Bug Summary

File:llvm/utils/TableGen/GlobalISelEmitter.cpp
Warning:line 3825, column 8
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name GlobalISelEmitter.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/utils/TableGen -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/utils/TableGen -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/utils/TableGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-05-07-005843-9350-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp

/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp

1//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This tablegen backend emits code for use by the GlobalISel instruction
11/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
12///
13/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14/// backend, filters out the ones that are unsupported, maps
15/// SelectionDAG-specific constructs to their GlobalISel counterpart
16/// (when applicable: MVT to LLT; SDNode to generic Instruction).
17///
18/// Not all patterns are supported: pass the tablegen invocation
19/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
20/// as well as why.
21///
22/// The generated file defines a single method:
23/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24/// intended to be used in InstructionSelector::select as the first-step
25/// selector for the patterns that don't require complex C++.
26///
27/// FIXME: We'll probably want to eventually define a base
28/// "TargetGenInstructionSelector" class.
29///
30//===----------------------------------------------------------------------===//
31
32#include "CodeGenDAGPatterns.h"
33#include "SubtargetFeatureInfo.h"
34#include "llvm/ADT/Optional.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/Support/CodeGenCoverage.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Error.h"
40#include "llvm/Support/LowLevelTypeImpl.h"
41#include "llvm/Support/MachineValueType.h"
42#include "llvm/Support/ScopedPrinter.h"
43#include "llvm/TableGen/Error.h"
44#include "llvm/TableGen/Record.h"
45#include "llvm/TableGen/TableGenBackend.h"
46#include <numeric>
47#include <string>
48using namespace llvm;
49
50#define DEBUG_TYPE"gisel-emitter" "gisel-emitter"
51
52STATISTIC(NumPatternTotal, "Total number of patterns")static llvm::Statistic NumPatternTotal = {"gisel-emitter", "NumPatternTotal"
, "Total number of patterns"}
;
53STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG")static llvm::Statistic NumPatternImported = {"gisel-emitter",
"NumPatternImported", "Number of patterns imported from SelectionDAG"
}
;
54STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped")static llvm::Statistic NumPatternImportsSkipped = {"gisel-emitter"
, "NumPatternImportsSkipped", "Number of SelectionDAG imports skipped"
}
;
55STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information")static llvm::Statistic NumPatternsTested = {"gisel-emitter", "NumPatternsTested"
, "Number of patterns executed according to coverage information"
}
;
56STATISTIC(NumPatternEmitted, "Number of patterns emitted")static llvm::Statistic NumPatternEmitted = {"gisel-emitter", "NumPatternEmitted"
, "Number of patterns emitted"}
;
57
58cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
59
60static cl::opt<bool> WarnOnSkippedPatterns(
61 "warn-on-skipped-patterns",
62 cl::desc("Explain why a pattern was skipped for inclusion "
63 "in the GlobalISel selector"),
64 cl::init(false), cl::cat(GlobalISelEmitterCat));
65
66static cl::opt<bool> GenerateCoverage(
67 "instrument-gisel-coverage",
68 cl::desc("Generate coverage instrumentation for GlobalISel"),
69 cl::init(false), cl::cat(GlobalISelEmitterCat));
70
71static cl::opt<std::string> UseCoverageFile(
72 "gisel-coverage-file", cl::init(""),
73 cl::desc("Specify file to retrieve coverage information from"),
74 cl::cat(GlobalISelEmitterCat));
75
76static cl::opt<bool> OptimizeMatchTable(
77 "optimize-match-table",
78 cl::desc("Generate an optimized version of the match table"),
79 cl::init(true), cl::cat(GlobalISelEmitterCat));
80
81namespace {
82//===- Helper functions ---------------------------------------------------===//
83
84/// Get the name of the enum value used to number the predicate function.
85std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
86 if (Predicate.hasGISelPredicateCode())
87 return "GIPFP_MI_" + Predicate.getFnName();
88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
89 Predicate.getFnName();
90}
91
92/// Get the opcode used to check this predicate.
93std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) {
94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
95}
96
97/// This class stands in for LLT wherever we want to tablegen-erate an
98/// equivalent at compiler run-time.
99class LLTCodeGen {
100private:
101 LLT Ty;
102
103public:
104 LLTCodeGen() = default;
105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
106
107 std::string getCxxEnumValue() const {
108 std::string Str;
109 raw_string_ostream OS(Str);
110
111 emitCxxEnumValue(OS);
112 return OS.str();
113 }
114
115 void emitCxxEnumValue(raw_ostream &OS) const {
116 if (Ty.isScalar()) {
117 OS << "GILLT_s" << Ty.getSizeInBits();
118 return;
119 }
120 if (Ty.isVector()) {
121 OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
122 return;
123 }
124 if (Ty.isPointer()) {
125 OS << "GILLT_p" << Ty.getAddressSpace();
126 if (Ty.getSizeInBits() > 0)
127 OS << "s" << Ty.getSizeInBits();
128 return;
129 }
130 llvm_unreachable("Unhandled LLT")::llvm::llvm_unreachable_internal("Unhandled LLT", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 130)
;
131 }
132
133 void emitCxxConstructorCall(raw_ostream &OS) const {
134 if (Ty.isScalar()) {
135 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
136 return;
137 }
138 if (Ty.isVector()) {
139 OS << "LLT::vector(" << Ty.getNumElements() << ", "
140 << Ty.getScalarSizeInBits() << ")";
141 return;
142 }
143 if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
144 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
145 << Ty.getSizeInBits() << ")";
146 return;
147 }
148 llvm_unreachable("Unhandled LLT")::llvm::llvm_unreachable_internal("Unhandled LLT", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 148)
;
149 }
150
151 const LLT &get() const { return Ty; }
152
153 /// This ordering is used for std::unique() and llvm::sort(). There's no
154 /// particular logic behind the order but either A < B or B < A must be
155 /// true if A != B.
156 bool operator<(const LLTCodeGen &Other) const {
157 if (Ty.isValid() != Other.Ty.isValid())
158 return Ty.isValid() < Other.Ty.isValid();
159 if (!Ty.isValid())
160 return false;
161
162 if (Ty.isVector() != Other.Ty.isVector())
163 return Ty.isVector() < Other.Ty.isVector();
164 if (Ty.isScalar() != Other.Ty.isScalar())
165 return Ty.isScalar() < Other.Ty.isScalar();
166 if (Ty.isPointer() != Other.Ty.isPointer())
167 return Ty.isPointer() < Other.Ty.isPointer();
168
169 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
170 return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
171
172 if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
173 return Ty.getNumElements() < Other.Ty.getNumElements();
174
175 return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
176 }
177
178 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
179};
180
181// Track all types that are used so we can emit the corresponding enum.
182std::set<LLTCodeGen> KnownTypes;
183
184class InstructionMatcher;
185/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
186/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
187static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
188 MVT VT(SVT);
189
190 if (VT.isScalableVector())
191 return None;
192
193 if (VT.isFixedLengthVector() && VT.getVectorNumElements() != 1)
194 return LLTCodeGen(
195 LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
196
197 if (VT.isInteger() || VT.isFloatingPoint())
198 return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
199
200 return None;
201}
202
203static std::string explainPredicates(const TreePatternNode *N) {
204 std::string Explanation;
205 StringRef Separator = "";
206 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
207 const TreePredicateFn &P = Call.Fn;
208 Explanation +=
209 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
210 Separator = ", ";
211
212 if (P.isAlwaysTrue())
213 Explanation += " always-true";
214 if (P.isImmediatePattern())
215 Explanation += " immediate";
216
217 if (P.isUnindexed())
218 Explanation += " unindexed";
219
220 if (P.isNonExtLoad())
221 Explanation += " non-extload";
222 if (P.isAnyExtLoad())
223 Explanation += " extload";
224 if (P.isSignExtLoad())
225 Explanation += " sextload";
226 if (P.isZeroExtLoad())
227 Explanation += " zextload";
228
229 if (P.isNonTruncStore())
230 Explanation += " non-truncstore";
231 if (P.isTruncStore())
232 Explanation += " truncstore";
233
234 if (Record *VT = P.getMemoryVT())
235 Explanation += (" MemVT=" + VT->getName()).str();
236 if (Record *VT = P.getScalarMemoryVT())
237 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
238
239 if (ListInit *AddrSpaces = P.getAddressSpaces()) {
240 raw_string_ostream OS(Explanation);
241 OS << " AddressSpaces=[";
242
243 StringRef AddrSpaceSeparator;
244 for (Init *Val : AddrSpaces->getValues()) {
245 IntInit *IntVal = dyn_cast<IntInit>(Val);
246 if (!IntVal)
247 continue;
248
249 OS << AddrSpaceSeparator << IntVal->getValue();
250 AddrSpaceSeparator = ", ";
251 }
252
253 OS << ']';
254 }
255
256 int64_t MinAlign = P.getMinAlignment();
257 if (MinAlign > 0)
258 Explanation += " MinAlign=" + utostr(MinAlign);
259
260 if (P.isAtomicOrderingMonotonic())
261 Explanation += " monotonic";
262 if (P.isAtomicOrderingAcquire())
263 Explanation += " acquire";
264 if (P.isAtomicOrderingRelease())
265 Explanation += " release";
266 if (P.isAtomicOrderingAcquireRelease())
267 Explanation += " acq_rel";
268 if (P.isAtomicOrderingSequentiallyConsistent())
269 Explanation += " seq_cst";
270 if (P.isAtomicOrderingAcquireOrStronger())
271 Explanation += " >=acquire";
272 if (P.isAtomicOrderingWeakerThanAcquire())
273 Explanation += " <acquire";
274 if (P.isAtomicOrderingReleaseOrStronger())
275 Explanation += " >=release";
276 if (P.isAtomicOrderingWeakerThanRelease())
277 Explanation += " <release";
278 }
279 return Explanation;
280}
281
282std::string explainOperator(Record *Operator) {
283 if (Operator->isSubClassOf("SDNode"))
284 return (" (" + Operator->getValueAsString("Opcode") + ")").str();
285
286 if (Operator->isSubClassOf("Intrinsic"))
287 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
288
289 if (Operator->isSubClassOf("ComplexPattern"))
290 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
291 ")")
292 .str();
293
294 if (Operator->isSubClassOf("SDNodeXForm"))
295 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
296 ")")
297 .str();
298
299 return (" (Operator " + Operator->getName() + " not understood)").str();
300}
301
302/// Helper function to let the emitter report skip reason error messages.
303static Error failedImport(const Twine &Reason) {
304 return make_error<StringError>(Reason, inconvertibleErrorCode());
305}
306
307static Error isTrivialOperatorNode(const TreePatternNode *N) {
308 std::string Explanation;
309 std::string Separator;
310
311 bool HasUnsupportedPredicate = false;
312 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
313 const TreePredicateFn &Predicate = Call.Fn;
314
315 if (Predicate.isAlwaysTrue())
316 continue;
317
318 if (Predicate.isImmediatePattern())
319 continue;
320
321 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
322 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
323 continue;
324
325 if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
326 continue;
327
328 if (Predicate.isLoad() && Predicate.getMemoryVT())
329 continue;
330
331 if (Predicate.isLoad() || Predicate.isStore()) {
332 if (Predicate.isUnindexed())
333 continue;
334 }
335
336 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
337 const ListInit *AddrSpaces = Predicate.getAddressSpaces();
338 if (AddrSpaces && !AddrSpaces->empty())
339 continue;
340
341 if (Predicate.getMinAlignment() > 0)
342 continue;
343 }
344
345 if (Predicate.isAtomic() && Predicate.getMemoryVT())
346 continue;
347
348 if (Predicate.isAtomic() &&
349 (Predicate.isAtomicOrderingMonotonic() ||
350 Predicate.isAtomicOrderingAcquire() ||
351 Predicate.isAtomicOrderingRelease() ||
352 Predicate.isAtomicOrderingAcquireRelease() ||
353 Predicate.isAtomicOrderingSequentiallyConsistent() ||
354 Predicate.isAtomicOrderingAcquireOrStronger() ||
355 Predicate.isAtomicOrderingWeakerThanAcquire() ||
356 Predicate.isAtomicOrderingReleaseOrStronger() ||
357 Predicate.isAtomicOrderingWeakerThanRelease()))
358 continue;
359
360 if (Predicate.hasGISelPredicateCode())
361 continue;
362
363 HasUnsupportedPredicate = true;
364 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
365 Separator = ", ";
366 Explanation += (Separator + "first-failing:" +
367 Predicate.getOrigPatFragRecord()->getRecord()->getName())
368 .str();
369 break;
370 }
371
372 if (!HasUnsupportedPredicate)
373 return Error::success();
374
375 return failedImport(Explanation);
376}
377
378static Record *getInitValueAsRegClass(Init *V) {
379 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
380 if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
381 return VDefInit->getDef()->getValueAsDef("RegClass");
382 if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
383 return VDefInit->getDef();
384 }
385 return nullptr;
386}
387
388std::string
389getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
390 std::string Name = "GIFBS";
391 for (const auto &Feature : FeatureBitset)
392 Name += ("_" + Feature->getName()).str();
393 return Name;
394}
395
396static std::string getScopedName(unsigned Scope, const std::string &Name) {
397 return ("pred:" + Twine(Scope) + ":" + Name).str();
398}
399
400//===- MatchTable Helpers -------------------------------------------------===//
401
402class MatchTable;
403
404/// A record to be stored in a MatchTable.
405///
406/// This class represents any and all output that may be required to emit the
407/// MatchTable. Instances are most often configured to represent an opcode or
408/// value that will be emitted to the table with some formatting but it can also
409/// represent commas, comments, and other formatting instructions.
410struct MatchTableRecord {
411 enum RecordFlagsBits {
412 MTRF_None = 0x0,
413 /// Causes EmitStr to be formatted as comment when emitted.
414 MTRF_Comment = 0x1,
415 /// Causes the record value to be followed by a comma when emitted.
416 MTRF_CommaFollows = 0x2,
417 /// Causes the record value to be followed by a line break when emitted.
418 MTRF_LineBreakFollows = 0x4,
419 /// Indicates that the record defines a label and causes an additional
420 /// comment to be emitted containing the index of the label.
421 MTRF_Label = 0x8,
422 /// Causes the record to be emitted as the index of the label specified by
423 /// LabelID along with a comment indicating where that label is.
424 MTRF_JumpTarget = 0x10,
425 /// Causes the formatter to add a level of indentation before emitting the
426 /// record.
427 MTRF_Indent = 0x20,
428 /// Causes the formatter to remove a level of indentation after emitting the
429 /// record.
430 MTRF_Outdent = 0x40,
431 };
432
433 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
434 /// reference or define.
435 unsigned LabelID;
436 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
437 /// value, a label name.
438 std::string EmitStr;
439
440private:
441 /// The number of MatchTable elements described by this record. Comments are 0
442 /// while values are typically 1. Values >1 may occur when we need to emit
443 /// values that exceed the size of a MatchTable element.
444 unsigned NumElements;
445
446public:
447 /// A bitfield of RecordFlagsBits flags.
448 unsigned Flags;
449
450 /// The actual run-time value, if known
451 int64_t RawValue;
452
453 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
454 unsigned NumElements, unsigned Flags,
455 int64_t RawValue = std::numeric_limits<int64_t>::min())
456 : LabelID(LabelID_.getValueOr(~0u)), EmitStr(EmitStr),
457 NumElements(NumElements), Flags(Flags), RawValue(RawValue) {
458 assert((!LabelID_.hasValue() || LabelID != ~0u) &&(static_cast <bool> ((!LabelID_.hasValue() || LabelID !=
~0u) && "This value is reserved for non-labels") ? void
(0) : __assert_fail ("(!LabelID_.hasValue() || LabelID != ~0u) && \"This value is reserved for non-labels\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 459, __extension__ __PRETTY_FUNCTION__))
459 "This value is reserved for non-labels")(static_cast <bool> ((!LabelID_.hasValue() || LabelID !=
~0u) && "This value is reserved for non-labels") ? void
(0) : __assert_fail ("(!LabelID_.hasValue() || LabelID != ~0u) && \"This value is reserved for non-labels\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 459, __extension__ __PRETTY_FUNCTION__))
;
460 }
461 MatchTableRecord(const MatchTableRecord &Other) = default;
462 MatchTableRecord(MatchTableRecord &&Other) = default;
463
464 /// Useful if a Match Table Record gets optimized out
465 void turnIntoComment() {
466 Flags |= MTRF_Comment;
467 Flags &= ~MTRF_CommaFollows;
468 NumElements = 0;
469 }
470
471 /// For Jump Table generation purposes
472 bool operator<(const MatchTableRecord &Other) const {
473 return RawValue < Other.RawValue;
474 }
475 int64_t getRawValue() const { return RawValue; }
476
477 void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
478 const MatchTable &Table) const;
479 unsigned size() const { return NumElements; }
480};
481
482class Matcher;
483
484/// Holds the contents of a generated MatchTable to enable formatting and the
485/// necessary index tracking needed to support GIM_Try.
486class MatchTable {
487 /// An unique identifier for the table. The generated table will be named
488 /// MatchTable${ID}.
489 unsigned ID;
490 /// The records that make up the table. Also includes comments describing the
491 /// values being emitted and line breaks to format it.
492 std::vector<MatchTableRecord> Contents;
493 /// The currently defined labels.
494 DenseMap<unsigned, unsigned> LabelMap;
495 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
496 unsigned CurrentSize = 0;
497 /// A unique identifier for a MatchTable label.
498 unsigned CurrentLabelID = 0;
499 /// Determines if the table should be instrumented for rule coverage tracking.
500 bool IsWithCoverage;
501
502public:
503 static MatchTableRecord LineBreak;
504 static MatchTableRecord Comment(StringRef Comment) {
505 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
506 }
507 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
508 unsigned ExtraFlags = 0;
509 if (IndentAdjust > 0)
510 ExtraFlags |= MatchTableRecord::MTRF_Indent;
511 if (IndentAdjust < 0)
512 ExtraFlags |= MatchTableRecord::MTRF_Outdent;
513
514 return MatchTableRecord(None, Opcode, 1,
515 MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
516 }
517 static MatchTableRecord NamedValue(StringRef NamedValue) {
518 return MatchTableRecord(None, NamedValue, 1,
519 MatchTableRecord::MTRF_CommaFollows);
520 }
521 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
522 return MatchTableRecord(None, NamedValue, 1,
523 MatchTableRecord::MTRF_CommaFollows, RawValue);
524 }
525 static MatchTableRecord NamedValue(StringRef Namespace,
526 StringRef NamedValue) {
527 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
528 MatchTableRecord::MTRF_CommaFollows);
529 }
530 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
531 int64_t RawValue) {
532 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
533 MatchTableRecord::MTRF_CommaFollows, RawValue);
534 }
535 static MatchTableRecord IntValue(int64_t IntValue) {
536 return MatchTableRecord(None, llvm::to_string(IntValue), 1,
537 MatchTableRecord::MTRF_CommaFollows);
538 }
539 static MatchTableRecord Label(unsigned LabelID) {
540 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
541 MatchTableRecord::MTRF_Label |
542 MatchTableRecord::MTRF_Comment |
543 MatchTableRecord::MTRF_LineBreakFollows);
544 }
545 static MatchTableRecord JumpTarget(unsigned LabelID) {
546 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
547 MatchTableRecord::MTRF_JumpTarget |
548 MatchTableRecord::MTRF_Comment |
549 MatchTableRecord::MTRF_CommaFollows);
550 }
551
552 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
553
554 MatchTable(bool WithCoverage, unsigned ID = 0)
555 : ID(ID), IsWithCoverage(WithCoverage) {}
556
557 bool isWithCoverage() const { return IsWithCoverage; }
558
559 void push_back(const MatchTableRecord &Value) {
560 if (Value.Flags & MatchTableRecord::MTRF_Label)
561 defineLabel(Value.LabelID);
562 Contents.push_back(Value);
563 CurrentSize += Value.size();
564 }
565
566 unsigned allocateLabelID() { return CurrentLabelID++; }
567
568 void defineLabel(unsigned LabelID) {
569 LabelMap.insert(std::make_pair(LabelID, CurrentSize));
570 }
571
572 unsigned getLabelIndex(unsigned LabelID) const {
573 const auto I = LabelMap.find(LabelID);
574 assert(I != LabelMap.end() && "Use of undeclared label")(static_cast <bool> (I != LabelMap.end() && "Use of undeclared label"
) ? void (0) : __assert_fail ("I != LabelMap.end() && \"Use of undeclared label\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 574, __extension__ __PRETTY_FUNCTION__))
;
575 return I->second;
576 }
577
578 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
579
580 void emitDeclaration(raw_ostream &OS) const {
581 unsigned Indentation = 4;
582 OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
583 LineBreak.emit(OS, true, *this);
584 OS << std::string(Indentation, ' ');
585
586 for (auto I = Contents.begin(), E = Contents.end(); I != E;
587 ++I) {
588 bool LineBreakIsNext = false;
589 const auto &NextI = std::next(I);
590
591 if (NextI != E) {
592 if (NextI->EmitStr == "" &&
593 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
594 LineBreakIsNext = true;
595 }
596
597 if (I->Flags & MatchTableRecord::MTRF_Indent)
598 Indentation += 2;
599
600 I->emit(OS, LineBreakIsNext, *this);
601 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
602 OS << std::string(Indentation, ' ');
603
604 if (I->Flags & MatchTableRecord::MTRF_Outdent)
605 Indentation -= 2;
606 }
607 OS << "};\n";
608 }
609};
610
611MatchTableRecord MatchTable::LineBreak = {
612 None, "" /* Emit String */, 0 /* Elements */,
613 MatchTableRecord::MTRF_LineBreakFollows};
614
615void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
616 const MatchTable &Table) const {
617 bool UseLineComment =
618 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows);
619 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
620 UseLineComment = false;
621
622 if (Flags & MTRF_Comment)
623 OS << (UseLineComment ? "// " : "/*");
624
625 OS << EmitStr;
626 if (Flags & MTRF_Label)
627 OS << ": @" << Table.getLabelIndex(LabelID);
628
629 if ((Flags & MTRF_Comment) && !UseLineComment)
630 OS << "*/";
631
632 if (Flags & MTRF_JumpTarget) {
633 if (Flags & MTRF_Comment)
634 OS << " ";
635 OS << Table.getLabelIndex(LabelID);
636 }
637
638 if (Flags & MTRF_CommaFollows) {
639 OS << ",";
640 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
641 OS << " ";
642 }
643
644 if (Flags & MTRF_LineBreakFollows)
645 OS << "\n";
646}
647
648MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
649 Table.push_back(Value);
650 return Table;
651}
652
653//===- Matchers -----------------------------------------------------------===//
654
655class OperandMatcher;
656class MatchAction;
657class PredicateMatcher;
658class RuleMatcher;
659
660class Matcher {
661public:
662 virtual ~Matcher() = default;
663 virtual void optimize() {}
664 virtual void emit(MatchTable &Table) = 0;
665
666 virtual bool hasFirstCondition() const = 0;
667 virtual const PredicateMatcher &getFirstCondition() const = 0;
668 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
669};
670
671MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
672 bool WithCoverage) {
673 MatchTable Table(WithCoverage);
674 for (Matcher *Rule : Rules)
675 Rule->emit(Table);
676
677 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
678}
679
680class GroupMatcher final : public Matcher {
681 /// Conditions that form a common prefix of all the matchers contained.
682 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
683
684 /// All the nested matchers, sharing a common prefix.
685 std::vector<Matcher *> Matchers;
686
687 /// An owning collection for any auxiliary matchers created while optimizing
688 /// nested matchers contained.
689 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
690
691public:
692 /// Add a matcher to the collection of nested matchers if it meets the
693 /// requirements, and return true. If it doesn't, do nothing and return false.
694 ///
695 /// Expected to preserve its argument, so it could be moved out later on.
696 bool addMatcher(Matcher &Candidate);
697
698 /// Mark the matcher as fully-built and ensure any invariants expected by both
699 /// optimize() and emit(...) methods. Generally, both sequences of calls
700 /// are expected to lead to a sensible result:
701 ///
702 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
703 /// addMatcher(...)*; finalize(); emit(...);
704 ///
705 /// or generally
706 ///
707 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
708 ///
709 /// Multiple calls to optimize() are expected to be handled gracefully, though
710 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
711 /// aren't generally supported. emit(...) is expected to be non-mutating and
712 /// producing the exact same results upon repeated calls.
713 ///
714 /// addMatcher() calls after the finalize() call are not supported.
715 ///
716 /// finalize() and optimize() are both allowed to mutate the contained
717 /// matchers, so moving them out after finalize() is not supported.
718 void finalize();
719 void optimize() override;
720 void emit(MatchTable &Table) override;
721
722 /// Could be used to move out the matchers added previously, unless finalize()
723 /// has been already called. If any of the matchers are moved out, the group
724 /// becomes safe to destroy, but not safe to re-use for anything else.
725 iterator_range<std::vector<Matcher *>::iterator> matchers() {
726 return make_range(Matchers.begin(), Matchers.end());
727 }
728 size_t size() const { return Matchers.size(); }
729 bool empty() const { return Matchers.empty(); }
730
731 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
732 assert(!Conditions.empty() &&(static_cast <bool> (!Conditions.empty() && "Trying to pop a condition from a condition-less group"
) ? void (0) : __assert_fail ("!Conditions.empty() && \"Trying to pop a condition from a condition-less group\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 733, __extension__ __PRETTY_FUNCTION__))
733 "Trying to pop a condition from a condition-less group")(static_cast <bool> (!Conditions.empty() && "Trying to pop a condition from a condition-less group"
) ? void (0) : __assert_fail ("!Conditions.empty() && \"Trying to pop a condition from a condition-less group\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 733, __extension__ __PRETTY_FUNCTION__))
;
734 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
735 Conditions.erase(Conditions.begin());
736 return P;
737 }
738 const PredicateMatcher &getFirstCondition() const override {
739 assert(!Conditions.empty() &&(static_cast <bool> (!Conditions.empty() && "Trying to get a condition from a condition-less group"
) ? void (0) : __assert_fail ("!Conditions.empty() && \"Trying to get a condition from a condition-less group\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 740, __extension__ __PRETTY_FUNCTION__))
740 "Trying to get a condition from a condition-less group")(static_cast <bool> (!Conditions.empty() && "Trying to get a condition from a condition-less group"
) ? void (0) : __assert_fail ("!Conditions.empty() && \"Trying to get a condition from a condition-less group\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 740, __extension__ __PRETTY_FUNCTION__))
;
741 return *Conditions.front();
742 }
743 bool hasFirstCondition() const override { return !Conditions.empty(); }
744
745private:
746 /// See if a candidate matcher could be added to this group solely by
747 /// analyzing its first condition.
748 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
749};
750
751class SwitchMatcher : public Matcher {
752 /// All the nested matchers, representing distinct switch-cases. The first
753 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
754 /// matchers must share the same type and path to a value they check, in other
755 /// words, be isIdenticalDownToValue, but have different values they check
756 /// against.
757 std::vector<Matcher *> Matchers;
758
759 /// The representative condition, with a type and a path (InsnVarID and OpIdx
760 /// in most cases) shared by all the matchers contained.
761 std::unique_ptr<PredicateMatcher> Condition = nullptr;
762
763 /// Temporary set used to check that the case values don't repeat within the
764 /// same switch.
765 std::set<MatchTableRecord> Values;
766
767 /// An owning collection for any auxiliary matchers created while optimizing
768 /// nested matchers contained.
769 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
770
771public:
772 bool addMatcher(Matcher &Candidate);
773
774 void finalize();
775 void emit(MatchTable &Table) override;
776
777 iterator_range<std::vector<Matcher *>::iterator> matchers() {
778 return make_range(Matchers.begin(), Matchers.end());
779 }
780 size_t size() const { return Matchers.size(); }
781 bool empty() const { return Matchers.empty(); }
782
783 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
784 // SwitchMatcher doesn't have a common first condition for its cases, as all
785 // the cases only share a kind of a value (a type and a path to it) they
786 // match, but deliberately differ in the actual value they match.
787 llvm_unreachable("Trying to pop a condition from a condition-less group")::llvm::llvm_unreachable_internal("Trying to pop a condition from a condition-less group"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 787)
;
788 }
789 const PredicateMatcher &getFirstCondition() const override {
790 llvm_unreachable("Trying to pop a condition from a condition-less group")::llvm::llvm_unreachable_internal("Trying to pop a condition from a condition-less group"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 790)
;
791 }
792 bool hasFirstCondition() const override { return false; }
793
794private:
795 /// See if the predicate type has a Switch-implementation for it.
796 static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
797
798 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
799
800 /// emit()-helper
801 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
802 MatchTable &Table);
803};
804
805/// Generates code to check that a match rule matches.
806class RuleMatcher : public Matcher {
807public:
808 using ActionList = std::list<std::unique_ptr<MatchAction>>;
809 using action_iterator = ActionList::iterator;
810
811protected:
812 /// A list of matchers that all need to succeed for the current rule to match.
813 /// FIXME: This currently supports a single match position but could be
814 /// extended to support multiple positions to support div/rem fusion or
815 /// load-multiple instructions.
816 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
817 MatchersTy Matchers;
818
819 /// A list of actions that need to be taken when all predicates in this rule
820 /// have succeeded.
821 ActionList Actions;
822
823 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
824
825 /// A map of instruction matchers to the local variables
826 DefinedInsnVariablesMap InsnVariableIDs;
827
828 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
829
830 // The set of instruction matchers that have not yet been claimed for mutation
831 // by a BuildMI.
832 MutatableInsnSet MutatableInsns;
833
834 /// A map of named operands defined by the matchers that may be referenced by
835 /// the renderers.
836 StringMap<OperandMatcher *> DefinedOperands;
837
838 /// A map of anonymous physical register operands defined by the matchers that
839 /// may be referenced by the renderers.
840 DenseMap<Record *, OperandMatcher *> PhysRegOperands;
841
842 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
843 unsigned NextInsnVarID;
844
845 /// ID for the next output instruction allocated with allocateOutputInsnID()
846 unsigned NextOutputInsnID;
847
848 /// ID for the next temporary register ID allocated with allocateTempRegID()
849 unsigned NextTempRegID;
850
851 std::vector<Record *> RequiredFeatures;
852 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
853
854 ArrayRef<SMLoc> SrcLoc;
855
856 typedef std::tuple<Record *, unsigned, unsigned>
857 DefinedComplexPatternSubOperand;
858 typedef StringMap<DefinedComplexPatternSubOperand>
859 DefinedComplexPatternSubOperandMap;
860 /// A map of Symbolic Names to ComplexPattern sub-operands.
861 DefinedComplexPatternSubOperandMap ComplexSubOperands;
862 /// A map used to for multiple referenced error check of ComplexSubOperand.
863 /// ComplexSubOperand can't be referenced multiple from different operands,
864 /// however multiple references from same operand are allowed since that is
865 /// how 'same operand checks' are generated.
866 StringMap<std::string> ComplexSubOperandsParentName;
867
868 uint64_t RuleID;
869 static uint64_t NextRuleID;
870
871public:
872 RuleMatcher(ArrayRef<SMLoc> SrcLoc)
873 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
874 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
875 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
876 RuleID(NextRuleID++) {}
877 RuleMatcher(RuleMatcher &&Other) = default;
878 RuleMatcher &operator=(RuleMatcher &&Other) = default;
879
880 uint64_t getRuleID() const { return RuleID; }
881
882 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
883 void addRequiredFeature(Record *Feature);
884 const std::vector<Record *> &getRequiredFeatures() const;
885
886 template <class Kind, class... Args> Kind &addAction(Args &&... args);
887 template <class Kind, class... Args>
888 action_iterator insertAction(action_iterator InsertPt, Args &&... args);
889
890 /// Define an instruction without emitting any code to do so.
891 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
892
893 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
894 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
895 return InsnVariableIDs.begin();
896 }
897 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
898 return InsnVariableIDs.end();
899 }
900 iterator_range<typename DefinedInsnVariablesMap::const_iterator>
901 defined_insn_vars() const {
902 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
903 }
904
905 MutatableInsnSet::const_iterator mutatable_insns_begin() const {
906 return MutatableInsns.begin();
907 }
908 MutatableInsnSet::const_iterator mutatable_insns_end() const {
909 return MutatableInsns.end();
910 }
911 iterator_range<typename MutatableInsnSet::const_iterator>
912 mutatable_insns() const {
913 return make_range(mutatable_insns_begin(), mutatable_insns_end());
914 }
915 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
916 bool R = MutatableInsns.erase(InsnMatcher);
917 assert(R && "Reserving a mutatable insn that isn't available")(static_cast <bool> (R && "Reserving a mutatable insn that isn't available"
) ? void (0) : __assert_fail ("R && \"Reserving a mutatable insn that isn't available\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 917, __extension__ __PRETTY_FUNCTION__))
;
918 (void)R;
919 }
920
921 action_iterator actions_begin() { return Actions.begin(); }
922 action_iterator actions_end() { return Actions.end(); }
923 iterator_range<action_iterator> actions() {
924 return make_range(actions_begin(), actions_end());
925 }
926
927 void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
928
929 void definePhysRegOperand(Record *Reg, OperandMatcher &OM);
930
931 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
932 unsigned RendererID, unsigned SubOperandID,
933 StringRef ParentSymbolicName) {
934 std::string ParentName(ParentSymbolicName);
935 if (ComplexSubOperands.count(SymbolicName)) {
936 const std::string &RecordedParentName =
937 ComplexSubOperandsParentName[SymbolicName];
938 if (RecordedParentName != ParentName)
939 return failedImport("Error: Complex suboperand " + SymbolicName +
940 " referenced by different operands: " +
941 RecordedParentName + " and " + ParentName + ".");
942 // Complex suboperand referenced more than once from same the operand is
943 // used to generate 'same operand check'. Emitting of
944 // GIR_ComplexSubOperandRenderer for them is already handled.
945 return Error::success();
946 }
947
948 ComplexSubOperands[SymbolicName] =
949 std::make_tuple(ComplexPattern, RendererID, SubOperandID);
950 ComplexSubOperandsParentName[SymbolicName] = ParentName;
951
952 return Error::success();
953 }
954
955 Optional<DefinedComplexPatternSubOperand>
956 getComplexSubOperand(StringRef SymbolicName) const {
957 const auto &I = ComplexSubOperands.find(SymbolicName);
958 if (I == ComplexSubOperands.end())
959 return None;
960 return I->second;
961 }
962
963 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
964 const OperandMatcher &getOperandMatcher(StringRef Name) const;
965 const OperandMatcher &getPhysRegOperandMatcher(Record *) const;
966
967 void optimize() override;
968 void emit(MatchTable &Table) override;
969
970 /// Compare the priority of this object and B.
971 ///
972 /// Returns true if this object is more important than B.
973 bool isHigherPriorityThan(const RuleMatcher &B) const;
974
975 /// Report the maximum number of temporary operands needed by the rule
976 /// matcher.
977 unsigned countRendererFns() const;
978
979 std::unique_ptr<PredicateMatcher> popFirstCondition() override;
980 const PredicateMatcher &getFirstCondition() const override;
981 LLTCodeGen getFirstConditionAsRootType();
982 bool hasFirstCondition() const override;
983 unsigned getNumOperands() const;
984 StringRef getOpcode() const;
985
986 // FIXME: Remove this as soon as possible
987 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
988
989 unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
990 unsigned allocateTempRegID() { return NextTempRegID++; }
991
992 iterator_range<MatchersTy::iterator> insnmatchers() {
993 return make_range(Matchers.begin(), Matchers.end());
994 }
995 bool insnmatchers_empty() const { return Matchers.empty(); }
996 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
997};
998
999uint64_t RuleMatcher::NextRuleID = 0;
1000
1001using action_iterator = RuleMatcher::action_iterator;
1002
1003template <class PredicateTy> class PredicateListMatcher {
1004private:
1005 /// Template instantiations should specialize this to return a string to use
1006 /// for the comment emitted when there are no predicates.
1007 std::string getNoPredicateComment() const;
1008
1009protected:
1010 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
1011 PredicatesTy Predicates;
1012
1013 /// Track if the list of predicates was manipulated by one of the optimization
1014 /// methods.
1015 bool Optimized = false;
1016
1017public:
1018 typename PredicatesTy::iterator predicates_begin() {
1019 return Predicates.begin();
1020 }
1021 typename PredicatesTy::iterator predicates_end() {
1022 return Predicates.end();
1023 }
1024 iterator_range<typename PredicatesTy::iterator> predicates() {
1025 return make_range(predicates_begin(), predicates_end());
1026 }
1027 typename PredicatesTy::size_type predicates_size() const {
1028 return Predicates.size();
1029 }
1030 bool predicates_empty() const { return Predicates.empty(); }
1031
1032 std::unique_ptr<PredicateTy> predicates_pop_front() {
1033 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
1034 Predicates.pop_front();
1035 Optimized = true;
1036 return Front;
1037 }
1038
1039 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
1040 Predicates.push_front(std::move(Predicate));
1041 }
1042
1043 void eraseNullPredicates() {
1044 const auto NewEnd =
1045 std::stable_partition(Predicates.begin(), Predicates.end(),
1046 std::logical_not<std::unique_ptr<PredicateTy>>());
1047 if (NewEnd != Predicates.begin()) {
1048 Predicates.erase(Predicates.begin(), NewEnd);
1049 Optimized = true;
1050 }
1051 }
1052
1053 /// Emit MatchTable opcodes that tests whether all the predicates are met.
1054 template <class... Args>
1055 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
1056 if (Predicates.empty() && !Optimized) {
1057 Table << MatchTable::Comment(getNoPredicateComment())
1058 << MatchTable::LineBreak;
1059 return;
1060 }
1061
1062 for (const auto &Predicate : predicates())
1063 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1064 }
1065
1066 /// Provide a function to avoid emitting certain predicates. This is used to
1067 /// defer some predicate checks until after others
1068 using PredicateFilterFunc = std::function<bool(const PredicateTy&)>;
1069
1070 /// Emit MatchTable opcodes for predicates which satisfy \p
1071 /// ShouldEmitPredicate. This should be called multiple times to ensure all
1072 /// predicates are eventually added to the match table.
1073 template <class... Args>
1074 void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate,
1075 MatchTable &Table, Args &&... args) {
1076 if (Predicates.empty() && !Optimized) {
1077 Table << MatchTable::Comment(getNoPredicateComment())
1078 << MatchTable::LineBreak;
1079 return;
1080 }
1081
1082 for (const auto &Predicate : predicates()) {
1083 if (ShouldEmitPredicate(*Predicate))
1084 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1085 }
1086 }
1087};
1088
1089class PredicateMatcher {
1090public:
1091 /// This enum is used for RTTI and also defines the priority that is given to
1092 /// the predicate when generating the matcher code. Kinds with higher priority
1093 /// must be tested first.
1094 ///
1095 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1096 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1097 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1098 ///
1099 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1100 /// are currently not compared between each other.
1101 enum PredicateKind {
1102 IPM_Opcode,
1103 IPM_NumOperands,
1104 IPM_ImmPredicate,
1105 IPM_Imm,
1106 IPM_AtomicOrderingMMO,
1107 IPM_MemoryLLTSize,
1108 IPM_MemoryVsLLTSize,
1109 IPM_MemoryAddressSpace,
1110 IPM_MemoryAlignment,
1111 IPM_VectorSplatImm,
1112 IPM_GenericPredicate,
1113 OPM_SameOperand,
1114 OPM_ComplexPattern,
1115 OPM_IntrinsicID,
1116 OPM_CmpPredicate,
1117 OPM_Instruction,
1118 OPM_Int,
1119 OPM_LiteralInt,
1120 OPM_LLT,
1121 OPM_PointerToAny,
1122 OPM_RegBank,
1123 OPM_MBB,
1124 OPM_RecordNamedOperand,
1125 };
1126
1127protected:
1128 PredicateKind Kind;
1129 unsigned InsnVarID;
1130 unsigned OpIdx;
1131
1132public:
1133 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
1134 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
1135
1136 unsigned getInsnVarID() const { return InsnVarID; }
1137 unsigned getOpIdx() const { return OpIdx; }
1138
1139 virtual ~PredicateMatcher() = default;
1140 /// Emit MatchTable opcodes that check the predicate for the given operand.
1141 virtual void emitPredicateOpcodes(MatchTable &Table,
1142 RuleMatcher &Rule) const = 0;
1143
1144 PredicateKind getKind() const { return Kind; }
1145
1146 bool dependsOnOperands() const {
1147 // Custom predicates really depend on the context pattern of the
1148 // instruction, not just the individual instruction. This therefore
1149 // implicitly depends on all other pattern constraints.
1150 return Kind == IPM_GenericPredicate;
1151 }
1152
1153 virtual bool isIdentical(const PredicateMatcher &B) const {
1154 return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
1155 OpIdx == B.OpIdx;
1156 }
1157
1158 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
1159 return hasValue() && PredicateMatcher::isIdentical(B);
1160 }
1161
1162 virtual MatchTableRecord getValue() const {
1163 assert(hasValue() && "Can not get a value of a value-less predicate!")(static_cast <bool> (hasValue() && "Can not get a value of a value-less predicate!"
) ? void (0) : __assert_fail ("hasValue() && \"Can not get a value of a value-less predicate!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 1163, __extension__ __PRETTY_FUNCTION__))
;
1164 llvm_unreachable("Not implemented yet")::llvm::llvm_unreachable_internal("Not implemented yet", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 1164)
;
1165 }
1166 virtual bool hasValue() const { return false; }
1167
1168 /// Report the maximum number of temporary operands needed by the predicate
1169 /// matcher.
1170 virtual unsigned countRendererFns() const { return 0; }
1171};
1172
1173/// Generates code to check a predicate of an operand.
1174///
1175/// Typical predicates include:
1176/// * Operand is a particular register.
1177/// * Operand is assigned a particular register bank.
1178/// * Operand is an MBB.
1179class OperandPredicateMatcher : public PredicateMatcher {
1180public:
1181 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
1182 unsigned OpIdx)
1183 : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
1184 virtual ~OperandPredicateMatcher() {}
1185
1186 /// Compare the priority of this object and B.
1187 ///
1188 /// Returns true if this object is more important than B.
1189 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
1190};
1191
1192template <>
1193std::string
1194PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
1195 return "No operand predicates";
1196}
1197
1198/// Generates code to check that a register operand is defined by the same exact
1199/// one as another.
1200class SameOperandMatcher : public OperandPredicateMatcher {
1201 std::string MatchingName;
1202
1203public:
1204 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
1205 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
1206 MatchingName(MatchingName) {}
1207
1208 static bool classof(const PredicateMatcher *P) {
1209 return P->getKind() == OPM_SameOperand;
1210 }
1211
1212 void emitPredicateOpcodes(MatchTable &Table,
1213 RuleMatcher &Rule) const override;
1214
1215 bool isIdentical(const PredicateMatcher &B) const override {
1216 return OperandPredicateMatcher::isIdentical(B) &&
1217 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
1218 }
1219};
1220
1221/// Generates code to check that an operand is a particular LLT.
1222class LLTOperandMatcher : public OperandPredicateMatcher {
1223protected:
1224 LLTCodeGen Ty;
1225
1226public:
1227 static std::map<LLTCodeGen, unsigned> TypeIDValues;
1228
1229 static void initTypeIDValuesMap() {
1230 TypeIDValues.clear();
1231
1232 unsigned ID = 0;
1233 for (const LLTCodeGen &LLTy : KnownTypes)
1234 TypeIDValues[LLTy] = ID++;
1235 }
1236
1237 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
1238 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
1239 KnownTypes.insert(Ty);
1240 }
1241
1242 static bool classof(const PredicateMatcher *P) {
1243 return P->getKind() == OPM_LLT;
1244 }
1245 bool isIdentical(const PredicateMatcher &B) const override {
1246 return OperandPredicateMatcher::isIdentical(B) &&
1247 Ty == cast<LLTOperandMatcher>(&B)->Ty;
1248 }
1249 MatchTableRecord getValue() const override {
1250 const auto VI = TypeIDValues.find(Ty);
1251 if (VI == TypeIDValues.end())
1252 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1253 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
1254 }
1255 bool hasValue() const override {
1256 if (TypeIDValues.size() != KnownTypes.size())
1257 initTypeIDValuesMap();
1258 return TypeIDValues.count(Ty);
1259 }
1260
1261 LLTCodeGen getTy() const { return Ty; }
1262
1263 void emitPredicateOpcodes(MatchTable &Table,
1264 RuleMatcher &Rule) const override {
1265 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1266 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1267 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
1268 << getValue() << MatchTable::LineBreak;
1269 }
1270};
1271
1272std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
1273
1274/// Generates code to check that an operand is a pointer to any address space.
1275///
1276/// In SelectionDAG, the types did not describe pointers or address spaces. As a
1277/// result, iN is used to describe a pointer of N bits to any address space and
1278/// PatFrag predicates are typically used to constrain the address space. There's
1279/// no reliable means to derive the missing type information from the pattern so
1280/// imported rules must test the components of a pointer separately.
1281///
1282/// If SizeInBits is zero, then the pointer size will be obtained from the
1283/// subtarget.
1284class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
1285protected:
1286 unsigned SizeInBits;
1287
1288public:
1289 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1290 unsigned SizeInBits)
1291 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
1292 SizeInBits(SizeInBits) {}
1293
1294 static bool classof(const PredicateMatcher *P) {
1295 return P->getKind() == OPM_PointerToAny;
1296 }
1297
1298 bool isIdentical(const PredicateMatcher &B) const override {
1299 return OperandPredicateMatcher::isIdentical(B) &&
1300 SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits;
1301 }
1302
1303 void emitPredicateOpcodes(MatchTable &Table,
1304 RuleMatcher &Rule) const override {
1305 Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1306 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1307 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1308 << MatchTable::Comment("SizeInBits")
1309 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1310 }
1311};
1312
1313/// Generates code to record named operand in RecordedOperands list at StoreIdx.
1314/// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as
1315/// an argument to predicate's c++ code once all operands have been matched.
1316class RecordNamedOperandMatcher : public OperandPredicateMatcher {
1317protected:
1318 unsigned StoreIdx;
1319 std::string Name;
1320
1321public:
1322 RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1323 unsigned StoreIdx, StringRef Name)
1324 : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx),
1325 StoreIdx(StoreIdx), Name(Name) {}
1326
1327 static bool classof(const PredicateMatcher *P) {
1328 return P->getKind() == OPM_RecordNamedOperand;
1329 }
1330
1331 bool isIdentical(const PredicateMatcher &B) const override {
1332 return OperandPredicateMatcher::isIdentical(B) &&
1333 StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx &&
1334 Name == cast<RecordNamedOperandMatcher>(&B)->Name;
1335 }
1336
1337 void emitPredicateOpcodes(MatchTable &Table,
1338 RuleMatcher &Rule) const override {
1339 Table << MatchTable::Opcode("GIM_RecordNamedOperand")
1340 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1341 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1342 << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx)
1343 << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak;
1344 }
1345};
1346
1347/// Generates code to check that an operand is a particular target constant.
1348class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1349protected:
1350 const OperandMatcher &Operand;
1351 const Record &TheDef;
1352
1353 unsigned getAllocatedTemporariesBaseID() const;
1354
1355public:
1356 bool isIdentical(const PredicateMatcher &B) const override { return false; }
1357
1358 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1359 const OperandMatcher &Operand,
1360 const Record &TheDef)
1361 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1362 Operand(Operand), TheDef(TheDef) {}
1363
1364 static bool classof(const PredicateMatcher *P) {
1365 return P->getKind() == OPM_ComplexPattern;
1366 }
1367
1368 void emitPredicateOpcodes(MatchTable &Table,
1369 RuleMatcher &Rule) const override {
1370 unsigned ID = getAllocatedTemporariesBaseID();
1371 Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1372 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1373 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1374 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1375 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1376 << MatchTable::LineBreak;
1377 }
1378
1379 unsigned countRendererFns() const override {
1380 return 1;
1381 }
1382};
1383
1384/// Generates code to check that an operand is in a particular register bank.
1385class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1386protected:
1387 const CodeGenRegisterClass &RC;
1388
1389public:
1390 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1391 const CodeGenRegisterClass &RC)
1392 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1393
1394 bool isIdentical(const PredicateMatcher &B) const override {
1395 return OperandPredicateMatcher::isIdentical(B) &&
1396 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1397 }
1398
1399 static bool classof(const PredicateMatcher *P) {
1400 return P->getKind() == OPM_RegBank;
1401 }
1402
1403 void emitPredicateOpcodes(MatchTable &Table,
1404 RuleMatcher &Rule) const override {
1405 Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1406 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1407 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1408 << MatchTable::Comment("RC")
1409 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1410 << MatchTable::LineBreak;
1411 }
1412};
1413
1414/// Generates code to check that an operand is a basic block.
1415class MBBOperandMatcher : public OperandPredicateMatcher {
1416public:
1417 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1418 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1419
1420 static bool classof(const PredicateMatcher *P) {
1421 return P->getKind() == OPM_MBB;
1422 }
1423
1424 void emitPredicateOpcodes(MatchTable &Table,
1425 RuleMatcher &Rule) const override {
1426 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1427 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1428 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1429 }
1430};
1431
1432class ImmOperandMatcher : public OperandPredicateMatcher {
1433public:
1434 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1435 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {}
1436
1437 static bool classof(const PredicateMatcher *P) {
1438 return P->getKind() == IPM_Imm;
1439 }
1440
1441 void emitPredicateOpcodes(MatchTable &Table,
1442 RuleMatcher &Rule) const override {
1443 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI")
1444 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1445 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1446 }
1447};
1448
1449/// Generates code to check that an operand is a G_CONSTANT with a particular
1450/// int.
1451class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1452protected:
1453 int64_t Value;
1454
1455public:
1456 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1457 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1458
1459 bool isIdentical(const PredicateMatcher &B) const override {
1460 return OperandPredicateMatcher::isIdentical(B) &&
1461 Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1462 }
1463
1464 static bool classof(const PredicateMatcher *P) {
1465 return P->getKind() == OPM_Int;
1466 }
1467
1468 void emitPredicateOpcodes(MatchTable &Table,
1469 RuleMatcher &Rule) const override {
1470 Table << MatchTable::Opcode("GIM_CheckConstantInt")
1471 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1472 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1473 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1474 }
1475};
1476
1477/// Generates code to check that an operand is a raw int (where MO.isImm() or
1478/// MO.isCImm() is true).
1479class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1480protected:
1481 int64_t Value;
1482
1483public:
1484 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1485 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1486 Value(Value) {}
1487
1488 bool isIdentical(const PredicateMatcher &B) const override {
1489 return OperandPredicateMatcher::isIdentical(B) &&
1490 Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1491 }
1492
1493 static bool classof(const PredicateMatcher *P) {
1494 return P->getKind() == OPM_LiteralInt;
1495 }
1496
1497 void emitPredicateOpcodes(MatchTable &Table,
1498 RuleMatcher &Rule) const override {
1499 Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1500 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1501 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1502 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1503 }
1504};
1505
1506/// Generates code to check that an operand is an CmpInst predicate
1507class CmpPredicateOperandMatcher : public OperandPredicateMatcher {
1508protected:
1509 std::string PredName;
1510
1511public:
1512 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1513 std::string P)
1514 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {}
1515
1516 bool isIdentical(const PredicateMatcher &B) const override {
1517 return OperandPredicateMatcher::isIdentical(B) &&
1518 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName;
1519 }
1520
1521 static bool classof(const PredicateMatcher *P) {
1522 return P->getKind() == OPM_CmpPredicate;
1523 }
1524
1525 void emitPredicateOpcodes(MatchTable &Table,
1526 RuleMatcher &Rule) const override {
1527 Table << MatchTable::Opcode("GIM_CheckCmpPredicate")
1528 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1529 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1530 << MatchTable::Comment("Predicate")
1531 << MatchTable::NamedValue("CmpInst", PredName)
1532 << MatchTable::LineBreak;
1533 }
1534};
1535
1536/// Generates code to check that an operand is an intrinsic ID.
1537class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1538protected:
1539 const CodeGenIntrinsic *II;
1540
1541public:
1542 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1543 const CodeGenIntrinsic *II)
1544 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1545
1546 bool isIdentical(const PredicateMatcher &B) const override {
1547 return OperandPredicateMatcher::isIdentical(B) &&
1548 II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1549 }
1550
1551 static bool classof(const PredicateMatcher *P) {
1552 return P->getKind() == OPM_IntrinsicID;
1553 }
1554
1555 void emitPredicateOpcodes(MatchTable &Table,
1556 RuleMatcher &Rule) const override {
1557 Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1558 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1559 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1560 << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1561 << MatchTable::LineBreak;
1562 }
1563};
1564
1565/// Generates code to check that this operand is an immediate whose value meets
1566/// an immediate predicate.
1567class OperandImmPredicateMatcher : public OperandPredicateMatcher {
1568protected:
1569 TreePredicateFn Predicate;
1570
1571public:
1572 OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx,
1573 const TreePredicateFn &Predicate)
1574 : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx),
1575 Predicate(Predicate) {}
1576
1577 bool isIdentical(const PredicateMatcher &B) const override {
1578 return OperandPredicateMatcher::isIdentical(B) &&
1579 Predicate.getOrigPatFragRecord() ==
1580 cast<OperandImmPredicateMatcher>(&B)
1581 ->Predicate.getOrigPatFragRecord();
1582 }
1583
1584 static bool classof(const PredicateMatcher *P) {
1585 return P->getKind() == IPM_ImmPredicate;
1586 }
1587
1588 void emitPredicateOpcodes(MatchTable &Table,
1589 RuleMatcher &Rule) const override {
1590 Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate")
1591 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1592 << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx)
1593 << MatchTable::Comment("Predicate")
1594 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1595 << MatchTable::LineBreak;
1596 }
1597};
1598
1599/// Generates code to check that a set of predicates match for a particular
1600/// operand.
1601class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1602protected:
1603 InstructionMatcher &Insn;
1604 unsigned OpIdx;
1605 std::string SymbolicName;
1606
1607 /// The index of the first temporary variable allocated to this operand. The
1608 /// number of allocated temporaries can be found with
1609 /// countRendererFns().
1610 unsigned AllocatedTemporariesBaseID;
1611
1612public:
1613 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1614 const std::string &SymbolicName,
1615 unsigned AllocatedTemporariesBaseID)
1616 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1617 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1618
1619 bool hasSymbolicName() const { return !SymbolicName.empty(); }
1620 StringRef getSymbolicName() const { return SymbolicName; }
1621 void setSymbolicName(StringRef Name) {
1622 assert(SymbolicName.empty() && "Operand already has a symbolic name")(static_cast <bool> (SymbolicName.empty() && "Operand already has a symbolic name"
) ? void (0) : __assert_fail ("SymbolicName.empty() && \"Operand already has a symbolic name\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 1622, __extension__ __PRETTY_FUNCTION__))
;
1623 SymbolicName = std::string(Name);
1624 }
1625
1626 /// Construct a new operand predicate and add it to the matcher.
1627 template <class Kind, class... Args>
1628 Optional<Kind *> addPredicate(Args &&... args) {
1629 if (isSameAsAnotherOperand())
1630 return None;
1631 Predicates.emplace_back(std::make_unique<Kind>(
1632 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
1633 return static_cast<Kind *>(Predicates.back().get());
1634 }
1635
1636 unsigned getOpIdx() const { return OpIdx; }
1637 unsigned getInsnVarID() const;
1638
1639 std::string getOperandExpr(unsigned InsnVarID) const {
1640 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1641 llvm::to_string(OpIdx) + ")";
1642 }
1643
1644 InstructionMatcher &getInstructionMatcher() const { return Insn; }
1645
1646 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1647 bool OperandIsAPointer);
1648
1649 /// Emit MatchTable opcodes that test whether the instruction named in
1650 /// InsnVarID matches all the predicates and all the operands.
1651 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1652 if (!Optimized) {
1653 std::string Comment;
1654 raw_string_ostream CommentOS(Comment);
1655 CommentOS << "MIs[" << getInsnVarID() << "] ";
1656 if (SymbolicName.empty())
1657 CommentOS << "Operand " << OpIdx;
1658 else
1659 CommentOS << SymbolicName;
1660 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
1661 }
1662
1663 emitPredicateListOpcodes(Table, Rule);
1664 }
1665
1666 /// Compare the priority of this object and B.
1667 ///
1668 /// Returns true if this object is more important than B.
1669 bool isHigherPriorityThan(OperandMatcher &B) {
1670 // Operand matchers involving more predicates have higher priority.
1671 if (predicates_size() > B.predicates_size())
1672 return true;
1673 if (predicates_size() < B.predicates_size())
1674 return false;
1675
1676 // This assumes that predicates are added in a consistent order.
1677 for (auto &&Predicate : zip(predicates(), B.predicates())) {
1678 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1679 return true;
1680 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1681 return false;
1682 }
1683
1684 return false;
1685 };
1686
1687 /// Report the maximum number of temporary operands needed by the operand
1688 /// matcher.
1689 unsigned countRendererFns() {
1690 return std::accumulate(
1691 predicates().begin(), predicates().end(), 0,
1692 [](unsigned A,
1693 const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1694 return A + Predicate->countRendererFns();
1695 });
1696 }
1697
1698 unsigned getAllocatedTemporariesBaseID() const {
1699 return AllocatedTemporariesBaseID;
1700 }
1701
1702 bool isSameAsAnotherOperand() {
1703 for (const auto &Predicate : predicates())
1704 if (isa<SameOperandMatcher>(Predicate))
1705 return true;
1706 return false;
1707 }
1708};
1709
1710Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1711 bool OperandIsAPointer) {
1712 if (!VTy.isMachineValueType())
1713 return failedImport("unsupported typeset");
1714
1715 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1716 addPredicate<PointerToAnyOperandMatcher>(0);
1717 return Error::success();
1718 }
1719
1720 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1721 if (!OpTyOrNone)
1722 return failedImport("unsupported type");
1723
1724 if (OperandIsAPointer)
1725 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1726 else if (VTy.isPointer())
1727 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
1728 OpTyOrNone->get().getSizeInBits()));
1729 else
1730 addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1731 return Error::success();
1732}
1733
1734unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1735 return Operand.getAllocatedTemporariesBaseID();
1736}
1737
1738/// Generates code to check a predicate on an instruction.
1739///
1740/// Typical predicates include:
1741/// * The opcode of the instruction is a particular value.
1742/// * The nsw/nuw flag is/isn't set.
1743class InstructionPredicateMatcher : public PredicateMatcher {
1744public:
1745 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1746 : PredicateMatcher(Kind, InsnVarID) {}
1747 virtual ~InstructionPredicateMatcher() {}
1748
1749 /// Compare the priority of this object and B.
1750 ///
1751 /// Returns true if this object is more important than B.
1752 virtual bool
1753 isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1754 return Kind < B.Kind;
1755 };
1756};
1757
1758template <>
1759std::string
1760PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
1761 return "No instruction predicates";
1762}
1763
1764/// Generates code to check the opcode of an instruction.
1765class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1766protected:
1767 // Allow matching one to several, similar opcodes that share properties. This
1768 // is to handle patterns where one SelectionDAG operation maps to multiple
1769 // GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first
1770 // is treated as the canonical opcode.
1771 SmallVector<const CodeGenInstruction *, 2> Insts;
1772
1773 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
1774
1775
1776 MatchTableRecord getInstValue(const CodeGenInstruction *I) const {
1777 const auto VI = OpcodeValues.find(I);
1778 if (VI != OpcodeValues.end())
1779 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1780 VI->second);
1781 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1782 }
1783
1784public:
1785 static void initOpcodeValuesMap(const CodeGenTarget &Target) {
1786 OpcodeValues.clear();
1787
1788 unsigned OpcodeValue = 0;
1789 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
1790 OpcodeValues[I] = OpcodeValue++;
1791 }
1792
1793 InstructionOpcodeMatcher(unsigned InsnVarID,
1794 ArrayRef<const CodeGenInstruction *> I)
1795 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID),
1796 Insts(I.begin(), I.end()) {
1797 assert((Insts.size() == 1 || Insts.size() == 2) &&(static_cast <bool> ((Insts.size() == 1 || Insts.size()
== 2) && "unexpected number of opcode alternatives")
? void (0) : __assert_fail ("(Insts.size() == 1 || Insts.size() == 2) && \"unexpected number of opcode alternatives\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 1798, __extension__ __PRETTY_FUNCTION__))
1798 "unexpected number of opcode alternatives")(static_cast <bool> ((Insts.size() == 1 || Insts.size()
== 2) && "unexpected number of opcode alternatives")
? void (0) : __assert_fail ("(Insts.size() == 1 || Insts.size() == 2) && \"unexpected number of opcode alternatives\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 1798, __extension__ __PRETTY_FUNCTION__))
;
1799 }
1800
1801 static bool classof(const PredicateMatcher *P) {
1802 return P->getKind() == IPM_Opcode;
1803 }
1804
1805 bool isIdentical(const PredicateMatcher &B) const override {
1806 return InstructionPredicateMatcher::isIdentical(B) &&
1807 Insts == cast<InstructionOpcodeMatcher>(&B)->Insts;
1808 }
1809
1810 bool hasValue() const override {
1811 return Insts.size() == 1 && OpcodeValues.count(Insts[0]);
1812 }
1813
1814 // TODO: This is used for the SwitchMatcher optimization. We should be able to
1815 // return a list of the opcodes to match.
1816 MatchTableRecord getValue() const override {
1817 assert(Insts.size() == 1)(static_cast <bool> (Insts.size() == 1) ? void (0) : __assert_fail
("Insts.size() == 1", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 1817, __extension__ __PRETTY_FUNCTION__))
;
1818
1819 const CodeGenInstruction *I = Insts[0];
1820 const auto VI = OpcodeValues.find(I);
1821 if (VI != OpcodeValues.end())
1822 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1823 VI->second);
1824 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1825 }
1826
1827 void emitPredicateOpcodes(MatchTable &Table,
1828 RuleMatcher &Rule) const override {
1829 StringRef CheckType = Insts.size() == 1 ?
1830 "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither";
1831 Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI")
1832 << MatchTable::IntValue(InsnVarID);
1833
1834 for (const CodeGenInstruction *I : Insts)
1835 Table << getInstValue(I);
1836 Table << MatchTable::LineBreak;
1837 }
1838
1839 /// Compare the priority of this object and B.
1840 ///
1841 /// Returns true if this object is more important than B.
1842 bool
1843 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1844 if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1845 return true;
1846 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1847 return false;
1848
1849 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1850 // this is cosmetic at the moment, we may want to drive a similar ordering
1851 // using instruction frequency information to improve compile time.
1852 if (const InstructionOpcodeMatcher *BO =
1853 dyn_cast<InstructionOpcodeMatcher>(&B))
1854 return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName();
1855
1856 return false;
1857 };
1858
1859 bool isConstantInstruction() const {
1860 return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT";
1861 }
1862
1863 // The first opcode is the canonical opcode, and later are alternatives.
1864 StringRef getOpcode() const {
1865 return Insts[0]->TheDef->getName();
1866 }
1867
1868 ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() {
1869 return Insts;
1870 }
1871
1872 bool isVariadicNumOperands() const {
1873 // If one is variadic, they all should be.
1874 return Insts[0]->Operands.isVariadic;
1875 }
1876
1877 StringRef getOperandType(unsigned OpIdx) const {
1878 // Types expected to be uniform for all alternatives.
1879 return Insts[0]->Operands[OpIdx].OperandType;
1880 }
1881};
1882
1883DenseMap<const CodeGenInstruction *, unsigned>
1884 InstructionOpcodeMatcher::OpcodeValues;
1885
1886class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
1887 unsigned NumOperands = 0;
1888
1889public:
1890 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
1891 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
1892 NumOperands(NumOperands) {}
1893
1894 static bool classof(const PredicateMatcher *P) {
1895 return P->getKind() == IPM_NumOperands;
1896 }
1897
1898 bool isIdentical(const PredicateMatcher &B) const override {
1899 return InstructionPredicateMatcher::isIdentical(B) &&
1900 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
1901 }
1902
1903 void emitPredicateOpcodes(MatchTable &Table,
1904 RuleMatcher &Rule) const override {
1905 Table << MatchTable::Opcode("GIM_CheckNumOperands")
1906 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1907 << MatchTable::Comment("Expected")
1908 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
1909 }
1910};
1911
1912/// Generates code to check that this instruction is a constant whose value
1913/// meets an immediate predicate.
1914///
1915/// Immediates are slightly odd since they are typically used like an operand
1916/// but are represented as an operator internally. We typically write simm8:$src
1917/// in a tablegen pattern, but this is just syntactic sugar for
1918/// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1919/// that will be matched and the predicate (which is attached to the imm
1920/// operator) that will be tested. In SelectionDAG this describes a
1921/// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1922///
1923/// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1924/// this representation, the immediate could be tested with an
1925/// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1926/// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1927/// there are two implementation issues with producing that matcher
1928/// configuration from the SelectionDAG pattern:
1929/// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1930/// were we to sink the immediate predicate to the operand we would have to
1931/// have two partial implementations of PatFrag support, one for immediates
1932/// and one for non-immediates.
1933/// * At the point we handle the predicate, the OperandMatcher hasn't been
1934/// created yet. If we were to sink the predicate to the OperandMatcher we
1935/// would also have to complicate (or duplicate) the code that descends and
1936/// creates matchers for the subtree.
1937/// Overall, it's simpler to handle it in the place it was found.
1938class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1939protected:
1940 TreePredicateFn Predicate;
1941
1942public:
1943 InstructionImmPredicateMatcher(unsigned InsnVarID,
1944 const TreePredicateFn &Predicate)
1945 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1946 Predicate(Predicate) {}
1947
1948 bool isIdentical(const PredicateMatcher &B) const override {
1949 return InstructionPredicateMatcher::isIdentical(B) &&
1950 Predicate.getOrigPatFragRecord() ==
1951 cast<InstructionImmPredicateMatcher>(&B)
1952 ->Predicate.getOrigPatFragRecord();
1953 }
1954
1955 static bool classof(const PredicateMatcher *P) {
1956 return P->getKind() == IPM_ImmPredicate;
1957 }
1958
1959 void emitPredicateOpcodes(MatchTable &Table,
1960 RuleMatcher &Rule) const override {
1961 Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate))
1962 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1963 << MatchTable::Comment("Predicate")
1964 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1965 << MatchTable::LineBreak;
1966 }
1967};
1968
1969/// Generates code to check that a memory instruction has a atomic ordering
1970/// MachineMemoryOperand.
1971class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1972public:
1973 enum AOComparator {
1974 AO_Exactly,
1975 AO_OrStronger,
1976 AO_WeakerThan,
1977 };
1978
1979protected:
1980 StringRef Order;
1981 AOComparator Comparator;
1982
1983public:
1984 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
1985 AOComparator Comparator = AO_Exactly)
1986 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
1987 Order(Order), Comparator(Comparator) {}
1988
1989 static bool classof(const PredicateMatcher *P) {
1990 return P->getKind() == IPM_AtomicOrderingMMO;
1991 }
1992
1993 bool isIdentical(const PredicateMatcher &B) const override {
1994 if (!InstructionPredicateMatcher::isIdentical(B))
1995 return false;
1996 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
1997 return Order == R.Order && Comparator == R.Comparator;
1998 }
1999
2000 void emitPredicateOpcodes(MatchTable &Table,
2001 RuleMatcher &Rule) const override {
2002 StringRef Opcode = "GIM_CheckAtomicOrdering";
2003
2004 if (Comparator == AO_OrStronger)
2005 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
2006 if (Comparator == AO_WeakerThan)
2007 Opcode = "GIM_CheckAtomicOrderingWeakerThan";
2008
2009 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
2010 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
2011 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
2012 << MatchTable::LineBreak;
2013 }
2014};
2015
2016/// Generates code to check that the size of an MMO is exactly N bytes.
2017class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
2018protected:
2019 unsigned MMOIdx;
2020 uint64_t Size;
2021
2022public:
2023 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
2024 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
2025 MMOIdx(MMOIdx), Size(Size) {}
2026
2027 static bool classof(const PredicateMatcher *P) {
2028 return P->getKind() == IPM_MemoryLLTSize;
2029 }
2030 bool isIdentical(const PredicateMatcher &B) const override {
2031 return InstructionPredicateMatcher::isIdentical(B) &&
2032 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
2033 Size == cast<MemorySizePredicateMatcher>(&B)->Size;
2034 }
2035
2036 void emitPredicateOpcodes(MatchTable &Table,
2037 RuleMatcher &Rule) const override {
2038 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
2039 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2040 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2041 << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
2042 << MatchTable::LineBreak;
2043 }
2044};
2045
2046class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
2047protected:
2048 unsigned MMOIdx;
2049 SmallVector<unsigned, 4> AddrSpaces;
2050
2051public:
2052 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2053 ArrayRef<unsigned> AddrSpaces)
2054 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
2055 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
2056
2057 static bool classof(const PredicateMatcher *P) {
2058 return P->getKind() == IPM_MemoryAddressSpace;
2059 }
2060 bool isIdentical(const PredicateMatcher &B) const override {
2061 if (!InstructionPredicateMatcher::isIdentical(B))
2062 return false;
2063 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
2064 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
2065 }
2066
2067 void emitPredicateOpcodes(MatchTable &Table,
2068 RuleMatcher &Rule) const override {
2069 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
2070 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2071 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2072 // Encode number of address spaces to expect.
2073 << MatchTable::Comment("NumAddrSpace")
2074 << MatchTable::IntValue(AddrSpaces.size());
2075 for (unsigned AS : AddrSpaces)
2076 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
2077
2078 Table << MatchTable::LineBreak;
2079 }
2080};
2081
2082class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
2083protected:
2084 unsigned MMOIdx;
2085 int MinAlign;
2086
2087public:
2088 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2089 int MinAlign)
2090 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
2091 MMOIdx(MMOIdx), MinAlign(MinAlign) {
2092 assert(MinAlign > 0)(static_cast <bool> (MinAlign > 0) ? void (0) : __assert_fail
("MinAlign > 0", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2092, __extension__ __PRETTY_FUNCTION__))
;
2093 }
2094
2095 static bool classof(const PredicateMatcher *P) {
2096 return P->getKind() == IPM_MemoryAlignment;
2097 }
2098
2099 bool isIdentical(const PredicateMatcher &B) const override {
2100 if (!InstructionPredicateMatcher::isIdentical(B))
2101 return false;
2102 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
2103 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
2104 }
2105
2106 void emitPredicateOpcodes(MatchTable &Table,
2107 RuleMatcher &Rule) const override {
2108 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
2109 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2110 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2111 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
2112 << MatchTable::LineBreak;
2113 }
2114};
2115
2116/// Generates code to check that the size of an MMO is less-than, equal-to, or
2117/// greater than a given LLT.
2118class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
2119public:
2120 enum RelationKind {
2121 GreaterThan,
2122 EqualTo,
2123 LessThan,
2124 };
2125
2126protected:
2127 unsigned MMOIdx;
2128 RelationKind Relation;
2129 unsigned OpIdx;
2130
2131public:
2132 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2133 enum RelationKind Relation,
2134 unsigned OpIdx)
2135 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
2136 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
2137
2138 static bool classof(const PredicateMatcher *P) {
2139 return P->getKind() == IPM_MemoryVsLLTSize;
2140 }
2141 bool isIdentical(const PredicateMatcher &B) const override {
2142 return InstructionPredicateMatcher::isIdentical(B) &&
2143 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
2144 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
2145 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
2146 }
2147
2148 void emitPredicateOpcodes(MatchTable &Table,
2149 RuleMatcher &Rule) const override {
2150 Table << MatchTable::Opcode(Relation == EqualTo
2151 ? "GIM_CheckMemorySizeEqualToLLT"
2152 : Relation == GreaterThan
2153 ? "GIM_CheckMemorySizeGreaterThanLLT"
2154 : "GIM_CheckMemorySizeLessThanLLT")
2155 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2156 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2157 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
2158 << MatchTable::LineBreak;
2159 }
2160};
2161
2162// Matcher for immAllOnesV/immAllZerosV
2163class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher {
2164public:
2165 enum SplatKind {
2166 AllZeros,
2167 AllOnes
2168 };
2169
2170private:
2171 SplatKind Kind;
2172
2173public:
2174 VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K)
2175 : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {}
2176
2177 static bool classof(const PredicateMatcher *P) {
2178 return P->getKind() == IPM_VectorSplatImm;
2179 }
2180
2181 bool isIdentical(const PredicateMatcher &B) const override {
2182 return InstructionPredicateMatcher::isIdentical(B) &&
2183 Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind;
2184 }
2185
2186 void emitPredicateOpcodes(MatchTable &Table,
2187 RuleMatcher &Rule) const override {
2188 if (Kind == AllOnes)
2189 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes");
2190 else
2191 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros");
2192
2193 Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID);
2194 Table << MatchTable::LineBreak;
2195 }
2196};
2197
2198/// Generates code to check an arbitrary C++ instruction predicate.
2199class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
2200protected:
2201 TreePredicateFn Predicate;
2202
2203public:
2204 GenericInstructionPredicateMatcher(unsigned InsnVarID,
2205 TreePredicateFn Predicate)
2206 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
2207 Predicate(Predicate) {}
2208
2209 static bool classof(const InstructionPredicateMatcher *P) {
2210 return P->getKind() == IPM_GenericPredicate;
2211 }
2212 bool isIdentical(const PredicateMatcher &B) const override {
2213 return InstructionPredicateMatcher::isIdentical(B) &&
2214 Predicate ==
2215 static_cast<const GenericInstructionPredicateMatcher &>(B)
2216 .Predicate;
2217 }
2218 void emitPredicateOpcodes(MatchTable &Table,
2219 RuleMatcher &Rule) const override {
2220 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
2221 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2222 << MatchTable::Comment("FnId")
2223 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
2224 << MatchTable::LineBreak;
2225 }
2226};
2227
2228/// Generates code to check that a set of predicates and operands match for a
2229/// particular instruction.
2230///
2231/// Typical predicates include:
2232/// * Has a specific opcode.
2233/// * Has an nsw/nuw flag or doesn't.
2234class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
2235protected:
2236 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
2237
2238 RuleMatcher &Rule;
2239
2240 /// The operands to match. All rendered operands must be present even if the
2241 /// condition is always true.
2242 OperandVec Operands;
2243 bool NumOperandsCheck = true;
2244
2245 std::string SymbolicName;
2246 unsigned InsnVarID;
2247
2248 /// PhysRegInputs - List list has an entry for each explicitly specified
2249 /// physreg input to the pattern. The first elt is the Register node, the
2250 /// second is the recorded slot number the input pattern match saved it in.
2251 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs;
2252
2253public:
2254 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName,
2255 bool NumOpsCheck = true)
2256 : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) {
2257 // We create a new instruction matcher.
2258 // Get a new ID for that instruction.
2259 InsnVarID = Rule.implicitlyDefineInsnVar(*this);
2260 }
2261
2262 /// Construct a new instruction predicate and add it to the matcher.
2263 template <class Kind, class... Args>
2264 Optional<Kind *> addPredicate(Args &&... args) {
2265 Predicates.emplace_back(
2266 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
2267 return static_cast<Kind *>(Predicates.back().get());
2268 }
2269
2270 RuleMatcher &getRuleMatcher() const { return Rule; }
2271
2272 unsigned getInsnVarID() const { return InsnVarID; }
2273
2274 /// Add an operand to the matcher.
2275 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
2276 unsigned AllocatedTemporariesBaseID) {
2277 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
2278 AllocatedTemporariesBaseID));
2279 if (!SymbolicName.empty())
2280 Rule.defineOperand(SymbolicName, *Operands.back());
2281
2282 return *Operands.back();
2283 }
2284
2285 OperandMatcher &getOperand(unsigned OpIdx) {
2286 auto I = llvm::find_if(Operands,
2287 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
2288 return X->getOpIdx() == OpIdx;
2289 });
2290 if (I != Operands.end())
2291 return **I;
2292 llvm_unreachable("Failed to lookup operand")::llvm::llvm_unreachable_internal("Failed to lookup operand",
"/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2292)
;
2293 }
2294
2295 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx,
2296 unsigned TempOpIdx) {
2297 assert(SymbolicName.empty())(static_cast <bool> (SymbolicName.empty()) ? void (0) :
__assert_fail ("SymbolicName.empty()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2297, __extension__ __PRETTY_FUNCTION__))
;
2298 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx);
2299 Operands.emplace_back(OM);
2300 Rule.definePhysRegOperand(Reg, *OM);
2301 PhysRegInputs.emplace_back(Reg, OpIdx);
2302 return *OM;
2303 }
2304
2305 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const {
2306 return PhysRegInputs;
2307 }
2308
2309 StringRef getSymbolicName() const { return SymbolicName; }
2310 unsigned getNumOperands() const { return Operands.size(); }
2311 OperandVec::iterator operands_begin() { return Operands.begin(); }
2312 OperandVec::iterator operands_end() { return Operands.end(); }
2313 iterator_range<OperandVec::iterator> operands() {
2314 return make_range(operands_begin(), operands_end());
2315 }
2316 OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
2317 OperandVec::const_iterator operands_end() const { return Operands.end(); }
2318 iterator_range<OperandVec::const_iterator> operands() const {
2319 return make_range(operands_begin(), operands_end());
2320 }
2321 bool operands_empty() const { return Operands.empty(); }
2322
2323 void pop_front() { Operands.erase(Operands.begin()); }
2324
2325 void optimize();
2326
2327 /// Emit MatchTable opcodes that test whether the instruction named in
2328 /// InsnVarName matches all the predicates and all the operands.
2329 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
2330 if (NumOperandsCheck)
2331 InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
2332 .emitPredicateOpcodes(Table, Rule);
2333
2334 // First emit all instruction level predicates need to be verified before we
2335 // can verify operands.
2336 emitFilteredPredicateListOpcodes(
2337 [](const PredicateMatcher &P) {
2338 return !P.dependsOnOperands();
2339 }, Table, Rule);
2340
2341 // Emit all operand constraints.
2342 for (const auto &Operand : Operands)
2343 Operand->emitPredicateOpcodes(Table, Rule);
2344
2345 // All of the tablegen defined predicates should now be matched. Now emit
2346 // any custom predicates that rely on all generated checks.
2347 emitFilteredPredicateListOpcodes(
2348 [](const PredicateMatcher &P) {
2349 return P.dependsOnOperands();
2350 }, Table, Rule);
2351 }
2352
2353 /// Compare the priority of this object and B.
2354 ///
2355 /// Returns true if this object is more important than B.
2356 bool isHigherPriorityThan(InstructionMatcher &B) {
2357 // Instruction matchers involving more operands have higher priority.
2358 if (Operands.size() > B.Operands.size())
2359 return true;
2360 if (Operands.size() < B.Operands.size())
2361 return false;
2362
2363 for (auto &&P : zip(predicates(), B.predicates())) {
2364 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
2365 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
2366 if (L->isHigherPriorityThan(*R))
2367 return true;
2368 if (R->isHigherPriorityThan(*L))
2369 return false;
2370 }
2371
2372 for (auto Operand : zip(Operands, B.Operands)) {
2373 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
2374 return true;
2375 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
2376 return false;
2377 }
2378
2379 return false;
2380 };
2381
2382 /// Report the maximum number of temporary operands needed by the instruction
2383 /// matcher.
2384 unsigned countRendererFns() {
2385 return std::accumulate(
2386 predicates().begin(), predicates().end(), 0,
2387 [](unsigned A,
2388 const std::unique_ptr<PredicateMatcher> &Predicate) {
2389 return A + Predicate->countRendererFns();
2390 }) +
2391 std::accumulate(
2392 Operands.begin(), Operands.end(), 0,
2393 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
2394 return A + Operand->countRendererFns();
2395 });
2396 }
2397
2398 InstructionOpcodeMatcher &getOpcodeMatcher() {
2399 for (auto &P : predicates())
2400 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
2401 return *OpMatcher;
2402 llvm_unreachable("Didn't find an opcode matcher")::llvm::llvm_unreachable_internal("Didn't find an opcode matcher"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2402)
;
2403 }
2404
2405 bool isConstantInstruction() {
2406 return getOpcodeMatcher().isConstantInstruction();
2407 }
2408
2409 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
2410};
2411
2412StringRef RuleMatcher::getOpcode() const {
2413 return Matchers.front()->getOpcode();
2414}
2415
2416unsigned RuleMatcher::getNumOperands() const {
2417 return Matchers.front()->getNumOperands();
2418}
2419
2420LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
2421 InstructionMatcher &InsnMatcher = *Matchers.front();
2422 if (!InsnMatcher.predicates_empty())
2423 if (const auto *TM =
2424 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
2425 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
2426 return TM->getTy();
2427 return {};
2428}
2429
2430/// Generates code to check that the operand is a register defined by an
2431/// instruction that matches the given instruction matcher.
2432///
2433/// For example, the pattern:
2434/// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2435/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2436/// the:
2437/// (G_ADD $src1, $src2)
2438/// subpattern.
2439class InstructionOperandMatcher : public OperandPredicateMatcher {
2440protected:
2441 std::unique_ptr<InstructionMatcher> InsnMatcher;
2442
2443public:
2444 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
2445 RuleMatcher &Rule, StringRef SymbolicName,
2446 bool NumOpsCheck = true)
2447 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
2448 InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {}
2449
2450 static bool classof(const PredicateMatcher *P) {
2451 return P->getKind() == OPM_Instruction;
2452 }
2453
2454 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
2455
2456 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
2457 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
2458 Table << MatchTable::Opcode("GIM_RecordInsn")
2459 << MatchTable::Comment("DefineMI")
2460 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
2461 << MatchTable::IntValue(getInsnVarID())
2462 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2463 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2464 << MatchTable::LineBreak;
2465 }
2466
2467 void emitPredicateOpcodes(MatchTable &Table,
2468 RuleMatcher &Rule) const override {
2469 emitCaptureOpcodes(Table, Rule);
2470 InsnMatcher->emitPredicateOpcodes(Table, Rule);
2471 }
2472
2473 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
2474 if (OperandPredicateMatcher::isHigherPriorityThan(B))
2475 return true;
2476 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
2477 return false;
2478
2479 if (const InstructionOperandMatcher *BP =
2480 dyn_cast<InstructionOperandMatcher>(&B))
2481 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
2482 return true;
2483 return false;
2484 }
2485};
2486
2487void InstructionMatcher::optimize() {
2488 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
2489 const auto &OpcMatcher = getOpcodeMatcher();
2490
2491 Stash.push_back(predicates_pop_front());
2492 if (Stash.back().get() == &OpcMatcher) {
2493 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands())
2494 Stash.emplace_back(
2495 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
2496 NumOperandsCheck = false;
2497
2498 for (auto &OM : Operands)
2499 for (auto &OP : OM->predicates())
2500 if (isa<IntrinsicIDOperandMatcher>(OP)) {
2501 Stash.push_back(std::move(OP));
2502 OM->eraseNullPredicates();
2503 break;
2504 }
2505 }
2506
2507 if (InsnVarID > 0) {
2508 assert(!Operands.empty() && "Nested instruction is expected to def a vreg")(static_cast <bool> (!Operands.empty() && "Nested instruction is expected to def a vreg"
) ? void (0) : __assert_fail ("!Operands.empty() && \"Nested instruction is expected to def a vreg\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2508, __extension__ __PRETTY_FUNCTION__))
;
2509 for (auto &OP : Operands[0]->predicates())
2510 OP.reset();
2511 Operands[0]->eraseNullPredicates();
2512 }
2513 for (auto &OM : Operands) {
2514 for (auto &OP : OM->predicates())
2515 if (isa<LLTOperandMatcher>(OP))
2516 Stash.push_back(std::move(OP));
2517 OM->eraseNullPredicates();
2518 }
2519 while (!Stash.empty())
2520 prependPredicate(Stash.pop_back_val());
2521}
2522
2523//===- Actions ------------------------------------------------------------===//
2524class OperandRenderer {
2525public:
2526 enum RendererKind {
2527 OR_Copy,
2528 OR_CopyOrAddZeroReg,
2529 OR_CopySubReg,
2530 OR_CopyPhysReg,
2531 OR_CopyConstantAsImm,
2532 OR_CopyFConstantAsFPImm,
2533 OR_Imm,
2534 OR_SubRegIndex,
2535 OR_Register,
2536 OR_TempRegister,
2537 OR_ComplexPattern,
2538 OR_Custom,
2539 OR_CustomOperand
2540 };
2541
2542protected:
2543 RendererKind Kind;
2544
2545public:
2546 OperandRenderer(RendererKind Kind) : Kind(Kind) {}
2547 virtual ~OperandRenderer() {}
2548
2549 RendererKind getKind() const { return Kind; }
2550
2551 virtual void emitRenderOpcodes(MatchTable &Table,
2552 RuleMatcher &Rule) const = 0;
2553};
2554
2555/// A CopyRenderer emits code to copy a single operand from an existing
2556/// instruction to the one being built.
2557class CopyRenderer : public OperandRenderer {
2558protected:
2559 unsigned NewInsnID;
2560 /// The name of the operand.
2561 const StringRef SymbolicName;
2562
2563public:
2564 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
2565 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
2566 SymbolicName(SymbolicName) {
2567 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source")(static_cast <bool> (!SymbolicName.empty() && "Cannot copy from an unspecified source"
) ? void (0) : __assert_fail ("!SymbolicName.empty() && \"Cannot copy from an unspecified source\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2567, __extension__ __PRETTY_FUNCTION__))
;
2568 }
2569
2570 static bool classof(const OperandRenderer *R) {
2571 return R->getKind() == OR_Copy;
2572 }
2573
2574 StringRef getSymbolicName() const { return SymbolicName; }
2575
2576 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2577 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2578 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2579 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2580 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2581 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2582 << MatchTable::IntValue(Operand.getOpIdx())
2583 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2584 }
2585};
2586
2587/// A CopyRenderer emits code to copy a virtual register to a specific physical
2588/// register.
2589class CopyPhysRegRenderer : public OperandRenderer {
2590protected:
2591 unsigned NewInsnID;
2592 Record *PhysReg;
2593
2594public:
2595 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg)
2596 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID),
2597 PhysReg(Reg) {
2598 assert(PhysReg)(static_cast <bool> (PhysReg) ? void (0) : __assert_fail
("PhysReg", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2598, __extension__ __PRETTY_FUNCTION__))
;
2599 }
2600
2601 static bool classof(const OperandRenderer *R) {
2602 return R->getKind() == OR_CopyPhysReg;
2603 }
2604
2605 Record *getPhysReg() const { return PhysReg; }
2606
2607 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2608 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg);
2609 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2610 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2611 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2612 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2613 << MatchTable::IntValue(Operand.getOpIdx())
2614 << MatchTable::Comment(PhysReg->getName())
2615 << MatchTable::LineBreak;
2616 }
2617};
2618
2619/// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2620/// existing instruction to the one being built. If the operand turns out to be
2621/// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2622class CopyOrAddZeroRegRenderer : public OperandRenderer {
2623protected:
2624 unsigned NewInsnID;
2625 /// The name of the operand.
2626 const StringRef SymbolicName;
2627 const Record *ZeroRegisterDef;
2628
2629public:
2630 CopyOrAddZeroRegRenderer(unsigned NewInsnID,
2631 StringRef SymbolicName, Record *ZeroRegisterDef)
2632 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
2633 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
2634 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source")(static_cast <bool> (!SymbolicName.empty() && "Cannot copy from an unspecified source"
) ? void (0) : __assert_fail ("!SymbolicName.empty() && \"Cannot copy from an unspecified source\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2634, __extension__ __PRETTY_FUNCTION__))
;
2635 }
2636
2637 static bool classof(const OperandRenderer *R) {
2638 return R->getKind() == OR_CopyOrAddZeroReg;
2639 }
2640
2641 StringRef getSymbolicName() const { return SymbolicName; }
2642
2643 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2644 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2645 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2646 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2647 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2648 << MatchTable::Comment("OldInsnID")
2649 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2650 << MatchTable::IntValue(Operand.getOpIdx())
2651 << MatchTable::NamedValue(
2652 (ZeroRegisterDef->getValue("Namespace")
2653 ? ZeroRegisterDef->getValueAsString("Namespace")
2654 : ""),
2655 ZeroRegisterDef->getName())
2656 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2657 }
2658};
2659
2660/// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2661/// an extended immediate operand.
2662class CopyConstantAsImmRenderer : public OperandRenderer {
2663protected:
2664 unsigned NewInsnID;
2665 /// The name of the operand.
2666 const std::string SymbolicName;
2667 bool Signed;
2668
2669public:
2670 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2671 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
2672 SymbolicName(SymbolicName), Signed(true) {}
2673
2674 static bool classof(const OperandRenderer *R) {
2675 return R->getKind() == OR_CopyConstantAsImm;
2676 }
2677
2678 StringRef getSymbolicName() const { return SymbolicName; }
2679
2680 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2681 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2682 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2683 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
2684 : "GIR_CopyConstantAsUImm")
2685 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2686 << MatchTable::Comment("OldInsnID")
2687 << MatchTable::IntValue(OldInsnVarID)
2688 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2689 }
2690};
2691
2692/// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2693/// instruction to an extended immediate operand.
2694class CopyFConstantAsFPImmRenderer : public OperandRenderer {
2695protected:
2696 unsigned NewInsnID;
2697 /// The name of the operand.
2698 const std::string SymbolicName;
2699
2700public:
2701 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2702 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
2703 SymbolicName(SymbolicName) {}
2704
2705 static bool classof(const OperandRenderer *R) {
2706 return R->getKind() == OR_CopyFConstantAsFPImm;
2707 }
2708
2709 StringRef getSymbolicName() const { return SymbolicName; }
2710
2711 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2712 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2713 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2714 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2715 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2716 << MatchTable::Comment("OldInsnID")
2717 << MatchTable::IntValue(OldInsnVarID)
2718 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2719 }
2720};
2721
2722/// A CopySubRegRenderer emits code to copy a single register operand from an
2723/// existing instruction to the one being built and indicate that only a
2724/// subregister should be copied.
2725class CopySubRegRenderer : public OperandRenderer {
2726protected:
2727 unsigned NewInsnID;
2728 /// The name of the operand.
2729 const StringRef SymbolicName;
2730 /// The subregister to extract.
2731 const CodeGenSubRegIndex *SubReg;
2732
2733public:
2734 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
2735 const CodeGenSubRegIndex *SubReg)
2736 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
2737 SymbolicName(SymbolicName), SubReg(SubReg) {}
2738
2739 static bool classof(const OperandRenderer *R) {
2740 return R->getKind() == OR_CopySubReg;
2741 }
2742
2743 StringRef getSymbolicName() const { return SymbolicName; }
2744
2745 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2746 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2747 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2748 Table << MatchTable::Opcode("GIR_CopySubReg")
2749 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2750 << MatchTable::Comment("OldInsnID")
2751 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2752 << MatchTable::IntValue(Operand.getOpIdx())
2753 << MatchTable::Comment("SubRegIdx")
2754 << MatchTable::IntValue(SubReg->EnumValue)
2755 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2756 }
2757};
2758
2759/// Adds a specific physical register to the instruction being built.
2760/// This is typically useful for WZR/XZR on AArch64.
2761class AddRegisterRenderer : public OperandRenderer {
2762protected:
2763 unsigned InsnID;
2764 const Record *RegisterDef;
2765 bool IsDef;
2766 const CodeGenTarget &Target;
2767
2768public:
2769 AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target,
2770 const Record *RegisterDef, bool IsDef = false)
2771 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef),
2772 IsDef(IsDef), Target(Target) {}
2773
2774 static bool classof(const OperandRenderer *R) {
2775 return R->getKind() == OR_Register;
2776 }
2777
2778 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2779 Table << MatchTable::Opcode("GIR_AddRegister")
2780 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID);
2781 if (RegisterDef->getName() != "zero_reg") {
2782 Table << MatchTable::NamedValue(
2783 (RegisterDef->getValue("Namespace")
2784 ? RegisterDef->getValueAsString("Namespace")
2785 : ""),
2786 RegisterDef->getName());
2787 } else {
2788 Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister");
2789 }
2790 Table << MatchTable::Comment("AddRegisterRegFlags");
2791
2792 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are
2793 // really needed for a physical register reference. We can pack the
2794 // register and flags in a single field.
2795 if (IsDef)
2796 Table << MatchTable::NamedValue("RegState::Define");
2797 else
2798 Table << MatchTable::IntValue(0);
2799 Table << MatchTable::LineBreak;
2800 }
2801};
2802
2803/// Adds a specific temporary virtual register to the instruction being built.
2804/// This is used to chain instructions together when emitting multiple
2805/// instructions.
2806class TempRegRenderer : public OperandRenderer {
2807protected:
2808 unsigned InsnID;
2809 unsigned TempRegID;
2810 const CodeGenSubRegIndex *SubRegIdx;
2811 bool IsDef;
2812 bool IsDead;
2813
2814public:
2815 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false,
2816 const CodeGenSubRegIndex *SubReg = nullptr,
2817 bool IsDead = false)
2818 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
2819 SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {}
2820
2821 static bool classof(const OperandRenderer *R) {
2822 return R->getKind() == OR_TempRegister;
2823 }
2824
2825 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2826 if (SubRegIdx) {
2827 assert(!IsDef)(static_cast <bool> (!IsDef) ? void (0) : __assert_fail
("!IsDef", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 2827, __extension__ __PRETTY_FUNCTION__))
;
2828 Table << MatchTable::Opcode("GIR_AddTempSubRegister");
2829 } else
2830 Table << MatchTable::Opcode("GIR_AddTempRegister");
2831
2832 Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2833 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2834 << MatchTable::Comment("TempRegFlags");
2835
2836 if (IsDef) {
2837 SmallString<32> RegFlags;
2838 RegFlags += "RegState::Define";
2839 if (IsDead)
2840 RegFlags += "|RegState::Dead";
2841 Table << MatchTable::NamedValue(RegFlags);
2842 } else
2843 Table << MatchTable::IntValue(0);
2844
2845 if (SubRegIdx)
2846 Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName());
2847 Table << MatchTable::LineBreak;
2848 }
2849};
2850
2851/// Adds a specific immediate to the instruction being built.
2852class ImmRenderer : public OperandRenderer {
2853protected:
2854 unsigned InsnID;
2855 int64_t Imm;
2856
2857public:
2858 ImmRenderer(unsigned InsnID, int64_t Imm)
2859 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
2860
2861 static bool classof(const OperandRenderer *R) {
2862 return R->getKind() == OR_Imm;
2863 }
2864
2865 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2866 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2867 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
2868 << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
2869 }
2870};
2871
2872/// Adds an enum value for a subreg index to the instruction being built.
2873class SubRegIndexRenderer : public OperandRenderer {
2874protected:
2875 unsigned InsnID;
2876 const CodeGenSubRegIndex *SubRegIdx;
2877
2878public:
2879 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI)
2880 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {}
2881
2882 static bool classof(const OperandRenderer *R) {
2883 return R->getKind() == OR_SubRegIndex;
2884 }
2885
2886 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2887 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2888 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex")
2889 << MatchTable::IntValue(SubRegIdx->EnumValue)
2890 << MatchTable::LineBreak;
2891 }
2892};
2893
2894/// Adds operands by calling a renderer function supplied by the ComplexPattern
2895/// matcher function.
2896class RenderComplexPatternOperand : public OperandRenderer {
2897private:
2898 unsigned InsnID;
2899 const Record &TheDef;
2900 /// The name of the operand.
2901 const StringRef SymbolicName;
2902 /// The renderer number. This must be unique within a rule since it's used to
2903 /// identify a temporary variable to hold the renderer function.
2904 unsigned RendererID;
2905 /// When provided, this is the suboperand of the ComplexPattern operand to
2906 /// render. Otherwise all the suboperands will be rendered.
2907 Optional<unsigned> SubOperand;
2908
2909 unsigned getNumOperands() const {
2910 return TheDef.getValueAsDag("Operands")->getNumArgs();
2911 }
2912
2913public:
2914 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2915 StringRef SymbolicName, unsigned RendererID,
2916 Optional<unsigned> SubOperand = None)
2917 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2918 SymbolicName(SymbolicName), RendererID(RendererID),
2919 SubOperand(SubOperand) {}
2920
2921 static bool classof(const OperandRenderer *R) {
2922 return R->getKind() == OR_ComplexPattern;
2923 }
2924
2925 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2926 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
2927 : "GIR_ComplexRenderer")
2928 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2929 << MatchTable::Comment("RendererID")
2930 << MatchTable::IntValue(RendererID);
2931 if (SubOperand.hasValue())
2932 Table << MatchTable::Comment("SubOperand")
2933 << MatchTable::IntValue(SubOperand.getValue());
2934 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2935 }
2936};
2937
2938class CustomRenderer : public OperandRenderer {
2939protected:
2940 unsigned InsnID;
2941 const Record &Renderer;
2942 /// The name of the operand.
2943 const std::string SymbolicName;
2944
2945public:
2946 CustomRenderer(unsigned InsnID, const Record &Renderer,
2947 StringRef SymbolicName)
2948 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2949 SymbolicName(SymbolicName) {}
2950
2951 static bool classof(const OperandRenderer *R) {
2952 return R->getKind() == OR_Custom;
2953 }
2954
2955 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2956 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2957 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2958 Table << MatchTable::Opcode("GIR_CustomRenderer")
2959 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2960 << MatchTable::Comment("OldInsnID")
2961 << MatchTable::IntValue(OldInsnVarID)
2962 << MatchTable::Comment("Renderer")
2963 << MatchTable::NamedValue(
2964 "GICR_" + Renderer.getValueAsString("RendererFn").str())
2965 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2966 }
2967};
2968
2969class CustomOperandRenderer : public OperandRenderer {
2970protected:
2971 unsigned InsnID;
2972 const Record &Renderer;
2973 /// The name of the operand.
2974 const std::string SymbolicName;
2975
2976public:
2977 CustomOperandRenderer(unsigned InsnID, const Record &Renderer,
2978 StringRef SymbolicName)
2979 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer),
2980 SymbolicName(SymbolicName) {}
2981
2982 static bool classof(const OperandRenderer *R) {
2983 return R->getKind() == OR_CustomOperand;
2984 }
2985
2986 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2987 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName);
2988 Table << MatchTable::Opcode("GIR_CustomOperandRenderer")
2989 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2990 << MatchTable::Comment("OldInsnID")
2991 << MatchTable::IntValue(OpdMatcher.getInsnVarID())
2992 << MatchTable::Comment("OpIdx")
2993 << MatchTable::IntValue(OpdMatcher.getOpIdx())
2994 << MatchTable::Comment("OperandRenderer")
2995 << MatchTable::NamedValue(
2996 "GICR_" + Renderer.getValueAsString("RendererFn").str())
2997 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2998 }
2999};
3000
3001/// An action taken when all Matcher predicates succeeded for a parent rule.
3002///
3003/// Typical actions include:
3004/// * Changing the opcode of an instruction.
3005/// * Adding an operand to an instruction.
3006class MatchAction {
3007public:
3008 virtual ~MatchAction() {}
3009
3010 /// Emit the MatchTable opcodes to implement the action.
3011 virtual void emitActionOpcodes(MatchTable &Table,
3012 RuleMatcher &Rule) const = 0;
3013};
3014
3015/// Generates a comment describing the matched rule being acted upon.
3016class DebugCommentAction : public MatchAction {
3017private:
3018 std::string S;
3019
3020public:
3021 DebugCommentAction(StringRef S) : S(std::string(S)) {}
3022
3023 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3024 Table << MatchTable::Comment(S) << MatchTable::LineBreak;
3025 }
3026};
3027
3028/// Generates code to build an instruction or mutate an existing instruction
3029/// into the desired instruction when this is possible.
3030class BuildMIAction : public MatchAction {
3031private:
3032 unsigned InsnID;
3033 const CodeGenInstruction *I;
3034 InstructionMatcher *Matched;
3035 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
3036
3037 /// True if the instruction can be built solely by mutating the opcode.
3038 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
3039 if (!Insn)
3040 return false;
3041
3042 if (OperandRenderers.size() != Insn->getNumOperands())
3043 return false;
3044
3045 for (const auto &Renderer : enumerate(OperandRenderers)) {
3046 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
3047 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
3048 if (Insn != &OM.getInstructionMatcher() ||
3049 OM.getOpIdx() != Renderer.index())
3050 return false;
3051 } else
3052 return false;
3053 }
3054
3055 return true;
3056 }
3057
3058public:
3059 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
3060 : InsnID(InsnID), I(I), Matched(nullptr) {}
3061
3062 unsigned getInsnID() const { return InsnID; }
3063 const CodeGenInstruction *getCGI() const { return I; }
3064
3065 void chooseInsnToMutate(RuleMatcher &Rule) {
3066 for (auto *MutateCandidate : Rule.mutatable_insns()) {
3067 if (canMutate(Rule, MutateCandidate)) {
3068 // Take the first one we're offered that we're able to mutate.
3069 Rule.reserveInsnMatcherForMutation(MutateCandidate);
3070 Matched = MutateCandidate;
3071 return;
3072 }
3073 }
3074 }
3075
3076 template <class Kind, class... Args>
3077 Kind &addRenderer(Args&&... args) {
3078 OperandRenderers.emplace_back(
3079 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
3080 return *static_cast<Kind *>(OperandRenderers.back().get());
3081 }
3082
3083 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3084 if (Matched) {
3085 assert(canMutate(Rule, Matched) &&(static_cast <bool> (canMutate(Rule, Matched) &&
"Arranged to mutate an insn that isn't mutatable") ? void (0
) : __assert_fail ("canMutate(Rule, Matched) && \"Arranged to mutate an insn that isn't mutatable\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3086, __extension__ __PRETTY_FUNCTION__))
3086 "Arranged to mutate an insn that isn't mutatable")(static_cast <bool> (canMutate(Rule, Matched) &&
"Arranged to mutate an insn that isn't mutatable") ? void (0
) : __assert_fail ("canMutate(Rule, Matched) && \"Arranged to mutate an insn that isn't mutatable\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3086, __extension__ __PRETTY_FUNCTION__))
;
3087
3088 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
3089 Table << MatchTable::Opcode("GIR_MutateOpcode")
3090 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3091 << MatchTable::Comment("RecycleInsnID")
3092 << MatchTable::IntValue(RecycleInsnID)
3093 << MatchTable::Comment("Opcode")
3094 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
3095 << MatchTable::LineBreak;
3096
3097 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
3098 for (auto Def : I->ImplicitDefs) {
3099 auto Namespace = Def->getValue("Namespace")
3100 ? Def->getValueAsString("Namespace")
3101 : "";
3102 Table << MatchTable::Opcode("GIR_AddImplicitDef")
3103 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3104 << MatchTable::NamedValue(Namespace, Def->getName())
3105 << MatchTable::LineBreak;
3106 }
3107 for (auto Use : I->ImplicitUses) {
3108 auto Namespace = Use->getValue("Namespace")
3109 ? Use->getValueAsString("Namespace")
3110 : "";
3111 Table << MatchTable::Opcode("GIR_AddImplicitUse")
3112 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3113 << MatchTable::NamedValue(Namespace, Use->getName())
3114 << MatchTable::LineBreak;
3115 }
3116 }
3117 return;
3118 }
3119
3120 // TODO: Simple permutation looks like it could be almost as common as
3121 // mutation due to commutative operations.
3122
3123 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
3124 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
3125 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
3126 << MatchTable::LineBreak;
3127 for (const auto &Renderer : OperandRenderers)
3128 Renderer->emitRenderOpcodes(Table, Rule);
3129
3130 if (I->mayLoad || I->mayStore) {
3131 Table << MatchTable::Opcode("GIR_MergeMemOperands")
3132 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3133 << MatchTable::Comment("MergeInsnID's");
3134 // Emit the ID's for all the instructions that are matched by this rule.
3135 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
3136 // some other means of having a memoperand. Also limit this to
3137 // emitted instructions that expect to have a memoperand too. For
3138 // example, (G_SEXT (G_LOAD x)) that results in separate load and
3139 // sign-extend instructions shouldn't put the memoperand on the
3140 // sign-extend since it has no effect there.
3141 std::vector<unsigned> MergeInsnIDs;
3142 for (const auto &IDMatcherPair : Rule.defined_insn_vars())
3143 MergeInsnIDs.push_back(IDMatcherPair.second);
3144 llvm::sort(MergeInsnIDs);
3145 for (const auto &MergeInsnID : MergeInsnIDs)
3146 Table << MatchTable::IntValue(MergeInsnID);
3147 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
3148 << MatchTable::LineBreak;
3149 }
3150
3151 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
3152 // better for combines. Particularly when there are multiple match
3153 // roots.
3154 if (InsnID == 0)
3155 Table << MatchTable::Opcode("GIR_EraseFromParent")
3156 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3157 << MatchTable::LineBreak;
3158 }
3159};
3160
3161/// Generates code to constrain the operands of an output instruction to the
3162/// register classes specified by the definition of that instruction.
3163class ConstrainOperandsToDefinitionAction : public MatchAction {
3164 unsigned InsnID;
3165
3166public:
3167 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
3168
3169 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3170 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
3171 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3172 << MatchTable::LineBreak;
3173 }
3174};
3175
3176/// Generates code to constrain the specified operand of an output instruction
3177/// to the specified register class.
3178class ConstrainOperandToRegClassAction : public MatchAction {
3179 unsigned InsnID;
3180 unsigned OpIdx;
3181 const CodeGenRegisterClass &RC;
3182
3183public:
3184 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
3185 const CodeGenRegisterClass &RC)
3186 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
3187
3188 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3189 Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
3190 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3191 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
3192 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
3193 << MatchTable::LineBreak;
3194 }
3195};
3196
3197/// Generates code to create a temporary register which can be used to chain
3198/// instructions together.
3199class MakeTempRegisterAction : public MatchAction {
3200private:
3201 LLTCodeGen Ty;
3202 unsigned TempRegID;
3203
3204public:
3205 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
3206 : Ty(Ty), TempRegID(TempRegID) {
3207 KnownTypes.insert(Ty);
3208 }
3209
3210 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3211 Table << MatchTable::Opcode("GIR_MakeTempReg")
3212 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
3213 << MatchTable::Comment("TypeID")
3214 << MatchTable::NamedValue(Ty.getCxxEnumValue())
3215 << MatchTable::LineBreak;
3216 }
3217};
3218
3219InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
3220 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
3221 MutatableInsns.insert(Matchers.back().get());
3222 return *Matchers.back();
3223}
3224
3225void RuleMatcher::addRequiredFeature(Record *Feature) {
3226 RequiredFeatures.push_back(Feature);
3227}
3228
3229const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
3230 return RequiredFeatures;
3231}
3232
3233// Emplaces an action of the specified Kind at the end of the action list.
3234//
3235// Returns a reference to the newly created action.
3236//
3237// Like std::vector::emplace_back(), may invalidate all iterators if the new
3238// size exceeds the capacity. Otherwise, only invalidates the past-the-end
3239// iterator.
3240template <class Kind, class... Args>
3241Kind &RuleMatcher::addAction(Args &&... args) {
3242 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...));
3243 return *static_cast<Kind *>(Actions.back().get());
3244}
3245
3246// Emplaces an action of the specified Kind before the given insertion point.
3247//
3248// Returns an iterator pointing at the newly created instruction.
3249//
3250// Like std::vector::insert(), may invalidate all iterators if the new size
3251// exceeds the capacity. Otherwise, only invalidates the iterators from the
3252// insertion point onwards.
3253template <class Kind, class... Args>
3254action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
3255 Args &&... args) {
3256 return Actions.emplace(InsertPt,
3257 std::make_unique<Kind>(std::forward<Args>(args)...));
3258}
3259
3260unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
3261 unsigned NewInsnVarID = NextInsnVarID++;
3262 InsnVariableIDs[&Matcher] = NewInsnVarID;
3263 return NewInsnVarID;
3264}
3265
3266unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
3267 const auto &I = InsnVariableIDs.find(&InsnMatcher);
3268 if (I != InsnVariableIDs.end())
3269 return I->second;
3270 llvm_unreachable("Matched Insn was not captured in a local variable")::llvm::llvm_unreachable_internal("Matched Insn was not captured in a local variable"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3270)
;
3271}
3272
3273void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
3274 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
3275 DefinedOperands[SymbolicName] = &OM;
3276 return;
3277 }
3278
3279 // If the operand is already defined, then we must ensure both references in
3280 // the matcher have the exact same node.
3281 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
3282}
3283
3284void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) {
3285 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) {
3286 PhysRegOperands[Reg] = &OM;
3287 return;
3288 }
3289}
3290
3291InstructionMatcher &
3292RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
3293 for (const auto &I : InsnVariableIDs)
3294 if (I.first->getSymbolicName() == SymbolicName)
3295 return *I.first;
3296 llvm_unreachable(::llvm::llvm_unreachable_internal(("Failed to lookup instruction "
+ SymbolicName).str().c_str(), "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3297)
3297 ("Failed to lookup instruction " + SymbolicName).str().c_str())::llvm::llvm_unreachable_internal(("Failed to lookup instruction "
+ SymbolicName).str().c_str(), "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3297)
;
3298}
3299
3300const OperandMatcher &
3301RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const {
3302 const auto &I = PhysRegOperands.find(Reg);
3303
3304 if (I == PhysRegOperands.end()) {
3305 PrintFatalError(SrcLoc, "Register " + Reg->getName() +
3306 " was not declared in matcher");
3307 }
3308
3309 return *I->second;
3310}
3311
3312const OperandMatcher &
3313RuleMatcher::getOperandMatcher(StringRef Name) const {
3314 const auto &I = DefinedOperands.find(Name);
3315
3316 if (I == DefinedOperands.end())
3317 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
3318
3319 return *I->second;
3320}
3321
3322void RuleMatcher::emit(MatchTable &Table) {
3323 if (Matchers.empty())
3324 llvm_unreachable("Unexpected empty matcher!")::llvm::llvm_unreachable_internal("Unexpected empty matcher!"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3324)
;
3325
3326 // The representation supports rules that require multiple roots such as:
3327 // %ptr(p0) = ...
3328 // %elt0(s32) = G_LOAD %ptr
3329 // %1(p0) = G_ADD %ptr, 4
3330 // %elt1(s32) = G_LOAD p0 %1
3331 // which could be usefully folded into:
3332 // %ptr(p0) = ...
3333 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
3334 // on some targets but we don't need to make use of that yet.
3335 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet")(static_cast <bool> (Matchers.size() == 1 && "Cannot handle multi-root matchers yet"
) ? void (0) : __assert_fail ("Matchers.size() == 1 && \"Cannot handle multi-root matchers yet\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3335, __extension__ __PRETTY_FUNCTION__))
;
3336
3337 unsigned LabelID = Table.allocateLabelID();
3338 Table << MatchTable::Opcode("GIM_Try", +1)
3339 << MatchTable::Comment("On fail goto")
3340 << MatchTable::JumpTarget(LabelID)
3341 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
3342 << MatchTable::LineBreak;
3343
3344 if (!RequiredFeatures.empty()) {
3345 Table << MatchTable::Opcode("GIM_CheckFeatures")
3346 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
3347 << MatchTable::LineBreak;
3348 }
3349
3350 Matchers.front()->emitPredicateOpcodes(Table, *this);
3351
3352 // We must also check if it's safe to fold the matched instructions.
3353 if (InsnVariableIDs.size() >= 2) {
3354 // Invert the map to create stable ordering (by var names)
3355 SmallVector<unsigned, 2> InsnIDs;
3356 for (const auto &Pair : InsnVariableIDs) {
3357 // Skip the root node since it isn't moving anywhere. Everything else is
3358 // sinking to meet it.
3359 if (Pair.first == Matchers.front().get())
3360 continue;
3361
3362 InsnIDs.push_back(Pair.second);
3363 }
3364 llvm::sort(InsnIDs);
3365
3366 for (const auto &InsnID : InsnIDs) {
3367 // Reject the difficult cases until we have a more accurate check.
3368 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
3369 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3370 << MatchTable::LineBreak;
3371
3372 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
3373 // account for unsafe cases.
3374 //
3375 // Example:
3376 // MI1--> %0 = ...
3377 // %1 = ... %0
3378 // MI0--> %2 = ... %0
3379 // It's not safe to erase MI1. We currently handle this by not
3380 // erasing %0 (even when it's dead).
3381 //
3382 // Example:
3383 // MI1--> %0 = load volatile @a
3384 // %1 = load volatile @a
3385 // MI0--> %2 = ... %0
3386 // It's not safe to sink %0's def past %1. We currently handle
3387 // this by rejecting all loads.
3388 //
3389 // Example:
3390 // MI1--> %0 = load @a
3391 // %1 = store @a
3392 // MI0--> %2 = ... %0
3393 // It's not safe to sink %0's def past %1. We currently handle
3394 // this by rejecting all loads.
3395 //
3396 // Example:
3397 // G_CONDBR %cond, @BB1
3398 // BB0:
3399 // MI1--> %0 = load @a
3400 // G_BR @BB1
3401 // BB1:
3402 // MI0--> %2 = ... %0
3403 // It's not always safe to sink %0 across control flow. In this
3404 // case it may introduce a memory fault. We currentl handle this
3405 // by rejecting all loads.
3406 }
3407 }
3408
3409 for (const auto &PM : EpilogueMatchers)
3410 PM->emitPredicateOpcodes(Table, *this);
3411
3412 for (const auto &MA : Actions)
3413 MA->emitActionOpcodes(Table, *this);
3414
3415 if (Table.isWithCoverage())
3416 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
3417 << MatchTable::LineBreak;
3418 else
3419 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
3420 << MatchTable::LineBreak;
3421
3422 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
3423 << MatchTable::Label(LabelID);
3424 ++NumPatternEmitted;
3425}
3426
3427bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
3428 // Rules involving more match roots have higher priority.
3429 if (Matchers.size() > B.Matchers.size())
3430 return true;
3431 if (Matchers.size() < B.Matchers.size())
3432 return false;
3433
3434 for (auto Matcher : zip(Matchers, B.Matchers)) {
3435 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
3436 return true;
3437 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
3438 return false;
3439 }
3440
3441 return false;
3442}
3443
3444unsigned RuleMatcher::countRendererFns() const {
3445 return std::accumulate(
3446 Matchers.begin(), Matchers.end(), 0,
3447 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
3448 return A + Matcher->countRendererFns();
3449 });
3450}
3451
3452bool OperandPredicateMatcher::isHigherPriorityThan(
3453 const OperandPredicateMatcher &B) const {
3454 // Generally speaking, an instruction is more important than an Int or a
3455 // LiteralInt because it can cover more nodes but theres an exception to
3456 // this. G_CONSTANT's are less important than either of those two because they
3457 // are more permissive.
3458
3459 const InstructionOperandMatcher *AOM =
3460 dyn_cast<InstructionOperandMatcher>(this);
3461 const InstructionOperandMatcher *BOM =
3462 dyn_cast<InstructionOperandMatcher>(&B);
3463 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
3464 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
3465
3466 if (AOM && BOM) {
3467 // The relative priorities between a G_CONSTANT and any other instruction
3468 // don't actually matter but this code is needed to ensure a strict weak
3469 // ordering. This is particularly important on Windows where the rules will
3470 // be incorrectly sorted without it.
3471 if (AIsConstantInsn != BIsConstantInsn)
3472 return AIsConstantInsn < BIsConstantInsn;
3473 return false;
3474 }
3475
3476 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
3477 return false;
3478 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
3479 return true;
3480
3481 return Kind < B.Kind;
3482}
3483
3484void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
3485 RuleMatcher &Rule) const {
3486 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
3487 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
3488 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID())(static_cast <bool> (OtherInsnVarID == OtherOM.getInstructionMatcher
().getInsnVarID()) ? void (0) : __assert_fail ("OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3488, __extension__ __PRETTY_FUNCTION__))
;
3489
3490 Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
3491 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
3492 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
3493 << MatchTable::Comment("OtherMI")
3494 << MatchTable::IntValue(OtherInsnVarID)
3495 << MatchTable::Comment("OtherOpIdx")
3496 << MatchTable::IntValue(OtherOM.getOpIdx())
3497 << MatchTable::LineBreak;
3498}
3499
3500//===- GlobalISelEmitter class --------------------------------------------===//
3501
3502static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) {
3503 ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes();
3504 if (ChildTypes.size() != 1)
3505 return failedImport("Dst pattern child has multiple results");
3506
3507 Optional<LLTCodeGen> MaybeOpTy;
3508 if (ChildTypes.front().isMachineValueType()) {
3509 MaybeOpTy =
3510 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3511 }
3512
3513 if (!MaybeOpTy)
3514 return failedImport("Dst operand has an unsupported type");
3515 return *MaybeOpTy;
3516}
3517
3518class GlobalISelEmitter {
3519public:
3520 explicit GlobalISelEmitter(RecordKeeper &RK);
3521 void run(raw_ostream &OS);
3522
3523private:
3524 const RecordKeeper &RK;
3525 const CodeGenDAGPatterns CGP;
3526 const CodeGenTarget &Target;
3527 CodeGenRegBank &CGRegs;
3528
3529 /// Keep track of the equivalence between SDNodes and Instruction by mapping
3530 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
3531 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
3532 /// This is defined using 'GINodeEquiv' in the target description.
3533 DenseMap<Record *, Record *> NodeEquivs;
3534
3535 /// Keep track of the equivalence between ComplexPattern's and
3536 /// GIComplexOperandMatcher. Map entries are specified by subclassing
3537 /// GIComplexPatternEquiv.
3538 DenseMap<const Record *, const Record *> ComplexPatternEquivs;
3539
3540 /// Keep track of the equivalence between SDNodeXForm's and
3541 /// GICustomOperandRenderer. Map entries are specified by subclassing
3542 /// GISDNodeXFormEquiv.
3543 DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
3544
3545 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
3546 /// This adds compatibility for RuleMatchers to use this for ordering rules.
3547 DenseMap<uint64_t, int> RuleMatcherScores;
3548
3549 // Map of predicates to their subtarget features.
3550 SubtargetFeatureInfoMap SubtargetFeatures;
3551
3552 // Rule coverage information.
3553 Optional<CodeGenCoverage> RuleCoverage;
3554
3555 /// Variables used to help with collecting of named operands for predicates
3556 /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set
3557 /// to the number of named operands that predicate expects. Store locations in
3558 /// StoreIdxForName correspond to the order in which operand names appear in
3559 /// predicate's argument list.
3560 /// When we visit named leaf operand and WaitingForNamedOperands is not zero,
3561 /// add matcher that will record operand and decrease counter.
3562 unsigned WaitingForNamedOperands = 0;
3563 StringMap<unsigned> StoreIdxForName;
3564
3565 void gatherOpcodeValues();
3566 void gatherTypeIDValues();
3567 void gatherNodeEquivs();
3568
3569 Record *findNodeEquiv(Record *N) const;
3570 const CodeGenInstruction *getEquivNode(Record &Equiv,
3571 const TreePatternNode *N) const;
3572
3573 Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates);
3574 Expected<InstructionMatcher &>
3575 createAndImportSelDAGMatcher(RuleMatcher &Rule,
3576 InstructionMatcher &InsnMatcher,
3577 const TreePatternNode *Src, unsigned &TempOpIdx);
3578 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
3579 unsigned &TempOpIdx) const;
3580 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3581 const TreePatternNode *SrcChild,
3582 bool OperandIsAPointer, bool OperandIsImmArg,
3583 unsigned OpIdx, unsigned &TempOpIdx);
3584
3585 Expected<BuildMIAction &> createAndImportInstructionRenderer(
3586 RuleMatcher &M, InstructionMatcher &InsnMatcher,
3587 const TreePatternNode *Src, const TreePatternNode *Dst);
3588 Expected<action_iterator> createAndImportSubInstructionRenderer(
3589 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3590 unsigned TempReg);
3591 Expected<action_iterator>
3592 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
3593 const TreePatternNode *Dst);
3594
3595 Expected<action_iterator>
3596 importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M,
3597 BuildMIAction &DstMIBuilder,
3598 const TreePatternNode *Dst);
3599
3600 Expected<action_iterator>
3601 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
3602 BuildMIAction &DstMIBuilder,
3603 const llvm::TreePatternNode *Dst);
3604 Expected<action_iterator>
3605 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
3606 BuildMIAction &DstMIBuilder,
3607 TreePatternNode *DstChild);
3608 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
3609 BuildMIAction &DstMIBuilder,
3610 DagInit *DefaultOps) const;
3611 Error
3612 importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
3613 const std::vector<Record *> &ImplicitDefs) const;
3614
3615 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
3616 StringRef TypeIdentifier, StringRef ArgType,
3617 StringRef ArgName, StringRef AdditionalArgs,
3618 StringRef AdditionalDeclarations,
3619 std::function<bool(const Record *R)> Filter);
3620 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
3621 StringRef ArgType,
3622 std::function<bool(const Record *R)> Filter);
3623 void emitMIPredicateFns(raw_ostream &OS);
3624
3625 /// Analyze pattern \p P, returning a matcher for it if possible.
3626 /// Otherwise, return an Error explaining why we don't support it.
3627 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
3628
3629 void declareSubtargetFeature(Record *Predicate);
3630
3631 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
3632 bool WithCoverage);
3633
3634 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned
3635 /// CodeGenRegisterClass will support the CodeGenRegisterClass of
3636 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode.
3637 /// If no register class is found, return None.
3638 Optional<const CodeGenRegisterClass *>
3639 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty,
3640 TreePatternNode *SuperRegNode,
3641 TreePatternNode *SubRegIdxNode);
3642 Optional<CodeGenSubRegIndex *>
3643 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode);
3644
3645 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode.
3646 /// Return None if no such class exists.
3647 Optional<const CodeGenRegisterClass *>
3648 inferSuperRegisterClass(const TypeSetByHwMode &Ty,
3649 TreePatternNode *SubRegIdxNode);
3650
3651 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one.
3652 Optional<const CodeGenRegisterClass *>
3653 getRegClassFromLeaf(TreePatternNode *Leaf);
3654
3655 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None
3656 /// otherwise.
3657 Optional<const CodeGenRegisterClass *>
3658 inferRegClassFromPattern(TreePatternNode *N);
3659
3660 // Add builtin predicates.
3661 Expected<InstructionMatcher &>
3662 addBuiltinPredicates(const Record *SrcGIEquivOrNull,
3663 const TreePredicateFn &Predicate,
3664 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher);
3665
3666public:
3667 /// Takes a sequence of \p Rules and group them based on the predicates
3668 /// they share. \p MatcherStorage is used as a memory container
3669 /// for the group that are created as part of this process.
3670 ///
3671 /// What this optimization does looks like if GroupT = GroupMatcher:
3672 /// Output without optimization:
3673 /// \verbatim
3674 /// # R1
3675 /// # predicate A
3676 /// # predicate B
3677 /// ...
3678 /// # R2
3679 /// # predicate A // <-- effectively this is going to be checked twice.
3680 /// // Once in R1 and once in R2.
3681 /// # predicate C
3682 /// \endverbatim
3683 /// Output with optimization:
3684 /// \verbatim
3685 /// # Group1_2
3686 /// # predicate A // <-- Check is now shared.
3687 /// # R1
3688 /// # predicate B
3689 /// # R2
3690 /// # predicate C
3691 /// \endverbatim
3692 template <class GroupT>
3693 static std::vector<Matcher *> optimizeRules(
3694 ArrayRef<Matcher *> Rules,
3695 std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
3696};
3697
3698void GlobalISelEmitter::gatherOpcodeValues() {
3699 InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
3700}
3701
3702void GlobalISelEmitter::gatherTypeIDValues() {
3703 LLTOperandMatcher::initTypeIDValuesMap();
3704}
3705
3706void GlobalISelEmitter::gatherNodeEquivs() {
3707 assert(NodeEquivs.empty())(static_cast <bool> (NodeEquivs.empty()) ? void (0) : __assert_fail
("NodeEquivs.empty()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3707, __extension__ __PRETTY_FUNCTION__))
;
3708 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
3709 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
3710
3711 assert(ComplexPatternEquivs.empty())(static_cast <bool> (ComplexPatternEquivs.empty()) ? void
(0) : __assert_fail ("ComplexPatternEquivs.empty()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3711, __extension__ __PRETTY_FUNCTION__))
;
3712 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3713 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3714 if (!SelDAGEquiv)
3715 continue;
3716 ComplexPatternEquivs[SelDAGEquiv] = Equiv;
3717 }
3718
3719 assert(SDNodeXFormEquivs.empty())(static_cast <bool> (SDNodeXFormEquivs.empty()) ? void (
0) : __assert_fail ("SDNodeXFormEquivs.empty()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3719, __extension__ __PRETTY_FUNCTION__))
;
3720 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3721 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3722 if (!SelDAGEquiv)
3723 continue;
3724 SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
3725 }
3726}
3727
3728Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
3729 return NodeEquivs.lookup(N);
3730}
3731
3732const CodeGenInstruction *
3733GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
3734 if (N->getNumChildren() >= 1) {
3735 // setcc operation maps to two different G_* instructions based on the type.
3736 if (!Equiv.isValueUnset("IfFloatingPoint") &&
3737 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint())
3738 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint"));
3739 }
3740
3741 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
3742 const TreePredicateFn &Predicate = Call.Fn;
3743 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
3744 Predicate.isSignExtLoad())
3745 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
3746 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
3747 Predicate.isZeroExtLoad())
3748 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
3749 }
3750
3751 return &Target.getInstruction(Equiv.getValueAsDef("I"));
3752}
3753
3754GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
3755 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
3756 CGRegs(Target.getRegBank()) {}
3757
3758//===- Emitter ------------------------------------------------------------===//
3759
3760Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
3761 ArrayRef<Record *> Predicates) {
3762 for (Record *Pred : Predicates) {
3763 if (Pred->getValueAsString("CondString").empty())
3764 continue;
3765 declareSubtargetFeature(Pred);
3766 M.addRequiredFeature(Pred);
3767 }
3768
3769 return Error::success();
3770}
3771
3772Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates(
3773 const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate,
3774 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) {
3775 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
17
Assuming the condition is false
18
Assuming the condition is false
19
Assuming the condition is false
20
Taking false branch
3776 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
3777 SmallVector<unsigned, 4> ParsedAddrSpaces;
3778
3779 for (Init *Val : AddrSpaces->getValues()) {
3780 IntInit *IntVal = dyn_cast<IntInit>(Val);
3781 if (!IntVal)
3782 return failedImport("Address space is not an integer");
3783 ParsedAddrSpaces.push_back(IntVal->getValue());
3784 }
3785
3786 if (!ParsedAddrSpaces.empty()) {
3787 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
3788 0, ParsedAddrSpaces);
3789 }
3790 }
3791
3792 int64_t MinAlign = Predicate.getMinAlignment();
3793 if (MinAlign > 0)
3794 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
3795 }
3796
3797 // G_LOAD is used for both non-extending and any-extending loads.
3798 if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
21
Assuming the condition is false
3799 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3800 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3801 return InsnMatcher;
3802 }
3803 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
22
Assuming the condition is false
3804 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3805 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3806 return InsnMatcher;
3807 }
3808
3809 if (Predicate.isStore()) {
23
Assuming the condition is false
24
Taking false branch
3810 if (Predicate.isTruncStore()) {
3811 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
3812 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3813 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3814 return InsnMatcher;
3815 }
3816 if (Predicate.isNonTruncStore()) {
3817 // We need to check the sizes match here otherwise we could incorrectly
3818 // match truncating stores with non-truncating ones.
3819 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3820 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3821 }
3822 }
3823
3824 // No check required. We already did it by swapping the opcode.
3825 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
25
Called C++ object pointer is null
3826 Predicate.isSignExtLoad())
3827 return InsnMatcher;
3828
3829 // No check required. We already did it by swapping the opcode.
3830 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
3831 Predicate.isZeroExtLoad())
3832 return InsnMatcher;
3833
3834 // No check required. G_STORE by itself is a non-extending store.
3835 if (Predicate.isNonTruncStore())
3836 return InsnMatcher;
3837
3838 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3839 if (Predicate.getMemoryVT() != nullptr) {
3840 Optional<LLTCodeGen> MemTyOrNone =
3841 MVTToLLT(getValueType(Predicate.getMemoryVT()));
3842
3843 if (!MemTyOrNone)
3844 return failedImport("MemVT could not be converted to LLT");
3845
3846 // MMO's work in bytes so we must take care of unusual types like i1
3847 // don't round down.
3848 unsigned MemSizeInBits =
3849 llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
3850
3851 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0,
3852 MemSizeInBits / 8);
3853 return InsnMatcher;
3854 }
3855 }
3856
3857 if (Predicate.isLoad() || Predicate.isStore()) {
3858 // No check required. A G_LOAD/G_STORE is an unindexed load.
3859 if (Predicate.isUnindexed())
3860 return InsnMatcher;
3861 }
3862
3863 if (Predicate.isAtomic()) {
3864 if (Predicate.isAtomicOrderingMonotonic()) {
3865 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic");
3866 return InsnMatcher;
3867 }
3868 if (Predicate.isAtomicOrderingAcquire()) {
3869 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
3870 return InsnMatcher;
3871 }
3872 if (Predicate.isAtomicOrderingRelease()) {
3873 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
3874 return InsnMatcher;
3875 }
3876 if (Predicate.isAtomicOrderingAcquireRelease()) {
3877 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3878 "AcquireRelease");
3879 return InsnMatcher;
3880 }
3881 if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
3882 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3883 "SequentiallyConsistent");
3884 return InsnMatcher;
3885 }
3886 }
3887
3888 if (Predicate.isAtomicOrderingAcquireOrStronger()) {
3889 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3890 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3891 return InsnMatcher;
3892 }
3893 if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
3894 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3895 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3896 return InsnMatcher;
3897 }
3898
3899 if (Predicate.isAtomicOrderingReleaseOrStronger()) {
3900 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3901 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3902 return InsnMatcher;
3903 }
3904 if (Predicate.isAtomicOrderingWeakerThanRelease()) {
3905 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3906 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3907 return InsnMatcher;
3908 }
3909 HasAddedMatcher = false;
3910 return InsnMatcher;
3911}
3912
3913Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
3914 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3915 const TreePatternNode *Src, unsigned &TempOpIdx) {
3916 Record *SrcGIEquivOrNull = nullptr;
1
'SrcGIEquivOrNull' initialized to a null pointer value
3917 const CodeGenInstruction *SrcGIOrNull = nullptr;
3918
3919 // Start with the defined operands (i.e., the results of the root operator).
3920 if (Src->getExtTypes().size() > 1)
2
Assuming the condition is false
3
Taking false branch
3921 return failedImport("Src pattern has multiple results");
3922
3923 if (Src->isLeaf()) {
4
Calling 'TreePatternNode::isLeaf'
7
Returning from 'TreePatternNode::isLeaf'
8
Taking true branch
3924 Init *SrcInit = Src->getLeafValue();
3925 if (isa<IntInit>(SrcInit)) {
9
Assuming 'SrcInit' is a 'IntInit'
10
Taking true branch
3926 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
3927 &Target.getInstruction(RK.getDef("G_CONSTANT")));
3928 } else
3929 return failedImport(
3930 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3931 } else {
3932 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
3933 if (!SrcGIEquivOrNull)
3934 return failedImport("Pattern operator lacks an equivalent Instruction" +
3935 explainOperator(Src->getOperator()));
3936 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
3937
3938 // The operators look good: match the opcode
3939 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
3940 }
3941
3942 unsigned OpIdx = 0;
3943 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3944 // Results don't have a name unless they are the root node. The caller will
3945 // set the name if appropriate.
3946 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3947 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
3948 return failedImport(toString(std::move(Error)) +
3949 " for result of Src pattern operator");
3950 }
3951
3952 for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
3953 const TreePredicateFn &Predicate = Call.Fn;
3954 bool HasAddedBuiltinMatcher = true;
3955 if (Predicate.isAlwaysTrue())
11
Assuming the condition is false
12
Taking false branch
3956 continue;
3957
3958 if (Predicate.isImmediatePattern()) {
13
Assuming the condition is false
14
Taking false branch
3959 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
3960 continue;
3961 }
3962
3963 auto InsnMatcherOrError = addBuiltinPredicates(
16
Calling 'GlobalISelEmitter::addBuiltinPredicates'
3964 SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher);
15
Passing null pointer value via 1st parameter 'SrcGIEquivOrNull'
3965 if (auto Error = InsnMatcherOrError.takeError())
3966 return std::move(Error);
3967
3968 if (Predicate.hasGISelPredicateCode()) {
3969 if (Predicate.usesOperands()) {
3970 assert(WaitingForNamedOperands == 0 &&(static_cast <bool> (WaitingForNamedOperands == 0 &&
"previous predicate didn't find all operands or " "nested predicate that uses operands"
) ? void (0) : __assert_fail ("WaitingForNamedOperands == 0 && \"previous predicate didn't find all operands or \" \"nested predicate that uses operands\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3972, __extension__ __PRETTY_FUNCTION__))
3971 "previous predicate didn't find all operands or "(static_cast <bool> (WaitingForNamedOperands == 0 &&
"previous predicate didn't find all operands or " "nested predicate that uses operands"
) ? void (0) : __assert_fail ("WaitingForNamedOperands == 0 && \"previous predicate didn't find all operands or \" \"nested predicate that uses operands\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3972, __extension__ __PRETTY_FUNCTION__))
3972 "nested predicate that uses operands")(static_cast <bool> (WaitingForNamedOperands == 0 &&
"previous predicate didn't find all operands or " "nested predicate that uses operands"
) ? void (0) : __assert_fail ("WaitingForNamedOperands == 0 && \"previous predicate didn't find all operands or \" \"nested predicate that uses operands\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 3972, __extension__ __PRETTY_FUNCTION__))
;
3973 TreePattern *TP = Predicate.getOrigPatFragRecord();
3974 WaitingForNamedOperands = TP->getNumArgs();
3975 for (unsigned i = 0; i < WaitingForNamedOperands; ++i)
3976 StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i;
3977 }
3978 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
3979 continue;
3980 }
3981 if (!HasAddedBuiltinMatcher) {
3982 return failedImport("Src pattern child has predicate (" +
3983 explainPredicates(Src) + ")");
3984 }
3985 }
3986
3987 bool IsAtomic = false;
3988 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
3989 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
3990 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) {
3991 IsAtomic = true;
3992 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3993 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3994 }
3995
3996 if (Src->isLeaf()) {
3997 Init *SrcInit = Src->getLeafValue();
3998 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
3999 OperandMatcher &OM =
4000 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
4001 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
4002 } else
4003 return failedImport(
4004 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
4005 } else {
4006 assert(SrcGIOrNull &&(static_cast <bool> (SrcGIOrNull && "Expected to have already found an equivalent Instruction"
) ? void (0) : __assert_fail ("SrcGIOrNull && \"Expected to have already found an equivalent Instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 4007, __extension__ __PRETTY_FUNCTION__))
4007 "Expected to have already found an equivalent Instruction")(static_cast <bool> (SrcGIOrNull && "Expected to have already found an equivalent Instruction"
) ? void (0) : __assert_fail ("SrcGIOrNull && \"Expected to have already found an equivalent Instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 4007, __extension__ __PRETTY_FUNCTION__))
;
4008 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
4009 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
4010 // imm/fpimm still have operands but we don't need to do anything with it
4011 // here since we don't support ImmLeaf predicates yet. However, we still
4012 // need to note the hidden operand to get GIM_CheckNumOperands correct.
4013 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
4014 return InsnMatcher;
4015 }
4016
4017 // Special case because the operand order is changed from setcc. The
4018 // predicate operand needs to be swapped from the last operand to the first
4019 // source.
4020
4021 unsigned NumChildren = Src->getNumChildren();
4022 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP";
4023
4024 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") {
4025 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1);
4026 if (SrcChild->isLeaf()) {
4027 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue());
4028 Record *CCDef = DI ? DI->getDef() : nullptr;
4029 if (!CCDef || !CCDef->isSubClassOf("CondCode"))
4030 return failedImport("Unable to handle CondCode");
4031
4032 OperandMatcher &OM =
4033 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
4034 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") :
4035 CCDef->getValueAsString("ICmpPredicate");
4036
4037 if (!PredType.empty()) {
4038 OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType));
4039 // Process the other 2 operands normally.
4040 --NumChildren;
4041 }
4042 }
4043 }
4044
4045 // Hack around an unfortunate mistake in how atomic store (and really
4046 // atomicrmw in general) operands were ordered. A ISD::STORE used the order
4047 // <stored value>, <pointer> order. ISD::ATOMIC_STORE used the opposite,
4048 // <pointer>, <stored value>. In GlobalISel there's just the one store
4049 // opcode, so we need to swap the operands here to get the right type check.
4050 if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") {
4051 assert(NumChildren == 2 && "wrong operands for atomic store")(static_cast <bool> (NumChildren == 2 && "wrong operands for atomic store"
) ? void (0) : __assert_fail ("NumChildren == 2 && \"wrong operands for atomic store\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 4051, __extension__ __PRETTY_FUNCTION__))
;
4052
4053 TreePatternNode *PtrChild = Src->getChild(0);
4054 TreePatternNode *ValueChild = Src->getChild(1);
4055
4056 if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true,
4057 false, 1, TempOpIdx))
4058 return std::move(Error);
4059
4060 if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false,
4061 false, 0, TempOpIdx))
4062 return std::move(Error);
4063 return InsnMatcher;
4064 }
4065
4066 // Match the used operands (i.e. the children of the operator).
4067 bool IsIntrinsic =
4068 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
4069 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
4070 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP);
4071 if (IsIntrinsic && !II)
4072 return failedImport("Expected IntInit containing intrinsic ID)");
4073
4074 for (unsigned i = 0; i != NumChildren; ++i) {
4075 TreePatternNode *SrcChild = Src->getChild(i);
4076
4077 // We need to determine the meaning of a literal integer based on the
4078 // context. If this is a field required to be an immediate (such as an
4079 // immarg intrinsic argument), the required predicates are different than
4080 // a constant which may be materialized in a register. If we have an
4081 // argument that is required to be an immediate, we should not emit an LLT
4082 // type check, and should not be looking for a G_CONSTANT defined
4083 // register.
4084 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i);
4085
4086 // SelectionDAG allows pointers to be represented with iN since it doesn't
4087 // distinguish between pointers and integers but they are different types in GlobalISel.
4088 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
4089 //
4090 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
4091
4092 if (IsIntrinsic) {
4093 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
4094 // following the defs is an intrinsic ID.
4095 if (i == 0) {
4096 OperandMatcher &OM =
4097 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
4098 OM.addPredicate<IntrinsicIDOperandMatcher>(II);
4099 continue;
4100 }
4101
4102 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters.
4103 //
4104 // Note that we have to look at the i-1th parameter, because we don't
4105 // have the intrinsic ID in the intrinsic's parameter list.
4106 OperandIsAPointer |= II->isParamAPointer(i - 1);
4107 OperandIsImmArg |= II->isParamImmArg(i - 1);
4108 }
4109
4110 if (auto Error =
4111 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
4112 OperandIsImmArg, OpIdx++, TempOpIdx))
4113 return std::move(Error);
4114 }
4115 }
4116
4117 return InsnMatcher;
4118}
4119
4120Error GlobalISelEmitter::importComplexPatternOperandMatcher(
4121 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
4122 const auto &ComplexPattern = ComplexPatternEquivs.find(R);
4123 if (ComplexPattern == ComplexPatternEquivs.end())
4124 return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
4125 ") not mapped to GlobalISel");
4126
4127 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
4128 TempOpIdx++;
4129 return Error::success();
4130}
4131
4132// Get the name to use for a pattern operand. For an anonymous physical register
4133// input, this should use the register name.
4134static StringRef getSrcChildName(const TreePatternNode *SrcChild,
4135 Record *&PhysReg) {
4136 StringRef SrcChildName = SrcChild->getName();
4137 if (SrcChildName.empty() && SrcChild->isLeaf()) {
4138 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
4139 auto *ChildRec = ChildDefInit->getDef();
4140 if (ChildRec->isSubClassOf("Register")) {
4141 SrcChildName = ChildRec->getName();
4142 PhysReg = ChildRec;
4143 }
4144 }
4145 }
4146
4147 return SrcChildName;
4148}
4149
4150Error GlobalISelEmitter::importChildMatcher(
4151 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
4152 const TreePatternNode *SrcChild, bool OperandIsAPointer,
4153 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) {
4154
4155 Record *PhysReg = nullptr;
4156 std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg));
4157 if (!SrcChild->isLeaf() &&
4158 SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
4159 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
4160 // "MY_PAT:op1:op2" and the ones with same "name" represent same operand.
4161 std::string PatternName = std::string(SrcChild->getOperator()->getName());
4162 for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) {
4163 PatternName += ":";
4164 PatternName += SrcChild->getChild(i)->getName();
4165 }
4166 SrcChildName = PatternName;
4167 }
4168
4169 OperandMatcher &OM =
4170 PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx)
4171 : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx);
4172 if (OM.isSameAsAnotherOperand())
4173 return Error::success();
4174
4175 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
4176 if (ChildTypes.size() != 1)
4177 return failedImport("Src pattern child has multiple results");
4178
4179 // Check MBB's before the type check since they are not a known type.
4180 if (!SrcChild->isLeaf()) {
4181 if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
4182 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
4183 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
4184 OM.addPredicate<MBBOperandMatcher>();
4185 return Error::success();
4186 }
4187 if (SrcChild->getOperator()->getName() == "timm") {
4188 OM.addPredicate<ImmOperandMatcher>();
4189
4190 // Add predicates, if any
4191 for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) {
4192 const TreePredicateFn &Predicate = Call.Fn;
4193
4194 // Only handle immediate patterns for now
4195 if (Predicate.isImmediatePattern()) {
4196 OM.addPredicate<OperandImmPredicateMatcher>(Predicate);
4197 }
4198 }
4199
4200 return Error::success();
4201 }
4202 }
4203 }
4204
4205 // Immediate arguments have no meaningful type to check as they don't have
4206 // registers.
4207 if (!OperandIsImmArg) {
4208 if (auto Error =
4209 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
4210 return failedImport(toString(std::move(Error)) + " for Src operand (" +
4211 to_string(*SrcChild) + ")");
4212 }
4213
4214 // Check for nested instructions.
4215 if (!SrcChild->isLeaf()) {
4216 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
4217 // When a ComplexPattern is used as an operator, it should do the same
4218 // thing as when used as a leaf. However, the children of the operator
4219 // name the sub-operands that make up the complex operand and we must
4220 // prepare to reference them in the renderer too.
4221 unsigned RendererID = TempOpIdx;
4222 if (auto Error = importComplexPatternOperandMatcher(
4223 OM, SrcChild->getOperator(), TempOpIdx))
4224 return Error;
4225
4226 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
4227 auto *SubOperand = SrcChild->getChild(i);
4228 if (!SubOperand->getName().empty()) {
4229 if (auto Error = Rule.defineComplexSubOperand(
4230 SubOperand->getName(), SrcChild->getOperator(), RendererID, i,
4231 SrcChildName))
4232 return Error;
4233 }
4234 }
4235
4236 return Error::success();
4237 }
4238
4239 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
4240 InsnMatcher.getRuleMatcher(), SrcChild->getName());
4241 if (!MaybeInsnOperand.hasValue()) {
4242 // This isn't strictly true. If the user were to provide exactly the same
4243 // matchers as the original operand then we could allow it. However, it's
4244 // simpler to not permit the redundant specification.
4245 return failedImport("Nested instruction cannot be the same as another operand");
4246 }
4247
4248 // Map the node to a gMIR instruction.
4249 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
4250 auto InsnMatcherOrError = createAndImportSelDAGMatcher(
4251 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
4252 if (auto Error = InsnMatcherOrError.takeError())
4253 return Error;
4254
4255 return Error::success();
4256 }
4257
4258 if (SrcChild->hasAnyPredicate())
4259 return failedImport("Src pattern child has unsupported predicate");
4260
4261 // Check for constant immediates.
4262 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
4263 if (OperandIsImmArg) {
4264 // Checks for argument directly in operand list
4265 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue());
4266 } else {
4267 // Checks for materialized constant
4268 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
4269 }
4270 return Error::success();
4271 }
4272
4273 // Check for def's like register classes or ComplexPattern's.
4274 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
4275 auto *ChildRec = ChildDefInit->getDef();
4276
4277 if (WaitingForNamedOperands) {
4278 auto PA = SrcChild->getNamesAsPredicateArg().begin();
4279 std::string Name = getScopedName(PA->getScope(), PA->getIdentifier());
4280 OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name);
4281 --WaitingForNamedOperands;
4282 }
4283
4284 // Check for register classes.
4285 if (ChildRec->isSubClassOf("RegisterClass") ||
4286 ChildRec->isSubClassOf("RegisterOperand")) {
4287 OM.addPredicate<RegisterBankOperandMatcher>(
4288 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
4289 return Error::success();
4290 }
4291
4292 if (ChildRec->isSubClassOf("Register")) {
4293 // This just be emitted as a copy to the specific register.
4294 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode();
4295 const CodeGenRegisterClass *RC
4296 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT);
4297 if (!RC) {
4298 return failedImport(
4299 "Could not determine physical register class of pattern source");
4300 }
4301
4302 OM.addPredicate<RegisterBankOperandMatcher>(*RC);
4303 return Error::success();
4304 }
4305
4306 // Check for ValueType.
4307 if (ChildRec->isSubClassOf("ValueType")) {
4308 // We already added a type check as standard practice so this doesn't need
4309 // to do anything.
4310 return Error::success();
4311 }
4312
4313 // Check for ComplexPattern's.
4314 if (ChildRec->isSubClassOf("ComplexPattern"))
4315 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
4316
4317 if (ChildRec->isSubClassOf("ImmLeaf")) {
4318 return failedImport(
4319 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
4320 }
4321
4322 // Place holder for SRCVALUE nodes. Nothing to do here.
4323 if (ChildRec->getName() == "srcvalue")
4324 return Error::success();
4325
4326 const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV";
4327 if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") {
4328 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
4329 InsnMatcher.getRuleMatcher(), SrcChild->getName(), false);
4330 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
4331
4332 ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode();
4333
4334 const CodeGenInstruction &BuildVector
4335 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR"));
4336 const CodeGenInstruction &BuildVectorTrunc
4337 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC"));
4338
4339 // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC
4340 // as an alternative.
4341 InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>(
4342 makeArrayRef({&BuildVector, &BuildVectorTrunc}));
4343
4344 // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could
4345 // theoretically not emit any opcode check, but getOpcodeMatcher currently
4346 // has to succeed.
4347 OperandMatcher &OM =
4348 InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx);
4349 if (auto Error =
4350 OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
4351 return failedImport(toString(std::move(Error)) +
4352 " for result of Src pattern operator");
4353
4354 InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>(
4355 ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes
4356 : VectorSplatImmPredicateMatcher::AllZeros);
4357 return Error::success();
4358 }
4359
4360 return failedImport(
4361 "Src pattern child def is an unsupported tablegen class");
4362 }
4363
4364 return failedImport("Src pattern child is an unsupported kind");
4365}
4366
4367Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
4368 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
4369 TreePatternNode *DstChild) {
4370
4371 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
4372 if (SubOperand.hasValue()) {
4373 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
4374 *std::get<0>(*SubOperand), DstChild->getName(),
4375 std::get<1>(*SubOperand), std::get<2>(*SubOperand));
4376 return InsertPt;
4377 }
4378
4379 if (!DstChild->isLeaf()) {
4380 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
4381 auto Child = DstChild->getChild(0);
4382 auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
4383 if (I != SDNodeXFormEquivs.end()) {
4384 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode");
4385 if (XFormOpc->getName() == "timm") {
4386 // If this is a TargetConstant, there won't be a corresponding
4387 // instruction to transform. Instead, this will refer directly to an
4388 // operand in an instruction's operand list.
4389 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second,
4390 Child->getName());
4391 } else {
4392 DstMIBuilder.addRenderer<CustomRenderer>(*I->second,
4393 Child->getName());
4394 }
4395
4396 return InsertPt;
4397 }
4398 return failedImport("SDNodeXForm " + Child->getName() +
4399 " has no custom renderer");
4400 }
4401
4402 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
4403 // inline, but in MI it's just another operand.
4404 if (DstChild->getOperator()->isSubClassOf("SDNode")) {
4405 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
4406 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
4407 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4408 return InsertPt;
4409 }
4410 }
4411
4412 // Similarly, imm is an operator in TreePatternNode's view but must be
4413 // rendered as operands.
4414 // FIXME: The target should be able to choose sign-extended when appropriate
4415 // (e.g. on Mips).
4416 if (DstChild->getOperator()->getName() == "timm") {
4417 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4418 return InsertPt;
4419 } else if (DstChild->getOperator()->getName() == "imm") {
4420 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
4421 return InsertPt;
4422 } else if (DstChild->getOperator()->getName() == "fpimm") {
4423 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
4424 DstChild->getName());
4425 return InsertPt;
4426 }
4427
4428 if (DstChild->getOperator()->isSubClassOf("Instruction")) {
4429 auto OpTy = getInstResultType(DstChild);
4430 if (!OpTy)
4431 return OpTy.takeError();
4432
4433 unsigned TempRegID = Rule.allocateTempRegID();
4434 InsertPt = Rule.insertAction<MakeTempRegisterAction>(
4435 InsertPt, *OpTy, TempRegID);
4436 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4437
4438 auto InsertPtOrError = createAndImportSubInstructionRenderer(
4439 ++InsertPt, Rule, DstChild, TempRegID);
4440 if (auto Error = InsertPtOrError.takeError())
4441 return std::move(Error);
4442 return InsertPtOrError.get();
4443 }
4444
4445 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
4446 }
4447
4448 // It could be a specific immediate in which case we should just check for
4449 // that immediate.
4450 if (const IntInit *ChildIntInit =
4451 dyn_cast<IntInit>(DstChild->getLeafValue())) {
4452 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
4453 return InsertPt;
4454 }
4455
4456 // Otherwise, we're looking for a bog-standard RegisterClass operand.
4457 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
4458 auto *ChildRec = ChildDefInit->getDef();
4459
4460 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
4461 if (ChildTypes.size() != 1)
4462 return failedImport("Dst pattern child has multiple results");
4463
4464 Optional<LLTCodeGen> OpTyOrNone = None;
4465 if (ChildTypes.front().isMachineValueType())
4466 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
4467 if (!OpTyOrNone)
4468 return failedImport("Dst operand has an unsupported type");
4469
4470 if (ChildRec->isSubClassOf("Register")) {
4471 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec);
4472 return InsertPt;
4473 }
4474
4475 if (ChildRec->isSubClassOf("RegisterClass") ||
4476 ChildRec->isSubClassOf("RegisterOperand") ||
4477 ChildRec->isSubClassOf("ValueType")) {
4478 if (ChildRec->isSubClassOf("RegisterOperand") &&
4479 !ChildRec->isValueUnset("GIZeroRegister")) {
4480 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
4481 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
4482 return InsertPt;
4483 }
4484
4485 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4486 return InsertPt;
4487 }
4488
4489 if (ChildRec->isSubClassOf("SubRegIndex")) {
4490 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec);
4491 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue);
4492 return InsertPt;
4493 }
4494
4495 if (ChildRec->isSubClassOf("ComplexPattern")) {
4496 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
4497 if (ComplexPattern == ComplexPatternEquivs.end())
4498 return failedImport(
4499 "SelectionDAG ComplexPattern not mapped to GlobalISel");
4500
4501 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
4502 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
4503 *ComplexPattern->second, DstChild->getName(),
4504 OM.getAllocatedTemporariesBaseID());
4505 return InsertPt;
4506 }
4507
4508 return failedImport(
4509 "Dst pattern child def is an unsupported tablegen class");
4510 }
4511 return failedImport("Dst pattern child is an unsupported kind");
4512}
4513
4514Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
4515 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src,
4516 const TreePatternNode *Dst) {
4517 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
4518 if (auto Error = InsertPtOrError.takeError())
4519 return std::move(Error);
4520
4521 action_iterator InsertPt = InsertPtOrError.get();
4522 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
4523
4524 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) {
4525 InsertPt = M.insertAction<BuildMIAction>(
4526 InsertPt, M.allocateOutputInsnID(),
4527 &Target.getInstruction(RK.getDef("COPY")));
4528 BuildMIAction &CopyToPhysRegMIBuilder =
4529 *static_cast<BuildMIAction *>(InsertPt->get());
4530 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target,
4531 PhysInput.first,
4532 true);
4533 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first);
4534 }
4535
4536 if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst)
4537 .takeError())
4538 return std::move(Error);
4539
4540 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
4541 .takeError())
4542 return std::move(Error);
4543
4544 return DstMIBuilder;
4545}
4546
4547Expected<action_iterator>
4548GlobalISelEmitter::createAndImportSubInstructionRenderer(
4549 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
4550 unsigned TempRegID) {
4551 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
4552
4553 // TODO: Assert there's exactly one result.
4554
4555 if (auto Error = InsertPtOrError.takeError())
4556 return std::move(Error);
4557
4558 BuildMIAction &DstMIBuilder =
4559 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
4560
4561 // Assign the result to TempReg.
4562 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
4563
4564 InsertPtOrError =
4565 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
4566 if (auto Error = InsertPtOrError.takeError())
4567 return std::move(Error);
4568
4569 // We need to make sure that when we import an INSERT_SUBREG as a
4570 // subinstruction that it ends up being constrained to the correct super
4571 // register and subregister classes.
4572 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName();
4573 if (OpName == "INSERT_SUBREG") {
4574 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4575 if (!SubClass)
4576 return failedImport(
4577 "Cannot infer register class from INSERT_SUBREG operand #1");
4578 Optional<const CodeGenRegisterClass *> SuperClass =
4579 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0),
4580 Dst->getChild(2));
4581 if (!SuperClass)
4582 return failedImport(
4583 "Cannot infer register class for INSERT_SUBREG operand #0");
4584 // The destination and the super register source of an INSERT_SUBREG must
4585 // be the same register class.
4586 M.insertAction<ConstrainOperandToRegClassAction>(
4587 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4588 M.insertAction<ConstrainOperandToRegClassAction>(
4589 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass);
4590 M.insertAction<ConstrainOperandToRegClassAction>(
4591 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
4592 return InsertPtOrError.get();
4593 }
4594
4595 if (OpName == "EXTRACT_SUBREG") {
4596 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4597 // instructions, the result register class is controlled by the
4598 // subregisters of the operand. As a result, we must constrain the result
4599 // class rather than check that it's already the right one.
4600 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
4601 if (!SuperClass)
4602 return failedImport(
4603 "Cannot infer register class from EXTRACT_SUBREG operand #0");
4604
4605 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
4606 if (!SubIdx)
4607 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4608
4609 const auto SrcRCDstRCPair =
4610 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
4611 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass")(static_cast <bool> (SrcRCDstRCPair->second &&
"Couldn't find a matching subclass") ? void (0) : __assert_fail
("SrcRCDstRCPair->second && \"Couldn't find a matching subclass\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 4611, __extension__ __PRETTY_FUNCTION__))
;
4612 M.insertAction<ConstrainOperandToRegClassAction>(
4613 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second);
4614 M.insertAction<ConstrainOperandToRegClassAction>(
4615 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first);
4616
4617 // We're done with this pattern! It's eligible for GISel emission; return
4618 // it.
4619 return InsertPtOrError.get();
4620 }
4621
4622 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a
4623 // subinstruction.
4624 if (OpName == "SUBREG_TO_REG") {
4625 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4626 if (!SubClass)
4627 return failedImport(
4628 "Cannot infer register class from SUBREG_TO_REG child #1");
4629 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0),
4630 Dst->getChild(2));
4631 if (!SuperClass)
4632 return failedImport(
4633 "Cannot infer register class for SUBREG_TO_REG operand #0");
4634 M.insertAction<ConstrainOperandToRegClassAction>(
4635 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4636 M.insertAction<ConstrainOperandToRegClassAction>(
4637 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
4638 return InsertPtOrError.get();
4639 }
4640
4641 if (OpName == "REG_SEQUENCE") {
4642 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
4643 M.insertAction<ConstrainOperandToRegClassAction>(
4644 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4645
4646 unsigned Num = Dst->getNumChildren();
4647 for (unsigned I = 1; I != Num; I += 2) {
4648 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
4649
4650 auto SubIdx = inferSubRegIndexForNode(SubRegChild);
4651 if (!SubIdx)
4652 return failedImport("REG_SEQUENCE child is not a subreg index");
4653
4654 const auto SrcRCDstRCPair =
4655 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
4656 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass")(static_cast <bool> (SrcRCDstRCPair->second &&
"Couldn't find a matching subclass") ? void (0) : __assert_fail
("SrcRCDstRCPair->second && \"Couldn't find a matching subclass\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 4656, __extension__ __PRETTY_FUNCTION__))
;
4657 M.insertAction<ConstrainOperandToRegClassAction>(
4658 InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second);
4659 }
4660
4661 return InsertPtOrError.get();
4662 }
4663
4664 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
4665 DstMIBuilder.getInsnID());
4666 return InsertPtOrError.get();
4667}
4668
4669Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
4670 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
4671 Record *DstOp = Dst->getOperator();
4672 if (!DstOp->isSubClassOf("Instruction")) {
4673 if (DstOp->isSubClassOf("ValueType"))
4674 return failedImport(
4675 "Pattern operator isn't an instruction (it's a ValueType)");
4676 return failedImport("Pattern operator isn't an instruction");
4677 }
4678 CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
4679
4680 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
4681 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
4682 StringRef Name = DstI->TheDef->getName();
4683 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG")
4684 DstI = &Target.getInstruction(RK.getDef("COPY"));
4685
4686 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
4687 DstI);
4688}
4689
4690Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers(
4691 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4692 const TreePatternNode *Dst) {
4693 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4694 const unsigned NumDefs = DstI->Operands.NumDefs;
4695 if (NumDefs == 0)
4696 return InsertPt;
4697
4698 DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name);
4699
4700 // Some instructions have multiple defs, but are missing a type entry
4701 // (e.g. s_cc_out operands).
4702 if (Dst->getExtTypes().size() < NumDefs)
4703 return failedImport("unhandled discarded def");
4704
4705 // Patterns only handle a single result, so any result after the first is an
4706 // implicitly dead def.
4707 for (unsigned I = 1; I < NumDefs; ++I) {
4708 const TypeSetByHwMode &ExtTy = Dst->getExtType(I);
4709 if (!ExtTy.isMachineValueType())
4710 return failedImport("unsupported typeset");
4711
4712 auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy);
4713 if (!OpTy)
4714 return failedImport("unsupported type");
4715
4716 unsigned TempRegID = M.allocateTempRegID();
4717 InsertPt =
4718 M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID);
4719 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true);
4720 }
4721
4722 return InsertPt;
4723}
4724
4725Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
4726 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4727 const llvm::TreePatternNode *Dst) {
4728 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4729 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
4730
4731 StringRef Name = OrigDstI->TheDef->getName();
4732 unsigned ExpectedDstINumUses = Dst->getNumChildren();
4733
4734 // EXTRACT_SUBREG needs to use a subregister COPY.
4735 if (Name == "EXTRACT_SUBREG") {
4736 if (!Dst->getChild(1)->isLeaf())
4737 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4738 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
4739 if (!SubRegInit)
4740 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4741
4742 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4743 TreePatternNode *ValChild = Dst->getChild(0);
4744 if (!ValChild->isLeaf()) {
4745 // We really have to handle the source instruction, and then insert a
4746 // copy from the subregister.
4747 auto ExtractSrcTy = getInstResultType(ValChild);
4748 if (!ExtractSrcTy)
4749 return ExtractSrcTy.takeError();
4750
4751 unsigned TempRegID = M.allocateTempRegID();
4752 InsertPt = M.insertAction<MakeTempRegisterAction>(
4753 InsertPt, *ExtractSrcTy, TempRegID);
4754
4755 auto InsertPtOrError = createAndImportSubInstructionRenderer(
4756 ++InsertPt, M, ValChild, TempRegID);
4757 if (auto Error = InsertPtOrError.takeError())
4758 return std::move(Error);
4759
4760 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx);
4761 return InsertPt;
4762 }
4763
4764 // If this is a source operand, this is just a subregister copy.
4765 Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue());
4766 if (!RCDef)
4767 return failedImport("EXTRACT_SUBREG child #0 could not "
4768 "be coerced to a register class");
4769
4770 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
4771
4772 const auto SrcRCDstRCPair =
4773 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4774 if (SrcRCDstRCPair.hasValue()) {
4775 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass")(static_cast <bool> (SrcRCDstRCPair->second &&
"Couldn't find a matching subclass") ? void (0) : __assert_fail
("SrcRCDstRCPair->second && \"Couldn't find a matching subclass\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 4775, __extension__ __PRETTY_FUNCTION__))
;
4776 if (SrcRCDstRCPair->first != RC)
4777 return failedImport("EXTRACT_SUBREG requires an additional COPY");
4778 }
4779
4780 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
4781 SubIdx);
4782 return InsertPt;
4783 }
4784
4785 if (Name == "REG_SEQUENCE") {
4786 if (!Dst->getChild(0)->isLeaf())
4787 return failedImport("REG_SEQUENCE child #0 is not a leaf");
4788
4789 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4790 if (!RCDef)
4791 return failedImport("REG_SEQUENCE child #0 could not "
4792 "be coerced to a register class");
4793
4794 if ((ExpectedDstINumUses - 1) % 2 != 0)
4795 return failedImport("Malformed REG_SEQUENCE");
4796
4797 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) {
4798 TreePatternNode *ValChild = Dst->getChild(I);
4799 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
4800
4801 if (DefInit *SubRegInit =
4802 dyn_cast<DefInit>(SubRegChild->getLeafValue())) {
4803 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4804
4805 auto InsertPtOrError =
4806 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild);
4807 if (auto Error = InsertPtOrError.takeError())
4808 return std::move(Error);
4809 InsertPt = InsertPtOrError.get();
4810 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx);
4811 }
4812 }
4813
4814 return InsertPt;
4815 }
4816
4817 // Render the explicit uses.
4818 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
4819 if (Name == "COPY_TO_REGCLASS") {
4820 DstINumUses--; // Ignore the class constraint.
4821 ExpectedDstINumUses--;
4822 }
4823
4824 // NumResults - This is the number of results produced by the instruction in
4825 // the "outs" list.
4826 unsigned NumResults = OrigDstI->Operands.NumDefs;
4827
4828 // Number of operands we know the output instruction must have. If it is
4829 // variadic, we could have more operands.
4830 unsigned NumFixedOperands = DstI->Operands.size();
4831
4832 // Loop over all of the fixed operands of the instruction pattern, emitting
4833 // code to fill them all in. The node 'N' usually has number children equal to
4834 // the number of input operands of the instruction. However, in cases where
4835 // there are predicate operands for an instruction, we need to fill in the
4836 // 'execute always' values. Match up the node operands to the instruction
4837 // operands to do this.
4838 unsigned Child = 0;
4839
4840 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
4841 // number of operands at the end of the list which have default values.
4842 // Those can come from the pattern if it provides enough arguments, or be
4843 // filled in with the default if the pattern hasn't provided them. But any
4844 // operand with a default value _before_ the last mandatory one will be
4845 // filled in with their defaults unconditionally.
4846 unsigned NonOverridableOperands = NumFixedOperands;
4847 while (NonOverridableOperands > NumResults &&
4848 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec))
4849 --NonOverridableOperands;
4850
4851 unsigned NumDefaultOps = 0;
4852 for (unsigned I = 0; I != DstINumUses; ++I) {
4853 unsigned InstOpNo = DstI->Operands.NumDefs + I;
4854
4855 // Determine what to emit for this operand.
4856 Record *OperandNode = DstI->Operands[InstOpNo].Rec;
4857
4858 // If the operand has default values, introduce them now.
4859 if (CGP.operandHasDefault(OperandNode) &&
4860 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) {
4861 // This is a predicate or optional def operand which the pattern has not
4862 // overridden, or which we aren't letting it override; emit the 'default
4863 // ops' operands.
4864
4865 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo];
4866 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
4867 if (auto Error = importDefaultOperandRenderers(
4868 InsertPt, M, DstMIBuilder, DefaultOps))
4869 return std::move(Error);
4870 ++NumDefaultOps;
4871 continue;
4872 }
4873
4874 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
4875 Dst->getChild(Child));
4876 if (auto Error = InsertPtOrError.takeError())
4877 return std::move(Error);
4878 InsertPt = InsertPtOrError.get();
4879 ++Child;
4880 }
4881
4882 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
4883 return failedImport("Expected " + llvm::to_string(DstINumUses) +
4884 " used operands but found " +
4885 llvm::to_string(ExpectedDstINumUses) +
4886 " explicit ones and " + llvm::to_string(NumDefaultOps) +
4887 " default ones");
4888
4889 return InsertPt;
4890}
4891
4892Error GlobalISelEmitter::importDefaultOperandRenderers(
4893 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4894 DagInit *DefaultOps) const {
4895 for (const auto *DefaultOp : DefaultOps->getArgs()) {
4896 Optional<LLTCodeGen> OpTyOrNone = None;
4897
4898 // Look through ValueType operators.
4899 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
4900 if (const DefInit *DefaultDagOperator =
4901 dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
4902 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
4903 OpTyOrNone = MVTToLLT(getValueType(
4904 DefaultDagOperator->getDef()));
4905 DefaultOp = DefaultDagOp->getArg(0);
4906 }
4907 }
4908 }
4909
4910 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
4911 auto Def = DefaultDefOp->getDef();
4912 if (Def->getName() == "undef_tied_input") {
4913 unsigned TempRegID = M.allocateTempRegID();
4914 M.insertAction<MakeTempRegisterAction>(
4915 InsertPt, OpTyOrNone.getValue(), TempRegID);
4916 InsertPt = M.insertAction<BuildMIAction>(
4917 InsertPt, M.allocateOutputInsnID(),
4918 &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
4919 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
4920 InsertPt->get());
4921 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4922 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4923 } else {
4924 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def);
4925 }
4926 continue;
4927 }
4928
4929 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
4930 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
4931 continue;
4932 }
4933
4934 return failedImport("Could not add default op");
4935 }
4936
4937 return Error::success();
4938}
4939
4940Error GlobalISelEmitter::importImplicitDefRenderers(
4941 BuildMIAction &DstMIBuilder,
4942 const std::vector<Record *> &ImplicitDefs) const {
4943 if (!ImplicitDefs.empty())
4944 return failedImport("Pattern defines a physical register");
4945 return Error::success();
4946}
4947
4948Optional<const CodeGenRegisterClass *>
4949GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) {
4950 assert(Leaf && "Expected node?")(static_cast <bool> (Leaf && "Expected node?") ?
void (0) : __assert_fail ("Leaf && \"Expected node?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 4950, __extension__ __PRETTY_FUNCTION__))
;
4951 assert(Leaf->isLeaf() && "Expected leaf?")(static_cast <bool> (Leaf->isLeaf() && "Expected leaf?"
) ? void (0) : __assert_fail ("Leaf->isLeaf() && \"Expected leaf?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 4951, __extension__ __PRETTY_FUNCTION__))
;
4952 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue());
4953 if (!RCRec)
4954 return None;
4955 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec);
4956 if (!RC)
4957 return None;
4958 return RC;
4959}
4960
4961Optional<const CodeGenRegisterClass *>
4962GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) {
4963 if (!N)
4964 return None;
4965
4966 if (N->isLeaf())
4967 return getRegClassFromLeaf(N);
4968
4969 // We don't have a leaf node, so we have to try and infer something. Check
4970 // that we have an instruction that we an infer something from.
4971
4972 // Only handle things that produce a single type.
4973 if (N->getNumTypes() != 1)
4974 return None;
4975 Record *OpRec = N->getOperator();
4976
4977 // We only want instructions.
4978 if (!OpRec->isSubClassOf("Instruction"))
4979 return None;
4980
4981 // Don't want to try and infer things when there could potentially be more
4982 // than one candidate register class.
4983 auto &Inst = Target.getInstruction(OpRec);
4984 if (Inst.Operands.NumDefs > 1)
4985 return None;
4986
4987 // Handle any special-case instructions which we can safely infer register
4988 // classes from.
4989 StringRef InstName = Inst.TheDef->getName();
4990 bool IsRegSequence = InstName == "REG_SEQUENCE";
4991 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") {
4992 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It
4993 // has the desired register class as the first child.
4994 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1);
4995 if (!RCChild->isLeaf())
4996 return None;
4997 return getRegClassFromLeaf(RCChild);
4998 }
4999 if (InstName == "INSERT_SUBREG") {
5000 TreePatternNode *Child0 = N->getChild(0);
5001 assert(Child0->getNumTypes() == 1 && "Unexpected number of types!")(static_cast <bool> (Child0->getNumTypes() == 1 &&
"Unexpected number of types!") ? void (0) : __assert_fail ("Child0->getNumTypes() == 1 && \"Unexpected number of types!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5001, __extension__ __PRETTY_FUNCTION__))
;
5002 const TypeSetByHwMode &VTy = Child0->getExtType(0);
5003 return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2));
5004 }
5005 if (InstName == "EXTRACT_SUBREG") {
5006 assert(N->getNumTypes() == 1 && "Unexpected number of types!")(static_cast <bool> (N->getNumTypes() == 1 &&
"Unexpected number of types!") ? void (0) : __assert_fail ("N->getNumTypes() == 1 && \"Unexpected number of types!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5006, __extension__ __PRETTY_FUNCTION__))
;
5007 const TypeSetByHwMode &VTy = N->getExtType(0);
5008 return inferSuperRegisterClass(VTy, N->getChild(1));
5009 }
5010
5011 // Handle destination record types that we can safely infer a register class
5012 // from.
5013 const auto &DstIOperand = Inst.Operands[0];
5014 Record *DstIOpRec = DstIOperand.Rec;
5015 if (DstIOpRec->isSubClassOf("RegisterOperand")) {
5016 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
5017 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
5018 return &RC;
5019 }
5020
5021 if (DstIOpRec->isSubClassOf("RegisterClass")) {
5022 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
5023 return &RC;
5024 }
5025
5026 return None;
5027}
5028
5029Optional<const CodeGenRegisterClass *>
5030GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty,
5031 TreePatternNode *SubRegIdxNode) {
5032 assert(SubRegIdxNode && "Expected subregister index node!")(static_cast <bool> (SubRegIdxNode && "Expected subregister index node!"
) ? void (0) : __assert_fail ("SubRegIdxNode && \"Expected subregister index node!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5032, __extension__ __PRETTY_FUNCTION__))
;
5033 // We need a ValueTypeByHwMode for getSuperRegForSubReg.
5034 if (!Ty.isValueTypeByHwMode(false))
5035 return None;
5036 if (!SubRegIdxNode->isLeaf())
5037 return None;
5038 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
5039 if (!SubRegInit)
5040 return None;
5041 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
5042
5043 // Use the information we found above to find a minimal register class which
5044 // supports the subregister and type we want.
5045 auto RC =
5046 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx,
5047 /* MustBeAllocatable */ true);
5048 if (!RC)
5049 return None;
5050 return *RC;
5051}
5052
5053Optional<const CodeGenRegisterClass *>
5054GlobalISelEmitter::inferSuperRegisterClassForNode(
5055 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode,
5056 TreePatternNode *SubRegIdxNode) {
5057 assert(SuperRegNode && "Expected super register node!")(static_cast <bool> (SuperRegNode && "Expected super register node!"
) ? void (0) : __assert_fail ("SuperRegNode && \"Expected super register node!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5057, __extension__ __PRETTY_FUNCTION__))
;
5058 // Check if we already have a defined register class for the super register
5059 // node. If we do, then we should preserve that rather than inferring anything
5060 // from the subregister index node. We can assume that whoever wrote the
5061 // pattern in the first place made sure that the super register and
5062 // subregister are compatible.
5063 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass =
5064 inferRegClassFromPattern(SuperRegNode))
5065 return *SuperRegisterClass;
5066 return inferSuperRegisterClass(Ty, SubRegIdxNode);
5067}
5068
5069Optional<CodeGenSubRegIndex *>
5070GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) {
5071 if (!SubRegIdxNode->isLeaf())
5072 return None;
5073
5074 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
5075 if (!SubRegInit)
5076 return None;
5077 return CGRegs.getSubRegIdx(SubRegInit->getDef());
5078}
5079
5080Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
5081 // Keep track of the matchers and actions to emit.
5082 int Score = P.getPatternComplexity(CGP);
5083 RuleMatcher M(P.getSrcRecord()->getLoc());
5084 RuleMatcherScores[M.getRuleID()] = Score;
5085 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
5086 " => " +
5087 llvm::to_string(*P.getDstPattern()));
5088
5089 SmallVector<Record *, 4> Predicates;
5090 P.getPredicateRecords(Predicates);
5091 if (auto Error = importRulePredicates(M, Predicates))
5092 return std::move(Error);
5093
5094 // Next, analyze the pattern operators.
5095 TreePatternNode *Src = P.getSrcPattern();
5096 TreePatternNode *Dst = P.getDstPattern();
5097
5098 // If the root of either pattern isn't a simple operator, ignore it.
5099 if (auto Err = isTrivialOperatorNode(Dst))
5100 return failedImport("Dst pattern root isn't a trivial operator (" +
5101 toString(std::move(Err)) + ")");
5102 if (auto Err = isTrivialOperatorNode(Src))
5103 return failedImport("Src pattern root isn't a trivial operator (" +
5104 toString(std::move(Err)) + ")");
5105
5106 // The different predicates and matchers created during
5107 // addInstructionMatcher use the RuleMatcher M to set up their
5108 // instruction ID (InsnVarID) that are going to be used when
5109 // M is going to be emitted.
5110 // However, the code doing the emission still relies on the IDs
5111 // returned during that process by the RuleMatcher when issuing
5112 // the recordInsn opcodes.
5113 // Because of that:
5114 // 1. The order in which we created the predicates
5115 // and such must be the same as the order in which we emit them,
5116 // and
5117 // 2. We need to reset the generation of the IDs in M somewhere between
5118 // addInstructionMatcher and emit
5119 //
5120 // FIXME: Long term, we don't want to have to rely on this implicit
5121 // naming being the same. One possible solution would be to have
5122 // explicit operator for operation capture and reference those.
5123 // The plus side is that it would expose opportunities to share
5124 // the capture accross rules. The downside is that it would
5125 // introduce a dependency between predicates (captures must happen
5126 // before their first use.)
5127 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
5128 unsigned TempOpIdx = 0;
5129 auto InsnMatcherOrError =
5130 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
5131 if (auto Error = InsnMatcherOrError.takeError())
5132 return std::move(Error);
5133 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
5134
5135 if (Dst->isLeaf()) {
5136 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
5137 if (RCDef) {
5138 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
5139
5140 // We need to replace the def and all its uses with the specified
5141 // operand. However, we must also insert COPY's wherever needed.
5142 // For now, emit a copy and let the register allocator clean up.
5143 auto &DstI = Target.getInstruction(RK.getDef("COPY"));
5144 const auto &DstIOperand = DstI.Operands[0];
5145
5146 OperandMatcher &OM0 = InsnMatcher.getOperand(0);
5147 OM0.setSymbolicName(DstIOperand.Name);
5148 M.defineOperand(OM0.getSymbolicName(), OM0);
5149 OM0.addPredicate<RegisterBankOperandMatcher>(RC);
5150
5151 auto &DstMIBuilder =
5152 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
5153 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
5154 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
5155 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
5156
5157 // We're done with this pattern! It's eligible for GISel emission; return
5158 // it.
5159 ++NumPatternImported;
5160 return std::move(M);
5161 }
5162
5163 return failedImport("Dst pattern root isn't a known leaf");
5164 }
5165
5166 // Start with the defined operands (i.e., the results of the root operator).
5167 Record *DstOp = Dst->getOperator();
5168 if (!DstOp->isSubClassOf("Instruction"))
5169 return failedImport("Pattern operator isn't an instruction");
5170
5171 auto &DstI = Target.getInstruction(DstOp);
5172 StringRef DstIName = DstI.TheDef->getName();
5173
5174 if (DstI.Operands.NumDefs < Src->getExtTypes().size())
5175 return failedImport("Src pattern result has more defs than dst MI (" +
5176 to_string(Src->getExtTypes().size()) + " def(s) vs " +
5177 to_string(DstI.Operands.NumDefs) + " def(s))");
5178
5179 // The root of the match also has constraints on the register bank so that it
5180 // matches the result instruction.
5181 unsigned OpIdx = 0;
5182 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
5183 (void)VTy;
5184
5185 const auto &DstIOperand = DstI.Operands[OpIdx];
5186 Record *DstIOpRec = DstIOperand.Rec;
5187 if (DstIName == "COPY_TO_REGCLASS") {
5188 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
5189
5190 if (DstIOpRec == nullptr)
5191 return failedImport(
5192 "COPY_TO_REGCLASS operand #1 isn't a register class");
5193 } else if (DstIName == "REG_SEQUENCE") {
5194 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
5195 if (DstIOpRec == nullptr)
5196 return failedImport("REG_SEQUENCE operand #0 isn't a register class");
5197 } else if (DstIName == "EXTRACT_SUBREG") {
5198 auto InferredClass = inferRegClassFromPattern(Dst->getChild(0));
5199 if (!InferredClass)
5200 return failedImport("Could not infer class for EXTRACT_SUBREG operand #0");
5201
5202 // We can assume that a subregister is in the same bank as it's super
5203 // register.
5204 DstIOpRec = (*InferredClass)->getDef();
5205 } else if (DstIName == "INSERT_SUBREG") {
5206 auto MaybeSuperClass = inferSuperRegisterClassForNode(
5207 VTy, Dst->getChild(0), Dst->getChild(2));
5208 if (!MaybeSuperClass)
5209 return failedImport(
5210 "Cannot infer register class for INSERT_SUBREG operand #0");
5211 // Move to the next pattern here, because the register class we found
5212 // doesn't necessarily have a record associated with it. So, we can't
5213 // set DstIOpRec using this.
5214 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5215 OM.setSymbolicName(DstIOperand.Name);
5216 M.defineOperand(OM.getSymbolicName(), OM);
5217 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass);
5218 ++OpIdx;
5219 continue;
5220 } else if (DstIName == "SUBREG_TO_REG") {
5221 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2));
5222 if (!MaybeRegClass)
5223 return failedImport(
5224 "Cannot infer register class for SUBREG_TO_REG operand #0");
5225 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5226 OM.setSymbolicName(DstIOperand.Name);
5227 M.defineOperand(OM.getSymbolicName(), OM);
5228 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass);
5229 ++OpIdx;
5230 continue;
5231 } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
5232 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
5233 else if (!DstIOpRec->isSubClassOf("RegisterClass"))
5234 return failedImport("Dst MI def isn't a register class" +
5235 to_string(*Dst));
5236
5237 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5238 OM.setSymbolicName(DstIOperand.Name);
5239 M.defineOperand(OM.getSymbolicName(), OM);
5240 OM.addPredicate<RegisterBankOperandMatcher>(
5241 Target.getRegisterClass(DstIOpRec));
5242 ++OpIdx;
5243 }
5244
5245 auto DstMIBuilderOrError =
5246 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst);
5247 if (auto Error = DstMIBuilderOrError.takeError())
5248 return std::move(Error);
5249 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
5250
5251 // Render the implicit defs.
5252 // These are only added to the root of the result.
5253 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
5254 return std::move(Error);
5255
5256 DstMIBuilder.chooseInsnToMutate(M);
5257
5258 // Constrain the registers to classes. This is normally derived from the
5259 // emitted instruction but a few instructions require special handling.
5260 if (DstIName == "COPY_TO_REGCLASS") {
5261 // COPY_TO_REGCLASS does not provide operand constraints itself but the
5262 // result is constrained to the class given by the second child.
5263 Record *DstIOpRec =
5264 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
5265
5266 if (DstIOpRec == nullptr)
5267 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
5268
5269 M.addAction<ConstrainOperandToRegClassAction>(
5270 0, 0, Target.getRegisterClass(DstIOpRec));
5271
5272 // We're done with this pattern! It's eligible for GISel emission; return
5273 // it.
5274 ++NumPatternImported;
5275 return std::move(M);
5276 }
5277
5278 if (DstIName == "EXTRACT_SUBREG") {
5279 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
5280 if (!SuperClass)
5281 return failedImport(
5282 "Cannot infer register class from EXTRACT_SUBREG operand #0");
5283
5284 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
5285 if (!SubIdx)
5286 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
5287
5288 // It would be nice to leave this constraint implicit but we're required
5289 // to pick a register class so constrain the result to a register class
5290 // that can hold the correct MVT.
5291 //
5292 // FIXME: This may introduce an extra copy if the chosen class doesn't
5293 // actually contain the subregisters.
5294 assert(Src->getExtTypes().size() == 1 &&(static_cast <bool> (Src->getExtTypes().size() == 1 &&
"Expected Src of EXTRACT_SUBREG to have one result type") ? void
(0) : __assert_fail ("Src->getExtTypes().size() == 1 && \"Expected Src of EXTRACT_SUBREG to have one result type\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5295, __extension__ __PRETTY_FUNCTION__))
5295 "Expected Src of EXTRACT_SUBREG to have one result type")(static_cast <bool> (Src->getExtTypes().size() == 1 &&
"Expected Src of EXTRACT_SUBREG to have one result type") ? void
(0) : __assert_fail ("Src->getExtTypes().size() == 1 && \"Expected Src of EXTRACT_SUBREG to have one result type\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5295, __extension__ __PRETTY_FUNCTION__))
;
5296
5297 const auto SrcRCDstRCPair =
5298 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
5299 if (!SrcRCDstRCPair) {
5300 return failedImport("subreg index is incompatible "
5301 "with inferred reg class");
5302 }
5303
5304 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass")(static_cast <bool> (SrcRCDstRCPair->second &&
"Couldn't find a matching subclass") ? void (0) : __assert_fail
("SrcRCDstRCPair->second && \"Couldn't find a matching subclass\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5304, __extension__ __PRETTY_FUNCTION__))
;
5305 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
5306 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
5307
5308 // We're done with this pattern! It's eligible for GISel emission; return
5309 // it.
5310 ++NumPatternImported;
5311 return std::move(M);
5312 }
5313
5314 if (DstIName == "INSERT_SUBREG") {
5315 assert(Src->getExtTypes().size() == 1 &&(static_cast <bool> (Src->getExtTypes().size() == 1 &&
"Expected Src of INSERT_SUBREG to have one result type") ? void
(0) : __assert_fail ("Src->getExtTypes().size() == 1 && \"Expected Src of INSERT_SUBREG to have one result type\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5316, __extension__ __PRETTY_FUNCTION__))
5316 "Expected Src of INSERT_SUBREG to have one result type")(static_cast <bool> (Src->getExtTypes().size() == 1 &&
"Expected Src of INSERT_SUBREG to have one result type") ? void
(0) : __assert_fail ("Src->getExtTypes().size() == 1 && \"Expected Src of INSERT_SUBREG to have one result type\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5316, __extension__ __PRETTY_FUNCTION__))
;
5317 // We need to constrain the destination, a super regsister source, and a
5318 // subregister source.
5319 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
5320 if (!SubClass)
5321 return failedImport(
5322 "Cannot infer register class from INSERT_SUBREG operand #1");
5323 auto SuperClass = inferSuperRegisterClassForNode(
5324 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2));
5325 if (!SuperClass)
5326 return failedImport(
5327 "Cannot infer register class for INSERT_SUBREG operand #0");
5328 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5329 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass);
5330 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
5331 ++NumPatternImported;
5332 return std::move(M);
5333 }
5334
5335 if (DstIName == "SUBREG_TO_REG") {
5336 // We need to constrain the destination and subregister source.
5337 assert(Src->getExtTypes().size() == 1 &&(static_cast <bool> (Src->getExtTypes().size() == 1 &&
"Expected Src of SUBREG_TO_REG to have one result type") ? void
(0) : __assert_fail ("Src->getExtTypes().size() == 1 && \"Expected Src of SUBREG_TO_REG to have one result type\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5338, __extension__ __PRETTY_FUNCTION__))
5338 "Expected Src of SUBREG_TO_REG to have one result type")(static_cast <bool> (Src->getExtTypes().size() == 1 &&
"Expected Src of SUBREG_TO_REG to have one result type") ? void
(0) : __assert_fail ("Src->getExtTypes().size() == 1 && \"Expected Src of SUBREG_TO_REG to have one result type\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5338, __extension__ __PRETTY_FUNCTION__))
;
5339
5340 // Attempt to infer the subregister source from the first child. If it has
5341 // an explicitly given register class, we'll use that. Otherwise, we will
5342 // fail.
5343 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
5344 if (!SubClass)
5345 return failedImport(
5346 "Cannot infer register class from SUBREG_TO_REG child #1");
5347 // We don't have a child to look at that might have a super register node.
5348 auto SuperClass =
5349 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2));
5350 if (!SuperClass)
5351 return failedImport(
5352 "Cannot infer register class for SUBREG_TO_REG operand #0");
5353 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5354 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
5355 ++NumPatternImported;
5356 return std::move(M);
5357 }
5358
5359 if (DstIName == "REG_SEQUENCE") {
5360 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
5361
5362 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5363
5364 unsigned Num = Dst->getNumChildren();
5365 for (unsigned I = 1; I != Num; I += 2) {
5366 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
5367
5368 auto SubIdx = inferSubRegIndexForNode(SubRegChild);
5369 if (!SubIdx)
5370 return failedImport("REG_SEQUENCE child is not a subreg index");
5371
5372 const auto SrcRCDstRCPair =
5373 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
5374
5375 M.addAction<ConstrainOperandToRegClassAction>(0, I,
5376 *SrcRCDstRCPair->second);
5377 }
5378
5379 ++NumPatternImported;
5380 return std::move(M);
5381 }
5382
5383 M.addAction<ConstrainOperandsToDefinitionAction>(0);
5384
5385 // We're done with this pattern! It's eligible for GISel emission; return it.
5386 ++NumPatternImported;
5387 return std::move(M);
5388}
5389
5390// Emit imm predicate table and an enum to reference them with.
5391// The 'Predicate_' part of the name is redundant but eliminating it is more
5392// trouble than it's worth.
5393void GlobalISelEmitter::emitCxxPredicateFns(
5394 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
5395 StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs,
5396 StringRef AdditionalDeclarations,
5397 std::function<bool(const Record *R)> Filter) {
5398 std::vector<const Record *> MatchedRecords;
5399 const auto &Defs = RK.getAllDerivedDefinitions("PatFrags");
5400 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
5401 [&](Record *Record) {
5402 return !Record->getValueAsString(CodeFieldName).empty() &&
5403 Filter(Record);
5404 });
5405
5406 if (!MatchedRecords.empty()) {
5407 OS << "// PatFrag predicates.\n"
5408 << "enum {\n";
5409 std::string EnumeratorSeparator =
5410 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
5411 for (const auto *Record : MatchedRecords) {
5412 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
5413 << EnumeratorSeparator;
5414 EnumeratorSeparator = ",\n";
5415 }
5416 OS << "};\n";
5417 }
5418
5419 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
5420 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
5421 << ArgName << AdditionalArgs <<") const {\n"
5422 << AdditionalDeclarations;
5423 if (!AdditionalDeclarations.empty())
5424 OS << "\n";
5425 if (!MatchedRecords.empty())
5426 OS << " switch (PredicateID) {\n";
5427 for (const auto *Record : MatchedRecords) {
5428 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
5429 << Record->getName() << ": {\n"
5430 << " " << Record->getValueAsString(CodeFieldName) << "\n"
5431 << " llvm_unreachable(\"" << CodeFieldName
5432 << " should have returned\");\n"
5433 << " return false;\n"
5434 << " }\n";
5435 }
5436 if (!MatchedRecords.empty())
5437 OS << " }\n";
5438 OS << " llvm_unreachable(\"Unknown predicate\");\n"
5439 << " return false;\n"
5440 << "}\n";
5441}
5442
5443void GlobalISelEmitter::emitImmPredicateFns(
5444 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
5445 std::function<bool(const Record *R)> Filter) {
5446 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
5447 "Imm", "", "", Filter);
5448}
5449
5450void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
5451 return emitCxxPredicateFns(
5452 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
5453 ", const std::array<const MachineOperand *, 3> &Operands",
5454 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
5455 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
5456 " (void)MRI;",
5457 [](const Record *R) { return true; });
5458}
5459
5460template <class GroupT>
5461std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
5462 ArrayRef<Matcher *> Rules,
5463 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
5464
5465 std::vector<Matcher *> OptRules;
5466 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>();
5467 assert(CurrentGroup->empty() && "Newly created group isn't empty!")(static_cast <bool> (CurrentGroup->empty() &&
"Newly created group isn't empty!") ? void (0) : __assert_fail
("CurrentGroup->empty() && \"Newly created group isn't empty!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5467, __extension__ __PRETTY_FUNCTION__))
;
5468 unsigned NumGroups = 0;
5469
5470 auto ProcessCurrentGroup = [&]() {
5471 if (CurrentGroup->empty())
5472 // An empty group is good to be reused:
5473 return;
5474
5475 // If the group isn't large enough to provide any benefit, move all the
5476 // added rules out of it and make sure to re-create the group to properly
5477 // re-initialize it:
5478 if (CurrentGroup->size() < 2)
5479 append_range(OptRules, CurrentGroup->matchers());
5480 else {
5481 CurrentGroup->finalize();
5482 OptRules.push_back(CurrentGroup.get());
5483 MatcherStorage.emplace_back(std::move(CurrentGroup));
5484 ++NumGroups;
5485 }
5486 CurrentGroup = std::make_unique<GroupT>();
5487 };
5488 for (Matcher *Rule : Rules) {
5489 // Greedily add as many matchers as possible to the current group:
5490 if (CurrentGroup->addMatcher(*Rule))
5491 continue;
5492
5493 ProcessCurrentGroup();
5494 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized")(static_cast <bool> (CurrentGroup->empty() &&
"A group wasn't properly re-initialized") ? void (0) : __assert_fail
("CurrentGroup->empty() && \"A group wasn't properly re-initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5494, __extension__ __PRETTY_FUNCTION__))
;
5495
5496 // Try to add the pending matcher to a newly created empty group:
5497 if (!CurrentGroup->addMatcher(*Rule))
5498 // If we couldn't add the matcher to an empty group, that group type
5499 // doesn't support that kind of matchers at all, so just skip it:
5500 OptRules.push_back(Rule);
5501 }
5502 ProcessCurrentGroup();
5503
5504 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("gisel-emitter")) { dbgs() << "NumGroups: " << NumGroups
<< "\n"; } } while (false)
;
5505 assert(CurrentGroup->empty() && "The last group wasn't properly processed")(static_cast <bool> (CurrentGroup->empty() &&
"The last group wasn't properly processed") ? void (0) : __assert_fail
("CurrentGroup->empty() && \"The last group wasn't properly processed\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5505, __extension__ __PRETTY_FUNCTION__))
;
5506 return OptRules;
5507}
5508
5509MatchTable
5510GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
5511 bool Optimize, bool WithCoverage) {
5512 std::vector<Matcher *> InputRules;
5513 for (Matcher &Rule : Rules)
5514 InputRules.push_back(&Rule);
5515
5516 if (!Optimize)
5517 return MatchTable::buildTable(InputRules, WithCoverage);
5518
5519 unsigned CurrentOrdering = 0;
5520 StringMap<unsigned> OpcodeOrder;
5521 for (RuleMatcher &Rule : Rules) {
5522 const StringRef Opcode = Rule.getOpcode();
5523 assert(!Opcode.empty() && "Didn't expect an undefined opcode")(static_cast <bool> (!Opcode.empty() && "Didn't expect an undefined opcode"
) ? void (0) : __assert_fail ("!Opcode.empty() && \"Didn't expect an undefined opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5523, __extension__ __PRETTY_FUNCTION__))
;
5524 if (OpcodeOrder.count(Opcode) == 0)
5525 OpcodeOrder[Opcode] = CurrentOrdering++;
5526 }
5527
5528 llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A,
5529 const Matcher *B) {
5530 auto *L = static_cast<const RuleMatcher *>(A);
5531 auto *R = static_cast<const RuleMatcher *>(B);
5532 return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) <
5533 std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands());
5534 });
5535
5536 for (Matcher *Rule : InputRules)
5537 Rule->optimize();
5538
5539 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
5540 std::vector<Matcher *> OptRules =
5541 optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
5542
5543 for (Matcher *Rule : OptRules)
5544 Rule->optimize();
5545
5546 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
5547
5548 return MatchTable::buildTable(OptRules, WithCoverage);
5549}
5550
5551void GroupMatcher::optimize() {
5552 // Make sure we only sort by a specific predicate within a range of rules that
5553 // all have that predicate checked against a specific value (not a wildcard):
5554 auto F = Matchers.begin();
5555 auto T = F;
5556 auto E = Matchers.end();
5557 while (T != E) {
5558 while (T != E) {
5559 auto *R = static_cast<RuleMatcher *>(*T);
5560 if (!R->getFirstConditionAsRootType().get().isValid())
5561 break;
5562 ++T;
5563 }
5564 std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
5565 auto *L = static_cast<RuleMatcher *>(A);
5566 auto *R = static_cast<RuleMatcher *>(B);
5567 return L->getFirstConditionAsRootType() <
5568 R->getFirstConditionAsRootType();
5569 });
5570 if (T != E)
5571 F = ++T;
5572 }
5573 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
5574 .swap(Matchers);
5575 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
5576 .swap(Matchers);
5577}
5578
5579void GlobalISelEmitter::run(raw_ostream &OS) {
5580 if (!UseCoverageFile.empty()) {
5581 RuleCoverage = CodeGenCoverage();
5582 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
5583 if (!RuleCoverageBufOrErr) {
5584 PrintWarning(SMLoc(), "Missing rule coverage data");
5585 RuleCoverage = None;
5586 } else {
5587 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
5588 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
5589 RuleCoverage = None;
5590 }
5591 }
5592 }
5593
5594 // Track the run-time opcode values
5595 gatherOpcodeValues();
5596 // Track the run-time LLT ID values
5597 gatherTypeIDValues();
5598
5599 // Track the GINodeEquiv definitions.
5600 gatherNodeEquivs();
5601
5602 emitSourceFileHeader(("Global Instruction Selector for the " +
5603 Target.getName() + " target").str(), OS);
5604 std::vector<RuleMatcher> Rules;
5605 // Look through the SelectionDAG patterns we found, possibly emitting some.
5606 for (const PatternToMatch &Pat : CGP.ptms()) {
5607 ++NumPatternTotal;
5608
5609 auto MatcherOrErr = runOnPattern(Pat);
5610
5611 // The pattern analysis can fail, indicating an unsupported pattern.
5612 // Report that if we've been asked to do so.
5613 if (auto Err = MatcherOrErr.takeError()) {
5614 if (WarnOnSkippedPatterns) {
5615 PrintWarning(Pat.getSrcRecord()->getLoc(),
5616 "Skipped pattern: " + toString(std::move(Err)));
5617 } else {
5618 consumeError(std::move(Err));
5619 }
5620 ++NumPatternImportsSkipped;
5621 continue;
5622 }
5623
5624 if (RuleCoverage) {
5625 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
5626 ++NumPatternsTested;
5627 else
5628 PrintWarning(Pat.getSrcRecord()->getLoc(),
5629 "Pattern is not covered by a test");
5630 }
5631 Rules.push_back(std::move(MatcherOrErr.get()));
5632 }
5633
5634 // Comparison function to order records by name.
5635 auto orderByName = [](const Record *A, const Record *B) {
5636 return A->getName() < B->getName();
5637 };
5638
5639 std::vector<Record *> ComplexPredicates =
5640 RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
5641 llvm::sort(ComplexPredicates, orderByName);
5642
5643 std::vector<StringRef> CustomRendererFns;
5644 transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"),
5645 std::back_inserter(CustomRendererFns), [](const auto &Record) {
5646 return Record->getValueAsString("RendererFn");
5647 });
5648 // Sort and remove duplicates to get a list of unique renderer functions, in
5649 // case some were mentioned more than once.
5650 llvm::sort(CustomRendererFns);
5651 CustomRendererFns.erase(
5652 std::unique(CustomRendererFns.begin(), CustomRendererFns.end()),
5653 CustomRendererFns.end());
5654
5655 unsigned MaxTemporaries = 0;
5656 for (const auto &Rule : Rules)
5657 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
5658
5659 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
5660 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
5661 << ";\n"
5662 << "using PredicateBitset = "
5663 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
5664 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
5665
5666 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
5667 << " mutable MatcherState State;\n"
5668 << " typedef "
5669 "ComplexRendererFns("
5670 << Target.getName()
5671 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
5672
5673 << " typedef void(" << Target.getName()
5674 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
5675 "MachineInstr &, int) "
5676 "const;\n"
5677 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
5678 "CustomRendererFn> "
5679 "ISelInfo;\n";
5680 OS << " static " << Target.getName()
5681 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
5682 << " static " << Target.getName()
5683 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
5684 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
5685 "override;\n"
5686 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
5687 "const override;\n"
5688 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
5689 "&Imm) const override;\n"
5690 << " const int64_t *getMatchTable() const override;\n"
5691 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI"
5692 ", const std::array<const MachineOperand *, 3> &Operands) "
5693 "const override;\n"
5694 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
5695
5696 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
5697 << ", State(" << MaxTemporaries << "),\n"
5698 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
5699 << ", ComplexPredicateFns, CustomRenderers)\n"
5700 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
5701
5702 OS << "#ifdef GET_GLOBALISEL_IMPL\n";
5703 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
5704 OS);
5705
5706 // Separate subtarget features by how often they must be recomputed.
5707 SubtargetFeatureInfoMap ModuleFeatures;
5708 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
5709 std::inserter(ModuleFeatures, ModuleFeatures.end()),
5710 [](const SubtargetFeatureInfoMap::value_type &X) {
5711 return !X.second.mustRecomputePerFunction();
5712 });
5713 SubtargetFeatureInfoMap FunctionFeatures;
5714 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
5715 std::inserter(FunctionFeatures, FunctionFeatures.end()),
5716 [](const SubtargetFeatureInfoMap::value_type &X) {
5717 return X.second.mustRecomputePerFunction();
5718 });
5719
5720 SubtargetFeatureInfo::emitComputeAvailableFeatures(
5721 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
5722 ModuleFeatures, OS);
5723
5724
5725 OS << "void " << Target.getName() << "InstructionSelector"
5726 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n"
5727 " AvailableFunctionFeatures = computeAvailableFunctionFeatures("
5728 "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n"
5729 "}\n";
5730
5731 SubtargetFeatureInfo::emitComputeAvailableFeatures(
5732 Target.getName(), "InstructionSelector",
5733 "computeAvailableFunctionFeatures", FunctionFeatures, OS,
5734 "const MachineFunction *MF");
5735
5736 // Emit a table containing the LLT objects needed by the matcher and an enum
5737 // for the matcher to reference them with.
5738 std::vector<LLTCodeGen> TypeObjects;
5739 append_range(TypeObjects, KnownTypes);
5740 llvm::sort(TypeObjects);
5741 OS << "// LLT Objects.\n"
5742 << "enum {\n";
5743 for (const auto &TypeObject : TypeObjects) {
5744 OS << " ";
5745 TypeObject.emitCxxEnumValue(OS);
5746 OS << ",\n";
5747 }
5748 OS << "};\n";
5749 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
5750 << "const static LLT TypeObjects[] = {\n";
5751 for (const auto &TypeObject : TypeObjects) {
5752 OS << " ";
5753 TypeObject.emitCxxConstructorCall(OS);
5754 OS << ",\n";
5755 }
5756 OS << "};\n\n";
5757
5758 // Emit a table containing the PredicateBitsets objects needed by the matcher
5759 // and an enum for the matcher to reference them with.
5760 std::vector<std::vector<Record *>> FeatureBitsets;
5761 for (auto &Rule : Rules)
5762 FeatureBitsets.push_back(Rule.getRequiredFeatures());
5763 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
5764 const std::vector<Record *> &B) {
5765 if (A.size() < B.size())
5766 return true;
5767 if (A.size() > B.size())
5768 return false;
5769 for (auto Pair : zip(A, B)) {
5770 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
5771 return true;
5772 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
5773 return false;
5774 }
5775 return false;
5776 });
5777 FeatureBitsets.erase(
5778 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
5779 FeatureBitsets.end());
5780 OS << "// Feature bitsets.\n"
5781 << "enum {\n"
5782 << " GIFBS_Invalid,\n";
5783 for (const auto &FeatureBitset : FeatureBitsets) {
5784 if (FeatureBitset.empty())
5785 continue;
5786 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
5787 }
5788 OS << "};\n"
5789 << "const static PredicateBitset FeatureBitsets[] {\n"
5790 << " {}, // GIFBS_Invalid\n";
5791 for (const auto &FeatureBitset : FeatureBitsets) {
5792 if (FeatureBitset.empty())
5793 continue;
5794 OS << " {";
5795 for (const auto &Feature : FeatureBitset) {
5796 const auto &I = SubtargetFeatures.find(Feature);
5797 assert(I != SubtargetFeatures.end() && "Didn't import predicate?")(static_cast <bool> (I != SubtargetFeatures.end() &&
"Didn't import predicate?") ? void (0) : __assert_fail ("I != SubtargetFeatures.end() && \"Didn't import predicate?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5797, __extension__ __PRETTY_FUNCTION__))
;
5798 OS << I->second.getEnumBitName() << ", ";
5799 }
5800 OS << "},\n";
5801 }
5802 OS << "};\n\n";
5803
5804 // Emit complex predicate table and an enum to reference them with.
5805 OS << "// ComplexPattern predicates.\n"
5806 << "enum {\n"
5807 << " GICP_Invalid,\n";
5808 for (const auto &Record : ComplexPredicates)
5809 OS << " GICP_" << Record->getName() << ",\n";
5810 OS << "};\n"
5811 << "// See constructor for table contents\n\n";
5812
5813 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
5814 bool Unset;
5815 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
5816 !R->getValueAsBit("IsAPInt");
5817 });
5818 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
5819 bool Unset;
5820 return R->getValueAsBitOrUnset("IsAPFloat", Unset);
5821 });
5822 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
5823 return R->getValueAsBit("IsAPInt");
5824 });
5825 emitMIPredicateFns(OS);
5826 OS << "\n";
5827
5828 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
5829 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
5830 << " nullptr, // GICP_Invalid\n";
5831 for (const auto &Record : ComplexPredicates)
5832 OS << " &" << Target.getName()
5833 << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
5834 << ", // " << Record->getName() << "\n";
5835 OS << "};\n\n";
5836
5837 OS << "// Custom renderers.\n"
5838 << "enum {\n"
5839 << " GICR_Invalid,\n";
5840 for (const auto &Fn : CustomRendererFns)
5841 OS << " GICR_" << Fn << ",\n";
5842 OS << "};\n";
5843
5844 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
5845 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
5846 << " nullptr, // GICR_Invalid\n";
5847 for (const auto &Fn : CustomRendererFns)
5848 OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n";
5849 OS << "};\n\n";
5850
5851 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
5852 int ScoreA = RuleMatcherScores[A.getRuleID()];
5853 int ScoreB = RuleMatcherScores[B.getRuleID()];
5854 if (ScoreA > ScoreB)
5855 return true;
5856 if (ScoreB > ScoreA)
5857 return false;
5858 if (A.isHigherPriorityThan(B)) {
5859 assert(!B.isHigherPriorityThan(A) && "Cannot be more important "(static_cast <bool> (!B.isHigherPriorityThan(A) &&
"Cannot be more important " "and less important at " "the same time"
) ? void (0) : __assert_fail ("!B.isHigherPriorityThan(A) && \"Cannot be more important \" \"and less important at \" \"the same time\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5861, __extension__ __PRETTY_FUNCTION__))
5860 "and less important at "(static_cast <bool> (!B.isHigherPriorityThan(A) &&
"Cannot be more important " "and less important at " "the same time"
) ? void (0) : __assert_fail ("!B.isHigherPriorityThan(A) && \"Cannot be more important \" \"and less important at \" \"the same time\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5861, __extension__ __PRETTY_FUNCTION__))
5861 "the same time")(static_cast <bool> (!B.isHigherPriorityThan(A) &&
"Cannot be more important " "and less important at " "the same time"
) ? void (0) : __assert_fail ("!B.isHigherPriorityThan(A) && \"Cannot be more important \" \"and less important at \" \"the same time\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5861, __extension__ __PRETTY_FUNCTION__))
;
5862 return true;
5863 }
5864 return false;
5865 });
5866
5867 OS << "bool " << Target.getName()
5868 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
5869 "&CoverageInfo) const {\n"
5870 << " MachineFunction &MF = *I.getParent()->getParent();\n"
5871 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
5872 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
5873 << " NewMIVector OutMIs;\n"
5874 << " State.MIs.clear();\n"
5875 << " State.MIs.push_back(&I);\n\n"
5876 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
5877 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
5878 << ", CoverageInfo)) {\n"
5879 << " return true;\n"
5880 << " }\n\n"
5881 << " return false;\n"
5882 << "}\n\n";
5883
5884 const MatchTable Table =
5885 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
5886 OS << "const int64_t *" << Target.getName()
5887 << "InstructionSelector::getMatchTable() const {\n";
5888 Table.emitDeclaration(OS);
5889 OS << " return ";
5890 Table.emitUse(OS);
5891 OS << ";\n}\n";
5892 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
5893
5894 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
5895 << "PredicateBitset AvailableModuleFeatures;\n"
5896 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
5897 << "PredicateBitset getAvailableFeatures() const {\n"
5898 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
5899 << "}\n"
5900 << "PredicateBitset\n"
5901 << "computeAvailableModuleFeatures(const " << Target.getName()
5902 << "Subtarget *Subtarget) const;\n"
5903 << "PredicateBitset\n"
5904 << "computeAvailableFunctionFeatures(const " << Target.getName()
5905 << "Subtarget *Subtarget,\n"
5906 << " const MachineFunction *MF) const;\n"
5907 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n"
5908 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
5909
5910 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
5911 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
5912 << "AvailableFunctionFeatures()\n"
5913 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
5914}
5915
5916void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
5917 if (SubtargetFeatures.count(Predicate) == 0)
5918 SubtargetFeatures.emplace(
5919 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
5920}
5921
5922void RuleMatcher::optimize() {
5923 for (auto &Item : InsnVariableIDs) {
5924 InstructionMatcher &InsnMatcher = *Item.first;
5925 for (auto &OM : InsnMatcher.operands()) {
5926 // Complex Patterns are usually expensive and they relatively rarely fail
5927 // on their own: more often we end up throwing away all the work done by a
5928 // matching part of a complex pattern because some other part of the
5929 // enclosing pattern didn't match. All of this makes it beneficial to
5930 // delay complex patterns until the very end of the rule matching,
5931 // especially for targets having lots of complex patterns.
5932 for (auto &OP : OM->predicates())
5933 if (isa<ComplexPatternOperandMatcher>(OP))
5934 EpilogueMatchers.emplace_back(std::move(OP));
5935 OM->eraseNullPredicates();
5936 }
5937 InsnMatcher.optimize();
5938 }
5939 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
5940 const std::unique_ptr<PredicateMatcher> &R) {
5941 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
5942 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
5943 });
5944}
5945
5946bool RuleMatcher::hasFirstCondition() const {
5947 if (insnmatchers_empty())
5948 return false;
5949 InstructionMatcher &Matcher = insnmatchers_front();
5950 if (!Matcher.predicates_empty())
5951 return true;
5952 for (auto &OM : Matcher.operands())
5953 for (auto &OP : OM->predicates())
5954 if (!isa<InstructionOperandMatcher>(OP))
5955 return true;
5956 return false;
5957}
5958
5959const PredicateMatcher &RuleMatcher::getFirstCondition() const {
5960 assert(!insnmatchers_empty() &&(static_cast <bool> (!insnmatchers_empty() && "Trying to get a condition from an empty RuleMatcher"
) ? void (0) : __assert_fail ("!insnmatchers_empty() && \"Trying to get a condition from an empty RuleMatcher\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5961, __extension__ __PRETTY_FUNCTION__))
5961 "Trying to get a condition from an empty RuleMatcher")(static_cast <bool> (!insnmatchers_empty() && "Trying to get a condition from an empty RuleMatcher"
) ? void (0) : __assert_fail ("!insnmatchers_empty() && \"Trying to get a condition from an empty RuleMatcher\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5961, __extension__ __PRETTY_FUNCTION__))
;
5962
5963 InstructionMatcher &Matcher = insnmatchers_front();
5964 if (!Matcher.predicates_empty())
5965 return **Matcher.predicates_begin();
5966 // If there is no more predicate on the instruction itself, look at its
5967 // operands.
5968 for (auto &OM : Matcher.operands())
5969 for (auto &OP : OM->predicates())
5970 if (!isa<InstructionOperandMatcher>(OP))
5971 return *OP;
5972
5973 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "::llvm::llvm_unreachable_internal("Trying to get a condition from an InstructionMatcher with "
"no conditions", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5974)
5974 "no conditions")::llvm::llvm_unreachable_internal("Trying to get a condition from an InstructionMatcher with "
"no conditions", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5974)
;
5975}
5976
5977std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
5978 assert(!insnmatchers_empty() &&(static_cast <bool> (!insnmatchers_empty() && "Trying to pop a condition from an empty RuleMatcher"
) ? void (0) : __assert_fail ("!insnmatchers_empty() && \"Trying to pop a condition from an empty RuleMatcher\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5979, __extension__ __PRETTY_FUNCTION__))
5979 "Trying to pop a condition from an empty RuleMatcher")(static_cast <bool> (!insnmatchers_empty() && "Trying to pop a condition from an empty RuleMatcher"
) ? void (0) : __assert_fail ("!insnmatchers_empty() && \"Trying to pop a condition from an empty RuleMatcher\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5979, __extension__ __PRETTY_FUNCTION__))
;
5980
5981 InstructionMatcher &Matcher = insnmatchers_front();
5982 if (!Matcher.predicates_empty())
5983 return Matcher.predicates_pop_front();
5984 // If there is no more predicate on the instruction itself, look at its
5985 // operands.
5986 for (auto &OM : Matcher.operands())
5987 for (auto &OP : OM->predicates())
5988 if (!isa<InstructionOperandMatcher>(OP)) {
5989 std::unique_ptr<PredicateMatcher> Result = std::move(OP);
5990 OM->eraseNullPredicates();
5991 return Result;
5992 }
5993
5994 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "::llvm::llvm_unreachable_internal("Trying to pop a condition from an InstructionMatcher with "
"no conditions", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5995)
5995 "no conditions")::llvm::llvm_unreachable_internal("Trying to pop a condition from an InstructionMatcher with "
"no conditions", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 5995)
;
5996}
5997
5998bool GroupMatcher::candidateConditionMatches(
5999 const PredicateMatcher &Predicate) const {
6000
6001 if (empty()) {
6002 // Sharing predicates for nested instructions is not supported yet as we
6003 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
6004 // only work on the original root instruction (InsnVarID == 0):
6005 if (Predicate.getInsnVarID() != 0)
6006 return false;
6007 // ... otherwise an empty group can handle any predicate with no specific
6008 // requirements:
6009 return true;
6010 }
6011
6012 const Matcher &Representative = **Matchers.begin();
6013 const auto &RepresentativeCondition = Representative.getFirstCondition();
6014 // ... if not empty, the group can only accomodate matchers with the exact
6015 // same first condition:
6016 return Predicate.isIdentical(RepresentativeCondition);
6017}
6018
6019bool GroupMatcher::addMatcher(Matcher &Candidate) {
6020 if (!Candidate.hasFirstCondition())
6021 return false;
6022
6023 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
6024 if (!candidateConditionMatches(Predicate))
6025 return false;
6026
6027 Matchers.push_back(&Candidate);
6028 return true;
6029}
6030
6031void GroupMatcher::finalize() {
6032 assert(Conditions.empty() && "Already finalized?")(static_cast <bool> (Conditions.empty() && "Already finalized?"
) ? void (0) : __assert_fail ("Conditions.empty() && \"Already finalized?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6032, __extension__ __PRETTY_FUNCTION__))
;
6033 if (empty())
6034 return;
6035
6036 Matcher &FirstRule = **Matchers.begin();
6037 for (;;) {
6038 // All the checks are expected to succeed during the first iteration:
6039 for (const auto &Rule : Matchers)
6040 if (!Rule->hasFirstCondition())
6041 return;
6042 const auto &FirstCondition = FirstRule.getFirstCondition();
6043 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
6044 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
6045 return;
6046
6047 Conditions.push_back(FirstRule.popFirstCondition());
6048 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
6049 Matchers[I]->popFirstCondition();
6050 }
6051}
6052
6053void GroupMatcher::emit(MatchTable &Table) {
6054 unsigned LabelID = ~0U;
6055 if (!Conditions.empty()) {
6056 LabelID = Table.allocateLabelID();
6057 Table << MatchTable::Opcode("GIM_Try", +1)
6058 << MatchTable::Comment("On fail goto")
6059 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
6060 }
6061 for (auto &Condition : Conditions)
6062 Condition->emitPredicateOpcodes(
6063 Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
6064
6065 for (const auto &M : Matchers)
6066 M->emit(Table);
6067
6068 // Exit the group
6069 if (!Conditions.empty())
6070 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
6071 << MatchTable::Label(LabelID);
6072}
6073
6074bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
6075 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
6076}
6077
6078bool SwitchMatcher::candidateConditionMatches(
6079 const PredicateMatcher &Predicate) const {
6080
6081 if (empty()) {
6082 // Sharing predicates for nested instructions is not supported yet as we
6083 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
6084 // only work on the original root instruction (InsnVarID == 0):
6085 if (Predicate.getInsnVarID() != 0)
6086 return false;
6087 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
6088 // could fail as not all the types of conditions are supported:
6089 if (!isSupportedPredicateType(Predicate))
6090 return false;
6091 // ... or the condition might not have a proper implementation of
6092 // getValue() / isIdenticalDownToValue() yet:
6093 if (!Predicate.hasValue())
6094 return false;
6095 // ... otherwise an empty Switch can accomodate the condition with no
6096 // further requirements:
6097 return true;
6098 }
6099
6100 const Matcher &CaseRepresentative = **Matchers.begin();
6101 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
6102 // Switch-cases must share the same kind of condition and path to the value it
6103 // checks:
6104 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
6105 return false;
6106
6107 const auto Value = Predicate.getValue();
6108 // ... but be unique with respect to the actual value they check:
6109 return Values.count(Value) == 0;
6110}
6111
6112bool SwitchMatcher::addMatcher(Matcher &Candidate) {
6113 if (!Candidate.hasFirstCondition())
6114 return false;
6115
6116 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
6117 if (!candidateConditionMatches(Predicate))
6118 return false;
6119 const auto Value = Predicate.getValue();
6120 Values.insert(Value);
6121
6122 Matchers.push_back(&Candidate);
6123 return true;
6124}
6125
6126void SwitchMatcher::finalize() {
6127 assert(Condition == nullptr && "Already finalized")(static_cast <bool> (Condition == nullptr && "Already finalized"
) ? void (0) : __assert_fail ("Condition == nullptr && \"Already finalized\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6127, __extension__ __PRETTY_FUNCTION__))
;
6128 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher")(static_cast <bool> (Values.size() == Matchers.size() &&
"Broken SwitchMatcher") ? void (0) : __assert_fail ("Values.size() == Matchers.size() && \"Broken SwitchMatcher\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6128, __extension__ __PRETTY_FUNCTION__))
;
6129 if (empty())
6130 return;
6131
6132 llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) {
6133 return L->getFirstCondition().getValue() <
6134 R->getFirstCondition().getValue();
6135 });
6136 Condition = Matchers[0]->popFirstCondition();
6137 for (unsigned I = 1, E = Values.size(); I < E; ++I)
6138 Matchers[I]->popFirstCondition();
6139}
6140
6141void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
6142 MatchTable &Table) {
6143 assert(isSupportedPredicateType(P) && "Predicate type is not supported")(static_cast <bool> (isSupportedPredicateType(P) &&
"Predicate type is not supported") ? void (0) : __assert_fail
("isSupportedPredicateType(P) && \"Predicate type is not supported\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6143, __extension__ __PRETTY_FUNCTION__))
;
6144
6145 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
6146 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
6147 << MatchTable::IntValue(Condition->getInsnVarID());
6148 return;
6149 }
6150 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
6151 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
6152 << MatchTable::IntValue(Condition->getInsnVarID())
6153 << MatchTable::Comment("Op")
6154 << MatchTable::IntValue(Condition->getOpIdx());
6155 return;
6156 }
6157
6158 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "::llvm::llvm_unreachable_internal("emitPredicateSpecificOpcodes is broken: can not handle a "
"predicate type that is claimed to be supported", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6159)
6159 "predicate type that is claimed to be supported")::llvm::llvm_unreachable_internal("emitPredicateSpecificOpcodes is broken: can not handle a "
"predicate type that is claimed to be supported", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6159)
;
6160}
6161
6162void SwitchMatcher::emit(MatchTable &Table) {
6163 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher")(static_cast <bool> (Values.size() == Matchers.size() &&
"Broken SwitchMatcher") ? void (0) : __assert_fail ("Values.size() == Matchers.size() && \"Broken SwitchMatcher\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6163, __extension__ __PRETTY_FUNCTION__))
;
6164 if (empty())
6165 return;
6166 assert(Condition != nullptr &&(static_cast <bool> (Condition != nullptr && "Broken SwitchMatcher, hasn't been finalized?"
) ? void (0) : __assert_fail ("Condition != nullptr && \"Broken SwitchMatcher, hasn't been finalized?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6167, __extension__ __PRETTY_FUNCTION__))
6167 "Broken SwitchMatcher, hasn't been finalized?")(static_cast <bool> (Condition != nullptr && "Broken SwitchMatcher, hasn't been finalized?"
) ? void (0) : __assert_fail ("Condition != nullptr && \"Broken SwitchMatcher, hasn't been finalized?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/GlobalISelEmitter.cpp"
, 6167, __extension__ __PRETTY_FUNCTION__))
;
6168
6169 std::vector<unsigned> LabelIDs(Values.size());
6170 std::generate(LabelIDs.begin(), LabelIDs.end(),
6171 [&Table]() { return Table.allocateLabelID(); });
6172 const unsigned Default = Table.allocateLabelID();
6173
6174 const int64_t LowerBound = Values.begin()->getRawValue();
6175 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
6176
6177 emitPredicateSpecificOpcodes(*Condition, Table);
6178
6179 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
6180 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
6181 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
6182
6183 int64_t J = LowerBound;
6184 auto VI = Values.begin();
6185 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
6186 auto V = *VI++;
6187 while (J++ < V.getRawValue())
6188 Table << MatchTable::IntValue(0);
6189 V.turnIntoComment();
6190 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
6191 }
6192 Table << MatchTable::LineBreak;
6193
6194 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
6195 Table << MatchTable::Label(LabelIDs[I]);
6196 Matchers[I]->emit(Table);
6197 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
6198 }
6199 Table << MatchTable::Label(Default);
6200}
6201
6202unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
6203
6204} // end anonymous namespace
6205
6206//===----------------------------------------------------------------------===//
6207
6208namespace llvm {
6209void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
6210 GlobalISelEmitter(RK).run(OS);
6211}
6212} // End llvm namespace

/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h

1//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the CodeGenDAGPatterns class, which is used to read and
10// represent the patterns present in a .td file for instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
15#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16
17#include "CodeGenIntrinsics.h"
18#include "CodeGenTarget.h"
19#include "SDNodeProperties.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/StringSet.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/MathExtras.h"
26#include <algorithm>
27#include <array>
28#include <functional>
29#include <map>
30#include <numeric>
31#include <set>
32#include <vector>
33
34namespace llvm {
35
36class Record;
37class Init;
38class ListInit;
39class DagInit;
40class SDNodeInfo;
41class TreePattern;
42class TreePatternNode;
43class CodeGenDAGPatterns;
44
45/// Shared pointer for TreePatternNode.
46using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
47
48/// This represents a set of MVTs. Since the underlying type for the MVT
49/// is uint8_t, there are at most 256 values. To reduce the number of memory
50/// allocations and deallocations, represent the set as a sequence of bits.
51/// To reduce the allocations even further, make MachineValueTypeSet own
52/// the storage and use std::array as the bit container.
53struct MachineValueTypeSet {
54 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
55 uint8_t>::value,
56 "Change uint8_t here to the SimpleValueType's type");
57 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
58 using WordType = uint64_t;
59 static unsigned constexpr WordWidth = CHAR_BIT8*sizeof(WordType);
60 static unsigned constexpr NumWords = Capacity/WordWidth;
61 static_assert(NumWords*WordWidth == Capacity,
62 "Capacity should be a multiple of WordWidth");
63
64 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
65 MachineValueTypeSet() {
66 clear();
67 }
68
69 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
70 unsigned size() const {
71 unsigned Count = 0;
72 for (WordType W : Words)
73 Count += countPopulation(W);
74 return Count;
75 }
76 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
77 void clear() {
78 std::memset(Words.data(), 0, NumWords*sizeof(WordType));
79 }
80 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
81 bool empty() const {
82 for (WordType W : Words)
83 if (W != 0)
84 return false;
85 return true;
86 }
87 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
88 unsigned count(MVT T) const {
89 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
90 }
91 std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
92 bool V = count(T.SimpleTy);
93 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
94 return {*this, V};
95 }
96 MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
97 for (unsigned i = 0; i != NumWords; ++i)
98 Words[i] |= S.Words[i];
99 return *this;
100 }
101 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
102 void erase(MVT T) {
103 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
104 }
105
106 struct const_iterator {
107 // Some implementations of the C++ library require these traits to be
108 // defined.
109 using iterator_category = std::forward_iterator_tag;
110 using value_type = MVT;
111 using difference_type = ptrdiff_t;
112 using pointer = const MVT*;
113 using reference = const MVT&;
114
115 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
116 MVT operator*() const {
117 assert(Pos != Capacity)(static_cast <bool> (Pos != Capacity) ? void (0) : __assert_fail
("Pos != Capacity", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 117, __extension__ __PRETTY_FUNCTION__))
;
118 return MVT::SimpleValueType(Pos);
119 }
120 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
121 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
122 Pos = End ? Capacity : find_from_pos(0);
123 }
124 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
125 const_iterator &operator++() {
126 assert(Pos != Capacity)(static_cast <bool> (Pos != Capacity) ? void (0) : __assert_fail
("Pos != Capacity", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 126, __extension__ __PRETTY_FUNCTION__))
;
127 Pos = find_from_pos(Pos+1);
128 return *this;
129 }
130
131 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
132 bool operator==(const const_iterator &It) const {
133 return Set == It.Set && Pos == It.Pos;
134 }
135 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
136 bool operator!=(const const_iterator &It) const {
137 return !operator==(It);
138 }
139
140 private:
141 unsigned find_from_pos(unsigned P) const {
142 unsigned SkipWords = P / WordWidth;
143 unsigned SkipBits = P % WordWidth;
144 unsigned Count = SkipWords * WordWidth;
145
146 // If P is in the middle of a word, process it manually here, because
147 // the trailing bits need to be masked off to use findFirstSet.
148 if (SkipBits != 0) {
149 WordType W = Set->Words[SkipWords];
150 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
151 if (W != 0)
152 return Count + findFirstSet(W);
153 Count += WordWidth;
154 SkipWords++;
155 }
156
157 for (unsigned i = SkipWords; i != NumWords; ++i) {
158 WordType W = Set->Words[i];
159 if (W != 0)
160 return Count + findFirstSet(W);
161 Count += WordWidth;
162 }
163 return Capacity;
164 }
165
166 const MachineValueTypeSet *Set;
167 unsigned Pos;
168 };
169
170 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
171 const_iterator begin() const { return const_iterator(this, false); }
172 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
173 const_iterator end() const { return const_iterator(this, true); }
174
175 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
176 bool operator==(const MachineValueTypeSet &S) const {
177 return Words == S.Words;
178 }
179 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
180 bool operator!=(const MachineValueTypeSet &S) const {
181 return !operator==(S);
182 }
183
184private:
185 friend struct const_iterator;
186 std::array<WordType,NumWords> Words;
187};
188
189struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
190 using SetType = MachineValueTypeSet;
191 SmallVector<unsigned, 16> AddrSpaces;
192
193 TypeSetByHwMode() = default;
194 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
195 TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
196 TypeSetByHwMode(MVT::SimpleValueType VT)
197 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
198 TypeSetByHwMode(ValueTypeByHwMode VT)
199 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
200 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
201
202 SetType &getOrCreate(unsigned Mode) {
203 return Map[Mode];
204 }
205
206 bool isValueTypeByHwMode(bool AllowEmpty) const;
207 ValueTypeByHwMode getValueTypeByHwMode() const;
208
209 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
210 bool isMachineValueType() const {
211 return isDefaultOnly() && Map.begin()->second.size() == 1;
212 }
213
214 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
215 MVT getMachineValueType() const {
216 assert(isMachineValueType())(static_cast <bool> (isMachineValueType()) ? void (0) :
__assert_fail ("isMachineValueType()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 216, __extension__ __PRETTY_FUNCTION__))
;
217 return *Map.begin()->second.begin();
218 }
219
220 bool isPossible() const;
221
222 LLVM_ATTRIBUTE_ALWAYS_INLINEinline __attribute__((always_inline))
223 bool isDefaultOnly() const {
224 return Map.size() == 1 && Map.begin()->first == DefaultMode;
225 }
226
227 bool isPointer() const {
228 return getValueTypeByHwMode().isPointer();
229 }
230
231 unsigned getPtrAddrSpace() const {
232 assert(isPointer())(static_cast <bool> (isPointer()) ? void (0) : __assert_fail
("isPointer()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 232, __extension__ __PRETTY_FUNCTION__))
;
233 return getValueTypeByHwMode().PtrAddrSpace;
234 }
235
236 bool insert(const ValueTypeByHwMode &VVT);
237 bool constrain(const TypeSetByHwMode &VTS);
238 template <typename Predicate> bool constrain(Predicate P);
239 template <typename Predicate>
240 bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
241
242 void writeToStream(raw_ostream &OS) const;
243 static void writeToStream(const SetType &S, raw_ostream &OS);
244
245 bool operator==(const TypeSetByHwMode &VTS) const;
246 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
247
248 void dump() const;
249 bool validate() const;
250
251private:
252 unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
253 /// Intersect two sets. Return true if anything has changed.
254 bool intersect(SetType &Out, const SetType &In);
255};
256
257raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
258
259struct TypeInfer {
260 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
261
262 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
263 return VTS.isValueTypeByHwMode(AllowEmpty);
264 }
265 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
266 bool AllowEmpty) const {
267 assert(VTS.isValueTypeByHwMode(AllowEmpty))(static_cast <bool> (VTS.isValueTypeByHwMode(AllowEmpty
)) ? void (0) : __assert_fail ("VTS.isValueTypeByHwMode(AllowEmpty)"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 267, __extension__ __PRETTY_FUNCTION__))
;
268 return VTS.getValueTypeByHwMode();
269 }
270
271 /// The protocol in the following functions (Merge*, force*, Enforce*,
272 /// expand*) is to return "true" if a change has been made, "false"
273 /// otherwise.
274
275 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
276 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
277 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
278 }
279 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
280 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
281 }
282
283 /// Reduce the set \p Out to have at most one element for each mode.
284 bool forceArbitrary(TypeSetByHwMode &Out);
285
286 /// The following four functions ensure that upon return the set \p Out
287 /// will only contain types of the specified kind: integer, floating-point,
288 /// scalar, or vector.
289 /// If \p Out is empty, all legal types of the specified kind will be added
290 /// to it. Otherwise, all types that are not of the specified kind will be
291 /// removed from \p Out.
292 bool EnforceInteger(TypeSetByHwMode &Out);
293 bool EnforceFloatingPoint(TypeSetByHwMode &Out);
294 bool EnforceScalar(TypeSetByHwMode &Out);
295 bool EnforceVector(TypeSetByHwMode &Out);
296
297 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
298 /// unchanged.
299 bool EnforceAny(TypeSetByHwMode &Out);
300 /// Make sure that for each type in \p Small, there exists a larger type
301 /// in \p Big.
302 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
303 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
304 /// for each type U in \p Elem, U is a scalar type.
305 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
306 /// (vector) type T in \p Vec, such that U is the element type of T.
307 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
308 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
309 const ValueTypeByHwMode &VVT);
310 /// Ensure that for each type T in \p Sub, T is a vector type, and there
311 /// exists a type U in \p Vec such that U is a vector type with the same
312 /// element type as T and at least as many elements as T.
313 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
314 TypeSetByHwMode &Sub);
315 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
316 /// 2. Ensure that for each vector type T in \p V, there exists a vector
317 /// type U in \p W, such that T and U have the same number of elements.
318 /// 3. Ensure that for each vector type U in \p W, there exists a vector
319 /// type T in \p V, such that T and U have the same number of elements
320 /// (reverse of 2).
321 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
322 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
323 /// such that T and U have equal size in bits.
324 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
325 /// such that T and U have equal size in bits (reverse of 1).
326 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
327
328 /// For each overloaded type (i.e. of form *Any), replace it with the
329 /// corresponding subset of legal, specific types.
330 void expandOverloads(TypeSetByHwMode &VTS);
331 void expandOverloads(TypeSetByHwMode::SetType &Out,
332 const TypeSetByHwMode::SetType &Legal);
333
334 struct ValidateOnExit {
335 ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
336 #ifndef NDEBUG
337 ~ValidateOnExit();
338 #else
339 ~ValidateOnExit() {} // Empty destructor with NDEBUG.
340 #endif
341 TypeInfer &Infer;
342 TypeSetByHwMode &VTS;
343 };
344
345 struct SuppressValidation {
346 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
347 Infer.Validate = false;
348 }
349 ~SuppressValidation() {
350 Infer.Validate = SavedValidate;
351 }
352 TypeInfer &Infer;
353 bool SavedValidate;
354 };
355
356 TreePattern &TP;
357 unsigned ForceMode; // Mode to use when set.
358 bool CodeGen = false; // Set during generation of matcher code.
359 bool Validate = true; // Indicate whether to validate types.
360
361private:
362 const TypeSetByHwMode &getLegalTypes();
363
364 /// Cached legal types (in default mode).
365 bool LegalTypesCached = false;
366 TypeSetByHwMode LegalCache;
367};
368
369/// Set type used to track multiply used variables in patterns
370typedef StringSet<> MultipleUseVarSet;
371
372/// SDTypeConstraint - This is a discriminated union of constraints,
373/// corresponding to the SDTypeConstraint tablegen class in Target.td.
374struct SDTypeConstraint {
375 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
376
377 unsigned OperandNo; // The operand # this constraint applies to.
378 enum {
379 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
380 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
381 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
382 } ConstraintType;
383
384 union { // The discriminated union.
385 struct {
386 unsigned OtherOperandNum;
387 } SDTCisSameAs_Info;
388 struct {
389 unsigned OtherOperandNum;
390 } SDTCisVTSmallerThanOp_Info;
391 struct {
392 unsigned BigOperandNum;
393 } SDTCisOpSmallerThanOp_Info;
394 struct {
395 unsigned OtherOperandNum;
396 } SDTCisEltOfVec_Info;
397 struct {
398 unsigned OtherOperandNum;
399 } SDTCisSubVecOfVec_Info;
400 struct {
401 unsigned OtherOperandNum;
402 } SDTCisSameNumEltsAs_Info;
403 struct {
404 unsigned OtherOperandNum;
405 } SDTCisSameSizeAs_Info;
406 } x;
407
408 // The VT for SDTCisVT and SDTCVecEltisVT.
409 // Must not be in the union because it has a non-trivial destructor.
410 ValueTypeByHwMode VVT;
411
412 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
413 /// constraint to the nodes operands. This returns true if it makes a
414 /// change, false otherwise. If a type contradiction is found, an error
415 /// is flagged.
416 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
417 TreePattern &TP) const;
418};
419
420/// ScopedName - A name of a node associated with a "scope" that indicates
421/// the context (e.g. instance of Pattern or PatFrag) in which the name was
422/// used. This enables substitution of pattern fragments while keeping track
423/// of what name(s) were originally given to various nodes in the tree.
424class ScopedName {
425 unsigned Scope;
426 std::string Identifier;
427public:
428 ScopedName(unsigned Scope, StringRef Identifier)
429 : Scope(Scope), Identifier(std::string(Identifier)) {
430 assert(Scope != 0 &&(static_cast <bool> (Scope != 0 && "Scope == 0 is used to indicate predicates without arguments"
) ? void (0) : __assert_fail ("Scope != 0 && \"Scope == 0 is used to indicate predicates without arguments\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 431, __extension__ __PRETTY_FUNCTION__))
431 "Scope == 0 is used to indicate predicates without arguments")(static_cast <bool> (Scope != 0 && "Scope == 0 is used to indicate predicates without arguments"
) ? void (0) : __assert_fail ("Scope != 0 && \"Scope == 0 is used to indicate predicates without arguments\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 431, __extension__ __PRETTY_FUNCTION__))
;
432 }
433
434 unsigned getScope() const { return Scope; }
435 const std::string &getIdentifier() const { return Identifier; }
436
437 bool operator==(const ScopedName &o) const;
438 bool operator!=(const ScopedName &o) const;
439};
440
441/// SDNodeInfo - One of these records is created for each SDNode instance in
442/// the target .td file. This represents the various dag nodes we will be
443/// processing.
444class SDNodeInfo {
445 Record *Def;
446 StringRef EnumName;
447 StringRef SDClassName;
448 unsigned Properties;
449 unsigned NumResults;
450 int NumOperands;
451 std::vector<SDTypeConstraint> TypeConstraints;
452public:
453 // Parse the specified record.
454 SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
455
456 unsigned getNumResults() const { return NumResults; }
457
458 /// getNumOperands - This is the number of operands required or -1 if
459 /// variadic.
460 int getNumOperands() const { return NumOperands; }
461 Record *getRecord() const { return Def; }
462 StringRef getEnumName() const { return EnumName; }
463 StringRef getSDClassName() const { return SDClassName; }
464
465 const std::vector<SDTypeConstraint> &getTypeConstraints() const {
466 return TypeConstraints;
467 }
468
469 /// getKnownType - If the type constraints on this node imply a fixed type
470 /// (e.g. all stores return void, etc), then return it as an
471 /// MVT::SimpleValueType. Otherwise, return MVT::Other.
472 MVT::SimpleValueType getKnownType(unsigned ResNo) const;
473
474 /// hasProperty - Return true if this node has the specified property.
475 ///
476 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
477
478 /// ApplyTypeConstraints - Given a node in a pattern, apply the type
479 /// constraints for this node to the operands of the node. This returns
480 /// true if it makes a change, false otherwise. If a type contradiction is
481 /// found, an error is flagged.
482 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
483};
484
485/// TreePredicateFn - This is an abstraction that represents the predicates on
486/// a PatFrag node. This is a simple one-word wrapper around a pointer to
487/// provide nice accessors.
488class TreePredicateFn {
489 /// PatFragRec - This is the TreePattern for the PatFrag that we
490 /// originally came from.
491 TreePattern *PatFragRec;
492public:
493 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
494 TreePredicateFn(TreePattern *N);
495
496
497 TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
498
499 /// isAlwaysTrue - Return true if this is a noop predicate.
500 bool isAlwaysTrue() const;
501
502 bool isImmediatePattern() const { return hasImmCode(); }
503
504 /// getImmediatePredicateCode - Return the code that evaluates this pattern if
505 /// this is an immediate predicate. It is an error to call this on a
506 /// non-immediate pattern.
507 std::string getImmediatePredicateCode() const {
508 std::string Result = getImmCode();
509 assert(!Result.empty() && "Isn't an immediate pattern!")(static_cast <bool> (!Result.empty() && "Isn't an immediate pattern!"
) ? void (0) : __assert_fail ("!Result.empty() && \"Isn't an immediate pattern!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 509, __extension__ __PRETTY_FUNCTION__))
;
510 return Result;
511 }
512
513 bool operator==(const TreePredicateFn &RHS) const {
514 return PatFragRec == RHS.PatFragRec;
515 }
516
517 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
518
519 /// Return the name to use in the generated code to reference this, this is
520 /// "Predicate_foo" if from a pattern fragment "foo".
521 std::string getFnName() const;
522
523 /// getCodeToRunOnSDNode - Return the code for the function body that
524 /// evaluates this predicate. The argument is expected to be in "Node",
525 /// not N. This handles casting and conversion to a concrete node type as
526 /// appropriate.
527 std::string getCodeToRunOnSDNode() const;
528
529 /// Get the data type of the argument to getImmediatePredicateCode().
530 StringRef getImmType() const;
531
532 /// Get a string that describes the type returned by getImmType() but is
533 /// usable as part of an identifier.
534 StringRef getImmTypeIdentifier() const;
535
536 // Predicate code uses the PatFrag's captured operands.
537 bool usesOperands() const;
538
539 // Is the desired predefined predicate for a load?
540 bool isLoad() const;
541 // Is the desired predefined predicate for a store?
542 bool isStore() const;
543 // Is the desired predefined predicate for an atomic?
544 bool isAtomic() const;
545
546 /// Is this predicate the predefined unindexed load predicate?
547 /// Is this predicate the predefined unindexed store predicate?
548 bool isUnindexed() const;
549 /// Is this predicate the predefined non-extending load predicate?
550 bool isNonExtLoad() const;
551 /// Is this predicate the predefined any-extend load predicate?
552 bool isAnyExtLoad() const;
553 /// Is this predicate the predefined sign-extend load predicate?
554 bool isSignExtLoad() const;
555 /// Is this predicate the predefined zero-extend load predicate?
556 bool isZeroExtLoad() const;
557 /// Is this predicate the predefined non-truncating store predicate?
558 bool isNonTruncStore() const;
559 /// Is this predicate the predefined truncating store predicate?
560 bool isTruncStore() const;
561
562 /// Is this predicate the predefined monotonic atomic predicate?
563 bool isAtomicOrderingMonotonic() const;
564 /// Is this predicate the predefined acquire atomic predicate?
565 bool isAtomicOrderingAcquire() const;
566 /// Is this predicate the predefined release atomic predicate?
567 bool isAtomicOrderingRelease() const;
568 /// Is this predicate the predefined acquire-release atomic predicate?
569 bool isAtomicOrderingAcquireRelease() const;
570 /// Is this predicate the predefined sequentially consistent atomic predicate?
571 bool isAtomicOrderingSequentiallyConsistent() const;
572
573 /// Is this predicate the predefined acquire-or-stronger atomic predicate?
574 bool isAtomicOrderingAcquireOrStronger() const;
575 /// Is this predicate the predefined weaker-than-acquire atomic predicate?
576 bool isAtomicOrderingWeakerThanAcquire() const;
577
578 /// Is this predicate the predefined release-or-stronger atomic predicate?
579 bool isAtomicOrderingReleaseOrStronger() const;
580 /// Is this predicate the predefined weaker-than-release atomic predicate?
581 bool isAtomicOrderingWeakerThanRelease() const;
582
583 /// If non-null, indicates that this predicate is a predefined memory VT
584 /// predicate for a load/store and returns the ValueType record for the memory VT.
585 Record *getMemoryVT() const;
586 /// If non-null, indicates that this predicate is a predefined memory VT
587 /// predicate (checking only the scalar type) for load/store and returns the
588 /// ValueType record for the memory VT.
589 Record *getScalarMemoryVT() const;
590
591 ListInit *getAddressSpaces() const;
592 int64_t getMinAlignment() const;
593
594 // If true, indicates that GlobalISel-based C++ code was supplied.
595 bool hasGISelPredicateCode() const;
596 std::string getGISelPredicateCode() const;
597
598private:
599 bool hasPredCode() const;
600 bool hasImmCode() const;
601 std::string getPredCode() const;
602 std::string getImmCode() const;
603 bool immCodeUsesAPInt() const;
604 bool immCodeUsesAPFloat() const;
605
606 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
607};
608
609struct TreePredicateCall {
610 TreePredicateFn Fn;
611
612 // Scope -- unique identifier for retrieving named arguments. 0 is used when
613 // the predicate does not use named arguments.
614 unsigned Scope;
615
616 TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
617 : Fn(Fn), Scope(Scope) {}
618
619 bool operator==(const TreePredicateCall &o) const {
620 return Fn == o.Fn && Scope == o.Scope;
621 }
622 bool operator!=(const TreePredicateCall &o) const {
623 return !(*this == o);
624 }
625};
626
627class TreePatternNode {
628 /// The type of each node result. Before and during type inference, each
629 /// result may be a set of possible types. After (successful) type inference,
630 /// each is a single concrete type.
631 std::vector<TypeSetByHwMode> Types;
632
633 /// The index of each result in results of the pattern.
634 std::vector<unsigned> ResultPerm;
635
636 /// Operator - The Record for the operator if this is an interior node (not
637 /// a leaf).
638 Record *Operator;
639
640 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
641 ///
642 Init *Val;
643
644 /// Name - The name given to this node with the :$foo notation.
645 ///
646 std::string Name;
647
648 std::vector<ScopedName> NamesAsPredicateArg;
649
650 /// PredicateCalls - The predicate functions to execute on this node to check
651 /// for a match. If this list is empty, no predicate is involved.
652 std::vector<TreePredicateCall> PredicateCalls;
653
654 /// TransformFn - The transformation function to execute on this node before
655 /// it can be substituted into the resulting instruction on a pattern match.
656 Record *TransformFn;
657
658 std::vector<TreePatternNodePtr> Children;
659
660public:
661 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
662 unsigned NumResults)
663 : Operator(Op), Val(nullptr), TransformFn(nullptr),
664 Children(std::move(Ch)) {
665 Types.resize(NumResults);
666 ResultPerm.resize(NumResults);
667 std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
668 }
669 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
670 : Operator(nullptr), Val(val), TransformFn(nullptr) {
671 Types.resize(NumResults);
672 ResultPerm.resize(NumResults);
673 std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
674 }
675
676 bool hasName() const { return !Name.empty(); }
677 const std::string &getName() const { return Name; }
678 void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
679
680 const std::vector<ScopedName> &getNamesAsPredicateArg() const {
681 return NamesAsPredicateArg;
682 }
683 void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
684 NamesAsPredicateArg = Names;
685 }
686 void addNameAsPredicateArg(const ScopedName &N) {
687 NamesAsPredicateArg.push_back(N);
688 }
689
690 bool isLeaf() const { return Val != nullptr; }
5
Assuming the condition is true
6
Returning the value 1, which participates in a condition later
691
692 // Type accessors.
693 unsigned getNumTypes() const { return Types.size(); }
694 ValueTypeByHwMode getType(unsigned ResNo) const {
695 return Types[ResNo].getValueTypeByHwMode();
696 }
697 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
698 const TypeSetByHwMode &getExtType(unsigned ResNo) const {
699 return Types[ResNo];
700 }
701 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
702 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
703 MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
704 return Types[ResNo].getMachineValueType().SimpleTy;
705 }
706
707 bool hasConcreteType(unsigned ResNo) const {
708 return Types[ResNo].isValueTypeByHwMode(false);
709 }
710 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
711 return Types[ResNo].empty();
712 }
713
714 unsigned getNumResults() const { return ResultPerm.size(); }
715 unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
716 void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
717
718 Init *getLeafValue() const { assert(isLeaf())(static_cast <bool> (isLeaf()) ? void (0) : __assert_fail
("isLeaf()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 718, __extension__ __PRETTY_FUNCTION__))
; return Val; }
719 Record *getOperator() const { assert(!isLeaf())(static_cast <bool> (!isLeaf()) ? void (0) : __assert_fail
("!isLeaf()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 719, __extension__ __PRETTY_FUNCTION__))
; return Operator; }
720
721 unsigned getNumChildren() const { return Children.size(); }
722 TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
723 const TreePatternNodePtr &getChildShared(unsigned N) const {
724 return Children[N];
725 }
726 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
727
728 /// hasChild - Return true if N is any of our children.
729 bool hasChild(const TreePatternNode *N) const {
730 for (unsigned i = 0, e = Children.size(); i != e; ++i)
731 if (Children[i].get() == N)
732 return true;
733 return false;
734 }
735
736 bool hasProperTypeByHwMode() const;
737 bool hasPossibleType() const;
738 bool setDefaultMode(unsigned Mode);
739
740 bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
741
742 const std::vector<TreePredicateCall> &getPredicateCalls() const {
743 return PredicateCalls;
744 }
745 void clearPredicateCalls() { PredicateCalls.clear(); }
746 void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
747 assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!")(static_cast <bool> (PredicateCalls.empty() && "Overwriting non-empty predicate list!"
) ? void (0) : __assert_fail ("PredicateCalls.empty() && \"Overwriting non-empty predicate list!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 747, __extension__ __PRETTY_FUNCTION__))
;
748 PredicateCalls = Calls;
749 }
750 void addPredicateCall(const TreePredicateCall &Call) {
751 assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!")(static_cast <bool> (!Call.Fn.isAlwaysTrue() &&
"Empty predicate string!") ? void (0) : __assert_fail ("!Call.Fn.isAlwaysTrue() && \"Empty predicate string!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 751, __extension__ __PRETTY_FUNCTION__))
;
752 assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively")(static_cast <bool> (!is_contained(PredicateCalls, Call
) && "predicate applied recursively") ? void (0) : __assert_fail
("!is_contained(PredicateCalls, Call) && \"predicate applied recursively\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 752, __extension__ __PRETTY_FUNCTION__))
;
753 PredicateCalls.push_back(Call);
754 }
755 void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
756 assert((Scope != 0) == Fn.usesOperands())(static_cast <bool> ((Scope != 0) == Fn.usesOperands())
? void (0) : __assert_fail ("(Scope != 0) == Fn.usesOperands()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 756, __extension__ __PRETTY_FUNCTION__))
;
757 addPredicateCall(TreePredicateCall(Fn, Scope));
758 }
759
760 Record *getTransformFn() const { return TransformFn; }
761 void setTransformFn(Record *Fn) { TransformFn = Fn; }
762
763 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
764 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
765 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
766
767 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
768 /// return the ComplexPattern information, otherwise return null.
769 const ComplexPattern *
770 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
771
772 /// Returns the number of MachineInstr operands that would be produced by this
773 /// node if it mapped directly to an output Instruction's
774 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
775 /// for Operands; otherwise 1.
776 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
777
778 /// NodeHasProperty - Return true if this node has the specified property.
779 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
780
781 /// TreeHasProperty - Return true if any node in this tree has the specified
782 /// property.
783 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
784
785 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
786 /// marked isCommutative.
787 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
788
789 void print(raw_ostream &OS) const;
790 void dump() const;
791
792public: // Higher level manipulation routines.
793
794 /// clone - Return a new copy of this tree.
795 ///
796 TreePatternNodePtr clone() const;
797
798 /// RemoveAllTypes - Recursively strip all the types of this tree.
799 void RemoveAllTypes();
800
801 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
802 /// the specified node. For this comparison, all of the state of the node
803 /// is considered, except for the assigned name. Nodes with differing names
804 /// that are otherwise identical are considered isomorphic.
805 bool isIsomorphicTo(const TreePatternNode *N,
806 const MultipleUseVarSet &DepVars) const;
807
808 /// SubstituteFormalArguments - Replace the formal arguments in this tree
809 /// with actual values specified by ArgMap.
810 void
811 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
812
813 /// InlinePatternFragments - If this pattern refers to any pattern
814 /// fragments, return the set of inlined versions (this can be more than
815 /// one if a PatFrags record has multiple alternatives).
816 void InlinePatternFragments(TreePatternNodePtr T,
817 TreePattern &TP,
818 std::vector<TreePatternNodePtr> &OutAlternatives);
819
820 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
821 /// this node and its children in the tree. This returns true if it makes a
822 /// change, false otherwise. If a type contradiction is found, flag an error.
823 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
824
825 /// UpdateNodeType - Set the node type of N to VT if VT contains
826 /// information. If N already contains a conflicting type, then flag an
827 /// error. This returns true if any information was updated.
828 ///
829 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
830 TreePattern &TP);
831 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
832 TreePattern &TP);
833 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
834 TreePattern &TP);
835
836 // Update node type with types inferred from an instruction operand or result
837 // def from the ins/outs lists.
838 // Return true if the type changed.
839 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
840
841 /// ContainsUnresolvedType - Return true if this tree contains any
842 /// unresolved types.
843 bool ContainsUnresolvedType(TreePattern &TP) const;
844
845 /// canPatternMatch - If it is impossible for this pattern to match on this
846 /// target, fill in Reason and return false. Otherwise, return true.
847 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
848};
849
850inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
851 TPN.print(OS);
852 return OS;
853}
854
855
856/// TreePattern - Represent a pattern, used for instructions, pattern
857/// fragments, etc.
858///
859class TreePattern {
860 /// Trees - The list of pattern trees which corresponds to this pattern.
861 /// Note that PatFrag's only have a single tree.
862 ///
863 std::vector<TreePatternNodePtr> Trees;
864
865 /// NamedNodes - This is all of the nodes that have names in the trees in this
866 /// pattern.
867 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
868
869 /// TheRecord - The actual TableGen record corresponding to this pattern.
870 ///
871 Record *TheRecord;
872
873 /// Args - This is a list of all of the arguments to this pattern (for
874 /// PatFrag patterns), which are the 'node' markers in this pattern.
875 std::vector<std::string> Args;
876
877 /// CDP - the top-level object coordinating this madness.
878 ///
879 CodeGenDAGPatterns &CDP;
880
881 /// isInputPattern - True if this is an input pattern, something to match.
882 /// False if this is an output pattern, something to emit.
883 bool isInputPattern;
884
885 /// hasError - True if the currently processed nodes have unresolvable types
886 /// or other non-fatal errors
887 bool HasError;
888
889 /// It's important that the usage of operands in ComplexPatterns is
890 /// consistent: each named operand can be defined by at most one
891 /// ComplexPattern. This records the ComplexPattern instance and the operand
892 /// number for each operand encountered in a ComplexPattern to aid in that
893 /// check.
894 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
895
896 TypeInfer Infer;
897
898public:
899
900 /// TreePattern constructor - Parse the specified DagInits into the
901 /// current record.
902 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
903 CodeGenDAGPatterns &ise);
904 TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
905 CodeGenDAGPatterns &ise);
906 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
907 CodeGenDAGPatterns &ise);
908
909 /// getTrees - Return the tree patterns which corresponds to this pattern.
910 ///
911 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
912 unsigned getNumTrees() const { return Trees.size(); }
913 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
914 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
915 const TreePatternNodePtr &getOnlyTree() const {
916 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!")(static_cast <bool> (Trees.size() == 1 && "Doesn't have exactly one pattern!"
) ? void (0) : __assert_fail ("Trees.size() == 1 && \"Doesn't have exactly one pattern!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 916, __extension__ __PRETTY_FUNCTION__))
;
917 return Trees[0];
918 }
919
920 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
921 if (NamedNodes.empty())
922 ComputeNamedNodes();
923 return NamedNodes;
924 }
925
926 /// getRecord - Return the actual TableGen record corresponding to this
927 /// pattern.
928 ///
929 Record *getRecord() const { return TheRecord; }
930
931 unsigned getNumArgs() const { return Args.size(); }
932 const std::string &getArgName(unsigned i) const {
933 assert(i < Args.size() && "Argument reference out of range!")(static_cast <bool> (i < Args.size() && "Argument reference out of range!"
) ? void (0) : __assert_fail ("i < Args.size() && \"Argument reference out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 933, __extension__ __PRETTY_FUNCTION__))
;
934 return Args[i];
935 }
936 std::vector<std::string> &getArgList() { return Args; }
937
938 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
939
940 /// InlinePatternFragments - If this pattern refers to any pattern
941 /// fragments, inline them into place, giving us a pattern without any
942 /// PatFrags references. This may increase the number of trees in the
943 /// pattern if a PatFrags has multiple alternatives.
944 void InlinePatternFragments() {
945 std::vector<TreePatternNodePtr> Copy = Trees;
946 Trees.clear();
947 for (unsigned i = 0, e = Copy.size(); i != e; ++i)
948 Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
949 }
950
951 /// InferAllTypes - Infer/propagate as many types throughout the expression
952 /// patterns as possible. Return true if all types are inferred, false
953 /// otherwise. Bail out if a type contradiction is found.
954 bool InferAllTypes(
955 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
956
957 /// error - If this is the first error in the current resolution step,
958 /// print it and set the error flag. Otherwise, continue silently.
959 void error(const Twine &Msg);
960 bool hasError() const {
961 return HasError;
962 }
963 void resetError() {
964 HasError = false;
965 }
966
967 TypeInfer &getInfer() { return Infer; }
968
969 void print(raw_ostream &OS) const;
970 void dump() const;
971
972private:
973 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
974 void ComputeNamedNodes();
975 void ComputeNamedNodes(TreePatternNode *N);
976};
977
978
979inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
980 const TypeSetByHwMode &InTy,
981 TreePattern &TP) {
982 TypeSetByHwMode VTS(InTy);
983 TP.getInfer().expandOverloads(VTS);
984 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
985}
986
987inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
988 MVT::SimpleValueType InTy,
989 TreePattern &TP) {
990 TypeSetByHwMode VTS(InTy);
991 TP.getInfer().expandOverloads(VTS);
992 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
993}
994
995inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
996 ValueTypeByHwMode InTy,
997 TreePattern &TP) {
998 TypeSetByHwMode VTS(InTy);
999 TP.getInfer().expandOverloads(VTS);
1000 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
1001}
1002
1003
1004/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
1005/// that has a set ExecuteAlways / DefaultOps field.
1006struct DAGDefaultOperand {
1007 std::vector<TreePatternNodePtr> DefaultOps;
1008};
1009
1010class DAGInstruction {
1011 std::vector<Record*> Results;
1012 std::vector<Record*> Operands;
1013 std::vector<Record*> ImpResults;
1014 TreePatternNodePtr SrcPattern;
1015 TreePatternNodePtr ResultPattern;
1016
1017public:
1018 DAGInstruction(const std::vector<Record*> &results,
1019 const std::vector<Record*> &operands,
1020 const std::vector<Record*> &impresults,
1021 TreePatternNodePtr srcpattern = nullptr,
1022 TreePatternNodePtr resultpattern = nullptr)
1023 : Results(results), Operands(operands), ImpResults(impresults),
1024 SrcPattern(srcpattern), ResultPattern(resultpattern) {}
1025
1026 unsigned getNumResults() const { return Results.size(); }
1027 unsigned getNumOperands() const { return Operands.size(); }
1028 unsigned getNumImpResults() const { return ImpResults.size(); }
1029 const std::vector<Record*>& getImpResults() const { return ImpResults; }
1030
1031 Record *getResult(unsigned RN) const {
1032 assert(RN < Results.size())(static_cast <bool> (RN < Results.size()) ? void (0)
: __assert_fail ("RN < Results.size()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1032, __extension__ __PRETTY_FUNCTION__))
;
1033 return Results[RN];
1034 }
1035
1036 Record *getOperand(unsigned ON) const {
1037 assert(ON < Operands.size())(static_cast <bool> (ON < Operands.size()) ? void (0
) : __assert_fail ("ON < Operands.size()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1037, __extension__ __PRETTY_FUNCTION__))
;
1038 return Operands[ON];
1039 }
1040
1041 Record *getImpResult(unsigned RN) const {
1042 assert(RN < ImpResults.size())(static_cast <bool> (RN < ImpResults.size()) ? void (
0) : __assert_fail ("RN < ImpResults.size()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1042, __extension__ __PRETTY_FUNCTION__))
;
1043 return ImpResults[RN];
1044 }
1045
1046 TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
1047 TreePatternNodePtr getResultPattern() const { return ResultPattern; }
1048};
1049
1050/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1051/// processed to produce isel.
1052class PatternToMatch {
1053 Record *SrcRecord; // Originating Record for the pattern.
1054 ListInit *Predicates; // Top level predicate conditions to match.
1055 TreePatternNodePtr SrcPattern; // Source pattern to match.
1056 TreePatternNodePtr DstPattern; // Resulting pattern.
1057 std::vector<Record*> Dstregs; // Physical register defs being matched.
1058 std::string HwModeFeatures;
1059 int AddedComplexity; // Add to matching pattern complexity.
1060 unsigned ID; // Unique ID for the record.
1061 unsigned ForceMode; // Force this mode in type inference when set.
1062
1063public:
1064 PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNodePtr src,
1065 TreePatternNodePtr dst, std::vector<Record *> dstregs,
1066 int complexity, unsigned uid, unsigned setmode = 0,
1067 const Twine &hwmodefeatures = "")
1068 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src),
1069 DstPattern(dst), Dstregs(std::move(dstregs)),
1070 HwModeFeatures(hwmodefeatures.str()), AddedComplexity(complexity),
1071 ID(uid), ForceMode(setmode) {}
1072
1073 Record *getSrcRecord() const { return SrcRecord; }
1074 ListInit *getPredicates() const { return Predicates; }
1075 TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
1076 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
1077 TreePatternNode *getDstPattern() const { return DstPattern.get(); }
1078 TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
1079 const std::vector<Record*> &getDstRegs() const { return Dstregs; }
1080 StringRef getHwModeFeatures() const { return HwModeFeatures; }
1081 int getAddedComplexity() const { return AddedComplexity; }
1082 unsigned getID() const { return ID; }
1083 unsigned getForceMode() const { return ForceMode; }
1084
1085 std::string getPredicateCheck() const;
1086 void getPredicateRecords(SmallVectorImpl<Record *> &PredicateRecs) const;
1087
1088 /// Compute the complexity metric for the input pattern. This roughly
1089 /// corresponds to the number of nodes that are covered.
1090 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1091};
1092
1093class CodeGenDAGPatterns {
1094 RecordKeeper &Records;
1095 CodeGenTarget Target;
1096 CodeGenIntrinsicTable Intrinsics;
1097
1098 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1099 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1100 SDNodeXForms;
1101 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1102 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1103 PatternFragments;
1104 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1105 std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1106
1107 // Specific SDNode definitions:
1108 Record *intrinsic_void_sdnode;
1109 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1110
1111 /// PatternsToMatch - All of the things we are matching on the DAG. The first
1112 /// value is the pattern to match, the second pattern is the result to
1113 /// emit.
1114 std::vector<PatternToMatch> PatternsToMatch;
1115
1116 TypeSetByHwMode LegalVTS;
1117
1118 using PatternRewriterFn = std::function<void (TreePattern *)>;
1119 PatternRewriterFn PatternRewriter;
1120
1121 unsigned NumScopes = 0;
1122
1123public:
1124 CodeGenDAGPatterns(RecordKeeper &R,
1125 PatternRewriterFn PatternRewriter = nullptr);
1126
1127 CodeGenTarget &getTargetInfo() { return Target; }
1128 const CodeGenTarget &getTargetInfo() const { return Target; }
1129 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1130
1131 Record *getSDNodeNamed(StringRef Name) const;
1132
1133 const SDNodeInfo &getSDNodeInfo(Record *R) const {
1134 auto F = SDNodes.find(R);
1135 assert(F != SDNodes.end() && "Unknown node!")(static_cast <bool> (F != SDNodes.end() && "Unknown node!"
) ? void (0) : __assert_fail ("F != SDNodes.end() && \"Unknown node!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1135, __extension__ __PRETTY_FUNCTION__))
;
1136 return F->second;
1137 }
1138
1139 // Node transformation lookups.
1140 typedef std::pair<Record*, std::string> NodeXForm;
1141 const NodeXForm &getSDNodeTransform(Record *R) const {
1142 auto F = SDNodeXForms.find(R);
1143 assert(F != SDNodeXForms.end() && "Invalid transform!")(static_cast <bool> (F != SDNodeXForms.end() &&
"Invalid transform!") ? void (0) : __assert_fail ("F != SDNodeXForms.end() && \"Invalid transform!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1143, __extension__ __PRETTY_FUNCTION__))
;
1144 return F->second;
1145 }
1146
1147 const ComplexPattern &getComplexPattern(Record *R) const {
1148 auto F = ComplexPatterns.find(R);
1149 assert(F != ComplexPatterns.end() && "Unknown addressing mode!")(static_cast <bool> (F != ComplexPatterns.end() &&
"Unknown addressing mode!") ? void (0) : __assert_fail ("F != ComplexPatterns.end() && \"Unknown addressing mode!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1149, __extension__ __PRETTY_FUNCTION__))
;
1150 return F->second;
1151 }
1152
1153 const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1154 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1155 if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1156 llvm_unreachable("Unknown intrinsic!")::llvm::llvm_unreachable_internal("Unknown intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1156)
;
1157 }
1158
1159 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1160 if (IID-1 < Intrinsics.size())
1161 return Intrinsics[IID-1];
1162 llvm_unreachable("Bad intrinsic ID!")::llvm::llvm_unreachable_internal("Bad intrinsic ID!", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1162)
;
1163 }
1164
1165 unsigned getIntrinsicID(Record *R) const {
1166 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1167 if (Intrinsics[i].TheDef == R) return i;
1168 llvm_unreachable("Unknown intrinsic!")::llvm::llvm_unreachable_internal("Unknown intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1168)
;
1169 }
1170
1171 const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1172 auto F = DefaultOperands.find(R);
1173 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!")(static_cast <bool> (F != DefaultOperands.end() &&
"Isn't an analyzed default operand!") ? void (0) : __assert_fail
("F != DefaultOperands.end() &&\"Isn't an analyzed default operand!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1173, __extension__ __PRETTY_FUNCTION__))
;
1174 return F->second;
1175 }
1176
1177 // Pattern Fragment information.
1178 TreePattern *getPatternFragment(Record *R) const {
1179 auto F = PatternFragments.find(R);
1180 assert(F != PatternFragments.end() && "Invalid pattern fragment request!")(static_cast <bool> (F != PatternFragments.end() &&
"Invalid pattern fragment request!") ? void (0) : __assert_fail
("F != PatternFragments.end() && \"Invalid pattern fragment request!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1180, __extension__ __PRETTY_FUNCTION__))
;
1181 return F->second.get();
1182 }
1183 TreePattern *getPatternFragmentIfRead(Record *R) const {
1184 auto F = PatternFragments.find(R);
1185 if (F == PatternFragments.end())
1186 return nullptr;
1187 return F->second.get();
1188 }
1189
1190 typedef std::map<Record *, std::unique_ptr<TreePattern>,
1191 LessRecordByID>::const_iterator pf_iterator;
1192 pf_iterator pf_begin() const { return PatternFragments.begin(); }
1193 pf_iterator pf_end() const { return PatternFragments.end(); }
1194 iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1195
1196 // Patterns to match information.
1197 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
1198 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
1199 ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
1200 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1201
1202 /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1203 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1204 void parseInstructionPattern(
1205 CodeGenInstruction &CGI, ListInit *Pattern,
1206 DAGInstMap &DAGInsts);
1207
1208 const DAGInstruction &getInstruction(Record *R) const {
1209 auto F = Instructions.find(R);
1210 assert(F != Instructions.end() && "Unknown instruction!")(static_cast <bool> (F != Instructions.end() &&
"Unknown instruction!") ? void (0) : __assert_fail ("F != Instructions.end() && \"Unknown instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/utils/TableGen/CodeGenDAGPatterns.h"
, 1210, __extension__ __PRETTY_FUNCTION__))
;
1211 return F->second;
1212 }
1213
1214 Record *get_intrinsic_void_sdnode() const {
1215 return intrinsic_void_sdnode;
1216 }
1217 Record *get_intrinsic_w_chain_sdnode() const {
1218 return intrinsic_w_chain_sdnode;
1219 }
1220 Record *get_intrinsic_wo_chain_sdnode() const {
1221 return intrinsic_wo_chain_sdnode;
1222 }
1223
1224 unsigned allocateScope() { return ++NumScopes; }
1225
1226 bool operandHasDefault(Record *Op) const {
1227 return Op->isSubClassOf("OperandWithDefaultOps") &&
1228 !getDefaultOperand(Op).DefaultOps.empty();
1229 }
1230
1231private:
1232 void ParseNodeInfo();
1233 void ParseNodeTransforms();
1234 void ParseComplexPatterns();
1235 void ParsePatternFragments(bool OutFrags = false);
1236 void ParseDefaultOperands();
1237 void ParseInstructions();
1238 void ParsePatterns();
1239 void ExpandHwModeBasedTypes();
1240 void InferInstructionFlags();
1241 void GenerateVariants();
1242 void VerifyInstructionFlags();
1243
1244 void ParseOnePattern(Record *TheDef,
1245 TreePattern &Pattern, TreePattern &Result,
1246 const std::vector<Record *> &InstImpResults);
1247 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1248 void FindPatternInputsAndOutputs(
1249 TreePattern &I, TreePatternNodePtr Pat,
1250 std::map<std::string, TreePatternNodePtr> &InstInputs,
1251 MapVector<std::string, TreePatternNodePtr,
1252 std::map<std::string, unsigned>> &InstResults,
1253 std::vector<Record *> &InstImpResults);
1254};
1255
1256
1257inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1258 TreePattern &TP) const {
1259 bool MadeChange = false;
1260 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1261 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1262 return MadeChange;
1263 }
1264
1265} // end namespace llvm
1266
1267#endif