Bug Summary

File:llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp
Warning:line 286, column 18
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name HexagonEarlyIfConv.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/Hexagon -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/Hexagon -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/Hexagon -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/Hexagon -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp

1//===- HexagonEarlyIfConv.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements a Hexagon-specific if-conversion pass that runs on the
10// SSA form.
11// In SSA it is not straightforward to represent instructions that condi-
12// tionally define registers, since a conditionally-defined register may
13// only be used under the same condition on which the definition was based.
14// To avoid complications of this nature, this patch will only generate
15// predicated stores, and speculate other instructions from the "if-conver-
16// ted" block.
17// The code will recognize CFG patterns where a block with a conditional
18// branch "splits" into a "true block" and a "false block". Either of these
19// could be omitted (in case of a triangle, for example).
20// If after conversion of the side block(s) the CFG allows it, the resul-
21// ting blocks may be merged. If the "join" block contained PHI nodes, they
22// will be replaced with MUX (or MUX-like) instructions to maintain the
23// semantics of the PHI.
24//
25// Example:
26//
27// %40 = L2_loadrub_io killed %39, 1
28// %41 = S2_tstbit_i killed %40, 0
29// J2_jumpt killed %41, <%bb.5>, implicit dead %pc
30// J2_jump <%bb.4>, implicit dead %pc
31// Successors according to CFG: %bb.4(62) %bb.5(62)
32//
33// %bb.4: derived from LLVM BB %if.then
34// Predecessors according to CFG: %bb.3
35// %11 = A2_addp %6, %10
36// S2_storerd_io %32, 16, %11
37// Successors according to CFG: %bb.5
38//
39// %bb.5: derived from LLVM BB %if.end
40// Predecessors according to CFG: %bb.3 %bb.4
41// %12 = PHI %6, <%bb.3>, %11, <%bb.4>
42// %13 = A2_addp %7, %12
43// %42 = C2_cmpeqi %9, 10
44// J2_jumpf killed %42, <%bb.3>, implicit dead %pc
45// J2_jump <%bb.6>, implicit dead %pc
46// Successors according to CFG: %bb.6(4) %bb.3(124)
47//
48// would become:
49//
50// %40 = L2_loadrub_io killed %39, 1
51// %41 = S2_tstbit_i killed %40, 0
52// spec-> %11 = A2_addp %6, %10
53// pred-> S2_pstorerdf_io %41, %32, 16, %11
54// %46 = PS_pselect %41, %6, %11
55// %13 = A2_addp %7, %46
56// %42 = C2_cmpeqi %9, 10
57// J2_jumpf killed %42, <%bb.3>, implicit dead %pc
58// J2_jump <%bb.6>, implicit dead %pc
59// Successors according to CFG: %bb.6 %bb.3
60
61#include "Hexagon.h"
62#include "HexagonInstrInfo.h"
63#include "HexagonSubtarget.h"
64#include "llvm/ADT/DenseSet.h"
65#include "llvm/ADT/SmallVector.h"
66#include "llvm/ADT/StringRef.h"
67#include "llvm/ADT/iterator_range.h"
68#include "llvm/CodeGen/MachineBasicBlock.h"
69#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
70#include "llvm/CodeGen/MachineDominators.h"
71#include "llvm/CodeGen/MachineFunction.h"
72#include "llvm/CodeGen/MachineFunctionPass.h"
73#include "llvm/CodeGen/MachineInstr.h"
74#include "llvm/CodeGen/MachineInstrBuilder.h"
75#include "llvm/CodeGen/MachineLoopInfo.h"
76#include "llvm/CodeGen/MachineOperand.h"
77#include "llvm/CodeGen/MachineRegisterInfo.h"
78#include "llvm/CodeGen/TargetRegisterInfo.h"
79#include "llvm/IR/DebugLoc.h"
80#include "llvm/Pass.h"
81#include "llvm/Support/BranchProbability.h"
82#include "llvm/Support/CommandLine.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/Debug.h"
85#include "llvm/Support/ErrorHandling.h"
86#include "llvm/Support/raw_ostream.h"
87#include <cassert>
88#include <iterator>
89
90#define DEBUG_TYPE"hexagon-eif" "hexagon-eif"
91
92using namespace llvm;
93
94namespace llvm {
95
96 FunctionPass *createHexagonEarlyIfConversion();
97 void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
98
99} // end namespace llvm
100
101static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
102 cl::init(true), cl::desc("Enable branch probability info"));
103static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
104 cl::desc("Size limit in Hexagon early if-conversion"));
105static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false),
106 cl::Hidden, cl::desc("Do not convert branches that may exit the loop"));
107
108namespace {
109
110 struct PrintMB {
111 PrintMB(const MachineBasicBlock *B) : MB(B) {}
112
113 const MachineBasicBlock *MB;
114 };
115 raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
116 if (!P.MB)
117 return OS << "<none>";
118 return OS << '#' << P.MB->getNumber();
119 }
120
121 struct FlowPattern {
122 FlowPattern() = default;
123 FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
124 MachineBasicBlock *FB, MachineBasicBlock *JB)
125 : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
126
127 MachineBasicBlock *SplitB = nullptr;
128 MachineBasicBlock *TrueB = nullptr;
129 MachineBasicBlock *FalseB = nullptr;
130 MachineBasicBlock *JoinB = nullptr;
131 unsigned PredR = 0;
132 };
133
134 struct PrintFP {
135 PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
136 : FP(P), TRI(T) {}
137
138 const FlowPattern &FP;
139 const TargetRegisterInfo &TRI;
140 friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
141 };
142 raw_ostream &operator<<(raw_ostream &OS,
143 const PrintFP &P) LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__));
144 raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
145 OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
146 << ", PredR:" << printReg(P.FP.PredR, &P.TRI)
147 << ", TrueB:" << PrintMB(P.FP.TrueB)
148 << ", FalseB:" << PrintMB(P.FP.FalseB)
149 << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
150 return OS;
151 }
152
153 class HexagonEarlyIfConversion : public MachineFunctionPass {
154 public:
155 static char ID;
156
157 HexagonEarlyIfConversion() : MachineFunctionPass(ID) {}
158
159 StringRef getPassName() const override {
160 return "Hexagon early if conversion";
161 }
162
163 void getAnalysisUsage(AnalysisUsage &AU) const override {
164 AU.addRequired<MachineBranchProbabilityInfo>();
165 AU.addRequired<MachineDominatorTree>();
166 AU.addPreserved<MachineDominatorTree>();
167 AU.addRequired<MachineLoopInfo>();
168 MachineFunctionPass::getAnalysisUsage(AU);
169 }
170
171 bool runOnMachineFunction(MachineFunction &MF) override;
172
173 private:
174 using BlockSetType = DenseSet<MachineBasicBlock *>;
175
176 bool isPreheader(const MachineBasicBlock *B) const;
177 bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
178 FlowPattern &FP);
179 bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
180 bool visitLoop(MachineLoop *L);
181
182 bool hasEHLabel(const MachineBasicBlock *B) const;
183 bool hasUncondBranch(const MachineBasicBlock *B) const;
184 bool isValidCandidate(const MachineBasicBlock *B) const;
185 bool usesUndefVReg(const MachineInstr *MI) const;
186 bool isValid(const FlowPattern &FP) const;
187 unsigned countPredicateDefs(const MachineBasicBlock *B) const;
188 unsigned computePhiCost(const MachineBasicBlock *B,
189 const FlowPattern &FP) const;
190 bool isProfitable(const FlowPattern &FP) const;
191 bool isPredicableStore(const MachineInstr *MI) const;
192 bool isSafeToSpeculate(const MachineInstr *MI) const;
193 bool isPredicate(unsigned R) const;
194
195 unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
196 void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
197 MachineInstr *MI, unsigned PredR, bool IfTrue);
198 void predicateBlockNB(MachineBasicBlock *ToB,
199 MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
200 unsigned PredR, bool IfTrue);
201
202 unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At,
203 const TargetRegisterClass *DRC, unsigned PredR, unsigned TR,
204 unsigned TSR, unsigned FR, unsigned FSR);
205 void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
206 void convert(const FlowPattern &FP);
207
208 void removeBlock(MachineBasicBlock *B);
209 void eliminatePhis(MachineBasicBlock *B);
210 void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
211 void simplifyFlowGraph(const FlowPattern &FP);
212
213 const HexagonInstrInfo *HII = nullptr;
214 const TargetRegisterInfo *TRI = nullptr;
215 MachineFunction *MFN = nullptr;
216 MachineRegisterInfo *MRI = nullptr;
217 MachineDominatorTree *MDT = nullptr;
218 MachineLoopInfo *MLI = nullptr;
219 BlockSetType Deleted;
220 const MachineBranchProbabilityInfo *MBPI = nullptr;
221 };
222
223} // end anonymous namespace
224
225char HexagonEarlyIfConversion::ID = 0;
226
227INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if",static void *initializeHexagonEarlyIfConversionPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Hexagon early if conversion"
, "hexagon-early-if", &HexagonEarlyIfConversion::ID, PassInfo
::NormalCtor_t(callDefaultCtor<HexagonEarlyIfConversion>
), false, false); Registry.registerPass(*PI, true); return PI
; } static llvm::once_flag InitializeHexagonEarlyIfConversionPassFlag
; void llvm::initializeHexagonEarlyIfConversionPass(PassRegistry
&Registry) { llvm::call_once(InitializeHexagonEarlyIfConversionPassFlag
, initializeHexagonEarlyIfConversionPassOnce, std::ref(Registry
)); }
228 "Hexagon early if conversion", false, false)static void *initializeHexagonEarlyIfConversionPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Hexagon early if conversion"
, "hexagon-early-if", &HexagonEarlyIfConversion::ID, PassInfo
::NormalCtor_t(callDefaultCtor<HexagonEarlyIfConversion>
), false, false); Registry.registerPass(*PI, true); return PI
; } static llvm::once_flag InitializeHexagonEarlyIfConversionPassFlag
; void llvm::initializeHexagonEarlyIfConversionPass(PassRegistry
&Registry) { llvm::call_once(InitializeHexagonEarlyIfConversionPassFlag
, initializeHexagonEarlyIfConversionPassOnce, std::ref(Registry
)); }
229
230bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
231 if (B->succ_size() != 1)
232 return false;
233 MachineBasicBlock *SB = *B->succ_begin();
234 MachineLoop *L = MLI->getLoopFor(SB);
235 return L && SB == L->getHeader() && MDT->dominates(B, SB);
236}
237
238bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
239 MachineLoop *L, FlowPattern &FP) {
240 LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B)do { } while (false)
24
Loop condition is false. Exiting loop
241 << "\n")do { } while (false);
242
243 // Interested only in conditional branches, no .new, no new-value, etc.
244 // Check the terminators directly, it's easier than handling all responses
245 // from analyzeBranch.
246 MachineBasicBlock *TB = nullptr, *FB = nullptr;
247 MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
248 if (T1I == B->end())
25
Calling 'operator=='
31
Returning from 'operator=='
32
Taking false branch
249 return false;
250 unsigned Opc = T1I->getOpcode();
251 if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
33
Assuming 'Opc' is not equal to J2_jumpt
34
Assuming 'Opc' is equal to J2_jumpf
35
Taking false branch
252 return false;
253 Register PredR = T1I->getOperand(0).getReg();
254
255 // Get the layout successor, or 0 if B does not have one.
256 MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
257 MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr;
36
'?' condition is false
37
'NextB' initialized to a null pointer value
258
259 MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
260 MachineBasicBlock::const_iterator T2I = std::next(T1I);
261 // The second terminator should be an unconditional branch.
262 assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump)(static_cast<void> (0));
263 MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
38
'?' condition is true
39
'T2B' initialized to a null pointer value
264 : T2I->getOperand(0).getMBB();
265 if (T1B == T2B) {
40
Assuming 'T1B' is not equal to 'T2B'
41
Taking false branch
266 // XXX merge if T1B == NextB, or convert branch to unconditional.
267 // mark as diamond with both sides equal?
268 return false;
269 }
270
271 // Record the true/false blocks in such a way that "true" means "if (PredR)",
272 // and "false" means "if (!PredR)".
273 if (Opc
41.1
'Opc' is not equal to J2_jumpt
41.1
'Opc' is not equal to J2_jumpt
41.1
'Opc' is not equal to J2_jumpt
== Hexagon::J2_jumpt)
42
Taking false branch
274 TB = T1B, FB = T2B;
275 else
276 TB = T2B, FB = T1B;
43
Null pointer value stored to 'TB'
277
278 if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
44
Assuming the condition is false
45
Assuming the condition is false
46
Taking false branch
279 return false;
280
281 // Detect triangle first. In case of a triangle, one of the blocks TB/FB
282 // can fall through into the other, in other words, it will be executed
283 // in both cases. We only want to predicate the block that is executed
284 // conditionally.
285 assert(TB && FB && "Failed to find triangle control flow blocks")(static_cast<void> (0));
286 unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
47
Called C++ object pointer is null
287 unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
288
289 // A block is predicable if it has one predecessor (it must be B), and
290 // it has a single successor. In fact, the block has to end either with
291 // an unconditional branch (which can be predicated), or with a fall-
292 // through.
293 // Also, skip blocks that do not belong to the same loop.
294 bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L);
295 bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L);
296
297 // If requested (via an option), do not consider branches where the
298 // true and false targets do not belong to the same loop.
299 if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB))
300 return false;
301
302 // If neither is predicable, there is nothing interesting.
303 if (!TOk && !FOk)
304 return false;
305
306 MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr;
307 MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr;
308 MachineBasicBlock *JB = nullptr;
309
310 if (TOk) {
311 if (FOk) {
312 if (TSB == FSB)
313 JB = TSB;
314 // Diamond: "if (P) then TB; else FB;".
315 } else {
316 // TOk && !FOk
317 if (TSB == FB)
318 JB = FB;
319 FB = nullptr;
320 }
321 } else {
322 // !TOk && FOk (at least one must be true by now).
323 if (FSB == TB)
324 JB = TB;
325 TB = nullptr;
326 }
327 // Don't try to predicate loop preheaders.
328 if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
329 LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)do { } while (false)
330 << " is a loop preheader. Skipping.\n")do { } while (false);
331 return false;
332 }
333
334 FP = FlowPattern(B, PredR, TB, FB, JB);
335 LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n")do { } while (false);
336 return true;
337}
338
339// KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that
340// contains EH_LABEL.
341bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
342 for (auto &I : *B)
343 if (I.isEHLabel())
344 return true;
345 return false;
346}
347
348// KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize
349// that a block can never fall-through.
350bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
351 const {
352 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
353 while (I != E) {
354 if (I->isBarrier())
355 return true;
356 ++I;
357 }
358 return false;
359}
360
361bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
362 const {
363 if (!B)
364 return true;
365 if (B->isEHPad() || B->hasAddressTaken())
366 return false;
367 if (B->succ_size() == 0)
368 return false;
369
370 for (auto &MI : *B) {
371 if (MI.isDebugInstr())
372 continue;
373 if (MI.isConditionalBranch())
374 return false;
375 unsigned Opc = MI.getOpcode();
376 bool IsJMP = (Opc == Hexagon::J2_jump);
377 if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
378 return false;
379 // Look for predicate registers defined by this instruction. It's ok
380 // to speculate such an instruction, but the predicate register cannot
381 // be used outside of this block (or else it won't be possible to
382 // update the use of it after predication). PHI uses will be updated
383 // to use a result of a MUX, and a MUX cannot be created for predicate
384 // registers.
385 for (const MachineOperand &MO : MI.operands()) {
386 if (!MO.isReg() || !MO.isDef())
387 continue;
388 Register R = MO.getReg();
389 if (!R.isVirtual())
390 continue;
391 if (!isPredicate(R))
392 continue;
393 for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
394 if (U->getParent()->isPHI())
395 return false;
396 }
397 }
398 return true;
399}
400
401bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
402 for (const MachineOperand &MO : MI->operands()) {
403 if (!MO.isReg() || !MO.isUse())
404 continue;
405 Register R = MO.getReg();
406 if (!R.isVirtual())
407 continue;
408 const MachineInstr *DefI = MRI->getVRegDef(R);
409 // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
410 assert(DefI && "Expecting a reaching def in MRI")(static_cast<void> (0));
411 if (DefI->isImplicitDef())
412 return true;
413 }
414 return false;
415}
416
417bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
418 if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition
419 return false;
420 if (FP.TrueB && !isValidCandidate(FP.TrueB))
421 return false;
422 if (FP.FalseB && !isValidCandidate(FP.FalseB))
423 return false;
424 // Check the PHIs in the join block. If any of them use a register
425 // that is defined as IMPLICIT_DEF, do not convert this. This can
426 // legitimately happen if one side of the split never executes, but
427 // the compiler is unable to prove it. That side may then seem to
428 // provide an "undef" value to the join block, however it will never
429 // execute at run-time. If we convert this case, the "undef" will
430 // be used in a MUX instruction, and that may seem like actually
431 // using an undefined value to other optimizations. This could lead
432 // to trouble further down the optimization stream, cause assertions
433 // to fail, etc.
434 if (FP.JoinB) {
435 const MachineBasicBlock &B = *FP.JoinB;
436 for (auto &MI : B) {
437 if (!MI.isPHI())
438 break;
439 if (usesUndefVReg(&MI))
440 return false;
441 Register DefR = MI.getOperand(0).getReg();
442 if (isPredicate(DefR))
443 return false;
444 }
445 }
446 return true;
447}
448
449unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B,
450 const FlowPattern &FP) const {
451 if (B->pred_size() < 2)
452 return 0;
453
454 unsigned Cost = 0;
455 for (const MachineInstr &MI : *B) {
456 if (!MI.isPHI())
457 break;
458 // If both incoming blocks are one of the TrueB/FalseB/SplitB, then
459 // a MUX may be needed. Otherwise the PHI will need to be updated at
460 // no extra cost.
461 // Find the interesting PHI operands for further checks.
462 SmallVector<unsigned,2> Inc;
463 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
464 const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB();
465 if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB)
466 Inc.push_back(i);
467 }
468 assert(Inc.size() <= 2)(static_cast<void> (0));
469 if (Inc.size() < 2)
470 continue;
471
472 const MachineOperand &RA = MI.getOperand(1);
473 const MachineOperand &RB = MI.getOperand(3);
474 assert(RA.isReg() && RB.isReg())(static_cast<void> (0));
475 // Must have a MUX if the phi uses a subregister.
476 if (RA.getSubReg() != 0 || RB.getSubReg() != 0) {
477 Cost++;
478 continue;
479 }
480 const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg());
481 const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg());
482 if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3))
483 Cost++;
484 }
485 return Cost;
486}
487
488unsigned HexagonEarlyIfConversion::countPredicateDefs(
489 const MachineBasicBlock *B) const {
490 unsigned PredDefs = 0;
491 for (auto &MI : *B) {
492 for (const MachineOperand &MO : MI.operands()) {
493 if (!MO.isReg() || !MO.isDef())
494 continue;
495 Register R = MO.getReg();
496 if (!R.isVirtual())
497 continue;
498 if (isPredicate(R))
499 PredDefs++;
500 }
501 }
502 return PredDefs;
503}
504
505bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
506 BranchProbability JumpProb(1, 10);
507 BranchProbability Prob(9, 10);
508 if (MBPI && FP.TrueB && !FP.FalseB &&
509 (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) < JumpProb ||
510 MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob))
511 return false;
512
513 if (MBPI && !FP.TrueB && FP.FalseB &&
514 (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) < JumpProb ||
515 MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob))
516 return false;
517
518 if (FP.TrueB && FP.FalseB) {
519 // Do not IfCovert if the branch is one sided.
520 if (MBPI) {
521 if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
522 return false;
523 if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
524 return false;
525 }
526
527 // If both sides are predicable, convert them if they join, and the
528 // join block has no other predecessors.
529 MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
530 MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
531 if (TSB != FSB)
532 return false;
533 if (TSB->pred_size() != 2)
534 return false;
535 }
536
537 // Calculate the total size of the predicated blocks.
538 // Assume instruction counts without branches to be the approximation of
539 // the code size. If the predicated blocks are smaller than a packet size,
540 // approximate the spare room in the packet that could be filled with the
541 // predicated/speculated instructions.
542 auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) {
543 if (!B)
544 return 0u;
545 unsigned T = std::count_if(B->begin(), B->getFirstTerminator(),
546 [](const MachineInstr &MI) {
547 return !MI.isMetaInstruction();
548 });
549 if (T < HEXAGON_PACKET_SIZE4)
550 Spare += HEXAGON_PACKET_SIZE4-T;
551 return T;
552 };
553 unsigned Spare = 0;
554 unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare);
555 LLVM_DEBUG(do { } while (false)
556 dbgs() << "Total number of instructions to be predicated/speculated: "do { } while (false)
557 << TotalIn << ", spare room: " << Spare << "\n")do { } while (false);
558 if (TotalIn >= SizeLimit+Spare)
559 return false;
560
561 // Count the number of PHI nodes that will need to be updated (converted
562 // to MUX). Those can be later converted to predicated instructions, so
563 // they aren't always adding extra cost.
564 // KLUDGE: Also, count the number of predicate register definitions in
565 // each block. The scheduler may increase the pressure of these and cause
566 // expensive spills (e.g. bitmnp01).
567 unsigned TotalPh = 0;
568 unsigned PredDefs = countPredicateDefs(FP.SplitB);
569 if (FP.JoinB) {
570 TotalPh = computePhiCost(FP.JoinB, FP);
571 PredDefs += countPredicateDefs(FP.JoinB);
572 } else {
573 if (FP.TrueB && FP.TrueB->succ_size() > 0) {
574 MachineBasicBlock *SB = *FP.TrueB->succ_begin();
575 TotalPh += computePhiCost(SB, FP);
576 PredDefs += countPredicateDefs(SB);
577 }
578 if (FP.FalseB && FP.FalseB->succ_size() > 0) {
579 MachineBasicBlock *SB = *FP.FalseB->succ_begin();
580 TotalPh += computePhiCost(SB, FP);
581 PredDefs += countPredicateDefs(SB);
582 }
583 }
584 LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: "do { } while (false)
585 << TotalPh << "\n")do { } while (false);
586 if (TotalIn+TotalPh >= SizeLimit+Spare)
587 return false;
588
589 LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefsdo { } while (false)
590 << "\n")do { } while (false);
591 if (PredDefs > 4)
592 return false;
593
594 return true;
595}
596
597bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
598 MachineLoop *L) {
599 bool Changed = false;
600
601 // Visit all dominated blocks from the same loop first, then process B.
602 MachineDomTreeNode *N = MDT->getNode(B);
603
604 using GTN = GraphTraits<MachineDomTreeNode *>;
605
606 // We will change CFG/DT during this traversal, so take precautions to
607 // avoid problems related to invalidated iterators. In fact, processing
608 // a child C of B cannot cause another child to be removed, but it can
609 // cause a new child to be added (which was a child of C before C itself
610 // was removed. This new child C, however, would have been processed
611 // prior to processing B, so there is no need to process it again.
612 // Simply keep a list of children of B, and traverse that list.
613 using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
614 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
615 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
19
Assuming 'I' is equal to 'E'
20
Loop condition is false. Execution continues on line 623
616 MachineBasicBlock *SB = (*I)->getBlock();
617 if (!Deleted.count(SB))
618 Changed |= visitBlock(SB, L);
619 }
620 // When walking down the dominator tree, we want to traverse through
621 // blocks from nested (other) loops, because they can dominate blocks
622 // that are in L. Skip the non-L blocks only after the tree traversal.
623 if (MLI->getLoopFor(B) != L)
21
Assuming the condition is false
22
Taking false branch
624 return Changed;
625
626 FlowPattern FP;
627 if (!matchFlowPattern(B, L, FP))
23
Calling 'HexagonEarlyIfConversion::matchFlowPattern'
628 return Changed;
629
630 if (!isValid(FP)) {
631 LLVM_DEBUG(dbgs() << "Conversion is not valid\n")do { } while (false);
632 return Changed;
633 }
634 if (!isProfitable(FP)) {
635 LLVM_DEBUG(dbgs() << "Conversion is not profitable\n")do { } while (false);
636 return Changed;
637 }
638
639 convert(FP);
640 simplifyFlowGraph(FP);
641 return true;
642}
643
644bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
645 MachineBasicBlock *HB = L ? L->getHeader() : nullptr;
7
Assuming 'L' is non-null
8
'?' condition is true
13
Assuming 'L' is null
14
'?' condition is false
646 LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)do { } while (false)
9
Loop condition is false. Exiting loop
15
Loop condition is false. Exiting loop
647 : dbgs() << "Visiting function")do { } while (false)
648 << "\n")do { } while (false);
649 bool Changed = false;
650 if (L
9.1
'L' is non-null
15.1
'L' is null
9.1
'L' is non-null
15.1
'L' is null
9.1
'L' is non-null
15.1
'L' is null
) {
10
Taking true branch
16
Taking false branch
651 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
11
Loop condition is true. Entering loop body
652 Changed |= visitLoop(*I);
12
Calling 'HexagonEarlyIfConversion::visitLoop'
653 }
654
655 MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
656 Changed |= visitBlock(L
16.1
'L' is null
16.1
'L' is null
16.1
'L' is null
? HB : EntryB, L)
;
17
'?' condition is false
18
Calling 'HexagonEarlyIfConversion::visitBlock'
657 return Changed;
658}
659
660bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
661 const {
662 // HexagonInstrInfo::isPredicable will consider these stores are non-
663 // -predicable if the offset would become constant-extended after
664 // predication.
665 unsigned Opc = MI->getOpcode();
666 switch (Opc) {
667 case Hexagon::S2_storerb_io:
668 case Hexagon::S2_storerbnew_io:
669 case Hexagon::S2_storerh_io:
670 case Hexagon::S2_storerhnew_io:
671 case Hexagon::S2_storeri_io:
672 case Hexagon::S2_storerinew_io:
673 case Hexagon::S2_storerd_io:
674 case Hexagon::S4_storeirb_io:
675 case Hexagon::S4_storeirh_io:
676 case Hexagon::S4_storeiri_io:
677 return true;
678 }
679
680 // TargetInstrInfo::isPredicable takes a non-const pointer.
681 return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI));
682}
683
684bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
685 const {
686 if (MI->mayLoadOrStore())
687 return false;
688 if (MI->isCall() || MI->isBarrier() || MI->isBranch())
689 return false;
690 if (MI->hasUnmodeledSideEffects())
691 return false;
692 if (MI->getOpcode() == TargetOpcode::LIFETIME_END)
693 return false;
694
695 return true;
696}
697
698bool HexagonEarlyIfConversion::isPredicate(unsigned R) const {
699 const TargetRegisterClass *RC = MRI->getRegClass(R);
700 return RC == &Hexagon::PredRegsRegClass ||
701 RC == &Hexagon::HvxQRRegClass;
702}
703
704unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
705 bool IfTrue) const {
706 return HII->getCondOpcode(Opc, !IfTrue);
707}
708
709void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
710 MachineBasicBlock::iterator At, MachineInstr *MI,
711 unsigned PredR, bool IfTrue) {
712 DebugLoc DL;
713 if (At != ToB->end())
714 DL = At->getDebugLoc();
715 else if (!ToB->empty())
716 DL = ToB->back().getDebugLoc();
717
718 unsigned Opc = MI->getOpcode();
719
720 if (isPredicableStore(MI)) {
721 unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
722 assert(COpc)(static_cast<void> (0));
723 MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc));
724 MachineInstr::mop_iterator MOI = MI->operands_begin();
725 if (HII->isPostIncrement(*MI)) {
726 MIB.add(*MOI);
727 ++MOI;
728 }
729 MIB.addReg(PredR);
730 for (const MachineOperand &MO : make_range(MOI, MI->operands_end()))
731 MIB.add(MO);
732
733 // Set memory references.
734 MIB.cloneMemRefs(*MI);
735
736 MI->eraseFromParent();
737 return;
738 }
739
740 if (Opc == Hexagon::J2_jump) {
741 MachineBasicBlock *TB = MI->getOperand(0).getMBB();
742 const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt
743 : Hexagon::J2_jumpf);
744 BuildMI(*ToB, At, DL, D)
745 .addReg(PredR)
746 .addMBB(TB);
747 MI->eraseFromParent();
748 return;
749 }
750
751 // Print the offending instruction unconditionally as we are about to
752 // abort.
753 dbgs() << *MI;
754 llvm_unreachable("Unexpected instruction")__builtin_unreachable();
755}
756
757// Predicate/speculate non-branch instructions from FromB into block ToB.
758// Leave the branches alone, they will be handled later. Btw, at this point
759// FromB should have at most one branch, and it should be unconditional.
760void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
761 MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
762 unsigned PredR, bool IfTrue) {
763 LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n")do { } while (false);
764 MachineBasicBlock::iterator End = FromB->getFirstTerminator();
765 MachineBasicBlock::iterator I, NextI;
766
767 for (I = FromB->begin(); I != End; I = NextI) {
768 assert(!I->isPHI())(static_cast<void> (0));
769 NextI = std::next(I);
770 if (isSafeToSpeculate(&*I))
771 ToB->splice(At, FromB, I);
772 else
773 predicateInstr(ToB, At, &*I, PredR, IfTrue);
774 }
775}
776
777unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B,
778 MachineBasicBlock::iterator At, const TargetRegisterClass *DRC,
779 unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) {
780 unsigned Opc = 0;
781 switch (DRC->getID()) {
782 case Hexagon::IntRegsRegClassID:
783 case Hexagon::IntRegsLow8RegClassID:
784 Opc = Hexagon::C2_mux;
785 break;
786 case Hexagon::DoubleRegsRegClassID:
787 case Hexagon::GeneralDoubleLow8RegsRegClassID:
788 Opc = Hexagon::PS_pselect;
789 break;
790 case Hexagon::HvxVRRegClassID:
791 Opc = Hexagon::PS_vselect;
792 break;
793 case Hexagon::HvxWRRegClassID:
794 Opc = Hexagon::PS_wselect;
795 break;
796 default:
797 llvm_unreachable("unexpected register type")__builtin_unreachable();
798 }
799 const MCInstrDesc &D = HII->get(Opc);
800
801 DebugLoc DL = B->findBranchDebugLoc();
802 Register MuxR = MRI->createVirtualRegister(DRC);
803 BuildMI(*B, At, DL, D, MuxR)
804 .addReg(PredR)
805 .addReg(TR, 0, TSR)
806 .addReg(FR, 0, FSR);
807 return MuxR;
808}
809
810void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
811 const FlowPattern &FP) {
812 // Visit all PHI nodes in the WhereB block and generate MUX instructions
813 // in the split block. Update the PHI nodes with the values of the MUX.
814 auto NonPHI = WhereB->getFirstNonPHI();
815 for (auto I = WhereB->begin(); I != NonPHI; ++I) {
816 MachineInstr *PN = &*I;
817 // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
818 unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
819 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
820 const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
821 if (BO.getMBB() == FP.SplitB)
822 SR = RO.getReg(), SSR = RO.getSubReg();
823 else if (BO.getMBB() == FP.TrueB)
824 TR = RO.getReg(), TSR = RO.getSubReg();
825 else if (BO.getMBB() == FP.FalseB)
826 FR = RO.getReg(), FSR = RO.getSubReg();
827 else
828 continue;
829 PN->RemoveOperand(i+1);
830 PN->RemoveOperand(i);
831 }
832 if (TR == 0)
833 TR = SR, TSR = SSR;
834 else if (FR == 0)
835 FR = SR, FSR = SSR;
836
837 assert(TR || FR)(static_cast<void> (0));
838 unsigned MuxR = 0, MuxSR = 0;
839
840 if (TR && FR) {
841 Register DR = PN->getOperand(0).getReg();
842 const TargetRegisterClass *RC = MRI->getRegClass(DR);
843 MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC,
844 FP.PredR, TR, TSR, FR, FSR);
845 } else if (TR) {
846 MuxR = TR;
847 MuxSR = TSR;
848 } else {
849 MuxR = FR;
850 MuxSR = FSR;
851 }
852
853 PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false,
854 false, false, MuxSR));
855 PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
856 }
857}
858
859void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
860 MachineBasicBlock *TSB = nullptr, *FSB = nullptr;
861 MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
862 assert(OldTI != FP.SplitB->end())(static_cast<void> (0));
863 DebugLoc DL = OldTI->getDebugLoc();
864
865 if (FP.TrueB) {
866 TSB = *FP.TrueB->succ_begin();
867 predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
868 }
869 if (FP.FalseB) {
870 FSB = *FP.FalseB->succ_begin();
871 MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
872 predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
873 }
874
875 // Regenerate new terminators in the split block and update the successors.
876 // First, remember any information that may be needed later and remove the
877 // existing terminators/successors from the split block.
878 MachineBasicBlock *SSB = nullptr;
879 FP.SplitB->erase(OldTI, FP.SplitB->end());
880 while (FP.SplitB->succ_size() > 0) {
881 MachineBasicBlock *T = *FP.SplitB->succ_begin();
882 // It's possible that the split block had a successor that is not a pre-
883 // dicated block. This could only happen if there was only one block to
884 // be predicated. Example:
885 // split_b:
886 // if (p) jump true_b
887 // jump unrelated2_b
888 // unrelated1_b:
889 // ...
890 // unrelated2_b: ; can have other predecessors, so it's not "false_b"
891 // jump other_b
892 // true_b: ; only reachable from split_b, can be predicated
893 // ...
894 //
895 // Find this successor (SSB) if it exists.
896 if (T != FP.TrueB && T != FP.FalseB) {
897 assert(!SSB)(static_cast<void> (0));
898 SSB = T;
899 }
900 FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
901 }
902
903 // Insert new branches and update the successors of the split block. This
904 // may create unconditional branches to the layout successor, etc., but
905 // that will be cleaned up later. For now, make sure that correct code is
906 // generated.
907 if (FP.JoinB) {
908 assert(!SSB || SSB == FP.JoinB)(static_cast<void> (0));
909 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
910 .addMBB(FP.JoinB);
911 FP.SplitB->addSuccessor(FP.JoinB);
912 } else {
913 bool HasBranch = false;
914 if (TSB) {
915 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt))
916 .addReg(FP.PredR)
917 .addMBB(TSB);
918 FP.SplitB->addSuccessor(TSB);
919 HasBranch = true;
920 }
921 if (FSB) {
922 const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump)
923 : HII->get(Hexagon::J2_jumpf);
924 MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
925 if (!HasBranch)
926 MIB.addReg(FP.PredR);
927 MIB.addMBB(FSB);
928 FP.SplitB->addSuccessor(FSB);
929 }
930 if (SSB) {
931 // This cannot happen if both TSB and FSB are set. [TF]SB are the
932 // successor blocks of the TrueB and FalseB (or null of the TrueB
933 // or FalseB block is null). SSB is the potential successor block
934 // of the SplitB that is neither TrueB nor FalseB.
935 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
936 .addMBB(SSB);
937 FP.SplitB->addSuccessor(SSB);
938 }
939 }
940
941 // What is left to do is to update the PHI nodes that could have entries
942 // referring to predicated blocks.
943 if (FP.JoinB) {
944 updatePhiNodes(FP.JoinB, FP);
945 } else {
946 if (TSB)
947 updatePhiNodes(TSB, FP);
948 if (FSB)
949 updatePhiNodes(FSB, FP);
950 // Nothing to update in SSB, since SSB's predecessors haven't changed.
951 }
952}
953
954void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
955 LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n")do { } while (false);
956
957 // Transfer the immediate dominator information from B to its descendants.
958 MachineDomTreeNode *N = MDT->getNode(B);
959 MachineDomTreeNode *IDN = N->getIDom();
960 if (IDN) {
961 MachineBasicBlock *IDB = IDN->getBlock();
962
963 using GTN = GraphTraits<MachineDomTreeNode *>;
964 using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
965
966 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
967 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
968 MachineBasicBlock *SB = (*I)->getBlock();
969 MDT->changeImmediateDominator(SB, IDB);
970 }
971 }
972
973 while (B->succ_size() > 0)
974 B->removeSuccessor(B->succ_begin());
975
976 for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
977 (*I)->removeSuccessor(B, true);
978
979 Deleted.insert(B);
980 MDT->eraseNode(B);
981 MFN->erase(B->getIterator());
982}
983
984void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
985 LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n")do { } while (false);
986 MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
987 for (I = B->begin(); I != NonPHI; I = NextI) {
988 NextI = std::next(I);
989 MachineInstr *PN = &*I;
990 assert(PN->getNumOperands() == 3 && "Invalid phi node")(static_cast<void> (0));
991 MachineOperand &UO = PN->getOperand(1);
992 Register UseR = UO.getReg(), UseSR = UO.getSubReg();
993 Register DefR = PN->getOperand(0).getReg();
994 unsigned NewR = UseR;
995 if (UseSR) {
996 // MRI.replaceVregUsesWith does not allow to update the subregister,
997 // so instead of doing the use-iteration here, create a copy into a
998 // "non-subregistered" register.
999 const DebugLoc &DL = PN->getDebugLoc();
1000 const TargetRegisterClass *RC = MRI->getRegClass(DefR);
1001 NewR = MRI->createVirtualRegister(RC);
1002 NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR)
1003 .addReg(UseR, 0, UseSR);
1004 }
1005 MRI->replaceRegWith(DefR, NewR);
1006 B->erase(I);
1007 }
1008}
1009
1010void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
1011 MachineBasicBlock *SuccB) {
1012 LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "do { } while (false)
1013 << PrintMB(SuccB) << "\n")do { } while (false);
1014 bool TermOk = hasUncondBranch(SuccB);
1015 eliminatePhis(SuccB);
1016 HII->removeBranch(*PredB);
1017 PredB->removeSuccessor(SuccB);
1018 PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
1019 PredB->transferSuccessorsAndUpdatePHIs(SuccB);
1020 MachineBasicBlock *OldLayoutSuccessor = SuccB->getNextNode();
1021 removeBlock(SuccB);
1022 if (!TermOk)
1023 PredB->updateTerminator(OldLayoutSuccessor);
1024}
1025
1026void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
1027 MachineBasicBlock *OldLayoutSuccessor = FP.SplitB->getNextNode();
1028 if (FP.TrueB)
1029 removeBlock(FP.TrueB);
1030 if (FP.FalseB)
1031 removeBlock(FP.FalseB);
1032
1033 FP.SplitB->updateTerminator(OldLayoutSuccessor);
1034 if (FP.SplitB->succ_size() != 1)
1035 return;
1036
1037 MachineBasicBlock *SB = *FP.SplitB->succ_begin();
1038 if (SB->pred_size() != 1)
1039 return;
1040
1041 // By now, the split block has only one successor (SB), and SB has only
1042 // one predecessor. We can try to merge them. We will need to update ter-
1043 // minators in FP.Split+SB, and that requires working analyzeBranch, which
1044 // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
1045 // with an unconditional branch, we won't need to touch the terminators.
1046 if (!hasEHLabel(SB) || hasUncondBranch(SB))
1047 mergeBlocks(FP.SplitB, SB);
1048}
1049
1050bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
1051 if (skipFunction(MF.getFunction()))
1
Assuming the condition is false
2
Taking false branch
1052 return false;
1053
1054 auto &ST = MF.getSubtarget<HexagonSubtarget>();
1055 HII = ST.getInstrInfo();
1056 TRI = ST.getRegisterInfo();
1057 MFN = &MF;
1058 MRI = &MF.getRegInfo();
1059 MDT = &getAnalysis<MachineDominatorTree>();
1060 MLI = &getAnalysis<MachineLoopInfo>();
1061 MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
3
Assuming the condition is false
4
'?' condition is false
1062 nullptr;
1063
1064 Deleted.clear();
1065 bool Changed = false;
1066
1067 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
5
Loop condition is true. Entering loop body
1068 Changed |= visitLoop(*I);
6
Calling 'HexagonEarlyIfConversion::visitLoop'
1069 Changed |= visitLoop(nullptr);
1070
1071 return Changed;
1072}
1073
1074//===----------------------------------------------------------------------===//
1075// Public Constructor Functions
1076//===----------------------------------------------------------------------===//
1077FunctionPass *llvm::createHexagonEarlyIfConversion() {
1078 return new HexagonEarlyIfConversion();
1079}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h

1//===- llvm/CodeGen/MachineInstrBundleIterator.h ----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Defines an iterator class that bundles MachineInstr.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H
14#define LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H
15
16#include "llvm/ADT/ilist.h"
17#include "llvm/ADT/simple_ilist.h"
18#include <cassert>
19#include <iterator>
20#include <type_traits>
21
22namespace llvm {
23
24template <class T, bool IsReverse> struct MachineInstrBundleIteratorTraits;
25template <class T> struct MachineInstrBundleIteratorTraits<T, false> {
26 using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>;
27 using instr_iterator = typename list_type::iterator;
28 using nonconst_instr_iterator = typename list_type::iterator;
29 using const_instr_iterator = typename list_type::const_iterator;
30};
31template <class T> struct MachineInstrBundleIteratorTraits<T, true> {
32 using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>;
33 using instr_iterator = typename list_type::reverse_iterator;
34 using nonconst_instr_iterator = typename list_type::reverse_iterator;
35 using const_instr_iterator = typename list_type::const_reverse_iterator;
36};
37template <class T> struct MachineInstrBundleIteratorTraits<const T, false> {
38 using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>;
39 using instr_iterator = typename list_type::const_iterator;
40 using nonconst_instr_iterator = typename list_type::iterator;
41 using const_instr_iterator = typename list_type::const_iterator;
42};
43template <class T> struct MachineInstrBundleIteratorTraits<const T, true> {
44 using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>;
45 using instr_iterator = typename list_type::const_reverse_iterator;
46 using nonconst_instr_iterator = typename list_type::reverse_iterator;
47 using const_instr_iterator = typename list_type::const_reverse_iterator;
48};
49
50template <bool IsReverse> struct MachineInstrBundleIteratorHelper;
51template <> struct MachineInstrBundleIteratorHelper<false> {
52 /// Get the beginning of the current bundle.
53 template <class Iterator> static Iterator getBundleBegin(Iterator I) {
54 if (!I.isEnd())
55 while (I->isBundledWithPred())
56 --I;
57 return I;
58 }
59
60 /// Get the final node of the current bundle.
61 template <class Iterator> static Iterator getBundleFinal(Iterator I) {
62 if (!I.isEnd())
63 while (I->isBundledWithSucc())
64 ++I;
65 return I;
66 }
67
68 /// Increment forward ilist iterator.
69 template <class Iterator> static void increment(Iterator &I) {
70 I = std::next(getBundleFinal(I));
71 }
72
73 /// Decrement forward ilist iterator.
74 template <class Iterator> static void decrement(Iterator &I) {
75 I = getBundleBegin(std::prev(I));
76 }
77};
78
79template <> struct MachineInstrBundleIteratorHelper<true> {
80 /// Get the beginning of the current bundle.
81 template <class Iterator> static Iterator getBundleBegin(Iterator I) {
82 return MachineInstrBundleIteratorHelper<false>::getBundleBegin(
83 I.getReverse())
84 .getReverse();
85 }
86
87 /// Get the final node of the current bundle.
88 template <class Iterator> static Iterator getBundleFinal(Iterator I) {
89 return MachineInstrBundleIteratorHelper<false>::getBundleFinal(
90 I.getReverse())
91 .getReverse();
92 }
93
94 /// Increment reverse ilist iterator.
95 template <class Iterator> static void increment(Iterator &I) {
96 I = getBundleBegin(std::next(I));
97 }
98
99 /// Decrement reverse ilist iterator.
100 template <class Iterator> static void decrement(Iterator &I) {
101 I = std::prev(getBundleFinal(I));
102 }
103};
104
105/// MachineBasicBlock iterator that automatically skips over MIs that are
106/// inside bundles (i.e. walk top level MIs only).
107template <typename Ty, bool IsReverse = false>
108class MachineInstrBundleIterator : MachineInstrBundleIteratorHelper<IsReverse> {
109 using Traits = MachineInstrBundleIteratorTraits<Ty, IsReverse>;
110 using instr_iterator = typename Traits::instr_iterator;
111
112 instr_iterator MII;
113
114public:
115 using value_type = typename instr_iterator::value_type;
116 using difference_type = typename instr_iterator::difference_type;
117 using pointer = typename instr_iterator::pointer;
118 using reference = typename instr_iterator::reference;
119 using const_pointer = typename instr_iterator::const_pointer;
120 using const_reference = typename instr_iterator::const_reference;
121 using iterator_category = std::bidirectional_iterator_tag;
122
123private:
124 using nonconst_instr_iterator = typename Traits::nonconst_instr_iterator;
125 using const_instr_iterator = typename Traits::const_instr_iterator;
126 using nonconst_iterator =
127 MachineInstrBundleIterator<typename nonconst_instr_iterator::value_type,
128 IsReverse>;
129 using reverse_iterator = MachineInstrBundleIterator<Ty, !IsReverse>;
130
131public:
132 MachineInstrBundleIterator(instr_iterator MI) : MII(MI) {
133 assert((!MI.getNodePtr() || MI.isEnd() || !MI->isBundledWithPred()) &&(static_cast<void> (0))
134 "It's not legal to initialize MachineInstrBundleIterator with a "(static_cast<void> (0))
135 "bundled MI")(static_cast<void> (0));
136 }
137
138 MachineInstrBundleIterator(reference MI) : MII(MI) {
139 assert(!MI.isBundledWithPred() && "It's not legal to initialize "(static_cast<void> (0))
140 "MachineInstrBundleIterator with a "(static_cast<void> (0))
141 "bundled MI")(static_cast<void> (0));
142 }
143
144 MachineInstrBundleIterator(pointer MI) : MII(MI) {
145 // FIXME: This conversion should be explicit.
146 assert((!MI || !MI->isBundledWithPred()) && "It's not legal to initialize "(static_cast<void> (0))
147 "MachineInstrBundleIterator "(static_cast<void> (0))
148 "with a bundled MI")(static_cast<void> (0));
149 }
150
151 // Template allows conversion from const to nonconst.
152 template <class OtherTy>
153 MachineInstrBundleIterator(
154 const MachineInstrBundleIterator<OtherTy, IsReverse> &I,
155 std::enable_if_t<std::is_convertible<OtherTy *, Ty *>::value, void *> =
156 nullptr)
157 : MII(I.getInstrIterator()) {}
158
159 MachineInstrBundleIterator() : MII(nullptr) {}
160
161 /// Explicit conversion between forward/reverse iterators.
162 ///
163 /// Translate between forward and reverse iterators without changing range
164 /// boundaries. The resulting iterator will dereference (and have a handle)
165 /// to the previous node, which is somewhat unexpected; but converting the
166 /// two endpoints in a range will give the same range in reverse.
167 ///
168 /// This matches std::reverse_iterator conversions.
169 explicit MachineInstrBundleIterator(
170 const MachineInstrBundleIterator<Ty, !IsReverse> &I)
171 : MachineInstrBundleIterator(++I.getReverse()) {}
172
173 /// Get the bundle iterator for the given instruction's bundle.
174 static MachineInstrBundleIterator getAtBundleBegin(instr_iterator MI) {
175 return MachineInstrBundleIteratorHelper<IsReverse>::getBundleBegin(MI);
176 }
177
178 reference operator*() const { return *MII; }
179 pointer operator->() const { return &operator*(); }
180
181 /// Check for null.
182 bool isValid() const { return MII.getNodePtr(); }
183
184 friend bool operator==(const MachineInstrBundleIterator &L,
185 const MachineInstrBundleIterator &R) {
186 return L.MII == R.MII;
26
Calling 'operator=='
29
Returning from 'operator=='
30
Returning zero, which participates in a condition later
187 }
188 friend bool operator==(const MachineInstrBundleIterator &L,
189 const const_instr_iterator &R) {
190 return L.MII == R; // Avoid assertion about validity of R.
191 }
192 friend bool operator==(const const_instr_iterator &L,
193 const MachineInstrBundleIterator &R) {
194 return L == R.MII; // Avoid assertion about validity of L.
195 }
196 friend bool operator==(const MachineInstrBundleIterator &L,
197 const nonconst_instr_iterator &R) {
198 return L.MII == R; // Avoid assertion about validity of R.
199 }
200 friend bool operator==(const nonconst_instr_iterator &L,
201 const MachineInstrBundleIterator &R) {
202 return L == R.MII; // Avoid assertion about validity of L.
203 }
204 friend bool operator==(const MachineInstrBundleIterator &L, const_pointer R) {
205 return L == const_instr_iterator(R); // Avoid assertion about validity of R.
206 }
207 friend bool operator==(const_pointer L, const MachineInstrBundleIterator &R) {
208 return const_instr_iterator(L) == R; // Avoid assertion about validity of L.
209 }
210 friend bool operator==(const MachineInstrBundleIterator &L,
211 const_reference R) {
212 return L == &R; // Avoid assertion about validity of R.
213 }
214 friend bool operator==(const_reference L,
215 const MachineInstrBundleIterator &R) {
216 return &L == R; // Avoid assertion about validity of L.
217 }
218
219 friend bool operator!=(const MachineInstrBundleIterator &L,
220 const MachineInstrBundleIterator &R) {
221 return !(L == R);
222 }
223 friend bool operator!=(const MachineInstrBundleIterator &L,
224 const const_instr_iterator &R) {
225 return !(L == R);
226 }
227 friend bool operator!=(const const_instr_iterator &L,
228 const MachineInstrBundleIterator &R) {
229 return !(L == R);
230 }
231 friend bool operator!=(const MachineInstrBundleIterator &L,
232 const nonconst_instr_iterator &R) {
233 return !(L == R);
234 }
235 friend bool operator!=(const nonconst_instr_iterator &L,
236 const MachineInstrBundleIterator &R) {
237 return !(L == R);
238 }
239 friend bool operator!=(const MachineInstrBundleIterator &L, const_pointer R) {
240 return !(L == R);
241 }
242 friend bool operator!=(const_pointer L, const MachineInstrBundleIterator &R) {
243 return !(L == R);
244 }
245 friend bool operator!=(const MachineInstrBundleIterator &L,
246 const_reference R) {
247 return !(L == R);
248 }
249 friend bool operator!=(const_reference L,
250 const MachineInstrBundleIterator &R) {
251 return !(L == R);
252 }
253
254 // Increment and decrement operators...
255 MachineInstrBundleIterator &operator--() {
256 this->decrement(MII);
257 return *this;
258 }
259 MachineInstrBundleIterator &operator++() {
260 this->increment(MII);
261 return *this;
262 }
263 MachineInstrBundleIterator operator--(int) {
264 MachineInstrBundleIterator Temp = *this;
265 --*this;
266 return Temp;
267 }
268 MachineInstrBundleIterator operator++(int) {
269 MachineInstrBundleIterator Temp = *this;
270 ++*this;
271 return Temp;
272 }
273
274 instr_iterator getInstrIterator() const { return MII; }
275
276 nonconst_iterator getNonConstIterator() const { return MII.getNonConst(); }
277
278 /// Get a reverse iterator to the same node.
279 ///
280 /// Gives a reverse iterator that will dereference (and have a handle) to the
281 /// same node. Converting the endpoint iterators in a range will give a
282 /// different range; for range operations, use the explicit conversions.
283 reverse_iterator getReverse() const { return MII.getReverse(); }
284};
285
286} // end namespace llvm
287
288#endif // LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/ADT/ilist_iterator.h

1//===- llvm/ADT/ilist_iterator.h - Intrusive List Iterator ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ADT_ILIST_ITERATOR_H
10#define LLVM_ADT_ILIST_ITERATOR_H
11
12#include "llvm/ADT/ilist_node.h"
13#include <cassert>
14#include <cstddef>
15#include <iterator>
16#include <type_traits>
17
18namespace llvm {
19
20namespace ilist_detail {
21
22/// Find const-correct node types.
23template <class OptionsT, bool IsConst> struct IteratorTraits;
24template <class OptionsT> struct IteratorTraits<OptionsT, false> {
25 using value_type = typename OptionsT::value_type;
26 using pointer = typename OptionsT::pointer;
27 using reference = typename OptionsT::reference;
28 using node_pointer = ilist_node_impl<OptionsT> *;
29 using node_reference = ilist_node_impl<OptionsT> &;
30};
31template <class OptionsT> struct IteratorTraits<OptionsT, true> {
32 using value_type = const typename OptionsT::value_type;
33 using pointer = typename OptionsT::const_pointer;
34 using reference = typename OptionsT::const_reference;
35 using node_pointer = const ilist_node_impl<OptionsT> *;
36 using node_reference = const ilist_node_impl<OptionsT> &;
37};
38
39template <bool IsReverse> struct IteratorHelper;
40template <> struct IteratorHelper<false> : ilist_detail::NodeAccess {
41 using Access = ilist_detail::NodeAccess;
42
43 template <class T> static void increment(T *&I) { I = Access::getNext(*I); }
44 template <class T> static void decrement(T *&I) { I = Access::getPrev(*I); }
45};
46template <> struct IteratorHelper<true> : ilist_detail::NodeAccess {
47 using Access = ilist_detail::NodeAccess;
48
49 template <class T> static void increment(T *&I) { I = Access::getPrev(*I); }
50 template <class T> static void decrement(T *&I) { I = Access::getNext(*I); }
51};
52
53} // end namespace ilist_detail
54
55/// Iterator for intrusive lists based on ilist_node.
56template <class OptionsT, bool IsReverse, bool IsConst>
57class ilist_iterator : ilist_detail::SpecificNodeAccess<OptionsT> {
58 friend ilist_iterator<OptionsT, IsReverse, !IsConst>;
59 friend ilist_iterator<OptionsT, !IsReverse, IsConst>;
60 friend ilist_iterator<OptionsT, !IsReverse, !IsConst>;
61
62 using Traits = ilist_detail::IteratorTraits<OptionsT, IsConst>;
63 using Access = ilist_detail::SpecificNodeAccess<OptionsT>;
64
65public:
66 using value_type = typename Traits::value_type;
67 using pointer = typename Traits::pointer;
68 using reference = typename Traits::reference;
69 using difference_type = ptrdiff_t;
70 using iterator_category = std::bidirectional_iterator_tag;
71 using const_pointer = typename OptionsT::const_pointer;
72 using const_reference = typename OptionsT::const_reference;
73
74private:
75 using node_pointer = typename Traits::node_pointer;
76 using node_reference = typename Traits::node_reference;
77
78 node_pointer NodePtr = nullptr;
79
80public:
81 /// Create from an ilist_node.
82 explicit ilist_iterator(node_reference N) : NodePtr(&N) {}
83
84 explicit ilist_iterator(pointer NP) : NodePtr(Access::getNodePtr(NP)) {}
85 explicit ilist_iterator(reference NR) : NodePtr(Access::getNodePtr(&NR)) {}
86 ilist_iterator() = default;
87
88 // This is templated so that we can allow constructing a const iterator from
89 // a nonconst iterator...
90 template <bool RHSIsConst>
91 ilist_iterator(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS,
92 std::enable_if_t<IsConst || !RHSIsConst, void *> = nullptr)
93 : NodePtr(RHS.NodePtr) {}
94
95 // This is templated so that we can allow assigning to a const iterator from
96 // a nonconst iterator...
97 template <bool RHSIsConst>
98 std::enable_if_t<IsConst || !RHSIsConst, ilist_iterator &>
99 operator=(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS) {
100 NodePtr = RHS.NodePtr;
101 return *this;
102 }
103
104 /// Explicit conversion between forward/reverse iterators.
105 ///
106 /// Translate between forward and reverse iterators without changing range
107 /// boundaries. The resulting iterator will dereference (and have a handle)
108 /// to the previous node, which is somewhat unexpected; but converting the
109 /// two endpoints in a range will give the same range in reverse.
110 ///
111 /// This matches std::reverse_iterator conversions.
112 explicit ilist_iterator(
113 const ilist_iterator<OptionsT, !IsReverse, IsConst> &RHS)
114 : ilist_iterator(++RHS.getReverse()) {}
115
116 /// Get a reverse iterator to the same node.
117 ///
118 /// Gives a reverse iterator that will dereference (and have a handle) to the
119 /// same node. Converting the endpoint iterators in a range will give a
120 /// different range; for range operations, use the explicit conversions.
121 ilist_iterator<OptionsT, !IsReverse, IsConst> getReverse() const {
122 if (NodePtr)
123 return ilist_iterator<OptionsT, !IsReverse, IsConst>(*NodePtr);
124 return ilist_iterator<OptionsT, !IsReverse, IsConst>();
125 }
126
127 /// Const-cast.
128 ilist_iterator<OptionsT, IsReverse, false> getNonConst() const {
129 if (NodePtr)
130 return ilist_iterator<OptionsT, IsReverse, false>(
131 const_cast<typename ilist_iterator<OptionsT, IsReverse,
132 false>::node_reference>(*NodePtr));
133 return ilist_iterator<OptionsT, IsReverse, false>();
134 }
135
136 // Accessors...
137 reference operator*() const {
138 assert(!NodePtr->isKnownSentinel())(static_cast<void> (0));
139 return *Access::getValuePtr(NodePtr);
140 }
141 pointer operator->() const { return &operator*(); }
142
143 // Comparison operators
144 friend bool operator==(const ilist_iterator &LHS, const ilist_iterator &RHS) {
145 return LHS.NodePtr == RHS.NodePtr;
27
Assuming 'LHS.NodePtr' is not equal to 'RHS.NodePtr'
28
Returning zero, which participates in a condition later
146 }
147 friend bool operator!=(const ilist_iterator &LHS, const ilist_iterator &RHS) {
148 return LHS.NodePtr != RHS.NodePtr;
149 }
150
151 // Increment and decrement operators...
152 ilist_iterator &operator--() {
153 NodePtr = IsReverse ? NodePtr->getNext() : NodePtr->getPrev();
154 return *this;
155 }
156 ilist_iterator &operator++() {
157 NodePtr = IsReverse ? NodePtr->getPrev() : NodePtr->getNext();
158 return *this;
159 }
160 ilist_iterator operator--(int) {
161 ilist_iterator tmp = *this;
162 --*this;
163 return tmp;
164 }
165 ilist_iterator operator++(int) {
166 ilist_iterator tmp = *this;
167 ++*this;
168 return tmp;
169 }
170
171 /// Get the underlying ilist_node.
172 node_pointer getNodePtr() const { return static_cast<node_pointer>(NodePtr); }
173
174 /// Check for end. Only valid if ilist_sentinel_tracking<true>.
175 bool isEnd() const { return NodePtr ? NodePtr->isSentinel() : false; }
176};
177
178template <typename From> struct simplify_type;
179
180/// Allow ilist_iterators to convert into pointers to a node automatically when
181/// used by the dyn_cast, cast, isa mechanisms...
182///
183/// FIXME: remove this, since there is no implicit conversion to NodeTy.
184template <class OptionsT, bool IsConst>
185struct simplify_type<ilist_iterator<OptionsT, false, IsConst>> {
186 using iterator = ilist_iterator<OptionsT, false, IsConst>;
187 using SimpleType = typename iterator::pointer;
188
189 static SimpleType getSimplifiedValue(const iterator &Node) { return &*Node; }
190};
191template <class OptionsT, bool IsConst>
192struct simplify_type<const ilist_iterator<OptionsT, false, IsConst>>
193 : simplify_type<ilist_iterator<OptionsT, false, IsConst>> {};
194
195} // end namespace llvm
196
197#endif // LLVM_ADT_ILIST_ITERATOR_H