Bug Summary

File:build/source/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
Warning:line 790, column 24
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name HexagonHardwareLoops.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/Hexagon -I /build/source/llvm/lib/Target/Hexagon -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679443490 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-22-005342-16304-1 -x c++ /build/source/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
1//===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass identifies loops where we can generate the Hexagon hardware
10// loop instruction. The hardware loop can perform loop branches with a
11// zero-cycle overhead.
12//
13// The pattern that defines the induction variable can changed depending on
14// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15// normalizes induction variables, and the Loop Strength Reduction pass
16// run by 'llc' may also make changes to the induction variable.
17// The pattern detected by this phase is due to running Strength Reduction.
18//
19// Criteria for hardware loops:
20// - Countable loops (w/ ind. var for a trip count)
21// - Assumes loops are normalized by IndVarSimplify
22// - Try inner-most loops first
23// - No function calls in loops.
24//
25//===----------------------------------------------------------------------===//
26
27#include "HexagonInstrInfo.h"
28#include "HexagonSubtarget.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/CodeGen/MachineBasicBlock.h"
36#include "llvm/CodeGen/MachineDominators.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFunctionPass.h"
39#include "llvm/CodeGen/MachineInstr.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineLoopInfo.h"
42#include "llvm/CodeGen/MachineOperand.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/TargetRegisterInfo.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DebugLoc.h"
47#include "llvm/InitializePasses.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include <cassert>
55#include <cstdint>
56#include <cstdlib>
57#include <iterator>
58#include <map>
59#include <set>
60#include <string>
61#include <utility>
62#include <vector>
63
64using namespace llvm;
65
66#define DEBUG_TYPE"hwloops" "hwloops"
67
68#ifndef NDEBUG
69static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
70
71// Option to create preheader only for a specific function.
72static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
73 cl::init(""));
74#endif
75
76// Option to create a preheader if one doesn't exist.
77static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78 cl::Hidden, cl::init(true),
79 cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
80
81// Turn it off by default. If a preheader block is not created here, the
82// software pipeliner may be unable to find a block suitable to serve as
83// a preheader. In that case SWP will not run.
84static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden,
85 cl::desc("Allow speculation of preheader "
86 "instructions"));
87
88STATISTIC(NumHWLoops, "Number of loops converted to hardware loops")static llvm::Statistic NumHWLoops = {"hwloops", "NumHWLoops",
"Number of loops converted to hardware loops"}
;
89
90namespace llvm {
91
92 FunctionPass *createHexagonHardwareLoops();
93 void initializeHexagonHardwareLoopsPass(PassRegistry&);
94
95} // end namespace llvm
96
97namespace {
98
99 class CountValue;
100
101 struct HexagonHardwareLoops : public MachineFunctionPass {
102 MachineLoopInfo *MLI;
103 MachineRegisterInfo *MRI;
104 MachineDominatorTree *MDT;
105 const HexagonInstrInfo *TII;
106 const HexagonRegisterInfo *TRI;
107#ifndef NDEBUG
108 static int Counter;
109#endif
110
111 public:
112 static char ID;
113
114 HexagonHardwareLoops() : MachineFunctionPass(ID) {}
115
116 bool runOnMachineFunction(MachineFunction &MF) override;
117
118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
119
120 void getAnalysisUsage(AnalysisUsage &AU) const override {
121 AU.addRequired<MachineDominatorTree>();
122 AU.addRequired<MachineLoopInfo>();
123 MachineFunctionPass::getAnalysisUsage(AU);
124 }
125
126 private:
127 using LoopFeederMap = std::map<Register, MachineInstr *>;
128
129 /// Kinds of comparisons in the compare instructions.
130 struct Comparison {
131 enum Kind {
132 EQ = 0x01,
133 NE = 0x02,
134 L = 0x04,
135 G = 0x08,
136 U = 0x40,
137 LTs = L,
138 LEs = L | EQ,
139 GTs = G,
140 GEs = G | EQ,
141 LTu = L | U,
142 LEu = L | EQ | U,
143 GTu = G | U,
144 GEu = G | EQ | U
145 };
146
147 static Kind getSwappedComparison(Kind Cmp) {
148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator")(static_cast <bool> ((!((Cmp & L) && (Cmp &
G))) && "Malformed comparison operator") ? void (0) :
__assert_fail ("(!((Cmp & L) && (Cmp & G))) && \"Malformed comparison operator\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 148, __extension__
__PRETTY_FUNCTION__))
;
149 if ((Cmp & L) || (Cmp & G))
150 return (Kind)(Cmp ^ (L|G));
151 return Cmp;
152 }
153
154 static Kind getNegatedComparison(Kind Cmp) {
155 if ((Cmp & L) || (Cmp & G))
156 return (Kind)((Cmp ^ (L | G)) ^ EQ);
157 if ((Cmp & NE) || (Cmp & EQ))
158 return (Kind)(Cmp ^ (EQ | NE));
159 return (Kind)0;
160 }
161
162 static bool isSigned(Kind Cmp) {
163 return (Cmp & (L | G) && !(Cmp & U));
164 }
165
166 static bool isUnsigned(Kind Cmp) {
167 return (Cmp & U);
168 }
169 };
170
171 /// Find the register that contains the loop controlling
172 /// induction variable.
173 /// If successful, it will return true and set the \p Reg, \p IVBump
174 /// and \p IVOp arguments. Otherwise it will return false.
175 /// The returned induction register is the register R that follows the
176 /// following induction pattern:
177 /// loop:
178 /// R = phi ..., [ R.next, LatchBlock ]
179 /// R.next = R + #bump
180 /// if (R.next < #N) goto loop
181 /// IVBump is the immediate value added to R, and IVOp is the instruction
182 /// "R.next = R + #bump".
183 bool findInductionRegister(MachineLoop *L, Register &Reg,
184 int64_t &IVBump, MachineInstr *&IVOp) const;
185
186 /// Return the comparison kind for the specified opcode.
187 Comparison::Kind getComparisonKind(unsigned CondOpc,
188 MachineOperand *InitialValue,
189 const MachineOperand *Endvalue,
190 int64_t IVBump) const;
191
192 /// Analyze the statements in a loop to determine if the loop
193 /// has a computable trip count and, if so, return a value that represents
194 /// the trip count expression.
195 CountValue *getLoopTripCount(MachineLoop *L,
196 SmallVectorImpl<MachineInstr *> &OldInsts);
197
198 /// Return the expression that represents the number of times
199 /// a loop iterates. The function takes the operands that represent the
200 /// loop start value, loop end value, and induction value. Based upon
201 /// these operands, the function attempts to compute the trip count.
202 /// If the trip count is not directly available (as an immediate value,
203 /// or a register), the function will attempt to insert computation of it
204 /// to the loop's preheader.
205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
206 const MachineOperand *End, Register IVReg,
207 int64_t IVBump, Comparison::Kind Cmp) const;
208
209 /// Return true if the instruction is not valid within a hardware
210 /// loop.
211 bool isInvalidLoopOperation(const MachineInstr *MI,
212 bool IsInnerHWLoop) const;
213
214 /// Return true if the loop contains an instruction that inhibits
215 /// using the hardware loop.
216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
217
218 /// Given a loop, check if we can convert it to a hardware loop.
219 /// If so, then perform the conversion and return true.
220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
221
222 /// Return true if the instruction is now dead.
223 bool isDead(const MachineInstr *MI,
224 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
225
226 /// Remove the instruction if it is now dead.
227 void removeIfDead(MachineInstr *MI);
228
229 /// Make sure that the "bump" instruction executes before the
230 /// compare. We need that for the IV fixup, so that the compare
231 /// instruction would not use a bumped value that has not yet been
232 /// defined. If the instructions are out of order, try to reorder them.
233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
234
235 /// Return true if MO and MI pair is visited only once. If visited
236 /// more than once, this indicates there is recursion. In such a case,
237 /// return false.
238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
239 const MachineOperand *MO,
240 LoopFeederMap &LoopFeederPhi) const;
241
242 /// Return true if the Phi may generate a value that may underflow,
243 /// or may wrap.
244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
245 MachineBasicBlock *MBB, MachineLoop *L,
246 LoopFeederMap &LoopFeederPhi) const;
247
248 /// Return true if the induction variable may underflow an unsigned
249 /// value in the first iteration.
250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
251 const MachineOperand *EndVal,
252 MachineBasicBlock *MBB, MachineLoop *L,
253 LoopFeederMap &LoopFeederPhi) const;
254
255 /// Check if the given operand has a compile-time known constant
256 /// value. Return true if yes, and false otherwise. When returning true, set
257 /// Val to the corresponding constant value.
258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
259
260 /// Check if the operand has a compile-time known constant value.
261 bool isImmediate(const MachineOperand &MO) const {
262 int64_t V;
263 return checkForImmediate(MO, V);
264 }
265
266 /// Return the immediate for the specified operand.
267 int64_t getImmediate(const MachineOperand &MO) const {
268 int64_t V;
269 if (!checkForImmediate(MO, V))
270 llvm_unreachable("Invalid operand")::llvm::llvm_unreachable_internal("Invalid operand", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp"
, 270)
;
271 return V;
272 }
273
274 /// Reset the given machine operand to now refer to a new immediate
275 /// value. Assumes that the operand was already referencing an immediate
276 /// value, either directly, or via a register.
277 void setImmediate(MachineOperand &MO, int64_t Val);
278
279 /// Fix the data flow of the induction variable.
280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
281 /// |
282 /// +-> back to phi
283 /// where "bump" is the increment of the induction variable:
284 /// iv = iv + #const.
285 /// Due to some prior code transformations, the actual flow may look
286 /// like this:
287 /// phi -+-> bump ---> back to phi
288 /// |
289 /// +-> comparison-in-latch (against upper_bound-bump),
290 /// i.e. the comparison that controls the loop execution may be using
291 /// the value of the induction variable from before the increment.
292 ///
293 /// Return true if the loop's flow is the desired one (i.e. it's
294 /// either been fixed, or no fixing was necessary).
295 /// Otherwise, return false. This can happen if the induction variable
296 /// couldn't be identified, or if the value in the latch's comparison
297 /// cannot be adjusted to reflect the post-bump value.
298 bool fixupInductionVariable(MachineLoop *L);
299
300 /// Given a loop, if it does not have a preheader, create one.
301 /// Return the block that is the preheader.
302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
303 };
304
305 char HexagonHardwareLoops::ID = 0;
306#ifndef NDEBUG
307 int HexagonHardwareLoops::Counter = 0;
308#endif
309
310 /// Abstraction for a trip count of a loop. A smaller version
311 /// of the MachineOperand class without the concerns of changing the
312 /// operand representation.
313 class CountValue {
314 public:
315 enum CountValueType {
316 CV_Register,
317 CV_Immediate
318 };
319
320 private:
321 CountValueType Kind;
322 union Values {
323 Values() : R{Register(), 0} {}
324 Values(const Values&) = default;
325 struct {
326 Register Reg;
327 unsigned Sub;
328 } R;
329 unsigned ImmVal;
330 } Contents;
331
332 public:
333 explicit CountValue(CountValueType t, Register v, unsigned u = 0) {
334 Kind = t;
335 if (Kind == CV_Register) {
336 Contents.R.Reg = v;
337 Contents.R.Sub = u;
338 } else {
339 Contents.ImmVal = v;
340 }
341 }
342
343 bool isReg() const { return Kind == CV_Register; }
344 bool isImm() const { return Kind == CV_Immediate; }
345
346 Register getReg() const {
347 assert(isReg() && "Wrong CountValue accessor")(static_cast <bool> (isReg() && "Wrong CountValue accessor"
) ? void (0) : __assert_fail ("isReg() && \"Wrong CountValue accessor\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 347, __extension__
__PRETTY_FUNCTION__))
;
348 return Contents.R.Reg;
349 }
350
351 unsigned getSubReg() const {
352 assert(isReg() && "Wrong CountValue accessor")(static_cast <bool> (isReg() && "Wrong CountValue accessor"
) ? void (0) : __assert_fail ("isReg() && \"Wrong CountValue accessor\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 352, __extension__
__PRETTY_FUNCTION__))
;
353 return Contents.R.Sub;
354 }
355
356 unsigned getImm() const {
357 assert(isImm() && "Wrong CountValue accessor")(static_cast <bool> (isImm() && "Wrong CountValue accessor"
) ? void (0) : __assert_fail ("isImm() && \"Wrong CountValue accessor\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 357, __extension__
__PRETTY_FUNCTION__))
;
358 return Contents.ImmVal;
359 }
360
361 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
362 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
363 if (isImm()) { OS << Contents.ImmVal; }
364 }
365 };
366
367} // end anonymous namespace
368
369INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",static void *initializeHexagonHardwareLoopsPassOnce(PassRegistry
&Registry) {
370 "Hexagon Hardware Loops", false, false)static void *initializeHexagonHardwareLoopsPassOnce(PassRegistry
&Registry) {
371INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry);
372INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
373INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",PassInfo *PI = new PassInfo( "Hexagon Hardware Loops", "hwloops"
, &HexagonHardwareLoops::ID, PassInfo::NormalCtor_t(callDefaultCtor
<HexagonHardwareLoops>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeHexagonHardwareLoopsPassFlag
; void llvm::initializeHexagonHardwareLoopsPass(PassRegistry &
Registry) { llvm::call_once(InitializeHexagonHardwareLoopsPassFlag
, initializeHexagonHardwareLoopsPassOnce, std::ref(Registry))
; }
374 "Hexagon Hardware Loops", false, false)PassInfo *PI = new PassInfo( "Hexagon Hardware Loops", "hwloops"
, &HexagonHardwareLoops::ID, PassInfo::NormalCtor_t(callDefaultCtor
<HexagonHardwareLoops>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeHexagonHardwareLoopsPassFlag
; void llvm::initializeHexagonHardwareLoopsPass(PassRegistry &
Registry) { llvm::call_once(InitializeHexagonHardwareLoopsPassFlag
, initializeHexagonHardwareLoopsPassOnce, std::ref(Registry))
; }
375
376FunctionPass *llvm::createHexagonHardwareLoops() {
377 return new HexagonHardwareLoops();
378}
379
380bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
381 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "********* Hexagon Hardware Loops *********\n"
; } } while (false)
;
382 if (skipFunction(MF.getFunction()))
383 return false;
384
385 bool Changed = false;
386
387 MLI = &getAnalysis<MachineLoopInfo>();
388 MRI = &MF.getRegInfo();
389 MDT = &getAnalysis<MachineDominatorTree>();
390 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
391 TII = HST.getInstrInfo();
392 TRI = HST.getRegisterInfo();
393
394 for (auto &L : *MLI)
395 if (L->isOutermost()) {
396 bool L0Used = false;
397 bool L1Used = false;
398 Changed |= convertToHardwareLoop(L, L0Used, L1Used);
399 }
400
401 return Changed;
402}
403
404bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
405 Register &Reg,
406 int64_t &IVBump,
407 MachineInstr *&IVOp
408 ) const {
409 MachineBasicBlock *Header = L->getHeader();
410 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
411 MachineBasicBlock *Latch = L->getLoopLatch();
412 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
413 if (!Header || !Preheader || !Latch || !ExitingBlock)
414 return false;
415
416 // This pair represents an induction register together with an immediate
417 // value that will be added to it in each loop iteration.
418 using RegisterBump = std::pair<Register, int64_t>;
419
420 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
421 // from an induction operation
422 // R.next = R + bump
423 // where bump is an immediate value.
424 using InductionMap = std::map<Register, RegisterBump>;
425
426 InductionMap IndMap;
427
428 using instr_iterator = MachineBasicBlock::instr_iterator;
429
430 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
431 I != E && I->isPHI(); ++I) {
432 MachineInstr *Phi = &*I;
433
434 // Have a PHI instruction. Get the operand that corresponds to the
435 // latch block, and see if is a result of an addition of form "reg+imm",
436 // where the "reg" is defined by the PHI node we are looking at.
437 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
438 if (Phi->getOperand(i+1).getMBB() != Latch)
439 continue;
440
441 Register PhiOpReg = Phi->getOperand(i).getReg();
442 MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
443
444 if (DI->getDesc().isAdd()) {
445 // If the register operand to the add is the PHI we're looking at, this
446 // meets the induction pattern.
447 Register IndReg = DI->getOperand(1).getReg();
448 MachineOperand &Opnd2 = DI->getOperand(2);
449 int64_t V;
450 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
451 Register UpdReg = DI->getOperand(0).getReg();
452 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
453 }
454 }
455 } // for (i)
456 } // for (instr)
457
458 SmallVector<MachineOperand,2> Cond;
459 MachineBasicBlock *TB = nullptr, *FB = nullptr;
460 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
461 if (NotAnalyzed)
462 return false;
463
464 Register PredR;
465 unsigned PredPos, PredRegFlags;
466 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
467 return false;
468
469 MachineInstr *PredI = MRI->getVRegDef(PredR);
470 if (!PredI->isCompare())
471 return false;
472
473 Register CmpReg1, CmpReg2;
474 int64_t CmpImm = 0, CmpMask = 0;
475 bool CmpAnalyzed =
476 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
477 // Fail if the compare was not analyzed, or it's not comparing a register
478 // with an immediate value. Not checking the mask here, since we handle
479 // the individual compare opcodes (including A4_cmpb*) later on.
480 if (!CmpAnalyzed)
481 return false;
482
483 // Exactly one of the input registers to the comparison should be among
484 // the induction registers.
485 InductionMap::iterator IndMapEnd = IndMap.end();
486 InductionMap::iterator F = IndMapEnd;
487 if (CmpReg1 != 0) {
488 InductionMap::iterator F1 = IndMap.find(CmpReg1);
489 if (F1 != IndMapEnd)
490 F = F1;
491 }
492 if (CmpReg2 != 0) {
493 InductionMap::iterator F2 = IndMap.find(CmpReg2);
494 if (F2 != IndMapEnd) {
495 if (F != IndMapEnd)
496 return false;
497 F = F2;
498 }
499 }
500 if (F == IndMapEnd)
501 return false;
502
503 Reg = F->second.first;
504 IVBump = F->second.second;
505 IVOp = MRI->getVRegDef(F->first);
506 return true;
507}
508
509// Return the comparison kind for the specified opcode.
510HexagonHardwareLoops::Comparison::Kind
511HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
512 MachineOperand *InitialValue,
513 const MachineOperand *EndValue,
514 int64_t IVBump) const {
515 Comparison::Kind Cmp = (Comparison::Kind)0;
516 switch (CondOpc) {
517 case Hexagon::C2_cmpeq:
518 case Hexagon::C2_cmpeqi:
519 case Hexagon::C2_cmpeqp:
520 Cmp = Comparison::EQ;
521 break;
522 case Hexagon::C4_cmpneq:
523 case Hexagon::C4_cmpneqi:
524 Cmp = Comparison::NE;
525 break;
526 case Hexagon::C2_cmplt:
527 Cmp = Comparison::LTs;
528 break;
529 case Hexagon::C2_cmpltu:
530 Cmp = Comparison::LTu;
531 break;
532 case Hexagon::C4_cmplte:
533 case Hexagon::C4_cmpltei:
534 Cmp = Comparison::LEs;
535 break;
536 case Hexagon::C4_cmplteu:
537 case Hexagon::C4_cmplteui:
538 Cmp = Comparison::LEu;
539 break;
540 case Hexagon::C2_cmpgt:
541 case Hexagon::C2_cmpgti:
542 case Hexagon::C2_cmpgtp:
543 Cmp = Comparison::GTs;
544 break;
545 case Hexagon::C2_cmpgtu:
546 case Hexagon::C2_cmpgtui:
547 case Hexagon::C2_cmpgtup:
548 Cmp = Comparison::GTu;
549 break;
550 case Hexagon::C2_cmpgei:
551 Cmp = Comparison::GEs;
552 break;
553 case Hexagon::C2_cmpgeui:
554 Cmp = Comparison::GEs;
555 break;
556 default:
557 return (Comparison::Kind)0;
558 }
559 return Cmp;
560}
561
562/// Analyze the statements in a loop to determine if the loop has
563/// a computable trip count and, if so, return a value that represents
564/// the trip count expression.
565///
566/// This function iterates over the phi nodes in the loop to check for
567/// induction variable patterns that are used in the calculation for
568/// the number of time the loop is executed.
569CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
570 SmallVectorImpl<MachineInstr *> &OldInsts) {
571 MachineBasicBlock *TopMBB = L->getTopBlock();
572 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
573 assert(PI != TopMBB->pred_end() &&(static_cast <bool> (PI != TopMBB->pred_end() &&
"Loop must have more than one incoming edge!") ? void (0) : __assert_fail
("PI != TopMBB->pred_end() && \"Loop must have more than one incoming edge!\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 574, __extension__
__PRETTY_FUNCTION__))
574 "Loop must have more than one incoming edge!")(static_cast <bool> (PI != TopMBB->pred_end() &&
"Loop must have more than one incoming edge!") ? void (0) : __assert_fail
("PI != TopMBB->pred_end() && \"Loop must have more than one incoming edge!\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 574, __extension__
__PRETTY_FUNCTION__))
;
575 MachineBasicBlock *Backedge = *PI++;
576 if (PI == TopMBB->pred_end()) // dead loop?
577 return nullptr;
578 MachineBasicBlock *Incoming = *PI++;
579 if (PI != TopMBB->pred_end()) // multiple backedges?
580 return nullptr;
581
582 // Make sure there is one incoming and one backedge and determine which
583 // is which.
584 if (L->contains(Incoming)) {
585 if (L->contains(Backedge))
586 return nullptr;
587 std::swap(Incoming, Backedge);
588 } else if (!L->contains(Backedge))
589 return nullptr;
590
591 // Look for the cmp instruction to determine if we can get a useful trip
592 // count. The trip count can be either a register or an immediate. The
593 // location of the value depends upon the type (reg or imm).
594 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
595 if (!ExitingBlock)
596 return nullptr;
597
598 Register IVReg = 0;
599 int64_t IVBump = 0;
600 MachineInstr *IVOp;
601 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
602 if (!FoundIV)
603 return nullptr;
604
605 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
606
607 MachineOperand *InitialValue = nullptr;
608 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
609 MachineBasicBlock *Latch = L->getLoopLatch();
610 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
611 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
612 if (MBB == Preheader)
613 InitialValue = &IV_Phi->getOperand(i);
614 else if (MBB == Latch)
615 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
616 }
617 if (!InitialValue)
618 return nullptr;
619
620 SmallVector<MachineOperand,2> Cond;
621 MachineBasicBlock *TB = nullptr, *FB = nullptr;
622 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
623 if (NotAnalyzed)
624 return nullptr;
625
626 MachineBasicBlock *Header = L->getHeader();
627 // TB must be non-null. If FB is also non-null, one of them must be
628 // the header. Otherwise, branch to TB could be exiting the loop, and
629 // the fall through can go to the header.
630 assert (TB && "Exit block without a branch?")(static_cast <bool> (TB && "Exit block without a branch?"
) ? void (0) : __assert_fail ("TB && \"Exit block without a branch?\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 630, __extension__
__PRETTY_FUNCTION__))
;
631 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
632 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
633 SmallVector<MachineOperand,2> LCond;
634 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
635 if (NotAnalyzed)
636 return nullptr;
637 if (TB == Latch)
638 TB = (LTB == Header) ? LTB : LFB;
639 else
640 FB = (LTB == Header) ? LTB: LFB;
641 }
642 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?")(static_cast <bool> ((!FB || TB == Header || FB == Header
) && "Branches not to header?") ? void (0) : __assert_fail
("(!FB || TB == Header || FB == Header) && \"Branches not to header?\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 642, __extension__
__PRETTY_FUNCTION__))
;
643 if (!TB || (FB && TB != Header && FB != Header))
644 return nullptr;
645
646 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
647 // to put imm(0), followed by P in the vector Cond.
648 // If TB is not the header, it means that the "not-taken" path must lead
649 // to the header.
650 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
651 Register PredReg;
652 unsigned PredPos, PredRegFlags;
653 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
654 return nullptr;
655 MachineInstr *CondI = MRI->getVRegDef(PredReg);
656 unsigned CondOpc = CondI->getOpcode();
657
658 Register CmpReg1, CmpReg2;
659 int64_t Mask = 0, ImmValue = 0;
660 bool AnalyzedCmp =
661 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
662 if (!AnalyzedCmp)
663 return nullptr;
664
665 // The comparison operator type determines how we compute the loop
666 // trip count.
667 OldInsts.push_back(CondI);
668 OldInsts.push_back(IVOp);
669
670 // Sadly, the following code gets information based on the position
671 // of the operands in the compare instruction. This has to be done
672 // this way, because the comparisons check for a specific relationship
673 // between the operands (e.g. is-less-than), rather than to find out
674 // what relationship the operands are in (as on PPC).
675 Comparison::Kind Cmp;
676 bool isSwapped = false;
677 const MachineOperand &Op1 = CondI->getOperand(1);
678 const MachineOperand &Op2 = CondI->getOperand(2);
679 const MachineOperand *EndValue = nullptr;
680
681 if (Op1.isReg()) {
682 if (Op2.isImm() || Op1.getReg() == IVReg)
683 EndValue = &Op2;
684 else {
685 EndValue = &Op1;
686 isSwapped = true;
687 }
688 }
689
690 if (!EndValue)
691 return nullptr;
692
693 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
694 if (!Cmp)
695 return nullptr;
696 if (Negated)
697 Cmp = Comparison::getNegatedComparison(Cmp);
698 if (isSwapped)
699 Cmp = Comparison::getSwappedComparison(Cmp);
700
701 if (InitialValue->isReg()) {
702 Register R = InitialValue->getReg();
703 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
704 if (!MDT->properlyDominates(DefBB, Header)) {
705 int64_t V;
706 if (!checkForImmediate(*InitialValue, V))
707 return nullptr;
708 }
709 OldInsts.push_back(MRI->getVRegDef(R));
710 }
711 if (EndValue->isReg()) {
712 Register R = EndValue->getReg();
713 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
714 if (!MDT->properlyDominates(DefBB, Header)) {
715 int64_t V;
716 if (!checkForImmediate(*EndValue, V))
717 return nullptr;
718 }
719 OldInsts.push_back(MRI->getVRegDef(R));
720 }
721
722 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
723}
724
725/// Helper function that returns the expression that represents the
726/// number of times a loop iterates. The function takes the operands that
727/// represent the loop start value, loop end value, and induction value.
728/// Based upon these operands, the function attempts to compute the trip count.
729CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
730 const MachineOperand *Start,
731 const MachineOperand *End,
732 Register IVReg,
733 int64_t IVBump,
734 Comparison::Kind Cmp) const {
735 // Cannot handle comparison EQ, i.e. while (A == B).
736 if (Cmp == Comparison::EQ)
1
Assuming 'Cmp' is not equal to EQ
2
Taking false branch
737 return nullptr;
738
739 // Check if either the start or end values are an assignment of an immediate.
740 // If so, use the immediate value rather than the register.
741 if (Start->isReg()) {
3
Taking false branch
742 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
743 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
744 StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
745 Start = &StartValInstr->getOperand(1);
746 }
747 if (End->isReg()) {
748 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
749 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
750 EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
751 End = &EndValInstr->getOperand(1);
752 }
753
754 if (!Start->isReg() && !Start->isImm())
755 return nullptr;
756 if (!End->isReg() && !End->isImm())
4
Taking false branch
757 return nullptr;
758
759 bool CmpLess = Cmp & Comparison::L;
760 bool CmpGreater = Cmp & Comparison::G;
761 bool CmpHasEqual = Cmp & Comparison::EQ;
762
763 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
764 if (CmpLess && IVBump < 0)
5
Assuming 'CmpLess' is true
6
Assuming 'IVBump' is >= 0
765 // Loop going while iv is "less" with the iv value going down. Must wrap.
766 return nullptr;
767
768 if (CmpGreater && IVBump > 0)
7
Assuming 'CmpGreater' is true
8
Assuming 'IVBump' is <= 0
9
Taking false branch
769 // Loop going while iv is "greater" with the iv value going up. Must wrap.
770 return nullptr;
771
772 // Phis that may feed into the loop.
773 LoopFeederMap LoopFeederPhi;
774
775 // Check if the initial value may be zero and can be decremented in the first
776 // iteration. If the value is zero, the endloop instruction will not decrement
777 // the loop counter, so we shouldn't generate a hardware loop in this case.
778 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
779 LoopFeederPhi))
780 return nullptr;
781
782 if (Start->isImm() && End->isImm()) {
10
Taking true branch
783 // Both, start and end are immediates.
784 int64_t StartV = Start->getImm();
785 int64_t EndV = End->getImm();
786 int64_t Dist = EndV - StartV;
787 if (Dist == 0)
11
Assuming 'Dist' is not equal to 0
12
Taking false branch
788 return nullptr;
789
790 bool Exact = (Dist % IVBump) == 0;
13
Division by zero
791
792 if (Cmp == Comparison::NE) {
793 if (!Exact)
794 return nullptr;
795 if ((Dist < 0) ^ (IVBump < 0))
796 return nullptr;
797 }
798
799 // For comparisons that include the final value (i.e. include equality
800 // with the final value), we need to increase the distance by 1.
801 if (CmpHasEqual)
802 Dist = Dist > 0 ? Dist+1 : Dist-1;
803
804 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
805 // CmpGreater should imply Dist < 0. These conditions could actually
806 // fail, for example, in unreachable code (which may still appear to be
807 // reachable in the CFG).
808 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
809 return nullptr;
810
811 // "Normalized" distance, i.e. with the bump set to +-1.
812 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
813 : (-Dist + (-IVBump - 1)) / (-IVBump);
814 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.")(static_cast <bool> (Dist1 > 0 && "Fishy thing. Both operands have the same sign."
) ? void (0) : __assert_fail ("Dist1 > 0 && \"Fishy thing. Both operands have the same sign.\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 814, __extension__
__PRETTY_FUNCTION__))
;
815
816 uint64_t Count = Dist1;
817
818 if (Count > 0xFFFFFFFFULL)
819 return nullptr;
820
821 return new CountValue(CountValue::CV_Immediate, Count);
822 }
823
824 // A general case: Start and End are some values, but the actual
825 // iteration count may not be available. If it is not, insert
826 // a computation of it into the preheader.
827
828 // If the induction variable bump is not a power of 2, quit.
829 // Othwerise we'd need a general integer division.
830 if (!isPowerOf2_64(std::abs(IVBump)))
831 return nullptr;
832
833 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
834 assert (PH && "Should have a preheader by now")(static_cast <bool> (PH && "Should have a preheader by now"
) ? void (0) : __assert_fail ("PH && \"Should have a preheader by now\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 834, __extension__
__PRETTY_FUNCTION__))
;
835 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
836 DebugLoc DL;
837 if (InsertPos != PH->end())
838 DL = InsertPos->getDebugLoc();
839
840 // If Start is an immediate and End is a register, the trip count
841 // will be "reg - imm". Hexagon's "subtract immediate" instruction
842 // is actually "reg + -imm".
843
844 // If the loop IV is going downwards, i.e. if the bump is negative,
845 // then the iteration count (computed as End-Start) will need to be
846 // negated. To avoid the negation, just swap Start and End.
847 if (IVBump < 0) {
848 std::swap(Start, End);
849 IVBump = -IVBump;
850 }
851 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
852 // Signedness, and "including equality" are preserved.
853
854 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
855 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
856
857 int64_t StartV = 0, EndV = 0;
858 if (Start->isImm())
859 StartV = Start->getImm();
860 if (End->isImm())
861 EndV = End->getImm();
862
863 int64_t AdjV = 0;
864 // To compute the iteration count, we would need this computation:
865 // Count = (End - Start + (IVBump-1)) / IVBump
866 // or, when CmpHasEqual:
867 // Count = (End - Start + (IVBump-1)+1) / IVBump
868 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
869 // generating an instruction specifically to add it if we can adjust
870 // the immediate values for Start or End.
871
872 if (CmpHasEqual) {
873 // Need to add 1 to the total iteration count.
874 if (Start->isImm())
875 StartV--;
876 else if (End->isImm())
877 EndV++;
878 else
879 AdjV += 1;
880 }
881
882 if (Cmp != Comparison::NE) {
883 if (Start->isImm())
884 StartV -= (IVBump-1);
885 else if (End->isImm())
886 EndV += (IVBump-1);
887 else
888 AdjV += (IVBump-1);
889 }
890
891 Register R = 0;
892 unsigned SR = 0;
893 if (Start->isReg()) {
894 R = Start->getReg();
895 SR = Start->getSubReg();
896 } else {
897 R = End->getReg();
898 SR = End->getSubReg();
899 }
900 const TargetRegisterClass *RC = MRI->getRegClass(R);
901 // Hardware loops cannot handle 64-bit registers. If it's a double
902 // register, it has to have a subregister.
903 if (!SR && RC == &Hexagon::DoubleRegsRegClass)
904 return nullptr;
905 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
906
907 // Compute DistR (register with the distance between Start and End).
908 Register DistR;
909 unsigned DistSR;
910
911 // Avoid special case, where the start value is an imm(0).
912 if (Start->isImm() && StartV == 0) {
913 DistR = End->getReg();
914 DistSR = End->getSubReg();
915 } else {
916 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
917 (RegToImm ? TII->get(Hexagon::A2_subri) :
918 TII->get(Hexagon::A2_addi));
919 if (RegToReg || RegToImm) {
920 Register SubR = MRI->createVirtualRegister(IntRC);
921 MachineInstrBuilder SubIB =
922 BuildMI(*PH, InsertPos, DL, SubD, SubR);
923
924 if (RegToReg)
925 SubIB.addReg(End->getReg(), 0, End->getSubReg())
926 .addReg(Start->getReg(), 0, Start->getSubReg());
927 else
928 SubIB.addImm(EndV)
929 .addReg(Start->getReg(), 0, Start->getSubReg());
930 DistR = SubR;
931 } else {
932 // If the loop has been unrolled, we should use the original loop count
933 // instead of recalculating the value. This will avoid additional
934 // 'Add' instruction.
935 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
936 if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
937 EndValInstr->getOperand(1).getSubReg() == 0 &&
938 EndValInstr->getOperand(2).getImm() == StartV) {
939 DistR = EndValInstr->getOperand(1).getReg();
940 } else {
941 Register SubR = MRI->createVirtualRegister(IntRC);
942 MachineInstrBuilder SubIB =
943 BuildMI(*PH, InsertPos, DL, SubD, SubR);
944 SubIB.addReg(End->getReg(), 0, End->getSubReg())
945 .addImm(-StartV);
946 DistR = SubR;
947 }
948 }
949 DistSR = 0;
950 }
951
952 // From DistR, compute AdjR (register with the adjusted distance).
953 Register AdjR;
954 unsigned AdjSR;
955
956 if (AdjV == 0) {
957 AdjR = DistR;
958 AdjSR = DistSR;
959 } else {
960 // Generate CountR = ADD DistR, AdjVal
961 Register AddR = MRI->createVirtualRegister(IntRC);
962 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
963 BuildMI(*PH, InsertPos, DL, AddD, AddR)
964 .addReg(DistR, 0, DistSR)
965 .addImm(AdjV);
966
967 AdjR = AddR;
968 AdjSR = 0;
969 }
970
971 // From AdjR, compute CountR (register with the final count).
972 Register CountR;
973 unsigned CountSR;
974
975 if (IVBump == 1) {
976 CountR = AdjR;
977 CountSR = AdjSR;
978 } else {
979 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
980 unsigned Shift = Log2_32(IVBump);
981
982 // Generate NormR = LSR DistR, Shift.
983 Register LsrR = MRI->createVirtualRegister(IntRC);
984 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
985 BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
986 .addReg(AdjR, 0, AdjSR)
987 .addImm(Shift);
988
989 CountR = LsrR;
990 CountSR = 0;
991 }
992
993 return new CountValue(CountValue::CV_Register, CountR, CountSR);
994}
995
996/// Return true if the operation is invalid within hardware loop.
997bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
998 bool IsInnerHWLoop) const {
999 // Call is not allowed because the callee may use a hardware loop except for
1000 // the case when the call never returns.
1001 if (MI->getDesc().isCall())
1002 return !TII->doesNotReturn(*MI);
1003
1004 // Check if the instruction defines a hardware loop register.
1005 using namespace Hexagon;
1006
1007 static const Register Regs01[] = { LC0, SA0, LC1, SA1 };
1008 static const Register Regs1[] = { LC1, SA1 };
1009 auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01, std::size(Regs01))
1010 : ArrayRef(Regs1, std::size(Regs1));
1011 for (Register R : CheckRegs)
1012 if (MI->modifiesRegister(R, TRI))
1013 return true;
1014
1015 return false;
1016}
1017
1018/// Return true if the loop contains an instruction that inhibits
1019/// the use of the hardware loop instruction.
1020bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
1021 bool IsInnerHWLoop) const {
1022 LLVM_DEBUG(dbgs() << "\nhw_loop head, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference
(**L->block_begin()); } } while (false)
1023 << printMBBReference(**L->block_begin()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference
(**L->block_begin()); } } while (false)
;
1024 for (MachineBasicBlock *MBB : L->getBlocks()) {
1025 for (const MachineInstr &MI : *MBB) {
1026 if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) {
1027 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nCannot convert to hw_loop due to:"
; MI.dump();; } } while (false)
1028 MI.dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nCannot convert to hw_loop due to:"
; MI.dump();; } } while (false)
;
1029 return true;
1030 }
1031 }
1032 }
1033 return false;
1034}
1035
1036/// Returns true if the instruction is dead. This was essentially
1037/// copied from DeadMachineInstructionElim::isDead, but with special cases
1038/// for inline asm, physical registers and instructions with side effects
1039/// removed.
1040bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
1041 SmallVectorImpl<MachineInstr *> &DeadPhis) const {
1042 // Examine each operand.
1043 for (const MachineOperand &MO : MI->operands()) {
1044 if (!MO.isReg() || !MO.isDef())
1045 continue;
1046
1047 Register Reg = MO.getReg();
1048 if (MRI->use_nodbg_empty(Reg))
1049 continue;
1050
1051 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
1052
1053 // This instruction has users, but if the only user is the phi node for the
1054 // parent block, and the only use of that phi node is this instruction, then
1055 // this instruction is dead: both it (and the phi node) can be removed.
1056 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
1057 use_nodbg_iterator End = MRI->use_nodbg_end();
1058 if (std::next(I) != End || !I->getParent()->isPHI())
1059 return false;
1060
1061 MachineInstr *OnePhi = I->getParent();
1062 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
1063 const MachineOperand &OPO = OnePhi->getOperand(j);
1064 if (!OPO.isReg() || !OPO.isDef())
1065 continue;
1066
1067 Register OPReg = OPO.getReg();
1068 use_nodbg_iterator nextJ;
1069 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
1070 J != End; J = nextJ) {
1071 nextJ = std::next(J);
1072 MachineOperand &Use = *J;
1073 MachineInstr *UseMI = Use.getParent();
1074
1075 // If the phi node has a user that is not MI, bail.
1076 if (MI != UseMI)
1077 return false;
1078 }
1079 }
1080 DeadPhis.push_back(OnePhi);
1081 }
1082
1083 // If there are no defs with uses, the instruction is dead.
1084 return true;
1085}
1086
1087void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
1088 // This procedure was essentially copied from DeadMachineInstructionElim.
1089
1090 SmallVector<MachineInstr*, 1> DeadPhis;
1091 if (isDead(MI, DeadPhis)) {
1092 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "HW looping will remove: " <<
*MI; } } while (false)
;
1093
1094 // It is possible that some DBG_VALUE instructions refer to this
1095 // instruction. Examine each def operand for such references;
1096 // if found, mark the DBG_VALUE as undef (but don't delete it).
1097 for (const MachineOperand &MO : MI->operands()) {
1098 if (!MO.isReg() || !MO.isDef())
1099 continue;
1100 Register Reg = MO.getReg();
1101 // We use make_early_inc_range here because setReg below invalidates the
1102 // iterator.
1103 for (MachineOperand &MO :
1104 llvm::make_early_inc_range(MRI->use_operands(Reg))) {
1105 MachineInstr *UseMI = MO.getParent();
1106 if (UseMI == MI)
1107 continue;
1108 if (MO.isDebug())
1109 MO.setReg(0U);
1110 }
1111 }
1112
1113 MI->eraseFromParent();
1114 for (unsigned i = 0; i < DeadPhis.size(); ++i)
1115 DeadPhis[i]->eraseFromParent();
1116 }
1117}
1118
1119/// Check if the loop is a candidate for converting to a hardware
1120/// loop. If so, then perform the transformation.
1121///
1122/// This function works on innermost loops first. A loop can be converted
1123/// if it is a counting loop; either a register value or an immediate.
1124///
1125/// The code makes several assumptions about the representation of the loop
1126/// in llvm.
1127bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
1128 bool &RecL0used,
1129 bool &RecL1used) {
1130 // This is just to confirm basic correctness.
1131 assert(L->getHeader() && "Loop without a header?")(static_cast <bool> (L->getHeader() && "Loop without a header?"
) ? void (0) : __assert_fail ("L->getHeader() && \"Loop without a header?\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1131, __extension__
__PRETTY_FUNCTION__))
;
1132
1133 bool Changed = false;
1134 bool L0Used = false;
1135 bool L1Used = false;
1136
1137 // Process nested loops first.
1138 for (MachineLoop *I : *L) {
1139 Changed |= convertToHardwareLoop(I, RecL0used, RecL1used);
1140 L0Used |= RecL0used;
1141 L1Used |= RecL1used;
1142 }
1143
1144 // If a nested loop has been converted, then we can't convert this loop.
1145 if (Changed && L0Used && L1Used)
1146 return Changed;
1147
1148 unsigned LOOP_i;
1149 unsigned LOOP_r;
1150 unsigned ENDLOOP;
1151
1152 // Flag used to track loopN instruction:
1153 // 1 - Hardware loop is being generated for the inner most loop.
1154 // 0 - Hardware loop is being generated for the outer loop.
1155 unsigned IsInnerHWLoop = 1;
1156
1157 if (L0Used) {
1158 LOOP_i = Hexagon::J2_loop1i;
1159 LOOP_r = Hexagon::J2_loop1r;
1160 ENDLOOP = Hexagon::ENDLOOP1;
1161 IsInnerHWLoop = 0;
1162 } else {
1163 LOOP_i = Hexagon::J2_loop0i;
1164 LOOP_r = Hexagon::J2_loop0r;
1165 ENDLOOP = Hexagon::ENDLOOP0;
1166 }
1167
1168#ifndef NDEBUG
1169 // Stop trying after reaching the limit (if any).
1170 int Limit = HWLoopLimit;
1171 if (Limit >= 0) {
1172 if (Counter >= HWLoopLimit)
1173 return false;
1174 Counter++;
1175 }
1176#endif
1177
1178 // Does the loop contain any invalid instructions?
1179 if (containsInvalidInstruction(L, IsInnerHWLoop))
1180 return false;
1181
1182 MachineBasicBlock *LastMBB = L->findLoopControlBlock();
1183 // Don't generate hw loop if the loop has more than one exit.
1184 if (!LastMBB)
1185 return false;
1186
1187 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1188 if (LastI == LastMBB->end())
1189 return false;
1190
1191 // Is the induction variable bump feeding the latch condition?
1192 if (!fixupInductionVariable(L))
1193 return false;
1194
1195 // Ensure the loop has a preheader: the loop instruction will be
1196 // placed there.
1197 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
1198 if (!Preheader) {
1199 Preheader = createPreheaderForLoop(L);
1200 if (!Preheader)
1201 return false;
1202 }
1203
1204 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1205
1206 SmallVector<MachineInstr*, 2> OldInsts;
1207 // Are we able to determine the trip count for the loop?
1208 CountValue *TripCount = getLoopTripCount(L, OldInsts);
1209 if (!TripCount)
1210 return false;
1211
1212 // Is the trip count available in the preheader?
1213 if (TripCount->isReg()) {
1214 // There will be a use of the register inserted into the preheader,
1215 // so make sure that the register is actually defined at that point.
1216 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1217 MachineBasicBlock *BBDef = TCDef->getParent();
1218 if (!MDT->dominates(BBDef, Preheader))
1219 return false;
1220 }
1221
1222 // Determine the loop start.
1223 MachineBasicBlock *TopBlock = L->getTopBlock();
1224 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1225 MachineBasicBlock *LoopStart = nullptr;
1226 if (ExitingBlock != L->getLoopLatch()) {
1227 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1228 SmallVector<MachineOperand, 2> Cond;
1229
1230 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
1231 return false;
1232
1233 if (L->contains(TB))
1234 LoopStart = TB;
1235 else if (L->contains(FB))
1236 LoopStart = FB;
1237 else
1238 return false;
1239 }
1240 else
1241 LoopStart = TopBlock;
1242
1243 // Convert the loop to a hardware loop.
1244 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "Change to hardware loop at ";
L->dump(); } } while (false)
;
1245 DebugLoc DL;
1246 if (InsertPos != Preheader->end())
1247 DL = InsertPos->getDebugLoc();
1248
1249 if (TripCount->isReg()) {
1250 // Create a copy of the loop count register.
1251 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1252 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1253 .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1254 // Add the Loop instruction to the beginning of the loop.
1255 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
1256 .addReg(CountReg);
1257 } else {
1258 assert(TripCount->isImm() && "Expecting immediate value for trip count")(static_cast <bool> (TripCount->isImm() && "Expecting immediate value for trip count"
) ? void (0) : __assert_fail ("TripCount->isImm() && \"Expecting immediate value for trip count\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1258, __extension__
__PRETTY_FUNCTION__))
;
1259 // Add the Loop immediate instruction to the beginning of the loop,
1260 // if the immediate fits in the instructions. Otherwise, we need to
1261 // create a new virtual register.
1262 int64_t CountImm = TripCount->getImm();
1263 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
1264 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1265 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1266 .addImm(CountImm);
1267 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
1268 .addMBB(LoopStart).addReg(CountReg);
1269 } else
1270 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
1271 .addMBB(LoopStart).addImm(CountImm);
1272 }
1273
1274 // Make sure the loop start always has a reference in the CFG.
1275 LoopStart->setMachineBlockAddressTaken();
1276
1277 // Replace the loop branch with an endloop instruction.
1278 DebugLoc LastIDL = LastI->getDebugLoc();
1279 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
1280
1281 // The loop ends with either:
1282 // - a conditional branch followed by an unconditional branch, or
1283 // - a conditional branch to the loop start.
1284 if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1285 LastI->getOpcode() == Hexagon::J2_jumpf) {
1286 // Delete one and change/add an uncond. branch to out of the loop.
1287 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1288 LastI = LastMBB->erase(LastI);
1289 if (!L->contains(BranchTarget)) {
1290 if (LastI != LastMBB->end())
1291 LastI = LastMBB->erase(LastI);
1292 SmallVector<MachineOperand, 0> Cond;
1293 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1294 }
1295 } else {
1296 // Conditional branch to loop start; just delete it.
1297 LastMBB->erase(LastI);
1298 }
1299 delete TripCount;
1300
1301 // The induction operation and the comparison may now be
1302 // unneeded. If these are unneeded, then remove them.
1303 for (unsigned i = 0; i < OldInsts.size(); ++i)
1304 removeIfDead(OldInsts[i]);
1305
1306 ++NumHWLoops;
1307
1308 // Set RecL1used and RecL0used only after hardware loop has been
1309 // successfully generated. Doing it earlier can cause wrong loop instruction
1310 // to be used.
1311 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
1312 RecL1used = true;
1313 else
1314 RecL0used = true;
1315
1316 return true;
1317}
1318
1319bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1320 MachineInstr *CmpI) {
1321 assert (BumpI != CmpI && "Bump and compare in the same instruction?")(static_cast <bool> (BumpI != CmpI && "Bump and compare in the same instruction?"
) ? void (0) : __assert_fail ("BumpI != CmpI && \"Bump and compare in the same instruction?\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1321, __extension__
__PRETTY_FUNCTION__))
;
1322
1323 MachineBasicBlock *BB = BumpI->getParent();
1324 if (CmpI->getParent() != BB)
1325 return false;
1326
1327 using instr_iterator = MachineBasicBlock::instr_iterator;
1328
1329 // Check if things are in order to begin with.
1330 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
1331 if (&*I == CmpI)
1332 return true;
1333
1334 // Out of order.
1335 Register PredR = CmpI->getOperand(0).getReg();
1336 bool FoundBump = false;
1337 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
1338 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1339 MachineInstr *In = &*I;
1340 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1341 MachineOperand &MO = In->getOperand(i);
1342 if (MO.isReg() && MO.isUse()) {
1343 if (MO.getReg() == PredR) // Found an intervening use of PredR.
1344 return false;
1345 }
1346 }
1347
1348 if (In == BumpI) {
1349 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
1350 FoundBump = true;
1351 break;
1352 }
1353 }
1354 assert (FoundBump && "Cannot determine instruction order")(static_cast <bool> (FoundBump && "Cannot determine instruction order"
) ? void (0) : __assert_fail ("FoundBump && \"Cannot determine instruction order\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1354, __extension__
__PRETTY_FUNCTION__))
;
1355 return FoundBump;
1356}
1357
1358/// This function is required to break recursion. Visiting phis in a loop may
1359/// result in recursion during compilation. We break the recursion by making
1360/// sure that we visit a MachineOperand and its definition in a
1361/// MachineInstruction only once. If we attempt to visit more than once, then
1362/// there is recursion, and will return false.
1363bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
1364 MachineInstr *MI,
1365 const MachineOperand *MO,
1366 LoopFeederMap &LoopFeederPhi) const {
1367 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
1368 LLVM_DEBUG(dbgs() << "\nhw_loop head, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference
(**L->block_begin()); } } while (false)
1369 << printMBBReference(**L->block_begin()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference
(**L->block_begin()); } } while (false)
;
1370 // Ignore all BBs that form Loop.
1371 if (llvm::is_contained(L->getBlocks(), A))
1372 return false;
1373 MachineInstr *Def = MRI->getVRegDef(MO->getReg());
1374 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
1375 return true;
1376 } else
1377 // Already visited node.
1378 return false;
1379}
1380
1381/// Return true if a Phi may generate a value that can underflow.
1382/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1383bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1384 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
1385 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
1386 assert(Phi->isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi->isPHI() && "Expecting a Phi."
) ? void (0) : __assert_fail ("Phi->isPHI() && \"Expecting a Phi.\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1386, __extension__
__PRETTY_FUNCTION__))
;
1387 // Walk through each Phi, and its used operands. Make sure that
1388 // if there is recursion in Phi, we won't generate hardware loops.
1389 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
1390 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
1391 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
1392 Phi->getParent(), L, LoopFeederPhi))
1393 return true;
1394 return false;
1395}
1396
1397/// Return true if the induction variable can underflow in the first iteration.
1398/// An example, is an initial unsigned value that is 0 and is decrement in the
1399/// first itertion of a do-while loop. In this case, we cannot generate a
1400/// hardware loop because the endloop instruction does not decrement the loop
1401/// counter if it is <= 1. We only need to perform this analysis if the
1402/// initial value is a register.
1403///
1404/// This function assumes the initial value may underfow unless proven
1405/// otherwise. If the type is signed, then we don't care because signed
1406/// underflow is undefined. We attempt to prove the initial value is not
1407/// zero by perfoming a crude analysis of the loop counter. This function
1408/// checks if the initial value is used in any comparison prior to the loop
1409/// and, if so, assumes the comparison is a range check. This is inexact,
1410/// but will catch the simple cases.
1411bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1412 const MachineOperand *InitVal, const MachineOperand *EndVal,
1413 MachineBasicBlock *MBB, MachineLoop *L,
1414 LoopFeederMap &LoopFeederPhi) const {
1415 // Only check register values since they are unknown.
1416 if (!InitVal->isReg())
1417 return false;
1418
1419 if (!EndVal->isImm())
1420 return false;
1421
1422 // A register value that is assigned an immediate is a known value, and it
1423 // won't underflow in the first iteration.
1424 int64_t Imm;
1425 if (checkForImmediate(*InitVal, Imm))
1426 return (EndVal->getImm() == Imm);
1427
1428 Register Reg = InitVal->getReg();
1429
1430 // We don't know the value of a physical register.
1431 if (!Reg.isVirtual())
1432 return true;
1433
1434 MachineInstr *Def = MRI->getVRegDef(Reg);
1435 if (!Def)
1436 return true;
1437
1438 // If the initial value is a Phi or copy and the operands may not underflow,
1439 // then the definition cannot be underflow either.
1440 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
1441 L, LoopFeederPhi))
1442 return false;
1443 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
1444 EndVal, Def->getParent(),
1445 L, LoopFeederPhi))
1446 return false;
1447
1448 // Iterate over the uses of the initial value. If the initial value is used
1449 // in a compare, then we assume this is a range check that ensures the loop
1450 // doesn't underflow. This is not an exact test and should be improved.
1451 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
1452 E = MRI->use_instr_nodbg_end(); I != E; ++I) {
1453 MachineInstr *MI = &*I;
1454 Register CmpReg1, CmpReg2;
1455 int64_t CmpMask = 0, CmpValue = 0;
1456
1457 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
1458 continue;
1459
1460 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1461 SmallVector<MachineOperand, 2> Cond;
1462 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
1463 continue;
1464
1465 Comparison::Kind Cmp =
1466 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
1467 if (Cmp == 0)
1468 continue;
1469 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
1470 Cmp = Comparison::getNegatedComparison(Cmp);
1471 if (CmpReg2 != 0 && CmpReg2 == Reg)
1472 Cmp = Comparison::getSwappedComparison(Cmp);
1473
1474 // Signed underflow is undefined.
1475 if (Comparison::isSigned(Cmp))
1476 return false;
1477
1478 // Check if there is a comparison of the initial value. If the initial value
1479 // is greater than or not equal to another value, then assume this is a
1480 // range check.
1481 if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
1482 return false;
1483 }
1484
1485 // OK - this is a hack that needs to be improved. We really need to analyze
1486 // the instructions performed on the initial value. This works on the simplest
1487 // cases only.
1488 if (!Def->isCopy() && !Def->isPHI())
1489 return false;
1490
1491 return true;
1492}
1493
1494bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
1495 int64_t &Val) const {
1496 if (MO.isImm()) {
1497 Val = MO.getImm();
1498 return true;
1499 }
1500 if (!MO.isReg())
1501 return false;
1502
1503 // MO is a register. Check whether it is defined as an immediate value,
1504 // and if so, get the value of it in TV. That value will then need to be
1505 // processed to handle potential subregisters in MO.
1506 int64_t TV;
1507
1508 Register R = MO.getReg();
1509 if (!R.isVirtual())
1510 return false;
1511 MachineInstr *DI = MRI->getVRegDef(R);
1512 unsigned DOpc = DI->getOpcode();
1513 switch (DOpc) {
1514 case TargetOpcode::COPY:
1515 case Hexagon::A2_tfrsi:
1516 case Hexagon::A2_tfrpi:
1517 case Hexagon::CONST32:
1518 case Hexagon::CONST64:
1519 // Call recursively to avoid an extra check whether operand(1) is
1520 // indeed an immediate (it could be a global address, for example),
1521 // plus we can handle COPY at the same time.
1522 if (!checkForImmediate(DI->getOperand(1), TV))
1523 return false;
1524 break;
1525 case Hexagon::A2_combineii:
1526 case Hexagon::A4_combineir:
1527 case Hexagon::A4_combineii:
1528 case Hexagon::A4_combineri:
1529 case Hexagon::A2_combinew: {
1530 const MachineOperand &S1 = DI->getOperand(1);
1531 const MachineOperand &S2 = DI->getOperand(2);
1532 int64_t V1, V2;
1533 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
1534 return false;
1535 TV = V2 | (static_cast<uint64_t>(V1) << 32);
1536 break;
1537 }
1538 case TargetOpcode::REG_SEQUENCE: {
1539 const MachineOperand &S1 = DI->getOperand(1);
1540 const MachineOperand &S3 = DI->getOperand(3);
1541 int64_t V1, V3;
1542 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
1543 return false;
1544 unsigned Sub2 = DI->getOperand(2).getImm();
1545 unsigned Sub4 = DI->getOperand(4).getImm();
1546 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
1547 TV = V1 | (V3 << 32);
1548 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
1549 TV = V3 | (V1 << 32);
1550 else
1551 llvm_unreachable("Unexpected form of REG_SEQUENCE")::llvm::llvm_unreachable_internal("Unexpected form of REG_SEQUENCE"
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1551)
;
1552 break;
1553 }
1554
1555 default:
1556 return false;
1557 }
1558
1559 // By now, we should have successfully obtained the immediate value defining
1560 // the register referenced in MO. Handle a potential use of a subregister.
1561 switch (MO.getSubReg()) {
1562 case Hexagon::isub_lo:
1563 Val = TV & 0xFFFFFFFFULL;
1564 break;
1565 case Hexagon::isub_hi:
1566 Val = (TV >> 32) & 0xFFFFFFFFULL;
1567 break;
1568 default:
1569 Val = TV;
1570 break;
1571 }
1572 return true;
1573}
1574
1575void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1576 if (MO.isImm()) {
1577 MO.setImm(Val);
1578 return;
1579 }
1580
1581 assert(MO.isReg())(static_cast <bool> (MO.isReg()) ? void (0) : __assert_fail
("MO.isReg()", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp"
, 1581, __extension__ __PRETTY_FUNCTION__))
;
1582 Register R = MO.getReg();
1583 MachineInstr *DI = MRI->getVRegDef(R);
1584
1585 const TargetRegisterClass *RC = MRI->getRegClass(R);
1586 Register NewR = MRI->createVirtualRegister(RC);
1587 MachineBasicBlock &B = *DI->getParent();
1588 DebugLoc DL = DI->getDebugLoc();
1589 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
1590 MO.setReg(NewR);
1591}
1592
1593bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1594 MachineBasicBlock *Header = L->getHeader();
1595 MachineBasicBlock *Latch = L->getLoopLatch();
1596 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1597
1598 if (!(Header && Latch && ExitingBlock))
1599 return false;
1600
1601 // These data structures follow the same concept as the corresponding
1602 // ones in findInductionRegister (where some comments are).
1603 using RegisterBump = std::pair<Register, int64_t>;
1604 using RegisterInduction = std::pair<Register, RegisterBump>;
1605 using RegisterInductionSet = std::set<RegisterInduction>;
1606
1607 // Register candidates for induction variables, with their associated bumps.
1608 RegisterInductionSet IndRegs;
1609
1610 // Look for induction patterns:
1611 // %1 = PHI ..., [ latch, %2 ]
1612 // %2 = ADD %1, imm
1613 using instr_iterator = MachineBasicBlock::instr_iterator;
1614
1615 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1616 I != E && I->isPHI(); ++I) {
1617 MachineInstr *Phi = &*I;
1618
1619 // Have a PHI instruction.
1620 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1621 if (Phi->getOperand(i+1).getMBB() != Latch)
1622 continue;
1623
1624 Register PhiReg = Phi->getOperand(i).getReg();
1625 MachineInstr *DI = MRI->getVRegDef(PhiReg);
1626
1627 if (DI->getDesc().isAdd()) {
1628 // If the register operand to the add/sub is the PHI we are looking
1629 // at, this meets the induction pattern.
1630 Register IndReg = DI->getOperand(1).getReg();
1631 MachineOperand &Opnd2 = DI->getOperand(2);
1632 int64_t V;
1633 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
1634 Register UpdReg = DI->getOperand(0).getReg();
1635 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1636 }
1637 }
1638 } // for (i)
1639 } // for (instr)
1640
1641 if (IndRegs.empty())
1642 return false;
1643
1644 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1645 SmallVector<MachineOperand,2> Cond;
1646 // analyzeBranch returns true if it fails to analyze branch.
1647 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
1648 if (NotAnalyzed || Cond.empty())
1649 return false;
1650
1651 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
1652 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
1653 SmallVector<MachineOperand,2> LCond;
1654 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
1655 if (NotAnalyzed)
1656 return false;
1657
1658 // Since latch is not the exiting block, the latch branch should be an
1659 // unconditional branch to the loop header.
1660 if (TB == Latch)
1661 TB = (LTB == Header) ? LTB : LFB;
1662 else
1663 FB = (LTB == Header) ? LTB : LFB;
1664 }
1665 if (TB != Header) {
1666 if (FB != Header) {
1667 // The latch/exit block does not go back to the header.
1668 return false;
1669 }
1670 // FB is the header (i.e., uncond. jump to branch header)
1671 // In this case, the LoopBody -> TB should not be a back edge otherwise
1672 // it could result in an infinite loop after conversion to hw_loop.
1673 // This case can happen when the Latch has two jumps like this:
1674 // Jmp_c OuterLoopHeader <-- TB
1675 // Jmp InnerLoopHeader <-- FB
1676 if (MDT->dominates(TB, FB))
1677 return false;
1678 }
1679
1680 // Expecting a predicate register as a condition. It won't be a hardware
1681 // predicate register at this point yet, just a vreg.
1682 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
1683 // into Cond, followed by the predicate register. For non-negated branches
1684 // it's just the register.
1685 unsigned CSz = Cond.size();
1686 if (CSz != 1 && CSz != 2)
1687 return false;
1688
1689 if (!Cond[CSz-1].isReg())
1690 return false;
1691
1692 Register P = Cond[CSz - 1].getReg();
1693 MachineInstr *PredDef = MRI->getVRegDef(P);
1694
1695 if (!PredDef->isCompare())
1696 return false;
1697
1698 SmallSet<Register,2> CmpRegs;
1699 MachineOperand *CmpImmOp = nullptr;
1700
1701 // Go over all operands to the compare and look for immediate and register
1702 // operands. Assume that if the compare has a single register use and a
1703 // single immediate operand, then the register is being compared with the
1704 // immediate value.
1705 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1706 MachineOperand &MO = PredDef->getOperand(i);
1707 if (MO.isReg()) {
1708 // Skip all implicit references. In one case there was:
1709 // %140 = FCMPUGT32_rr %138, %139, implicit %usr
1710 if (MO.isImplicit())
1711 continue;
1712 if (MO.isUse()) {
1713 if (!isImmediate(MO)) {
1714 CmpRegs.insert(MO.getReg());
1715 continue;
1716 }
1717 // Consider the register to be the "immediate" operand.
1718 if (CmpImmOp)
1719 return false;
1720 CmpImmOp = &MO;
1721 }
1722 } else if (MO.isImm()) {
1723 if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
1724 return false;
1725 CmpImmOp = &MO;
1726 }
1727 }
1728
1729 if (CmpRegs.empty())
1730 return false;
1731
1732 // Check if the compared register follows the order we want. Fix if needed.
1733 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1734 I != E; ++I) {
1735 // This is a success. If the register used in the comparison is one that
1736 // we have identified as a bumped (updated) induction register, there is
1737 // nothing to do.
1738 if (CmpRegs.count(I->first))
1739 return true;
1740
1741 // Otherwise, if the register being compared comes out of a PHI node,
1742 // and has been recognized as following the induction pattern, and is
1743 // compared against an immediate, we can fix it.
1744 const RegisterBump &RB = I->second;
1745 if (CmpRegs.count(RB.first)) {
1746 if (!CmpImmOp) {
1747 // If both operands to the compare instruction are registers, see if
1748 // it can be changed to use induction register as one of the operands.
1749 MachineInstr *IndI = nullptr;
1750 MachineInstr *nonIndI = nullptr;
1751 MachineOperand *IndMO = nullptr;
1752 MachineOperand *nonIndMO = nullptr;
1753
1754 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
1755 MachineOperand &MO = PredDef->getOperand(i);
1756 if (MO.isReg() && MO.getReg() == RB.first) {
1757 LLVM_DEBUG(dbgs() << "\n DefMI(" << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\n DefMI(" << i <<
") = " << *(MRI->getVRegDef(I->first)); } } while
(false)
1758 << ") = " << *(MRI->getVRegDef(I->first)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\n DefMI(" << i <<
") = " << *(MRI->getVRegDef(I->first)); } } while
(false)
;
1759 if (IndI)
1760 return false;
1761
1762 IndI = MRI->getVRegDef(I->first);
1763 IndMO = &MO;
1764 } else if (MO.isReg()) {
1765 LLVM_DEBUG(dbgs() << "\n DefMI(" << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\n DefMI(" << i <<
") = " << *(MRI->getVRegDef(MO.getReg())); } } while
(false)
1766 << ") = " << *(MRI->getVRegDef(MO.getReg())))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\n DefMI(" << i <<
") = " << *(MRI->getVRegDef(MO.getReg())); } } while
(false)
;
1767 if (nonIndI)
1768 return false;
1769
1770 nonIndI = MRI->getVRegDef(MO.getReg());
1771 nonIndMO = &MO;
1772 }
1773 }
1774 if (IndI && nonIndI &&
1775 nonIndI->getOpcode() == Hexagon::A2_addi &&
1776 nonIndI->getOperand(2).isImm() &&
1777 nonIndI->getOperand(2).getImm() == - RB.second) {
1778 bool Order = orderBumpCompare(IndI, PredDef);
1779 if (Order) {
1780 IndMO->setReg(I->first);
1781 nonIndMO->setReg(nonIndI->getOperand(1).getReg());
1782 return true;
1783 }
1784 }
1785 return false;
1786 }
1787
1788 // It is not valid to do this transformation on an unsigned comparison
1789 // because it may underflow.
1790 Comparison::Kind Cmp =
1791 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
1792 if (!Cmp || Comparison::isUnsigned(Cmp))
1793 return false;
1794
1795 // If the register is being compared against an immediate, try changing
1796 // the compare instruction to use induction register and adjust the
1797 // immediate operand.
1798 int64_t CmpImm = getImmediate(*CmpImmOp);
1799 int64_t V = RB.second;
1800 // Handle Overflow (64-bit).
1801 if (((V > 0) && (CmpImm > INT64_MAX(9223372036854775807L) - V)) ||
1802 ((V < 0) && (CmpImm < INT64_MIN(-9223372036854775807L -1) - V)))
1803 return false;
1804 CmpImm += V;
1805 // Most comparisons of register against an immediate value allow
1806 // the immediate to be constant-extended. There are some exceptions
1807 // though. Make sure the new combination will work.
1808 if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) &&
1809 !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false))
1810 return false;
1811
1812 // Make sure that the compare happens after the bump. Otherwise,
1813 // after the fixup, the compare would use a yet-undefined register.
1814 MachineInstr *BumpI = MRI->getVRegDef(I->first);
1815 bool Order = orderBumpCompare(BumpI, PredDef);
1816 if (!Order)
1817 return false;
1818
1819 // Finally, fix the compare instruction.
1820 setImmediate(*CmpImmOp, CmpImm);
1821 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1822 MachineOperand &MO = PredDef->getOperand(i);
1823 if (MO.isReg() && MO.getReg() == RB.first) {
1824 MO.setReg(I->first);
1825 return true;
1826 }
1827 }
1828 }
1829 }
1830
1831 return false;
1832}
1833
1834/// createPreheaderForLoop - Create a preheader for a given loop.
1835MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1836 MachineLoop *L) {
1837 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
1838 return TmpPH;
1839 if (!HWCreatePreheader)
1840 return nullptr;
1841
1842 MachineBasicBlock *Header = L->getHeader();
1843 MachineBasicBlock *Latch = L->getLoopLatch();
1844 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1845 MachineFunction *MF = Header->getParent();
1846 DebugLoc DL;
1847
1848#ifndef NDEBUG
1849 if ((!PHFn.empty()) && (PHFn != MF->getName()))
1850 return nullptr;
1851#endif
1852
1853 if (!Latch || !ExitingBlock || Header->hasAddressTaken())
1854 return nullptr;
1855
1856 using instr_iterator = MachineBasicBlock::instr_iterator;
1857
1858 // Verify that all existing predecessors have analyzable branches
1859 // (or no branches at all).
1860 using MBBVector = std::vector<MachineBasicBlock *>;
1861
1862 MBBVector Preds(Header->pred_begin(), Header->pred_end());
1863 SmallVector<MachineOperand,2> Tmp1;
1864 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1865
1866 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
1867 return nullptr;
1868
1869 for (MachineBasicBlock *PB : Preds) {
1870 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
1871 if (NotAnalyzed)
1872 return nullptr;
1873 }
1874
1875 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1876 MF->insert(Header->getIterator(), NewPH);
1877
1878 if (Header->pred_size() > 2) {
1879 // Ensure that the header has only two predecessors: the preheader and
1880 // the loop latch. Any additional predecessors of the header should
1881 // join at the newly created preheader. Inspect all PHI nodes from the
1882 // header and create appropriate corresponding PHI nodes in the preheader.
1883
1884 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1885 I != E && I->isPHI(); ++I) {
1886 MachineInstr *PN = &*I;
1887
1888 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1889 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1890 NewPH->insert(NewPH->end(), NewPN);
1891
1892 Register PR = PN->getOperand(0).getReg();
1893 const TargetRegisterClass *RC = MRI->getRegClass(PR);
1894 Register NewPR = MRI->createVirtualRegister(RC);
1895 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1896
1897 // Copy all non-latch operands of a header's PHI node to the newly
1898 // created PHI node in the preheader.
1899 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1900 Register PredR = PN->getOperand(i).getReg();
1901 unsigned PredRSub = PN->getOperand(i).getSubReg();
1902 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1903 if (PredB == Latch)
1904 continue;
1905
1906 MachineOperand MO = MachineOperand::CreateReg(PredR, false);
1907 MO.setSubReg(PredRSub);
1908 NewPN->addOperand(MO);
1909 NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1910 }
1911
1912 // Remove copied operands from the old PHI node and add the value
1913 // coming from the preheader's PHI.
1914 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1915 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1916 if (PredB != Latch) {
1917 PN->removeOperand(i+1);
1918 PN->removeOperand(i);
1919 }
1920 }
1921 PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1922 PN->addOperand(MachineOperand::CreateMBB(NewPH));
1923 }
1924 } else {
1925 assert(Header->pred_size() == 2)(static_cast <bool> (Header->pred_size() == 2) ? void
(0) : __assert_fail ("Header->pred_size() == 2", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp"
, 1925, __extension__ __PRETTY_FUNCTION__))
;
1926
1927 // The header has only two predecessors, but the non-latch predecessor
1928 // is not a preheader (e.g. it has other successors, etc.)
1929 // In such a case we don't need any extra PHI nodes in the new preheader,
1930 // all we need is to adjust existing PHIs in the header to now refer to
1931 // the new preheader.
1932 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1933 I != E && I->isPHI(); ++I) {
1934 MachineInstr *PN = &*I;
1935 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1936 MachineOperand &MO = PN->getOperand(i+1);
1937 if (MO.getMBB() != Latch)
1938 MO.setMBB(NewPH);
1939 }
1940 }
1941 }
1942
1943 // "Reroute" the CFG edges to link in the new preheader.
1944 // If any of the predecessors falls through to the header, insert a branch
1945 // to the new preheader in that place.
1946 SmallVector<MachineOperand,1> Tmp2;
1947 SmallVector<MachineOperand,1> EmptyCond;
1948
1949 TB = FB = nullptr;
1950
1951 for (MachineBasicBlock *PB : Preds) {
1952 if (PB != Latch) {
1953 Tmp2.clear();
1954 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
1955 (void)NotAnalyzed; // suppress compiler warning
1956 assert (!NotAnalyzed && "Should be analyzable!")(static_cast <bool> (!NotAnalyzed && "Should be analyzable!"
) ? void (0) : __assert_fail ("!NotAnalyzed && \"Should be analyzable!\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1956, __extension__
__PRETTY_FUNCTION__))
;
1957 if (TB != Header && (Tmp2.empty() || FB != Header))
1958 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1959 PB->ReplaceUsesOfBlockWith(Header, NewPH);
1960 }
1961 }
1962
1963 // It can happen that the latch block will fall through into the header.
1964 // Insert an unconditional branch to the header.
1965 TB = FB = nullptr;
1966 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
1967 (void)LatchNotAnalyzed; // suppress compiler warning
1968 assert (!LatchNotAnalyzed && "Should be analyzable!")(static_cast <bool> (!LatchNotAnalyzed && "Should be analyzable!"
) ? void (0) : __assert_fail ("!LatchNotAnalyzed && \"Should be analyzable!\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1968, __extension__
__PRETTY_FUNCTION__))
;
1969 if (!TB && !FB)
1970 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1971
1972 // Finally, the branch from the preheader to the header.
1973 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1974 NewPH->addSuccessor(Header);
1975
1976 MachineLoop *ParentLoop = L->getParentLoop();
1977 if (ParentLoop)
1978 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
1979
1980 // Update the dominator information with the new preheader.
1981 if (MDT) {
1982 if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
1983 if (MachineDomTreeNode *DHN = HN->getIDom()) {
1984 MDT->addNewBlock(NewPH, DHN->getBlock());
1985 MDT->changeImmediateDominator(Header, NewPH);
1986 }
1987 }
1988 }
1989
1990 return NewPH;
1991}