Bug Summary

File:clang/lib/AST/ExprConstant.cpp
Warning:line 5850, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ExprConstant.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/clang/lib/AST -I /build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-31-132209-101875-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/clang/lib/AST/ExprConstant.cpp

/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/clang/lib/AST/ExprConstant.cpp

1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr constant evaluator.
10//
11// Constant expression evaluation produces four main results:
12//
13// * A success/failure flag indicating whether constant folding was successful.
14// This is the 'bool' return value used by most of the code in this file. A
15// 'false' return value indicates that constant folding has failed, and any
16// appropriate diagnostic has already been produced.
17//
18// * An evaluated result, valid only if constant folding has not failed.
19//
20// * A flag indicating if evaluation encountered (unevaluated) side-effects.
21// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22// where it is possible to determine the evaluated result regardless.
23//
24// * A set of notes indicating why the evaluation was not a constant expression
25// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26// too, why the expression could not be folded.
27//
28// If we are checking for a potential constant expression, failure to constant
29// fold a potential constant sub-expression will be indicated by a 'false'
30// return value (the expression could not be folded) and no diagnostic (the
31// expression is not necessarily non-constant).
32//
33//===----------------------------------------------------------------------===//
34
35#include "Interp/Context.h"
36#include "Interp/Frame.h"
37#include "Interp/State.h"
38#include "clang/AST/APValue.h"
39#include "clang/AST/ASTContext.h"
40#include "clang/AST/ASTDiagnostic.h"
41#include "clang/AST/ASTLambda.h"
42#include "clang/AST/Attr.h"
43#include "clang/AST/CXXInheritance.h"
44#include "clang/AST/CharUnits.h"
45#include "clang/AST/CurrentSourceLocExprScope.h"
46#include "clang/AST/Expr.h"
47#include "clang/AST/OSLog.h"
48#include "clang/AST/OptionalDiagnostic.h"
49#include "clang/AST/RecordLayout.h"
50#include "clang/AST/StmtVisitor.h"
51#include "clang/AST/TypeLoc.h"
52#include "clang/Basic/Builtins.h"
53#include "clang/Basic/TargetInfo.h"
54#include "llvm/ADT/APFixedPoint.h"
55#include "llvm/ADT/Optional.h"
56#include "llvm/ADT/SmallBitVector.h"
57#include "llvm/Support/Debug.h"
58#include "llvm/Support/SaveAndRestore.h"
59#include "llvm/Support/raw_ostream.h"
60#include <cstring>
61#include <functional>
62
63#define DEBUG_TYPE"exprconstant" "exprconstant"
64
65using namespace clang;
66using llvm::APFixedPoint;
67using llvm::APInt;
68using llvm::APSInt;
69using llvm::APFloat;
70using llvm::FixedPointSemantics;
71using llvm::Optional;
72
73namespace {
74 struct LValue;
75 class CallStackFrame;
76 class EvalInfo;
77
78 using SourceLocExprScopeGuard =
79 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80
81 static QualType getType(APValue::LValueBase B) {
82 return B.getType();
83 }
84
85 /// Get an LValue path entry, which is known to not be an array index, as a
86 /// field declaration.
87 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89 }
90 /// Get an LValue path entry, which is known to not be an array index, as a
91 /// base class declaration.
92 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94 }
95 /// Determine whether this LValue path entry for a base class names a virtual
96 /// base class.
97 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98 return E.getAsBaseOrMember().getInt();
99 }
100
101 /// Given an expression, determine the type used to store the result of
102 /// evaluating that expression.
103 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104 if (E->isPRValue())
105 return E->getType();
106 return Ctx.getLValueReferenceType(E->getType());
107 }
108
109 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
110 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111 if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
112 return DirectCallee->getAttr<AllocSizeAttr>();
113 if (const Decl *IndirectCallee = CE->getCalleeDecl())
114 return IndirectCallee->getAttr<AllocSizeAttr>();
115 return nullptr;
116 }
117
118 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
119 /// This will look through a single cast.
120 ///
121 /// Returns null if we couldn't unwrap a function with alloc_size.
122 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
123 if (!E->getType()->isPointerType())
124 return nullptr;
125
126 E = E->IgnoreParens();
127 // If we're doing a variable assignment from e.g. malloc(N), there will
128 // probably be a cast of some kind. In exotic cases, we might also see a
129 // top-level ExprWithCleanups. Ignore them either way.
130 if (const auto *FE = dyn_cast<FullExpr>(E))
131 E = FE->getSubExpr()->IgnoreParens();
132
133 if (const auto *Cast = dyn_cast<CastExpr>(E))
134 E = Cast->getSubExpr()->IgnoreParens();
135
136 if (const auto *CE = dyn_cast<CallExpr>(E))
137 return getAllocSizeAttr(CE) ? CE : nullptr;
138 return nullptr;
139 }
140
141 /// Determines whether or not the given Base contains a call to a function
142 /// with the alloc_size attribute.
143 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
144 const auto *E = Base.dyn_cast<const Expr *>();
145 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
146 }
147
148 /// Determines whether the given kind of constant expression is only ever
149 /// used for name mangling. If so, it's permitted to reference things that we
150 /// can't generate code for (in particular, dllimported functions).
151 static bool isForManglingOnly(ConstantExprKind Kind) {
152 switch (Kind) {
153 case ConstantExprKind::Normal:
154 case ConstantExprKind::ClassTemplateArgument:
155 case ConstantExprKind::ImmediateInvocation:
156 // Note that non-type template arguments of class type are emitted as
157 // template parameter objects.
158 return false;
159
160 case ConstantExprKind::NonClassTemplateArgument:
161 return true;
162 }
163 llvm_unreachable("unknown ConstantExprKind")::llvm::llvm_unreachable_internal("unknown ConstantExprKind",
"clang/lib/AST/ExprConstant.cpp", 163)
;
164 }
165
166 static bool isTemplateArgument(ConstantExprKind Kind) {
167 switch (Kind) {
168 case ConstantExprKind::Normal:
169 case ConstantExprKind::ImmediateInvocation:
170 return false;
171
172 case ConstantExprKind::ClassTemplateArgument:
173 case ConstantExprKind::NonClassTemplateArgument:
174 return true;
175 }
176 llvm_unreachable("unknown ConstantExprKind")::llvm::llvm_unreachable_internal("unknown ConstantExprKind",
"clang/lib/AST/ExprConstant.cpp", 176)
;
177 }
178
179 /// The bound to claim that an array of unknown bound has.
180 /// The value in MostDerivedArraySize is undefined in this case. So, set it
181 /// to an arbitrary value that's likely to loudly break things if it's used.
182 static const uint64_t AssumedSizeForUnsizedArray =
183 std::numeric_limits<uint64_t>::max() / 2;
184
185 /// Determines if an LValue with the given LValueBase will have an unsized
186 /// array in its designator.
187 /// Find the path length and type of the most-derived subobject in the given
188 /// path, and find the size of the containing array, if any.
189 static unsigned
190 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
191 ArrayRef<APValue::LValuePathEntry> Path,
192 uint64_t &ArraySize, QualType &Type, bool &IsArray,
193 bool &FirstEntryIsUnsizedArray) {
194 // This only accepts LValueBases from APValues, and APValues don't support
195 // arrays that lack size info.
196 assert(!isBaseAnAllocSizeCall(Base) &&(static_cast <bool> (!isBaseAnAllocSizeCall(Base) &&
"Unsized arrays shouldn't appear here") ? void (0) : __assert_fail
("!isBaseAnAllocSizeCall(Base) && \"Unsized arrays shouldn't appear here\""
, "clang/lib/AST/ExprConstant.cpp", 197, __extension__ __PRETTY_FUNCTION__
))
197 "Unsized arrays shouldn't appear here")(static_cast <bool> (!isBaseAnAllocSizeCall(Base) &&
"Unsized arrays shouldn't appear here") ? void (0) : __assert_fail
("!isBaseAnAllocSizeCall(Base) && \"Unsized arrays shouldn't appear here\""
, "clang/lib/AST/ExprConstant.cpp", 197, __extension__ __PRETTY_FUNCTION__
))
;
198 unsigned MostDerivedLength = 0;
199 Type = getType(Base);
200
201 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
202 if (Type->isArrayType()) {
203 const ArrayType *AT = Ctx.getAsArrayType(Type);
204 Type = AT->getElementType();
205 MostDerivedLength = I + 1;
206 IsArray = true;
207
208 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
209 ArraySize = CAT->getSize().getZExtValue();
210 } else {
211 assert(I == 0 && "unexpected unsized array designator")(static_cast <bool> (I == 0 && "unexpected unsized array designator"
) ? void (0) : __assert_fail ("I == 0 && \"unexpected unsized array designator\""
, "clang/lib/AST/ExprConstant.cpp", 211, __extension__ __PRETTY_FUNCTION__
))
;
212 FirstEntryIsUnsizedArray = true;
213 ArraySize = AssumedSizeForUnsizedArray;
214 }
215 } else if (Type->isAnyComplexType()) {
216 const ComplexType *CT = Type->castAs<ComplexType>();
217 Type = CT->getElementType();
218 ArraySize = 2;
219 MostDerivedLength = I + 1;
220 IsArray = true;
221 } else if (const FieldDecl *FD = getAsField(Path[I])) {
222 Type = FD->getType();
223 ArraySize = 0;
224 MostDerivedLength = I + 1;
225 IsArray = false;
226 } else {
227 // Path[I] describes a base class.
228 ArraySize = 0;
229 IsArray = false;
230 }
231 }
232 return MostDerivedLength;
233 }
234
235 /// A path from a glvalue to a subobject of that glvalue.
236 struct SubobjectDesignator {
237 /// True if the subobject was named in a manner not supported by C++11. Such
238 /// lvalues can still be folded, but they are not core constant expressions
239 /// and we cannot perform lvalue-to-rvalue conversions on them.
240 unsigned Invalid : 1;
241
242 /// Is this a pointer one past the end of an object?
243 unsigned IsOnePastTheEnd : 1;
244
245 /// Indicator of whether the first entry is an unsized array.
246 unsigned FirstEntryIsAnUnsizedArray : 1;
247
248 /// Indicator of whether the most-derived object is an array element.
249 unsigned MostDerivedIsArrayElement : 1;
250
251 /// The length of the path to the most-derived object of which this is a
252 /// subobject.
253 unsigned MostDerivedPathLength : 28;
254
255 /// The size of the array of which the most-derived object is an element.
256 /// This will always be 0 if the most-derived object is not an array
257 /// element. 0 is not an indicator of whether or not the most-derived object
258 /// is an array, however, because 0-length arrays are allowed.
259 ///
260 /// If the current array is an unsized array, the value of this is
261 /// undefined.
262 uint64_t MostDerivedArraySize;
263
264 /// The type of the most derived object referred to by this address.
265 QualType MostDerivedType;
266
267 typedef APValue::LValuePathEntry PathEntry;
268
269 /// The entries on the path from the glvalue to the designated subobject.
270 SmallVector<PathEntry, 8> Entries;
271
272 SubobjectDesignator() : Invalid(true) {}
273
274 explicit SubobjectDesignator(QualType T)
275 : Invalid(false), IsOnePastTheEnd(false),
276 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
277 MostDerivedPathLength(0), MostDerivedArraySize(0),
278 MostDerivedType(T) {}
279
280 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
281 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
282 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
283 MostDerivedPathLength(0), MostDerivedArraySize(0) {
284 assert(V.isLValue() && "Non-LValue used to make an LValue designator?")(static_cast <bool> (V.isLValue() && "Non-LValue used to make an LValue designator?"
) ? void (0) : __assert_fail ("V.isLValue() && \"Non-LValue used to make an LValue designator?\""
, "clang/lib/AST/ExprConstant.cpp", 284, __extension__ __PRETTY_FUNCTION__
))
;
285 if (!Invalid) {
286 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
287 ArrayRef<PathEntry> VEntries = V.getLValuePath();
288 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
289 if (V.getLValueBase()) {
290 bool IsArray = false;
291 bool FirstIsUnsizedArray = false;
292 MostDerivedPathLength = findMostDerivedSubobject(
293 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
294 MostDerivedType, IsArray, FirstIsUnsizedArray);
295 MostDerivedIsArrayElement = IsArray;
296 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
297 }
298 }
299 }
300
301 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
302 unsigned NewLength) {
303 if (Invalid)
304 return;
305
306 assert(Base && "cannot truncate path for null pointer")(static_cast <bool> (Base && "cannot truncate path for null pointer"
) ? void (0) : __assert_fail ("Base && \"cannot truncate path for null pointer\""
, "clang/lib/AST/ExprConstant.cpp", 306, __extension__ __PRETTY_FUNCTION__
))
;
307 assert(NewLength <= Entries.size() && "not a truncation")(static_cast <bool> (NewLength <= Entries.size() &&
"not a truncation") ? void (0) : __assert_fail ("NewLength <= Entries.size() && \"not a truncation\""
, "clang/lib/AST/ExprConstant.cpp", 307, __extension__ __PRETTY_FUNCTION__
))
;
308
309 if (NewLength == Entries.size())
310 return;
311 Entries.resize(NewLength);
312
313 bool IsArray = false;
314 bool FirstIsUnsizedArray = false;
315 MostDerivedPathLength = findMostDerivedSubobject(
316 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
317 FirstIsUnsizedArray);
318 MostDerivedIsArrayElement = IsArray;
319 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
320 }
321
322 void setInvalid() {
323 Invalid = true;
324 Entries.clear();
325 }
326
327 /// Determine whether the most derived subobject is an array without a
328 /// known bound.
329 bool isMostDerivedAnUnsizedArray() const {
330 assert(!Invalid && "Calling this makes no sense on invalid designators")(static_cast <bool> (!Invalid && "Calling this makes no sense on invalid designators"
) ? void (0) : __assert_fail ("!Invalid && \"Calling this makes no sense on invalid designators\""
, "clang/lib/AST/ExprConstant.cpp", 330, __extension__ __PRETTY_FUNCTION__
))
;
331 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
332 }
333
334 /// Determine what the most derived array's size is. Results in an assertion
335 /// failure if the most derived array lacks a size.
336 uint64_t getMostDerivedArraySize() const {
337 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size")(static_cast <bool> (!isMostDerivedAnUnsizedArray() &&
"Unsized array has no size") ? void (0) : __assert_fail ("!isMostDerivedAnUnsizedArray() && \"Unsized array has no size\""
, "clang/lib/AST/ExprConstant.cpp", 337, __extension__ __PRETTY_FUNCTION__
))
;
338 return MostDerivedArraySize;
339 }
340
341 /// Determine whether this is a one-past-the-end pointer.
342 bool isOnePastTheEnd() const {
343 assert(!Invalid)(static_cast <bool> (!Invalid) ? void (0) : __assert_fail
("!Invalid", "clang/lib/AST/ExprConstant.cpp", 343, __extension__
__PRETTY_FUNCTION__))
;
344 if (IsOnePastTheEnd)
345 return true;
346 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
347 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
348 MostDerivedArraySize)
349 return true;
350 return false;
351 }
352
353 /// Get the range of valid index adjustments in the form
354 /// {maximum value that can be subtracted from this pointer,
355 /// maximum value that can be added to this pointer}
356 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
357 if (Invalid || isMostDerivedAnUnsizedArray())
358 return {0, 0};
359
360 // [expr.add]p4: For the purposes of these operators, a pointer to a
361 // nonarray object behaves the same as a pointer to the first element of
362 // an array of length one with the type of the object as its element type.
363 bool IsArray = MostDerivedPathLength == Entries.size() &&
364 MostDerivedIsArrayElement;
365 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
366 : (uint64_t)IsOnePastTheEnd;
367 uint64_t ArraySize =
368 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
369 return {ArrayIndex, ArraySize - ArrayIndex};
370 }
371
372 /// Check that this refers to a valid subobject.
373 bool isValidSubobject() const {
374 if (Invalid)
375 return false;
376 return !isOnePastTheEnd();
377 }
378 /// Check that this refers to a valid subobject, and if not, produce a
379 /// relevant diagnostic and set the designator as invalid.
380 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
381
382 /// Get the type of the designated object.
383 QualType getType(ASTContext &Ctx) const {
384 assert(!Invalid && "invalid designator has no subobject type")(static_cast <bool> (!Invalid && "invalid designator has no subobject type"
) ? void (0) : __assert_fail ("!Invalid && \"invalid designator has no subobject type\""
, "clang/lib/AST/ExprConstant.cpp", 384, __extension__ __PRETTY_FUNCTION__
))
;
385 return MostDerivedPathLength == Entries.size()
386 ? MostDerivedType
387 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
388 }
389
390 /// Update this designator to refer to the first element within this array.
391 void addArrayUnchecked(const ConstantArrayType *CAT) {
392 Entries.push_back(PathEntry::ArrayIndex(0));
393
394 // This is a most-derived object.
395 MostDerivedType = CAT->getElementType();
396 MostDerivedIsArrayElement = true;
397 MostDerivedArraySize = CAT->getSize().getZExtValue();
398 MostDerivedPathLength = Entries.size();
399 }
400 /// Update this designator to refer to the first element within the array of
401 /// elements of type T. This is an array of unknown size.
402 void addUnsizedArrayUnchecked(QualType ElemTy) {
403 Entries.push_back(PathEntry::ArrayIndex(0));
404
405 MostDerivedType = ElemTy;
406 MostDerivedIsArrayElement = true;
407 // The value in MostDerivedArraySize is undefined in this case. So, set it
408 // to an arbitrary value that's likely to loudly break things if it's
409 // used.
410 MostDerivedArraySize = AssumedSizeForUnsizedArray;
411 MostDerivedPathLength = Entries.size();
412 }
413 /// Update this designator to refer to the given base or member of this
414 /// object.
415 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
416 Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
417
418 // If this isn't a base class, it's a new most-derived object.
419 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
420 MostDerivedType = FD->getType();
421 MostDerivedIsArrayElement = false;
422 MostDerivedArraySize = 0;
423 MostDerivedPathLength = Entries.size();
424 }
425 }
426 /// Update this designator to refer to the given complex component.
427 void addComplexUnchecked(QualType EltTy, bool Imag) {
428 Entries.push_back(PathEntry::ArrayIndex(Imag));
429
430 // This is technically a most-derived object, though in practice this
431 // is unlikely to matter.
432 MostDerivedType = EltTy;
433 MostDerivedIsArrayElement = true;
434 MostDerivedArraySize = 2;
435 MostDerivedPathLength = Entries.size();
436 }
437 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
438 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
439 const APSInt &N);
440 /// Add N to the address of this subobject.
441 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
442 if (Invalid || !N) return;
443 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
444 if (isMostDerivedAnUnsizedArray()) {
445 diagnoseUnsizedArrayPointerArithmetic(Info, E);
446 // Can't verify -- trust that the user is doing the right thing (or if
447 // not, trust that the caller will catch the bad behavior).
448 // FIXME: Should we reject if this overflows, at least?
449 Entries.back() = PathEntry::ArrayIndex(
450 Entries.back().getAsArrayIndex() + TruncatedN);
451 return;
452 }
453
454 // [expr.add]p4: For the purposes of these operators, a pointer to a
455 // nonarray object behaves the same as a pointer to the first element of
456 // an array of length one with the type of the object as its element type.
457 bool IsArray = MostDerivedPathLength == Entries.size() &&
458 MostDerivedIsArrayElement;
459 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
460 : (uint64_t)IsOnePastTheEnd;
461 uint64_t ArraySize =
462 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
463
464 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
465 // Calculate the actual index in a wide enough type, so we can include
466 // it in the note.
467 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
468 (llvm::APInt&)N += ArrayIndex;
469 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index")(static_cast <bool> (N.ugt(ArraySize) && "bounds check failed for in-bounds index"
) ? void (0) : __assert_fail ("N.ugt(ArraySize) && \"bounds check failed for in-bounds index\""
, "clang/lib/AST/ExprConstant.cpp", 469, __extension__ __PRETTY_FUNCTION__
))
;
470 diagnosePointerArithmetic(Info, E, N);
471 setInvalid();
472 return;
473 }
474
475 ArrayIndex += TruncatedN;
476 assert(ArrayIndex <= ArraySize &&(static_cast <bool> (ArrayIndex <= ArraySize &&
"bounds check succeeded for out-of-bounds index") ? void (0)
: __assert_fail ("ArrayIndex <= ArraySize && \"bounds check succeeded for out-of-bounds index\""
, "clang/lib/AST/ExprConstant.cpp", 477, __extension__ __PRETTY_FUNCTION__
))
477 "bounds check succeeded for out-of-bounds index")(static_cast <bool> (ArrayIndex <= ArraySize &&
"bounds check succeeded for out-of-bounds index") ? void (0)
: __assert_fail ("ArrayIndex <= ArraySize && \"bounds check succeeded for out-of-bounds index\""
, "clang/lib/AST/ExprConstant.cpp", 477, __extension__ __PRETTY_FUNCTION__
))
;
478
479 if (IsArray)
480 Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
481 else
482 IsOnePastTheEnd = (ArrayIndex != 0);
483 }
484 };
485
486 /// A scope at the end of which an object can need to be destroyed.
487 enum class ScopeKind {
488 Block,
489 FullExpression,
490 Call
491 };
492
493 /// A reference to a particular call and its arguments.
494 struct CallRef {
495 CallRef() : OrigCallee(), CallIndex(0), Version() {}
496 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
497 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
498
499 explicit operator bool() const { return OrigCallee; }
500
501 /// Get the parameter that the caller initialized, corresponding to the
502 /// given parameter in the callee.
503 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
504 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
505 : PVD;
506 }
507
508 /// The callee at the point where the arguments were evaluated. This might
509 /// be different from the actual callee (a different redeclaration, or a
510 /// virtual override), but this function's parameters are the ones that
511 /// appear in the parameter map.
512 const FunctionDecl *OrigCallee;
513 /// The call index of the frame that holds the argument values.
514 unsigned CallIndex;
515 /// The version of the parameters corresponding to this call.
516 unsigned Version;
517 };
518
519 /// A stack frame in the constexpr call stack.
520 class CallStackFrame : public interp::Frame {
521 public:
522 EvalInfo &Info;
523
524 /// Parent - The caller of this stack frame.
525 CallStackFrame *Caller;
526
527 /// Callee - The function which was called.
528 const FunctionDecl *Callee;
529
530 /// This - The binding for the this pointer in this call, if any.
531 const LValue *This;
532
533 /// Information on how to find the arguments to this call. Our arguments
534 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
535 /// key and this value as the version.
536 CallRef Arguments;
537
538 /// Source location information about the default argument or default
539 /// initializer expression we're evaluating, if any.
540 CurrentSourceLocExprScope CurSourceLocExprScope;
541
542 // Note that we intentionally use std::map here so that references to
543 // values are stable.
544 typedef std::pair<const void *, unsigned> MapKeyTy;
545 typedef std::map<MapKeyTy, APValue> MapTy;
546 /// Temporaries - Temporary lvalues materialized within this stack frame.
547 MapTy Temporaries;
548
549 /// CallLoc - The location of the call expression for this call.
550 SourceLocation CallLoc;
551
552 /// Index - The call index of this call.
553 unsigned Index;
554
555 /// The stack of integers for tracking version numbers for temporaries.
556 SmallVector<unsigned, 2> TempVersionStack = {1};
557 unsigned CurTempVersion = TempVersionStack.back();
558
559 unsigned getTempVersion() const { return TempVersionStack.back(); }
560
561 void pushTempVersion() {
562 TempVersionStack.push_back(++CurTempVersion);
563 }
564
565 void popTempVersion() {
566 TempVersionStack.pop_back();
567 }
568
569 CallRef createCall(const FunctionDecl *Callee) {
570 return {Callee, Index, ++CurTempVersion};
571 }
572
573 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
574 // on the overall stack usage of deeply-recursing constexpr evaluations.
575 // (We should cache this map rather than recomputing it repeatedly.)
576 // But let's try this and see how it goes; we can look into caching the map
577 // as a later change.
578
579 /// LambdaCaptureFields - Mapping from captured variables/this to
580 /// corresponding data members in the closure class.
581 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
582 FieldDecl *LambdaThisCaptureField;
583
584 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
585 const FunctionDecl *Callee, const LValue *This,
586 CallRef Arguments);
587 ~CallStackFrame();
588
589 // Return the temporary for Key whose version number is Version.
590 APValue *getTemporary(const void *Key, unsigned Version) {
591 MapKeyTy KV(Key, Version);
592 auto LB = Temporaries.lower_bound(KV);
593 if (LB != Temporaries.end() && LB->first == KV)
594 return &LB->second;
595 // Pair (Key,Version) wasn't found in the map. Check that no elements
596 // in the map have 'Key' as their key.
597 assert((LB == Temporaries.end() || LB->first.first != Key) &&(static_cast <bool> ((LB == Temporaries.end() || LB->
first.first != Key) && (LB == Temporaries.begin() || std
::prev(LB)->first.first != Key) && "Element with key 'Key' found in map"
) ? void (0) : __assert_fail ("(LB == Temporaries.end() || LB->first.first != Key) && (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && \"Element with key 'Key' found in map\""
, "clang/lib/AST/ExprConstant.cpp", 599, __extension__ __PRETTY_FUNCTION__
))
598 (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&(static_cast <bool> ((LB == Temporaries.end() || LB->
first.first != Key) && (LB == Temporaries.begin() || std
::prev(LB)->first.first != Key) && "Element with key 'Key' found in map"
) ? void (0) : __assert_fail ("(LB == Temporaries.end() || LB->first.first != Key) && (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && \"Element with key 'Key' found in map\""
, "clang/lib/AST/ExprConstant.cpp", 599, __extension__ __PRETTY_FUNCTION__
))
599 "Element with key 'Key' found in map")(static_cast <bool> ((LB == Temporaries.end() || LB->
first.first != Key) && (LB == Temporaries.begin() || std
::prev(LB)->first.first != Key) && "Element with key 'Key' found in map"
) ? void (0) : __assert_fail ("(LB == Temporaries.end() || LB->first.first != Key) && (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && \"Element with key 'Key' found in map\""
, "clang/lib/AST/ExprConstant.cpp", 599, __extension__ __PRETTY_FUNCTION__
))
;
600 return nullptr;
601 }
602
603 // Return the current temporary for Key in the map.
604 APValue *getCurrentTemporary(const void *Key) {
605 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX(2147483647 *2U +1U)));
606 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
607 return &std::prev(UB)->second;
608 return nullptr;
609 }
610
611 // Return the version number of the current temporary for Key.
612 unsigned getCurrentTemporaryVersion(const void *Key) const {
613 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX(2147483647 *2U +1U)));
614 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
615 return std::prev(UB)->first.second;
616 return 0;
617 }
618
619 /// Allocate storage for an object of type T in this stack frame.
620 /// Populates LV with a handle to the created object. Key identifies
621 /// the temporary within the stack frame, and must not be reused without
622 /// bumping the temporary version number.
623 template<typename KeyT>
624 APValue &createTemporary(const KeyT *Key, QualType T,
625 ScopeKind Scope, LValue &LV);
626
627 /// Allocate storage for a parameter of a function call made in this frame.
628 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
629
630 void describe(llvm::raw_ostream &OS) override;
631
632 Frame *getCaller() const override { return Caller; }
633 SourceLocation getCallLocation() const override { return CallLoc; }
634 const FunctionDecl *getCallee() const override { return Callee; }
635
636 bool isStdFunction() const {
637 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
638 if (DC->isStdNamespace())
639 return true;
640 return false;
641 }
642
643 private:
644 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
645 ScopeKind Scope);
646 };
647
648 /// Temporarily override 'this'.
649 class ThisOverrideRAII {
650 public:
651 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
652 : Frame(Frame), OldThis(Frame.This) {
653 if (Enable)
654 Frame.This = NewThis;
655 }
656 ~ThisOverrideRAII() {
657 Frame.This = OldThis;
658 }
659 private:
660 CallStackFrame &Frame;
661 const LValue *OldThis;
662 };
663}
664
665static bool HandleDestruction(EvalInfo &Info, const Expr *E,
666 const LValue &This, QualType ThisType);
667static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
668 APValue::LValueBase LVBase, APValue &Value,
669 QualType T);
670
671namespace {
672 /// A cleanup, and a flag indicating whether it is lifetime-extended.
673 class Cleanup {
674 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
675 APValue::LValueBase Base;
676 QualType T;
677
678 public:
679 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
680 ScopeKind Scope)
681 : Value(Val, Scope), Base(Base), T(T) {}
682
683 /// Determine whether this cleanup should be performed at the end of the
684 /// given kind of scope.
685 bool isDestroyedAtEndOf(ScopeKind K) const {
686 return (int)Value.getInt() >= (int)K;
687 }
688 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
689 if (RunDestructors) {
690 SourceLocation Loc;
691 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
692 Loc = VD->getLocation();
693 else if (const Expr *E = Base.dyn_cast<const Expr*>())
694 Loc = E->getExprLoc();
695 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
696 }
697 *Value.getPointer() = APValue();
698 return true;
699 }
700
701 bool hasSideEffect() {
702 return T.isDestructedType();
703 }
704 };
705
706 /// A reference to an object whose construction we are currently evaluating.
707 struct ObjectUnderConstruction {
708 APValue::LValueBase Base;
709 ArrayRef<APValue::LValuePathEntry> Path;
710 friend bool operator==(const ObjectUnderConstruction &LHS,
711 const ObjectUnderConstruction &RHS) {
712 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
713 }
714 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
715 return llvm::hash_combine(Obj.Base, Obj.Path);
716 }
717 };
718 enum class ConstructionPhase {
719 None,
720 Bases,
721 AfterBases,
722 AfterFields,
723 Destroying,
724 DestroyingBases
725 };
726}
727
728namespace llvm {
729template<> struct DenseMapInfo<ObjectUnderConstruction> {
730 using Base = DenseMapInfo<APValue::LValueBase>;
731 static ObjectUnderConstruction getEmptyKey() {
732 return {Base::getEmptyKey(), {}}; }
733 static ObjectUnderConstruction getTombstoneKey() {
734 return {Base::getTombstoneKey(), {}};
735 }
736 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
737 return hash_value(Object);
738 }
739 static bool isEqual(const ObjectUnderConstruction &LHS,
740 const ObjectUnderConstruction &RHS) {
741 return LHS == RHS;
742 }
743};
744}
745
746namespace {
747 /// A dynamically-allocated heap object.
748 struct DynAlloc {
749 /// The value of this heap-allocated object.
750 APValue Value;
751 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
752 /// or a CallExpr (the latter is for direct calls to operator new inside
753 /// std::allocator<T>::allocate).
754 const Expr *AllocExpr = nullptr;
755
756 enum Kind {
757 New,
758 ArrayNew,
759 StdAllocator
760 };
761
762 /// Get the kind of the allocation. This must match between allocation
763 /// and deallocation.
764 Kind getKind() const {
765 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
766 return NE->isArray() ? ArrayNew : New;
767 assert(isa<CallExpr>(AllocExpr))(static_cast <bool> (isa<CallExpr>(AllocExpr)) ? void
(0) : __assert_fail ("isa<CallExpr>(AllocExpr)", "clang/lib/AST/ExprConstant.cpp"
, 767, __extension__ __PRETTY_FUNCTION__))
;
768 return StdAllocator;
769 }
770 };
771
772 struct DynAllocOrder {
773 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
774 return L.getIndex() < R.getIndex();
775 }
776 };
777
778 /// EvalInfo - This is a private struct used by the evaluator to capture
779 /// information about a subexpression as it is folded. It retains information
780 /// about the AST context, but also maintains information about the folded
781 /// expression.
782 ///
783 /// If an expression could be evaluated, it is still possible it is not a C
784 /// "integer constant expression" or constant expression. If not, this struct
785 /// captures information about how and why not.
786 ///
787 /// One bit of information passed *into* the request for constant folding
788 /// indicates whether the subexpression is "evaluated" or not according to C
789 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
790 /// evaluate the expression regardless of what the RHS is, but C only allows
791 /// certain things in certain situations.
792 class EvalInfo : public interp::State {
793 public:
794 ASTContext &Ctx;
795
796 /// EvalStatus - Contains information about the evaluation.
797 Expr::EvalStatus &EvalStatus;
798
799 /// CurrentCall - The top of the constexpr call stack.
800 CallStackFrame *CurrentCall;
801
802 /// CallStackDepth - The number of calls in the call stack right now.
803 unsigned CallStackDepth;
804
805 /// NextCallIndex - The next call index to assign.
806 unsigned NextCallIndex;
807
808 /// StepsLeft - The remaining number of evaluation steps we're permitted
809 /// to perform. This is essentially a limit for the number of statements
810 /// we will evaluate.
811 unsigned StepsLeft;
812
813 /// Enable the experimental new constant interpreter. If an expression is
814 /// not supported by the interpreter, an error is triggered.
815 bool EnableNewConstInterp;
816
817 /// BottomFrame - The frame in which evaluation started. This must be
818 /// initialized after CurrentCall and CallStackDepth.
819 CallStackFrame BottomFrame;
820
821 /// A stack of values whose lifetimes end at the end of some surrounding
822 /// evaluation frame.
823 llvm::SmallVector<Cleanup, 16> CleanupStack;
824
825 /// EvaluatingDecl - This is the declaration whose initializer is being
826 /// evaluated, if any.
827 APValue::LValueBase EvaluatingDecl;
828
829 enum class EvaluatingDeclKind {
830 None,
831 /// We're evaluating the construction of EvaluatingDecl.
832 Ctor,
833 /// We're evaluating the destruction of EvaluatingDecl.
834 Dtor,
835 };
836 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
837
838 /// EvaluatingDeclValue - This is the value being constructed for the
839 /// declaration whose initializer is being evaluated, if any.
840 APValue *EvaluatingDeclValue;
841
842 /// Set of objects that are currently being constructed.
843 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
844 ObjectsUnderConstruction;
845
846 /// Current heap allocations, along with the location where each was
847 /// allocated. We use std::map here because we need stable addresses
848 /// for the stored APValues.
849 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
850
851 /// The number of heap allocations performed so far in this evaluation.
852 unsigned NumHeapAllocs = 0;
853
854 struct EvaluatingConstructorRAII {
855 EvalInfo &EI;
856 ObjectUnderConstruction Object;
857 bool DidInsert;
858 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
859 bool HasBases)
860 : EI(EI), Object(Object) {
861 DidInsert =
862 EI.ObjectsUnderConstruction
863 .insert({Object, HasBases ? ConstructionPhase::Bases
864 : ConstructionPhase::AfterBases})
865 .second;
866 }
867 void finishedConstructingBases() {
868 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
869 }
870 void finishedConstructingFields() {
871 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
872 }
873 ~EvaluatingConstructorRAII() {
874 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
875 }
876 };
877
878 struct EvaluatingDestructorRAII {
879 EvalInfo &EI;
880 ObjectUnderConstruction Object;
881 bool DidInsert;
882 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
883 : EI(EI), Object(Object) {
884 DidInsert = EI.ObjectsUnderConstruction
885 .insert({Object, ConstructionPhase::Destroying})
886 .second;
887 }
888 void startedDestroyingBases() {
889 EI.ObjectsUnderConstruction[Object] =
890 ConstructionPhase::DestroyingBases;
891 }
892 ~EvaluatingDestructorRAII() {
893 if (DidInsert)
894 EI.ObjectsUnderConstruction.erase(Object);
895 }
896 };
897
898 ConstructionPhase
899 isEvaluatingCtorDtor(APValue::LValueBase Base,
900 ArrayRef<APValue::LValuePathEntry> Path) {
901 return ObjectsUnderConstruction.lookup({Base, Path});
902 }
903
904 /// If we're currently speculatively evaluating, the outermost call stack
905 /// depth at which we can mutate state, otherwise 0.
906 unsigned SpeculativeEvaluationDepth = 0;
907
908 /// The current array initialization index, if we're performing array
909 /// initialization.
910 uint64_t ArrayInitIndex = -1;
911
912 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
913 /// notes attached to it will also be stored, otherwise they will not be.
914 bool HasActiveDiagnostic;
915
916 /// Have we emitted a diagnostic explaining why we couldn't constant
917 /// fold (not just why it's not strictly a constant expression)?
918 bool HasFoldFailureDiagnostic;
919
920 /// Whether or not we're in a context where the front end requires a
921 /// constant value.
922 bool InConstantContext;
923
924 /// Whether we're checking that an expression is a potential constant
925 /// expression. If so, do not fail on constructs that could become constant
926 /// later on (such as a use of an undefined global).
927 bool CheckingPotentialConstantExpression = false;
928
929 /// Whether we're checking for an expression that has undefined behavior.
930 /// If so, we will produce warnings if we encounter an operation that is
931 /// always undefined.
932 ///
933 /// Note that we still need to evaluate the expression normally when this
934 /// is set; this is used when evaluating ICEs in C.
935 bool CheckingForUndefinedBehavior = false;
936
937 enum EvaluationMode {
938 /// Evaluate as a constant expression. Stop if we find that the expression
939 /// is not a constant expression.
940 EM_ConstantExpression,
941
942 /// Evaluate as a constant expression. Stop if we find that the expression
943 /// is not a constant expression. Some expressions can be retried in the
944 /// optimizer if we don't constant fold them here, but in an unevaluated
945 /// context we try to fold them immediately since the optimizer never
946 /// gets a chance to look at it.
947 EM_ConstantExpressionUnevaluated,
948
949 /// Fold the expression to a constant. Stop if we hit a side-effect that
950 /// we can't model.
951 EM_ConstantFold,
952
953 /// Evaluate in any way we know how. Don't worry about side-effects that
954 /// can't be modeled.
955 EM_IgnoreSideEffects,
956 } EvalMode;
957
958 /// Are we checking whether the expression is a potential constant
959 /// expression?
960 bool checkingPotentialConstantExpression() const override {
961 return CheckingPotentialConstantExpression;
962 }
963
964 /// Are we checking an expression for overflow?
965 // FIXME: We should check for any kind of undefined or suspicious behavior
966 // in such constructs, not just overflow.
967 bool checkingForUndefinedBehavior() const override {
968 return CheckingForUndefinedBehavior;
969 }
970
971 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
972 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
973 CallStackDepth(0), NextCallIndex(1),
974 StepsLeft(C.getLangOpts().ConstexprStepLimit),
975 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
976 BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
977 EvaluatingDecl((const ValueDecl *)nullptr),
978 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
979 HasFoldFailureDiagnostic(false), InConstantContext(false),
980 EvalMode(Mode) {}
981
982 ~EvalInfo() {
983 discardCleanups();
984 }
985
986 ASTContext &getCtx() const override { return Ctx; }
987
988 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
989 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
990 EvaluatingDecl = Base;
991 IsEvaluatingDecl = EDK;
992 EvaluatingDeclValue = &Value;
993 }
994
995 bool CheckCallLimit(SourceLocation Loc) {
996 // Don't perform any constexpr calls (other than the call we're checking)
997 // when checking a potential constant expression.
998 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
999 return false;
1000 if (NextCallIndex == 0) {
1001 // NextCallIndex has wrapped around.
1002 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1003 return false;
1004 }
1005 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1006 return true;
1007 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1008 << getLangOpts().ConstexprCallDepth;
1009 return false;
1010 }
1011
1012 std::pair<CallStackFrame *, unsigned>
1013 getCallFrameAndDepth(unsigned CallIndex) {
1014 assert(CallIndex && "no call index in getCallFrameAndDepth")(static_cast <bool> (CallIndex && "no call index in getCallFrameAndDepth"
) ? void (0) : __assert_fail ("CallIndex && \"no call index in getCallFrameAndDepth\""
, "clang/lib/AST/ExprConstant.cpp", 1014, __extension__ __PRETTY_FUNCTION__
))
;
1015 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1016 // be null in this loop.
1017 unsigned Depth = CallStackDepth;
1018 CallStackFrame *Frame = CurrentCall;
1019 while (Frame->Index > CallIndex) {
1020 Frame = Frame->Caller;
1021 --Depth;
1022 }
1023 if (Frame->Index == CallIndex)
1024 return {Frame, Depth};
1025 return {nullptr, 0};
1026 }
1027
1028 bool nextStep(const Stmt *S) {
1029 if (!StepsLeft) {
1030 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1031 return false;
1032 }
1033 --StepsLeft;
1034 return true;
1035 }
1036
1037 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1038
1039 Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
1040 Optional<DynAlloc*> Result;
1041 auto It = HeapAllocs.find(DA);
1042 if (It != HeapAllocs.end())
1043 Result = &It->second;
1044 return Result;
1045 }
1046
1047 /// Get the allocated storage for the given parameter of the given call.
1048 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1049 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1050 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1051 : nullptr;
1052 }
1053
1054 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1055 struct StdAllocatorCaller {
1056 unsigned FrameIndex;
1057 QualType ElemType;
1058 explicit operator bool() const { return FrameIndex != 0; };
1059 };
1060
1061 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1062 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1063 Call = Call->Caller) {
1064 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1065 if (!MD)
1066 continue;
1067 const IdentifierInfo *FnII = MD->getIdentifier();
1068 if (!FnII || !FnII->isStr(FnName))
1069 continue;
1070
1071 const auto *CTSD =
1072 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1073 if (!CTSD)
1074 continue;
1075
1076 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1077 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1078 if (CTSD->isInStdNamespace() && ClassII &&
1079 ClassII->isStr("allocator") && TAL.size() >= 1 &&
1080 TAL[0].getKind() == TemplateArgument::Type)
1081 return {Call->Index, TAL[0].getAsType()};
1082 }
1083
1084 return {};
1085 }
1086
1087 void performLifetimeExtension() {
1088 // Disable the cleanups for lifetime-extended temporaries.
1089 llvm::erase_if(CleanupStack, [](Cleanup &C) {
1090 return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1091 });
1092 }
1093
1094 /// Throw away any remaining cleanups at the end of evaluation. If any
1095 /// cleanups would have had a side-effect, note that as an unmodeled
1096 /// side-effect and return false. Otherwise, return true.
1097 bool discardCleanups() {
1098 for (Cleanup &C : CleanupStack) {
1099 if (C.hasSideEffect() && !noteSideEffect()) {
1100 CleanupStack.clear();
1101 return false;
1102 }
1103 }
1104 CleanupStack.clear();
1105 return true;
1106 }
1107
1108 private:
1109 interp::Frame *getCurrentFrame() override { return CurrentCall; }
1110 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1111
1112 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1113 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1114
1115 void setFoldFailureDiagnostic(bool Flag) override {
1116 HasFoldFailureDiagnostic = Flag;
1117 }
1118
1119 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1120
1121 // If we have a prior diagnostic, it will be noting that the expression
1122 // isn't a constant expression. This diagnostic is more important,
1123 // unless we require this evaluation to produce a constant expression.
1124 //
1125 // FIXME: We might want to show both diagnostics to the user in
1126 // EM_ConstantFold mode.
1127 bool hasPriorDiagnostic() override {
1128 if (!EvalStatus.Diag->empty()) {
1129 switch (EvalMode) {
1130 case EM_ConstantFold:
1131 case EM_IgnoreSideEffects:
1132 if (!HasFoldFailureDiagnostic)
1133 break;
1134 // We've already failed to fold something. Keep that diagnostic.
1135 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1136 case EM_ConstantExpression:
1137 case EM_ConstantExpressionUnevaluated:
1138 setActiveDiagnostic(false);
1139 return true;
1140 }
1141 }
1142 return false;
1143 }
1144
1145 unsigned getCallStackDepth() override { return CallStackDepth; }
1146
1147 public:
1148 /// Should we continue evaluation after encountering a side-effect that we
1149 /// couldn't model?
1150 bool keepEvaluatingAfterSideEffect() {
1151 switch (EvalMode) {
1152 case EM_IgnoreSideEffects:
1153 return true;
1154
1155 case EM_ConstantExpression:
1156 case EM_ConstantExpressionUnevaluated:
1157 case EM_ConstantFold:
1158 // By default, assume any side effect might be valid in some other
1159 // evaluation of this expression from a different context.
1160 return checkingPotentialConstantExpression() ||
1161 checkingForUndefinedBehavior();
1162 }
1163 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "clang/lib/AST/ExprConstant.cpp"
, 1163)
;
1164 }
1165
1166 /// Note that we have had a side-effect, and determine whether we should
1167 /// keep evaluating.
1168 bool noteSideEffect() {
1169 EvalStatus.HasSideEffects = true;
1170 return keepEvaluatingAfterSideEffect();
1171 }
1172
1173 /// Should we continue evaluation after encountering undefined behavior?
1174 bool keepEvaluatingAfterUndefinedBehavior() {
1175 switch (EvalMode) {
1176 case EM_IgnoreSideEffects:
1177 case EM_ConstantFold:
1178 return true;
1179
1180 case EM_ConstantExpression:
1181 case EM_ConstantExpressionUnevaluated:
1182 return checkingForUndefinedBehavior();
1183 }
1184 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "clang/lib/AST/ExprConstant.cpp"
, 1184)
;
1185 }
1186
1187 /// Note that we hit something that was technically undefined behavior, but
1188 /// that we can evaluate past it (such as signed overflow or floating-point
1189 /// division by zero.)
1190 bool noteUndefinedBehavior() override {
1191 EvalStatus.HasUndefinedBehavior = true;
1192 return keepEvaluatingAfterUndefinedBehavior();
1193 }
1194
1195 /// Should we continue evaluation as much as possible after encountering a
1196 /// construct which can't be reduced to a value?
1197 bool keepEvaluatingAfterFailure() const override {
1198 if (!StepsLeft)
1199 return false;
1200
1201 switch (EvalMode) {
1202 case EM_ConstantExpression:
1203 case EM_ConstantExpressionUnevaluated:
1204 case EM_ConstantFold:
1205 case EM_IgnoreSideEffects:
1206 return checkingPotentialConstantExpression() ||
1207 checkingForUndefinedBehavior();
1208 }
1209 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "clang/lib/AST/ExprConstant.cpp"
, 1209)
;
1210 }
1211
1212 /// Notes that we failed to evaluate an expression that other expressions
1213 /// directly depend on, and determine if we should keep evaluating. This
1214 /// should only be called if we actually intend to keep evaluating.
1215 ///
1216 /// Call noteSideEffect() instead if we may be able to ignore the value that
1217 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1218 ///
1219 /// (Foo(), 1) // use noteSideEffect
1220 /// (Foo() || true) // use noteSideEffect
1221 /// Foo() + 1 // use noteFailure
1222 LLVM_NODISCARD[[clang::warn_unused_result]] bool noteFailure() {
1223 // Failure when evaluating some expression often means there is some
1224 // subexpression whose evaluation was skipped. Therefore, (because we
1225 // don't track whether we skipped an expression when unwinding after an
1226 // evaluation failure) every evaluation failure that bubbles up from a
1227 // subexpression implies that a side-effect has potentially happened. We
1228 // skip setting the HasSideEffects flag to true until we decide to
1229 // continue evaluating after that point, which happens here.
1230 bool KeepGoing = keepEvaluatingAfterFailure();
1231 EvalStatus.HasSideEffects |= KeepGoing;
1232 return KeepGoing;
1233 }
1234
1235 class ArrayInitLoopIndex {
1236 EvalInfo &Info;
1237 uint64_t OuterIndex;
1238
1239 public:
1240 ArrayInitLoopIndex(EvalInfo &Info)
1241 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1242 Info.ArrayInitIndex = 0;
1243 }
1244 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1245
1246 operator uint64_t&() { return Info.ArrayInitIndex; }
1247 };
1248 };
1249
1250 /// Object used to treat all foldable expressions as constant expressions.
1251 struct FoldConstant {
1252 EvalInfo &Info;
1253 bool Enabled;
1254 bool HadNoPriorDiags;
1255 EvalInfo::EvaluationMode OldMode;
1256
1257 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1258 : Info(Info),
1259 Enabled(Enabled),
1260 HadNoPriorDiags(Info.EvalStatus.Diag &&
1261 Info.EvalStatus.Diag->empty() &&
1262 !Info.EvalStatus.HasSideEffects),
1263 OldMode(Info.EvalMode) {
1264 if (Enabled)
1265 Info.EvalMode = EvalInfo::EM_ConstantFold;
1266 }
1267 void keepDiagnostics() { Enabled = false; }
1268 ~FoldConstant() {
1269 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1270 !Info.EvalStatus.HasSideEffects)
1271 Info.EvalStatus.Diag->clear();
1272 Info.EvalMode = OldMode;
1273 }
1274 };
1275
1276 /// RAII object used to set the current evaluation mode to ignore
1277 /// side-effects.
1278 struct IgnoreSideEffectsRAII {
1279 EvalInfo &Info;
1280 EvalInfo::EvaluationMode OldMode;
1281 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1282 : Info(Info), OldMode(Info.EvalMode) {
1283 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1284 }
1285
1286 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1287 };
1288
1289 /// RAII object used to optionally suppress diagnostics and side-effects from
1290 /// a speculative evaluation.
1291 class SpeculativeEvaluationRAII {
1292 EvalInfo *Info = nullptr;
1293 Expr::EvalStatus OldStatus;
1294 unsigned OldSpeculativeEvaluationDepth;
1295
1296 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1297 Info = Other.Info;
1298 OldStatus = Other.OldStatus;
1299 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1300 Other.Info = nullptr;
1301 }
1302
1303 void maybeRestoreState() {
1304 if (!Info)
1305 return;
1306
1307 Info->EvalStatus = OldStatus;
1308 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1309 }
1310
1311 public:
1312 SpeculativeEvaluationRAII() = default;
1313
1314 SpeculativeEvaluationRAII(
1315 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1316 : Info(&Info), OldStatus(Info.EvalStatus),
1317 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1318 Info.EvalStatus.Diag = NewDiag;
1319 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1320 }
1321
1322 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1323 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1324 moveFromAndCancel(std::move(Other));
1325 }
1326
1327 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1328 maybeRestoreState();
1329 moveFromAndCancel(std::move(Other));
1330 return *this;
1331 }
1332
1333 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1334 };
1335
1336 /// RAII object wrapping a full-expression or block scope, and handling
1337 /// the ending of the lifetime of temporaries created within it.
1338 template<ScopeKind Kind>
1339 class ScopeRAII {
1340 EvalInfo &Info;
1341 unsigned OldStackSize;
1342 public:
1343 ScopeRAII(EvalInfo &Info)
1344 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1345 // Push a new temporary version. This is needed to distinguish between
1346 // temporaries created in different iterations of a loop.
1347 Info.CurrentCall->pushTempVersion();
1348 }
1349 bool destroy(bool RunDestructors = true) {
1350 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1351 OldStackSize = -1U;
1352 return OK;
1353 }
1354 ~ScopeRAII() {
1355 if (OldStackSize != -1U)
1356 destroy(false);
1357 // Body moved to a static method to encourage the compiler to inline away
1358 // instances of this class.
1359 Info.CurrentCall->popTempVersion();
1360 }
1361 private:
1362 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1363 unsigned OldStackSize) {
1364 assert(OldStackSize <= Info.CleanupStack.size() &&(static_cast <bool> (OldStackSize <= Info.CleanupStack
.size() && "running cleanups out of order?") ? void (
0) : __assert_fail ("OldStackSize <= Info.CleanupStack.size() && \"running cleanups out of order?\""
, "clang/lib/AST/ExprConstant.cpp", 1365, __extension__ __PRETTY_FUNCTION__
))
1365 "running cleanups out of order?")(static_cast <bool> (OldStackSize <= Info.CleanupStack
.size() && "running cleanups out of order?") ? void (
0) : __assert_fail ("OldStackSize <= Info.CleanupStack.size() && \"running cleanups out of order?\""
, "clang/lib/AST/ExprConstant.cpp", 1365, __extension__ __PRETTY_FUNCTION__
))
;
1366
1367 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1368 // for a full-expression scope.
1369 bool Success = true;
1370 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1371 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1372 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1373 Success = false;
1374 break;
1375 }
1376 }
1377 }
1378
1379 // Compact any retained cleanups.
1380 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1381 if (Kind != ScopeKind::Block)
1382 NewEnd =
1383 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1384 return C.isDestroyedAtEndOf(Kind);
1385 });
1386 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1387 return Success;
1388 }
1389 };
1390 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1391 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1392 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1393}
1394
1395bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1396 CheckSubobjectKind CSK) {
1397 if (Invalid)
1398 return false;
1399 if (isOnePastTheEnd()) {
1400 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1401 << CSK;
1402 setInvalid();
1403 return false;
1404 }
1405 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1406 // must actually be at least one array element; even a VLA cannot have a
1407 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1408 return true;
1409}
1410
1411void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1412 const Expr *E) {
1413 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1414 // Do not set the designator as invalid: we can represent this situation,
1415 // and correct handling of __builtin_object_size requires us to do so.
1416}
1417
1418void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1419 const Expr *E,
1420 const APSInt &N) {
1421 // If we're complaining, we must be able to statically determine the size of
1422 // the most derived array.
1423 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1424 Info.CCEDiag(E, diag::note_constexpr_array_index)
1425 << N << /*array*/ 0
1426 << static_cast<unsigned>(getMostDerivedArraySize());
1427 else
1428 Info.CCEDiag(E, diag::note_constexpr_array_index)
1429 << N << /*non-array*/ 1;
1430 setInvalid();
1431}
1432
1433CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1434 const FunctionDecl *Callee, const LValue *This,
1435 CallRef Call)
1436 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1437 Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1438 Info.CurrentCall = this;
1439 ++Info.CallStackDepth;
1440}
1441
1442CallStackFrame::~CallStackFrame() {
1443 assert(Info.CurrentCall == this && "calls retired out of order")(static_cast <bool> (Info.CurrentCall == this &&
"calls retired out of order") ? void (0) : __assert_fail ("Info.CurrentCall == this && \"calls retired out of order\""
, "clang/lib/AST/ExprConstant.cpp", 1443, __extension__ __PRETTY_FUNCTION__
))
;
1444 --Info.CallStackDepth;
1445 Info.CurrentCall = Caller;
1446}
1447
1448static bool isRead(AccessKinds AK) {
1449 return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1450}
1451
1452static bool isModification(AccessKinds AK) {
1453 switch (AK) {
1454 case AK_Read:
1455 case AK_ReadObjectRepresentation:
1456 case AK_MemberCall:
1457 case AK_DynamicCast:
1458 case AK_TypeId:
1459 return false;
1460 case AK_Assign:
1461 case AK_Increment:
1462 case AK_Decrement:
1463 case AK_Construct:
1464 case AK_Destroy:
1465 return true;
1466 }
1467 llvm_unreachable("unknown access kind")::llvm::llvm_unreachable_internal("unknown access kind", "clang/lib/AST/ExprConstant.cpp"
, 1467)
;
1468}
1469
1470static bool isAnyAccess(AccessKinds AK) {
1471 return isRead(AK) || isModification(AK);
1472}
1473
1474/// Is this an access per the C++ definition?
1475static bool isFormalAccess(AccessKinds AK) {
1476 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1477}
1478
1479/// Is this kind of axcess valid on an indeterminate object value?
1480static bool isValidIndeterminateAccess(AccessKinds AK) {
1481 switch (AK) {
1482 case AK_Read:
1483 case AK_Increment:
1484 case AK_Decrement:
1485 // These need the object's value.
1486 return false;
1487
1488 case AK_ReadObjectRepresentation:
1489 case AK_Assign:
1490 case AK_Construct:
1491 case AK_Destroy:
1492 // Construction and destruction don't need the value.
1493 return true;
1494
1495 case AK_MemberCall:
1496 case AK_DynamicCast:
1497 case AK_TypeId:
1498 // These aren't really meaningful on scalars.
1499 return true;
1500 }
1501 llvm_unreachable("unknown access kind")::llvm::llvm_unreachable_internal("unknown access kind", "clang/lib/AST/ExprConstant.cpp"
, 1501)
;
1502}
1503
1504namespace {
1505 struct ComplexValue {
1506 private:
1507 bool IsInt;
1508
1509 public:
1510 APSInt IntReal, IntImag;
1511 APFloat FloatReal, FloatImag;
1512
1513 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1514
1515 void makeComplexFloat() { IsInt = false; }
1516 bool isComplexFloat() const { return !IsInt; }
1517 APFloat &getComplexFloatReal() { return FloatReal; }
1518 APFloat &getComplexFloatImag() { return FloatImag; }
1519
1520 void makeComplexInt() { IsInt = true; }
1521 bool isComplexInt() const { return IsInt; }
1522 APSInt &getComplexIntReal() { return IntReal; }
1523 APSInt &getComplexIntImag() { return IntImag; }
1524
1525 void moveInto(APValue &v) const {
1526 if (isComplexFloat())
1527 v = APValue(FloatReal, FloatImag);
1528 else
1529 v = APValue(IntReal, IntImag);
1530 }
1531 void setFrom(const APValue &v) {
1532 assert(v.isComplexFloat() || v.isComplexInt())(static_cast <bool> (v.isComplexFloat() || v.isComplexInt
()) ? void (0) : __assert_fail ("v.isComplexFloat() || v.isComplexInt()"
, "clang/lib/AST/ExprConstant.cpp", 1532, __extension__ __PRETTY_FUNCTION__
))
;
1533 if (v.isComplexFloat()) {
1534 makeComplexFloat();
1535 FloatReal = v.getComplexFloatReal();
1536 FloatImag = v.getComplexFloatImag();
1537 } else {
1538 makeComplexInt();
1539 IntReal = v.getComplexIntReal();
1540 IntImag = v.getComplexIntImag();
1541 }
1542 }
1543 };
1544
1545 struct LValue {
1546 APValue::LValueBase Base;
1547 CharUnits Offset;
1548 SubobjectDesignator Designator;
1549 bool IsNullPtr : 1;
1550 bool InvalidBase : 1;
1551
1552 const APValue::LValueBase getLValueBase() const { return Base; }
1553 CharUnits &getLValueOffset() { return Offset; }
1554 const CharUnits &getLValueOffset() const { return Offset; }
1555 SubobjectDesignator &getLValueDesignator() { return Designator; }
1556 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1557 bool isNullPointer() const { return IsNullPtr;}
1558
1559 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1560 unsigned getLValueVersion() const { return Base.getVersion(); }
1561
1562 void moveInto(APValue &V) const {
1563 if (Designator.Invalid)
1564 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1565 else {
1566 assert(!InvalidBase && "APValues can't handle invalid LValue bases")(static_cast <bool> (!InvalidBase && "APValues can't handle invalid LValue bases"
) ? void (0) : __assert_fail ("!InvalidBase && \"APValues can't handle invalid LValue bases\""
, "clang/lib/AST/ExprConstant.cpp", 1566, __extension__ __PRETTY_FUNCTION__
))
;
1567 V = APValue(Base, Offset, Designator.Entries,
1568 Designator.IsOnePastTheEnd, IsNullPtr);
1569 }
1570 }
1571 void setFrom(ASTContext &Ctx, const APValue &V) {
1572 assert(V.isLValue() && "Setting LValue from a non-LValue?")(static_cast <bool> (V.isLValue() && "Setting LValue from a non-LValue?"
) ? void (0) : __assert_fail ("V.isLValue() && \"Setting LValue from a non-LValue?\""
, "clang/lib/AST/ExprConstant.cpp", 1572, __extension__ __PRETTY_FUNCTION__
))
;
1573 Base = V.getLValueBase();
1574 Offset = V.getLValueOffset();
1575 InvalidBase = false;
1576 Designator = SubobjectDesignator(Ctx, V);
1577 IsNullPtr = V.isNullPointer();
1578 }
1579
1580 void set(APValue::LValueBase B, bool BInvalid = false) {
1581#ifndef NDEBUG
1582 // We only allow a few types of invalid bases. Enforce that here.
1583 if (BInvalid) {
1584 const auto *E = B.get<const Expr *>();
1585 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&(static_cast <bool> ((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall
(E)) && "Unexpected type of invalid base") ? void (0)
: __assert_fail ("(isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && \"Unexpected type of invalid base\""
, "clang/lib/AST/ExprConstant.cpp", 1586, __extension__ __PRETTY_FUNCTION__
))
1586 "Unexpected type of invalid base")(static_cast <bool> ((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall
(E)) && "Unexpected type of invalid base") ? void (0)
: __assert_fail ("(isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && \"Unexpected type of invalid base\""
, "clang/lib/AST/ExprConstant.cpp", 1586, __extension__ __PRETTY_FUNCTION__
))
;
1587 }
1588#endif
1589
1590 Base = B;
1591 Offset = CharUnits::fromQuantity(0);
1592 InvalidBase = BInvalid;
1593 Designator = SubobjectDesignator(getType(B));
1594 IsNullPtr = false;
1595 }
1596
1597 void setNull(ASTContext &Ctx, QualType PointerTy) {
1598 Base = (const ValueDecl *)nullptr;
1599 Offset =
1600 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1601 InvalidBase = false;
1602 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1603 IsNullPtr = true;
1604 }
1605
1606 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1607 set(B, true);
1608 }
1609
1610 std::string toString(ASTContext &Ctx, QualType T) const {
1611 APValue Printable;
1612 moveInto(Printable);
1613 return Printable.getAsString(Ctx, T);
1614 }
1615
1616 private:
1617 // Check that this LValue is not based on a null pointer. If it is, produce
1618 // a diagnostic and mark the designator as invalid.
1619 template <typename GenDiagType>
1620 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1621 if (Designator.Invalid)
1622 return false;
1623 if (IsNullPtr) {
1624 GenDiag();
1625 Designator.setInvalid();
1626 return false;
1627 }
1628 return true;
1629 }
1630
1631 public:
1632 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1633 CheckSubobjectKind CSK) {
1634 return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1635 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1636 });
1637 }
1638
1639 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1640 AccessKinds AK) {
1641 return checkNullPointerDiagnosingWith([&Info, E, AK] {
1642 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1643 });
1644 }
1645
1646 // Check this LValue refers to an object. If not, set the designator to be
1647 // invalid and emit a diagnostic.
1648 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1649 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1650 Designator.checkSubobject(Info, E, CSK);
1651 }
1652
1653 void addDecl(EvalInfo &Info, const Expr *E,
1654 const Decl *D, bool Virtual = false) {
1655 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1656 Designator.addDeclUnchecked(D, Virtual);
1657 }
1658 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1659 if (!Designator.Entries.empty()) {
1660 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1661 Designator.setInvalid();
1662 return;
1663 }
1664 if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1665 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType())(static_cast <bool> (getType(Base)->isPointerType() ||
getType(Base)->isArrayType()) ? void (0) : __assert_fail (
"getType(Base)->isPointerType() || getType(Base)->isArrayType()"
, "clang/lib/AST/ExprConstant.cpp", 1665, __extension__ __PRETTY_FUNCTION__
))
;
1666 Designator.FirstEntryIsAnUnsizedArray = true;
1667 Designator.addUnsizedArrayUnchecked(ElemTy);
1668 }
1669 }
1670 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1671 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1672 Designator.addArrayUnchecked(CAT);
1673 }
1674 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1675 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1676 Designator.addComplexUnchecked(EltTy, Imag);
1677 }
1678 void clearIsNullPointer() {
1679 IsNullPtr = false;
1680 }
1681 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1682 const APSInt &Index, CharUnits ElementSize) {
1683 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1684 // but we're not required to diagnose it and it's valid in C++.)
1685 if (!Index)
1686 return;
1687
1688 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1689 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1690 // offsets.
1691 uint64_t Offset64 = Offset.getQuantity();
1692 uint64_t ElemSize64 = ElementSize.getQuantity();
1693 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1694 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1695
1696 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1697 Designator.adjustIndex(Info, E, Index);
1698 clearIsNullPointer();
1699 }
1700 void adjustOffset(CharUnits N) {
1701 Offset += N;
1702 if (N.getQuantity())
1703 clearIsNullPointer();
1704 }
1705 };
1706
1707 struct MemberPtr {
1708 MemberPtr() {}
1709 explicit MemberPtr(const ValueDecl *Decl)
1710 : DeclAndIsDerivedMember(Decl, false) {}
1711
1712 /// The member or (direct or indirect) field referred to by this member
1713 /// pointer, or 0 if this is a null member pointer.
1714 const ValueDecl *getDecl() const {
1715 return DeclAndIsDerivedMember.getPointer();
1716 }
1717 /// Is this actually a member of some type derived from the relevant class?
1718 bool isDerivedMember() const {
1719 return DeclAndIsDerivedMember.getInt();
1720 }
1721 /// Get the class which the declaration actually lives in.
1722 const CXXRecordDecl *getContainingRecord() const {
1723 return cast<CXXRecordDecl>(
1724 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1725 }
1726
1727 void moveInto(APValue &V) const {
1728 V = APValue(getDecl(), isDerivedMember(), Path);
1729 }
1730 void setFrom(const APValue &V) {
1731 assert(V.isMemberPointer())(static_cast <bool> (V.isMemberPointer()) ? void (0) : __assert_fail
("V.isMemberPointer()", "clang/lib/AST/ExprConstant.cpp", 1731
, __extension__ __PRETTY_FUNCTION__))
;
1732 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1733 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1734 Path.clear();
1735 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1736 Path.insert(Path.end(), P.begin(), P.end());
1737 }
1738
1739 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1740 /// whether the member is a member of some class derived from the class type
1741 /// of the member pointer.
1742 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1743 /// Path - The path of base/derived classes from the member declaration's
1744 /// class (exclusive) to the class type of the member pointer (inclusive).
1745 SmallVector<const CXXRecordDecl*, 4> Path;
1746
1747 /// Perform a cast towards the class of the Decl (either up or down the
1748 /// hierarchy).
1749 bool castBack(const CXXRecordDecl *Class) {
1750 assert(!Path.empty())(static_cast <bool> (!Path.empty()) ? void (0) : __assert_fail
("!Path.empty()", "clang/lib/AST/ExprConstant.cpp", 1750, __extension__
__PRETTY_FUNCTION__))
;
1751 const CXXRecordDecl *Expected;
1752 if (Path.size() >= 2)
1753 Expected = Path[Path.size() - 2];
1754 else
1755 Expected = getContainingRecord();
1756 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1757 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1758 // if B does not contain the original member and is not a base or
1759 // derived class of the class containing the original member, the result
1760 // of the cast is undefined.
1761 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1762 // (D::*). We consider that to be a language defect.
1763 return false;
1764 }
1765 Path.pop_back();
1766 return true;
1767 }
1768 /// Perform a base-to-derived member pointer cast.
1769 bool castToDerived(const CXXRecordDecl *Derived) {
1770 if (!getDecl())
1771 return true;
1772 if (!isDerivedMember()) {
1773 Path.push_back(Derived);
1774 return true;
1775 }
1776 if (!castBack(Derived))
1777 return false;
1778 if (Path.empty())
1779 DeclAndIsDerivedMember.setInt(false);
1780 return true;
1781 }
1782 /// Perform a derived-to-base member pointer cast.
1783 bool castToBase(const CXXRecordDecl *Base) {
1784 if (!getDecl())
1785 return true;
1786 if (Path.empty())
1787 DeclAndIsDerivedMember.setInt(true);
1788 if (isDerivedMember()) {
1789 Path.push_back(Base);
1790 return true;
1791 }
1792 return castBack(Base);
1793 }
1794 };
1795
1796 /// Compare two member pointers, which are assumed to be of the same type.
1797 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1798 if (!LHS.getDecl() || !RHS.getDecl())
1799 return !LHS.getDecl() && !RHS.getDecl();
1800 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1801 return false;
1802 return LHS.Path == RHS.Path;
1803 }
1804}
1805
1806static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1807static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1808 const LValue &This, const Expr *E,
1809 bool AllowNonLiteralTypes = false);
1810static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1811 bool InvalidBaseOK = false);
1812static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1813 bool InvalidBaseOK = false);
1814static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1815 EvalInfo &Info);
1816static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1817static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1818static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1819 EvalInfo &Info);
1820static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1821static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1822static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1823 EvalInfo &Info);
1824static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1825static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1826 EvalInfo &Info);
1827
1828/// Evaluate an integer or fixed point expression into an APResult.
1829static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1830 EvalInfo &Info);
1831
1832/// Evaluate only a fixed point expression into an APResult.
1833static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1834 EvalInfo &Info);
1835
1836//===----------------------------------------------------------------------===//
1837// Misc utilities
1838//===----------------------------------------------------------------------===//
1839
1840/// Negate an APSInt in place, converting it to a signed form if necessary, and
1841/// preserving its value (by extending by up to one bit as needed).
1842static void negateAsSigned(APSInt &Int) {
1843 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1844 Int = Int.extend(Int.getBitWidth() + 1);
1845 Int.setIsSigned(true);
1846 }
1847 Int = -Int;
1848}
1849
1850template<typename KeyT>
1851APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1852 ScopeKind Scope, LValue &LV) {
1853 unsigned Version = getTempVersion();
1854 APValue::LValueBase Base(Key, Index, Version);
1855 LV.set(Base);
1856 return createLocal(Base, Key, T, Scope);
1857}
1858
1859/// Allocate storage for a parameter of a function call made in this frame.
1860APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1861 LValue &LV) {
1862 assert(Args.CallIndex == Index && "creating parameter in wrong frame")(static_cast <bool> (Args.CallIndex == Index &&
"creating parameter in wrong frame") ? void (0) : __assert_fail
("Args.CallIndex == Index && \"creating parameter in wrong frame\""
, "clang/lib/AST/ExprConstant.cpp", 1862, __extension__ __PRETTY_FUNCTION__
))
;
1863 APValue::LValueBase Base(PVD, Index, Args.Version);
1864 LV.set(Base);
1865 // We always destroy parameters at the end of the call, even if we'd allow
1866 // them to live to the end of the full-expression at runtime, in order to
1867 // give portable results and match other compilers.
1868 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1869}
1870
1871APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1872 QualType T, ScopeKind Scope) {
1873 assert(Base.getCallIndex() == Index && "lvalue for wrong frame")(static_cast <bool> (Base.getCallIndex() == Index &&
"lvalue for wrong frame") ? void (0) : __assert_fail ("Base.getCallIndex() == Index && \"lvalue for wrong frame\""
, "clang/lib/AST/ExprConstant.cpp", 1873, __extension__ __PRETTY_FUNCTION__
))
;
1874 unsigned Version = Base.getVersion();
1875 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1876 assert(Result.isAbsent() && "local created multiple times")(static_cast <bool> (Result.isAbsent() && "local created multiple times"
) ? void (0) : __assert_fail ("Result.isAbsent() && \"local created multiple times\""
, "clang/lib/AST/ExprConstant.cpp", 1876, __extension__ __PRETTY_FUNCTION__
))
;
1877
1878 // If we're creating a local immediately in the operand of a speculative
1879 // evaluation, don't register a cleanup to be run outside the speculative
1880 // evaluation context, since we won't actually be able to initialize this
1881 // object.
1882 if (Index <= Info.SpeculativeEvaluationDepth) {
1883 if (T.isDestructedType())
1884 Info.noteSideEffect();
1885 } else {
1886 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1887 }
1888 return Result;
1889}
1890
1891APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1892 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1893 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1894 return nullptr;
1895 }
1896
1897 DynamicAllocLValue DA(NumHeapAllocs++);
1898 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1899 auto Result = HeapAllocs.emplace(std::piecewise_construct,
1900 std::forward_as_tuple(DA), std::tuple<>());
1901 assert(Result.second && "reused a heap alloc index?")(static_cast <bool> (Result.second && "reused a heap alloc index?"
) ? void (0) : __assert_fail ("Result.second && \"reused a heap alloc index?\""
, "clang/lib/AST/ExprConstant.cpp", 1901, __extension__ __PRETTY_FUNCTION__
))
;
1902 Result.first->second.AllocExpr = E;
1903 return &Result.first->second.Value;
1904}
1905
1906/// Produce a string describing the given constexpr call.
1907void CallStackFrame::describe(raw_ostream &Out) {
1908 unsigned ArgIndex = 0;
1909 bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1910 !isa<CXXConstructorDecl>(Callee) &&
1911 cast<CXXMethodDecl>(Callee)->isInstance();
1912
1913 if (!IsMemberCall)
1914 Out << *Callee << '(';
1915
1916 if (This && IsMemberCall) {
1917 APValue Val;
1918 This->moveInto(Val);
1919 Val.printPretty(Out, Info.Ctx,
1920 This->Designator.MostDerivedType);
1921 // FIXME: Add parens around Val if needed.
1922 Out << "->" << *Callee << '(';
1923 IsMemberCall = false;
1924 }
1925
1926 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1927 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1928 if (ArgIndex > (unsigned)IsMemberCall)
1929 Out << ", ";
1930
1931 const ParmVarDecl *Param = *I;
1932 APValue *V = Info.getParamSlot(Arguments, Param);
1933 if (V)
1934 V->printPretty(Out, Info.Ctx, Param->getType());
1935 else
1936 Out << "<...>";
1937
1938 if (ArgIndex == 0 && IsMemberCall)
1939 Out << "->" << *Callee << '(';
1940 }
1941
1942 Out << ')';
1943}
1944
1945/// Evaluate an expression to see if it had side-effects, and discard its
1946/// result.
1947/// \return \c true if the caller should keep evaluating.
1948static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1949 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 1949, __extension__ __PRETTY_FUNCTION__))
;
1950 APValue Scratch;
1951 if (!Evaluate(Scratch, Info, E))
1952 // We don't need the value, but we might have skipped a side effect here.
1953 return Info.noteSideEffect();
1954 return true;
1955}
1956
1957/// Should this call expression be treated as a constant?
1958static bool IsConstantCall(const CallExpr *E) {
1959 unsigned Builtin = E->getBuiltinCallee();
1960 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1961 Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
1962 Builtin == Builtin::BI__builtin_function_start);
1963}
1964
1965static bool IsGlobalLValue(APValue::LValueBase B) {
1966 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1967 // constant expression of pointer type that evaluates to...
1968
1969 // ... a null pointer value, or a prvalue core constant expression of type
1970 // std::nullptr_t.
1971 if (!B) return true;
1972
1973 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1974 // ... the address of an object with static storage duration,
1975 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1976 return VD->hasGlobalStorage();
1977 if (isa<TemplateParamObjectDecl>(D))
1978 return true;
1979 // ... the address of a function,
1980 // ... the address of a GUID [MS extension],
1981 return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D);
1982 }
1983
1984 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1985 return true;
1986
1987 const Expr *E = B.get<const Expr*>();
1988 switch (E->getStmtClass()) {
1989 default:
1990 return false;
1991 case Expr::CompoundLiteralExprClass: {
1992 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1993 return CLE->isFileScope() && CLE->isLValue();
1994 }
1995 case Expr::MaterializeTemporaryExprClass:
1996 // A materialized temporary might have been lifetime-extended to static
1997 // storage duration.
1998 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1999 // A string literal has static storage duration.
2000 case Expr::StringLiteralClass:
2001 case Expr::PredefinedExprClass:
2002 case Expr::ObjCStringLiteralClass:
2003 case Expr::ObjCEncodeExprClass:
2004 return true;
2005 case Expr::ObjCBoxedExprClass:
2006 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2007 case Expr::CallExprClass:
2008 return IsConstantCall(cast<CallExpr>(E));
2009 // For GCC compatibility, &&label has static storage duration.
2010 case Expr::AddrLabelExprClass:
2011 return true;
2012 // A Block literal expression may be used as the initialization value for
2013 // Block variables at global or local static scope.
2014 case Expr::BlockExprClass:
2015 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2016 case Expr::ImplicitValueInitExprClass:
2017 // FIXME:
2018 // We can never form an lvalue with an implicit value initialization as its
2019 // base through expression evaluation, so these only appear in one case: the
2020 // implicit variable declaration we invent when checking whether a constexpr
2021 // constructor can produce a constant expression. We must assume that such
2022 // an expression might be a global lvalue.
2023 return true;
2024 }
2025}
2026
2027static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2028 return LVal.Base.dyn_cast<const ValueDecl*>();
2029}
2030
2031static bool IsLiteralLValue(const LValue &Value) {
2032 if (Value.getLValueCallIndex())
2033 return false;
2034 const Expr *E = Value.Base.dyn_cast<const Expr*>();
2035 return E && !isa<MaterializeTemporaryExpr>(E);
2036}
2037
2038static bool IsWeakLValue(const LValue &Value) {
2039 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2040 return Decl && Decl->isWeak();
2041}
2042
2043static bool isZeroSized(const LValue &Value) {
2044 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2045 if (Decl && isa<VarDecl>(Decl)) {
2046 QualType Ty = Decl->getType();
2047 if (Ty->isArrayType())
2048 return Ty->isIncompleteType() ||
2049 Decl->getASTContext().getTypeSize(Ty) == 0;
2050 }
2051 return false;
2052}
2053
2054static bool HasSameBase(const LValue &A, const LValue &B) {
2055 if (!A.getLValueBase())
2056 return !B.getLValueBase();
2057 if (!B.getLValueBase())
2058 return false;
2059
2060 if (A.getLValueBase().getOpaqueValue() !=
2061 B.getLValueBase().getOpaqueValue())
2062 return false;
2063
2064 return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2065 A.getLValueVersion() == B.getLValueVersion();
2066}
2067
2068static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2069 assert(Base && "no location for a null lvalue")(static_cast <bool> (Base && "no location for a null lvalue"
) ? void (0) : __assert_fail ("Base && \"no location for a null lvalue\""
, "clang/lib/AST/ExprConstant.cpp", 2069, __extension__ __PRETTY_FUNCTION__
))
;
2070 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2071
2072 // For a parameter, find the corresponding call stack frame (if it still
2073 // exists), and point at the parameter of the function definition we actually
2074 // invoked.
2075 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2076 unsigned Idx = PVD->getFunctionScopeIndex();
2077 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2078 if (F->Arguments.CallIndex == Base.getCallIndex() &&
2079 F->Arguments.Version == Base.getVersion() && F->Callee &&
2080 Idx < F->Callee->getNumParams()) {
2081 VD = F->Callee->getParamDecl(Idx);
2082 break;
2083 }
2084 }
2085 }
2086
2087 if (VD)
2088 Info.Note(VD->getLocation(), diag::note_declared_at);
2089 else if (const Expr *E = Base.dyn_cast<const Expr*>())
2090 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2091 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2092 // FIXME: Produce a note for dangling pointers too.
2093 if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2094 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2095 diag::note_constexpr_dynamic_alloc_here);
2096 }
2097 // We have no information to show for a typeid(T) object.
2098}
2099
2100enum class CheckEvaluationResultKind {
2101 ConstantExpression,
2102 FullyInitialized,
2103};
2104
2105/// Materialized temporaries that we've already checked to determine if they're
2106/// initializsed by a constant expression.
2107using CheckedTemporaries =
2108 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2109
2110static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2111 EvalInfo &Info, SourceLocation DiagLoc,
2112 QualType Type, const APValue &Value,
2113 ConstantExprKind Kind,
2114 SourceLocation SubobjectLoc,
2115 CheckedTemporaries &CheckedTemps);
2116
2117/// Check that this reference or pointer core constant expression is a valid
2118/// value for an address or reference constant expression. Return true if we
2119/// can fold this expression, whether or not it's a constant expression.
2120static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2121 QualType Type, const LValue &LVal,
2122 ConstantExprKind Kind,
2123 CheckedTemporaries &CheckedTemps) {
2124 bool IsReferenceType = Type->isReferenceType();
2125
2126 APValue::LValueBase Base = LVal.getLValueBase();
2127 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2128
2129 const Expr *BaseE = Base.dyn_cast<const Expr *>();
2130 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2131
2132 // Additional restrictions apply in a template argument. We only enforce the
2133 // C++20 restrictions here; additional syntactic and semantic restrictions
2134 // are applied elsewhere.
2135 if (isTemplateArgument(Kind)) {
2136 int InvalidBaseKind = -1;
2137 StringRef Ident;
2138 if (Base.is<TypeInfoLValue>())
2139 InvalidBaseKind = 0;
2140 else if (isa_and_nonnull<StringLiteral>(BaseE))
2141 InvalidBaseKind = 1;
2142 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2143 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2144 InvalidBaseKind = 2;
2145 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2146 InvalidBaseKind = 3;
2147 Ident = PE->getIdentKindName();
2148 }
2149
2150 if (InvalidBaseKind != -1) {
2151 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2152 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2153 << Ident;
2154 return false;
2155 }
2156 }
2157
2158 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2159 if (FD->isConsteval()) {
2160 Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2161 << !Type->isAnyPointerType();
2162 Info.Note(FD->getLocation(), diag::note_declared_at);
2163 return false;
2164 }
2165 }
2166
2167 // Check that the object is a global. Note that the fake 'this' object we
2168 // manufacture when checking potential constant expressions is conservatively
2169 // assumed to be global here.
2170 if (!IsGlobalLValue(Base)) {
2171 if (Info.getLangOpts().CPlusPlus11) {
2172 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2173 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2174 << IsReferenceType << !Designator.Entries.empty()
2175 << !!VD << VD;
2176
2177 auto *VarD = dyn_cast_or_null<VarDecl>(VD);
2178 if (VarD && VarD->isConstexpr()) {
2179 // Non-static local constexpr variables have unintuitive semantics:
2180 // constexpr int a = 1;
2181 // constexpr const int *p = &a;
2182 // ... is invalid because the address of 'a' is not constant. Suggest
2183 // adding a 'static' in this case.
2184 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2185 << VarD
2186 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2187 } else {
2188 NoteLValueLocation(Info, Base);
2189 }
2190 } else {
2191 Info.FFDiag(Loc);
2192 }
2193 // Don't allow references to temporaries to escape.
2194 return false;
2195 }
2196 assert((Info.checkingPotentialConstantExpression() ||(static_cast <bool> ((Info.checkingPotentialConstantExpression
() || LVal.getLValueCallIndex() == 0) && "have call index for global lvalue"
) ? void (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "clang/lib/AST/ExprConstant.cpp", 2198, __extension__ __PRETTY_FUNCTION__
))
2197 LVal.getLValueCallIndex() == 0) &&(static_cast <bool> ((Info.checkingPotentialConstantExpression
() || LVal.getLValueCallIndex() == 0) && "have call index for global lvalue"
) ? void (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "clang/lib/AST/ExprConstant.cpp", 2198, __extension__ __PRETTY_FUNCTION__
))
2198 "have call index for global lvalue")(static_cast <bool> ((Info.checkingPotentialConstantExpression
() || LVal.getLValueCallIndex() == 0) && "have call index for global lvalue"
) ? void (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "clang/lib/AST/ExprConstant.cpp", 2198, __extension__ __PRETTY_FUNCTION__
))
;
2199
2200 if (Base.is<DynamicAllocLValue>()) {
2201 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2202 << IsReferenceType << !Designator.Entries.empty();
2203 NoteLValueLocation(Info, Base);
2204 return false;
2205 }
2206
2207 if (BaseVD) {
2208 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2209 // Check if this is a thread-local variable.
2210 if (Var->getTLSKind())
2211 // FIXME: Diagnostic!
2212 return false;
2213
2214 // A dllimport variable never acts like a constant, unless we're
2215 // evaluating a value for use only in name mangling.
2216 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2217 // FIXME: Diagnostic!
2218 return false;
2219
2220 // In CUDA/HIP device compilation, only device side variables have
2221 // constant addresses.
2222 if (Info.getCtx().getLangOpts().CUDA &&
2223 Info.getCtx().getLangOpts().CUDAIsDevice &&
2224 Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2225 if ((!Var->hasAttr<CUDADeviceAttr>() &&
2226 !Var->hasAttr<CUDAConstantAttr>() &&
2227 !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2228 !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2229 Var->hasAttr<HIPManagedAttr>())
2230 return false;
2231 }
2232 }
2233 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2234 // __declspec(dllimport) must be handled very carefully:
2235 // We must never initialize an expression with the thunk in C++.
2236 // Doing otherwise would allow the same id-expression to yield
2237 // different addresses for the same function in different translation
2238 // units. However, this means that we must dynamically initialize the
2239 // expression with the contents of the import address table at runtime.
2240 //
2241 // The C language has no notion of ODR; furthermore, it has no notion of
2242 // dynamic initialization. This means that we are permitted to
2243 // perform initialization with the address of the thunk.
2244 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2245 FD->hasAttr<DLLImportAttr>())
2246 // FIXME: Diagnostic!
2247 return false;
2248 }
2249 } else if (const auto *MTE =
2250 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2251 if (CheckedTemps.insert(MTE).second) {
2252 QualType TempType = getType(Base);
2253 if (TempType.isDestructedType()) {
2254 Info.FFDiag(MTE->getExprLoc(),
2255 diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2256 << TempType;
2257 return false;
2258 }
2259
2260 APValue *V = MTE->getOrCreateValue(false);
2261 assert(V && "evasluation result refers to uninitialised temporary")(static_cast <bool> (V && "evasluation result refers to uninitialised temporary"
) ? void (0) : __assert_fail ("V && \"evasluation result refers to uninitialised temporary\""
, "clang/lib/AST/ExprConstant.cpp", 2261, __extension__ __PRETTY_FUNCTION__
))
;
2262 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2263 Info, MTE->getExprLoc(), TempType, *V,
2264 Kind, SourceLocation(), CheckedTemps))
2265 return false;
2266 }
2267 }
2268
2269 // Allow address constant expressions to be past-the-end pointers. This is
2270 // an extension: the standard requires them to point to an object.
2271 if (!IsReferenceType)
2272 return true;
2273
2274 // A reference constant expression must refer to an object.
2275 if (!Base) {
2276 // FIXME: diagnostic
2277 Info.CCEDiag(Loc);
2278 return true;
2279 }
2280
2281 // Does this refer one past the end of some object?
2282 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2283 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2284 << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2285 NoteLValueLocation(Info, Base);
2286 }
2287
2288 return true;
2289}
2290
2291/// Member pointers are constant expressions unless they point to a
2292/// non-virtual dllimport member function.
2293static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2294 SourceLocation Loc,
2295 QualType Type,
2296 const APValue &Value,
2297 ConstantExprKind Kind) {
2298 const ValueDecl *Member = Value.getMemberPointerDecl();
2299 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2300 if (!FD)
2301 return true;
2302 if (FD->isConsteval()) {
2303 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2304 Info.Note(FD->getLocation(), diag::note_declared_at);
2305 return false;
2306 }
2307 return isForManglingOnly(Kind) || FD->isVirtual() ||
2308 !FD->hasAttr<DLLImportAttr>();
2309}
2310
2311/// Check that this core constant expression is of literal type, and if not,
2312/// produce an appropriate diagnostic.
2313static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2314 const LValue *This = nullptr) {
2315 if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2316 return true;
2317
2318 // C++1y: A constant initializer for an object o [...] may also invoke
2319 // constexpr constructors for o and its subobjects even if those objects
2320 // are of non-literal class types.
2321 //
2322 // C++11 missed this detail for aggregates, so classes like this:
2323 // struct foo_t { union { int i; volatile int j; } u; };
2324 // are not (obviously) initializable like so:
2325 // __attribute__((__require_constant_initialization__))
2326 // static const foo_t x = {{0}};
2327 // because "i" is a subobject with non-literal initialization (due to the
2328 // volatile member of the union). See:
2329 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2330 // Therefore, we use the C++1y behavior.
2331 if (This && Info.EvaluatingDecl == This->getLValueBase())
2332 return true;
2333
2334 // Prvalue constant expressions must be of literal types.
2335 if (Info.getLangOpts().CPlusPlus11)
2336 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2337 << E->getType();
2338 else
2339 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2340 return false;
2341}
2342
2343static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2344 EvalInfo &Info, SourceLocation DiagLoc,
2345 QualType Type, const APValue &Value,
2346 ConstantExprKind Kind,
2347 SourceLocation SubobjectLoc,
2348 CheckedTemporaries &CheckedTemps) {
2349 if (!Value.hasValue()) {
2350 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2351 << true << Type;
2352 if (SubobjectLoc.isValid())
2353 Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2354 return false;
2355 }
2356
2357 // We allow _Atomic(T) to be initialized from anything that T can be
2358 // initialized from.
2359 if (const AtomicType *AT = Type->getAs<AtomicType>())
2360 Type = AT->getValueType();
2361
2362 // Core issue 1454: For a literal constant expression of array or class type,
2363 // each subobject of its value shall have been initialized by a constant
2364 // expression.
2365 if (Value.isArray()) {
2366 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2367 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2368 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2369 Value.getArrayInitializedElt(I), Kind,
2370 SubobjectLoc, CheckedTemps))
2371 return false;
2372 }
2373 if (!Value.hasArrayFiller())
2374 return true;
2375 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2376 Value.getArrayFiller(), Kind, SubobjectLoc,
2377 CheckedTemps);
2378 }
2379 if (Value.isUnion() && Value.getUnionField()) {
2380 return CheckEvaluationResult(
2381 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2382 Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2383 CheckedTemps);
2384 }
2385 if (Value.isStruct()) {
2386 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2387 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2388 unsigned BaseIndex = 0;
2389 for (const CXXBaseSpecifier &BS : CD->bases()) {
2390 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2391 Value.getStructBase(BaseIndex), Kind,
2392 BS.getBeginLoc(), CheckedTemps))
2393 return false;
2394 ++BaseIndex;
2395 }
2396 }
2397 for (const auto *I : RD->fields()) {
2398 if (I->isUnnamedBitfield())
2399 continue;
2400
2401 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2402 Value.getStructField(I->getFieldIndex()),
2403 Kind, I->getLocation(), CheckedTemps))
2404 return false;
2405 }
2406 }
2407
2408 if (Value.isLValue() &&
2409 CERK == CheckEvaluationResultKind::ConstantExpression) {
2410 LValue LVal;
2411 LVal.setFrom(Info.Ctx, Value);
2412 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2413 CheckedTemps);
2414 }
2415
2416 if (Value.isMemberPointer() &&
2417 CERK == CheckEvaluationResultKind::ConstantExpression)
2418 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2419
2420 // Everything else is fine.
2421 return true;
2422}
2423
2424/// Check that this core constant expression value is a valid value for a
2425/// constant expression. If not, report an appropriate diagnostic. Does not
2426/// check that the expression is of literal type.
2427static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2428 QualType Type, const APValue &Value,
2429 ConstantExprKind Kind) {
2430 // Nothing to check for a constant expression of type 'cv void'.
2431 if (Type->isVoidType())
2432 return true;
2433
2434 CheckedTemporaries CheckedTemps;
2435 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2436 Info, DiagLoc, Type, Value, Kind,
2437 SourceLocation(), CheckedTemps);
2438}
2439
2440/// Check that this evaluated value is fully-initialized and can be loaded by
2441/// an lvalue-to-rvalue conversion.
2442static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2443 QualType Type, const APValue &Value) {
2444 CheckedTemporaries CheckedTemps;
2445 return CheckEvaluationResult(
2446 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2447 ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2448}
2449
2450/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2451/// "the allocated storage is deallocated within the evaluation".
2452static bool CheckMemoryLeaks(EvalInfo &Info) {
2453 if (!Info.HeapAllocs.empty()) {
2454 // We can still fold to a constant despite a compile-time memory leak,
2455 // so long as the heap allocation isn't referenced in the result (we check
2456 // that in CheckConstantExpression).
2457 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2458 diag::note_constexpr_memory_leak)
2459 << unsigned(Info.HeapAllocs.size() - 1);
2460 }
2461 return true;
2462}
2463
2464static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2465 // A null base expression indicates a null pointer. These are always
2466 // evaluatable, and they are false unless the offset is zero.
2467 if (!Value.getLValueBase()) {
2468 Result = !Value.getLValueOffset().isZero();
2469 return true;
2470 }
2471
2472 // We have a non-null base. These are generally known to be true, but if it's
2473 // a weak declaration it can be null at runtime.
2474 Result = true;
2475 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2476 return !Decl || !Decl->isWeak();
2477}
2478
2479static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2480 switch (Val.getKind()) {
2481 case APValue::None:
2482 case APValue::Indeterminate:
2483 return false;
2484 case APValue::Int:
2485 Result = Val.getInt().getBoolValue();
2486 return true;
2487 case APValue::FixedPoint:
2488 Result = Val.getFixedPoint().getBoolValue();
2489 return true;
2490 case APValue::Float:
2491 Result = !Val.getFloat().isZero();
2492 return true;
2493 case APValue::ComplexInt:
2494 Result = Val.getComplexIntReal().getBoolValue() ||
2495 Val.getComplexIntImag().getBoolValue();
2496 return true;
2497 case APValue::ComplexFloat:
2498 Result = !Val.getComplexFloatReal().isZero() ||
2499 !Val.getComplexFloatImag().isZero();
2500 return true;
2501 case APValue::LValue:
2502 return EvalPointerValueAsBool(Val, Result);
2503 case APValue::MemberPointer:
2504 Result = Val.getMemberPointerDecl();
2505 return true;
2506 case APValue::Vector:
2507 case APValue::Array:
2508 case APValue::Struct:
2509 case APValue::Union:
2510 case APValue::AddrLabelDiff:
2511 return false;
2512 }
2513
2514 llvm_unreachable("unknown APValue kind")::llvm::llvm_unreachable_internal("unknown APValue kind", "clang/lib/AST/ExprConstant.cpp"
, 2514)
;
2515}
2516
2517static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2518 EvalInfo &Info) {
2519 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 2519, __extension__ __PRETTY_FUNCTION__))
;
2520 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition")(static_cast <bool> (E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition"
) ? void (0) : __assert_fail ("E->isPRValue() && \"missing lvalue-to-rvalue conv in bool condition\""
, "clang/lib/AST/ExprConstant.cpp", 2520, __extension__ __PRETTY_FUNCTION__
))
;
2521 APValue Val;
2522 if (!Evaluate(Val, Info, E))
2523 return false;
2524 return HandleConversionToBool(Val, Result);
2525}
2526
2527template<typename T>
2528static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2529 const T &SrcValue, QualType DestType) {
2530 Info.CCEDiag(E, diag::note_constexpr_overflow)
2531 << SrcValue << DestType;
2532 return Info.noteUndefinedBehavior();
2533}
2534
2535static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2536 QualType SrcType, const APFloat &Value,
2537 QualType DestType, APSInt &Result) {
2538 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2539 // Determine whether we are converting to unsigned or signed.
2540 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2541
2542 Result = APSInt(DestWidth, !DestSigned);
2543 bool ignored;
2544 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2545 & APFloat::opInvalidOp)
2546 return HandleOverflow(Info, E, Value, DestType);
2547 return true;
2548}
2549
2550/// Get rounding mode used for evaluation of the specified expression.
2551/// \param[out] DynamicRM Is set to true is the requested rounding mode is
2552/// dynamic.
2553/// If rounding mode is unknown at compile time, still try to evaluate the
2554/// expression. If the result is exact, it does not depend on rounding mode.
2555/// So return "tonearest" mode instead of "dynamic".
2556static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E,
2557 bool &DynamicRM) {
2558 llvm::RoundingMode RM =
2559 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2560 DynamicRM = (RM == llvm::RoundingMode::Dynamic);
2561 if (DynamicRM)
2562 RM = llvm::RoundingMode::NearestTiesToEven;
2563 return RM;
2564}
2565
2566/// Check if the given evaluation result is allowed for constant evaluation.
2567static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2568 APFloat::opStatus St) {
2569 // In a constant context, assume that any dynamic rounding mode or FP
2570 // exception state matches the default floating-point environment.
2571 if (Info.InConstantContext)
2572 return true;
2573
2574 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2575 if ((St & APFloat::opInexact) &&
2576 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2577 // Inexact result means that it depends on rounding mode. If the requested
2578 // mode is dynamic, the evaluation cannot be made in compile time.
2579 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2580 return false;
2581 }
2582
2583 if ((St != APFloat::opOK) &&
2584 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2585 FPO.getFPExceptionMode() != LangOptions::FPE_Ignore ||
2586 FPO.getAllowFEnvAccess())) {
2587 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2588 return false;
2589 }
2590
2591 if ((St & APFloat::opStatus::opInvalidOp) &&
2592 FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) {
2593 // There is no usefully definable result.
2594 Info.FFDiag(E);
2595 return false;
2596 }
2597
2598 // FIXME: if:
2599 // - evaluation triggered other FP exception, and
2600 // - exception mode is not "ignore", and
2601 // - the expression being evaluated is not a part of global variable
2602 // initializer,
2603 // the evaluation probably need to be rejected.
2604 return true;
2605}
2606
2607static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2608 QualType SrcType, QualType DestType,
2609 APFloat &Result) {
2610 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E))(static_cast <bool> (isa<CastExpr>(E) || isa<CompoundAssignOperator
>(E)) ? void (0) : __assert_fail ("isa<CastExpr>(E) || isa<CompoundAssignOperator>(E)"
, "clang/lib/AST/ExprConstant.cpp", 2610, __extension__ __PRETTY_FUNCTION__
))
;
2611 bool DynamicRM;
2612 llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2613 APFloat::opStatus St;
2614 APFloat Value = Result;
2615 bool ignored;
2616 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2617 return checkFloatingPointResult(Info, E, St);
2618}
2619
2620static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2621 QualType DestType, QualType SrcType,
2622 const APSInt &Value) {
2623 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2624 // Figure out if this is a truncate, extend or noop cast.
2625 // If the input is signed, do a sign extend, noop, or truncate.
2626 APSInt Result = Value.extOrTrunc(DestWidth);
2627 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2628 if (DestType->isBooleanType())
2629 Result = Value.getBoolValue();
2630 return Result;
2631}
2632
2633static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2634 const FPOptions FPO,
2635 QualType SrcType, const APSInt &Value,
2636 QualType DestType, APFloat &Result) {
2637 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2638 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
2639 APFloat::rmNearestTiesToEven);
2640 if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
2641 FPO.isFPConstrained()) {
2642 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2643 return false;
2644 }
2645 return true;
2646}
2647
2648static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2649 APValue &Value, const FieldDecl *FD) {
2650 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield")(static_cast <bool> (FD->isBitField() && "truncateBitfieldValue on non-bitfield"
) ? void (0) : __assert_fail ("FD->isBitField() && \"truncateBitfieldValue on non-bitfield\""
, "clang/lib/AST/ExprConstant.cpp", 2650, __extension__ __PRETTY_FUNCTION__
))
;
2651
2652 if (!Value.isInt()) {
2653 // Trying to store a pointer-cast-to-integer into a bitfield.
2654 // FIXME: In this case, we should provide the diagnostic for casting
2655 // a pointer to an integer.
2656 assert(Value.isLValue() && "integral value neither int nor lvalue?")(static_cast <bool> (Value.isLValue() && "integral value neither int nor lvalue?"
) ? void (0) : __assert_fail ("Value.isLValue() && \"integral value neither int nor lvalue?\""
, "clang/lib/AST/ExprConstant.cpp", 2656, __extension__ __PRETTY_FUNCTION__
))
;
2657 Info.FFDiag(E);
2658 return false;
2659 }
2660
2661 APSInt &Int = Value.getInt();
2662 unsigned OldBitWidth = Int.getBitWidth();
2663 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2664 if (NewBitWidth < OldBitWidth)
2665 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2666 return true;
2667}
2668
2669static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2670 llvm::APInt &Res) {
2671 APValue SVal;
2672 if (!Evaluate(SVal, Info, E))
2673 return false;
2674 if (SVal.isInt()) {
2675 Res = SVal.getInt();
2676 return true;
2677 }
2678 if (SVal.isFloat()) {
2679 Res = SVal.getFloat().bitcastToAPInt();
2680 return true;
2681 }
2682 if (SVal.isVector()) {
2683 QualType VecTy = E->getType();
2684 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2685 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2686 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2687 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2688 Res = llvm::APInt::getZero(VecSize);
2689 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2690 APValue &Elt = SVal.getVectorElt(i);
2691 llvm::APInt EltAsInt;
2692 if (Elt.isInt()) {
2693 EltAsInt = Elt.getInt();
2694 } else if (Elt.isFloat()) {
2695 EltAsInt = Elt.getFloat().bitcastToAPInt();
2696 } else {
2697 // Don't try to handle vectors of anything other than int or float
2698 // (not sure if it's possible to hit this case).
2699 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2700 return false;
2701 }
2702 unsigned BaseEltSize = EltAsInt.getBitWidth();
2703 if (BigEndian)
2704 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2705 else
2706 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2707 }
2708 return true;
2709 }
2710 // Give up if the input isn't an int, float, or vector. For example, we
2711 // reject "(v4i16)(intptr_t)&a".
2712 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2713 return false;
2714}
2715
2716/// Perform the given integer operation, which is known to need at most BitWidth
2717/// bits, and check for overflow in the original type (if that type was not an
2718/// unsigned type).
2719template<typename Operation>
2720static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2721 const APSInt &LHS, const APSInt &RHS,
2722 unsigned BitWidth, Operation Op,
2723 APSInt &Result) {
2724 if (LHS.isUnsigned()) {
2725 Result = Op(LHS, RHS);
2726 return true;
2727 }
2728
2729 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2730 Result = Value.trunc(LHS.getBitWidth());
2731 if (Result.extend(BitWidth) != Value) {
2732 if (Info.checkingForUndefinedBehavior())
2733 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2734 diag::warn_integer_constant_overflow)
2735 << toString(Result, 10) << E->getType();
2736 return HandleOverflow(Info, E, Value, E->getType());
2737 }
2738 return true;
2739}
2740
2741/// Perform the given binary integer operation.
2742static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2743 BinaryOperatorKind Opcode, APSInt RHS,
2744 APSInt &Result) {
2745 switch (Opcode) {
2746 default:
2747 Info.FFDiag(E);
2748 return false;
2749 case BO_Mul:
2750 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2751 std::multiplies<APSInt>(), Result);
2752 case BO_Add:
2753 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2754 std::plus<APSInt>(), Result);
2755 case BO_Sub:
2756 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2757 std::minus<APSInt>(), Result);
2758 case BO_And: Result = LHS & RHS; return true;
2759 case BO_Xor: Result = LHS ^ RHS; return true;
2760 case BO_Or: Result = LHS | RHS; return true;
2761 case BO_Div:
2762 case BO_Rem:
2763 if (RHS == 0) {
2764 Info.FFDiag(E, diag::note_expr_divide_by_zero);
2765 return false;
2766 }
2767 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2768 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2769 // this operation and gives the two's complement result.
2770 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2771 LHS.isMinSignedValue())
2772 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2773 E->getType());
2774 return true;
2775 case BO_Shl: {
2776 if (Info.getLangOpts().OpenCL)
2777 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2778 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2779 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2780 RHS.isUnsigned());
2781 else if (RHS.isSigned() && RHS.isNegative()) {
2782 // During constant-folding, a negative shift is an opposite shift. Such
2783 // a shift is not a constant expression.
2784 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2785 RHS = -RHS;
2786 goto shift_right;
2787 }
2788 shift_left:
2789 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2790 // the shifted type.
2791 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2792 if (SA != RHS) {
2793 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2794 << RHS << E->getType() << LHS.getBitWidth();
2795 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2796 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2797 // operand, and must not overflow the corresponding unsigned type.
2798 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2799 // E1 x 2^E2 module 2^N.
2800 if (LHS.isNegative())
2801 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2802 else if (LHS.countLeadingZeros() < SA)
2803 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2804 }
2805 Result = LHS << SA;
2806 return true;
2807 }
2808 case BO_Shr: {
2809 if (Info.getLangOpts().OpenCL)
2810 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2811 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2812 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2813 RHS.isUnsigned());
2814 else if (RHS.isSigned() && RHS.isNegative()) {
2815 // During constant-folding, a negative shift is an opposite shift. Such a
2816 // shift is not a constant expression.
2817 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2818 RHS = -RHS;
2819 goto shift_left;
2820 }
2821 shift_right:
2822 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2823 // shifted type.
2824 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2825 if (SA != RHS)
2826 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2827 << RHS << E->getType() << LHS.getBitWidth();
2828 Result = LHS >> SA;
2829 return true;
2830 }
2831
2832 case BO_LT: Result = LHS < RHS; return true;
2833 case BO_GT: Result = LHS > RHS; return true;
2834 case BO_LE: Result = LHS <= RHS; return true;
2835 case BO_GE: Result = LHS >= RHS; return true;
2836 case BO_EQ: Result = LHS == RHS; return true;
2837 case BO_NE: Result = LHS != RHS; return true;
2838 case BO_Cmp:
2839 llvm_unreachable("BO_Cmp should be handled elsewhere")::llvm::llvm_unreachable_internal("BO_Cmp should be handled elsewhere"
, "clang/lib/AST/ExprConstant.cpp", 2839)
;
2840 }
2841}
2842
2843/// Perform the given binary floating-point operation, in-place, on LHS.
2844static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2845 APFloat &LHS, BinaryOperatorKind Opcode,
2846 const APFloat &RHS) {
2847 bool DynamicRM;
2848 llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2849 APFloat::opStatus St;
2850 switch (Opcode) {
2851 default:
2852 Info.FFDiag(E);
2853 return false;
2854 case BO_Mul:
2855 St = LHS.multiply(RHS, RM);
2856 break;
2857 case BO_Add:
2858 St = LHS.add(RHS, RM);
2859 break;
2860 case BO_Sub:
2861 St = LHS.subtract(RHS, RM);
2862 break;
2863 case BO_Div:
2864 // [expr.mul]p4:
2865 // If the second operand of / or % is zero the behavior is undefined.
2866 if (RHS.isZero())
2867 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2868 St = LHS.divide(RHS, RM);
2869 break;
2870 }
2871
2872 // [expr.pre]p4:
2873 // If during the evaluation of an expression, the result is not
2874 // mathematically defined [...], the behavior is undefined.
2875 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2876 if (LHS.isNaN()) {
2877 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2878 return Info.noteUndefinedBehavior();
2879 }
2880
2881 return checkFloatingPointResult(Info, E, St);
2882}
2883
2884static bool handleLogicalOpForVector(const APInt &LHSValue,
2885 BinaryOperatorKind Opcode,
2886 const APInt &RHSValue, APInt &Result) {
2887 bool LHS = (LHSValue != 0);
2888 bool RHS = (RHSValue != 0);
2889
2890 if (Opcode == BO_LAnd)
2891 Result = LHS && RHS;
2892 else
2893 Result = LHS || RHS;
2894 return true;
2895}
2896static bool handleLogicalOpForVector(const APFloat &LHSValue,
2897 BinaryOperatorKind Opcode,
2898 const APFloat &RHSValue, APInt &Result) {
2899 bool LHS = !LHSValue.isZero();
2900 bool RHS = !RHSValue.isZero();
2901
2902 if (Opcode == BO_LAnd)
2903 Result = LHS && RHS;
2904 else
2905 Result = LHS || RHS;
2906 return true;
2907}
2908
2909static bool handleLogicalOpForVector(const APValue &LHSValue,
2910 BinaryOperatorKind Opcode,
2911 const APValue &RHSValue, APInt &Result) {
2912 // The result is always an int type, however operands match the first.
2913 if (LHSValue.getKind() == APValue::Int)
2914 return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2915 RHSValue.getInt(), Result);
2916 assert(LHSValue.getKind() == APValue::Float && "Should be no other options")(static_cast <bool> (LHSValue.getKind() == APValue::Float
&& "Should be no other options") ? void (0) : __assert_fail
("LHSValue.getKind() == APValue::Float && \"Should be no other options\""
, "clang/lib/AST/ExprConstant.cpp", 2916, __extension__ __PRETTY_FUNCTION__
))
;
2917 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2918 RHSValue.getFloat(), Result);
2919}
2920
2921template <typename APTy>
2922static bool
2923handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2924 const APTy &RHSValue, APInt &Result) {
2925 switch (Opcode) {
2926 default:
2927 llvm_unreachable("unsupported binary operator")::llvm::llvm_unreachable_internal("unsupported binary operator"
, "clang/lib/AST/ExprConstant.cpp", 2927)
;
2928 case BO_EQ:
2929 Result = (LHSValue == RHSValue);
2930 break;
2931 case BO_NE:
2932 Result = (LHSValue != RHSValue);
2933 break;
2934 case BO_LT:
2935 Result = (LHSValue < RHSValue);
2936 break;
2937 case BO_GT:
2938 Result = (LHSValue > RHSValue);
2939 break;
2940 case BO_LE:
2941 Result = (LHSValue <= RHSValue);
2942 break;
2943 case BO_GE:
2944 Result = (LHSValue >= RHSValue);
2945 break;
2946 }
2947
2948 // The boolean operations on these vector types use an instruction that
2949 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
2950 // to -1 to make sure that we produce the correct value.
2951 Result.negate();
2952
2953 return true;
2954}
2955
2956static bool handleCompareOpForVector(const APValue &LHSValue,
2957 BinaryOperatorKind Opcode,
2958 const APValue &RHSValue, APInt &Result) {
2959 // The result is always an int type, however operands match the first.
2960 if (LHSValue.getKind() == APValue::Int)
2961 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2962 RHSValue.getInt(), Result);
2963 assert(LHSValue.getKind() == APValue::Float && "Should be no other options")(static_cast <bool> (LHSValue.getKind() == APValue::Float
&& "Should be no other options") ? void (0) : __assert_fail
("LHSValue.getKind() == APValue::Float && \"Should be no other options\""
, "clang/lib/AST/ExprConstant.cpp", 2963, __extension__ __PRETTY_FUNCTION__
))
;
2964 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2965 RHSValue.getFloat(), Result);
2966}
2967
2968// Perform binary operations for vector types, in place on the LHS.
2969static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2970 BinaryOperatorKind Opcode,
2971 APValue &LHSValue,
2972 const APValue &RHSValue) {
2973 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&(static_cast <bool> (Opcode != BO_PtrMemD && Opcode
!= BO_PtrMemI && "Operation not supported on vector types"
) ? void (0) : __assert_fail ("Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && \"Operation not supported on vector types\""
, "clang/lib/AST/ExprConstant.cpp", 2974, __extension__ __PRETTY_FUNCTION__
))
2974 "Operation not supported on vector types")(static_cast <bool> (Opcode != BO_PtrMemD && Opcode
!= BO_PtrMemI && "Operation not supported on vector types"
) ? void (0) : __assert_fail ("Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && \"Operation not supported on vector types\""
, "clang/lib/AST/ExprConstant.cpp", 2974, __extension__ __PRETTY_FUNCTION__
))
;
2975
2976 const auto *VT = E->getType()->castAs<VectorType>();
2977 unsigned NumElements = VT->getNumElements();
2978 QualType EltTy = VT->getElementType();
2979
2980 // In the cases (typically C as I've observed) where we aren't evaluating
2981 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2982 // just give up.
2983 if (!LHSValue.isVector()) {
2984 assert(LHSValue.isLValue() &&(static_cast <bool> (LHSValue.isLValue() && "A vector result that isn't a vector OR uncalculated LValue"
) ? void (0) : __assert_fail ("LHSValue.isLValue() && \"A vector result that isn't a vector OR uncalculated LValue\""
, "clang/lib/AST/ExprConstant.cpp", 2985, __extension__ __PRETTY_FUNCTION__
))
2985 "A vector result that isn't a vector OR uncalculated LValue")(static_cast <bool> (LHSValue.isLValue() && "A vector result that isn't a vector OR uncalculated LValue"
) ? void (0) : __assert_fail ("LHSValue.isLValue() && \"A vector result that isn't a vector OR uncalculated LValue\""
, "clang/lib/AST/ExprConstant.cpp", 2985, __extension__ __PRETTY_FUNCTION__
))
;
2986 Info.FFDiag(E);
2987 return false;
2988 }
2989
2990 assert(LHSValue.getVectorLength() == NumElements &&(static_cast <bool> (LHSValue.getVectorLength() == NumElements
&& RHSValue.getVectorLength() == NumElements &&
"Different vector sizes") ? void (0) : __assert_fail ("LHSValue.getVectorLength() == NumElements && RHSValue.getVectorLength() == NumElements && \"Different vector sizes\""
, "clang/lib/AST/ExprConstant.cpp", 2991, __extension__ __PRETTY_FUNCTION__
))
2991 RHSValue.getVectorLength() == NumElements && "Different vector sizes")(static_cast <bool> (LHSValue.getVectorLength() == NumElements
&& RHSValue.getVectorLength() == NumElements &&
"Different vector sizes") ? void (0) : __assert_fail ("LHSValue.getVectorLength() == NumElements && RHSValue.getVectorLength() == NumElements && \"Different vector sizes\""
, "clang/lib/AST/ExprConstant.cpp", 2991, __extension__ __PRETTY_FUNCTION__
))
;
2992
2993 SmallVector<APValue, 4> ResultElements;
2994
2995 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2996 APValue LHSElt = LHSValue.getVectorElt(EltNum);
2997 APValue RHSElt = RHSValue.getVectorElt(EltNum);
2998
2999 if (EltTy->isIntegerType()) {
3000 APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3001 EltTy->isUnsignedIntegerType()};
3002 bool Success = true;
3003
3004 if (BinaryOperator::isLogicalOp(Opcode))
3005 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3006 else if (BinaryOperator::isComparisonOp(Opcode))
3007 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3008 else
3009 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3010 RHSElt.getInt(), EltResult);
3011
3012 if (!Success) {
3013 Info.FFDiag(E);
3014 return false;
3015 }
3016 ResultElements.emplace_back(EltResult);
3017
3018 } else if (EltTy->isFloatingType()) {
3019 assert(LHSElt.getKind() == APValue::Float &&(static_cast <bool> (LHSElt.getKind() == APValue::Float
&& RHSElt.getKind() == APValue::Float && "Mismatched LHS/RHS/Result Type"
) ? void (0) : __assert_fail ("LHSElt.getKind() == APValue::Float && RHSElt.getKind() == APValue::Float && \"Mismatched LHS/RHS/Result Type\""
, "clang/lib/AST/ExprConstant.cpp", 3021, __extension__ __PRETTY_FUNCTION__
))
3020 RHSElt.getKind() == APValue::Float &&(static_cast <bool> (LHSElt.getKind() == APValue::Float
&& RHSElt.getKind() == APValue::Float && "Mismatched LHS/RHS/Result Type"
) ? void (0) : __assert_fail ("LHSElt.getKind() == APValue::Float && RHSElt.getKind() == APValue::Float && \"Mismatched LHS/RHS/Result Type\""
, "clang/lib/AST/ExprConstant.cpp", 3021, __extension__ __PRETTY_FUNCTION__
))
3021 "Mismatched LHS/RHS/Result Type")(static_cast <bool> (LHSElt.getKind() == APValue::Float
&& RHSElt.getKind() == APValue::Float && "Mismatched LHS/RHS/Result Type"
) ? void (0) : __assert_fail ("LHSElt.getKind() == APValue::Float && RHSElt.getKind() == APValue::Float && \"Mismatched LHS/RHS/Result Type\""
, "clang/lib/AST/ExprConstant.cpp", 3021, __extension__ __PRETTY_FUNCTION__
))
;
3022 APFloat LHSFloat = LHSElt.getFloat();
3023
3024 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3025 RHSElt.getFloat())) {
3026 Info.FFDiag(E);
3027 return false;
3028 }
3029
3030 ResultElements.emplace_back(LHSFloat);
3031 }
3032 }
3033
3034 LHSValue = APValue(ResultElements.data(), ResultElements.size());
3035 return true;
3036}
3037
3038/// Cast an lvalue referring to a base subobject to a derived class, by
3039/// truncating the lvalue's path to the given length.
3040static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3041 const RecordDecl *TruncatedType,
3042 unsigned TruncatedElements) {
3043 SubobjectDesignator &D = Result.Designator;
3044
3045 // Check we actually point to a derived class object.
3046 if (TruncatedElements == D.Entries.size())
3047 return true;
3048 assert(TruncatedElements >= D.MostDerivedPathLength &&(static_cast <bool> (TruncatedElements >= D.MostDerivedPathLength
&& "not casting to a derived class") ? void (0) : __assert_fail
("TruncatedElements >= D.MostDerivedPathLength && \"not casting to a derived class\""
, "clang/lib/AST/ExprConstant.cpp", 3049, __extension__ __PRETTY_FUNCTION__
))
3049 "not casting to a derived class")(static_cast <bool> (TruncatedElements >= D.MostDerivedPathLength
&& "not casting to a derived class") ? void (0) : __assert_fail
("TruncatedElements >= D.MostDerivedPathLength && \"not casting to a derived class\""
, "clang/lib/AST/ExprConstant.cpp", 3049, __extension__ __PRETTY_FUNCTION__
))
;
3050 if (!Result.checkSubobject(Info, E, CSK_Derived))
3051 return false;
3052
3053 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3054 const RecordDecl *RD = TruncatedType;
3055 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3056 if (RD->isInvalidDecl()) return false;
3057 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3058 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3059 if (isVirtualBaseClass(D.Entries[I]))
3060 Result.Offset -= Layout.getVBaseClassOffset(Base);
3061 else
3062 Result.Offset -= Layout.getBaseClassOffset(Base);
3063 RD = Base;
3064 }
3065 D.Entries.resize(TruncatedElements);
3066 return true;
3067}
3068
3069static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3070 const CXXRecordDecl *Derived,
3071 const CXXRecordDecl *Base,
3072 const ASTRecordLayout *RL = nullptr) {
3073 if (!RL) {
3074 if (Derived->isInvalidDecl()) return false;
3075 RL = &Info.Ctx.getASTRecordLayout(Derived);
3076 }
3077
3078 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3079 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3080 return true;
3081}
3082
3083static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3084 const CXXRecordDecl *DerivedDecl,
3085 const CXXBaseSpecifier *Base) {
3086 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3087
3088 if (!Base->isVirtual())
3089 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3090
3091 SubobjectDesignator &D = Obj.Designator;
3092 if (D.Invalid)
3093 return false;
3094
3095 // Extract most-derived object and corresponding type.
3096 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3097 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3098 return false;
3099
3100 // Find the virtual base class.
3101 if (DerivedDecl->isInvalidDecl()) return false;
3102 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3103 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3104 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3105 return true;
3106}
3107
3108static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3109 QualType Type, LValue &Result) {
3110 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3111 PathE = E->path_end();
3112 PathI != PathE; ++PathI) {
3113 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3114 *PathI))
3115 return false;
3116 Type = (*PathI)->getType();
3117 }
3118 return true;
3119}
3120
3121/// Cast an lvalue referring to a derived class to a known base subobject.
3122static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3123 const CXXRecordDecl *DerivedRD,
3124 const CXXRecordDecl *BaseRD) {
3125 CXXBasePaths Paths(/*FindAmbiguities=*/false,
3126 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3127 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3128 llvm_unreachable("Class must be derived from the passed in base class!")::llvm::llvm_unreachable_internal("Class must be derived from the passed in base class!"
, "clang/lib/AST/ExprConstant.cpp", 3128)
;
3129
3130 for (CXXBasePathElement &Elem : Paths.front())
3131 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3132 return false;
3133 return true;
3134}
3135
3136/// Update LVal to refer to the given field, which must be a member of the type
3137/// currently described by LVal.
3138static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3139 const FieldDecl *FD,
3140 const ASTRecordLayout *RL = nullptr) {
3141 if (!RL) {
3142 if (FD->getParent()->isInvalidDecl()) return false;
3143 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3144 }
3145
3146 unsigned I = FD->getFieldIndex();
3147 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3148 LVal.addDecl(Info, E, FD);
3149 return true;
3150}
3151
3152/// Update LVal to refer to the given indirect field.
3153static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3154 LValue &LVal,
3155 const IndirectFieldDecl *IFD) {
3156 for (const auto *C : IFD->chain())
3157 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3158 return false;
3159 return true;
3160}
3161
3162/// Get the size of the given type in char units.
3163static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3164 QualType Type, CharUnits &Size) {
3165 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3166 // extension.
3167 if (Type->isVoidType() || Type->isFunctionType()) {
3168 Size = CharUnits::One();
3169 return true;
3170 }
3171
3172 if (Type->isDependentType()) {
3173 Info.FFDiag(Loc);
3174 return false;
3175 }
3176
3177 if (!Type->isConstantSizeType()) {
3178 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3179 // FIXME: Better diagnostic.
3180 Info.FFDiag(Loc);
3181 return false;
3182 }
3183
3184 Size = Info.Ctx.getTypeSizeInChars(Type);
3185 return true;
3186}
3187
3188/// Update a pointer value to model pointer arithmetic.
3189/// \param Info - Information about the ongoing evaluation.
3190/// \param E - The expression being evaluated, for diagnostic purposes.
3191/// \param LVal - The pointer value to be updated.
3192/// \param EltTy - The pointee type represented by LVal.
3193/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
3194static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3195 LValue &LVal, QualType EltTy,
3196 APSInt Adjustment) {
3197 CharUnits SizeOfPointee;
3198 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3199 return false;
3200
3201 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3202 return true;
3203}
3204
3205static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3206 LValue &LVal, QualType EltTy,
3207 int64_t Adjustment) {
3208 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3209 APSInt::get(Adjustment));
3210}
3211
3212/// Update an lvalue to refer to a component of a complex number.
3213/// \param Info - Information about the ongoing evaluation.
3214/// \param LVal - The lvalue to be updated.
3215/// \param EltTy - The complex number's component type.
3216/// \param Imag - False for the real component, true for the imaginary.
3217static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3218 LValue &LVal, QualType EltTy,
3219 bool Imag) {
3220 if (Imag) {
3221 CharUnits SizeOfComponent;
3222 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3223 return false;
3224 LVal.Offset += SizeOfComponent;
3225 }
3226 LVal.addComplex(Info, E, EltTy, Imag);
3227 return true;
3228}
3229
3230/// Try to evaluate the initializer for a variable declaration.
3231///
3232/// \param Info Information about the ongoing evaluation.
3233/// \param E An expression to be used when printing diagnostics.
3234/// \param VD The variable whose initializer should be obtained.
3235/// \param Version The version of the variable within the frame.
3236/// \param Frame The frame in which the variable was created. Must be null
3237/// if this variable is not local to the evaluation.
3238/// \param Result Filled in with a pointer to the value of the variable.
3239static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3240 const VarDecl *VD, CallStackFrame *Frame,
3241 unsigned Version, APValue *&Result) {
3242 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3243
3244 // If this is a local variable, dig out its value.
3245 if (Frame) {
3246 Result = Frame->getTemporary(VD, Version);
3247 if (Result)
3248 return true;
3249
3250 if (!isa<ParmVarDecl>(VD)) {
3251 // Assume variables referenced within a lambda's call operator that were
3252 // not declared within the call operator are captures and during checking
3253 // of a potential constant expression, assume they are unknown constant
3254 // expressions.
3255 assert(isLambdaCallOperator(Frame->Callee) &&(static_cast <bool> (isLambdaCallOperator(Frame->Callee
) && (VD->getDeclContext() != Frame->Callee || VD
->isInitCapture()) && "missing value for local variable"
) ? void (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "clang/lib/AST/ExprConstant.cpp", 3257, __extension__ __PRETTY_FUNCTION__
))
3256 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&(static_cast <bool> (isLambdaCallOperator(Frame->Callee
) && (VD->getDeclContext() != Frame->Callee || VD
->isInitCapture()) && "missing value for local variable"
) ? void (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "clang/lib/AST/ExprConstant.cpp", 3257, __extension__ __PRETTY_FUNCTION__
))
3257 "missing value for local variable")(static_cast <bool> (isLambdaCallOperator(Frame->Callee
) && (VD->getDeclContext() != Frame->Callee || VD
->isInitCapture()) && "missing value for local variable"
) ? void (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "clang/lib/AST/ExprConstant.cpp", 3257, __extension__ __PRETTY_FUNCTION__
))
;
3258 if (Info.checkingPotentialConstantExpression())
3259 return false;
3260 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3261 // still reachable at all?
3262 Info.FFDiag(E->getBeginLoc(),
3263 diag::note_unimplemented_constexpr_lambda_feature_ast)
3264 << "captures not currently allowed";
3265 return false;
3266 }
3267 }
3268
3269 // If we're currently evaluating the initializer of this declaration, use that
3270 // in-flight value.
3271 if (Info.EvaluatingDecl == Base) {
3272 Result = Info.EvaluatingDeclValue;
3273 return true;
3274 }
3275
3276 if (isa<ParmVarDecl>(VD)) {
3277 // Assume parameters of a potential constant expression are usable in
3278 // constant expressions.
3279 if (!Info.checkingPotentialConstantExpression() ||
3280 !Info.CurrentCall->Callee ||
3281 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3282 if (Info.getLangOpts().CPlusPlus11) {
3283 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3284 << VD;
3285 NoteLValueLocation(Info, Base);
3286 } else {
3287 Info.FFDiag(E);
3288 }
3289 }
3290 return false;
3291 }
3292
3293 // Dig out the initializer, and use the declaration which it's attached to.
3294 // FIXME: We should eventually check whether the variable has a reachable
3295 // initializing declaration.
3296 const Expr *Init = VD->getAnyInitializer(VD);
3297 if (!Init) {
3298 // Don't diagnose during potential constant expression checking; an
3299 // initializer might be added later.
3300 if (!Info.checkingPotentialConstantExpression()) {
3301 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3302 << VD;
3303 NoteLValueLocation(Info, Base);
3304 }
3305 return false;
3306 }
3307
3308 if (Init->isValueDependent()) {
3309 // The DeclRefExpr is not value-dependent, but the variable it refers to
3310 // has a value-dependent initializer. This should only happen in
3311 // constant-folding cases, where the variable is not actually of a suitable
3312 // type for use in a constant expression (otherwise the DeclRefExpr would
3313 // have been value-dependent too), so diagnose that.
3314 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx))(static_cast <bool> (!VD->mightBeUsableInConstantExpressions
(Info.Ctx)) ? void (0) : __assert_fail ("!VD->mightBeUsableInConstantExpressions(Info.Ctx)"
, "clang/lib/AST/ExprConstant.cpp", 3314, __extension__ __PRETTY_FUNCTION__
))
;
3315 if (!Info.checkingPotentialConstantExpression()) {
3316 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3317 ? diag::note_constexpr_ltor_non_constexpr
3318 : diag::note_constexpr_ltor_non_integral, 1)
3319 << VD << VD->getType();
3320 NoteLValueLocation(Info, Base);
3321 }
3322 return false;
3323 }
3324
3325 // Check that we can fold the initializer. In C++, we will have already done
3326 // this in the cases where it matters for conformance.
3327 if (!VD->evaluateValue()) {
3328 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3329 NoteLValueLocation(Info, Base);
3330 return false;
3331 }
3332
3333 // Check that the variable is actually usable in constant expressions. For a
3334 // const integral variable or a reference, we might have a non-constant
3335 // initializer that we can nonetheless evaluate the initializer for. Such
3336 // variables are not usable in constant expressions. In C++98, the
3337 // initializer also syntactically needs to be an ICE.
3338 //
3339 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3340 // expressions here; doing so would regress diagnostics for things like
3341 // reading from a volatile constexpr variable.
3342 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3343 VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3344 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3345 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3346 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3347 NoteLValueLocation(Info, Base);
3348 }
3349
3350 // Never use the initializer of a weak variable, not even for constant
3351 // folding. We can't be sure that this is the definition that will be used.
3352 if (VD->isWeak()) {
3353 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3354 NoteLValueLocation(Info, Base);
3355 return false;
3356 }
3357
3358 Result = VD->getEvaluatedValue();
3359 return true;
3360}
3361
3362/// Get the base index of the given base class within an APValue representing
3363/// the given derived class.
3364static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3365 const CXXRecordDecl *Base) {
3366 Base = Base->getCanonicalDecl();
3367 unsigned Index = 0;
3368 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3369 E = Derived->bases_end(); I != E; ++I, ++Index) {
3370 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3371 return Index;
3372 }
3373
3374 llvm_unreachable("base class missing from derived class's bases list")::llvm::llvm_unreachable_internal("base class missing from derived class's bases list"
, "clang/lib/AST/ExprConstant.cpp", 3374)
;
3375}
3376
3377/// Extract the value of a character from a string literal.
3378static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3379 uint64_t Index) {
3380 assert(!isa<SourceLocExpr>(Lit) &&(static_cast <bool> (!isa<SourceLocExpr>(Lit) &&
"SourceLocExpr should have already been converted to a StringLiteral"
) ? void (0) : __assert_fail ("!isa<SourceLocExpr>(Lit) && \"SourceLocExpr should have already been converted to a StringLiteral\""
, "clang/lib/AST/ExprConstant.cpp", 3381, __extension__ __PRETTY_FUNCTION__
))
3381 "SourceLocExpr should have already been converted to a StringLiteral")(static_cast <bool> (!isa<SourceLocExpr>(Lit) &&
"SourceLocExpr should have already been converted to a StringLiteral"
) ? void (0) : __assert_fail ("!isa<SourceLocExpr>(Lit) && \"SourceLocExpr should have already been converted to a StringLiteral\""
, "clang/lib/AST/ExprConstant.cpp", 3381, __extension__ __PRETTY_FUNCTION__
))
;
3382
3383 // FIXME: Support MakeStringConstant
3384 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3385 std::string Str;
3386 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3387 assert(Index <= Str.size() && "Index too large")(static_cast <bool> (Index <= Str.size() && "Index too large"
) ? void (0) : __assert_fail ("Index <= Str.size() && \"Index too large\""
, "clang/lib/AST/ExprConstant.cpp", 3387, __extension__ __PRETTY_FUNCTION__
))
;
3388 return APSInt::getUnsigned(Str.c_str()[Index]);
3389 }
3390
3391 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3392 Lit = PE->getFunctionName();
3393 const StringLiteral *S = cast<StringLiteral>(Lit);
3394 const ConstantArrayType *CAT =
3395 Info.Ctx.getAsConstantArrayType(S->getType());
3396 assert(CAT && "string literal isn't an array")(static_cast <bool> (CAT && "string literal isn't an array"
) ? void (0) : __assert_fail ("CAT && \"string literal isn't an array\""
, "clang/lib/AST/ExprConstant.cpp", 3396, __extension__ __PRETTY_FUNCTION__
))
;
3397 QualType CharType = CAT->getElementType();
3398 assert(CharType->isIntegerType() && "unexpected character type")(static_cast <bool> (CharType->isIntegerType() &&
"unexpected character type") ? void (0) : __assert_fail ("CharType->isIntegerType() && \"unexpected character type\""
, "clang/lib/AST/ExprConstant.cpp", 3398, __extension__ __PRETTY_FUNCTION__
))
;
3399
3400 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3401 CharType->isUnsignedIntegerType());
3402 if (Index < S->getLength())
3403 Value = S->getCodeUnit(Index);
3404 return Value;
3405}
3406
3407// Expand a string literal into an array of characters.
3408//
3409// FIXME: This is inefficient; we should probably introduce something similar
3410// to the LLVM ConstantDataArray to make this cheaper.
3411static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3412 APValue &Result,
3413 QualType AllocType = QualType()) {
3414 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3415 AllocType.isNull() ? S->getType() : AllocType);
3416 assert(CAT && "string literal isn't an array")(static_cast <bool> (CAT && "string literal isn't an array"
) ? void (0) : __assert_fail ("CAT && \"string literal isn't an array\""
, "clang/lib/AST/ExprConstant.cpp", 3416, __extension__ __PRETTY_FUNCTION__
))
;
3417 QualType CharType = CAT->getElementType();
3418 assert(CharType->isIntegerType() && "unexpected character type")(static_cast <bool> (CharType->isIntegerType() &&
"unexpected character type") ? void (0) : __assert_fail ("CharType->isIntegerType() && \"unexpected character type\""
, "clang/lib/AST/ExprConstant.cpp", 3418, __extension__ __PRETTY_FUNCTION__
))
;
3419
3420 unsigned Elts = CAT->getSize().getZExtValue();
3421 Result = APValue(APValue::UninitArray(),
3422 std::min(S->getLength(), Elts), Elts);
3423 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3424 CharType->isUnsignedIntegerType());
3425 if (Result.hasArrayFiller())
3426 Result.getArrayFiller() = APValue(Value);
3427 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3428 Value = S->getCodeUnit(I);
3429 Result.getArrayInitializedElt(I) = APValue(Value);
3430 }
3431}
3432
3433// Expand an array so that it has more than Index filled elements.
3434static void expandArray(APValue &Array, unsigned Index) {
3435 unsigned Size = Array.getArraySize();
3436 assert(Index < Size)(static_cast <bool> (Index < Size) ? void (0) : __assert_fail
("Index < Size", "clang/lib/AST/ExprConstant.cpp", 3436, __extension__
__PRETTY_FUNCTION__))
;
3437
3438 // Always at least double the number of elements for which we store a value.
3439 unsigned OldElts = Array.getArrayInitializedElts();
3440 unsigned NewElts = std::max(Index+1, OldElts * 2);
3441 NewElts = std::min(Size, std::max(NewElts, 8u));
3442
3443 // Copy the data across.
3444 APValue NewValue(APValue::UninitArray(), NewElts, Size);
3445 for (unsigned I = 0; I != OldElts; ++I)
3446 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3447 for (unsigned I = OldElts; I != NewElts; ++I)
3448 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3449 if (NewValue.hasArrayFiller())
3450 NewValue.getArrayFiller() = Array.getArrayFiller();
3451 Array.swap(NewValue);
3452}
3453
3454/// Determine whether a type would actually be read by an lvalue-to-rvalue
3455/// conversion. If it's of class type, we may assume that the copy operation
3456/// is trivial. Note that this is never true for a union type with fields
3457/// (because the copy always "reads" the active member) and always true for
3458/// a non-class type.
3459static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
3460static bool isReadByLvalueToRvalueConversion(QualType T) {
3461 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3462 return !RD || isReadByLvalueToRvalueConversion(RD);
3463}
3464static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3465 // FIXME: A trivial copy of a union copies the object representation, even if
3466 // the union is empty.
3467 if (RD->isUnion())
3468 return !RD->field_empty();
3469 if (RD->isEmpty())
3470 return false;
3471
3472 for (auto *Field : RD->fields())
3473 if (!Field->isUnnamedBitfield() &&
3474 isReadByLvalueToRvalueConversion(Field->getType()))
3475 return true;
3476
3477 for (auto &BaseSpec : RD->bases())
3478 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3479 return true;
3480
3481 return false;
3482}
3483
3484/// Diagnose an attempt to read from any unreadable field within the specified
3485/// type, which might be a class type.
3486static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3487 QualType T) {
3488 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3489 if (!RD)
3490 return false;
3491
3492 if (!RD->hasMutableFields())
3493 return false;
3494
3495 for (auto *Field : RD->fields()) {
3496 // If we're actually going to read this field in some way, then it can't
3497 // be mutable. If we're in a union, then assigning to a mutable field
3498 // (even an empty one) can change the active member, so that's not OK.
3499 // FIXME: Add core issue number for the union case.
3500 if (Field->isMutable() &&
3501 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3502 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3503 Info.Note(Field->getLocation(), diag::note_declared_at);
3504 return true;
3505 }
3506
3507 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3508 return true;
3509 }
3510
3511 for (auto &BaseSpec : RD->bases())
3512 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3513 return true;
3514
3515 // All mutable fields were empty, and thus not actually read.
3516 return false;
3517}
3518
3519static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3520 APValue::LValueBase Base,
3521 bool MutableSubobject = false) {
3522 // A temporary or transient heap allocation we created.
3523 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3524 return true;
3525
3526 switch (Info.IsEvaluatingDecl) {
3527 case EvalInfo::EvaluatingDeclKind::None:
3528 return false;
3529
3530 case EvalInfo::EvaluatingDeclKind::Ctor:
3531 // The variable whose initializer we're evaluating.
3532 if (Info.EvaluatingDecl == Base)
3533 return true;
3534
3535 // A temporary lifetime-extended by the variable whose initializer we're
3536 // evaluating.
3537 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3538 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3539 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3540 return false;
3541
3542 case EvalInfo::EvaluatingDeclKind::Dtor:
3543 // C++2a [expr.const]p6:
3544 // [during constant destruction] the lifetime of a and its non-mutable
3545 // subobjects (but not its mutable subobjects) [are] considered to start
3546 // within e.
3547 if (MutableSubobject || Base != Info.EvaluatingDecl)
3548 return false;
3549 // FIXME: We can meaningfully extend this to cover non-const objects, but
3550 // we will need special handling: we should be able to access only
3551 // subobjects of such objects that are themselves declared const.
3552 QualType T = getType(Base);
3553 return T.isConstQualified() || T->isReferenceType();
3554 }
3555
3556 llvm_unreachable("unknown evaluating decl kind")::llvm::llvm_unreachable_internal("unknown evaluating decl kind"
, "clang/lib/AST/ExprConstant.cpp", 3556)
;
3557}
3558
3559namespace {
3560/// A handle to a complete object (an object that is not a subobject of
3561/// another object).
3562struct CompleteObject {
3563 /// The identity of the object.
3564 APValue::LValueBase Base;
3565 /// The value of the complete object.
3566 APValue *Value;
3567 /// The type of the complete object.
3568 QualType Type;
3569
3570 CompleteObject() : Value(nullptr) {}
3571 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3572 : Base(Base), Value(Value), Type(Type) {}
3573
3574 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3575 // If this isn't a "real" access (eg, if it's just accessing the type
3576 // info), allow it. We assume the type doesn't change dynamically for
3577 // subobjects of constexpr objects (even though we'd hit UB here if it
3578 // did). FIXME: Is this right?
3579 if (!isAnyAccess(AK))
3580 return true;
3581
3582 // In C++14 onwards, it is permitted to read a mutable member whose
3583 // lifetime began within the evaluation.
3584 // FIXME: Should we also allow this in C++11?
3585 if (!Info.getLangOpts().CPlusPlus14)
3586 return false;
3587 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3588 }
3589
3590 explicit operator bool() const { return !Type.isNull(); }
3591};
3592} // end anonymous namespace
3593
3594static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3595 bool IsMutable = false) {
3596 // C++ [basic.type.qualifier]p1:
3597 // - A const object is an object of type const T or a non-mutable subobject
3598 // of a const object.
3599 if (ObjType.isConstQualified() && !IsMutable)
3600 SubobjType.addConst();
3601 // - A volatile object is an object of type const T or a subobject of a
3602 // volatile object.
3603 if (ObjType.isVolatileQualified())
3604 SubobjType.addVolatile();
3605 return SubobjType;
3606}
3607
3608/// Find the designated sub-object of an rvalue.
3609template<typename SubobjectHandler>
3610typename SubobjectHandler::result_type
3611findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3612 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3613 if (Sub.Invalid)
3614 // A diagnostic will have already been produced.
3615 return handler.failed();
3616 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3617 if (Info.getLangOpts().CPlusPlus11)
3618 Info.FFDiag(E, Sub.isOnePastTheEnd()
3619 ? diag::note_constexpr_access_past_end
3620 : diag::note_constexpr_access_unsized_array)
3621 << handler.AccessKind;
3622 else
3623 Info.FFDiag(E);
3624 return handler.failed();
3625 }
3626
3627 APValue *O = Obj.Value;
3628 QualType ObjType = Obj.Type;
3629 const FieldDecl *LastField = nullptr;
3630 const FieldDecl *VolatileField = nullptr;
3631
3632 // Walk the designator's path to find the subobject.
3633 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3634 // Reading an indeterminate value is undefined, but assigning over one is OK.
3635 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3636 (O->isIndeterminate() &&
3637 !isValidIndeterminateAccess(handler.AccessKind))) {
3638 if (!Info.checkingPotentialConstantExpression())
3639 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3640 << handler.AccessKind << O->isIndeterminate();
3641 return handler.failed();
3642 }
3643
3644 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3645 // const and volatile semantics are not applied on an object under
3646 // {con,de}struction.
3647 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3648 ObjType->isRecordType() &&
3649 Info.isEvaluatingCtorDtor(
3650 Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3651 Sub.Entries.begin() + I)) !=
3652 ConstructionPhase::None) {
3653 ObjType = Info.Ctx.getCanonicalType(ObjType);
3654 ObjType.removeLocalConst();
3655 ObjType.removeLocalVolatile();
3656 }
3657
3658 // If this is our last pass, check that the final object type is OK.
3659 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3660 // Accesses to volatile objects are prohibited.
3661 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3662 if (Info.getLangOpts().CPlusPlus) {
3663 int DiagKind;
3664 SourceLocation Loc;
3665 const NamedDecl *Decl = nullptr;
3666 if (VolatileField) {
3667 DiagKind = 2;
3668 Loc = VolatileField->getLocation();
3669 Decl = VolatileField;
3670 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3671 DiagKind = 1;
3672 Loc = VD->getLocation();
3673 Decl = VD;
3674 } else {
3675 DiagKind = 0;
3676 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3677 Loc = E->getExprLoc();
3678 }
3679 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3680 << handler.AccessKind << DiagKind << Decl;
3681 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3682 } else {
3683 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3684 }
3685 return handler.failed();
3686 }
3687
3688 // If we are reading an object of class type, there may still be more
3689 // things we need to check: if there are any mutable subobjects, we
3690 // cannot perform this read. (This only happens when performing a trivial
3691 // copy or assignment.)
3692 if (ObjType->isRecordType() &&
3693 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3694 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3695 return handler.failed();
3696 }
3697
3698 if (I == N) {
3699 if (!handler.found(*O, ObjType))
3700 return false;
3701
3702 // If we modified a bit-field, truncate it to the right width.
3703 if (isModification(handler.AccessKind) &&
3704 LastField && LastField->isBitField() &&
3705 !truncateBitfieldValue(Info, E, *O, LastField))
3706 return false;
3707
3708 return true;
3709 }
3710
3711 LastField = nullptr;
3712 if (ObjType->isArrayType()) {
3713 // Next subobject is an array element.
3714 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3715 assert(CAT && "vla in literal type?")(static_cast <bool> (CAT && "vla in literal type?"
) ? void (0) : __assert_fail ("CAT && \"vla in literal type?\""
, "clang/lib/AST/ExprConstant.cpp", 3715, __extension__ __PRETTY_FUNCTION__
))
;
3716 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3717 if (CAT->getSize().ule(Index)) {
3718 // Note, it should not be possible to form a pointer with a valid
3719 // designator which points more than one past the end of the array.
3720 if (Info.getLangOpts().CPlusPlus11)
3721 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3722 << handler.AccessKind;
3723 else
3724 Info.FFDiag(E);
3725 return handler.failed();
3726 }
3727
3728 ObjType = CAT->getElementType();
3729
3730 if (O->getArrayInitializedElts() > Index)
3731 O = &O->getArrayInitializedElt(Index);
3732 else if (!isRead(handler.AccessKind)) {
3733 expandArray(*O, Index);
3734 O = &O->getArrayInitializedElt(Index);
3735 } else
3736 O = &O->getArrayFiller();
3737 } else if (ObjType->isAnyComplexType()) {
3738 // Next subobject is a complex number.
3739 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3740 if (Index > 1) {
3741 if (Info.getLangOpts().CPlusPlus11)
3742 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3743 << handler.AccessKind;
3744 else
3745 Info.FFDiag(E);
3746 return handler.failed();
3747 }
3748
3749 ObjType = getSubobjectType(
3750 ObjType, ObjType->castAs<ComplexType>()->getElementType());
3751
3752 assert(I == N - 1 && "extracting subobject of scalar?")(static_cast <bool> (I == N - 1 && "extracting subobject of scalar?"
) ? void (0) : __assert_fail ("I == N - 1 && \"extracting subobject of scalar?\""
, "clang/lib/AST/ExprConstant.cpp", 3752, __extension__ __PRETTY_FUNCTION__
))
;
3753 if (O->isComplexInt()) {
3754 return handler.found(Index ? O->getComplexIntImag()
3755 : O->getComplexIntReal(), ObjType);
3756 } else {
3757 assert(O->isComplexFloat())(static_cast <bool> (O->isComplexFloat()) ? void (0)
: __assert_fail ("O->isComplexFloat()", "clang/lib/AST/ExprConstant.cpp"
, 3757, __extension__ __PRETTY_FUNCTION__))
;
3758 return handler.found(Index ? O->getComplexFloatImag()
3759 : O->getComplexFloatReal(), ObjType);
3760 }
3761 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3762 if (Field->isMutable() &&
3763 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3764 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3765 << handler.AccessKind << Field;
3766 Info.Note(Field->getLocation(), diag::note_declared_at);
3767 return handler.failed();
3768 }
3769
3770 // Next subobject is a class, struct or union field.
3771 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3772 if (RD->isUnion()) {
3773 const FieldDecl *UnionField = O->getUnionField();
3774 if (!UnionField ||
3775 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3776 if (I == N - 1 && handler.AccessKind == AK_Construct) {
3777 // Placement new onto an inactive union member makes it active.
3778 O->setUnion(Field, APValue());
3779 } else {
3780 // FIXME: If O->getUnionValue() is absent, report that there's no
3781 // active union member rather than reporting the prior active union
3782 // member. We'll need to fix nullptr_t to not use APValue() as its
3783 // representation first.
3784 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3785 << handler.AccessKind << Field << !UnionField << UnionField;
3786 return handler.failed();
3787 }
3788 }
3789 O = &O->getUnionValue();
3790 } else
3791 O = &O->getStructField(Field->getFieldIndex());
3792
3793 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3794 LastField = Field;
3795 if (Field->getType().isVolatileQualified())
3796 VolatileField = Field;
3797 } else {
3798 // Next subobject is a base class.
3799 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3800 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3801 O = &O->getStructBase(getBaseIndex(Derived, Base));
3802
3803 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3804 }
3805 }
3806}
3807
3808namespace {
3809struct ExtractSubobjectHandler {
3810 EvalInfo &Info;
3811 const Expr *E;
3812 APValue &Result;
3813 const AccessKinds AccessKind;
3814
3815 typedef bool result_type;
3816 bool failed() { return false; }
3817 bool found(APValue &Subobj, QualType SubobjType) {
3818 Result = Subobj;
3819 if (AccessKind == AK_ReadObjectRepresentation)
3820 return true;
3821 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3822 }
3823 bool found(APSInt &Value, QualType SubobjType) {
3824 Result = APValue(Value);
3825 return true;
3826 }
3827 bool found(APFloat &Value, QualType SubobjType) {
3828 Result = APValue(Value);
3829 return true;
3830 }
3831};
3832} // end anonymous namespace
3833
3834/// Extract the designated sub-object of an rvalue.
3835static bool extractSubobject(EvalInfo &Info, const Expr *E,
3836 const CompleteObject &Obj,
3837 const SubobjectDesignator &Sub, APValue &Result,
3838 AccessKinds AK = AK_Read) {
3839 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation)(static_cast <bool> (AK == AK_Read || AK == AK_ReadObjectRepresentation
) ? void (0) : __assert_fail ("AK == AK_Read || AK == AK_ReadObjectRepresentation"
, "clang/lib/AST/ExprConstant.cpp", 3839, __extension__ __PRETTY_FUNCTION__
))
;
3840 ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3841 return findSubobject(Info, E, Obj, Sub, Handler);
3842}
3843
3844namespace {
3845struct ModifySubobjectHandler {
3846 EvalInfo &Info;
3847 APValue &NewVal;
3848 const Expr *E;
3849
3850 typedef bool result_type;
3851 static const AccessKinds AccessKind = AK_Assign;
3852
3853 bool checkConst(QualType QT) {
3854 // Assigning to a const object has undefined behavior.
3855 if (QT.isConstQualified()) {
3856 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3857 return false;
3858 }
3859 return true;
3860 }
3861
3862 bool failed() { return false; }
3863 bool found(APValue &Subobj, QualType SubobjType) {
3864 if (!checkConst(SubobjType))
3865 return false;
3866 // We've been given ownership of NewVal, so just swap it in.
3867 Subobj.swap(NewVal);
3868 return true;
3869 }
3870 bool found(APSInt &Value, QualType SubobjType) {
3871 if (!checkConst(SubobjType))
3872 return false;
3873 if (!NewVal.isInt()) {
3874 // Maybe trying to write a cast pointer value into a complex?
3875 Info.FFDiag(E);
3876 return false;
3877 }
3878 Value = NewVal.getInt();
3879 return true;
3880 }
3881 bool found(APFloat &Value, QualType SubobjType) {
3882 if (!checkConst(SubobjType))
3883 return false;
3884 Value = NewVal.getFloat();
3885 return true;
3886 }
3887};
3888} // end anonymous namespace
3889
3890const AccessKinds ModifySubobjectHandler::AccessKind;
3891
3892/// Update the designated sub-object of an rvalue to the given value.
3893static bool modifySubobject(EvalInfo &Info, const Expr *E,
3894 const CompleteObject &Obj,
3895 const SubobjectDesignator &Sub,
3896 APValue &NewVal) {
3897 ModifySubobjectHandler Handler = { Info, NewVal, E };
3898 return findSubobject(Info, E, Obj, Sub, Handler);
3899}
3900
3901/// Find the position where two subobject designators diverge, or equivalently
3902/// the length of the common initial subsequence.
3903static unsigned FindDesignatorMismatch(QualType ObjType,
3904 const SubobjectDesignator &A,
3905 const SubobjectDesignator &B,
3906 bool &WasArrayIndex) {
3907 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3908 for (/**/; I != N; ++I) {
3909 if (!ObjType.isNull() &&
3910 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3911 // Next subobject is an array element.
3912 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3913 WasArrayIndex = true;
3914 return I;
3915 }
3916 if (ObjType->isAnyComplexType())
3917 ObjType = ObjType->castAs<ComplexType>()->getElementType();
3918 else
3919 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3920 } else {
3921 if (A.Entries[I].getAsBaseOrMember() !=
3922 B.Entries[I].getAsBaseOrMember()) {
3923 WasArrayIndex = false;
3924 return I;
3925 }
3926 if (const FieldDecl *FD = getAsField(A.Entries[I]))
3927 // Next subobject is a field.
3928 ObjType = FD->getType();
3929 else
3930 // Next subobject is a base class.
3931 ObjType = QualType();
3932 }
3933 }
3934 WasArrayIndex = false;
3935 return I;
3936}
3937
3938/// Determine whether the given subobject designators refer to elements of the
3939/// same array object.
3940static bool AreElementsOfSameArray(QualType ObjType,
3941 const SubobjectDesignator &A,
3942 const SubobjectDesignator &B) {
3943 if (A.Entries.size() != B.Entries.size())
3944 return false;
3945
3946 bool IsArray = A.MostDerivedIsArrayElement;
3947 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3948 // A is a subobject of the array element.
3949 return false;
3950
3951 // If A (and B) designates an array element, the last entry will be the array
3952 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3953 // of length 1' case, and the entire path must match.
3954 bool WasArrayIndex;
3955 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3956 return CommonLength >= A.Entries.size() - IsArray;
3957}
3958
3959/// Find the complete object to which an LValue refers.
3960static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3961 AccessKinds AK, const LValue &LVal,
3962 QualType LValType) {
3963 if (LVal.InvalidBase) {
3964 Info.FFDiag(E);
3965 return CompleteObject();
3966 }
3967
3968 if (!LVal.Base) {
3969 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3970 return CompleteObject();
3971 }
3972
3973 CallStackFrame *Frame = nullptr;
3974 unsigned Depth = 0;
3975 if (LVal.getLValueCallIndex()) {
3976 std::tie(Frame, Depth) =
3977 Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3978 if (!Frame) {
3979 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3980 << AK << LVal.Base.is<const ValueDecl*>();
3981 NoteLValueLocation(Info, LVal.Base);
3982 return CompleteObject();
3983 }
3984 }
3985
3986 bool IsAccess = isAnyAccess(AK);
3987
3988 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3989 // is not a constant expression (even if the object is non-volatile). We also
3990 // apply this rule to C++98, in order to conform to the expected 'volatile'
3991 // semantics.
3992 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3993 if (Info.getLangOpts().CPlusPlus)
3994 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3995 << AK << LValType;
3996 else
3997 Info.FFDiag(E);
3998 return CompleteObject();
3999 }
4000
4001 // Compute value storage location and type of base object.
4002 APValue *BaseVal = nullptr;
4003 QualType BaseType = getType(LVal.Base);
4004
4005 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4006 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4007 // This is the object whose initializer we're evaluating, so its lifetime
4008 // started in the current evaluation.
4009 BaseVal = Info.EvaluatingDeclValue;
4010 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4011 // Allow reading from a GUID declaration.
4012 if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4013 if (isModification(AK)) {
4014 // All the remaining cases do not permit modification of the object.
4015 Info.FFDiag(E, diag::note_constexpr_modify_global);
4016 return CompleteObject();
4017 }
4018 APValue &V = GD->getAsAPValue();
4019 if (V.isAbsent()) {
4020 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4021 << GD->getType();
4022 return CompleteObject();
4023 }
4024 return CompleteObject(LVal.Base, &V, GD->getType());
4025 }
4026
4027 // Allow reading from template parameter objects.
4028 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4029 if (isModification(AK)) {
4030 Info.FFDiag(E, diag::note_constexpr_modify_global);
4031 return CompleteObject();
4032 }
4033 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4034 TPO->getType());
4035 }
4036
4037 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4038 // In C++11, constexpr, non-volatile variables initialized with constant
4039 // expressions are constant expressions too. Inside constexpr functions,
4040 // parameters are constant expressions even if they're non-const.
4041 // In C++1y, objects local to a constant expression (those with a Frame) are
4042 // both readable and writable inside constant expressions.
4043 // In C, such things can also be folded, although they are not ICEs.
4044 const VarDecl *VD = dyn_cast<VarDecl>(D);
4045 if (VD) {
4046 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4047 VD = VDef;
4048 }
4049 if (!VD || VD->isInvalidDecl()) {
4050 Info.FFDiag(E);
4051 return CompleteObject();
4052 }
4053
4054 bool IsConstant = BaseType.isConstant(Info.Ctx);
4055
4056 // Unless we're looking at a local variable or argument in a constexpr call,
4057 // the variable we're reading must be const.
4058 if (!Frame) {
4059 if (IsAccess && isa<ParmVarDecl>(VD)) {
4060 // Access of a parameter that's not associated with a frame isn't going
4061 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4062 // suitable diagnostic.
4063 } else if (Info.getLangOpts().CPlusPlus14 &&
4064 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4065 // OK, we can read and modify an object if we're in the process of
4066 // evaluating its initializer, because its lifetime began in this
4067 // evaluation.
4068 } else if (isModification(AK)) {
4069 // All the remaining cases do not permit modification of the object.
4070 Info.FFDiag(E, diag::note_constexpr_modify_global);
4071 return CompleteObject();
4072 } else if (VD->isConstexpr()) {
4073 // OK, we can read this variable.
4074 } else if (BaseType->isIntegralOrEnumerationType()) {
4075 if (!IsConstant) {
4076 if (!IsAccess)
4077 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4078 if (Info.getLangOpts().CPlusPlus) {
4079 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4080 Info.Note(VD->getLocation(), diag::note_declared_at);
4081 } else {
4082 Info.FFDiag(E);
4083 }
4084 return CompleteObject();
4085 }
4086 } else if (!IsAccess) {
4087 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4088 } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4089 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4090 // This variable might end up being constexpr. Don't diagnose it yet.
4091 } else if (IsConstant) {
4092 // Keep evaluating to see what we can do. In particular, we support
4093 // folding of const floating-point types, in order to make static const
4094 // data members of such types (supported as an extension) more useful.
4095 if (Info.getLangOpts().CPlusPlus) {
4096 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4097 ? diag::note_constexpr_ltor_non_constexpr
4098 : diag::note_constexpr_ltor_non_integral, 1)
4099 << VD << BaseType;
4100 Info.Note(VD->getLocation(), diag::note_declared_at);
4101 } else {
4102 Info.CCEDiag(E);
4103 }
4104 } else {
4105 // Never allow reading a non-const value.
4106 if (Info.getLangOpts().CPlusPlus) {
4107 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4108 ? diag::note_constexpr_ltor_non_constexpr
4109 : diag::note_constexpr_ltor_non_integral, 1)
4110 << VD << BaseType;
4111 Info.Note(VD->getLocation(), diag::note_declared_at);
4112 } else {
4113 Info.FFDiag(E);
4114 }
4115 return CompleteObject();
4116 }
4117 }
4118
4119 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4120 return CompleteObject();
4121 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4122 Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
4123 if (!Alloc) {
4124 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4125 return CompleteObject();
4126 }
4127 return CompleteObject(LVal.Base, &(*Alloc)->Value,
4128 LVal.Base.getDynamicAllocType());
4129 } else {
4130 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4131
4132 if (!Frame) {
4133 if (const MaterializeTemporaryExpr *MTE =
4134 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4135 assert(MTE->getStorageDuration() == SD_Static &&(static_cast <bool> (MTE->getStorageDuration() == SD_Static
&& "should have a frame for a non-global materialized temporary"
) ? void (0) : __assert_fail ("MTE->getStorageDuration() == SD_Static && \"should have a frame for a non-global materialized temporary\""
, "clang/lib/AST/ExprConstant.cpp", 4136, __extension__ __PRETTY_FUNCTION__
))
4136 "should have a frame for a non-global materialized temporary")(static_cast <bool> (MTE->getStorageDuration() == SD_Static
&& "should have a frame for a non-global materialized temporary"
) ? void (0) : __assert_fail ("MTE->getStorageDuration() == SD_Static && \"should have a frame for a non-global materialized temporary\""
, "clang/lib/AST/ExprConstant.cpp", 4136, __extension__ __PRETTY_FUNCTION__
))
;
4137
4138 // C++20 [expr.const]p4: [DR2126]
4139 // An object or reference is usable in constant expressions if it is
4140 // - a temporary object of non-volatile const-qualified literal type
4141 // whose lifetime is extended to that of a variable that is usable
4142 // in constant expressions
4143 //
4144 // C++20 [expr.const]p5:
4145 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4146 // - a non-volatile glvalue that refers to an object that is usable
4147 // in constant expressions, or
4148 // - a non-volatile glvalue of literal type that refers to a
4149 // non-volatile object whose lifetime began within the evaluation
4150 // of E;
4151 //
4152 // C++11 misses the 'began within the evaluation of e' check and
4153 // instead allows all temporaries, including things like:
4154 // int &&r = 1;
4155 // int x = ++r;
4156 // constexpr int k = r;
4157 // Therefore we use the C++14-onwards rules in C++11 too.
4158 //
4159 // Note that temporaries whose lifetimes began while evaluating a
4160 // variable's constructor are not usable while evaluating the
4161 // corresponding destructor, not even if they're of const-qualified
4162 // types.
4163 if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4164 !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4165 if (!IsAccess)
4166 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4167 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4168 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4169 return CompleteObject();
4170 }
4171
4172 BaseVal = MTE->getOrCreateValue(false);
4173 assert(BaseVal && "got reference to unevaluated temporary")(static_cast <bool> (BaseVal && "got reference to unevaluated temporary"
) ? void (0) : __assert_fail ("BaseVal && \"got reference to unevaluated temporary\""
, "clang/lib/AST/ExprConstant.cpp", 4173, __extension__ __PRETTY_FUNCTION__
))
;
4174 } else {
4175 if (!IsAccess)
4176 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4177 APValue Val;
4178 LVal.moveInto(Val);
4179 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4180 << AK
4181 << Val.getAsString(Info.Ctx,
4182 Info.Ctx.getLValueReferenceType(LValType));
4183 NoteLValueLocation(Info, LVal.Base);
4184 return CompleteObject();
4185 }
4186 } else {
4187 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4188 assert(BaseVal && "missing value for temporary")(static_cast <bool> (BaseVal && "missing value for temporary"
) ? void (0) : __assert_fail ("BaseVal && \"missing value for temporary\""
, "clang/lib/AST/ExprConstant.cpp", 4188, __extension__ __PRETTY_FUNCTION__
))
;
4189 }
4190 }
4191
4192 // In C++14, we can't safely access any mutable state when we might be
4193 // evaluating after an unmodeled side effect. Parameters are modeled as state
4194 // in the caller, but aren't visible once the call returns, so they can be
4195 // modified in a speculatively-evaluated call.
4196 //
4197 // FIXME: Not all local state is mutable. Allow local constant subobjects
4198 // to be read here (but take care with 'mutable' fields).
4199 unsigned VisibleDepth = Depth;
4200 if (llvm::isa_and_nonnull<ParmVarDecl>(
4201 LVal.Base.dyn_cast<const ValueDecl *>()))
4202 ++VisibleDepth;
4203 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4204 Info.EvalStatus.HasSideEffects) ||
4205 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4206 return CompleteObject();
4207
4208 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4209}
4210
4211/// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4212/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4213/// glvalue referred to by an entity of reference type.
4214///
4215/// \param Info - Information about the ongoing evaluation.
4216/// \param Conv - The expression for which we are performing the conversion.
4217/// Used for diagnostics.
4218/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4219/// case of a non-class type).
4220/// \param LVal - The glvalue on which we are attempting to perform this action.
4221/// \param RVal - The produced value will be placed here.
4222/// \param WantObjectRepresentation - If true, we're looking for the object
4223/// representation rather than the value, and in particular,
4224/// there is no requirement that the result be fully initialized.
4225static bool
4226handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4227 const LValue &LVal, APValue &RVal,
4228 bool WantObjectRepresentation = false) {
4229 if (LVal.Designator.Invalid)
4230 return false;
4231
4232 // Check for special cases where there is no existing APValue to look at.
4233 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4234
4235 AccessKinds AK =
4236 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4237
4238 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4239 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4240 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4241 // initializer until now for such expressions. Such an expression can't be
4242 // an ICE in C, so this only matters for fold.
4243 if (Type.isVolatileQualified()) {
4244 Info.FFDiag(Conv);
4245 return false;
4246 }
4247 APValue Lit;
4248 if (!Evaluate(Lit, Info, CLE->getInitializer()))
4249 return false;
4250 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4251 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4252 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4253 // Special-case character extraction so we don't have to construct an
4254 // APValue for the whole string.
4255 assert(LVal.Designator.Entries.size() <= 1 &&(static_cast <bool> (LVal.Designator.Entries.size() <=
1 && "Can only read characters from string literals"
) ? void (0) : __assert_fail ("LVal.Designator.Entries.size() <= 1 && \"Can only read characters from string literals\""
, "clang/lib/AST/ExprConstant.cpp", 4256, __extension__ __PRETTY_FUNCTION__
))
4256 "Can only read characters from string literals")(static_cast <bool> (LVal.Designator.Entries.size() <=
1 && "Can only read characters from string literals"
) ? void (0) : __assert_fail ("LVal.Designator.Entries.size() <= 1 && \"Can only read characters from string literals\""
, "clang/lib/AST/ExprConstant.cpp", 4256, __extension__ __PRETTY_FUNCTION__
))
;
4257 if (LVal.Designator.Entries.empty()) {
4258 // Fail for now for LValue to RValue conversion of an array.
4259 // (This shouldn't show up in C/C++, but it could be triggered by a
4260 // weird EvaluateAsRValue call from a tool.)
4261 Info.FFDiag(Conv);
4262 return false;
4263 }
4264 if (LVal.Designator.isOnePastTheEnd()) {
4265 if (Info.getLangOpts().CPlusPlus11)
4266 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4267 else
4268 Info.FFDiag(Conv);
4269 return false;
4270 }
4271 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4272 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4273 return true;
4274 }
4275 }
4276
4277 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4278 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4279}
4280
4281/// Perform an assignment of Val to LVal. Takes ownership of Val.
4282static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4283 QualType LValType, APValue &Val) {
4284 if (LVal.Designator.Invalid)
4285 return false;
4286
4287 if (!Info.getLangOpts().CPlusPlus14) {
4288 Info.FFDiag(E);
4289 return false;
4290 }
4291
4292 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4293 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4294}
4295
4296namespace {
4297struct CompoundAssignSubobjectHandler {
4298 EvalInfo &Info;
4299 const CompoundAssignOperator *E;
4300 QualType PromotedLHSType;
4301 BinaryOperatorKind Opcode;
4302 const APValue &RHS;
4303
4304 static const AccessKinds AccessKind = AK_Assign;
4305
4306 typedef bool result_type;
4307
4308 bool checkConst(QualType QT) {
4309 // Assigning to a const object has undefined behavior.
4310 if (QT.isConstQualified()) {
4311 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4312 return false;
4313 }
4314 return true;
4315 }
4316
4317 bool failed() { return false; }
4318 bool found(APValue &Subobj, QualType SubobjType) {
4319 switch (Subobj.getKind()) {
4320 case APValue::Int:
4321 return found(Subobj.getInt(), SubobjType);
4322 case APValue::Float:
4323 return found(Subobj.getFloat(), SubobjType);
4324 case APValue::ComplexInt:
4325 case APValue::ComplexFloat:
4326 // FIXME: Implement complex compound assignment.
4327 Info.FFDiag(E);
4328 return false;
4329 case APValue::LValue:
4330 return foundPointer(Subobj, SubobjType);
4331 case APValue::Vector:
4332 return foundVector(Subobj, SubobjType);
4333 default:
4334 // FIXME: can this happen?
4335 Info.FFDiag(E);
4336 return false;
4337 }
4338 }
4339
4340 bool foundVector(APValue &Value, QualType SubobjType) {
4341 if (!checkConst(SubobjType))
4342 return false;
4343
4344 if (!SubobjType->isVectorType()) {
4345 Info.FFDiag(E);
4346 return false;
4347 }
4348 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4349 }
4350
4351 bool found(APSInt &Value, QualType SubobjType) {
4352 if (!checkConst(SubobjType))
4353 return false;
4354
4355 if (!SubobjType->isIntegerType()) {
4356 // We don't support compound assignment on integer-cast-to-pointer
4357 // values.
4358 Info.FFDiag(E);
4359 return false;
4360 }
4361
4362 if (RHS.isInt()) {
4363 APSInt LHS =
4364 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4365 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4366 return false;
4367 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4368 return true;
4369 } else if (RHS.isFloat()) {
4370 const FPOptions FPO = E->getFPFeaturesInEffect(
4371 Info.Ctx.getLangOpts());
4372 APFloat FValue(0.0);
4373 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4374 PromotedLHSType, FValue) &&
4375 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4376 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4377 Value);
4378 }
4379
4380 Info.FFDiag(E);
4381 return false;
4382 }
4383 bool found(APFloat &Value, QualType SubobjType) {
4384 return checkConst(SubobjType) &&
4385 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4386 Value) &&
4387 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4388 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4389 }
4390 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4391 if (!checkConst(SubobjType))
4392 return false;
4393
4394 QualType PointeeType;
4395 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4396 PointeeType = PT->getPointeeType();
4397
4398 if (PointeeType.isNull() || !RHS.isInt() ||
4399 (Opcode != BO_Add && Opcode != BO_Sub)) {
4400 Info.FFDiag(E);
4401 return false;
4402 }
4403
4404 APSInt Offset = RHS.getInt();
4405 if (Opcode == BO_Sub)
4406 negateAsSigned(Offset);
4407
4408 LValue LVal;
4409 LVal.setFrom(Info.Ctx, Subobj);
4410 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4411 return false;
4412 LVal.moveInto(Subobj);
4413 return true;
4414 }
4415};
4416} // end anonymous namespace
4417
4418const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4419
4420/// Perform a compound assignment of LVal <op>= RVal.
4421static bool handleCompoundAssignment(EvalInfo &Info,
4422 const CompoundAssignOperator *E,
4423 const LValue &LVal, QualType LValType,
4424 QualType PromotedLValType,
4425 BinaryOperatorKind Opcode,
4426 const APValue &RVal) {
4427 if (LVal.Designator.Invalid)
4428 return false;
4429
4430 if (!Info.getLangOpts().CPlusPlus14) {
4431 Info.FFDiag(E);
4432 return false;
4433 }
4434
4435 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4436 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4437 RVal };
4438 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4439}
4440
4441namespace {
4442struct IncDecSubobjectHandler {
4443 EvalInfo &Info;
4444 const UnaryOperator *E;
4445 AccessKinds AccessKind;
4446 APValue *Old;
4447
4448 typedef bool result_type;
4449
4450 bool checkConst(QualType QT) {
4451 // Assigning to a const object has undefined behavior.
4452 if (QT.isConstQualified()) {
4453 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4454 return false;
4455 }
4456 return true;
4457 }
4458
4459 bool failed() { return false; }
4460 bool found(APValue &Subobj, QualType SubobjType) {
4461 // Stash the old value. Also clear Old, so we don't clobber it later
4462 // if we're post-incrementing a complex.
4463 if (Old) {
4464 *Old = Subobj;
4465 Old = nullptr;
4466 }
4467
4468 switch (Subobj.getKind()) {
4469 case APValue::Int:
4470 return found(Subobj.getInt(), SubobjType);
4471 case APValue::Float:
4472 return found(Subobj.getFloat(), SubobjType);
4473 case APValue::ComplexInt:
4474 return found(Subobj.getComplexIntReal(),
4475 SubobjType->castAs<ComplexType>()->getElementType()
4476 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4477 case APValue::ComplexFloat:
4478 return found(Subobj.getComplexFloatReal(),
4479 SubobjType->castAs<ComplexType>()->getElementType()
4480 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4481 case APValue::LValue:
4482 return foundPointer(Subobj, SubobjType);
4483 default:
4484 // FIXME: can this happen?
4485 Info.FFDiag(E);
4486 return false;
4487 }
4488 }
4489 bool found(APSInt &Value, QualType SubobjType) {
4490 if (!checkConst(SubobjType))
4491 return false;
4492
4493 if (!SubobjType->isIntegerType()) {
4494 // We don't support increment / decrement on integer-cast-to-pointer
4495 // values.
4496 Info.FFDiag(E);
4497 return false;
4498 }
4499
4500 if (Old) *Old = APValue(Value);
4501
4502 // bool arithmetic promotes to int, and the conversion back to bool
4503 // doesn't reduce mod 2^n, so special-case it.
4504 if (SubobjType->isBooleanType()) {
4505 if (AccessKind == AK_Increment)
4506 Value = 1;
4507 else
4508 Value = !Value;
4509 return true;
4510 }
4511
4512 bool WasNegative = Value.isNegative();
4513 if (AccessKind == AK_Increment) {
4514 ++Value;
4515
4516 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4517 APSInt ActualValue(Value, /*IsUnsigned*/true);
4518 return HandleOverflow(Info, E, ActualValue, SubobjType);
4519 }
4520 } else {
4521 --Value;
4522
4523 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4524 unsigned BitWidth = Value.getBitWidth();
4525 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4526 ActualValue.setBit(BitWidth);
4527 return HandleOverflow(Info, E, ActualValue, SubobjType);
4528 }
4529 }
4530 return true;
4531 }
4532 bool found(APFloat &Value, QualType SubobjType) {
4533 if (!checkConst(SubobjType))
4534 return false;
4535
4536 if (Old) *Old = APValue(Value);
4537
4538 APFloat One(Value.getSemantics(), 1);
4539 if (AccessKind == AK_Increment)
4540 Value.add(One, APFloat::rmNearestTiesToEven);
4541 else
4542 Value.subtract(One, APFloat::rmNearestTiesToEven);
4543 return true;
4544 }
4545 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4546 if (!checkConst(SubobjType))
4547 return false;
4548
4549 QualType PointeeType;
4550 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4551 PointeeType = PT->getPointeeType();
4552 else {
4553 Info.FFDiag(E);
4554 return false;
4555 }
4556
4557 LValue LVal;
4558 LVal.setFrom(Info.Ctx, Subobj);
4559 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4560 AccessKind == AK_Increment ? 1 : -1))
4561 return false;
4562 LVal.moveInto(Subobj);
4563 return true;
4564 }
4565};
4566} // end anonymous namespace
4567
4568/// Perform an increment or decrement on LVal.
4569static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4570 QualType LValType, bool IsIncrement, APValue *Old) {
4571 if (LVal.Designator.Invalid)
4572 return false;
4573
4574 if (!Info.getLangOpts().CPlusPlus14) {
4575 Info.FFDiag(E);
4576 return false;
4577 }
4578
4579 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4580 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4581 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4582 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4583}
4584
4585/// Build an lvalue for the object argument of a member function call.
4586static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4587 LValue &This) {
4588 if (Object->getType()->isPointerType() && Object->isPRValue())
4589 return EvaluatePointer(Object, This, Info);
4590
4591 if (Object->isGLValue())
4592 return EvaluateLValue(Object, This, Info);
4593
4594 if (Object->getType()->isLiteralType(Info.Ctx))
4595 return EvaluateTemporary(Object, This, Info);
4596
4597 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4598 return false;
4599}
4600
4601/// HandleMemberPointerAccess - Evaluate a member access operation and build an
4602/// lvalue referring to the result.
4603///
4604/// \param Info - Information about the ongoing evaluation.
4605/// \param LV - An lvalue referring to the base of the member pointer.
4606/// \param RHS - The member pointer expression.
4607/// \param IncludeMember - Specifies whether the member itself is included in
4608/// the resulting LValue subobject designator. This is not possible when
4609/// creating a bound member function.
4610/// \return The field or method declaration to which the member pointer refers,
4611/// or 0 if evaluation fails.
4612static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4613 QualType LVType,
4614 LValue &LV,
4615 const Expr *RHS,
4616 bool IncludeMember = true) {
4617 MemberPtr MemPtr;
4618 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4619 return nullptr;
4620
4621 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4622 // member value, the behavior is undefined.
4623 if (!MemPtr.getDecl()) {
4624 // FIXME: Specific diagnostic.
4625 Info.FFDiag(RHS);
4626 return nullptr;
4627 }
4628
4629 if (MemPtr.isDerivedMember()) {
4630 // This is a member of some derived class. Truncate LV appropriately.
4631 // The end of the derived-to-base path for the base object must match the
4632 // derived-to-base path for the member pointer.
4633 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4634 LV.Designator.Entries.size()) {
4635 Info.FFDiag(RHS);
4636 return nullptr;
4637 }
4638 unsigned PathLengthToMember =
4639 LV.Designator.Entries.size() - MemPtr.Path.size();
4640 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4641 const CXXRecordDecl *LVDecl = getAsBaseClass(
4642 LV.Designator.Entries[PathLengthToMember + I]);
4643 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4644 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4645 Info.FFDiag(RHS);
4646 return nullptr;
4647 }
4648 }
4649
4650 // Truncate the lvalue to the appropriate derived class.
4651 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4652 PathLengthToMember))
4653 return nullptr;
4654 } else if (!MemPtr.Path.empty()) {
4655 // Extend the LValue path with the member pointer's path.
4656 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4657 MemPtr.Path.size() + IncludeMember);
4658
4659 // Walk down to the appropriate base class.
4660 if (const PointerType *PT = LVType->getAs<PointerType>())
4661 LVType = PT->getPointeeType();
4662 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4663 assert(RD && "member pointer access on non-class-type expression")(static_cast <bool> (RD && "member pointer access on non-class-type expression"
) ? void (0) : __assert_fail ("RD && \"member pointer access on non-class-type expression\""
, "clang/lib/AST/ExprConstant.cpp", 4663, __extension__ __PRETTY_FUNCTION__
))
;
4664 // The first class in the path is that of the lvalue.
4665 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4666 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4667 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4668 return nullptr;
4669 RD = Base;
4670 }
4671 // Finally cast to the class containing the member.
4672 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4673 MemPtr.getContainingRecord()))
4674 return nullptr;
4675 }
4676
4677 // Add the member. Note that we cannot build bound member functions here.
4678 if (IncludeMember) {
4679 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4680 if (!HandleLValueMember(Info, RHS, LV, FD))
4681 return nullptr;
4682 } else if (const IndirectFieldDecl *IFD =
4683 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4684 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4685 return nullptr;
4686 } else {
4687 llvm_unreachable("can't construct reference to bound member function")::llvm::llvm_unreachable_internal("can't construct reference to bound member function"
, "clang/lib/AST/ExprConstant.cpp", 4687)
;
4688 }
4689 }
4690
4691 return MemPtr.getDecl();
4692}
4693
4694static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4695 const BinaryOperator *BO,
4696 LValue &LV,
4697 bool IncludeMember = true) {
4698 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI)(static_cast <bool> (BO->getOpcode() == BO_PtrMemD ||
BO->getOpcode() == BO_PtrMemI) ? void (0) : __assert_fail
("BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI"
, "clang/lib/AST/ExprConstant.cpp", 4698, __extension__ __PRETTY_FUNCTION__
))
;
4699
4700 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4701 if (Info.noteFailure()) {
4702 MemberPtr MemPtr;
4703 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4704 }
4705 return nullptr;
4706 }
4707
4708 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4709 BO->getRHS(), IncludeMember);
4710}
4711
4712/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4713/// the provided lvalue, which currently refers to the base object.
4714static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4715 LValue &Result) {
4716 SubobjectDesignator &D = Result.Designator;
4717 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4718 return false;
4719
4720 QualType TargetQT = E->getType();
4721 if (const PointerType *PT = TargetQT->getAs<PointerType>())
4722 TargetQT = PT->getPointeeType();
4723
4724 // Check this cast lands within the final derived-to-base subobject path.
4725 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4726 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4727 << D.MostDerivedType << TargetQT;
4728 return false;
4729 }
4730
4731 // Check the type of the final cast. We don't need to check the path,
4732 // since a cast can only be formed if the path is unique.
4733 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4734 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4735 const CXXRecordDecl *FinalType;
4736 if (NewEntriesSize == D.MostDerivedPathLength)
4737 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4738 else
4739 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4740 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4741 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4742 << D.MostDerivedType << TargetQT;
4743 return false;
4744 }
4745
4746 // Truncate the lvalue to the appropriate derived class.
4747 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4748}
4749
4750/// Get the value to use for a default-initialized object of type T.
4751/// Return false if it encounters something invalid.
4752static bool getDefaultInitValue(QualType T, APValue &Result) {
4753 bool Success = true;
4754 if (auto *RD = T->getAsCXXRecordDecl()) {
4755 if (RD->isInvalidDecl()) {
4756 Result = APValue();
4757 return false;
4758 }
4759 if (RD->isUnion()) {
4760 Result = APValue((const FieldDecl *)nullptr);
4761 return true;
4762 }
4763 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4764 std::distance(RD->field_begin(), RD->field_end()));
4765
4766 unsigned Index = 0;
4767 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4768 End = RD->bases_end();
4769 I != End; ++I, ++Index)
4770 Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4771
4772 for (const auto *I : RD->fields()) {
4773 if (I->isUnnamedBitfield())
4774 continue;
4775 Success &= getDefaultInitValue(I->getType(),
4776 Result.getStructField(I->getFieldIndex()));
4777 }
4778 return Success;
4779 }
4780
4781 if (auto *AT =
4782 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4783 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4784 if (Result.hasArrayFiller())
4785 Success &=
4786 getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4787
4788 return Success;
4789 }
4790
4791 Result = APValue::IndeterminateValue();
4792 return true;
4793}
4794
4795namespace {
4796enum EvalStmtResult {
4797 /// Evaluation failed.
4798 ESR_Failed,
4799 /// Hit a 'return' statement.
4800 ESR_Returned,
4801 /// Evaluation succeeded.
4802 ESR_Succeeded,
4803 /// Hit a 'continue' statement.
4804 ESR_Continue,
4805 /// Hit a 'break' statement.
4806 ESR_Break,
4807 /// Still scanning for 'case' or 'default' statement.
4808 ESR_CaseNotFound
4809};
4810}
4811
4812static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4813 // We don't need to evaluate the initializer for a static local.
4814 if (!VD->hasLocalStorage())
4815 return true;
4816
4817 LValue Result;
4818 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4819 ScopeKind::Block, Result);
4820
4821 const Expr *InitE = VD->getInit();
4822 if (!InitE) {
4823 if (VD->getType()->isDependentType())
4824 return Info.noteSideEffect();
4825 return getDefaultInitValue(VD->getType(), Val);
4826 }
4827 if (InitE->isValueDependent())
4828 return false;
4829
4830 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4831 // Wipe out any partially-computed value, to allow tracking that this
4832 // evaluation failed.
4833 Val = APValue();
4834 return false;
4835 }
4836
4837 return true;
4838}
4839
4840static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4841 bool OK = true;
4842
4843 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4844 OK &= EvaluateVarDecl(Info, VD);
4845
4846 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4847 for (auto *BD : DD->bindings())
4848 if (auto *VD = BD->getHoldingVar())
4849 OK &= EvaluateDecl(Info, VD);
4850
4851 return OK;
4852}
4853
4854static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4855 assert(E->isValueDependent())(static_cast <bool> (E->isValueDependent()) ? void (
0) : __assert_fail ("E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 4855, __extension__ __PRETTY_FUNCTION__))
;
4856 if (Info.noteSideEffect())
4857 return true;
4858 assert(E->containsErrors() && "valid value-dependent expression should never "(static_cast <bool> (E->containsErrors() && "valid value-dependent expression should never "
"reach invalid code path.") ? void (0) : __assert_fail ("E->containsErrors() && \"valid value-dependent expression should never \" \"reach invalid code path.\""
, "clang/lib/AST/ExprConstant.cpp", 4859, __extension__ __PRETTY_FUNCTION__
))
4859 "reach invalid code path.")(static_cast <bool> (E->containsErrors() && "valid value-dependent expression should never "
"reach invalid code path.") ? void (0) : __assert_fail ("E->containsErrors() && \"valid value-dependent expression should never \" \"reach invalid code path.\""
, "clang/lib/AST/ExprConstant.cpp", 4859, __extension__ __PRETTY_FUNCTION__
))
;
4860 return false;
4861}
4862
4863/// Evaluate a condition (either a variable declaration or an expression).
4864static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4865 const Expr *Cond, bool &Result) {
4866 if (Cond->isValueDependent())
4867 return false;
4868 FullExpressionRAII Scope(Info);
4869 if (CondDecl && !EvaluateDecl(Info, CondDecl))
4870 return false;
4871 if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4872 return false;
4873 return Scope.destroy();
4874}
4875
4876namespace {
4877/// A location where the result (returned value) of evaluating a
4878/// statement should be stored.
4879struct StmtResult {
4880 /// The APValue that should be filled in with the returned value.
4881 APValue &Value;
4882 /// The location containing the result, if any (used to support RVO).
4883 const LValue *Slot;
4884};
4885
4886struct TempVersionRAII {
4887 CallStackFrame &Frame;
4888
4889 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4890 Frame.pushTempVersion();
4891 }
4892
4893 ~TempVersionRAII() {
4894 Frame.popTempVersion();
4895 }
4896};
4897
4898}
4899
4900static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4901 const Stmt *S,
4902 const SwitchCase *SC = nullptr);
4903
4904/// Evaluate the body of a loop, and translate the result as appropriate.
4905static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4906 const Stmt *Body,
4907 const SwitchCase *Case = nullptr) {
4908 BlockScopeRAII Scope(Info);
4909
4910 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4911 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4912 ESR = ESR_Failed;
4913
4914 switch (ESR) {
4915 case ESR_Break:
4916 return ESR_Succeeded;
4917 case ESR_Succeeded:
4918 case ESR_Continue:
4919 return ESR_Continue;
4920 case ESR_Failed:
4921 case ESR_Returned:
4922 case ESR_CaseNotFound:
4923 return ESR;
4924 }
4925 llvm_unreachable("Invalid EvalStmtResult!")::llvm::llvm_unreachable_internal("Invalid EvalStmtResult!", "clang/lib/AST/ExprConstant.cpp"
, 4925)
;
4926}
4927
4928/// Evaluate a switch statement.
4929static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4930 const SwitchStmt *SS) {
4931 BlockScopeRAII Scope(Info);
4932
4933 // Evaluate the switch condition.
4934 APSInt Value;
4935 {
4936 if (const Stmt *Init = SS->getInit()) {
4937 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4938 if (ESR != ESR_Succeeded) {
4939 if (ESR != ESR_Failed && !Scope.destroy())
4940 ESR = ESR_Failed;
4941 return ESR;
4942 }
4943 }
4944
4945 FullExpressionRAII CondScope(Info);
4946 if (SS->getConditionVariable() &&
4947 !EvaluateDecl(Info, SS->getConditionVariable()))
4948 return ESR_Failed;
4949 if (SS->getCond()->isValueDependent()) {
4950 if (!EvaluateDependentExpr(SS->getCond(), Info))
4951 return ESR_Failed;
4952 } else {
4953 if (!EvaluateInteger(SS->getCond(), Value, Info))
4954 return ESR_Failed;
4955 }
4956 if (!CondScope.destroy())
4957 return ESR_Failed;
4958 }
4959
4960 // Find the switch case corresponding to the value of the condition.
4961 // FIXME: Cache this lookup.
4962 const SwitchCase *Found = nullptr;
4963 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4964 SC = SC->getNextSwitchCase()) {
4965 if (isa<DefaultStmt>(SC)) {
4966 Found = SC;
4967 continue;
4968 }
4969
4970 const CaseStmt *CS = cast<CaseStmt>(SC);
4971 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4972 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4973 : LHS;
4974 if (LHS <= Value && Value <= RHS) {
4975 Found = SC;
4976 break;
4977 }
4978 }
4979
4980 if (!Found)
4981 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4982
4983 // Search the switch body for the switch case and evaluate it from there.
4984 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4985 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4986 return ESR_Failed;
4987
4988 switch (ESR) {
4989 case ESR_Break:
4990 return ESR_Succeeded;
4991 case ESR_Succeeded:
4992 case ESR_Continue:
4993 case ESR_Failed:
4994 case ESR_Returned:
4995 return ESR;
4996 case ESR_CaseNotFound:
4997 // This can only happen if the switch case is nested within a statement
4998 // expression. We have no intention of supporting that.
4999 Info.FFDiag(Found->getBeginLoc(),
5000 diag::note_constexpr_stmt_expr_unsupported);
5001 return ESR_Failed;
5002 }
5003 llvm_unreachable("Invalid EvalStmtResult!")::llvm::llvm_unreachable_internal("Invalid EvalStmtResult!", "clang/lib/AST/ExprConstant.cpp"
, 5003)
;
5004}
5005
5006// Evaluate a statement.
5007static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5008 const Stmt *S, const SwitchCase *Case) {
5009 if (!Info.nextStep(S))
5010 return ESR_Failed;
5011
5012 // If we're hunting down a 'case' or 'default' label, recurse through
5013 // substatements until we hit the label.
5014 if (Case) {
5015 switch (S->getStmtClass()) {
5016 case Stmt::CompoundStmtClass:
5017 // FIXME: Precompute which substatement of a compound statement we
5018 // would jump to, and go straight there rather than performing a
5019 // linear scan each time.
5020 case Stmt::LabelStmtClass:
5021 case Stmt::AttributedStmtClass:
5022 case Stmt::DoStmtClass:
5023 break;
5024
5025 case Stmt::CaseStmtClass:
5026 case Stmt::DefaultStmtClass:
5027 if (Case == S)
5028 Case = nullptr;
5029 break;
5030
5031 case Stmt::IfStmtClass: {
5032 // FIXME: Precompute which side of an 'if' we would jump to, and go
5033 // straight there rather than scanning both sides.
5034 const IfStmt *IS = cast<IfStmt>(S);
5035
5036 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5037 // preceded by our switch label.
5038 BlockScopeRAII Scope(Info);
5039
5040 // Step into the init statement in case it brings an (uninitialized)
5041 // variable into scope.
5042 if (const Stmt *Init = IS->getInit()) {
5043 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5044 if (ESR != ESR_CaseNotFound) {
5045 assert(ESR != ESR_Succeeded)(static_cast <bool> (ESR != ESR_Succeeded) ? void (0) :
__assert_fail ("ESR != ESR_Succeeded", "clang/lib/AST/ExprConstant.cpp"
, 5045, __extension__ __PRETTY_FUNCTION__))
;
5046 return ESR;
5047 }
5048 }
5049
5050 // Condition variable must be initialized if it exists.
5051 // FIXME: We can skip evaluating the body if there's a condition
5052 // variable, as there can't be any case labels within it.
5053 // (The same is true for 'for' statements.)
5054
5055 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5056 if (ESR == ESR_Failed)
5057 return ESR;
5058 if (ESR != ESR_CaseNotFound)
5059 return Scope.destroy() ? ESR : ESR_Failed;
5060 if (!IS->getElse())
5061 return ESR_CaseNotFound;
5062
5063 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5064 if (ESR == ESR_Failed)
5065 return ESR;
5066 if (ESR != ESR_CaseNotFound)
5067 return Scope.destroy() ? ESR : ESR_Failed;
5068 return ESR_CaseNotFound;
5069 }
5070
5071 case Stmt::WhileStmtClass: {
5072 EvalStmtResult ESR =
5073 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5074 if (ESR != ESR_Continue)
5075 return ESR;
5076 break;
5077 }
5078
5079 case Stmt::ForStmtClass: {
5080 const ForStmt *FS = cast<ForStmt>(S);
5081 BlockScopeRAII Scope(Info);
5082
5083 // Step into the init statement in case it brings an (uninitialized)
5084 // variable into scope.
5085 if (const Stmt *Init = FS->getInit()) {
5086 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5087 if (ESR != ESR_CaseNotFound) {
5088 assert(ESR != ESR_Succeeded)(static_cast <bool> (ESR != ESR_Succeeded) ? void (0) :
__assert_fail ("ESR != ESR_Succeeded", "clang/lib/AST/ExprConstant.cpp"
, 5088, __extension__ __PRETTY_FUNCTION__))
;
5089 return ESR;
5090 }
5091 }
5092
5093 EvalStmtResult ESR =
5094 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5095 if (ESR != ESR_Continue)
5096 return ESR;
5097 if (const auto *Inc = FS->getInc()) {
5098 if (Inc->isValueDependent()) {
5099 if (!EvaluateDependentExpr(Inc, Info))
5100 return ESR_Failed;
5101 } else {
5102 FullExpressionRAII IncScope(Info);
5103 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5104 return ESR_Failed;
5105 }
5106 }
5107 break;
5108 }
5109
5110 case Stmt::DeclStmtClass: {
5111 // Start the lifetime of any uninitialized variables we encounter. They
5112 // might be used by the selected branch of the switch.
5113 const DeclStmt *DS = cast<DeclStmt>(S);
5114 for (const auto *D : DS->decls()) {
5115 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5116 if (VD->hasLocalStorage() && !VD->getInit())
5117 if (!EvaluateVarDecl(Info, VD))
5118 return ESR_Failed;
5119 // FIXME: If the variable has initialization that can't be jumped
5120 // over, bail out of any immediately-surrounding compound-statement
5121 // too. There can't be any case labels here.
5122 }
5123 }
5124 return ESR_CaseNotFound;
5125 }
5126
5127 default:
5128 return ESR_CaseNotFound;
5129 }
5130 }
5131
5132 switch (S->getStmtClass()) {
5133 default:
5134 if (const Expr *E = dyn_cast<Expr>(S)) {
5135 if (E->isValueDependent()) {
5136 if (!EvaluateDependentExpr(E, Info))
5137 return ESR_Failed;
5138 } else {
5139 // Don't bother evaluating beyond an expression-statement which couldn't
5140 // be evaluated.
5141 // FIXME: Do we need the FullExpressionRAII object here?
5142 // VisitExprWithCleanups should create one when necessary.
5143 FullExpressionRAII Scope(Info);
5144 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5145 return ESR_Failed;
5146 }
5147 return ESR_Succeeded;
5148 }
5149
5150 Info.FFDiag(S->getBeginLoc());
5151 return ESR_Failed;
5152
5153 case Stmt::NullStmtClass:
5154 return ESR_Succeeded;
5155
5156 case Stmt::DeclStmtClass: {
5157 const DeclStmt *DS = cast<DeclStmt>(S);
5158 for (const auto *D : DS->decls()) {
5159 // Each declaration initialization is its own full-expression.
5160 FullExpressionRAII Scope(Info);
5161 if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5162 return ESR_Failed;
5163 if (!Scope.destroy())
5164 return ESR_Failed;
5165 }
5166 return ESR_Succeeded;
5167 }
5168
5169 case Stmt::ReturnStmtClass: {
5170 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5171 FullExpressionRAII Scope(Info);
5172 if (RetExpr && RetExpr->isValueDependent()) {
5173 EvaluateDependentExpr(RetExpr, Info);
5174 // We know we returned, but we don't know what the value is.
5175 return ESR_Failed;
5176 }
5177 if (RetExpr &&
5178 !(Result.Slot
5179 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5180 : Evaluate(Result.Value, Info, RetExpr)))
5181 return ESR_Failed;
5182 return Scope.destroy() ? ESR_Returned : ESR_Failed;
5183 }
5184
5185 case Stmt::CompoundStmtClass: {
5186 BlockScopeRAII Scope(Info);
5187
5188 const CompoundStmt *CS = cast<CompoundStmt>(S);
5189 for (const auto *BI : CS->body()) {
5190 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5191 if (ESR == ESR_Succeeded)
5192 Case = nullptr;
5193 else if (ESR != ESR_CaseNotFound) {
5194 if (ESR != ESR_Failed && !Scope.destroy())
5195 return ESR_Failed;
5196 return ESR;
5197 }
5198 }
5199 if (Case)
5200 return ESR_CaseNotFound;
5201 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5202 }
5203
5204 case Stmt::IfStmtClass: {
5205 const IfStmt *IS = cast<IfStmt>(S);
5206
5207 // Evaluate the condition, as either a var decl or as an expression.
5208 BlockScopeRAII Scope(Info);
5209 if (const Stmt *Init = IS->getInit()) {
5210 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5211 if (ESR != ESR_Succeeded) {
5212 if (ESR != ESR_Failed && !Scope.destroy())
5213 return ESR_Failed;
5214 return ESR;
5215 }
5216 }
5217 bool Cond;
5218 if (IS->isConsteval())
5219 Cond = IS->isNonNegatedConsteval();
5220 else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5221 Cond))
5222 return ESR_Failed;
5223
5224 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5225 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5226 if (ESR != ESR_Succeeded) {
5227 if (ESR != ESR_Failed && !Scope.destroy())
5228 return ESR_Failed;
5229 return ESR;
5230 }
5231 }
5232 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5233 }
5234
5235 case Stmt::WhileStmtClass: {
5236 const WhileStmt *WS = cast<WhileStmt>(S);
5237 while (true) {
5238 BlockScopeRAII Scope(Info);
5239 bool Continue;
5240 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5241 Continue))
5242 return ESR_Failed;
5243 if (!Continue)
5244 break;
5245
5246 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5247 if (ESR != ESR_Continue) {
5248 if (ESR != ESR_Failed && !Scope.destroy())
5249 return ESR_Failed;
5250 return ESR;
5251 }
5252 if (!Scope.destroy())
5253 return ESR_Failed;
5254 }
5255 return ESR_Succeeded;
5256 }
5257
5258 case Stmt::DoStmtClass: {
5259 const DoStmt *DS = cast<DoStmt>(S);
5260 bool Continue;
5261 do {
5262 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5263 if (ESR != ESR_Continue)
5264 return ESR;
5265 Case = nullptr;
5266
5267 if (DS->getCond()->isValueDependent()) {
5268 EvaluateDependentExpr(DS->getCond(), Info);
5269 // Bailout as we don't know whether to keep going or terminate the loop.
5270 return ESR_Failed;
5271 }
5272 FullExpressionRAII CondScope(Info);
5273 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5274 !CondScope.destroy())
5275 return ESR_Failed;
5276 } while (Continue);
5277 return ESR_Succeeded;
5278 }
5279
5280 case Stmt::ForStmtClass: {
5281 const ForStmt *FS = cast<ForStmt>(S);
5282 BlockScopeRAII ForScope(Info);
5283 if (FS->getInit()) {
5284 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5285 if (ESR != ESR_Succeeded) {
5286 if (ESR != ESR_Failed && !ForScope.destroy())
5287 return ESR_Failed;
5288 return ESR;
5289 }
5290 }
5291 while (true) {
5292 BlockScopeRAII IterScope(Info);
5293 bool Continue = true;
5294 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5295 FS->getCond(), Continue))
5296 return ESR_Failed;
5297 if (!Continue)
5298 break;
5299
5300 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5301 if (ESR != ESR_Continue) {
5302 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5303 return ESR_Failed;
5304 return ESR;
5305 }
5306
5307 if (const auto *Inc = FS->getInc()) {
5308 if (Inc->isValueDependent()) {
5309 if (!EvaluateDependentExpr(Inc, Info))
5310 return ESR_Failed;
5311 } else {
5312 FullExpressionRAII IncScope(Info);
5313 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5314 return ESR_Failed;
5315 }
5316 }
5317
5318 if (!IterScope.destroy())
5319 return ESR_Failed;
5320 }
5321 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5322 }
5323
5324 case Stmt::CXXForRangeStmtClass: {
5325 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5326 BlockScopeRAII Scope(Info);
5327
5328 // Evaluate the init-statement if present.
5329 if (FS->getInit()) {
5330 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5331 if (ESR != ESR_Succeeded) {
5332 if (ESR != ESR_Failed && !Scope.destroy())
5333 return ESR_Failed;
5334 return ESR;
5335 }
5336 }
5337
5338 // Initialize the __range variable.
5339 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5340 if (ESR != ESR_Succeeded) {
5341 if (ESR != ESR_Failed && !Scope.destroy())
5342 return ESR_Failed;
5343 return ESR;
5344 }
5345
5346 // In error-recovery cases it's possible to get here even if we failed to
5347 // synthesize the __begin and __end variables.
5348 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5349 return ESR_Failed;
5350
5351 // Create the __begin and __end iterators.
5352 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5353 if (ESR != ESR_Succeeded) {
5354 if (ESR != ESR_Failed && !Scope.destroy())
5355 return ESR_Failed;
5356 return ESR;
5357 }
5358 ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5359 if (ESR != ESR_Succeeded) {
5360 if (ESR != ESR_Failed && !Scope.destroy())
5361 return ESR_Failed;
5362 return ESR;
5363 }
5364
5365 while (true) {
5366 // Condition: __begin != __end.
5367 {
5368 if (FS->getCond()->isValueDependent()) {
5369 EvaluateDependentExpr(FS->getCond(), Info);
5370 // We don't know whether to keep going or terminate the loop.
5371 return ESR_Failed;
5372 }
5373 bool Continue = true;
5374 FullExpressionRAII CondExpr(Info);
5375 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5376 return ESR_Failed;
5377 if (!Continue)
5378 break;
5379 }
5380
5381 // User's variable declaration, initialized by *__begin.
5382 BlockScopeRAII InnerScope(Info);
5383 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5384 if (ESR != ESR_Succeeded) {
5385 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5386 return ESR_Failed;
5387 return ESR;
5388 }
5389
5390 // Loop body.
5391 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5392 if (ESR != ESR_Continue) {
5393 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5394 return ESR_Failed;
5395 return ESR;
5396 }
5397 if (FS->getInc()->isValueDependent()) {
5398 if (!EvaluateDependentExpr(FS->getInc(), Info))
5399 return ESR_Failed;
5400 } else {
5401 // Increment: ++__begin
5402 if (!EvaluateIgnoredValue(Info, FS->getInc()))
5403 return ESR_Failed;
5404 }
5405
5406 if (!InnerScope.destroy())
5407 return ESR_Failed;
5408 }
5409
5410 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5411 }
5412
5413 case Stmt::SwitchStmtClass:
5414 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5415
5416 case Stmt::ContinueStmtClass:
5417 return ESR_Continue;
5418
5419 case Stmt::BreakStmtClass:
5420 return ESR_Break;
5421
5422 case Stmt::LabelStmtClass:
5423 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5424
5425 case Stmt::AttributedStmtClass:
5426 // As a general principle, C++11 attributes can be ignored without
5427 // any semantic impact.
5428 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5429 Case);
5430
5431 case Stmt::CaseStmtClass:
5432 case Stmt::DefaultStmtClass:
5433 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5434 case Stmt::CXXTryStmtClass:
5435 // Evaluate try blocks by evaluating all sub statements.
5436 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5437 }
5438}
5439
5440/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5441/// default constructor. If so, we'll fold it whether or not it's marked as
5442/// constexpr. If it is marked as constexpr, we will never implicitly define it,
5443/// so we need special handling.
5444static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5445 const CXXConstructorDecl *CD,
5446 bool IsValueInitialization) {
5447 if (!CD->isTrivial() || !CD->isDefaultConstructor())
5448 return false;
5449
5450 // Value-initialization does not call a trivial default constructor, so such a
5451 // call is a core constant expression whether or not the constructor is
5452 // constexpr.
5453 if (!CD->isConstexpr() && !IsValueInitialization) {
5454 if (Info.getLangOpts().CPlusPlus11) {
5455 // FIXME: If DiagDecl is an implicitly-declared special member function,
5456 // we should be much more explicit about why it's not constexpr.
5457 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5458 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5459 Info.Note(CD->getLocation(), diag::note_declared_at);
5460 } else {
5461 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5462 }
5463 }
5464 return true;
5465}
5466
5467/// CheckConstexprFunction - Check that a function can be called in a constant
5468/// expression.
5469static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5470 const FunctionDecl *Declaration,
5471 const FunctionDecl *Definition,
5472 const Stmt *Body) {
5473 // Potential constant expressions can contain calls to declared, but not yet
5474 // defined, constexpr functions.
5475 if (Info.checkingPotentialConstantExpression() && !Definition &&
5476 Declaration->isConstexpr())
5477 return false;
5478
5479 // Bail out if the function declaration itself is invalid. We will
5480 // have produced a relevant diagnostic while parsing it, so just
5481 // note the problematic sub-expression.
5482 if (Declaration->isInvalidDecl()) {
5483 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5484 return false;
5485 }
5486
5487 // DR1872: An instantiated virtual constexpr function can't be called in a
5488 // constant expression (prior to C++20). We can still constant-fold such a
5489 // call.
5490 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5491 cast<CXXMethodDecl>(Declaration)->isVirtual())
5492 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5493
5494 if (Definition && Definition->isInvalidDecl()) {
5495 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5496 return false;
5497 }
5498
5499 // Can we evaluate this function call?
5500 if (Definition && Definition->isConstexpr() && Body)
5501 return true;
5502
5503 if (Info.getLangOpts().CPlusPlus11) {
5504 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5505
5506 // If this function is not constexpr because it is an inherited
5507 // non-constexpr constructor, diagnose that directly.
5508 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5509 if (CD && CD->isInheritingConstructor()) {
5510 auto *Inherited = CD->getInheritedConstructor().getConstructor();
5511 if (!Inherited->isConstexpr())
5512 DiagDecl = CD = Inherited;
5513 }
5514
5515 // FIXME: If DiagDecl is an implicitly-declared special member function
5516 // or an inheriting constructor, we should be much more explicit about why
5517 // it's not constexpr.
5518 if (CD && CD->isInheritingConstructor())
5519 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5520 << CD->getInheritedConstructor().getConstructor()->getParent();
5521 else
5522 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5523 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5524 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5525 } else {
5526 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5527 }
5528 return false;
5529}
5530
5531namespace {
5532struct CheckDynamicTypeHandler {
5533 AccessKinds AccessKind;
5534 typedef bool result_type;
5535 bool failed() { return false; }
5536 bool found(APValue &Subobj, QualType SubobjType) { return true; }
5537 bool found(APSInt &Value, QualType SubobjType) { return true; }
5538 bool found(APFloat &Value, QualType SubobjType) { return true; }
5539};
5540} // end anonymous namespace
5541
5542/// Check that we can access the notional vptr of an object / determine its
5543/// dynamic type.
5544static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5545 AccessKinds AK, bool Polymorphic) {
5546 if (This.Designator.Invalid)
5547 return false;
5548
5549 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5550
5551 if (!Obj)
5552 return false;
5553
5554 if (!Obj.Value) {
5555 // The object is not usable in constant expressions, so we can't inspect
5556 // its value to see if it's in-lifetime or what the active union members
5557 // are. We can still check for a one-past-the-end lvalue.
5558 if (This.Designator.isOnePastTheEnd() ||
5559 This.Designator.isMostDerivedAnUnsizedArray()) {
5560 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5561 ? diag::note_constexpr_access_past_end
5562 : diag::note_constexpr_access_unsized_array)
5563 << AK;
5564 return false;
5565 } else if (Polymorphic) {
5566 // Conservatively refuse to perform a polymorphic operation if we would
5567 // not be able to read a notional 'vptr' value.
5568 APValue Val;
5569 This.moveInto(Val);
5570 QualType StarThisType =
5571 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5572 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5573 << AK << Val.getAsString(Info.Ctx, StarThisType);
5574 return false;
5575 }
5576 return true;
5577 }
5578
5579 CheckDynamicTypeHandler Handler{AK};
5580 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5581}
5582
5583/// Check that the pointee of the 'this' pointer in a member function call is
5584/// either within its lifetime or in its period of construction or destruction.
5585static bool
5586checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5587 const LValue &This,
5588 const CXXMethodDecl *NamedMember) {
5589 return checkDynamicType(
5590 Info, E, This,
5591 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5592}
5593
5594struct DynamicType {
5595 /// The dynamic class type of the object.
5596 const CXXRecordDecl *Type;
5597 /// The corresponding path length in the lvalue.
5598 unsigned PathLength;
5599};
5600
5601static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5602 unsigned PathLength) {
5603 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=(static_cast <bool> (PathLength >= Designator.MostDerivedPathLength
&& PathLength <= Designator.Entries.size() &&
"invalid path length") ? void (0) : __assert_fail ("PathLength >= Designator.MostDerivedPathLength && PathLength <= Designator.Entries.size() && \"invalid path length\""
, "clang/lib/AST/ExprConstant.cpp", 5604, __extension__ __PRETTY_FUNCTION__
))
5604 Designator.Entries.size() && "invalid path length")(static_cast <bool> (PathLength >= Designator.MostDerivedPathLength
&& PathLength <= Designator.Entries.size() &&
"invalid path length") ? void (0) : __assert_fail ("PathLength >= Designator.MostDerivedPathLength && PathLength <= Designator.Entries.size() && \"invalid path length\""
, "clang/lib/AST/ExprConstant.cpp", 5604, __extension__ __PRETTY_FUNCTION__
))
;
5605 return (PathLength == Designator.MostDerivedPathLength)
5606 ? Designator.MostDerivedType->getAsCXXRecordDecl()
5607 : getAsBaseClass(Designator.Entries[PathLength - 1]);
5608}
5609
5610/// Determine the dynamic type of an object.
5611static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5612 LValue &This, AccessKinds AK) {
5613 // If we don't have an lvalue denoting an object of class type, there is no
5614 // meaningful dynamic type. (We consider objects of non-class type to have no
5615 // dynamic type.)
5616 if (!checkDynamicType(Info, E, This, AK, true))
10
Assuming the condition is false
11
Taking false branch
5617 return None;
5618
5619 // Refuse to compute a dynamic type in the presence of virtual bases. This
5620 // shouldn't happen other than in constant-folding situations, since literal
5621 // types can't have virtual bases.
5622 //
5623 // Note that consumers of DynamicType assume that the type has no virtual
5624 // bases, and will need modifications if this restriction is relaxed.
5625 const CXXRecordDecl *Class =
5626 This.Designator.MostDerivedType->getAsCXXRecordDecl();
5627 if (!Class || Class->getNumVBases()) {
12
Assuming 'Class' is non-null
13
Assuming the condition is false
14
Taking false branch
5628 Info.FFDiag(E);
5629 return None;
5630 }
5631
5632 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5633 // binary search here instead. But the overwhelmingly common case is that
5634 // we're not in the middle of a constructor, so it probably doesn't matter
5635 // in practice.
5636 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5637 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
16
Loop condition is true. Entering loop body
20
Loop condition is true. Entering loop body
5638 PathLength <= Path.size(); ++PathLength) {
15
Assuming the condition is true
19
Assuming the condition is true
5639 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
17
Control jumps to 'case DestroyingBases:' at line 5642
21
Control jumps to 'case Destroying:' at line 5650
5640 Path.slice(0, PathLength))) {
5641 case ConstructionPhase::Bases:
5642 case ConstructionPhase::DestroyingBases:
5643 // We're constructing or destroying a base class. This is not the dynamic
5644 // type.
5645 break;
18
Execution continues on line 5638
5646
5647 case ConstructionPhase::None:
5648 case ConstructionPhase::AfterBases:
5649 case ConstructionPhase::AfterFields:
5650 case ConstructionPhase::Destroying:
5651 // We've finished constructing the base classes and not yet started
5652 // destroying them again, so this is the dynamic type.
5653 return DynamicType{getBaseClassType(This.Designator, PathLength),
22
Calling constructor for 'Optional<DynamicType>'
26
Returning from constructor for 'Optional<DynamicType>'
5654 PathLength};
5655 }
5656 }
5657
5658 // CWG issue 1517: we're constructing a base class of the object described by
5659 // 'This', so that object has not yet begun its period of construction and
5660 // any polymorphic operation on it results in undefined behavior.
5661 Info.FFDiag(E);
5662 return None;
5663}
5664
5665/// Perform virtual dispatch.
5666static const CXXMethodDecl *HandleVirtualDispatch(
5667 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5668 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5669 Optional<DynamicType> DynType = ComputeDynamicType(
5670 Info, E, This,
5671 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5672 if (!DynType)
5673 return nullptr;
5674
5675 // Find the final overrider. It must be declared in one of the classes on the
5676 // path from the dynamic type to the static type.
5677 // FIXME: If we ever allow literal types to have virtual base classes, that
5678 // won't be true.
5679 const CXXMethodDecl *Callee = Found;
5680 unsigned PathLength = DynType->PathLength;
5681 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5682 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5683 const CXXMethodDecl *Overrider =
5684 Found->getCorrespondingMethodDeclaredInClass(Class, false);
5685 if (Overrider) {
5686 Callee = Overrider;
5687 break;
5688 }
5689 }
5690
5691 // C++2a [class.abstract]p6:
5692 // the effect of making a virtual call to a pure virtual function [...] is
5693 // undefined
5694 if (Callee->isPure()) {
5695 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5696 Info.Note(Callee->getLocation(), diag::note_declared_at);
5697 return nullptr;
5698 }
5699
5700 // If necessary, walk the rest of the path to determine the sequence of
5701 // covariant adjustment steps to apply.
5702 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5703 Found->getReturnType())) {
5704 CovariantAdjustmentPath.push_back(Callee->getReturnType());
5705 for (unsigned CovariantPathLength = PathLength + 1;
5706 CovariantPathLength != This.Designator.Entries.size();
5707 ++CovariantPathLength) {
5708 const CXXRecordDecl *NextClass =
5709 getBaseClassType(This.Designator, CovariantPathLength);
5710 const CXXMethodDecl *Next =
5711 Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5712 if (Next && !Info.Ctx.hasSameUnqualifiedType(
5713 Next->getReturnType(), CovariantAdjustmentPath.back()))
5714 CovariantAdjustmentPath.push_back(Next->getReturnType());
5715 }
5716 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5717 CovariantAdjustmentPath.back()))
5718 CovariantAdjustmentPath.push_back(Found->getReturnType());
5719 }
5720
5721 // Perform 'this' adjustment.
5722 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5723 return nullptr;
5724
5725 return Callee;
5726}
5727
5728/// Perform the adjustment from a value returned by a virtual function to
5729/// a value of the statically expected type, which may be a pointer or
5730/// reference to a base class of the returned type.
5731static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5732 APValue &Result,
5733 ArrayRef<QualType> Path) {
5734 assert(Result.isLValue() &&(static_cast <bool> (Result.isLValue() && "unexpected kind of APValue for covariant return"
) ? void (0) : __assert_fail ("Result.isLValue() && \"unexpected kind of APValue for covariant return\""
, "clang/lib/AST/ExprConstant.cpp", 5735, __extension__ __PRETTY_FUNCTION__
))
5735 "unexpected kind of APValue for covariant return")(static_cast <bool> (Result.isLValue() && "unexpected kind of APValue for covariant return"
) ? void (0) : __assert_fail ("Result.isLValue() && \"unexpected kind of APValue for covariant return\""
, "clang/lib/AST/ExprConstant.cpp", 5735, __extension__ __PRETTY_FUNCTION__
))
;
5736 if (Result.isNullPointer())
5737 return true;
5738
5739 LValue LVal;
5740 LVal.setFrom(Info.Ctx, Result);
5741
5742 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5743 for (unsigned I = 1; I != Path.size(); ++I) {
5744 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5745 assert(OldClass && NewClass && "unexpected kind of covariant return")(static_cast <bool> (OldClass && NewClass &&
"unexpected kind of covariant return") ? void (0) : __assert_fail
("OldClass && NewClass && \"unexpected kind of covariant return\""
, "clang/lib/AST/ExprConstant.cpp", 5745, __extension__ __PRETTY_FUNCTION__
))
;
5746 if (OldClass != NewClass &&
5747 !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5748 return false;
5749 OldClass = NewClass;
5750 }
5751
5752 LVal.moveInto(Result);
5753 return true;
5754}
5755
5756/// Determine whether \p Base, which is known to be a direct base class of
5757/// \p Derived, is a public base class.
5758static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5759 const CXXRecordDecl *Base) {
5760 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5761 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5762 if (BaseClass && declaresSameEntity(BaseClass, Base))
5763 return BaseSpec.getAccessSpecifier() == AS_public;
5764 }
5765 llvm_unreachable("Base is not a direct base of Derived")::llvm::llvm_unreachable_internal("Base is not a direct base of Derived"
, "clang/lib/AST/ExprConstant.cpp", 5765)
;
5766}
5767
5768/// Apply the given dynamic cast operation on the provided lvalue.
5769///
5770/// This implements the hard case of dynamic_cast, requiring a "runtime check"
5771/// to find a suitable target subobject.
5772static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5773 LValue &Ptr) {
5774 // We can't do anything with a non-symbolic pointer value.
5775 SubobjectDesignator &D = Ptr.Designator;
5776 if (D.Invalid)
7
Assuming field 'Invalid' is 0
5777 return false;
5778
5779 // C++ [expr.dynamic.cast]p6:
5780 // If v is a null pointer value, the result is a null pointer value.
5781 if (Ptr.isNullPointer() && !E->isGLValue())
8
Assuming the condition is false
5782 return true;
5783
5784 // For all the other cases, we need the pointer to point to an object within
5785 // its lifetime / period of construction / destruction, and we need to know
5786 // its dynamic type.
5787 Optional<DynamicType> DynType =
5788 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
9
Calling 'ComputeDynamicType'
27
Returning from 'ComputeDynamicType'
5789 if (!DynType)
28
Calling 'Optional::operator bool'
36
Returning from 'Optional::operator bool'
37
Taking false branch
5790 return false;
5791
5792 // C++ [expr.dynamic.cast]p7:
5793 // If T is "pointer to cv void", then the result is a pointer to the most
5794 // derived object
5795 if (E->getType()->isVoidPointerType())
38
Assuming the condition is false
39
Taking false branch
5796 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5797
5798 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5799 assert(C && "dynamic_cast target is not void pointer nor class")(static_cast <bool> (C && "dynamic_cast target is not void pointer nor class"
) ? void (0) : __assert_fail ("C && \"dynamic_cast target is not void pointer nor class\""
, "clang/lib/AST/ExprConstant.cpp", 5799, __extension__ __PRETTY_FUNCTION__
))
;
40
Assuming 'C' is non-null
41
'?' condition is true
5800 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5801
5802 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5803 // C++ [expr.dynamic.cast]p9:
5804 if (!E->isGLValue()) {
5805 // The value of a failed cast to pointer type is the null pointer value
5806 // of the required result type.
5807 Ptr.setNull(Info.Ctx, E->getType());
5808 return true;
5809 }
5810
5811 // A failed cast to reference type throws [...] std::bad_cast.
5812 unsigned DiagKind;
5813 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5814 DynType->Type->isDerivedFrom(C)))
5815 DiagKind = 0;
5816 else if (!Paths || Paths->begin() == Paths->end())
5817 DiagKind = 1;
5818 else if (Paths->isAmbiguous(CQT))
5819 DiagKind = 2;
5820 else {
5821 assert(Paths->front().Access != AS_public && "why did the cast fail?")(static_cast <bool> (Paths->front().Access != AS_public
&& "why did the cast fail?") ? void (0) : __assert_fail
("Paths->front().Access != AS_public && \"why did the cast fail?\""
, "clang/lib/AST/ExprConstant.cpp", 5821, __extension__ __PRETTY_FUNCTION__
))
;
5822 DiagKind = 3;
5823 }
5824 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5825 << DiagKind << Ptr.Designator.getType(Info.Ctx)
5826 << Info.Ctx.getRecordType(DynType->Type)
5827 << E->getType().getUnqualifiedType();
5828 return false;
5829 };
5830
5831 // Runtime check, phase 1:
5832 // Walk from the base subobject towards the derived object looking for the
5833 // target type.
5834 for (int PathLength = Ptr.Designator.Entries.size();
43
Loop condition is false. Execution continues on line 5848
5835 PathLength >= (int)DynType->PathLength; --PathLength) {
42
Assuming 'PathLength' is < field 'PathLength'
5836 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5837 if (declaresSameEntity(Class, C))
5838 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5839 // We can only walk across public inheritance edges.
5840 if (PathLength > (int)DynType->PathLength &&
5841 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5842 Class))
5843 return RuntimeCheckFailed(nullptr);
5844 }
5845
5846 // Runtime check, phase 2:
5847 // Search the dynamic type for an unambiguous public base of type C.
5848 CXXBasePaths Paths(/*FindAmbiguities=*/true,
5849 /*RecordPaths=*/true, /*DetectVirtual=*/false);
5850 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
44
Called C++ object pointer is null
5851 Paths.front().Access == AS_public) {
5852 // Downcast to the dynamic type...
5853 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5854 return false;
5855 // ... then upcast to the chosen base class subobject.
5856 for (CXXBasePathElement &Elem : Paths.front())
5857 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5858 return false;
5859 return true;
5860 }
5861
5862 // Otherwise, the runtime check fails.
5863 return RuntimeCheckFailed(&Paths);
5864}
5865
5866namespace {
5867struct StartLifetimeOfUnionMemberHandler {
5868 EvalInfo &Info;
5869 const Expr *LHSExpr;
5870 const FieldDecl *Field;
5871 bool DuringInit;
5872 bool Failed = false;
5873 static const AccessKinds AccessKind = AK_Assign;
5874
5875 typedef bool result_type;
5876 bool failed() { return Failed; }
5877 bool found(APValue &Subobj, QualType SubobjType) {
5878 // We are supposed to perform no initialization but begin the lifetime of
5879 // the object. We interpret that as meaning to do what default
5880 // initialization of the object would do if all constructors involved were
5881 // trivial:
5882 // * All base, non-variant member, and array element subobjects' lifetimes
5883 // begin
5884 // * No variant members' lifetimes begin
5885 // * All scalar subobjects whose lifetimes begin have indeterminate values
5886 assert(SubobjType->isUnionType())(static_cast <bool> (SubobjType->isUnionType()) ? void
(0) : __assert_fail ("SubobjType->isUnionType()", "clang/lib/AST/ExprConstant.cpp"
, 5886, __extension__ __PRETTY_FUNCTION__))
;
5887 if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5888 // This union member is already active. If it's also in-lifetime, there's
5889 // nothing to do.
5890 if (Subobj.getUnionValue().hasValue())
5891 return true;
5892 } else if (DuringInit) {
5893 // We're currently in the process of initializing a different union
5894 // member. If we carried on, that initialization would attempt to
5895 // store to an inactive union member, resulting in undefined behavior.
5896 Info.FFDiag(LHSExpr,
5897 diag::note_constexpr_union_member_change_during_init);
5898 return false;
5899 }
5900 APValue Result;
5901 Failed = !getDefaultInitValue(Field->getType(), Result);
5902 Subobj.setUnion(Field, Result);
5903 return true;
5904 }
5905 bool found(APSInt &Value, QualType SubobjType) {
5906 llvm_unreachable("wrong value kind for union object")::llvm::llvm_unreachable_internal("wrong value kind for union object"
, "clang/lib/AST/ExprConstant.cpp", 5906)
;
5907 }
5908 bool found(APFloat &Value, QualType SubobjType) {
5909 llvm_unreachable("wrong value kind for union object")::llvm::llvm_unreachable_internal("wrong value kind for union object"
, "clang/lib/AST/ExprConstant.cpp", 5909)
;
5910 }
5911};
5912} // end anonymous namespace
5913
5914const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5915
5916/// Handle a builtin simple-assignment or a call to a trivial assignment
5917/// operator whose left-hand side might involve a union member access. If it
5918/// does, implicitly start the lifetime of any accessed union elements per
5919/// C++20 [class.union]5.
5920static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5921 const LValue &LHS) {
5922 if (LHS.InvalidBase || LHS.Designator.Invalid)
5923 return false;
5924
5925 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5926 // C++ [class.union]p5:
5927 // define the set S(E) of subexpressions of E as follows:
5928 unsigned PathLength = LHS.Designator.Entries.size();
5929 for (const Expr *E = LHSExpr; E != nullptr;) {
5930 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
5931 if (auto *ME = dyn_cast<MemberExpr>(E)) {
5932 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5933 // Note that we can't implicitly start the lifetime of a reference,
5934 // so we don't need to proceed any further if we reach one.
5935 if (!FD || FD->getType()->isReferenceType())
5936 break;
5937
5938 // ... and also contains A.B if B names a union member ...
5939 if (FD->getParent()->isUnion()) {
5940 // ... of a non-class, non-array type, or of a class type with a
5941 // trivial default constructor that is not deleted, or an array of
5942 // such types.
5943 auto *RD =
5944 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5945 if (!RD || RD->hasTrivialDefaultConstructor())
5946 UnionPathLengths.push_back({PathLength - 1, FD});
5947 }
5948
5949 E = ME->getBase();
5950 --PathLength;
5951 assert(declaresSameEntity(FD,(static_cast <bool> (declaresSameEntity(FD, LHS.Designator
.Entries[PathLength] .getAsBaseOrMember().getPointer())) ? void
(0) : __assert_fail ("declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "clang/lib/AST/ExprConstant.cpp", 5953, __extension__ __PRETTY_FUNCTION__
))
5952 LHS.Designator.Entries[PathLength](static_cast <bool> (declaresSameEntity(FD, LHS.Designator
.Entries[PathLength] .getAsBaseOrMember().getPointer())) ? void
(0) : __assert_fail ("declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "clang/lib/AST/ExprConstant.cpp", 5953, __extension__ __PRETTY_FUNCTION__
))
5953 .getAsBaseOrMember().getPointer()))(static_cast <bool> (declaresSameEntity(FD, LHS.Designator
.Entries[PathLength] .getAsBaseOrMember().getPointer())) ? void
(0) : __assert_fail ("declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "clang/lib/AST/ExprConstant.cpp", 5953, __extension__ __PRETTY_FUNCTION__
))
;
5954
5955 // -- If E is of the form A[B] and is interpreted as a built-in array
5956 // subscripting operator, S(E) is [S(the array operand, if any)].
5957 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5958 // Step over an ArrayToPointerDecay implicit cast.
5959 auto *Base = ASE->getBase()->IgnoreImplicit();
5960 if (!Base->getType()->isArrayType())
5961 break;
5962
5963 E = Base;
5964 --PathLength;
5965
5966 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5967 // Step over a derived-to-base conversion.
5968 E = ICE->getSubExpr();
5969 if (ICE->getCastKind() == CK_NoOp)
5970 continue;
5971 if (ICE->getCastKind() != CK_DerivedToBase &&
5972 ICE->getCastKind() != CK_UncheckedDerivedToBase)
5973 break;
5974 // Walk path backwards as we walk up from the base to the derived class.
5975 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5976 --PathLength;
5977 (void)Elt;
5978 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),(static_cast <bool> (declaresSameEntity(Elt->getType
()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength
] .getAsBaseOrMember().getPointer())) ? void (0) : __assert_fail
("declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "clang/lib/AST/ExprConstant.cpp", 5980, __extension__ __PRETTY_FUNCTION__
))
5979 LHS.Designator.Entries[PathLength](static_cast <bool> (declaresSameEntity(Elt->getType
()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength
] .getAsBaseOrMember().getPointer())) ? void (0) : __assert_fail
("declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "clang/lib/AST/ExprConstant.cpp", 5980, __extension__ __PRETTY_FUNCTION__
))
5980 .getAsBaseOrMember().getPointer()))(static_cast <bool> (declaresSameEntity(Elt->getType
()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength
] .getAsBaseOrMember().getPointer())) ? void (0) : __assert_fail
("declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "clang/lib/AST/ExprConstant.cpp", 5980, __extension__ __PRETTY_FUNCTION__
))
;
5981 }
5982
5983 // -- Otherwise, S(E) is empty.
5984 } else {
5985 break;
5986 }
5987 }
5988
5989 // Common case: no unions' lifetimes are started.
5990 if (UnionPathLengths.empty())
5991 return true;
5992
5993 // if modification of X [would access an inactive union member], an object
5994 // of the type of X is implicitly created
5995 CompleteObject Obj =
5996 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
5997 if (!Obj)
5998 return false;
5999 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6000 llvm::reverse(UnionPathLengths)) {
6001 // Form a designator for the union object.
6002 SubobjectDesignator D = LHS.Designator;
6003 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6004
6005 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6006 ConstructionPhase::AfterBases;
6007 StartLifetimeOfUnionMemberHandler StartLifetime{
6008 Info, LHSExpr, LengthAndField.second, DuringInit};
6009 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6010 return false;
6011 }
6012
6013 return true;
6014}
6015
6016static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6017 CallRef Call, EvalInfo &Info,
6018 bool NonNull = false) {
6019 LValue LV;
6020 // Create the parameter slot and register its destruction. For a vararg
6021 // argument, create a temporary.
6022 // FIXME: For calling conventions that destroy parameters in the callee,
6023 // should we consider performing destruction when the function returns
6024 // instead?
6025 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6026 : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6027 ScopeKind::Call, LV);
6028 if (!EvaluateInPlace(V, Info, LV, Arg))
6029 return false;
6030
6031 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6032 // undefined behavior, so is non-constant.
6033 if (NonNull && V.isLValue() && V.isNullPointer()) {
6034 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6035 return false;
6036 }
6037
6038 return true;
6039}
6040
6041/// Evaluate the arguments to a function call.
6042static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6043 EvalInfo &Info, const FunctionDecl *Callee,
6044 bool RightToLeft = false) {
6045 bool Success = true;
6046 llvm::SmallBitVector ForbiddenNullArgs;
6047 if (Callee->hasAttr<NonNullAttr>()) {
6048 ForbiddenNullArgs.resize(Args.size());
6049 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6050 if (!Attr->args_size()) {
6051 ForbiddenNullArgs.set();
6052 break;
6053 } else
6054 for (auto Idx : Attr->args()) {
6055 unsigned ASTIdx = Idx.getASTIndex();
6056 if (ASTIdx >= Args.size())
6057 continue;
6058 ForbiddenNullArgs[ASTIdx] = true;
6059 }
6060 }
6061 }
6062 for (unsigned I = 0; I < Args.size(); I++) {
6063 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6064 const ParmVarDecl *PVD =
6065 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6066 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6067 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6068 // If we're checking for a potential constant expression, evaluate all
6069 // initializers even if some of them fail.
6070 if (!Info.noteFailure())
6071 return false;
6072 Success = false;
6073 }
6074 }
6075 return Success;
6076}
6077
6078/// Perform a trivial copy from Param, which is the parameter of a copy or move
6079/// constructor or assignment operator.
6080static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6081 const Expr *E, APValue &Result,
6082 bool CopyObjectRepresentation) {
6083 // Find the reference argument.
6084 CallStackFrame *Frame = Info.CurrentCall;
6085 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6086 if (!RefValue) {
6087 Info.FFDiag(E);
6088 return false;
6089 }
6090
6091 // Copy out the contents of the RHS object.
6092 LValue RefLValue;
6093 RefLValue.setFrom(Info.Ctx, *RefValue);
6094 return handleLValueToRValueConversion(
6095 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6096 CopyObjectRepresentation);
6097}
6098
6099/// Evaluate a function call.
6100static bool HandleFunctionCall(SourceLocation CallLoc,
6101 const FunctionDecl *Callee, const LValue *This,
6102 ArrayRef<const Expr *> Args, CallRef Call,
6103 const Stmt *Body, EvalInfo &Info,
6104 APValue &Result, const LValue *ResultSlot) {
6105 if (!Info.CheckCallLimit(CallLoc))
6106 return false;
6107
6108 CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6109
6110 // For a trivial copy or move assignment, perform an APValue copy. This is
6111 // essential for unions, where the operations performed by the assignment
6112 // operator cannot be represented as statements.
6113 //
6114 // Skip this for non-union classes with no fields; in that case, the defaulted
6115 // copy/move does not actually read the object.
6116 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6117 if (MD && MD->isDefaulted() &&
6118 (MD->getParent()->isUnion() ||
6119 (MD->isTrivial() &&
6120 isReadByLvalueToRvalueConversion(MD->getParent())))) {
6121 assert(This &&(static_cast <bool> (This && (MD->isCopyAssignmentOperator
() || MD->isMoveAssignmentOperator())) ? void (0) : __assert_fail
("This && (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())"
, "clang/lib/AST/ExprConstant.cpp", 6122, __extension__ __PRETTY_FUNCTION__
))
6122 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))(static_cast <bool> (This && (MD->isCopyAssignmentOperator
() || MD->isMoveAssignmentOperator())) ? void (0) : __assert_fail
("This && (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())"
, "clang/lib/AST/ExprConstant.cpp", 6122, __extension__ __PRETTY_FUNCTION__
))
;
6123 APValue RHSValue;
6124 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6125 MD->getParent()->isUnion()))
6126 return false;
6127 if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
6128 !HandleUnionActiveMemberChange(Info, Args[0], *This))
6129 return false;
6130 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6131 RHSValue))
6132 return false;
6133 This->moveInto(Result);
6134 return true;
6135 } else if (MD && isLambdaCallOperator(MD)) {
6136 // We're in a lambda; determine the lambda capture field maps unless we're
6137 // just constexpr checking a lambda's call operator. constexpr checking is
6138 // done before the captures have been added to the closure object (unless
6139 // we're inferring constexpr-ness), so we don't have access to them in this
6140 // case. But since we don't need the captures to constexpr check, we can
6141 // just ignore them.
6142 if (!Info.checkingPotentialConstantExpression())
6143 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6144 Frame.LambdaThisCaptureField);
6145 }
6146
6147 StmtResult Ret = {Result, ResultSlot};
6148 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6149 if (ESR == ESR_Succeeded) {
6150 if (Callee->getReturnType()->isVoidType())
6151 return true;
6152 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6153 }
6154 return ESR == ESR_Returned;
6155}
6156
6157/// Evaluate a constructor call.
6158static bool HandleConstructorCall(const Expr *E, const LValue &This,
6159 CallRef Call,
6160 const CXXConstructorDecl *Definition,
6161 EvalInfo &Info, APValue &Result) {
6162 SourceLocation CallLoc = E->getExprLoc();
6163 if (!Info.CheckCallLimit(CallLoc))
6164 return false;
6165
6166 const CXXRecordDecl *RD = Definition->getParent();
6167 if (RD->getNumVBases()) {
6168 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6169 return false;
6170 }
6171
6172 EvalInfo::EvaluatingConstructorRAII EvalObj(
6173 Info,
6174 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6175 RD->getNumBases());
6176 CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6177
6178 // FIXME: Creating an APValue just to hold a nonexistent return value is
6179 // wasteful.
6180 APValue RetVal;
6181 StmtResult Ret = {RetVal, nullptr};
6182
6183 // If it's a delegating constructor, delegate.
6184 if (Definition->isDelegatingConstructor()) {
6185 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6186 if ((*I)->getInit()->isValueDependent()) {
6187 if (!EvaluateDependentExpr((*I)->getInit(), Info))
6188 return false;
6189 } else {
6190 FullExpressionRAII InitScope(Info);
6191 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6192 !InitScope.destroy())
6193 return false;
6194 }
6195 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6196 }
6197
6198 // For a trivial copy or move constructor, perform an APValue copy. This is
6199 // essential for unions (or classes with anonymous union members), where the
6200 // operations performed by the constructor cannot be represented by
6201 // ctor-initializers.
6202 //
6203 // Skip this for empty non-union classes; we should not perform an
6204 // lvalue-to-rvalue conversion on them because their copy constructor does not
6205 // actually read them.
6206 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6207 (Definition->getParent()->isUnion() ||
6208 (Definition->isTrivial() &&
6209 isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6210 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6211 Definition->getParent()->isUnion());
6212 }
6213
6214 // Reserve space for the struct members.
6215 if (!Result.hasValue()) {
6216 if (!RD->isUnion())
6217 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6218 std::distance(RD->field_begin(), RD->field_end()));
6219 else
6220 // A union starts with no active member.
6221 Result = APValue((const FieldDecl*)nullptr);
6222 }
6223
6224 if (RD->isInvalidDecl()) return false;
6225 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6226
6227 // A scope for temporaries lifetime-extended by reference members.
6228 BlockScopeRAII LifetimeExtendedScope(Info);
6229
6230 bool Success = true;
6231 unsigned BasesSeen = 0;
6232#ifndef NDEBUG
6233 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6234#endif
6235 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6236 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6237 // We might be initializing the same field again if this is an indirect
6238 // field initialization.
6239 if (FieldIt == RD->field_end() ||
6240 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6241 assert(Indirect && "fields out of order?")(static_cast <bool> (Indirect && "fields out of order?"
) ? void (0) : __assert_fail ("Indirect && \"fields out of order?\""
, "clang/lib/AST/ExprConstant.cpp", 6241, __extension__ __PRETTY_FUNCTION__
))
;
6242 return;
6243 }
6244
6245 // Default-initialize any fields with no explicit initializer.
6246 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6247 assert(FieldIt != RD->field_end() && "missing field?")(static_cast <bool> (FieldIt != RD->field_end() &&
"missing field?") ? void (0) : __assert_fail ("FieldIt != RD->field_end() && \"missing field?\""
, "clang/lib/AST/ExprConstant.cpp", 6247, __extension__ __PRETTY_FUNCTION__
))
;
6248 if (!FieldIt->isUnnamedBitfield())
6249 Success &= getDefaultInitValue(
6250 FieldIt->getType(),
6251 Result.getStructField(FieldIt->getFieldIndex()));
6252 }
6253 ++FieldIt;
6254 };
6255 for (const auto *I : Definition->inits()) {
6256 LValue Subobject = This;
6257 LValue SubobjectParent = This;
6258 APValue *Value = &Result;
6259
6260 // Determine the subobject to initialize.
6261 FieldDecl *FD = nullptr;
6262 if (I->isBaseInitializer()) {
6263 QualType BaseType(I->getBaseClass(), 0);
6264#ifndef NDEBUG
6265 // Non-virtual base classes are initialized in the order in the class
6266 // definition. We have already checked for virtual base classes.
6267 assert(!BaseIt->isVirtual() && "virtual base for literal type")(static_cast <bool> (!BaseIt->isVirtual() &&
"virtual base for literal type") ? void (0) : __assert_fail (
"!BaseIt->isVirtual() && \"virtual base for literal type\""
, "clang/lib/AST/ExprConstant.cpp", 6267, __extension__ __PRETTY_FUNCTION__
))
;
6268 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&(static_cast <bool> (Info.Ctx.hasSameType(BaseIt->getType
(), BaseType) && "base class initializers not in expected order"
) ? void (0) : __assert_fail ("Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && \"base class initializers not in expected order\""
, "clang/lib/AST/ExprConstant.cpp", 6269, __extension__ __PRETTY_FUNCTION__
))
6269 "base class initializers not in expected order")(static_cast <bool> (Info.Ctx.hasSameType(BaseIt->getType
(), BaseType) && "base class initializers not in expected order"
) ? void (0) : __assert_fail ("Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && \"base class initializers not in expected order\""
, "clang/lib/AST/ExprConstant.cpp", 6269, __extension__ __PRETTY_FUNCTION__
))
;
6270 ++BaseIt;
6271#endif
6272 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6273 BaseType->getAsCXXRecordDecl(), &Layout))
6274 return false;
6275 Value = &Result.getStructBase(BasesSeen++);
6276 } else if ((FD = I->getMember())) {
6277 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6278 return false;
6279 if (RD->isUnion()) {
6280 Result = APValue(FD);
6281 Value = &Result.getUnionValue();
6282 } else {
6283 SkipToField(FD, false);
6284 Value = &Result.getStructField(FD->getFieldIndex());
6285 }
6286 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6287 // Walk the indirect field decl's chain to find the object to initialize,
6288 // and make sure we've initialized every step along it.
6289 auto IndirectFieldChain = IFD->chain();
6290 for (auto *C : IndirectFieldChain) {
6291 FD = cast<FieldDecl>(C);
6292 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6293 // Switch the union field if it differs. This happens if we had
6294 // preceding zero-initialization, and we're now initializing a union
6295 // subobject other than the first.
6296 // FIXME: In this case, the values of the other subobjects are
6297 // specified, since zero-initialization sets all padding bits to zero.
6298 if (!Value->hasValue() ||
6299 (Value->isUnion() && Value->getUnionField() != FD)) {
6300 if (CD->isUnion())
6301 *Value = APValue(FD);
6302 else
6303 // FIXME: This immediately starts the lifetime of all members of
6304 // an anonymous struct. It would be preferable to strictly start
6305 // member lifetime in initialization order.
6306 Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6307 }
6308 // Store Subobject as its parent before updating it for the last element
6309 // in the chain.
6310 if (C == IndirectFieldChain.back())
6311 SubobjectParent = Subobject;
6312 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6313 return false;
6314 if (CD->isUnion())
6315 Value = &Value->getUnionValue();
6316 else {
6317 if (C == IndirectFieldChain.front() && !RD->isUnion())
6318 SkipToField(FD, true);
6319 Value = &Value->getStructField(FD->getFieldIndex());
6320 }
6321 }
6322 } else {
6323 llvm_unreachable("unknown base initializer kind")::llvm::llvm_unreachable_internal("unknown base initializer kind"
, "clang/lib/AST/ExprConstant.cpp", 6323)
;
6324 }
6325
6326 // Need to override This for implicit field initializers as in this case
6327 // This refers to innermost anonymous struct/union containing initializer,
6328 // not to currently constructed class.
6329 const Expr *Init = I->getInit();
6330 if (Init->isValueDependent()) {
6331 if (!EvaluateDependentExpr(Init, Info))
6332 return false;
6333 } else {
6334 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6335 isa<CXXDefaultInitExpr>(Init));
6336 FullExpressionRAII InitScope(Info);
6337 if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6338 (FD && FD->isBitField() &&
6339 !truncateBitfieldValue(Info, Init, *Value, FD))) {
6340 // If we're checking for a potential constant expression, evaluate all
6341 // initializers even if some of them fail.
6342 if (!Info.noteFailure())
6343 return false;
6344 Success = false;
6345 }
6346 }
6347
6348 // This is the point at which the dynamic type of the object becomes this
6349 // class type.
6350 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6351 EvalObj.finishedConstructingBases();
6352 }
6353
6354 // Default-initialize any remaining fields.
6355 if (!RD->isUnion()) {
6356 for (; FieldIt != RD->field_end(); ++FieldIt) {
6357 if (!FieldIt->isUnnamedBitfield())
6358 Success &= getDefaultInitValue(
6359 FieldIt->getType(),
6360 Result.getStructField(FieldIt->getFieldIndex()));
6361 }
6362 }
6363
6364 EvalObj.finishedConstructingFields();
6365
6366 return Success &&
6367 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6368 LifetimeExtendedScope.destroy();
6369}
6370
6371static bool HandleConstructorCall(const Expr *E, const LValue &This,
6372 ArrayRef<const Expr*> Args,
6373 const CXXConstructorDecl *Definition,
6374 EvalInfo &Info, APValue &Result) {
6375 CallScopeRAII CallScope(Info);
6376 CallRef Call = Info.CurrentCall->createCall(Definition);
6377 if (!EvaluateArgs(Args, Call, Info, Definition))
6378 return false;
6379
6380 return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6381 CallScope.destroy();
6382}
6383
6384static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6385 const LValue &This, APValue &Value,
6386 QualType T) {
6387 // Objects can only be destroyed while they're within their lifetimes.
6388 // FIXME: We have no representation for whether an object of type nullptr_t
6389 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6390 // as indeterminate instead?
6391 if (Value.isAbsent() && !T->isNullPtrType()) {
6392 APValue Printable;
6393 This.moveInto(Printable);
6394 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6395 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6396 return false;
6397 }
6398
6399 // Invent an expression for location purposes.
6400 // FIXME: We shouldn't need to do this.
6401 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);
6402
6403 // For arrays, destroy elements right-to-left.
6404 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6405 uint64_t Size = CAT->getSize().getZExtValue();
6406 QualType ElemT = CAT->getElementType();
6407
6408 LValue ElemLV = This;
6409 ElemLV.addArray(Info, &LocE, CAT);
6410 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6411 return false;
6412
6413 // Ensure that we have actual array elements available to destroy; the
6414 // destructors might mutate the value, so we can't run them on the array
6415 // filler.
6416 if (Size && Size > Value.getArrayInitializedElts())
6417 expandArray(Value, Value.getArraySize() - 1);
6418
6419 for (; Size != 0; --Size) {
6420 APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6421 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6422 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6423 return false;
6424 }
6425
6426 // End the lifetime of this array now.
6427 Value = APValue();
6428 return true;
6429 }
6430
6431 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6432 if (!RD) {
6433 if (T.isDestructedType()) {
6434 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6435 return false;
6436 }
6437
6438 Value = APValue();
6439 return true;
6440 }
6441
6442 if (RD->getNumVBases()) {
6443 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6444 return false;
6445 }
6446
6447 const CXXDestructorDecl *DD = RD->getDestructor();
6448 if (!DD && !RD->hasTrivialDestructor()) {
6449 Info.FFDiag(CallLoc);
6450 return false;
6451 }
6452
6453 if (!DD || DD->isTrivial() ||
6454 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6455 // A trivial destructor just ends the lifetime of the object. Check for
6456 // this case before checking for a body, because we might not bother
6457 // building a body for a trivial destructor. Note that it doesn't matter
6458 // whether the destructor is constexpr in this case; all trivial
6459 // destructors are constexpr.
6460 //
6461 // If an anonymous union would be destroyed, some enclosing destructor must
6462 // have been explicitly defined, and the anonymous union destruction should
6463 // have no effect.
6464 Value = APValue();
6465 return true;
6466 }
6467
6468 if (!Info.CheckCallLimit(CallLoc))
6469 return false;
6470
6471 const FunctionDecl *Definition = nullptr;
6472 const Stmt *Body = DD->getBody(Definition);
6473
6474 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6475 return false;
6476
6477 CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6478
6479 // We're now in the period of destruction of this object.
6480 unsigned BasesLeft = RD->getNumBases();
6481 EvalInfo::EvaluatingDestructorRAII EvalObj(
6482 Info,
6483 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6484 if (!EvalObj.DidInsert) {
6485 // C++2a [class.dtor]p19:
6486 // the behavior is undefined if the destructor is invoked for an object
6487 // whose lifetime has ended
6488 // (Note that formally the lifetime ends when the period of destruction
6489 // begins, even though certain uses of the object remain valid until the
6490 // period of destruction ends.)
6491 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6492 return false;
6493 }
6494
6495 // FIXME: Creating an APValue just to hold a nonexistent return value is
6496 // wasteful.
6497 APValue RetVal;
6498 StmtResult Ret = {RetVal, nullptr};
6499 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6500 return false;
6501
6502 // A union destructor does not implicitly destroy its members.
6503 if (RD->isUnion())
6504 return true;
6505
6506 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6507
6508 // We don't have a good way to iterate fields in reverse, so collect all the
6509 // fields first and then walk them backwards.
6510 SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
6511 for (const FieldDecl *FD : llvm::reverse(Fields)) {
6512 if (FD->isUnnamedBitfield())
6513 continue;
6514
6515 LValue Subobject = This;
6516 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6517 return false;
6518
6519 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6520 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6521 FD->getType()))
6522 return false;
6523 }
6524
6525 if (BasesLeft != 0)
6526 EvalObj.startedDestroyingBases();
6527
6528 // Destroy base classes in reverse order.
6529 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6530 --BasesLeft;
6531
6532 QualType BaseType = Base.getType();
6533 LValue Subobject = This;
6534 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6535 BaseType->getAsCXXRecordDecl(), &Layout))
6536 return false;
6537
6538 APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6539 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6540 BaseType))
6541 return false;
6542 }
6543 assert(BasesLeft == 0 && "NumBases was wrong?")(static_cast <bool> (BasesLeft == 0 && "NumBases was wrong?"
) ? void (0) : __assert_fail ("BasesLeft == 0 && \"NumBases was wrong?\""
, "clang/lib/AST/ExprConstant.cpp", 6543, __extension__ __PRETTY_FUNCTION__
))
;
6544
6545 // The period of destruction ends now. The object is gone.
6546 Value = APValue();
6547 return true;
6548}
6549
6550namespace {
6551struct DestroyObjectHandler {
6552 EvalInfo &Info;
6553 const Expr *E;
6554 const LValue &This;
6555 const AccessKinds AccessKind;
6556
6557 typedef bool result_type;
6558 bool failed() { return false; }
6559 bool found(APValue &Subobj, QualType SubobjType) {
6560 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6561 SubobjType);
6562 }
6563 bool found(APSInt &Value, QualType SubobjType) {
6564 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6565 return false;
6566 }
6567 bool found(APFloat &Value, QualType SubobjType) {
6568 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6569 return false;
6570 }
6571};
6572}
6573
6574/// Perform a destructor or pseudo-destructor call on the given object, which
6575/// might in general not be a complete object.
6576static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6577 const LValue &This, QualType ThisType) {
6578 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6579 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6580 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6581}
6582
6583/// Destroy and end the lifetime of the given complete object.
6584static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6585 APValue::LValueBase LVBase, APValue &Value,
6586 QualType T) {
6587 // If we've had an unmodeled side-effect, we can't rely on mutable state
6588 // (such as the object we're about to destroy) being correct.
6589 if (Info.EvalStatus.HasSideEffects)
6590 return false;
6591
6592 LValue LV;
6593 LV.set({LVBase});
6594 return HandleDestructionImpl(Info, Loc, LV, Value, T);
6595}
6596
6597/// Perform a call to 'perator new' or to `__builtin_operator_new'.
6598static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6599 LValue &Result) {
6600 if (Info.checkingPotentialConstantExpression() ||
6601 Info.SpeculativeEvaluationDepth)
6602 return false;
6603
6604 // This is permitted only within a call to std::allocator<T>::allocate.
6605 auto Caller = Info.getStdAllocatorCaller("allocate");
6606 if (!Caller) {
6607 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6608 ? diag::note_constexpr_new_untyped
6609 : diag::note_constexpr_new);
6610 return false;
6611 }
6612
6613 QualType ElemType = Caller.ElemType;
6614 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6615 Info.FFDiag(E->getExprLoc(),
6616 diag::note_constexpr_new_not_complete_object_type)
6617 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6618 return false;
6619 }
6620
6621 APSInt ByteSize;
6622 if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6623 return false;
6624 bool IsNothrow = false;
6625 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6626 EvaluateIgnoredValue(Info, E->getArg(I));
6627 IsNothrow |= E->getType()->isNothrowT();
6628 }
6629
6630 CharUnits ElemSize;
6631 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6632 return false;
6633 APInt Size, Remainder;
6634 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6635 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6636 if (Remainder != 0) {
6637 // This likely indicates a bug in the implementation of 'std::allocator'.
6638 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6639 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6640 return false;
6641 }
6642
6643 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6644 if (IsNothrow) {
6645 Result.setNull(Info.Ctx, E->getType());
6646 return true;
6647 }
6648
6649 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6650 return false;
6651 }
6652
6653 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6654 ArrayType::Normal, 0);
6655 APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6656 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6657 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6658 return true;
6659}
6660
6661static bool hasVirtualDestructor(QualType T) {
6662 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6663 if (CXXDestructorDecl *DD = RD->getDestructor())
6664 return DD->isVirtual();
6665 return false;
6666}
6667
6668static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6669 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6670 if (CXXDestructorDecl *DD = RD->getDestructor())
6671 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6672 return nullptr;
6673}
6674
6675/// Check that the given object is a suitable pointer to a heap allocation that
6676/// still exists and is of the right kind for the purpose of a deletion.
6677///
6678/// On success, returns the heap allocation to deallocate. On failure, produces
6679/// a diagnostic and returns None.
6680static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6681 const LValue &Pointer,
6682 DynAlloc::Kind DeallocKind) {
6683 auto PointerAsString = [&] {
6684 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6685 };
6686
6687 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6688 if (!DA) {
6689 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6690 << PointerAsString();
6691 if (Pointer.Base)
6692 NoteLValueLocation(Info, Pointer.Base);
6693 return None;
6694 }
6695
6696 Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6697 if (!Alloc) {
6698 Info.FFDiag(E, diag::note_constexpr_double_delete);
6699 return None;
6700 }
6701
6702 QualType AllocType = Pointer.Base.getDynamicAllocType();
6703 if (DeallocKind != (*Alloc)->getKind()) {
6704 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6705 << DeallocKind << (*Alloc)->getKind() << AllocType;
6706 NoteLValueLocation(Info, Pointer.Base);
6707 return None;
6708 }
6709
6710 bool Subobject = false;
6711 if (DeallocKind == DynAlloc::New) {
6712 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6713 Pointer.Designator.isOnePastTheEnd();
6714 } else {
6715 Subobject = Pointer.Designator.Entries.size() != 1 ||
6716 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6717 }
6718 if (Subobject) {
6719 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6720 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6721 return None;
6722 }
6723
6724 return Alloc;
6725}
6726
6727// Perform a call to 'operator delete' or '__builtin_operator_delete'.
6728bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6729 if (Info.checkingPotentialConstantExpression() ||
6730 Info.SpeculativeEvaluationDepth)
6731 return false;
6732
6733 // This is permitted only within a call to std::allocator<T>::deallocate.
6734 if (!Info.getStdAllocatorCaller("deallocate")) {
6735 Info.FFDiag(E->getExprLoc());
6736 return true;
6737 }
6738
6739 LValue Pointer;
6740 if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6741 return false;
6742 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6743 EvaluateIgnoredValue(Info, E->getArg(I));
6744
6745 if (Pointer.Designator.Invalid)
6746 return false;
6747
6748 // Deleting a null pointer would have no effect, but it's not permitted by
6749 // std::allocator<T>::deallocate's contract.
6750 if (Pointer.isNullPointer()) {
6751 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6752 return true;
6753 }
6754
6755 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6756 return false;
6757
6758 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6759 return true;
6760}
6761
6762//===----------------------------------------------------------------------===//
6763// Generic Evaluation
6764//===----------------------------------------------------------------------===//
6765namespace {
6766
6767class BitCastBuffer {
6768 // FIXME: We're going to need bit-level granularity when we support
6769 // bit-fields.
6770 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6771 // we don't support a host or target where that is the case. Still, we should
6772 // use a more generic type in case we ever do.
6773 SmallVector<Optional<unsigned char>, 32> Bytes;
6774
6775 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6776 "Need at least 8 bit unsigned char");
6777
6778 bool TargetIsLittleEndian;
6779
6780public:
6781 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6782 : Bytes(Width.getQuantity()),
6783 TargetIsLittleEndian(TargetIsLittleEndian) {}
6784
6785 LLVM_NODISCARD[[clang::warn_unused_result]]
6786 bool readObject(CharUnits Offset, CharUnits Width,
6787 SmallVectorImpl<unsigned char> &Output) const {
6788 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6789 // If a byte of an integer is uninitialized, then the whole integer is
6790 // uninitialized.
6791 if (!Bytes[I.getQuantity()])
6792 return false;
6793 Output.push_back(*Bytes[I.getQuantity()]);
6794 }
6795 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6796 std::reverse(Output.begin(), Output.end());
6797 return true;
6798 }
6799
6800 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6801 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6802 std::reverse(Input.begin(), Input.end());
6803
6804 size_t Index = 0;
6805 for (unsigned char Byte : Input) {
6806 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?")(static_cast <bool> (!Bytes[Offset.getQuantity() + Index
] && "overwriting a byte?") ? void (0) : __assert_fail
("!Bytes[Offset.getQuantity() + Index] && \"overwriting a byte?\""
, "clang/lib/AST/ExprConstant.cpp", 6806, __extension__ __PRETTY_FUNCTION__
))
;
6807 Bytes[Offset.getQuantity() + Index] = Byte;
6808 ++Index;
6809 }
6810 }
6811
6812 size_t size() { return Bytes.size(); }
6813};
6814
6815/// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6816/// target would represent the value at runtime.
6817class APValueToBufferConverter {
6818 EvalInfo &Info;
6819 BitCastBuffer Buffer;
6820 const CastExpr *BCE;
6821
6822 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6823 const CastExpr *BCE)
6824 : Info(Info),
6825 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6826 BCE(BCE) {}
6827
6828 bool visit(const APValue &Val, QualType Ty) {
6829 return visit(Val, Ty, CharUnits::fromQuantity(0));
6830 }
6831
6832 // Write out Val with type Ty into Buffer starting at Offset.
6833 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6834 assert((size_t)Offset.getQuantity() <= Buffer.size())(static_cast <bool> ((size_t)Offset.getQuantity() <=
Buffer.size()) ? void (0) : __assert_fail ("(size_t)Offset.getQuantity() <= Buffer.size()"
, "clang/lib/AST/ExprConstant.cpp", 6834, __extension__ __PRETTY_FUNCTION__
))
;
6835
6836 // As a special case, nullptr_t has an indeterminate value.
6837 if (Ty->isNullPtrType())
6838 return true;
6839
6840 // Dig through Src to find the byte at SrcOffset.
6841 switch (Val.getKind()) {
6842 case APValue::Indeterminate:
6843 case APValue::None:
6844 return true;
6845
6846 case APValue::Int:
6847 return visitInt(Val.getInt(), Ty, Offset);
6848 case APValue::Float:
6849 return visitFloat(Val.getFloat(), Ty, Offset);
6850 case APValue::Array:
6851 return visitArray(Val, Ty, Offset);
6852 case APValue::Struct:
6853 return visitRecord(Val, Ty, Offset);
6854
6855 case APValue::ComplexInt:
6856 case APValue::ComplexFloat:
6857 case APValue::Vector:
6858 case APValue::FixedPoint:
6859 // FIXME: We should support these.
6860
6861 case APValue::Union:
6862 case APValue::MemberPointer:
6863 case APValue::AddrLabelDiff: {
6864 Info.FFDiag(BCE->getBeginLoc(),
6865 diag::note_constexpr_bit_cast_unsupported_type)
6866 << Ty;
6867 return false;
6868 }
6869
6870 case APValue::LValue:
6871 llvm_unreachable("LValue subobject in bit_cast?")::llvm::llvm_unreachable_internal("LValue subobject in bit_cast?"
, "clang/lib/AST/ExprConstant.cpp", 6871)
;
6872 }
6873 llvm_unreachable("Unhandled APValue::ValueKind")::llvm::llvm_unreachable_internal("Unhandled APValue::ValueKind"
, "clang/lib/AST/ExprConstant.cpp", 6873)
;
6874 }
6875
6876 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6877 const RecordDecl *RD = Ty->getAsRecordDecl();
6878 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6879
6880 // Visit the base classes.
6881 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6882 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6883 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6884 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6885
6886 if (!visitRecord(Val.getStructBase(I), BS.getType(),
6887 Layout.getBaseClassOffset(BaseDecl) + Offset))
6888 return false;
6889 }
6890 }
6891
6892 // Visit the fields.
6893 unsigned FieldIdx = 0;
6894 for (FieldDecl *FD : RD->fields()) {
6895 if (FD->isBitField()) {
6896 Info.FFDiag(BCE->getBeginLoc(),
6897 diag::note_constexpr_bit_cast_unsupported_bitfield);
6898 return false;
6899 }
6900
6901 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6902
6903 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&(static_cast <bool> (FieldOffsetBits % Info.Ctx.getCharWidth
() == 0 && "only bit-fields can have sub-char alignment"
) ? void (0) : __assert_fail ("FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && \"only bit-fields can have sub-char alignment\""
, "clang/lib/AST/ExprConstant.cpp", 6904, __extension__ __PRETTY_FUNCTION__
))
6904 "only bit-fields can have sub-char alignment")(static_cast <bool> (FieldOffsetBits % Info.Ctx.getCharWidth
() == 0 && "only bit-fields can have sub-char alignment"
) ? void (0) : __assert_fail ("FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && \"only bit-fields can have sub-char alignment\""
, "clang/lib/AST/ExprConstant.cpp", 6904, __extension__ __PRETTY_FUNCTION__
))
;
6905 CharUnits FieldOffset =
6906 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6907 QualType FieldTy = FD->getType();
6908 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6909 return false;
6910 ++FieldIdx;
6911 }
6912
6913 return true;
6914 }
6915
6916 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6917 const auto *CAT =
6918 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6919 if (!CAT)
6920 return false;
6921
6922 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6923 unsigned NumInitializedElts = Val.getArrayInitializedElts();
6924 unsigned ArraySize = Val.getArraySize();
6925 // First, initialize the initialized elements.
6926 for (unsigned I = 0; I != NumInitializedElts; ++I) {
6927 const APValue &SubObj = Val.getArrayInitializedElt(I);
6928 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6929 return false;
6930 }
6931
6932 // Next, initialize the rest of the array using the filler.
6933 if (Val.hasArrayFiller()) {
6934 const APValue &Filler = Val.getArrayFiller();
6935 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6936 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6937 return false;
6938 }
6939 }
6940
6941 return true;
6942 }
6943
6944 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6945 APSInt AdjustedVal = Val;
6946 unsigned Width = AdjustedVal.getBitWidth();
6947 if (Ty->isBooleanType()) {
6948 Width = Info.Ctx.getTypeSize(Ty);
6949 AdjustedVal = AdjustedVal.extend(Width);
6950 }
6951
6952 SmallVector<unsigned char, 8> Bytes(Width / 8);
6953 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
6954 Buffer.writeObject(Offset, Bytes);
6955 return true;
6956 }
6957
6958 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6959 APSInt AsInt(Val.bitcastToAPInt());
6960 return visitInt(AsInt, Ty, Offset);
6961 }
6962
6963public:
6964 static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6965 const CastExpr *BCE) {
6966 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6967 APValueToBufferConverter Converter(Info, DstSize, BCE);
6968 if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6969 return None;
6970 return Converter.Buffer;
6971 }
6972};
6973
6974/// Write an BitCastBuffer into an APValue.
6975class BufferToAPValueConverter {
6976 EvalInfo &Info;
6977 const BitCastBuffer &Buffer;
6978 const CastExpr *BCE;
6979
6980 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6981 const CastExpr *BCE)
6982 : Info(Info), Buffer(Buffer), BCE(BCE) {}
6983
6984 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6985 // with an invalid type, so anything left is a deficiency on our part (FIXME).
6986 // Ideally this will be unreachable.
6987 llvm::NoneType unsupportedType(QualType Ty) {
6988 Info.FFDiag(BCE->getBeginLoc(),
6989 diag::note_constexpr_bit_cast_unsupported_type)
6990 << Ty;
6991 return None;
6992 }
6993
6994 llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
6995 Info.FFDiag(BCE->getBeginLoc(),
6996 diag::note_constexpr_bit_cast_unrepresentable_value)
6997 << Ty << toString(Val, /*Radix=*/10);
6998 return None;
6999 }
7000
7001 Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7002 const EnumType *EnumSugar = nullptr) {
7003 if (T->isNullPtrType()) {
7004 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7005 return APValue((Expr *)nullptr,
7006 /*Offset=*/CharUnits::fromQuantity(NullValue),
7007 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7008 }
7009
7010 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7011
7012 // Work around floating point types that contain unused padding bytes. This
7013 // is really just `long double` on x86, which is the only fundamental type
7014 // with padding bytes.
7015 if (T->isRealFloatingType()) {
7016 const llvm::fltSemantics &Semantics =
7017 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7018 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7019 assert(NumBits % 8 == 0)(static_cast <bool> (NumBits % 8 == 0) ? void (0) : __assert_fail
("NumBits % 8 == 0", "clang/lib/AST/ExprConstant.cpp", 7019,
__extension__ __PRETTY_FUNCTION__))
;
7020 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7021 if (NumBytes != SizeOf)
7022 SizeOf = NumBytes;
7023 }
7024
7025 SmallVector<uint8_t, 8> Bytes;
7026 if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7027 // If this is std::byte or unsigned char, then its okay to store an
7028 // indeterminate value.
7029 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7030 bool IsUChar =
7031 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7032 T->isSpecificBuiltinType(BuiltinType::Char_U));
7033 if (!IsStdByte && !IsUChar) {
7034 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7035 Info.FFDiag(BCE->getExprLoc(),
7036 diag::note_constexpr_bit_cast_indet_dest)
7037 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7038 return None;
7039 }
7040
7041 return APValue::IndeterminateValue();
7042 }
7043
7044 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7045 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7046
7047 if (T->isIntegralOrEnumerationType()) {
7048 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7049
7050 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7051 if (IntWidth != Val.getBitWidth()) {
7052 APSInt Truncated = Val.trunc(IntWidth);
7053 if (Truncated.extend(Val.getBitWidth()) != Val)
7054 return unrepresentableValue(QualType(T, 0), Val);
7055 Val = Truncated;
7056 }
7057
7058 return APValue(Val);
7059 }
7060
7061 if (T->isRealFloatingType()) {
7062 const llvm::fltSemantics &Semantics =
7063 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7064 return APValue(APFloat(Semantics, Val));
7065 }
7066
7067 return unsupportedType(QualType(T, 0));
7068 }
7069
7070 Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7071 const RecordDecl *RD = RTy->getAsRecordDecl();
7072 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7073
7074 unsigned NumBases = 0;
7075 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7076 NumBases = CXXRD->getNumBases();
7077
7078 APValue ResultVal(APValue::UninitStruct(), NumBases,
7079 std::distance(RD->field_begin(), RD->field_end()));
7080
7081 // Visit the base classes.
7082 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7083 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7084 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7085 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7086 if (BaseDecl->isEmpty() ||
7087 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7088 continue;
7089
7090 Optional<APValue> SubObj = visitType(
7091 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7092 if (!SubObj)
7093 return None;
7094 ResultVal.getStructBase(I) = *SubObj;
7095 }
7096 }
7097
7098 // Visit the fields.
7099 unsigned FieldIdx = 0;
7100 for (FieldDecl *FD : RD->fields()) {
7101 // FIXME: We don't currently support bit-fields. A lot of the logic for
7102 // this is in CodeGen, so we need to factor it around.
7103 if (FD->isBitField()) {
7104 Info.FFDiag(BCE->getBeginLoc(),
7105 diag::note_constexpr_bit_cast_unsupported_bitfield);
7106 return None;
7107 }
7108
7109 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7110 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0)(static_cast <bool> (FieldOffsetBits % Info.Ctx.getCharWidth
() == 0) ? void (0) : __assert_fail ("FieldOffsetBits % Info.Ctx.getCharWidth() == 0"
, "clang/lib/AST/ExprConstant.cpp", 7110, __extension__ __PRETTY_FUNCTION__
))
;
7111
7112 CharUnits FieldOffset =
7113 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7114 Offset;
7115 QualType FieldTy = FD->getType();
7116 Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7117 if (!SubObj)
7118 return None;
7119 ResultVal.getStructField(FieldIdx) = *SubObj;
7120 ++FieldIdx;
7121 }
7122
7123 return ResultVal;
7124 }
7125
7126 Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7127 QualType RepresentationType = Ty->getDecl()->getIntegerType();
7128 assert(!RepresentationType.isNull() &&(static_cast <bool> (!RepresentationType.isNull() &&
"enum forward decl should be caught by Sema") ? void (0) : __assert_fail
("!RepresentationType.isNull() && \"enum forward decl should be caught by Sema\""
, "clang/lib/AST/ExprConstant.cpp", 7129, __extension__ __PRETTY_FUNCTION__
))
7129 "enum forward decl should be caught by Sema")(static_cast <bool> (!RepresentationType.isNull() &&
"enum forward decl should be caught by Sema") ? void (0) : __assert_fail
("!RepresentationType.isNull() && \"enum forward decl should be caught by Sema\""
, "clang/lib/AST/ExprConstant.cpp", 7129, __extension__ __PRETTY_FUNCTION__
))
;
7130 const auto *AsBuiltin =
7131 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7132 // Recurse into the underlying type. Treat std::byte transparently as
7133 // unsigned char.
7134 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7135 }
7136
7137 Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7138 size_t Size = Ty->getSize().getLimitedValue();
7139 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7140
7141 APValue ArrayValue(APValue::UninitArray(), Size, Size);
7142 for (size_t I = 0; I != Size; ++I) {
7143 Optional<APValue> ElementValue =
7144 visitType(Ty->getElementType(), Offset + I * ElementWidth);
7145 if (!ElementValue)
7146 return None;
7147 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7148 }
7149
7150 return ArrayValue;
7151 }
7152
7153 Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7154 return unsupportedType(QualType(Ty, 0));
7155 }
7156
7157 Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7158 QualType Can = Ty.getCanonicalType();
7159
7160 switch (Can->getTypeClass()) {
7161#define TYPE(Class, Base) \
7162 case Type::Class: \
7163 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7164#define ABSTRACT_TYPE(Class, Base)
7165#define NON_CANONICAL_TYPE(Class, Base) \
7166 case Type::Class: \
7167 llvm_unreachable("non-canonical type should be impossible!")::llvm::llvm_unreachable_internal("non-canonical type should be impossible!"
, "clang/lib/AST/ExprConstant.cpp", 7167)
;
7168#define DEPENDENT_TYPE(Class, Base) \
7169 case Type::Class: \
7170 llvm_unreachable( \::llvm::llvm_unreachable_internal("dependent types aren't supported in the constant evaluator!"
, "clang/lib/AST/ExprConstant.cpp", 7171)
7171 "dependent types aren't supported in the constant evaluator!")::llvm::llvm_unreachable_internal("dependent types aren't supported in the constant evaluator!"
, "clang/lib/AST/ExprConstant.cpp", 7171)
;
7172#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)case Type::Class: ::llvm::llvm_unreachable_internal("either dependent or not canonical!"
, "clang/lib/AST/ExprConstant.cpp", 7172);
\
7173 case Type::Class: \
7174 llvm_unreachable("either dependent or not canonical!")::llvm::llvm_unreachable_internal("either dependent or not canonical!"
, "clang/lib/AST/ExprConstant.cpp", 7174)
;
7175#include "clang/AST/TypeNodes.inc"
7176 }
7177 llvm_unreachable("Unhandled Type::TypeClass")::llvm::llvm_unreachable_internal("Unhandled Type::TypeClass"
, "clang/lib/AST/ExprConstant.cpp", 7177)
;
7178 }
7179
7180public:
7181 // Pull out a full value of type DstType.
7182 static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7183 const CastExpr *BCE) {
7184 BufferToAPValueConverter Converter(Info, Buffer, BCE);
7185 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7186 }
7187};
7188
7189static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7190 QualType Ty, EvalInfo *Info,
7191 const ASTContext &Ctx,
7192 bool CheckingDest) {
7193 Ty = Ty.getCanonicalType();
7194
7195 auto diag = [&](int Reason) {
7196 if (Info)
7197 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7198 << CheckingDest << (Reason == 4) << Reason;
7199 return false;
7200 };
7201 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7202 if (Info)
7203 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7204 << NoteTy << Construct << Ty;
7205 return false;
7206 };
7207
7208 if (Ty->isUnionType())
7209 return diag(0);
7210 if (Ty->isPointerType())
7211 return diag(1);
7212 if (Ty->isMemberPointerType())
7213 return diag(2);
7214 if (Ty.isVolatileQualified())
7215 return diag(3);
7216
7217 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7218 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7219 for (CXXBaseSpecifier &BS : CXXRD->bases())
7220 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7221 CheckingDest))
7222 return note(1, BS.getType(), BS.getBeginLoc());
7223 }
7224 for (FieldDecl *FD : Record->fields()) {
7225 if (FD->getType()->isReferenceType())
7226 return diag(4);
7227 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7228 CheckingDest))
7229 return note(0, FD->getType(), FD->getBeginLoc());
7230 }
7231 }
7232
7233 if (Ty->isArrayType() &&
7234 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7235 Info, Ctx, CheckingDest))
7236 return false;
7237
7238 return true;
7239}
7240
7241static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7242 const ASTContext &Ctx,
7243 const CastExpr *BCE) {
7244 bool DestOK = checkBitCastConstexprEligibilityType(
7245 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7246 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7247 BCE->getBeginLoc(),
7248 BCE->getSubExpr()->getType(), Info, Ctx, false);
7249 return SourceOK;
7250}
7251
7252static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7253 APValue &SourceValue,
7254 const CastExpr *BCE) {
7255 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&(static_cast <bool> (8 == 8 && Info.Ctx.getTargetInfo
().getCharWidth() == 8 && "no host or target supports non 8-bit chars"
) ? void (0) : __assert_fail ("CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && \"no host or target supports non 8-bit chars\""
, "clang/lib/AST/ExprConstant.cpp", 7256, __extension__ __PRETTY_FUNCTION__
))
7256 "no host or target supports non 8-bit chars")(static_cast <bool> (8 == 8 && Info.Ctx.getTargetInfo
().getCharWidth() == 8 && "no host or target supports non 8-bit chars"
) ? void (0) : __assert_fail ("CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && \"no host or target supports non 8-bit chars\""
, "clang/lib/AST/ExprConstant.cpp", 7256, __extension__ __PRETTY_FUNCTION__
))
;
7257 assert(SourceValue.isLValue() &&(static_cast <bool> (SourceValue.isLValue() && "LValueToRValueBitcast requires an lvalue operand!"
) ? void (0) : __assert_fail ("SourceValue.isLValue() && \"LValueToRValueBitcast requires an lvalue operand!\""
, "clang/lib/AST/ExprConstant.cpp", 7258, __extension__ __PRETTY_FUNCTION__
))
7258 "LValueToRValueBitcast requires an lvalue operand!")(static_cast <bool> (SourceValue.isLValue() && "LValueToRValueBitcast requires an lvalue operand!"
) ? void (0) : __assert_fail ("SourceValue.isLValue() && \"LValueToRValueBitcast requires an lvalue operand!\""
, "clang/lib/AST/ExprConstant.cpp", 7258, __extension__ __PRETTY_FUNCTION__
))
;
7259
7260 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7261 return false;
7262
7263 LValue SourceLValue;
7264 APValue SourceRValue;
7265 SourceLValue.setFrom(Info.Ctx, SourceValue);
7266 if (!handleLValueToRValueConversion(
7267 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7268 SourceRValue, /*WantObjectRepresentation=*/true))
7269 return false;
7270
7271 // Read out SourceValue into a char buffer.
7272 Optional<BitCastBuffer> Buffer =
7273 APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7274 if (!Buffer)
7275 return false;
7276
7277 // Write out the buffer into a new APValue.
7278 Optional<APValue> MaybeDestValue =
7279 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7280 if (!MaybeDestValue)
7281 return false;
7282
7283 DestValue = std::move(*MaybeDestValue);
7284 return true;
7285}
7286
7287template <class Derived>
7288class ExprEvaluatorBase
7289 : public ConstStmtVisitor<Derived, bool> {
7290private:
7291 Derived &getDerived() { return static_cast<Derived&>(*this); }
7292 bool DerivedSuccess(const APValue &V, const Expr *E) {
7293 return getDerived().Success(V, E);
7294 }
7295 bool DerivedZeroInitialization(const Expr *E) {
7296 return getDerived().ZeroInitialization(E);
7297 }
7298
7299 // Check whether a conditional operator with a non-constant condition is a
7300 // potential constant expression. If neither arm is a potential constant
7301 // expression, then the conditional operator is not either.
7302 template<typename ConditionalOperator>
7303 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7304 assert(Info.checkingPotentialConstantExpression())(static_cast <bool> (Info.checkingPotentialConstantExpression
()) ? void (0) : __assert_fail ("Info.checkingPotentialConstantExpression()"
, "clang/lib/AST/ExprConstant.cpp", 7304, __extension__ __PRETTY_FUNCTION__
))
;
7305
7306 // Speculatively evaluate both arms.
7307 SmallVector<PartialDiagnosticAt, 8> Diag;
7308 {
7309 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7310 StmtVisitorTy::Visit(E->getFalseExpr());
7311 if (Diag.empty())
7312 return;
7313 }
7314
7315 {
7316 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7317 Diag.clear();
7318 StmtVisitorTy::Visit(E->getTrueExpr());
7319 if (Diag.empty())
7320 return;
7321 }
7322
7323 Error(E, diag::note_constexpr_conditional_never_const);
7324 }
7325
7326
7327 template<typename ConditionalOperator>
7328 bool HandleConditionalOperator(const ConditionalOperator *E) {
7329 bool BoolResult;
7330 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7331 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7332 CheckPotentialConstantConditional(E);
7333 return false;
7334 }
7335 if (Info.noteFailure()) {
7336 StmtVisitorTy::Visit(E->getTrueExpr());
7337 StmtVisitorTy::Visit(E->getFalseExpr());
7338 }
7339 return false;
7340 }
7341
7342 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7343 return StmtVisitorTy::Visit(EvalExpr);
7344 }
7345
7346protected:
7347 EvalInfo &Info;
7348 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7349 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7350
7351 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7352 return Info.CCEDiag(E, D);
7353 }
7354
7355 bool ZeroInitialization(const Expr *E) { return Error(E); }
7356
7357public:
7358 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7359
7360 EvalInfo &getEvalInfo() { return Info; }
7361
7362 /// Report an evaluation error. This should only be called when an error is
7363 /// first discovered. When propagating an error, just return false.
7364 bool Error(const Expr *E, diag::kind D) {
7365 Info.FFDiag(E, D);
7366 return false;
7367 }
7368 bool Error(const Expr *E) {
7369 return Error(E, diag::note_invalid_subexpr_in_const_expr);
7370 }
7371
7372 bool VisitStmt(const Stmt *) {
7373 llvm_unreachable("Expression evaluator should not be called on stmts")::llvm::llvm_unreachable_internal("Expression evaluator should not be called on stmts"
, "clang/lib/AST/ExprConstant.cpp", 7373)
;
7374 }
7375 bool VisitExpr(const Expr *E) {
7376 return Error(E);
7377 }
7378
7379 bool VisitConstantExpr(const ConstantExpr *E) {
7380 if (E->hasAPValueResult())
7381 return DerivedSuccess(E->getAPValueResult(), E);
7382
7383 return StmtVisitorTy::Visit(E->getSubExpr());
7384 }
7385
7386 bool VisitParenExpr(const ParenExpr *E)
7387 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7388 bool VisitUnaryExtension(const UnaryOperator *E)
7389 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7390 bool VisitUnaryPlus(const UnaryOperator *E)
7391 { return StmtVisitorTy::Visit(E->getSubExpr()); }
7392 bool VisitChooseExpr(const ChooseExpr *E)
7393 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
7394 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7395 { return StmtVisitorTy::Visit(E->getResultExpr()); }
7396 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7397 { return StmtVisitorTy::Visit(E->getReplacement()); }
7398 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7399 TempVersionRAII RAII(*Info.CurrentCall);
7400 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7401 return StmtVisitorTy::Visit(E->getExpr());
7402 }
7403 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7404 TempVersionRAII RAII(*Info.CurrentCall);
7405 // The initializer may not have been parsed yet, or might be erroneous.
7406 if (!E->getExpr())
7407 return Error(E);
7408 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7409 return StmtVisitorTy::Visit(E->getExpr());
7410 }
7411
7412 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7413 FullExpressionRAII Scope(Info);
7414 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7415 }
7416
7417 // Temporaries are registered when created, so we don't care about
7418 // CXXBindTemporaryExpr.
7419 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7420 return StmtVisitorTy::Visit(E->getSubExpr());
7421 }
7422
7423 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7424 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7425 return static_cast<Derived*>(this)->VisitCastExpr(E);
1
Calling 'LValueExprEvaluator::VisitCastExpr'
7426 }
7427 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7428 if (!Info.Ctx.getLangOpts().CPlusPlus20)
7429 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7430 return static_cast<Derived*>(this)->VisitCastExpr(E);
7431 }
7432 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7433 return static_cast<Derived*>(this)->VisitCastExpr(E);
7434 }
7435
7436 bool VisitBinaryOperator(const BinaryOperator *E) {
7437 switch (E->getOpcode()) {
7438 default:
7439 return Error(E);
7440
7441 case BO_Comma:
7442 VisitIgnoredValue(E->getLHS());
7443 return StmtVisitorTy::Visit(E->getRHS());
7444
7445 case BO_PtrMemD:
7446 case BO_PtrMemI: {
7447 LValue Obj;
7448 if (!HandleMemberPointerAccess(Info, E, Obj))
7449 return false;
7450 APValue Result;
7451 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7452 return false;
7453 return DerivedSuccess(Result, E);
7454 }
7455 }
7456 }
7457
7458 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7459 return StmtVisitorTy::Visit(E->getSemanticForm());
7460 }
7461
7462 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7463 // Evaluate and cache the common expression. We treat it as a temporary,
7464 // even though it's not quite the same thing.
7465 LValue CommonLV;
7466 if (!Evaluate(Info.CurrentCall->createTemporary(
7467 E->getOpaqueValue(),
7468 getStorageType(Info.Ctx, E->getOpaqueValue()),
7469 ScopeKind::FullExpression, CommonLV),
7470 Info, E->getCommon()))
7471 return false;
7472
7473 return HandleConditionalOperator(E);
7474 }
7475
7476 bool VisitConditionalOperator(const ConditionalOperator *E) {
7477 bool IsBcpCall = false;
7478 // If the condition (ignoring parens) is a __builtin_constant_p call,
7479 // the result is a constant expression if it can be folded without
7480 // side-effects. This is an important GNU extension. See GCC PR38377
7481 // for discussion.
7482 if (const CallExpr *CallCE =
7483 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7484 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7485 IsBcpCall = true;
7486
7487 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7488 // constant expression; we can't check whether it's potentially foldable.
7489 // FIXME: We should instead treat __builtin_constant_p as non-constant if
7490 // it would return 'false' in this mode.
7491 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7492 return false;
7493
7494 FoldConstant Fold(Info, IsBcpCall);
7495 if (!HandleConditionalOperator(E)) {
7496 Fold.keepDiagnostics();
7497 return false;
7498 }
7499
7500 return true;
7501 }
7502
7503 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7504 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7505 return DerivedSuccess(*Value, E);
7506
7507 const Expr *Source = E->getSourceExpr();
7508 if (!Source)
7509 return Error(E);
7510 if (Source == E) {
7511 assert(0 && "OpaqueValueExpr recursively refers to itself")(static_cast <bool> (0 && "OpaqueValueExpr recursively refers to itself"
) ? void (0) : __assert_fail ("0 && \"OpaqueValueExpr recursively refers to itself\""
, "clang/lib/AST/ExprConstant.cpp", 7511, __extension__ __PRETTY_FUNCTION__
))
;
7512 return Error(E);
7513 }
7514 return StmtVisitorTy::Visit(Source);
7515 }
7516
7517 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7518 for (const Expr *SemE : E->semantics()) {
7519 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7520 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7521 // result expression: there could be two different LValues that would
7522 // refer to the same object in that case, and we can't model that.
7523 if (SemE == E->getResultExpr())
7524 return Error(E);
7525
7526 // Unique OVEs get evaluated if and when we encounter them when
7527 // emitting the rest of the semantic form, rather than eagerly.
7528 if (OVE->isUnique())
7529 continue;
7530
7531 LValue LV;
7532 if (!Evaluate(Info.CurrentCall->createTemporary(
7533 OVE, getStorageType(Info.Ctx, OVE),
7534 ScopeKind::FullExpression, LV),
7535 Info, OVE->getSourceExpr()))
7536 return false;
7537 } else if (SemE == E->getResultExpr()) {
7538 if (!StmtVisitorTy::Visit(SemE))
7539 return false;
7540 } else {
7541 if (!EvaluateIgnoredValue(Info, SemE))
7542 return false;
7543 }
7544 }
7545 return true;
7546 }
7547
7548 bool VisitCallExpr(const CallExpr *E) {
7549 APValue Result;
7550 if (!handleCallExpr(E, Result, nullptr))
7551 return false;
7552 return DerivedSuccess(Result, E);
7553 }
7554
7555 bool handleCallExpr(const CallExpr *E, APValue &Result,
7556 const LValue *ResultSlot) {
7557 CallScopeRAII CallScope(Info);
7558
7559 const Expr *Callee = E->getCallee()->IgnoreParens();
7560 QualType CalleeType = Callee->getType();
7561
7562 const FunctionDecl *FD = nullptr;
7563 LValue *This = nullptr, ThisVal;
7564 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7565 bool HasQualifier = false;
7566
7567 CallRef Call;
7568
7569 // Extract function decl and 'this' pointer from the callee.
7570 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7571 const CXXMethodDecl *Member = nullptr;
7572 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7573 // Explicit bound member calls, such as x.f() or p->g();
7574 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7575 return false;
7576 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7577 if (!Member)
7578 return Error(Callee);
7579 This = &ThisVal;
7580 HasQualifier = ME->hasQualifier();
7581 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7582 // Indirect bound member calls ('.*' or '->*').
7583 const ValueDecl *D =
7584 HandleMemberPointerAccess(Info, BE, ThisVal, false);
7585 if (!D)
7586 return false;
7587 Member = dyn_cast<CXXMethodDecl>(D);
7588 if (!Member)
7589 return Error(Callee);
7590 This = &ThisVal;
7591 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7592 if (!Info.getLangOpts().CPlusPlus20)
7593 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7594 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7595 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7596 } else
7597 return Error(Callee);
7598 FD = Member;
7599 } else if (CalleeType->isFunctionPointerType()) {
7600 LValue CalleeLV;
7601 if (!EvaluatePointer(Callee, CalleeLV, Info))
7602 return false;
7603
7604 if (!CalleeLV.getLValueOffset().isZero())
7605 return Error(Callee);
7606 FD = dyn_cast_or_null<FunctionDecl>(
7607 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7608 if (!FD)
7609 return Error(Callee);
7610 // Don't call function pointers which have been cast to some other type.
7611 // Per DR (no number yet), the caller and callee can differ in noexcept.
7612 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7613 CalleeType->getPointeeType(), FD->getType())) {
7614 return Error(E);
7615 }
7616
7617 // For an (overloaded) assignment expression, evaluate the RHS before the
7618 // LHS.
7619 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7620 if (OCE && OCE->isAssignmentOp()) {
7621 assert(Args.size() == 2 && "wrong number of arguments in assignment")(static_cast <bool> (Args.size() == 2 && "wrong number of arguments in assignment"
) ? void (0) : __assert_fail ("Args.size() == 2 && \"wrong number of arguments in assignment\""
, "clang/lib/AST/ExprConstant.cpp", 7621, __extension__ __PRETTY_FUNCTION__
))
;
7622 Call = Info.CurrentCall->createCall(FD);
7623 if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7624 Info, FD, /*RightToLeft=*/true))
7625 return false;
7626 }
7627
7628 // Overloaded operator calls to member functions are represented as normal
7629 // calls with '*this' as the first argument.
7630 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7631 if (MD && !MD->isStatic()) {
7632 // FIXME: When selecting an implicit conversion for an overloaded
7633 // operator delete, we sometimes try to evaluate calls to conversion
7634 // operators without a 'this' parameter!
7635 if (Args.empty())
7636 return Error(E);
7637
7638 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7639 return false;
7640 This = &ThisVal;
7641 Args = Args.slice(1);
7642 } else if (MD && MD->isLambdaStaticInvoker()) {
7643 // Map the static invoker for the lambda back to the call operator.
7644 // Conveniently, we don't have to slice out the 'this' argument (as is
7645 // being done for the non-static case), since a static member function
7646 // doesn't have an implicit argument passed in.
7647 const CXXRecordDecl *ClosureClass = MD->getParent();
7648 assert((static_cast <bool> (ClosureClass->captures_begin() ==
ClosureClass->captures_end() && "Number of captures must be zero for conversion to function-ptr"
) ? void (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "clang/lib/AST/ExprConstant.cpp", 7650, __extension__ __PRETTY_FUNCTION__
))
7649 ClosureClass->captures_begin() == ClosureClass->captures_end() &&(static_cast <bool> (ClosureClass->captures_begin() ==
ClosureClass->captures_end() && "Number of captures must be zero for conversion to function-ptr"
) ? void (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "clang/lib/AST/ExprConstant.cpp", 7650, __extension__ __PRETTY_FUNCTION__
))
7650 "Number of captures must be zero for conversion to function-ptr")(static_cast <bool> (ClosureClass->captures_begin() ==
ClosureClass->captures_end() && "Number of captures must be zero for conversion to function-ptr"
) ? void (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "clang/lib/AST/ExprConstant.cpp", 7650, __extension__ __PRETTY_FUNCTION__
))
;
7651
7652 const CXXMethodDecl *LambdaCallOp =
7653 ClosureClass->getLambdaCallOperator();
7654
7655 // Set 'FD', the function that will be called below, to the call
7656 // operator. If the closure object represents a generic lambda, find
7657 // the corresponding specialization of the call operator.
7658
7659 if (ClosureClass->isGenericLambda()) {
7660 assert(MD->isFunctionTemplateSpecialization() &&(static_cast <bool> (MD->isFunctionTemplateSpecialization
() && "A generic lambda's static-invoker function must be a "
"template specialization") ? void (0) : __assert_fail ("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "clang/lib/AST/ExprConstant.cpp", 7662, __extension__ __PRETTY_FUNCTION__
))
7661 "A generic lambda's static-invoker function must be a "(static_cast <bool> (MD->isFunctionTemplateSpecialization
() && "A generic lambda's static-invoker function must be a "
"template specialization") ? void (0) : __assert_fail ("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "clang/lib/AST/ExprConstant.cpp", 7662, __extension__ __PRETTY_FUNCTION__
))
7662 "template specialization")(static_cast <bool> (MD->isFunctionTemplateSpecialization
() && "A generic lambda's static-invoker function must be a "
"template specialization") ? void (0) : __assert_fail ("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "clang/lib/AST/ExprConstant.cpp", 7662, __extension__ __PRETTY_FUNCTION__
))
;
7663 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7664 FunctionTemplateDecl *CallOpTemplate =
7665 LambdaCallOp->getDescribedFunctionTemplate();
7666 void *InsertPos = nullptr;
7667 FunctionDecl *CorrespondingCallOpSpecialization =
7668 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7669 assert(CorrespondingCallOpSpecialization &&(static_cast <bool> (CorrespondingCallOpSpecialization &&
"We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? void
(0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "clang/lib/AST/ExprConstant.cpp", 7671, __extension__ __PRETTY_FUNCTION__
))
7670 "We must always have a function call operator specialization "(static_cast <bool> (CorrespondingCallOpSpecialization &&
"We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? void
(0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "clang/lib/AST/ExprConstant.cpp", 7671, __extension__ __PRETTY_FUNCTION__
))
7671 "that corresponds to our static invoker specialization")(static_cast <bool> (CorrespondingCallOpSpecialization &&
"We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? void
(0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "clang/lib/AST/ExprConstant.cpp", 7671, __extension__ __PRETTY_FUNCTION__
))
;
7672 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7673 } else
7674 FD = LambdaCallOp;
7675 } else if (FD->isReplaceableGlobalAllocationFunction()) {
7676 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7677 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7678 LValue Ptr;
7679 if (!HandleOperatorNewCall(Info, E, Ptr))
7680 return false;
7681 Ptr.moveInto(Result);
7682 return CallScope.destroy();
7683 } else {
7684 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7685 }
7686 }
7687 } else
7688 return Error(E);
7689
7690 // Evaluate the arguments now if we've not already done so.
7691 if (!Call) {
7692 Call = Info.CurrentCall->createCall(FD);
7693 if (!EvaluateArgs(Args, Call, Info, FD))
7694 return false;
7695 }
7696
7697 SmallVector<QualType, 4> CovariantAdjustmentPath;
7698 if (This) {
7699 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7700 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7701 // Perform virtual dispatch, if necessary.
7702 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7703 CovariantAdjustmentPath);
7704 if (!FD)
7705 return false;
7706 } else {
7707 // Check that the 'this' pointer points to an object of the right type.
7708 // FIXME: If this is an assignment operator call, we may need to change
7709 // the active union member before we check this.
7710 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7711 return false;
7712 }
7713 }
7714
7715 // Destructor calls are different enough that they have their own codepath.
7716 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7717 assert(This && "no 'this' pointer for destructor call")(static_cast <bool> (This && "no 'this' pointer for destructor call"
) ? void (0) : __assert_fail ("This && \"no 'this' pointer for destructor call\""
, "clang/lib/AST/ExprConstant.cpp", 7717, __extension__ __PRETTY_FUNCTION__
))
;
7718 return HandleDestruction(Info, E, *This,
7719 Info.Ctx.getRecordType(DD->getParent())) &&
7720 CallScope.destroy();
7721 }
7722
7723 const FunctionDecl *Definition = nullptr;
7724 Stmt *Body = FD->getBody(Definition);
7725
7726 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7727 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7728 Body, Info, Result, ResultSlot))
7729 return false;
7730
7731 if (!CovariantAdjustmentPath.empty() &&
7732 !HandleCovariantReturnAdjustment(Info, E, Result,
7733 CovariantAdjustmentPath))
7734 return false;
7735
7736 return CallScope.destroy();
7737 }
7738
7739 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7740 return StmtVisitorTy::Visit(E->getInitializer());
7741 }
7742 bool VisitInitListExpr(const InitListExpr *E) {
7743 if (E->getNumInits() == 0)
7744 return DerivedZeroInitialization(E);
7745 if (E->getNumInits() == 1)
7746 return StmtVisitorTy::Visit(E->getInit(0));
7747 return Error(E);
7748 }
7749 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7750 return DerivedZeroInitialization(E);
7751 }
7752 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7753 return DerivedZeroInitialization(E);
7754 }
7755 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7756 return DerivedZeroInitialization(E);
7757 }
7758
7759 /// A member expression where the object is a prvalue is itself a prvalue.
7760 bool VisitMemberExpr(const MemberExpr *E) {
7761 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&(static_cast <bool> (!Info.Ctx.getLangOpts().CPlusPlus11
&& "missing temporary materialization conversion") ?
void (0) : __assert_fail ("!Info.Ctx.getLangOpts().CPlusPlus11 && \"missing temporary materialization conversion\""
, "clang/lib/AST/ExprConstant.cpp", 7762, __extension__ __PRETTY_FUNCTION__
))
7762 "missing temporary materialization conversion")(static_cast <bool> (!Info.Ctx.getLangOpts().CPlusPlus11
&& "missing temporary materialization conversion") ?
void (0) : __assert_fail ("!Info.Ctx.getLangOpts().CPlusPlus11 && \"missing temporary materialization conversion\""
, "clang/lib/AST/ExprConstant.cpp", 7762, __extension__ __PRETTY_FUNCTION__
))
;
7763 assert(!E->isArrow() && "missing call to bound member function?")(static_cast <bool> (!E->isArrow() && "missing call to bound member function?"
) ? void (0) : __assert_fail ("!E->isArrow() && \"missing call to bound member function?\""
, "clang/lib/AST/ExprConstant.cpp", 7763, __extension__ __PRETTY_FUNCTION__
))
;
7764
7765 APValue Val;
7766 if (!Evaluate(Val, Info, E->getBase()))
7767 return false;
7768
7769 QualType BaseTy = E->getBase()->getType();
7770
7771 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7772 if (!FD) return Error(E);
7773 assert(!FD->getType()->isReferenceType() && "prvalue reference?")(static_cast <bool> (!FD->getType()->isReferenceType
() && "prvalue reference?") ? void (0) : __assert_fail
("!FD->getType()->isReferenceType() && \"prvalue reference?\""
, "clang/lib/AST/ExprConstant.cpp", 7773, __extension__ __PRETTY_FUNCTION__
))
;
7774 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==(static_cast <bool> (BaseTy->castAs<RecordType>
()->getDecl()->getCanonicalDecl() == FD->getParent()
->getCanonicalDecl() && "record / field mismatch")
? void (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "clang/lib/AST/ExprConstant.cpp", 7775, __extension__ __PRETTY_FUNCTION__
))
7775 FD->getParent()->getCanonicalDecl() && "record / field mismatch")(static_cast <bool> (BaseTy->castAs<RecordType>
()->getDecl()->getCanonicalDecl() == FD->getParent()
->getCanonicalDecl() && "record / field mismatch")
? void (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "clang/lib/AST/ExprConstant.cpp", 7775, __extension__ __PRETTY_FUNCTION__
))
;
7776
7777 // Note: there is no lvalue base here. But this case should only ever
7778 // happen in C or in C++98, where we cannot be evaluating a constexpr
7779 // constructor, which is the only case the base matters.
7780 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7781 SubobjectDesignator Designator(BaseTy);
7782 Designator.addDeclUnchecked(FD);
7783
7784 APValue Result;
7785 return extractSubobject(Info, E, Obj, Designator, Result) &&
7786 DerivedSuccess(Result, E);
7787 }
7788
7789 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7790 APValue Val;
7791 if (!Evaluate(Val, Info, E->getBase()))
7792 return false;
7793
7794 if (Val.isVector()) {
7795 SmallVector<uint32_t, 4> Indices;
7796 E->getEncodedElementAccess(Indices);
7797 if (Indices.size() == 1) {
7798 // Return scalar.
7799 return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7800 } else {
7801 // Construct new APValue vector.
7802 SmallVector<APValue, 4> Elts;
7803 for (unsigned I = 0; I < Indices.size(); ++I) {
7804 Elts.push_back(Val.getVectorElt(Indices[I]));
7805 }
7806 APValue VecResult(Elts.data(), Indices.size());
7807 return DerivedSuccess(VecResult, E);
7808 }
7809 }
7810
7811 return false;
7812 }
7813
7814 bool VisitCastExpr(const CastExpr *E) {
7815 switch (E->getCastKind()) {
7816 default:
7817 break;
7818
7819 case CK_AtomicToNonAtomic: {
7820 APValue AtomicVal;
7821 // This does not need to be done in place even for class/array types:
7822 // atomic-to-non-atomic conversion implies copying the object
7823 // representation.
7824 if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7825 return false;
7826 return DerivedSuccess(AtomicVal, E);
7827 }
7828
7829 case CK_NoOp:
7830 case CK_UserDefinedConversion:
7831 return StmtVisitorTy::Visit(E->getSubExpr());
7832
7833 case CK_LValueToRValue: {
7834 LValue LVal;
7835 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7836 return false;
7837 APValue RVal;
7838 // Note, we use the subexpression's type in order to retain cv-qualifiers.
7839 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7840 LVal, RVal))
7841 return false;
7842 return DerivedSuccess(RVal, E);
7843 }
7844 case CK_LValueToRValueBitCast: {
7845 APValue DestValue, SourceValue;
7846 if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7847 return false;
7848 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7849 return false;
7850 return DerivedSuccess(DestValue, E);
7851 }
7852
7853 case CK_AddressSpaceConversion: {
7854 APValue Value;
7855 if (!Evaluate(Value, Info, E->getSubExpr()))
7856 return false;
7857 return DerivedSuccess(Value, E);
7858 }
7859 }
7860
7861 return Error(E);
7862 }
7863
7864 bool VisitUnaryPostInc(const UnaryOperator *UO) {
7865 return VisitUnaryPostIncDec(UO);
7866 }
7867 bool VisitUnaryPostDec(const UnaryOperator *UO) {
7868 return VisitUnaryPostIncDec(UO);
7869 }
7870 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7871 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7872 return Error(UO);
7873
7874 LValue LVal;
7875 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7876 return false;
7877 APValue RVal;
7878 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7879 UO->isIncrementOp(), &RVal))
7880 return false;
7881 return DerivedSuccess(RVal, UO);
7882 }
7883
7884 bool VisitStmtExpr(const StmtExpr *E) {
7885 // We will have checked the full-expressions inside the statement expression
7886 // when they were completed, and don't need to check them again now.
7887 llvm::SaveAndRestore<bool> NotCheckingForUB(
7888 Info.CheckingForUndefinedBehavior, false);
7889
7890 const CompoundStmt *CS = E->getSubStmt();
7891 if (CS->body_empty())
7892 return true;
7893
7894 BlockScopeRAII Scope(Info);
7895 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7896 BE = CS->body_end();
7897 /**/; ++BI) {
7898 if (BI + 1 == BE) {
7899 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7900 if (!FinalExpr) {
7901 Info.FFDiag((*BI)->getBeginLoc(),
7902 diag::note_constexpr_stmt_expr_unsupported);
7903 return false;
7904 }
7905 return this->Visit(FinalExpr) && Scope.destroy();
7906 }
7907
7908 APValue ReturnValue;
7909 StmtResult Result = { ReturnValue, nullptr };
7910 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7911 if (ESR != ESR_Succeeded) {
7912 // FIXME: If the statement-expression terminated due to 'return',
7913 // 'break', or 'continue', it would be nice to propagate that to
7914 // the outer statement evaluation rather than bailing out.
7915 if (ESR != ESR_Failed)
7916 Info.FFDiag((*BI)->getBeginLoc(),
7917 diag::note_constexpr_stmt_expr_unsupported);
7918 return false;
7919 }
7920 }
7921
7922 llvm_unreachable("Return from function from the loop above.")::llvm::llvm_unreachable_internal("Return from function from the loop above."
, "clang/lib/AST/ExprConstant.cpp", 7922)
;
7923 }
7924
7925 /// Visit a value which is evaluated, but whose value is ignored.
7926 void VisitIgnoredValue(const Expr *E) {
7927 EvaluateIgnoredValue(Info, E);
7928 }
7929
7930 /// Potentially visit a MemberExpr's base expression.
7931 void VisitIgnoredBaseExpression(const Expr *E) {
7932 // While MSVC doesn't evaluate the base expression, it does diagnose the
7933 // presence of side-effecting behavior.
7934 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7935 return;
7936 VisitIgnoredValue(E);
7937 }
7938};
7939
7940} // namespace
7941
7942//===----------------------------------------------------------------------===//
7943// Common base class for lvalue and temporary evaluation.
7944//===----------------------------------------------------------------------===//
7945namespace {
7946template<class Derived>
7947class LValueExprEvaluatorBase
7948 : public ExprEvaluatorBase<Derived> {
7949protected:
7950 LValue &Result;
7951 bool InvalidBaseOK;
7952 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7953 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7954
7955 bool Success(APValue::LValueBase B) {
7956 Result.set(B);
7957 return true;
7958 }
7959
7960 bool evaluatePointer(const Expr *E, LValue &Result) {
7961 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7962 }
7963
7964public:
7965 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7966 : ExprEvaluatorBaseTy(Info), Result(Result),
7967 InvalidBaseOK(InvalidBaseOK) {}
7968
7969 bool Success(const APValue &V, const Expr *E) {
7970 Result.setFrom(this->Info.Ctx, V);
7971 return true;
7972 }
7973
7974 bool VisitMemberExpr(const MemberExpr *E) {
7975 // Handle non-static data members.
7976 QualType BaseTy;
7977 bool EvalOK;
7978 if (E->isArrow()) {
7979 EvalOK = evaluatePointer(E->getBase(), Result);
7980 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7981 } else if (E->getBase()->isPRValue()) {
7982 assert(E->getBase()->getType()->isRecordType())(static_cast <bool> (E->getBase()->getType()->
isRecordType()) ? void (0) : __assert_fail ("E->getBase()->getType()->isRecordType()"
, "clang/lib/AST/ExprConstant.cpp", 7982, __extension__ __PRETTY_FUNCTION__
))
;
7983 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7984 BaseTy = E->getBase()->getType();
7985 } else {
7986 EvalOK = this->Visit(E->getBase());
7987 BaseTy = E->getBase()->getType();
7988 }
7989 if (!EvalOK) {
7990 if (!InvalidBaseOK)
7991 return false;
7992 Result.setInvalid(E);
7993 return true;
7994 }
7995
7996 const ValueDecl *MD = E->getMemberDecl();
7997 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7998 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==(static_cast <bool> (BaseTy->castAs<RecordType>
()->getDecl()->getCanonicalDecl() == FD->getParent()
->getCanonicalDecl() && "record / field mismatch")
? void (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "clang/lib/AST/ExprConstant.cpp", 7999, __extension__ __PRETTY_FUNCTION__
))
7999 FD->getParent()->getCanonicalDecl() && "record / field mismatch")(static_cast <bool> (BaseTy->castAs<RecordType>
()->getDecl()->getCanonicalDecl() == FD->getParent()
->getCanonicalDecl() && "record / field mismatch")
? void (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "clang/lib/AST/ExprConstant.cpp", 7999, __extension__ __PRETTY_FUNCTION__
))
;
8000 (void)BaseTy;
8001 if (!HandleLValueMember(this->Info, E, Result, FD))
8002 return false;
8003 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8004 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8005 return false;
8006 } else
8007 return this->Error(E);
8008
8009 if (MD->getType()->isReferenceType()) {
8010 APValue RefValue;
8011 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8012 RefValue))
8013 return false;
8014 return Success(RefValue, E);
8015 }
8016 return true;
8017 }
8018
8019 bool VisitBinaryOperator(const BinaryOperator *E) {
8020 switch (E->getOpcode()) {
8021 default:
8022 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8023
8024 case BO_PtrMemD:
8025 case BO_PtrMemI:
8026 return HandleMemberPointerAccess(this->Info, E, Result);
8027 }
8028 }
8029
8030 bool VisitCastExpr(const CastExpr *E) {
8031 switch (E->getCastKind()) {
8032 default:
8033 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8034
8035 case CK_DerivedToBase:
8036 case CK_UncheckedDerivedToBase:
8037 if (!this->Visit(E->getSubExpr()))
8038 return false;
8039
8040 // Now figure out the necessary offset to add to the base LV to get from
8041 // the derived class to the base class.
8042 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8043 Result);
8044 }
8045 }
8046};
8047}
8048
8049//===----------------------------------------------------------------------===//
8050// LValue Evaluation
8051//
8052// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8053// function designators (in C), decl references to void objects (in C), and
8054// temporaries (if building with -Wno-address-of-temporary).
8055//
8056// LValue evaluation produces values comprising a base expression of one of the
8057// following types:
8058// - Declarations
8059// * VarDecl
8060// * FunctionDecl
8061// - Literals
8062// * CompoundLiteralExpr in C (and in global scope in C++)
8063// * StringLiteral
8064// * PredefinedExpr
8065// * ObjCStringLiteralExpr
8066// * ObjCEncodeExpr
8067// * AddrLabelExpr
8068// * BlockExpr
8069// * CallExpr for a MakeStringConstant builtin
8070// - typeid(T) expressions, as TypeInfoLValues
8071// - Locals and temporaries
8072// * MaterializeTemporaryExpr
8073// * Any Expr, with a CallIndex indicating the function in which the temporary
8074// was evaluated, for cases where the MaterializeTemporaryExpr is missing
8075// from the AST (FIXME).
8076// * A MaterializeTemporaryExpr that has static storage duration, with no
8077// CallIndex, for a lifetime-extended temporary.
8078// * The ConstantExpr that is currently being evaluated during evaluation of an
8079// immediate invocation.
8080// plus an offset in bytes.
8081//===----------------------------------------------------------------------===//
8082namespace {
8083class LValueExprEvaluator
8084 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8085public:
8086 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8087 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8088
8089 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8090 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8091
8092 bool VisitDeclRefExpr(const DeclRefExpr *E);
8093 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8094 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8095 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8096 bool VisitMemberExpr(const MemberExpr *E);
8097 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
8098 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8099 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8100 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8101 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8102 bool VisitUnaryDeref(const UnaryOperator *E);
8103 bool VisitUnaryReal(const UnaryOperator *E);
8104 bool VisitUnaryImag(const UnaryOperator *E);
8105 bool VisitUnaryPreInc(const UnaryOperator *UO) {
8106 return VisitUnaryPreIncDec(UO);
8107 }
8108 bool VisitUnaryPreDec(const UnaryOperator *UO) {
8109 return VisitUnaryPreIncDec(UO);
8110 }
8111 bool VisitBinAssign(const BinaryOperator *BO);
8112 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8113
8114 bool VisitCastExpr(const CastExpr *E) {
8115 switch (E->getCastKind()) {
2
Control jumps to 'case CK_Dynamic:' at line 8131
8116 default:
8117 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8118
8119 case CK_LValueBitCast:
8120 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8121 if (!Visit(E->getSubExpr()))
8122 return false;
8123 Result.Designator.setInvalid();
8124 return true;
8125
8126 case CK_BaseToDerived:
8127 if (!Visit(E->getSubExpr()))
8128 return false;
8129 return HandleBaseToDerivedCast(Info, E, Result);
8130
8131 case CK_Dynamic:
8132 if (!Visit(E->getSubExpr()))
3
Assuming the condition is false
4
Taking false branch
8133 return false;
8134 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
5
'E' is a 'ExplicitCastExpr'
6
Calling 'HandleDynamicCast'
8135 }
8136 }
8137};
8138} // end anonymous namespace
8139
8140/// Evaluate an expression as an lvalue. This can be legitimately called on
8141/// expressions which are not glvalues, in three cases:
8142/// * function designators in C, and
8143/// * "extern void" objects
8144/// * @selector() expressions in Objective-C
8145static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8146 bool InvalidBaseOK) {
8147 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 8147, __extension__ __PRETTY_FUNCTION__))
;
8148 assert(E->isGLValue() || E->getType()->isFunctionType() ||(static_cast <bool> (E->isGLValue() || E->getType
()->isFunctionType() || E->getType()->isVoidType() ||
isa<ObjCSelectorExpr>(E)) ? void (0) : __assert_fail (
"E->isGLValue() || E->getType()->isFunctionType() || E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)"
, "clang/lib/AST/ExprConstant.cpp", 8149, __extension__ __PRETTY_FUNCTION__
))
8149 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E))(static_cast <bool> (E->isGLValue() || E->getType
()->isFunctionType() || E->getType()->isVoidType() ||
isa<ObjCSelectorExpr>(E)) ? void (0) : __assert_fail (
"E->isGLValue() || E->getType()->isFunctionType() || E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)"
, "clang/lib/AST/ExprConstant.cpp", 8149, __extension__ __PRETTY_FUNCTION__
))
;
8150 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8151}
8152
8153bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8154 const NamedDecl *D = E->getDecl();
8155 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D))
8156 return Success(cast<ValueDecl>(D));
8157 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8158 return VisitVarDecl(E, VD);
8159 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8160 return Visit(BD->getBinding());
8161 return Error(E);
8162}
8163
8164
8165bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8166
8167 // If we are within a lambda's call operator, check whether the 'VD' referred
8168 // to within 'E' actually represents a lambda-capture that maps to a
8169 // data-member/field within the closure object, and if so, evaluate to the
8170 // field or what the field refers to.
8171 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8172 isa<DeclRefExpr>(E) &&
8173 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8174 // We don't always have a complete capture-map when checking or inferring if
8175 // the function call operator meets the requirements of a constexpr function
8176 // - but we don't need to evaluate the captures to determine constexprness
8177 // (dcl.constexpr C++17).
8178 if (Info.checkingPotentialConstantExpression())
8179 return false;
8180
8181 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8182 // Start with 'Result' referring to the complete closure object...
8183 Result = *Info.CurrentCall->This;
8184 // ... then update it to refer to the field of the closure object
8185 // that represents the capture.
8186 if (!HandleLValueMember(Info, E, Result, FD))
8187 return false;
8188 // And if the field is of reference type, update 'Result' to refer to what
8189 // the field refers to.
8190 if (FD->getType()->isReferenceType()) {
8191 APValue RVal;
8192 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8193 RVal))
8194 return false;
8195 Result.setFrom(Info.Ctx, RVal);
8196 }
8197 return true;
8198 }
8199 }
8200
8201 CallStackFrame *Frame = nullptr;
8202 unsigned Version = 0;
8203 if (VD->hasLocalStorage()) {
8204 // Only if a local variable was declared in the function currently being
8205 // evaluated, do we expect to be able to find its value in the current
8206 // frame. (Otherwise it was likely declared in an enclosing context and
8207 // could either have a valid evaluatable value (for e.g. a constexpr
8208 // variable) or be ill-formed (and trigger an appropriate evaluation
8209 // diagnostic)).
8210 CallStackFrame *CurrFrame = Info.CurrentCall;
8211 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8212 // Function parameters are stored in some caller's frame. (Usually the
8213 // immediate caller, but for an inherited constructor they may be more
8214 // distant.)
8215 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8216 if (CurrFrame->Arguments) {
8217 VD = CurrFrame->Arguments.getOrigParam(PVD);
8218 Frame =
8219 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8220 Version = CurrFrame->Arguments.Version;
8221 }
8222 } else {
8223 Frame = CurrFrame;
8224 Version = CurrFrame->getCurrentTemporaryVersion(VD);
8225 }
8226 }
8227 }
8228
8229 if (!VD->getType()->isReferenceType()) {
8230 if (Frame) {
8231 Result.set({VD, Frame->Index, Version});
8232 return true;
8233 }
8234 return Success(VD);
8235 }
8236
8237 if (!Info.getLangOpts().CPlusPlus11) {
8238 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8239 << VD << VD->getType();
8240 Info.Note(VD->getLocation(), diag::note_declared_at);
8241 }
8242
8243 APValue *V;
8244 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8245 return false;
8246 if (!V->hasValue()) {
8247 // FIXME: Is it possible for V to be indeterminate here? If so, we should
8248 // adjust the diagnostic to say that.
8249 if (!Info.checkingPotentialConstantExpression())
8250 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8251 return false;
8252 }
8253 return Success(*V, E);
8254}
8255
8256bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8257 const MaterializeTemporaryExpr *E) {
8258 // Walk through the expression to find the materialized temporary itself.
8259 SmallVector<const Expr *, 2> CommaLHSs;
8260 SmallVector<SubobjectAdjustment, 2> Adjustments;
8261 const Expr *Inner =
8262 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8263
8264 // If we passed any comma operators, evaluate their LHSs.
8265 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8266 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8267 return false;
8268
8269 // A materialized temporary with static storage duration can appear within the
8270 // result of a constant expression evaluation, so we need to preserve its
8271 // value for use outside this evaluation.
8272 APValue *Value;
8273 if (E->getStorageDuration() == SD_Static) {
8274 // FIXME: What about SD_Thread?
8275 Value = E->getOrCreateValue(true);
8276 *Value = APValue();
8277 Result.set(E);
8278 } else {
8279 Value = &Info.CurrentCall->createTemporary(
8280 E, E->getType(),
8281 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8282 : ScopeKind::Block,
8283 Result);
8284 }
8285
8286 QualType Type = Inner->getType();
8287
8288 // Materialize the temporary itself.
8289 if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8290 *Value = APValue();
8291 return false;
8292 }
8293
8294 // Adjust our lvalue to refer to the desired subobject.
8295 for (unsigned I = Adjustments.size(); I != 0; /**/) {
8296 --I;
8297 switch (Adjustments[I].Kind) {
8298 case SubobjectAdjustment::DerivedToBaseAdjustment:
8299 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8300 Type, Result))
8301 return false;
8302 Type = Adjustments[I].DerivedToBase.BasePath->getType();
8303 break;
8304
8305 case SubobjectAdjustment::FieldAdjustment:
8306 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8307 return false;
8308 Type = Adjustments[I].Field->getType();
8309 break;
8310
8311 case SubobjectAdjustment::MemberPointerAdjustment:
8312 if (!HandleMemberPointerAccess(this->Info, Type, Result,
8313 Adjustments[I].Ptr.RHS))
8314 return false;
8315 Type = Adjustments[I].Ptr.MPT->getPointeeType();
8316 break;
8317 }
8318 }
8319
8320 return true;
8321}
8322
8323bool
8324LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8325 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&(static_cast <bool> ((!Info.getLangOpts().CPlusPlus || E
->isFileScope()) && "lvalue compound literal in c++?"
) ? void (0) : __assert_fail ("(!Info.getLangOpts().CPlusPlus || E->isFileScope()) && \"lvalue compound literal in c++?\""
, "clang/lib/AST/ExprConstant.cpp", 8326, __extension__ __PRETTY_FUNCTION__
))
8326 "lvalue compound literal in c++?")(static_cast <bool> ((!Info.getLangOpts().CPlusPlus || E
->isFileScope()) && "lvalue compound literal in c++?"
) ? void (0) : __assert_fail ("(!Info.getLangOpts().CPlusPlus || E->isFileScope()) && \"lvalue compound literal in c++?\""
, "clang/lib/AST/ExprConstant.cpp", 8326, __extension__ __PRETTY_FUNCTION__
))
;
8327 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8328 // only see this when folding in C, so there's no standard to follow here.
8329 return Success(E);
8330}
8331
8332bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8333 TypeInfoLValue TypeInfo;
8334
8335 if (!E->isPotentiallyEvaluated()) {
8336 if (E->isTypeOperand())
8337 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8338 else
8339 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8340 } else {
8341 if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8342 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8343 << E->getExprOperand()->getType()
8344 << E->getExprOperand()->getSourceRange();
8345 }
8346
8347 if (!Visit(E->getExprOperand()))
8348 return false;
8349
8350 Optional<DynamicType> DynType =
8351 ComputeDynamicType(Info, E, Result, AK_TypeId);
8352 if (!DynType)
8353 return false;
8354
8355 TypeInfo =
8356 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8357 }
8358
8359 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8360}
8361
8362bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8363 return Success(E->getGuidDecl());
8364}
8365
8366bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8367 // Handle static data members.
8368 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8369 VisitIgnoredBaseExpression(E->getBase());
8370 return VisitVarDecl(E, VD);
8371 }
8372
8373 // Handle static member functions.
8374 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8375 if (MD->isStatic()) {
8376 VisitIgnoredBaseExpression(E->getBase());
8377 return Success(MD);
8378 }
8379 }
8380
8381 // Handle non-static data members.
8382 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8383}
8384
8385bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8386 // FIXME: Deal with vectors as array subscript bases.
8387 if (E->getBase()->getType()->isVectorType())
8388 return Error(E);
8389
8390 APSInt Index;
8391 bool Success = true;
8392
8393 // C++17's rules require us to evaluate the LHS first, regardless of which
8394 // side is the base.
8395 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8396 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8397 : !EvaluateInteger(SubExpr, Index, Info)) {
8398 if (!Info.noteFailure())
8399 return false;
8400 Success = false;
8401 }
8402 }
8403
8404 return Success &&
8405 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8406}
8407
8408bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8409 return evaluatePointer(E->getSubExpr(), Result);
8410}
8411
8412bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8413 if (!Visit(E->getSubExpr()))
8414 return false;
8415 // __real is a no-op on scalar lvalues.
8416 if (E->getSubExpr()->getType()->isAnyComplexType())
8417 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8418 return true;
8419}
8420
8421bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8422 assert(E->getSubExpr()->getType()->isAnyComplexType() &&(static_cast <bool> (E->getSubExpr()->getType()->
isAnyComplexType() && "lvalue __imag__ on scalar?") ?
void (0) : __assert_fail ("E->getSubExpr()->getType()->isAnyComplexType() && \"lvalue __imag__ on scalar?\""
, "clang/lib/AST/ExprConstant.cpp", 8423, __extension__ __PRETTY_FUNCTION__
))
8423 "lvalue __imag__ on scalar?")(static_cast <bool> (E->getSubExpr()->getType()->
isAnyComplexType() && "lvalue __imag__ on scalar?") ?
void (0) : __assert_fail ("E->getSubExpr()->getType()->isAnyComplexType() && \"lvalue __imag__ on scalar?\""
, "clang/lib/AST/ExprConstant.cpp", 8423, __extension__ __PRETTY_FUNCTION__
))
;
8424 if (!Visit(E->getSubExpr()))
8425 return false;
8426 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8427 return true;
8428}
8429
8430bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8431 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8432 return Error(UO);
8433
8434 if (!this->Visit(UO->getSubExpr()))
8435 return false;
8436
8437 return handleIncDec(
8438 this->Info, UO, Result, UO->getSubExpr()->getType(),
8439 UO->isIncrementOp(), nullptr);
8440}
8441
8442bool LValueExprEvaluator::VisitCompoundAssignOperator(
8443 const CompoundAssignOperator *CAO) {
8444 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8445 return Error(CAO);
8446
8447 bool Success = true;
8448
8449 // C++17 onwards require that we evaluate the RHS first.
8450 APValue RHS;
8451 if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8452 if (!Info.noteFailure())
8453 return false;
8454 Success = false;
8455 }
8456
8457 // The overall lvalue result is the result of evaluating the LHS.
8458 if (!this->Visit(CAO->getLHS()) || !Success)
8459 return false;
8460
8461 return handleCompoundAssignment(
8462 this->Info, CAO,
8463 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8464 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8465}
8466
8467bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8468 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8469 return Error(E);
8470
8471 bool Success = true;
8472
8473 // C++17 onwards require that we evaluate the RHS first.
8474 APValue NewVal;
8475 if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8476 if (!Info.noteFailure())
8477 return false;
8478 Success = false;
8479 }
8480
8481 if (!this->Visit(E->getLHS()) || !Success)
8482 return false;
8483
8484 if (Info.getLangOpts().CPlusPlus20 &&
8485 !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8486 return false;
8487
8488 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8489 NewVal);
8490}
8491
8492//===----------------------------------------------------------------------===//
8493// Pointer Evaluation
8494//===----------------------------------------------------------------------===//
8495
8496/// Attempts to compute the number of bytes available at the pointer
8497/// returned by a function with the alloc_size attribute. Returns true if we
8498/// were successful. Places an unsigned number into `Result`.
8499///
8500/// This expects the given CallExpr to be a call to a function with an
8501/// alloc_size attribute.
8502static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8503 const CallExpr *Call,
8504 llvm::APInt &Result) {
8505 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8506
8507 assert(AllocSize && AllocSize->getElemSizeParam().isValid())(static_cast <bool> (AllocSize && AllocSize->
getElemSizeParam().isValid()) ? void (0) : __assert_fail ("AllocSize && AllocSize->getElemSizeParam().isValid()"
, "clang/lib/AST/ExprConstant.cpp", 8507, __extension__ __PRETTY_FUNCTION__
))
;
8508 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8509 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8510 if (Call->getNumArgs() <= SizeArgNo)
8511 return false;
8512
8513 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8514 Expr::EvalResult ExprResult;
8515 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8516 return false;
8517 Into = ExprResult.Val.getInt();
8518 if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8519 return false;
8520 Into = Into.zextOrSelf(BitsInSizeT);
8521 return true;
8522 };
8523
8524 APSInt SizeOfElem;
8525 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8526 return false;
8527
8528 if (!AllocSize->getNumElemsParam().isValid()) {
8529 Result = std::move(SizeOfElem);
8530 return true;
8531 }
8532
8533 APSInt NumberOfElems;
8534 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8535 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8536 return false;
8537
8538 bool Overflow;
8539 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8540 if (Overflow)
8541 return false;
8542
8543 Result = std::move(BytesAvailable);
8544 return true;
8545}
8546
8547/// Convenience function. LVal's base must be a call to an alloc_size
8548/// function.
8549static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8550 const LValue &LVal,
8551 llvm::APInt &Result) {
8552 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&(static_cast <bool> (isBaseAnAllocSizeCall(LVal.getLValueBase
()) && "Can't get the size of a non alloc_size function"
) ? void (0) : __assert_fail ("isBaseAnAllocSizeCall(LVal.getLValueBase()) && \"Can't get the size of a non alloc_size function\""
, "clang/lib/AST/ExprConstant.cpp", 8553, __extension__ __PRETTY_FUNCTION__
))
8553 "Can't get the size of a non alloc_size function")(static_cast <bool> (isBaseAnAllocSizeCall(LVal.getLValueBase
()) && "Can't get the size of a non alloc_size function"
) ? void (0) : __assert_fail ("isBaseAnAllocSizeCall(LVal.getLValueBase()) && \"Can't get the size of a non alloc_size function\""
, "clang/lib/AST/ExprConstant.cpp", 8553, __extension__ __PRETTY_FUNCTION__
))
;
8554 const auto *Base = LVal.getLValueBase().get<const Expr *>();
8555 const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8556 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8557}
8558
8559/// Attempts to evaluate the given LValueBase as the result of a call to
8560/// a function with the alloc_size attribute. If it was possible to do so, this
8561/// function will return true, make Result's Base point to said function call,
8562/// and mark Result's Base as invalid.
8563static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8564 LValue &Result) {
8565 if (Base.isNull())
8566 return false;
8567
8568 // Because we do no form of static analysis, we only support const variables.
8569 //
8570 // Additionally, we can't support parameters, nor can we support static
8571 // variables (in the latter case, use-before-assign isn't UB; in the former,
8572 // we have no clue what they'll be assigned to).
8573 const auto *VD =
8574 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8575 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8576 return false;
8577
8578 const Expr *Init = VD->getAnyInitializer();
8579 if (!Init)
8580 return false;
8581
8582 const Expr *E = Init->IgnoreParens();
8583 if (!tryUnwrapAllocSizeCall(E))
8584 return false;
8585
8586 // Store E instead of E unwrapped so that the type of the LValue's base is
8587 // what the user wanted.
8588 Result.setInvalid(E);
8589
8590 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8591 Result.addUnsizedArray(Info, E, Pointee);
8592 return true;
8593}
8594
8595namespace {
8596class PointerExprEvaluator
8597 : public ExprEvaluatorBase<PointerExprEvaluator> {
8598 LValue &Result;
8599 bool InvalidBaseOK;
8600
8601 bool Success(const Expr *E) {
8602 Result.set(E);
8603 return true;
8604 }
8605
8606 bool evaluateLValue(const Expr *E, LValue &Result) {
8607 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8608 }
8609
8610 bool evaluatePointer(const Expr *E, LValue &Result) {
8611 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8612 }
8613
8614 bool visitNonBuiltinCallExpr(const CallExpr *E);
8615public:
8616
8617 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8618 : ExprEvaluatorBaseTy(info), Result(Result),
8619 InvalidBaseOK(InvalidBaseOK) {}
8620
8621 bool Success(const APValue &V, const Expr *E) {
8622 Result.setFrom(Info.Ctx, V);
8623 return true;
8624 }
8625 bool ZeroInitialization(const Expr *E) {
8626 Result.setNull(Info.Ctx, E->getType());
8627 return true;
8628 }
8629
8630 bool VisitBinaryOperator(const BinaryOperator *E);
8631 bool VisitCastExpr(const CastExpr* E);
8632 bool VisitUnaryAddrOf(const UnaryOperator *E);
8633 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8634 { return Success(E); }
8635 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8636 if (E->isExpressibleAsConstantInitializer())
8637 return Success(E);
8638 if (Info.noteFailure())
8639 EvaluateIgnoredValue(Info, E->getSubExpr());
8640 return Error(E);
8641 }
8642 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8643 { return Success(E); }
8644 bool VisitCallExpr(const CallExpr *E);
8645 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
8646 bool VisitBlockExpr(const BlockExpr *E) {
8647 if (!E->getBlockDecl()->hasCaptures())
8648 return Success(E);
8649 return Error(E);
8650 }
8651 bool VisitCXXThisExpr(const CXXThisExpr *E) {
8652 // Can't look at 'this' when checking a potential constant expression.
8653 if (Info.checkingPotentialConstantExpression())
8654 return false;
8655 if (!Info.CurrentCall->This) {
8656 if (Info.getLangOpts().CPlusPlus11)
8657 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8658 else
8659 Info.FFDiag(E);
8660 return false;
8661 }
8662 Result = *Info.CurrentCall->This;
8663 // If we are inside a lambda's call operator, the 'this' expression refers
8664 // to the enclosing '*this' object (either by value or reference) which is
8665 // either copied into the closure object's field that represents the '*this'
8666 // or refers to '*this'.
8667 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8668 // Ensure we actually have captured 'this'. (an error will have
8669 // been previously reported if not).
8670 if (!Info.CurrentCall->LambdaThisCaptureField)
8671 return false;
8672
8673 // Update 'Result' to refer to the data member/field of the closure object
8674 // that represents the '*this' capture.
8675 if (!HandleLValueMember(Info, E, Result,
8676 Info.CurrentCall->LambdaThisCaptureField))
8677 return false;
8678 // If we captured '*this' by reference, replace the field with its referent.
8679 if (Info.CurrentCall->LambdaThisCaptureField->getType()
8680 ->isPointerType()) {
8681 APValue RVal;
8682 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8683 RVal))
8684 return false;
8685
8686 Result.setFrom(Info.Ctx, RVal);
8687 }
8688 }
8689 return true;
8690 }
8691
8692 bool VisitCXXNewExpr(const CXXNewExpr *E);
8693
8694 bool VisitSourceLocExpr(const SourceLocExpr *E) {
8695 assert(E->isStringType() && "SourceLocExpr isn't a pointer type?")(static_cast <bool> (E->isStringType() && "SourceLocExpr isn't a pointer type?"
) ? void (0) : __assert_fail ("E->isStringType() && \"SourceLocExpr isn't a pointer type?\""
, "clang/lib/AST/ExprConstant.cpp", 8695, __extension__ __PRETTY_FUNCTION__
))
;
8696 APValue LValResult = E->EvaluateInContext(
8697 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8698 Result.setFrom(Info.Ctx, LValResult);
8699 return true;
8700 }
8701
8702 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
8703 std::string ResultStr = E->ComputeName(Info.Ctx);
8704
8705 QualType CharTy = Info.Ctx.CharTy.withConst();
8706 APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
8707 ResultStr.size() + 1);
8708 QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
8709 ArrayType::Normal, 0);
8710
8711 StringLiteral *SL =
8712 StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ascii,
8713 /*Pascal*/ false, ArrayTy, E->getLocation());
8714
8715 evaluateLValue(SL, Result);
8716 Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
8717 return true;
8718 }
8719
8720 // FIXME: Missing: @protocol, @selector
8721};
8722} // end anonymous namespace
8723
8724static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8725 bool InvalidBaseOK) {
8726 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 8726, __extension__ __PRETTY_FUNCTION__))
;
8727 assert(E->isPRValue() && E->getType()->hasPointerRepresentation())(static_cast <bool> (E->isPRValue() && E->
getType()->hasPointerRepresentation()) ? void (0) : __assert_fail
("E->isPRValue() && E->getType()->hasPointerRepresentation()"
, "clang/lib/AST/ExprConstant.cpp", 8727, __extension__ __PRETTY_FUNCTION__
))
;
8728 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8729}
8730
8731bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8732 if (E->getOpcode() != BO_Add &&
8733 E->getOpcode() != BO_Sub)
8734 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8735
8736 const Expr *PExp = E->getLHS();
8737 const Expr *IExp = E->getRHS();
8738 if (IExp->getType()->isPointerType())
8739 std::swap(PExp, IExp);
8740
8741 bool EvalPtrOK = evaluatePointer(PExp, Result);
8742 if (!EvalPtrOK && !Info.noteFailure())
8743 return false;
8744
8745 llvm::APSInt Offset;
8746 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8747 return false;
8748
8749 if (E->getOpcode() == BO_Sub)
8750 negateAsSigned(Offset);
8751
8752 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8753 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8754}
8755
8756bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8757 return evaluateLValue(E->getSubExpr(), Result);
8758}
8759
8760bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8761 const Expr *SubExpr = E->getSubExpr();
8762
8763 switch (E->getCastKind()) {
8764 default:
8765 break;
8766 case CK_BitCast:
8767 case CK_CPointerToObjCPointerCast:
8768 case CK_BlockPointerToObjCPointerCast:
8769 case CK_AnyPointerToBlockPointerCast:
8770 case CK_AddressSpaceConversion:
8771 if (!Visit(SubExpr))
8772 return false;
8773 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8774 // permitted in constant expressions in C++11. Bitcasts from cv void* are
8775 // also static_casts, but we disallow them as a resolution to DR1312.
8776 if (!E->getType()->isVoidPointerType()) {
8777 if (!Result.InvalidBase && !Result.Designator.Invalid &&
8778 !Result.IsNullPtr &&
8779 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8780 E->getType()->getPointeeType()) &&
8781 Info.getStdAllocatorCaller("allocate")) {
8782 // Inside a call to std::allocator::allocate and friends, we permit
8783 // casting from void* back to cv1 T* for a pointer that points to a
8784 // cv2 T.
8785 } else {
8786 Result.Designator.setInvalid();
8787 if (SubExpr->getType()->isVoidPointerType())
8788 CCEDiag(E, diag::note_constexpr_invalid_cast)
8789 << 3 << SubExpr->getType();
8790 else
8791 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8792 }
8793 }
8794 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8795 ZeroInitialization(E);
8796 return true;
8797
8798 case CK_DerivedToBase:
8799 case CK_UncheckedDerivedToBase:
8800 if (!evaluatePointer(E->getSubExpr(), Result))
8801 return false;
8802 if (!Result.Base && Result.Offset.isZero())
8803 return true;
8804
8805 // Now figure out the necessary offset to add to the base LV to get from
8806 // the derived class to the base class.
8807 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8808 castAs<PointerType>()->getPointeeType(),
8809 Result);
8810
8811 case CK_BaseToDerived:
8812 if (!Visit(E->getSubExpr()))
8813 return false;
8814 if (!Result.Base && Result.Offset.isZero())
8815 return true;
8816 return HandleBaseToDerivedCast(Info, E, Result);
8817
8818 case CK_Dynamic:
8819 if (!Visit(E->getSubExpr()))
8820 return false;
8821 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8822
8823 case CK_NullToPointer:
8824 VisitIgnoredValue(E->getSubExpr());
8825 return ZeroInitialization(E);
8826
8827 case CK_IntegralToPointer: {
8828 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8829
8830 APValue Value;
8831 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8832 break;
8833
8834 if (Value.isInt()) {
8835 unsigned Size = Info.Ctx.getTypeSize(E->getType());
8836 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8837 Result.Base = (Expr*)nullptr;
8838 Result.InvalidBase = false;
8839 Result.Offset = CharUnits::fromQuantity(N);
8840 Result.Designator.setInvalid();
8841 Result.IsNullPtr = false;
8842 return true;
8843 } else {
8844 // Cast is of an lvalue, no need to change value.
8845 Result.setFrom(Info.Ctx, Value);
8846 return true;
8847 }
8848 }
8849
8850 case CK_ArrayToPointerDecay: {
8851 if (SubExpr->isGLValue()) {
8852 if (!evaluateLValue(SubExpr, Result))
8853 return false;
8854 } else {
8855 APValue &Value = Info.CurrentCall->createTemporary(
8856 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8857 if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8858 return false;
8859 }
8860 // The result is a pointer to the first element of the array.
8861 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8862 if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8863 Result.addArray(Info, E, CAT);
8864 else
8865 Result.addUnsizedArray(Info, E, AT->getElementType());
8866 return true;
8867 }
8868
8869 case CK_FunctionToPointerDecay:
8870 return evaluateLValue(SubExpr, Result);
8871
8872 case CK_LValueToRValue: {
8873 LValue LVal;
8874 if (!evaluateLValue(E->getSubExpr(), LVal))
8875 return false;
8876
8877 APValue RVal;
8878 // Note, we use the subexpression's type in order to retain cv-qualifiers.
8879 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8880 LVal, RVal))
8881 return InvalidBaseOK &&
8882 evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8883 return Success(RVal, E);
8884 }
8885 }
8886
8887 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8888}
8889
8890static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8891 UnaryExprOrTypeTrait ExprKind) {
8892 // C++ [expr.alignof]p3:
8893 // When alignof is applied to a reference type, the result is the
8894 // alignment of the referenced type.
8895 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8896 T = Ref->getPointeeType();
8897
8898 if (T.getQualifiers().hasUnaligned())
8899 return CharUnits::One();
8900
8901 const bool AlignOfReturnsPreferred =
8902 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8903
8904 // __alignof is defined to return the preferred alignment.
8905 // Before 8, clang returned the preferred alignment for alignof and _Alignof
8906 // as well.
8907 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8908 return Info.Ctx.toCharUnitsFromBits(
8909 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8910 // alignof and _Alignof are defined to return the ABI alignment.
8911 else if (ExprKind == UETT_AlignOf)
8912 return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8913 else
8914 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind")::llvm::llvm_unreachable_internal("GetAlignOfType on a non-alignment ExprKind"
, "clang/lib/AST/ExprConstant.cpp", 8914)
;
8915}
8916
8917static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8918 UnaryExprOrTypeTrait ExprKind) {
8919 E = E->IgnoreParens();
8920
8921 // The kinds of expressions that we have special-case logic here for
8922 // should be kept up to date with the special checks for those
8923 // expressions in Sema.
8924
8925 // alignof decl is always accepted, even if it doesn't make sense: we default
8926 // to 1 in those cases.
8927 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8928 return Info.Ctx.getDeclAlign(DRE->getDecl(),
8929 /*RefAsPointee*/true);
8930
8931 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8932 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8933 /*RefAsPointee*/true);
8934
8935 return GetAlignOfType(Info, E->getType(), ExprKind);
8936}
8937
8938static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
8939 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
8940 return Info.Ctx.getDeclAlign(VD);
8941 if (const auto *E = Value.Base.dyn_cast<const Expr *>())
8942 return GetAlignOfExpr(Info, E, UETT_AlignOf);
8943 return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
8944}
8945
8946/// Evaluate the value of the alignment argument to __builtin_align_{up,down},
8947/// __builtin_is_aligned and __builtin_assume_aligned.
8948static bool getAlignmentArgument(const Expr *E, QualType ForType,
8949 EvalInfo &Info, APSInt &Alignment) {
8950 if (!EvaluateInteger(E, Alignment, Info))
8951 return false;
8952 if (Alignment < 0 || !Alignment.isPowerOf2()) {
8953 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
8954 return false;
8955 }
8956 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
8957 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
8958 if (APSInt::compareValues(Alignment, MaxValue) > 0) {
8959 Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
8960 << MaxValue << ForType << Alignment;
8961 return false;
8962 }
8963 // Ensure both alignment and source value have the same bit width so that we
8964 // don't assert when computing the resulting value.
8965 APSInt ExtAlignment =
8966 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
8967 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&(static_cast <bool> (APSInt::compareValues(Alignment, ExtAlignment
) == 0 && "Alignment should not be changed by ext/trunc"
) ? void (0) : __assert_fail ("APSInt::compareValues(Alignment, ExtAlignment) == 0 && \"Alignment should not be changed by ext/trunc\""
, "clang/lib/AST/ExprConstant.cpp", 8968, __extension__ __PRETTY_FUNCTION__
))
8968 "Alignment should not be changed by ext/trunc")(static_cast <bool> (APSInt::compareValues(Alignment, ExtAlignment
) == 0 && "Alignment should not be changed by ext/trunc"
) ? void (0) : __assert_fail ("APSInt::compareValues(Alignment, ExtAlignment) == 0 && \"Alignment should not be changed by ext/trunc\""
, "clang/lib/AST/ExprConstant.cpp", 8968, __extension__ __PRETTY_FUNCTION__
))
;
8969 Alignment = ExtAlignment;
8970 assert(Alignment.getBitWidth() == SrcWidth)(static_cast <bool> (Alignment.getBitWidth() == SrcWidth
) ? void (0) : __assert_fail ("Alignment.getBitWidth() == SrcWidth"
, "clang/lib/AST/ExprConstant.cpp", 8970, __extension__ __PRETTY_FUNCTION__
))
;
8971 return true;
8972}
8973
8974// To be clear: this happily visits unsupported builtins. Better name welcomed.
8975bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8976 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8977 return true;
8978
8979 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8980 return false;
8981
8982 Result.setInvalid(E);
8983 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8984 Result.addUnsizedArray(Info, E, PointeeTy);
8985 return true;
8986}
8987
8988bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8989 if (IsConstantCall(E))
8990 return Success(E);
8991
8992 if (unsigned BuiltinOp = E->getBuiltinCallee())
8993 return VisitBuiltinCallExpr(E, BuiltinOp);
8994
8995 return visitNonBuiltinCallExpr(E);
8996}
8997
8998// Determine if T is a character type for which we guarantee that
8999// sizeof(T) == 1.
9000static bool isOneByteCharacterType(QualType T) {
9001 return T->isCharType() || T->isChar8Type();
9002}
9003
9004bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9005 unsigned BuiltinOp) {
9006 switch (BuiltinOp) {
9007 case Builtin::BI__builtin_addressof:
9008 return evaluateLValue(E->getArg(0), Result);
9009 case Builtin::BI__builtin_assume_aligned: {
9010 // We need to be very careful here because: if the pointer does not have the
9011 // asserted alignment, then the behavior is undefined, and undefined
9012 // behavior is non-constant.
9013 if (!evaluatePointer(E->getArg(0), Result))
9014 return false;
9015
9016 LValue OffsetResult(Result);
9017 APSInt Alignment;
9018 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9019 Alignment))
9020 return false;
9021 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9022
9023 if (E->getNumArgs() > 2) {
9024 APSInt Offset;
9025 if (!EvaluateInteger(E->getArg(2), Offset, Info))
9026 return false;
9027
9028 int64_t AdditionalOffset = -Offset.getZExtValue();
9029 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9030 }
9031
9032 // If there is a base object, then it must have the correct alignment.
9033 if (OffsetResult.Base) {
9034 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9035
9036 if (BaseAlignment < Align) {
9037 Result.Designator.setInvalid();
9038 // FIXME: Add support to Diagnostic for long / long long.
9039 CCEDiag(E->getArg(0),
9040 diag::note_constexpr_baa_insufficient_alignment) << 0
9041 << (unsigned)BaseAlignment.getQuantity()
9042 << (unsigned)Align.getQuantity();
9043 return false;
9044 }
9045 }
9046
9047 // The offset must also have the correct alignment.
9048 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9049 Result.Designator.setInvalid();
9050
9051 (OffsetResult.Base
9052 ? CCEDiag(E->getArg(0),
9053 diag::note_constexpr_baa_insufficient_alignment) << 1
9054 : CCEDiag(E->getArg(0),
9055 diag::note_constexpr_baa_value_insufficient_alignment))
9056 << (int)OffsetResult.Offset.getQuantity()
9057 << (unsigned)Align.getQuantity();
9058 return false;
9059 }
9060
9061 return true;
9062 }
9063 case Builtin::BI__builtin_align_up:
9064 case Builtin::BI__builtin_align_down: {
9065 if (!evaluatePointer(E->getArg(0), Result))
9066 return false;
9067 APSInt Alignment;
9068 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9069 Alignment))
9070 return false;
9071 CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9072 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9073 // For align_up/align_down, we can return the same value if the alignment
9074 // is known to be greater or equal to the requested value.
9075 if (PtrAlign.getQuantity() >= Alignment)
9076 return true;
9077
9078 // The alignment could be greater than the minimum at run-time, so we cannot
9079 // infer much about the resulting pointer value. One case is possible:
9080 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9081 // can infer the correct index if the requested alignment is smaller than
9082 // the base alignment so we can perform the computation on the offset.
9083 if (BaseAlignment.getQuantity() >= Alignment) {
9084 assert(Alignment.getBitWidth() <= 64 &&(static_cast <bool> (Alignment.getBitWidth() <= 64 &&
"Cannot handle > 64-bit address-space") ? void (0) : __assert_fail
("Alignment.getBitWidth() <= 64 && \"Cannot handle > 64-bit address-space\""
, "clang/lib/AST/ExprConstant.cpp", 9085, __extension__ __PRETTY_FUNCTION__
))
9085 "Cannot handle > 64-bit address-space")(static_cast <bool> (Alignment.getBitWidth() <= 64 &&
"Cannot handle > 64-bit address-space") ? void (0) : __assert_fail
("Alignment.getBitWidth() <= 64 && \"Cannot handle > 64-bit address-space\""
, "clang/lib/AST/ExprConstant.cpp", 9085, __extension__ __PRETTY_FUNCTION__
))
;
9086 uint64_t Alignment64 = Alignment.getZExtValue();
9087 CharUnits NewOffset = CharUnits::fromQuantity(
9088 BuiltinOp == Builtin::BI__builtin_align_down
9089 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9090 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9091 Result.adjustOffset(NewOffset - Result.Offset);
9092 // TODO: diagnose out-of-bounds values/only allow for arrays?
9093 return true;
9094 }
9095 // Otherwise, we cannot constant-evaluate the result.
9096 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9097 << Alignment;
9098 return false;
9099 }
9100 case Builtin::BI__builtin_operator_new:
9101 return HandleOperatorNewCall(Info, E, Result);
9102 case Builtin::BI__builtin_launder:
9103 return evaluatePointer(E->getArg(0), Result);
9104 case Builtin::BIstrchr:
9105 case Builtin::BIwcschr:
9106 case Builtin::BImemchr:
9107 case Builtin::BIwmemchr:
9108 if (Info.getLangOpts().CPlusPlus11)
9109 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9110 << /*isConstexpr*/0 << /*isConstructor*/0
9111 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9112 else
9113 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9114 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9115 case Builtin::BI__builtin_strchr:
9116 case Builtin::BI__builtin_wcschr:
9117 case Builtin::BI__builtin_memchr:
9118 case Builtin::BI__builtin_char_memchr:
9119 case Builtin::BI__builtin_wmemchr: {
9120 if (!Visit(E->getArg(0)))
9121 return false;
9122 APSInt Desired;
9123 if (!EvaluateInteger(E->getArg(1), Desired, Info))
9124 return false;
9125 uint64_t MaxLength = uint64_t(-1);
9126 if (BuiltinOp != Builtin::BIstrchr &&
9127 BuiltinOp != Builtin::BIwcschr &&
9128 BuiltinOp != Builtin::BI__builtin_strchr &&
9129 BuiltinOp != Builtin::BI__builtin_wcschr) {
9130 APSInt N;
9131 if (!EvaluateInteger(E->getArg(2), N, Info))
9132 return false;
9133 MaxLength = N.getExtValue();
9134 }
9135 // We cannot find the value if there are no candidates to match against.
9136 if (MaxLength == 0u)
9137 return ZeroInitialization(E);
9138 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9139 Result.Designator.Invalid)
9140 return false;
9141 QualType CharTy = Result.Designator.getType(Info.Ctx);
9142 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9143 BuiltinOp == Builtin::BI__builtin_memchr;
9144 assert(IsRawByte ||(static_cast <bool> (IsRawByte || Info.Ctx.hasSameUnqualifiedType
( CharTy, E->getArg(0)->getType()->getPointeeType())
) ? void (0) : __assert_fail ("IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/AST/ExprConstant.cpp", 9146, __extension__ __PRETTY_FUNCTION__
))
9145 Info.Ctx.hasSameUnqualifiedType((static_cast <bool> (IsRawByte || Info.Ctx.hasSameUnqualifiedType
( CharTy, E->getArg(0)->getType()->getPointeeType())
) ? void (0) : __assert_fail ("IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/AST/ExprConstant.cpp", 9146, __extension__ __PRETTY_FUNCTION__
))
9146 CharTy, E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (IsRawByte || Info.Ctx.hasSameUnqualifiedType
( CharTy, E->getArg(0)->getType()->getPointeeType())
) ? void (0) : __assert_fail ("IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/AST/ExprConstant.cpp", 9146, __extension__ __PRETTY_FUNCTION__
))
;
9147 // Pointers to const void may point to objects of incomplete type.
9148 if (IsRawByte && CharTy->isIncompleteType()) {
9149 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9150 return false;
9151 }
9152 // Give up on byte-oriented matching against multibyte elements.
9153 // FIXME: We can compare the bytes in the correct order.
9154 if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9155 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9156 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
9157 << CharTy;
9158 return false;
9159 }
9160 // Figure out what value we're actually looking for (after converting to
9161 // the corresponding unsigned type if necessary).
9162 uint64_t DesiredVal;
9163 bool StopAtNull = false;
9164 switch (BuiltinOp) {
9165 case Builtin::BIstrchr:
9166 case Builtin::BI__builtin_strchr:
9167 // strchr compares directly to the passed integer, and therefore
9168 // always fails if given an int that is not a char.
9169 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9170 E->getArg(1)->getType(),
9171 Desired),
9172 Desired))
9173 return ZeroInitialization(E);
9174 StopAtNull = true;
9175 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9176 case Builtin::BImemchr:
9177 case Builtin::BI__builtin_memchr:
9178 case Builtin::BI__builtin_char_memchr:
9179 // memchr compares by converting both sides to unsigned char. That's also
9180 // correct for strchr if we get this far (to cope with plain char being
9181 // unsigned in the strchr case).
9182 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9183 break;
9184
9185 case Builtin::BIwcschr:
9186 case Builtin::BI__builtin_wcschr:
9187 StopAtNull = true;
9188 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9189 case Builtin::BIwmemchr:
9190 case Builtin::BI__builtin_wmemchr:
9191 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9192 DesiredVal = Desired.getZExtValue();
9193 break;
9194 }
9195
9196 for (; MaxLength; --MaxLength) {
9197 APValue Char;
9198 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9199 !Char.isInt())
9200 return false;
9201 if (Char.getInt().getZExtValue() == DesiredVal)
9202 return true;
9203 if (StopAtNull && !Char.getInt())
9204 break;
9205 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9206 return false;
9207 }
9208 // Not found: return nullptr.
9209 return ZeroInitialization(E);
9210 }
9211
9212 case Builtin::BImemcpy:
9213 case Builtin::BImemmove:
9214 case Builtin::BIwmemcpy:
9215 case Builtin::BIwmemmove:
9216 if (Info.getLangOpts().CPlusPlus11)
9217 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9218 << /*isConstexpr*/0 << /*isConstructor*/0
9219 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9220 else
9221 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9222 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9223 case Builtin::BI__builtin_memcpy:
9224 case Builtin::BI__builtin_memmove:
9225 case Builtin::BI__builtin_wmemcpy:
9226 case Builtin::BI__builtin_wmemmove: {
9227 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9228 BuiltinOp == Builtin::BIwmemmove ||
9229 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9230 BuiltinOp == Builtin::BI__builtin_wmemmove;
9231 bool Move = BuiltinOp == Builtin::BImemmove ||
9232 BuiltinOp == Builtin::BIwmemmove ||
9233 BuiltinOp == Builtin::BI__builtin_memmove ||
9234 BuiltinOp == Builtin::BI__builtin_wmemmove;
9235
9236 // The result of mem* is the first argument.
9237 if (!Visit(E->getArg(0)))
9238 return false;
9239 LValue Dest = Result;
9240
9241 LValue Src;
9242 if (!EvaluatePointer(E->getArg(1), Src, Info))
9243 return false;
9244
9245 APSInt N;
9246 if (!EvaluateInteger(E->getArg(2), N, Info))
9247 return false;
9248 assert(!N.isSigned() && "memcpy and friends take an unsigned size")(static_cast <bool> (!N.isSigned() && "memcpy and friends take an unsigned size"
) ? void (0) : __assert_fail ("!N.isSigned() && \"memcpy and friends take an unsigned size\""
, "clang/lib/AST/ExprConstant.cpp", 9248, __extension__ __PRETTY_FUNCTION__
))
;
9249
9250 // If the size is zero, we treat this as always being a valid no-op.
9251 // (Even if one of the src and dest pointers is null.)
9252 if (!N)
9253 return true;
9254
9255 // Otherwise, if either of the operands is null, we can't proceed. Don't
9256 // try to determine the type of the copied objects, because there aren't
9257 // any.
9258 if (!Src.Base || !Dest.Base) {
9259 APValue Val;
9260 (!Src.Base ? Src : Dest).moveInto(Val);
9261 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9262 << Move << WChar << !!Src.Base
9263 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9264 return false;
9265 }
9266 if (Src.Designator.Invalid || Dest.Designator.Invalid)
9267 return false;
9268
9269 // We require that Src and Dest are both pointers to arrays of
9270 // trivially-copyable type. (For the wide version, the designator will be
9271 // invalid if the designated object is not a wchar_t.)
9272 QualType T = Dest.Designator.getType(Info.Ctx);
9273 QualType SrcT = Src.Designator.getType(Info.Ctx);
9274 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9275 // FIXME: Consider using our bit_cast implementation to support this.
9276 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9277 return false;
9278 }
9279 if (T->isIncompleteType()) {
9280 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9281 return false;
9282 }
9283 if (!T.isTriviallyCopyableType(Info.Ctx)) {
9284 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9285 return false;
9286 }
9287
9288 // Figure out how many T's we're copying.
9289 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9290 if (!WChar) {
9291 uint64_t Remainder;
9292 llvm::APInt OrigN = N;
9293 llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9294 if (Remainder) {
9295 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9296 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9297 << (unsigned)TSize;
9298 return false;
9299 }
9300 }
9301
9302 // Check that the copying will remain within the arrays, just so that we
9303 // can give a more meaningful diagnostic. This implicitly also checks that
9304 // N fits into 64 bits.
9305 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9306 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9307 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9308 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9309 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9310 << toString(N, 10, /*Signed*/false);
9311 return false;
9312 }
9313 uint64_t NElems = N.getZExtValue();
9314 uint64_t NBytes = NElems * TSize;
9315
9316 // Check for overlap.
9317 int Direction = 1;
9318 if (HasSameBase(Src, Dest)) {
9319 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9320 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9321 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9322 // Dest is inside the source region.
9323 if (!Move) {
9324 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9325 return false;
9326 }
9327 // For memmove and friends, copy backwards.
9328 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9329 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9330 return false;
9331 Direction = -1;
9332 } else if (!Move && SrcOffset >= DestOffset &&
9333 SrcOffset - DestOffset < NBytes) {
9334 // Src is inside the destination region for memcpy: invalid.
9335 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9336 return false;
9337 }
9338 }
9339
9340 while (true) {
9341 APValue Val;
9342 // FIXME: Set WantObjectRepresentation to true if we're copying a
9343 // char-like type?
9344 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9345 !handleAssignment(Info, E, Dest, T, Val))
9346 return false;
9347 // Do not iterate past the last element; if we're copying backwards, that
9348 // might take us off the start of the array.
9349 if (--NElems == 0)
9350 return true;
9351 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9352 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9353 return false;
9354 }
9355 }
9356
9357 default:
9358 break;
9359 }
9360
9361 return visitNonBuiltinCallExpr(E);
9362}
9363
9364static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9365 APValue &Result, const InitListExpr *ILE,
9366 QualType AllocType);
9367static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9368 APValue &Result,
9369 const CXXConstructExpr *CCE,
9370 QualType AllocType);
9371
9372bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9373 if (!Info.getLangOpts().CPlusPlus20)
9374 Info.CCEDiag(E, diag::note_constexpr_new);
9375
9376 // We cannot speculatively evaluate a delete expression.
9377 if (Info.SpeculativeEvaluationDepth)
9378 return false;
9379
9380 FunctionDecl *OperatorNew = E->getOperatorNew();
9381
9382 bool IsNothrow = false;
9383 bool IsPlacement = false;
9384 if (OperatorNew->isReservedGlobalPlacementOperator() &&
9385 Info.CurrentCall->isStdFunction() && !E->isArray()) {
9386 // FIXME Support array placement new.
9387 assert(E->getNumPlacementArgs() == 1)(static_cast <bool> (E->getNumPlacementArgs() == 1) ?
void (0) : __assert_fail ("E->getNumPlacementArgs() == 1"
, "clang/lib/AST/ExprConstant.cpp", 9387, __extension__ __PRETTY_FUNCTION__
))
;
9388 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9389 return false;
9390 if (Result.Designator.Invalid)
9391 return false;
9392 IsPlacement = true;
9393 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9394 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9395 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9396 return false;
9397 } else if (E->getNumPlacementArgs()) {
9398 // The only new-placement list we support is of the form (std::nothrow).
9399 //
9400 // FIXME: There is no restriction on this, but it's not clear that any
9401 // other form makes any sense. We get here for cases such as:
9402 //
9403 // new (std::align_val_t{N}) X(int)
9404 //
9405 // (which should presumably be valid only if N is a multiple of
9406 // alignof(int), and in any case can't be deallocated unless N is
9407 // alignof(X) and X has new-extended alignment).
9408 if (E->getNumPlacementArgs() != 1 ||
9409 !E->getPlacementArg(0)->getType()->isNothrowT())
9410 return Error(E, diag::note_constexpr_new_placement);
9411
9412 LValue Nothrow;
9413 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9414 return false;
9415 IsNothrow = true;
9416 }
9417
9418 const Expr *Init = E->getInitializer();
9419 const InitListExpr *ResizedArrayILE = nullptr;
9420 const CXXConstructExpr *ResizedArrayCCE = nullptr;
9421 bool ValueInit = false;
9422
9423 QualType AllocType = E->getAllocatedType();
9424 if (Optional<const Expr*> ArraySize = E->getArraySize()) {
9425 const Expr *Stripped = *ArraySize;
9426 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9427 Stripped = ICE->getSubExpr())
9428 if (ICE->getCastKind() != CK_NoOp &&
9429 ICE->getCastKind() != CK_IntegralCast)
9430 break;
9431
9432 llvm::APSInt ArrayBound;
9433 if (!EvaluateInteger(Stripped, ArrayBound, Info))
9434 return false;
9435
9436 // C++ [expr.new]p9:
9437 // The expression is erroneous if:
9438 // -- [...] its value before converting to size_t [or] applying the
9439 // second standard conversion sequence is less than zero
9440 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9441 if (IsNothrow)
9442 return ZeroInitialization(E);
9443
9444 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9445 << ArrayBound << (*ArraySize)->getSourceRange();
9446 return false;
9447 }
9448
9449 // -- its value is such that the size of the allocated object would
9450 // exceed the implementation-defined limit
9451 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9452 ArrayBound) >
9453 ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9454 if (IsNothrow)
9455 return ZeroInitialization(E);
9456
9457 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9458 << ArrayBound << (*ArraySize)->getSourceRange();
9459 return false;
9460 }
9461
9462 // -- the new-initializer is a braced-init-list and the number of
9463 // array elements for which initializers are provided [...]
9464 // exceeds the number of elements to initialize
9465 if (!Init) {
9466 // No initialization is performed.
9467 } else if (isa<CXXScalarValueInitExpr>(Init) ||
9468 isa<ImplicitValueInitExpr>(Init)) {
9469 ValueInit = true;
9470 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9471 ResizedArrayCCE = CCE;
9472 } else {
9473 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9474 assert(CAT && "unexpected type for array initializer")(static_cast <bool> (CAT && "unexpected type for array initializer"
) ? void (0) : __assert_fail ("CAT && \"unexpected type for array initializer\""
, "clang/lib/AST/ExprConstant.cpp", 9474, __extension__ __PRETTY_FUNCTION__
))
;
9475
9476 unsigned Bits =
9477 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9478 llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
9479 llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
9480 if (InitBound.ugt(AllocBound)) {
9481 if (IsNothrow)
9482 return ZeroInitialization(E);
9483
9484 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9485 << toString(AllocBound, 10, /*Signed=*/false)
9486 << toString(InitBound, 10, /*Signed=*/false)
9487 << (*ArraySize)->getSourceRange();
9488 return false;
9489 }
9490
9491 // If the sizes differ, we must have an initializer list, and we need
9492 // special handling for this case when we initialize.
9493 if (InitBound != AllocBound)
9494 ResizedArrayILE = cast<InitListExpr>(Init);
9495 }
9496
9497 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9498 ArrayType::Normal, 0);
9499 } else {
9500 assert(!AllocType->isArrayType() &&(static_cast <bool> (!AllocType->isArrayType() &&
"array allocation with non-array new") ? void (0) : __assert_fail
("!AllocType->isArrayType() && \"array allocation with non-array new\""
, "clang/lib/AST/ExprConstant.cpp", 9501, __extension__ __PRETTY_FUNCTION__
))
9501 "array allocation with non-array new")(static_cast <bool> (!AllocType->isArrayType() &&
"array allocation with non-array new") ? void (0) : __assert_fail
("!AllocType->isArrayType() && \"array allocation with non-array new\""
, "clang/lib/AST/ExprConstant.cpp", 9501, __extension__ __PRETTY_FUNCTION__
))
;
9502 }
9503
9504 APValue *Val;
9505 if (IsPlacement) {
9506 AccessKinds AK = AK_Construct;
9507 struct FindObjectHandler {
9508 EvalInfo &Info;
9509 const Expr *E;
9510 QualType AllocType;
9511 const AccessKinds AccessKind;
9512 APValue *Value;
9513
9514 typedef bool result_type;
9515 bool failed() { return false; }
9516 bool found(APValue &Subobj, QualType SubobjType) {
9517 // FIXME: Reject the cases where [basic.life]p8 would not permit the
9518 // old name of the object to be used to name the new object.
9519 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9520 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9521 SubobjType << AllocType;
9522 return false;
9523 }
9524 Value = &Subobj;
9525 return true;
9526 }
9527 bool found(APSInt &Value, QualType SubobjType) {
9528 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9529 return false;
9530 }
9531 bool found(APFloat &Value, QualType SubobjType) {
9532 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9533 return false;
9534 }
9535 } Handler = {Info, E, AllocType, AK, nullptr};
9536
9537 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9538 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9539 return false;
9540
9541 Val = Handler.Value;
9542
9543 // [basic.life]p1:
9544 // The lifetime of an object o of type T ends when [...] the storage
9545 // which the object occupies is [...] reused by an object that is not
9546 // nested within o (6.6.2).
9547 *Val = APValue();
9548 } else {
9549 // Perform the allocation and obtain a pointer to the resulting object.
9550 Val = Info.createHeapAlloc(E, AllocType, Result);
9551 if (!Val)
9552 return false;
9553 }
9554
9555 if (ValueInit) {
9556 ImplicitValueInitExpr VIE(AllocType);
9557 if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9558 return false;
9559 } else if (ResizedArrayILE) {
9560 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9561 AllocType))
9562 return false;
9563 } else if (ResizedArrayCCE) {
9564 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9565 AllocType))
9566 return false;
9567 } else if (Init) {
9568 if (!EvaluateInPlace(*Val, Info, Result, Init))
9569 return false;
9570 } else if (!getDefaultInitValue(AllocType, *Val)) {
9571 return false;
9572 }
9573
9574 // Array new returns a pointer to the first element, not a pointer to the
9575 // array.
9576 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9577 Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9578
9579 return true;
9580}
9581//===----------------------------------------------------------------------===//
9582// Member Pointer Evaluation
9583//===----------------------------------------------------------------------===//
9584
9585namespace {
9586class MemberPointerExprEvaluator
9587 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9588 MemberPtr &Result;
9589
9590 bool Success(const ValueDecl *D) {
9591 Result = MemberPtr(D);
9592 return true;
9593 }
9594public:
9595
9596 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9597 : ExprEvaluatorBaseTy(Info), Result(Result) {}
9598
9599 bool Success(const APValue &V, const Expr *E) {
9600 Result.setFrom(V);
9601 return true;
9602 }
9603 bool ZeroInitialization(const Expr *E) {
9604 return Success((const ValueDecl*)nullptr);
9605 }
9606
9607 bool VisitCastExpr(const CastExpr *E);
9608 bool VisitUnaryAddrOf(const UnaryOperator *E);
9609};
9610} // end anonymous namespace
9611
9612static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9613 EvalInfo &Info) {
9614 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 9614, __extension__ __PRETTY_FUNCTION__))
;
9615 assert(E->isPRValue() && E->getType()->isMemberPointerType())(static_cast <bool> (E->isPRValue() && E->
getType()->isMemberPointerType()) ? void (0) : __assert_fail
("E->isPRValue() && E->getType()->isMemberPointerType()"
, "clang/lib/AST/ExprConstant.cpp", 9615, __extension__ __PRETTY_FUNCTION__
))
;
9616 return MemberPointerExprEvaluator(Info, Result).Visit(E);
9617}
9618
9619bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9620 switch (E->getCastKind()) {
9621 default:
9622 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9623
9624 case CK_NullToMemberPointer:
9625 VisitIgnoredValue(E->getSubExpr());
9626 return ZeroInitialization(E);
9627
9628 case CK_BaseToDerivedMemberPointer: {
9629 if (!Visit(E->getSubExpr()))
9630 return false;
9631 if (E->path_empty())
9632 return true;
9633 // Base-to-derived member pointer casts store the path in derived-to-base
9634 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9635 // the wrong end of the derived->base arc, so stagger the path by one class.
9636 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9637 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9638 PathI != PathE; ++PathI) {
9639 assert(!(*PathI)->isVirtual() && "memptr cast through vbase")(static_cast <bool> (!(*PathI)->isVirtual() &&
"memptr cast through vbase") ? void (0) : __assert_fail ("!(*PathI)->isVirtual() && \"memptr cast through vbase\""
, "clang/lib/AST/ExprConstant.cpp", 9639, __extension__ __PRETTY_FUNCTION__
))
;
9640 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9641 if (!Result.castToDerived(Derived))
9642 return Error(E);
9643 }
9644 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9645 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9646 return Error(E);
9647 return true;
9648 }
9649
9650 case CK_DerivedToBaseMemberPointer:
9651 if (!Visit(E->getSubExpr()))
9652 return false;
9653 for (CastExpr::path_const_iterator PathI = E->path_begin(),
9654 PathE = E->path_end(); PathI != PathE; ++PathI) {
9655 assert(!(*PathI)->isVirtual() && "memptr cast through vbase")(static_cast <bool> (!(*PathI)->isVirtual() &&
"memptr cast through vbase") ? void (0) : __assert_fail ("!(*PathI)->isVirtual() && \"memptr cast through vbase\""
, "clang/lib/AST/ExprConstant.cpp", 9655, __extension__ __PRETTY_FUNCTION__
))
;
9656 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9657 if (!Result.castToBase(Base))
9658 return Error(E);
9659 }
9660 return true;
9661 }
9662}
9663
9664bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9665 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9666 // member can be formed.
9667 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9668}
9669
9670//===----------------------------------------------------------------------===//
9671// Record Evaluation
9672//===----------------------------------------------------------------------===//
9673
9674namespace {
9675 class RecordExprEvaluator
9676 : public ExprEvaluatorBase<RecordExprEvaluator> {
9677 const LValue &This;
9678 APValue &Result;
9679 public:
9680
9681 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9682 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9683
9684 bool Success(const APValue &V, const Expr *E) {
9685 Result = V;
9686 return true;
9687 }
9688 bool ZeroInitialization(const Expr *E) {
9689 return ZeroInitialization(E, E->getType());
9690 }
9691 bool ZeroInitialization(const Expr *E, QualType T);
9692
9693 bool VisitCallExpr(const CallExpr *E) {
9694 return handleCallExpr(E, Result, &This);
9695 }
9696 bool VisitCastExpr(const CastExpr *E);
9697 bool VisitInitListExpr(const InitListExpr *E);
9698 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9699 return VisitCXXConstructExpr(E, E->getType());
9700 }
9701 bool VisitLambdaExpr(const LambdaExpr *E);
9702 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9703 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9704 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9705 bool VisitBinCmp(const BinaryOperator *E);
9706 };
9707}
9708
9709/// Perform zero-initialization on an object of non-union class type.
9710/// C++11 [dcl.init]p5:
9711/// To zero-initialize an object or reference of type T means:
9712/// [...]
9713/// -- if T is a (possibly cv-qualified) non-union class type,
9714/// each non-static data member and each base-class subobject is
9715/// zero-initialized
9716static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9717 const RecordDecl *RD,
9718 const LValue &This, APValue &Result) {
9719 assert(!RD->isUnion() && "Expected non-union class type")(static_cast <bool> (!RD->isUnion() && "Expected non-union class type"
) ? void (0) : __assert_fail ("!RD->isUnion() && \"Expected non-union class type\""
, "clang/lib/AST/ExprConstant.cpp", 9719, __extension__ __PRETTY_FUNCTION__
))
;
9720 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9721 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9722 std::distance(RD->field_begin(), RD->field_end()));
9723
9724 if (RD->isInvalidDecl()) return false;
9725 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9726
9727 if (CD) {
9728 unsigned Index = 0;
9729 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9730 End = CD->bases_end(); I != End; ++I, ++Index) {
9731 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9732 LValue Subobject = This;
9733 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9734 return false;
9735 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9736 Result.getStructBase(Index)))
9737 return false;
9738 }
9739 }
9740
9741 for (const auto *I : RD->fields()) {
9742 // -- if T is a reference type, no initialization is performed.
9743 if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9744 continue;
9745
9746 LValue Subobject = This;
9747 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9748 return false;
9749
9750 ImplicitValueInitExpr VIE(I->getType());
9751 if (!EvaluateInPlace(
9752 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9753 return false;
9754 }
9755
9756 return true;
9757}
9758
9759bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9760 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9761 if (RD->isInvalidDecl()) return false;
9762 if (RD->isUnion()) {
9763 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9764 // object's first non-static named data member is zero-initialized
9765 RecordDecl::field_iterator I = RD->field_begin();
9766 while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9767 ++I;
9768 if (I == RD->field_end()) {
9769 Result = APValue((const FieldDecl*)nullptr);
9770 return true;
9771 }
9772
9773 LValue Subobject = This;
9774 if (!HandleLValueMember(Info, E, Subobject, *I))
9775 return false;
9776 Result = APValue(*I);
9777 ImplicitValueInitExpr VIE(I->getType());
9778 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9779 }
9780
9781 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9782 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9783 return false;
9784 }
9785
9786 return HandleClassZeroInitialization(Info, E, RD, This, Result);
9787}
9788
9789bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9790 switch (E->getCastKind()) {
9791 default:
9792 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9793
9794 case CK_ConstructorConversion:
9795 return Visit(E->getSubExpr());
9796
9797 case CK_DerivedToBase:
9798 case CK_UncheckedDerivedToBase: {
9799 APValue DerivedObject;
9800 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9801 return false;
9802 if (!DerivedObject.isStruct())
9803 return Error(E->getSubExpr());
9804
9805 // Derived-to-base rvalue conversion: just slice off the derived part.
9806 APValue *Value = &DerivedObject;
9807 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9808 for (CastExpr::path_const_iterator PathI = E->path_begin(),
9809 PathE = E->path_end(); PathI != PathE; ++PathI) {
9810 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base")(static_cast <bool> (!(*PathI)->isVirtual() &&
"record rvalue with virtual base") ? void (0) : __assert_fail
("!(*PathI)->isVirtual() && \"record rvalue with virtual base\""
, "clang/lib/AST/ExprConstant.cpp", 9810, __extension__ __PRETTY_FUNCTION__
))
;
9811 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9812 Value = &Value->getStructBase(getBaseIndex(RD, Base));
9813 RD = Base;
9814 }
9815 Result = *Value;
9816 return true;
9817 }
9818 }
9819}
9820
9821bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9822 if (E->isTransparent())
9823 return Visit(E->getInit(0));
9824
9825 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9826 if (RD->isInvalidDecl()) return false;
9827 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9828 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9829
9830 EvalInfo::EvaluatingConstructorRAII EvalObj(
9831 Info,
9832 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9833 CXXRD && CXXRD->getNumBases());
9834
9835 if (RD->isUnion()) {
9836 const FieldDecl *Field = E->getInitializedFieldInUnion();
9837 Result = APValue(Field);
9838 if (!Field)
9839 return true;
9840
9841 // If the initializer list for a union does not contain any elements, the
9842 // first element of the union is value-initialized.
9843 // FIXME: The element should be initialized from an initializer list.
9844 // Is this difference ever observable for initializer lists which
9845 // we don't build?
9846 ImplicitValueInitExpr VIE(Field->getType());
9847 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9848
9849 LValue Subobject = This;
9850 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9851 return false;
9852
9853 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9854 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9855 isa<CXXDefaultInitExpr>(InitExpr));
9856
9857 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
9858 if (Field->isBitField())
9859 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
9860 Field);
9861 return true;
9862 }
9863
9864 return false;
9865 }
9866
9867 if (!Result.hasValue())
9868 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9869 std::distance(RD->field_begin(), RD->field_end()));
9870 unsigned ElementNo = 0;
9871 bool Success = true;
9872
9873 // Initialize base classes.
9874 if (CXXRD && CXXRD->getNumBases()) {
9875 for (const auto &Base : CXXRD->bases()) {
9876 assert(ElementNo < E->getNumInits() && "missing init for base class")(static_cast <bool> (ElementNo < E->getNumInits()
&& "missing init for base class") ? void (0) : __assert_fail
("ElementNo < E->getNumInits() && \"missing init for base class\""
, "clang/lib/AST/ExprConstant.cpp", 9876, __extension__ __PRETTY_FUNCTION__
))
;
9877 const Expr *Init = E->getInit(ElementNo);
9878
9879 LValue Subobject = This;
9880 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9881 return false;
9882
9883 APValue &FieldVal = Result.getStructBase(ElementNo);
9884 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9885 if (!Info.noteFailure())
9886 return false;
9887 Success = false;
9888 }
9889 ++ElementNo;
9890 }
9891
9892 EvalObj.finishedConstructingBases();
9893 }
9894
9895 // Initialize members.
9896 for (const auto *Field : RD->fields()) {
9897 // Anonymous bit-fields are not considered members of the class for
9898 // purposes of aggregate initialization.
9899 if (Field->isUnnamedBitfield())
9900 continue;
9901
9902 LValue Subobject = This;
9903
9904 bool HaveInit = ElementNo < E->getNumInits();
9905
9906 // FIXME: Diagnostics here should point to the end of the initializer
9907 // list, not the start.
9908 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
9909 Subobject, Field, &Layout))
9910 return false;
9911
9912 // Perform an implicit value-initialization for members beyond the end of
9913 // the initializer list.
9914 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
9915 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
9916
9917 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9918 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9919 isa<CXXDefaultInitExpr>(Init));
9920
9921 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9922 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
9923 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
9924 FieldVal, Field))) {
9925 if (!Info.noteFailure())
9926 return false;
9927 Success = false;
9928 }
9929 }
9930
9931 EvalObj.finishedConstructingFields();
9932
9933 return Success;
9934}
9935
9936bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9937 QualType T) {
9938 // Note that E's type is not necessarily the type of our class here; we might
9939 // be initializing an array element instead.
9940 const CXXConstructorDecl *FD = E->getConstructor();
9941 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9942
9943 bool ZeroInit = E->requiresZeroInitialization();
9944 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9945 // If we've already performed zero-initialization, we're already done.
9946 if (Result.hasValue())
9947 return true;
9948
9949 if (ZeroInit)
9950 return ZeroInitialization(E, T);
9951
9952 return getDefaultInitValue(T, Result);
9953 }
9954
9955 const FunctionDecl *Definition = nullptr;
9956 auto Body = FD->getBody(Definition);
9957
9958 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9959 return false;
9960
9961 // Avoid materializing a temporary for an elidable copy/move constructor.
9962 if (E->isElidable() && !ZeroInit) {
9963 // FIXME: This only handles the simplest case, where the source object
9964 // is passed directly as the first argument to the constructor.
9965 // This should also handle stepping though implicit casts and
9966 // and conversion sequences which involve two steps, with a
9967 // conversion operator followed by a converting constructor.
9968 const Expr *SrcObj = E->getArg(0);
9969 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()))(static_cast <bool> (SrcObj->isTemporaryObject(Info.
Ctx, FD->getParent())) ? void (0) : __assert_fail ("SrcObj->isTemporaryObject(Info.Ctx, FD->getParent())"
, "clang/lib/AST/ExprConstant.cpp", 9969, __extension__ __PRETTY_FUNCTION__
))
;
9970 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()))(static_cast <bool> (Info.Ctx.hasSameUnqualifiedType(E->
getType(), SrcObj->getType())) ? void (0) : __assert_fail (
"Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType())"
, "clang/lib/AST/ExprConstant.cpp", 9970, __extension__ __PRETTY_FUNCTION__
))
;
9971 if (const MaterializeTemporaryExpr *ME =
9972 dyn_cast<MaterializeTemporaryExpr>(SrcObj))
9973 return Visit(ME->getSubExpr());
9974 }
9975
9976 if (ZeroInit && !ZeroInitialization(E, T))
9977 return false;
9978
9979 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9980 return HandleConstructorCall(E, This, Args,
9981 cast<CXXConstructorDecl>(Definition), Info,
9982 Result);
9983}
9984
9985bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9986 const CXXInheritedCtorInitExpr *E) {
9987 if (!Info.CurrentCall) {
9988 assert(Info.checkingPotentialConstantExpression())(static_cast <bool> (Info.checkingPotentialConstantExpression
()) ? void (0) : __assert_fail ("Info.checkingPotentialConstantExpression()"
, "clang/lib/AST/ExprConstant.cpp", 9988, __extension__ __PRETTY_FUNCTION__
))
;
9989 return false;
9990 }
9991
9992 const CXXConstructorDecl *FD = E->getConstructor();
9993 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9994 return false;
9995
9996 const FunctionDecl *Definition = nullptr;
9997 auto Body = FD->getBody(Definition);
9998
9999 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10000 return false;
10001
10002 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10003 cast<CXXConstructorDecl>(Definition), Info,
10004 Result);
10005}
10006
10007bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10008 const CXXStdInitializerListExpr *E) {
10009 const ConstantArrayType *ArrayType =
10010 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10011
10012 LValue Array;
10013 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10014 return false;
10015
10016 // Get a pointer to the first element of the array.
10017 Array.addArray(Info, E, ArrayType);
10018
10019 auto InvalidType = [&] {
10020 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10021 << E->getType();
10022 return false;
10023 };
10024
10025 // FIXME: Perform the checks on the field types in SemaInit.
10026 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10027 RecordDecl::field_iterator Field = Record->field_begin();
10028 if (Field == Record->field_end())
10029 return InvalidType();
10030
10031 // Start pointer.
10032 if (!Field->getType()->isPointerType() ||
10033 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10034 ArrayType->getElementType()))
10035 return InvalidType();
10036
10037 // FIXME: What if the initializer_list type has base classes, etc?
10038 Result = APValue(APValue::UninitStruct(), 0, 2);
10039 Array.moveInto(Result.getStructField(0));
10040
10041 if (++Field == Record->field_end())
10042 return InvalidType();
10043
10044 if (Field->getType()->isPointerType() &&
10045 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10046 ArrayType->getElementType())) {
10047 // End pointer.
10048 if (!HandleLValueArrayAdjustment(Info, E, Array,
10049 ArrayType->getElementType(),
10050 ArrayType->getSize().getZExtValue()))
10051 return false;
10052 Array.moveInto(Result.getStructField(1));
10053 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10054 // Length.
10055 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10056 else
10057 return InvalidType();
10058
10059 if (++Field != Record->field_end())
10060 return InvalidType();
10061
10062 return true;
10063}
10064
10065bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10066 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10067 if (ClosureClass->isInvalidDecl())
10068 return false;
10069
10070 const size_t NumFields =
10071 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10072
10073 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),(static_cast <bool> (NumFields == (size_t)std::distance
(E->capture_init_begin(), E->capture_init_end()) &&
"The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? void (0) : __assert_fail
("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "clang/lib/AST/ExprConstant.cpp", 10076, __extension__ __PRETTY_FUNCTION__
))
10074 E->capture_init_end()) &&(static_cast <bool> (NumFields == (size_t)std::distance
(E->capture_init_begin(), E->capture_init_end()) &&
"The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? void (0) : __assert_fail
("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "clang/lib/AST/ExprConstant.cpp", 10076, __extension__ __PRETTY_FUNCTION__
))
10075 "The number of lambda capture initializers should equal the number of "(static_cast <bool> (NumFields == (size_t)std::distance
(E->capture_init_begin(), E->capture_init_end()) &&
"The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? void (0) : __assert_fail
("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "clang/lib/AST/ExprConstant.cpp", 10076, __extension__ __PRETTY_FUNCTION__
))
10076 "fields within the closure type")(static_cast <bool> (NumFields == (size_t)std::distance
(E->capture_init_begin(), E->capture_init_end()) &&
"The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? void (0) : __assert_fail
("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "clang/lib/AST/ExprConstant.cpp", 10076, __extension__ __PRETTY_FUNCTION__
))
;
10077
10078 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10079 // Iterate through all the lambda's closure object's fields and initialize
10080 // them.
10081 auto *CaptureInitIt = E->capture_init_begin();
10082 const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
10083 bool Success = true;
10084 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10085 for (const auto *Field : ClosureClass->fields()) {
10086 assert(CaptureInitIt != E->capture_init_end())(static_cast <bool> (CaptureInitIt != E->capture_init_end
()) ? void (0) : __assert_fail ("CaptureInitIt != E->capture_init_end()"
, "clang/lib/AST/ExprConstant.cpp", 10086, __extension__ __PRETTY_FUNCTION__
))
;
10087 // Get the initializer for this field
10088 Expr *const CurFieldInit = *CaptureInitIt++;
10089
10090 // If there is no initializer, either this is a VLA or an error has
10091 // occurred.
10092 if (!CurFieldInit)
10093 return Error(E);
10094
10095 LValue Subobject = This;
10096
10097 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10098 return false;
10099
10100 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10101 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10102 if (!Info.keepEvaluatingAfterFailure())
10103 return false;
10104 Success = false;
10105 }
10106 ++CaptureIt;
10107 }
10108 return Success;
10109}
10110
10111static bool EvaluateRecord(const Expr *E, const LValue &This,
10112 APValue &Result, EvalInfo &Info) {
10113 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 10113, __extension__ __PRETTY_FUNCTION__))
;
10114 assert(E->isPRValue() && E->getType()->isRecordType() &&(static_cast <bool> (E->isPRValue() && E->
getType()->isRecordType() && "can't evaluate expression as a record rvalue"
) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isRecordType() && \"can't evaluate expression as a record rvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10115, __extension__ __PRETTY_FUNCTION__
))
10115 "can't evaluate expression as a record rvalue")(static_cast <bool> (E->isPRValue() && E->
getType()->isRecordType() && "can't evaluate expression as a record rvalue"
) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isRecordType() && \"can't evaluate expression as a record rvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10115, __extension__ __PRETTY_FUNCTION__
))
;
10116 return RecordExprEvaluator(Info, This, Result).Visit(E);
10117}
10118
10119//===----------------------------------------------------------------------===//
10120// Temporary Evaluation
10121//
10122// Temporaries are represented in the AST as rvalues, but generally behave like
10123// lvalues. The full-object of which the temporary is a subobject is implicitly
10124// materialized so that a reference can bind to it.
10125//===----------------------------------------------------------------------===//
10126namespace {
10127class TemporaryExprEvaluator
10128 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10129public:
10130 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10131 LValueExprEvaluatorBaseTy(Info, Result, false) {}
10132
10133 /// Visit an expression which constructs the value of this temporary.
10134 bool VisitConstructExpr(const Expr *E) {
10135 APValue &Value = Info.CurrentCall->createTemporary(
10136 E, E->getType(), ScopeKind::FullExpression, Result);
10137 return EvaluateInPlace(Value, Info, Result, E);
10138 }
10139
10140 bool VisitCastExpr(const CastExpr *E) {
10141 switch (E->getCastKind()) {
10142 default:
10143 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10144
10145 case CK_ConstructorConversion:
10146 return VisitConstructExpr(E->getSubExpr());
10147 }
10148 }
10149 bool VisitInitListExpr(const InitListExpr *E) {
10150 return VisitConstructExpr(E);
10151 }
10152 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10153 return VisitConstructExpr(E);
10154 }
10155 bool VisitCallExpr(const CallExpr *E) {
10156 return VisitConstructExpr(E);
10157 }
10158 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10159 return VisitConstructExpr(E);
10160 }
10161 bool VisitLambdaExpr(const LambdaExpr *E) {
10162 return VisitConstructExpr(E);
10163 }
10164};
10165} // end anonymous namespace
10166
10167/// Evaluate an expression of record type as a temporary.
10168static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10169 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 10169, __extension__ __PRETTY_FUNCTION__))
;
10170 assert(E->isPRValue() && E->getType()->isRecordType())(static_cast <bool> (E->isPRValue() && E->
getType()->isRecordType()) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isRecordType()"
, "clang/lib/AST/ExprConstant.cpp", 10170, __extension__ __PRETTY_FUNCTION__
))
;
10171 return TemporaryExprEvaluator(Info, Result).Visit(E);
10172}
10173
10174//===----------------------------------------------------------------------===//
10175// Vector Evaluation
10176//===----------------------------------------------------------------------===//
10177
10178namespace {
10179 class VectorExprEvaluator
10180 : public ExprEvaluatorBase<VectorExprEvaluator> {
10181 APValue &Result;
10182 public:
10183
10184 VectorExprEvaluator(EvalInfo &info, APValue &Result)
10185 : ExprEvaluatorBaseTy(info), Result(Result) {}
10186
10187 bool Success(ArrayRef<APValue> V, const Expr *E) {
10188 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements())(static_cast <bool> (V.size() == E->getType()->castAs
<VectorType>()->getNumElements()) ? void (0) : __assert_fail
("V.size() == E->getType()->castAs<VectorType>()->getNumElements()"
, "clang/lib/AST/ExprConstant.cpp", 10188, __extension__ __PRETTY_FUNCTION__
))
;
10189 // FIXME: remove this APValue copy.
10190 Result = APValue(V.data(), V.size());
10191 return true;
10192 }
10193 bool Success(const APValue &V, const Expr *E) {
10194 assert(V.isVector())(static_cast <bool> (V.isVector()) ? void (0) : __assert_fail
("V.isVector()", "clang/lib/AST/ExprConstant.cpp", 10194, __extension__
__PRETTY_FUNCTION__))
;
10195 Result = V;
10196 return true;
10197 }
10198 bool ZeroInitialization(const Expr *E);
10199
10200 bool VisitUnaryReal(const UnaryOperator *E)
10201 { return Visit(E->getSubExpr()); }
10202 bool VisitCastExpr(const CastExpr* E);
10203 bool VisitInitListExpr(const InitListExpr *E);
10204 bool VisitUnaryImag(const UnaryOperator *E);
10205 bool VisitBinaryOperator(const BinaryOperator *E);
10206 bool VisitUnaryOperator(const UnaryOperator *E);
10207 // FIXME: Missing: conditional operator (for GNU
10208 // conditional select), shufflevector, ExtVectorElementExpr
10209 };
10210} // end anonymous namespace
10211
10212static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10213 assert(E->isPRValue() && E->getType()->isVectorType() &&(static_cast <bool> (E->isPRValue() && E->
getType()->isVectorType() && "not a vector prvalue"
) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isVectorType() && \"not a vector prvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10214, __extension__ __PRETTY_FUNCTION__
))
10214 "not a vector prvalue")(static_cast <bool> (E->isPRValue() && E->
getType()->isVectorType() && "not a vector prvalue"
) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isVectorType() && \"not a vector prvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10214, __extension__ __PRETTY_FUNCTION__
))
;
10215 return VectorExprEvaluator(Info, Result).Visit(E);
10216}
10217
10218bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10219 const VectorType *VTy = E->getType()->castAs<VectorType>();
10220 unsigned NElts = VTy->getNumElements();
10221
10222 const Expr *SE = E->getSubExpr();
10223 QualType SETy = SE->getType();
10224
10225 switch (E->getCastKind()) {
10226 case CK_VectorSplat: {
10227 APValue Val = APValue();
10228 if (SETy->isIntegerType()) {
10229 APSInt IntResult;
10230 if (!EvaluateInteger(SE, IntResult, Info))
10231 return false;
10232 Val = APValue(std::move(IntResult));
10233 } else if (SETy->isRealFloatingType()) {
10234 APFloat FloatResult(0.0);
10235 if (!EvaluateFloat(SE, FloatResult, Info))
10236 return false;
10237 Val = APValue(std::move(FloatResult));
10238 } else {
10239 return Error(E);
10240 }
10241
10242 // Splat and create vector APValue.
10243 SmallVector<APValue, 4> Elts(NElts, Val);
10244 return Success(Elts, E);
10245 }
10246 case CK_BitCast: {
10247 // Evaluate the operand into an APInt we can extract from.
10248 llvm::APInt SValInt;
10249 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10250 return false;
10251 // Extract the elements
10252 QualType EltTy = VTy->getElementType();
10253 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10254 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10255 SmallVector<APValue, 4> Elts;
10256 if (EltTy->isRealFloatingType()) {
10257 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10258 unsigned FloatEltSize = EltSize;
10259 if (&Sem == &APFloat::x87DoubleExtended())
10260 FloatEltSize = 80;
10261 for (unsigned i = 0; i < NElts; i++) {
10262 llvm::APInt Elt;
10263 if (BigEndian)
10264 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
10265 else
10266 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
10267 Elts.push_back(APValue(APFloat(Sem, Elt)));
10268 }
10269 } else if (EltTy->isIntegerType()) {
10270 for (unsigned i = 0; i < NElts; i++) {
10271 llvm::APInt Elt;
10272 if (BigEndian)
10273 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10274 else
10275 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10276 Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10277 }
10278 } else {
10279 return Error(E);
10280 }
10281 return Success(Elts, E);
10282 }
10283 default:
10284 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10285 }
10286}
10287
10288bool
10289VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10290 const VectorType *VT = E->getType()->castAs<VectorType>();
10291 unsigned NumInits = E->getNumInits();
10292 unsigned NumElements = VT->getNumElements();
10293
10294 QualType EltTy = VT->getElementType();
10295 SmallVector<APValue, 4> Elements;
10296
10297 // The number of initializers can be less than the number of
10298 // vector elements. For OpenCL, this can be due to nested vector
10299 // initialization. For GCC compatibility, missing trailing elements
10300 // should be initialized with zeroes.
10301 unsigned CountInits = 0, CountElts = 0;
10302 while (CountElts < NumElements) {
10303 // Handle nested vector initialization.
10304 if (CountInits < NumInits
10305 && E->getInit(CountInits)->getType()->isVectorType()) {
10306 APValue v;
10307 if (!EvaluateVector(E->getInit(CountInits), v, Info))
10308 return Error(E);
10309 unsigned vlen = v.getVectorLength();
10310 for (unsigned j = 0; j < vlen; j++)
10311 Elements.push_back(v.getVectorElt(j));
10312 CountElts += vlen;
10313 } else if (EltTy->isIntegerType()) {
10314 llvm::APSInt sInt(32);
10315 if (CountInits < NumInits) {
10316 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10317 return false;
10318 } else // trailing integer zero.
10319 sInt = Info.Ctx.MakeIntValue(0, EltTy);
10320 Elements.push_back(APValue(sInt));
10321 CountElts++;
10322 } else {
10323 llvm::APFloat f(0.0);
10324 if (CountInits < NumInits) {
10325 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10326 return false;
10327 } else // trailing float zero.
10328 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10329 Elements.push_back(APValue(f));
10330 CountElts++;
10331 }
10332 CountInits++;
10333 }
10334 return Success(Elements, E);
10335}
10336
10337bool
10338VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10339 const auto *VT = E->getType()->castAs<VectorType>();
10340 QualType EltTy = VT->getElementType();
10341 APValue ZeroElement;
10342 if (EltTy->isIntegerType())
10343 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10344 else
10345 ZeroElement =
10346 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10347
10348 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10349 return Success(Elements, E);
10350}
10351
10352bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10353 VisitIgnoredValue(E->getSubExpr());
10354 return ZeroInitialization(E);
10355}
10356
10357bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10358 BinaryOperatorKind Op = E->getOpcode();
10359 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&(static_cast <bool> (Op != BO_PtrMemD && Op != BO_PtrMemI
&& Op != BO_Cmp && "Operation not supported on vector types"
) ? void (0) : __assert_fail ("Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && \"Operation not supported on vector types\""
, "clang/lib/AST/ExprConstant.cpp", 10360, __extension__ __PRETTY_FUNCTION__
))
10360 "Operation not supported on vector types")(static_cast <bool> (Op != BO_PtrMemD && Op != BO_PtrMemI
&& Op != BO_Cmp && "Operation not supported on vector types"
) ? void (0) : __assert_fail ("Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && \"Operation not supported on vector types\""
, "clang/lib/AST/ExprConstant.cpp", 10360, __extension__ __PRETTY_FUNCTION__
))
;
10361
10362 if (Op == BO_Comma)
10363 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10364
10365 Expr *LHS = E->getLHS();
10366 Expr *RHS = E->getRHS();
10367
10368 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&(static_cast <bool> (LHS->getType()->isVectorType
() && RHS->getType()->isVectorType() &&
"Must both be vector types") ? void (0) : __assert_fail ("LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && \"Must both be vector types\""
, "clang/lib/AST/ExprConstant.cpp", 10369, __extension__ __PRETTY_FUNCTION__
))
10369 "Must both be vector types")(static_cast <bool> (LHS->getType()->isVectorType
() && RHS->getType()->isVectorType() &&
"Must both be vector types") ? void (0) : __assert_fail ("LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && \"Must both be vector types\""
, "clang/lib/AST/ExprConstant.cpp", 10369, __extension__ __PRETTY_FUNCTION__
))
;
10370 // Checking JUST the types are the same would be fine, except shifts don't
10371 // need to have their types be the same (since you always shift by an int).
10372 assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==(static_cast <bool> (LHS->getType()->castAs<VectorType
>()->getNumElements() == E->getType()->castAs<
VectorType>()->getNumElements() && RHS->getType
()->castAs<VectorType>()->getNumElements() == E->
getType()->castAs<VectorType>()->getNumElements()
&& "All operands must be the same size.") ? void (0)
: __assert_fail ("LHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && RHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && \"All operands must be the same size.\""
, "clang/lib/AST/ExprConstant.cpp", 10376, __extension__ __PRETTY_FUNCTION__
))
10373 E->getType()->castAs<VectorType>()->getNumElements() &&(static_cast <bool> (LHS->getType()->castAs<VectorType
>()->getNumElements() == E->getType()->castAs<
VectorType>()->getNumElements() && RHS->getType
()->castAs<VectorType>()->getNumElements() == E->
getType()->castAs<VectorType>()->getNumElements()
&& "All operands must be the same size.") ? void (0)
: __assert_fail ("LHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && RHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && \"All operands must be the same size.\""
, "clang/lib/AST/ExprConstant.cpp", 10376, __extension__ __PRETTY_FUNCTION__
))
10374 RHS->getType()->castAs<VectorType>()->getNumElements() ==(static_cast <bool> (LHS->getType()->castAs<VectorType
>()->getNumElements() == E->getType()->castAs<
VectorType>()->getNumElements() && RHS->getType
()->castAs<VectorType>()->getNumElements() == E->
getType()->castAs<VectorType>()->getNumElements()
&& "All operands must be the same size.") ? void (0)
: __assert_fail ("LHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && RHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && \"All operands must be the same size.\""
, "clang/lib/AST/ExprConstant.cpp", 10376, __extension__ __PRETTY_FUNCTION__
))
10375 E->getType()->castAs<VectorType>()->getNumElements() &&(static_cast <bool> (LHS->getType()->castAs<VectorType
>()->getNumElements() == E->getType()->castAs<
VectorType>()->getNumElements() && RHS->getType
()->castAs<VectorType>()->getNumElements() == E->
getType()->castAs<VectorType>()->getNumElements()
&& "All operands must be the same size.") ? void (0)
: __assert_fail ("LHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && RHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && \"All operands must be the same size.\""
, "clang/lib/AST/ExprConstant.cpp", 10376, __extension__ __PRETTY_FUNCTION__
))
10376 "All operands must be the same size.")(static_cast <bool> (LHS->getType()->castAs<VectorType
>()->getNumElements() == E->getType()->castAs<
VectorType>()->getNumElements() && RHS->getType
()->castAs<VectorType>()->getNumElements() == E->
getType()->castAs<VectorType>()->getNumElements()
&& "All operands must be the same size.") ? void (0)
: __assert_fail ("LHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && RHS->getType()->castAs<VectorType>()->getNumElements() == E->getType()->castAs<VectorType>()->getNumElements() && \"All operands must be the same size.\""
, "clang/lib/AST/ExprConstant.cpp", 10376, __extension__ __PRETTY_FUNCTION__
))
;
10377
10378 APValue LHSValue;
10379 APValue RHSValue;
10380 bool LHSOK = Evaluate(LHSValue, Info, LHS);
10381 if (!LHSOK && !Info.noteFailure())
10382 return false;
10383 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10384 return false;
10385
10386 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10387 return false;
10388
10389 return Success(LHSValue, E);
10390}
10391
10392static llvm::Optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10393 QualType ResultTy,
10394 UnaryOperatorKind Op,
10395 APValue Elt) {
10396 switch (Op) {
10397 case UO_Plus:
10398 // Nothing to do here.
10399 return Elt;
10400 case UO_Minus:
10401 if (Elt.getKind() == APValue::Int) {
10402 Elt.getInt().negate();
10403 } else {
10404 assert(Elt.getKind() == APValue::Float &&(static_cast <bool> (Elt.getKind() == APValue::Float &&
"Vector can only be int or float type") ? void (0) : __assert_fail
("Elt.getKind() == APValue::Float && \"Vector can only be int or float type\""
, "clang/lib/AST/ExprConstant.cpp", 10405, __extension__ __PRETTY_FUNCTION__
))
10405 "Vector can only be int or float type")(static_cast <bool> (Elt.getKind() == APValue::Float &&
"Vector can only be int or float type") ? void (0) : __assert_fail
("Elt.getKind() == APValue::Float && \"Vector can only be int or float type\""
, "clang/lib/AST/ExprConstant.cpp", 10405, __extension__ __PRETTY_FUNCTION__
))
;
10406 Elt.getFloat().changeSign();
10407 }
10408 return Elt;
10409 case UO_Not:
10410 // This is only valid for integral types anyway, so we don't have to handle
10411 // float here.
10412 assert(Elt.getKind() == APValue::Int &&(static_cast <bool> (Elt.getKind() == APValue::Int &&
"Vector operator ~ can only be int") ? void (0) : __assert_fail
("Elt.getKind() == APValue::Int && \"Vector operator ~ can only be int\""
, "clang/lib/AST/ExprConstant.cpp", 10413, __extension__ __PRETTY_FUNCTION__
))
10413 "Vector operator ~ can only be int")(static_cast <bool> (Elt.getKind() == APValue::Int &&
"Vector operator ~ can only be int") ? void (0) : __assert_fail
("Elt.getKind() == APValue::Int && \"Vector operator ~ can only be int\""
, "clang/lib/AST/ExprConstant.cpp", 10413, __extension__ __PRETTY_FUNCTION__
))
;
10414 Elt.getInt().flipAllBits();
10415 return Elt;
10416 case UO_LNot: {
10417 if (Elt.getKind() == APValue::Int) {
10418 Elt.getInt() = !Elt.getInt();
10419 // operator ! on vectors returns -1 for 'truth', so negate it.
10420 Elt.getInt().negate();
10421 return Elt;
10422 }
10423 assert(Elt.getKind() == APValue::Float &&(static_cast <bool> (Elt.getKind() == APValue::Float &&
"Vector can only be int or float type") ? void (0) : __assert_fail
("Elt.getKind() == APValue::Float && \"Vector can only be int or float type\""
, "clang/lib/AST/ExprConstant.cpp", 10424, __extension__ __PRETTY_FUNCTION__
))
10424 "Vector can only be int or float type")(static_cast <bool> (Elt.getKind() == APValue::Float &&
"Vector can only be int or float type") ? void (0) : __assert_fail
("Elt.getKind() == APValue::Float && \"Vector can only be int or float type\""
, "clang/lib/AST/ExprConstant.cpp", 10424, __extension__ __PRETTY_FUNCTION__
))
;
10425 // Float types result in an int of the same size, but -1 for true, or 0 for
10426 // false.
10427 APSInt EltResult{Ctx.getIntWidth(ResultTy),
10428 ResultTy->isUnsignedIntegerType()};
10429 if (Elt.getFloat().isZero())
10430 EltResult.setAllBits();
10431 else
10432 EltResult.clearAllBits();
10433
10434 return APValue{EltResult};
10435 }
10436 default:
10437 // FIXME: Implement the rest of the unary operators.
10438 return llvm::None;
10439 }
10440}
10441
10442bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10443 Expr *SubExpr = E->getSubExpr();
10444 const auto *VD = SubExpr->getType()->castAs<VectorType>();
10445 // This result element type differs in the case of negating a floating point
10446 // vector, since the result type is the a vector of the equivilant sized
10447 // integer.
10448 const QualType ResultEltTy = VD->getElementType();
10449 UnaryOperatorKind Op = E->getOpcode();
10450
10451 APValue SubExprValue;
10452 if (!Evaluate(SubExprValue, Info, SubExpr))
10453 return false;
10454
10455 // FIXME: This vector evaluator someday needs to be changed to be LValue
10456 // aware/keep LValue information around, rather than dealing with just vector
10457 // types directly. Until then, we cannot handle cases where the operand to
10458 // these unary operators is an LValue. The only case I've been able to see
10459 // cause this is operator++ assigning to a member expression (only valid in
10460 // altivec compilations) in C mode, so this shouldn't limit us too much.
10461 if (SubExprValue.isLValue())
10462 return false;
10463
10464 assert(SubExprValue.getVectorLength() == VD->getNumElements() &&(static_cast <bool> (SubExprValue.getVectorLength() == VD
->getNumElements() && "Vector length doesn't match type?"
) ? void (0) : __assert_fail ("SubExprValue.getVectorLength() == VD->getNumElements() && \"Vector length doesn't match type?\""
, "clang/lib/AST/ExprConstant.cpp", 10465, __extension__ __PRETTY_FUNCTION__
))
10465 "Vector length doesn't match type?")(static_cast <bool> (SubExprValue.getVectorLength() == VD
->getNumElements() && "Vector length doesn't match type?"
) ? void (0) : __assert_fail ("SubExprValue.getVectorLength() == VD->getNumElements() && \"Vector length doesn't match type?\""
, "clang/lib/AST/ExprConstant.cpp", 10465, __extension__ __PRETTY_FUNCTION__
))
;
10466
10467 SmallVector<APValue, 4> ResultElements;
10468 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10469 llvm::Optional<APValue> Elt = handleVectorUnaryOperator(
10470 Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10471 if (!Elt)
10472 return false;
10473 ResultElements.push_back(*Elt);
10474 }
10475 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10476}
10477
10478//===----------------------------------------------------------------------===//
10479// Array Evaluation
10480//===----------------------------------------------------------------------===//
10481
10482namespace {
10483 class ArrayExprEvaluator
10484 : public ExprEvaluatorBase<ArrayExprEvaluator> {
10485 const LValue &This;
10486 APValue &Result;
10487 public:
10488
10489 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10490 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10491
10492 bool Success(const APValue &V, const Expr *E) {
10493 assert(V.isArray() && "expected array")(static_cast <bool> (V.isArray() && "expected array"
) ? void (0) : __assert_fail ("V.isArray() && \"expected array\""
, "clang/lib/AST/ExprConstant.cpp", 10493, __extension__ __PRETTY_FUNCTION__
))
;
10494 Result = V;
10495 return true;
10496 }
10497
10498 bool ZeroInitialization(const Expr *E) {
10499 const ConstantArrayType *CAT =
10500 Info.Ctx.getAsConstantArrayType(E->getType());
10501 if (!CAT) {
10502 if (E->getType()->isIncompleteArrayType()) {
10503 // We can be asked to zero-initialize a flexible array member; this
10504 // is represented as an ImplicitValueInitExpr of incomplete array
10505 // type. In this case, the array has zero elements.
10506 Result = APValue(APValue::UninitArray(), 0, 0);
10507 return true;
10508 }
10509 // FIXME: We could handle VLAs here.
10510 return Error(E);
10511 }
10512
10513 Result = APValue(APValue::UninitArray(), 0,
10514 CAT->getSize().getZExtValue());
10515 if (!Result.hasArrayFiller())
10516 return true;
10517
10518 // Zero-initialize all elements.
10519 LValue Subobject = This;
10520 Subobject.addArray(Info, E, CAT);
10521 ImplicitValueInitExpr VIE(CAT->getElementType());
10522 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10523 }
10524
10525 bool VisitCallExpr(const CallExpr *E) {
10526 return handleCallExpr(E, Result, &This);
10527 }
10528 bool VisitInitListExpr(const InitListExpr *E,
10529 QualType AllocType = QualType());
10530 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10531 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10532 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10533 const LValue &Subobject,
10534 APValue *Value, QualType Type);
10535 bool VisitStringLiteral(const StringLiteral *E,
10536 QualType AllocType = QualType()) {
10537 expandStringLiteral(Info, E, Result, AllocType);
10538 return true;
10539 }
10540 };
10541} // end anonymous namespace
10542
10543static bool EvaluateArray(const Expr *E, const LValue &This,
10544 APValue &Result, EvalInfo &Info) {
10545 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 10545, __extension__ __PRETTY_FUNCTION__))
;
10546 assert(E->isPRValue() && E->getType()->isArrayType() &&(static_cast <bool> (E->isPRValue() && E->
getType()->isArrayType() && "not an array prvalue"
) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isArrayType() && \"not an array prvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10547, __extension__ __PRETTY_FUNCTION__
))
10547 "not an array prvalue")(static_cast <bool> (E->isPRValue() && E->
getType()->isArrayType() && "not an array prvalue"
) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isArrayType() && \"not an array prvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10547, __extension__ __PRETTY_FUNCTION__
))
;
10548 return ArrayExprEvaluator(Info, This, Result).Visit(E);
10549}
10550
10551static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10552 APValue &Result, const InitListExpr *ILE,
10553 QualType AllocType) {
10554 assert(!ILE->isValueDependent())(static_cast <bool> (!ILE->isValueDependent()) ? void
(0) : __assert_fail ("!ILE->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 10554, __extension__ __PRETTY_FUNCTION__))
;
10555 assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&(static_cast <bool> (ILE->isPRValue() && ILE
->getType()->isArrayType() && "not an array prvalue"
) ? void (0) : __assert_fail ("ILE->isPRValue() && ILE->getType()->isArrayType() && \"not an array prvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10556, __extension__ __PRETTY_FUNCTION__
))
10556 "not an array prvalue")(static_cast <bool> (ILE->isPRValue() && ILE
->getType()->isArrayType() && "not an array prvalue"
) ? void (0) : __assert_fail ("ILE->isPRValue() && ILE->getType()->isArrayType() && \"not an array prvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10556, __extension__ __PRETTY_FUNCTION__
))
;
10557 return ArrayExprEvaluator(Info, This, Result)
10558 .VisitInitListExpr(ILE, AllocType);
10559}
10560
10561static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10562 APValue &Result,
10563 const CXXConstructExpr *CCE,
10564 QualType AllocType) {
10565 assert(!CCE->isValueDependent())(static_cast <bool> (!CCE->isValueDependent()) ? void
(0) : __assert_fail ("!CCE->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 10565, __extension__ __PRETTY_FUNCTION__))
;
10566 assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&(static_cast <bool> (CCE->isPRValue() && CCE
->getType()->isArrayType() && "not an array prvalue"
) ? void (0) : __assert_fail ("CCE->isPRValue() && CCE->getType()->isArrayType() && \"not an array prvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10567, __extension__ __PRETTY_FUNCTION__
))
10567 "not an array prvalue")(static_cast <bool> (CCE->isPRValue() && CCE
->getType()->isArrayType() && "not an array prvalue"
) ? void (0) : __assert_fail ("CCE->isPRValue() && CCE->getType()->isArrayType() && \"not an array prvalue\""
, "clang/lib/AST/ExprConstant.cpp", 10567, __extension__ __PRETTY_FUNCTION__
))
;
10568 return ArrayExprEvaluator(Info, This, Result)
10569 .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10570}
10571
10572// Return true iff the given array filler may depend on the element index.
10573static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10574 // For now, just allow non-class value-initialization and initialization
10575 // lists comprised of them.
10576 if (isa<ImplicitValueInitExpr>(FillerExpr))
10577 return false;
10578 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10579 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10580 if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10581 return true;
10582 }
10583 return false;
10584 }
10585 return true;
10586}
10587
10588bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10589 QualType AllocType) {
10590 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10591 AllocType.isNull() ? E->getType() : AllocType);
10592 if (!CAT)
10593 return Error(E);
10594
10595 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10596 // an appropriately-typed string literal enclosed in braces.
10597 if (E->isStringLiteralInit()) {
10598 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10599 // FIXME: Support ObjCEncodeExpr here once we support it in
10600 // ArrayExprEvaluator generally.
10601 if (!SL)
10602 return Error(E);
10603 return VisitStringLiteral(SL, AllocType);
10604 }
10605 // Any other transparent list init will need proper handling of the
10606 // AllocType; we can't just recurse to the inner initializer.
10607 assert(!E->isTransparent() &&(static_cast <bool> (!E->isTransparent() && "transparent array list initialization is not string literal init?"
) ? void (0) : __assert_fail ("!E->isTransparent() && \"transparent array list initialization is not string literal init?\""
, "clang/lib/AST/ExprConstant.cpp", 10608, __extension__ __PRETTY_FUNCTION__
))
10608 "transparent array list initialization is not string literal init?")(static_cast <bool> (!E->isTransparent() && "transparent array list initialization is not string literal init?"
) ? void (0) : __assert_fail ("!E->isTransparent() && \"transparent array list initialization is not string literal init?\""
, "clang/lib/AST/ExprConstant.cpp", 10608, __extension__ __PRETTY_FUNCTION__
))
;
10609
10610 bool Success = true;
10611
10612 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&(static_cast <bool> ((!Result.isArray() || Result.getArrayInitializedElts
() == 0) && "zero-initialized array shouldn't have any initialized elts"
) ? void (0) : __assert_fail ("(!Result.isArray() || Result.getArrayInitializedElts() == 0) && \"zero-initialized array shouldn't have any initialized elts\""
, "clang/lib/AST/ExprConstant.cpp", 10613, __extension__ __PRETTY_FUNCTION__
))
10613 "zero-initialized array shouldn't have any initialized elts")(static_cast <bool> ((!Result.isArray() || Result.getArrayInitializedElts
() == 0) && "zero-initialized array shouldn't have any initialized elts"
) ? void (0) : __assert_fail ("(!Result.isArray() || Result.getArrayInitializedElts() == 0) && \"zero-initialized array shouldn't have any initialized elts\""
, "clang/lib/AST/ExprConstant.cpp", 10613, __extension__ __PRETTY_FUNCTION__
))
;
10614 APValue Filler;
10615 if (Result.isArray() && Result.hasArrayFiller())
10616 Filler = Result.getArrayFiller();
10617
10618 unsigned NumEltsToInit = E->getNumInits();
10619 unsigned NumElts = CAT->getSize().getZExtValue();
10620 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10621
10622 // If the initializer might depend on the array index, run it for each
10623 // array element.
10624 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10625 NumEltsToInit = NumElts;
10626
10627 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("exprconstant")) { llvm::dbgs() << "The number of elements to initialize: "
<< NumEltsToInit << ".\n"; } } while (false)
10628 << NumEltsToInit << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("exprconstant")) { llvm::dbgs() << "The number of elements to initialize: "
<< NumEltsToInit << ".\n"; } } while (false)
;
10629
10630 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10631
10632 // If the array was previously zero-initialized, preserve the
10633 // zero-initialized values.
10634 if (Filler.hasValue()) {
10635 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10636 Result.getArrayInitializedElt(I) = Filler;
10637 if (Result.hasArrayFiller())
10638 Result.getArrayFiller() = Filler;
10639 }
10640
10641 LValue Subobject = This;
10642 Subobject.addArray(Info, E, CAT);
10643 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10644 const Expr *Init =
10645 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10646 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10647 Info, Subobject, Init) ||
10648 !HandleLValueArrayAdjustment(Info, Init, Subobject,
10649 CAT->getElementType(), 1)) {
10650 if (!Info.noteFailure())
10651 return false;
10652 Success = false;
10653 }
10654 }
10655
10656 if (!Result.hasArrayFiller())
10657 return Success;
10658
10659 // If we get here, we have a trivial filler, which we can just evaluate
10660 // once and splat over the rest of the array elements.
10661 assert(FillerExpr && "no array filler for incomplete init list")(static_cast <bool> (FillerExpr && "no array filler for incomplete init list"
) ? void (0) : __assert_fail ("FillerExpr && \"no array filler for incomplete init list\""
, "clang/lib/AST/ExprConstant.cpp", 10661, __extension__ __PRETTY_FUNCTION__
))
;
10662 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10663 FillerExpr) && Success;
10664}
10665
10666bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10667 LValue CommonLV;
10668 if (E->getCommonExpr() &&
10669 !Evaluate(Info.CurrentCall->createTemporary(
10670 E->getCommonExpr(),
10671 getStorageType(Info.Ctx, E->getCommonExpr()),
10672 ScopeKind::FullExpression, CommonLV),
10673 Info, E->getCommonExpr()->getSourceExpr()))
10674 return false;
10675
10676 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10677
10678 uint64_t Elements = CAT->getSize().getZExtValue();
10679 Result = APValue(APValue::UninitArray(), Elements, Elements);
10680
10681 LValue Subobject = This;
10682 Subobject.addArray(Info, E, CAT);
10683
10684 bool Success = true;
10685 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10686 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10687 Info, Subobject, E->getSubExpr()) ||
10688 !HandleLValueArrayAdjustment(Info, E, Subobject,
10689 CAT->getElementType(), 1)) {
10690 if (!Info.noteFailure())
10691 return false;
10692 Success = false;
10693 }
10694 }
10695
10696 return Success;
10697}
10698
10699bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10700 return VisitCXXConstructExpr(E, This, &Result, E->getType());
10701}
10702
10703bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10704 const LValue &Subobject,
10705 APValue *Value,
10706 QualType Type) {
10707 bool HadZeroInit = Value->hasValue();
10708
10709 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10710 unsigned FinalSize = CAT->getSize().getZExtValue();
10711
10712 // Preserve the array filler if we had prior zero-initialization.
10713 APValue Filler =
10714 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10715 : APValue();
10716
10717 *Value = APValue(APValue::UninitArray(), 0, FinalSize);
10718 if (FinalSize == 0)
10719 return true;
10720
10721 LValue ArrayElt = Subobject;
10722 ArrayElt.addArray(Info, E, CAT);
10723 // We do the whole initialization in two passes, first for just one element,
10724 // then for the whole array. It's possible we may find out we can't do const
10725 // init in the first pass, in which case we avoid allocating a potentially
10726 // large array. We don't do more passes because expanding array requires
10727 // copying the data, which is wasteful.
10728 for (const unsigned N : {1u, FinalSize}) {
10729 unsigned OldElts = Value->getArrayInitializedElts();
10730 if (OldElts == N)
10731 break;
10732
10733 // Expand the array to appropriate size.
10734 APValue NewValue(APValue::UninitArray(), N, FinalSize);
10735 for (unsigned I = 0; I < OldElts; ++I)
10736 NewValue.getArrayInitializedElt(I).swap(
10737 Value->getArrayInitializedElt(I));
10738 Value->swap(NewValue);
10739
10740 if (HadZeroInit)
10741 for (unsigned I = OldElts; I < N; ++I)
10742 Value->getArrayInitializedElt(I) = Filler;
10743
10744 // Initialize the elements.
10745 for (unsigned I = OldElts; I < N; ++I) {
10746 if (!VisitCXXConstructExpr(E, ArrayElt,
10747 &Value->getArrayInitializedElt(I),
10748 CAT->getElementType()) ||
10749 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10750 CAT->getElementType(), 1))
10751 return false;
10752 // When checking for const initilization any diagnostic is considered
10753 // an error.
10754 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
10755 !Info.keepEvaluatingAfterFailure())
10756 return false;
10757 }
10758 }
10759
10760 return true;
10761 }
10762
10763 if (!Type->isRecordType())
10764 return Error(E);
10765
10766 return RecordExprEvaluator(Info, Subobject, *Value)
10767 .VisitCXXConstructExpr(E, Type);
10768}
10769
10770//===----------------------------------------------------------------------===//
10771// Integer Evaluation
10772//
10773// As a GNU extension, we support casting pointers to sufficiently-wide integer
10774// types and back in constant folding. Integer values are thus represented
10775// either as an integer-valued APValue, or as an lvalue-valued APValue.
10776//===----------------------------------------------------------------------===//
10777
10778namespace {
10779class IntExprEvaluator
10780 : public ExprEvaluatorBase<IntExprEvaluator> {
10781 APValue &Result;
10782public:
10783 IntExprEvaluator(EvalInfo &info, APValue &result)
10784 : ExprEvaluatorBaseTy(info), Result(result) {}
10785
10786 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10787 assert(E->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10788, __extension__ __PRETTY_FUNCTION__
))
10788 "Invalid evaluation result.")(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10788, __extension__ __PRETTY_FUNCTION__
))
;
10789 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&(static_cast <bool> (SI.isSigned() == E->getType()->
isSignedIntegerOrEnumerationType() && "Invalid evaluation result."
) ? void (0) : __assert_fail ("SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10790, __extension__ __PRETTY_FUNCTION__
))
10790 "Invalid evaluation result.")(static_cast <bool> (SI.isSigned() == E->getType()->
isSignedIntegerOrEnumerationType() && "Invalid evaluation result."
) ? void (0) : __assert_fail ("SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10790, __extension__ __PRETTY_FUNCTION__
))
;
10791 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&(static_cast <bool> (SI.getBitWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10792, __extension__ __PRETTY_FUNCTION__
))
10792 "Invalid evaluation result.")(static_cast <bool> (SI.getBitWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10792, __extension__ __PRETTY_FUNCTION__
))
;
10793 Result = APValue(SI);
10794 return true;
10795 }
10796 bool Success(const llvm::APSInt &SI, const Expr *E) {
10797 return Success(SI, E, Result);
10798 }
10799
10800 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10801 assert(E->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10802, __extension__ __PRETTY_FUNCTION__
))
10802 "Invalid evaluation result.")(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10802, __extension__ __PRETTY_FUNCTION__
))
;
10803 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&(static_cast <bool> (I.getBitWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10804, __extension__ __PRETTY_FUNCTION__
))
10804 "Invalid evaluation result.")(static_cast <bool> (I.getBitWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10804, __extension__ __PRETTY_FUNCTION__
))
;
10805 Result = APValue(APSInt(I));
10806 Result.getInt().setIsUnsigned(
10807 E->getType()->isUnsignedIntegerOrEnumerationType());
10808 return true;
10809 }
10810 bool Success(const llvm::APInt &I, const Expr *E) {
10811 return Success(I, E, Result);
10812 }
10813
10814 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10815 assert(E->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10816, __extension__ __PRETTY_FUNCTION__
))
10816 "Invalid evaluation result.")(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10816, __extension__ __PRETTY_FUNCTION__
))
;
10817 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10818 return true;
10819 }
10820 bool Success(uint64_t Value, const Expr *E) {
10821 return Success(Value, E, Result);
10822 }
10823
10824 bool Success(CharUnits Size, const Expr *E) {
10825 return Success(Size.getQuantity(), E);
10826 }
10827
10828 bool Success(const APValue &V, const Expr *E) {
10829 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10830 Result = V;
10831 return true;
10832 }
10833 return Success(V.getInt(), E);
10834 }
10835
10836 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10837
10838 //===--------------------------------------------------------------------===//
10839 // Visitor Methods
10840 //===--------------------------------------------------------------------===//
10841
10842 bool VisitIntegerLiteral(const IntegerLiteral *E) {
10843 return Success(E->getValue(), E);
10844 }
10845 bool VisitCharacterLiteral(const CharacterLiteral *E) {
10846 return Success(E->getValue(), E);
10847 }
10848
10849 bool CheckReferencedDecl(const Expr *E, const Decl *D);
10850 bool VisitDeclRefExpr(const DeclRefExpr *E) {
10851 if (CheckReferencedDecl(E, E->getDecl()))
10852 return true;
10853
10854 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10855 }
10856 bool VisitMemberExpr(const MemberExpr *E) {
10857 if (CheckReferencedDecl(E, E->getMemberDecl())) {
10858 VisitIgnoredBaseExpression(E->getBase());
10859 return true;
10860 }
10861
10862 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10863 }
10864
10865 bool VisitCallExpr(const CallExpr *E);
10866 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10867 bool VisitBinaryOperator(const BinaryOperator *E);
10868 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10869 bool VisitUnaryOperator(const UnaryOperator *E);
10870
10871 bool VisitCastExpr(const CastExpr* E);
10872 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10873
10874 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10875 return Success(E->getValue(), E);
10876 }
10877
10878 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10879 return Success(E->getValue(), E);
10880 }
10881
10882 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10883 if (Info.ArrayInitIndex == uint64_t(-1)) {
10884 // We were asked to evaluate this subexpression independent of the
10885 // enclosing ArrayInitLoopExpr. We can't do that.
10886 Info.FFDiag(E);
10887 return false;
10888 }
10889 return Success(Info.ArrayInitIndex, E);
10890 }
10891
10892 // Note, GNU defines __null as an integer, not a pointer.
10893 bool VisitGNUNullExpr(const GNUNullExpr *E) {
10894 return ZeroInitialization(E);
10895 }
10896
10897 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
10898 return Success(E->getValue(), E);
10899 }
10900
10901 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
10902 return Success(E->getValue(), E);
10903 }
10904
10905 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
10906 return Success(E->getValue(), E);
10907 }
10908
10909 bool VisitUnaryReal(const UnaryOperator *E);
10910 bool VisitUnaryImag(const UnaryOperator *E);
10911
10912 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
10913 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
10914 bool VisitSourceLocExpr(const SourceLocExpr *E);
10915 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
10916 bool VisitRequiresExpr(const RequiresExpr *E);
10917 // FIXME: Missing: array subscript of vector, member of vector
10918};
10919
10920class FixedPointExprEvaluator
10921 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
10922 APValue &Result;
10923
10924 public:
10925 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
10926 : ExprEvaluatorBaseTy(info), Result(result) {}
10927
10928 bool Success(const llvm::APInt &I, const Expr *E) {
10929 return Success(
10930 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10931 }
10932
10933 bool Success(uint64_t Value, const Expr *E) {
10934 return Success(
10935 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10936 }
10937
10938 bool Success(const APValue &V, const Expr *E) {
10939 return Success(V.getFixedPoint(), E);
10940 }
10941
10942 bool Success(const APFixedPoint &V, const Expr *E) {
10943 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.")(static_cast <bool> (E->getType()->isFixedPointType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isFixedPointType() && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10943, __extension__ __PRETTY_FUNCTION__
))
;
10944 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&(static_cast <bool> (V.getWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10945, __extension__ __PRETTY_FUNCTION__
))
10945 "Invalid evaluation result.")(static_cast <bool> (V.getWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "clang/lib/AST/ExprConstant.cpp", 10945, __extension__ __PRETTY_FUNCTION__
))
;
10946 Result = APValue(V);
10947 return true;
10948 }
10949
10950 //===--------------------------------------------------------------------===//
10951 // Visitor Methods
10952 //===--------------------------------------------------------------------===//
10953
10954 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
10955 return Success(E->getValue(), E);
10956 }
10957
10958 bool VisitCastExpr(const CastExpr *E);
10959 bool VisitUnaryOperator(const UnaryOperator *E);
10960 bool VisitBinaryOperator(const BinaryOperator *E);
10961};
10962} // end anonymous namespace
10963
10964/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
10965/// produce either the integer value or a pointer.
10966///
10967/// GCC has a heinous extension which folds casts between pointer types and
10968/// pointer-sized integral types. We support this by allowing the evaluation of
10969/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
10970/// Some simple arithmetic on such values is supported (they are treated much
10971/// like char*).
10972static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
10973 EvalInfo &Info) {
10974 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 10974, __extension__ __PRETTY_FUNCTION__))
;
10975 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType())(static_cast <bool> (E->isPRValue() && E->
getType()->isIntegralOrEnumerationType()) ? void (0) : __assert_fail
("E->isPRValue() && E->getType()->isIntegralOrEnumerationType()"
, "clang/lib/AST/ExprConstant.cpp", 10975, __extension__ __PRETTY_FUNCTION__
))
;
10976 return IntExprEvaluator(Info, Result).Visit(E);
10977}
10978
10979static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
10980 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 10980, __extension__ __PRETTY_FUNCTION__))
;
10981 APValue Val;
10982 if (!EvaluateIntegerOrLValue(E, Val, Info))
10983 return false;
10984 if (!Val.isInt()) {
10985 // FIXME: It would be better to produce the diagnostic for casting
10986 // a pointer to an integer.
10987 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10988 return false;
10989 }
10990 Result = Val.getInt();
10991 return true;
10992}
10993
10994bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
10995 APValue Evaluated = E->EvaluateInContext(
10996 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
10997 return Success(Evaluated, E);
10998}
10999
11000static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11001 EvalInfo &Info) {
11002 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 11002, __extension__ __PRETTY_FUNCTION__))
;
11003 if (E->getType()->isFixedPointType()) {
11004 APValue Val;
11005 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11006 return false;
11007 if (!Val.isFixedPoint())
11008 return false;
11009
11010 Result = Val.getFixedPoint();
11011 return true;
11012 }
11013 return false;
11014}
11015
11016static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11017 EvalInfo &Info) {
11018 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 11018, __extension__ __PRETTY_FUNCTION__))
;
11019 if (E->getType()->isIntegerType()) {
11020 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11021 APSInt Val;
11022 if (!EvaluateInteger(E, Val, Info))
11023 return false;
11024 Result = APFixedPoint(Val, FXSema);
11025 return true;
11026 } else if (E->getType()->isFixedPointType()) {
11027 return EvaluateFixedPoint(E, Result, Info);
11028 }
11029 return false;
11030}
11031
11032/// Check whether the given declaration can be directly converted to an integral
11033/// rvalue. If not, no diagnostic is produced; there are other things we can
11034/// try.
11035bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11036 // Enums are integer constant exprs.
11037 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11038 // Check for signedness/width mismatches between E type and ECD value.
11039 bool SameSign = (ECD->getInitVal().isSigned()
11040 == E->getType()->isSignedIntegerOrEnumerationType());
11041 bool SameWidth = (ECD->getInitVal().getBitWidth()
11042 == Info.Ctx.getIntWidth(E->getType()));
11043 if (SameSign && SameWidth)
11044 return Success(ECD->getInitVal(), E);
11045 else {
11046 // Get rid of mismatch (otherwise Success assertions will fail)
11047 // by computing a new value matching the type of E.
11048 llvm::APSInt Val = ECD->getInitVal();
11049 if (!SameSign)
11050 Val.setIsSigned(!ECD->getInitVal().isSigned());
11051 if (!SameWidth)
11052 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11053 return Success(Val, E);
11054 }
11055 }
11056 return false;
11057}
11058
11059/// Values returned by __builtin_classify_type, chosen to match the values
11060/// produced by GCC's builtin.
11061enum class GCCTypeClass {
11062 None = -1,
11063 Void = 0,
11064 Integer = 1,
11065 // GCC reserves 2 for character types, but instead classifies them as
11066 // integers.
11067 Enum = 3,
11068 Bool = 4,
11069 Pointer = 5,
11070 // GCC reserves 6 for references, but appears to never use it (because
11071 // expressions never have reference type, presumably).
11072 PointerToDataMember = 7,
11073 RealFloat = 8,
11074 Complex = 9,
11075 // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11076 // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11077 // GCC claims to reserve 11 for pointers to member functions, but *actually*
11078 // uses 12 for that purpose, same as for a class or struct. Maybe it
11079 // internally implements a pointer to member as a struct? Who knows.
11080 PointerToMemberFunction = 12, // Not a bug, see above.
11081 ClassOrStruct = 12,
11082 Union = 13,
11083 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11084 // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11085 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11086 // literals.
11087};
11088
11089/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11090/// as GCC.
11091static GCCTypeClass
11092EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11093 assert(!T->isDependentType() && "unexpected dependent type")(static_cast <bool> (!T->isDependentType() &&
"unexpected dependent type") ? void (0) : __assert_fail ("!T->isDependentType() && \"unexpected dependent type\""
, "clang/lib/AST/ExprConstant.cpp", 11093, __extension__ __PRETTY_FUNCTION__
))
;
11094
11095 QualType CanTy = T.getCanonicalType();
11096 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
11097
11098 switch (CanTy->getTypeClass()) {
11099#define TYPE(ID, BASE)
11100#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11101#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11102#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11103#include "clang/AST/TypeNodes.inc"
11104 case Type::Auto:
11105 case Type::DeducedTemplateSpecialization:
11106 llvm_unreachable("unexpected non-canonical or dependent type")::llvm::llvm_unreachable_internal("unexpected non-canonical or dependent type"
, "clang/lib/AST/ExprConstant.cpp", 11106)
;
11107
11108 case Type::Builtin:
11109 switch (BT->getKind()) {
11110#define BUILTIN_TYPE(ID, SINGLETON_ID)
11111#define SIGNED_TYPE(ID, SINGLETON_ID) \
11112 case BuiltinType::ID: return GCCTypeClass::Integer;
11113#define FLOATING_TYPE(ID, SINGLETON_ID) \
11114 case BuiltinType::ID: return GCCTypeClass::RealFloat;
11115#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11116 case BuiltinType::ID: break;
11117#include "clang/AST/BuiltinTypes.def"
11118 case BuiltinType::Void:
11119 return GCCTypeClass::Void;
11120
11121 case BuiltinType::Bool:
11122 return GCCTypeClass::Bool;
11123
11124 case BuiltinType::Char_U:
11125 case BuiltinType::UChar:
11126 case BuiltinType::WChar_U:
11127 case BuiltinType::Char8:
11128 case BuiltinType::Char16:
11129 case BuiltinType::Char32:
11130 case BuiltinType::UShort:
11131 case BuiltinType::UInt:
11132 case BuiltinType::ULong:
11133 case BuiltinType::ULongLong:
11134 case BuiltinType::UInt128:
11135 return GCCTypeClass::Integer;
11136
11137 case BuiltinType::UShortAccum:
11138 case BuiltinType::UAccum:
11139 case BuiltinType::ULongAccum:
11140 case BuiltinType::UShortFract:
11141 case BuiltinType::UFract:
11142 case BuiltinType::ULongFract:
11143 case BuiltinType::SatUShortAccum:
11144 case BuiltinType::SatUAccum:
11145 case BuiltinType::SatULongAccum:
11146 case BuiltinType::SatUShortFract:
11147 case BuiltinType::SatUFract:
11148 case BuiltinType::SatULongFract:
11149 return GCCTypeClass::None;
11150
11151 case BuiltinType::NullPtr:
11152
11153 case BuiltinType::ObjCId:
11154 case BuiltinType::ObjCClass:
11155 case BuiltinType::ObjCSel:
11156#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11157 case BuiltinType::Id:
11158#include "clang/Basic/OpenCLImageTypes.def"
11159#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11160 case BuiltinType::Id:
11161#include "clang/Basic/OpenCLExtensionTypes.def"
11162 case BuiltinType::OCLSampler:
11163 case BuiltinType::OCLEvent:
11164 case BuiltinType::OCLClkEvent:
11165 case BuiltinType::OCLQueue:
11166 case BuiltinType::OCLReserveID:
11167#define SVE_TYPE(Name, Id, SingletonId) \
11168 case BuiltinType::Id:
11169#include "clang/Basic/AArch64SVEACLETypes.def"
11170#define PPC_VECTOR_TYPE(Name, Id, Size) \
11171 case BuiltinType::Id:
11172#include "clang/Basic/PPCTypes.def"
11173#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11174#include "clang/Basic/RISCVVTypes.def"
11175 return GCCTypeClass::None;
11176
11177 case BuiltinType::Dependent:
11178 llvm_unreachable("unexpected dependent type")::llvm::llvm_unreachable_internal("unexpected dependent type"
, "clang/lib/AST/ExprConstant.cpp", 11178)
;
11179 };
11180 llvm_unreachable("unexpected placeholder type")::llvm::llvm_unreachable_internal("unexpected placeholder type"
, "clang/lib/AST/ExprConstant.cpp", 11180)
;
11181
11182 case Type::Enum:
11183 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11184
11185 case Type::Pointer:
11186 case Type::ConstantArray:
11187 case Type::VariableArray:
11188 case Type::IncompleteArray:
11189 case Type::FunctionNoProto:
11190 case Type::FunctionProto:
11191 return GCCTypeClass::Pointer;
11192
11193 case Type::MemberPointer:
11194 return CanTy->isMemberDataPointerType()
11195 ? GCCTypeClass::PointerToDataMember
11196 : GCCTypeClass::PointerToMemberFunction;
11197
11198 case Type::Complex:
11199 return GCCTypeClass::Complex;
11200
11201 case Type::Record:
11202 return CanTy->isUnionType() ? GCCTypeClass::Union
11203 : GCCTypeClass::ClassOrStruct;
11204
11205 case Type::Atomic:
11206 // GCC classifies _Atomic T the same as T.
11207 return EvaluateBuiltinClassifyType(
11208 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11209
11210 case Type::BlockPointer:
11211 case Type::Vector:
11212 case Type::ExtVector:
11213 case Type::ConstantMatrix:
11214 case Type::ObjCObject:
11215 case Type::ObjCInterface:
11216 case Type::ObjCObjectPointer:
11217 case Type::Pipe:
11218 case Type::BitInt:
11219 // GCC classifies vectors as None. We follow its lead and classify all
11220 // other types that don't fit into the regular classification the same way.
11221 return GCCTypeClass::None;
11222
11223 case Type::LValueReference:
11224 case Type::RValueReference:
11225 llvm_unreachable("invalid type for expression")::llvm::llvm_unreachable_internal("invalid type for expression"
, "clang/lib/AST/ExprConstant.cpp", 11225)
;
11226 }
11227
11228 llvm_unreachable("unexpected type class")::llvm::llvm_unreachable_internal("unexpected type class", "clang/lib/AST/ExprConstant.cpp"
, 11228)
;
11229}
11230
11231/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11232/// as GCC.
11233static GCCTypeClass
11234EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11235 // If no argument was supplied, default to None. This isn't
11236 // ideal, however it is what gcc does.
11237 if (E->getNumArgs() == 0)
11238 return GCCTypeClass::None;
11239
11240 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11241 // being an ICE, but still folds it to a constant using the type of the first
11242 // argument.
11243 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11244}
11245
11246/// EvaluateBuiltinConstantPForLValue - Determine the result of
11247/// __builtin_constant_p when applied to the given pointer.
11248///
11249/// A pointer is only "constant" if it is null (or a pointer cast to integer)
11250/// or it points to the first character of a string literal.
11251static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11252 APValue::LValueBase Base = LV.getLValueBase();
11253 if (Base.isNull()) {
11254 // A null base is acceptable.
11255 return true;
11256 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11257 if (!isa<StringLiteral>(E))
11258 return false;
11259 return LV.getLValueOffset().isZero();
11260 } else if (Base.is<TypeInfoLValue>()) {
11261 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11262 // evaluate to true.
11263 return true;
11264 } else {
11265 // Any other base is not constant enough for GCC.
11266 return false;
11267 }
11268}
11269
11270/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11271/// GCC as we can manage.
11272static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11273 // This evaluation is not permitted to have side-effects, so evaluate it in
11274 // a speculative evaluation context.
11275 SpeculativeEvaluationRAII SpeculativeEval(Info);
11276
11277 // Constant-folding is always enabled for the operand of __builtin_constant_p
11278 // (even when the enclosing evaluation context otherwise requires a strict
11279 // language-specific constant expression).
11280 FoldConstant Fold(Info, true);
11281
11282 QualType ArgType = Arg->getType();
11283
11284 // __builtin_constant_p always has one operand. The rules which gcc follows
11285 // are not precisely documented, but are as follows:
11286 //
11287 // - If the operand is of integral, floating, complex or enumeration type,
11288 // and can be folded to a known value of that type, it returns 1.
11289 // - If the operand can be folded to a pointer to the first character
11290 // of a string literal (or such a pointer cast to an integral type)
11291 // or to a null pointer or an integer cast to a pointer, it returns 1.
11292 //
11293 // Otherwise, it returns 0.
11294 //
11295 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11296 // its support for this did not work prior to GCC 9 and is not yet well
11297 // understood.
11298 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11299 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11300 ArgType->isNullPtrType()) {
11301 APValue V;
11302 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11303 Fold.keepDiagnostics();
11304 return false;
11305 }
11306
11307 // For a pointer (possibly cast to integer), there are special rules.
11308 if (V.getKind() == APValue::LValue)
11309 return EvaluateBuiltinConstantPForLValue(V);
11310
11311 // Otherwise, any constant value is good enough.
11312 return V.hasValue();
11313 }
11314
11315 // Anything else isn't considered to be sufficiently constant.
11316 return false;
11317}
11318
11319/// Retrieves the "underlying object type" of the given expression,
11320/// as used by __builtin_object_size.
11321static QualType getObjectType(APValue::LValueBase B) {
11322 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11323 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11324 return VD->getType();
11325 } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11326 if (isa<CompoundLiteralExpr>(E))
11327 return E->getType();
11328 } else if (B.is<TypeInfoLValue>()) {
11329 return B.getTypeInfoType();
11330 } else if (B.is<DynamicAllocLValue>()) {
11331 return B.getDynamicAllocType();
11332 }
11333
11334 return QualType();
11335}
11336
11337/// A more selective version of E->IgnoreParenCasts for
11338/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11339/// to change the type of E.
11340/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11341///
11342/// Always returns an RValue with a pointer representation.
11343static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11344 assert(E->isPRValue() && E->getType()->hasPointerRepresentation())(static_cast <bool> (E->isPRValue() && E->
getType()->hasPointerRepresentation()) ? void (0) : __assert_fail
("E->isPRValue() && E->getType()->hasPointerRepresentation()"
, "clang/lib/AST/ExprConstant.cpp", 11344, __extension__ __PRETTY_FUNCTION__
))
;
11345
11346 auto *NoParens = E->IgnoreParens();
11347 auto *Cast = dyn_cast<CastExpr>(NoParens);
11348 if (Cast == nullptr)
11349 return NoParens;
11350
11351 // We only conservatively allow a few kinds of casts, because this code is
11352 // inherently a simple solution that seeks to support the common case.
11353 auto CastKind = Cast->getCastKind();
11354 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11355 CastKind != CK_AddressSpaceConversion)
11356 return NoParens;
11357
11358 auto *SubExpr = Cast->getSubExpr();
11359 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11360 return NoParens;
11361 return ignorePointerCastsAndParens(SubExpr);
11362}
11363
11364/// Checks to see if the given LValue's Designator is at the end of the LValue's
11365/// record layout. e.g.
11366/// struct { struct { int a, b; } fst, snd; } obj;
11367/// obj.fst // no
11368/// obj.snd // yes
11369/// obj.fst.a // no
11370/// obj.fst.b // no
11371/// obj.snd.a // no
11372/// obj.snd.b // yes
11373///
11374/// Please note: this function is specialized for how __builtin_object_size
11375/// views "objects".
11376///
11377/// If this encounters an invalid RecordDecl or otherwise cannot determine the
11378/// correct result, it will always return true.
11379static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11380 assert(!LVal.Designator.Invalid)(static_cast <bool> (!LVal.Designator.Invalid) ? void (
0) : __assert_fail ("!LVal.Designator.Invalid", "clang/lib/AST/ExprConstant.cpp"
, 11380, __extension__ __PRETTY_FUNCTION__))
;
11381
11382 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11383 const RecordDecl *Parent = FD->getParent();
11384 Invalid = Parent->isInvalidDecl();
11385 if (Invalid || Parent->isUnion())
11386 return true;
11387 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11388 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11389 };
11390
11391 auto &Base = LVal.getLValueBase();
11392 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11393 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11394 bool Invalid;
11395 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11396 return Invalid;
11397 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11398 for (auto *FD : IFD->chain()) {
11399 bool Invalid;
11400 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11401 return Invalid;
11402 }
11403 }
11404 }
11405
11406 unsigned I = 0;
11407 QualType BaseType = getType(Base);
11408 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11409 // If we don't know the array bound, conservatively assume we're looking at
11410 // the final array element.
11411 ++I;
11412 if (BaseType->isIncompleteArrayType())
11413 BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11414 else
11415 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11416 }
11417
11418 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11419 const auto &Entry = LVal.Designator.Entries[I];
11420 if (BaseType->isArrayType()) {
11421 // Because __builtin_object_size treats arrays as objects, we can ignore
11422 // the index iff this is the last array in the Designator.
11423 if (I + 1 == E)
11424 return true;
11425 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11426 uint64_t Index = Entry.getAsArrayIndex();
11427 if (Index + 1 != CAT->getSize())
11428 return false;
11429 BaseType = CAT->getElementType();
11430 } else if (BaseType->isAnyComplexType()) {
11431 const auto *CT = BaseType->castAs<ComplexType>();
11432 uint64_t Index = Entry.getAsArrayIndex();
11433 if (Index != 1)
11434 return false;
11435 BaseType = CT->getElementType();
11436 } else if (auto *FD = getAsField(Entry)) {
11437 bool Invalid;
11438 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11439 return Invalid;
11440 BaseType = FD->getType();
11441 } else {
11442 assert(getAsBaseClass(Entry) && "Expecting cast to a base class")(static_cast <bool> (getAsBaseClass(Entry) && "Expecting cast to a base class"
) ? void (0) : __assert_fail ("getAsBaseClass(Entry) && \"Expecting cast to a base class\""
, "clang/lib/AST/ExprConstant.cpp", 11442, __extension__ __PRETTY_FUNCTION__
))
;
11443 return false;
11444 }
11445 }
11446 return true;
11447}
11448
11449/// Tests to see if the LValue has a user-specified designator (that isn't
11450/// necessarily valid). Note that this always returns 'true' if the LValue has
11451/// an unsized array as its first designator entry, because there's currently no
11452/// way to tell if the user typed *foo or foo[0].
11453static bool refersToCompleteObject(const LValue &LVal) {
11454 if (LVal.Designator.Invalid)
11455 return false;
11456
11457 if (!LVal.Designator.Entries.empty())
11458 return LVal.Designator.isMostDerivedAnUnsizedArray();
11459
11460 if (!LVal.InvalidBase)
11461 return true;
11462
11463 // If `E` is a MemberExpr, then the first part of the designator is hiding in
11464 // the LValueBase.
11465 const auto *E = LVal.Base.dyn_cast<const Expr *>();
11466 return !E || !isa<MemberExpr>(E);
11467}
11468
11469/// Attempts to detect a user writing into a piece of memory that's impossible
11470/// to figure out the size of by just using types.
11471static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11472 const SubobjectDesignator &Designator = LVal.Designator;
11473 // Notes:
11474 // - Users can only write off of the end when we have an invalid base. Invalid
11475 // bases imply we don't know where the memory came from.
11476 // - We used to be a bit more aggressive here; we'd only be conservative if
11477 // the array at the end was flexible, or if it had 0 or 1 elements. This
11478 // broke some common standard library extensions (PR30346), but was
11479 // otherwise seemingly fine. It may be useful to reintroduce this behavior
11480 // with some sort of list. OTOH, it seems that GCC is always
11481 // conservative with the last element in structs (if it's an array), so our
11482 // current behavior is more compatible than an explicit list approach would
11483 // be.
11484 return LVal.InvalidBase &&
11485 Designator.Entries.size() == Designator.MostDerivedPathLength &&
11486 Designator.MostDerivedIsArrayElement &&
11487 isDesignatorAtObjectEnd(Ctx, LVal);
11488}
11489
11490/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11491/// Fails if the conversion would cause loss of precision.
11492static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11493 CharUnits &Result) {
11494 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11495 if (Int.ugt(CharUnitsMax))
11496 return false;
11497 Result = CharUnits::fromQuantity(Int.getZExtValue());
11498 return true;
11499}
11500
11501/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11502/// determine how many bytes exist from the beginning of the object to either
11503/// the end of the current subobject, or the end of the object itself, depending
11504/// on what the LValue looks like + the value of Type.
11505///
11506/// If this returns false, the value of Result is undefined.
11507static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11508 unsigned Type, const LValue &LVal,
11509 CharUnits &EndOffset) {
11510 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11511
11512 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11513 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11514 return false;
11515 return HandleSizeof(Info, ExprLoc, Ty, Result);
11516 };
11517
11518 // We want to evaluate the size of the entire object. This is a valid fallback
11519 // for when Type=1 and the designator is invalid, because we're asked for an
11520 // upper-bound.
11521 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11522 // Type=3 wants a lower bound, so we can't fall back to this.
11523 if (Type == 3 && !DetermineForCompleteObject)
11524 return false;
11525
11526 llvm::APInt APEndOffset;
11527 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11528 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11529 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11530
11531 if (LVal.InvalidBase)
11532 return false;
11533
11534 QualType BaseTy = getObjectType(LVal.getLValueBase());
11535 return CheckedHandleSizeof(BaseTy, EndOffset);
11536 }
11537
11538 // We want to evaluate the size of a subobject.
11539 const SubobjectDesignator &Designator = LVal.Designator;
11540
11541 // The following is a moderately common idiom in C:
11542 //
11543 // struct Foo { int a; char c[1]; };
11544 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11545 // strcpy(&F->c[0], Bar);
11546 //
11547 // In order to not break too much legacy code, we need to support it.
11548 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11549 // If we can resolve this to an alloc_size call, we can hand that back,
11550 // because we know for certain how many bytes there are to write to.
11551 llvm::APInt APEndOffset;
11552 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11553 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11554 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11555
11556 // If we cannot determine the size of the initial allocation, then we can't
11557 // given an accurate upper-bound. However, we are still able to give
11558 // conservative lower-bounds for Type=3.
11559 if (Type == 1)
11560 return false;
11561 }
11562
11563 CharUnits BytesPerElem;
11564 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11565 return false;
11566
11567 // According to the GCC documentation, we want the size of the subobject
11568 // denoted by the pointer. But that's not quite right -- what we actually
11569 // want is the size of the immediately-enclosing array, if there is one.
11570 int64_t ElemsRemaining;
11571 if (Designator.MostDerivedIsArrayElement &&
11572 Designator.Entries.size() == Designator.MostDerivedPathLength) {
11573 uint64_t ArraySize = Designator.getMostDerivedArraySize();
11574 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11575 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11576 } else {
11577 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11578 }
11579
11580 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11581 return true;
11582}
11583
11584/// Tries to evaluate the __builtin_object_size for @p E. If successful,
11585/// returns true and stores the result in @p Size.
11586///
11587/// If @p WasError is non-null, this will report whether the failure to evaluate
11588/// is to be treated as an Error in IntExprEvaluator.
11589static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11590 EvalInfo &Info, uint64_t &Size) {
11591 // Determine the denoted object.
11592 LValue LVal;
11593 {
11594 // The operand of __builtin_object_size is never evaluated for side-effects.
11595 // If there are any, but we can determine the pointed-to object anyway, then
11596 // ignore the side-effects.
11597 SpeculativeEvaluationRAII SpeculativeEval(Info);
11598 IgnoreSideEffectsRAII Fold(Info);
11599
11600 if (E->isGLValue()) {
11601 // It's possible for us to be given GLValues if we're called via
11602 // Expr::tryEvaluateObjectSize.
11603 APValue RVal;
11604 if (!EvaluateAsRValue(Info, E, RVal))
11605 return false;
11606 LVal.setFrom(Info.Ctx, RVal);
11607 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11608 /*InvalidBaseOK=*/true))
11609 return false;
11610 }
11611
11612 // If we point to before the start of the object, there are no accessible
11613 // bytes.
11614 if (LVal.getLValueOffset().isNegative()) {
11615 Size = 0;
11616 return true;
11617 }
11618
11619 CharUnits EndOffset;
11620 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11621 return false;
11622
11623 // If we've fallen outside of the end offset, just pretend there's nothing to
11624 // write to/read from.
11625 if (EndOffset <= LVal.getLValueOffset())
11626 Size = 0;
11627 else
11628 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11629 return true;
11630}
11631
11632bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11633 if (unsigned BuiltinOp = E->getBuiltinCallee())
11634 return VisitBuiltinCallExpr(E, BuiltinOp);
11635
11636 return ExprEvaluatorBaseTy::VisitCallExpr(E);
11637}
11638
11639static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11640 APValue &Val, APSInt &Alignment) {
11641 QualType SrcTy = E->getArg(0)->getType();
11642 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11643 return false;
11644 // Even though we are evaluating integer expressions we could get a pointer
11645 // argument for the __builtin_is_aligned() case.
11646 if (SrcTy->isPointerType()) {
11647 LValue Ptr;
11648 if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11649 return false;
11650 Ptr.moveInto(Val);
11651 } else if (!SrcTy->isIntegralOrEnumerationType()) {
11652 Info.FFDiag(E->getArg(0));
11653 return false;
11654 } else {
11655 APSInt SrcInt;
11656 if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11657 return false;
11658 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&(static_cast <bool> (SrcInt.getBitWidth() >= Alignment
.getBitWidth() && "Bit widths must be the same") ? void
(0) : __assert_fail ("SrcInt.getBitWidth() >= Alignment.getBitWidth() && \"Bit widths must be the same\""
, "clang/lib/AST/ExprConstant.cpp", 11659, __extension__ __PRETTY_FUNCTION__
))
11659 "Bit widths must be the same")(static_cast <bool> (SrcInt.getBitWidth() >= Alignment
.getBitWidth() && "Bit widths must be the same") ? void
(0) : __assert_fail ("SrcInt.getBitWidth() >= Alignment.getBitWidth() && \"Bit widths must be the same\""
, "clang/lib/AST/ExprConstant.cpp", 11659, __extension__ __PRETTY_FUNCTION__
))
;
11660 Val = APValue(SrcInt);
11661 }
11662 assert(Val.hasValue())(static_cast <bool> (Val.hasValue()) ? void (0) : __assert_fail
("Val.hasValue()", "clang/lib/AST/ExprConstant.cpp", 11662, __extension__
__PRETTY_FUNCTION__))
;
11663 return true;
11664}
11665
11666bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11667 unsigned BuiltinOp) {
11668 switch (BuiltinOp) {
11669 default:
11670 return ExprEvaluatorBaseTy::VisitCallExpr(E);
11671
11672 case Builtin::BI__builtin_dynamic_object_size:
11673 case Builtin::BI__builtin_object_size: {
11674 // The type was checked when we built the expression.
11675 unsigned Type =
11676 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11677 assert(Type <= 3 && "unexpected type")(static_cast <bool> (Type <= 3 && "unexpected type"
) ? void (0) : __assert_fail ("Type <= 3 && \"unexpected type\""
, "clang/lib/AST/ExprConstant.cpp", 11677, __extension__ __PRETTY_FUNCTION__
))
;
11678
11679 uint64_t Size;
11680 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11681 return Success(Size, E);
11682
11683 if (E->getArg(0)->HasSideEffects(Info.Ctx))
11684 return Success((Type & 2) ? 0 : -1, E);
11685
11686 // Expression had no side effects, but we couldn't statically determine the
11687 // size of the referenced object.
11688 switch (Info.EvalMode) {
11689 case EvalInfo::EM_ConstantExpression:
11690 case EvalInfo::EM_ConstantFold:
11691 case EvalInfo::EM_IgnoreSideEffects:
11692 // Leave it to IR generation.
11693 return Error(E);
11694 case EvalInfo::EM_ConstantExpressionUnevaluated:
11695 // Reduce it to a constant now.
11696 return Success((Type & 2) ? 0 : -1, E);
11697 }
11698
11699 llvm_unreachable("unexpected EvalMode")::llvm::llvm_unreachable_internal("unexpected EvalMode", "clang/lib/AST/ExprConstant.cpp"
, 11699)
;
11700 }
11701
11702 case Builtin::BI__builtin_os_log_format_buffer_size: {
11703 analyze_os_log::OSLogBufferLayout Layout;
11704 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11705 return Success(Layout.size().getQuantity(), E);
11706 }
11707
11708 case Builtin::BI__builtin_is_aligned: {
11709 APValue Src;
11710 APSInt Alignment;
11711 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11712 return false;
11713 if (Src.isLValue()) {
11714 // If we evaluated a pointer, check the minimum known alignment.
11715 LValue Ptr;
11716 Ptr.setFrom(Info.Ctx, Src);
11717 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11718 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11719 // We can return true if the known alignment at the computed offset is
11720 // greater than the requested alignment.
11721 assert(PtrAlign.isPowerOfTwo())(static_cast <bool> (PtrAlign.isPowerOfTwo()) ? void (0
) : __assert_fail ("PtrAlign.isPowerOfTwo()", "clang/lib/AST/ExprConstant.cpp"
, 11721, __extension__ __PRETTY_FUNCTION__))
;
11722 assert(Alignment.isPowerOf2())(static_cast <bool> (Alignment.isPowerOf2()) ? void (0)
: __assert_fail ("Alignment.isPowerOf2()", "clang/lib/AST/ExprConstant.cpp"
, 11722, __extension__ __PRETTY_FUNCTION__))
;
11723 if (PtrAlign.getQuantity() >= Alignment)
11724 return Success(1, E);
11725 // If the alignment is not known to be sufficient, some cases could still
11726 // be aligned at run time. However, if the requested alignment is less or
11727 // equal to the base alignment and the offset is not aligned, we know that
11728 // the run-time value can never be aligned.
11729 if (BaseAlignment.getQuantity() >= Alignment &&
11730 PtrAlign.getQuantity() < Alignment)
11731 return Success(0, E);
11732 // Otherwise we can't infer whether the value is sufficiently aligned.
11733 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11734 // in cases where we can't fully evaluate the pointer.
11735 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11736 << Alignment;
11737 return false;
11738 }
11739 assert(Src.isInt())(static_cast <bool> (Src.isInt()) ? void (0) : __assert_fail
("Src.isInt()", "clang/lib/AST/ExprConstant.cpp", 11739, __extension__
__PRETTY_FUNCTION__))
;
11740 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11741 }
11742 case Builtin::BI__builtin_align_up: {
11743 APValue Src;
11744 APSInt Alignment;
11745 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11746 return false;
11747 if (!Src.isInt())
11748 return Error(E);
11749 APSInt AlignedVal =
11750 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11751 Src.getInt().isUnsigned());
11752 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth())(static_cast <bool> (AlignedVal.getBitWidth() == Src.getInt
().getBitWidth()) ? void (0) : __assert_fail ("AlignedVal.getBitWidth() == Src.getInt().getBitWidth()"
, "clang/lib/AST/ExprConstant.cpp", 11752, __extension__ __PRETTY_FUNCTION__
))
;
11753 return Success(AlignedVal, E);
11754 }
11755 case Builtin::BI__builtin_align_down: {
11756 APValue Src;
11757 APSInt Alignment;
11758 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11759 return false;
11760 if (!Src.isInt())
11761 return Error(E);
11762 APSInt AlignedVal =
11763 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11764 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth())(static_cast <bool> (AlignedVal.getBitWidth() == Src.getInt
().getBitWidth()) ? void (0) : __assert_fail ("AlignedVal.getBitWidth() == Src.getInt().getBitWidth()"
, "clang/lib/AST/ExprConstant.cpp", 11764, __extension__ __PRETTY_FUNCTION__
))
;
11765 return Success(AlignedVal, E);
11766 }
11767
11768 case Builtin::BI__builtin_bitreverse8:
11769 case Builtin::BI__builtin_bitreverse16:
11770 case Builtin::BI__builtin_bitreverse32:
11771 case Builtin::BI__builtin_bitreverse64: {
11772 APSInt Val;
11773 if (!EvaluateInteger(E->getArg(0), Val, Info))
11774 return false;
11775
11776 return Success(Val.reverseBits(), E);
11777 }
11778
11779 case Builtin::BI__builtin_bswap16:
11780 case Builtin::BI__builtin_bswap32:
11781 case Builtin::BI__builtin_bswap64: {
11782 APSInt Val;
11783 if (!EvaluateInteger(E->getArg(0), Val, Info))
11784 return false;
11785
11786 return Success(Val.byteSwap(), E);
11787 }
11788
11789 case Builtin::BI__builtin_classify_type:
11790 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11791
11792 case Builtin::BI__builtin_clrsb:
11793 case Builtin::BI__builtin_clrsbl:
11794 case Builtin::BI__builtin_clrsbll: {
11795 APSInt Val;
11796 if (!EvaluateInteger(E->getArg(0), Val, Info))
11797 return false;
11798
11799 return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11800 }
11801
11802 case Builtin::BI__builtin_clz:
11803 case Builtin::BI__builtin_clzl:
11804 case Builtin::BI__builtin_clzll:
11805 case Builtin::BI__builtin_clzs: {
11806 APSInt Val;
11807 if (!EvaluateInteger(E->getArg(0), Val, Info))
11808 return false;
11809 if (!Val)
11810 return Error(E);
11811
11812 return Success(Val.countLeadingZeros(), E);
11813 }
11814
11815 case Builtin::BI__builtin_constant_p: {
11816 const Expr *Arg = E->getArg(0);
11817 if (EvaluateBuiltinConstantP(Info, Arg))
11818 return Success(true, E);
11819 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11820 // Outside a constant context, eagerly evaluate to false in the presence
11821 // of side-effects in order to avoid -Wunsequenced false-positives in
11822 // a branch on __builtin_constant_p(expr).
11823 return Success(false, E);
11824 }
11825 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11826 return false;
11827 }
11828
11829 case Builtin::BI__builtin_is_constant_evaluated: {
11830 const auto *Callee = Info.CurrentCall->getCallee();
11831 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11832 (Info.CallStackDepth == 1 ||
11833 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11834 Callee->getIdentifier() &&
11835 Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11836 // FIXME: Find a better way to avoid duplicated diagnostics.
11837 if (Info.EvalStatus.Diag)
11838 Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11839 : Info.CurrentCall->CallLoc,
11840 diag::warn_is_constant_evaluated_always_true_constexpr)
11841 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11842 : "std::is_constant_evaluated");
11843 }
11844
11845 return Success(Info.InConstantContext, E);
11846 }
11847
11848 case Builtin::BI__builtin_ctz:
11849 case Builtin::BI__builtin_ctzl:
11850 case Builtin::BI__builtin_ctzll:
11851 case Builtin::BI__builtin_ctzs: {
11852 APSInt Val;
11853 if (!EvaluateInteger(E->getArg(0), Val, Info))
11854 return false;
11855 if (!Val)
11856 return Error(E);
11857
11858 return Success(Val.countTrailingZeros(), E);
11859 }
11860
11861 case Builtin::BI__builtin_eh_return_data_regno: {
11862 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11863 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11864 return Success(Operand, E);
11865 }
11866
11867 case Builtin::BI__builtin_expect:
11868 case Builtin::BI__builtin_expect_with_probability:
11869 return Visit(E->getArg(0));
11870
11871 case Builtin::BI__builtin_ffs:
11872 case Builtin::BI__builtin_ffsl:
11873 case Builtin::BI__builtin_ffsll: {
11874 APSInt Val;
11875 if (!EvaluateInteger(E->getArg(0), Val, Info))
11876 return false;
11877
11878 unsigned N = Val.countTrailingZeros();
11879 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
11880 }
11881
11882 case Builtin::BI__builtin_fpclassify: {
11883 APFloat Val(0.0);
11884 if (!EvaluateFloat(E->getArg(5), Val, Info))
11885 return false;
11886 unsigned Arg;
11887 switch (Val.getCategory()) {
11888 case APFloat::fcNaN: Arg = 0; break;
11889 case APFloat::fcInfinity: Arg = 1; break;
11890 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
11891 case APFloat::fcZero: Arg = 4; break;
11892 }
11893 return Visit(E->getArg(Arg));
11894 }
11895
11896 case Builtin::BI__builtin_isinf_sign: {
11897 APFloat Val(0.0);
11898 return EvaluateFloat(E->getArg(0), Val, Info) &&
11899 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
11900 }
11901
11902 case Builtin::BI__builtin_isinf: {
11903 APFloat Val(0.0);
11904 return EvaluateFloat(E->getArg(0), Val, Info) &&
11905 Success(Val.isInfinity() ? 1 : 0, E);
11906 }
11907
11908 case Builtin::BI__builtin_isfinite: {
11909 APFloat Val(0.0);
11910 return EvaluateFloat(E->getArg(0), Val, Info) &&
11911 Success(Val.isFinite() ? 1 : 0, E);
11912 }
11913
11914 case Builtin::BI__builtin_isnan: {
11915 APFloat Val(0.0);
11916 return EvaluateFloat(E->getArg(0), Val, Info) &&
11917 Success(Val.isNaN() ? 1 : 0, E);
11918 }
11919
11920 case Builtin::BI__builtin_isnormal: {
11921 APFloat Val(0.0);
11922 return EvaluateFloat(E->getArg(0), Val, Info) &&
11923 Success(Val.isNormal() ? 1 : 0, E);
11924 }
11925
11926 case Builtin::BI__builtin_parity:
11927 case Builtin::BI__builtin_parityl:
11928 case Builtin::BI__builtin_parityll: {
11929 APSInt Val;
11930 if (!EvaluateInteger(E->getArg(0), Val, Info))
11931 return false;
11932
11933 return Success(Val.countPopulation() % 2, E);
11934 }
11935
11936 case Builtin::BI__builtin_popcount:
11937 case Builtin::BI__builtin_popcountl:
11938 case Builtin::BI__builtin_popcountll: {
11939 APSInt Val;
11940 if (!EvaluateInteger(E->getArg(0), Val, Info))
11941 return false;
11942
11943 return Success(Val.countPopulation(), E);
11944 }
11945
11946 case Builtin::BI__builtin_rotateleft8:
11947 case Builtin::BI__builtin_rotateleft16:
11948 case Builtin::BI__builtin_rotateleft32:
11949 case Builtin::BI__builtin_rotateleft64:
11950 case Builtin::BI_rotl8: // Microsoft variants of rotate right
11951 case Builtin::BI_rotl16:
11952 case Builtin::BI_rotl:
11953 case Builtin::BI_lrotl:
11954 case Builtin::BI_rotl64: {
11955 APSInt Val, Amt;
11956 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11957 !EvaluateInteger(E->getArg(1), Amt, Info))
11958 return false;
11959
11960 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
11961 }
11962
11963 case Builtin::BI__builtin_rotateright8:
11964 case Builtin::BI__builtin_rotateright16:
11965 case Builtin::BI__builtin_rotateright32:
11966 case Builtin::BI__builtin_rotateright64:
11967 case Builtin::BI_rotr8: // Microsoft variants of rotate right
11968 case Builtin::BI_rotr16:
11969 case Builtin::BI_rotr:
11970 case Builtin::BI_lrotr:
11971 case Builtin::BI_rotr64: {
11972 APSInt Val, Amt;
11973 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11974 !EvaluateInteger(E->getArg(1), Amt, Info))
11975 return false;
11976
11977 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
11978 }
11979
11980 case Builtin::BIstrlen:
11981 case Builtin::BIwcslen:
11982 // A call to strlen is not a constant expression.
11983 if (Info.getLangOpts().CPlusPlus11)
11984 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11985 << /*isConstexpr*/0 << /*isConstructor*/0
11986 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11987 else
11988 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11989 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11990 case Builtin::BI__builtin_strlen:
11991 case Builtin::BI__builtin_wcslen: {
11992 // As an extension, we support __builtin_strlen() as a constant expression,
11993 // and support folding strlen() to a constant.
11994 uint64_t StrLen;
11995 if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
11996 return Success(StrLen, E);
11997 return false;
11998 }
11999
12000 case Builtin::BIstrcmp:
12001 case Builtin::BIwcscmp:
12002 case Builtin::BIstrncmp:
12003 case Builtin::BIwcsncmp:
12004 case Builtin::BImemcmp:
12005 case Builtin::BIbcmp:
12006 case Builtin::BIwmemcmp:
12007 // A call to strlen is not a constant expression.
12008 if (Info.getLangOpts().CPlusPlus11)
12009 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12010 << /*isConstexpr*/0 << /*isConstructor*/0
12011 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
12012 else
12013 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12014 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12015 case Builtin::BI__builtin_strcmp:
12016 case Builtin::BI__builtin_wcscmp:
12017 case Builtin::BI__builtin_strncmp:
12018 case Builtin::BI__builtin_wcsncmp:
12019 case Builtin::BI__builtin_memcmp:
12020 case Builtin::BI__builtin_bcmp:
12021 case Builtin::BI__builtin_wmemcmp: {
12022 LValue String1, String2;
12023 if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12024 !EvaluatePointer(E->getArg(1), String2, Info))
12025 return false;
12026
12027 uint64_t MaxLength = uint64_t(-1);
12028 if (BuiltinOp != Builtin::BIstrcmp &&
12029 BuiltinOp != Builtin::BIwcscmp &&
12030 BuiltinOp != Builtin::BI__builtin_strcmp &&
12031 BuiltinOp != Builtin::BI__builtin_wcscmp) {
12032 APSInt N;
12033 if (!EvaluateInteger(E->getArg(2), N, Info))
12034 return false;
12035 MaxLength = N.getExtValue();
12036 }
12037
12038 // Empty substrings compare equal by definition.
12039 if (MaxLength == 0u)
12040 return Success(0, E);
12041
12042 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12043 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12044 String1.Designator.Invalid || String2.Designator.Invalid)
12045 return false;
12046
12047 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12048 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12049
12050 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12051 BuiltinOp == Builtin::BIbcmp ||
12052 BuiltinOp == Builtin::BI__builtin_memcmp ||
12053 BuiltinOp == Builtin::BI__builtin_bcmp;
12054
12055 assert(IsRawByte ||(static_cast <bool> (IsRawByte || (Info.Ctx.hasSameUnqualifiedType
( CharTy1, E->getArg(0)->getType()->getPointeeType()
) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2
))) ? void (0) : __assert_fail ("IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->getArg(0)->getType()->getPointeeType()) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))"
, "clang/lib/AST/ExprConstant.cpp", 12058, __extension__ __PRETTY_FUNCTION__
))
12056 (Info.Ctx.hasSameUnqualifiedType((static_cast <bool> (IsRawByte || (Info.Ctx.hasSameUnqualifiedType
( CharTy1, E->getArg(0)->getType()->getPointeeType()
) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2
))) ? void (0) : __assert_fail ("IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->getArg(0)->getType()->getPointeeType()) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))"
, "clang/lib/AST/ExprConstant.cpp", 12058, __extension__ __PRETTY_FUNCTION__
))
12057 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&(static_cast <bool> (IsRawByte || (Info.Ctx.hasSameUnqualifiedType
( CharTy1, E->getArg(0)->getType()->getPointeeType()
) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2
))) ? void (0) : __assert_fail ("IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->getArg(0)->getType()->getPointeeType()) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))"
, "clang/lib/AST/ExprConstant.cpp", 12058, __extension__ __PRETTY_FUNCTION__
))
12058 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)))(static_cast <bool> (IsRawByte || (Info.Ctx.hasSameUnqualifiedType
( CharTy1, E->getArg(0)->getType()->getPointeeType()
) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2
))) ? void (0) : __assert_fail ("IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->getArg(0)->getType()->getPointeeType()) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))"
, "clang/lib/AST/ExprConstant.cpp", 12058, __extension__ __PRETTY_FUNCTION__
))
;
12059
12060 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12061 // 'char8_t', but no other types.
12062 if (IsRawByte &&
12063 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12064 // FIXME: Consider using our bit_cast implementation to support this.
12065 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12066 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
12067 << CharTy1 << CharTy2;
12068 return false;
12069 }
12070
12071 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12072 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12073 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12074 Char1.isInt() && Char2.isInt();
12075 };
12076 const auto &AdvanceElems = [&] {
12077 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12078 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12079 };
12080
12081 bool StopAtNull =
12082 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12083 BuiltinOp != Builtin::BIwmemcmp &&
12084 BuiltinOp != Builtin::BI__builtin_memcmp &&
12085 BuiltinOp != Builtin::BI__builtin_bcmp &&
12086 BuiltinOp != Builtin::BI__builtin_wmemcmp);
12087 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12088 BuiltinOp == Builtin::BIwcsncmp ||
12089 BuiltinOp == Builtin::BIwmemcmp ||
12090 BuiltinOp == Builtin::BI__builtin_wcscmp ||
12091 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12092 BuiltinOp == Builtin::BI__builtin_wmemcmp;
12093
12094 for (; MaxLength; --MaxLength) {
12095 APValue Char1, Char2;
12096 if (!ReadCurElems(Char1, Char2))
12097 return false;
12098 if (Char1.getInt().ne(Char2.getInt())) {
12099 if (IsWide) // wmemcmp compares with wchar_t signedness.
12100 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12101 // memcmp always compares unsigned chars.
12102 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12103 }
12104 if (StopAtNull && !Char1.getInt())
12105 return Success(0, E);
12106 assert(!(StopAtNull && !Char2.getInt()))(static_cast <bool> (!(StopAtNull && !Char2.getInt
())) ? void (0) : __assert_fail ("!(StopAtNull && !Char2.getInt())"
, "clang/lib/AST/ExprConstant.cpp", 12106, __extension__ __PRETTY_FUNCTION__
))
;
12107 if (!AdvanceElems())
12108 return false;
12109 }
12110 // We hit the strncmp / memcmp limit.
12111 return Success(0, E);
12112 }
12113
12114 case Builtin::BI__atomic_always_lock_free:
12115 case Builtin::BI__atomic_is_lock_free:
12116 case Builtin::BI__c11_atomic_is_lock_free: {
12117 APSInt SizeVal;
12118 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12119 return false;
12120
12121 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12122 // of two less than or equal to the maximum inline atomic width, we know it
12123 // is lock-free. If the size isn't a power of two, or greater than the
12124 // maximum alignment where we promote atomics, we know it is not lock-free
12125 // (at least not in the sense of atomic_is_lock_free). Otherwise,
12126 // the answer can only be determined at runtime; for example, 16-byte
12127 // atomics have lock-free implementations on some, but not all,
12128 // x86-64 processors.
12129
12130 // Check power-of-two.
12131 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12132 if (Size.isPowerOfTwo()) {
12133 // Check against inlining width.
12134 unsigned InlineWidthBits =
12135 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12136 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12137 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12138 Size == CharUnits::One() ||
12139 E->getArg(1)->isNullPointerConstant(Info.Ctx,
12140 Expr::NPC_NeverValueDependent))
12141 // OK, we will inline appropriately-aligned operations of this size,
12142 // and _Atomic(T) is appropriately-aligned.
12143 return Success(1, E);
12144
12145 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12146 castAs<PointerType>()->getPointeeType();
12147 if (!PointeeType->isIncompleteType() &&
12148 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12149 // OK, we will inline operations on this object.
12150 return Success(1, E);
12151 }
12152 }
12153 }
12154
12155 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12156 Success(0, E) : Error(E);
12157 }
12158 case Builtin::BI__builtin_add_overflow:
12159 case Builtin::BI__builtin_sub_overflow:
12160 case Builtin::BI__builtin_mul_overflow:
12161 case Builtin::BI__builtin_sadd_overflow:
12162 case Builtin::BI__builtin_uadd_overflow:
12163 case Builtin::BI__builtin_uaddl_overflow:
12164 case Builtin::BI__builtin_uaddll_overflow:
12165 case Builtin::BI__builtin_usub_overflow:
12166 case Builtin::BI__builtin_usubl_overflow:
12167 case Builtin::BI__builtin_usubll_overflow:
12168 case Builtin::BI__builtin_umul_overflow:
12169 case Builtin::BI__builtin_umull_overflow:
12170 case Builtin::BI__builtin_umulll_overflow:
12171 case Builtin::BI__builtin_saddl_overflow:
12172 case Builtin::BI__builtin_saddll_overflow:
12173 case Builtin::BI__builtin_ssub_overflow:
12174 case Builtin::BI__builtin_ssubl_overflow:
12175 case Builtin::BI__builtin_ssubll_overflow:
12176 case Builtin::BI__builtin_smul_overflow:
12177 case Builtin::BI__builtin_smull_overflow:
12178 case Builtin::BI__builtin_smulll_overflow: {
12179 LValue ResultLValue;
12180 APSInt LHS, RHS;
12181
12182 QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12183 if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12184 !EvaluateInteger(E->getArg(1), RHS, Info) ||
12185 !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12186 return false;
12187
12188 APSInt Result;
12189 bool DidOverflow = false;
12190
12191 // If the types don't have to match, enlarge all 3 to the largest of them.
12192 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12193 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12194 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12195 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12196 ResultType->isSignedIntegerOrEnumerationType();
12197 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12198 ResultType->isSignedIntegerOrEnumerationType();
12199 uint64_t LHSSize = LHS.getBitWidth();
12200 uint64_t RHSSize = RHS.getBitWidth();
12201 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12202 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12203
12204 // Add an additional bit if the signedness isn't uniformly agreed to. We
12205 // could do this ONLY if there is a signed and an unsigned that both have
12206 // MaxBits, but the code to check that is pretty nasty. The issue will be
12207 // caught in the shrink-to-result later anyway.
12208 if (IsSigned && !AllSigned)
12209 ++MaxBits;
12210
12211 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12212 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12213 Result = APSInt(MaxBits, !IsSigned);
12214 }
12215
12216 // Find largest int.
12217 switch (BuiltinOp) {
12218 default:
12219 llvm_unreachable("Invalid value for BuiltinOp")::llvm::llvm_unreachable_internal("Invalid value for BuiltinOp"
, "clang/lib/AST/ExprConstant.cpp", 12219)
;
12220 case Builtin::BI__builtin_add_overflow:
12221 case Builtin::BI__builtin_sadd_overflow:
12222 case Builtin::BI__builtin_saddl_overflow:
12223 case Builtin::BI__builtin_saddll_overflow:
12224 case Builtin::BI__builtin_uadd_overflow:
12225 case Builtin::BI__builtin_uaddl_overflow:
12226 case Builtin::BI__builtin_uaddll_overflow:
12227 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12228 : LHS.uadd_ov(RHS, DidOverflow);
12229 break;
12230 case Builtin::BI__builtin_sub_overflow:
12231 case Builtin::BI__builtin_ssub_overflow:
12232 case Builtin::BI__builtin_ssubl_overflow:
12233 case Builtin::BI__builtin_ssubll_overflow:
12234 case Builtin::BI__builtin_usub_overflow:
12235 case Builtin::BI__builtin_usubl_overflow:
12236 case Builtin::BI__builtin_usubll_overflow:
12237 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12238 : LHS.usub_ov(RHS, DidOverflow);
12239 break;
12240 case Builtin::BI__builtin_mul_overflow:
12241 case Builtin::BI__builtin_smul_overflow:
12242 case Builtin::BI__builtin_smull_overflow:
12243 case Builtin::BI__builtin_smulll_overflow:
12244 case Builtin::BI__builtin_umul_overflow:
12245 case Builtin::BI__builtin_umull_overflow:
12246 case Builtin::BI__builtin_umulll_overflow:
12247 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12248 : LHS.umul_ov(RHS, DidOverflow);
12249 break;
12250 }
12251
12252 // In the case where multiple sizes are allowed, truncate and see if
12253 // the values are the same.
12254 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12255 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12256 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12257 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12258 // since it will give us the behavior of a TruncOrSelf in the case where
12259 // its parameter <= its size. We previously set Result to be at least the
12260 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12261 // will work exactly like TruncOrSelf.
12262 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12263 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12264
12265 if (!APSInt::isSameValue(Temp, Result))
12266 DidOverflow = true;
12267 Result = Temp;
12268 }
12269
12270 APValue APV{Result};
12271 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12272 return false;
12273 return Success(DidOverflow, E);
12274 }
12275 }
12276}
12277
12278/// Determine whether this is a pointer past the end of the complete
12279/// object referred to by the lvalue.
12280static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12281 const LValue &LV) {
12282 // A null pointer can be viewed as being "past the end" but we don't
12283 // choose to look at it that way here.
12284 if (!LV.getLValueBase())
12285 return false;
12286
12287 // If the designator is valid and refers to a subobject, we're not pointing
12288 // past the end.
12289 if (!LV.getLValueDesignator().Invalid &&
12290 !LV.getLValueDesignator().isOnePastTheEnd())
12291 return false;
12292
12293 // A pointer to an incomplete type might be past-the-end if the type's size is
12294 // zero. We cannot tell because the type is incomplete.
12295 QualType Ty = getType(LV.getLValueBase());
12296 if (Ty->isIncompleteType())
12297 return true;
12298
12299 // We're a past-the-end pointer if we point to the byte after the object,
12300 // no matter what our type or path is.
12301 auto Size = Ctx.getTypeSizeInChars(Ty);
12302 return LV.getLValueOffset() == Size;
12303}
12304
12305namespace {
12306
12307/// Data recursive integer evaluator of certain binary operators.
12308///
12309/// We use a data recursive algorithm for binary operators so that we are able
12310/// to handle extreme cases of chained binary operators without causing stack
12311/// overflow.
12312class DataRecursiveIntBinOpEvaluator {
12313 struct EvalResult {
12314 APValue Val;
12315 bool Failed;
12316
12317 EvalResult() : Failed(false) { }
12318
12319 void swap(EvalResult &RHS) {
12320 Val.swap(RHS.Val);
12321 Failed = RHS.Failed;
12322 RHS.Failed = false;
12323 }
12324 };
12325
12326 struct Job {
12327 const Expr *E;
12328 EvalResult LHSResult; // meaningful only for binary operator expression.
12329 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12330
12331 Job() = default;
12332 Job(Job &&) = default;
12333
12334 void startSpeculativeEval(EvalInfo &Info) {
12335 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12336 }
12337
12338 private:
12339 SpeculativeEvaluationRAII SpecEvalRAII;
12340 };
12341
12342 SmallVector<Job, 16> Queue;
12343
12344 IntExprEvaluator &IntEval;
12345 EvalInfo &Info;
12346 APValue &FinalResult;
12347
12348public:
12349 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12350 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12351
12352 /// True if \param E is a binary operator that we are going to handle
12353 /// data recursively.
12354 /// We handle binary operators that are comma, logical, or that have operands
12355 /// with integral or enumeration type.
12356 static bool shouldEnqueue(const BinaryOperator *E) {
12357 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12358 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12359 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12360 E->getRHS()->getType()->isIntegralOrEnumerationType());
12361 }
12362
12363 bool Traverse(const BinaryOperator *E) {
12364 enqueue(E);
12365 EvalResult PrevResult;
12366 while (!Queue.empty())
12367 process(PrevResult);
12368
12369 if (PrevResult.Failed) return false;
12370
12371 FinalResult.swap(PrevResult.Val);
12372 return true;
12373 }
12374
12375private:
12376 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12377 return IntEval.Success(Value, E, Result);
12378 }
12379 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12380 return IntEval.Success(Value, E, Result);
12381 }
12382 bool Error(const Expr *E) {
12383 return IntEval.Error(E);
12384 }
12385 bool Error(const Expr *E, diag::kind D) {
12386 return IntEval.Error(E, D);
12387 }
12388
12389 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12390 return Info.CCEDiag(E, D);
12391 }
12392
12393 // Returns true if visiting the RHS is necessary, false otherwise.
12394 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12395 bool &SuppressRHSDiags);
12396
12397 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12398 const BinaryOperator *E, APValue &Result);
12399
12400 void EvaluateExpr(const Expr *E, EvalResult &Result) {
12401 Result.Failed = !Evaluate(Result.Val, Info, E);
12402 if (Result.Failed)
12403 Result.Val = APValue();
12404 }
12405
12406 void process(EvalResult &Result);
12407
12408 void enqueue(const Expr *E) {
12409 E = E->IgnoreParens();
12410 Queue.resize(Queue.size()+1);
12411 Queue.back().E = E;
12412 Queue.back().Kind = Job::AnyExprKind;
12413 }
12414};
12415
12416}
12417
12418bool DataRecursiveIntBinOpEvaluator::
12419 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12420 bool &SuppressRHSDiags) {
12421 if (E->getOpcode() == BO_Comma) {
12422 // Ignore LHS but note if we could not evaluate it.
12423 if (LHSResult.Failed)
12424 return Info.noteSideEffect();
12425 return true;
12426 }
12427
12428 if (E->isLogicalOp()) {
12429 bool LHSAsBool;
12430 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12431 // We were able to evaluate the LHS, see if we can get away with not
12432 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12433 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12434 Success(LHSAsBool, E, LHSResult.Val);
12435 return false; // Ignore RHS
12436 }
12437 } else {
12438 LHSResult.Failed = true;
12439
12440 // Since we weren't able to evaluate the left hand side, it
12441 // might have had side effects.
12442 if (!Info.noteSideEffect())
12443 return false;
12444
12445 // We can't evaluate the LHS; however, sometimes the result
12446 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12447 // Don't ignore RHS and suppress diagnostics from this arm.
12448 SuppressRHSDiags = true;
12449 }
12450
12451 return true;
12452 }
12453
12454 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "clang/lib/AST/ExprConstant.cpp", 12455, __extension__ __PRETTY_FUNCTION__
))
12455 E->getRHS()->getType()->isIntegralOrEnumerationType())(static_cast <bool> (E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "clang/lib/AST/ExprConstant.cpp", 12455, __extension__ __PRETTY_FUNCTION__
))
;
12456
12457 if (LHSResult.Failed && !Info.noteFailure())
12458 return false; // Ignore RHS;
12459
12460 return true;
12461}
12462
12463static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12464 bool IsSub) {
12465 // Compute the new offset in the appropriate width, wrapping at 64 bits.
12466 // FIXME: When compiling for a 32-bit target, we should use 32-bit
12467 // offsets.
12468 assert(!LVal.hasLValuePath() && "have designator for integer lvalue")(static_cast <bool> (!LVal.hasLValuePath() && "have designator for integer lvalue"
) ? void (0) : __assert_fail ("!LVal.hasLValuePath() && \"have designator for integer lvalue\""
, "clang/lib/AST/ExprConstant.cpp", 12468, __extension__ __PRETTY_FUNCTION__
))
;
12469 CharUnits &Offset = LVal.getLValueOffset();
12470 uint64_t Offset64 = Offset.getQuantity();
12471 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12472 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12473 : Offset64 + Index64);
12474}
12475
12476bool DataRecursiveIntBinOpEvaluator::
12477 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12478 const BinaryOperator *E, APValue &Result) {
12479 if (E->getOpcode() == BO_Comma) {
12480 if (RHSResult.Failed)
12481 return false;
12482 Result = RHSResult.Val;
12483 return true;
12484 }
12485
12486 if (E->isLogicalOp()) {
12487 bool lhsResult, rhsResult;
12488 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12489 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12490
12491 if (LHSIsOK) {
12492 if (RHSIsOK) {
12493 if (E->getOpcode() == BO_LOr)
12494 return Success(lhsResult || rhsResult, E, Result);
12495 else
12496 return Success(lhsResult && rhsResult, E, Result);
12497 }
12498 } else {
12499 if (RHSIsOK) {
12500 // We can't evaluate the LHS; however, sometimes the result
12501 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12502 if (rhsResult == (E->getOpcode() == BO_LOr))
12503 return Success(rhsResult, E, Result);
12504 }
12505 }
12506
12507 return false;
12508 }
12509
12510 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "clang/lib/AST/ExprConstant.cpp", 12511, __extension__ __PRETTY_FUNCTION__
))
12511 E->getRHS()->getType()->isIntegralOrEnumerationType())(static_cast <bool> (E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "clang/lib/AST/ExprConstant.cpp", 12511, __extension__ __PRETTY_FUNCTION__
))
;
12512
12513 if (LHSResult.Failed || RHSResult.Failed)
12514 return false;
12515
12516 const APValue &LHSVal = LHSResult.Val;
12517 const APValue &RHSVal = RHSResult.Val;
12518
12519 // Handle cases like (unsigned long)&a + 4.
12520 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12521 Result = LHSVal;
12522 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12523 return true;
12524 }
12525
12526 // Handle cases like 4 + (unsigned long)&a
12527 if (E->getOpcode() == BO_Add &&
12528 RHSVal.isLValue() && LHSVal.isInt()) {
12529 Result = RHSVal;
12530 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12531 return true;
12532 }
12533
12534 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12535 // Handle (intptr_t)&&A - (intptr_t)&&B.
12536 if (!LHSVal.getLValueOffset().isZero() ||
12537 !RHSVal.getLValueOffset().isZero())
12538 return false;
12539 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12540 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12541 if (!LHSExpr || !RHSExpr)
12542 return false;
12543 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12544 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12545 if (!LHSAddrExpr || !RHSAddrExpr)
12546 return false;
12547 // Make sure both labels come from the same function.
12548 if (LHSAddrExpr->getLabel()->getDeclContext() !=
12549 RHSAddrExpr->getLabel()->getDeclContext())
12550 return false;
12551 Result = APValue(LHSAddrExpr, RHSAddrExpr);
12552 return true;
12553 }
12554
12555 // All the remaining cases expect both operands to be an integer
12556 if (!LHSVal.isInt() || !RHSVal.isInt())
12557 return Error(E);
12558
12559 // Set up the width and signedness manually, in case it can't be deduced
12560 // from the operation we're performing.
12561 // FIXME: Don't do this in the cases where we can deduce it.
12562 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12563 E->getType()->isUnsignedIntegerOrEnumerationType());
12564 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12565 RHSVal.getInt(), Value))
12566 return false;
12567 return Success(Value, E, Result);
12568}
12569
12570void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12571 Job &job = Queue.back();
12572
12573 switch (job.Kind) {
12574 case Job::AnyExprKind: {
12575 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12576 if (shouldEnqueue(Bop)) {
12577 job.Kind = Job::BinOpKind;
12578 enqueue(Bop->getLHS());
12579 return;
12580 }
12581 }
12582
12583 EvaluateExpr(job.E, Result);
12584 Queue.pop_back();
12585 return;
12586 }
12587
12588 case Job::BinOpKind: {
12589 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12590 bool SuppressRHSDiags = false;
12591 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12592 Queue.pop_back();
12593 return;
12594 }
12595 if (SuppressRHSDiags)
12596 job.startSpeculativeEval(Info);
12597 job.LHSResult.swap(Result);
12598 job.Kind = Job::BinOpVisitedLHSKind;
12599 enqueue(Bop->getRHS());
12600 return;
12601 }
12602
12603 case Job::BinOpVisitedLHSKind: {
12604 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12605 EvalResult RHS;
12606 RHS.swap(Result);
12607 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12608 Queue.pop_back();
12609 return;
12610 }
12611 }
12612
12613 llvm_unreachable("Invalid Job::Kind!")::llvm::llvm_unreachable_internal("Invalid Job::Kind!", "clang/lib/AST/ExprConstant.cpp"
, 12613)
;
12614}
12615
12616namespace {
12617enum class CmpResult {
12618 Unequal,
12619 Less,
12620 Equal,
12621 Greater,
12622 Unordered,
12623};
12624}
12625
12626template <class SuccessCB, class AfterCB>
12627static bool
12628EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12629 SuccessCB &&Success, AfterCB &&DoAfter) {
12630 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 12630, __extension__ __PRETTY_FUNCTION__))
;
12631 assert(E->isComparisonOp() && "expected comparison operator")(static_cast <bool> (E->isComparisonOp() && "expected comparison operator"
) ? void (0) : __assert_fail ("E->isComparisonOp() && \"expected comparison operator\""
, "clang/lib/AST/ExprConstant.cpp", 12631, __extension__ __PRETTY_FUNCTION__
))
;
12632 assert((E->getOpcode() == BO_Cmp ||(static_cast <bool> ((E->getOpcode() == BO_Cmp || E->
getType()->isIntegralOrEnumerationType()) && "unsupported binary expression evaluation"
) ? void (0) : __assert_fail ("(E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType()) && \"unsupported binary expression evaluation\""
, "clang/lib/AST/ExprConstant.cpp", 12634, __extension__ __PRETTY_FUNCTION__
))
12633 E->getType()->isIntegralOrEnumerationType()) &&(static_cast <bool> ((E->getOpcode() == BO_Cmp || E->
getType()->isIntegralOrEnumerationType()) && "unsupported binary expression evaluation"
) ? void (0) : __assert_fail ("(E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType()) && \"unsupported binary expression evaluation\""
, "clang/lib/AST/ExprConstant.cpp", 12634, __extension__ __PRETTY_FUNCTION__
))
12634 "unsupported binary expression evaluation")(static_cast <bool> ((E->getOpcode() == BO_Cmp || E->
getType()->isIntegralOrEnumerationType()) && "unsupported binary expression evaluation"
) ? void (0) : __assert_fail ("(E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType()) && \"unsupported binary expression evaluation\""
, "clang/lib/AST/ExprConstant.cpp", 12634, __extension__ __PRETTY_FUNCTION__
))
;
12635 auto Error = [&](const Expr *E) {
12636 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12637 return false;
12638 };
12639
12640 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12641 bool IsEquality = E->isEqualityOp();
12642
12643 QualType LHSTy = E->getLHS()->getType();
12644 QualType RHSTy = E->getRHS()->getType();
12645
12646 if (LHSTy->isIntegralOrEnumerationType() &&
12647 RHSTy->isIntegralOrEnumerationType()) {
12648 APSInt LHS, RHS;
12649 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12650 if (!LHSOK && !Info.noteFailure())
12651 return false;
12652 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12653 return false;
12654 if (LHS < RHS)
12655 return Success(CmpResult::Less, E);
12656 if (LHS > RHS)
12657 return Success(CmpResult::Greater, E);
12658 return Success(CmpResult::Equal, E);
12659 }
12660
12661 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12662 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12663 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12664
12665 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12666 if (!LHSOK && !Info.noteFailure())
12667 return false;
12668 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12669 return false;
12670 if (LHSFX < RHSFX)
12671 return Success(CmpResult::Less, E);
12672 if (LHSFX > RHSFX)
12673 return Success(CmpResult::Greater, E);
12674 return Success(CmpResult::Equal, E);
12675 }
12676
12677 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12678 ComplexValue LHS, RHS;
12679 bool LHSOK;
12680 if (E->isAssignmentOp()) {
12681 LValue LV;
12682 EvaluateLValue(E->getLHS(), LV, Info);
12683 LHSOK = false;
12684 } else if (LHSTy->isRealFloatingType()) {
12685 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12686 if (LHSOK) {
12687 LHS.makeComplexFloat();
12688 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12689 }
12690 } else {
12691 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12692 }
12693 if (!LHSOK && !Info.noteFailure())
12694 return false;
12695
12696 if (E->getRHS()->getType()->isRealFloatingType()) {
12697 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12698 return false;
12699 RHS.makeComplexFloat();
12700 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12701 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12702 return false;
12703
12704 if (LHS.isComplexFloat()) {
12705 APFloat::cmpResult CR_r =
12706 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12707 APFloat::cmpResult CR_i =
12708 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12709 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12710 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12711 } else {
12712 assert(IsEquality && "invalid complex comparison")(static_cast <bool> (IsEquality && "invalid complex comparison"
) ? void (0) : __assert_fail ("IsEquality && \"invalid complex comparison\""
, "clang/lib/AST/ExprConstant.cpp", 12712, __extension__ __PRETTY_FUNCTION__
))
;
12713 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12714 LHS.getComplexIntImag() == RHS.getComplexIntImag();
12715 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12716 }
12717 }
12718
12719 if (LHSTy->isRealFloatingType() &&
12720 RHSTy->isRealFloatingType()) {
12721 APFloat RHS(0.0), LHS(0.0);
12722
12723 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12724 if (!LHSOK && !Info.noteFailure())
12725 return false;
12726
12727 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12728 return false;
12729
12730 assert(E->isComparisonOp() && "Invalid binary operator!")(static_cast <bool> (E->isComparisonOp() && "Invalid binary operator!"
) ? void (0) : __assert_fail ("E->isComparisonOp() && \"Invalid binary operator!\""
, "clang/lib/AST/ExprConstant.cpp", 12730, __extension__ __PRETTY_FUNCTION__
))
;
12731 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12732 if (!Info.InConstantContext &&
12733 APFloatCmpResult == APFloat::cmpUnordered &&
12734 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12735 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12736 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12737 return false;
12738 }
12739 auto GetCmpRes = [&]() {
12740 switch (APFloatCmpResult) {
12741 case APFloat::cmpEqual:
12742 return CmpResult::Equal;
12743 case APFloat::cmpLessThan:
12744 return CmpResult::Less;
12745 case APFloat::cmpGreaterThan:
12746 return CmpResult::Greater;
12747 case APFloat::cmpUnordered:
12748 return CmpResult::Unordered;
12749 }
12750 llvm_unreachable("Unrecognised APFloat::cmpResult enum")::llvm::llvm_unreachable_internal("Unrecognised APFloat::cmpResult enum"
, "clang/lib/AST/ExprConstant.cpp", 12750)
;
12751 };
12752 return Success(GetCmpRes(), E);
12753 }
12754
12755 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12756 LValue LHSValue, RHSValue;
12757
12758 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12759 if (!LHSOK && !Info.noteFailure())
12760 return false;
12761
12762 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12763 return false;
12764
12765 // Reject differing bases from the normal codepath; we special-case
12766 // comparisons to null.
12767 if (!HasSameBase(LHSValue, RHSValue)) {
12768 // Inequalities and subtractions between unrelated pointers have
12769 // unspecified or undefined behavior.
12770 if (!IsEquality) {
12771 Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12772 return false;
12773 }
12774 // A constant address may compare equal to the address of a symbol.
12775 // The one exception is that address of an object cannot compare equal
12776 // to a null pointer constant.
12777 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12778 (!RHSValue.Base && !RHSValue.Offset.isZero()))
12779 return Error(E);
12780 // It's implementation-defined whether distinct literals will have
12781 // distinct addresses. In clang, the result of such a comparison is
12782 // unspecified, so it is not a constant expression. However, we do know
12783 // that the address of a literal will be non-null.
12784 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12785 LHSValue.Base && RHSValue.Base)
12786 return Error(E);
12787 // We can't tell whether weak symbols will end up pointing to the same
12788 // object.
12789 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12790 return Error(E);
12791 // We can't compare the address of the start of one object with the
12792 // past-the-end address of another object, per C++ DR1652.
12793 if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12794 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12795 (RHSValue.Base && RHSValue.Offset.isZero() &&
12796 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12797 return Error(E);
12798 // We can't tell whether an object is at the same address as another
12799 // zero sized object.
12800 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12801 (LHSValue.Base && isZeroSized(RHSValue)))
12802 return Error(E);
12803 return Success(CmpResult::Unequal, E);
12804 }
12805
12806 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12807 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12808
12809 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12810 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12811
12812 // C++11 [expr.rel]p3:
12813 // Pointers to void (after pointer conversions) can be compared, with a
12814 // result defined as follows: If both pointers represent the same
12815 // address or are both the null pointer value, the result is true if the
12816 // operator is <= or >= and false otherwise; otherwise the result is
12817 // unspecified.
12818 // We interpret this as applying to pointers to *cv* void.
12819 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12820 Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12821
12822 // C++11 [expr.rel]p2:
12823 // - If two pointers point to non-static data members of the same object,
12824 // or to subobjects or array elements fo such members, recursively, the
12825 // pointer to the later declared member compares greater provided the
12826 // two members have the same access control and provided their class is
12827 // not a union.
12828 // [...]
12829 // - Otherwise pointer comparisons are unspecified.
12830 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12831 bool WasArrayIndex;
12832 unsigned Mismatch = FindDesignatorMismatch(
12833 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12834 // At the point where the designators diverge, the comparison has a
12835 // specified value if:
12836 // - we are comparing array indices
12837 // - we are comparing fields of a union, or fields with the same access
12838 // Otherwise, the result is unspecified and thus the comparison is not a
12839 // constant expression.
12840 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12841 Mismatch < RHSDesignator.Entries.size()) {
12842 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12843 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12844 if (!LF && !RF)
12845 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12846 else if (!LF)
12847 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12848 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12849 << RF->getParent() << RF;
12850 else if (!RF)
12851 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12852 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12853 << LF->getParent() << LF;
12854 else if (!LF->getParent()->isUnion() &&
12855 LF->getAccess() != RF->getAccess())
12856 Info.CCEDiag(E,
12857 diag::note_constexpr_pointer_comparison_differing_access)
12858 << LF << LF->getAccess() << RF << RF->getAccess()
12859 << LF->getParent();
12860 }
12861 }
12862
12863 // The comparison here must be unsigned, and performed with the same
12864 // width as the pointer.
12865 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12866 uint64_t CompareLHS = LHSOffset.getQuantity();
12867 uint64_t CompareRHS = RHSOffset.getQuantity();
12868 assert(PtrSize <= 64 && "Unexpected pointer width")(static_cast <bool> (PtrSize <= 64 && "Unexpected pointer width"
) ? void (0) : __assert_fail ("PtrSize <= 64 && \"Unexpected pointer width\""
, "clang/lib/AST/ExprConstant.cpp", 12868, __extension__ __PRETTY_FUNCTION__
))
;
12869 uint64_t Mask = ~0ULL >> (64 - PtrSize);
12870 CompareLHS &= Mask;
12871 CompareRHS &= Mask;
12872
12873 // If there is a base and this is a relational operator, we can only
12874 // compare pointers within the object in question; otherwise, the result
12875 // depends on where the object is located in memory.
12876 if (!LHSValue.Base.isNull() && IsRelational) {
12877 QualType BaseTy = getType(LHSValue.Base);
12878 if (BaseTy->isIncompleteType())
12879 return Error(E);
12880 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
12881 uint64_t OffsetLimit = Size.getQuantity();
12882 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
12883 return Error(E);
12884 }
12885
12886 if (CompareLHS < CompareRHS)
12887 return Success(CmpResult::Less, E);
12888 if (CompareLHS > CompareRHS)
12889 return Success(CmpResult::Greater, E);
12890 return Success(CmpResult::Equal, E);
12891 }
12892
12893 if (LHSTy->isMemberPointerType()) {
12894 assert(IsEquality && "unexpected member pointer operation")(static_cast <bool> (IsEquality && "unexpected member pointer operation"
) ? void (0) : __assert_fail ("IsEquality && \"unexpected member pointer operation\""
, "clang/lib/AST/ExprConstant.cpp", 12894, __extension__ __PRETTY_FUNCTION__
))
;
12895 assert(RHSTy->isMemberPointerType() && "invalid comparison")(static_cast <bool> (RHSTy->isMemberPointerType() &&
"invalid comparison") ? void (0) : __assert_fail ("RHSTy->isMemberPointerType() && \"invalid comparison\""
, "clang/lib/AST/ExprConstant.cpp", 12895, __extension__ __PRETTY_FUNCTION__
))
;
12896
12897 MemberPtr LHSValue, RHSValue;
12898
12899 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
12900 if (!LHSOK && !Info.noteFailure())
12901 return false;
12902
12903 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12904 return false;
12905
12906 // C++11 [expr.eq]p2:
12907 // If both operands are null, they compare equal. Otherwise if only one is
12908 // null, they compare unequal.
12909 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
12910 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
12911 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12912 }
12913
12914 // Otherwise if either is a pointer to a virtual member function, the
12915 // result is unspecified.
12916 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
12917 if (MD->isVirtual())
12918 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12919 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
12920 if (MD->isVirtual())
12921 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12922
12923 // Otherwise they compare equal if and only if they would refer to the
12924 // same member of the same most derived object or the same subobject if
12925 // they were dereferenced with a hypothetical object of the associated
12926 // class type.
12927 bool Equal = LHSValue == RHSValue;
12928 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12929 }
12930
12931 if (LHSTy->isNullPtrType()) {
12932 assert(E->isComparisonOp() && "unexpected nullptr operation")(static_cast <bool> (E->isComparisonOp() && "unexpected nullptr operation"
) ? void (0) : __assert_fail ("E->isComparisonOp() && \"unexpected nullptr operation\""
, "clang/lib/AST/ExprConstant.cpp", 12932, __extension__ __PRETTY_FUNCTION__
))
;
12933 assert(RHSTy->isNullPtrType() && "missing pointer conversion")(static_cast <bool> (RHSTy->isNullPtrType() &&
"missing pointer conversion") ? void (0) : __assert_fail ("RHSTy->isNullPtrType() && \"missing pointer conversion\""
, "clang/lib/AST/ExprConstant.cpp", 12933, __extension__ __PRETTY_FUNCTION__
))
;
12934 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
12935 // are compared, the result is true of the operator is <=, >= or ==, and
12936 // false otherwise.
12937 return Success(CmpResult::Equal, E);
12938 }
12939
12940 return DoAfter();
12941}
12942
12943bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
12944 if (!CheckLiteralType(Info, E))
12945 return false;
12946
12947 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12948 ComparisonCategoryResult CCR;
12949 switch (CR) {
12950 case CmpResult::Unequal:
12951 llvm_unreachable("should never produce Unequal for three-way comparison")::llvm::llvm_unreachable_internal("should never produce Unequal for three-way comparison"
, "clang/lib/AST/ExprConstant.cpp", 12951)
;
12952 case CmpResult::Less:
12953 CCR = ComparisonCategoryResult::Less;
12954 break;
12955 case CmpResult::Equal:
12956 CCR = ComparisonCategoryResult::Equal;
12957 break;
12958 case CmpResult::Greater:
12959 CCR = ComparisonCategoryResult::Greater;
12960 break;
12961 case CmpResult::Unordered:
12962 CCR = ComparisonCategoryResult::Unordered;
12963 break;
12964 }
12965 // Evaluation succeeded. Lookup the information for the comparison category
12966 // type and fetch the VarDecl for the result.
12967 const ComparisonCategoryInfo &CmpInfo =
12968 Info.Ctx.CompCategories.getInfoForType(E->getType());
12969 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
12970 // Check and evaluate the result as a constant expression.
12971 LValue LV;
12972 LV.set(VD);
12973 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
12974 return false;
12975 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
12976 ConstantExprKind::Normal);
12977 };
12978 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12979 return ExprEvaluatorBaseTy::VisitBinCmp(E);
12980 });
12981}
12982
12983bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12984 // We don't support assignment in C. C++ assignments don't get here because
12985 // assignment is an lvalue in C++.
12986 if (E->isAssignmentOp()) {
12987 Error(E);
12988 if (!Info.noteFailure())
12989 return false;
12990 }
12991
12992 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
12993 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
12994
12995 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||(static_cast <bool> ((!E->getLHS()->getType()->
isIntegralOrEnumerationType() || !E->getRHS()->getType(
)->isIntegralOrEnumerationType()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? void (0) : __assert_fail ("(!E->getLHS()->getType()->isIntegralOrEnumerationType() || !E->getRHS()->getType()->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "clang/lib/AST/ExprConstant.cpp", 12997, __extension__ __PRETTY_FUNCTION__
))
12996 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&(static_cast <bool> ((!E->getLHS()->getType()->
isIntegralOrEnumerationType() || !E->getRHS()->getType(
)->isIntegralOrEnumerationType()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? void (0) : __assert_fail ("(!E->getLHS()->getType()->isIntegralOrEnumerationType() || !E->getRHS()->getType()->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "clang/lib/AST/ExprConstant.cpp", 12997, __extension__ __PRETTY_FUNCTION__
))
12997 "DataRecursiveIntBinOpEvaluator should have handled integral types")(static_cast <bool> ((!E->getLHS()->getType()->
isIntegralOrEnumerationType() || !E->getRHS()->getType(
)->isIntegralOrEnumerationType()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? void (0) : __assert_fail ("(!E->getLHS()->getType()->isIntegralOrEnumerationType() || !E->getRHS()->getType()->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "clang/lib/AST/ExprConstant.cpp", 12997, __extension__ __PRETTY_FUNCTION__
))
;
12998
12999 if (E->isComparisonOp()) {
13000 // Evaluate builtin binary comparisons by evaluating them as three-way
13001 // comparisons and then translating the result.
13002 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13003 assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&(static_cast <bool> ((CR != CmpResult::Unequal || E->
isEqualityOp()) && "should only produce Unequal for equality comparisons"
) ? void (0) : __assert_fail ("(CR != CmpResult::Unequal || E->isEqualityOp()) && \"should only produce Unequal for equality comparisons\""
, "clang/lib/AST/ExprConstant.cpp", 13004, __extension__ __PRETTY_FUNCTION__
))
13004 "should only produce Unequal for equality comparisons")(static_cast <bool> ((CR != CmpResult::Unequal || E->
isEqualityOp()) && "should only produce Unequal for equality comparisons"
) ? void (0) : __assert_fail ("(CR != CmpResult::Unequal || E->isEqualityOp()) && \"should only produce Unequal for equality comparisons\""
, "clang/lib/AST/ExprConstant.cpp", 13004, __extension__ __PRETTY_FUNCTION__
))
;
13005 bool IsEqual = CR == CmpResult::Equal,
13006 IsLess = CR == CmpResult::Less,
13007 IsGreater = CR == CmpResult::Greater;
13008 auto Op = E->getOpcode();
13009 switch (Op) {
13010 default:
13011 llvm_unreachable("unsupported binary operator")::llvm::llvm_unreachable_internal("unsupported binary operator"
, "clang/lib/AST/ExprConstant.cpp", 13011)
;
13012 case BO_EQ:
13013 case BO_NE:
13014 return Success(IsEqual == (Op == BO_EQ), E);
13015 case BO_LT:
13016 return Success(IsLess, E);
13017 case BO_GT:
13018 return Success(IsGreater, E);
13019 case BO_LE:
13020 return Success(IsEqual || IsLess, E);
13021 case BO_GE:
13022 return Success(IsEqual || IsGreater, E);
13023 }
13024 };
13025 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13026 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13027 });
13028 }
13029
13030 QualType LHSTy = E->getLHS()->getType();
13031 QualType RHSTy = E->getRHS()->getType();
13032
13033 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13034 E->getOpcode() == BO_Sub) {
13035 LValue LHSValue, RHSValue;
13036
13037 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13038 if (!LHSOK && !Info.noteFailure())
13039 return false;
13040
13041 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13042 return false;
13043
13044 // Reject differing bases from the normal codepath; we special-case
13045 // comparisons to null.
13046 if (!HasSameBase(LHSValue, RHSValue)) {
13047 // Handle &&A - &&B.
13048 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13049 return Error(E);
13050 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13051 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13052 if (!LHSExpr || !RHSExpr)
13053 return Error(E);
13054 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13055 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13056 if (!LHSAddrExpr || !RHSAddrExpr)
13057 return Error(E);
13058 // Make sure both labels come from the same function.
13059 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13060 RHSAddrExpr->getLabel()->getDeclContext())
13061 return Error(E);
13062 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13063 }
13064 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13065 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13066
13067 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13068 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13069
13070 // C++11 [expr.add]p6:
13071 // Unless both pointers point to elements of the same array object, or
13072 // one past the last element of the array object, the behavior is
13073 // undefined.
13074 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13075 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13076 RHSDesignator))
13077 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13078
13079 QualType Type = E->getLHS()->getType();
13080 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13081
13082 CharUnits ElementSize;
13083 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13084 return false;
13085
13086 // As an extension, a type may have zero size (empty struct or union in
13087 // C, array of zero length). Pointer subtraction in such cases has
13088 // undefined behavior, so is not constant.
13089 if (ElementSize.isZero()) {
13090 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13091 << ElementType;
13092 return false;
13093 }
13094
13095 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13096 // and produce incorrect results when it overflows. Such behavior
13097 // appears to be non-conforming, but is common, so perhaps we should
13098 // assume the standard intended for such cases to be undefined behavior
13099 // and check for them.
13100
13101 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13102 // overflow in the final conversion to ptrdiff_t.
13103 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13104 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13105 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13106 false);
13107 APSInt TrueResult = (LHS - RHS) / ElemSize;
13108 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13109
13110 if (Result.extend(65) != TrueResult &&
13111 !HandleOverflow(Info, E, TrueResult, E->getType()))
13112 return false;
13113 return Success(Result, E);
13114 }
13115
13116 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13117}
13118
13119/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13120/// a result as the expression's type.
13121bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13122 const UnaryExprOrTypeTraitExpr *E) {
13123 switch(E->getKind()) {
13124 case UETT_PreferredAlignOf:
13125 case UETT_AlignOf: {
13126 if (E->isArgumentType())
13127 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13128 E);
13129 else
13130 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13131 E);
13132 }
13133
13134 case UETT_VecStep: {
13135 QualType Ty = E->getTypeOfArgument();
13136
13137 if (Ty->isVectorType()) {
13138 unsigned n = Ty->castAs<VectorType>()->getNumElements();
13139
13140 // The vec_step built-in functions that take a 3-component
13141 // vector return 4. (OpenCL 1.1 spec 6.11.12)
13142 if (n == 3)
13143 n = 4;
13144
13145 return Success(n, E);
13146 } else
13147 return Success(1, E);
13148 }
13149
13150 case UETT_SizeOf: {
13151 QualType SrcTy = E->getTypeOfArgument();
13152 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13153 // the result is the size of the referenced type."
13154 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13155 SrcTy = Ref->getPointeeType();
13156
13157 CharUnits Sizeof;
13158 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13159 return false;
13160 return Success(Sizeof, E);
13161 }
13162 case UETT_OpenMPRequiredSimdAlign:
13163 assert(E->isArgumentType())(static_cast <bool> (E->isArgumentType()) ? void (0)
: __assert_fail ("E->isArgumentType()", "clang/lib/AST/ExprConstant.cpp"
, 13163, __extension__ __PRETTY_FUNCTION__))
;
13164 return Success(
13165 Info.Ctx.toCharUnitsFromBits(
13166 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13167 .getQuantity(),
13168 E);
13169 }
13170
13171 llvm_unreachable("unknown expr/type trait")::llvm::llvm_unreachable_internal("unknown expr/type trait", "clang/lib/AST/ExprConstant.cpp"
, 13171)
;
13172}
13173
13174bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13175 CharUnits Result;
13176 unsigned n = OOE->getNumComponents();
13177 if (n == 0)
13178 return Error(OOE);
13179 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13180 for (unsigned i = 0; i != n; ++i) {
13181 OffsetOfNode ON = OOE->getComponent(i);
13182 switch (ON.getKind()) {
13183 case OffsetOfNode::Array: {
13184 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13185 APSInt IdxResult;
13186 if (!EvaluateInteger(Idx, IdxResult, Info))
13187 return false;
13188 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13189 if (!AT)
13190 return Error(OOE);
13191 CurrentType = AT->getElementType();
13192 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13193 Result += IdxResult.getSExtValue() * ElementSize;
13194 break;
13195 }
13196
13197 case OffsetOfNode::Field: {
13198 FieldDecl *MemberDecl = ON.getField();
13199 const RecordType *RT = CurrentType->getAs<RecordType>();
13200 if (!RT)
13201 return Error(OOE);
13202 RecordDecl *RD = RT->getDecl();
13203 if (RD->isInvalidDecl()) return false;
13204 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13205 unsigned i = MemberDecl->getFieldIndex();
13206 assert(i < RL.getFieldCount() && "offsetof field in wrong type")(static_cast <bool> (i < RL.getFieldCount() &&
"offsetof field in wrong type") ? void (0) : __assert_fail (
"i < RL.getFieldCount() && \"offsetof field in wrong type\""
, "clang/lib/AST/ExprConstant.cpp", 13206, __extension__ __PRETTY_FUNCTION__
))
;
13207 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13208 CurrentType = MemberDecl->getType().getNonReferenceType();
13209 break;
13210 }
13211
13212 case OffsetOfNode::Identifier:
13213 llvm_unreachable("dependent __builtin_offsetof")::llvm::llvm_unreachable_internal("dependent __builtin_offsetof"
, "clang/lib/AST/ExprConstant.cpp", 13213)
;
13214
13215 case OffsetOfNode::Base: {
13216 CXXBaseSpecifier *BaseSpec = ON.getBase();
13217 if (BaseSpec->isVirtual())
13218 return Error(OOE);
13219
13220 // Find the layout of the class whose base we are looking into.
13221 const RecordType *RT = CurrentType->getAs<RecordType>();
13222 if (!RT)
13223 return Error(OOE);
13224 RecordDecl *RD = RT->getDecl();
13225 if (RD->isInvalidDecl()) return false;
13226 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13227
13228 // Find the base class itself.
13229 CurrentType = BaseSpec->getType();
13230 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13231 if (!BaseRT)
13232 return Error(OOE);
13233
13234 // Add the offset to the base.
13235 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13236 break;
13237 }
13238 }
13239 }
13240 return Success(Result, OOE);
13241}
13242
13243bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13244 switch (E->getOpcode()) {
13245 default:
13246 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13247 // See C99 6.6p3.
13248 return Error(E);
13249 case UO_Extension:
13250 // FIXME: Should extension allow i-c-e extension expressions in its scope?
13251 // If so, we could clear the diagnostic ID.
13252 return Visit(E->getSubExpr());
13253 case UO_Plus:
13254 // The result is just the value.
13255 return Visit(E->getSubExpr());
13256 case UO_Minus: {
13257 if (!Visit(E->getSubExpr()))
13258 return false;
13259 if (!Result.isInt()) return Error(E);
13260 const APSInt &Value = Result.getInt();
13261 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13262 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13263 E->getType()))
13264 return false;
13265 return Success(-Value, E);
13266 }
13267 case UO_Not: {
13268 if (!Visit(E->getSubExpr()))
13269 return false;
13270 if (!Result.isInt()) return Error(E);
13271 return Success(~Result.getInt(), E);
13272 }
13273 case UO_LNot: {
13274 bool bres;
13275 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13276 return false;
13277 return Success(!bres, E);
13278 }
13279 }
13280}
13281
13282/// HandleCast - This is used to evaluate implicit or explicit casts where the
13283/// result type is integer.
13284bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13285 const Expr *SubExpr = E->getSubExpr();
13286 QualType DestType = E->getType();
13287 QualType SrcType = SubExpr->getType();
13288
13289 switch (E->getCastKind()) {
13290 case CK_BaseToDerived:
13291 case CK_DerivedToBase:
13292 case CK_UncheckedDerivedToBase:
13293 case CK_Dynamic:
13294 case CK_ToUnion:
13295 case CK_ArrayToPointerDecay:
13296 case CK_FunctionToPointerDecay:
13297 case CK_NullToPointer:
13298 case CK_NullToMemberPointer:
13299 case CK_BaseToDerivedMemberPointer:
13300 case CK_DerivedToBaseMemberPointer:
13301 case CK_ReinterpretMemberPointer:
13302 case CK_ConstructorConversion:
13303 case CK_IntegralToPointer:
13304 case CK_ToVoid:
13305 case CK_VectorSplat:
13306 case CK_IntegralToFloating:
13307 case CK_FloatingCast:
13308 case CK_CPointerToObjCPointerCast:
13309 case CK_BlockPointerToObjCPointerCast:
13310 case CK_AnyPointerToBlockPointerCast:
13311 case CK_ObjCObjectLValueCast:
13312 case CK_FloatingRealToComplex:
13313 case CK_FloatingComplexToReal:
13314 case CK_FloatingComplexCast:
13315 case CK_FloatingComplexToIntegralComplex:
13316 case CK_IntegralRealToComplex:
13317 case CK_IntegralComplexCast:
13318 case CK_IntegralComplexToFloatingComplex:
13319 case CK_BuiltinFnToFnPtr:
13320 case CK_ZeroToOCLOpaqueType:
13321 case CK_NonAtomicToAtomic:
13322 case CK_AddressSpaceConversion:
13323 case CK_IntToOCLSampler:
13324 case CK_FloatingToFixedPoint:
13325 case CK_FixedPointToFloating:
13326 case CK_FixedPointCast:
13327 case CK_IntegralToFixedPoint:
13328 case CK_MatrixCast:
13329 llvm_unreachable("invalid cast kind for integral value")::llvm::llvm_unreachable_internal("invalid cast kind for integral value"
, "clang/lib/AST/ExprConstant.cpp", 13329)
;
13330
13331 case CK_BitCast:
13332 case CK_Dependent:
13333 case CK_LValueBitCast:
13334 case CK_ARCProduceObject:
13335 case CK_ARCConsumeObject:
13336 case CK_ARCReclaimReturnedObject:
13337 case CK_ARCExtendBlockObject:
13338 case CK_CopyAndAutoreleaseBlockObject:
13339 return Error(E);
13340
13341 case CK_UserDefinedConversion:
13342 case CK_LValueToRValue:
13343 case CK_AtomicToNonAtomic:
13344 case CK_NoOp:
13345 case CK_LValueToRValueBitCast:
13346 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13347
13348 case CK_MemberPointerToBoolean:
13349 case CK_PointerToBoolean:
13350 case CK_IntegralToBoolean:
13351 case CK_FloatingToBoolean:
13352 case CK_BooleanToSignedIntegral:
13353 case CK_FloatingComplexToBoolean:
13354 case CK_IntegralComplexToBoolean: {
13355 bool BoolResult;
13356 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13357 return false;
13358 uint64_t IntResult = BoolResult;
13359 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13360 IntResult = (uint64_t)-1;
13361 return Success(IntResult, E);
13362 }
13363
13364 case CK_FixedPointToIntegral: {
13365 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13366 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13367 return false;
13368 bool Overflowed;
13369 llvm::APSInt Result = Src.convertToInt(
13370 Info.Ctx.getIntWidth(DestType),
13371 DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13372 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13373 return false;
13374 return Success(Result, E);
13375 }
13376
13377 case CK_FixedPointToBoolean: {
13378 // Unsigned padding does not affect this.
13379 APValue Val;
13380 if (!Evaluate(Val, Info, SubExpr))
13381 return false;
13382 return Success(Val.getFixedPoint().getBoolValue(), E);
13383 }
13384
13385 case CK_IntegralCast: {
13386 if (!Visit(SubExpr))
13387 return false;
13388
13389 if (!Result.isInt()) {
13390 // Allow casts of address-of-label differences if they are no-ops
13391 // or narrowing. (The narrowing case isn't actually guaranteed to
13392 // be constant-evaluatable except in some narrow cases which are hard
13393 // to detect here. We let it through on the assumption the user knows
13394 // what they are doing.)
13395 if (Result.isAddrLabelDiff())
13396 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13397 // Only allow casts of lvalues if they are lossless.
13398 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13399 }
13400
13401 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13402 Result.getInt()), E);
13403 }
13404
13405 case CK_PointerToIntegral: {
13406 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
13407
13408 LValue LV;
13409 if (!EvaluatePointer(SubExpr, LV, Info))
13410 return false;
13411
13412 if (LV.getLValueBase()) {
13413 // Only allow based lvalue casts if they are lossless.
13414 // FIXME: Allow a larger integer size than the pointer size, and allow
13415 // narrowing back down to pointer width in subsequent integral casts.
13416 // FIXME: Check integer type's active bits, not its type size.
13417 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13418 return Error(E);
13419
13420 LV.Designator.setInvalid();
13421 LV.moveInto(Result);
13422 return true;
13423 }
13424
13425 APSInt AsInt;
13426 APValue V;
13427 LV.moveInto(V);
13428 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13429 llvm_unreachable("Can't cast this!")::llvm::llvm_unreachable_internal("Can't cast this!", "clang/lib/AST/ExprConstant.cpp"
, 13429)
;
13430
13431 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13432 }
13433
13434 case CK_IntegralComplexToReal: {
13435 ComplexValue C;
13436 if (!EvaluateComplex(SubExpr, C, Info))
13437 return false;
13438 return Success(C.getComplexIntReal(), E);
13439 }
13440
13441 case CK_FloatingToIntegral: {
13442 APFloat F(0.0);
13443 if (!EvaluateFloat(SubExpr, F, Info))
13444 return false;
13445
13446 APSInt Value;
13447 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13448 return false;
13449 return Success(Value, E);
13450 }
13451 }
13452
13453 llvm_unreachable("unknown cast resulting in integral value")::llvm::llvm_unreachable_internal("unknown cast resulting in integral value"
, "clang/lib/AST/ExprConstant.cpp", 13453)
;
13454}
13455
13456bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13457 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13458 ComplexValue LV;
13459 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13460 return false;
13461 if (!LV.isComplexInt())
13462 return Error(E);
13463 return Success(LV.getComplexIntReal(), E);
13464 }
13465
13466 return Visit(E->getSubExpr());
13467}
13468
13469bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13470 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13471 ComplexValue LV;
13472 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13473 return false;
13474 if (!LV.isComplexInt())
13475 return Error(E);
13476 return Success(LV.getComplexIntImag(), E);
13477 }
13478
13479 VisitIgnoredValue(E->getSubExpr());
13480 return Success(0, E);
13481}
13482
13483bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13484 return Success(E->getPackLength(), E);
13485}
13486
13487bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13488 return Success(E->getValue(), E);
13489}
13490
13491bool IntExprEvaluator::VisitConceptSpecializationExpr(
13492 const ConceptSpecializationExpr *E) {
13493 return Success(E->isSatisfied(), E);
13494}
13495
13496bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13497 return Success(E->isSatisfied(), E);
13498}
13499
13500bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13501 switch (E->getOpcode()) {
13502 default:
13503 // Invalid unary operators
13504 return Error(E);
13505 case UO_Plus:
13506 // The result is just the value.
13507 return Visit(E->getSubExpr());
13508 case UO_Minus: {
13509 if (!Visit(E->getSubExpr())) return false;
13510 if (!Result.isFixedPoint())
13511 return Error(E);
13512 bool Overflowed;
13513 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13514 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13515 return false;
13516 return Success(Negated, E);
13517 }
13518 case UO_LNot: {
13519 bool bres;
13520 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13521 return false;
13522 return Success(!bres, E);
13523 }
13524 }
13525}
13526
13527bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13528 const Expr *SubExpr = E->getSubExpr();
13529 QualType DestType = E->getType();
13530 assert(DestType->isFixedPointType() &&(static_cast <bool> (DestType->isFixedPointType() &&
"Expected destination type to be a fixed point type") ? void
(0) : __assert_fail ("DestType->isFixedPointType() && \"Expected destination type to be a fixed point type\""
, "clang/lib/AST/ExprConstant.cpp", 13531, __extension__ __PRETTY_FUNCTION__
))
13531 "Expected destination type to be a fixed point type")(static_cast <bool> (DestType->isFixedPointType() &&
"Expected destination type to be a fixed point type") ? void
(0) : __assert_fail ("DestType->isFixedPointType() && \"Expected destination type to be a fixed point type\""
, "clang/lib/AST/ExprConstant.cpp", 13531, __extension__ __PRETTY_FUNCTION__
))
;
13532 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13533
13534 switch (E->getCastKind()) {
13535 case CK_FixedPointCast: {
13536 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13537 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13538 return false;
13539 bool Overflowed;
13540 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13541 if (Overflowed) {
13542 if (Info.checkingForUndefinedBehavior())
13543 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13544 diag::warn_fixedpoint_constant_overflow)
13545 << Result.toString() << E->getType();
13546 if (!HandleOverflow(Info, E, Result, E->getType()))
13547 return false;
13548 }
13549 return Success(Result, E);
13550 }
13551 case CK_IntegralToFixedPoint: {
13552 APSInt Src;
13553 if (!EvaluateInteger(SubExpr, Src, Info))
13554 return false;
13555
13556 bool Overflowed;
13557 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13558 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13559
13560 if (Overflowed) {
13561 if (Info.checkingForUndefinedBehavior())
13562 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13563 diag::warn_fixedpoint_constant_overflow)
13564 << IntResult.toString() << E->getType();
13565 if (!HandleOverflow(Info, E, IntResult, E->getType()))
13566 return false;
13567 }
13568
13569 return Success(IntResult, E);
13570 }
13571 case CK_FloatingToFixedPoint: {
13572 APFloat Src(0.0);
13573 if (!EvaluateFloat(SubExpr, Src, Info))
13574 return false;
13575
13576 bool Overflowed;
13577 APFixedPoint Result = APFixedPoint::getFromFloatValue(
13578 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13579
13580 if (Overflowed) {
13581 if (Info.checkingForUndefinedBehavior())
13582 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13583 diag::warn_fixedpoint_constant_overflow)
13584 << Result.toString() << E->getType();
13585 if (!HandleOverflow(Info, E, Result, E->getType()))
13586 return false;
13587 }
13588
13589 return Success(Result, E);
13590 }
13591 case CK_NoOp:
13592 case CK_LValueToRValue:
13593 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13594 default:
13595 return Error(E);
13596 }
13597}
13598
13599bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13600 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13601 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13602
13603 const Expr *LHS = E->getLHS();
13604 const Expr *RHS = E->getRHS();
13605 FixedPointSemantics ResultFXSema =
13606 Info.Ctx.getFixedPointSemantics(E->getType());
13607
13608 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13609 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13610 return false;
13611 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13612 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13613 return false;
13614
13615 bool OpOverflow = false, ConversionOverflow = false;
13616 APFixedPoint Result(LHSFX.getSemantics());
13617 switch (E->getOpcode()) {
13618 case BO_Add: {
13619 Result = LHSFX.add(RHSFX, &OpOverflow)
13620 .convert(ResultFXSema, &ConversionOverflow);
13621 break;
13622 }
13623 case BO_Sub: {
13624 Result = LHSFX.sub(RHSFX, &OpOverflow)
13625 .convert(ResultFXSema, &ConversionOverflow);
13626 break;
13627 }
13628 case BO_Mul: {
13629 Result = LHSFX.mul(RHSFX, &OpOverflow)
13630 .convert(ResultFXSema, &ConversionOverflow);
13631 break;
13632 }
13633 case BO_Div: {
13634 if (RHSFX.getValue() == 0) {
13635 Info.FFDiag(E, diag::note_expr_divide_by_zero);
13636 return false;
13637 }
13638 Result = LHSFX.div(RHSFX, &OpOverflow)
13639 .convert(ResultFXSema, &ConversionOverflow);
13640 break;
13641 }
13642 case BO_Shl:
13643 case BO_Shr: {
13644 FixedPointSemantics LHSSema = LHSFX.getSemantics();
13645 llvm::APSInt RHSVal = RHSFX.getValue();
13646
13647 unsigned ShiftBW =
13648 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13649 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13650 // Embedded-C 4.1.6.2.2:
13651 // The right operand must be nonnegative and less than the total number
13652 // of (nonpadding) bits of the fixed-point operand ...
13653 if (RHSVal.isNegative())
13654 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13655 else if (Amt != RHSVal)
13656 Info.CCEDiag(E, diag::note_constexpr_large_shift)
13657 << RHSVal << E->getType() << ShiftBW;
13658
13659 if (E->getOpcode() == BO_Shl)
13660 Result = LHSFX.shl(Amt, &OpOverflow);
13661 else
13662 Result = LHSFX.shr(Amt, &OpOverflow);
13663 break;
13664 }
13665 default:
13666 return false;
13667 }
13668 if (OpOverflow || ConversionOverflow) {
13669 if (Info.checkingForUndefinedBehavior())
13670 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13671 diag::warn_fixedpoint_constant_overflow)
13672 << Result.toString() << E->getType();
13673 if (!HandleOverflow(Info, E, Result, E->getType()))
13674 return false;
13675 }
13676 return Success(Result, E);
13677}
13678
13679//===----------------------------------------------------------------------===//
13680// Float Evaluation
13681//===----------------------------------------------------------------------===//
13682
13683namespace {
13684class FloatExprEvaluator
13685 : public ExprEvaluatorBase<FloatExprEvaluator> {
13686 APFloat &Result;
13687public:
13688 FloatExprEvaluator(EvalInfo &info, APFloat &result)
13689 : ExprEvaluatorBaseTy(info), Result(result) {}
13690
13691 bool Success(const APValue &V, const Expr *e) {
13692 Result = V.getFloat();
13693 return true;
13694 }
13695
13696 bool ZeroInitialization(const Expr *E) {
13697 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13698 return true;
13699 }
13700
13701 bool VisitCallExpr(const CallExpr *E);
13702
13703 bool VisitUnaryOperator(const UnaryOperator *E);
13704 bool VisitBinaryOperator(const BinaryOperator *E);
13705 bool VisitFloatingLiteral(const FloatingLiteral *E);
13706 bool VisitCastExpr(const CastExpr *E);
13707
13708 bool VisitUnaryReal(const UnaryOperator *E);
13709 bool VisitUnaryImag(const UnaryOperator *E);
13710
13711 // FIXME: Missing: array subscript of vector, member of vector
13712};
13713} // end anonymous namespace
13714
13715static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13716 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 13716, __extension__ __PRETTY_FUNCTION__))
;
13717 assert(E->isPRValue() && E->getType()->isRealFloatingType())(static_cast <bool> (E->isPRValue() && E->
getType()->isRealFloatingType()) ? void (0) : __assert_fail
("E->isPRValue() && E->getType()->isRealFloatingType()"
, "clang/lib/AST/ExprConstant.cpp", 13717, __extension__ __PRETTY_FUNCTION__
))
;
13718 return FloatExprEvaluator(Info, Result).Visit(E);
13719}
13720
13721static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13722 QualType ResultTy,
13723 const Expr *Arg,
13724 bool SNaN,
13725 llvm::APFloat &Result) {
13726 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13727 if (!S) return false;
13728
13729 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13730
13731 llvm::APInt fill;
13732
13733 // Treat empty strings as if they were zero.
13734 if (S->getString().empty())
13735 fill = llvm::APInt(32, 0);
13736 else if (S->getString().getAsInteger(0, fill))
13737 return false;
13738
13739 if (Context.getTargetInfo().isNan2008()) {
13740 if (SNaN)
13741 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13742 else
13743 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13744 } else {
13745 // Prior to IEEE 754-2008, architectures were allowed to choose whether
13746 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13747 // a different encoding to what became a standard in 2008, and for pre-
13748 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13749 // sNaN. This is now known as "legacy NaN" encoding.
13750 if (SNaN)
13751 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13752 else
13753 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13754 }
13755
13756 return true;
13757}
13758
13759bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13760 switch (E->getBuiltinCallee()) {
13761 default:
13762 return ExprEvaluatorBaseTy::VisitCallExpr(E);
13763
13764 case Builtin::BI__builtin_huge_val:
13765 case Builtin::BI__builtin_huge_valf:
13766 case Builtin::BI__builtin_huge_vall:
13767 case Builtin::BI__builtin_huge_valf128:
13768 case Builtin::BI__builtin_inf:
13769 case Builtin::BI__builtin_inff:
13770 case Builtin::BI__builtin_infl:
13771 case Builtin::BI__builtin_inff128: {
13772 const llvm::fltSemantics &Sem =
13773 Info.Ctx.getFloatTypeSemantics(E->getType());
13774 Result = llvm::APFloat::getInf(Sem);
13775 return true;
13776 }
13777
13778 case Builtin::BI__builtin_nans:
13779 case Builtin::BI__builtin_nansf:
13780 case Builtin::BI__builtin_nansl:
13781 case Builtin::BI__builtin_nansf128:
13782 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13783 true, Result))
13784 return Error(E);
13785 return true;
13786
13787 case Builtin::BI__builtin_nan:
13788 case Builtin::BI__builtin_nanf:
13789 case Builtin::BI__builtin_nanl:
13790 case Builtin::BI__builtin_nanf128:
13791 // If this is __builtin_nan() turn this into a nan, otherwise we
13792 // can't constant fold it.
13793 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13794 false, Result))
13795 return Error(E);
13796 return true;
13797
13798 case Builtin::BI__builtin_fabs:
13799 case Builtin::BI__builtin_fabsf:
13800 case Builtin::BI__builtin_fabsl:
13801 case Builtin::BI__builtin_fabsf128:
13802 // The C standard says "fabs raises no floating-point exceptions,
13803 // even if x is a signaling NaN. The returned value is independent of
13804 // the current rounding direction mode." Therefore constant folding can
13805 // proceed without regard to the floating point settings.
13806 // Reference, WG14 N2478 F.10.4.3
13807 if (!EvaluateFloat(E->getArg(0), Result, Info))
13808 return false;
13809
13810 if (Result.isNegative())
13811 Result.changeSign();
13812 return true;
13813
13814 case Builtin::BI__arithmetic_fence:
13815 return EvaluateFloat(E->getArg(0), Result, Info);
13816
13817 // FIXME: Builtin::BI__builtin_powi
13818 // FIXME: Builtin::BI__builtin_powif
13819 // FIXME: Builtin::BI__builtin_powil
13820
13821 case Builtin::BI__builtin_copysign:
13822 case Builtin::BI__builtin_copysignf:
13823 case Builtin::BI__builtin_copysignl:
13824 case Builtin::BI__builtin_copysignf128: {
13825 APFloat RHS(0.);
13826 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13827 !EvaluateFloat(E->getArg(1), RHS, Info))
13828 return false;
13829 Result.copySign(RHS);
13830 return true;
13831 }
13832 }
13833}
13834
13835bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13836 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13837 ComplexValue CV;
13838 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13839 return false;
13840 Result = CV.FloatReal;
13841 return true;
13842 }
13843
13844 return Visit(E->getSubExpr());
13845}
13846
13847bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13848 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13849 ComplexValue CV;
13850 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13851 return false;
13852 Result = CV.FloatImag;
13853 return true;
13854 }
13855
13856 VisitIgnoredValue(E->getSubExpr());
13857 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13858 Result = llvm::APFloat::getZero(Sem);
13859 return true;
13860}
13861
13862bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13863 switch (E->getOpcode()) {
13864 default: return Error(E);
13865 case UO_Plus:
13866 return EvaluateFloat(E->getSubExpr(), Result, Info);
13867 case UO_Minus:
13868 // In C standard, WG14 N2478 F.3 p4
13869 // "the unary - raises no floating point exceptions,
13870 // even if the operand is signalling."
13871 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13872 return false;
13873 Result.changeSign();
13874 return true;
13875 }
13876}
13877
13878bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13879 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13880 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13881
13882 APFloat RHS(0.0);
13883 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
13884 if (!LHSOK && !Info.noteFailure())
13885 return false;
13886 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
13887 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
13888}
13889
13890bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
13891 Result = E->getValue();
13892 return true;
13893}
13894
13895bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
13896 const Expr* SubExpr = E->getSubExpr();
13897
13898 switch (E->getCastKind()) {
13899 default:
13900 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13901
13902 case CK_IntegralToFloating: {
13903 APSInt IntResult;
13904 const FPOptions FPO = E->getFPFeaturesInEffect(
13905 Info.Ctx.getLangOpts());
13906 return EvaluateInteger(SubExpr, IntResult, Info) &&
13907 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
13908 IntResult, E->getType(), Result);
13909 }
13910
13911 case CK_FixedPointToFloating: {
13912 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13913 if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
13914 return false;
13915 Result =
13916 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
13917 return true;
13918 }
13919
13920 case CK_FloatingCast: {
13921 if (!Visit(SubExpr))
13922 return false;
13923 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
13924 Result);
13925 }
13926
13927 case CK_FloatingComplexToReal: {
13928 ComplexValue V;
13929 if (!EvaluateComplex(SubExpr, V, Info))
13930 return false;
13931 Result = V.getComplexFloatReal();
13932 return true;
13933 }
13934 }
13935}
13936
13937//===----------------------------------------------------------------------===//
13938// Complex Evaluation (for float and integer)
13939//===----------------------------------------------------------------------===//
13940
13941namespace {
13942class ComplexExprEvaluator
13943 : public ExprEvaluatorBase<ComplexExprEvaluator> {
13944 ComplexValue &Result;
13945
13946public:
13947 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
13948 : ExprEvaluatorBaseTy(info), Result(Result) {}
13949
13950 bool Success(const APValue &V, const Expr *e) {
13951 Result.setFrom(V);
13952 return true;
13953 }
13954
13955 bool ZeroInitialization(const Expr *E);
13956
13957 //===--------------------------------------------------------------------===//
13958 // Visitor Methods
13959 //===--------------------------------------------------------------------===//
13960
13961 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
13962 bool VisitCastExpr(const CastExpr *E);
13963 bool VisitBinaryOperator(const BinaryOperator *E);
13964 bool VisitUnaryOperator(const UnaryOperator *E);
13965 bool VisitInitListExpr(const InitListExpr *E);
13966 bool VisitCallExpr(const CallExpr *E);
13967};
13968} // end anonymous namespace
13969
13970static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
13971 EvalInfo &Info) {
13972 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 13972, __extension__ __PRETTY_FUNCTION__))
;
13973 assert(E->isPRValue() && E->getType()->isAnyComplexType())(static_cast <bool> (E->isPRValue() && E->
getType()->isAnyComplexType()) ? void (0) : __assert_fail (
"E->isPRValue() && E->getType()->isAnyComplexType()"
, "clang/lib/AST/ExprConstant.cpp", 13973, __extension__ __PRETTY_FUNCTION__
))
;
13974 return ComplexExprEvaluator(Info, Result).Visit(E);
13975}
13976
13977bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
13978 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
13979 if (ElemTy->isRealFloatingType()) {
13980 Result.makeComplexFloat();
13981 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
13982 Result.FloatReal = Zero;
13983 Result.FloatImag = Zero;
13984 } else {
13985 Result.makeComplexInt();
13986 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
13987 Result.IntReal = Zero;
13988 Result.IntImag = Zero;
13989 }
13990 return true;
13991}
13992
13993bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
13994 const Expr* SubExpr = E->getSubExpr();
13995
13996 if (SubExpr->getType()->isRealFloatingType()) {
13997 Result.makeComplexFloat();
13998 APFloat &Imag = Result.FloatImag;
13999 if (!EvaluateFloat(SubExpr, Imag, Info))
14000 return false;
14001
14002 Result.FloatReal = APFloat(Imag.getSemantics());
14003 return true;
14004 } else {
14005 assert(SubExpr->getType()->isIntegerType() &&(static_cast <bool> (SubExpr->getType()->isIntegerType
() && "Unexpected imaginary literal.") ? void (0) : __assert_fail
("SubExpr->getType()->isIntegerType() && \"Unexpected imaginary literal.\""
, "clang/lib/AST/ExprConstant.cpp", 14006, __extension__ __PRETTY_FUNCTION__
))
14006 "Unexpected imaginary literal.")(static_cast <bool> (SubExpr->getType()->isIntegerType
() && "Unexpected imaginary literal.") ? void (0) : __assert_fail
("SubExpr->getType()->isIntegerType() && \"Unexpected imaginary literal.\""
, "clang/lib/AST/ExprConstant.cpp", 14006, __extension__ __PRETTY_FUNCTION__
))
;
14007
14008 Result.makeComplexInt();
14009 APSInt &Imag = Result.IntImag;
14010 if (!EvaluateInteger(SubExpr, Imag, Info))
14011 return false;
14012
14013 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14014 return true;
14015 }
14016}
14017
14018bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14019
14020 switch (E->getCastKind()) {
14021 case CK_BitCast:
14022 case CK_BaseToDerived:
14023 case CK_DerivedToBase:
14024 case CK_UncheckedDerivedToBase:
14025 case CK_Dynamic:
14026 case CK_ToUnion:
14027 case CK_ArrayToPointerDecay:
14028 case CK_FunctionToPointerDecay:
14029 case CK_NullToPointer:
14030 case CK_NullToMemberPointer:
14031 case CK_BaseToDerivedMemberPointer:
14032 case CK_DerivedToBaseMemberPointer:
14033 case CK_MemberPointerToBoolean:
14034 case CK_ReinterpretMemberPointer:
14035 case CK_ConstructorConversion:
14036 case CK_IntegralToPointer:
14037 case CK_PointerToIntegral:
14038 case CK_PointerToBoolean:
14039 case CK_ToVoid:
14040 case CK_VectorSplat:
14041 case CK_IntegralCast:
14042 case CK_BooleanToSignedIntegral:
14043 case CK_IntegralToBoolean:
14044 case CK_IntegralToFloating:
14045 case CK_FloatingToIntegral:
14046 case CK_FloatingToBoolean:
14047 case CK_FloatingCast:
14048 case CK_CPointerToObjCPointerCast:
14049 case CK_BlockPointerToObjCPointerCast:
14050 case CK_AnyPointerToBlockPointerCast:
14051 case CK_ObjCObjectLValueCast:
14052 case CK_FloatingComplexToReal:
14053 case CK_FloatingComplexToBoolean:
14054 case CK_IntegralComplexToReal:
14055 case CK_IntegralComplexToBoolean:
14056 case CK_ARCProduceObject:
14057 case CK_ARCConsumeObject:
14058 case CK_ARCReclaimReturnedObject:
14059 case CK_ARCExtendBlockObject:
14060 case CK_CopyAndAutoreleaseBlockObject:
14061 case CK_BuiltinFnToFnPtr:
14062 case CK_ZeroToOCLOpaqueType:
14063 case CK_NonAtomicToAtomic:
14064 case CK_AddressSpaceConversion:
14065 case CK_IntToOCLSampler:
14066 case CK_FloatingToFixedPoint:
14067 case CK_FixedPointToFloating:
14068 case CK_FixedPointCast:
14069 case CK_FixedPointToBoolean:
14070 case CK_FixedPointToIntegral:
14071 case CK_IntegralToFixedPoint:
14072 case CK_MatrixCast:
14073 llvm_unreachable("invalid cast kind for complex value")::llvm::llvm_unreachable_internal("invalid cast kind for complex value"
, "clang/lib/AST/ExprConstant.cpp", 14073)
;
14074
14075 case CK_LValueToRValue:
14076 case CK_AtomicToNonAtomic:
14077 case CK_NoOp:
14078 case CK_LValueToRValueBitCast:
14079 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14080
14081 case CK_Dependent:
14082 case CK_LValueBitCast:
14083 case CK_UserDefinedConversion:
14084 return Error(E);
14085
14086 case CK_FloatingRealToComplex: {
14087 APFloat &Real = Result.FloatReal;
14088 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14089 return false;
14090
14091 Result.makeComplexFloat();
14092 Result.FloatImag = APFloat(Real.getSemantics());
14093 return true;
14094 }
14095
14096 case CK_FloatingComplexCast: {
14097 if (!Visit(E->getSubExpr()))
14098 return false;
14099
14100 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14101 QualType From
14102 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14103
14104 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14105 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14106 }
14107
14108 case CK_FloatingComplexToIntegralComplex: {
14109 if (!Visit(E->getSubExpr()))
14110 return false;
14111
14112 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14113 QualType From
14114 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14115 Result.makeComplexInt();
14116 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14117 To, Result.IntReal) &&
14118 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14119 To, Result.IntImag);
14120 }
14121
14122 case CK_IntegralRealToComplex: {
14123 APSInt &Real = Result.IntReal;
14124 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14125 return false;
14126
14127 Result.makeComplexInt();
14128 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14129 return true;
14130 }
14131
14132 case CK_IntegralComplexCast: {
14133 if (!Visit(E->getSubExpr()))
14134 return false;
14135
14136 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14137 QualType From
14138 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14139
14140 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14141 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14142 return true;
14143 }
14144
14145 case CK_IntegralComplexToFloatingComplex: {
14146 if (!Visit(E->getSubExpr()))
14147 return false;
14148
14149 const FPOptions FPO = E->getFPFeaturesInEffect(
14150 Info.Ctx.getLangOpts());
14151 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14152 QualType From
14153 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14154 Result.makeComplexFloat();
14155 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14156 To, Result.FloatReal) &&
14157 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14158 To, Result.FloatImag);
14159 }
14160 }
14161
14162 llvm_unreachable("unknown cast resulting in complex value")::llvm::llvm_unreachable_internal("unknown cast resulting in complex value"
, "clang/lib/AST/ExprConstant.cpp", 14162)
;
14163}
14164
14165bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14166 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14167 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14168
14169 // Track whether the LHS or RHS is real at the type system level. When this is
14170 // the case we can simplify our evaluation strategy.
14171 bool LHSReal = false, RHSReal = false;
14172
14173 bool LHSOK;
14174 if (E->getLHS()->getType()->isRealFloatingType()) {
14175 LHSReal = true;
14176 APFloat &Real = Result.FloatReal;
14177 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14178 if (LHSOK) {
14179 Result.makeComplexFloat();
14180 Result.FloatImag = APFloat(Real.getSemantics());
14181 }
14182 } else {
14183 LHSOK = Visit(E->getLHS());
14184 }
14185 if (!LHSOK && !Info.noteFailure())
14186 return false;
14187
14188 ComplexValue RHS;
14189 if (E->getRHS()->getType()->isRealFloatingType()) {
14190 RHSReal = true;
14191 APFloat &Real = RHS.FloatReal;
14192 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14193 return false;
14194 RHS.makeComplexFloat();
14195 RHS.FloatImag = APFloat(Real.getSemantics());
14196 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14197 return false;
14198
14199 assert(!(LHSReal && RHSReal) &&(static_cast <bool> (!(LHSReal && RHSReal) &&
"Cannot have both operands of a complex operation be real.")
? void (0) : __assert_fail ("!(LHSReal && RHSReal) && \"Cannot have both operands of a complex operation be real.\""
, "clang/lib/AST/ExprConstant.cpp", 14200, __extension__ __PRETTY_FUNCTION__
))
14200 "Cannot have both operands of a complex operation be real.")(static_cast <bool> (!(LHSReal && RHSReal) &&
"Cannot have both operands of a complex operation be real.")
? void (0) : __assert_fail ("!(LHSReal && RHSReal) && \"Cannot have both operands of a complex operation be real.\""
, "clang/lib/AST/ExprConstant.cpp", 14200, __extension__ __PRETTY_FUNCTION__
))
;
14201 switch (E->getOpcode()) {
14202 default: return Error(E);
14203 case BO_Add:
14204 if (Result.isComplexFloat()) {
14205 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14206 APFloat::rmNearestTiesToEven);
14207 if (LHSReal)
14208 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14209 else if (!RHSReal)
14210 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14211 APFloat::rmNearestTiesToEven);
14212 } else {
14213 Result.getComplexIntReal() += RHS.getComplexIntReal();
14214 Result.getComplexIntImag() += RHS.getComplexIntImag();
14215 }
14216 break;
14217 case BO_Sub:
14218 if (Result.isComplexFloat()) {
14219 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14220 APFloat::rmNearestTiesToEven);
14221 if (LHSReal) {
14222 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14223 Result.getComplexFloatImag().changeSign();
14224 } else if (!RHSReal) {
14225 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14226 APFloat::rmNearestTiesToEven);
14227 }
14228 } else {
14229 Result.getComplexIntReal() -= RHS.getComplexIntReal();
14230 Result.getComplexIntImag() -= RHS.getComplexIntImag();
14231 }
14232 break;
14233 case BO_Mul:
14234 if (Result.isComplexFloat()) {
14235 // This is an implementation of complex multiplication according to the
14236 // constraints laid out in C11 Annex G. The implementation uses the
14237 // following naming scheme:
14238 // (a + ib) * (c + id)
14239 ComplexValue LHS = Result;
14240 APFloat &A = LHS.getComplexFloatReal();
14241 APFloat &B = LHS.getComplexFloatImag();
14242 APFloat &C = RHS.getComplexFloatReal();
14243 APFloat &D = RHS.getComplexFloatImag();
14244 APFloat &ResR = Result.getComplexFloatReal();
14245 APFloat &ResI = Result.getComplexFloatImag();
14246 if (LHSReal) {
14247 assert(!RHSReal && "Cannot have two real operands for a complex op!")(static_cast <bool> (!RHSReal && "Cannot have two real operands for a complex op!"
) ? void (0) : __assert_fail ("!RHSReal && \"Cannot have two real operands for a complex op!\""
, "clang/lib/AST/ExprConstant.cpp", 14247, __extension__ __PRETTY_FUNCTION__
))
;
14248 ResR = A * C;
14249 ResI = A * D;
14250 } else if (RHSReal) {
14251 ResR = C * A;
14252 ResI = C * B;
14253 } else {
14254 // In the fully general case, we need to handle NaNs and infinities
14255 // robustly.
14256 APFloat AC = A * C;
14257 APFloat BD = B * D;
14258 APFloat AD = A * D;
14259 APFloat BC = B * C;
14260 ResR = AC - BD;
14261 ResI = AD + BC;
14262 if (ResR.isNaN() && ResI.isNaN()) {
14263 bool Recalc = false;
14264 if (A.isInfinity() || B.isInfinity()) {
14265 A = APFloat::copySign(
14266 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14267 B = APFloat::copySign(
14268 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14269 if (C.isNaN())
14270 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14271 if (D.isNaN())
14272 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14273 Recalc = true;
14274 }
14275 if (C.isInfinity() || D.isInfinity()) {
14276 C = APFloat::copySign(
14277 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14278 D = APFloat::copySign(
14279 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14280 if (A.isNaN())
14281 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14282 if (B.isNaN())
14283 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14284 Recalc = true;
14285 }
14286 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14287 AD.isInfinity() || BC.isInfinity())) {
14288 if (A.isNaN())
14289 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14290 if (B.isNaN())
14291 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14292 if (C.isNaN())
14293 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14294 if (D.isNaN())
14295 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14296 Recalc = true;
14297 }
14298 if (Recalc) {
14299 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14300 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14301 }
14302 }
14303 }
14304 } else {
14305 ComplexValue LHS = Result;
14306 Result.getComplexIntReal() =
14307 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14308 LHS.getComplexIntImag() * RHS.getComplexIntImag());
14309 Result.getComplexIntImag() =
14310 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14311 LHS.getComplexIntImag() * RHS.getComplexIntReal());
14312 }
14313 break;
14314 case BO_Div:
14315 if (Result.isComplexFloat()) {
14316 // This is an implementation of complex division according to the
14317 // constraints laid out in C11 Annex G. The implementation uses the
14318 // following naming scheme:
14319 // (a + ib) / (c + id)
14320 ComplexValue LHS = Result;
14321 APFloat &A = LHS.getComplexFloatReal();
14322 APFloat &B = LHS.getComplexFloatImag();
14323 APFloat &C = RHS.getComplexFloatReal();
14324 APFloat &D = RHS.getComplexFloatImag();
14325 APFloat &ResR = Result.getComplexFloatReal();
14326 APFloat &ResI = Result.getComplexFloatImag();
14327 if (RHSReal) {
14328 ResR = A / C;
14329 ResI = B / C;
14330 } else {
14331 if (LHSReal) {
14332 // No real optimizations we can do here, stub out with zero.
14333 B = APFloat::getZero(A.getSemantics());
14334 }
14335 int DenomLogB = 0;
14336 APFloat MaxCD = maxnum(abs(C), abs(D));
14337 if (MaxCD.isFinite()) {
14338 DenomLogB = ilogb(MaxCD);
14339 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14340 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14341 }
14342 APFloat Denom = C * C + D * D;
14343 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14344 APFloat::rmNearestTiesToEven);
14345 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14346 APFloat::rmNearestTiesToEven);
14347 if (ResR.isNaN() && ResI.isNaN()) {
14348 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14349 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14350 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14351 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14352 D.isFinite()) {
14353 A = APFloat::copySign(
14354 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14355 B = APFloat::copySign(
14356 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14357 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14358 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14359 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14360 C = APFloat::copySign(
14361 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14362 D = APFloat::copySign(
14363 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14364 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14365 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14366 }
14367 }
14368 }
14369 } else {
14370 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14371 return Error(E, diag::note_expr_divide_by_zero);
14372
14373 ComplexValue LHS = Result;
14374 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14375 RHS.getComplexIntImag() * RHS.getComplexIntImag();
14376 Result.getComplexIntReal() =
14377 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14378 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14379 Result.getComplexIntImag() =
14380 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14381 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14382 }
14383 break;
14384 }
14385
14386 return true;
14387}
14388
14389bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14390 // Get the operand value into 'Result'.
14391 if (!Visit(E->getSubExpr()))
14392 return false;
14393
14394 switch (E->getOpcode()) {
14395 default:
14396 return Error(E);
14397 case UO_Extension:
14398 return true;
14399 case UO_Plus:
14400 // The result is always just the subexpr.
14401 return true;
14402 case UO_Minus:
14403 if (Result.isComplexFloat()) {
14404 Result.getComplexFloatReal().changeSign();
14405 Result.getComplexFloatImag().changeSign();
14406 }
14407 else {
14408 Result.getComplexIntReal() = -Result.getComplexIntReal();
14409 Result.getComplexIntImag() = -Result.getComplexIntImag();
14410 }
14411 return true;
14412 case UO_Not:
14413 if (Result.isComplexFloat())
14414 Result.getComplexFloatImag().changeSign();
14415 else
14416 Result.getComplexIntImag() = -Result.getComplexIntImag();
14417 return true;
14418 }
14419}
14420
14421bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14422 if (E->getNumInits() == 2) {
14423 if (E->getType()->isComplexType()) {
14424 Result.makeComplexFloat();
14425 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14426 return false;
14427 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14428 return false;
14429 } else {
14430 Result.makeComplexInt();
14431 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14432 return false;
14433 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14434 return false;
14435 }
14436 return true;
14437 }
14438 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14439}
14440
14441bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14442 switch (E->getBuiltinCallee()) {
14443 case Builtin::BI__builtin_complex:
14444 Result.makeComplexFloat();
14445 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14446 return false;
14447 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14448 return false;
14449 return true;
14450
14451 default:
14452 break;
14453 }
14454
14455 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14456}
14457
14458//===----------------------------------------------------------------------===//
14459// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14460// implicit conversion.
14461//===----------------------------------------------------------------------===//
14462
14463namespace {
14464class AtomicExprEvaluator :
14465 public ExprEvaluatorBase<AtomicExprEvaluator> {
14466 const LValue *This;
14467 APValue &Result;
14468public:
14469 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14470 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14471
14472 bool Success(const APValue &V, const Expr *E) {
14473 Result = V;
14474 return true;
14475 }
14476
14477 bool ZeroInitialization(const Expr *E) {
14478 ImplicitValueInitExpr VIE(
14479 E->getType()->castAs<AtomicType>()->getValueType());
14480 // For atomic-qualified class (and array) types in C++, initialize the
14481 // _Atomic-wrapped subobject directly, in-place.
14482 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14483 : Evaluate(Result, Info, &VIE);
14484 }
14485
14486 bool VisitCastExpr(const CastExpr *E) {
14487 switch (E->getCastKind()) {
14488 default:
14489 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14490 case CK_NonAtomicToAtomic:
14491 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14492 : Evaluate(Result, Info, E->getSubExpr());
14493 }
14494 }
14495};
14496} // end anonymous namespace
14497
14498static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14499 EvalInfo &Info) {
14500 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 14500, __extension__ __PRETTY_FUNCTION__))
;
14501 assert(E->isPRValue() && E->getType()->isAtomicType())(static_cast <bool> (E->isPRValue() && E->
getType()->isAtomicType()) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isAtomicType()"
, "clang/lib/AST/ExprConstant.cpp", 14501, __extension__ __PRETTY_FUNCTION__
))
;
14502 return AtomicExprEvaluator(Info, This, Result).Visit(E);
14503}
14504
14505//===----------------------------------------------------------------------===//
14506// Void expression evaluation, primarily for a cast to void on the LHS of a
14507// comma operator
14508//===----------------------------------------------------------------------===//
14509
14510namespace {
14511class VoidExprEvaluator
14512 : public ExprEvaluatorBase<VoidExprEvaluator> {
14513public:
14514 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14515
14516 bool Success(const APValue &V, const Expr *e) { return true; }
14517
14518 bool ZeroInitialization(const Expr *E) { return true; }
14519
14520 bool VisitCastExpr(const CastExpr *E) {
14521 switch (E->getCastKind()) {
14522 default:
14523 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14524 case CK_ToVoid:
14525 VisitIgnoredValue(E->getSubExpr());
14526 return true;
14527 }
14528 }
14529
14530 bool VisitCallExpr(const CallExpr *E) {
14531 switch (E->getBuiltinCallee()) {
14532 case Builtin::BI__assume:
14533 case Builtin::BI__builtin_assume:
14534 // The argument is not evaluated!
14535 return true;
14536
14537 case Builtin::BI__builtin_operator_delete:
14538 return HandleOperatorDeleteCall(Info, E);
14539
14540 default:
14541 break;
14542 }
14543
14544 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14545 }
14546
14547 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14548};
14549} // end anonymous namespace
14550
14551bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14552 // We cannot speculatively evaluate a delete expression.
14553 if (Info.SpeculativeEvaluationDepth)
14554 return false;
14555
14556 FunctionDecl *OperatorDelete = E->getOperatorDelete();
14557 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14558 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14559 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14560 return false;
14561 }
14562
14563 const Expr *Arg = E->getArgument();
14564
14565 LValue Pointer;
14566 if (!EvaluatePointer(Arg, Pointer, Info))
14567 return false;
14568 if (Pointer.Designator.Invalid)
14569 return false;
14570
14571 // Deleting a null pointer has no effect.
14572 if (Pointer.isNullPointer()) {
14573 // This is the only case where we need to produce an extension warning:
14574 // the only other way we can succeed is if we find a dynamic allocation,
14575 // and we will have warned when we allocated it in that case.
14576 if (!Info.getLangOpts().CPlusPlus20)
14577 Info.CCEDiag(E, diag::note_constexpr_new);
14578 return true;
14579 }
14580
14581 Optional<DynAlloc *> Alloc = CheckDeleteKind(
14582 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14583 if (!Alloc)
14584 return false;
14585 QualType AllocType = Pointer.Base.getDynamicAllocType();
14586
14587 // For the non-array case, the designator must be empty if the static type
14588 // does not have a virtual destructor.
14589 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14590 !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14591 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14592 << Arg->getType()->getPointeeType() << AllocType;
14593 return false;
14594 }
14595
14596 // For a class type with a virtual destructor, the selected operator delete
14597 // is the one looked up when building the destructor.
14598 if (!E->isArrayForm() && !E->isGlobalDelete()) {
14599 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14600 if (VirtualDelete &&
14601 !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14602 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14603 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14604 return false;
14605 }
14606 }
14607
14608 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14609 (*Alloc)->Value, AllocType))
14610 return false;
14611
14612 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14613 // The element was already erased. This means the destructor call also
14614 // deleted the object.
14615 // FIXME: This probably results in undefined behavior before we get this
14616 // far, and should be diagnosed elsewhere first.
14617 Info.FFDiag(E, diag::note_constexpr_double_delete);
14618 return false;
14619 }
14620
14621 return true;
14622}
14623
14624static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14625 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 14625, __extension__ __PRETTY_FUNCTION__))
;
14626 assert(E->isPRValue() && E->getType()->isVoidType())(static_cast <bool> (E->isPRValue() && E->
getType()->isVoidType()) ? void (0) : __assert_fail ("E->isPRValue() && E->getType()->isVoidType()"
, "clang/lib/AST/ExprConstant.cpp", 14626, __extension__ __PRETTY_FUNCTION__
))
;
14627 return VoidExprEvaluator(Info).Visit(E);
14628}
14629
14630//===----------------------------------------------------------------------===//
14631// Top level Expr::EvaluateAsRValue method.
14632//===----------------------------------------------------------------------===//
14633
14634static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14635 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 14635, __extension__ __PRETTY_FUNCTION__))
;
14636 // In C, function designators are not lvalues, but we evaluate them as if they
14637 // are.
14638 QualType T = E->getType();
14639 if (E->isGLValue() || T->isFunctionType()) {
14640 LValue LV;
14641 if (!EvaluateLValue(E, LV, Info))
14642 return false;
14643 LV.moveInto(Result);
14644 } else if (T->isVectorType()) {
14645 if (!EvaluateVector(E, Result, Info))
14646 return false;
14647 } else if (T->isIntegralOrEnumerationType()) {
14648 if (!IntExprEvaluator(Info, Result).Visit(E))
14649 return false;
14650 } else if (T->hasPointerRepresentation()) {
14651 LValue LV;
14652 if (!EvaluatePointer(E, LV, Info))
14653 return false;
14654 LV.moveInto(Result);
14655 } else if (T->isRealFloatingType()) {
14656 llvm::APFloat F(0.0);
14657 if (!EvaluateFloat(E, F, Info))
14658 return false;
14659 Result = APValue(F);
14660 } else if (T->isAnyComplexType()) {
14661 ComplexValue C;
14662 if (!EvaluateComplex(E, C, Info))
14663 return false;
14664 C.moveInto(Result);
14665 } else if (T->isFixedPointType()) {
14666 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
14667 } else if (T->isMemberPointerType()) {
14668 MemberPtr P;
14669 if (!EvaluateMemberPointer(E, P, Info))
14670 return false;
14671 P.moveInto(Result);
14672 return true;
14673 } else if (T->isArrayType()) {
14674 LValue LV;
14675 APValue &Value =
14676 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14677 if (!EvaluateArray(E, LV, Value, Info))
14678 return false;
14679 Result = Value;
14680 } else if (T->isRecordType()) {
14681 LValue LV;
14682 APValue &Value =
14683 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14684 if (!EvaluateRecord(E, LV, Value, Info))
14685 return false;
14686 Result = Value;
14687 } else if (T->isVoidType()) {
14688 if (!Info.getLangOpts().CPlusPlus11)
14689 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
14690 << E->getType();
14691 if (!EvaluateVoid(E, Info))
14692 return false;
14693 } else if (T->isAtomicType()) {
14694 QualType Unqual = T.getAtomicUnqualifiedType();
14695 if (Unqual->isArrayType() || Unqual->isRecordType()) {
14696 LValue LV;
14697 APValue &Value = Info.CurrentCall->createTemporary(
14698 E, Unqual, ScopeKind::FullExpression, LV);
14699 if (!EvaluateAtomic(E, &LV, Value, Info))
14700 return false;
14701 } else {
14702 if (!EvaluateAtomic(E, nullptr, Result, Info))
14703 return false;
14704 }
14705 } else if (Info.getLangOpts().CPlusPlus11) {
14706 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
14707 return false;
14708 } else {
14709 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14710 return false;
14711 }
14712
14713 return true;
14714}
14715
14716/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14717/// cases, the in-place evaluation is essential, since later initializers for
14718/// an object can indirectly refer to subobjects which were initialized earlier.
14719static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14720 const Expr *E, bool AllowNonLiteralTypes) {
14721 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 14721, __extension__ __PRETTY_FUNCTION__))
;
14722
14723 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14724 return false;
14725
14726 if (E->isPRValue()) {
14727 // Evaluate arrays and record types in-place, so that later initializers can
14728 // refer to earlier-initialized members of the object.
14729 QualType T = E->getType();
14730 if (T->isArrayType())
14731 return EvaluateArray(E, This, Result, Info);
14732 else if (T->isRecordType())
14733 return EvaluateRecord(E, This, Result, Info);
14734 else if (T->isAtomicType()) {
14735 QualType Unqual = T.getAtomicUnqualifiedType();
14736 if (Unqual->isArrayType() || Unqual->isRecordType())
14737 return EvaluateAtomic(E, &This, Result, Info);
14738 }
14739 }
14740
14741 // For any other type, in-place evaluation is unimportant.
14742 return Evaluate(Result, Info, E);
14743}
14744
14745/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14746/// lvalue-to-rvalue cast if it is an lvalue.
14747static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14748 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 14748, __extension__ __PRETTY_FUNCTION__))
;
14749 if (Info.EnableNewConstInterp) {
14750 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14751 return false;
14752 } else {
14753 if (E->getType().isNull())
14754 return false;
14755
14756 if (!CheckLiteralType(Info, E))
14757 return false;
14758
14759 if (!::Evaluate(Result, Info, E))
14760 return false;
14761
14762 if (E->isGLValue()) {
14763 LValue LV;
14764 LV.setFrom(Info.Ctx, Result);
14765 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14766 return false;
14767 }
14768 }
14769
14770 // Check this core constant expression is a constant expression.
14771 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14772 ConstantExprKind::Normal) &&
14773 CheckMemoryLeaks(Info);
14774}
14775
14776static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14777 const ASTContext &Ctx, bool &IsConst) {
14778 // Fast-path evaluations of integer literals, since we sometimes see files
14779 // containing vast quantities of these.
14780 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14781 Result.Val = APValue(APSInt(L->getValue(),
14782 L->getType()->isUnsignedIntegerType()));
14783 IsConst = true;
14784 return true;
14785 }
14786
14787 // This case should be rare, but we need to check it before we check on
14788 // the type below.
14789 if (Exp->getType().isNull()) {
14790 IsConst = false;
14791 return true;
14792 }
14793
14794 // FIXME: Evaluating values of large array and record types can cause
14795 // performance problems. Only do so in C++11 for now.
14796 if (Exp->isPRValue() &&
14797 (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) &&
14798 !Ctx.getLangOpts().CPlusPlus11) {
14799 IsConst = false;
14800 return true;
14801 }
14802 return false;
14803}
14804
14805static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14806 Expr::SideEffectsKind SEK) {
14807 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14808 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14809}
14810
14811static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14812 const ASTContext &Ctx, EvalInfo &Info) {
14813 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 14813, __extension__ __PRETTY_FUNCTION__))
;
14814 bool IsConst;
14815 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14816 return IsConst;
14817
14818 return EvaluateAsRValue(Info, E, Result.Val);
14819}
14820
14821static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14822 const ASTContext &Ctx,
14823 Expr::SideEffectsKind AllowSideEffects,
14824 EvalInfo &Info) {
14825 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 14825, __extension__ __PRETTY_FUNCTION__))
;
14826 if (!E->getType()->isIntegralOrEnumerationType())
14827 return false;
14828
14829 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14830 !ExprResult.Val.isInt() ||
14831 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14832 return false;
14833
14834 return true;
14835}
14836
14837static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14838 const ASTContext &Ctx,
14839 Expr::SideEffectsKind AllowSideEffects,
14840 EvalInfo &Info) {
14841 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "clang/lib/AST/ExprConstant.cpp"
, 14841, __extension__ __PRETTY_FUNCTION__))
;
14842 if (!E->getType()->isFixedPointType())
14843 return false;
14844
14845 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14846 return false;
14847
14848 if (!ExprResult.Val.isFixedPoint() ||
14849 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14850 return false;
14851
14852 return true;
14853}
14854
14855/// EvaluateAsRValue - Return true if this is a constant which we can fold using
14856/// any crazy technique (that has nothing to do with language standards) that
14857/// we want to. If this function returns true, it returns the folded constant
14858/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14859/// will be applied to the result.
14860bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14861 bool InConstantContext) const {
14862 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14863, __extension__ __PRETTY_FUNCTION__
))
14863 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14863, __extension__ __PRETTY_FUNCTION__
))
;
14864 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14865 Info.InConstantContext = InConstantContext;
14866 return ::EvaluateAsRValue(this, Result, Ctx, Info);
14867}
14868
14869bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14870 bool InConstantContext) const {
14871 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14872, __extension__ __PRETTY_FUNCTION__
))
14872 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14872, __extension__ __PRETTY_FUNCTION__
))
;
14873 EvalResult Scratch;
14874 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
14875 HandleConversionToBool(Scratch.Val, Result);
14876}
14877
14878bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
14879 SideEffectsKind AllowSideEffects,
14880 bool InConstantContext) const {
14881 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14882, __extension__ __PRETTY_FUNCTION__
))
14882 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14882, __extension__ __PRETTY_FUNCTION__
))
;
14883 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14884 Info.InConstantContext = InConstantContext;
14885 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
14886}
14887
14888bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
14889 SideEffectsKind AllowSideEffects,
14890 bool InConstantContext) const {
14891 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14892, __extension__ __PRETTY_FUNCTION__
))
14892 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14892, __extension__ __PRETTY_FUNCTION__
))
;
14893 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14894 Info.InConstantContext = InConstantContext;
14895 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
14896}
14897
14898bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
14899 SideEffectsKind AllowSideEffects,
14900 bool InConstantContext) const {
14901 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14902, __extension__ __PRETTY_FUNCTION__
))
14902 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14902, __extension__ __PRETTY_FUNCTION__
))
;
14903
14904 if (!getType()->isRealFloatingType())
14905 return false;
14906
14907 EvalResult ExprResult;
14908 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
14909 !ExprResult.Val.isFloat() ||
14910 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14911 return false;
14912
14913 Result = ExprResult.Val.getFloat();
14914 return true;
14915}
14916
14917bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
14918 bool InConstantContext) const {
14919 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14920, __extension__ __PRETTY_FUNCTION__
))
14920 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14920, __extension__ __PRETTY_FUNCTION__
))
;
14921
14922 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
14923 Info.InConstantContext = InConstantContext;
14924 LValue LV;
14925 CheckedTemporaries CheckedTemps;
14926 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
14927 Result.HasSideEffects ||
14928 !CheckLValueConstantExpression(Info, getExprLoc(),
14929 Ctx.getLValueReferenceType(getType()), LV,
14930 ConstantExprKind::Normal, CheckedTemps))
14931 return false;
14932
14933 LV.moveInto(Result.Val);
14934 return true;
14935}
14936
14937static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
14938 APValue DestroyedValue, QualType Type,
14939 SourceLocation Loc, Expr::EvalStatus &EStatus,
14940 bool IsConstantDestruction) {
14941 EvalInfo Info(Ctx, EStatus,
14942 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
14943 : EvalInfo::EM_ConstantFold);
14944 Info.setEvaluatingDecl(Base, DestroyedValue,
14945 EvalInfo::EvaluatingDeclKind::Dtor);
14946 Info.InConstantContext = IsConstantDestruction;
14947
14948 LValue LVal;
14949 LVal.set(Base);
14950
14951 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
14952 EStatus.HasSideEffects)
14953 return false;
14954
14955 if (!Info.discardCleanups())
14956 llvm_unreachable("Unhandled cleanup; missing full expression marker?")::llvm::llvm_unreachable_internal("Unhandled cleanup; missing full expression marker?"
, "clang/lib/AST/ExprConstant.cpp", 14956)
;
14957
14958 return true;
14959}
14960
14961bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
14962 ConstantExprKind Kind) const {
14963 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14964, __extension__ __PRETTY_FUNCTION__
))
14964 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 14964, __extension__ __PRETTY_FUNCTION__
))
;
14965
14966 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
14967 EvalInfo Info(Ctx, Result, EM);
14968 Info.InConstantContext = true;
14969
14970 // The type of the object we're initializing is 'const T' for a class NTTP.
14971 QualType T = getType();
14972 if (Kind == ConstantExprKind::ClassTemplateArgument)
14973 T.addConst();
14974
14975 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
14976 // represent the result of the evaluation. CheckConstantExpression ensures
14977 // this doesn't escape.
14978 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
14979 APValue::LValueBase Base(&BaseMTE);
14980
14981 Info.setEvaluatingDecl(Base, Result.Val);
14982 LValue LVal;
14983 LVal.set(Base);
14984
14985 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
14986 return false;
14987
14988 if (!Info.discardCleanups())
14989 llvm_unreachable("Unhandled cleanup; missing full expression marker?")::llvm::llvm_unreachable_internal("Unhandled cleanup; missing full expression marker?"
, "clang/lib/AST/ExprConstant.cpp", 14989)
;
14990
14991 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
14992 Result.Val, Kind))
14993 return false;
14994 if (!CheckMemoryLeaks(Info))
14995 return false;
14996
14997 // If this is a class template argument, it's required to have constant
14998 // destruction too.
14999 if (Kind == ConstantExprKind::ClassTemplateArgument &&
15000 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15001 true) ||
15002 Result.HasSideEffects)) {
15003 // FIXME: Prefix a note to indicate that the problem is lack of constant
15004 // destruction.
15005 return false;
15006 }
15007
15008 return true;
15009}
15010
15011bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15012 const VarDecl *VD,
15013 SmallVectorImpl<PartialDiagnosticAt> &Notes,
15014 bool IsConstantInitialization) const {
15015 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15016, __extension__ __PRETTY_FUNCTION__
))
15016 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15016, __extension__ __PRETTY_FUNCTION__
))
;
15017
15018 // FIXME: Evaluating initializers for large array and record types can cause
15019 // performance problems. Only do so in C++11 for now.
15020 if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
15021 !Ctx.getLangOpts().CPlusPlus11)
15022 return false;
15023
15024 Expr::EvalStatus EStatus;
15025 EStatus.Diag = &Notes;
15026
15027 EvalInfo Info(Ctx, EStatus,
15028 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11)
15029 ? EvalInfo::EM_ConstantExpression
15030 : EvalInfo::EM_ConstantFold);
15031 Info.setEvaluatingDecl(VD, Value);
15032 Info.InConstantContext = IsConstantInitialization;
15033
15034 SourceLocation DeclLoc = VD->getLocation();
15035 QualType DeclTy = VD->getType();
15036
15037 if (Info.EnableNewConstInterp) {
15038 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15039 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
15040 return false;
15041 } else {
15042 LValue LVal;
15043 LVal.set(VD);
15044
15045 if (!EvaluateInPlace(Value, Info, LVal, this,
15046 /*AllowNonLiteralTypes=*/true) ||
15047 EStatus.HasSideEffects)
15048 return false;
15049
15050 // At this point, any lifetime-extended temporaries are completely
15051 // initialized.
15052 Info.performLifetimeExtension();
15053
15054 if (!Info.discardCleanups())
15055 llvm_unreachable("Unhandled cleanup; missing full expression marker?")::llvm::llvm_unreachable_internal("Unhandled cleanup; missing full expression marker?"
, "clang/lib/AST/ExprConstant.cpp", 15055)
;
15056 }
15057 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15058 ConstantExprKind::Normal) &&
15059 CheckMemoryLeaks(Info);
15060}
15061
15062bool VarDecl::evaluateDestruction(
15063 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15064 Expr::EvalStatus EStatus;
15065 EStatus.Diag = &Notes;
15066
15067 // Only treat the destruction as constant destruction if we formally have
15068 // constant initialization (or are usable in a constant expression).
15069 bool IsConstantDestruction = hasConstantInitialization();
15070
15071 // Make a copy of the value for the destructor to mutate, if we know it.
15072 // Otherwise, treat the value as default-initialized; if the destructor works
15073 // anyway, then the destruction is constant (and must be essentially empty).
15074 APValue DestroyedValue;
15075 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15076 DestroyedValue = *getEvaluatedValue();
15077 else if (!getDefaultInitValue(getType(), DestroyedValue))
15078 return false;
15079
15080 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15081 getType(), getLocation(), EStatus,
15082 IsConstantDestruction) ||
15083 EStatus.HasSideEffects)
15084 return false;
15085
15086 ensureEvaluatedStmt()->HasConstantDestruction = true;
15087 return true;
15088}
15089
15090/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15091/// constant folded, but discard the result.
15092bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15093 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15094, __extension__ __PRETTY_FUNCTION__
))
15094 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15094, __extension__ __PRETTY_FUNCTION__
))
;
15095
15096 EvalResult Result;
15097 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15098 !hasUnacceptableSideEffect(Result, SEK);
15099}
15100
15101APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15102 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15103 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15104, __extension__ __PRETTY_FUNCTION__
))
15104 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15104, __extension__ __PRETTY_FUNCTION__
))
;
15105
15106 EvalResult EVResult;
15107 EVResult.Diag = Diag;
15108 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15109 Info.InConstantContext = true;
15110
15111 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15112 (void)Result;
15113 assert(Result && "Could not evaluate expression")(static_cast <bool> (Result && "Could not evaluate expression"
) ? void (0) : __assert_fail ("Result && \"Could not evaluate expression\""
, "clang/lib/AST/ExprConstant.cpp", 15113, __extension__ __PRETTY_FUNCTION__
))
;
15114 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer")(static_cast <bool> (EVResult.Val.isInt() && "Expression did not evaluate to integer"
) ? void (0) : __assert_fail ("EVResult.Val.isInt() && \"Expression did not evaluate to integer\""
, "clang/lib/AST/ExprConstant.cpp", 15114, __extension__ __PRETTY_FUNCTION__
))
;
15115
15116 return EVResult.Val.getInt();
15117}
15118
15119APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15120 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15121 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15122, __extension__ __PRETTY_FUNCTION__
))
15122 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15122, __extension__ __PRETTY_FUNCTION__
))
;
15123
15124 EvalResult EVResult;
15125 EVResult.Diag = Diag;
15126 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15127 Info.InConstantContext = true;
15128 Info.CheckingForUndefinedBehavior = true;
15129
15130 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15131 (void)Result;
15132 assert(Result && "Could not evaluate expression")(static_cast <bool> (Result && "Could not evaluate expression"
) ? void (0) : __assert_fail ("Result && \"Could not evaluate expression\""
, "clang/lib/AST/ExprConstant.cpp", 15132, __extension__ __PRETTY_FUNCTION__
))
;
15133 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer")(static_cast <bool> (EVResult.Val.isInt() && "Expression did not evaluate to integer"
) ? void (0) : __assert_fail ("EVResult.Val.isInt() && \"Expression did not evaluate to integer\""
, "clang/lib/AST/ExprConstant.cpp", 15133, __extension__ __PRETTY_FUNCTION__
))
;
15134
15135 return EVResult.Val.getInt();
15136}
15137
15138void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15139 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15140, __extension__ __PRETTY_FUNCTION__
))
15140 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15140, __extension__ __PRETTY_FUNCTION__
))
;
15141
15142 bool IsConst;
15143 EvalResult EVResult;
15144 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15145 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15146 Info.CheckingForUndefinedBehavior = true;
15147 (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15148 }
15149}
15150
15151bool Expr::EvalResult::isGlobalLValue() const {
15152 assert(Val.isLValue())(static_cast <bool> (Val.isLValue()) ? void (0) : __assert_fail
("Val.isLValue()", "clang/lib/AST/ExprConstant.cpp", 15152, __extension__
__PRETTY_FUNCTION__))
;
15153 return IsGlobalLValue(Val.getLValueBase());
15154}
15155
15156/// isIntegerConstantExpr - this recursive routine will test if an expression is
15157/// an integer constant expression.
15158
15159/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15160/// comma, etc
15161
15162// CheckICE - This function does the fundamental ICE checking: the returned
15163// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15164// and a (possibly null) SourceLocation indicating the location of the problem.
15165//
15166// Note that to reduce code duplication, this helper does no evaluation
15167// itself; the caller checks whether the expression is evaluatable, and
15168// in the rare cases where CheckICE actually cares about the evaluated
15169// value, it calls into Evaluate.
15170
15171namespace {
15172
15173enum ICEKind {
15174 /// This expression is an ICE.
15175 IK_ICE,
15176 /// This expression is not an ICE, but if it isn't evaluated, it's
15177 /// a legal subexpression for an ICE. This return value is used to handle
15178 /// the comma operator in C99 mode, and non-constant subexpressions.
15179 IK_ICEIfUnevaluated,
15180 /// This expression is not an ICE, and is not a legal subexpression for one.
15181 IK_NotICE
15182};
15183
15184struct ICEDiag {
15185 ICEKind Kind;
15186 SourceLocation Loc;
15187
15188 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15189};
15190
15191}
15192
15193static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15194
15195static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15196
15197static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15198 Expr::EvalResult EVResult;
15199 Expr::EvalStatus Status;
15200 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15201
15202 Info.InConstantContext = true;
15203 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15204 !EVResult.Val.isInt())
15205 return ICEDiag(IK_NotICE, E->getBeginLoc());
15206
15207 return NoDiag();
15208}
15209
15210static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15211 assert(!E->isValueDependent() && "Should not see value dependent exprs!")(static_cast <bool> (!E->isValueDependent() &&
"Should not see value dependent exprs!") ? void (0) : __assert_fail
("!E->isValueDependent() && \"Should not see value dependent exprs!\""
, "clang/lib/AST/ExprConstant.cpp", 15211, __extension__ __PRETTY_FUNCTION__
))
;
15212 if (!E->getType()->isIntegralOrEnumerationType())
15213 return ICEDiag(IK_NotICE, E->getBeginLoc());
15214
15215 switch (E->getStmtClass()) {
15216#define ABSTRACT_STMT(Node)
15217#define STMT(Node, Base) case Expr::Node##Class:
15218#define EXPR(Node, Base)
15219#include "clang/AST/StmtNodes.inc"
15220 case Expr::PredefinedExprClass:
15221 case Expr::FloatingLiteralClass:
15222 case Expr::ImaginaryLiteralClass:
15223 case Expr::StringLiteralClass:
15224 case Expr::ArraySubscriptExprClass:
15225 case Expr::MatrixSubscriptExprClass:
15226 case Expr::OMPArraySectionExprClass:
15227 case Expr::OMPArrayShapingExprClass:
15228 case Expr::OMPIteratorExprClass:
15229 case Expr::MemberExprClass:
15230 case Expr::CompoundAssignOperatorClass:
15231 case Expr::CompoundLiteralExprClass:
15232 case Expr::ExtVectorElementExprClass:
15233 case Expr::DesignatedInitExprClass:
15234 case Expr::ArrayInitLoopExprClass:
15235 case Expr::ArrayInitIndexExprClass:
15236 case Expr::NoInitExprClass:
15237 case Expr::DesignatedInitUpdateExprClass:
15238 case Expr::ImplicitValueInitExprClass:
15239 case Expr::ParenListExprClass:
15240 case Expr::VAArgExprClass:
15241 case Expr::AddrLabelExprClass:
15242 case Expr::StmtExprClass:
15243 case Expr::CXXMemberCallExprClass:
15244 case Expr::CUDAKernelCallExprClass:
15245 case Expr::CXXAddrspaceCastExprClass:
15246 case Expr::CXXDynamicCastExprClass:
15247 case Expr::CXXTypeidExprClass:
15248 case Expr::CXXUuidofExprClass:
15249 case Expr::MSPropertyRefExprClass:
15250 case Expr::MSPropertySubscriptExprClass:
15251 case Expr::CXXNullPtrLiteralExprClass:
15252 case Expr::UserDefinedLiteralClass:
15253 case Expr::CXXThisExprClass:
15254 case Expr::CXXThrowExprClass:
15255 case Expr::CXXNewExprClass:
15256 case Expr::CXXDeleteExprClass:
15257 case Expr::CXXPseudoDestructorExprClass:
15258 case Expr::UnresolvedLookupExprClass:
15259 case Expr::TypoExprClass:
15260 case Expr::RecoveryExprClass:
15261 case Expr::DependentScopeDeclRefExprClass:
15262 case Expr::CXXConstructExprClass:
15263 case Expr::CXXInheritedCtorInitExprClass:
15264 case Expr::CXXStdInitializerListExprClass:
15265 case Expr::CXXBindTemporaryExprClass:
15266 case Expr::ExprWithCleanupsClass:
15267 case Expr::CXXTemporaryObjectExprClass:
15268 case Expr::CXXUnresolvedConstructExprClass:
15269 case Expr::CXXDependentScopeMemberExprClass:
15270 case Expr::UnresolvedMemberExprClass:
15271 case Expr::ObjCStringLiteralClass:
15272 case Expr::ObjCBoxedExprClass:
15273 case Expr::ObjCArrayLiteralClass:
15274 case Expr::ObjCDictionaryLiteralClass:
15275 case Expr::ObjCEncodeExprClass:
15276 case Expr::ObjCMessageExprClass:
15277 case Expr::ObjCSelectorExprClass:
15278 case Expr::ObjCProtocolExprClass:
15279 case Expr::ObjCIvarRefExprClass:
15280 case Expr::ObjCPropertyRefExprClass:
15281 case Expr::ObjCSubscriptRefExprClass:
15282 case Expr::ObjCIsaExprClass:
15283 case Expr::ObjCAvailabilityCheckExprClass:
15284 case Expr::ShuffleVectorExprClass:
15285 case Expr::ConvertVectorExprClass:
15286 case Expr::BlockExprClass:
15287 case Expr::NoStmtClass:
15288 case Expr::OpaqueValueExprClass:
15289 case Expr::PackExpansionExprClass:
15290 case Expr::SubstNonTypeTemplateParmPackExprClass:
15291 case Expr::FunctionParmPackExprClass:
15292 case Expr::AsTypeExprClass:
15293 case Expr::ObjCIndirectCopyRestoreExprClass:
15294 case Expr::MaterializeTemporaryExprClass:
15295 case Expr::PseudoObjectExprClass:
15296 case Expr::AtomicExprClass:
15297 case Expr::LambdaExprClass:
15298 case Expr::CXXFoldExprClass:
15299 case Expr::CoawaitExprClass:
15300 case Expr::DependentCoawaitExprClass:
15301 case Expr::CoyieldExprClass:
15302 case Expr::SYCLUniqueStableNameExprClass:
15303 return ICEDiag(IK_NotICE, E->getBeginLoc());
15304
15305 case Expr::InitListExprClass: {
15306 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15307 // form "T x = { a };" is equivalent to "T x = a;".
15308 // Unless we're initializing a reference, T is a scalar as it is known to be
15309 // of integral or enumeration type.
15310 if (E->isPRValue())
15311 if (cast<InitListExpr>(E)->getNumInits() == 1)
15312 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15313 return ICEDiag(IK_NotICE, E->getBeginLoc());
15314 }
15315
15316 case Expr::SizeOfPackExprClass:
15317 case Expr::GNUNullExprClass:
15318 case Expr::SourceLocExprClass:
15319 return NoDiag();
15320
15321 case Expr::SubstNonTypeTemplateParmExprClass:
15322 return
15323 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15324
15325 case Expr::ConstantExprClass:
15326 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15327
15328 case Expr::ParenExprClass:
15329 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15330 case Expr::GenericSelectionExprClass:
15331 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15332 case Expr::IntegerLiteralClass:
15333 case Expr::FixedPointLiteralClass:
15334 case Expr::CharacterLiteralClass:
15335 case Expr::ObjCBoolLiteralExprClass:
15336 case Expr::CXXBoolLiteralExprClass:
15337 case Expr::CXXScalarValueInitExprClass:
15338 case Expr::TypeTraitExprClass:
15339 case Expr::ConceptSpecializationExprClass:
15340 case Expr::RequiresExprClass:
15341 case Expr::ArrayTypeTraitExprClass:
15342 case Expr::ExpressionTraitExprClass:
15343 case Expr::CXXNoexceptExprClass:
15344 return NoDiag();
15345 case Expr::CallExprClass:
15346 case Expr::CXXOperatorCallExprClass: {
15347 // C99 6.6/3 allows function calls within unevaluated subexpressions of
15348 // constant expressions, but they can never be ICEs because an ICE cannot
15349 // contain an operand of (pointer to) function type.
15350 const CallExpr *CE = cast<CallExpr>(E);
15351 if (CE->getBuiltinCallee())
15352 return CheckEvalInICE(E, Ctx);
15353 return ICEDiag(IK_NotICE, E->getBeginLoc());
15354 }
15355 case Expr::CXXRewrittenBinaryOperatorClass:
15356 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15357 Ctx);
15358 case Expr::DeclRefExprClass: {
15359 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15360 if (isa<EnumConstantDecl>(D))
15361 return NoDiag();
15362
15363 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15364 // integer variables in constant expressions:
15365 //
15366 // C++ 7.1.5.1p2
15367 // A variable of non-volatile const-qualified integral or enumeration
15368 // type initialized by an ICE can be used in ICEs.
15369 //
15370 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15371 // that mode, use of reference variables should not be allowed.
15372 const VarDecl *VD = dyn_cast<VarDecl>(D);
15373 if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15374 !VD->getType()->isReferenceType())
15375 return NoDiag();
15376
15377 return ICEDiag(IK_NotICE, E->getBeginLoc());
15378 }
15379 case Expr::UnaryOperatorClass: {
15380 const UnaryOperator *Exp = cast<UnaryOperator>(E);
15381 switch (Exp->getOpcode()) {
15382 case UO_PostInc:
15383 case UO_PostDec:
15384 case UO_PreInc:
15385 case UO_PreDec:
15386 case UO_AddrOf:
15387 case UO_Deref:
15388 case UO_Coawait:
15389 // C99 6.6/3 allows increment and decrement within unevaluated
15390 // subexpressions of constant expressions, but they can never be ICEs
15391 // because an ICE cannot contain an lvalue operand.
15392 return ICEDiag(IK_NotICE, E->getBeginLoc());
15393 case UO_Extension:
15394 case UO_LNot:
15395 case UO_Plus:
15396 case UO_Minus:
15397 case UO_Not:
15398 case UO_Real:
15399 case UO_Imag:
15400 return CheckICE(Exp->getSubExpr(), Ctx);
15401 }
15402 llvm_unreachable("invalid unary operator class")::llvm::llvm_unreachable_internal("invalid unary operator class"
, "clang/lib/AST/ExprConstant.cpp", 15402)
;
15403 }
15404 case Expr::OffsetOfExprClass: {
15405 // Note that per C99, offsetof must be an ICE. And AFAIK, using
15406 // EvaluateAsRValue matches the proposed gcc behavior for cases like
15407 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
15408 // compliance: we should warn earlier for offsetof expressions with
15409 // array subscripts that aren't ICEs, and if the array subscripts
15410 // are ICEs, the value of the offsetof must be an integer constant.
15411 return CheckEvalInICE(E, Ctx);
15412 }
15413 case Expr::UnaryExprOrTypeTraitExprClass: {
15414 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15415 if ((Exp->getKind() == UETT_SizeOf) &&
15416 Exp->getTypeOfArgument()->isVariableArrayType())
15417 return ICEDiag(IK_NotICE, E->getBeginLoc());
15418 return NoDiag();
15419 }
15420 case Expr::BinaryOperatorClass: {
15421 const BinaryOperator *Exp = cast<BinaryOperator>(E);
15422 switch (Exp->getOpcode()) {
15423 case BO_PtrMemD:
15424 case BO_PtrMemI:
15425 case BO_Assign:
15426 case BO_MulAssign:
15427 case BO_DivAssign:
15428 case BO_RemAssign:
15429 case BO_AddAssign:
15430 case BO_SubAssign:
15431 case BO_ShlAssign:
15432 case BO_ShrAssign:
15433 case BO_AndAssign:
15434 case BO_XorAssign:
15435 case BO_OrAssign:
15436 // C99 6.6/3 allows assignments within unevaluated subexpressions of
15437 // constant expressions, but they can never be ICEs because an ICE cannot
15438 // contain an lvalue operand.
15439 return ICEDiag(IK_NotICE, E->getBeginLoc());
15440
15441 case BO_Mul:
15442 case BO_Div:
15443 case BO_Rem:
15444 case BO_Add:
15445 case BO_Sub:
15446 case BO_Shl:
15447 case BO_Shr:
15448 case BO_LT:
15449 case BO_GT:
15450 case BO_LE:
15451 case BO_GE:
15452 case BO_EQ:
15453 case BO_NE:
15454 case BO_And:
15455 case BO_Xor:
15456 case BO_Or:
15457 case BO_Comma:
15458 case BO_Cmp: {
15459 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15460 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15461 if (Exp->getOpcode() == BO_Div ||
15462 Exp->getOpcode() == BO_Rem) {
15463 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15464 // we don't evaluate one.
15465 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15466 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15467 if (REval == 0)
15468 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15469 if (REval.isSigned() && REval.isAllOnes()) {
15470 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15471 if (LEval.isMinSignedValue())
15472 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15473 }
15474 }
15475 }
15476 if (Exp->getOpcode() == BO_Comma) {
15477 if (Ctx.getLangOpts().C99) {
15478 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15479 // if it isn't evaluated.
15480 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15481 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15482 } else {
15483 // In both C89 and C++, commas in ICEs are illegal.
15484 return ICEDiag(IK_NotICE, E->getBeginLoc());
15485 }
15486 }
15487 return Worst(LHSResult, RHSResult);
15488 }
15489 case BO_LAnd:
15490 case BO_LOr: {
15491 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15492 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15493 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15494 // Rare case where the RHS has a comma "side-effect"; we need
15495 // to actually check the condition to see whether the side
15496 // with the comma is evaluated.
15497 if ((Exp->getOpcode() == BO_LAnd) !=
15498 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15499 return RHSResult;
15500 return NoDiag();
15501 }
15502
15503 return Worst(LHSResult, RHSResult);
15504 }
15505 }
15506 llvm_unreachable("invalid binary operator kind")::llvm::llvm_unreachable_internal("invalid binary operator kind"
, "clang/lib/AST/ExprConstant.cpp", 15506)
;
15507 }
15508 case Expr::ImplicitCastExprClass:
15509 case Expr::CStyleCastExprClass:
15510 case Expr::CXXFunctionalCastExprClass:
15511 case Expr::CXXStaticCastExprClass:
15512 case Expr::CXXReinterpretCastExprClass:
15513 case Expr::CXXConstCastExprClass:
15514 case Expr::ObjCBridgedCastExprClass: {
15515 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15516 if (isa<ExplicitCastExpr>(E)) {
15517 if (const FloatingLiteral *FL
15518 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15519 unsigned DestWidth = Ctx.getIntWidth(E->getType());
15520 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15521 APSInt IgnoredVal(DestWidth, !DestSigned);
15522 bool Ignored;
15523 // If the value does not fit in the destination type, the behavior is
15524 // undefined, so we are not required to treat it as a constant
15525 // expression.
15526 if (FL->getValue().convertToInteger(IgnoredVal,
15527 llvm::APFloat::rmTowardZero,
15528 &Ignored) & APFloat::opInvalidOp)
15529 return ICEDiag(IK_NotICE, E->getBeginLoc());
15530 return NoDiag();
15531 }
15532 }
15533 switch (cast<CastExpr>(E)->getCastKind()) {
15534 case CK_LValueToRValue:
15535 case CK_AtomicToNonAtomic:
15536 case CK_NonAtomicToAtomic:
15537 case CK_NoOp:
15538 case CK_IntegralToBoolean:
15539 case CK_IntegralCast:
15540 return CheckICE(SubExpr, Ctx);
15541 default:
15542 return ICEDiag(IK_NotICE, E->getBeginLoc());
15543 }
15544 }
15545 case Expr::BinaryConditionalOperatorClass: {
15546 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15547 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15548 if (CommonResult.Kind == IK_NotICE) return CommonResult;
15549 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15550 if (FalseResult.Kind == IK_NotICE) return FalseResult;
15551 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15552 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15553 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15554 return FalseResult;
15555 }
15556 case Expr::ConditionalOperatorClass: {
15557 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15558 // If the condition (ignoring parens) is a __builtin_constant_p call,
15559 // then only the true side is actually considered in an integer constant
15560 // expression, and it is fully evaluated. This is an important GNU
15561 // extension. See GCC PR38377 for discussion.
15562 if (const CallExpr *CallCE
15563 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15564 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15565 return CheckEvalInICE(E, Ctx);
15566 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15567 if (CondResult.Kind == IK_NotICE)
15568 return CondResult;
15569
15570 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15571 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15572
15573 if (TrueResult.Kind == IK_NotICE)
15574 return TrueResult;
15575 if (FalseResult.Kind == IK_NotICE)
15576 return FalseResult;
15577 if (CondResult.Kind == IK_ICEIfUnevaluated)
15578 return CondResult;
15579 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15580 return NoDiag();
15581 // Rare case where the diagnostics depend on which side is evaluated
15582 // Note that if we get here, CondResult is 0, and at least one of
15583 // TrueResult and FalseResult is non-zero.
15584 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15585 return FalseResult;
15586 return TrueResult;
15587 }
15588 case Expr::CXXDefaultArgExprClass:
15589 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15590 case Expr::CXXDefaultInitExprClass:
15591 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15592 case Expr::ChooseExprClass: {
15593 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15594 }
15595 case Expr::BuiltinBitCastExprClass: {
15596 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15597 return ICEDiag(IK_NotICE, E->getBeginLoc());
15598 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15599 }
15600 }
15601
15602 llvm_unreachable("Invalid StmtClass!")::llvm::llvm_unreachable_internal("Invalid StmtClass!", "clang/lib/AST/ExprConstant.cpp"
, 15602)
;
15603}
15604
15605/// Evaluate an expression as a C++11 integral constant expression.
15606static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15607 const Expr *E,
15608 llvm::APSInt *Value,
15609 SourceLocation *Loc) {
15610 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15611 if (Loc) *Loc = E->getExprLoc();
15612 return false;
15613 }
15614
15615 APValue Result;
15616 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15617 return false;
15618
15619 if (!Result.isInt()) {
15620 if (Loc) *Loc = E->getExprLoc();
15621 return false;
15622 }
15623
15624 if (Value) *Value = Result.getInt();
15625 return true;
15626}
15627
15628bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15629 SourceLocation *Loc) const {
15630 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15631, __extension__ __PRETTY_FUNCTION__
))
15631 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15631, __extension__ __PRETTY_FUNCTION__
))
;
15632
15633 if (Ctx.getLangOpts().CPlusPlus11)
15634 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
15635
15636 ICEDiag D = CheckICE(this, Ctx);
15637 if (D.Kind != IK_ICE) {
15638 if (Loc) *Loc = D.Loc;
15639 return false;
15640 }
15641 return true;
15642}
15643
15644Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
15645 SourceLocation *Loc,
15646 bool isEvaluated) const {
15647 if (isValueDependent()) {
15648 // Expression evaluator can't succeed on a dependent expression.
15649 return None;
15650 }
15651
15652 APSInt Value;
15653
15654 if (Ctx.getLangOpts().CPlusPlus11) {
15655 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
15656 return Value;
15657 return None;
15658 }
15659
15660 if (!isIntegerConstantExpr(Ctx, Loc))
15661 return None;
15662
15663 // The only possible side-effects here are due to UB discovered in the
15664 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15665 // required to treat the expression as an ICE, so we produce the folded
15666 // value.
15667 EvalResult ExprResult;
15668 Expr::EvalStatus Status;
15669 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
15670 Info.InConstantContext = true;
15671
15672 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
15673 llvm_unreachable("ICE cannot be evaluated!")::llvm::llvm_unreachable_internal("ICE cannot be evaluated!",
"clang/lib/AST/ExprConstant.cpp", 15673)
;
15674
15675 return ExprResult.Val.getInt();
15676}
15677
15678bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
15679 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15680, __extension__ __PRETTY_FUNCTION__
))
15680 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15680, __extension__ __PRETTY_FUNCTION__
))
;
15681
15682 return CheckICE(this, Ctx).Kind == IK_ICE;
15683}
15684
15685bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
15686 SourceLocation *Loc) const {
15687 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15688, __extension__ __PRETTY_FUNCTION__
))
15688 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15688, __extension__ __PRETTY_FUNCTION__
))
;
15689
15690 // We support this checking in C++98 mode in order to diagnose compatibility
15691 // issues.
15692 assert(Ctx.getLangOpts().CPlusPlus)(static_cast <bool> (Ctx.getLangOpts().CPlusPlus) ? void
(0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus", "clang/lib/AST/ExprConstant.cpp"
, 15692, __extension__ __PRETTY_FUNCTION__))
;
15693
15694 // Build evaluation settings.
15695 Expr::EvalStatus Status;
15696 SmallVector<PartialDiagnosticAt, 8> Diags;
15697 Status.Diag = &Diags;
15698 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15699
15700 APValue Scratch;
15701 bool IsConstExpr =
15702 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
15703 // FIXME: We don't produce a diagnostic for this, but the callers that
15704 // call us on arbitrary full-expressions should generally not care.
15705 Info.discardCleanups() && !Status.HasSideEffects;
15706
15707 if (!Diags.empty()) {
15708 IsConstExpr = false;
15709 if (Loc) *Loc = Diags[0].first;
15710 } else if (!IsConstExpr) {
15711 // FIXME: This shouldn't happen.
15712 if (Loc) *Loc = getExprLoc();
15713 }
15714
15715 return IsConstExpr;
15716}
15717
15718bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
15719 const FunctionDecl *Callee,
15720 ArrayRef<const Expr*> Args,
15721 const Expr *This) const {
15722 assert(!isValueDependent() &&(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15723, __extension__ __PRETTY_FUNCTION__
))
15723 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15723, __extension__ __PRETTY_FUNCTION__
))
;
15724
15725 Expr::EvalStatus Status;
15726 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
15727 Info.InConstantContext = true;
15728
15729 LValue ThisVal;
15730 const LValue *ThisPtr = nullptr;
15731 if (This) {
15732#ifndef NDEBUG
15733 auto *MD = dyn_cast<CXXMethodDecl>(Callee);
15734 assert(MD && "Don't provide `this` for non-methods.")(static_cast <bool> (MD && "Don't provide `this` for non-methods."
) ? void (0) : __assert_fail ("MD && \"Don't provide `this` for non-methods.\""
, "clang/lib/AST/ExprConstant.cpp", 15734, __extension__ __PRETTY_FUNCTION__
))
;
15735 assert(!MD->isStatic() && "Don't provide `this` for static methods.")(static_cast <bool> (!MD->isStatic() && "Don't provide `this` for static methods."
) ? void (0) : __assert_fail ("!MD->isStatic() && \"Don't provide `this` for static methods.\""
, "clang/lib/AST/ExprConstant.cpp", 15735, __extension__ __PRETTY_FUNCTION__
))
;
15736#endif
15737 if (!This->isValueDependent() &&
15738 EvaluateObjectArgument(Info, This, ThisVal) &&
15739 !Info.EvalStatus.HasSideEffects)
15740 ThisPtr = &ThisVal;
15741
15742 // Ignore any side-effects from a failed evaluation. This is safe because
15743 // they can't interfere with any other argument evaluation.
15744 Info.EvalStatus.HasSideEffects = false;
15745 }
15746
15747 CallRef Call = Info.CurrentCall->createCall(Callee);
15748 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
15749 I != E; ++I) {
15750 unsigned Idx = I - Args.begin();
15751 if (Idx >= Callee->getNumParams())
15752 break;
15753 const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
15754 if ((*I)->isValueDependent() ||
15755 !EvaluateCallArg(PVD, *I, Call, Info) ||
15756 Info.EvalStatus.HasSideEffects) {
15757 // If evaluation fails, throw away the argument entirely.
15758 if (APValue *Slot = Info.getParamSlot(Call, PVD))
15759 *Slot = APValue();
15760 }
15761
15762 // Ignore any side-effects from a failed evaluation. This is safe because
15763 // they can't interfere with any other argument evaluation.
15764 Info.EvalStatus.HasSideEffects = false;
15765 }
15766
15767 // Parameter cleanups happen in the caller and are not part of this
15768 // evaluation.
15769 Info.discardCleanups();
15770 Info.EvalStatus.HasSideEffects = false;
15771
15772 // Build fake call to Callee.
15773 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
15774 // FIXME: Missing ExprWithCleanups in enable_if conditions?
15775 FullExpressionRAII Scope(Info);
15776 return Evaluate(Value, Info, this) && Scope.destroy() &&
15777 !Info.EvalStatus.HasSideEffects;
15778}
15779
15780bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15781 SmallVectorImpl<
15782 PartialDiagnosticAt> &Diags) {
15783 // FIXME: It would be useful to check constexpr function templates, but at the
15784 // moment the constant expression evaluator cannot cope with the non-rigorous
15785 // ASTs which we build for dependent expressions.
15786 if (FD->isDependentContext())
15787 return true;
15788
15789 Expr::EvalStatus Status;
15790 Status.Diag = &Diags;
15791
15792 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15793 Info.InConstantContext = true;
15794 Info.CheckingPotentialConstantExpression = true;
15795
15796 // The constexpr VM attempts to compile all methods to bytecode here.
15797 if (Info.EnableNewConstInterp) {
15798 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15799 return Diags.empty();
15800 }
15801
15802 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15803 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15804
15805 // Fabricate an arbitrary expression on the stack and pretend that it
15806 // is a temporary being used as the 'this' pointer.
15807 LValue This;
15808 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15809 This.set({&VIE, Info.CurrentCall->Index});
15810
15811 ArrayRef<const Expr*> Args;
15812
15813 APValue Scratch;
15814 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15815 // Evaluate the call as a constant initializer, to allow the construction
15816 // of objects of non-literal types.
15817 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15818 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15819 } else {
15820 SourceLocation Loc = FD->getLocation();
15821 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15822 Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
15823 }
15824
15825 return Diags.empty();
15826}
15827
15828bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15829 const FunctionDecl *FD,
15830 SmallVectorImpl<
15831 PartialDiagnosticAt> &Diags) {
15832 assert(!E->isValueDependent() &&(static_cast <bool> (!E->isValueDependent() &&
"Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!E->isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15833, __extension__ __PRETTY_FUNCTION__
))
15833 "Expression evaluator can't be called on a dependent expression.")(static_cast <bool> (!E->isValueDependent() &&
"Expression evaluator can't be called on a dependent expression."
) ? void (0) : __assert_fail ("!E->isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "clang/lib/AST/ExprConstant.cpp", 15833, __extension__ __PRETTY_FUNCTION__
))
;
15834
15835 Expr::EvalStatus Status;
15836 Status.Diag = &Diags;
15837
15838 EvalInfo Info(FD->getASTContext(), Status,
15839 EvalInfo::EM_ConstantExpressionUnevaluated);
15840 Info.InConstantContext = true;
15841 Info.CheckingPotentialConstantExpression = true;
15842
15843 // Fabricate a call stack frame to give the arguments a plausible cover story.
15844 CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
15845
15846 APValue ResultScratch;
15847 Evaluate(ResultScratch, Info, E);
15848 return Diags.empty();
15849}
15850
15851bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15852 unsigned Type) const {
15853 if (!getType()->isPointerType())
15854 return false;
15855
15856 Expr::EvalStatus Status;
15857 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15858 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15859}
15860
15861static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
15862 EvalInfo &Info) {
15863 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
15864 return false;
15865
15866 LValue String;
15867
15868 if (!EvaluatePointer(E, String, Info))
15869 return false;
15870
15871 QualType CharTy = E->getType()->getPointeeType();
15872
15873 // Fast path: if it's a string literal, search the string value.
15874 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
15875 String.getLValueBase().dyn_cast<const Expr *>())) {
15876 StringRef Str = S->getBytes();
15877 int64_t Off = String.Offset.getQuantity();
15878 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
15879 S->getCharByteWidth() == 1 &&
15880 // FIXME: Add fast-path for wchar_t too.
15881 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
15882 Str = Str.substr(Off);
15883
15884 StringRef::size_type Pos = Str.find(0);
15885 if (Pos != StringRef::npos)
15886 Str = Str.substr(0, Pos);
15887
15888 Result = Str.size();
15889 return true;
15890 }
15891
15892 // Fall through to slow path.
15893 }
15894
15895 // Slow path: scan the bytes of the string looking for the terminating 0.
15896 for (uint64_t Strlen = 0; /**/; ++Strlen) {
15897 APValue Char;
15898 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
15899 !Char.isInt())
15900 return false;
15901 if (!Char.getInt()) {
15902 Result = Strlen;
15903 return true;
15904 }
15905 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
15906 return false;
15907 }
15908}
15909
15910bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
15911 Expr::EvalStatus Status;
15912 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15913 return EvaluateBuiltinStrLen(this, Result, Info);
15914}

/build/llvm-toolchain-snapshot-14~++20220131111436+ae68b3a45776/llvm/include/llvm/ADT/Optional.h

1//===- Optional.h - Simple variant for passing optional values --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file provides Optional, a template class modeled in the spirit of
11/// OCaml's 'opt' variant. The idea is to strongly type whether or not
12/// a value can be optional.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_OPTIONAL_H
17#define LLVM_ADT_OPTIONAL_H
18
19#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLForwardCompat.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/type_traits.h"
24#include <cassert>
25#include <new>
26#include <utility>
27
28namespace llvm {
29
30class raw_ostream;
31
32namespace optional_detail {
33
34/// Storage for any type.
35//
36// The specialization condition intentionally uses
37// llvm::is_trivially_{copy/move}_constructible instead of
38// std::is_trivially_{copy/move}_constructible. GCC versions prior to 7.4 may
39// instantiate the copy/move constructor of `T` when
40// std::is_trivially_{copy/move}_constructible is instantiated. This causes
41// compilation to fail if we query the trivially copy/move constructible
42// property of a class which is not copy/move constructible.
43//
44// The current implementation of OptionalStorage insists that in order to use
45// the trivial specialization, the value_type must be trivially copy
46// constructible and trivially copy assignable due to =default implementations
47// of the copy/move constructor/assignment. It does not follow that this is
48// necessarily the case std::is_trivially_copyable is true (hence the expanded
49// specialization condition).
50//
51// The move constructible / assignable conditions emulate the remaining behavior
52// of std::is_trivially_copyable.
53template <typename T,
54 bool = (llvm::is_trivially_copy_constructible<T>::value &&
55 std::is_trivially_copy_assignable<T>::value &&
56 (llvm::is_trivially_move_constructible<T>::value ||
57 !std::is_move_constructible<T>::value) &&
58 (std::is_trivially_move_assignable<T>::value ||
59 !std::is_move_assignable<T>::value))>
60class OptionalStorage {
61 union {
62 char empty;
63 T value;
64 };
65 bool hasVal;
66
67public:
68 ~OptionalStorage() { reset(); }
69
70 constexpr OptionalStorage() noexcept : empty(), hasVal(false) {}
71
72 constexpr OptionalStorage(OptionalStorage const &other) : OptionalStorage() {
73 if (other.hasValue()) {
74 emplace(other.value);
75 }
76 }
77 constexpr OptionalStorage(OptionalStorage &&other) : OptionalStorage() {
78 if (other.hasValue()) {
79 emplace(std::move(other.value));
80 }
81 }
82
83 template <class... Args>
84 constexpr explicit OptionalStorage(in_place_t, Args &&... args)
85 : value(std::forward<Args>(args)...), hasVal(true) {}
86
87 void reset() noexcept {
88 if (hasVal) {
89 value.~T();
90 hasVal = false;
91 }
92 }
93
94 constexpr bool hasValue() const noexcept { return hasVal; }
95
96 T &getValue() LLVM_LVALUE_FUNCTION& noexcept {
97 assert(hasVal)(static_cast <bool> (hasVal) ? void (0) : __assert_fail
("hasVal", "llvm/include/llvm/ADT/Optional.h", 97, __extension__
__PRETTY_FUNCTION__))
;
98 return value;
99 }
100 constexpr T const &getValue() const LLVM_LVALUE_FUNCTION& noexcept {
101 assert(hasVal)(static_cast <bool> (hasVal) ? void (0) : __assert_fail
("hasVal", "llvm/include/llvm/ADT/Optional.h", 101, __extension__
__PRETTY_FUNCTION__))
;
102 return value;
103 }
104#if LLVM_HAS_RVALUE_REFERENCE_THIS1
105 T &&getValue() && noexcept {
106 assert(hasVal)(static_cast <bool> (hasVal) ? void (0) : __assert_fail
("hasVal", "llvm/include/llvm/ADT/Optional.h", 106, __extension__
__PRETTY_FUNCTION__))
;
107 return std::move(value);
108 }
109#endif
110
111 template <class... Args> void emplace(Args &&... args) {
112 reset();
113 ::new ((void *)std::addressof(value)) T(std::forward<Args>(args)...);
114 hasVal = true;
115 }
116
117 OptionalStorage &operator=(T const &y) {
118 if (hasValue()) {
119 value = y;
120 } else {
121 ::new ((void *)std::addressof(value)) T(y);
122 hasVal = true;
123 }
124 return *this;
125 }
126 OptionalStorage &operator=(T &&y) {
127 if (hasValue()) {
128 value = std::move(y);
129 } else {
130 ::new ((void *)std::addressof(value)) T(std::move(y));
131 hasVal = true;
132 }
133 return *this;
134 }
135
136 OptionalStorage &operator=(OptionalStorage const &other) {
137 if (other.hasValue()) {
138 if (hasValue()) {
139 value = other.value;
140 } else {
141 ::new ((void *)std::addressof(value)) T(other.value);
142 hasVal = true;
143 }
144 } else {
145 reset();
146 }
147 return *this;
148 }
149
150 OptionalStorage &operator=(OptionalStorage &&other) {
151 if (other.hasValue()) {
152 if (hasValue()) {
153 value = std::move(other.value);
154 } else {
155 ::new ((void *)std::addressof(value)) T(std::move(other.value));
156 hasVal = true;
157 }
158 } else {
159 reset();
160 }
161 return *this;
162 }
163};
164
165template <typename T> class OptionalStorage<T, true> {
166 union {
167 char empty;
168 T value;
169 };
170 bool hasVal = false;
171
172public:
173 ~OptionalStorage() = default;
174
175 constexpr OptionalStorage() noexcept : empty{} {}
176
177 constexpr OptionalStorage(OptionalStorage const &other) = default;
178 constexpr OptionalStorage(OptionalStorage &&other) = default;
179
180 OptionalStorage &operator=(OptionalStorage const &other) = default;
181 OptionalStorage &operator=(OptionalStorage &&other) = default;
182
183 template <class... Args>
184 constexpr explicit OptionalStorage(in_place_t, Args &&... args)
185 : value(std::forward<Args>(args)...), hasVal(true) {}
24
Null pointer value stored to 'DynType.Storage..value.Type'
186
187 void reset() noexcept {
188 if (hasVal) {
189 value.~T();
190 hasVal = false;
191 }
192 }
193
194 constexpr bool hasValue() const noexcept { return hasVal; }
31
Returning the value 1, which participates in a condition later
195
196 T &getValue() LLVM_LVALUE_FUNCTION& noexcept {
197 assert(hasVal)(static_cast <bool> (hasVal) ? void (0) : __assert_fail
("hasVal", "llvm/include/llvm/ADT/Optional.h", 197, __extension__
__PRETTY_FUNCTION__))
;
198 return value;
199 }
200 constexpr T const &getValue() const LLVM_LVALUE_FUNCTION& noexcept {
201 assert(hasVal)(static_cast <bool> (hasVal) ? void (0) : __assert_fail
("hasVal", "llvm/include/llvm/ADT/Optional.h", 201, __extension__
__PRETTY_FUNCTION__))
;
202 return value;
203 }
204#if LLVM_HAS_RVALUE_REFERENCE_THIS1
205 T &&getValue() && noexcept {
206 assert(hasVal)(static_cast <bool> (hasVal) ? void (0) : __assert_fail
("hasVal", "llvm/include/llvm/ADT/Optional.h", 206, __extension__
__PRETTY_FUNCTION__))
;
207 return std::move(value);
208 }
209#endif
210
211 template <class... Args> void emplace(Args &&... args) {
212 reset();
213 ::new ((void *)std::addressof(value)) T(std::forward<Args>(args)...);
214 hasVal = true;
215 }
216
217 OptionalStorage &operator=(T const &y) {
218 if (hasValue()) {
219 value = y;
220 } else {
221 ::new ((void *)std::addressof(value)) T(y);
222 hasVal = true;
223 }
224 return *this;
225 }
226 OptionalStorage &operator=(T &&y) {
227 if (hasValue()) {
228 value = std::move(y);
229 } else {
230 ::new ((void *)std::addressof(value)) T(std::move(y));
231 hasVal = true;
232 }
233 return *this;
234 }
235};
236
237} // namespace optional_detail
238
239template <typename T> class Optional {
240 optional_detail::OptionalStorage<T> Storage;
241
242public:
243 using value_type = T;
244
245 constexpr Optional() = default;
246 constexpr Optional(NoneType) {}
247
248 constexpr Optional(const T &y) : Storage(in_place, y) {}
249 constexpr Optional(const Optional &O) = default;
250
251 constexpr Optional(T &&y) : Storage(in_place, std::move(y)) {}
23
Calling constructor for 'OptionalStorage<DynamicType, true>'
25
Returning from constructor for 'OptionalStorage<DynamicType, true>'
252 constexpr Optional(Optional &&O) = default;
253
254 template <typename... ArgTypes>
255 constexpr Optional(in_place_t, ArgTypes &&...Args)
256 : Storage(in_place, std::forward<ArgTypes>(Args)...) {}
257
258 Optional &operator=(T &&y) {
259 Storage = std::move(y);
260 return *this;
261 }
262 Optional &operator=(Optional &&O) = default;
263
264 /// Create a new object by constructing it in place with the given arguments.
265 template <typename... ArgTypes> void emplace(ArgTypes &&... Args) {
266 Storage.emplace(std::forward<ArgTypes>(Args)...);
267 }
268
269 static constexpr Optional create(const T *y) {
270 return y ? Optional(*y) : Optional();
271 }
272
273 Optional &operator=(const T &y) {
274 Storage = y;
275 return *this;
276 }
277 Optional &operator=(const Optional &O) = default;
278
279 void reset() { Storage.reset(); }
280
281 constexpr const T *getPointer() const { return &Storage.getValue(); }
282 T *getPointer() { return &Storage.getValue(); }
283 constexpr const T &getValue() const LLVM_LVALUE_FUNCTION& {
284 return Storage.getValue();
285 }
286 T &getValue() LLVM_LVALUE_FUNCTION& { return Storage.getValue(); }
287
288 constexpr explicit operator bool() const { return hasValue(); }
29
Calling 'Optional::hasValue'
34
Returning from 'Optional::hasValue'
35
Returning the value 1, which participates in a condition later
289 constexpr bool hasValue() const { return Storage.hasValue(); }
30
Calling 'OptionalStorage::hasValue'
32
Returning from 'OptionalStorage::hasValue'
33
Returning the value 1, which participates in a condition later
290 constexpr const T *operator->() const { return getPointer(); }
291 T *operator->() { return getPointer(); }
292 constexpr const T &operator*() const LLVM_LVALUE_FUNCTION& {
293 return getValue();
294 }
295 T &operator*() LLVM_LVALUE_FUNCTION& { return getValue(); }
296
297 template <typename U>
298 constexpr T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION& {
299 return hasValue() ? getValue() : std::forward<U>(value);
300 }
301
302 /// Apply a function to the value if present; otherwise return None.
303 template <class Function>
304 auto map(const Function &F) const LLVM_LVALUE_FUNCTION&
305 -> Optional<decltype(F(getValue()))> {
306 if (*this) return F(getValue());
307 return None;
308 }
309
310#if LLVM_HAS_RVALUE_REFERENCE_THIS1
311 T &&getValue() && { return std::move(Storage.getValue()); }
312 T &&operator*() && { return std::move(Storage.getValue()); }
313
314 template <typename U>
315 T getValueOr(U &&value) && {
316 return hasValue() ? std::move(getValue()) : std::forward<U>(value);
317 }
318
319 /// Apply a function to the value if present; otherwise return None.
320 template <class Function>
321 auto map(const Function &F) &&
322 -> Optional<decltype(F(std::move(*this).getValue()))> {
323 if (*this) return F(std::move(*this).getValue());
324 return None;
325 }
326#endif
327};
328
329template <class T> llvm::hash_code hash_value(const Optional<T> &O) {
330 return O ? hash_combine(true, *O) : hash_value(false);
331}
332
333template <typename T, typename U>
334constexpr bool operator==(const Optional<T> &X, const Optional<U> &Y) {
335 if (X && Y)
336 return *X == *Y;
337 return X.hasValue() == Y.hasValue();
338}
339
340template <typename T, typename U>
341constexpr bool operator!=(const Optional<T> &X, const Optional<U> &Y) {
342 return !(X == Y);
343}
344
345template <typename T, typename U>
346constexpr bool operator<(const Optional<T> &X, const Optional<U> &Y) {
347 if (X && Y)
348 return *X < *Y;
349 return X.hasValue() < Y.hasValue();
350}
351
352template <typename T, typename U>
353constexpr bool operator<=(const Optional<T> &X, const Optional<U> &Y) {
354 return !(Y < X);
355}
356
357template <typename T, typename U>
358constexpr bool operator>(const Optional<T> &X, const Optional<U> &Y) {
359 return Y < X;
360}
361
362template <typename T, typename U>
363constexpr bool operator>=(const Optional<T> &X, const Optional<U> &Y) {
364 return !(X < Y);
365}
366
367template <typename T>
368constexpr bool operator==(const Optional<T> &X, NoneType) {
369 return !X;
370}
371
372template <typename T>
373constexpr bool operator==(NoneType, const Optional<T> &X) {
374 return X == None;
375}
376
377template <typename T>
378constexpr bool operator!=(const Optional<T> &X, NoneType) {
379 return !(X == None);
380}
381
382template <typename T>
383constexpr bool operator!=(NoneType, const Optional<T> &X) {
384 return X != None;
385}
386
387template <typename T> constexpr bool operator<(const Optional<T> &, NoneType) {
388 return false;
389}
390
391template <typename T> constexpr bool operator<(NoneType, const Optional<T> &X) {
392 return X.hasValue();
393}
394
395template <typename T>
396constexpr bool operator<=(const Optional<T> &X, NoneType) {
397 return !(None < X);
398}
399
400template <typename T>
401constexpr bool operator<=(NoneType, const Optional<T> &X) {
402 return !(X < None);
403}
404
405template <typename T> constexpr bool operator>(const Optional<T> &X, NoneType) {
406 return None < X;
407}
408
409template <typename T> constexpr bool operator>(NoneType, const Optional<T> &X) {
410 return X < None;
411}
412
413template <typename T>
414constexpr bool operator>=(const Optional<T> &X, NoneType) {
415 return None <= X;
416}
417
418template <typename T>
419constexpr bool operator>=(NoneType, const Optional<T> &X) {
420 return X <= None;
421}
422
423template <typename T>
424constexpr bool operator==(const Optional<T> &X, const T &Y) {
425 return X && *X == Y;
426}
427
428template <typename T>
429constexpr bool operator==(const T &X, const Optional<T> &Y) {
430 return Y && X == *Y;
431}
432
433template <typename T>
434constexpr bool operator!=(const Optional<T> &X, const T &Y) {
435 return !(X == Y);
436}
437
438template <typename T>
439constexpr bool operator!=(const T &X, const Optional<T> &Y) {
440 return !(X == Y);
441}
442
443template <typename T>
444constexpr bool operator<(const Optional<T> &X, const T &Y) {
445 return !X || *X < Y;
446}
447
448template <typename T>
449constexpr bool operator<(const T &X, const Optional<T> &Y) {
450 return Y && X < *Y;
451}
452
453template <typename T>
454constexpr bool operator<=(const Optional<T> &X, const T &Y) {
455 return !(Y < X);
456}
457
458template <typename T>
459constexpr bool operator<=(const T &X, const Optional<T> &Y) {
460 return !(Y < X);
461}
462
463template <typename T>
464constexpr bool operator>(const Optional<T> &X, const T &Y) {
465 return Y < X;
466}
467
468template <typename T>
469constexpr bool operator>(const T &X, const Optional<T> &Y) {
470 return Y < X;
471}
472
473template <typename T>
474constexpr bool operator>=(const Optional<T> &X, const T &Y) {
475 return !(X < Y);
476}
477
478template <typename T>
479constexpr bool operator>=(const T &X, const Optional<T> &Y) {
480 return !(X < Y);
481}
482
483raw_ostream &operator<<(raw_ostream &OS, NoneType);
484
485template <typename T, typename = decltype(std::declval<raw_ostream &>()
486 << std::declval<const T &>())>
487raw_ostream &operator<<(raw_ostream &OS, const Optional<T> &O) {
488 if (O)
489 OS << *O;
490 else
491 OS << None;
492 return OS;
493}
494
495} // end namespace llvm
496
497#endif // LLVM_ADT_OPTIONAL_H