Bug Summary

File:tools/lld/include/lld/ReaderWriter/MachOLinkingContext.h
Warning:line 106, column 5
Use of memory after it is freed

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name GOTPass.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lld/lib/ReaderWriter/MachO -I /build/llvm-toolchain-snapshot-7~svn338205/tools/lld/lib/ReaderWriter/MachO -I /build/llvm-toolchain-snapshot-7~svn338205/tools/lld/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lld/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -I /build/llvm-toolchain-snapshot-7~svn338205/tools/lld/lib/ReaderWriter/MachO/. -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lld/lib/ReaderWriter/MachO -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/lld/lib/ReaderWriter/MachO/GOTPass.cpp -faddrsig

/build/llvm-toolchain-snapshot-7~svn338205/tools/lld/lib/ReaderWriter/MachO/GOTPass.cpp

1//===- lib/ReaderWriter/MachO/GOTPass.cpp -----------------------*- C++ -*-===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This linker pass transforms all GOT kind references to real references.
12/// That is, in assembly you can write something like:
13/// movq foo@GOTPCREL(%rip), %rax
14/// which means you want to load a pointer to "foo" out of the GOT (global
15/// Offsets Table). In the object file, the Atom containing this instruction
16/// has a Reference whose target is an Atom named "foo" and the Reference
17/// kind is a GOT load. The linker needs to instantiate a pointer sized
18/// GOT entry. This is done be creating a GOT Atom to represent that pointer
19/// sized data in this pass, and altering the Atom graph so the Reference now
20/// points to the GOT Atom entry (corresponding to "foo") and changing the
21/// Reference Kind to reflect it is now pointing to a GOT entry (rather
22/// then needing a GOT entry).
23///
24/// There is one optimization the linker can do here. If the target of the GOT
25/// is in the same linkage unit and does not need to be interposable, and
26/// the GOT use is just a load (not some other operation), this pass can
27/// transform that load into an LEA (add). This optimizes away one memory load
28/// which at runtime that could stall the pipeline. This optimization only
29/// works for architectures in which a (GOT) load instruction can be change to
30/// an LEA instruction that is the same size. The method isGOTAccess() should
31/// only return true for "canBypassGOT" if this optimization is supported.
32///
33//===----------------------------------------------------------------------===//
34
35#include "ArchHandler.h"
36#include "File.h"
37#include "MachOPasses.h"
38#include "lld/Common/LLVM.h"
39#include "lld/Core/DefinedAtom.h"
40#include "lld/Core/File.h"
41#include "lld/Core/Reference.h"
42#include "lld/Core/Simple.h"
43#include "llvm/ADT/DenseMap.h"
44#include "llvm/ADT/STLExtras.h"
45
46namespace lld {
47namespace mach_o {
48
49//
50// GOT Entry Atom created by the GOT pass.
51//
52class GOTEntryAtom : public SimpleDefinedAtom {
53public:
54 GOTEntryAtom(const File &file, bool is64, StringRef name)
55 : SimpleDefinedAtom(file), _is64(is64), _name(name) { }
56
57 ~GOTEntryAtom() override = default;
58
59 ContentType contentType() const override {
60 return DefinedAtom::typeGOT;
61 }
62
63 Alignment alignment() const override {
64 return _is64 ? 8 : 4;
65 }
66
67 uint64_t size() const override {
68 return _is64 ? 8 : 4;
69 }
70
71 ContentPermissions permissions() const override {
72 return DefinedAtom::permRW_;
73 }
74
75 ArrayRef<uint8_t> rawContent() const override {
76 static const uint8_t zeros[] =
77 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
78 return llvm::makeArrayRef(zeros, size());
79 }
80
81 StringRef slotName() const {
82 return _name;
83 }
84
85private:
86 const bool _is64;
87 StringRef _name;
88};
89
90/// Pass for instantiating and optimizing GOT slots.
91///
92class GOTPass : public Pass {
93public:
94 GOTPass(const MachOLinkingContext &context)
95 : _ctx(context), _archHandler(_ctx.archHandler()),
96 _file(*_ctx.make_file<MachOFile>("<mach-o GOT Pass>")) {
3
Calling 'MachOLinkingContext::make_file'
97 _file.setOrdinal(_ctx.getNextOrdinalAndIncrement());
98 }
99
100private:
101 llvm::Error perform(SimpleFile &mergedFile) override {
102 // Scan all references in all atoms.
103 for (const DefinedAtom *atom : mergedFile.defined()) {
104 for (const Reference *ref : *atom) {
105 // Look at instructions accessing the GOT.
106 bool canBypassGOT;
107 if (!_archHandler.isGOTAccess(*ref, canBypassGOT))
108 continue;
109 const Atom *target = ref->target();
110 assert(target != nullptr)(static_cast <bool> (target != nullptr) ? void (0) : __assert_fail
("target != nullptr", "/build/llvm-toolchain-snapshot-7~svn338205/tools/lld/lib/ReaderWriter/MachO/GOTPass.cpp"
, 110, __extension__ __PRETTY_FUNCTION__))
;
111
112 if (!shouldReplaceTargetWithGOTAtom(target, canBypassGOT)) {
113 // Update reference kind to reflect that target is a direct accesss.
114 _archHandler.updateReferenceToGOT(ref, false);
115 } else {
116 // Replace the target with a reference to a GOT entry.
117 const DefinedAtom *gotEntry = makeGOTEntry(target);
118 const_cast<Reference *>(ref)->setTarget(gotEntry);
119 // Update reference kind to reflect that target is now a GOT entry.
120 _archHandler.updateReferenceToGOT(ref, true);
121 }
122 }
123 }
124
125 // Sort and add all created GOT Atoms to master file
126 std::vector<const GOTEntryAtom *> entries;
127 entries.reserve(_targetToGOT.size());
128 for (auto &it : _targetToGOT)
129 entries.push_back(it.second);
130 std::sort(entries.begin(), entries.end(),
131 [](const GOTEntryAtom *left, const GOTEntryAtom *right) {
132 return (left->slotName().compare(right->slotName()) < 0);
133 });
134 for (const GOTEntryAtom *slot : entries)
135 mergedFile.addAtom(*slot);
136
137 return llvm::Error::success();
138 }
139
140 bool shouldReplaceTargetWithGOTAtom(const Atom *target, bool canBypassGOT) {
141 // Accesses to shared library symbols must go through GOT.
142 if (isa<SharedLibraryAtom>(target))
143 return true;
144 // Accesses to interposable symbols in same linkage unit must also go
145 // through GOT.
146 const DefinedAtom *defTarget = dyn_cast<DefinedAtom>(target);
147 if (defTarget != nullptr &&
148 defTarget->interposable() != DefinedAtom::interposeNo) {
149 assert(defTarget->scope() != DefinedAtom::scopeTranslationUnit)(static_cast <bool> (defTarget->scope() != DefinedAtom
::scopeTranslationUnit) ? void (0) : __assert_fail ("defTarget->scope() != DefinedAtom::scopeTranslationUnit"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/lld/lib/ReaderWriter/MachO/GOTPass.cpp"
, 149, __extension__ __PRETTY_FUNCTION__))
;
150 return true;
151 }
152 // Target does not require indirection. So, if instruction allows GOT to be
153 // by-passed, do that optimization and don't create GOT entry.
154 return !canBypassGOT;
155 }
156
157 const DefinedAtom *makeGOTEntry(const Atom *target) {
158 auto pos = _targetToGOT.find(target);
159 if (pos == _targetToGOT.end()) {
160 auto *gotEntry = new (_file.allocator())
161 GOTEntryAtom(_file, _ctx.is64Bit(), target->name());
162 _targetToGOT[target] = gotEntry;
163 const ArchHandler::ReferenceInfo &nlInfo = _archHandler.stubInfo().
164 nonLazyPointerReferenceToBinder;
165 gotEntry->addReference(Reference::KindNamespace::mach_o, nlInfo.arch,
166 nlInfo.kind, 0, target, 0);
167 return gotEntry;
168 }
169 return pos->second;
170 }
171
172 const MachOLinkingContext &_ctx;
173 mach_o::ArchHandler &_archHandler;
174 MachOFile &_file;
175 llvm::DenseMap<const Atom*, const GOTEntryAtom*> _targetToGOT;
176};
177
178void addGOTPass(PassManager &pm, const MachOLinkingContext &ctx) {
179 assert(ctx.needsGOTPass())(static_cast <bool> (ctx.needsGOTPass()) ? void (0) : __assert_fail
("ctx.needsGOTPass()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/lld/lib/ReaderWriter/MachO/GOTPass.cpp"
, 179, __extension__ __PRETTY_FUNCTION__))
;
180 pm.add(llvm::make_unique<GOTPass>(ctx));
1
Calling 'make_unique<lld::mach_o::GOTPass, const lld::MachOLinkingContext &>'
181}
182
183} // end namesapce mach_o
184} // end namesapce lld

/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T>
65struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67template <typename...> struct conjunction : std::true_type {};
68template <typename B1> struct conjunction<B1> : B1 {};
69template <typename B1, typename... Bn>
70struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73//===----------------------------------------------------------------------===//
74// Extra additions to <functional>
75//===----------------------------------------------------------------------===//
76
77template <class Ty> struct identity {
78 using argument_type = Ty;
79
80 Ty &operator()(Ty &self) const {
81 return self;
82 }
83 const Ty &operator()(const Ty &self) const {
84 return self;
85 }
86};
87
88template <class Ty> struct less_ptr {
89 bool operator()(const Ty* left, const Ty* right) const {
90 return *left < *right;
91 }
92};
93
94template <class Ty> struct greater_ptr {
95 bool operator()(const Ty* left, const Ty* right) const {
96 return *right < *left;
97 }
98};
99
100/// An efficient, type-erasing, non-owning reference to a callable. This is
101/// intended for use as the type of a function parameter that is not used
102/// after the function in question returns.
103///
104/// This class does not own the callable, so it is not in general safe to store
105/// a function_ref.
106template<typename Fn> class function_ref;
107
108template<typename Ret, typename ...Params>
109class function_ref<Ret(Params...)> {
110 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
111 intptr_t callable;
112
113 template<typename Callable>
114 static Ret callback_fn(intptr_t callable, Params ...params) {
115 return (*reinterpret_cast<Callable*>(callable))(
116 std::forward<Params>(params)...);
117 }
118
119public:
120 function_ref() = default;
121 function_ref(std::nullptr_t) {}
122
123 template <typename Callable>
124 function_ref(Callable &&callable,
125 typename std::enable_if<
126 !std::is_same<typename std::remove_reference<Callable>::type,
127 function_ref>::value>::type * = nullptr)
128 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
129 callable(reinterpret_cast<intptr_t>(&callable)) {}
130
131 Ret operator()(Params ...params) const {
132 return callback(callable, std::forward<Params>(params)...);
133 }
134
135 operator bool() const { return callback; }
136};
137
138// deleter - Very very very simple method that is used to invoke operator
139// delete on something. It is used like this:
140//
141// for_each(V.begin(), B.end(), deleter<Interval>);
142template <class T>
143inline void deleter(T *Ptr) {
144 delete Ptr;
145}
146
147//===----------------------------------------------------------------------===//
148// Extra additions to <iterator>
149//===----------------------------------------------------------------------===//
150
151namespace adl_detail {
152
153using std::begin;
154
155template <typename ContainerTy>
156auto adl_begin(ContainerTy &&container)
157 -> decltype(begin(std::forward<ContainerTy>(container))) {
158 return begin(std::forward<ContainerTy>(container));
159}
160
161using std::end;
162
163template <typename ContainerTy>
164auto adl_end(ContainerTy &&container)
165 -> decltype(end(std::forward<ContainerTy>(container))) {
166 return end(std::forward<ContainerTy>(container));
167}
168
169using std::swap;
170
171template <typename T>
172void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
173 std::declval<T>()))) {
174 swap(std::forward<T>(lhs), std::forward<T>(rhs));
175}
176
177} // end namespace adl_detail
178
179template <typename ContainerTy>
180auto adl_begin(ContainerTy &&container)
181 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
182 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
183}
184
185template <typename ContainerTy>
186auto adl_end(ContainerTy &&container)
187 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
188 return adl_detail::adl_end(std::forward<ContainerTy>(container));
189}
190
191template <typename T>
192void adl_swap(T &&lhs, T &&rhs) noexcept(
193 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
194 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
195}
196
197// mapped_iterator - This is a simple iterator adapter that causes a function to
198// be applied whenever operator* is invoked on the iterator.
199
200template <typename ItTy, typename FuncTy,
201 typename FuncReturnTy =
202 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
203class mapped_iterator
204 : public iterator_adaptor_base<
205 mapped_iterator<ItTy, FuncTy>, ItTy,
206 typename std::iterator_traits<ItTy>::iterator_category,
207 typename std::remove_reference<FuncReturnTy>::type> {
208public:
209 mapped_iterator(ItTy U, FuncTy F)
210 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
211
212 ItTy getCurrent() { return this->I; }
213
214 FuncReturnTy operator*() { return F(*this->I); }
215
216private:
217 FuncTy F;
218};
219
220// map_iterator - Provide a convenient way to create mapped_iterators, just like
221// make_pair is useful for creating pairs...
222template <class ItTy, class FuncTy>
223inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
224 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
225}
226
227/// Helper to determine if type T has a member called rbegin().
228template <typename Ty> class has_rbegin_impl {
229 using yes = char[1];
230 using no = char[2];
231
232 template <typename Inner>
233 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
234
235 template <typename>
236 static no& test(...);
237
238public:
239 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
240};
241
242/// Metafunction to determine if T& or T has a member called rbegin().
243template <typename Ty>
244struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
245};
246
247// Returns an iterator_range over the given container which iterates in reverse.
248// Note that the container must have rbegin()/rend() methods for this to work.
249template <typename ContainerTy>
250auto reverse(ContainerTy &&C,
251 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
252 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
253 return make_range(C.rbegin(), C.rend());
254}
255
256// Returns a std::reverse_iterator wrapped around the given iterator.
257template <typename IteratorTy>
258std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
259 return std::reverse_iterator<IteratorTy>(It);
260}
261
262// Returns an iterator_range over the given container which iterates in reverse.
263// Note that the container must have begin()/end() methods which return
264// bidirectional iterators for this to work.
265template <typename ContainerTy>
266auto reverse(
267 ContainerTy &&C,
268 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
269 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
270 llvm::make_reverse_iterator(std::begin(C)))) {
271 return make_range(llvm::make_reverse_iterator(std::end(C)),
272 llvm::make_reverse_iterator(std::begin(C)));
273}
274
275/// An iterator adaptor that filters the elements of given inner iterators.
276///
277/// The predicate parameter should be a callable object that accepts the wrapped
278/// iterator's reference type and returns a bool. When incrementing or
279/// decrementing the iterator, it will call the predicate on each element and
280/// skip any where it returns false.
281///
282/// \code
283/// int A[] = { 1, 2, 3, 4 };
284/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
285/// // R contains { 1, 3 }.
286/// \endcode
287///
288/// Note: filter_iterator_base implements support for forward iteration.
289/// filter_iterator_impl exists to provide support for bidirectional iteration,
290/// conditional on whether the wrapped iterator supports it.
291template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
292class filter_iterator_base
293 : public iterator_adaptor_base<
294 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
295 WrappedIteratorT,
296 typename std::common_type<
297 IterTag, typename std::iterator_traits<
298 WrappedIteratorT>::iterator_category>::type> {
299 using BaseT = iterator_adaptor_base<
300 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
301 WrappedIteratorT,
302 typename std::common_type<
303 IterTag, typename std::iterator_traits<
304 WrappedIteratorT>::iterator_category>::type>;
305
306protected:
307 WrappedIteratorT End;
308 PredicateT Pred;
309
310 void findNextValid() {
311 while (this->I != End && !Pred(*this->I))
312 BaseT::operator++();
313 }
314
315 // Construct the iterator. The begin iterator needs to know where the end
316 // is, so that it can properly stop when it gets there. The end iterator only
317 // needs the predicate to support bidirectional iteration.
318 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
319 PredicateT Pred)
320 : BaseT(Begin), End(End), Pred(Pred) {
321 findNextValid();
322 }
323
324public:
325 using BaseT::operator++;
326
327 filter_iterator_base &operator++() {
328 BaseT::operator++();
329 findNextValid();
330 return *this;
331 }
332};
333
334/// Specialization of filter_iterator_base for forward iteration only.
335template <typename WrappedIteratorT, typename PredicateT,
336 typename IterTag = std::forward_iterator_tag>
337class filter_iterator_impl
338 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
339 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
340
341public:
342 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
343 PredicateT Pred)
344 : BaseT(Begin, End, Pred) {}
345};
346
347/// Specialization of filter_iterator_base for bidirectional iteration.
348template <typename WrappedIteratorT, typename PredicateT>
349class filter_iterator_impl<WrappedIteratorT, PredicateT,
350 std::bidirectional_iterator_tag>
351 : public filter_iterator_base<WrappedIteratorT, PredicateT,
352 std::bidirectional_iterator_tag> {
353 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
354 std::bidirectional_iterator_tag>;
355 void findPrevValid() {
356 while (!this->Pred(*this->I))
357 BaseT::operator--();
358 }
359
360public:
361 using BaseT::operator--;
362
363 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
364 PredicateT Pred)
365 : BaseT(Begin, End, Pred) {}
366
367 filter_iterator_impl &operator--() {
368 BaseT::operator--();
369 findPrevValid();
370 return *this;
371 }
372};
373
374namespace detail {
375
376template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
377 using type = std::forward_iterator_tag;
378};
379
380template <> struct fwd_or_bidi_tag_impl<true> {
381 using type = std::bidirectional_iterator_tag;
382};
383
384/// Helper which sets its type member to forward_iterator_tag if the category
385/// of \p IterT does not derive from bidirectional_iterator_tag, and to
386/// bidirectional_iterator_tag otherwise.
387template <typename IterT> struct fwd_or_bidi_tag {
388 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
389 std::bidirectional_iterator_tag,
390 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
391};
392
393} // namespace detail
394
395/// Defines filter_iterator to a suitable specialization of
396/// filter_iterator_impl, based on the underlying iterator's category.
397template <typename WrappedIteratorT, typename PredicateT>
398using filter_iterator = filter_iterator_impl<
399 WrappedIteratorT, PredicateT,
400 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
401
402/// Convenience function that takes a range of elements and a predicate,
403/// and return a new filter_iterator range.
404///
405/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
406/// lifetime of that temporary is not kept by the returned range object, and the
407/// temporary is going to be dropped on the floor after the make_iterator_range
408/// full expression that contains this function call.
409template <typename RangeT, typename PredicateT>
410iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
411make_filter_range(RangeT &&Range, PredicateT Pred) {
412 using FilterIteratorT =
413 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
414 return make_range(
415 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
416 std::end(std::forward<RangeT>(Range)), Pred),
417 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
418 std::end(std::forward<RangeT>(Range)), Pred));
419}
420
421// forward declarations required by zip_shortest/zip_first
422template <typename R, typename UnaryPredicate>
423bool all_of(R &&range, UnaryPredicate P);
424
425template <size_t... I> struct index_sequence;
426
427template <class... Ts> struct index_sequence_for;
428
429namespace detail {
430
431using std::declval;
432
433// We have to alias this since inlining the actual type at the usage site
434// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
435template<typename... Iters> struct ZipTupleType {
436 using type = std::tuple<decltype(*declval<Iters>())...>;
437};
438
439template <typename ZipType, typename... Iters>
440using zip_traits = iterator_facade_base<
441 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
442 typename std::iterator_traits<
443 Iters>::iterator_category...>::type,
444 // ^ TODO: Implement random access methods.
445 typename ZipTupleType<Iters...>::type,
446 typename std::iterator_traits<typename std::tuple_element<
447 0, std::tuple<Iters...>>::type>::difference_type,
448 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
449 // inner iterators have the same difference_type. It would fail if, for
450 // instance, the second field's difference_type were non-numeric while the
451 // first is.
452 typename ZipTupleType<Iters...>::type *,
453 typename ZipTupleType<Iters...>::type>;
454
455template <typename ZipType, typename... Iters>
456struct zip_common : public zip_traits<ZipType, Iters...> {
457 using Base = zip_traits<ZipType, Iters...>;
458 using value_type = typename Base::value_type;
459
460 std::tuple<Iters...> iterators;
461
462protected:
463 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
464 return value_type(*std::get<Ns>(iterators)...);
465 }
466
467 template <size_t... Ns>
468 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
469 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
470 }
471
472 template <size_t... Ns>
473 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
474 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
475 }
476
477public:
478 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
479
480 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
481
482 const value_type operator*() const {
483 return deref(index_sequence_for<Iters...>{});
484 }
485
486 ZipType &operator++() {
487 iterators = tup_inc(index_sequence_for<Iters...>{});
488 return *reinterpret_cast<ZipType *>(this);
489 }
490
491 ZipType &operator--() {
492 static_assert(Base::IsBidirectional,
493 "All inner iterators must be at least bidirectional.");
494 iterators = tup_dec(index_sequence_for<Iters...>{});
495 return *reinterpret_cast<ZipType *>(this);
496 }
497};
498
499template <typename... Iters>
500struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
501 using Base = zip_common<zip_first<Iters...>, Iters...>;
502
503 bool operator==(const zip_first<Iters...> &other) const {
504 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
505 }
506
507 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
508};
509
510template <typename... Iters>
511class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
512 template <size_t... Ns>
513 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
514 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
515 std::get<Ns>(other.iterators)...},
516 identity<bool>{});
517 }
518
519public:
520 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
521
522 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
523
524 bool operator==(const zip_shortest<Iters...> &other) const {
525 return !test(other, index_sequence_for<Iters...>{});
526 }
527};
528
529template <template <typename...> class ItType, typename... Args> class zippy {
530public:
531 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
532 using iterator_category = typename iterator::iterator_category;
533 using value_type = typename iterator::value_type;
534 using difference_type = typename iterator::difference_type;
535 using pointer = typename iterator::pointer;
536 using reference = typename iterator::reference;
537
538private:
539 std::tuple<Args...> ts;
540
541 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
542 return iterator(std::begin(std::get<Ns>(ts))...);
543 }
544 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
545 return iterator(std::end(std::get<Ns>(ts))...);
546 }
547
548public:
549 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
550
551 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
552 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
553};
554
555} // end namespace detail
556
557/// zip iterator for two or more iteratable types.
558template <typename T, typename U, typename... Args>
559detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
560 Args &&... args) {
561 return detail::zippy<detail::zip_shortest, T, U, Args...>(
562 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
563}
564
565/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
566/// be the shortest.
567template <typename T, typename U, typename... Args>
568detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
569 Args &&... args) {
570 return detail::zippy<detail::zip_first, T, U, Args...>(
571 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
572}
573
574/// Iterator wrapper that concatenates sequences together.
575///
576/// This can concatenate different iterators, even with different types, into
577/// a single iterator provided the value types of all the concatenated
578/// iterators expose `reference` and `pointer` types that can be converted to
579/// `ValueT &` and `ValueT *` respectively. It doesn't support more
580/// interesting/customized pointer or reference types.
581///
582/// Currently this only supports forward or higher iterator categories as
583/// inputs and always exposes a forward iterator interface.
584template <typename ValueT, typename... IterTs>
585class concat_iterator
586 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
587 std::forward_iterator_tag, ValueT> {
588 using BaseT = typename concat_iterator::iterator_facade_base;
589
590 /// We store both the current and end iterators for each concatenated
591 /// sequence in a tuple of pairs.
592 ///
593 /// Note that something like iterator_range seems nice at first here, but the
594 /// range properties are of little benefit and end up getting in the way
595 /// because we need to do mutation on the current iterators.
596 std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
597
598 /// Attempts to increment a specific iterator.
599 ///
600 /// Returns true if it was able to increment the iterator. Returns false if
601 /// the iterator is already at the end iterator.
602 template <size_t Index> bool incrementHelper() {
603 auto &IterPair = std::get<Index>(IterPairs);
604 if (IterPair.first == IterPair.second)
605 return false;
606
607 ++IterPair.first;
608 return true;
609 }
610
611 /// Increments the first non-end iterator.
612 ///
613 /// It is an error to call this with all iterators at the end.
614 template <size_t... Ns> void increment(index_sequence<Ns...>) {
615 // Build a sequence of functions to increment each iterator if possible.
616 bool (concat_iterator::*IncrementHelperFns[])() = {
617 &concat_iterator::incrementHelper<Ns>...};
618
619 // Loop over them, and stop as soon as we succeed at incrementing one.
620 for (auto &IncrementHelperFn : IncrementHelperFns)
621 if ((this->*IncrementHelperFn)())
622 return;
623
624 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 624)
;
625 }
626
627 /// Returns null if the specified iterator is at the end. Otherwise,
628 /// dereferences the iterator and returns the address of the resulting
629 /// reference.
630 template <size_t Index> ValueT *getHelper() const {
631 auto &IterPair = std::get<Index>(IterPairs);
632 if (IterPair.first == IterPair.second)
633 return nullptr;
634
635 return &*IterPair.first;
636 }
637
638 /// Finds the first non-end iterator, dereferences, and returns the resulting
639 /// reference.
640 ///
641 /// It is an error to call this with all iterators at the end.
642 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
643 // Build a sequence of functions to get from iterator if possible.
644 ValueT *(concat_iterator::*GetHelperFns[])() const = {
645 &concat_iterator::getHelper<Ns>...};
646
647 // Loop over them, and return the first result we find.
648 for (auto &GetHelperFn : GetHelperFns)
649 if (ValueT *P = (this->*GetHelperFn)())
650 return *P;
651
652 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 652)
;
653 }
654
655public:
656 /// Constructs an iterator from a squence of ranges.
657 ///
658 /// We need the full range to know how to switch between each of the
659 /// iterators.
660 template <typename... RangeTs>
661 explicit concat_iterator(RangeTs &&... Ranges)
662 : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
663
664 using BaseT::operator++;
665
666 concat_iterator &operator++() {
667 increment(index_sequence_for<IterTs...>());
668 return *this;
669 }
670
671 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
672
673 bool operator==(const concat_iterator &RHS) const {
674 return IterPairs == RHS.IterPairs;
675 }
676};
677
678namespace detail {
679
680/// Helper to store a sequence of ranges being concatenated and access them.
681///
682/// This is designed to facilitate providing actual storage when temporaries
683/// are passed into the constructor such that we can use it as part of range
684/// based for loops.
685template <typename ValueT, typename... RangeTs> class concat_range {
686public:
687 using iterator =
688 concat_iterator<ValueT,
689 decltype(std::begin(std::declval<RangeTs &>()))...>;
690
691private:
692 std::tuple<RangeTs...> Ranges;
693
694 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
695 return iterator(std::get<Ns>(Ranges)...);
696 }
697 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
698 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
699 std::end(std::get<Ns>(Ranges)))...);
700 }
701
702public:
703 concat_range(RangeTs &&... Ranges)
704 : Ranges(std::forward<RangeTs>(Ranges)...) {}
705
706 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
707 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
708};
709
710} // end namespace detail
711
712/// Concatenated range across two or more ranges.
713///
714/// The desired value type must be explicitly specified.
715template <typename ValueT, typename... RangeTs>
716detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
717 static_assert(sizeof...(RangeTs) > 1,
718 "Need more than one range to concatenate!");
719 return detail::concat_range<ValueT, RangeTs...>(
720 std::forward<RangeTs>(Ranges)...);
721}
722
723//===----------------------------------------------------------------------===//
724// Extra additions to <utility>
725//===----------------------------------------------------------------------===//
726
727/// Function object to check whether the first component of a std::pair
728/// compares less than the first component of another std::pair.
729struct less_first {
730 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
731 return lhs.first < rhs.first;
732 }
733};
734
735/// Function object to check whether the second component of a std::pair
736/// compares less than the second component of another std::pair.
737struct less_second {
738 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
739 return lhs.second < rhs.second;
740 }
741};
742
743// A subset of N3658. More stuff can be added as-needed.
744
745/// Represents a compile-time sequence of integers.
746template <class T, T... I> struct integer_sequence {
747 using value_type = T;
748
749 static constexpr size_t size() { return sizeof...(I); }
750};
751
752/// Alias for the common case of a sequence of size_ts.
753template <size_t... I>
754struct index_sequence : integer_sequence<std::size_t, I...> {};
755
756template <std::size_t N, std::size_t... I>
757struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
758template <std::size_t... I>
759struct build_index_impl<0, I...> : index_sequence<I...> {};
760
761/// Creates a compile-time integer sequence for a parameter pack.
762template <class... Ts>
763struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
764
765/// Utility type to build an inheritance chain that makes it easy to rank
766/// overload candidates.
767template <int N> struct rank : rank<N - 1> {};
768template <> struct rank<0> {};
769
770/// traits class for checking whether type T is one of any of the given
771/// types in the variadic list.
772template <typename T, typename... Ts> struct is_one_of {
773 static const bool value = false;
774};
775
776template <typename T, typename U, typename... Ts>
777struct is_one_of<T, U, Ts...> {
778 static const bool value =
779 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
780};
781
782/// traits class for checking whether type T is a base class for all
783/// the given types in the variadic list.
784template <typename T, typename... Ts> struct are_base_of {
785 static const bool value = true;
786};
787
788template <typename T, typename U, typename... Ts>
789struct are_base_of<T, U, Ts...> {
790 static const bool value =
791 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
792};
793
794//===----------------------------------------------------------------------===//
795// Extra additions for arrays
796//===----------------------------------------------------------------------===//
797
798/// Find the length of an array.
799template <class T, std::size_t N>
800constexpr inline size_t array_lengthof(T (&)[N]) {
801 return N;
802}
803
804/// Adapt std::less<T> for array_pod_sort.
805template<typename T>
806inline int array_pod_sort_comparator(const void *P1, const void *P2) {
807 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
808 *reinterpret_cast<const T*>(P2)))
809 return -1;
810 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
811 *reinterpret_cast<const T*>(P1)))
812 return 1;
813 return 0;
814}
815
816/// get_array_pod_sort_comparator - This is an internal helper function used to
817/// get type deduction of T right.
818template<typename T>
819inline int (*get_array_pod_sort_comparator(const T &))
820 (const void*, const void*) {
821 return array_pod_sort_comparator<T>;
822}
823
824/// array_pod_sort - This sorts an array with the specified start and end
825/// extent. This is just like std::sort, except that it calls qsort instead of
826/// using an inlined template. qsort is slightly slower than std::sort, but
827/// most sorts are not performance critical in LLVM and std::sort has to be
828/// template instantiated for each type, leading to significant measured code
829/// bloat. This function should generally be used instead of std::sort where
830/// possible.
831///
832/// This function assumes that you have simple POD-like types that can be
833/// compared with std::less and can be moved with memcpy. If this isn't true,
834/// you should use std::sort.
835///
836/// NOTE: If qsort_r were portable, we could allow a custom comparator and
837/// default to std::less.
838template<class IteratorTy>
839inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
840 // Don't inefficiently call qsort with one element or trigger undefined
841 // behavior with an empty sequence.
842 auto NElts = End - Start;
843 if (NElts <= 1) return;
844#ifdef EXPENSIVE_CHECKS
845 std::mt19937 Generator(std::random_device{}());
846 std::shuffle(Start, End, Generator);
847#endif
848 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
849}
850
851template <class IteratorTy>
852inline void array_pod_sort(
853 IteratorTy Start, IteratorTy End,
854 int (*Compare)(
855 const typename std::iterator_traits<IteratorTy>::value_type *,
856 const typename std::iterator_traits<IteratorTy>::value_type *)) {
857 // Don't inefficiently call qsort with one element or trigger undefined
858 // behavior with an empty sequence.
859 auto NElts = End - Start;
860 if (NElts <= 1) return;
861#ifdef EXPENSIVE_CHECKS
862 std::mt19937 Generator(std::random_device{}());
863 std::shuffle(Start, End, Generator);
864#endif
865 qsort(&*Start, NElts, sizeof(*Start),
866 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
867}
868
869// Provide wrappers to std::sort which shuffle the elements before sorting
870// to help uncover non-deterministic behavior (PR35135).
871template <typename IteratorTy>
872inline void sort(IteratorTy Start, IteratorTy End) {
873#ifdef EXPENSIVE_CHECKS
874 std::mt19937 Generator(std::random_device{}());
875 std::shuffle(Start, End, Generator);
876#endif
877 std::sort(Start, End);
878}
879
880template <typename IteratorTy, typename Compare>
881inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
882#ifdef EXPENSIVE_CHECKS
883 std::mt19937 Generator(std::random_device{}());
884 std::shuffle(Start, End, Generator);
885#endif
886 std::sort(Start, End, Comp);
887}
888
889//===----------------------------------------------------------------------===//
890// Extra additions to <algorithm>
891//===----------------------------------------------------------------------===//
892
893/// For a container of pointers, deletes the pointers and then clears the
894/// container.
895template<typename Container>
896void DeleteContainerPointers(Container &C) {
897 for (auto V : C)
898 delete V;
899 C.clear();
900}
901
902/// In a container of pairs (usually a map) whose second element is a pointer,
903/// deletes the second elements and then clears the container.
904template<typename Container>
905void DeleteContainerSeconds(Container &C) {
906 for (auto &V : C)
907 delete V.second;
908 C.clear();
909}
910
911/// Provide wrappers to std::for_each which take ranges instead of having to
912/// pass begin/end explicitly.
913template <typename R, typename UnaryPredicate>
914UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
915 return std::for_each(adl_begin(Range), adl_end(Range), P);
916}
917
918/// Provide wrappers to std::all_of which take ranges instead of having to pass
919/// begin/end explicitly.
920template <typename R, typename UnaryPredicate>
921bool all_of(R &&Range, UnaryPredicate P) {
922 return std::all_of(adl_begin(Range), adl_end(Range), P);
923}
924
925/// Provide wrappers to std::any_of which take ranges instead of having to pass
926/// begin/end explicitly.
927template <typename R, typename UnaryPredicate>
928bool any_of(R &&Range, UnaryPredicate P) {
929 return std::any_of(adl_begin(Range), adl_end(Range), P);
930}
931
932/// Provide wrappers to std::none_of which take ranges instead of having to pass
933/// begin/end explicitly.
934template <typename R, typename UnaryPredicate>
935bool none_of(R &&Range, UnaryPredicate P) {
936 return std::none_of(adl_begin(Range), adl_end(Range), P);
937}
938
939/// Provide wrappers to std::find which take ranges instead of having to pass
940/// begin/end explicitly.
941template <typename R, typename T>
942auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
943 return std::find(adl_begin(Range), adl_end(Range), Val);
944}
945
946/// Provide wrappers to std::find_if which take ranges instead of having to pass
947/// begin/end explicitly.
948template <typename R, typename UnaryPredicate>
949auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
950 return std::find_if(adl_begin(Range), adl_end(Range), P);
951}
952
953template <typename R, typename UnaryPredicate>
954auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
955 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
956}
957
958/// Provide wrappers to std::remove_if which take ranges instead of having to
959/// pass begin/end explicitly.
960template <typename R, typename UnaryPredicate>
961auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
962 return std::remove_if(adl_begin(Range), adl_end(Range), P);
963}
964
965/// Provide wrappers to std::copy_if which take ranges instead of having to
966/// pass begin/end explicitly.
967template <typename R, typename OutputIt, typename UnaryPredicate>
968OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
969 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
970}
971
972template <typename R, typename OutputIt>
973OutputIt copy(R &&Range, OutputIt Out) {
974 return std::copy(adl_begin(Range), adl_end(Range), Out);
975}
976
977/// Wrapper function around std::find to detect if an element exists
978/// in a container.
979template <typename R, typename E>
980bool is_contained(R &&Range, const E &Element) {
981 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
982}
983
984/// Wrapper function around std::count to count the number of times an element
985/// \p Element occurs in the given range \p Range.
986template <typename R, typename E>
987auto count(R &&Range, const E &Element) ->
988 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
989 return std::count(adl_begin(Range), adl_end(Range), Element);
990}
991
992/// Wrapper function around std::count_if to count the number of times an
993/// element satisfying a given predicate occurs in a range.
994template <typename R, typename UnaryPredicate>
995auto count_if(R &&Range, UnaryPredicate P) ->
996 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
997 return std::count_if(adl_begin(Range), adl_end(Range), P);
998}
999
1000/// Wrapper function around std::transform to apply a function to a range and
1001/// store the result elsewhere.
1002template <typename R, typename OutputIt, typename UnaryPredicate>
1003OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1004 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1005}
1006
1007/// Provide wrappers to std::partition which take ranges instead of having to
1008/// pass begin/end explicitly.
1009template <typename R, typename UnaryPredicate>
1010auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1011 return std::partition(adl_begin(Range), adl_end(Range), P);
1012}
1013
1014/// Provide wrappers to std::lower_bound which take ranges instead of having to
1015/// pass begin/end explicitly.
1016template <typename R, typename ForwardIt>
1017auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1018 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1019}
1020
1021/// Given a range of type R, iterate the entire range and return a
1022/// SmallVector with elements of the vector. This is useful, for example,
1023/// when you want to iterate a range and then sort the results.
1024template <unsigned Size, typename R>
1025SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1026to_vector(R &&Range) {
1027 return {adl_begin(Range), adl_end(Range)};
1028}
1029
1030/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1031/// `erase_if` which is equivalent to:
1032///
1033/// C.erase(remove_if(C, pred), C.end());
1034///
1035/// This version works for any container with an erase method call accepting
1036/// two iterators.
1037template <typename Container, typename UnaryPredicate>
1038void erase_if(Container &C, UnaryPredicate P) {
1039 C.erase(remove_if(C, P), C.end());
1040}
1041
1042/// Get the size of a range. This is a wrapper function around std::distance
1043/// which is only enabled when the operation is O(1).
1044template <typename R>
1045auto size(R &&Range, typename std::enable_if<
1046 std::is_same<typename std::iterator_traits<decltype(
1047 Range.begin())>::iterator_category,
1048 std::random_access_iterator_tag>::value,
1049 void>::type * = nullptr)
1050 -> decltype(std::distance(Range.begin(), Range.end())) {
1051 return std::distance(Range.begin(), Range.end());
1052}
1053
1054//===----------------------------------------------------------------------===//
1055// Extra additions to <memory>
1056//===----------------------------------------------------------------------===//
1057
1058// Implement make_unique according to N3656.
1059
1060/// Constructs a `new T()` with the given args and returns a
1061/// `unique_ptr<T>` which owns the object.
1062///
1063/// Example:
1064///
1065/// auto p = make_unique<int>();
1066/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1067template <class T, class... Args>
1068typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1069make_unique(Args &&... args) {
1070 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
2
Calling constructor for 'GOTPass'
6
Calling '~unique_ptr'
11
Returning from '~unique_ptr'
1071}
1072
1073/// Constructs a `new T[n]` with the given args and returns a
1074/// `unique_ptr<T[]>` which owns the object.
1075///
1076/// \param n size of the new array.
1077///
1078/// Example:
1079///
1080/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1081template <class T>
1082typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1083 std::unique_ptr<T>>::type
1084make_unique(size_t n) {
1085 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1086}
1087
1088/// This function isn't used and is only here to provide better compile errors.
1089template <class T, class... Args>
1090typename std::enable_if<std::extent<T>::value != 0>::type
1091make_unique(Args &&...) = delete;
1092
1093struct FreeDeleter {
1094 void operator()(void* v) {
1095 ::free(v);
1096 }
1097};
1098
1099template<typename First, typename Second>
1100struct pair_hash {
1101 size_t operator()(const std::pair<First, Second> &P) const {
1102 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1103 }
1104};
1105
1106/// A functor like C++14's std::less<void> in its absence.
1107struct less {
1108 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1109 return std::forward<A>(a) < std::forward<B>(b);
1110 }
1111};
1112
1113/// A functor like C++14's std::equal<void> in its absence.
1114struct equal {
1115 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1116 return std::forward<A>(a) == std::forward<B>(b);
1117 }
1118};
1119
1120/// Binary functor that adapts to any other binary functor after dereferencing
1121/// operands.
1122template <typename T> struct deref {
1123 T func;
1124
1125 // Could be further improved to cope with non-derivable functors and
1126 // non-binary functors (should be a variadic template member function
1127 // operator()).
1128 template <typename A, typename B>
1129 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1130 assert(lhs)(static_cast <bool> (lhs) ? void (0) : __assert_fail ("lhs"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 1130, __extension__ __PRETTY_FUNCTION__))
;
1131 assert(rhs)(static_cast <bool> (rhs) ? void (0) : __assert_fail ("rhs"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 1131, __extension__ __PRETTY_FUNCTION__))
;
1132 return func(*lhs, *rhs);
1133 }
1134};
1135
1136namespace detail {
1137
1138template <typename R> class enumerator_iter;
1139
1140template <typename R> struct result_pair {
1141 friend class enumerator_iter<R>;
1142
1143 result_pair() = default;
1144 result_pair(std::size_t Index, IterOfRange<R> Iter)
1145 : Index(Index), Iter(Iter) {}
1146
1147 result_pair<R> &operator=(const result_pair<R> &Other) {
1148 Index = Other.Index;
1149 Iter = Other.Iter;
1150 return *this;
1151 }
1152
1153 std::size_t index() const { return Index; }
1154 const ValueOfRange<R> &value() const { return *Iter; }
1155 ValueOfRange<R> &value() { return *Iter; }
1156
1157private:
1158 std::size_t Index = std::numeric_limits<std::size_t>::max();
1159 IterOfRange<R> Iter;
1160};
1161
1162template <typename R>
1163class enumerator_iter
1164 : public iterator_facade_base<
1165 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1166 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1167 typename std::iterator_traits<IterOfRange<R>>::pointer,
1168 typename std::iterator_traits<IterOfRange<R>>::reference> {
1169 using result_type = result_pair<R>;
1170
1171public:
1172 explicit enumerator_iter(IterOfRange<R> EndIter)
1173 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1174
1175 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1176 : Result(Index, Iter) {}
1177
1178 result_type &operator*() { return Result; }
1179 const result_type &operator*() const { return Result; }
1180
1181 enumerator_iter<R> &operator++() {
1182 assert(Result.Index != std::numeric_limits<size_t>::max())(static_cast <bool> (Result.Index != std::numeric_limits
<size_t>::max()) ? void (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 1182, __extension__ __PRETTY_FUNCTION__))
;
1183 ++Result.Iter;
1184 ++Result.Index;
1185 return *this;
1186 }
1187
1188 bool operator==(const enumerator_iter<R> &RHS) const {
1189 // Don't compare indices here, only iterators. It's possible for an end
1190 // iterator to have different indices depending on whether it was created
1191 // by calling std::end() versus incrementing a valid iterator.
1192 return Result.Iter == RHS.Result.Iter;
1193 }
1194
1195 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1196 Result = Other.Result;
1197 return *this;
1198 }
1199
1200private:
1201 result_type Result;
1202};
1203
1204template <typename R> class enumerator {
1205public:
1206 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1207
1208 enumerator_iter<R> begin() {
1209 return enumerator_iter<R>(0, std::begin(TheRange));
1210 }
1211
1212 enumerator_iter<R> end() {
1213 return enumerator_iter<R>(std::end(TheRange));
1214 }
1215
1216private:
1217 R TheRange;
1218};
1219
1220} // end namespace detail
1221
1222/// Given an input range, returns a new range whose values are are pair (A,B)
1223/// such that A is the 0-based index of the item in the sequence, and B is
1224/// the value from the original sequence. Example:
1225///
1226/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1227/// for (auto X : enumerate(Items)) {
1228/// printf("Item %d - %c\n", X.index(), X.value());
1229/// }
1230///
1231/// Output:
1232/// Item 0 - A
1233/// Item 1 - B
1234/// Item 2 - C
1235/// Item 3 - D
1236///
1237template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1238 return detail::enumerator<R>(std::forward<R>(TheRange));
1239}
1240
1241namespace detail {
1242
1243template <typename F, typename Tuple, std::size_t... I>
1244auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1245 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1246 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1247}
1248
1249} // end namespace detail
1250
1251/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1252/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1253/// return the result.
1254template <typename F, typename Tuple>
1255auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1256 std::forward<F>(f), std::forward<Tuple>(t),
1257 build_index_impl<
1258 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1259 using Indices = build_index_impl<
1260 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1261
1262 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1263 Indices{});
1264}
1265
1266} // end namespace llvm
1267
1268#endif // LLVM_ADT_STLEXTRAS_H

/build/llvm-toolchain-snapshot-7~svn338205/tools/lld/include/lld/ReaderWriter/MachOLinkingContext.h

1//===- lld/ReaderWriter/MachOLinkingContext.h -----------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLD_READER_WRITER_MACHO_LINKING_CONTEXT_H
11#define LLD_READER_WRITER_MACHO_LINKING_CONTEXT_H
12
13#include "lld/Core/LinkingContext.h"
14#include "lld/Core/Reader.h"
15#include "lld/Core/Writer.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringMap.h"
18#include "llvm/ADT/StringSet.h"
19#include "llvm/BinaryFormat/MachO.h"
20#include "llvm/Support/ErrorHandling.h"
21#include <set>
22
23using llvm::MachO::HeaderFileType;
24
25namespace lld {
26
27namespace mach_o {
28class ArchHandler;
29class MachODylibFile;
30class MachOFile;
31class SectCreateFile;
32}
33
34class MachOLinkingContext : public LinkingContext {
35public:
36 MachOLinkingContext();
37 ~MachOLinkingContext() override;
38
39 enum Arch {
40 arch_unknown,
41 arch_ppc,
42 arch_x86,
43 arch_x86_64,
44 arch_armv6,
45 arch_armv7,
46 arch_armv7s,
47 arch_arm64,
48 };
49
50 enum class OS {
51 unknown,
52 macOSX,
53 iOS,
54 iOS_simulator
55 };
56
57 enum class ExportMode {
58 globals, // Default, all global symbols exported.
59 whiteList, // -exported_symbol[s_list], only listed symbols exported.
60 blackList // -unexported_symbol[s_list], no listed symbol exported.
61 };
62
63 enum class DebugInfoMode {
64 addDebugMap, // Default
65 noDebugMap // -S option
66 };
67
68 enum class UndefinedMode {
69 error,
70 warning,
71 suppress,
72 dynamicLookup
73 };
74
75 enum ObjCConstraint {
76 objc_unknown = 0,
77 objc_supports_gc = 2,
78 objc_gc_only = 4,
79 // Image optimized by dyld = 8
80 // GC compaction = 16
81 objc_retainReleaseForSimulator = 32,
82 objc_retainRelease
83 };
84
85 /// Initializes the context to sane default values given the specified output
86 /// file type, arch, os, and minimum os version. This should be called before
87 /// other setXXX() methods.
88 void configure(HeaderFileType type, Arch arch, OS os, uint32_t minOSVersion,
89 bool exportDynamicSymbols);
90
91 void addPasses(PassManager &pm) override;
92 bool validateImpl() override;
93 std::string demangle(StringRef symbolName) const override;
94
95 void createImplicitFiles(std::vector<std::unique_ptr<File>> &) override;
96
97 /// Creates a new file which is owned by the context. Returns a pointer to
98 /// the new file.
99 template <class T, class... Args>
100 typename std::enable_if<!std::is_array<T>::value, T *>::type
101 make_file(Args &&... args) const {
102 auto file = std::unique_ptr<T>(new T(std::forward<Args>(args)...));
4
Memory is allocated
103 auto *filePtr = file.get();
104 auto *ctx = const_cast<MachOLinkingContext *>(this);
105 ctx->getNodes().push_back(llvm::make_unique<FileNode>(std::move(file)));
5
Calling 'make_unique<lld::FileNode, std::unique_ptr<lld::mach_o::MachOFile, std::default_delete<lld::mach_o::MachOFile> >>'
12
Returning; memory was released
106 return filePtr;
13
Use of memory after it is freed
107 }
108
109 uint32_t getCPUType() const;
110 uint32_t getCPUSubType() const;
111
112 bool addEntryPointLoadCommand() const;
113 bool addUnixThreadLoadCommand() const;
114 bool outputTypeHasEntry() const;
115 bool is64Bit() const;
116
117 virtual uint64_t pageZeroSize() const { return _pageZeroSize; }
118 virtual uint64_t pageSize() const { return _pageSize; }
119
120 mach_o::ArchHandler &archHandler() const;
121
122 HeaderFileType outputMachOType() const { return _outputMachOType; }
123
124 Arch arch() const { return _arch; }
125 StringRef archName() const { return nameFromArch(_arch); }
126 OS os() const { return _os; }
127
128 ExportMode exportMode() const { return _exportMode; }
129 void setExportMode(ExportMode mode) { _exportMode = mode; }
130 void addExportSymbol(StringRef sym);
131 bool exportRestrictMode() const { return _exportMode != ExportMode::globals; }
132 bool exportSymbolNamed(StringRef sym) const;
133
134 DebugInfoMode debugInfoMode() const { return _debugInfoMode; }
135 void setDebugInfoMode(DebugInfoMode mode) {
136 _debugInfoMode = mode;
137 }
138
139 void appendOrderedSymbol(StringRef symbol, StringRef filename);
140
141 bool keepPrivateExterns() const { return _keepPrivateExterns; }
142 void setKeepPrivateExterns(bool v) { _keepPrivateExterns = v; }
143 bool demangleSymbols() const { return _demangle; }
144 void setDemangleSymbols(bool d) { _demangle = d; }
145 bool mergeObjCCategories() const { return _mergeObjCCategories; }
146 void setMergeObjCCategories(bool v) { _mergeObjCCategories = v; }
147 /// Create file at specified path which will contain a binary encoding
148 /// of all input and output file paths.
149 std::error_code createDependencyFile(StringRef path);
150 void addInputFileDependency(StringRef path) const;
151 void addInputFileNotFound(StringRef path) const;
152 void addOutputFileDependency(StringRef path) const;
153
154 bool minOS(StringRef mac, StringRef iOS) const;
155 void setDoNothing(bool value) { _doNothing = value; }
156 bool doNothing() const { return _doNothing; }
157 bool printAtoms() const { return _printAtoms; }
158 bool testingFileUsage() const { return _testingFileUsage; }
159 const StringRefVector &searchDirs() const { return _searchDirs; }
160 const StringRefVector &frameworkDirs() const { return _frameworkDirs; }
161 void setSysLibRoots(const StringRefVector &paths);
162 const StringRefVector &sysLibRoots() const { return _syslibRoots; }
163 bool PIE() const { return _pie; }
164 void setPIE(bool pie) { _pie = pie; }
165 bool generateVersionLoadCommand() const {
166 return _generateVersionLoadCommand;
167 }
168 void setGenerateVersionLoadCommand(bool v) {
169 _generateVersionLoadCommand = v;
170 }
171
172 bool generateFunctionStartsLoadCommand() const {
173 return _generateFunctionStartsLoadCommand;
174 }
175 void setGenerateFunctionStartsLoadCommand(bool v) {
176 _generateFunctionStartsLoadCommand = v;
177 }
178
179 bool generateDataInCodeLoadCommand() const {
180 return _generateDataInCodeLoadCommand;
181 }
182 void setGenerateDataInCodeLoadCommand(bool v) {
183 _generateDataInCodeLoadCommand = v;
184 }
185
186 uint64_t stackSize() const { return _stackSize; }
187 void setStackSize(uint64_t stackSize) { _stackSize = stackSize; }
188
189 uint64_t baseAddress() const { return _baseAddress; }
190 void setBaseAddress(uint64_t baseAddress) { _baseAddress = baseAddress; }
191
192 ObjCConstraint objcConstraint() const { return _objcConstraint; }
193
194 uint32_t osMinVersion() const { return _osMinVersion; }
195
196 uint32_t sdkVersion() const { return _sdkVersion; }
197 void setSdkVersion(uint64_t v) { _sdkVersion = v; }
198
199 uint64_t sourceVersion() const { return _sourceVersion; }
200 void setSourceVersion(uint64_t v) { _sourceVersion = v; }
201
202 uint32_t swiftVersion() const { return _swiftVersion; }
203
204 /// Checks whether a given path on the filesystem exists.
205 ///
206 /// When running in -test_file_usage mode, this method consults an
207 /// internally maintained list of files that exist (provided by -path_exists)
208 /// instead of the actual filesystem.
209 bool pathExists(StringRef path) const;
210
211 /// Like pathExists() but only used on files - not directories.
212 bool fileExists(StringRef path) const;
213
214 /// Adds any library search paths derived from the given base, possibly
215 /// modified by -syslibroots.
216 ///
217 /// The set of paths added consists of approximately all syslibroot-prepended
218 /// versions of libPath that exist, or the original libPath if there are none
219 /// for whatever reason. With various edge-cases for compatibility.
220 void addModifiedSearchDir(StringRef libPath, bool isSystemPath = false);
221
222 /// Determine whether -lFoo can be resolve within the given path, and
223 /// return the filename if so.
224 ///
225 /// The -lFoo option is documented to search for libFoo.dylib and libFoo.a in
226 /// that order, unless Foo ends in ".o", in which case only the exact file
227 /// matches (e.g. -lfoo.o would only find foo.o).
228 llvm::Optional<StringRef> searchDirForLibrary(StringRef path,
229 StringRef libName) const;
230
231 /// Iterates through all search path entries looking for libName (as
232 /// specified by -lFoo).
233 llvm::Optional<StringRef> searchLibrary(StringRef libName) const;
234
235 /// Add a framework search path. Internally, this method may be prepended
236 /// the path with syslibroot.
237 void addFrameworkSearchDir(StringRef fwPath, bool isSystemPath = false);
238
239 /// Iterates through all framework directories looking for
240 /// Foo.framework/Foo (when fwName = "Foo").
241 llvm::Optional<StringRef> findPathForFramework(StringRef fwName) const;
242
243 /// The dylib's binary compatibility version, in the raw uint32 format.
244 ///
245 /// When building a dynamic library, this is the compatibility version that
246 /// gets embedded into the result. Other Mach-O binaries that link against
247 /// this library will store the compatibility version in its load command. At
248 /// runtime, the loader will verify that the binary is compatible with the
249 /// installed dynamic library.
250 uint32_t compatibilityVersion() const { return _compatibilityVersion; }
251
252 /// The dylib's current version, in the the raw uint32 format.
253 ///
254 /// When building a dynamic library, this is the current version that gets
255 /// embedded into the result. Other Mach-O binaries that link against
256 /// this library will store the compatibility version in its load command.
257 uint32_t currentVersion() const { return _currentVersion; }
258
259 /// The dylib's install name.
260 ///
261 /// Binaries that link against the dylib will embed this path into the dylib
262 /// load command. When loading the binaries at runtime, this is the location
263 /// on disk that the loader will look for the dylib.
264 StringRef installName() const { return _installName; }
265
266 /// Whether or not the dylib has side effects during initialization.
267 ///
268 /// Dylibs marked as being dead strippable provide the guarantee that loading
269 /// the dylib has no side effects, allowing the linker to strip out the dylib
270 /// when linking a binary that does not use any of its symbols.
271 bool deadStrippableDylib() const { return _deadStrippableDylib; }
272
273 /// Whether or not to use flat namespace.
274 ///
275 /// MachO usually uses a two-level namespace, where each external symbol
276 /// referenced by the target is associated with the dylib that will provide
277 /// the symbol's definition at runtime. Using flat namespace overrides this
278 /// behavior: the linker searches all dylibs on the command line and all
279 /// dylibs those original dylibs depend on, but does not record which dylib
280 /// an external symbol came from. At runtime dyld again searches all images
281 /// and uses the first definition it finds. In addition, any undefines in
282 /// loaded flat_namespace dylibs must be resolvable at build time.
283 bool useFlatNamespace() const { return _flatNamespace; }
284
285 /// How to handle undefined symbols.
286 ///
287 /// Options are:
288 /// * error: Report an error and terminate linking.
289 /// * warning: Report a warning, but continue linking.
290 /// * suppress: Ignore and continue linking.
291 /// * dynamic_lookup: For use with -twolevel namespace: Records source dylibs
292 /// for symbols that are defined in a linked dylib at static link time.
293 /// Undefined symbols are handled by searching all loaded images at
294 /// runtime.
295 UndefinedMode undefinedMode() const { return _undefinedMode; }
296
297 /// The path to the executable that will load the bundle at runtime.
298 ///
299 /// When building a Mach-O bundle, this executable will be examined if there
300 /// are undefined symbols after the main link phase. It is expected that this
301 /// binary will be loading the bundle at runtime and will provide the symbols
302 /// at that point.
303 StringRef bundleLoader() const { return _bundleLoader; }
304
305 void setCompatibilityVersion(uint32_t vers) { _compatibilityVersion = vers; }
306 void setCurrentVersion(uint32_t vers) { _currentVersion = vers; }
307 void setInstallName(StringRef name) { _installName = name; }
308 void setDeadStrippableDylib(bool deadStrippable) {
309 _deadStrippableDylib = deadStrippable;
310 }
311 void setUseFlatNamespace(bool flatNamespace) {
312 _flatNamespace = flatNamespace;
313 }
314
315 void setUndefinedMode(UndefinedMode undefinedMode) {
316 _undefinedMode = undefinedMode;
317 }
318
319 void setBundleLoader(StringRef loader) { _bundleLoader = loader; }
320 void setPrintAtoms(bool value=true) { _printAtoms = value; }
321 void setTestingFileUsage(bool value = true) {
322 _testingFileUsage = value;
323 }
324 void addExistingPathForDebug(StringRef path) {
325 _existingPaths.insert(path);
326 }
327
328 void addRpath(StringRef rpath);
329 const StringRefVector &rpaths() const { return _rpaths; }
330
331 /// Add section alignment constraint on final layout.
332 void addSectionAlignment(StringRef seg, StringRef sect, uint16_t align);
333
334 /// Add a section based on a command-line sectcreate option.
335 void addSectCreateSection(StringRef seg, StringRef sect,
336 std::unique_ptr<MemoryBuffer> content);
337
338 /// Returns true if specified section had alignment constraints.
339 bool sectionAligned(StringRef seg, StringRef sect, uint16_t &align) const;
340
341 StringRef dyldPath() const { return "/usr/lib/dyld"; }
342
343 /// Stub creation Pass should be run.
344 bool needsStubsPass() const;
345
346 // GOT creation Pass should be run.
347 bool needsGOTPass() const;
348
349 /// Pass to add TLV sections.
350 bool needsTLVPass() const;
351
352 /// Pass to transform __compact_unwind into __unwind_info should be run.
353 bool needsCompactUnwindPass() const;
354
355 /// Pass to add shims switching between thumb and arm mode.
356 bool needsShimPass() const;
357
358 /// Pass to add objc image info and optimized objc data.
359 bool needsObjCPass() const;
360
361 /// Magic symbol name stubs will need to help lazy bind.
362 StringRef binderSymbolName() const;
363
364 /// Used to keep track of direct and indirect dylibs.
365 void registerDylib(mach_o::MachODylibFile *dylib, bool upward) const;
366
367 // Reads a file from disk to memory. Returns only a needed chunk
368 // if a fat binary.
369 ErrorOr<std::unique_ptr<MemoryBuffer>> getMemoryBuffer(StringRef path);
370
371 /// Used to find indirect dylibs. Instantiates a MachODylibFile if one
372 /// has not already been made for the requested dylib. Uses -L and -F
373 /// search paths to allow indirect dylibs to be overridden.
374 mach_o::MachODylibFile* findIndirectDylib(StringRef path);
375
376 uint32_t dylibCurrentVersion(StringRef installName) const;
377
378 uint32_t dylibCompatVersion(StringRef installName) const;
379
380 ArrayRef<mach_o::MachODylibFile*> allDylibs() const {
381 return _allDylibs;
382 }
383
384 /// Creates a copy (owned by this MachOLinkingContext) of a string.
385 StringRef copy(StringRef str) { return str.copy(_allocator); }
386
387 /// If the memoryBuffer is a fat file with a slice for the current arch,
388 /// this method will return the offset and size of that slice.
389 bool sliceFromFatFile(MemoryBufferRef mb, uint32_t &offset, uint32_t &size);
390
391 /// Returns if a command line option specified dylib is an upward link.
392 bool isUpwardDylib(StringRef installName) const;
393
394 static bool isThinObjectFile(StringRef path, Arch &arch);
395 static Arch archFromCpuType(uint32_t cputype, uint32_t cpusubtype);
396 static Arch archFromName(StringRef archName);
397 static StringRef nameFromArch(Arch arch);
398 static uint32_t cpuTypeFromArch(Arch arch);
399 static uint32_t cpuSubtypeFromArch(Arch arch);
400 static bool is64Bit(Arch arch);
401 static bool isHostEndian(Arch arch);
402 static bool isBigEndian(Arch arch);
403
404 /// Construct 32-bit value from string "X.Y.Z" where
405 /// bits are xxxx.yy.zz. Largest number is 65535.255.255
406 static bool parsePackedVersion(StringRef str, uint32_t &result);
407
408 /// Construct 64-bit value from string "A.B.C.D.E" where
409 /// bits are aaaa.bb.cc.dd.ee. Largest number is 16777215.1023.1023.1023.1023
410 static bool parsePackedVersion(StringRef str, uint64_t &result);
411
412 void finalizeInputFiles() override;
413
414 llvm::Error handleLoadedFile(File &file) override;
415
416 bool customAtomOrderer(const DefinedAtom *left, const DefinedAtom *right,
417 bool &leftBeforeRight) const;
418
419 /// Return the 'flat namespace' file. This is the file that supplies
420 /// atoms for otherwise undefined symbols when the -flat_namespace or
421 /// -undefined dynamic_lookup options are used.
422 File* flatNamespaceFile() const { return _flatNamespaceFile; }
423
424private:
425 Writer &writer() const override;
426 mach_o::MachODylibFile* loadIndirectDylib(StringRef path);
427 void checkExportWhiteList(const DefinedAtom *atom) const;
428 void checkExportBlackList(const DefinedAtom *atom) const;
429 struct ArchInfo {
430 StringRef archName;
431 MachOLinkingContext::Arch arch;
432 bool littleEndian;
433 uint32_t cputype;
434 uint32_t cpusubtype;
435 };
436
437 struct SectionAlign {
438 StringRef segmentName;
439 StringRef sectionName;
440 uint16_t align;
441 };
442
443 struct OrderFileNode {
444 StringRef fileFilter;
445 unsigned order;
446 };
447
448 static bool findOrderOrdinal(const std::vector<OrderFileNode> &nodes,
449 const DefinedAtom *atom, unsigned &ordinal);
450
451 static ArchInfo _s_archInfos[];
452
453 std::set<StringRef> _existingPaths; // For testing only.
454 StringRefVector _searchDirs;
455 StringRefVector _syslibRoots;
456 StringRefVector _frameworkDirs;
457 HeaderFileType _outputMachOType = llvm::MachO::MH_EXECUTE;
458 bool _outputMachOTypeStatic = false; // Disambiguate static vs dynamic prog
459 bool _doNothing = false; // for -help and -v which just print info
460 bool _pie = false;
461 Arch _arch = arch_unknown;
462 OS _os = OS::macOSX;
463 uint32_t _osMinVersion = 0;
464 uint32_t _sdkVersion = 0;
465 uint64_t _sourceVersion = 0;
466 uint64_t _pageZeroSize = 0;
467 uint64_t _pageSize = 4096;
468 uint64_t _baseAddress = 0;
469 uint64_t _stackSize = 0;
470 uint32_t _compatibilityVersion = 0;
471 uint32_t _currentVersion = 0;
472 ObjCConstraint _objcConstraint = objc_unknown;
473 uint32_t _swiftVersion = 0;
474 StringRef _installName;
475 StringRefVector _rpaths;
476 bool _flatNamespace = false;
477 UndefinedMode _undefinedMode = UndefinedMode::error;
478 bool _deadStrippableDylib = false;
479 bool _printAtoms = false;
480 bool _testingFileUsage = false;
481 bool _keepPrivateExterns = false;
482 bool _demangle = false;
483 bool _mergeObjCCategories = true;
484 bool _generateVersionLoadCommand = false;
485 bool _generateFunctionStartsLoadCommand = false;
486 bool _generateDataInCodeLoadCommand = false;
487 StringRef _bundleLoader;
488 mutable std::unique_ptr<mach_o::ArchHandler> _archHandler;
489 mutable std::unique_ptr<Writer> _writer;
490 std::vector<SectionAlign> _sectAligns;
491 mutable llvm::StringMap<mach_o::MachODylibFile*> _pathToDylibMap;
492 mutable std::vector<mach_o::MachODylibFile*> _allDylibs;
493 mutable std::set<mach_o::MachODylibFile*> _upwardDylibs;
494 mutable std::vector<std::unique_ptr<File>> _indirectDylibs;
495 mutable std::mutex _dylibsMutex;
496 ExportMode _exportMode = ExportMode::globals;
497 llvm::StringSet<> _exportedSymbols;
498 DebugInfoMode _debugInfoMode = DebugInfoMode::addDebugMap;
499 std::unique_ptr<llvm::raw_fd_ostream> _dependencyInfo;
500 llvm::StringMap<std::vector<OrderFileNode>> _orderFiles;
501 unsigned _orderFileEntries = 0;
502 File *_flatNamespaceFile = nullptr;
503 mach_o::SectCreateFile *_sectCreateFile = nullptr;
504};
505
506} // end namespace lld
507
508#endif // LLD_READER_WRITER_MACHO_LINKING_CONTEXT_H

/usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/bits/unique_ptr.h

1// unique_ptr implementation -*- C++ -*-
2
3// Copyright (C) 2008-2018 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/unique_ptr.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{memory}
28 */
29
30#ifndef _UNIQUE_PTR_H1
31#define _UNIQUE_PTR_H1 1
32
33#include <bits/c++config.h>
34#include <debug/assertions.h>
35#include <type_traits>
36#include <utility>
37#include <tuple>
38#include <bits/stl_function.h>
39#include <bits/functional_hash.h>
40
41namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
42{
43_GLIBCXX_BEGIN_NAMESPACE_VERSION
44
45 /**
46 * @addtogroup pointer_abstractions
47 * @{
48 */
49
50#if _GLIBCXX_USE_DEPRECATED1
51#pragma GCC diagnostic push
52#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
53 template<typename> class auto_ptr;
54#pragma GCC diagnostic pop
55#endif
56
57 /// Primary template of default_delete, used by unique_ptr
58 template<typename _Tp>
59 struct default_delete
60 {
61 /// Default constructor
62 constexpr default_delete() noexcept = default;
63
64 /** @brief Converting constructor.
65 *
66 * Allows conversion from a deleter for arrays of another type, @p _Up,
67 * only if @p _Up* is convertible to @p _Tp*.
68 */
69 template<typename _Up, typename = typename
70 enable_if<is_convertible<_Up*, _Tp*>::value>::type>
71 default_delete(const default_delete<_Up>&) noexcept { }
72
73 /// Calls @c delete @p __ptr
74 void
75 operator()(_Tp* __ptr) const
76 {
77 static_assert(!is_void<_Tp>::value,
78 "can't delete pointer to incomplete type");
79 static_assert(sizeof(_Tp)>0,
80 "can't delete pointer to incomplete type");
81 delete __ptr;
9
Memory is released
82 }
83 };
84
85 // _GLIBCXX_RESOLVE_LIB_DEFECTS
86 // DR 740 - omit specialization for array objects with a compile time length
87 /// Specialization for arrays, default_delete.
88 template<typename _Tp>
89 struct default_delete<_Tp[]>
90 {
91 public:
92 /// Default constructor
93 constexpr default_delete() noexcept = default;
94
95 /** @brief Converting constructor.
96 *
97 * Allows conversion from a deleter for arrays of another type, such as
98 * a const-qualified version of @p _Tp.
99 *
100 * Conversions from types derived from @c _Tp are not allowed because
101 * it is unsafe to @c delete[] an array of derived types through a
102 * pointer to the base type.
103 */
104 template<typename _Up, typename = typename
105 enable_if<is_convertible<_Up(*)[], _Tp(*)[]>::value>::type>
106 default_delete(const default_delete<_Up[]>&) noexcept { }
107
108 /// Calls @c delete[] @p __ptr
109 template<typename _Up>
110 typename enable_if<is_convertible<_Up(*)[], _Tp(*)[]>::value>::type
111 operator()(_Up* __ptr) const
112 {
113 static_assert(sizeof(_Tp)>0,
114 "can't delete pointer to incomplete type");
115 delete [] __ptr;
116 }
117 };
118
119 template <typename _Tp, typename _Dp>
120 class __uniq_ptr_impl
121 {
122 template <typename _Up, typename _Ep, typename = void>
123 struct _Ptr
124 {
125 using type = _Up*;
126 };
127
128 template <typename _Up, typename _Ep>
129 struct
130 _Ptr<_Up, _Ep, __void_t<typename remove_reference<_Ep>::type::pointer>>
131 {
132 using type = typename remove_reference<_Ep>::type::pointer;
133 };
134
135 public:
136 using _DeleterConstraint = enable_if<
137 __and_<__not_<is_pointer<_Dp>>,
138 is_default_constructible<_Dp>>::value>;
139
140 using pointer = typename _Ptr<_Tp, _Dp>::type;
141
142 __uniq_ptr_impl() = default;
143 __uniq_ptr_impl(pointer __p) : _M_t() { _M_ptr() = __p; }
144
145 template<typename _Del>
146 __uniq_ptr_impl(pointer __p, _Del&& __d)
147 : _M_t(__p, std::forward<_Del>(__d)) { }
148
149 pointer& _M_ptr() { return std::get<0>(_M_t); }
150 pointer _M_ptr() const { return std::get<0>(_M_t); }
151 _Dp& _M_deleter() { return std::get<1>(_M_t); }
152 const _Dp& _M_deleter() const { return std::get<1>(_M_t); }
153
154 private:
155 tuple<pointer, _Dp> _M_t;
156 };
157
158 /// 20.7.1.2 unique_ptr for single objects.
159 template <typename _Tp, typename _Dp = default_delete<_Tp>>
160 class unique_ptr
161 {
162 template <class _Up>
163 using _DeleterConstraint =
164 typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type;
165
166 __uniq_ptr_impl<_Tp, _Dp> _M_t;
167
168 public:
169 using pointer = typename __uniq_ptr_impl<_Tp, _Dp>::pointer;
170 using element_type = _Tp;
171 using deleter_type = _Dp;
172
173 // helper template for detecting a safe conversion from another
174 // unique_ptr
175 template<typename _Up, typename _Ep>
176 using __safe_conversion_up = __and_<
177 is_convertible<typename unique_ptr<_Up, _Ep>::pointer, pointer>,
178 __not_<is_array<_Up>>,
179 __or_<__and_<is_reference<deleter_type>,
180 is_same<deleter_type, _Ep>>,
181 __and_<__not_<is_reference<deleter_type>>,
182 is_convertible<_Ep, deleter_type>>
183 >
184 >;
185
186 // Constructors.
187
188 /// Default constructor, creates a unique_ptr that owns nothing.
189 template <typename _Up = _Dp,
190 typename = _DeleterConstraint<_Up>>
191 constexpr unique_ptr() noexcept
192 : _M_t()
193 { }
194
195 /** Takes ownership of a pointer.
196 *
197 * @param __p A pointer to an object of @c element_type
198 *
199 * The deleter will be value-initialized.
200 */
201 template <typename _Up = _Dp,
202 typename = _DeleterConstraint<_Up>>
203 explicit
204 unique_ptr(pointer __p) noexcept
205 : _M_t(__p)
206 { }
207
208 /** Takes ownership of a pointer.
209 *
210 * @param __p A pointer to an object of @c element_type
211 * @param __d A reference to a deleter.
212 *
213 * The deleter will be initialized with @p __d
214 */
215 unique_ptr(pointer __p,
216 typename conditional<is_reference<deleter_type>::value,
217 deleter_type, const deleter_type&>::type __d) noexcept
218 : _M_t(__p, __d) { }
219
220 /** Takes ownership of a pointer.
221 *
222 * @param __p A pointer to an object of @c element_type
223 * @param __d An rvalue reference to a deleter.
224 *
225 * The deleter will be initialized with @p std::move(__d)
226 */
227 unique_ptr(pointer __p,
228 typename remove_reference<deleter_type>::type&& __d) noexcept
229 : _M_t(std::move(__p), std::move(__d))
230 { static_assert(!std::is_reference<deleter_type>::value,
231 "rvalue deleter bound to reference"); }
232
233 /// Creates a unique_ptr that owns nothing.
234 template <typename _Up = _Dp,
235 typename = _DeleterConstraint<_Up>>
236 constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { }
237
238 // Move constructors.
239
240 /// Move constructor.
241 unique_ptr(unique_ptr&& __u) noexcept
242 : _M_t(__u.release(), std::forward<deleter_type>(__u.get_deleter())) { }
243
244 /** @brief Converting constructor from another type
245 *
246 * Requires that the pointer owned by @p __u is convertible to the
247 * type of pointer owned by this object, @p __u does not own an array,
248 * and @p __u has a compatible deleter type.
249 */
250 template<typename _Up, typename _Ep, typename = _Require<
251 __safe_conversion_up<_Up, _Ep>,
252 typename conditional<is_reference<_Dp>::value,
253 is_same<_Ep, _Dp>,
254 is_convertible<_Ep, _Dp>>::type>>
255 unique_ptr(unique_ptr<_Up, _Ep>&& __u) noexcept
256 : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter()))
257 { }
258
259#if _GLIBCXX_USE_DEPRECATED1
260#pragma GCC diagnostic push
261#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
262 /// Converting constructor from @c auto_ptr
263 template<typename _Up, typename = _Require<
264 is_convertible<_Up*, _Tp*>, is_same<_Dp, default_delete<_Tp>>>>
265 unique_ptr(auto_ptr<_Up>&& __u) noexcept;
266#pragma GCC diagnostic pop
267#endif
268
269 /// Destructor, invokes the deleter if the stored pointer is not null.
270 ~unique_ptr() noexcept
271 {
272 auto& __ptr = _M_t._M_ptr();
273 if (__ptr != nullptr)
7
Taking true branch
274 get_deleter()(__ptr);
8
Calling 'default_delete::operator()'
10
Returning; memory was released via 2nd parameter
275 __ptr = pointer();
276 }
277
278 // Assignment.
279
280 /** @brief Move assignment operator.
281 *
282 * @param __u The object to transfer ownership from.
283 *
284 * Invokes the deleter first if this object owns a pointer.
285 */
286 unique_ptr&
287 operator=(unique_ptr&& __u) noexcept
288 {
289 reset(__u.release());
290 get_deleter() = std::forward<deleter_type>(__u.get_deleter());
291 return *this;
292 }
293
294 /** @brief Assignment from another type.
295 *
296 * @param __u The object to transfer ownership from, which owns a
297 * convertible pointer to a non-array object.
298 *
299 * Invokes the deleter first if this object owns a pointer.
300 */
301 template<typename _Up, typename _Ep>
302 typename enable_if< __and_<
303 __safe_conversion_up<_Up, _Ep>,
304 is_assignable<deleter_type&, _Ep&&>
305 >::value,
306 unique_ptr&>::type
307 operator=(unique_ptr<_Up, _Ep>&& __u) noexcept
308 {
309 reset(__u.release());
310 get_deleter() = std::forward<_Ep>(__u.get_deleter());
311 return *this;
312 }
313
314 /// Reset the %unique_ptr to empty, invoking the deleter if necessary.
315 unique_ptr&
316 operator=(nullptr_t) noexcept
317 {
318 reset();
319 return *this;
320 }
321
322 // Observers.
323
324 /// Dereference the stored pointer.
325 typename add_lvalue_reference<element_type>::type
326 operator*() const
327 {
328 __glibcxx_assert(get() != pointer());
329 return *get();
330 }
331
332 /// Return the stored pointer.
333 pointer
334 operator->() const noexcept
335 {
336 _GLIBCXX_DEBUG_PEDASSERT(get() != pointer());
337 return get();
338 }
339
340 /// Return the stored pointer.
341 pointer
342 get() const noexcept
343 { return _M_t._M_ptr(); }
344
345 /// Return a reference to the stored deleter.
346 deleter_type&
347 get_deleter() noexcept
348 { return _M_t._M_deleter(); }
349
350 /// Return a reference to the stored deleter.
351 const deleter_type&
352 get_deleter() const noexcept
353 { return _M_t._M_deleter(); }
354
355 /// Return @c true if the stored pointer is not null.
356 explicit operator bool() const noexcept
357 { return get() == pointer() ? false : true; }
358
359 // Modifiers.
360
361 /// Release ownership of any stored pointer.
362 pointer
363 release() noexcept
364 {
365 pointer __p = get();
366 _M_t._M_ptr() = pointer();
367 return __p;
368 }
369
370 /** @brief Replace the stored pointer.
371 *
372 * @param __p The new pointer to store.
373 *
374 * The deleter will be invoked if a pointer is already owned.
375 */
376 void
377 reset(pointer __p = pointer()) noexcept
378 {
379 using std::swap;
380 swap(_M_t._M_ptr(), __p);
381 if (__p != pointer())
382 get_deleter()(__p);
383 }
384
385 /// Exchange the pointer and deleter with another object.
386 void
387 swap(unique_ptr& __u) noexcept
388 {
389 using std::swap;
390 swap(_M_t, __u._M_t);
391 }
392
393 // Disable copy from lvalue.
394 unique_ptr(const unique_ptr&) = delete;
395 unique_ptr& operator=(const unique_ptr&) = delete;
396 };
397
398 /// 20.7.1.3 unique_ptr for array objects with a runtime length
399 // [unique.ptr.runtime]
400 // _GLIBCXX_RESOLVE_LIB_DEFECTS
401 // DR 740 - omit specialization for array objects with a compile time length
402 template<typename _Tp, typename _Dp>
403 class unique_ptr<_Tp[], _Dp>
404 {
405 template <typename _Up>
406 using _DeleterConstraint =
407 typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type;
408
409 __uniq_ptr_impl<_Tp, _Dp> _M_t;
410
411 template<typename _Up>
412 using __remove_cv = typename remove_cv<_Up>::type;
413
414 // like is_base_of<_Tp, _Up> but false if unqualified types are the same
415 template<typename _Up>
416 using __is_derived_Tp
417 = __and_< is_base_of<_Tp, _Up>,
418 __not_<is_same<__remove_cv<_Tp>, __remove_cv<_Up>>> >;
419
420 public:
421 using pointer = typename __uniq_ptr_impl<_Tp, _Dp>::pointer;
422 using element_type = _Tp;
423 using deleter_type = _Dp;
424
425 // helper template for detecting a safe conversion from another
426 // unique_ptr
427 template<typename _Up, typename _Ep,
428 typename _Up_up = unique_ptr<_Up, _Ep>,
429 typename _Up_element_type = typename _Up_up::element_type>
430 using __safe_conversion_up = __and_<
431 is_array<_Up>,
432 is_same<pointer, element_type*>,
433 is_same<typename _Up_up::pointer, _Up_element_type*>,
434 is_convertible<_Up_element_type(*)[], element_type(*)[]>,
435 __or_<__and_<is_reference<deleter_type>, is_same<deleter_type, _Ep>>,
436 __and_<__not_<is_reference<deleter_type>>,
437 is_convertible<_Ep, deleter_type>>>
438 >;
439
440 // helper template for detecting a safe conversion from a raw pointer
441 template<typename _Up>
442 using __safe_conversion_raw = __and_<
443 __or_<__or_<is_same<_Up, pointer>,
444 is_same<_Up, nullptr_t>>,
445 __and_<is_pointer<_Up>,
446 is_same<pointer, element_type*>,
447 is_convertible<
448 typename remove_pointer<_Up>::type(*)[],
449 element_type(*)[]>
450 >
451 >
452 >;
453
454 // Constructors.
455
456 /// Default constructor, creates a unique_ptr that owns nothing.
457 template <typename _Up = _Dp,
458 typename = _DeleterConstraint<_Up>>
459 constexpr unique_ptr() noexcept
460 : _M_t()
461 { }
462
463 /** Takes ownership of a pointer.
464 *
465 * @param __p A pointer to an array of a type safely convertible
466 * to an array of @c element_type
467 *
468 * The deleter will be value-initialized.
469 */
470 template<typename _Up,
471 typename _Vp = _Dp,
472 typename = _DeleterConstraint<_Vp>,
473 typename = typename enable_if<
474 __safe_conversion_raw<_Up>::value, bool>::type>
475 explicit
476 unique_ptr(_Up __p) noexcept
477 : _M_t(__p)
478 { }
479
480 /** Takes ownership of a pointer.
481 *
482 * @param __p A pointer to an array of a type safely convertible
483 * to an array of @c element_type
484 * @param __d A reference to a deleter.
485 *
486 * The deleter will be initialized with @p __d
487 */
488 template<typename _Up,
489 typename = typename enable_if<
490 __safe_conversion_raw<_Up>::value, bool>::type>
491 unique_ptr(_Up __p,
492 typename conditional<is_reference<deleter_type>::value,
493 deleter_type, const deleter_type&>::type __d) noexcept
494 : _M_t(__p, __d) { }
495
496 /** Takes ownership of a pointer.
497 *
498 * @param __p A pointer to an array of a type safely convertible
499 * to an array of @c element_type
500 * @param __d A reference to a deleter.
501 *
502 * The deleter will be initialized with @p std::move(__d)
503 */
504 template<typename _Up,
505 typename = typename enable_if<
506 __safe_conversion_raw<_Up>::value, bool>::type>
507 unique_ptr(_Up __p, typename
508 remove_reference<deleter_type>::type&& __d) noexcept
509 : _M_t(std::move(__p), std::move(__d))
510 { static_assert(!is_reference<deleter_type>::value,
511 "rvalue deleter bound to reference"); }
512
513 /// Move constructor.
514 unique_ptr(unique_ptr&& __u) noexcept
515 : _M_t(__u.release(), std::forward<deleter_type>(__u.get_deleter())) { }
516
517 /// Creates a unique_ptr that owns nothing.
518 template <typename _Up = _Dp,
519 typename = _DeleterConstraint<_Up>>
520 constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { }
521
522 template<typename _Up, typename _Ep,
523 typename = _Require<__safe_conversion_up<_Up, _Ep>>>
524 unique_ptr(unique_ptr<_Up, _Ep>&& __u) noexcept
525 : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter()))
526 { }
527
528 /// Destructor, invokes the deleter if the stored pointer is not null.
529 ~unique_ptr()
530 {
531 auto& __ptr = _M_t._M_ptr();
532 if (__ptr != nullptr)
533 get_deleter()(__ptr);
534 __ptr = pointer();
535 }
536
537 // Assignment.
538
539 /** @brief Move assignment operator.
540 *
541 * @param __u The object to transfer ownership from.
542 *
543 * Invokes the deleter first if this object owns a pointer.
544 */
545 unique_ptr&
546 operator=(unique_ptr&& __u) noexcept
547 {
548 reset(__u.release());
549 get_deleter() = std::forward<deleter_type>(__u.get_deleter());
550 return *this;
551 }
552
553 /** @brief Assignment from another type.
554 *
555 * @param __u The object to transfer ownership from, which owns a
556 * convertible pointer to an array object.
557 *
558 * Invokes the deleter first if this object owns a pointer.
559 */
560 template<typename _Up, typename _Ep>
561 typename
562 enable_if<__and_<__safe_conversion_up<_Up, _Ep>,
563 is_assignable<deleter_type&, _Ep&&>
564 >::value,
565 unique_ptr&>::type
566 operator=(unique_ptr<_Up, _Ep>&& __u) noexcept
567 {
568 reset(__u.release());
569 get_deleter() = std::forward<_Ep>(__u.get_deleter());
570 return *this;
571 }
572
573 /// Reset the %unique_ptr to empty, invoking the deleter if necessary.
574 unique_ptr&
575 operator=(nullptr_t) noexcept
576 {
577 reset();
578 return *this;
579 }
580
581 // Observers.
582
583 /// Access an element of owned array.
584 typename std::add_lvalue_reference<element_type>::type
585 operator[](size_t __i) const
586 {
587 __glibcxx_assert(get() != pointer());
588 return get()[__i];
589 }
590
591 /// Return the stored pointer.
592 pointer
593 get() const noexcept
594 { return _M_t._M_ptr(); }
595
596 /// Return a reference to the stored deleter.
597 deleter_type&
598 get_deleter() noexcept
599 { return _M_t._M_deleter(); }
600
601 /// Return a reference to the stored deleter.
602 const deleter_type&
603 get_deleter() const noexcept
604 { return _M_t._M_deleter(); }
605
606 /// Return @c true if the stored pointer is not null.
607 explicit operator bool() const noexcept
608 { return get() == pointer() ? false : true; }
609
610 // Modifiers.
611
612 /// Release ownership of any stored pointer.
613 pointer
614 release() noexcept
615 {
616 pointer __p = get();
617 _M_t._M_ptr() = pointer();
618 return __p;
619 }
620
621 /** @brief Replace the stored pointer.
622 *
623 * @param __p The new pointer to store.
624 *
625 * The deleter will be invoked if a pointer is already owned.
626 */
627 template <typename _Up,
628 typename = _Require<
629 __or_<is_same<_Up, pointer>,
630 __and_<is_same<pointer, element_type*>,
631 is_pointer<_Up>,
632 is_convertible<
633 typename remove_pointer<_Up>::type(*)[],
634 element_type(*)[]
635 >
636 >
637 >
638 >>
639 void
640 reset(_Up __p) noexcept
641 {
642 pointer __ptr = __p;
643 using std::swap;
644 swap(_M_t._M_ptr(), __ptr);
645 if (__ptr != nullptr)
646 get_deleter()(__ptr);
647 }
648
649 void reset(nullptr_t = nullptr) noexcept
650 {
651 reset(pointer());
652 }
653
654 /// Exchange the pointer and deleter with another object.
655 void
656 swap(unique_ptr& __u) noexcept
657 {
658 using std::swap;
659 swap(_M_t, __u._M_t);
660 }
661
662 // Disable copy from lvalue.
663 unique_ptr(const unique_ptr&) = delete;
664 unique_ptr& operator=(const unique_ptr&) = delete;
665 };
666
667 template<typename _Tp, typename _Dp>
668 inline
669#if __cplusplus201103L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11
670 // Constrained free swap overload, see p0185r1
671 typename enable_if<__is_swappable<_Dp>::value>::type
672#else
673 void
674#endif
675 swap(unique_ptr<_Tp, _Dp>& __x,
676 unique_ptr<_Tp, _Dp>& __y) noexcept
677 { __x.swap(__y); }
678
679#if __cplusplus201103L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11
680 template<typename _Tp, typename _Dp>
681 typename enable_if<!__is_swappable<_Dp>::value>::type
682 swap(unique_ptr<_Tp, _Dp>&,
683 unique_ptr<_Tp, _Dp>&) = delete;
684#endif
685
686 template<typename _Tp, typename _Dp,
687 typename _Up, typename _Ep>
688 inline bool
689 operator==(const unique_ptr<_Tp, _Dp>& __x,
690 const unique_ptr<_Up, _Ep>& __y)
691 { return __x.get() == __y.get(); }
692
693 template<typename _Tp, typename _Dp>
694 inline bool
695 operator==(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) noexcept
696 { return !__x; }
697
698 template<typename _Tp, typename _Dp>
699 inline bool
700 operator==(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) noexcept
701 { return !__x; }
702
703 template<typename _Tp, typename _Dp,
704 typename _Up, typename _Ep>
705 inline bool
706 operator!=(const unique_ptr<_Tp, _Dp>& __x,
707 const unique_ptr<_Up, _Ep>& __y)
708 { return __x.get() != __y.get(); }
709
710 template<typename _Tp, typename _Dp>
711 inline bool
712 operator!=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) noexcept
713 { return (bool)__x; }
714
715 template<typename _Tp, typename _Dp>
716 inline bool
717 operator!=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) noexcept
718 { return (bool)__x; }
719
720 template<typename _Tp, typename _Dp,
721 typename _Up, typename _Ep>
722 inline bool
723 operator<(const unique_ptr<_Tp, _Dp>& __x,
724 const unique_ptr<_Up, _Ep>& __y)
725 {
726 typedef typename
727 std::common_type<typename unique_ptr<_Tp, _Dp>::pointer,
728 typename unique_ptr<_Up, _Ep>::pointer>::type _CT;
729 return std::less<_CT>()(__x.get(), __y.get());
730 }
731
732 template<typename _Tp, typename _Dp>
733 inline bool
734 operator<(const unique_ptr<_Tp, _Dp>& __x, nullptr_t)
735 { return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(__x.get(),
736 nullptr); }
737
738 template<typename _Tp, typename _Dp>
739 inline bool
740 operator<(nullptr_t, const unique_ptr<_Tp, _Dp>& __x)
741 { return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(nullptr,
742 __x.get()); }
743
744 template<typename _Tp, typename _Dp,
745 typename _Up, typename _Ep>
746 inline bool
747 operator<=(const unique_ptr<_Tp, _Dp>& __x,
748 const unique_ptr<_Up, _Ep>& __y)
749 { return !(__y < __x); }
750
751 template<typename _Tp, typename _Dp>
752 inline bool
753 operator<=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t)
754 { return !(nullptr < __x); }
755
756 template<typename _Tp, typename _Dp>
757 inline bool
758 operator<=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x)
759 { return !(__x < nullptr); }
760
761 template<typename _Tp, typename _Dp,
762 typename _Up, typename _Ep>
763 inline bool
764 operator>(const unique_ptr<_Tp, _Dp>& __x,
765 const unique_ptr<_Up, _Ep>& __y)
766 { return (__y < __x); }
767
768 template<typename _Tp, typename _Dp>
769 inline bool
770 operator>(const unique_ptr<_Tp, _Dp>& __x, nullptr_t)
771 { return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(nullptr,
772 __x.get()); }
773
774 template<typename _Tp, typename _Dp>
775 inline bool
776 operator>(nullptr_t, const unique_ptr<_Tp, _Dp>& __x)
777 { return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(__x.get(),
778 nullptr); }
779
780 template<typename _Tp, typename _Dp,
781 typename _Up, typename _Ep>
782 inline bool
783 operator>=(const unique_ptr<_Tp, _Dp>& __x,
784 const unique_ptr<_Up, _Ep>& __y)
785 { return !(__x < __y); }
786
787 template<typename _Tp, typename _Dp>
788 inline bool
789 operator>=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t)
790 { return !(__x < nullptr); }
791
792 template<typename _Tp, typename _Dp>
793 inline bool
794 operator>=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x)
795 { return !(nullptr < __x); }
796
797 /// std::hash specialization for unique_ptr.
798 template<typename _Tp, typename _Dp>
799 struct hash<unique_ptr<_Tp, _Dp>>
800 : public __hash_base<size_t, unique_ptr<_Tp, _Dp>>,
801 private __poison_hash<typename unique_ptr<_Tp, _Dp>::pointer>
802 {
803 size_t
804 operator()(const unique_ptr<_Tp, _Dp>& __u) const noexcept
805 {
806 typedef unique_ptr<_Tp, _Dp> _UP;
807 return std::hash<typename _UP::pointer>()(__u.get());
808 }
809 };
810
811#if __cplusplus201103L > 201103L
812
813#define __cpp_lib_make_unique 201304
814
815 template<typename _Tp>
816 struct _MakeUniq
817 { typedef unique_ptr<_Tp> __single_object; };
818
819 template<typename _Tp>
820 struct _MakeUniq<_Tp[]>
821 { typedef unique_ptr<_Tp[]> __array; };
822
823 template<typename _Tp, size_t _Bound>
824 struct _MakeUniq<_Tp[_Bound]>
825 { struct __invalid_type { }; };
826
827 /// std::make_unique for single objects
828 template<typename _Tp, typename... _Args>
829 inline typename _MakeUniq<_Tp>::__single_object
830 make_unique(_Args&&... __args)
831 { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); }
832
833 /// std::make_unique for arrays of unknown bound
834 template<typename _Tp>
835 inline typename _MakeUniq<_Tp>::__array
836 make_unique(size_t __num)
837 { return unique_ptr<_Tp>(new remove_extent_t<_Tp>[__num]()); }
838
839 /// Disable std::make_unique for arrays of known bound
840 template<typename _Tp, typename... _Args>
841 inline typename _MakeUniq<_Tp>::__invalid_type
842 make_unique(_Args&&...) = delete;
843#endif
844
845 // @} group pointer_abstractions
846
847_GLIBCXX_END_NAMESPACE_VERSION
848} // namespace
849
850#endif /* _UNIQUE_PTR_H */