Bug Summary

File:clang-tools-extra/clangd/HeuristicResolver.cpp
Warning:line 63, column 12
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name HeuristicResolver.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/tools/extra/clangd -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/clang-tools-extra/clangd -I tools/clang/tools/extra/clangd/../clang-tidy -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-19-134126-35450-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/clang-tools-extra/clangd/HeuristicResolver.cpp

/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/clang-tools-extra/clangd/HeuristicResolver.cpp

1//===--- HeuristicResolver.cpp ---------------------------*- C++-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "HeuristicResolver.h"
10#include "clang/AST/ASTContext.h"
11#include "clang/AST/DeclTemplate.h"
12#include "clang/AST/ExprCXX.h"
13
14namespace clang {
15namespace clangd {
16
17// Convenience lambdas for use as the 'Filter' parameter of
18// HeuristicResolver::resolveDependentMember().
19const auto NoFilter = [](const NamedDecl *D) { return true; };
20const auto NonStaticFilter = [](const NamedDecl *D) {
21 return D->isCXXInstanceMember();
22};
23const auto StaticFilter = [](const NamedDecl *D) {
24 return !D->isCXXInstanceMember();
25};
26const auto ValueFilter = [](const NamedDecl *D) { return isa<ValueDecl>(D); };
27const auto TypeFilter = [](const NamedDecl *D) { return isa<TypeDecl>(D); };
28const auto TemplateFilter = [](const NamedDecl *D) {
29 return isa<TemplateDecl>(D);
30};
31
32// Helper function for HeuristicResolver::resolveDependentMember()
33// which takes a possibly-dependent type `T` and heuristically
34// resolves it to a CXXRecordDecl in which we can try name lookup.
35CXXRecordDecl *resolveTypeToRecordDecl(const Type *T) {
36 assert(T)(static_cast <bool> (T) ? void (0) : __assert_fail ("T"
, "clang-tools-extra/clangd/HeuristicResolver.cpp", 36, __extension__
__PRETTY_FUNCTION__))
;
37
38 if (const auto *RT = T->getAs<RecordType>())
39 return dyn_cast<CXXRecordDecl>(RT->getDecl());
40
41 if (const auto *ICNT = T->getAs<InjectedClassNameType>())
42 T = ICNT->getInjectedSpecializationType().getTypePtrOrNull();
43 if (!T)
44 return nullptr;
45
46 const auto *TST = T->getAs<TemplateSpecializationType>();
47 if (!TST)
48 return nullptr;
49
50 const ClassTemplateDecl *TD = dyn_cast_or_null<ClassTemplateDecl>(
51 TST->getTemplateName().getAsTemplateDecl());
52 if (!TD)
53 return nullptr;
54
55 return TD->getTemplatedDecl();
56}
57
58const Type *HeuristicResolver::getPointeeType(const Type *T) const {
59 if (!T)
12
Assuming 'T' is non-null
13
Taking false branch
60 return nullptr;
61
62 if (T->isPointerType()) {
14
Calling 'Type::isPointerType'
17
Returning from 'Type::isPointerType'
18
Taking true branch
63 return T->getAs<PointerType>()->getPointeeType().getTypePtrOrNull();
19
Assuming 'T' is not a 'PointerType'
20
Called C++ object pointer is null
64 }
65
66 // Try to handle smart pointer types.
67
68 // Look up operator-> in the primary template. If we find one, it's probably a
69 // smart pointer type.
70 auto ArrowOps = resolveDependentMember(
71 T, Ctx.DeclarationNames.getCXXOperatorName(OO_Arrow), NonStaticFilter);
72 if (ArrowOps.empty())
73 return nullptr;
74
75 // Getting the return type of the found operator-> method decl isn't useful,
76 // because we discarded template arguments to perform lookup in the primary
77 // template scope, so the return type would just have the form U* where U is a
78 // template parameter type.
79 // Instead, just handle the common case where the smart pointer type has the
80 // form of SmartPtr<X, ...>, and assume X is the pointee type.
81 auto *TST = T->getAs<TemplateSpecializationType>();
82 if (!TST)
83 return nullptr;
84 if (TST->getNumArgs() == 0)
85 return nullptr;
86 const TemplateArgument &FirstArg = TST->getArg(0);
87 if (FirstArg.getKind() != TemplateArgument::Type)
88 return nullptr;
89 return FirstArg.getAsType().getTypePtrOrNull();
90}
91
92std::vector<const NamedDecl *> HeuristicResolver::resolveMemberExpr(
93 const CXXDependentScopeMemberExpr *ME) const {
94 // If the expression has a qualifier, first try resolving the member
95 // inside the qualifier's type.
96 // Note that we cannot use a NonStaticFilter in either case, for a couple
97 // of reasons:
98 // 1. It's valid to access a static member using instance member syntax,
99 // e.g. `instance.static_member`.
100 // 2. We can sometimes get a CXXDependentScopeMemberExpr for static
101 // member syntax too, e.g. if `X::static_member` occurs inside
102 // an instance method, it's represented as a CXXDependentScopeMemberExpr
103 // with `this` as the base expression as `X` as the qualifier
104 // (which could be valid if `X` names a base class after instantiation).
105 if (NestedNameSpecifier *NNS = ME->getQualifier()) {
7
Assuming 'NNS' is null
8
Taking false branch
106 if (const Type *QualifierType = resolveNestedNameSpecifierToType(NNS)) {
107 auto Decls =
108 resolveDependentMember(QualifierType, ME->getMember(), NoFilter);
109 if (!Decls.empty())
110 return Decls;
111 }
112 }
113
114 // If that didn't yield any results, try resolving the member inside
115 // the expression's base type.
116 const Type *BaseType = ME->getBaseType().getTypePtrOrNull();
117 if (ME->isArrow()) {
9
Assuming the condition is true
10
Taking true branch
118 BaseType = getPointeeType(BaseType);
11
Calling 'HeuristicResolver::getPointeeType'
119 }
120 if (!BaseType)
121 return {};
122 if (const auto *BT = BaseType->getAs<BuiltinType>()) {
123 // If BaseType is the type of a dependent expression, it's just
124 // represented as BultinType::Dependent which gives us no information. We
125 // can get further by analyzing the depedent expression.
126 Expr *Base = ME->isImplicitAccess() ? nullptr : ME->getBase();
127 if (Base && BT->getKind() == BuiltinType::Dependent) {
128 BaseType = resolveExprToType(Base);
129 }
130 }
131 return resolveDependentMember(BaseType, ME->getMember(), NoFilter);
132}
133
134std::vector<const NamedDecl *> HeuristicResolver::resolveDeclRefExpr(
135 const DependentScopeDeclRefExpr *RE) const {
136 return resolveDependentMember(RE->getQualifier()->getAsType(),
137 RE->getDeclName(), StaticFilter);
138}
139
140std::vector<const NamedDecl *>
141HeuristicResolver::resolveTypeOfCallExpr(const CallExpr *CE) const {
142 const auto *CalleeType = resolveExprToType(CE->getCallee());
143 if (!CalleeType)
144 return {};
145 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>())
146 CalleeType = FnTypePtr->getPointeeType().getTypePtr();
147 if (const FunctionType *FnType = CalleeType->getAs<FunctionType>()) {
148 if (const auto *D =
149 resolveTypeToRecordDecl(FnType->getReturnType().getTypePtr())) {
150 return {D};
151 }
152 }
153 return {};
154}
155
156std::vector<const NamedDecl *>
157HeuristicResolver::resolveCalleeOfCallExpr(const CallExpr *CE) const {
158 if (const auto *ND
1.1
'ND' is null
1.1
'ND' is null
= dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1
Assuming null pointer is passed into cast
2
Taking false branch
159 return {ND};
160 }
161
162 return resolveExprToDecls(CE->getCallee());
3
Calling 'HeuristicResolver::resolveExprToDecls'
163}
164
165std::vector<const NamedDecl *> HeuristicResolver::resolveUsingValueDecl(
166 const UnresolvedUsingValueDecl *UUVD) const {
167 return resolveDependentMember(UUVD->getQualifier()->getAsType(),
168 UUVD->getNameInfo().getName(), ValueFilter);
169}
170
171std::vector<const NamedDecl *> HeuristicResolver::resolveDependentNameType(
172 const DependentNameType *DNT) const {
173 return resolveDependentMember(
174 resolveNestedNameSpecifierToType(DNT->getQualifier()),
175 DNT->getIdentifier(), TypeFilter);
176}
177
178std::vector<const NamedDecl *>
179HeuristicResolver::resolveTemplateSpecializationType(
180 const DependentTemplateSpecializationType *DTST) const {
181 return resolveDependentMember(
182 resolveNestedNameSpecifierToType(DTST->getQualifier()),
183 DTST->getIdentifier(), TemplateFilter);
184}
185
186const Type *resolveDeclsToType(const std::vector<const NamedDecl *> &Decls) {
187 if (Decls.size() != 1) // Names an overload set -- just bail.
188 return nullptr;
189 if (const auto *TD = dyn_cast<TypeDecl>(Decls[0])) {
190 return TD->getTypeForDecl();
191 }
192 if (const auto *VD = dyn_cast<ValueDecl>(Decls[0])) {
193 return VD->getType().getTypePtrOrNull();
194 }
195 return nullptr;
196}
197
198std::vector<const NamedDecl *>
199HeuristicResolver::resolveExprToDecls(const Expr *E) const {
200 if (const auto *ME
4.1
'ME' is non-null
4.1
'ME' is non-null
= dyn_cast<CXXDependentScopeMemberExpr>(E)) {
4
Assuming 'E' is a 'CXXDependentScopeMemberExpr'
5
Taking true branch
201 return resolveMemberExpr(ME);
6
Calling 'HeuristicResolver::resolveMemberExpr'
202 }
203 if (const auto *RE = dyn_cast<DependentScopeDeclRefExpr>(E)) {
204 return resolveDeclRefExpr(RE);
205 }
206 if (const auto *OE = dyn_cast<OverloadExpr>(E)) {
207 return {OE->decls_begin(), OE->decls_end()};
208 }
209 if (const auto *CE = dyn_cast<CallExpr>(E)) {
210 return resolveTypeOfCallExpr(CE);
211 }
212 if (const auto *ME = dyn_cast<MemberExpr>(E))
213 return {ME->getMemberDecl()};
214
215 return {};
216}
217
218const Type *HeuristicResolver::resolveExprToType(const Expr *E) const {
219 std::vector<const NamedDecl *> Decls = resolveExprToDecls(E);
220 if (!Decls.empty())
221 return resolveDeclsToType(Decls);
222
223 return E->getType().getTypePtr();
224}
225
226const Type *HeuristicResolver::resolveNestedNameSpecifierToType(
227 const NestedNameSpecifier *NNS) const {
228 if (!NNS)
229 return nullptr;
230
231 // The purpose of this function is to handle the dependent (Kind ==
232 // Identifier) case, but we need to recurse on the prefix because
233 // that may be dependent as well, so for convenience handle
234 // the TypeSpec cases too.
235 switch (NNS->getKind()) {
236 case NestedNameSpecifier::TypeSpec:
237 case NestedNameSpecifier::TypeSpecWithTemplate:
238 return NNS->getAsType();
239 case NestedNameSpecifier::Identifier: {
240 return resolveDeclsToType(resolveDependentMember(
241 resolveNestedNameSpecifierToType(NNS->getPrefix()),
242 NNS->getAsIdentifier(), TypeFilter));
243 }
244 default:
245 break;
246 }
247 return nullptr;
248}
249
250std::vector<const NamedDecl *> HeuristicResolver::resolveDependentMember(
251 const Type *T, DeclarationName Name,
252 llvm::function_ref<bool(const NamedDecl *ND)> Filter) const {
253 if (!T)
254 return {};
255 if (auto *ET = T->getAs<EnumType>()) {
256 auto Result = ET->getDecl()->lookup(Name);
257 return {Result.begin(), Result.end()};
258 }
259 if (auto *RD = resolveTypeToRecordDecl(T)) {
260 if (!RD->hasDefinition())
261 return {};
262 RD = RD->getDefinition();
263 return RD->lookupDependentName(Name, Filter);
264 }
265 return {};
266}
267
268} // namespace clangd
269} // namespace clang

/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132class UsingShadowDecl;
133
134using CanQualType = CanQual<Type>;
135
136// Provide forward declarations for all of the *Type classes.
137#define TYPE(Class, Base) class Class##Type;
138#include "clang/AST/TypeNodes.inc"
139
140/// The collection of all-type qualifiers we support.
141/// Clang supports five independent qualifiers:
142/// * C99: const, volatile, and restrict
143/// * MS: __unaligned
144/// * Embedded C (TR18037): address spaces
145/// * Objective C: the GC attributes (none, weak, or strong)
146class Qualifiers {
147public:
148 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
149 Const = 0x1,
150 Restrict = 0x2,
151 Volatile = 0x4,
152 CVRMask = Const | Volatile | Restrict
153 };
154
155 enum GC {
156 GCNone = 0,
157 Weak,
158 Strong
159 };
160
161 enum ObjCLifetime {
162 /// There is no lifetime qualification on this type.
163 OCL_None,
164
165 /// This object can be modified without requiring retains or
166 /// releases.
167 OCL_ExplicitNone,
168
169 /// Assigning into this object requires the old value to be
170 /// released and the new value to be retained. The timing of the
171 /// release of the old value is inexact: it may be moved to
172 /// immediately after the last known point where the value is
173 /// live.
174 OCL_Strong,
175
176 /// Reading or writing from this object requires a barrier call.
177 OCL_Weak,
178
179 /// Assigning into this object requires a lifetime extension.
180 OCL_Autoreleasing
181 };
182
183 enum {
184 /// The maximum supported address space number.
185 /// 23 bits should be enough for anyone.
186 MaxAddressSpace = 0x7fffffu,
187
188 /// The width of the "fast" qualifier mask.
189 FastWidth = 3,
190
191 /// The fast qualifier mask.
192 FastMask = (1 << FastWidth) - 1
193 };
194
195 /// Returns the common set of qualifiers while removing them from
196 /// the given sets.
197 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
198 // If both are only CVR-qualified, bit operations are sufficient.
199 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
200 Qualifiers Q;
201 Q.Mask = L.Mask & R.Mask;
202 L.Mask &= ~Q.Mask;
203 R.Mask &= ~Q.Mask;
204 return Q;
205 }
206
207 Qualifiers Q;
208 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
209 Q.addCVRQualifiers(CommonCRV);
210 L.removeCVRQualifiers(CommonCRV);
211 R.removeCVRQualifiers(CommonCRV);
212
213 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
214 Q.setObjCGCAttr(L.getObjCGCAttr());
215 L.removeObjCGCAttr();
216 R.removeObjCGCAttr();
217 }
218
219 if (L.getObjCLifetime() == R.getObjCLifetime()) {
220 Q.setObjCLifetime(L.getObjCLifetime());
221 L.removeObjCLifetime();
222 R.removeObjCLifetime();
223 }
224
225 if (L.getAddressSpace() == R.getAddressSpace()) {
226 Q.setAddressSpace(L.getAddressSpace());
227 L.removeAddressSpace();
228 R.removeAddressSpace();
229 }
230 return Q;
231 }
232
233 static Qualifiers fromFastMask(unsigned Mask) {
234 Qualifiers Qs;
235 Qs.addFastQualifiers(Mask);
236 return Qs;
237 }
238
239 static Qualifiers fromCVRMask(unsigned CVR) {
240 Qualifiers Qs;
241 Qs.addCVRQualifiers(CVR);
242 return Qs;
243 }
244
245 static Qualifiers fromCVRUMask(unsigned CVRU) {
246 Qualifiers Qs;
247 Qs.addCVRUQualifiers(CVRU);
248 return Qs;
249 }
250
251 // Deserialize qualifiers from an opaque representation.
252 static Qualifiers fromOpaqueValue(unsigned opaque) {
253 Qualifiers Qs;
254 Qs.Mask = opaque;
255 return Qs;
256 }
257
258 // Serialize these qualifiers into an opaque representation.
259 unsigned getAsOpaqueValue() const {
260 return Mask;
261 }
262
263 bool hasConst() const { return Mask & Const; }
264 bool hasOnlyConst() const { return Mask == Const; }
265 void removeConst() { Mask &= ~Const; }
266 void addConst() { Mask |= Const; }
267
268 bool hasVolatile() const { return Mask & Volatile; }
269 bool hasOnlyVolatile() const { return Mask == Volatile; }
270 void removeVolatile() { Mask &= ~Volatile; }
271 void addVolatile() { Mask |= Volatile; }
272
273 bool hasRestrict() const { return Mask & Restrict; }
274 bool hasOnlyRestrict() const { return Mask == Restrict; }
275 void removeRestrict() { Mask &= ~Restrict; }
276 void addRestrict() { Mask |= Restrict; }
277
278 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
279 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
280 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
281
282 void setCVRQualifiers(unsigned mask) {
283 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 283, __extension__ __PRETTY_FUNCTION__
))
;
284 Mask = (Mask & ~CVRMask) | mask;
285 }
286 void removeCVRQualifiers(unsigned mask) {
287 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 287, __extension__ __PRETTY_FUNCTION__
))
;
288 Mask &= ~mask;
289 }
290 void removeCVRQualifiers() {
291 removeCVRQualifiers(CVRMask);
292 }
293 void addCVRQualifiers(unsigned mask) {
294 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 294, __extension__ __PRETTY_FUNCTION__
))
;
295 Mask |= mask;
296 }
297 void addCVRUQualifiers(unsigned mask) {
298 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast <bool> (!(mask & ~CVRMask & ~UMask
) && "bitmask contains non-CVRU bits") ? void (0) : __assert_fail
("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "clang/include/clang/AST/Type.h", 298, __extension__ __PRETTY_FUNCTION__
))
;
299 Mask |= mask;
300 }
301
302 bool hasUnaligned() const { return Mask & UMask; }
303 void setUnaligned(bool flag) {
304 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
305 }
306 void removeUnaligned() { Mask &= ~UMask; }
307 void addUnaligned() { Mask |= UMask; }
308
309 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
310 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
311 void setObjCGCAttr(GC type) {
312 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
313 }
314 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
315 void addObjCGCAttr(GC type) {
316 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 316, __extension__ __PRETTY_FUNCTION__
))
;
317 setObjCGCAttr(type);
318 }
319 Qualifiers withoutObjCGCAttr() const {
320 Qualifiers qs = *this;
321 qs.removeObjCGCAttr();
322 return qs;
323 }
324 Qualifiers withoutObjCLifetime() const {
325 Qualifiers qs = *this;
326 qs.removeObjCLifetime();
327 return qs;
328 }
329 Qualifiers withoutAddressSpace() const {
330 Qualifiers qs = *this;
331 qs.removeAddressSpace();
332 return qs;
333 }
334
335 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
336 ObjCLifetime getObjCLifetime() const {
337 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
338 }
339 void setObjCLifetime(ObjCLifetime type) {
340 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
341 }
342 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
343 void addObjCLifetime(ObjCLifetime type) {
344 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 344, __extension__ __PRETTY_FUNCTION__
))
;
345 assert(!hasObjCLifetime())(static_cast <bool> (!hasObjCLifetime()) ? void (0) : __assert_fail
("!hasObjCLifetime()", "clang/include/clang/AST/Type.h", 345
, __extension__ __PRETTY_FUNCTION__))
;
346 Mask |= (type << LifetimeShift);
347 }
348
349 /// True if the lifetime is neither None or ExplicitNone.
350 bool hasNonTrivialObjCLifetime() const {
351 ObjCLifetime lifetime = getObjCLifetime();
352 return (lifetime > OCL_ExplicitNone);
353 }
354
355 /// True if the lifetime is either strong or weak.
356 bool hasStrongOrWeakObjCLifetime() const {
357 ObjCLifetime lifetime = getObjCLifetime();
358 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
359 }
360
361 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
362 LangAS getAddressSpace() const {
363 return static_cast<LangAS>(Mask >> AddressSpaceShift);
364 }
365 bool hasTargetSpecificAddressSpace() const {
366 return isTargetAddressSpace(getAddressSpace());
367 }
368 /// Get the address space attribute value to be printed by diagnostics.
369 unsigned getAddressSpaceAttributePrintValue() const {
370 auto Addr = getAddressSpace();
371 // This function is not supposed to be used with language specific
372 // address spaces. If that happens, the diagnostic message should consider
373 // printing the QualType instead of the address space value.
374 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast <bool> (Addr == LangAS::Default || hasTargetSpecificAddressSpace
()) ? void (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "clang/include/clang/AST/Type.h", 374, __extension__ __PRETTY_FUNCTION__
))
;
375 if (Addr != LangAS::Default)
376 return toTargetAddressSpace(Addr);
377 // TODO: The diagnostic messages where Addr may be 0 should be fixed
378 // since it cannot differentiate the situation where 0 denotes the default
379 // address space or user specified __attribute__((address_space(0))).
380 return 0;
381 }
382 void setAddressSpace(LangAS space) {
383 assert((unsigned)space <= MaxAddressSpace)(static_cast <bool> ((unsigned)space <= MaxAddressSpace
) ? void (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "clang/include/clang/AST/Type.h", 383, __extension__ __PRETTY_FUNCTION__
))
;
384 Mask = (Mask & ~AddressSpaceMask)
385 | (((uint32_t) space) << AddressSpaceShift);
386 }
387 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
388 void addAddressSpace(LangAS space) {
389 assert(space != LangAS::Default)(static_cast <bool> (space != LangAS::Default) ? void (
0) : __assert_fail ("space != LangAS::Default", "clang/include/clang/AST/Type.h"
, 389, __extension__ __PRETTY_FUNCTION__))
;
390 setAddressSpace(space);
391 }
392
393 // Fast qualifiers are those that can be allocated directly
394 // on a QualType object.
395 bool hasFastQualifiers() const { return getFastQualifiers(); }
396 unsigned getFastQualifiers() const { return Mask & FastMask; }
397 void setFastQualifiers(unsigned mask) {
398 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 398, __extension__ __PRETTY_FUNCTION__
))
;
399 Mask = (Mask & ~FastMask) | mask;
400 }
401 void removeFastQualifiers(unsigned mask) {
402 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 402, __extension__ __PRETTY_FUNCTION__
))
;
403 Mask &= ~mask;
404 }
405 void removeFastQualifiers() {
406 removeFastQualifiers(FastMask);
407 }
408 void addFastQualifiers(unsigned mask) {
409 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 409, __extension__ __PRETTY_FUNCTION__
))
;
410 Mask |= mask;
411 }
412
413 /// Return true if the set contains any qualifiers which require an ExtQuals
414 /// node to be allocated.
415 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
416 Qualifiers getNonFastQualifiers() const {
417 Qualifiers Quals = *this;
418 Quals.setFastQualifiers(0);
419 return Quals;
420 }
421
422 /// Return true if the set contains any qualifiers.
423 bool hasQualifiers() const { return Mask; }
424 bool empty() const { return !Mask; }
425
426 /// Add the qualifiers from the given set to this set.
427 void addQualifiers(Qualifiers Q) {
428 // If the other set doesn't have any non-boolean qualifiers, just
429 // bit-or it in.
430 if (!(Q.Mask & ~CVRMask))
431 Mask |= Q.Mask;
432 else {
433 Mask |= (Q.Mask & CVRMask);
434 if (Q.hasAddressSpace())
435 addAddressSpace(Q.getAddressSpace());
436 if (Q.hasObjCGCAttr())
437 addObjCGCAttr(Q.getObjCGCAttr());
438 if (Q.hasObjCLifetime())
439 addObjCLifetime(Q.getObjCLifetime());
440 }
441 }
442
443 /// Remove the qualifiers from the given set from this set.
444 void removeQualifiers(Qualifiers Q) {
445 // If the other set doesn't have any non-boolean qualifiers, just
446 // bit-and the inverse in.
447 if (!(Q.Mask & ~CVRMask))
448 Mask &= ~Q.Mask;
449 else {
450 Mask &= ~(Q.Mask & CVRMask);
451 if (getObjCGCAttr() == Q.getObjCGCAttr())
452 removeObjCGCAttr();
453 if (getObjCLifetime() == Q.getObjCLifetime())
454 removeObjCLifetime();
455 if (getAddressSpace() == Q.getAddressSpace())
456 removeAddressSpace();
457 }
458 }
459
460 /// Add the qualifiers from the given set to this set, given that
461 /// they don't conflict.
462 void addConsistentQualifiers(Qualifiers qs) {
463 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 464, __extension__ __PRETTY_FUNCTION__
))
464 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 464, __extension__ __PRETTY_FUNCTION__
))
;
465 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 466, __extension__ __PRETTY_FUNCTION__
))
466 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 466, __extension__ __PRETTY_FUNCTION__
))
;
467 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 468, __extension__ __PRETTY_FUNCTION__
))
468 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 468, __extension__ __PRETTY_FUNCTION__
))
;
469 Mask |= qs.Mask;
470 }
471
472 /// Returns true if address space A is equal to or a superset of B.
473 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
474 /// overlapping address spaces.
475 /// CL1.1 or CL1.2:
476 /// every address space is a superset of itself.
477 /// CL2.0 adds:
478 /// __generic is a superset of any address space except for __constant.
479 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
480 // Address spaces must match exactly.
481 return A == B ||
482 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
483 // for __constant can be used as __generic.
484 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
485 // We also define global_device and global_host address spaces,
486 // to distinguish global pointers allocated on host from pointers
487 // allocated on device, which are a subset of __global.
488 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
489 B == LangAS::opencl_global_host)) ||
490 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
491 B == LangAS::sycl_global_host)) ||
492 // Consider pointer size address spaces to be equivalent to default.
493 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
494 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
495 // Default is a superset of SYCL address spaces.
496 (A == LangAS::Default &&
497 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
498 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
499 B == LangAS::sycl_global_host)) ||
500 // In HIP device compilation, any cuda address space is allowed
501 // to implicitly cast into the default address space.
502 (A == LangAS::Default &&
503 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
504 B == LangAS::cuda_shared));
505 }
506
507 /// Returns true if the address space in these qualifiers is equal to or
508 /// a superset of the address space in the argument qualifiers.
509 bool isAddressSpaceSupersetOf(Qualifiers other) const {
510 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
511 }
512
513 /// Determines if these qualifiers compatibly include another set.
514 /// Generally this answers the question of whether an object with the other
515 /// qualifiers can be safely used as an object with these qualifiers.
516 bool compatiblyIncludes(Qualifiers other) const {
517 return isAddressSpaceSupersetOf(other) &&
518 // ObjC GC qualifiers can match, be added, or be removed, but can't
519 // be changed.
520 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
521 !other.hasObjCGCAttr()) &&
522 // ObjC lifetime qualifiers must match exactly.
523 getObjCLifetime() == other.getObjCLifetime() &&
524 // CVR qualifiers may subset.
525 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
526 // U qualifier may superset.
527 (!other.hasUnaligned() || hasUnaligned());
528 }
529
530 /// Determines if these qualifiers compatibly include another set of
531 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
532 ///
533 /// One set of Objective-C lifetime qualifiers compatibly includes the other
534 /// if the lifetime qualifiers match, or if both are non-__weak and the
535 /// including set also contains the 'const' qualifier, or both are non-__weak
536 /// and one is None (which can only happen in non-ARC modes).
537 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
538 if (getObjCLifetime() == other.getObjCLifetime())
539 return true;
540
541 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
542 return false;
543
544 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
545 return true;
546
547 return hasConst();
548 }
549
550 /// Determine whether this set of qualifiers is a strict superset of
551 /// another set of qualifiers, not considering qualifier compatibility.
552 bool isStrictSupersetOf(Qualifiers Other) const;
553
554 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
555 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
556
557 explicit operator bool() const { return hasQualifiers(); }
558
559 Qualifiers &operator+=(Qualifiers R) {
560 addQualifiers(R);
561 return *this;
562 }
563
564 // Union two qualifier sets. If an enumerated qualifier appears
565 // in both sets, use the one from the right.
566 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
567 L += R;
568 return L;
569 }
570
571 Qualifiers &operator-=(Qualifiers R) {
572 removeQualifiers(R);
573 return *this;
574 }
575
576 /// Compute the difference between two qualifier sets.
577 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
578 L -= R;
579 return L;
580 }
581
582 std::string getAsString() const;
583 std::string getAsString(const PrintingPolicy &Policy) const;
584
585 static std::string getAddrSpaceAsString(LangAS AS);
586
587 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
588 void print(raw_ostream &OS, const PrintingPolicy &Policy,
589 bool appendSpaceIfNonEmpty = false) const;
590
591 void Profile(llvm::FoldingSetNodeID &ID) const {
592 ID.AddInteger(Mask);
593 }
594
595private:
596 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
597 // |C R V|U|GCAttr|Lifetime|AddressSpace|
598 uint32_t Mask = 0;
599
600 static const uint32_t UMask = 0x8;
601 static const uint32_t UShift = 3;
602 static const uint32_t GCAttrMask = 0x30;
603 static const uint32_t GCAttrShift = 4;
604 static const uint32_t LifetimeMask = 0x1C0;
605 static const uint32_t LifetimeShift = 6;
606 static const uint32_t AddressSpaceMask =
607 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
608 static const uint32_t AddressSpaceShift = 9;
609};
610
611/// A std::pair-like structure for storing a qualified type split
612/// into its local qualifiers and its locally-unqualified type.
613struct SplitQualType {
614 /// The locally-unqualified type.
615 const Type *Ty = nullptr;
616
617 /// The local qualifiers.
618 Qualifiers Quals;
619
620 SplitQualType() = default;
621 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
622
623 SplitQualType getSingleStepDesugaredType() const; // end of this file
624
625 // Make std::tie work.
626 std::pair<const Type *,Qualifiers> asPair() const {
627 return std::pair<const Type *, Qualifiers>(Ty, Quals);
628 }
629
630 friend bool operator==(SplitQualType a, SplitQualType b) {
631 return a.Ty == b.Ty && a.Quals == b.Quals;
632 }
633 friend bool operator!=(SplitQualType a, SplitQualType b) {
634 return a.Ty != b.Ty || a.Quals != b.Quals;
635 }
636};
637
638/// The kind of type we are substituting Objective-C type arguments into.
639///
640/// The kind of substitution affects the replacement of type parameters when
641/// no concrete type information is provided, e.g., when dealing with an
642/// unspecialized type.
643enum class ObjCSubstitutionContext {
644 /// An ordinary type.
645 Ordinary,
646
647 /// The result type of a method or function.
648 Result,
649
650 /// The parameter type of a method or function.
651 Parameter,
652
653 /// The type of a property.
654 Property,
655
656 /// The superclass of a type.
657 Superclass,
658};
659
660/// A (possibly-)qualified type.
661///
662/// For efficiency, we don't store CV-qualified types as nodes on their
663/// own: instead each reference to a type stores the qualifiers. This
664/// greatly reduces the number of nodes we need to allocate for types (for
665/// example we only need one for 'int', 'const int', 'volatile int',
666/// 'const volatile int', etc).
667///
668/// As an added efficiency bonus, instead of making this a pair, we
669/// just store the two bits we care about in the low bits of the
670/// pointer. To handle the packing/unpacking, we make QualType be a
671/// simple wrapper class that acts like a smart pointer. A third bit
672/// indicates whether there are extended qualifiers present, in which
673/// case the pointer points to a special structure.
674class QualType {
675 friend class QualifierCollector;
676
677 // Thankfully, these are efficiently composable.
678 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
679 Qualifiers::FastWidth> Value;
680
681 const ExtQuals *getExtQualsUnsafe() const {
682 return Value.getPointer().get<const ExtQuals*>();
683 }
684
685 const Type *getTypePtrUnsafe() const {
686 return Value.getPointer().get<const Type*>();
687 }
688
689 const ExtQualsTypeCommonBase *getCommonPtr() const {
690 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast <bool> (!isNull() && "Cannot retrieve a NULL type pointer"
) ? void (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "clang/include/clang/AST/Type.h", 690, __extension__ __PRETTY_FUNCTION__
))
;
691 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
692 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
693 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
694 }
695
696public:
697 QualType() = default;
698 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
699 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
700
701 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
702 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
703
704 /// Retrieves a pointer to the underlying (unqualified) type.
705 ///
706 /// This function requires that the type not be NULL. If the type might be
707 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
708 const Type *getTypePtr() const;
709
710 const Type *getTypePtrOrNull() const;
711
712 /// Retrieves a pointer to the name of the base type.
713 const IdentifierInfo *getBaseTypeIdentifier() const;
714
715 /// Divides a QualType into its unqualified type and a set of local
716 /// qualifiers.
717 SplitQualType split() const;
718
719 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
720
721 static QualType getFromOpaquePtr(const void *Ptr) {
722 QualType T;
723 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
724 return T;
725 }
726
727 const Type &operator*() const {
728 return *getTypePtr();
729 }
730
731 const Type *operator->() const {
732 return getTypePtr();
733 }
734
735 bool isCanonical() const;
736 bool isCanonicalAsParam() const;
737
738 /// Return true if this QualType doesn't point to a type yet.
739 bool isNull() const {
740 return Value.getPointer().isNull();
741 }
742
743 /// Determine whether this particular QualType instance has the
744 /// "const" qualifier set, without looking through typedefs that may have
745 /// added "const" at a different level.
746 bool isLocalConstQualified() const {
747 return (getLocalFastQualifiers() & Qualifiers::Const);
748 }
749
750 /// Determine whether this type is const-qualified.
751 bool isConstQualified() const;
752
753 /// Determine whether this particular QualType instance has the
754 /// "restrict" qualifier set, without looking through typedefs that may have
755 /// added "restrict" at a different level.
756 bool isLocalRestrictQualified() const {
757 return (getLocalFastQualifiers() & Qualifiers::Restrict);
758 }
759
760 /// Determine whether this type is restrict-qualified.
761 bool isRestrictQualified() const;
762
763 /// Determine whether this particular QualType instance has the
764 /// "volatile" qualifier set, without looking through typedefs that may have
765 /// added "volatile" at a different level.
766 bool isLocalVolatileQualified() const {
767 return (getLocalFastQualifiers() & Qualifiers::Volatile);
768 }
769
770 /// Determine whether this type is volatile-qualified.
771 bool isVolatileQualified() const;
772
773 /// Determine whether this particular QualType instance has any
774 /// qualifiers, without looking through any typedefs that might add
775 /// qualifiers at a different level.
776 bool hasLocalQualifiers() const {
777 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
778 }
779
780 /// Determine whether this type has any qualifiers.
781 bool hasQualifiers() const;
782
783 /// Determine whether this particular QualType instance has any
784 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
785 /// instance.
786 bool hasLocalNonFastQualifiers() const {
787 return Value.getPointer().is<const ExtQuals*>();
788 }
789
790 /// Retrieve the set of qualifiers local to this particular QualType
791 /// instance, not including any qualifiers acquired through typedefs or
792 /// other sugar.
793 Qualifiers getLocalQualifiers() const;
794
795 /// Retrieve the set of qualifiers applied to this type.
796 Qualifiers getQualifiers() const;
797
798 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
799 /// local to this particular QualType instance, not including any qualifiers
800 /// acquired through typedefs or other sugar.
801 unsigned getLocalCVRQualifiers() const {
802 return getLocalFastQualifiers();
803 }
804
805 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
806 /// applied to this type.
807 unsigned getCVRQualifiers() const;
808
809 bool isConstant(const ASTContext& Ctx) const {
810 return QualType::isConstant(*this, Ctx);
811 }
812
813 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
814 bool isPODType(const ASTContext &Context) const;
815
816 /// Return true if this is a POD type according to the rules of the C++98
817 /// standard, regardless of the current compilation's language.
818 bool isCXX98PODType(const ASTContext &Context) const;
819
820 /// Return true if this is a POD type according to the more relaxed rules
821 /// of the C++11 standard, regardless of the current compilation's language.
822 /// (C++0x [basic.types]p9). Note that, unlike
823 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
824 bool isCXX11PODType(const ASTContext &Context) const;
825
826 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
827 bool isTrivialType(const ASTContext &Context) const;
828
829 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
830 bool isTriviallyCopyableType(const ASTContext &Context) const;
831
832
833 /// Returns true if it is a class and it might be dynamic.
834 bool mayBeDynamicClass() const;
835
836 /// Returns true if it is not a class or if the class might not be dynamic.
837 bool mayBeNotDynamicClass() const;
838
839 // Don't promise in the API that anything besides 'const' can be
840 // easily added.
841
842 /// Add the `const` type qualifier to this QualType.
843 void addConst() {
844 addFastQualifiers(Qualifiers::Const);
845 }
846 QualType withConst() const {
847 return withFastQualifiers(Qualifiers::Const);
848 }
849
850 /// Add the `volatile` type qualifier to this QualType.
851 void addVolatile() {
852 addFastQualifiers(Qualifiers::Volatile);
853 }
854 QualType withVolatile() const {
855 return withFastQualifiers(Qualifiers::Volatile);
856 }
857
858 /// Add the `restrict` qualifier to this QualType.
859 void addRestrict() {
860 addFastQualifiers(Qualifiers::Restrict);
861 }
862 QualType withRestrict() const {
863 return withFastQualifiers(Qualifiers::Restrict);
864 }
865
866 QualType withCVRQualifiers(unsigned CVR) const {
867 return withFastQualifiers(CVR);
868 }
869
870 void addFastQualifiers(unsigned TQs) {
871 assert(!(TQs & ~Qualifiers::FastMask)(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 872, __extension__ __PRETTY_FUNCTION__
))
872 && "non-fast qualifier bits set in mask!")(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 872, __extension__ __PRETTY_FUNCTION__
))
;
873 Value.setInt(Value.getInt() | TQs);
874 }
875
876 void removeLocalConst();
877 void removeLocalVolatile();
878 void removeLocalRestrict();
879 void removeLocalCVRQualifiers(unsigned Mask);
880
881 void removeLocalFastQualifiers() { Value.setInt(0); }
882 void removeLocalFastQualifiers(unsigned Mask) {
883 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast <bool> (!(Mask & ~Qualifiers::FastMask
) && "mask has non-fast qualifiers") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "clang/include/clang/AST/Type.h", 883, __extension__ __PRETTY_FUNCTION__
))
;
884 Value.setInt(Value.getInt() & ~Mask);
885 }
886
887 // Creates a type with the given qualifiers in addition to any
888 // qualifiers already on this type.
889 QualType withFastQualifiers(unsigned TQs) const {
890 QualType T = *this;
891 T.addFastQualifiers(TQs);
892 return T;
893 }
894
895 // Creates a type with exactly the given fast qualifiers, removing
896 // any existing fast qualifiers.
897 QualType withExactLocalFastQualifiers(unsigned TQs) const {
898 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
899 }
900
901 // Removes fast qualifiers, but leaves any extended qualifiers in place.
902 QualType withoutLocalFastQualifiers() const {
903 QualType T = *this;
904 T.removeLocalFastQualifiers();
905 return T;
906 }
907
908 QualType getCanonicalType() const;
909
910 /// Return this type with all of the instance-specific qualifiers
911 /// removed, but without removing any qualifiers that may have been applied
912 /// through typedefs.
913 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
914
915 /// Retrieve the unqualified variant of the given type,
916 /// removing as little sugar as possible.
917 ///
918 /// This routine looks through various kinds of sugar to find the
919 /// least-desugared type that is unqualified. For example, given:
920 ///
921 /// \code
922 /// typedef int Integer;
923 /// typedef const Integer CInteger;
924 /// typedef CInteger DifferenceType;
925 /// \endcode
926 ///
927 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
928 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
929 ///
930 /// The resulting type might still be qualified if it's sugar for an array
931 /// type. To strip qualifiers even from within a sugared array type, use
932 /// ASTContext::getUnqualifiedArrayType.
933 inline QualType getUnqualifiedType() const;
934
935 /// Retrieve the unqualified variant of the given type, removing as little
936 /// sugar as possible.
937 ///
938 /// Like getUnqualifiedType(), but also returns the set of
939 /// qualifiers that were built up.
940 ///
941 /// The resulting type might still be qualified if it's sugar for an array
942 /// type. To strip qualifiers even from within a sugared array type, use
943 /// ASTContext::getUnqualifiedArrayType.
944 inline SplitQualType getSplitUnqualifiedType() const;
945
946 /// Determine whether this type is more qualified than the other
947 /// given type, requiring exact equality for non-CVR qualifiers.
948 bool isMoreQualifiedThan(QualType Other) const;
949
950 /// Determine whether this type is at least as qualified as the other
951 /// given type, requiring exact equality for non-CVR qualifiers.
952 bool isAtLeastAsQualifiedAs(QualType Other) const;
953
954 QualType getNonReferenceType() const;
955
956 /// Determine the type of a (typically non-lvalue) expression with the
957 /// specified result type.
958 ///
959 /// This routine should be used for expressions for which the return type is
960 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
961 /// an lvalue. It removes a top-level reference (since there are no
962 /// expressions of reference type) and deletes top-level cvr-qualifiers
963 /// from non-class types (in C++) or all types (in C).
964 QualType getNonLValueExprType(const ASTContext &Context) const;
965
966 /// Remove an outer pack expansion type (if any) from this type. Used as part
967 /// of converting the type of a declaration to the type of an expression that
968 /// references that expression. It's meaningless for an expression to have a
969 /// pack expansion type.
970 QualType getNonPackExpansionType() const;
971
972 /// Return the specified type with any "sugar" removed from
973 /// the type. This takes off typedefs, typeof's etc. If the outer level of
974 /// the type is already concrete, it returns it unmodified. This is similar
975 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
976 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
977 /// concrete.
978 ///
979 /// Qualifiers are left in place.
980 QualType getDesugaredType(const ASTContext &Context) const {
981 return getDesugaredType(*this, Context);
982 }
983
984 SplitQualType getSplitDesugaredType() const {
985 return getSplitDesugaredType(*this);
986 }
987
988 /// Return the specified type with one level of "sugar" removed from
989 /// the type.
990 ///
991 /// This routine takes off the first typedef, typeof, etc. If the outer level
992 /// of the type is already concrete, it returns it unmodified.
993 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
994 return getSingleStepDesugaredTypeImpl(*this, Context);
995 }
996
997 /// Returns the specified type after dropping any
998 /// outer-level parentheses.
999 QualType IgnoreParens() const {
1000 if (isa<ParenType>(*this))
1001 return QualType::IgnoreParens(*this);
1002 return *this;
1003 }
1004
1005 /// Indicate whether the specified types and qualifiers are identical.
1006 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1007 return LHS.Value == RHS.Value;
1008 }
1009 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1010 return LHS.Value != RHS.Value;
1011 }
1012 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1013 return LHS.Value < RHS.Value;
1014 }
1015
1016 static std::string getAsString(SplitQualType split,
1017 const PrintingPolicy &Policy) {
1018 return getAsString(split.Ty, split.Quals, Policy);
1019 }
1020 static std::string getAsString(const Type *ty, Qualifiers qs,
1021 const PrintingPolicy &Policy);
1022
1023 std::string getAsString() const;
1024 std::string getAsString(const PrintingPolicy &Policy) const;
1025
1026 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1027 const Twine &PlaceHolder = Twine(),
1028 unsigned Indentation = 0) const;
1029
1030 static void print(SplitQualType split, raw_ostream &OS,
1031 const PrintingPolicy &policy, const Twine &PlaceHolder,
1032 unsigned Indentation = 0) {
1033 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1034 }
1035
1036 static void print(const Type *ty, Qualifiers qs,
1037 raw_ostream &OS, const PrintingPolicy &policy,
1038 const Twine &PlaceHolder,
1039 unsigned Indentation = 0);
1040
1041 void getAsStringInternal(std::string &Str,
1042 const PrintingPolicy &Policy) const;
1043
1044 static void getAsStringInternal(SplitQualType split, std::string &out,
1045 const PrintingPolicy &policy) {
1046 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1047 }
1048
1049 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1050 std::string &out,
1051 const PrintingPolicy &policy);
1052
1053 class StreamedQualTypeHelper {
1054 const QualType &T;
1055 const PrintingPolicy &Policy;
1056 const Twine &PlaceHolder;
1057 unsigned Indentation;
1058
1059 public:
1060 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1061 const Twine &PlaceHolder, unsigned Indentation)
1062 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1063 Indentation(Indentation) {}
1064
1065 friend raw_ostream &operator<<(raw_ostream &OS,
1066 const StreamedQualTypeHelper &SQT) {
1067 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1068 return OS;
1069 }
1070 };
1071
1072 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1073 const Twine &PlaceHolder = Twine(),
1074 unsigned Indentation = 0) const {
1075 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1076 }
1077
1078 void dump(const char *s) const;
1079 void dump() const;
1080 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1081
1082 void Profile(llvm::FoldingSetNodeID &ID) const {
1083 ID.AddPointer(getAsOpaquePtr());
1084 }
1085
1086 /// Check if this type has any address space qualifier.
1087 inline bool hasAddressSpace() const;
1088
1089 /// Return the address space of this type.
1090 inline LangAS getAddressSpace() const;
1091
1092 /// Returns true if address space qualifiers overlap with T address space
1093 /// qualifiers.
1094 /// OpenCL C defines conversion rules for pointers to different address spaces
1095 /// and notion of overlapping address spaces.
1096 /// CL1.1 or CL1.2:
1097 /// address spaces overlap iff they are they same.
1098 /// OpenCL C v2.0 s6.5.5 adds:
1099 /// __generic overlaps with any address space except for __constant.
1100 bool isAddressSpaceOverlapping(QualType T) const {
1101 Qualifiers Q = getQualifiers();
1102 Qualifiers TQ = T.getQualifiers();
1103 // Address spaces overlap if at least one of them is a superset of another
1104 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1105 }
1106
1107 /// Returns gc attribute of this type.
1108 inline Qualifiers::GC getObjCGCAttr() const;
1109
1110 /// true when Type is objc's weak.
1111 bool isObjCGCWeak() const {
1112 return getObjCGCAttr() == Qualifiers::Weak;
1113 }
1114
1115 /// true when Type is objc's strong.
1116 bool isObjCGCStrong() const {
1117 return getObjCGCAttr() == Qualifiers::Strong;
1118 }
1119
1120 /// Returns lifetime attribute of this type.
1121 Qualifiers::ObjCLifetime getObjCLifetime() const {
1122 return getQualifiers().getObjCLifetime();
1123 }
1124
1125 bool hasNonTrivialObjCLifetime() const {
1126 return getQualifiers().hasNonTrivialObjCLifetime();
1127 }
1128
1129 bool hasStrongOrWeakObjCLifetime() const {
1130 return getQualifiers().hasStrongOrWeakObjCLifetime();
1131 }
1132
1133 // true when Type is objc's weak and weak is enabled but ARC isn't.
1134 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1135
1136 enum PrimitiveDefaultInitializeKind {
1137 /// The type does not fall into any of the following categories. Note that
1138 /// this case is zero-valued so that values of this enum can be used as a
1139 /// boolean condition for non-triviality.
1140 PDIK_Trivial,
1141
1142 /// The type is an Objective-C retainable pointer type that is qualified
1143 /// with the ARC __strong qualifier.
1144 PDIK_ARCStrong,
1145
1146 /// The type is an Objective-C retainable pointer type that is qualified
1147 /// with the ARC __weak qualifier.
1148 PDIK_ARCWeak,
1149
1150 /// The type is a struct containing a field whose type is not PCK_Trivial.
1151 PDIK_Struct
1152 };
1153
1154 /// Functions to query basic properties of non-trivial C struct types.
1155
1156 /// Check if this is a non-trivial type that would cause a C struct
1157 /// transitively containing this type to be non-trivial to default initialize
1158 /// and return the kind.
1159 PrimitiveDefaultInitializeKind
1160 isNonTrivialToPrimitiveDefaultInitialize() const;
1161
1162 enum PrimitiveCopyKind {
1163 /// The type does not fall into any of the following categories. Note that
1164 /// this case is zero-valued so that values of this enum can be used as a
1165 /// boolean condition for non-triviality.
1166 PCK_Trivial,
1167
1168 /// The type would be trivial except that it is volatile-qualified. Types
1169 /// that fall into one of the other non-trivial cases may additionally be
1170 /// volatile-qualified.
1171 PCK_VolatileTrivial,
1172
1173 /// The type is an Objective-C retainable pointer type that is qualified
1174 /// with the ARC __strong qualifier.
1175 PCK_ARCStrong,
1176
1177 /// The type is an Objective-C retainable pointer type that is qualified
1178 /// with the ARC __weak qualifier.
1179 PCK_ARCWeak,
1180
1181 /// The type is a struct containing a field whose type is neither
1182 /// PCK_Trivial nor PCK_VolatileTrivial.
1183 /// Note that a C++ struct type does not necessarily match this; C++ copying
1184 /// semantics are too complex to express here, in part because they depend
1185 /// on the exact constructor or assignment operator that is chosen by
1186 /// overload resolution to do the copy.
1187 PCK_Struct
1188 };
1189
1190 /// Check if this is a non-trivial type that would cause a C struct
1191 /// transitively containing this type to be non-trivial to copy and return the
1192 /// kind.
1193 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1194
1195 /// Check if this is a non-trivial type that would cause a C struct
1196 /// transitively containing this type to be non-trivial to destructively
1197 /// move and return the kind. Destructive move in this context is a C++-style
1198 /// move in which the source object is placed in a valid but unspecified state
1199 /// after it is moved, as opposed to a truly destructive move in which the
1200 /// source object is placed in an uninitialized state.
1201 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1202
1203 enum DestructionKind {
1204 DK_none,
1205 DK_cxx_destructor,
1206 DK_objc_strong_lifetime,
1207 DK_objc_weak_lifetime,
1208 DK_nontrivial_c_struct
1209 };
1210
1211 /// Returns a nonzero value if objects of this type require
1212 /// non-trivial work to clean up after. Non-zero because it's
1213 /// conceivable that qualifiers (objc_gc(weak)?) could make
1214 /// something require destruction.
1215 DestructionKind isDestructedType() const {
1216 return isDestructedTypeImpl(*this);
1217 }
1218
1219 /// Check if this is or contains a C union that is non-trivial to
1220 /// default-initialize, which is a union that has a member that is non-trivial
1221 /// to default-initialize. If this returns true,
1222 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1223 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1224
1225 /// Check if this is or contains a C union that is non-trivial to destruct,
1226 /// which is a union that has a member that is non-trivial to destruct. If
1227 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1228 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1229
1230 /// Check if this is or contains a C union that is non-trivial to copy, which
1231 /// is a union that has a member that is non-trivial to copy. If this returns
1232 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1233 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1234
1235 /// Determine whether expressions of the given type are forbidden
1236 /// from being lvalues in C.
1237 ///
1238 /// The expression types that are forbidden to be lvalues are:
1239 /// - 'void', but not qualified void
1240 /// - function types
1241 ///
1242 /// The exact rule here is C99 6.3.2.1:
1243 /// An lvalue is an expression with an object type or an incomplete
1244 /// type other than void.
1245 bool isCForbiddenLValueType() const;
1246
1247 /// Substitute type arguments for the Objective-C type parameters used in the
1248 /// subject type.
1249 ///
1250 /// \param ctx ASTContext in which the type exists.
1251 ///
1252 /// \param typeArgs The type arguments that will be substituted for the
1253 /// Objective-C type parameters in the subject type, which are generally
1254 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1255 /// parameters will be replaced with their bounds or id/Class, as appropriate
1256 /// for the context.
1257 ///
1258 /// \param context The context in which the subject type was written.
1259 ///
1260 /// \returns the resulting type.
1261 QualType substObjCTypeArgs(ASTContext &ctx,
1262 ArrayRef<QualType> typeArgs,
1263 ObjCSubstitutionContext context) const;
1264
1265 /// Substitute type arguments from an object type for the Objective-C type
1266 /// parameters used in the subject type.
1267 ///
1268 /// This operation combines the computation of type arguments for
1269 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1270 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1271 /// callers that need to perform a single substitution in isolation.
1272 ///
1273 /// \param objectType The type of the object whose member type we're
1274 /// substituting into. For example, this might be the receiver of a message
1275 /// or the base of a property access.
1276 ///
1277 /// \param dc The declaration context from which the subject type was
1278 /// retrieved, which indicates (for example) which type parameters should
1279 /// be substituted.
1280 ///
1281 /// \param context The context in which the subject type was written.
1282 ///
1283 /// \returns the subject type after replacing all of the Objective-C type
1284 /// parameters with their corresponding arguments.
1285 QualType substObjCMemberType(QualType objectType,
1286 const DeclContext *dc,
1287 ObjCSubstitutionContext context) const;
1288
1289 /// Strip Objective-C "__kindof" types from the given type.
1290 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1291
1292 /// Remove all qualifiers including _Atomic.
1293 QualType getAtomicUnqualifiedType() const;
1294
1295private:
1296 // These methods are implemented in a separate translation unit;
1297 // "static"-ize them to avoid creating temporary QualTypes in the
1298 // caller.
1299 static bool isConstant(QualType T, const ASTContext& Ctx);
1300 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1301 static SplitQualType getSplitDesugaredType(QualType T);
1302 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1303 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1304 const ASTContext &C);
1305 static QualType IgnoreParens(QualType T);
1306 static DestructionKind isDestructedTypeImpl(QualType type);
1307
1308 /// Check if \param RD is or contains a non-trivial C union.
1309 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1310 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1311 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1312};
1313
1314} // namespace clang
1315
1316namespace llvm {
1317
1318/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1319/// to a specific Type class.
1320template<> struct simplify_type< ::clang::QualType> {
1321 using SimpleType = const ::clang::Type *;
1322
1323 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1324 return Val.getTypePtr();
1325 }
1326};
1327
1328// Teach SmallPtrSet that QualType is "basically a pointer".
1329template<>
1330struct PointerLikeTypeTraits<clang::QualType> {
1331 static inline void *getAsVoidPointer(clang::QualType P) {
1332 return P.getAsOpaquePtr();
1333 }
1334
1335 static inline clang::QualType getFromVoidPointer(void *P) {
1336 return clang::QualType::getFromOpaquePtr(P);
1337 }
1338
1339 // Various qualifiers go in low bits.
1340 static constexpr int NumLowBitsAvailable = 0;
1341};
1342
1343} // namespace llvm
1344
1345namespace clang {
1346
1347/// Base class that is common to both the \c ExtQuals and \c Type
1348/// classes, which allows \c QualType to access the common fields between the
1349/// two.
1350class ExtQualsTypeCommonBase {
1351 friend class ExtQuals;
1352 friend class QualType;
1353 friend class Type;
1354
1355 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1356 /// a self-referential pointer (for \c Type).
1357 ///
1358 /// This pointer allows an efficient mapping from a QualType to its
1359 /// underlying type pointer.
1360 const Type *const BaseType;
1361
1362 /// The canonical type of this type. A QualType.
1363 QualType CanonicalType;
1364
1365 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1366 : BaseType(baseType), CanonicalType(canon) {}
1367};
1368
1369/// We can encode up to four bits in the low bits of a
1370/// type pointer, but there are many more type qualifiers that we want
1371/// to be able to apply to an arbitrary type. Therefore we have this
1372/// struct, intended to be heap-allocated and used by QualType to
1373/// store qualifiers.
1374///
1375/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1376/// in three low bits on the QualType pointer; a fourth bit records whether
1377/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1378/// Objective-C GC attributes) are much more rare.
1379class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1380 // NOTE: changing the fast qualifiers should be straightforward as
1381 // long as you don't make 'const' non-fast.
1382 // 1. Qualifiers:
1383 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1384 // Fast qualifiers must occupy the low-order bits.
1385 // b) Update Qualifiers::FastWidth and FastMask.
1386 // 2. QualType:
1387 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1388 // b) Update remove{Volatile,Restrict}, defined near the end of
1389 // this header.
1390 // 3. ASTContext:
1391 // a) Update get{Volatile,Restrict}Type.
1392
1393 /// The immutable set of qualifiers applied by this node. Always contains
1394 /// extended qualifiers.
1395 Qualifiers Quals;
1396
1397 ExtQuals *this_() { return this; }
1398
1399public:
1400 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1401 : ExtQualsTypeCommonBase(baseType,
1402 canon.isNull() ? QualType(this_(), 0) : canon),
1403 Quals(quals) {
1404 assert(Quals.hasNonFastQualifiers()(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1405, __extension__ __PRETTY_FUNCTION__
))
1405 && "ExtQuals created with no fast qualifiers")(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1405, __extension__ __PRETTY_FUNCTION__
))
;
1406 assert(!Quals.hasFastQualifiers()(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1407, __extension__ __PRETTY_FUNCTION__
))
1407 && "ExtQuals created with fast qualifiers")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1407, __extension__ __PRETTY_FUNCTION__
))
;
1408 }
1409
1410 Qualifiers getQualifiers() const { return Quals; }
1411
1412 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1413 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1414
1415 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1416 Qualifiers::ObjCLifetime getObjCLifetime() const {
1417 return Quals.getObjCLifetime();
1418 }
1419
1420 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1421 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1422
1423 const Type *getBaseType() const { return BaseType; }
1424
1425public:
1426 void Profile(llvm::FoldingSetNodeID &ID) const {
1427 Profile(ID, getBaseType(), Quals);
1428 }
1429
1430 static void Profile(llvm::FoldingSetNodeID &ID,
1431 const Type *BaseType,
1432 Qualifiers Quals) {
1433 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"fast qualifiers in ExtQuals hash!") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "clang/include/clang/AST/Type.h", 1433, __extension__ __PRETTY_FUNCTION__
))
;
1434 ID.AddPointer(BaseType);
1435 Quals.Profile(ID);
1436 }
1437};
1438
1439/// The kind of C++11 ref-qualifier associated with a function type.
1440/// This determines whether a member function's "this" object can be an
1441/// lvalue, rvalue, or neither.
1442enum RefQualifierKind {
1443 /// No ref-qualifier was provided.
1444 RQ_None = 0,
1445
1446 /// An lvalue ref-qualifier was provided (\c &).
1447 RQ_LValue,
1448
1449 /// An rvalue ref-qualifier was provided (\c &&).
1450 RQ_RValue
1451};
1452
1453/// Which keyword(s) were used to create an AutoType.
1454enum class AutoTypeKeyword {
1455 /// auto
1456 Auto,
1457
1458 /// decltype(auto)
1459 DecltypeAuto,
1460
1461 /// __auto_type (GNU extension)
1462 GNUAutoType
1463};
1464
1465/// The base class of the type hierarchy.
1466///
1467/// A central concept with types is that each type always has a canonical
1468/// type. A canonical type is the type with any typedef names stripped out
1469/// of it or the types it references. For example, consider:
1470///
1471/// typedef int foo;
1472/// typedef foo* bar;
1473/// 'int *' 'foo *' 'bar'
1474///
1475/// There will be a Type object created for 'int'. Since int is canonical, its
1476/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1477/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1478/// there is a PointerType that represents 'int*', which, like 'int', is
1479/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1480/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1481/// is also 'int*'.
1482///
1483/// Non-canonical types are useful for emitting diagnostics, without losing
1484/// information about typedefs being used. Canonical types are useful for type
1485/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1486/// about whether something has a particular form (e.g. is a function type),
1487/// because they implicitly, recursively, strip all typedefs out of a type.
1488///
1489/// Types, once created, are immutable.
1490///
1491class alignas(8) Type : public ExtQualsTypeCommonBase {
1492public:
1493 enum TypeClass {
1494#define TYPE(Class, Base) Class,
1495#define LAST_TYPE(Class) TypeLast = Class
1496#define ABSTRACT_TYPE(Class, Base)
1497#include "clang/AST/TypeNodes.inc"
1498 };
1499
1500private:
1501 /// Bitfields required by the Type class.
1502 class TypeBitfields {
1503 friend class Type;
1504 template <class T> friend class TypePropertyCache;
1505
1506 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1507 unsigned TC : 8;
1508
1509 /// Store information on the type dependency.
1510 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1511
1512 /// True if the cache (i.e. the bitfields here starting with
1513 /// 'Cache') is valid.
1514 mutable unsigned CacheValid : 1;
1515
1516 /// Linkage of this type.
1517 mutable unsigned CachedLinkage : 3;
1518
1519 /// Whether this type involves and local or unnamed types.
1520 mutable unsigned CachedLocalOrUnnamed : 1;
1521
1522 /// Whether this type comes from an AST file.
1523 mutable unsigned FromAST : 1;
1524
1525 bool isCacheValid() const {
1526 return CacheValid;
1527 }
1528
1529 Linkage getLinkage() const {
1530 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1530, __extension__ __PRETTY_FUNCTION__
))
;
1531 return static_cast<Linkage>(CachedLinkage);
1532 }
1533
1534 bool hasLocalOrUnnamedType() const {
1535 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1535, __extension__ __PRETTY_FUNCTION__
))
;
1536 return CachedLocalOrUnnamed;
1537 }
1538 };
1539 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1540
1541protected:
1542 // These classes allow subclasses to somewhat cleanly pack bitfields
1543 // into Type.
1544
1545 class ArrayTypeBitfields {
1546 friend class ArrayType;
1547
1548 unsigned : NumTypeBits;
1549
1550 /// CVR qualifiers from declarations like
1551 /// 'int X[static restrict 4]'. For function parameters only.
1552 unsigned IndexTypeQuals : 3;
1553
1554 /// Storage class qualifiers from declarations like
1555 /// 'int X[static restrict 4]'. For function parameters only.
1556 /// Actually an ArrayType::ArraySizeModifier.
1557 unsigned SizeModifier : 3;
1558 };
1559
1560 class ConstantArrayTypeBitfields {
1561 friend class ConstantArrayType;
1562
1563 unsigned : NumTypeBits + 3 + 3;
1564
1565 /// Whether we have a stored size expression.
1566 unsigned HasStoredSizeExpr : 1;
1567 };
1568
1569 class BuiltinTypeBitfields {
1570 friend class BuiltinType;
1571
1572 unsigned : NumTypeBits;
1573
1574 /// The kind (BuiltinType::Kind) of builtin type this is.
1575 unsigned Kind : 8;
1576 };
1577
1578 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1579 /// Only common bits are stored here. Additional uncommon bits are stored
1580 /// in a trailing object after FunctionProtoType.
1581 class FunctionTypeBitfields {
1582 friend class FunctionProtoType;
1583 friend class FunctionType;
1584
1585 unsigned : NumTypeBits;
1586
1587 /// Extra information which affects how the function is called, like
1588 /// regparm and the calling convention.
1589 unsigned ExtInfo : 13;
1590
1591 /// The ref-qualifier associated with a \c FunctionProtoType.
1592 ///
1593 /// This is a value of type \c RefQualifierKind.
1594 unsigned RefQualifier : 2;
1595
1596 /// Used only by FunctionProtoType, put here to pack with the
1597 /// other bitfields.
1598 /// The qualifiers are part of FunctionProtoType because...
1599 ///
1600 /// C++ 8.3.5p4: The return type, the parameter type list and the
1601 /// cv-qualifier-seq, [...], are part of the function type.
1602 unsigned FastTypeQuals : Qualifiers::FastWidth;
1603 /// Whether this function has extended Qualifiers.
1604 unsigned HasExtQuals : 1;
1605
1606 /// The number of parameters this function has, not counting '...'.
1607 /// According to [implimits] 8 bits should be enough here but this is
1608 /// somewhat easy to exceed with metaprogramming and so we would like to
1609 /// keep NumParams as wide as reasonably possible.
1610 unsigned NumParams : 16;
1611
1612 /// The type of exception specification this function has.
1613 unsigned ExceptionSpecType : 4;
1614
1615 /// Whether this function has extended parameter information.
1616 unsigned HasExtParameterInfos : 1;
1617
1618 /// Whether the function is variadic.
1619 unsigned Variadic : 1;
1620
1621 /// Whether this function has a trailing return type.
1622 unsigned HasTrailingReturn : 1;
1623 };
1624
1625 class ObjCObjectTypeBitfields {
1626 friend class ObjCObjectType;
1627
1628 unsigned : NumTypeBits;
1629
1630 /// The number of type arguments stored directly on this object type.
1631 unsigned NumTypeArgs : 7;
1632
1633 /// The number of protocols stored directly on this object type.
1634 unsigned NumProtocols : 6;
1635
1636 /// Whether this is a "kindof" type.
1637 unsigned IsKindOf : 1;
1638 };
1639
1640 class ReferenceTypeBitfields {
1641 friend class ReferenceType;
1642
1643 unsigned : NumTypeBits;
1644
1645 /// True if the type was originally spelled with an lvalue sigil.
1646 /// This is never true of rvalue references but can also be false
1647 /// on lvalue references because of C++0x [dcl.typedef]p9,
1648 /// as follows:
1649 ///
1650 /// typedef int &ref; // lvalue, spelled lvalue
1651 /// typedef int &&rvref; // rvalue
1652 /// ref &a; // lvalue, inner ref, spelled lvalue
1653 /// ref &&a; // lvalue, inner ref
1654 /// rvref &a; // lvalue, inner ref, spelled lvalue
1655 /// rvref &&a; // rvalue, inner ref
1656 unsigned SpelledAsLValue : 1;
1657
1658 /// True if the inner type is a reference type. This only happens
1659 /// in non-canonical forms.
1660 unsigned InnerRef : 1;
1661 };
1662
1663 class TypeWithKeywordBitfields {
1664 friend class TypeWithKeyword;
1665
1666 unsigned : NumTypeBits;
1667
1668 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1669 unsigned Keyword : 8;
1670 };
1671
1672 enum { NumTypeWithKeywordBits = 8 };
1673
1674 class ElaboratedTypeBitfields {
1675 friend class ElaboratedType;
1676
1677 unsigned : NumTypeBits;
1678 unsigned : NumTypeWithKeywordBits;
1679
1680 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1681 unsigned HasOwnedTagDecl : 1;
1682 };
1683
1684 class VectorTypeBitfields {
1685 friend class VectorType;
1686 friend class DependentVectorType;
1687
1688 unsigned : NumTypeBits;
1689
1690 /// The kind of vector, either a generic vector type or some
1691 /// target-specific vector type such as for AltiVec or Neon.
1692 unsigned VecKind : 3;
1693 /// The number of elements in the vector.
1694 uint32_t NumElements;
1695 };
1696
1697 class AttributedTypeBitfields {
1698 friend class AttributedType;
1699
1700 unsigned : NumTypeBits;
1701
1702 /// An AttributedType::Kind
1703 unsigned AttrKind : 32 - NumTypeBits;
1704 };
1705
1706 class AutoTypeBitfields {
1707 friend class AutoType;
1708
1709 unsigned : NumTypeBits;
1710
1711 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1712 /// or '__auto_type'? AutoTypeKeyword value.
1713 unsigned Keyword : 2;
1714
1715 /// The number of template arguments in the type-constraints, which is
1716 /// expected to be able to hold at least 1024 according to [implimits].
1717 /// However as this limit is somewhat easy to hit with template
1718 /// metaprogramming we'd prefer to keep it as large as possible.
1719 /// At the moment it has been left as a non-bitfield since this type
1720 /// safely fits in 64 bits as an unsigned, so there is no reason to
1721 /// introduce the performance impact of a bitfield.
1722 unsigned NumArgs;
1723 };
1724
1725 class SubstTemplateTypeParmPackTypeBitfields {
1726 friend class SubstTemplateTypeParmPackType;
1727
1728 unsigned : NumTypeBits;
1729
1730 /// The number of template arguments in \c Arguments, which is
1731 /// expected to be able to hold at least 1024 according to [implimits].
1732 /// However as this limit is somewhat easy to hit with template
1733 /// metaprogramming we'd prefer to keep it as large as possible.
1734 /// At the moment it has been left as a non-bitfield since this type
1735 /// safely fits in 64 bits as an unsigned, so there is no reason to
1736 /// introduce the performance impact of a bitfield.
1737 unsigned NumArgs;
1738 };
1739
1740 class TemplateSpecializationTypeBitfields {
1741 friend class TemplateSpecializationType;
1742
1743 unsigned : NumTypeBits;
1744
1745 /// Whether this template specialization type is a substituted type alias.
1746 unsigned TypeAlias : 1;
1747
1748 /// The number of template arguments named in this class template
1749 /// specialization, which is expected to be able to hold at least 1024
1750 /// according to [implimits]. However, as this limit is somewhat easy to
1751 /// hit with template metaprogramming we'd prefer to keep it as large
1752 /// as possible. At the moment it has been left as a non-bitfield since
1753 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1754 /// to introduce the performance impact of a bitfield.
1755 unsigned NumArgs;
1756 };
1757
1758 class DependentTemplateSpecializationTypeBitfields {
1759 friend class DependentTemplateSpecializationType;
1760
1761 unsigned : NumTypeBits;
1762 unsigned : NumTypeWithKeywordBits;
1763
1764 /// The number of template arguments named in this class template
1765 /// specialization, which is expected to be able to hold at least 1024
1766 /// according to [implimits]. However, as this limit is somewhat easy to
1767 /// hit with template metaprogramming we'd prefer to keep it as large
1768 /// as possible. At the moment it has been left as a non-bitfield since
1769 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1770 /// to introduce the performance impact of a bitfield.
1771 unsigned NumArgs;
1772 };
1773
1774 class PackExpansionTypeBitfields {
1775 friend class PackExpansionType;
1776
1777 unsigned : NumTypeBits;
1778
1779 /// The number of expansions that this pack expansion will
1780 /// generate when substituted (+1), which is expected to be able to
1781 /// hold at least 1024 according to [implimits]. However, as this limit
1782 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1783 /// keep it as large as possible. At the moment it has been left as a
1784 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1785 /// there is no reason to introduce the performance impact of a bitfield.
1786 ///
1787 /// This field will only have a non-zero value when some of the parameter
1788 /// packs that occur within the pattern have been substituted but others
1789 /// have not.
1790 unsigned NumExpansions;
1791 };
1792
1793 union {
1794 TypeBitfields TypeBits;
1795 ArrayTypeBitfields ArrayTypeBits;
1796 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1797 AttributedTypeBitfields AttributedTypeBits;
1798 AutoTypeBitfields AutoTypeBits;
1799 BuiltinTypeBitfields BuiltinTypeBits;
1800 FunctionTypeBitfields FunctionTypeBits;
1801 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1802 ReferenceTypeBitfields ReferenceTypeBits;
1803 TypeWithKeywordBitfields TypeWithKeywordBits;
1804 ElaboratedTypeBitfields ElaboratedTypeBits;
1805 VectorTypeBitfields VectorTypeBits;
1806 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1807 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1808 DependentTemplateSpecializationTypeBitfields
1809 DependentTemplateSpecializationTypeBits;
1810 PackExpansionTypeBitfields PackExpansionTypeBits;
1811 };
1812
1813private:
1814 template <class T> friend class TypePropertyCache;
1815
1816 /// Set whether this type comes from an AST file.
1817 void setFromAST(bool V = true) const {
1818 TypeBits.FromAST = V;
1819 }
1820
1821protected:
1822 friend class ASTContext;
1823
1824 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1825 : ExtQualsTypeCommonBase(this,
1826 canon.isNull() ? QualType(this_(), 0) : canon) {
1827 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1828 "changing bitfields changed sizeof(Type)!");
1829 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1830 "Insufficient alignment!");
1831 TypeBits.TC = tc;
1832 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1833 TypeBits.CacheValid = false;
1834 TypeBits.CachedLocalOrUnnamed = false;
1835 TypeBits.CachedLinkage = NoLinkage;
1836 TypeBits.FromAST = false;
1837 }
1838
1839 // silence VC++ warning C4355: 'this' : used in base member initializer list
1840 Type *this_() { return this; }
1841
1842 void setDependence(TypeDependence D) {
1843 TypeBits.Dependence = static_cast<unsigned>(D);
1844 }
1845
1846 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1847
1848public:
1849 friend class ASTReader;
1850 friend class ASTWriter;
1851 template <class T> friend class serialization::AbstractTypeReader;
1852 template <class T> friend class serialization::AbstractTypeWriter;
1853
1854 Type(const Type &) = delete;
1855 Type(Type &&) = delete;
1856 Type &operator=(const Type &) = delete;
1857 Type &operator=(Type &&) = delete;
1858
1859 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1860
1861 /// Whether this type comes from an AST file.
1862 bool isFromAST() const { return TypeBits.FromAST; }
1863
1864 /// Whether this type is or contains an unexpanded parameter
1865 /// pack, used to support C++0x variadic templates.
1866 ///
1867 /// A type that contains a parameter pack shall be expanded by the
1868 /// ellipsis operator at some point. For example, the typedef in the
1869 /// following example contains an unexpanded parameter pack 'T':
1870 ///
1871 /// \code
1872 /// template<typename ...T>
1873 /// struct X {
1874 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1875 /// };
1876 /// \endcode
1877 ///
1878 /// Note that this routine does not specify which
1879 bool containsUnexpandedParameterPack() const {
1880 return getDependence() & TypeDependence::UnexpandedPack;
1881 }
1882
1883 /// Determines if this type would be canonical if it had no further
1884 /// qualification.
1885 bool isCanonicalUnqualified() const {
1886 return CanonicalType == QualType(this, 0);
1887 }
1888
1889 /// Pull a single level of sugar off of this locally-unqualified type.
1890 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1891 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1892 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1893
1894 /// As an extension, we classify types as one of "sized" or "sizeless";
1895 /// every type is one or the other. Standard types are all sized;
1896 /// sizeless types are purely an extension.
1897 ///
1898 /// Sizeless types contain data with no specified size, alignment,
1899 /// or layout.
1900 bool isSizelessType() const;
1901 bool isSizelessBuiltinType() const;
1902
1903 /// Determines if this is a sizeless type supported by the
1904 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1905 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1906 bool isVLSTBuiltinType() const;
1907
1908 /// Returns the representative type for the element of an SVE builtin type.
1909 /// This is used to represent fixed-length SVE vectors created with the
1910 /// 'arm_sve_vector_bits' type attribute as VectorType.
1911 QualType getSveEltType(const ASTContext &Ctx) const;
1912
1913 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1914 /// object types, function types, and incomplete types.
1915
1916 /// Return true if this is an incomplete type.
1917 /// A type that can describe objects, but which lacks information needed to
1918 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1919 /// routine will need to determine if the size is actually required.
1920 ///
1921 /// Def If non-null, and the type refers to some kind of declaration
1922 /// that can be completed (such as a C struct, C++ class, or Objective-C
1923 /// class), will be set to the declaration.
1924 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1925
1926 /// Return true if this is an incomplete or object
1927 /// type, in other words, not a function type.
1928 bool isIncompleteOrObjectType() const {
1929 return !isFunctionType();
1930 }
1931
1932 /// Determine whether this type is an object type.
1933 bool isObjectType() const {
1934 // C++ [basic.types]p8:
1935 // An object type is a (possibly cv-qualified) type that is not a
1936 // function type, not a reference type, and not a void type.
1937 return !isReferenceType() && !isFunctionType() && !isVoidType();
1938 }
1939
1940 /// Return true if this is a literal type
1941 /// (C++11 [basic.types]p10)
1942 bool isLiteralType(const ASTContext &Ctx) const;
1943
1944 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1945 bool isStructuralType() const;
1946
1947 /// Test if this type is a standard-layout type.
1948 /// (C++0x [basic.type]p9)
1949 bool isStandardLayoutType() const;
1950
1951 /// Helper methods to distinguish type categories. All type predicates
1952 /// operate on the canonical type, ignoring typedefs and qualifiers.
1953
1954 /// Returns true if the type is a builtin type.
1955 bool isBuiltinType() const;
1956
1957 /// Test for a particular builtin type.
1958 bool isSpecificBuiltinType(unsigned K) const;
1959
1960 /// Test for a type which does not represent an actual type-system type but
1961 /// is instead used as a placeholder for various convenient purposes within
1962 /// Clang. All such types are BuiltinTypes.
1963 bool isPlaceholderType() const;
1964 const BuiltinType *getAsPlaceholderType() const;
1965
1966 /// Test for a specific placeholder type.
1967 bool isSpecificPlaceholderType(unsigned K) const;
1968
1969 /// Test for a placeholder type other than Overload; see
1970 /// BuiltinType::isNonOverloadPlaceholderType.
1971 bool isNonOverloadPlaceholderType() const;
1972
1973 /// isIntegerType() does *not* include complex integers (a GCC extension).
1974 /// isComplexIntegerType() can be used to test for complex integers.
1975 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1976 bool isEnumeralType() const;
1977
1978 /// Determine whether this type is a scoped enumeration type.
1979 bool isScopedEnumeralType() const;
1980 bool isBooleanType() const;
1981 bool isCharType() const;
1982 bool isWideCharType() const;
1983 bool isChar8Type() const;
1984 bool isChar16Type() const;
1985 bool isChar32Type() const;
1986 bool isAnyCharacterType() const;
1987 bool isIntegralType(const ASTContext &Ctx) const;
1988
1989 /// Determine whether this type is an integral or enumeration type.
1990 bool isIntegralOrEnumerationType() const;
1991
1992 /// Determine whether this type is an integral or unscoped enumeration type.
1993 bool isIntegralOrUnscopedEnumerationType() const;
1994 bool isUnscopedEnumerationType() const;
1995
1996 /// Floating point categories.
1997 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1998 /// isComplexType() does *not* include complex integers (a GCC extension).
1999 /// isComplexIntegerType() can be used to test for complex integers.
2000 bool isComplexType() const; // C99 6.2.5p11 (complex)
2001 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2002 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2003 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2004 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2005 bool isBFloat16Type() const;
2006 bool isFloat128Type() const;
2007 bool isIbm128Type() const;
2008 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2009 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2010 bool isVoidType() const; // C99 6.2.5p19
2011 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2012 bool isAggregateType() const;
2013 bool isFundamentalType() const;
2014 bool isCompoundType() const;
2015
2016 // Type Predicates: Check to see if this type is structurally the specified
2017 // type, ignoring typedefs and qualifiers.
2018 bool isFunctionType() const;
2019 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2020 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2021 bool isPointerType() const;
2022 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2023 bool isBlockPointerType() const;
2024 bool isVoidPointerType() const;
2025 bool isReferenceType() const;
2026 bool isLValueReferenceType() const;
2027 bool isRValueReferenceType() const;
2028 bool isObjectPointerType() const;
2029 bool isFunctionPointerType() const;
2030 bool isFunctionReferenceType() const;
2031 bool isMemberPointerType() const;
2032 bool isMemberFunctionPointerType() const;
2033 bool isMemberDataPointerType() const;
2034 bool isArrayType() const;
2035 bool isConstantArrayType() const;
2036 bool isIncompleteArrayType() const;
2037 bool isVariableArrayType() const;
2038 bool isDependentSizedArrayType() const;
2039 bool isRecordType() const;
2040 bool isClassType() const;
2041 bool isStructureType() const;
2042 bool isObjCBoxableRecordType() const;
2043 bool isInterfaceType() const;
2044 bool isStructureOrClassType() const;
2045 bool isUnionType() const;
2046 bool isComplexIntegerType() const; // GCC _Complex integer type.
2047 bool isVectorType() const; // GCC vector type.
2048 bool isExtVectorType() const; // Extended vector type.
2049 bool isMatrixType() const; // Matrix type.
2050 bool isConstantMatrixType() const; // Constant matrix type.
2051 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2052 bool isObjCObjectPointerType() const; // pointer to ObjC object
2053 bool isObjCRetainableType() const; // ObjC object or block pointer
2054 bool isObjCLifetimeType() const; // (array of)* retainable type
2055 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2056 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2057 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2058 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2059 // for the common case.
2060 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2061 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2062 bool isObjCQualifiedIdType() const; // id<foo>
2063 bool isObjCQualifiedClassType() const; // Class<foo>
2064 bool isObjCObjectOrInterfaceType() const;
2065 bool isObjCIdType() const; // id
2066 bool isDecltypeType() const;
2067 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2068 /// qualifier?
2069 ///
2070 /// This approximates the answer to the following question: if this
2071 /// translation unit were compiled in ARC, would this type be qualified
2072 /// with __unsafe_unretained?
2073 bool isObjCInertUnsafeUnretainedType() const {
2074 return hasAttr(attr::ObjCInertUnsafeUnretained);
2075 }
2076
2077 /// Whether the type is Objective-C 'id' or a __kindof type of an
2078 /// object type, e.g., __kindof NSView * or __kindof id
2079 /// <NSCopying>.
2080 ///
2081 /// \param bound Will be set to the bound on non-id subtype types,
2082 /// which will be (possibly specialized) Objective-C class type, or
2083 /// null for 'id.
2084 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2085 const ObjCObjectType *&bound) const;
2086
2087 bool isObjCClassType() const; // Class
2088
2089 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2090 /// Class type, e.g., __kindof Class <NSCopying>.
2091 ///
2092 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2093 /// here because Objective-C's type system cannot express "a class
2094 /// object for a subclass of NSFoo".
2095 bool isObjCClassOrClassKindOfType() const;
2096
2097 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2098 bool isObjCSelType() const; // Class
2099 bool isObjCBuiltinType() const; // 'id' or 'Class'
2100 bool isObjCARCBridgableType() const;
2101 bool isCARCBridgableType() const;
2102 bool isTemplateTypeParmType() const; // C++ template type parameter
2103 bool isNullPtrType() const; // C++11 std::nullptr_t
2104 bool isNothrowT() const; // C++ std::nothrow_t
2105 bool isAlignValT() const; // C++17 std::align_val_t
2106 bool isStdByteType() const; // C++17 std::byte
2107 bool isAtomicType() const; // C11 _Atomic()
2108 bool isUndeducedAutoType() const; // C++11 auto or
2109 // C++14 decltype(auto)
2110 bool isTypedefNameType() const; // typedef or alias template
2111
2112#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2113 bool is##Id##Type() const;
2114#include "clang/Basic/OpenCLImageTypes.def"
2115
2116 bool isImageType() const; // Any OpenCL image type
2117
2118 bool isSamplerT() const; // OpenCL sampler_t
2119 bool isEventT() const; // OpenCL event_t
2120 bool isClkEventT() const; // OpenCL clk_event_t
2121 bool isQueueT() const; // OpenCL queue_t
2122 bool isReserveIDT() const; // OpenCL reserve_id_t
2123
2124#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2125 bool is##Id##Type() const;
2126#include "clang/Basic/OpenCLExtensionTypes.def"
2127 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2128 bool isOCLIntelSubgroupAVCType() const;
2129 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2130
2131 bool isPipeType() const; // OpenCL pipe type
2132 bool isBitIntType() const; // Bit-precise integer type
2133 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2134
2135 /// Determines if this type, which must satisfy
2136 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2137 /// than implicitly __strong.
2138 bool isObjCARCImplicitlyUnretainedType() const;
2139
2140 /// Check if the type is the CUDA device builtin surface type.
2141 bool isCUDADeviceBuiltinSurfaceType() const;
2142 /// Check if the type is the CUDA device builtin texture type.
2143 bool isCUDADeviceBuiltinTextureType() const;
2144
2145 /// Return the implicit lifetime for this type, which must not be dependent.
2146 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2147
2148 enum ScalarTypeKind {
2149 STK_CPointer,
2150 STK_BlockPointer,
2151 STK_ObjCObjectPointer,
2152 STK_MemberPointer,
2153 STK_Bool,
2154 STK_Integral,
2155 STK_Floating,
2156 STK_IntegralComplex,
2157 STK_FloatingComplex,
2158 STK_FixedPoint
2159 };
2160
2161 /// Given that this is a scalar type, classify it.
2162 ScalarTypeKind getScalarTypeKind() const;
2163
2164 TypeDependence getDependence() const {
2165 return static_cast<TypeDependence>(TypeBits.Dependence);
2166 }
2167
2168 /// Whether this type is an error type.
2169 bool containsErrors() const {
2170 return getDependence() & TypeDependence::Error;
2171 }
2172
2173 /// Whether this type is a dependent type, meaning that its definition
2174 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2175 bool isDependentType() const {
2176 return getDependence() & TypeDependence::Dependent;
2177 }
2178
2179 /// Determine whether this type is an instantiation-dependent type,
2180 /// meaning that the type involves a template parameter (even if the
2181 /// definition does not actually depend on the type substituted for that
2182 /// template parameter).
2183 bool isInstantiationDependentType() const {
2184 return getDependence() & TypeDependence::Instantiation;
2185 }
2186
2187 /// Determine whether this type is an undeduced type, meaning that
2188 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2189 /// deduced.
2190 bool isUndeducedType() const;
2191
2192 /// Whether this type is a variably-modified type (C99 6.7.5).
2193 bool isVariablyModifiedType() const {
2194 return getDependence() & TypeDependence::VariablyModified;
2195 }
2196
2197 /// Whether this type involves a variable-length array type
2198 /// with a definite size.
2199 bool hasSizedVLAType() const;
2200
2201 /// Whether this type is or contains a local or unnamed type.
2202 bool hasUnnamedOrLocalType() const;
2203
2204 bool isOverloadableType() const;
2205
2206 /// Determine wither this type is a C++ elaborated-type-specifier.
2207 bool isElaboratedTypeSpecifier() const;
2208
2209 bool canDecayToPointerType() const;
2210
2211 /// Whether this type is represented natively as a pointer. This includes
2212 /// pointers, references, block pointers, and Objective-C interface,
2213 /// qualified id, and qualified interface types, as well as nullptr_t.
2214 bool hasPointerRepresentation() const;
2215
2216 /// Whether this type can represent an objective pointer type for the
2217 /// purpose of GC'ability
2218 bool hasObjCPointerRepresentation() const;
2219
2220 /// Determine whether this type has an integer representation
2221 /// of some sort, e.g., it is an integer type or a vector.
2222 bool hasIntegerRepresentation() const;
2223
2224 /// Determine whether this type has an signed integer representation
2225 /// of some sort, e.g., it is an signed integer type or a vector.
2226 bool hasSignedIntegerRepresentation() const;
2227
2228 /// Determine whether this type has an unsigned integer representation
2229 /// of some sort, e.g., it is an unsigned integer type or a vector.
2230 bool hasUnsignedIntegerRepresentation() const;
2231
2232 /// Determine whether this type has a floating-point representation
2233 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2234 bool hasFloatingRepresentation() const;
2235
2236 // Type Checking Functions: Check to see if this type is structurally the
2237 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2238 // the best type we can.
2239 const RecordType *getAsStructureType() const;
2240 /// NOTE: getAs*ArrayType are methods on ASTContext.
2241 const RecordType *getAsUnionType() const;
2242 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2243 const ObjCObjectType *getAsObjCInterfaceType() const;
2244
2245 // The following is a convenience method that returns an ObjCObjectPointerType
2246 // for object declared using an interface.
2247 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2248 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2249 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2250 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2251
2252 /// Retrieves the CXXRecordDecl that this type refers to, either
2253 /// because the type is a RecordType or because it is the injected-class-name
2254 /// type of a class template or class template partial specialization.
2255 CXXRecordDecl *getAsCXXRecordDecl() const;
2256
2257 /// Retrieves the RecordDecl this type refers to.
2258 RecordDecl *getAsRecordDecl() const;
2259
2260 /// Retrieves the TagDecl that this type refers to, either
2261 /// because the type is a TagType or because it is the injected-class-name
2262 /// type of a class template or class template partial specialization.
2263 TagDecl *getAsTagDecl() const;
2264
2265 /// If this is a pointer or reference to a RecordType, return the
2266 /// CXXRecordDecl that the type refers to.
2267 ///
2268 /// If this is not a pointer or reference, or the type being pointed to does
2269 /// not refer to a CXXRecordDecl, returns NULL.
2270 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2271
2272 /// Get the DeducedType whose type will be deduced for a variable with
2273 /// an initializer of this type. This looks through declarators like pointer
2274 /// types, but not through decltype or typedefs.
2275 DeducedType *getContainedDeducedType() const;
2276
2277 /// Get the AutoType whose type will be deduced for a variable with
2278 /// an initializer of this type. This looks through declarators like pointer
2279 /// types, but not through decltype or typedefs.
2280 AutoType *getContainedAutoType() const {
2281 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2282 }
2283
2284 /// Determine whether this type was written with a leading 'auto'
2285 /// corresponding to a trailing return type (possibly for a nested
2286 /// function type within a pointer to function type or similar).
2287 bool hasAutoForTrailingReturnType() const;
2288
2289 /// Member-template getAs<specific type>'. Look through sugar for
2290 /// an instance of \<specific type>. This scheme will eventually
2291 /// replace the specific getAsXXXX methods above.
2292 ///
2293 /// There are some specializations of this member template listed
2294 /// immediately following this class.
2295 template <typename T> const T *getAs() const;
2296
2297 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2298 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2299 /// This is used when you need to walk over sugar nodes that represent some
2300 /// kind of type adjustment from a type that was written as a \<specific type>
2301 /// to another type that is still canonically a \<specific type>.
2302 template <typename T> const T *getAsAdjusted() const;
2303
2304 /// A variant of getAs<> for array types which silently discards
2305 /// qualifiers from the outermost type.
2306 const ArrayType *getAsArrayTypeUnsafe() const;
2307
2308 /// Member-template castAs<specific type>. Look through sugar for
2309 /// the underlying instance of \<specific type>.
2310 ///
2311 /// This method has the same relationship to getAs<T> as cast<T> has
2312 /// to dyn_cast<T>; which is to say, the underlying type *must*
2313 /// have the intended type, and this method will never return null.
2314 template <typename T> const T *castAs() const;
2315
2316 /// A variant of castAs<> for array type which silently discards
2317 /// qualifiers from the outermost type.
2318 const ArrayType *castAsArrayTypeUnsafe() const;
2319
2320 /// Determine whether this type had the specified attribute applied to it
2321 /// (looking through top-level type sugar).
2322 bool hasAttr(attr::Kind AK) const;
2323
2324 /// Get the base element type of this type, potentially discarding type
2325 /// qualifiers. This should never be used when type qualifiers
2326 /// are meaningful.
2327 const Type *getBaseElementTypeUnsafe() const;
2328
2329 /// If this is an array type, return the element type of the array,
2330 /// potentially with type qualifiers missing.
2331 /// This should never be used when type qualifiers are meaningful.
2332 const Type *getArrayElementTypeNoTypeQual() const;
2333
2334 /// If this is a pointer type, return the pointee type.
2335 /// If this is an array type, return the array element type.
2336 /// This should never be used when type qualifiers are meaningful.
2337 const Type *getPointeeOrArrayElementType() const;
2338
2339 /// If this is a pointer, ObjC object pointer, or block
2340 /// pointer, this returns the respective pointee.
2341 QualType getPointeeType() const;
2342
2343 /// Return the specified type with any "sugar" removed from the type,
2344 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2345 const Type *getUnqualifiedDesugaredType() const;
2346
2347 /// More type predicates useful for type checking/promotion
2348 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2349
2350 /// Return true if this is an integer type that is
2351 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2352 /// or an enum decl which has a signed representation.
2353 bool isSignedIntegerType() const;
2354
2355 /// Return true if this is an integer type that is
2356 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2357 /// or an enum decl which has an unsigned representation.
2358 bool isUnsignedIntegerType() const;
2359
2360 /// Determines whether this is an integer type that is signed or an
2361 /// enumeration types whose underlying type is a signed integer type.
2362 bool isSignedIntegerOrEnumerationType() const;
2363
2364 /// Determines whether this is an integer type that is unsigned or an
2365 /// enumeration types whose underlying type is a unsigned integer type.
2366 bool isUnsignedIntegerOrEnumerationType() const;
2367
2368 /// Return true if this is a fixed point type according to
2369 /// ISO/IEC JTC1 SC22 WG14 N1169.
2370 bool isFixedPointType() const;
2371
2372 /// Return true if this is a fixed point or integer type.
2373 bool isFixedPointOrIntegerType() const;
2374
2375 /// Return true if this is a saturated fixed point type according to
2376 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2377 bool isSaturatedFixedPointType() const;
2378
2379 /// Return true if this is a saturated fixed point type according to
2380 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2381 bool isUnsaturatedFixedPointType() const;
2382
2383 /// Return true if this is a fixed point type that is signed according
2384 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2385 bool isSignedFixedPointType() const;
2386
2387 /// Return true if this is a fixed point type that is unsigned according
2388 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2389 bool isUnsignedFixedPointType() const;
2390
2391 /// Return true if this is not a variable sized type,
2392 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2393 /// incomplete types.
2394 bool isConstantSizeType() const;
2395
2396 /// Returns true if this type can be represented by some
2397 /// set of type specifiers.
2398 bool isSpecifierType() const;
2399
2400 /// Determine the linkage of this type.
2401 Linkage getLinkage() const;
2402
2403 /// Determine the visibility of this type.
2404 Visibility getVisibility() const {
2405 return getLinkageAndVisibility().getVisibility();
2406 }
2407
2408 /// Return true if the visibility was explicitly set is the code.
2409 bool isVisibilityExplicit() const {
2410 return getLinkageAndVisibility().isVisibilityExplicit();
2411 }
2412
2413 /// Determine the linkage and visibility of this type.
2414 LinkageInfo getLinkageAndVisibility() const;
2415
2416 /// True if the computed linkage is valid. Used for consistency
2417 /// checking. Should always return true.
2418 bool isLinkageValid() const;
2419
2420 /// Determine the nullability of the given type.
2421 ///
2422 /// Note that nullability is only captured as sugar within the type
2423 /// system, not as part of the canonical type, so nullability will
2424 /// be lost by canonicalization and desugaring.
2425 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2426
2427 /// Determine whether the given type can have a nullability
2428 /// specifier applied to it, i.e., if it is any kind of pointer type.
2429 ///
2430 /// \param ResultIfUnknown The value to return if we don't yet know whether
2431 /// this type can have nullability because it is dependent.
2432 bool canHaveNullability(bool ResultIfUnknown = true) const;
2433
2434 /// Retrieve the set of substitutions required when accessing a member
2435 /// of the Objective-C receiver type that is declared in the given context.
2436 ///
2437 /// \c *this is the type of the object we're operating on, e.g., the
2438 /// receiver for a message send or the base of a property access, and is
2439 /// expected to be of some object or object pointer type.
2440 ///
2441 /// \param dc The declaration context for which we are building up a
2442 /// substitution mapping, which should be an Objective-C class, extension,
2443 /// category, or method within.
2444 ///
2445 /// \returns an array of type arguments that can be substituted for
2446 /// the type parameters of the given declaration context in any type described
2447 /// within that context, or an empty optional to indicate that no
2448 /// substitution is required.
2449 Optional<ArrayRef<QualType>>
2450 getObjCSubstitutions(const DeclContext *dc) const;
2451
2452 /// Determines if this is an ObjC interface type that may accept type
2453 /// parameters.
2454 bool acceptsObjCTypeParams() const;
2455
2456 const char *getTypeClassName() const;
2457
2458 QualType getCanonicalTypeInternal() const {
2459 return CanonicalType;
2460 }
2461
2462 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2463 void dump() const;
2464 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2465};
2466
2467/// This will check for a TypedefType by removing any existing sugar
2468/// until it reaches a TypedefType or a non-sugared type.
2469template <> const TypedefType *Type::getAs() const;
2470
2471/// This will check for a TemplateSpecializationType by removing any
2472/// existing sugar until it reaches a TemplateSpecializationType or a
2473/// non-sugared type.
2474template <> const TemplateSpecializationType *Type::getAs() const;
2475
2476/// This will check for an AttributedType by removing any existing sugar
2477/// until it reaches an AttributedType or a non-sugared type.
2478template <> const AttributedType *Type::getAs() const;
2479
2480// We can do canonical leaf types faster, because we don't have to
2481// worry about preserving child type decoration.
2482#define TYPE(Class, Base)
2483#define LEAF_TYPE(Class) \
2484template <> inline const Class##Type *Type::getAs() const { \
2485 return dyn_cast<Class##Type>(CanonicalType); \
2486} \
2487template <> inline const Class##Type *Type::castAs() const { \
2488 return cast<Class##Type>(CanonicalType); \
2489}
2490#include "clang/AST/TypeNodes.inc"
2491
2492/// This class is used for builtin types like 'int'. Builtin
2493/// types are always canonical and have a literal name field.
2494class BuiltinType : public Type {
2495public:
2496 enum Kind {
2497// OpenCL image types
2498#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2499#include "clang/Basic/OpenCLImageTypes.def"
2500// OpenCL extension types
2501#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2502#include "clang/Basic/OpenCLExtensionTypes.def"
2503// SVE Types
2504#define SVE_TYPE(Name, Id, SingletonId) Id,
2505#include "clang/Basic/AArch64SVEACLETypes.def"
2506// PPC MMA Types
2507#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2508#include "clang/Basic/PPCTypes.def"
2509// RVV Types
2510#define RVV_TYPE(Name, Id, SingletonId) Id,
2511#include "clang/Basic/RISCVVTypes.def"
2512// All other builtin types
2513#define BUILTIN_TYPE(Id, SingletonId) Id,
2514#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2515#include "clang/AST/BuiltinTypes.def"
2516 };
2517
2518private:
2519 friend class ASTContext; // ASTContext creates these.
2520
2521 BuiltinType(Kind K)
2522 : Type(Builtin, QualType(),
2523 K == Dependent ? TypeDependence::DependentInstantiation
2524 : TypeDependence::None) {
2525 BuiltinTypeBits.Kind = K;
2526 }
2527
2528public:
2529 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2530 StringRef getName(const PrintingPolicy &Policy) const;
2531
2532 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2533 // The StringRef is null-terminated.
2534 StringRef str = getName(Policy);
2535 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast <bool> (!str.empty() && str.data()
[str.size()] == '\0') ? void (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "clang/include/clang/AST/Type.h", 2535, __extension__ __PRETTY_FUNCTION__
))
;
2536 return str.data();
2537 }
2538
2539 bool isSugared() const { return false; }
2540 QualType desugar() const { return QualType(this, 0); }
2541
2542 bool isInteger() const {
2543 return getKind() >= Bool && getKind() <= Int128;
2544 }
2545
2546 bool isSignedInteger() const {
2547 return getKind() >= Char_S && getKind() <= Int128;
2548 }
2549
2550 bool isUnsignedInteger() const {
2551 return getKind() >= Bool && getKind() <= UInt128;
2552 }
2553
2554 bool isFloatingPoint() const {
2555 return getKind() >= Half && getKind() <= Ibm128;
2556 }
2557
2558 /// Determines whether the given kind corresponds to a placeholder type.
2559 static bool isPlaceholderTypeKind(Kind K) {
2560 return K >= Overload;
2561 }
2562
2563 /// Determines whether this type is a placeholder type, i.e. a type
2564 /// which cannot appear in arbitrary positions in a fully-formed
2565 /// expression.
2566 bool isPlaceholderType() const {
2567 return isPlaceholderTypeKind(getKind());
2568 }
2569
2570 /// Determines whether this type is a placeholder type other than
2571 /// Overload. Most placeholder types require only syntactic
2572 /// information about their context in order to be resolved (e.g.
2573 /// whether it is a call expression), which means they can (and
2574 /// should) be resolved in an earlier "phase" of analysis.
2575 /// Overload expressions sometimes pick up further information
2576 /// from their context, like whether the context expects a
2577 /// specific function-pointer type, and so frequently need
2578 /// special treatment.
2579 bool isNonOverloadPlaceholderType() const {
2580 return getKind() > Overload;
2581 }
2582
2583 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2584};
2585
2586/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2587/// types (_Complex float etc) as well as the GCC integer complex extensions.
2588class ComplexType : public Type, public llvm::FoldingSetNode {
2589 friend class ASTContext; // ASTContext creates these.
2590
2591 QualType ElementType;
2592
2593 ComplexType(QualType Element, QualType CanonicalPtr)
2594 : Type(Complex, CanonicalPtr, Element->getDependence()),
2595 ElementType(Element) {}
2596
2597public:
2598 QualType getElementType() const { return ElementType; }
2599
2600 bool isSugared() const { return false; }
2601 QualType desugar() const { return QualType(this, 0); }
2602
2603 void Profile(llvm::FoldingSetNodeID &ID) {
2604 Profile(ID, getElementType());
2605 }
2606
2607 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2608 ID.AddPointer(Element.getAsOpaquePtr());
2609 }
2610
2611 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2612};
2613
2614/// Sugar for parentheses used when specifying types.
2615class ParenType : public Type, public llvm::FoldingSetNode {
2616 friend class ASTContext; // ASTContext creates these.
2617
2618 QualType Inner;
2619
2620 ParenType(QualType InnerType, QualType CanonType)
2621 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2622
2623public:
2624 QualType getInnerType() const { return Inner; }
2625
2626 bool isSugared() const { return true; }
2627 QualType desugar() const { return getInnerType(); }
2628
2629 void Profile(llvm::FoldingSetNodeID &ID) {
2630 Profile(ID, getInnerType());
2631 }
2632
2633 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2634 Inner.Profile(ID);
2635 }
2636
2637 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2638};
2639
2640/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2641class PointerType : public Type, public llvm::FoldingSetNode {
2642 friend class ASTContext; // ASTContext creates these.
2643
2644 QualType PointeeType;
2645
2646 PointerType(QualType Pointee, QualType CanonicalPtr)
2647 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2648 PointeeType(Pointee) {}
2649
2650public:
2651 QualType getPointeeType() const { return PointeeType; }
2652
2653 bool isSugared() const { return false; }
2654 QualType desugar() const { return QualType(this, 0); }
2655
2656 void Profile(llvm::FoldingSetNodeID &ID) {
2657 Profile(ID, getPointeeType());
2658 }
2659
2660 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2661 ID.AddPointer(Pointee.getAsOpaquePtr());
2662 }
2663
2664 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2665};
2666
2667/// Represents a type which was implicitly adjusted by the semantic
2668/// engine for arbitrary reasons. For example, array and function types can
2669/// decay, and function types can have their calling conventions adjusted.
2670class AdjustedType : public Type, public llvm::FoldingSetNode {
2671 QualType OriginalTy;
2672 QualType AdjustedTy;
2673
2674protected:
2675 friend class ASTContext; // ASTContext creates these.
2676
2677 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2678 QualType CanonicalPtr)
2679 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2680 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2681
2682public:
2683 QualType getOriginalType() const { return OriginalTy; }
2684 QualType getAdjustedType() const { return AdjustedTy; }
2685
2686 bool isSugared() const { return true; }
2687 QualType desugar() const { return AdjustedTy; }
2688
2689 void Profile(llvm::FoldingSetNodeID &ID) {
2690 Profile(ID, OriginalTy, AdjustedTy);
2691 }
2692
2693 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2694 ID.AddPointer(Orig.getAsOpaquePtr());
2695 ID.AddPointer(New.getAsOpaquePtr());
2696 }
2697
2698 static bool classof(const Type *T) {
2699 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2700 }
2701};
2702
2703/// Represents a pointer type decayed from an array or function type.
2704class DecayedType : public AdjustedType {
2705 friend class ASTContext; // ASTContext creates these.
2706
2707 inline
2708 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2709
2710public:
2711 QualType getDecayedType() const { return getAdjustedType(); }
2712
2713 inline QualType getPointeeType() const;
2714
2715 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2716};
2717
2718/// Pointer to a block type.
2719/// This type is to represent types syntactically represented as
2720/// "void (^)(int)", etc. Pointee is required to always be a function type.
2721class BlockPointerType : public Type, public llvm::FoldingSetNode {
2722 friend class ASTContext; // ASTContext creates these.
2723
2724 // Block is some kind of pointer type
2725 QualType PointeeType;
2726
2727 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2728 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2729 PointeeType(Pointee) {}
2730
2731public:
2732 // Get the pointee type. Pointee is required to always be a function type.
2733 QualType getPointeeType() const { return PointeeType; }
2734
2735 bool isSugared() const { return false; }
2736 QualType desugar() const { return QualType(this, 0); }
2737
2738 void Profile(llvm::FoldingSetNodeID &ID) {
2739 Profile(ID, getPointeeType());
2740 }
2741
2742 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2743 ID.AddPointer(Pointee.getAsOpaquePtr());
2744 }
2745
2746 static bool classof(const Type *T) {
2747 return T->getTypeClass() == BlockPointer;
2748 }
2749};
2750
2751/// Base for LValueReferenceType and RValueReferenceType
2752class ReferenceType : public Type, public llvm::FoldingSetNode {
2753 QualType PointeeType;
2754
2755protected:
2756 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2757 bool SpelledAsLValue)
2758 : Type(tc, CanonicalRef, Referencee->getDependence()),
2759 PointeeType(Referencee) {
2760 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2761 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2762 }
2763
2764public:
2765 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2766 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2767
2768 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2769
2770 QualType getPointeeType() const {
2771 // FIXME: this might strip inner qualifiers; okay?
2772 const ReferenceType *T = this;
2773 while (T->isInnerRef())
2774 T = T->PointeeType->castAs<ReferenceType>();
2775 return T->PointeeType;
2776 }
2777
2778 void Profile(llvm::FoldingSetNodeID &ID) {
2779 Profile(ID, PointeeType, isSpelledAsLValue());
2780 }
2781
2782 static void Profile(llvm::FoldingSetNodeID &ID,
2783 QualType Referencee,
2784 bool SpelledAsLValue) {
2785 ID.AddPointer(Referencee.getAsOpaquePtr());
2786 ID.AddBoolean(SpelledAsLValue);
2787 }
2788
2789 static bool classof(const Type *T) {
2790 return T->getTypeClass() == LValueReference ||
2791 T->getTypeClass() == RValueReference;
2792 }
2793};
2794
2795/// An lvalue reference type, per C++11 [dcl.ref].
2796class LValueReferenceType : public ReferenceType {
2797 friend class ASTContext; // ASTContext creates these
2798
2799 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2800 bool SpelledAsLValue)
2801 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2802 SpelledAsLValue) {}
2803
2804public:
2805 bool isSugared() const { return false; }
2806 QualType desugar() const { return QualType(this, 0); }
2807
2808 static bool classof(const Type *T) {
2809 return T->getTypeClass() == LValueReference;
2810 }
2811};
2812
2813/// An rvalue reference type, per C++11 [dcl.ref].
2814class RValueReferenceType : public ReferenceType {
2815 friend class ASTContext; // ASTContext creates these
2816
2817 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2818 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2819
2820public:
2821 bool isSugared() const { return false; }
2822 QualType desugar() const { return QualType(this, 0); }
2823
2824 static bool classof(const Type *T) {
2825 return T->getTypeClass() == RValueReference;
2826 }
2827};
2828
2829/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2830///
2831/// This includes both pointers to data members and pointer to member functions.
2832class MemberPointerType : public Type, public llvm::FoldingSetNode {
2833 friend class ASTContext; // ASTContext creates these.
2834
2835 QualType PointeeType;
2836
2837 /// The class of which the pointee is a member. Must ultimately be a
2838 /// RecordType, but could be a typedef or a template parameter too.
2839 const Type *Class;
2840
2841 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2842 : Type(MemberPointer, CanonicalPtr,
2843 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2844 Pointee->getDependence()),
2845 PointeeType(Pointee), Class(Cls) {}
2846
2847public:
2848 QualType getPointeeType() const { return PointeeType; }
2849
2850 /// Returns true if the member type (i.e. the pointee type) is a
2851 /// function type rather than a data-member type.
2852 bool isMemberFunctionPointer() const {
2853 return PointeeType->isFunctionProtoType();
2854 }
2855
2856 /// Returns true if the member type (i.e. the pointee type) is a
2857 /// data type rather than a function type.
2858 bool isMemberDataPointer() const {
2859 return !PointeeType->isFunctionProtoType();
2860 }
2861
2862 const Type *getClass() const { return Class; }
2863 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2864
2865 bool isSugared() const { return false; }
2866 QualType desugar() const { return QualType(this, 0); }
2867
2868 void Profile(llvm::FoldingSetNodeID &ID) {
2869 Profile(ID, getPointeeType(), getClass());
2870 }
2871
2872 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2873 const Type *Class) {
2874 ID.AddPointer(Pointee.getAsOpaquePtr());
2875 ID.AddPointer(Class);
2876 }
2877
2878 static bool classof(const Type *T) {
2879 return T->getTypeClass() == MemberPointer;
2880 }
2881};
2882
2883/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2884class ArrayType : public Type, public llvm::FoldingSetNode {
2885public:
2886 /// Capture whether this is a normal array (e.g. int X[4])
2887 /// an array with a static size (e.g. int X[static 4]), or an array
2888 /// with a star size (e.g. int X[*]).
2889 /// 'static' is only allowed on function parameters.
2890 enum ArraySizeModifier {
2891 Normal, Static, Star
2892 };
2893
2894private:
2895 /// The element type of the array.
2896 QualType ElementType;
2897
2898protected:
2899 friend class ASTContext; // ASTContext creates these.
2900
2901 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2902 unsigned tq, const Expr *sz = nullptr);
2903
2904public:
2905 QualType getElementType() const { return ElementType; }
2906
2907 ArraySizeModifier getSizeModifier() const {
2908 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2909 }
2910
2911 Qualifiers getIndexTypeQualifiers() const {
2912 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2913 }
2914
2915 unsigned getIndexTypeCVRQualifiers() const {
2916 return ArrayTypeBits.IndexTypeQuals;
2917 }
2918
2919 static bool classof(const Type *T) {
2920 return T->getTypeClass() == ConstantArray ||
2921 T->getTypeClass() == VariableArray ||
2922 T->getTypeClass() == IncompleteArray ||
2923 T->getTypeClass() == DependentSizedArray;
2924 }
2925};
2926
2927/// Represents the canonical version of C arrays with a specified constant size.
2928/// For example, the canonical type for 'int A[4 + 4*100]' is a
2929/// ConstantArrayType where the element type is 'int' and the size is 404.
2930class ConstantArrayType final
2931 : public ArrayType,
2932 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2933 friend class ASTContext; // ASTContext creates these.
2934 friend TrailingObjects;
2935
2936 llvm::APInt Size; // Allows us to unique the type.
2937
2938 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2939 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2940 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2941 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2942 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2943 assert(!can.isNull() && "canonical constant array should not have size")(static_cast <bool> (!can.isNull() && "canonical constant array should not have size"
) ? void (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "clang/include/clang/AST/Type.h", 2943, __extension__ __PRETTY_FUNCTION__
))
;
2944 *getTrailingObjects<const Expr*>() = sz;
2945 }
2946 }
2947
2948 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2949 return ConstantArrayTypeBits.HasStoredSizeExpr;
2950 }
2951
2952public:
2953 const llvm::APInt &getSize() const { return Size; }
2954 const Expr *getSizeExpr() const {
2955 return ConstantArrayTypeBits.HasStoredSizeExpr
2956 ? *getTrailingObjects<const Expr *>()
2957 : nullptr;
2958 }
2959 bool isSugared() const { return false; }
2960 QualType desugar() const { return QualType(this, 0); }
2961
2962 /// Determine the number of bits required to address a member of
2963 // an array with the given element type and number of elements.
2964 static unsigned getNumAddressingBits(const ASTContext &Context,
2965 QualType ElementType,
2966 const llvm::APInt &NumElements);
2967
2968 /// Determine the maximum number of active bits that an array's size
2969 /// can require, which limits the maximum size of the array.
2970 static unsigned getMaxSizeBits(const ASTContext &Context);
2971
2972 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2973 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2974 getSizeModifier(), getIndexTypeCVRQualifiers());
2975 }
2976
2977 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2978 QualType ET, const llvm::APInt &ArraySize,
2979 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2980 unsigned TypeQuals);
2981
2982 static bool classof(const Type *T) {
2983 return T->getTypeClass() == ConstantArray;
2984 }
2985};
2986
2987/// Represents a C array with an unspecified size. For example 'int A[]' has
2988/// an IncompleteArrayType where the element type is 'int' and the size is
2989/// unspecified.
2990class IncompleteArrayType : public ArrayType {
2991 friend class ASTContext; // ASTContext creates these.
2992
2993 IncompleteArrayType(QualType et, QualType can,
2994 ArraySizeModifier sm, unsigned tq)
2995 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2996
2997public:
2998 friend class StmtIteratorBase;
2999
3000 bool isSugared() const { return false; }
3001 QualType desugar() const { return QualType(this, 0); }
3002
3003 static bool classof(const Type *T) {
3004 return T->getTypeClass() == IncompleteArray;
3005 }
3006
3007 void Profile(llvm::FoldingSetNodeID &ID) {
3008 Profile(ID, getElementType(), getSizeModifier(),
3009 getIndexTypeCVRQualifiers());
3010 }
3011
3012 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3013 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3014 ID.AddPointer(ET.getAsOpaquePtr());
3015 ID.AddInteger(SizeMod);
3016 ID.AddInteger(TypeQuals);
3017 }
3018};
3019
3020/// Represents a C array with a specified size that is not an
3021/// integer-constant-expression. For example, 'int s[x+foo()]'.
3022/// Since the size expression is an arbitrary expression, we store it as such.
3023///
3024/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3025/// should not be: two lexically equivalent variable array types could mean
3026/// different things, for example, these variables do not have the same type
3027/// dynamically:
3028///
3029/// void foo(int x) {
3030/// int Y[x];
3031/// ++x;
3032/// int Z[x];
3033/// }
3034class VariableArrayType : public ArrayType {
3035 friend class ASTContext; // ASTContext creates these.
3036
3037 /// An assignment-expression. VLA's are only permitted within
3038 /// a function block.
3039 Stmt *SizeExpr;
3040
3041 /// The range spanned by the left and right array brackets.
3042 SourceRange Brackets;
3043
3044 VariableArrayType(QualType et, QualType can, Expr *e,
3045 ArraySizeModifier sm, unsigned tq,
3046 SourceRange brackets)
3047 : ArrayType(VariableArray, et, can, sm, tq, e),
3048 SizeExpr((Stmt*) e), Brackets(brackets) {}
3049
3050public:
3051 friend class StmtIteratorBase;
3052
3053 Expr *getSizeExpr() const {
3054 // We use C-style casts instead of cast<> here because we do not wish
3055 // to have a dependency of Type.h on Stmt.h/Expr.h.
3056 return (Expr*) SizeExpr;
3057 }
3058
3059 SourceRange getBracketsRange() const { return Brackets; }
3060 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3061 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3062
3063 bool isSugared() const { return false; }
3064 QualType desugar() const { return QualType(this, 0); }
3065
3066 static bool classof(const Type *T) {
3067 return T->getTypeClass() == VariableArray;
3068 }
3069
3070 void Profile(llvm::FoldingSetNodeID &ID) {
3071 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "clang/include/clang/AST/Type.h", 3071)
;
3072 }
3073};
3074
3075/// Represents an array type in C++ whose size is a value-dependent expression.
3076///
3077/// For example:
3078/// \code
3079/// template<typename T, int Size>
3080/// class array {
3081/// T data[Size];
3082/// };
3083/// \endcode
3084///
3085/// For these types, we won't actually know what the array bound is
3086/// until template instantiation occurs, at which point this will
3087/// become either a ConstantArrayType or a VariableArrayType.
3088class DependentSizedArrayType : public ArrayType {
3089 friend class ASTContext; // ASTContext creates these.
3090
3091 const ASTContext &Context;
3092
3093 /// An assignment expression that will instantiate to the
3094 /// size of the array.
3095 ///
3096 /// The expression itself might be null, in which case the array
3097 /// type will have its size deduced from an initializer.
3098 Stmt *SizeExpr;
3099
3100 /// The range spanned by the left and right array brackets.
3101 SourceRange Brackets;
3102
3103 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3104 Expr *e, ArraySizeModifier sm, unsigned tq,
3105 SourceRange brackets);
3106
3107public:
3108 friend class StmtIteratorBase;
3109
3110 Expr *getSizeExpr() const {
3111 // We use C-style casts instead of cast<> here because we do not wish
3112 // to have a dependency of Type.h on Stmt.h/Expr.h.
3113 return (Expr*) SizeExpr;
3114 }
3115
3116 SourceRange getBracketsRange() const { return Brackets; }
3117 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3118 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3119
3120 bool isSugared() const { return false; }
3121 QualType desugar() const { return QualType(this, 0); }
3122
3123 static bool classof(const Type *T) {
3124 return T->getTypeClass() == DependentSizedArray;
3125 }
3126
3127 void Profile(llvm::FoldingSetNodeID &ID) {
3128 Profile(ID, Context, getElementType(),
3129 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3130 }
3131
3132 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3133 QualType ET, ArraySizeModifier SizeMod,
3134 unsigned TypeQuals, Expr *E);
3135};
3136
3137/// Represents an extended address space qualifier where the input address space
3138/// value is dependent. Non-dependent address spaces are not represented with a
3139/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3140///
3141/// For example:
3142/// \code
3143/// template<typename T, int AddrSpace>
3144/// class AddressSpace {
3145/// typedef T __attribute__((address_space(AddrSpace))) type;
3146/// }
3147/// \endcode
3148class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3149 friend class ASTContext;
3150
3151 const ASTContext &Context;
3152 Expr *AddrSpaceExpr;
3153 QualType PointeeType;
3154 SourceLocation loc;
3155
3156 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3157 QualType can, Expr *AddrSpaceExpr,
3158 SourceLocation loc);
3159
3160public:
3161 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3162 QualType getPointeeType() const { return PointeeType; }
3163 SourceLocation getAttributeLoc() const { return loc; }
3164
3165 bool isSugared() const { return false; }
3166 QualType desugar() const { return QualType(this, 0); }
3167
3168 static bool classof(const Type *T) {
3169 return T->getTypeClass() == DependentAddressSpace;
3170 }
3171
3172 void Profile(llvm::FoldingSetNodeID &ID) {
3173 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3174 }
3175
3176 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3177 QualType PointeeType, Expr *AddrSpaceExpr);
3178};
3179
3180/// Represents an extended vector type where either the type or size is
3181/// dependent.
3182///
3183/// For example:
3184/// \code
3185/// template<typename T, int Size>
3186/// class vector {
3187/// typedef T __attribute__((ext_vector_type(Size))) type;
3188/// }
3189/// \endcode
3190class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3191 friend class ASTContext;
3192
3193 const ASTContext &Context;
3194 Expr *SizeExpr;
3195
3196 /// The element type of the array.
3197 QualType ElementType;
3198
3199 SourceLocation loc;
3200
3201 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3202 QualType can, Expr *SizeExpr, SourceLocation loc);
3203
3204public:
3205 Expr *getSizeExpr() const { return SizeExpr; }
3206 QualType getElementType() const { return ElementType; }
3207 SourceLocation getAttributeLoc() const { return loc; }
3208
3209 bool isSugared() const { return false; }
3210 QualType desugar() const { return QualType(this, 0); }
3211
3212 static bool classof(const Type *T) {
3213 return T->getTypeClass() == DependentSizedExtVector;
3214 }
3215
3216 void Profile(llvm::FoldingSetNodeID &ID) {
3217 Profile(ID, Context, getElementType(), getSizeExpr());
3218 }
3219
3220 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3221 QualType ElementType, Expr *SizeExpr);
3222};
3223
3224
3225/// Represents a GCC generic vector type. This type is created using
3226/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3227/// bytes; or from an Altivec __vector or vector declaration.
3228/// Since the constructor takes the number of vector elements, the
3229/// client is responsible for converting the size into the number of elements.
3230class VectorType : public Type, public llvm::FoldingSetNode {
3231public:
3232 enum VectorKind {
3233 /// not a target-specific vector type
3234 GenericVector,
3235
3236 /// is AltiVec vector
3237 AltiVecVector,
3238
3239 /// is AltiVec 'vector Pixel'
3240 AltiVecPixel,
3241
3242 /// is AltiVec 'vector bool ...'
3243 AltiVecBool,
3244
3245 /// is ARM Neon vector
3246 NeonVector,
3247
3248 /// is ARM Neon polynomial vector
3249 NeonPolyVector,
3250
3251 /// is AArch64 SVE fixed-length data vector
3252 SveFixedLengthDataVector,
3253
3254 /// is AArch64 SVE fixed-length predicate vector
3255 SveFixedLengthPredicateVector
3256 };
3257
3258protected:
3259 friend class ASTContext; // ASTContext creates these.
3260
3261 /// The element type of the vector.
3262 QualType ElementType;
3263
3264 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3265 VectorKind vecKind);
3266
3267 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3268 QualType canonType, VectorKind vecKind);
3269
3270public:
3271 QualType getElementType() const { return ElementType; }
3272 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3273
3274 bool isSugared() const { return false; }
3275 QualType desugar() const { return QualType(this, 0); }
3276
3277 VectorKind getVectorKind() const {
3278 return VectorKind(VectorTypeBits.VecKind);
3279 }
3280
3281 void Profile(llvm::FoldingSetNodeID &ID) {
3282 Profile(ID, getElementType(), getNumElements(),
3283 getTypeClass(), getVectorKind());
3284 }
3285
3286 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3287 unsigned NumElements, TypeClass TypeClass,
3288 VectorKind VecKind) {
3289 ID.AddPointer(ElementType.getAsOpaquePtr());
3290 ID.AddInteger(NumElements);
3291 ID.AddInteger(TypeClass);
3292 ID.AddInteger(VecKind);
3293 }
3294
3295 static bool classof(const Type *T) {
3296 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3297 }
3298};
3299
3300/// Represents a vector type where either the type or size is dependent.
3301////
3302/// For example:
3303/// \code
3304/// template<typename T, int Size>
3305/// class vector {
3306/// typedef T __attribute__((vector_size(Size))) type;
3307/// }
3308/// \endcode
3309class DependentVectorType : public Type, public llvm::FoldingSetNode {
3310 friend class ASTContext;
3311
3312 const ASTContext &Context;
3313 QualType ElementType;
3314 Expr *SizeExpr;
3315 SourceLocation Loc;
3316
3317 DependentVectorType(const ASTContext &Context, QualType ElementType,
3318 QualType CanonType, Expr *SizeExpr,
3319 SourceLocation Loc, VectorType::VectorKind vecKind);
3320
3321public:
3322 Expr *getSizeExpr() const { return SizeExpr; }
3323 QualType getElementType() const { return ElementType; }
3324 SourceLocation getAttributeLoc() const { return Loc; }
3325 VectorType::VectorKind getVectorKind() const {
3326 return VectorType::VectorKind(VectorTypeBits.VecKind);
3327 }
3328
3329 bool isSugared() const { return false; }
3330 QualType desugar() const { return QualType(this, 0); }
3331
3332 static bool classof(const Type *T) {
3333 return T->getTypeClass() == DependentVector;
3334 }
3335
3336 void Profile(llvm::FoldingSetNodeID &ID) {
3337 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3338 }
3339
3340 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3341 QualType ElementType, const Expr *SizeExpr,
3342 VectorType::VectorKind VecKind);
3343};
3344
3345/// ExtVectorType - Extended vector type. This type is created using
3346/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3347/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3348/// class enables syntactic extensions, like Vector Components for accessing
3349/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3350/// Shading Language).
3351class ExtVectorType : public VectorType {
3352 friend class ASTContext; // ASTContext creates these.
3353
3354 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3355 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3356
3357public:
3358 static int getPointAccessorIdx(char c) {
3359 switch (c) {
3360 default: return -1;
3361 case 'x': case 'r': return 0;
3362 case 'y': case 'g': return 1;
3363 case 'z': case 'b': return 2;
3364 case 'w': case 'a': return 3;
3365 }
3366 }
3367
3368 static int getNumericAccessorIdx(char c) {
3369 switch (c) {
3370 default: return -1;
3371 case '0': return 0;
3372 case '1': return 1;
3373 case '2': return 2;
3374 case '3': return 3;
3375 case '4': return 4;
3376 case '5': return 5;
3377 case '6': return 6;
3378 case '7': return 7;
3379 case '8': return 8;
3380 case '9': return 9;
3381 case 'A':
3382 case 'a': return 10;
3383 case 'B':
3384 case 'b': return 11;
3385 case 'C':
3386 case 'c': return 12;
3387 case 'D':
3388 case 'd': return 13;
3389 case 'E':
3390 case 'e': return 14;
3391 case 'F':
3392 case 'f': return 15;
3393 }
3394 }
3395
3396 static int getAccessorIdx(char c, bool isNumericAccessor) {
3397 if (isNumericAccessor)
3398 return getNumericAccessorIdx(c);
3399 else
3400 return getPointAccessorIdx(c);
3401 }
3402
3403 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3404 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3405 return unsigned(idx-1) < getNumElements();
3406 return false;
3407 }
3408
3409 bool isSugared() const { return false; }
3410 QualType desugar() const { return QualType(this, 0); }
3411
3412 static bool classof(const Type *T) {
3413 return T->getTypeClass() == ExtVector;
3414 }
3415};
3416
3417/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3418/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3419/// number of rows and "columns" specifies the number of columns.
3420class MatrixType : public Type, public llvm::FoldingSetNode {
3421protected:
3422 friend class ASTContext;
3423
3424 /// The element type of the matrix.
3425 QualType ElementType;
3426
3427 MatrixType(QualType ElementTy, QualType CanonElementTy);
3428
3429 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3430 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3431
3432public:
3433 /// Returns type of the elements being stored in the matrix
3434 QualType getElementType() const { return ElementType; }
3435
3436 /// Valid elements types are the following:
3437 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3438 /// and _Bool
3439 /// * the standard floating types float or double
3440 /// * a half-precision floating point type, if one is supported on the target
3441 static bool isValidElementType(QualType T) {
3442 return T->isDependentType() ||
3443 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3444 }
3445
3446 bool isSugared() const { return false; }
3447 QualType desugar() const { return QualType(this, 0); }
3448
3449 static bool classof(const Type *T) {
3450 return T->getTypeClass() == ConstantMatrix ||
3451 T->getTypeClass() == DependentSizedMatrix;
3452 }
3453};
3454
3455/// Represents a concrete matrix type with constant number of rows and columns
3456class ConstantMatrixType final : public MatrixType {
3457protected:
3458 friend class ASTContext;
3459
3460 /// Number of rows and columns.
3461 unsigned NumRows;
3462 unsigned NumColumns;
3463
3464 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3465
3466 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3467 unsigned NColumns, QualType CanonElementType);
3468
3469 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3470 unsigned NColumns, QualType CanonElementType);
3471
3472public:
3473 /// Returns the number of rows in the matrix.
3474 unsigned getNumRows() const { return NumRows; }
3475
3476 /// Returns the number of columns in the matrix.
3477 unsigned getNumColumns() const { return NumColumns; }
3478
3479 /// Returns the number of elements required to embed the matrix into a vector.
3480 unsigned getNumElementsFlattened() const {
3481 return getNumRows() * getNumColumns();
3482 }
3483
3484 /// Returns true if \p NumElements is a valid matrix dimension.
3485 static constexpr bool isDimensionValid(size_t NumElements) {
3486 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3487 }
3488
3489 /// Returns the maximum number of elements per dimension.
3490 static constexpr unsigned getMaxElementsPerDimension() {
3491 return MaxElementsPerDimension;
3492 }
3493
3494 void Profile(llvm::FoldingSetNodeID &ID) {
3495 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3496 getTypeClass());
3497 }
3498
3499 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3500 unsigned NumRows, unsigned NumColumns,
3501 TypeClass TypeClass) {
3502 ID.AddPointer(ElementType.getAsOpaquePtr());
3503 ID.AddInteger(NumRows);
3504 ID.AddInteger(NumColumns);
3505 ID.AddInteger(TypeClass);
3506 }
3507
3508 static bool classof(const Type *T) {
3509 return T->getTypeClass() == ConstantMatrix;
3510 }
3511};
3512
3513/// Represents a matrix type where the type and the number of rows and columns
3514/// is dependent on a template.
3515class DependentSizedMatrixType final : public MatrixType {
3516 friend class ASTContext;
3517
3518 const ASTContext &Context;
3519 Expr *RowExpr;
3520 Expr *ColumnExpr;
3521
3522 SourceLocation loc;
3523
3524 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3525 QualType CanonicalType, Expr *RowExpr,
3526 Expr *ColumnExpr, SourceLocation loc);
3527
3528public:
3529 Expr *getRowExpr() const { return RowExpr; }
3530 Expr *getColumnExpr() const { return ColumnExpr; }
3531 SourceLocation getAttributeLoc() const { return loc; }
3532
3533 static bool classof(const Type *T) {
3534 return T->getTypeClass() == DependentSizedMatrix;
3535 }
3536
3537 void Profile(llvm::FoldingSetNodeID &ID) {
3538 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3539 }
3540
3541 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3542 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3543};
3544
3545/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3546/// class of FunctionNoProtoType and FunctionProtoType.
3547class FunctionType : public Type {
3548 // The type returned by the function.
3549 QualType ResultType;
3550
3551public:
3552 /// Interesting information about a specific parameter that can't simply
3553 /// be reflected in parameter's type. This is only used by FunctionProtoType
3554 /// but is in FunctionType to make this class available during the
3555 /// specification of the bases of FunctionProtoType.
3556 ///
3557 /// It makes sense to model language features this way when there's some
3558 /// sort of parameter-specific override (such as an attribute) that
3559 /// affects how the function is called. For example, the ARC ns_consumed
3560 /// attribute changes whether a parameter is passed at +0 (the default)
3561 /// or +1 (ns_consumed). This must be reflected in the function type,
3562 /// but isn't really a change to the parameter type.
3563 ///
3564 /// One serious disadvantage of modelling language features this way is
3565 /// that they generally do not work with language features that attempt
3566 /// to destructure types. For example, template argument deduction will
3567 /// not be able to match a parameter declared as
3568 /// T (*)(U)
3569 /// against an argument of type
3570 /// void (*)(__attribute__((ns_consumed)) id)
3571 /// because the substitution of T=void, U=id into the former will
3572 /// not produce the latter.
3573 class ExtParameterInfo {
3574 enum {
3575 ABIMask = 0x0F,
3576 IsConsumed = 0x10,
3577 HasPassObjSize = 0x20,
3578 IsNoEscape = 0x40,
3579 };
3580 unsigned char Data = 0;
3581
3582 public:
3583 ExtParameterInfo() = default;
3584
3585 /// Return the ABI treatment of this parameter.
3586 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3587 ExtParameterInfo withABI(ParameterABI kind) const {
3588 ExtParameterInfo copy = *this;
3589 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3590 return copy;
3591 }
3592
3593 /// Is this parameter considered "consumed" by Objective-C ARC?
3594 /// Consumed parameters must have retainable object type.
3595 bool isConsumed() const { return (Data & IsConsumed); }
3596 ExtParameterInfo withIsConsumed(bool consumed) const {
3597 ExtParameterInfo copy = *this;
3598 if (consumed)
3599 copy.Data |= IsConsumed;
3600 else
3601 copy.Data &= ~IsConsumed;
3602 return copy;
3603 }
3604
3605 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3606 ExtParameterInfo withHasPassObjectSize() const {
3607 ExtParameterInfo Copy = *this;
3608 Copy.Data |= HasPassObjSize;
3609 return Copy;
3610 }
3611
3612 bool isNoEscape() const { return Data & IsNoEscape; }
3613 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3614 ExtParameterInfo Copy = *this;
3615 if (NoEscape)
3616 Copy.Data |= IsNoEscape;
3617 else
3618 Copy.Data &= ~IsNoEscape;
3619 return Copy;
3620 }
3621
3622 unsigned char getOpaqueValue() const { return Data; }
3623 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3624 ExtParameterInfo result;
3625 result.Data = data;
3626 return result;
3627 }
3628
3629 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3630 return lhs.Data == rhs.Data;
3631 }
3632
3633 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3634 return lhs.Data != rhs.Data;
3635 }
3636 };
3637
3638 /// A class which abstracts out some details necessary for
3639 /// making a call.
3640 ///
3641 /// It is not actually used directly for storing this information in
3642 /// a FunctionType, although FunctionType does currently use the
3643 /// same bit-pattern.
3644 ///
3645 // If you add a field (say Foo), other than the obvious places (both,
3646 // constructors, compile failures), what you need to update is
3647 // * Operator==
3648 // * getFoo
3649 // * withFoo
3650 // * functionType. Add Foo, getFoo.
3651 // * ASTContext::getFooType
3652 // * ASTContext::mergeFunctionTypes
3653 // * FunctionNoProtoType::Profile
3654 // * FunctionProtoType::Profile
3655 // * TypePrinter::PrintFunctionProto
3656 // * AST read and write
3657 // * Codegen
3658 class ExtInfo {
3659 friend class FunctionType;
3660
3661 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3662 // adjust the Bits field below, and if you add bits, you'll need to adjust
3663 // Type::FunctionTypeBitfields::ExtInfo as well.
3664
3665 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3666 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3667 //
3668 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3669 enum { CallConvMask = 0x1F };
3670 enum { NoReturnMask = 0x20 };
3671 enum { ProducesResultMask = 0x40 };
3672 enum { NoCallerSavedRegsMask = 0x80 };
3673 enum {
3674 RegParmMask = 0x700,
3675 RegParmOffset = 8
3676 };
3677 enum { NoCfCheckMask = 0x800 };
3678 enum { CmseNSCallMask = 0x1000 };
3679 uint16_t Bits = CC_C;
3680
3681 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3682
3683 public:
3684 // Constructor with no defaults. Use this when you know that you
3685 // have all the elements (when reading an AST file for example).
3686 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3687 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3688 bool cmseNSCall) {
3689 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast <bool> ((!hasRegParm || regParm < 7) &&
"Invalid regparm value") ? void (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3689, __extension__ __PRETTY_FUNCTION__
))
;
3690 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3691 (producesResult ? ProducesResultMask : 0) |
3692 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3693 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3694 (NoCfCheck ? NoCfCheckMask : 0) |
3695 (cmseNSCall ? CmseNSCallMask : 0);
3696 }
3697
3698 // Constructor with all defaults. Use when for example creating a
3699 // function known to use defaults.
3700 ExtInfo() = default;
3701
3702 // Constructor with just the calling convention, which is an important part
3703 // of the canonical type.
3704 ExtInfo(CallingConv CC) : Bits(CC) {}
3705
3706 bool getNoReturn() const { return Bits & NoReturnMask; }
3707 bool getProducesResult() const { return Bits & ProducesResultMask; }
3708 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3709 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3710 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3711 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3712
3713 unsigned getRegParm() const {
3714 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3715 if (RegParm > 0)
3716 --RegParm;
3717 return RegParm;
3718 }
3719
3720 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3721
3722 bool operator==(ExtInfo Other) const {
3723 return Bits == Other.Bits;
3724 }
3725 bool operator!=(ExtInfo Other) const {
3726 return Bits != Other.Bits;
3727 }
3728
3729 // Note that we don't have setters. That is by design, use
3730 // the following with methods instead of mutating these objects.
3731
3732 ExtInfo withNoReturn(bool noReturn) const {
3733 if (noReturn)
3734 return ExtInfo(Bits | NoReturnMask);
3735 else
3736 return ExtInfo(Bits & ~NoReturnMask);
3737 }
3738
3739 ExtInfo withProducesResult(bool producesResult) const {
3740 if (producesResult)
3741 return ExtInfo(Bits | ProducesResultMask);
3742 else
3743 return ExtInfo(Bits & ~ProducesResultMask);
3744 }
3745
3746 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3747 if (cmseNSCall)
3748 return ExtInfo(Bits | CmseNSCallMask);
3749 else
3750 return ExtInfo(Bits & ~CmseNSCallMask);
3751 }
3752
3753 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3754 if (noCallerSavedRegs)
3755 return ExtInfo(Bits | NoCallerSavedRegsMask);
3756 else
3757 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3758 }
3759
3760 ExtInfo withNoCfCheck(bool noCfCheck) const {
3761 if (noCfCheck)
3762 return ExtInfo(Bits | NoCfCheckMask);
3763 else
3764 return ExtInfo(Bits & ~NoCfCheckMask);
3765 }
3766
3767 ExtInfo withRegParm(unsigned RegParm) const {
3768 assert(RegParm < 7 && "Invalid regparm value")(static_cast <bool> (RegParm < 7 && "Invalid regparm value"
) ? void (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3768, __extension__ __PRETTY_FUNCTION__
))
;
3769 return ExtInfo((Bits & ~RegParmMask) |
3770 ((RegParm + 1) << RegParmOffset));
3771 }
3772
3773 ExtInfo withCallingConv(CallingConv cc) const {
3774 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3775 }
3776
3777 void Profile(llvm::FoldingSetNodeID &ID) const {
3778 ID.AddInteger(Bits);
3779 }
3780 };
3781
3782 /// A simple holder for a QualType representing a type in an
3783 /// exception specification. Unfortunately needed by FunctionProtoType
3784 /// because TrailingObjects cannot handle repeated types.
3785 struct ExceptionType { QualType Type; };
3786
3787 /// A simple holder for various uncommon bits which do not fit in
3788 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3789 /// alignment of subsequent objects in TrailingObjects. You must update
3790 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3791 struct alignas(void *) FunctionTypeExtraBitfields {
3792 /// The number of types in the exception specification.
3793 /// A whole unsigned is not needed here and according to
3794 /// [implimits] 8 bits would be enough here.
3795 unsigned NumExceptionType;
3796 };
3797
3798protected:
3799 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3800 TypeDependence Dependence, ExtInfo Info)
3801 : Type(tc, Canonical, Dependence), ResultType(res) {
3802 FunctionTypeBits.ExtInfo = Info.Bits;
3803 }
3804
3805 Qualifiers getFastTypeQuals() const {
3806 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3807 }
3808
3809public:
3810 QualType getReturnType() const { return ResultType; }
3811
3812 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3813 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3814
3815 /// Determine whether this function type includes the GNU noreturn
3816 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3817 /// type.
3818 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3819
3820 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3821 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3822 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3823
3824 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3825 "Const, volatile and restrict are assumed to be a subset of "
3826 "the fast qualifiers.");
3827
3828 bool isConst() const { return getFastTypeQuals().hasConst(); }
3829 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3830 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3831
3832 /// Determine the type of an expression that calls a function of
3833 /// this type.
3834 QualType getCallResultType(const ASTContext &Context) const {
3835 return getReturnType().getNonLValueExprType(Context);
3836 }
3837
3838 static StringRef getNameForCallConv(CallingConv CC);
3839
3840 static bool classof(const Type *T) {
3841 return T->getTypeClass() == FunctionNoProto ||
3842 T->getTypeClass() == FunctionProto;
3843 }
3844};
3845
3846/// Represents a K&R-style 'int foo()' function, which has
3847/// no information available about its arguments.
3848class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3849 friend class ASTContext; // ASTContext creates these.
3850
3851 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3852 : FunctionType(FunctionNoProto, Result, Canonical,
3853 Result->getDependence() &
3854 ~(TypeDependence::DependentInstantiation |
3855 TypeDependence::UnexpandedPack),
3856 Info) {}
3857
3858public:
3859 // No additional state past what FunctionType provides.
3860
3861 bool isSugared() const { return false; }
3862 QualType desugar() const { return QualType(this, 0); }
3863
3864 void Profile(llvm::FoldingSetNodeID &ID) {
3865 Profile(ID, getReturnType(), getExtInfo());
3866 }
3867
3868 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3869 ExtInfo Info) {
3870 Info.Profile(ID);
3871 ID.AddPointer(ResultType.getAsOpaquePtr());
3872 }
3873
3874 static bool classof(const Type *T) {
3875 return T->getTypeClass() == FunctionNoProto;
3876 }
3877};
3878
3879/// Represents a prototype with parameter type info, e.g.
3880/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3881/// parameters, not as having a single void parameter. Such a type can have
3882/// an exception specification, but this specification is not part of the
3883/// canonical type. FunctionProtoType has several trailing objects, some of
3884/// which optional. For more information about the trailing objects see
3885/// the first comment inside FunctionProtoType.
3886class FunctionProtoType final
3887 : public FunctionType,
3888 public llvm::FoldingSetNode,
3889 private llvm::TrailingObjects<
3890 FunctionProtoType, QualType, SourceLocation,
3891 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3892 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3893 friend class ASTContext; // ASTContext creates these.
3894 friend TrailingObjects;
3895
3896 // FunctionProtoType is followed by several trailing objects, some of
3897 // which optional. They are in order:
3898 //
3899 // * An array of getNumParams() QualType holding the parameter types.
3900 // Always present. Note that for the vast majority of FunctionProtoType,
3901 // these will be the only trailing objects.
3902 //
3903 // * Optionally if the function is variadic, the SourceLocation of the
3904 // ellipsis.
3905 //
3906 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3907 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3908 // a single FunctionTypeExtraBitfields. Present if and only if
3909 // hasExtraBitfields() is true.
3910 //
3911 // * Optionally exactly one of:
3912 // * an array of getNumExceptions() ExceptionType,
3913 // * a single Expr *,
3914 // * a pair of FunctionDecl *,
3915 // * a single FunctionDecl *
3916 // used to store information about the various types of exception
3917 // specification. See getExceptionSpecSize for the details.
3918 //
3919 // * Optionally an array of getNumParams() ExtParameterInfo holding
3920 // an ExtParameterInfo for each of the parameters. Present if and
3921 // only if hasExtParameterInfos() is true.
3922 //
3923 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3924 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3925 // if hasExtQualifiers() is true.
3926 //
3927 // The optional FunctionTypeExtraBitfields has to be before the data
3928 // related to the exception specification since it contains the number
3929 // of exception types.
3930 //
3931 // We put the ExtParameterInfos last. If all were equal, it would make
3932 // more sense to put these before the exception specification, because
3933 // it's much easier to skip past them compared to the elaborate switch
3934 // required to skip the exception specification. However, all is not
3935 // equal; ExtParameterInfos are used to model very uncommon features,
3936 // and it's better not to burden the more common paths.
3937
3938public:
3939 /// Holds information about the various types of exception specification.
3940 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3941 /// used to group together the various bits of information about the
3942 /// exception specification.
3943 struct ExceptionSpecInfo {
3944 /// The kind of exception specification this is.
3945 ExceptionSpecificationType Type = EST_None;
3946
3947 /// Explicitly-specified list of exception types.
3948 ArrayRef<QualType> Exceptions;
3949
3950 /// Noexcept expression, if this is a computed noexcept specification.
3951 Expr *NoexceptExpr = nullptr;
3952
3953 /// The function whose exception specification this is, for
3954 /// EST_Unevaluated and EST_Uninstantiated.
3955 FunctionDecl *SourceDecl = nullptr;
3956
3957 /// The function template whose exception specification this is instantiated
3958 /// from, for EST_Uninstantiated.
3959 FunctionDecl *SourceTemplate = nullptr;
3960
3961 ExceptionSpecInfo() = default;
3962
3963 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3964 };
3965
3966 /// Extra information about a function prototype. ExtProtoInfo is not
3967 /// stored as such in FunctionProtoType but is used to group together
3968 /// the various bits of extra information about a function prototype.
3969 struct ExtProtoInfo {
3970 FunctionType::ExtInfo ExtInfo;
3971 bool Variadic : 1;
3972 bool HasTrailingReturn : 1;
3973 Qualifiers TypeQuals;
3974 RefQualifierKind RefQualifier = RQ_None;
3975 ExceptionSpecInfo ExceptionSpec;
3976 const ExtParameterInfo *ExtParameterInfos = nullptr;
3977 SourceLocation EllipsisLoc;
3978
3979 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3980
3981 ExtProtoInfo(CallingConv CC)
3982 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3983
3984 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3985 ExtProtoInfo Result(*this);
3986 Result.ExceptionSpec = ESI;
3987 return Result;
3988 }
3989 };
3990
3991private:
3992 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3993 return getNumParams();
3994 }
3995
3996 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3997 return isVariadic();
3998 }
3999
4000 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4001 return hasExtraBitfields();
4002 }
4003
4004 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4005 return getExceptionSpecSize().NumExceptionType;
4006 }
4007
4008 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4009 return getExceptionSpecSize().NumExprPtr;
4010 }
4011
4012 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4013 return getExceptionSpecSize().NumFunctionDeclPtr;
4014 }
4015
4016 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4017 return hasExtParameterInfos() ? getNumParams() : 0;
4018 }
4019
4020 /// Determine whether there are any argument types that
4021 /// contain an unexpanded parameter pack.
4022 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4023 unsigned numArgs) {
4024 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4025 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4026 return true;
4027
4028 return false;
4029 }
4030
4031 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4032 QualType canonical, const ExtProtoInfo &epi);
4033
4034 /// This struct is returned by getExceptionSpecSize and is used to
4035 /// translate an ExceptionSpecificationType to the number and kind
4036 /// of trailing objects related to the exception specification.
4037 struct ExceptionSpecSizeHolder {
4038 unsigned NumExceptionType;
4039 unsigned NumExprPtr;
4040 unsigned NumFunctionDeclPtr;
4041 };
4042
4043 /// Return the number and kind of trailing objects
4044 /// related to the exception specification.
4045 static ExceptionSpecSizeHolder
4046 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4047 switch (EST) {
4048 case EST_None:
4049 case EST_DynamicNone:
4050 case EST_MSAny:
4051 case EST_BasicNoexcept:
4052 case EST_Unparsed:
4053 case EST_NoThrow:
4054 return {0, 0, 0};
4055
4056 case EST_Dynamic:
4057 return {NumExceptions, 0, 0};
4058
4059 case EST_DependentNoexcept:
4060 case EST_NoexceptFalse:
4061 case EST_NoexceptTrue:
4062 return {0, 1, 0};
4063
4064 case EST_Uninstantiated:
4065 return {0, 0, 2};
4066
4067 case EST_Unevaluated:
4068 return {0, 0, 1};
4069 }
4070 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "clang/include/clang/AST/Type.h", 4070)
;
4071 }
4072
4073 /// Return the number and kind of trailing objects
4074 /// related to the exception specification.
4075 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4076 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4077 }
4078
4079 /// Whether the trailing FunctionTypeExtraBitfields is present.
4080 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4081 // If the exception spec type is EST_Dynamic then we have > 0 exception
4082 // types and the exact number is stored in FunctionTypeExtraBitfields.
4083 return EST == EST_Dynamic;
4084 }
4085
4086 /// Whether the trailing FunctionTypeExtraBitfields is present.
4087 bool hasExtraBitfields() const {
4088 return hasExtraBitfields(getExceptionSpecType());
4089 }
4090
4091 bool hasExtQualifiers() const {
4092 return FunctionTypeBits.HasExtQuals;
4093 }
4094
4095public:
4096 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4097
4098 QualType getParamType(unsigned i) const {
4099 assert(i < getNumParams() && "invalid parameter index")(static_cast <bool> (i < getNumParams() && "invalid parameter index"
) ? void (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "clang/include/clang/AST/Type.h", 4099, __extension__ __PRETTY_FUNCTION__
))
;
4100 return param_type_begin()[i];
4101 }
4102
4103 ArrayRef<QualType> getParamTypes() const {
4104 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4105 }
4106
4107 ExtProtoInfo getExtProtoInfo() const {
4108 ExtProtoInfo EPI;
4109 EPI.ExtInfo = getExtInfo();
4110 EPI.Variadic = isVariadic();
4111 EPI.EllipsisLoc = getEllipsisLoc();
4112 EPI.HasTrailingReturn = hasTrailingReturn();
4113 EPI.ExceptionSpec = getExceptionSpecInfo();
4114 EPI.TypeQuals = getMethodQuals();
4115 EPI.RefQualifier = getRefQualifier();
4116 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4117 return EPI;
4118 }
4119
4120 /// Get the kind of exception specification on this function.
4121 ExceptionSpecificationType getExceptionSpecType() const {
4122 return static_cast<ExceptionSpecificationType>(
4123 FunctionTypeBits.ExceptionSpecType);
4124 }
4125
4126 /// Return whether this function has any kind of exception spec.
4127 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4128
4129 /// Return whether this function has a dynamic (throw) exception spec.
4130 bool hasDynamicExceptionSpec() const {
4131 return isDynamicExceptionSpec(getExceptionSpecType());
4132 }
4133
4134 /// Return whether this function has a noexcept exception spec.
4135 bool hasNoexceptExceptionSpec() const {
4136 return isNoexceptExceptionSpec(getExceptionSpecType());
4137 }
4138
4139 /// Return whether this function has a dependent exception spec.
4140 bool hasDependentExceptionSpec() const;
4141
4142 /// Return whether this function has an instantiation-dependent exception
4143 /// spec.
4144 bool hasInstantiationDependentExceptionSpec() const;
4145
4146 /// Return all the available information about this type's exception spec.
4147 ExceptionSpecInfo getExceptionSpecInfo() const {
4148 ExceptionSpecInfo Result;
4149 Result.Type = getExceptionSpecType();
4150 if (Result.Type == EST_Dynamic) {
4151 Result.Exceptions = exceptions();
4152 } else if (isComputedNoexcept(Result.Type)) {
4153 Result.NoexceptExpr = getNoexceptExpr();
4154 } else if (Result.Type == EST_Uninstantiated) {
4155 Result.SourceDecl = getExceptionSpecDecl();
4156 Result.SourceTemplate = getExceptionSpecTemplate();
4157 } else if (Result.Type == EST_Unevaluated) {
4158 Result.SourceDecl = getExceptionSpecDecl();
4159 }
4160 return Result;
4161 }
4162
4163 /// Return the number of types in the exception specification.
4164 unsigned getNumExceptions() const {
4165 return getExceptionSpecType() == EST_Dynamic
4166 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4167 ->NumExceptionType
4168 : 0;
4169 }
4170
4171 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4172 QualType getExceptionType(unsigned i) const {
4173 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast <bool> (i < getNumExceptions() &&
"Invalid exception number!") ? void (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "clang/include/clang/AST/Type.h", 4173, __extension__ __PRETTY_FUNCTION__
))
;
4174 return exception_begin()[i];
4175 }
4176
4177 /// Return the expression inside noexcept(expression), or a null pointer
4178 /// if there is none (because the exception spec is not of this form).
4179 Expr *getNoexceptExpr() const {
4180 if (!isComputedNoexcept(getExceptionSpecType()))
4181 return nullptr;
4182 return *getTrailingObjects<Expr *>();
4183 }
4184
4185 /// If this function type has an exception specification which hasn't
4186 /// been determined yet (either because it has not been evaluated or because
4187 /// it has not been instantiated), this is the function whose exception
4188 /// specification is represented by this type.
4189 FunctionDecl *getExceptionSpecDecl() const {
4190 if (getExceptionSpecType() != EST_Uninstantiated &&
4191 getExceptionSpecType() != EST_Unevaluated)
4192 return nullptr;
4193 return getTrailingObjects<FunctionDecl *>()[0];
4194 }
4195
4196 /// If this function type has an uninstantiated exception
4197 /// specification, this is the function whose exception specification
4198 /// should be instantiated to find the exception specification for
4199 /// this type.
4200 FunctionDecl *getExceptionSpecTemplate() const {
4201 if (getExceptionSpecType() != EST_Uninstantiated)
4202 return nullptr;
4203 return getTrailingObjects<FunctionDecl *>()[1];
4204 }
4205
4206 /// Determine whether this function type has a non-throwing exception
4207 /// specification.
4208 CanThrowResult canThrow() const;
4209
4210 /// Determine whether this function type has a non-throwing exception
4211 /// specification. If this depends on template arguments, returns
4212 /// \c ResultIfDependent.
4213 bool isNothrow(bool ResultIfDependent = false) const {
4214 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4215 }
4216
4217 /// Whether this function prototype is variadic.
4218 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4219
4220 SourceLocation getEllipsisLoc() const {
4221 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4222 : SourceLocation();
4223 }
4224
4225 /// Determines whether this function prototype contains a
4226 /// parameter pack at the end.
4227 ///
4228 /// A function template whose last parameter is a parameter pack can be
4229 /// called with an arbitrary number of arguments, much like a variadic
4230 /// function.
4231 bool isTemplateVariadic() const;
4232
4233 /// Whether this function prototype has a trailing return type.
4234 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4235
4236 Qualifiers getMethodQuals() const {
4237 if (hasExtQualifiers())
4238 return *getTrailingObjects<Qualifiers>();
4239 else
4240 return getFastTypeQuals();
4241 }
4242
4243 /// Retrieve the ref-qualifier associated with this function type.
4244 RefQualifierKind getRefQualifier() const {
4245 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4246 }
4247
4248 using param_type_iterator = const QualType *;
4249 using param_type_range = llvm::iterator_range<param_type_iterator>;
4250
4251 param_type_range param_types() const {
4252 return param_type_range(param_type_begin(), param_type_end());
4253 }
4254
4255 param_type_iterator param_type_begin() const {
4256 return getTrailingObjects<QualType>();
4257 }
4258
4259 param_type_iterator param_type_end() const {
4260 return param_type_begin() + getNumParams();
4261 }
4262
4263 using exception_iterator = const QualType *;
4264
4265 ArrayRef<QualType> exceptions() const {
4266 return llvm::makeArrayRef(exception_begin(), exception_end());
4267 }
4268
4269 exception_iterator exception_begin() const {
4270 return reinterpret_cast<exception_iterator>(
4271 getTrailingObjects<ExceptionType>());
4272 }
4273
4274 exception_iterator exception_end() const {
4275 return exception_begin() + getNumExceptions();
4276 }
4277
4278 /// Is there any interesting extra information for any of the parameters
4279 /// of this function type?
4280 bool hasExtParameterInfos() const {
4281 return FunctionTypeBits.HasExtParameterInfos;
4282 }
4283
4284 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4285 assert(hasExtParameterInfos())(static_cast <bool> (hasExtParameterInfos()) ? void (0)
: __assert_fail ("hasExtParameterInfos()", "clang/include/clang/AST/Type.h"
, 4285, __extension__ __PRETTY_FUNCTION__))
;
4286 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4287 getNumParams());
4288 }
4289
4290 /// Return a pointer to the beginning of the array of extra parameter
4291 /// information, if present, or else null if none of the parameters
4292 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4293 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4294 if (!hasExtParameterInfos())
4295 return nullptr;
4296 return getTrailingObjects<ExtParameterInfo>();
4297 }
4298
4299 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4300 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4300, __extension__ __PRETTY_FUNCTION__
))
;
4301 if (hasExtParameterInfos())
4302 return getTrailingObjects<ExtParameterInfo>()[I];
4303 return ExtParameterInfo();
4304 }
4305
4306 ParameterABI getParameterABI(unsigned I) const {
4307 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4307, __extension__ __PRETTY_FUNCTION__
))
;
4308 if (hasExtParameterInfos())
4309 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4310 return ParameterABI::Ordinary;
4311 }
4312
4313 bool isParamConsumed(unsigned I) const {
4314 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4314, __extension__ __PRETTY_FUNCTION__
))
;
4315 if (hasExtParameterInfos())
4316 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4317 return false;
4318 }
4319
4320 bool isSugared() const { return false; }
4321 QualType desugar() const { return QualType(this, 0); }
4322
4323 void printExceptionSpecification(raw_ostream &OS,
4324 const PrintingPolicy &Policy) const;
4325
4326 static bool classof(const Type *T) {
4327 return T->getTypeClass() == FunctionProto;
4328 }
4329
4330 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4331 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4332 param_type_iterator ArgTys, unsigned NumArgs,
4333 const ExtProtoInfo &EPI, const ASTContext &Context,
4334 bool Canonical);
4335};
4336
4337/// Represents the dependent type named by a dependently-scoped
4338/// typename using declaration, e.g.
4339/// using typename Base<T>::foo;
4340///
4341/// Template instantiation turns these into the underlying type.
4342class UnresolvedUsingType : public Type {
4343 friend class ASTContext; // ASTContext creates these.
4344
4345 UnresolvedUsingTypenameDecl *Decl;
4346
4347 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4348 : Type(UnresolvedUsing, QualType(),
4349 TypeDependence::DependentInstantiation),
4350 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4351
4352public:
4353 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4354
4355 bool isSugared() const { return false; }
4356 QualType desugar() const { return QualType(this, 0); }
4357
4358 static bool classof(const Type *T) {
4359 return T->getTypeClass() == UnresolvedUsing;
4360 }
4361
4362 void Profile(llvm::FoldingSetNodeID &ID) {
4363 return Profile(ID, Decl);
4364 }
4365
4366 static void Profile(llvm::FoldingSetNodeID &ID,
4367 UnresolvedUsingTypenameDecl *D) {
4368 ID.AddPointer(D);
4369 }
4370};
4371
4372class UsingType : public Type, public llvm::FoldingSetNode {
4373 UsingShadowDecl *Found;
4374 friend class ASTContext; // ASTContext creates these.
4375
4376 UsingType(const UsingShadowDecl *Found, QualType Underlying, QualType Canon);
4377
4378public:
4379 UsingShadowDecl *getFoundDecl() const { return Found; }
4380 QualType getUnderlyingType() const;
4381
4382 bool isSugared() const { return true; }
4383 QualType desugar() const { return getUnderlyingType(); }
4384
4385 void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Found); }
4386 static void Profile(llvm::FoldingSetNodeID &ID,
4387 const UsingShadowDecl *Found) {
4388 ID.AddPointer(Found);
4389 }
4390 static bool classof(const Type *T) { return T->getTypeClass() == Using; }
4391};
4392
4393class TypedefType : public Type {
4394 TypedefNameDecl *Decl;
4395
4396private:
4397 friend class ASTContext; // ASTContext creates these.
4398
4399 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4400 QualType can);
4401
4402public:
4403 TypedefNameDecl *getDecl() const { return Decl; }
4404
4405 bool isSugared() const { return true; }
4406 QualType desugar() const;
4407
4408 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4409};
4410
4411/// Sugar type that represents a type that was qualified by a qualifier written
4412/// as a macro invocation.
4413class MacroQualifiedType : public Type {
4414 friend class ASTContext; // ASTContext creates these.
4415
4416 QualType UnderlyingTy;
4417 const IdentifierInfo *MacroII;
4418
4419 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4420 const IdentifierInfo *MacroII)
4421 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4422 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4423 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4424, __extension__ __PRETTY_FUNCTION__
))
4424 "Expected a macro qualified type to only wrap attributed types.")(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4424, __extension__ __PRETTY_FUNCTION__
))
;
4425 }
4426
4427public:
4428 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4429 QualType getUnderlyingType() const { return UnderlyingTy; }
4430
4431 /// Return this attributed type's modified type with no qualifiers attached to
4432 /// it.
4433 QualType getModifiedType() const;
4434
4435 bool isSugared() const { return true; }
4436 QualType desugar() const;
4437
4438 static bool classof(const Type *T) {
4439 return T->getTypeClass() == MacroQualified;
4440 }
4441};
4442
4443/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4444class TypeOfExprType : public Type {
4445 Expr *TOExpr;
4446
4447protected:
4448 friend class ASTContext; // ASTContext creates these.
4449
4450 TypeOfExprType(Expr *E, QualType can = QualType());
4451
4452public:
4453 Expr *getUnderlyingExpr() const { return TOExpr; }
4454
4455 /// Remove a single level of sugar.
4456 QualType desugar() const;
4457
4458 /// Returns whether this type directly provides sugar.
4459 bool isSugared() const;
4460
4461 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4462};
4463
4464/// Internal representation of canonical, dependent
4465/// `typeof(expr)` types.
4466///
4467/// This class is used internally by the ASTContext to manage
4468/// canonical, dependent types, only. Clients will only see instances
4469/// of this class via TypeOfExprType nodes.
4470class DependentTypeOfExprType
4471 : public TypeOfExprType, public llvm::FoldingSetNode {
4472 const ASTContext &Context;
4473
4474public:
4475 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4476 : TypeOfExprType(E), Context(Context) {}
4477
4478 void Profile(llvm::FoldingSetNodeID &ID) {
4479 Profile(ID, Context, getUnderlyingExpr());
4480 }
4481
4482 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4483 Expr *E);
4484};
4485
4486/// Represents `typeof(type)`, a GCC extension.
4487class TypeOfType : public Type {
4488 friend class ASTContext; // ASTContext creates these.
4489
4490 QualType TOType;
4491
4492 TypeOfType(QualType T, QualType can)
4493 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4494 assert(!isa<TypedefType>(can) && "Invalid canonical type")(static_cast <bool> (!isa<TypedefType>(can) &&
"Invalid canonical type") ? void (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "clang/include/clang/AST/Type.h", 4494, __extension__ __PRETTY_FUNCTION__
))
;
4495 }
4496
4497public:
4498 QualType getUnderlyingType() const { return TOType; }
4499
4500 /// Remove a single level of sugar.
4501 QualType desugar() const { return getUnderlyingType(); }
4502
4503 /// Returns whether this type directly provides sugar.
4504 bool isSugared() const { return true; }
4505
4506 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4507};
4508
4509/// Represents the type `decltype(expr)` (C++11).
4510class DecltypeType : public Type {
4511 Expr *E;
4512 QualType UnderlyingType;
4513
4514protected:
4515 friend class ASTContext; // ASTContext creates these.
4516
4517 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4518
4519public:
4520 Expr *getUnderlyingExpr() const { return E; }
4521 QualType getUnderlyingType() const { return UnderlyingType; }
4522
4523 /// Remove a single level of sugar.
4524 QualType desugar() const;
4525
4526 /// Returns whether this type directly provides sugar.
4527 bool isSugared() const;
4528
4529 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4530};
4531
4532/// Internal representation of canonical, dependent
4533/// decltype(expr) types.
4534///
4535/// This class is used internally by the ASTContext to manage
4536/// canonical, dependent types, only. Clients will only see instances
4537/// of this class via DecltypeType nodes.
4538class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4539 const ASTContext &Context;
4540
4541public:
4542 DependentDecltypeType(const ASTContext &Context, Expr *E);
4543
4544 void Profile(llvm::FoldingSetNodeID &ID) {
4545 Profile(ID, Context, getUnderlyingExpr());
4546 }
4547
4548 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4549 Expr *E);
4550};
4551
4552/// A unary type transform, which is a type constructed from another.
4553class UnaryTransformType : public Type {
4554public:
4555 enum UTTKind {
4556 EnumUnderlyingType
4557 };
4558
4559private:
4560 /// The untransformed type.
4561 QualType BaseType;
4562
4563 /// The transformed type if not dependent, otherwise the same as BaseType.
4564 QualType UnderlyingType;
4565
4566 UTTKind UKind;
4567
4568protected:
4569 friend class ASTContext;
4570
4571 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4572 QualType CanonicalTy);
4573
4574public:
4575 bool isSugared() const { return !isDependentType(); }
4576 QualType desugar() const { return UnderlyingType; }
4577
4578 QualType getUnderlyingType() const { return UnderlyingType; }
4579 QualType getBaseType() const { return BaseType; }
4580
4581 UTTKind getUTTKind() const { return UKind; }
4582
4583 static bool classof(const Type *T) {
4584 return T->getTypeClass() == UnaryTransform;
4585 }
4586};
4587
4588/// Internal representation of canonical, dependent
4589/// __underlying_type(type) types.
4590///
4591/// This class is used internally by the ASTContext to manage
4592/// canonical, dependent types, only. Clients will only see instances
4593/// of this class via UnaryTransformType nodes.
4594class DependentUnaryTransformType : public UnaryTransformType,
4595 public llvm::FoldingSetNode {
4596public:
4597 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4598 UTTKind UKind);
4599
4600 void Profile(llvm::FoldingSetNodeID &ID) {
4601 Profile(ID, getBaseType(), getUTTKind());
4602 }
4603
4604 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4605 UTTKind UKind) {
4606 ID.AddPointer(BaseType.getAsOpaquePtr());
4607 ID.AddInteger((unsigned)UKind);
4608 }
4609};
4610
4611class TagType : public Type {
4612 friend class ASTReader;
4613 template <class T> friend class serialization::AbstractTypeReader;
4614
4615 /// Stores the TagDecl associated with this type. The decl may point to any
4616 /// TagDecl that declares the entity.
4617 TagDecl *decl;
4618
4619protected:
4620 TagType(TypeClass TC, const TagDecl *D, QualType can);
4621
4622public:
4623 TagDecl *getDecl() const;
4624
4625 /// Determines whether this type is in the process of being defined.
4626 bool isBeingDefined() const;
4627
4628 static bool classof(const Type *T) {
4629 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4630 }
4631};
4632
4633/// A helper class that allows the use of isa/cast/dyncast
4634/// to detect TagType objects of structs/unions/classes.
4635class RecordType : public TagType {
4636protected:
4637 friend class ASTContext; // ASTContext creates these.
4638
4639 explicit RecordType(const RecordDecl *D)
4640 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4641 explicit RecordType(TypeClass TC, RecordDecl *D)
4642 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4643
4644public:
4645 RecordDecl *getDecl() const {
4646 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4647 }
4648
4649 /// Recursively check all fields in the record for const-ness. If any field
4650 /// is declared const, return true. Otherwise, return false.
4651 bool hasConstFields() const;
4652
4653 bool isSugared() const { return false; }
4654 QualType desugar() const { return QualType(this, 0); }
4655
4656 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4657};
4658
4659/// A helper class that allows the use of isa/cast/dyncast
4660/// to detect TagType objects of enums.
4661class EnumType : public TagType {
4662 friend class ASTContext; // ASTContext creates these.
4663
4664 explicit EnumType(const EnumDecl *D)
4665 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4666
4667public:
4668 EnumDecl *getDecl() const {
4669 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4670 }
4671
4672 bool isSugared() const { return false; }
4673 QualType desugar() const { return QualType(this, 0); }
4674
4675 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4676};
4677
4678/// An attributed type is a type to which a type attribute has been applied.
4679///
4680/// The "modified type" is the fully-sugared type to which the attributed
4681/// type was applied; generally it is not canonically equivalent to the
4682/// attributed type. The "equivalent type" is the minimally-desugared type
4683/// which the type is canonically equivalent to.
4684///
4685/// For example, in the following attributed type:
4686/// int32_t __attribute__((vector_size(16)))
4687/// - the modified type is the TypedefType for int32_t
4688/// - the equivalent type is VectorType(16, int32_t)
4689/// - the canonical type is VectorType(16, int)
4690class AttributedType : public Type, public llvm::FoldingSetNode {
4691public:
4692 using Kind = attr::Kind;
4693
4694private:
4695 friend class ASTContext; // ASTContext creates these
4696
4697 QualType ModifiedType;
4698 QualType EquivalentType;
4699
4700 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4701 QualType equivalent)
4702 : Type(Attributed, canon, equivalent->getDependence()),
4703 ModifiedType(modified), EquivalentType(equivalent) {
4704 AttributedTypeBits.AttrKind = attrKind;
4705 }
4706
4707public:
4708 Kind getAttrKind() const {
4709 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4710 }
4711
4712 QualType getModifiedType() const { return ModifiedType; }
4713 QualType getEquivalentType() const { return EquivalentType; }
4714
4715 bool isSugared() const { return true; }
4716 QualType desugar() const { return getEquivalentType(); }
4717
4718 /// Does this attribute behave like a type qualifier?
4719 ///
4720 /// A type qualifier adjusts a type to provide specialized rules for
4721 /// a specific object, like the standard const and volatile qualifiers.
4722 /// This includes attributes controlling things like nullability,
4723 /// address spaces, and ARC ownership. The value of the object is still
4724 /// largely described by the modified type.
4725 ///
4726 /// In contrast, many type attributes "rewrite" their modified type to
4727 /// produce a fundamentally different type, not necessarily related in any
4728 /// formalizable way to the original type. For example, calling convention
4729 /// and vector attributes are not simple type qualifiers.
4730 ///
4731 /// Type qualifiers are often, but not always, reflected in the canonical
4732 /// type.
4733 bool isQualifier() const;
4734
4735 bool isMSTypeSpec() const;
4736
4737 bool isCallingConv() const;
4738
4739 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4740
4741 /// Retrieve the attribute kind corresponding to the given
4742 /// nullability kind.
4743 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4744 switch (kind) {
4745 case NullabilityKind::NonNull:
4746 return attr::TypeNonNull;
4747
4748 case NullabilityKind::Nullable:
4749 return attr::TypeNullable;
4750
4751 case NullabilityKind::NullableResult:
4752 return attr::TypeNullableResult;
4753
4754 case NullabilityKind::Unspecified:
4755 return attr::TypeNullUnspecified;
4756 }
4757 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "clang/include/clang/AST/Type.h", 4757)
;
4758 }
4759
4760 /// Strip off the top-level nullability annotation on the given
4761 /// type, if it's there.
4762 ///
4763 /// \param T The type to strip. If the type is exactly an
4764 /// AttributedType specifying nullability (without looking through
4765 /// type sugar), the nullability is returned and this type changed
4766 /// to the underlying modified type.
4767 ///
4768 /// \returns the top-level nullability, if present.
4769 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4770
4771 void Profile(llvm::FoldingSetNodeID &ID) {
4772 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4773 }
4774
4775 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4776 QualType modified, QualType equivalent) {
4777 ID.AddInteger(attrKind);
4778 ID.AddPointer(modified.getAsOpaquePtr());
4779 ID.AddPointer(equivalent.getAsOpaquePtr());
4780 }
4781
4782 static bool classof(const Type *T) {
4783 return T->getTypeClass() == Attributed;
4784 }
4785};
4786
4787class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4788 friend class ASTContext; // ASTContext creates these
4789
4790 // Helper data collector for canonical types.
4791 struct CanonicalTTPTInfo {
4792 unsigned Depth : 15;
4793 unsigned ParameterPack : 1;
4794 unsigned Index : 16;
4795 };
4796
4797 union {
4798 // Info for the canonical type.
4799 CanonicalTTPTInfo CanTTPTInfo;
4800
4801 // Info for the non-canonical type.
4802 TemplateTypeParmDecl *TTPDecl;
4803 };
4804
4805 /// Build a non-canonical type.
4806 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4807 : Type(TemplateTypeParm, Canon,
4808 TypeDependence::DependentInstantiation |
4809 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4810 TTPDecl(TTPDecl) {}
4811
4812 /// Build the canonical type.
4813 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4814 : Type(TemplateTypeParm, QualType(this, 0),
4815 TypeDependence::DependentInstantiation |
4816 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4817 CanTTPTInfo.Depth = D;
4818 CanTTPTInfo.Index = I;
4819 CanTTPTInfo.ParameterPack = PP;
4820 }
4821
4822 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4823 QualType Can = getCanonicalTypeInternal();
4824 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4825 }
4826
4827public:
4828 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4829 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4830 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4831
4832 TemplateTypeParmDecl *getDecl() const {
4833 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4834 }
4835
4836 IdentifierInfo *getIdentifier() const;
4837
4838 bool isSugared() const { return false; }
4839 QualType desugar() const { return QualType(this, 0); }
4840
4841 void Profile(llvm::FoldingSetNodeID &ID) {
4842 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4843 }
4844
4845 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4846 unsigned Index, bool ParameterPack,
4847 TemplateTypeParmDecl *TTPDecl) {
4848 ID.AddInteger(Depth);
4849 ID.AddInteger(Index);
4850 ID.AddBoolean(ParameterPack);
4851 ID.AddPointer(TTPDecl);
4852 }
4853
4854 static bool classof(const Type *T) {
4855 return T->getTypeClass() == TemplateTypeParm;
4856 }
4857};
4858
4859/// Represents the result of substituting a type for a template
4860/// type parameter.
4861///
4862/// Within an instantiated template, all template type parameters have
4863/// been replaced with these. They are used solely to record that a
4864/// type was originally written as a template type parameter;
4865/// therefore they are never canonical.
4866class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4867 friend class ASTContext;
4868
4869 // The original type parameter.
4870 const TemplateTypeParmType *Replaced;
4871
4872 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4873 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4874 Replaced(Param) {}
4875
4876public:
4877 /// Gets the template parameter that was substituted for.
4878 const TemplateTypeParmType *getReplacedParameter() const {
4879 return Replaced;
4880 }
4881
4882 /// Gets the type that was substituted for the template
4883 /// parameter.
4884 QualType getReplacementType() const {
4885 return getCanonicalTypeInternal();
4886 }
4887
4888 bool isSugared() const { return true; }
4889 QualType desugar() const { return getReplacementType(); }
4890
4891 void Profile(llvm::FoldingSetNodeID &ID) {
4892 Profile(ID, getReplacedParameter(), getReplacementType());
4893 }
4894
4895 static void Profile(llvm::FoldingSetNodeID &ID,
4896 const TemplateTypeParmType *Replaced,
4897 QualType Replacement) {
4898 ID.AddPointer(Replaced);
4899 ID.AddPointer(Replacement.getAsOpaquePtr());
4900 }
4901
4902 static bool classof(const Type *T) {
4903 return T->getTypeClass() == SubstTemplateTypeParm;
4904 }
4905};
4906
4907/// Represents the result of substituting a set of types for a template
4908/// type parameter pack.
4909///
4910/// When a pack expansion in the source code contains multiple parameter packs
4911/// and those parameter packs correspond to different levels of template
4912/// parameter lists, this type node is used to represent a template type
4913/// parameter pack from an outer level, which has already had its argument pack
4914/// substituted but that still lives within a pack expansion that itself
4915/// could not be instantiated. When actually performing a substitution into
4916/// that pack expansion (e.g., when all template parameters have corresponding
4917/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4918/// at the current pack substitution index.
4919class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4920 friend class ASTContext;
4921
4922 /// The original type parameter.
4923 const TemplateTypeParmType *Replaced;
4924
4925 /// A pointer to the set of template arguments that this
4926 /// parameter pack is instantiated with.
4927 const TemplateArgument *Arguments;
4928
4929 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4930 QualType Canon,
4931 const TemplateArgument &ArgPack);
4932
4933public:
4934 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4935
4936 /// Gets the template parameter that was substituted for.
4937 const TemplateTypeParmType *getReplacedParameter() const {
4938 return Replaced;
4939 }
4940
4941 unsigned getNumArgs() const {
4942 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4943 }
4944
4945 bool isSugared() const { return false; }
4946 QualType desugar() const { return QualType(this, 0); }
4947
4948 TemplateArgument getArgumentPack() const;
4949
4950 void Profile(llvm::FoldingSetNodeID &ID);
4951 static void Profile(llvm::FoldingSetNodeID &ID,
4952 const TemplateTypeParmType *Replaced,
4953 const TemplateArgument &ArgPack);
4954
4955 static bool classof(const Type *T) {
4956 return T->getTypeClass() == SubstTemplateTypeParmPack;
4957 }
4958};
4959
4960/// Common base class for placeholders for types that get replaced by
4961/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4962/// class template types, and constrained type names.
4963///
4964/// These types are usually a placeholder for a deduced type. However, before
4965/// the initializer is attached, or (usually) if the initializer is
4966/// type-dependent, there is no deduced type and the type is canonical. In
4967/// the latter case, it is also a dependent type.
4968class DeducedType : public Type {
4969 QualType DeducedAsType;
4970
4971protected:
4972 DeducedType(TypeClass TC, QualType DeducedAsType,
4973 TypeDependence ExtraDependence, QualType Canon)
4974 : Type(TC, Canon,
4975 ExtraDependence | (DeducedAsType.isNull()
4976 ? TypeDependence::None
4977 : DeducedAsType->getDependence() &
4978 ~TypeDependence::VariablyModified)),
4979 DeducedAsType(DeducedAsType) {}
4980
4981public:
4982 bool isSugared() const { return !DeducedAsType.isNull(); }
4983 QualType desugar() const {
4984 return isSugared() ? DeducedAsType : QualType(this, 0);
4985 }
4986
4987 /// Get the type deduced for this placeholder type, or null if it
4988 /// has not been deduced.
4989 QualType getDeducedType() const { return DeducedAsType; }
4990 bool isDeduced() const {
4991 return !DeducedAsType.isNull() || isDependentType();
4992 }
4993
4994 static bool classof(const Type *T) {
4995 return T->getTypeClass() == Auto ||
4996 T->getTypeClass() == DeducedTemplateSpecialization;
4997 }
4998};
4999
5000/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
5001/// by a type-constraint.
5002class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
5003 friend class ASTContext; // ASTContext creates these
5004
5005 ConceptDecl *TypeConstraintConcept;
5006
5007 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
5008 TypeDependence ExtraDependence, QualType Canon, ConceptDecl *CD,
5009 ArrayRef<TemplateArgument> TypeConstraintArgs);
5010
5011 const TemplateArgument *getArgBuffer() const {
5012 return reinterpret_cast<const TemplateArgument*>(this+1);
5013 }
5014
5015 TemplateArgument *getArgBuffer() {
5016 return reinterpret_cast<TemplateArgument*>(this+1);
5017 }
5018
5019public:
5020 /// Retrieve the template arguments.
5021 const TemplateArgument *getArgs() const {
5022 return getArgBuffer();
5023 }
5024
5025 /// Retrieve the number of template arguments.
5026 unsigned getNumArgs() const {
5027 return AutoTypeBits.NumArgs;
5028 }
5029
5030 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5031
5032 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5033 return {getArgs(), getNumArgs()};
5034 }
5035
5036 ConceptDecl *getTypeConstraintConcept() const {
5037 return TypeConstraintConcept;
5038 }
5039
5040 bool isConstrained() const {
5041 return TypeConstraintConcept != nullptr;
5042 }
5043
5044 bool isDecltypeAuto() const {
5045 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5046 }
5047
5048 AutoTypeKeyword getKeyword() const {
5049 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5050 }
5051
5052 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5053 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5054 getTypeConstraintConcept(), getTypeConstraintArguments());
5055 }
5056
5057 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5058 QualType Deduced, AutoTypeKeyword Keyword,
5059 bool IsDependent, ConceptDecl *CD,
5060 ArrayRef<TemplateArgument> Arguments);
5061
5062 static bool classof(const Type *T) {
5063 return T->getTypeClass() == Auto;
5064 }
5065};
5066
5067/// Represents a C++17 deduced template specialization type.
5068class DeducedTemplateSpecializationType : public DeducedType,
5069 public llvm::FoldingSetNode {
5070 friend class ASTContext; // ASTContext creates these
5071
5072 /// The name of the template whose arguments will be deduced.
5073 TemplateName Template;
5074
5075 DeducedTemplateSpecializationType(TemplateName Template,
5076 QualType DeducedAsType,
5077 bool IsDeducedAsDependent)
5078 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5079 toTypeDependence(Template.getDependence()) |
5080 (IsDeducedAsDependent
5081 ? TypeDependence::DependentInstantiation
5082 : TypeDependence::None),
5083 DeducedAsType.isNull() ? QualType(this, 0)
5084 : DeducedAsType.getCanonicalType()),
5085 Template(Template) {}
5086
5087public:
5088 /// Retrieve the name of the template that we are deducing.
5089 TemplateName getTemplateName() const { return Template;}
5090
5091 void Profile(llvm::FoldingSetNodeID &ID) {
5092 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5093 }
5094
5095 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5096 QualType Deduced, bool IsDependent) {
5097 Template.Profile(ID);
5098 QualType CanonicalType =
5099 Deduced.isNull() ? Deduced : Deduced.getCanonicalType();
5100 ID.AddPointer(CanonicalType.getAsOpaquePtr());
5101 ID.AddBoolean(IsDependent || Template.isDependent());
5102 }
5103
5104 static bool classof(const Type *T) {
5105 return T->getTypeClass() == DeducedTemplateSpecialization;
5106 }
5107};
5108
5109/// Represents a type template specialization; the template
5110/// must be a class template, a type alias template, or a template
5111/// template parameter. A template which cannot be resolved to one of
5112/// these, e.g. because it is written with a dependent scope
5113/// specifier, is instead represented as a
5114/// @c DependentTemplateSpecializationType.
5115///
5116/// A non-dependent template specialization type is always "sugar",
5117/// typically for a \c RecordType. For example, a class template
5118/// specialization type of \c vector<int> will refer to a tag type for
5119/// the instantiation \c std::vector<int, std::allocator<int>>
5120///
5121/// Template specializations are dependent if either the template or
5122/// any of the template arguments are dependent, in which case the
5123/// type may also be canonical.
5124///
5125/// Instances of this type are allocated with a trailing array of
5126/// TemplateArguments, followed by a QualType representing the
5127/// non-canonical aliased type when the template is a type alias
5128/// template.
5129class alignas(8) TemplateSpecializationType
5130 : public Type,
5131 public llvm::FoldingSetNode {
5132 friend class ASTContext; // ASTContext creates these
5133
5134 /// The name of the template being specialized. This is
5135 /// either a TemplateName::Template (in which case it is a
5136 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5137 /// TypeAliasTemplateDecl*), a
5138 /// TemplateName::SubstTemplateTemplateParmPack, or a
5139 /// TemplateName::SubstTemplateTemplateParm (in which case the
5140 /// replacement must, recursively, be one of these).
5141 TemplateName Template;
5142
5143 TemplateSpecializationType(TemplateName T,
5144 ArrayRef<TemplateArgument> Args,
5145 QualType Canon,
5146 QualType Aliased);
5147
5148public:
5149 /// Determine whether any of the given template arguments are dependent.
5150 ///
5151 /// The converted arguments should be supplied when known; whether an
5152 /// argument is dependent can depend on the conversions performed on it
5153 /// (for example, a 'const int' passed as a template argument might be
5154 /// dependent if the parameter is a reference but non-dependent if the
5155 /// parameter is an int).
5156 ///
5157 /// Note that the \p Args parameter is unused: this is intentional, to remind
5158 /// the caller that they need to pass in the converted arguments, not the
5159 /// specified arguments.
5160 static bool
5161 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5162 ArrayRef<TemplateArgument> Converted);
5163 static bool
5164 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5165 ArrayRef<TemplateArgument> Converted);
5166 static bool anyInstantiationDependentTemplateArguments(
5167 ArrayRef<TemplateArgumentLoc> Args);
5168
5169 /// True if this template specialization type matches a current
5170 /// instantiation in the context in which it is found.
5171 bool isCurrentInstantiation() const {
5172 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5173 }
5174
5175 /// Determine if this template specialization type is for a type alias
5176 /// template that has been substituted.
5177 ///
5178 /// Nearly every template specialization type whose template is an alias
5179 /// template will be substituted. However, this is not the case when
5180 /// the specialization contains a pack expansion but the template alias
5181 /// does not have a corresponding parameter pack, e.g.,
5182 ///
5183 /// \code
5184 /// template<typename T, typename U, typename V> struct S;
5185 /// template<typename T, typename U> using A = S<T, int, U>;
5186 /// template<typename... Ts> struct X {
5187 /// typedef A<Ts...> type; // not a type alias
5188 /// };
5189 /// \endcode
5190 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5191
5192 /// Get the aliased type, if this is a specialization of a type alias
5193 /// template.
5194 QualType getAliasedType() const {
5195 assert(isTypeAlias() && "not a type alias template specialization")(static_cast <bool> (isTypeAlias() && "not a type alias template specialization"
) ? void (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "clang/include/clang/AST/Type.h", 5195, __extension__ __PRETTY_FUNCTION__
))
;
5196 return *reinterpret_cast<const QualType*>(end());
5197 }
5198
5199 using iterator = const TemplateArgument *;
5200
5201 iterator begin() const { return getArgs(); }
5202 iterator end() const; // defined inline in TemplateBase.h
5203
5204 /// Retrieve the name of the template that we are specializing.
5205 TemplateName getTemplateName() const { return Template; }
5206
5207 /// Retrieve the template arguments.
5208 const TemplateArgument *getArgs() const {
5209 return reinterpret_cast<const TemplateArgument *>(this + 1);
5210 }
5211
5212 /// Retrieve the number of template arguments.
5213 unsigned getNumArgs() const {
5214 return TemplateSpecializationTypeBits.NumArgs;
5215 }
5216
5217 /// Retrieve a specific template argument as a type.
5218 /// \pre \c isArgType(Arg)
5219 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5220
5221 ArrayRef<TemplateArgument> template_arguments() const {
5222 return {getArgs(), getNumArgs()};
5223 }
5224
5225 bool isSugared() const {
5226 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5227 }
5228
5229 QualType desugar() const {
5230 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5231 }
5232
5233 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5234 Profile(ID, Template, template_arguments(), Ctx);
5235 if (isTypeAlias())
5236 getAliasedType().Profile(ID);
5237 }
5238
5239 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5240 ArrayRef<TemplateArgument> Args,
5241 const ASTContext &Context);
5242
5243 static bool classof(const Type *T) {
5244 return T->getTypeClass() == TemplateSpecialization;
5245 }
5246};
5247
5248/// Print a template argument list, including the '<' and '>'
5249/// enclosing the template arguments.
5250void printTemplateArgumentList(raw_ostream &OS,
5251 ArrayRef<TemplateArgument> Args,
5252 const PrintingPolicy &Policy,
5253 const TemplateParameterList *TPL = nullptr);
5254
5255void printTemplateArgumentList(raw_ostream &OS,
5256 ArrayRef<TemplateArgumentLoc> Args,
5257 const PrintingPolicy &Policy,
5258 const TemplateParameterList *TPL = nullptr);
5259
5260void printTemplateArgumentList(raw_ostream &OS,
5261 const TemplateArgumentListInfo &Args,
5262 const PrintingPolicy &Policy,
5263 const TemplateParameterList *TPL = nullptr);
5264
5265/// The injected class name of a C++ class template or class
5266/// template partial specialization. Used to record that a type was
5267/// spelled with a bare identifier rather than as a template-id; the
5268/// equivalent for non-templated classes is just RecordType.
5269///
5270/// Injected class name types are always dependent. Template
5271/// instantiation turns these into RecordTypes.
5272///
5273/// Injected class name types are always canonical. This works
5274/// because it is impossible to compare an injected class name type
5275/// with the corresponding non-injected template type, for the same
5276/// reason that it is impossible to directly compare template
5277/// parameters from different dependent contexts: injected class name
5278/// types can only occur within the scope of a particular templated
5279/// declaration, and within that scope every template specialization
5280/// will canonicalize to the injected class name (when appropriate
5281/// according to the rules of the language).
5282class InjectedClassNameType : public Type {
5283 friend class ASTContext; // ASTContext creates these.
5284 friend class ASTNodeImporter;
5285 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5286 // currently suitable for AST reading, too much
5287 // interdependencies.
5288 template <class T> friend class serialization::AbstractTypeReader;
5289
5290 CXXRecordDecl *Decl;
5291
5292 /// The template specialization which this type represents.
5293 /// For example, in
5294 /// template <class T> class A { ... };
5295 /// this is A<T>, whereas in
5296 /// template <class X, class Y> class A<B<X,Y> > { ... };
5297 /// this is A<B<X,Y> >.
5298 ///
5299 /// It is always unqualified, always a template specialization type,
5300 /// and always dependent.
5301 QualType InjectedType;
5302
5303 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5304 : Type(InjectedClassName, QualType(),
5305 TypeDependence::DependentInstantiation),
5306 Decl(D), InjectedType(TST) {
5307 assert(isa<TemplateSpecializationType>(TST))(static_cast <bool> (isa<TemplateSpecializationType>
(TST)) ? void (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "clang/include/clang/AST/Type.h", 5307, __extension__ __PRETTY_FUNCTION__
))
;
5308 assert(!TST.hasQualifiers())(static_cast <bool> (!TST.hasQualifiers()) ? void (0) :
__assert_fail ("!TST.hasQualifiers()", "clang/include/clang/AST/Type.h"
, 5308, __extension__ __PRETTY_FUNCTION__))
;
5309 assert(TST->isDependentType())(static_cast <bool> (TST->isDependentType()) ? void (
0) : __assert_fail ("TST->isDependentType()", "clang/include/clang/AST/Type.h"
, 5309, __extension__ __PRETTY_FUNCTION__))
;
5310 }
5311
5312public:
5313 QualType getInjectedSpecializationType() const { return InjectedType; }
5314
5315 const TemplateSpecializationType *getInjectedTST() const {
5316 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5317 }
5318
5319 TemplateName getTemplateName() const {
5320 return getInjectedTST()->getTemplateName();
5321 }
5322
5323 CXXRecordDecl *getDecl() const;
5324
5325 bool isSugared() const { return false; }
5326 QualType desugar() const { return QualType(this, 0); }
5327
5328 static bool classof(const Type *T) {
5329 return T->getTypeClass() == InjectedClassName;
5330 }
5331};
5332
5333/// The kind of a tag type.
5334enum TagTypeKind {
5335 /// The "struct" keyword.
5336 TTK_Struct,
5337
5338 /// The "__interface" keyword.
5339 TTK_Interface,
5340
5341 /// The "union" keyword.
5342 TTK_Union,
5343
5344 /// The "class" keyword.
5345 TTK_Class,
5346
5347 /// The "enum" keyword.
5348 TTK_Enum
5349};
5350
5351/// The elaboration keyword that precedes a qualified type name or
5352/// introduces an elaborated-type-specifier.
5353enum ElaboratedTypeKeyword {
5354 /// The "struct" keyword introduces the elaborated-type-specifier.
5355 ETK_Struct,
5356
5357 /// The "__interface" keyword introduces the elaborated-type-specifier.
5358 ETK_Interface,
5359
5360 /// The "union" keyword introduces the elaborated-type-specifier.
5361 ETK_Union,
5362
5363 /// The "class" keyword introduces the elaborated-type-specifier.
5364 ETK_Class,
5365
5366 /// The "enum" keyword introduces the elaborated-type-specifier.
5367 ETK_Enum,
5368
5369 /// The "typename" keyword precedes the qualified type name, e.g.,
5370 /// \c typename T::type.
5371 ETK_Typename,
5372
5373 /// No keyword precedes the qualified type name.
5374 ETK_None
5375};
5376
5377/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5378/// The keyword in stored in the free bits of the base class.
5379/// Also provides a few static helpers for converting and printing
5380/// elaborated type keyword and tag type kind enumerations.
5381class TypeWithKeyword : public Type {
5382protected:
5383 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5384 QualType Canonical, TypeDependence Dependence)
5385 : Type(tc, Canonical, Dependence) {
5386 TypeWithKeywordBits.Keyword = Keyword;
5387 }
5388
5389public:
5390 ElaboratedTypeKeyword getKeyword() const {
5391 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5392 }
5393
5394 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5395 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5396
5397 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5398 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5399 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5400
5401 /// Converts a TagTypeKind into an elaborated type keyword.
5402 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5403
5404 /// Converts an elaborated type keyword into a TagTypeKind.
5405 /// It is an error to provide an elaborated type keyword
5406 /// which *isn't* a tag kind here.
5407 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5408
5409 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5410
5411 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5412
5413 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5414 return getKeywordName(getKeywordForTagTypeKind(Kind));
5415 }
5416
5417 class CannotCastToThisType {};
5418 static CannotCastToThisType classof(const Type *);
5419};
5420
5421/// Represents a type that was referred to using an elaborated type
5422/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5423/// or both.
5424///
5425/// This type is used to keep track of a type name as written in the
5426/// source code, including tag keywords and any nested-name-specifiers.
5427/// The type itself is always "sugar", used to express what was written
5428/// in the source code but containing no additional semantic information.
5429class ElaboratedType final
5430 : public TypeWithKeyword,
5431 public llvm::FoldingSetNode,
5432 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5433 friend class ASTContext; // ASTContext creates these
5434 friend TrailingObjects;
5435
5436 /// The nested name specifier containing the qualifier.
5437 NestedNameSpecifier *NNS;
5438
5439 /// The type that this qualified name refers to.
5440 QualType NamedType;
5441
5442 /// The (re)declaration of this tag type owned by this occurrence is stored
5443 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5444 /// it, or obtain a null pointer if there is none.
5445
5446 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5447 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5448 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5449 // Any semantic dependence on the qualifier will have
5450 // been incorporated into NamedType. We still need to
5451 // track syntactic (instantiation / error / pack)
5452 // dependence on the qualifier.
5453 NamedType->getDependence() |
5454 (NNS ? toSyntacticDependence(
5455 toTypeDependence(NNS->getDependence()))
5456 : TypeDependence::None)),
5457 NNS(NNS), NamedType(NamedType) {
5458 ElaboratedTypeBits.HasOwnedTagDecl = false;
5459 if (OwnedTagDecl) {
5460 ElaboratedTypeBits.HasOwnedTagDecl = true;
5461 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5462 }
5463 assert(!(Keyword == ETK_None && NNS == nullptr) &&(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
5464 "ElaboratedType cannot have elaborated type keyword "(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
5465 "and name qualifier both null.")(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5465, __extension__ __PRETTY_FUNCTION__
))
;
5466 }
5467
5468public:
5469 /// Retrieve the qualification on this type.
5470 NestedNameSpecifier *getQualifier() const { return NNS; }
5471
5472 /// Retrieve the type named by the qualified-id.
5473 QualType getNamedType() const { return NamedType; }
5474
5475 /// Remove a single level of sugar.
5476 QualType desugar() const { return getNamedType(); }
5477
5478 /// Returns whether this type directly provides sugar.
5479 bool isSugared() const { return true; }
5480
5481 /// Return the (re)declaration of this type owned by this occurrence of this
5482 /// type, or nullptr if there is none.
5483 TagDecl *getOwnedTagDecl() const {
5484 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5485 : nullptr;
5486 }
5487
5488 void Profile(llvm::FoldingSetNodeID &ID) {
5489 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5490 }
5491
5492 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5493 NestedNameSpecifier *NNS, QualType NamedType,
5494 TagDecl *OwnedTagDecl) {
5495 ID.AddInteger(Keyword);
5496 ID.AddPointer(NNS);
5497 NamedType.Profile(ID);
5498 ID.AddPointer(OwnedTagDecl);
5499 }
5500
5501 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5502};
5503
5504/// Represents a qualified type name for which the type name is
5505/// dependent.
5506///
5507/// DependentNameType represents a class of dependent types that involve a
5508/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5509/// name of a type. The DependentNameType may start with a "typename" (for a
5510/// typename-specifier), "class", "struct", "union", or "enum" (for a
5511/// dependent elaborated-type-specifier), or nothing (in contexts where we
5512/// know that we must be referring to a type, e.g., in a base class specifier).
5513/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5514/// mode, this type is used with non-dependent names to delay name lookup until
5515/// instantiation.
5516class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5517 friend class ASTContext; // ASTContext creates these
5518
5519 /// The nested name specifier containing the qualifier.
5520 NestedNameSpecifier *NNS;
5521
5522 /// The type that this typename specifier refers to.
5523 const IdentifierInfo *Name;
5524
5525 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5526 const IdentifierInfo *Name, QualType CanonType)
5527 : TypeWithKeyword(Keyword, DependentName, CanonType,
5528 TypeDependence::DependentInstantiation |
5529 toTypeDependence(NNS->getDependence())),
5530 NNS(NNS), Name(Name) {}
5531
5532public:
5533 /// Retrieve the qualification on this type.
5534 NestedNameSpecifier *getQualifier() const { return NNS; }
5535
5536 /// Retrieve the type named by the typename specifier as an identifier.
5537 ///
5538 /// This routine will return a non-NULL identifier pointer when the
5539 /// form of the original typename was terminated by an identifier,
5540 /// e.g., "typename T::type".
5541 const IdentifierInfo *getIdentifier() const {
5542 return Name;
5543 }
5544
5545 bool isSugared() const { return false; }
5546 QualType desugar() const { return QualType(this, 0); }
5547
5548 void Profile(llvm::FoldingSetNodeID &ID) {
5549 Profile(ID, getKeyword(), NNS, Name);
5550 }
5551
5552 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5553 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5554 ID.AddInteger(Keyword);
5555 ID.AddPointer(NNS);
5556 ID.AddPointer(Name);
5557 }
5558
5559 static bool classof(const Type *T) {
5560 return T->getTypeClass() == DependentName;
5561 }
5562};
5563
5564/// Represents a template specialization type whose template cannot be
5565/// resolved, e.g.
5566/// A<T>::template B<T>
5567class alignas(8) DependentTemplateSpecializationType
5568 : public TypeWithKeyword,
5569 public llvm::FoldingSetNode {
5570 friend class ASTContext; // ASTContext creates these
5571
5572 /// The nested name specifier containing the qualifier.
5573 NestedNameSpecifier *NNS;
5574
5575 /// The identifier of the template.
5576 const IdentifierInfo *Name;
5577
5578 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,