Bug Summary

File:build/source/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp
Warning:line 74, column 53
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name HexagonConstExtenders.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/Hexagon -I /build/source/llvm/lib/Target/Hexagon -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp

/build/source/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp

1//===- HexagonConstExtenders.cpp ------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "HexagonInstrInfo.h"
10#include "HexagonRegisterInfo.h"
11#include "HexagonSubtarget.h"
12#include "llvm/ADT/SetVector.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/CodeGen/MachineDominators.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/CodeGen/Register.h"
19#include "llvm/InitializePasses.h"
20#include "llvm/Pass.h"
21#include "llvm/Support/CommandLine.h"
22#include "llvm/Support/raw_ostream.h"
23#include <map>
24#include <set>
25#include <utility>
26#include <vector>
27
28#define DEBUG_TYPE"hexagon-cext-opt" "hexagon-cext-opt"
29
30using namespace llvm;
31
32static cl::opt<unsigned> CountThreshold(
33 "hexagon-cext-threshold", cl::init(3), cl::Hidden,
34 cl::desc("Minimum number of extenders to trigger replacement"));
35
36static cl::opt<unsigned>
37 ReplaceLimit("hexagon-cext-limit", cl::init(0), cl::Hidden,
38 cl::desc("Maximum number of replacements"));
39
40namespace llvm {
41 void initializeHexagonConstExtendersPass(PassRegistry&);
42 FunctionPass *createHexagonConstExtenders();
43}
44
45static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) {
46 assert(isPowerOf2_32(A))(static_cast <bool> (isPowerOf2_32(A)) ? void (0) : __assert_fail
("isPowerOf2_32(A)", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 46, __extension__ __PRETTY_FUNCTION__))
;
47 int32_t U = (V & -A) + O;
48 return U >= V ? U : U+A;
49}
50
51static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) {
52 assert(isPowerOf2_32(A))(static_cast <bool> (isPowerOf2_32(A)) ? void (0) : __assert_fail
("isPowerOf2_32(A)", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 52, __extension__ __PRETTY_FUNCTION__))
;
53 int32_t U = (V & -A) + O;
54 return U <= V ? U : U-A;
55}
56
57namespace {
58 struct OffsetRange {
59 // The range of values between Min and Max that are of form Align*N+Offset,
60 // for some integer N. Min and Max are required to be of that form as well,
61 // except in the case of an empty range.
62 int32_t Min = INT_MIN(-2147483647 -1), Max = INT_MAX2147483647;
63 uint8_t Align = 1;
64 uint8_t Offset = 0;
65
66 OffsetRange() = default;
67 OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0)
68 : Min(L), Max(H), Align(A), Offset(O) {}
69 OffsetRange &intersect(OffsetRange A) {
70 if (Align < A.Align)
17
Assuming 'Align' is < 'A.Align'
18
Taking true branch
71 std::swap(*this, A);
19
Calling 'swap<(anonymous namespace)::OffsetRange>'
21
Returning from 'swap<(anonymous namespace)::OffsetRange>'
72
73 // Align >= A.Align.
74 if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) {
22
Assuming 'Offset' is >= 'A.Offset'
23
Division by zero
75 Min = adjustUp(std::max(Min, A.Min), Align, Offset);
76 Max = adjustDown(std::min(Max, A.Max), Align, Offset);
77 } else {
78 // Make an empty range.
79 Min = 0;
80 Max = -1;
81 }
82 // Canonicalize empty ranges.
83 if (Min > Max)
84 std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1);
85 return *this;
86 }
87 OffsetRange &shift(int32_t S) {
88 Min += S;
89 Max += S;
90 Offset = (Offset+S) % Align;
91 return *this;
92 }
93 OffsetRange &extendBy(int32_t D) {
94 // If D < 0, extend Min, otherwise extend Max.
95 assert(D % Align == 0)(static_cast <bool> (D % Align == 0) ? void (0) : __assert_fail
("D % Align == 0", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 95, __extension__ __PRETTY_FUNCTION__))
;
96 if (D < 0)
97 Min = (INT_MIN(-2147483647 -1)-D < Min) ? Min+D : INT_MIN(-2147483647 -1);
98 else
99 Max = (INT_MAX2147483647-D > Max) ? Max+D : INT_MAX2147483647;
100 return *this;
101 }
102 bool empty() const {
103 return Min > Max;
104 }
105 bool contains(int32_t V) const {
106 return Min <= V && V <= Max && (V-Offset) % Align == 0;
107 }
108 bool operator==(const OffsetRange &R) const {
109 return Min == R.Min && Max == R.Max && Align == R.Align;
110 }
111 bool operator!=(const OffsetRange &R) const {
112 return !operator==(R);
113 }
114 bool operator<(const OffsetRange &R) const {
115 if (Min != R.Min)
116 return Min < R.Min;
117 if (Max != R.Max)
118 return Max < R.Max;
119 return Align < R.Align;
120 }
121 static OffsetRange zero() { return {0, 0, 1}; }
122 };
123
124 struct RangeTree {
125 struct Node {
126 Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {}
127 unsigned Height = 1;
128 unsigned Count = 1;
129 int32_t MaxEnd;
130 const OffsetRange &Range;
131 Node *Left = nullptr, *Right = nullptr;
132 };
133
134 Node *Root = nullptr;
135
136 void add(const OffsetRange &R) {
137 Root = add(Root, R);
138 }
139 void erase(const Node *N) {
140 Root = remove(Root, N);
141 delete N;
142 }
143 void order(SmallVectorImpl<Node*> &Seq) const {
144 order(Root, Seq);
145 }
146 SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) {
147 SmallVector<Node*,8> Nodes;
148 nodesWith(Root, P, CheckAlign, Nodes);
149 return Nodes;
150 }
151 void dump() const;
152 ~RangeTree() {
153 SmallVector<Node*,8> Nodes;
154 order(Nodes);
155 for (Node *N : Nodes)
156 delete N;
157 }
158
159 private:
160 void dump(const Node *N) const;
161 void order(Node *N, SmallVectorImpl<Node*> &Seq) const;
162 void nodesWith(Node *N, int32_t P, bool CheckA,
163 SmallVectorImpl<Node*> &Seq) const;
164
165 Node *add(Node *N, const OffsetRange &R);
166 Node *remove(Node *N, const Node *D);
167 Node *rotateLeft(Node *Lower, Node *Higher);
168 Node *rotateRight(Node *Lower, Node *Higher);
169 unsigned height(Node *N) {
170 return N != nullptr ? N->Height : 0;
171 }
172 Node *update(Node *N) {
173 assert(N != nullptr)(static_cast <bool> (N != nullptr) ? void (0) : __assert_fail
("N != nullptr", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 173, __extension__ __PRETTY_FUNCTION__))
;
174 N->Height = 1 + std::max(height(N->Left), height(N->Right));
175 if (N->Left)
176 N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd);
177 if (N->Right)
178 N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd);
179 return N;
180 }
181 Node *rebalance(Node *N) {
182 assert(N != nullptr)(static_cast <bool> (N != nullptr) ? void (0) : __assert_fail
("N != nullptr", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 182, __extension__ __PRETTY_FUNCTION__))
;
183 int32_t Balance = height(N->Right) - height(N->Left);
184 if (Balance < -1)
185 return rotateRight(N->Left, N);
186 if (Balance > 1)
187 return rotateLeft(N->Right, N);
188 return N;
189 }
190 };
191
192 struct Loc {
193 MachineBasicBlock *Block = nullptr;
194 MachineBasicBlock::iterator At;
195
196 Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It)
197 : Block(B), At(It) {
198 if (B->end() == It) {
199 Pos = -1;
200 } else {
201 assert(It->getParent() == B)(static_cast <bool> (It->getParent() == B) ? void (0
) : __assert_fail ("It->getParent() == B", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 201, __extension__ __PRETTY_FUNCTION__))
;
202 Pos = std::distance(B->begin(), It);
203 }
204 }
205 bool operator<(Loc A) const {
206 if (Block != A.Block)
207 return Block->getNumber() < A.Block->getNumber();
208 if (A.Pos == -1)
209 return Pos != A.Pos;
210 return Pos != -1 && Pos < A.Pos;
211 }
212 private:
213 int Pos = 0;
214 };
215
216 struct HexagonConstExtenders : public MachineFunctionPass {
217 static char ID;
218 HexagonConstExtenders() : MachineFunctionPass(ID) {}
219
220 void getAnalysisUsage(AnalysisUsage &AU) const override {
221 AU.addRequired<MachineDominatorTree>();
222 AU.addPreserved<MachineDominatorTree>();
223 MachineFunctionPass::getAnalysisUsage(AU);
224 }
225
226 StringRef getPassName() const override {
227 return "Hexagon constant-extender optimization";
228 }
229 bool runOnMachineFunction(MachineFunction &MF) override;
230
231 private:
232 struct Register {
233 Register() = default;
234 Register(llvm::Register R, unsigned S) : Reg(R), Sub(S) {}
235 Register(const MachineOperand &Op)
236 : Reg(Op.getReg()), Sub(Op.getSubReg()) {}
237 Register &operator=(const MachineOperand &Op) {
238 if (Op.isReg()) {
239 Reg = Op.getReg();
240 Sub = Op.getSubReg();
241 } else if (Op.isFI()) {
242 Reg = llvm::Register::index2StackSlot(Op.getIndex());
243 }
244 return *this;
245 }
246 bool isVReg() const {
247 return Reg != 0 && !Reg.isStack() && Reg.isVirtual();
248 }
249 bool isSlot() const { return Reg != 0 && Reg.isStack(); }
250 operator MachineOperand() const {
251 if (isVReg())
252 return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false,
253 /*Kill*/false, /*Dead*/false, /*Undef*/false,
254 /*EarlyClobber*/false, Sub);
255 if (Reg.isStack()) {
256 int FI = llvm::Register::stackSlot2Index(Reg);
257 return MachineOperand::CreateFI(FI);
258 }
259 llvm_unreachable("Cannot create MachineOperand")::llvm::llvm_unreachable_internal("Cannot create MachineOperand"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 259)
;
260 }
261 bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; }
262 bool operator!=(Register R) const { return !operator==(R); }
263 bool operator<(Register R) const {
264 // For std::map.
265 return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
266 }
267 llvm::Register Reg;
268 unsigned Sub = 0;
269 };
270
271 struct ExtExpr {
272 // A subexpression in which the extender is used. In general, this
273 // represents an expression where adding D to the extender will be
274 // equivalent to adding D to the expression as a whole. In other
275 // words, expr(add(##V,D) = add(expr(##V),D).
276
277 // The original motivation for this are the io/ur addressing modes,
278 // where the offset is extended. Consider the io example:
279 // In memw(Rs+##V), the ##V could be replaced by a register Rt to
280 // form the rr mode: memw(Rt+Rs<<0). In such case, however, the
281 // register Rt must have exactly the value of ##V. If there was
282 // another instruction memw(Rs+##V+4), it would need a different Rt.
283 // Now, if Rt was initialized as "##V+Rs<<0", both of these
284 // instructions could use the same Rt, just with different offsets.
285 // Here it's clear that "initializer+4" should be the same as if
286 // the offset 4 was added to the ##V in the initializer.
287
288 // The only kinds of expressions that support the requirement of
289 // commuting with addition are addition and subtraction from ##V.
290 // Include shifting the Rs to account for the ur addressing mode:
291 // ##Val + Rs << S
292 // ##Val - Rs
293 Register Rs;
294 unsigned S = 0;
295 bool Neg = false;
296
297 ExtExpr() = default;
298 ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {}
299 // Expression is trivial if it does not modify the extender.
300 bool trivial() const {
301 return Rs.Reg == 0;
302 }
303 bool operator==(const ExtExpr &Ex) const {
304 return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg;
305 }
306 bool operator!=(const ExtExpr &Ex) const {
307 return !operator==(Ex);
308 }
309 bool operator<(const ExtExpr &Ex) const {
310 if (Rs != Ex.Rs)
311 return Rs < Ex.Rs;
312 if (S != Ex.S)
313 return S < Ex.S;
314 return !Neg && Ex.Neg;
315 }
316 };
317
318 struct ExtDesc {
319 MachineInstr *UseMI = nullptr;
320 unsigned OpNum = -1u;
321 // The subexpression in which the extender is used (e.g. address
322 // computation).
323 ExtExpr Expr;
324 // Optional register that is assigned the value of Expr.
325 Register Rd;
326 // Def means that the output of the instruction may differ from the
327 // original by a constant c, and that the difference can be corrected
328 // by adding/subtracting c in all users of the defined register.
329 bool IsDef = false;
330
331 MachineOperand &getOp() {
332 return UseMI->getOperand(OpNum);
333 }
334 const MachineOperand &getOp() const {
335 return UseMI->getOperand(OpNum);
336 }
337 };
338
339 struct ExtRoot {
340 union {
341 const ConstantFP *CFP; // MO_FPImmediate
342 const char *SymbolName; // MO_ExternalSymbol
343 const GlobalValue *GV; // MO_GlobalAddress
344 const BlockAddress *BA; // MO_BlockAddress
345 int64_t ImmVal; // MO_Immediate, MO_TargetIndex,
346 // and MO_ConstantPoolIndex
347 } V;
348 unsigned Kind; // Same as in MachineOperand.
349 unsigned char TF; // TargetFlags.
350
351 ExtRoot(const MachineOperand &Op);
352 bool operator==(const ExtRoot &ER) const {
353 return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal;
354 }
355 bool operator!=(const ExtRoot &ER) const {
356 return !operator==(ER);
357 }
358 bool operator<(const ExtRoot &ER) const;
359 };
360
361 struct ExtValue : public ExtRoot {
362 int32_t Offset;
363
364 ExtValue(const MachineOperand &Op);
365 ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {}
366 ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {}
367 bool operator<(const ExtValue &EV) const;
368 bool operator==(const ExtValue &EV) const {
369 return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset;
370 }
371 bool operator!=(const ExtValue &EV) const {
372 return !operator==(EV);
373 }
374 explicit operator MachineOperand() const;
375 };
376
377 using IndexList = SetVector<unsigned>;
378 using ExtenderInit = std::pair<ExtValue, ExtExpr>;
379 using AssignmentMap = std::map<ExtenderInit, IndexList>;
380 using LocDefList = std::vector<std::pair<Loc, IndexList>>;
381
382 const HexagonSubtarget *HST = nullptr;
383 const HexagonInstrInfo *HII = nullptr;
384 const HexagonRegisterInfo *HRI = nullptr;
385 MachineDominatorTree *MDT = nullptr;
386 MachineRegisterInfo *MRI = nullptr;
387 std::vector<ExtDesc> Extenders;
388 std::vector<unsigned> NewRegs;
389
390 bool isStoreImmediate(unsigned Opc) const;
391 bool isRegOffOpcode(unsigned ExtOpc) const ;
392 unsigned getRegOffOpcode(unsigned ExtOpc) const;
393 unsigned getDirectRegReplacement(unsigned ExtOpc) const;
394 OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const;
395 OffsetRange getOffsetRange(const ExtDesc &ED) const;
396 OffsetRange getOffsetRange(Register Rd) const;
397
398 void recordExtender(MachineInstr &MI, unsigned OpNum);
399 void collectInstr(MachineInstr &MI);
400 void collect(MachineFunction &MF);
401 void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
402 AssignmentMap &IMap);
403 void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
404 LocDefList &Defs);
405 Register insertInitializer(Loc DefL, const ExtenderInit &ExtI);
406 bool replaceInstrExact(const ExtDesc &ED, Register ExtR);
407 bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
408 Register ExtR, int32_t &Diff);
409 bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI);
410 bool replaceExtenders(const AssignmentMap &IMap);
411
412 unsigned getOperandIndex(const MachineInstr &MI,
413 const MachineOperand &Op) const;
414 const MachineOperand &getPredicateOp(const MachineInstr &MI) const;
415 const MachineOperand &getLoadResultOp(const MachineInstr &MI) const;
416 const MachineOperand &getStoredValueOp(const MachineInstr &MI) const;
417
418 friend struct PrintRegister;
419 friend struct PrintExpr;
420 friend struct PrintInit;
421 friend struct PrintIMap;
422 friend raw_ostream &operator<< (raw_ostream &OS,
423 const struct PrintRegister &P);
424 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P);
425 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P);
426 friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED);
427 friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER);
428 friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV);
429 friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR);
430 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P);
431 };
432
433 using HCE = HexagonConstExtenders;
434
435 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
436 raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) {
437 if (OR.Min > OR.Max)
438 OS << '!';
439 OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align)
440 << '+' << unsigned(OR.Offset);
441 return OS;
442 }
443
444 struct PrintRegister {
445 PrintRegister(HCE::Register R, const HexagonRegisterInfo &I)
446 : Rs(R), HRI(I) {}
447 HCE::Register Rs;
448 const HexagonRegisterInfo &HRI;
449 };
450
451 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
452 raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
453 if (P.Rs.Reg != 0)
454 OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub);
455 else
456 OS << "noreg";
457 return OS;
458 }
459
460 struct PrintExpr {
461 PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I)
462 : Ex(E), HRI(I) {}
463 const HCE::ExtExpr &Ex;
464 const HexagonRegisterInfo &HRI;
465 };
466
467 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
468 raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) {
469 OS << "## " << (P.Ex.Neg ? "- " : "+ ");
470 if (P.Ex.Rs.Reg != 0)
471 OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub);
472 else
473 OS << "__";
474 OS << " << " << P.Ex.S;
475 return OS;
476 }
477
478 struct PrintInit {
479 PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I)
480 : ExtI(EI), HRI(I) {}
481 const HCE::ExtenderInit &ExtI;
482 const HexagonRegisterInfo &HRI;
483 };
484
485 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
486 raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) {
487 OS << '[' << P.ExtI.first << ", "
488 << PrintExpr(P.ExtI.second, P.HRI) << ']';
489 return OS;
490 }
491
492 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
493 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
494 assert(ED.OpNum != -1u)(static_cast <bool> (ED.OpNum != -1u) ? void (0) : __assert_fail
("ED.OpNum != -1u", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 494, __extension__ __PRETTY_FUNCTION__))
;
495 const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent();
496 const MachineFunction &MF = *MBB.getParent();
497 const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
498 OS << "bb#" << MBB.getNumber() << ": ";
499 if (ED.Rd.Reg != 0)
500 OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub);
501 else
502 OS << "__";
503 OS << " = " << PrintExpr(ED.Expr, HRI);
504 if (ED.IsDef)
505 OS << ", def";
506 return OS;
507 }
508
509 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
510 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) {
511 switch (ER.Kind) {
512 case MachineOperand::MO_Immediate:
513 OS << "imm:" << ER.V.ImmVal;
514 break;
515 case MachineOperand::MO_FPImmediate:
516 OS << "fpi:" << *ER.V.CFP;
517 break;
518 case MachineOperand::MO_ExternalSymbol:
519 OS << "sym:" << *ER.V.SymbolName;
520 break;
521 case MachineOperand::MO_GlobalAddress:
522 OS << "gad:" << ER.V.GV->getName();
523 break;
524 case MachineOperand::MO_BlockAddress:
525 OS << "blk:" << *ER.V.BA;
526 break;
527 case MachineOperand::MO_TargetIndex:
528 OS << "tgi:" << ER.V.ImmVal;
529 break;
530 case MachineOperand::MO_ConstantPoolIndex:
531 OS << "cpi:" << ER.V.ImmVal;
532 break;
533 case MachineOperand::MO_JumpTableIndex:
534 OS << "jti:" << ER.V.ImmVal;
535 break;
536 default:
537 OS << "???:" << ER.V.ImmVal;
538 break;
539 }
540 return OS;
541 }
542
543 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
544 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) {
545 OS << HCE::ExtRoot(EV) << " off:" << EV.Offset;
546 return OS;
547 }
548
549 struct PrintIMap {
550 PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I)
551 : IMap(M), HRI(I) {}
552 const HCE::AssignmentMap &IMap;
553 const HexagonRegisterInfo &HRI;
554 };
555
556 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
557 raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
558 OS << "{\n";
559 for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) {
560 OS << " " << PrintInit(Q.first, P.HRI) << " -> {";
561 for (unsigned I : Q.second)
562 OS << ' ' << I;
563 OS << " }\n";
564 }
565 OS << "}\n";
566 return OS;
567 }
568}
569
570INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt",static void *initializeHexagonConstExtendersPassOnce(PassRegistry
&Registry) {
571 "Hexagon constant-extender optimization", false, false)static void *initializeHexagonConstExtendersPassOnce(PassRegistry
&Registry) {
572INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry);
573INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt",PassInfo *PI = new PassInfo( "Hexagon constant-extender optimization"
, "hexagon-cext-opt", &HexagonConstExtenders::ID, PassInfo
::NormalCtor_t(callDefaultCtor<HexagonConstExtenders>),
false, false); Registry.registerPass(*PI, true); return PI; }
static llvm::once_flag InitializeHexagonConstExtendersPassFlag
; void llvm::initializeHexagonConstExtendersPass(PassRegistry
&Registry) { llvm::call_once(InitializeHexagonConstExtendersPassFlag
, initializeHexagonConstExtendersPassOnce, std::ref(Registry)
); }
574 "Hexagon constant-extender optimization", false, false)PassInfo *PI = new PassInfo( "Hexagon constant-extender optimization"
, "hexagon-cext-opt", &HexagonConstExtenders::ID, PassInfo
::NormalCtor_t(callDefaultCtor<HexagonConstExtenders>),
false, false); Registry.registerPass(*PI, true); return PI; }
static llvm::once_flag InitializeHexagonConstExtendersPassFlag
; void llvm::initializeHexagonConstExtendersPass(PassRegistry
&Registry) { llvm::call_once(InitializeHexagonConstExtendersPassFlag
, initializeHexagonConstExtendersPassOnce, std::ref(Registry)
); }
575
576static unsigned ReplaceCounter = 0;
577
578char HCE::ID = 0;
579
580#ifndef NDEBUG
581LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void RangeTree::dump() const {
582 dbgs() << "Root: " << Root << '\n';
583 if (Root)
584 dump(Root);
585}
586
587LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void RangeTree::dump(const Node *N) const {
588 dbgs() << "Node: " << N << '\n';
589 dbgs() << " Height: " << N->Height << '\n';
590 dbgs() << " Count: " << N->Count << '\n';
591 dbgs() << " MaxEnd: " << N->MaxEnd << '\n';
592 dbgs() << " Range: " << N->Range << '\n';
593 dbgs() << " Left: " << N->Left << '\n';
594 dbgs() << " Right: " << N->Right << "\n\n";
595
596 if (N->Left)
597 dump(N->Left);
598 if (N->Right)
599 dump(N->Right);
600}
601#endif
602
603void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const {
604 if (N == nullptr)
605 return;
606 order(N->Left, Seq);
607 Seq.push_back(N);
608 order(N->Right, Seq);
609}
610
611void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA,
612 SmallVectorImpl<Node*> &Seq) const {
613 if (N == nullptr || N->MaxEnd < P)
614 return;
615 nodesWith(N->Left, P, CheckA, Seq);
616 if (N->Range.Min <= P) {
617 if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max))
618 Seq.push_back(N);
619 nodesWith(N->Right, P, CheckA, Seq);
620 }
621}
622
623RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) {
624 if (N == nullptr)
625 return new Node(R);
626
627 if (N->Range == R) {
628 N->Count++;
629 return N;
630 }
631
632 if (R < N->Range)
633 N->Left = add(N->Left, R);
634 else
635 N->Right = add(N->Right, R);
636 return rebalance(update(N));
637}
638
639RangeTree::Node *RangeTree::remove(Node *N, const Node *D) {
640 assert(N != nullptr)(static_cast <bool> (N != nullptr) ? void (0) : __assert_fail
("N != nullptr", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 640, __extension__ __PRETTY_FUNCTION__))
;
641
642 if (N != D) {
643 assert(N->Range != D->Range && "N and D should not be equal")(static_cast <bool> (N->Range != D->Range &&
"N and D should not be equal") ? void (0) : __assert_fail ("N->Range != D->Range && \"N and D should not be equal\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 643, __extension__
__PRETTY_FUNCTION__))
;
644 if (D->Range < N->Range)
645 N->Left = remove(N->Left, D);
646 else
647 N->Right = remove(N->Right, D);
648 return rebalance(update(N));
649 }
650
651 // We got to the node we need to remove. If any of its children are
652 // missing, simply replace it with the other child.
653 if (N->Left == nullptr || N->Right == nullptr)
654 return (N->Left == nullptr) ? N->Right : N->Left;
655
656 // Find the rightmost child of N->Left, remove it and plug it in place
657 // of N.
658 Node *M = N->Left;
659 while (M->Right)
660 M = M->Right;
661 M->Left = remove(N->Left, M);
662 M->Right = N->Right;
663 return rebalance(update(M));
664}
665
666RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) {
667 assert(Higher->Right == Lower)(static_cast <bool> (Higher->Right == Lower) ? void (
0) : __assert_fail ("Higher->Right == Lower", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 667, __extension__ __PRETTY_FUNCTION__))
;
668 // The Lower node is on the right from Higher. Make sure that Lower's
669 // balance is greater to the right. Otherwise the rotation will create
670 // an unbalanced tree again.
671 if (height(Lower->Left) > height(Lower->Right))
672 Lower = rotateRight(Lower->Left, Lower);
673 assert(height(Lower->Left) <= height(Lower->Right))(static_cast <bool> (height(Lower->Left) <= height
(Lower->Right)) ? void (0) : __assert_fail ("height(Lower->Left) <= height(Lower->Right)"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 673, __extension__
__PRETTY_FUNCTION__))
;
674 Higher->Right = Lower->Left;
675 update(Higher);
676 Lower->Left = Higher;
677 update(Lower);
678 return Lower;
679}
680
681RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) {
682 assert(Higher->Left == Lower)(static_cast <bool> (Higher->Left == Lower) ? void (
0) : __assert_fail ("Higher->Left == Lower", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 682, __extension__ __PRETTY_FUNCTION__))
;
683 // The Lower node is on the left from Higher. Make sure that Lower's
684 // balance is greater to the left. Otherwise the rotation will create
685 // an unbalanced tree again.
686 if (height(Lower->Left) < height(Lower->Right))
687 Lower = rotateLeft(Lower->Right, Lower);
688 assert(height(Lower->Left) >= height(Lower->Right))(static_cast <bool> (height(Lower->Left) >= height
(Lower->Right)) ? void (0) : __assert_fail ("height(Lower->Left) >= height(Lower->Right)"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 688, __extension__
__PRETTY_FUNCTION__))
;
689 Higher->Left = Lower->Right;
690 update(Higher);
691 Lower->Right = Higher;
692 update(Lower);
693 return Lower;
694}
695
696
697HCE::ExtRoot::ExtRoot(const MachineOperand &Op) {
698 // Always store ImmVal, since it's the field used for comparisons.
699 V.ImmVal = 0;
700 if (Op.isImm())
701 ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root).
702 else if (Op.isFPImm())
703 V.CFP = Op.getFPImm();
704 else if (Op.isSymbol())
705 V.SymbolName = Op.getSymbolName();
706 else if (Op.isGlobal())
707 V.GV = Op.getGlobal();
708 else if (Op.isBlockAddress())
709 V.BA = Op.getBlockAddress();
710 else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI())
711 V.ImmVal = Op.getIndex();
712 else
713 llvm_unreachable("Unexpected operand type")::llvm::llvm_unreachable_internal("Unexpected operand type", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 713)
;
714
715 Kind = Op.getType();
716 TF = Op.getTargetFlags();
717}
718
719bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const {
720 if (Kind != ER.Kind)
721 return Kind < ER.Kind;
722 switch (Kind) {
723 case MachineOperand::MO_Immediate:
724 case MachineOperand::MO_TargetIndex:
725 case MachineOperand::MO_ConstantPoolIndex:
726 case MachineOperand::MO_JumpTableIndex:
727 return V.ImmVal < ER.V.ImmVal;
728 case MachineOperand::MO_FPImmediate: {
729 const APFloat &ThisF = V.CFP->getValueAPF();
730 const APFloat &OtherF = ER.V.CFP->getValueAPF();
731 return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt());
732 }
733 case MachineOperand::MO_ExternalSymbol:
734 return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName);
735 case MachineOperand::MO_GlobalAddress:
736 // Do not use GUIDs, since they depend on the source path. Moving the
737 // source file to a different directory could cause different GUID
738 // values for a pair of given symbols. These symbols could then compare
739 // "less" in one directory, but "greater" in another.
740 assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty())(static_cast <bool> (!V.GV->getName().empty() &&
!ER.V.GV->getName().empty()) ? void (0) : __assert_fail (
"!V.GV->getName().empty() && !ER.V.GV->getName().empty()"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 740, __extension__
__PRETTY_FUNCTION__))
;
741 return V.GV->getName() < ER.V.GV->getName();
742 case MachineOperand::MO_BlockAddress: {
743 const BasicBlock *ThisB = V.BA->getBasicBlock();
744 const BasicBlock *OtherB = ER.V.BA->getBasicBlock();
745 assert(ThisB->getParent() == OtherB->getParent())(static_cast <bool> (ThisB->getParent() == OtherB->
getParent()) ? void (0) : __assert_fail ("ThisB->getParent() == OtherB->getParent()"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 745, __extension__
__PRETTY_FUNCTION__))
;
746 const Function &F = *ThisB->getParent();
747 return std::distance(F.begin(), ThisB->getIterator()) <
748 std::distance(F.begin(), OtherB->getIterator());
749 }
750 }
751 return V.ImmVal < ER.V.ImmVal;
752}
753
754HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) {
755 if (Op.isImm())
756 Offset = Op.getImm();
757 else if (Op.isFPImm() || Op.isJTI())
758 Offset = 0;
759 else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() ||
760 Op.isCPI() || Op.isTargetIndex())
761 Offset = Op.getOffset();
762 else
763 llvm_unreachable("Unexpected operand type")::llvm::llvm_unreachable_internal("Unexpected operand type", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 763)
;
764}
765
766bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const {
767 const ExtRoot &ER = *this;
768 if (!(ER == ExtRoot(EV)))
769 return ER < EV;
770 return Offset < EV.Offset;
771}
772
773HCE::ExtValue::operator MachineOperand() const {
774 switch (Kind) {
775 case MachineOperand::MO_Immediate:
776 return MachineOperand::CreateImm(V.ImmVal + Offset);
777 case MachineOperand::MO_FPImmediate:
778 assert(Offset == 0)(static_cast <bool> (Offset == 0) ? void (0) : __assert_fail
("Offset == 0", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 778, __extension__ __PRETTY_FUNCTION__))
;
779 return MachineOperand::CreateFPImm(V.CFP);
780 case MachineOperand::MO_ExternalSymbol:
781 assert(Offset == 0)(static_cast <bool> (Offset == 0) ? void (0) : __assert_fail
("Offset == 0", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 781, __extension__ __PRETTY_FUNCTION__))
;
782 return MachineOperand::CreateES(V.SymbolName, TF);
783 case MachineOperand::MO_GlobalAddress:
784 return MachineOperand::CreateGA(V.GV, Offset, TF);
785 case MachineOperand::MO_BlockAddress:
786 return MachineOperand::CreateBA(V.BA, Offset, TF);
787 case MachineOperand::MO_TargetIndex:
788 return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF);
789 case MachineOperand::MO_ConstantPoolIndex:
790 return MachineOperand::CreateCPI(V.ImmVal, Offset, TF);
791 case MachineOperand::MO_JumpTableIndex:
792 assert(Offset == 0)(static_cast <bool> (Offset == 0) ? void (0) : __assert_fail
("Offset == 0", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 792, __extension__ __PRETTY_FUNCTION__))
;
793 return MachineOperand::CreateJTI(V.ImmVal, TF);
794 default:
795 llvm_unreachable("Unhandled kind")::llvm::llvm_unreachable_internal("Unhandled kind", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 795)
;
796 }
797}
798
799bool HCE::isStoreImmediate(unsigned Opc) const {
800 switch (Opc) {
801 case Hexagon::S4_storeirbt_io:
802 case Hexagon::S4_storeirbf_io:
803 case Hexagon::S4_storeirht_io:
804 case Hexagon::S4_storeirhf_io:
805 case Hexagon::S4_storeirit_io:
806 case Hexagon::S4_storeirif_io:
807 case Hexagon::S4_storeirb_io:
808 case Hexagon::S4_storeirh_io:
809 case Hexagon::S4_storeiri_io:
810 return true;
811 default:
812 break;
813 }
814 return false;
815}
816
817bool HCE::isRegOffOpcode(unsigned Opc) const {
818 switch (Opc) {
819 case Hexagon::L2_loadrub_io:
820 case Hexagon::L2_loadrb_io:
821 case Hexagon::L2_loadruh_io:
822 case Hexagon::L2_loadrh_io:
823 case Hexagon::L2_loadri_io:
824 case Hexagon::L2_loadrd_io:
825 case Hexagon::L2_loadbzw2_io:
826 case Hexagon::L2_loadbzw4_io:
827 case Hexagon::L2_loadbsw2_io:
828 case Hexagon::L2_loadbsw4_io:
829 case Hexagon::L2_loadalignh_io:
830 case Hexagon::L2_loadalignb_io:
831 case Hexagon::L2_ploadrubt_io:
832 case Hexagon::L2_ploadrubf_io:
833 case Hexagon::L2_ploadrbt_io:
834 case Hexagon::L2_ploadrbf_io:
835 case Hexagon::L2_ploadruht_io:
836 case Hexagon::L2_ploadruhf_io:
837 case Hexagon::L2_ploadrht_io:
838 case Hexagon::L2_ploadrhf_io:
839 case Hexagon::L2_ploadrit_io:
840 case Hexagon::L2_ploadrif_io:
841 case Hexagon::L2_ploadrdt_io:
842 case Hexagon::L2_ploadrdf_io:
843 case Hexagon::S2_storerb_io:
844 case Hexagon::S2_storerh_io:
845 case Hexagon::S2_storerf_io:
846 case Hexagon::S2_storeri_io:
847 case Hexagon::S2_storerd_io:
848 case Hexagon::S2_pstorerbt_io:
849 case Hexagon::S2_pstorerbf_io:
850 case Hexagon::S2_pstorerht_io:
851 case Hexagon::S2_pstorerhf_io:
852 case Hexagon::S2_pstorerft_io:
853 case Hexagon::S2_pstorerff_io:
854 case Hexagon::S2_pstorerit_io:
855 case Hexagon::S2_pstorerif_io:
856 case Hexagon::S2_pstorerdt_io:
857 case Hexagon::S2_pstorerdf_io:
858 case Hexagon::A2_addi:
859 return true;
860 default:
861 break;
862 }
863 return false;
864}
865
866unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const {
867 // If there exists an instruction that takes a register and offset,
868 // that corresponds to the ExtOpc, return it, otherwise return 0.
869 using namespace Hexagon;
870 switch (ExtOpc) {
871 case A2_tfrsi: return A2_addi;
872 default:
873 break;
874 }
875 const MCInstrDesc &D = HII->get(ExtOpc);
876 if (D.mayLoad() || D.mayStore()) {
877 uint64_t F = D.TSFlags;
878 unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
879 switch (AM) {
880 case HexagonII::Absolute:
881 case HexagonII::AbsoluteSet:
882 case HexagonII::BaseLongOffset:
883 switch (ExtOpc) {
884 case PS_loadrubabs:
885 case L4_loadrub_ap:
886 case L4_loadrub_ur: return L2_loadrub_io;
887 case PS_loadrbabs:
888 case L4_loadrb_ap:
889 case L4_loadrb_ur: return L2_loadrb_io;
890 case PS_loadruhabs:
891 case L4_loadruh_ap:
892 case L4_loadruh_ur: return L2_loadruh_io;
893 case PS_loadrhabs:
894 case L4_loadrh_ap:
895 case L4_loadrh_ur: return L2_loadrh_io;
896 case PS_loadriabs:
897 case L4_loadri_ap:
898 case L4_loadri_ur: return L2_loadri_io;
899 case PS_loadrdabs:
900 case L4_loadrd_ap:
901 case L4_loadrd_ur: return L2_loadrd_io;
902 case L4_loadbzw2_ap:
903 case L4_loadbzw2_ur: return L2_loadbzw2_io;
904 case L4_loadbzw4_ap:
905 case L4_loadbzw4_ur: return L2_loadbzw4_io;
906 case L4_loadbsw2_ap:
907 case L4_loadbsw2_ur: return L2_loadbsw2_io;
908 case L4_loadbsw4_ap:
909 case L4_loadbsw4_ur: return L2_loadbsw4_io;
910 case L4_loadalignh_ap:
911 case L4_loadalignh_ur: return L2_loadalignh_io;
912 case L4_loadalignb_ap:
913 case L4_loadalignb_ur: return L2_loadalignb_io;
914 case L4_ploadrubt_abs: return L2_ploadrubt_io;
915 case L4_ploadrubf_abs: return L2_ploadrubf_io;
916 case L4_ploadrbt_abs: return L2_ploadrbt_io;
917 case L4_ploadrbf_abs: return L2_ploadrbf_io;
918 case L4_ploadruht_abs: return L2_ploadruht_io;
919 case L4_ploadruhf_abs: return L2_ploadruhf_io;
920 case L4_ploadrht_abs: return L2_ploadrht_io;
921 case L4_ploadrhf_abs: return L2_ploadrhf_io;
922 case L4_ploadrit_abs: return L2_ploadrit_io;
923 case L4_ploadrif_abs: return L2_ploadrif_io;
924 case L4_ploadrdt_abs: return L2_ploadrdt_io;
925 case L4_ploadrdf_abs: return L2_ploadrdf_io;
926 case PS_storerbabs:
927 case S4_storerb_ap:
928 case S4_storerb_ur: return S2_storerb_io;
929 case PS_storerhabs:
930 case S4_storerh_ap:
931 case S4_storerh_ur: return S2_storerh_io;
932 case PS_storerfabs:
933 case S4_storerf_ap:
934 case S4_storerf_ur: return S2_storerf_io;
935 case PS_storeriabs:
936 case S4_storeri_ap:
937 case S4_storeri_ur: return S2_storeri_io;
938 case PS_storerdabs:
939 case S4_storerd_ap:
940 case S4_storerd_ur: return S2_storerd_io;
941 case S4_pstorerbt_abs: return S2_pstorerbt_io;
942 case S4_pstorerbf_abs: return S2_pstorerbf_io;
943 case S4_pstorerht_abs: return S2_pstorerht_io;
944 case S4_pstorerhf_abs: return S2_pstorerhf_io;
945 case S4_pstorerft_abs: return S2_pstorerft_io;
946 case S4_pstorerff_abs: return S2_pstorerff_io;
947 case S4_pstorerit_abs: return S2_pstorerit_io;
948 case S4_pstorerif_abs: return S2_pstorerif_io;
949 case S4_pstorerdt_abs: return S2_pstorerdt_io;
950 case S4_pstorerdf_abs: return S2_pstorerdf_io;
951 default:
952 break;
953 }
954 break;
955 case HexagonII::BaseImmOffset:
956 if (!isStoreImmediate(ExtOpc))
957 return ExtOpc;
958 break;
959 default:
960 break;
961 }
962 }
963 return 0;
964}
965
966unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const {
967 switch (ExtOpc) {
968 case Hexagon::A2_addi: return Hexagon::A2_add;
969 case Hexagon::A2_andir: return Hexagon::A2_and;
970 case Hexagon::A2_combineii: return Hexagon::A4_combineri;
971 case Hexagon::A2_orir: return Hexagon::A2_or;
972 case Hexagon::A2_paddif: return Hexagon::A2_paddf;
973 case Hexagon::A2_paddit: return Hexagon::A2_paddt;
974 case Hexagon::A2_subri: return Hexagon::A2_sub;
975 case Hexagon::A2_tfrsi: return TargetOpcode::COPY;
976 case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq;
977 case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt;
978 case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu;
979 case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq;
980 case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt;
981 case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu;
982 case Hexagon::A4_combineii: return Hexagon::A4_combineir;
983 case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE;
984 case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE;
985 case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq;
986 case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq;
987 case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf;
988 case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt;
989 case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq;
990 case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt;
991 case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu;
992 case Hexagon::C2_muxii: return Hexagon::C2_muxir;
993 case Hexagon::C2_muxir: return Hexagon::C2_mux;
994 case Hexagon::C2_muxri: return Hexagon::C2_mux;
995 case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte;
996 case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu;
997 case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq;
998 case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T
999 /* No M2_macsin */
1000 case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T
1001 case Hexagon::M2_mpysin: return Hexagon::M2_mpyi;
1002 case Hexagon::M2_mpysip: return Hexagon::M2_mpyi;
1003 case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi;
1004 case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T
1005 case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr;
1006 case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T
1007 case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T
1008 case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T
1009 case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T
1010 case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T
1011 case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T
1012 case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T
1013 case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T
1014 case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T
1015 case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T
1016 case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T
1017 case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T
1018
1019 // Store-immediates:
1020 case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io;
1021 case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io;
1022 case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io;
1023 case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io;
1024 case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io;
1025 case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io;
1026 case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io;
1027 case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io;
1028 case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io;
1029
1030 default:
1031 break;
1032 }
1033 return 0;
1034}
1035
1036// Return the allowable deviation from the current value of Rb (i.e. the
1037// range of values that can be added to the current value) which the
1038// instruction MI can accommodate.
1039// The instruction MI is a user of register Rb, which is defined via an
1040// extender. It may be possible for MI to be tweaked to work for a register
1041// defined with a slightly different value. For example
1042// ... = L2_loadrub_io Rb, 1
1043// can be modifed to be
1044// ... = L2_loadrub_io Rb', 0
1045// if Rb' = Rb+1.
1046// The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range
1047// for L2_loadrub with offset 0. That means that Rb could be replaced with
1048// Rc, where Rc-Rb belongs to [Min+1, Max+1].
1049OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const {
1050 unsigned Opc = MI.getOpcode();
1051 // Instructions that are constant-extended may be replaced with something
1052 // else that no longer offers the same range as the original.
1053 if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI))
1054 return OffsetRange::zero();
1055
1056 if (Opc == Hexagon::A2_addi) {
1057 const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2);
1058 if (Rb != Register(Op1) || !Op2.isImm())
1059 return OffsetRange::zero();
1060 OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 };
1061 return R.shift(Op2.getImm());
1062 }
1063
1064 // HII::getBaseAndOffsetPosition returns the increment position as "offset".
1065 if (HII->isPostIncrement(MI))
1066 return OffsetRange::zero();
1067
1068 const MCInstrDesc &D = HII->get(Opc);
1069 assert(D.mayLoad() || D.mayStore())(static_cast <bool> (D.mayLoad() || D.mayStore()) ? void
(0) : __assert_fail ("D.mayLoad() || D.mayStore()", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 1069, __extension__ __PRETTY_FUNCTION__))
;
1070
1071 unsigned BaseP, OffP;
1072 if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) ||
1073 Rb != Register(MI.getOperand(BaseP)) ||
1074 !MI.getOperand(OffP).isImm())
1075 return OffsetRange::zero();
1076
1077 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1078 HexagonII::MemAccesSizeMask;
1079 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1080 unsigned L = Log2_32(A);
1081 unsigned S = 10+L; // sint11_L
1082 int32_t Min = -alignDown((1<<S)-1, A);
1083
1084 // The range will be shifted by Off. To prefer non-negative offsets,
1085 // adjust Max accordingly.
1086 int32_t Off = MI.getOperand(OffP).getImm();
1087 int32_t Max = Off >= 0 ? 0 : -Off;
1088
1089 OffsetRange R = { Min, Max, A };
1090 return R.shift(Off);
1091}
1092
1093// Return the allowable deviation from the current value of the extender ED,
1094// for which the instruction corresponding to ED can be modified without
1095// using an extender.
1096// The instruction uses the extender directly. It will be replaced with
1097// another instruction, say MJ, where the extender will be replaced with a
1098// register. MJ can allow some variability with respect to the value of
1099// that register, as is the case with indexed memory instructions.
1100OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const {
1101 // The only way that there can be a non-zero range available is if
1102 // the instruction using ED will be converted to an indexed memory
1103 // instruction.
1104 unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode());
1105 switch (IdxOpc) {
1106 case 0:
1107 return OffsetRange::zero();
1108 case Hexagon::A2_addi: // s16
1109 return { -32767, 32767, 1 };
1110 case Hexagon::A2_subri: // s10
1111 return { -511, 511, 1 };
1112 }
1113
1114 if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore())
1115 return OffsetRange::zero();
1116 const MCInstrDesc &D = HII->get(IdxOpc);
1117 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1118 HexagonII::MemAccesSizeMask;
1119 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1120 unsigned L = Log2_32(A);
1121 unsigned S = 10+L; // sint11_L
1122 int32_t Min = -alignDown((1<<S)-1, A);
1123 int32_t Max = 0; // Force non-negative offsets.
1124 return { Min, Max, A };
1125}
1126
1127// Get the allowable deviation from the current value of Rd by checking
1128// all uses of Rd.
1129OffsetRange HCE::getOffsetRange(Register Rd) const {
1130 OffsetRange Range;
1131 for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) {
1132 // Make sure that the register being used by this operand is identical
1133 // to the register that was defined: using a different subregister
1134 // precludes any non-trivial range.
1135 if (Rd != Register(Op))
1136 return OffsetRange::zero();
1137 Range.intersect(getOffsetRange(Rd, *Op.getParent()));
1138 }
1139 return Range;
1140}
1141
1142void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) {
1143 unsigned Opc = MI.getOpcode();
1144 ExtDesc ED;
1145 ED.OpNum = OpNum;
1146
1147 bool IsLoad = MI.mayLoad();
1148 bool IsStore = MI.mayStore();
1149
1150 // Fixed stack slots have negative indexes, and they cannot be used
1151 // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat
1152 // unfortunate, but should not be a frequent thing.
1153 for (MachineOperand &Op : MI.operands())
1154 if (Op.isFI() && Op.getIndex() < 0)
1155 return;
1156
1157 if (IsLoad || IsStore) {
1158 unsigned AM = HII->getAddrMode(MI);
1159 switch (AM) {
1160 // (Re: ##Off + Rb<<S) = Rd: ##Val
1161 case HexagonII::Absolute: // (__: ## + __<<_)
1162 break;
1163 case HexagonII::AbsoluteSet: // (Rd: ## + __<<_)
1164 ED.Rd = MI.getOperand(OpNum-1);
1165 ED.IsDef = true;
1166 break;
1167 case HexagonII::BaseImmOffset: // (__: ## + Rs<<0)
1168 // Store-immediates are treated as non-memory operations, since
1169 // it's the value being stored that is extended (as opposed to
1170 // a part of the address).
1171 if (!isStoreImmediate(Opc))
1172 ED.Expr.Rs = MI.getOperand(OpNum-1);
1173 break;
1174 case HexagonII::BaseLongOffset: // (__: ## + Rs<<S)
1175 ED.Expr.Rs = MI.getOperand(OpNum-2);
1176 ED.Expr.S = MI.getOperand(OpNum-1).getImm();
1177 break;
1178 default:
1179 llvm_unreachable("Unhandled memory instruction")::llvm::llvm_unreachable_internal("Unhandled memory instruction"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1179)
;
1180 }
1181 } else {
1182 switch (Opc) {
1183 case Hexagon::A2_tfrsi: // (Rd: ## + __<<_)
1184 ED.Rd = MI.getOperand(0);
1185 ED.IsDef = true;
1186 break;
1187 case Hexagon::A2_combineii: // (Rd: ## + __<<_)
1188 case Hexagon::A4_combineir:
1189 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi };
1190 ED.IsDef = true;
1191 break;
1192 case Hexagon::A4_combineri: // (Rd: ## + __<<_)
1193 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo };
1194 ED.IsDef = true;
1195 break;
1196 case Hexagon::A2_addi: // (Rd: ## + Rs<<0)
1197 ED.Rd = MI.getOperand(0);
1198 ED.Expr.Rs = MI.getOperand(OpNum-1);
1199 break;
1200 case Hexagon::M2_accii: // (__: ## + Rs<<0)
1201 case Hexagon::M2_naccii:
1202 case Hexagon::S4_addaddi:
1203 ED.Expr.Rs = MI.getOperand(OpNum-1);
1204 break;
1205 case Hexagon::A2_subri: // (Rd: ## - Rs<<0)
1206 ED.Rd = MI.getOperand(0);
1207 ED.Expr.Rs = MI.getOperand(OpNum+1);
1208 ED.Expr.Neg = true;
1209 break;
1210 case Hexagon::S4_subaddi: // (__: ## - Rs<<0)
1211 ED.Expr.Rs = MI.getOperand(OpNum+1);
1212 ED.Expr.Neg = true;
1213 break;
1214 default: // (__: ## + __<<_)
1215 break;
1216 }
1217 }
1218
1219 ED.UseMI = &MI;
1220
1221 // Ignore unnamed globals.
1222 ExtRoot ER(ED.getOp());
1223 if (ER.Kind == MachineOperand::MO_GlobalAddress)
1224 if (ER.V.GV->getName().empty())
1225 return;
1226 Extenders.push_back(ED);
1227}
1228
1229void HCE::collectInstr(MachineInstr &MI) {
1230 if (!HII->isConstExtended(MI))
1231 return;
1232
1233 // Skip some non-convertible instructions.
1234 unsigned Opc = MI.getOpcode();
1235 switch (Opc) {
1236 case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt).
1237 case Hexagon::C4_addipc:
1238 case Hexagon::S4_or_andi:
1239 case Hexagon::S4_or_andix:
1240 case Hexagon::S4_or_ori:
1241 return;
1242 }
1243 recordExtender(MI, HII->getCExtOpNum(MI));
1244}
1245
1246void HCE::collect(MachineFunction &MF) {
1247 Extenders.clear();
1248 for (MachineBasicBlock &MBB : MF) {
1249 // Skip unreachable blocks.
1250 if (MBB.getNumber() == -1)
1251 continue;
1252 for (MachineInstr &MI : MBB)
1253 collectInstr(MI);
1254 }
1255}
1256
1257void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
1258 AssignmentMap &IMap) {
1259 // Basic correctness: make sure that all extenders in the range [Begin..End)
1260 // share the same root ER.
1261 for (unsigned I = Begin; I != End; ++I)
1
Assuming 'I' is not equal to 'End'
2
Loop condition is true. Entering loop body
4
Assuming 'I' is equal to 'End'
5
Loop condition is false. Execution continues on line 1268
1262 assert(ER == ExtRoot(Extenders[I].getOp()))(static_cast <bool> (ER == ExtRoot(Extenders[I].getOp()
)) ? void (0) : __assert_fail ("ER == ExtRoot(Extenders[I].getOp())"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1262, __extension__
__PRETTY_FUNCTION__))
;
3
'?' condition is true
1263
1264 // Construct the list of ranges, such that for each P in Ranges[I],
1265 // a register Reg = ER+P can be used in place of Extender[I]. If the
1266 // instruction allows, uses in the form of Reg+Off are considered
1267 // (here, Off = required_value - P).
1268 std::vector<OffsetRange> Ranges(End-Begin);
1269
1270 // For each extender that is a def, visit all uses of the defined register,
1271 // and produce an offset range that works for all uses. The def doesn't
1272 // have to be checked, because it can become dead if all uses can be updated
1273 // to use a different reg/offset.
1274 for (unsigned I = Begin; I
5.1
'I' is not equal to 'End'
9.1
'I' is equal to 'End'
5.1
'I' is not equal to 'End'
9.1
'I' is equal to 'End'
!= End; ++I) {
6
Loop condition is true. Entering loop body
10
Loop condition is false. Execution continues on line 1294
1275 const ExtDesc &ED = Extenders[I];
1276 if (!ED.IsDef)
7
Assuming field 'IsDef' is false
8
Taking true branch
1277 continue;
9
Execution continues on line 1274
1278 ExtValue EV(ED);
1279 LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << " =" << I <<
". " << EV << " " << ED << '\n'; } }
while (false)
;
1280 assert(ED.Rd.Reg != 0)(static_cast <bool> (ED.Rd.Reg != 0) ? void (0) : __assert_fail
("ED.Rd.Reg != 0", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 1280, __extension__ __PRETTY_FUNCTION__))
;
1281 Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset);
1282 // A2_tfrsi is a special case: it will be replaced with A2_addi, which
1283 // has a 16-bit signed offset. This means that A2_tfrsi not only has a
1284 // range coming from its uses, but also from the fact that its replacement
1285 // has a range as well.
1286 if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) {
1287 int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded
1288 Ranges[I-Begin].extendBy(-D).extendBy(D);
1289 }
1290 }
1291
1292 // Visit all non-def extenders. For each one, determine the offset range
1293 // available for it.
1294 for (unsigned I = Begin; I
10.1
'I' is not equal to 'End'
10.1
'I' is not equal to 'End'
!= End; ++I) {
11
Loop condition is true. Entering loop body
1295 const ExtDesc &ED = Extenders[I];
1296 if (ED.IsDef)
12
Assuming field 'IsDef' is false
13
Taking false branch
1297 continue;
1298 ExtValue EV(ED);
1299 LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << " " << I <<
". " << EV << " " << ED << '\n'; } }
while (false)
;
14
Assuming 'DebugFlag' is false
15
Loop condition is false. Exiting loop
1300 OffsetRange Dev = getOffsetRange(ED);
1301 Ranges[I-Begin].intersect(Dev.shift(EV.Offset));
16
Calling 'OffsetRange::intersect'
1302 }
1303
1304 // Here for each I there is a corresponding Range[I]. Construct the
1305 // inverse map, that to each range will assign the set of indexes in
1306 // [Begin..End) that this range corresponds to.
1307 std::map<OffsetRange, IndexList> RangeMap;
1308 for (unsigned I = Begin; I != End; ++I)
1309 RangeMap[Ranges[I-Begin]].insert(I);
1310
1311 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1312 dbgs() << "Ranges\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1313 for (unsigned I = Begin; I != End; ++I)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1314 dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1315 dbgs() << "RangeMap\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1316 for (auto &P : RangeMap) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1317 dbgs() << " " << P.first << " ->";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1318 for (unsigned I : P.second)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1319 dbgs() << ' ' << I;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1320 dbgs() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1321 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
1322 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { dbgs() << "Ranges\n"; for (unsigned
I = Begin; I != End; ++I) dbgs() << " " << I <<
". " << Ranges[I-Begin] << '\n'; dbgs() <<
"RangeMap\n"; for (auto &P : RangeMap) { dbgs() <<
" " << P.first << " ->"; for (unsigned I : P
.second) dbgs() << ' ' << I; dbgs() << '\n'
; } }; } } while (false)
;
1323
1324 // Select the definition points, and generate the assignment between
1325 // these points and the uses.
1326
1327 // For each candidate offset, keep a pair CandData consisting of
1328 // the total number of ranges containing that candidate, and the
1329 // vector of corresponding RangeTree nodes.
1330 using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>;
1331 std::map<int32_t, CandData> CandMap;
1332
1333 RangeTree Tree;
1334 for (const OffsetRange &R : Ranges)
1335 Tree.add(R);
1336 SmallVector<RangeTree::Node*,8> Nodes;
1337 Tree.order(Nodes);
1338
1339 auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes,
1340 uint8_t Align, uint8_t Offset) {
1341 for (RangeTree::Node *N : Nodes) {
1342 if (N->Range.Align <= Align || N->Range.Offset < Offset)
1343 continue;
1344 if ((N->Range.Offset - Offset) % Align != 0)
1345 continue;
1346 Align = N->Range.Align;
1347 Offset = N->Range.Offset;
1348 }
1349 return std::make_pair(Align, Offset);
1350 };
1351
1352 // Construct the set of all potential definition points from the endpoints
1353 // of the ranges. If a given endpoint also belongs to a different range,
1354 // but with a higher alignment, also consider the more-highly-aligned
1355 // value of this endpoint.
1356 std::set<int32_t> CandSet;
1357 for (RangeTree::Node *N : Nodes) {
1358 const OffsetRange &R = N->Range;
1359 auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset);
1360 CandSet.insert(R.Min);
1361 if (R.Align < P0.first)
1362 CandSet.insert(adjustUp(R.Min, P0.first, P0.second));
1363 auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset);
1364 CandSet.insert(R.Max);
1365 if (R.Align < P1.first)
1366 CandSet.insert(adjustDown(R.Max, P1.first, P1.second));
1367 }
1368
1369 // Build the assignment map: candidate C -> { list of extender indexes }.
1370 // This has to be done iteratively:
1371 // - pick the candidate that covers the maximum number of extenders,
1372 // - add the candidate to the map,
1373 // - remove the extenders from the pool.
1374 while (true) {
1375 using CMap = std::map<int32_t,unsigned>;
1376 CMap Counts;
1377 for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) {
1378 auto &&V = Tree.nodesWith(*It);
1379 unsigned N = std::accumulate(V.begin(), V.end(), 0u,
1380 [](unsigned Acc, const RangeTree::Node *N) {
1381 return Acc + N->Count;
1382 });
1383 if (N != 0)
1384 Counts.insert({*It, N});
1385 It = (N != 0) ? std::next(It) : CandSet.erase(It);
1386 }
1387 if (Counts.empty())
1388 break;
1389
1390 // Find the best candidate with respect to the number of extenders covered.
1391 auto BestIt = std::max_element(Counts.begin(), Counts.end(),
1392 [](const CMap::value_type &A, const CMap::value_type &B) {
1393 return A.second < B.second ||
1394 (A.second == B.second && A < B);
1395 });
1396 int32_t Best = BestIt->first;
1397 ExtValue BestV(ER, Best);
1398 for (RangeTree::Node *N : Tree.nodesWith(Best)) {
1399 for (unsigned I : RangeMap[N->Range])
1400 IMap[{BestV,Extenders[I].Expr}].insert(I);
1401 Tree.erase(N);
1402 }
1403 }
1404
1405 LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << "IMap (before fixup) = "
<< PrintIMap(IMap, *HRI); } } while (false)
;
1406
1407 // There is some ambiguity in what initializer should be used, if the
1408 // descriptor's subexpression is non-trivial: it can be the entire
1409 // subexpression (which is what has been done so far), or it can be
1410 // the extender's value itself, if all corresponding extenders have the
1411 // exact value of the initializer (i.e. require offset of 0).
1412
1413 // To reduce the number of initializers, merge such special cases.
1414 for (std::pair<const ExtenderInit,IndexList> &P : IMap) {
1415 // Skip trivial initializers.
1416 if (P.first.second.trivial())
1417 continue;
1418 // If the corresponding trivial initializer does not exist, skip this
1419 // entry.
1420 const ExtValue &EV = P.first.first;
1421 AssignmentMap::iterator F = IMap.find({EV, ExtExpr()});
1422 if (F == IMap.end())
1423 continue;
1424
1425 // Finally, check if all extenders have the same value as the initializer.
1426 // Make sure that extenders that are a part of a stack address are not
1427 // merged with those that aren't. Stack addresses need an offset field
1428 // (to be used by frame index elimination), while non-stack expressions
1429 // can be replaced with forms (such as rr) that do not have such a field.
1430 // Example:
1431 //
1432 // Collected 3 extenders
1433 // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def
1434 // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0
1435 // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0
1436 // Ranges
1437 // 0. [-756,267]a1+0
1438 // 1. [-756,267]a1+0
1439 // 2. [201,65735]a1+0
1440 // RangeMap
1441 // [-756,267]a1+0 -> 0 1
1442 // [201,65735]a1+0 -> 2
1443 // IMap (before fixup) = {
1444 // [imm:0 off:267, ## + __ << 0] -> { 2 }
1445 // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 }
1446 // }
1447 // IMap (after fixup) = {
1448 // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 }
1449 // [imm:0 off:267, ## + SS#1 << 0] -> { }
1450 // }
1451 // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0]
1452 // %12:intregs = A2_tfrsi 267
1453 //
1454 // The result was
1455 // %12:intregs = A2_tfrsi 267
1456 // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4
1457 // Which became
1458 // r0 = #267
1459 // if (p0.new) memb(r0+r29<<#4) = r2
1460
1461 bool IsStack = any_of(F->second, [this](unsigned I) {
1462 return Extenders[I].Expr.Rs.isSlot();
1463 });
1464 auto SameValue = [&EV,this,IsStack](unsigned I) {
1465 const ExtDesc &ED = Extenders[I];
1466 return ED.Expr.Rs.isSlot() == IsStack &&
1467 ExtValue(ED).Offset == EV.Offset;
1468 };
1469 if (all_of(P.second, SameValue)) {
1470 F->second.insert(P.second.begin(), P.second.end());
1471 P.second.clear();
1472 }
1473 }
1474
1475 LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << "IMap (after fixup) = "
<< PrintIMap(IMap, *HRI); } } while (false)
;
1476}
1477
1478void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
1479 LocDefList &Defs) {
1480 if (Refs.empty())
1481 return;
1482
1483 // The placement calculation is somewhat simple right now: it finds a
1484 // single location for the def that dominates all refs. Since this may
1485 // place the def far from the uses, producing several locations for
1486 // defs that collectively dominate all refs could be better.
1487 // For now only do the single one.
1488 DenseSet<MachineBasicBlock*> Blocks;
1489 DenseSet<MachineInstr*> RefMIs;
1490 const ExtDesc &ED0 = Extenders[Refs[0]];
1491 MachineBasicBlock *DomB = ED0.UseMI->getParent();
1492 RefMIs.insert(ED0.UseMI);
1493 Blocks.insert(DomB);
1494 for (unsigned i = 1, e = Refs.size(); i != e; ++i) {
1495 const ExtDesc &ED = Extenders[Refs[i]];
1496 MachineBasicBlock *MBB = ED.UseMI->getParent();
1497 RefMIs.insert(ED.UseMI);
1498 DomB = MDT->findNearestCommonDominator(DomB, MBB);
1499 Blocks.insert(MBB);
1500 }
1501
1502#ifndef NDEBUG
1503 // The block DomB should be dominated by the def of each register used
1504 // in the initializer.
1505 Register Rs = ExtI.second.Rs; // Only one reg allowed now.
1506 const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr;
1507
1508 // This should be guaranteed given that the entire expression is used
1509 // at each instruction in Refs. Add an assertion just in case.
1510 assert(!DefI || MDT->dominates(DefI->getParent(), DomB))(static_cast <bool> (!DefI || MDT->dominates(DefI->
getParent(), DomB)) ? void (0) : __assert_fail ("!DefI || MDT->dominates(DefI->getParent(), DomB)"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1510, __extension__
__PRETTY_FUNCTION__))
;
1511#endif
1512
1513 MachineBasicBlock::iterator It;
1514 if (Blocks.count(DomB)) {
1515 // Try to find the latest possible location for the def.
1516 MachineBasicBlock::iterator End = DomB->end();
1517 for (It = DomB->begin(); It != End; ++It)
1518 if (RefMIs.count(&*It))
1519 break;
1520 assert(It != End && "Should have found a ref in DomB")(static_cast <bool> (It != End && "Should have found a ref in DomB"
) ? void (0) : __assert_fail ("It != End && \"Should have found a ref in DomB\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1520, __extension__
__PRETTY_FUNCTION__))
;
1521 } else {
1522 // DomB does not contain any refs.
1523 It = DomB->getFirstTerminator();
1524 }
1525 Loc DefLoc(DomB, It);
1526 Defs.emplace_back(DefLoc, Refs);
1527}
1528
1529HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) {
1530 llvm::Register DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1531 MachineBasicBlock &MBB = *DefL.Block;
1532 MachineBasicBlock::iterator At = DefL.At;
1533 DebugLoc dl = DefL.Block->findDebugLoc(DefL.At);
1534 const ExtValue &EV = ExtI.first;
1535 MachineOperand ExtOp(EV);
1536
1537 const ExtExpr &Ex = ExtI.second;
1538 const MachineInstr *InitI = nullptr;
1539
1540 if (Ex.Rs.isSlot()) {
1541 assert(Ex.S == 0 && "Cannot have a shift of a stack slot")(static_cast <bool> (Ex.S == 0 && "Cannot have a shift of a stack slot"
) ? void (0) : __assert_fail ("Ex.S == 0 && \"Cannot have a shift of a stack slot\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1541, __extension__
__PRETTY_FUNCTION__))
;
1542 assert(!Ex.Neg && "Cannot subtract a stack slot")(static_cast <bool> (!Ex.Neg && "Cannot subtract a stack slot"
) ? void (0) : __assert_fail ("!Ex.Neg && \"Cannot subtract a stack slot\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1542, __extension__
__PRETTY_FUNCTION__))
;
1543 // DefR = PS_fi Rb,##EV
1544 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR)
1545 .add(MachineOperand(Ex.Rs))
1546 .add(ExtOp);
1547 } else {
1548 assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register")(static_cast <bool> ((Ex.Rs.Reg == 0 || Ex.Rs.isVReg())
&& "Expecting virtual register") ? void (0) : __assert_fail
("(Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && \"Expecting virtual register\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1548, __extension__
__PRETTY_FUNCTION__))
;
1549 if (Ex.trivial()) {
1550 // DefR = ##EV
1551 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR)
1552 .add(ExtOp);
1553 } else if (Ex.S == 0) {
1554 if (Ex.Neg) {
1555 // DefR = sub(##EV,Rb)
1556 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
1557 .add(ExtOp)
1558 .add(MachineOperand(Ex.Rs));
1559 } else {
1560 // DefR = add(Rb,##EV)
1561 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
1562 .add(MachineOperand(Ex.Rs))
1563 .add(ExtOp);
1564 }
1565 } else {
1566 if (HST->useCompound()) {
1567 unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri
1568 : Hexagon::S4_addi_asl_ri;
1569 // DefR = add(##EV,asl(Rb,S))
1570 InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR)
1571 .add(ExtOp)
1572 .add(MachineOperand(Ex.Rs))
1573 .addImm(Ex.S);
1574 } else {
1575 // No compounds are available. It is not clear whether we should
1576 // even process such extenders where the initializer cannot be
1577 // a single instruction, but do it for now.
1578 llvm::Register TmpR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1579 BuildMI(MBB, At, dl, HII->get(Hexagon::S2_asl_i_r), TmpR)
1580 .add(MachineOperand(Ex.Rs))
1581 .addImm(Ex.S);
1582 if (Ex.Neg)
1583 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
1584 .add(ExtOp)
1585 .add(MachineOperand(Register(TmpR, 0)));
1586 else
1587 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
1588 .add(MachineOperand(Register(TmpR, 0)))
1589 .add(ExtOp);
1590 }
1591 }
1592 }
1593
1594 assert(InitI)(static_cast <bool> (InitI) ? void (0) : __assert_fail (
"InitI", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp",
1594, __extension__ __PRETTY_FUNCTION__))
;
1595 (void)InitI;
1596 LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << "Inserted def in bb#"
<< MBB.getNumber() << " for initializer: " <<
PrintInit(ExtI, *HRI) << "\n " << *InitI; } } while
(false)
1597 << " for initializer: " << PrintInit(ExtI, *HRI) << "\n "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << "Inserted def in bb#"
<< MBB.getNumber() << " for initializer: " <<
PrintInit(ExtI, *HRI) << "\n " << *InitI; } } while
(false)
1598 << *InitI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << "Inserted def in bb#"
<< MBB.getNumber() << " for initializer: " <<
PrintInit(ExtI, *HRI) << "\n " << *InitI; } } while
(false)
;
1599 return { DefR, 0 };
1600}
1601
1602// Replace the extender at index Idx with the register ExtR.
1603bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) {
1604 MachineInstr &MI = *ED.UseMI;
1605 MachineBasicBlock &MBB = *MI.getParent();
1606 MachineBasicBlock::iterator At = MI.getIterator();
1607 DebugLoc dl = MI.getDebugLoc();
1608 unsigned ExtOpc = MI.getOpcode();
1609
1610 // With a few exceptions, direct replacement amounts to creating an
1611 // instruction with a corresponding register opcode, with all operands
1612 // the same, except for the register used in place of the extender.
1613 unsigned RegOpc = getDirectRegReplacement(ExtOpc);
1614
1615 if (RegOpc == TargetOpcode::REG_SEQUENCE) {
1616 if (ExtOpc == Hexagon::A4_combineri)
1617 BuildMI(MBB, At, dl, HII->get(RegOpc))
1618 .add(MI.getOperand(0))
1619 .add(MI.getOperand(1))
1620 .addImm(Hexagon::isub_hi)
1621 .add(MachineOperand(ExtR))
1622 .addImm(Hexagon::isub_lo);
1623 else if (ExtOpc == Hexagon::A4_combineir)
1624 BuildMI(MBB, At, dl, HII->get(RegOpc))
1625 .add(MI.getOperand(0))
1626 .add(MachineOperand(ExtR))
1627 .addImm(Hexagon::isub_hi)
1628 .add(MI.getOperand(2))
1629 .addImm(Hexagon::isub_lo);
1630 else
1631 llvm_unreachable("Unexpected opcode became REG_SEQUENCE")::llvm::llvm_unreachable_internal("Unexpected opcode became REG_SEQUENCE"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1631)
;
1632 MBB.erase(MI);
1633 return true;
1634 }
1635 if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) {
1636 unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt
1637 : Hexagon::C2_cmpltu;
1638 BuildMI(MBB, At, dl, HII->get(NewOpc))
1639 .add(MI.getOperand(0))
1640 .add(MachineOperand(ExtR))
1641 .add(MI.getOperand(1));
1642 MBB.erase(MI);
1643 return true;
1644 }
1645
1646 if (RegOpc != 0) {
1647 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1648 unsigned RegN = ED.OpNum;
1649 // Copy all operands except the one that has the extender.
1650 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1651 if (i != RegN)
1652 MIB.add(MI.getOperand(i));
1653 else
1654 MIB.add(MachineOperand(ExtR));
1655 }
1656 MIB.cloneMemRefs(MI);
1657 MBB.erase(MI);
1658 return true;
1659 }
1660
1661 if (MI.mayLoadOrStore() && !isStoreImmediate(ExtOpc)) {
1662 // For memory instructions, there is an asymmetry in the addressing
1663 // modes. Addressing modes allowing extenders can be replaced with
1664 // addressing modes that use registers, but the order of operands
1665 // (or even their number) may be different.
1666 // Replacements:
1667 // BaseImmOffset (io) -> BaseRegOffset (rr)
1668 // BaseLongOffset (ur) -> BaseRegOffset (rr)
1669 unsigned RegOpc, Shift;
1670 unsigned AM = HII->getAddrMode(MI);
1671 if (AM == HexagonII::BaseImmOffset) {
1672 RegOpc = HII->changeAddrMode_io_rr(ExtOpc);
1673 Shift = 0;
1674 } else if (AM == HexagonII::BaseLongOffset) {
1675 // Loads: Rd = L4_loadri_ur Rs, S, ##
1676 // Stores: S4_storeri_ur Rs, S, ##, Rt
1677 RegOpc = HII->changeAddrMode_ur_rr(ExtOpc);
1678 Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm();
1679 } else {
1680 llvm_unreachable("Unexpected addressing mode")::llvm::llvm_unreachable_internal("Unexpected addressing mode"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1680)
;
1681 }
1682#ifndef NDEBUG
1683 if (RegOpc == -1u) {
1684 dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n";
1685 llvm_unreachable("No corresponding rr instruction")::llvm::llvm_unreachable_internal("No corresponding rr instruction"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1685)
;
1686 }
1687#endif
1688
1689 unsigned BaseP, OffP;
1690 HII->getBaseAndOffsetPosition(MI, BaseP, OffP);
1691
1692 // Build an rr instruction: (RegOff + RegBase<<0)
1693 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1694 // First, add the def for loads.
1695 if (MI.mayLoad())
1696 MIB.add(getLoadResultOp(MI));
1697 // Handle possible predication.
1698 if (HII->isPredicated(MI))
1699 MIB.add(getPredicateOp(MI));
1700 // Build the address.
1701 MIB.add(MachineOperand(ExtR)); // RegOff
1702 MIB.add(MI.getOperand(BaseP)); // RegBase
1703 MIB.addImm(Shift); // << Shift
1704 // Add the stored value for stores.
1705 if (MI.mayStore())
1706 MIB.add(getStoredValueOp(MI));
1707 MIB.cloneMemRefs(MI);
1708 MBB.erase(MI);
1709 return true;
1710 }
1711
1712#ifndef NDEBUG
1713 dbgs() << '\n' << MI;
1714#endif
1715 llvm_unreachable("Unhandled exact replacement")::llvm::llvm_unreachable_internal("Unhandled exact replacement"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1715)
;
1716 return false;
1717}
1718
1719// Replace the extender ED with a form corresponding to the initializer ExtI.
1720bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
1721 Register ExtR, int32_t &Diff) {
1722 MachineInstr &MI = *ED.UseMI;
1723 MachineBasicBlock &MBB = *MI.getParent();
1724 MachineBasicBlock::iterator At = MI.getIterator();
1725 DebugLoc dl = MI.getDebugLoc();
1726 unsigned ExtOpc = MI.getOpcode();
1727
1728 if (ExtOpc == Hexagon::A2_tfrsi) {
1729 // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces
1730 // another range. One range is the one that's common to all tfrsi's uses,
1731 // this one is the range of immediates in A2_addi. When calculating ranges,
1732 // the addi's 16-bit argument was included, so now we need to make it such
1733 // that the produced value is in the range for the uses alone.
1734 // Most of the time, simply adding Diff will make the addi produce exact
1735 // result, but if Diff is outside of the 16-bit range, some adjustment
1736 // will be needed.
1737 unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1738 assert(IdxOpc == Hexagon::A2_addi)(static_cast <bool> (IdxOpc == Hexagon::A2_addi) ? void
(0) : __assert_fail ("IdxOpc == Hexagon::A2_addi", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 1738, __extension__ __PRETTY_FUNCTION__))
;
1739
1740 // Clamp Diff to the 16 bit range.
1741 int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768);
1742 if (Diff > 32767) {
1743 // Split Diff into two values: one that is close to min/max int16,
1744 // and the other being the rest, and such that both have the same
1745 // "alignment" as Diff.
1746 uint32_t UD = Diff;
1747 OffsetRange R = getOffsetRange(MI.getOperand(0));
1748 uint32_t A = std::min<uint32_t>(R.Align, 1u << llvm::countr_zero(UD));
1749 D &= ~(A-1);
1750 }
1751 BuildMI(MBB, At, dl, HII->get(IdxOpc))
1752 .add(MI.getOperand(0))
1753 .add(MachineOperand(ExtR))
1754 .addImm(D);
1755 Diff -= D;
1756#ifndef NDEBUG
1757 // Make sure the output is within allowable range for uses.
1758 // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV,
1759 // not DefV - Ext, as the getOffsetRange would calculate.
1760 OffsetRange Uses = getOffsetRange(MI.getOperand(0));
1761 if (!Uses.contains(-Diff))
1762 dbgs() << "Diff: " << -Diff << " out of range " << Uses
1763 << " for " << MI;
1764 assert(Uses.contains(-Diff))(static_cast <bool> (Uses.contains(-Diff)) ? void (0) :
__assert_fail ("Uses.contains(-Diff)", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 1764, __extension__ __PRETTY_FUNCTION__))
;
1765#endif
1766 MBB.erase(MI);
1767 return true;
1768 }
1769
1770 const ExtValue &EV = ExtI.first; (void)EV;
1771 const ExtExpr &Ex = ExtI.second; (void)Ex;
1772
1773 if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) {
1774 // If addi/subri are replaced with the exactly matching initializer,
1775 // they amount to COPY.
1776 // Check that the initializer is an exact match (for simplicity).
1777#ifndef NDEBUG
1778 bool IsAddi = ExtOpc == Hexagon::A2_addi;
1779 const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2);
1780 const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1);
1781 assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi &&(static_cast <bool> (Ex.Rs == RegOp && EV == ImmOp
&& Ex.Neg != IsAddi && "Initializer mismatch"
) ? void (0) : __assert_fail ("Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && \"Initializer mismatch\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1782, __extension__
__PRETTY_FUNCTION__))
1782 "Initializer mismatch")(static_cast <bool> (Ex.Rs == RegOp && EV == ImmOp
&& Ex.Neg != IsAddi && "Initializer mismatch"
) ? void (0) : __assert_fail ("Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && \"Initializer mismatch\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1782, __extension__
__PRETTY_FUNCTION__))
;
1783#endif
1784 BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY))
1785 .add(MI.getOperand(0))
1786 .add(MachineOperand(ExtR));
1787 Diff = 0;
1788 MBB.erase(MI);
1789 return true;
1790 }
1791 if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii ||
1792 ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) {
1793 // M2_accii: add(Rt,add(Rs,V)) (tied)
1794 // M2_naccii: sub(Rt,add(Rs,V))
1795 // S4_addaddi: add(Rt,add(Rs,V))
1796 // S4_subaddi: add(Rt,sub(V,Rs))
1797 // Check that Rs and V match the initializer expression. The Rs+V is the
1798 // combination that is considered "subexpression" for V, although Rx+V
1799 // would also be valid.
1800#ifndef NDEBUG
1801 bool IsSub = ExtOpc == Hexagon::S4_subaddi;
1802 Register Rs = MI.getOperand(IsSub ? 3 : 2);
1803 ExtValue V = MI.getOperand(IsSub ? 2 : 3);
1804 assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch")(static_cast <bool> (EV == V && Rs == Ex.Rs &&
IsSub == Ex.Neg && "Initializer mismatch") ? void (0
) : __assert_fail ("EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && \"Initializer mismatch\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1804, __extension__
__PRETTY_FUNCTION__))
;
1805#endif
1806 unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub
1807 : Hexagon::A2_add;
1808 BuildMI(MBB, At, dl, HII->get(NewOpc))
1809 .add(MI.getOperand(0))
1810 .add(MI.getOperand(1))
1811 .add(MachineOperand(ExtR));
1812 MBB.erase(MI);
1813 return true;
1814 }
1815
1816 if (MI.mayLoadOrStore()) {
1817 unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1818 assert(IdxOpc && "Expecting indexed opcode")(static_cast <bool> (IdxOpc && "Expecting indexed opcode"
) ? void (0) : __assert_fail ("IdxOpc && \"Expecting indexed opcode\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1818, __extension__
__PRETTY_FUNCTION__))
;
1819 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc));
1820 // Construct the new indexed instruction.
1821 // First, add the def for loads.
1822 if (MI.mayLoad())
1823 MIB.add(getLoadResultOp(MI));
1824 // Handle possible predication.
1825 if (HII->isPredicated(MI))
1826 MIB.add(getPredicateOp(MI));
1827 // Build the address.
1828 MIB.add(MachineOperand(ExtR));
1829 MIB.addImm(Diff);
1830 // Add the stored value for stores.
1831 if (MI.mayStore())
1832 MIB.add(getStoredValueOp(MI));
1833 MIB.cloneMemRefs(MI);
1834 MBB.erase(MI);
1835 return true;
1836 }
1837
1838#ifndef NDEBUG
1839 dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI;
1840#endif
1841 llvm_unreachable("Unhandled expr replacement")::llvm::llvm_unreachable_internal("Unhandled expr replacement"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1841)
;
1842 return false;
1843}
1844
1845bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) {
1846 if (ReplaceLimit.getNumOccurrences()) {
1847 if (ReplaceLimit <= ReplaceCounter)
1848 return false;
1849 ++ReplaceCounter;
1850 }
1851 const ExtDesc &ED = Extenders[Idx];
1852 assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def")(static_cast <bool> ((!ED.IsDef || ED.Rd.Reg != 0) &&
"Missing Rd for def") ? void (0) : __assert_fail ("(!ED.IsDef || ED.Rd.Reg != 0) && \"Missing Rd for def\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1852, __extension__
__PRETTY_FUNCTION__))
;
1853 const ExtValue &DefV = ExtI.first;
1854 assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch")(static_cast <bool> (ExtRoot(ExtValue(ED)) == ExtRoot(DefV
) && "Extender root mismatch") ? void (0) : __assert_fail
("ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && \"Extender root mismatch\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1854, __extension__
__PRETTY_FUNCTION__))
;
1855 const ExtExpr &DefEx = ExtI.second;
1856
1857 ExtValue EV(ED);
1858 int32_t Diff = EV.Offset - DefV.Offset;
1859 const MachineInstr &MI = *ED.UseMI;
1860 LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << __func__ << " Idx:"
<< Idx << " ExtR:" << PrintRegister(ExtR, *
HRI) << " Diff:" << Diff << '\n'; } } while
(false)
1861 << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << __func__ << " Idx:"
<< Idx << " ExtR:" << PrintRegister(ExtR, *
HRI) << " Diff:" << Diff << '\n'; } } while
(false)
;
1862
1863 // These two addressing modes must be converted into indexed forms
1864 // regardless of what the initializer looks like.
1865 bool IsAbs = false, IsAbsSet = false;
1866 if (MI.mayLoadOrStore()) {
1867 unsigned AM = HII->getAddrMode(MI);
1868 IsAbs = AM == HexagonII::Absolute;
1869 IsAbsSet = AM == HexagonII::AbsoluteSet;
1870 }
1871
1872 // If it's a def, remember all operands that need to be updated.
1873 // If ED is a def, and Diff is not 0, then all uses of the register Rd
1874 // defined by ED must be in the form (Rd, imm), i.e. the immediate offset
1875 // must follow the Rd in the operand list.
1876 std::vector<std::pair<MachineInstr*,unsigned>> RegOps;
1877 if (ED.IsDef && Diff != 0) {
1878 for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) {
1879 MachineInstr &UI = *Op.getParent();
1880 RegOps.push_back({&UI, getOperandIndex(UI, Op)});
1881 }
1882 }
1883
1884 // Replace the instruction.
1885 bool Replaced = false;
1886 if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet)
1887 Replaced = replaceInstrExact(ED, ExtR);
1888 else
1889 Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff);
1890
1891 if (Diff != 0 && Replaced && ED.IsDef) {
1892 // Update offsets of the def's uses.
1893 for (std::pair<MachineInstr*,unsigned> P : RegOps) {
1894 unsigned J = P.second;
1895 assert(P.first->getNumOperands() > J+1 &&(static_cast <bool> (P.first->getNumOperands() > J
+1 && P.first->getOperand(J+1).isImm()) ? void (0)
: __assert_fail ("P.first->getNumOperands() > J+1 && P.first->getOperand(J+1).isImm()"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1896, __extension__
__PRETTY_FUNCTION__))
1896 P.first->getOperand(J+1).isImm())(static_cast <bool> (P.first->getNumOperands() > J
+1 && P.first->getOperand(J+1).isImm()) ? void (0)
: __assert_fail ("P.first->getNumOperands() > J+1 && P.first->getOperand(J+1).isImm()"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1896, __extension__
__PRETTY_FUNCTION__))
;
1897 MachineOperand &ImmOp = P.first->getOperand(J+1);
1898 ImmOp.setImm(ImmOp.getImm() + Diff);
1899 }
1900 // If it was an absolute-set instruction, the "set" part has been removed.
1901 // ExtR will now be the register with the extended value, and since all
1902 // users of Rd have been updated, all that needs to be done is to replace
1903 // Rd with ExtR.
1904 if (IsAbsSet) {
1905 assert(ED.Rd.Sub == 0 && ExtR.Sub == 0)(static_cast <bool> (ED.Rd.Sub == 0 && ExtR.Sub
== 0) ? void (0) : __assert_fail ("ED.Rd.Sub == 0 && ExtR.Sub == 0"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1905, __extension__
__PRETTY_FUNCTION__))
;
1906 MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg);
1907 }
1908 }
1909
1910 return Replaced;
1911}
1912
1913bool HCE::replaceExtenders(const AssignmentMap &IMap) {
1914 LocDefList Defs;
1915 bool Changed = false;
1916
1917 for (const std::pair<const ExtenderInit, IndexList> &P : IMap) {
1918 const IndexList &Idxs = P.second;
1919 if (Idxs.size() < CountThreshold)
1920 continue;
1921
1922 Defs.clear();
1923 calculatePlacement(P.first, Idxs, Defs);
1924 for (const std::pair<Loc,IndexList> &Q : Defs) {
1925 Register DefR = insertInitializer(Q.first, P.first);
1926 NewRegs.push_back(DefR.Reg);
1927 for (unsigned I : Q.second)
1928 Changed |= replaceInstr(I, DefR, P.first);
1929 }
1930 }
1931 return Changed;
1932}
1933
1934unsigned HCE::getOperandIndex(const MachineInstr &MI,
1935 const MachineOperand &Op) const {
1936 for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i)
1937 if (&MI.getOperand(i) == &Op)
1938 return i;
1939 llvm_unreachable("Not an operand of MI")::llvm::llvm_unreachable_internal("Not an operand of MI", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 1939)
;
1940}
1941
1942const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const {
1943 assert(HII->isPredicated(MI))(static_cast <bool> (HII->isPredicated(MI)) ? void (
0) : __assert_fail ("HII->isPredicated(MI)", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 1943, __extension__ __PRETTY_FUNCTION__))
;
1944 for (const MachineOperand &Op : MI.operands()) {
1945 if (!Op.isReg() || !Op.isUse() ||
1946 MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass)
1947 continue;
1948 assert(Op.getSubReg() == 0 && "Predicate register with a subregister")(static_cast <bool> (Op.getSubReg() == 0 && "Predicate register with a subregister"
) ? void (0) : __assert_fail ("Op.getSubReg() == 0 && \"Predicate register with a subregister\""
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1948, __extension__
__PRETTY_FUNCTION__))
;
1949 return Op;
1950 }
1951 llvm_unreachable("Predicate operand not found")::llvm::llvm_unreachable_internal("Predicate operand not found"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1951)
;
1952}
1953
1954const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const {
1955 assert(MI.mayLoad())(static_cast <bool> (MI.mayLoad()) ? void (0) : __assert_fail
("MI.mayLoad()", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 1955, __extension__ __PRETTY_FUNCTION__))
;
1956 return MI.getOperand(0);
1957}
1958
1959const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const {
1960 assert(MI.mayStore())(static_cast <bool> (MI.mayStore()) ? void (0) : __assert_fail
("MI.mayStore()", "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp"
, 1960, __extension__ __PRETTY_FUNCTION__))
;
1961 return MI.getOperand(MI.getNumExplicitOperands()-1);
1962}
1963
1964bool HCE::runOnMachineFunction(MachineFunction &MF) {
1965 if (skipFunction(MF.getFunction()))
1966 return false;
1967 if (MF.getFunction().hasPersonalityFn()) {
1968 LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << getPassName() <<
": skipping " << MF.getName() << " due to exception handling\n"
; } } while (false)
1969 << " due to exception handling\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << getPassName() <<
": skipping " << MF.getName() << " due to exception handling\n"
; } } while (false)
;
1970 return false;
1971 }
1972 LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { MF.print(dbgs() << "Before " <<
getPassName() << '\n', nullptr); } } while (false)
;
1973
1974 HST = &MF.getSubtarget<HexagonSubtarget>();
1975 HII = HST->getInstrInfo();
1976 HRI = HST->getRegisterInfo();
1977 MDT = &getAnalysis<MachineDominatorTree>();
1978 MRI = &MF.getRegInfo();
1979 AssignmentMap IMap;
1980
1981 collect(MF);
1982 llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) {
1983 ExtValue VA(A), VB(B);
1984 if (VA != VB)
1985 return VA < VB;
1986 const MachineInstr *MA = A.UseMI;
1987 const MachineInstr *MB = B.UseMI;
1988 if (MA == MB) {
1989 // If it's the same instruction, compare operand numbers.
1990 return A.OpNum < B.OpNum;
1991 }
1992
1993 const MachineBasicBlock *BA = MA->getParent();
1994 const MachineBasicBlock *BB = MB->getParent();
1995 assert(BA->getNumber() != -1 && BB->getNumber() != -1)(static_cast <bool> (BA->getNumber() != -1 &&
BB->getNumber() != -1) ? void (0) : __assert_fail ("BA->getNumber() != -1 && BB->getNumber() != -1"
, "llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp", 1995, __extension__
__PRETTY_FUNCTION__))
;
1996 if (BA != BB)
1997 return BA->getNumber() < BB->getNumber();
1998 return MDT->dominates(MA, MB);
1999 });
2000
2001 bool Changed = false;
2002 LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { dbgs() << "Collected " <<
Extenders.size() << " extenders\n"; } } while (false)
;
2003 for (unsigned I = 0, E = Extenders.size(); I != E; ) {
2004 unsigned B = I;
2005 const ExtRoot &T = Extenders[B].getOp();
2006 while (I != E && ExtRoot(Extenders[I].getOp()) == T)
2007 ++I;
2008
2009 IMap.clear();
2010 assignInits(T, B, I, IMap);
2011 Changed |= replaceExtenders(IMap);
2012 }
2013
2014 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { if (Changed) MF.print(dbgs() <<
"After " << getPassName() << '\n', nullptr); else
dbgs() << "No changes\n"; }; } } while (false)
2015 if (Changed)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { if (Changed) MF.print(dbgs() <<
"After " << getPassName() << '\n', nullptr); else
dbgs() << "No changes\n"; }; } } while (false)
2016 MF.print(dbgs() << "After " << getPassName() << '\n', nullptr);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { if (Changed) MF.print(dbgs() <<
"After " << getPassName() << '\n', nullptr); else
dbgs() << "No changes\n"; }; } } while (false)
2017 elsedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { if (Changed) MF.print(dbgs() <<
"After " << getPassName() << '\n', nullptr); else
dbgs() << "No changes\n"; }; } } while (false)
2018 dbgs() << "No changes\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { if (Changed) MF.print(dbgs() <<
"After " << getPassName() << '\n', nullptr); else
dbgs() << "No changes\n"; }; } } while (false)
2019 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hexagon-cext-opt")) { { if (Changed) MF.print(dbgs() <<
"After " << getPassName() << '\n', nullptr); else
dbgs() << "No changes\n"; }; } } while (false)
;
2020 return Changed;
2021}
2022
2023FunctionPass *llvm::createHexagonConstExtenders() {
2024 return new HexagonConstExtenders();
2025}

/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/move.h

1// Move, forward and identity for C++11 + swap -*- C++ -*-
2
3// Copyright (C) 2007-2020 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/move.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{utility}
28 */
29
30#ifndef _MOVE_H1
31#define _MOVE_H1 1
32
33#include <bits/c++config.h>
34#if __cplusplus201703L < 201103L
35# include <bits/concept_check.h>
36#endif
37
38namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
39{
40_GLIBCXX_BEGIN_NAMESPACE_VERSION
41
42 // Used, in C++03 mode too, by allocators, etc.
43 /**
44 * @brief Same as C++11 std::addressof
45 * @ingroup utilities
46 */
47 template<typename _Tp>
48 inline _GLIBCXX_CONSTEXPRconstexpr _Tp*
49 __addressof(_Tp& __r) _GLIBCXX_NOEXCEPTnoexcept
50 { return __builtin_addressof(__r); }
51
52#if __cplusplus201703L >= 201103L
53
54_GLIBCXX_END_NAMESPACE_VERSION
55} // namespace
56
57#include <type_traits> // Brings in std::declval too.
58
59namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
60{
61_GLIBCXX_BEGIN_NAMESPACE_VERSION
62
63 /**
64 * @addtogroup utilities
65 * @{
66 */
67
68 /**
69 * @brief Forward an lvalue.
70 * @return The parameter cast to the specified type.
71 *
72 * This function is used to implement "perfect forwarding".
73 */
74 template<typename _Tp>
75 constexpr _Tp&&
76 forward(typename std::remove_reference<_Tp>::type& __t) noexcept
77 { return static_cast<_Tp&&>(__t); }
78
79 /**
80 * @brief Forward an rvalue.
81 * @return The parameter cast to the specified type.
82 *
83 * This function is used to implement "perfect forwarding".
84 */
85 template<typename _Tp>
86 constexpr _Tp&&
87 forward(typename std::remove_reference<_Tp>::type&& __t) noexcept
88 {
89 static_assert(!std::is_lvalue_reference<_Tp>::value, "template argument"
90 " substituting _Tp is an lvalue reference type");
91 return static_cast<_Tp&&>(__t);
92 }
93
94 /**
95 * @brief Convert a value to an rvalue.
96 * @param __t A thing of arbitrary type.
97 * @return The parameter cast to an rvalue-reference to allow moving it.
98 */
99 template<typename _Tp>
100 constexpr typename std::remove_reference<_Tp>::type&&
101 move(_Tp&& __t) noexcept
102 { return static_cast<typename std::remove_reference<_Tp>::type&&>(__t); }
103
104
105 template<typename _Tp>
106 struct __move_if_noexcept_cond
107 : public __and_<__not_<is_nothrow_move_constructible<_Tp>>,
108 is_copy_constructible<_Tp>>::type { };
109
110 /**
111 * @brief Conditionally convert a value to an rvalue.
112 * @param __x A thing of arbitrary type.
113 * @return The parameter, possibly cast to an rvalue-reference.
114 *
115 * Same as std::move unless the type's move constructor could throw and the
116 * type is copyable, in which case an lvalue-reference is returned instead.
117 */
118 template<typename _Tp>
119 constexpr typename
120 conditional<__move_if_noexcept_cond<_Tp>::value, const _Tp&, _Tp&&>::type
121 move_if_noexcept(_Tp& __x) noexcept
122 { return std::move(__x); }
123
124 // declval, from type_traits.
125
126#if __cplusplus201703L > 201402L
127 // _GLIBCXX_RESOLVE_LIB_DEFECTS
128 // 2296. std::addressof should be constexpr
129# define __cpp_lib_addressof_constexpr201603 201603
130#endif
131 /**
132 * @brief Returns the actual address of the object or function
133 * referenced by r, even in the presence of an overloaded
134 * operator&.
135 * @param __r Reference to an object or function.
136 * @return The actual address.
137 */
138 template<typename _Tp>
139 inline _GLIBCXX17_CONSTEXPRconstexpr _Tp*
140 addressof(_Tp& __r) noexcept
141 { return std::__addressof(__r); }
142
143 // _GLIBCXX_RESOLVE_LIB_DEFECTS
144 // 2598. addressof works on temporaries
145 template<typename _Tp>
146 const _Tp* addressof(const _Tp&&) = delete;
147
148 // C++11 version of std::exchange for internal use.
149 template <typename _Tp, typename _Up = _Tp>
150 _GLIBCXX20_CONSTEXPR
151 inline _Tp
152 __exchange(_Tp& __obj, _Up&& __new_val)
153 {
154 _Tp __old_val = std::move(__obj);
155 __obj = std::forward<_Up>(__new_val);
156 return __old_val;
157 }
158
159 /// @} group utilities
160
161#define _GLIBCXX_MOVE(__val)std::move(__val) std::move(__val)
162#define _GLIBCXX_FORWARD(_Tp, __val)std::forward<_Tp>(__val) std::forward<_Tp>(__val)
163#else
164#define _GLIBCXX_MOVE(__val)std::move(__val) (__val)
165#define _GLIBCXX_FORWARD(_Tp, __val)std::forward<_Tp>(__val) (__val)
166#endif
167
168 /**
169 * @addtogroup utilities
170 * @{
171 */
172
173 /**
174 * @brief Swaps two values.
175 * @param __a A thing of arbitrary type.
176 * @param __b Another thing of arbitrary type.
177 * @return Nothing.
178 */
179 template<typename _Tp>
180 _GLIBCXX20_CONSTEXPR
181 inline
182#if __cplusplus201703L >= 201103L
183 typename enable_if<__and_<__not_<__is_tuple_like<_Tp>>,
184 is_move_constructible<_Tp>,
185 is_move_assignable<_Tp>>::value>::type
186#else
187 void
188#endif
189 swap(_Tp& __a, _Tp& __b)
190 _GLIBCXX_NOEXCEPT_IF(__and_<is_nothrow_move_constructible<_Tp>,noexcept(__and_<is_nothrow_move_constructible<_Tp>, is_nothrow_move_assignable
<_Tp>>::value)
191 is_nothrow_move_assignable<_Tp>>::value)noexcept(__and_<is_nothrow_move_constructible<_Tp>, is_nothrow_move_assignable
<_Tp>>::value)
192 {
193#if __cplusplus201703L < 201103L
194 // concept requirements
195 __glibcxx_function_requires(_SGIAssignableConcept<_Tp>)
196#endif
197 _Tp __tmp = _GLIBCXX_MOVE(__a)std::move(__a);
198 __a = _GLIBCXX_MOVE(__b)std::move(__b);
199 __b = _GLIBCXX_MOVE(__tmp)std::move(__tmp);
20
Value assigned to 'A.Align'
200 }
201
202 // _GLIBCXX_RESOLVE_LIB_DEFECTS
203 // DR 809. std::swap should be overloaded for array types.
204 /// Swap the contents of two arrays.
205 template<typename _Tp, size_t _Nm>
206 _GLIBCXX20_CONSTEXPR
207 inline
208#if __cplusplus201703L >= 201103L
209 typename enable_if<__is_swappable<_Tp>::value>::type
210#else
211 void
212#endif
213 swap(_Tp (&__a)[_Nm], _Tp (&__b)[_Nm])
214 _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Tp>::value)noexcept(__is_nothrow_swappable<_Tp>::value)
215 {
216 for (size_t __n = 0; __n < _Nm; ++__n)
217 swap(__a[__n], __b[__n]);
218 }
219
220 /// @} group utilities
221_GLIBCXX_END_NAMESPACE_VERSION
222} // namespace
223
224#endif /* _MOVE_H */