this->IgnoreParens();
4040
4041 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4042 if (ICE->getCastKind() == CK_LValueToRValue ||
4043 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4044 E = ICE->getSubExpr()->IgnoreParens();
4045 else
4046 break;
4047 }
4048
4049 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4050 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4051 if (Field->isBitField())
4052 return Field;
4053
4054 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4055 FieldDecl *Ivar = IvarRef->getDecl();
4056 if (Ivar->isBitField())
4057 return Ivar;
4058 }
4059
4060 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4061 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4062 if (Field->isBitField())
4063 return Field;
4064
4065 if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4066 if (Expr *E = BD->getBinding())
4067 return E->getSourceBitField();
4068 }
4069
4070 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4071 if (BinOp->isAssignmentOp() && BinOp->getLHS())
4072 return BinOp->getLHS()->getSourceBitField();
4073
4074 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4075 return BinOp->getRHS()->getSourceBitField();
4076 }
4077
4078 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4079 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4080 return UnOp->getSubExpr()->getSourceBitField();
4081
4082 return nullptr;
4083}
4084
4085bool Expr::refersToVectorElement() const {
4086 // FIXME: Why do we not just look at the ObjectKind here?
4087 const Expr *E = this->IgnoreParens();
4088
4089 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4090 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4091 E = ICE->getSubExpr()->IgnoreParens();
4092 else
4093 break;
4094 }
4095
4096 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4097 return ASE->getBase()->getType()->isVectorType();
4098
4099 if (isa<ExtVectorElementExpr>(E))
4100 return true;
4101
4102 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4103 if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4104 if (auto *E = BD->getBinding())
4105 return E->refersToVectorElement();
4106
4107 return false;
4108}
4109
4110bool Expr::refersToGlobalRegisterVar() const {
4111 const Expr *E = this->IgnoreParenImpCasts();
4112
4113 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4114 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4115 if (VD->getStorageClass() == SC_Register &&
4116 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4117 return true;
4118
4119 return false;
4120}
4121
4122bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4123 E1 = E1->IgnoreParens();
4124 E2 = E2->IgnoreParens();
4125
4126 if (E1->getStmtClass() != E2->getStmtClass())
4127 return false;
4128
4129 switch (E1->getStmtClass()) {
4130 default:
4131 return false;
4132 case CXXThisExprClass:
4133 return true;
4134 case DeclRefExprClass: {
4135 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4136 // template parameters.
4137 const auto *DRE1 = cast<DeclRefExpr>(E1);
4138 const auto *DRE2 = cast<DeclRefExpr>(E2);
4139 return DRE1->isPRValue() && DRE2->isPRValue() &&
4140 DRE1->getDecl() == DRE2->getDecl();
4141 }
4142 case ImplicitCastExprClass: {
4143 // Peel off implicit casts.
4144 while (true) {
4145 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4146 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4147 if (!ICE1 || !ICE2)
4148 return false;
4149 if (ICE1->getCastKind() != ICE2->getCastKind())
4150 return false;
4151 E1 = ICE1->getSubExpr()->IgnoreParens();
4152 E2 = ICE2->getSubExpr()->IgnoreParens();
4153 // The final cast must be one of these types.
4154 if (ICE1->getCastKind() == CK_LValueToRValue ||
4155 ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4156 ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4157 break;
4158 }
4159 }
4160
4161 const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4162 const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4163 if (DRE1 && DRE2)
4164 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4165
4166 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4167 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4168 if (Ivar1 && Ivar2) {
4169 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4170 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4171 }
4172
4173 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4174 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4175 if (Array1 && Array2) {
4176 if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4177 return false;
4178
4179 auto Idx1 = Array1->getIdx();
4180 auto Idx2 = Array2->getIdx();
4181 const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4182 const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4183 if (Integer1 && Integer2) {
4184 if (!llvm::APInt::isSameValue(Integer1->getValue(),
4185 Integer2->getValue()))
4186 return false;
4187 } else {
4188 if (!isSameComparisonOperand(Idx1, Idx2))
4189 return false;
4190 }
4191
4192 return true;
4193 }
4194
4195 // Walk the MemberExpr chain.
4196 while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4197 const auto *ME1 = cast<MemberExpr>(E1);
4198 const auto *ME2 = cast<MemberExpr>(E2);
4199 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4200 return false;
4201 if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4202 if (D->isStaticDataMember())
4203 return true;
4204 E1 = ME1->getBase()->IgnoreParenImpCasts();
4205 E2 = ME2->getBase()->IgnoreParenImpCasts();
4206 }
4207
4208 if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4209 return true;
4210
4211 // A static member variable can end the MemberExpr chain with either
4212 // a MemberExpr or a DeclRefExpr.
4213 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4214 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4215 return DRE->getDecl();
4216 if (const auto *ME = dyn_cast<MemberExpr>(E))
4217 return ME->getMemberDecl();
4218 return nullptr;
4219 };
4220
4221 const ValueDecl *VD1 = getAnyDecl(E1);
4222 const ValueDecl *VD2 = getAnyDecl(E2);
4223 return declaresSameEntity(VD1, VD2);
4224 }
4225 }
4226}
4227
4228/// isArrow - Return true if the base expression is a pointer to vector,
4229/// return false if the base expression is a vector.
4230bool ExtVectorElementExpr::isArrow() const {
4231 return getBase()->getType()->isPointerType();
4232}
4233
4234unsigned ExtVectorElementExpr::getNumElements() const {
4235 if (const VectorType *VT = getType()->getAs<VectorType>())
4236 return VT->getNumElements();
4237 return 1;
4238}
4239
4240/// containsDuplicateElements - Return true if any element access is repeated.
4241bool ExtVectorElementExpr::containsDuplicateElements() const {
4242 // FIXME: Refactor this code to an accessor on the AST node which returns the
4243 // "type" of component access, and share with code below and in Sema.
4244 StringRef Comp = Accessor->getName();
4245
4246 // Halving swizzles do not contain duplicate elements.
4247 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4248 return false;
4249
4250 // Advance past s-char prefix on hex swizzles.
4251 if (Comp[0] == 's' || Comp[0] == 'S')
4252 Comp = Comp.substr(1);
4253
4254 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4255 if (Comp.substr(i + 1).contains(Comp[i]))
4256 return true;
4257
4258 return false;
4259}
4260
4261/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4262void ExtVectorElementExpr::getEncodedElementAccess(
4263 SmallVectorImpl<uint32_t> &Elts) const {
4264 StringRef Comp = Accessor->getName();
4265 bool isNumericAccessor = false;
4266 if (Comp[0] == 's' || Comp[0] == 'S') {
4267 Comp = Comp.substr(1);
4268 isNumericAccessor = true;
4269 }
4270
4271 bool isHi = Comp == "hi";
4272 bool isLo = Comp == "lo";
4273 bool isEven = Comp == "even";
4274 bool isOdd = Comp == "odd";
4275
4276 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4277 uint64_t Index;
4278
4279 if (isHi)
4280 Index = e + i;
4281 else if (isLo)
4282 Index = i;
4283 else if (isEven)
4284 Index = 2 * i;
4285 else if (isOdd)
4286 Index = 2 * i + 1;
4287 else
4288 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4289
4290 Elts.push_back(Index);
4291 }
4292}
4293
4294ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4295 QualType Type, SourceLocation BLoc,
4296 SourceLocation RP)
4297 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4298 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4299 SubExprs = new (C) Stmt*[args.size()];
4300 for (unsigned i = 0; i != args.size(); i++)
4301 SubExprs[i] = args[i];
4302
4303 setDependence(computeDependence(this));
4304}
4305
4306void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4307 if (SubExprs) C.Deallocate(SubExprs);
4308
4309 this->NumExprs = Exprs.size();
4310 SubExprs = new (C) Stmt*[NumExprs];
4311 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4312}
4313
4314GenericSelectionExpr::GenericSelectionExpr(
4315 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4316 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4317 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4318 bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4319 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4320 AssocExprs[ResultIndex]->getValueKind(),
4321 AssocExprs[ResultIndex]->getObjectKind()),
4322 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4323 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4324 assert(AssocTypes.size() == AssocExprs.size() &&(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4326, __extension__ __PRETTY_FUNCTION__
))
4325 "Must have the same number of association expressions"(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4326, __extension__ __PRETTY_FUNCTION__
))
4326 " and TypeSourceInfo!")(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4326, __extension__ __PRETTY_FUNCTION__
))
;
4327 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!")(static_cast <bool> (ResultIndex < NumAssocs &&
"ResultIndex is out-of-bounds!") ? void (0) : __assert_fail (
"ResultIndex < NumAssocs && \"ResultIndex is out-of-bounds!\""
, "clang/lib/AST/Expr.cpp", 4327, __extension__ __PRETTY_FUNCTION__
))
;
4328
4329 GenericSelectionExprBits.GenericLoc = GenericLoc;
4330 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4331 std::copy(AssocExprs.begin(), AssocExprs.end(),
4332 getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4333 std::copy(AssocTypes.begin(), AssocTypes.end(),
4334 getTrailingObjects<TypeSourceInfo *>());
4335
4336 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4337}
4338
4339GenericSelectionExpr::GenericSelectionExpr(
4340 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4341 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4342 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4343 bool ContainsUnexpandedParameterPack)
4344 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4345 OK_Ordinary),
4346 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4347 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4348 assert(AssocTypes.size() == AssocExprs.size() &&(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4350, __extension__ __PRETTY_FUNCTION__
))
4349 "Must have the same number of association expressions"(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4350, __extension__ __PRETTY_FUNCTION__
))
4350 " and TypeSourceInfo!")(static_cast <bool> (AssocTypes.size() == AssocExprs.size
() && "Must have the same number of association expressions"
" and TypeSourceInfo!") ? void (0) : __assert_fail ("AssocTypes.size() == AssocExprs.size() && \"Must have the same number of association expressions\" \" and TypeSourceInfo!\""
, "clang/lib/AST/Expr.cpp", 4350, __extension__ __PRETTY_FUNCTION__
))
;
4351
4352 GenericSelectionExprBits.GenericLoc = GenericLoc;
4353 getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4354 std::copy(AssocExprs.begin(), AssocExprs.end(),
4355 getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4356 std::copy(AssocTypes.begin(), AssocTypes.end(),
4357 getTrailingObjects<TypeSourceInfo *>());
4358
4359 setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4360}
4361
4362GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4363 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4364
4365GenericSelectionExpr *GenericSelectionExpr::Create(
4366 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4367 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4368 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4369 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4370 unsigned NumAssocs = AssocExprs.size();
4371 void *Mem = Context.Allocate(
4372 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4373 alignof(GenericSelectionExpr));
4374 return new (Mem) GenericSelectionExpr(
4375 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4376 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4377}
4378
4379GenericSelectionExpr *GenericSelectionExpr::Create(
4380 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4381 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4382 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4383 bool ContainsUnexpandedParameterPack) {
4384 unsigned NumAssocs = AssocExprs.size();
4385 void *Mem = Context.Allocate(
4386 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4387 alignof(GenericSelectionExpr));
4388 return new (Mem) GenericSelectionExpr(
4389 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4390 RParenLoc, ContainsUnexpandedParameterPack);
4391}
4392
4393GenericSelectionExpr *
4394GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4395 unsigned NumAssocs) {
4396 void *Mem = Context.Allocate(
4397 totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4398 alignof(GenericSelectionExpr));
4399 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4400}
4401
4402//===----------------------------------------------------------------------===//
4403// DesignatedInitExpr
4404//===----------------------------------------------------------------------===//
4405
4406const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4407 assert(isFieldDesignator() && "Only valid on a field designator")(static_cast <bool> (isFieldDesignator() && "Only valid on a field designator"
) ? void (0) : __assert_fail ("isFieldDesignator() && \"Only valid on a field designator\""
, "clang/lib/AST/Expr.cpp", 4407, __extension__ __PRETTY_FUNCTION__
))
;
4408 if (FieldInfo.NameOrField & 0x01)
4409 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4410 return getFieldDecl()->getIdentifier();
4411}
4412
4413DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4414 llvm::ArrayRef<Designator> Designators,
4415 SourceLocation EqualOrColonLoc,
4416 bool GNUSyntax,
4417 ArrayRef<Expr *> IndexExprs, Expr *Init)
4418 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4419 Init->getObjectKind()),
4420 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4421 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4422 this->Designators = new (C) Designator[NumDesignators];
4423
4424 // Record the initializer itself.
4425 child_iterator Child = child_begin();
4426 *Child++ = Init;
4427
4428 // Copy the designators and their subexpressions, computing
4429 // value-dependence along the way.
4430 unsigned IndexIdx = 0;
4431 for (unsigned I = 0; I != NumDesignators; ++I) {
4432 this->Designators[I] = Designators[I];
4433 if (this->Designators[I].isArrayDesignator()) {
4434 // Copy the index expressions into permanent storage.
4435 *Child++ = IndexExprs[IndexIdx++];
4436 } else if (this->Designators[I].isArrayRangeDesignator()) {
4437 // Copy the start/end expressions into permanent storage.
4438 *Child++ = IndexExprs[IndexIdx++];
4439 *Child++ = IndexExprs[IndexIdx++];
4440 }
4441 }
4442
4443 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions")(static_cast <bool> (IndexIdx == IndexExprs.size() &&
"Wrong number of index expressions") ? void (0) : __assert_fail
("IndexIdx == IndexExprs.size() && \"Wrong number of index expressions\""
, "clang/lib/AST/Expr.cpp", 4443, __extension__ __PRETTY_FUNCTION__
))
;
4444 setDependence(computeDependence(this));
4445}
4446
4447DesignatedInitExpr *
4448DesignatedInitExpr::Create(const ASTContext &C,
4449 llvm::ArrayRef<Designator> Designators,
4450 ArrayRef<Expr*> IndexExprs,
4451 SourceLocation ColonOrEqualLoc,
4452 bool UsesColonSyntax, Expr *Init) {
4453 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4454 alignof(DesignatedInitExpr));
4455 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4456 ColonOrEqualLoc, UsesColonSyntax,
4457 IndexExprs, Init);
4458}
4459
4460DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4461 unsigned NumIndexExprs) {
4462 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4463 alignof(DesignatedInitExpr));
4464 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4465}
4466
4467void DesignatedInitExpr::setDesignators(const ASTContext &C,
4468 const Designator *Desigs,
4469 unsigned NumDesigs) {
4470 Designators = new (C) Designator[NumDesigs];
4471 NumDesignators = NumDesigs;
4472 for (unsigned I = 0; I != NumDesigs; ++I)
4473 Designators[I] = Desigs[I];
4474}
4475
4476SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4477 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4478 if (size() == 1)
4479 return DIE->getDesignator(0)->getSourceRange();
4480 return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4481 DIE->getDesignator(size() - 1)->getEndLoc());
4482}
4483
4484SourceLocation DesignatedInitExpr::getBeginLoc() const {
4485 auto *DIE = const_cast<DesignatedInitExpr *>(this);
4486 Designator &First = *DIE->getDesignator(0);
4487 if (First.isFieldDesignator())
4488 return GNUSyntax ? First.getFieldLoc() : First.getDotLoc();
4489 return First.getLBracketLoc();
4490}
4491
4492SourceLocation DesignatedInitExpr::getEndLoc() const {
4493 return getInit()->getEndLoc();
4494}
4495
4496Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4497 assert(D.isArrayDesignator() && "Requires array designator")(static_cast <bool> (D.isArrayDesignator() && "Requires array designator"
) ? void (0) : __assert_fail ("D.isArrayDesignator() && \"Requires array designator\""
, "clang/lib/AST/Expr.cpp", 4497, __extension__ __PRETTY_FUNCTION__
))
;
4498 return getSubExpr(D.getArrayIndex() + 1);
4499}
4500
4501Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4502 assert(D.isArrayRangeDesignator() && "Requires array range designator")(static_cast <bool> (D.isArrayRangeDesignator() &&
"Requires array range designator") ? void (0) : __assert_fail
("D.isArrayRangeDesignator() && \"Requires array range designator\""
, "clang/lib/AST/Expr.cpp", 4502, __extension__ __PRETTY_FUNCTION__
))
;
4503 return getSubExpr(D.getArrayIndex() + 1);
4504}
4505
4506Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4507 assert(D.isArrayRangeDesignator() && "Requires array range designator")(static_cast <bool> (D.isArrayRangeDesignator() &&
"Requires array range designator") ? void (0) : __assert_fail
("D.isArrayRangeDesignator() && \"Requires array range designator\""
, "clang/lib/AST/Expr.cpp", 4507, __extension__ __PRETTY_FUNCTION__
))
;
4508 return getSubExpr(D.getArrayIndex() + 2);
4509}
4510
4511/// Replaces the designator at index @p Idx with the series
4512/// of designators in [First, Last).
4513void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4514 const Designator *First,
4515 const Designator *Last) {
4516 unsigned NumNewDesignators = Last - First;
4517 if (NumNewDesignators == 0) {
4518 std::copy_backward(Designators + Idx + 1,
4519 Designators + NumDesignators,
4520 Designators + Idx);
4521 --NumNewDesignators;
4522 return;
4523 }
4524 if (NumNewDesignators == 1) {
4525 Designators[Idx] = *First;
4526 return;
4527 }
4528
4529 Designator *NewDesignators
4530 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4531 std::copy(Designators, Designators + Idx, NewDesignators);
4532 std::copy(First, Last, NewDesignators + Idx);
4533 std::copy(Designators + Idx + 1, Designators + NumDesignators,
4534 NewDesignators + Idx + NumNewDesignators);
4535 Designators = NewDesignators;
4536 NumDesignators = NumDesignators - 1 + NumNewDesignators;
4537}
4538
4539DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4540 SourceLocation lBraceLoc,
4541 Expr *baseExpr,
4542 SourceLocation rBraceLoc)
4543 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4544 OK_Ordinary) {
4545 BaseAndUpdaterExprs[0] = baseExpr;
4546
4547 InitListExpr *ILE =
4548 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4549 ILE->setType(baseExpr->getType());
4550 BaseAndUpdaterExprs[1] = ILE;
4551
4552 // FIXME: this is wrong, set it correctly.
4553 setDependence(ExprDependence::None);
4554}
4555
4556SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4557 return getBase()->getBeginLoc();
4558}
4559
4560SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4561 return getBase()->getEndLoc();
4562}
4563
4564ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4565 SourceLocation RParenLoc)
4566 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4567 LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4568 ParenListExprBits.NumExprs = Exprs.size();
4569
4570 for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4571 getTrailingObjects<Stmt *>()[I] = Exprs[I];
4572 setDependence(computeDependence(this));
4573}
4574
4575ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4576 : Expr(ParenListExprClass, Empty) {
4577 ParenListExprBits.NumExprs = NumExprs;
4578}
4579
4580ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4581 SourceLocation LParenLoc,
4582 ArrayRef<Expr *> Exprs,
4583 SourceLocation RParenLoc) {
4584 void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4585 alignof(ParenListExpr));
4586 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4587}
4588
4589ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4590 unsigned NumExprs) {
4591 void *Mem =
4592 Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4593 return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4594}
4595
4596BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4597 Opcode opc, QualType ResTy, ExprValueKind VK,
4598 ExprObjectKind OK, SourceLocation opLoc,
4599 FPOptionsOverride FPFeatures)
4600 : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4601 BinaryOperatorBits.Opc = opc;
4602 assert(!isCompoundAssignmentOp() &&(static_cast <bool> (!isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments") ? void
(0) : __assert_fail ("!isCompoundAssignmentOp() && \"Use CompoundAssignOperator for compound assignments\""
, "clang/lib/AST/Expr.cpp", 4603, __extension__ __PRETTY_FUNCTION__
))
4603 "Use CompoundAssignOperator for compound assignments")(static_cast <bool> (!isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments") ? void
(0) : __assert_fail ("!isCompoundAssignmentOp() && \"Use CompoundAssignOperator for compound assignments\""
, "clang/lib/AST/Expr.cpp", 4603, __extension__ __PRETTY_FUNCTION__
))
;
4604 BinaryOperatorBits.OpLoc = opLoc;
4605 SubExprs[LHS] = lhs;
4606 SubExprs[RHS] = rhs;
4607 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4608 if (hasStoredFPFeatures())
4609 setStoredFPFeatures(FPFeatures);
4610 setDependence(computeDependence(this));
4611}
4612
4613BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4614 Opcode opc, QualType ResTy, ExprValueKind VK,
4615 ExprObjectKind OK, SourceLocation opLoc,
4616 FPOptionsOverride FPFeatures, bool dead2)
4617 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4618 BinaryOperatorBits.Opc = opc;
4619 assert(isCompoundAssignmentOp() &&(static_cast <bool> (isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments") ? void
(0) : __assert_fail ("isCompoundAssignmentOp() && \"Use CompoundAssignOperator for compound assignments\""
, "clang/lib/AST/Expr.cpp", 4620, __extension__ __PRETTY_FUNCTION__
))
4620 "Use CompoundAssignOperator for compound assignments")(static_cast <bool> (isCompoundAssignmentOp() &&
"Use CompoundAssignOperator for compound assignments") ? void
(0) : __assert_fail ("isCompoundAssignmentOp() && \"Use CompoundAssignOperator for compound assignments\""
, "clang/lib/AST/Expr.cpp", 4620, __extension__ __PRETTY_FUNCTION__
))
;
4621 BinaryOperatorBits.OpLoc = opLoc;
4622 SubExprs[LHS] = lhs;
4623 SubExprs[RHS] = rhs;
4624 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4625 if (hasStoredFPFeatures())
4626 setStoredFPFeatures(FPFeatures);
4627 setDependence(computeDependence(this));
4628}
4629
4630BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4631 bool HasFPFeatures) {
4632 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4633 void *Mem =
4634 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4635 return new (Mem) BinaryOperator(EmptyShell());
4636}
4637
4638BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4639 Expr *rhs, Opcode opc, QualType ResTy,
4640 ExprValueKind VK, ExprObjectKind OK,
4641 SourceLocation opLoc,
4642 FPOptionsOverride FPFeatures) {
4643 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4644 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4645 void *Mem =
4646 C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4647 return new (Mem)
4648 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4649}
4650
4651CompoundAssignOperator *
4652CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4653 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4654 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4655 alignof(CompoundAssignOperator));
4656 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4657}
4658
4659CompoundAssignOperator *
4660CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4661 Opcode opc, QualType ResTy, ExprValueKind VK,
4662 ExprObjectKind OK, SourceLocation opLoc,
4663 FPOptionsOverride FPFeatures,
4664 QualType CompLHSType, QualType CompResultType) {
4665 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4666 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4667 void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4668 alignof(CompoundAssignOperator));
4669 return new (Mem)
4670 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4671 CompLHSType, CompResultType);
4672}
4673
4674UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4675 bool hasFPFeatures) {
4676 void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4677 alignof(UnaryOperator));
4678 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4679}
4680
4681UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4682 QualType type, ExprValueKind VK, ExprObjectKind OK,
4683 SourceLocation l, bool CanOverflow,
4684 FPOptionsOverride FPFeatures)
4685 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4686 UnaryOperatorBits.Opc = opc;
4687 UnaryOperatorBits.CanOverflow = CanOverflow;
4688 UnaryOperatorBits.Loc = l;
4689 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4690 if (hasStoredFPFeatures())
4691 setStoredFPFeatures(FPFeatures);
4692 setDependence(computeDependence(this, Ctx));
4693}
4694
4695UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4696 Opcode opc, QualType type,
4697 ExprValueKind VK, ExprObjectKind OK,
4698 SourceLocation l, bool CanOverflow,
4699 FPOptionsOverride FPFeatures) {
4700 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4701 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4702 void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4703 return new (Mem)
4704 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4705}
4706
4707const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4708 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4709 e = ewc->getSubExpr();
4710 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4711 e = m->getSubExpr();
4712 e = cast<CXXConstructExpr>(e)->getArg(0);
4713 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4714 e = ice->getSubExpr();
4715 return cast<OpaqueValueExpr>(e);
4716}
4717
4718PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4719 EmptyShell sh,
4720 unsigned numSemanticExprs) {
4721 void *buffer =
4722 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4723 alignof(PseudoObjectExpr));
4724 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4725}
4726
4727PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4728 : Expr(PseudoObjectExprClass, shell) {
4729 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4730}
4731
4732PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4733 ArrayRef<Expr*> semantics,
4734 unsigned resultIndex) {
4735 assert(syntax && "no syntactic expression!")(static_cast <bool> (syntax && "no syntactic expression!"
) ? void (0) : __assert_fail ("syntax && \"no syntactic expression!\""
, "clang/lib/AST/Expr.cpp", 4735, __extension__ __PRETTY_FUNCTION__
))
;
4736 assert(semantics.size() && "no semantic expressions!")(static_cast <bool> (semantics.size() && "no semantic expressions!"
) ? void (0) : __assert_fail ("semantics.size() && \"no semantic expressions!\""
, "clang/lib/AST/Expr.cpp", 4736, __extension__ __PRETTY_FUNCTION__
))
;
4737
4738 QualType type;
4739 ExprValueKind VK;
4740 if (resultIndex == NoResult) {
4741 type = C.VoidTy;
4742 VK = VK_PRValue;
4743 } else {
4744 assert(resultIndex < semantics.size())(static_cast <bool> (resultIndex < semantics.size())
? void (0) : __assert_fail ("resultIndex < semantics.size()"
, "clang/lib/AST/Expr.cpp", 4744, __extension__ __PRETTY_FUNCTION__
))
;
4745 type = semantics[resultIndex]->getType();
4746 VK = semantics[resultIndex]->getValueKind();
4747 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary)(static_cast <bool> (semantics[resultIndex]->getObjectKind
() == OK_Ordinary) ? void (0) : __assert_fail ("semantics[resultIndex]->getObjectKind() == OK_Ordinary"
, "clang/lib/AST/Expr.cpp", 4747, __extension__ __PRETTY_FUNCTION__
))
;
4748 }
4749
4750 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4751 alignof(PseudoObjectExpr));
4752 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4753 resultIndex);
4754}
4755
4756PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4757 Expr *syntax, ArrayRef<Expr *> semantics,
4758 unsigned resultIndex)
4759 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4760 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4761 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4762
4763 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4764 Expr *E = (i == 0 ? syntax : semantics[i-1]);
4765 getSubExprsBuffer()[i] = E;
4766
4767 if (isa<OpaqueValueExpr>(E))
4768 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&(static_cast <bool> (cast<OpaqueValueExpr>(E)->
getSourceExpr() != nullptr && "opaque-value semantic expressions for pseudo-object "
"operations must have sources") ? void (0) : __assert_fail (
"cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && \"opaque-value semantic expressions for pseudo-object \" \"operations must have sources\""
, "clang/lib/AST/Expr.cpp", 4770, __extension__ __PRETTY_FUNCTION__
))
4769 "opaque-value semantic expressions for pseudo-object "(static_cast <bool> (cast<OpaqueValueExpr>(E)->
getSourceExpr() != nullptr && "opaque-value semantic expressions for pseudo-object "
"operations must have sources") ? void (0) : __assert_fail (
"cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && \"opaque-value semantic expressions for pseudo-object \" \"operations must have sources\""
, "clang/lib/AST/Expr.cpp", 4770, __extension__ __PRETTY_FUNCTION__
))
4770 "operations must have sources")(static_cast <bool> (cast<OpaqueValueExpr>(E)->
getSourceExpr() != nullptr && "opaque-value semantic expressions for pseudo-object "
"operations must have sources") ? void (0) : __assert_fail (
"cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && \"opaque-value semantic expressions for pseudo-object \" \"operations must have sources\""
, "clang/lib/AST/Expr.cpp", 4770, __extension__ __PRETTY_FUNCTION__
))
;
4771 }
4772
4773 setDependence(computeDependence(this));
4774}
4775
4776//===----------------------------------------------------------------------===//
4777// Child Iterators for iterating over subexpressions/substatements
4778//===----------------------------------------------------------------------===//
4779
4780// UnaryExprOrTypeTraitExpr
4781Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4782 const_child_range CCR =
4783 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4784 return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4785}
4786
4787Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4788 // If this is of a type and the type is a VLA type (and not a typedef), the
4789 // size expression of the VLA needs to be treated as an executable expression.
4790 // Why isn't this weirdness documented better in StmtIterator?
4791 if (isArgumentType()) {
4792 if (const VariableArrayType *T =
4793 dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4794 return const_child_range(const_child_iterator(T), const_child_iterator());
4795 return const_child_range(const_child_iterator(), const_child_iterator());
4796 }
4797 return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4798}
4799
4800AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4801 AtomicOp op, SourceLocation RP)
4802 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4803 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4804 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions")(static_cast <bool> (args.size() == getNumSubExprs(op) &&
"wrong number of subexpressions") ? void (0) : __assert_fail
("args.size() == getNumSubExprs(op) && \"wrong number of subexpressions\""
, "clang/lib/AST/Expr.cpp", 4804, __extension__ __PRETTY_FUNCTION__
))
;
4805 for (unsigned i = 0; i != args.size(); i++)
4806 SubExprs[i] = args[i];
4807 setDependence(computeDependence(this));
4808}
4809
4810unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4811 switch (Op) {
4812 case AO__c11_atomic_init:
4813 case AO__opencl_atomic_init:
4814 case AO__c11_atomic_load:
4815 case AO__atomic_load_n:
4816 return 2;
4817
4818 case AO__opencl_atomic_load:
4819 case AO__hip_atomic_load:
4820 case AO__c11_atomic_store:
4821 case AO__c11_atomic_exchange:
4822 case AO__atomic_load:
4823 case AO__atomic_store:
4824 case AO__atomic_store_n:
4825 case AO__atomic_exchange_n:
4826 case AO__c11_atomic_fetch_add:
4827 case AO__c11_atomic_fetch_sub:
4828 case AO__c11_atomic_fetch_and:
4829 case AO__c11_atomic_fetch_or:
4830 case AO__c11_atomic_fetch_xor:
4831 case AO__c11_atomic_fetch_nand:
4832 case AO__c11_atomic_fetch_max:
4833 case AO__c11_atomic_fetch_min:
4834 case AO__atomic_fetch_add:
4835 case AO__atomic_fetch_sub:
4836 case AO__atomic_fetch_and:
4837 case AO__atomic_fetch_or:
4838 case AO__atomic_fetch_xor:
4839 case AO__atomic_fetch_nand:
4840 case AO__atomic_add_fetch:
4841 case AO__atomic_sub_fetch:
4842 case AO__atomic_and_fetch:
4843 case AO__atomic_or_fetch:
4844 case AO__atomic_xor_fetch:
4845 case AO__atomic_nand_fetch:
4846 case AO__atomic_min_fetch:
4847 case AO__atomic_max_fetch:
4848 case AO__atomic_fetch_min:
4849 case AO__atomic_fetch_max:
4850 return 3;
4851
4852 case AO__hip_atomic_exchange:
4853 case AO__hip_atomic_fetch_add:
4854 case AO__hip_atomic_fetch_and:
4855 case AO__hip_atomic_fetch_or:
4856 case AO__hip_atomic_fetch_xor:
4857 case AO__hip_atomic_fetch_min:
4858 case AO__hip_atomic_fetch_max:
4859 case AO__opencl_atomic_store:
4860 case AO__hip_atomic_store:
4861 case AO__opencl_atomic_exchange:
4862 case AO__opencl_atomic_fetch_add:
4863 case AO__opencl_atomic_fetch_sub:
4864 case AO__opencl_atomic_fetch_and:
4865 case AO__opencl_atomic_fetch_or:
4866 case AO__opencl_atomic_fetch_xor:
4867 case AO__opencl_atomic_fetch_min:
4868 case AO__opencl_atomic_fetch_max:
4869 case AO__atomic_exchange:
4870 return 4;
4871
4872 case AO__c11_atomic_compare_exchange_strong:
4873 case AO__c11_atomic_compare_exchange_weak:
4874 return 5;
4875 case AO__hip_atomic_compare_exchange_strong:
4876 case AO__opencl_atomic_compare_exchange_strong:
4877 case AO__opencl_atomic_compare_exchange_weak:
4878 case AO__hip_atomic_compare_exchange_weak:
4879 case AO__atomic_compare_exchange:
4880 case AO__atomic_compare_exchange_n:
4881 return 6;
4882 }
4883 llvm_unreachable("unknown atomic op")::llvm::llvm_unreachable_internal("unknown atomic op", "clang/lib/AST/Expr.cpp"
, 4883)
;
4884}
4885
4886QualType AtomicExpr::getValueType() const {
4887 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4888 if (auto AT = T->getAs<AtomicType>())
4889 return AT->getValueType();
4890 return T;
4891}
4892
4893QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4894 unsigned ArraySectionCount = 0;
4895 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4896 Base = OASE->getBase();
4897 ++ArraySectionCount;
4898 }
4899 while (auto *ASE =
4900 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4901 Base = ASE->getBase();
4902 ++ArraySectionCount;
4903 }
4904 Base = Base->IgnoreParenImpCasts();
4905 auto OriginalTy = Base->getType();
4906 if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4907 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4908 OriginalTy = PVD->getOriginalType().getNonReferenceType();
4909
4910 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4911 if (OriginalTy->isAnyPointerType())
4912 OriginalTy = OriginalTy->getPointeeType();
4913 else {
4914 assert (OriginalTy->isArrayType())(static_cast <bool> (OriginalTy->isArrayType()) ? void
(0) : __assert_fail ("OriginalTy->isArrayType()", "clang/lib/AST/Expr.cpp"
, 4914, __extension__ __PRETTY_FUNCTION__))
;
4915 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4916 }
4917 }
4918 return OriginalTy;
4919}
4920
4921RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4922 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4923 : Expr(RecoveryExprClass, T.getNonReferenceType(),
4924 T->isDependentType() ? VK_LValue : getValueKindForType(T),
4925 OK_Ordinary),
4926 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4927 assert(!T.isNull())(static_cast <bool> (!T.isNull()) ? void (0) : __assert_fail
("!T.isNull()", "clang/lib/AST/Expr.cpp", 4927, __extension__
__PRETTY_FUNCTION__))
;
4928 assert(!llvm::is_contained(SubExprs, nullptr))(static_cast <bool> (!llvm::is_contained(SubExprs, nullptr
)) ? void (0) : __assert_fail ("!llvm::is_contained(SubExprs, nullptr)"
, "clang/lib/AST/Expr.cpp", 4928, __extension__ __PRETTY_FUNCTION__
))
;
4929
4930 llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4931 setDependence(computeDependence(this));
4932}
4933
4934RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4935 SourceLocation BeginLoc,
4936 SourceLocation EndLoc,
4937 ArrayRef<Expr *> SubExprs) {
4938 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4939 alignof(RecoveryExpr));
4940 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4941}
4942
4943RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4944 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4945 alignof(RecoveryExpr));
4946 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4947}
4948
4949void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4950 assert((static_cast <bool> (NumDims == Dims.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == Dims.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4952, __extension__ __PRETTY_FUNCTION__
))
4951 NumDims == Dims.size() &&(static_cast <bool> (NumDims == Dims.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == Dims.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4952, __extension__ __PRETTY_FUNCTION__
))
4952 "Preallocated number of dimensions is different from the provided one.")(static_cast <bool> (NumDims == Dims.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == Dims.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4952, __extension__ __PRETTY_FUNCTION__
))
;
4953 llvm::copy(Dims, getTrailingObjects<Expr *>());
4954}
4955
4956void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4957 assert((static_cast <bool> (NumDims == BR.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == BR.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4959, __extension__ __PRETTY_FUNCTION__
))
4958 NumDims == BR.size() &&(static_cast <bool> (NumDims == BR.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == BR.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4959, __extension__ __PRETTY_FUNCTION__
))
4959 "Preallocated number of dimensions is different from the provided one.")(static_cast <bool> (NumDims == BR.size() && "Preallocated number of dimensions is different from the provided one."
) ? void (0) : __assert_fail ("NumDims == BR.size() && \"Preallocated number of dimensions is different from the provided one.\""
, "clang/lib/AST/Expr.cpp", 4959, __extension__ __PRETTY_FUNCTION__
))
;
4960 llvm::copy(BR, getTrailingObjects<SourceRange>());
4961}
4962
4963OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4964 SourceLocation L, SourceLocation R,
4965 ArrayRef<Expr *> Dims)
4966 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4967 RPLoc(R), NumDims(Dims.size()) {
4968 setBase(Op);
4969 setDimensions(Dims);
4970 setDependence(computeDependence(this));
4971}
4972
4973OMPArrayShapingExpr *
4974OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4975 SourceLocation L, SourceLocation R,
4976 ArrayRef<Expr *> Dims,
4977 ArrayRef<SourceRange> BracketRanges) {
4978 assert(Dims.size() == BracketRanges.size() &&(static_cast <bool> (Dims.size() == BracketRanges.size(
) && "Different number of dimensions and brackets ranges."
) ? void (0) : __assert_fail ("Dims.size() == BracketRanges.size() && \"Different number of dimensions and brackets ranges.\""
, "clang/lib/AST/Expr.cpp", 4979, __extension__ __PRETTY_FUNCTION__
))
4979 "Different number of dimensions and brackets ranges.")(static_cast <bool> (Dims.size() == BracketRanges.size(
) && "Different number of dimensions and brackets ranges."
) ? void (0) : __assert_fail ("Dims.size() == BracketRanges.size() && \"Different number of dimensions and brackets ranges.\""
, "clang/lib/AST/Expr.cpp", 4979, __extension__ __PRETTY_FUNCTION__
))
;
4980 void *Mem = Context.Allocate(
4981 totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4982 alignof(OMPArrayShapingExpr));
4983 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4984 E->setBracketsRanges(BracketRanges);
4985 return E;
4986}
4987
4988OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4989 unsigned NumDims) {
4990 void *Mem = Context.Allocate(
4991 totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4992 alignof(OMPArrayShapingExpr));
4993 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4994}
4995
4996void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4997 assert(I < NumIterators &&(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 4998, __extension__ __PRETTY_FUNCTION__
))
4998 "Idx is greater or equal the number of iterators definitions.")(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 4998, __extension__ __PRETTY_FUNCTION__
))
;
4999 getTrailingObjects<Decl *>()[I] = D;
5000}
5001
5002void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5003 assert(I < NumIterators &&(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5004, __extension__ __PRETTY_FUNCTION__
))
5004 "Idx is greater or equal the number of iterators definitions.")(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5004, __extension__ __PRETTY_FUNCTION__
))
;
5005 getTrailingObjects<
5006 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5007 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5008}
5009
5010void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5011 SourceLocation ColonLoc, Expr *End,
5012 SourceLocation SecondColonLoc,
5013 Expr *Step) {
5014 assert(I < NumIterators &&(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5015, __extension__ __PRETTY_FUNCTION__
))
5015 "Idx is greater or equal the number of iterators definitions.")(static_cast <bool> (I < NumIterators && "Idx is greater or equal the number of iterators definitions."
) ? void (0) : __assert_fail ("I < NumIterators && \"Idx is greater or equal the number of iterators definitions.\""
, "clang/lib/AST/Expr.cpp", 5015, __extension__ __PRETTY_FUNCTION__
))
;
5016 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5017 static_cast<int>(RangeExprOffset::Begin)] =
5018 Begin;
5019 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5020 static_cast<int>(RangeExprOffset::End)] = End;
5021 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5022 static_cast<int>(RangeExprOffset::Step)] = Step;
5023 getTrailingObjects<
5024 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5025 static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5026 ColonLoc;
5027 getTrailingObjects<
5028 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5029 static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5030 SecondColonLoc;
5031}
5032
5033Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5034 return getTrailingObjects<Decl *>()[I];
5035}
5036
5037OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5038 IteratorRange Res;
5039 Res.Begin =
5040 getTrailingObjects<Expr *>()[I * static_cast<int>(
5041 RangeExprOffset::Total) +
5042 static_cast<int>(RangeExprOffset::Begin)];
5043 Res.End =
5044 getTrailingObjects<Expr *>()[I * static_cast<int>(
5045 RangeExprOffset::Total) +
5046 static_cast<int>(RangeExprOffset::End)];
5047 Res.Step =
5048 getTrailingObjects<Expr *>()[I * static_cast<int>(
5049 RangeExprOffset::Total) +
5050 static_cast<int>(RangeExprOffset::Step)];
5051 return Res;
5052}
5053
5054SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5055 return getTrailingObjects<
5056 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5057 static_cast<int>(RangeLocOffset::AssignLoc)];
5058}
5059
5060SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5061 return getTrailingObjects<
5062 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5063 static_cast<int>(RangeLocOffset::FirstColonLoc)];
5064}
5065
5066SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5067 return getTrailingObjects<
5068 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5069 static_cast<int>(RangeLocOffset::SecondColonLoc)];
5070}
5071
5072void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5073 getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5074}
5075
5076OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5077 return getTrailingObjects<OMPIteratorHelperData>()[I];
5078}
5079
5080const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5081 return getTrailingObjects<OMPIteratorHelperData>()[I];
5082}
5083
5084OMPIteratorExpr::OMPIteratorExpr(
5085 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5086 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5087 ArrayRef<OMPIteratorHelperData> Helpers)
5088 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5089 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5090 NumIterators(Data.size()) {
5091 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5092 const IteratorDefinition &D = Data[I];
5093 setIteratorDeclaration(I, D.IteratorDecl);
5094 setAssignmentLoc(I, D.AssignmentLoc);
5095 setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5096 D.SecondColonLoc, D.Range.Step);
5097 setHelper(I, Helpers[I]);
5098 }
5099 setDependence(computeDependence(this));
5100}
5101
5102OMPIteratorExpr *
5103OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5104 SourceLocation IteratorKwLoc, SourceLocation L,
5105 SourceLocation R,
5106 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5107 ArrayRef<OMPIteratorHelperData> Helpers) {
5108 assert(Data.size() == Helpers.size() &&(static_cast <bool> (Data.size() == Helpers.size() &&
"Data and helpers must have the same size.") ? void (0) : __assert_fail
("Data.size() == Helpers.size() && \"Data and helpers must have the same size.\""
, "clang/lib/AST/Expr.cpp", 5109, __extension__ __PRETTY_FUNCTION__
))
5109 "Data and helpers must have the same size.")(static_cast <bool> (Data.size() == Helpers.size() &&
"Data and helpers must have the same size.") ? void (0) : __assert_fail
("Data.size() == Helpers.size() && \"Data and helpers must have the same size.\""
, "clang/lib/AST/Expr.cpp", 5109, __extension__ __PRETTY_FUNCTION__
))
;
5110 void *Mem = Context.Allocate(
5111 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5112 Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5113 Data.size() * static_cast<int>(RangeLocOffset::Total),
5114 Helpers.size()),
5115 alignof(OMPIteratorExpr));
5116 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5117}
5118
5119OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5120 unsigned NumIterators) {
5121 void *Mem = Context.Allocate(
5122 totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5123 NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5124 NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5125 alignof(OMPIteratorExpr));
5126 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5127}