| File: | build/source/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp |
| Warning: | line 790, column 24 Division by zero |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This pass identifies loops where we can generate the Hexagon hardware | |||
| 10 | // loop instruction. The hardware loop can perform loop branches with a | |||
| 11 | // zero-cycle overhead. | |||
| 12 | // | |||
| 13 | // The pattern that defines the induction variable can changed depending on | |||
| 14 | // prior optimizations. For example, the IndVarSimplify phase run by 'opt' | |||
| 15 | // normalizes induction variables, and the Loop Strength Reduction pass | |||
| 16 | // run by 'llc' may also make changes to the induction variable. | |||
| 17 | // The pattern detected by this phase is due to running Strength Reduction. | |||
| 18 | // | |||
| 19 | // Criteria for hardware loops: | |||
| 20 | // - Countable loops (w/ ind. var for a trip count) | |||
| 21 | // - Assumes loops are normalized by IndVarSimplify | |||
| 22 | // - Try inner-most loops first | |||
| 23 | // - No function calls in loops. | |||
| 24 | // | |||
| 25 | //===----------------------------------------------------------------------===// | |||
| 26 | ||||
| 27 | #include "HexagonInstrInfo.h" | |||
| 28 | #include "HexagonSubtarget.h" | |||
| 29 | #include "llvm/ADT/ArrayRef.h" | |||
| 30 | #include "llvm/ADT/STLExtras.h" | |||
| 31 | #include "llvm/ADT/SmallSet.h" | |||
| 32 | #include "llvm/ADT/SmallVector.h" | |||
| 33 | #include "llvm/ADT/Statistic.h" | |||
| 34 | #include "llvm/ADT/StringRef.h" | |||
| 35 | #include "llvm/CodeGen/MachineBasicBlock.h" | |||
| 36 | #include "llvm/CodeGen/MachineDominators.h" | |||
| 37 | #include "llvm/CodeGen/MachineFunction.h" | |||
| 38 | #include "llvm/CodeGen/MachineFunctionPass.h" | |||
| 39 | #include "llvm/CodeGen/MachineInstr.h" | |||
| 40 | #include "llvm/CodeGen/MachineInstrBuilder.h" | |||
| 41 | #include "llvm/CodeGen/MachineLoopInfo.h" | |||
| 42 | #include "llvm/CodeGen/MachineOperand.h" | |||
| 43 | #include "llvm/CodeGen/MachineRegisterInfo.h" | |||
| 44 | #include "llvm/CodeGen/TargetRegisterInfo.h" | |||
| 45 | #include "llvm/IR/Constants.h" | |||
| 46 | #include "llvm/IR/DebugLoc.h" | |||
| 47 | #include "llvm/InitializePasses.h" | |||
| 48 | #include "llvm/Pass.h" | |||
| 49 | #include "llvm/Support/CommandLine.h" | |||
| 50 | #include "llvm/Support/Debug.h" | |||
| 51 | #include "llvm/Support/ErrorHandling.h" | |||
| 52 | #include "llvm/Support/MathExtras.h" | |||
| 53 | #include "llvm/Support/raw_ostream.h" | |||
| 54 | #include <cassert> | |||
| 55 | #include <cstdint> | |||
| 56 | #include <cstdlib> | |||
| 57 | #include <iterator> | |||
| 58 | #include <map> | |||
| 59 | #include <set> | |||
| 60 | #include <string> | |||
| 61 | #include <utility> | |||
| 62 | #include <vector> | |||
| 63 | ||||
| 64 | using namespace llvm; | |||
| 65 | ||||
| 66 | #define DEBUG_TYPE"hwloops" "hwloops" | |||
| 67 | ||||
| 68 | #ifndef NDEBUG | |||
| 69 | static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); | |||
| 70 | ||||
| 71 | // Option to create preheader only for a specific function. | |||
| 72 | static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, | |||
| 73 | cl::init("")); | |||
| 74 | #endif | |||
| 75 | ||||
| 76 | // Option to create a preheader if one doesn't exist. | |||
| 77 | static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", | |||
| 78 | cl::Hidden, cl::init(true), | |||
| 79 | cl::desc("Add a preheader to a hardware loop if one doesn't exist")); | |||
| 80 | ||||
| 81 | // Turn it off by default. If a preheader block is not created here, the | |||
| 82 | // software pipeliner may be unable to find a block suitable to serve as | |||
| 83 | // a preheader. In that case SWP will not run. | |||
| 84 | static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden, | |||
| 85 | cl::desc("Allow speculation of preheader " | |||
| 86 | "instructions")); | |||
| 87 | ||||
| 88 | STATISTIC(NumHWLoops, "Number of loops converted to hardware loops")static llvm::Statistic NumHWLoops = {"hwloops", "NumHWLoops", "Number of loops converted to hardware loops"}; | |||
| 89 | ||||
| 90 | namespace llvm { | |||
| 91 | ||||
| 92 | FunctionPass *createHexagonHardwareLoops(); | |||
| 93 | void initializeHexagonHardwareLoopsPass(PassRegistry&); | |||
| 94 | ||||
| 95 | } // end namespace llvm | |||
| 96 | ||||
| 97 | namespace { | |||
| 98 | ||||
| 99 | class CountValue; | |||
| 100 | ||||
| 101 | struct HexagonHardwareLoops : public MachineFunctionPass { | |||
| 102 | MachineLoopInfo *MLI; | |||
| 103 | MachineRegisterInfo *MRI; | |||
| 104 | MachineDominatorTree *MDT; | |||
| 105 | const HexagonInstrInfo *TII; | |||
| 106 | const HexagonRegisterInfo *TRI; | |||
| 107 | #ifndef NDEBUG | |||
| 108 | static int Counter; | |||
| 109 | #endif | |||
| 110 | ||||
| 111 | public: | |||
| 112 | static char ID; | |||
| 113 | ||||
| 114 | HexagonHardwareLoops() : MachineFunctionPass(ID) {} | |||
| 115 | ||||
| 116 | bool runOnMachineFunction(MachineFunction &MF) override; | |||
| 117 | ||||
| 118 | StringRef getPassName() const override { return "Hexagon Hardware Loops"; } | |||
| 119 | ||||
| 120 | void getAnalysisUsage(AnalysisUsage &AU) const override { | |||
| 121 | AU.addRequired<MachineDominatorTree>(); | |||
| 122 | AU.addRequired<MachineLoopInfo>(); | |||
| 123 | MachineFunctionPass::getAnalysisUsage(AU); | |||
| 124 | } | |||
| 125 | ||||
| 126 | private: | |||
| 127 | using LoopFeederMap = std::map<Register, MachineInstr *>; | |||
| 128 | ||||
| 129 | /// Kinds of comparisons in the compare instructions. | |||
| 130 | struct Comparison { | |||
| 131 | enum Kind { | |||
| 132 | EQ = 0x01, | |||
| 133 | NE = 0x02, | |||
| 134 | L = 0x04, | |||
| 135 | G = 0x08, | |||
| 136 | U = 0x40, | |||
| 137 | LTs = L, | |||
| 138 | LEs = L | EQ, | |||
| 139 | GTs = G, | |||
| 140 | GEs = G | EQ, | |||
| 141 | LTu = L | U, | |||
| 142 | LEu = L | EQ | U, | |||
| 143 | GTu = G | U, | |||
| 144 | GEu = G | EQ | U | |||
| 145 | }; | |||
| 146 | ||||
| 147 | static Kind getSwappedComparison(Kind Cmp) { | |||
| 148 | assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator")(static_cast <bool> ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator") ? void (0) : __assert_fail ("(!((Cmp & L) && (Cmp & G))) && \"Malformed comparison operator\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 148, __extension__ __PRETTY_FUNCTION__)); | |||
| 149 | if ((Cmp & L) || (Cmp & G)) | |||
| 150 | return (Kind)(Cmp ^ (L|G)); | |||
| 151 | return Cmp; | |||
| 152 | } | |||
| 153 | ||||
| 154 | static Kind getNegatedComparison(Kind Cmp) { | |||
| 155 | if ((Cmp & L) || (Cmp & G)) | |||
| 156 | return (Kind)((Cmp ^ (L | G)) ^ EQ); | |||
| 157 | if ((Cmp & NE) || (Cmp & EQ)) | |||
| 158 | return (Kind)(Cmp ^ (EQ | NE)); | |||
| 159 | return (Kind)0; | |||
| 160 | } | |||
| 161 | ||||
| 162 | static bool isSigned(Kind Cmp) { | |||
| 163 | return (Cmp & (L | G) && !(Cmp & U)); | |||
| 164 | } | |||
| 165 | ||||
| 166 | static bool isUnsigned(Kind Cmp) { | |||
| 167 | return (Cmp & U); | |||
| 168 | } | |||
| 169 | }; | |||
| 170 | ||||
| 171 | /// Find the register that contains the loop controlling | |||
| 172 | /// induction variable. | |||
| 173 | /// If successful, it will return true and set the \p Reg, \p IVBump | |||
| 174 | /// and \p IVOp arguments. Otherwise it will return false. | |||
| 175 | /// The returned induction register is the register R that follows the | |||
| 176 | /// following induction pattern: | |||
| 177 | /// loop: | |||
| 178 | /// R = phi ..., [ R.next, LatchBlock ] | |||
| 179 | /// R.next = R + #bump | |||
| 180 | /// if (R.next < #N) goto loop | |||
| 181 | /// IVBump is the immediate value added to R, and IVOp is the instruction | |||
| 182 | /// "R.next = R + #bump". | |||
| 183 | bool findInductionRegister(MachineLoop *L, Register &Reg, | |||
| 184 | int64_t &IVBump, MachineInstr *&IVOp) const; | |||
| 185 | ||||
| 186 | /// Return the comparison kind for the specified opcode. | |||
| 187 | Comparison::Kind getComparisonKind(unsigned CondOpc, | |||
| 188 | MachineOperand *InitialValue, | |||
| 189 | const MachineOperand *Endvalue, | |||
| 190 | int64_t IVBump) const; | |||
| 191 | ||||
| 192 | /// Analyze the statements in a loop to determine if the loop | |||
| 193 | /// has a computable trip count and, if so, return a value that represents | |||
| 194 | /// the trip count expression. | |||
| 195 | CountValue *getLoopTripCount(MachineLoop *L, | |||
| 196 | SmallVectorImpl<MachineInstr *> &OldInsts); | |||
| 197 | ||||
| 198 | /// Return the expression that represents the number of times | |||
| 199 | /// a loop iterates. The function takes the operands that represent the | |||
| 200 | /// loop start value, loop end value, and induction value. Based upon | |||
| 201 | /// these operands, the function attempts to compute the trip count. | |||
| 202 | /// If the trip count is not directly available (as an immediate value, | |||
| 203 | /// or a register), the function will attempt to insert computation of it | |||
| 204 | /// to the loop's preheader. | |||
| 205 | CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, | |||
| 206 | const MachineOperand *End, Register IVReg, | |||
| 207 | int64_t IVBump, Comparison::Kind Cmp) const; | |||
| 208 | ||||
| 209 | /// Return true if the instruction is not valid within a hardware | |||
| 210 | /// loop. | |||
| 211 | bool isInvalidLoopOperation(const MachineInstr *MI, | |||
| 212 | bool IsInnerHWLoop) const; | |||
| 213 | ||||
| 214 | /// Return true if the loop contains an instruction that inhibits | |||
| 215 | /// using the hardware loop. | |||
| 216 | bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; | |||
| 217 | ||||
| 218 | /// Given a loop, check if we can convert it to a hardware loop. | |||
| 219 | /// If so, then perform the conversion and return true. | |||
| 220 | bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); | |||
| 221 | ||||
| 222 | /// Return true if the instruction is now dead. | |||
| 223 | bool isDead(const MachineInstr *MI, | |||
| 224 | SmallVectorImpl<MachineInstr *> &DeadPhis) const; | |||
| 225 | ||||
| 226 | /// Remove the instruction if it is now dead. | |||
| 227 | void removeIfDead(MachineInstr *MI); | |||
| 228 | ||||
| 229 | /// Make sure that the "bump" instruction executes before the | |||
| 230 | /// compare. We need that for the IV fixup, so that the compare | |||
| 231 | /// instruction would not use a bumped value that has not yet been | |||
| 232 | /// defined. If the instructions are out of order, try to reorder them. | |||
| 233 | bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); | |||
| 234 | ||||
| 235 | /// Return true if MO and MI pair is visited only once. If visited | |||
| 236 | /// more than once, this indicates there is recursion. In such a case, | |||
| 237 | /// return false. | |||
| 238 | bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, | |||
| 239 | const MachineOperand *MO, | |||
| 240 | LoopFeederMap &LoopFeederPhi) const; | |||
| 241 | ||||
| 242 | /// Return true if the Phi may generate a value that may underflow, | |||
| 243 | /// or may wrap. | |||
| 244 | bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, | |||
| 245 | MachineBasicBlock *MBB, MachineLoop *L, | |||
| 246 | LoopFeederMap &LoopFeederPhi) const; | |||
| 247 | ||||
| 248 | /// Return true if the induction variable may underflow an unsigned | |||
| 249 | /// value in the first iteration. | |||
| 250 | bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, | |||
| 251 | const MachineOperand *EndVal, | |||
| 252 | MachineBasicBlock *MBB, MachineLoop *L, | |||
| 253 | LoopFeederMap &LoopFeederPhi) const; | |||
| 254 | ||||
| 255 | /// Check if the given operand has a compile-time known constant | |||
| 256 | /// value. Return true if yes, and false otherwise. When returning true, set | |||
| 257 | /// Val to the corresponding constant value. | |||
| 258 | bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; | |||
| 259 | ||||
| 260 | /// Check if the operand has a compile-time known constant value. | |||
| 261 | bool isImmediate(const MachineOperand &MO) const { | |||
| 262 | int64_t V; | |||
| 263 | return checkForImmediate(MO, V); | |||
| 264 | } | |||
| 265 | ||||
| 266 | /// Return the immediate for the specified operand. | |||
| 267 | int64_t getImmediate(const MachineOperand &MO) const { | |||
| 268 | int64_t V; | |||
| 269 | if (!checkForImmediate(MO, V)) | |||
| 270 | llvm_unreachable("Invalid operand")::llvm::llvm_unreachable_internal("Invalid operand", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp" , 270); | |||
| 271 | return V; | |||
| 272 | } | |||
| 273 | ||||
| 274 | /// Reset the given machine operand to now refer to a new immediate | |||
| 275 | /// value. Assumes that the operand was already referencing an immediate | |||
| 276 | /// value, either directly, or via a register. | |||
| 277 | void setImmediate(MachineOperand &MO, int64_t Val); | |||
| 278 | ||||
| 279 | /// Fix the data flow of the induction variable. | |||
| 280 | /// The desired flow is: phi ---> bump -+-> comparison-in-latch. | |||
| 281 | /// | | |||
| 282 | /// +-> back to phi | |||
| 283 | /// where "bump" is the increment of the induction variable: | |||
| 284 | /// iv = iv + #const. | |||
| 285 | /// Due to some prior code transformations, the actual flow may look | |||
| 286 | /// like this: | |||
| 287 | /// phi -+-> bump ---> back to phi | |||
| 288 | /// | | |||
| 289 | /// +-> comparison-in-latch (against upper_bound-bump), | |||
| 290 | /// i.e. the comparison that controls the loop execution may be using | |||
| 291 | /// the value of the induction variable from before the increment. | |||
| 292 | /// | |||
| 293 | /// Return true if the loop's flow is the desired one (i.e. it's | |||
| 294 | /// either been fixed, or no fixing was necessary). | |||
| 295 | /// Otherwise, return false. This can happen if the induction variable | |||
| 296 | /// couldn't be identified, or if the value in the latch's comparison | |||
| 297 | /// cannot be adjusted to reflect the post-bump value. | |||
| 298 | bool fixupInductionVariable(MachineLoop *L); | |||
| 299 | ||||
| 300 | /// Given a loop, if it does not have a preheader, create one. | |||
| 301 | /// Return the block that is the preheader. | |||
| 302 | MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); | |||
| 303 | }; | |||
| 304 | ||||
| 305 | char HexagonHardwareLoops::ID = 0; | |||
| 306 | #ifndef NDEBUG | |||
| 307 | int HexagonHardwareLoops::Counter = 0; | |||
| 308 | #endif | |||
| 309 | ||||
| 310 | /// Abstraction for a trip count of a loop. A smaller version | |||
| 311 | /// of the MachineOperand class without the concerns of changing the | |||
| 312 | /// operand representation. | |||
| 313 | class CountValue { | |||
| 314 | public: | |||
| 315 | enum CountValueType { | |||
| 316 | CV_Register, | |||
| 317 | CV_Immediate | |||
| 318 | }; | |||
| 319 | ||||
| 320 | private: | |||
| 321 | CountValueType Kind; | |||
| 322 | union Values { | |||
| 323 | Values() : R{Register(), 0} {} | |||
| 324 | Values(const Values&) = default; | |||
| 325 | struct { | |||
| 326 | Register Reg; | |||
| 327 | unsigned Sub; | |||
| 328 | } R; | |||
| 329 | unsigned ImmVal; | |||
| 330 | } Contents; | |||
| 331 | ||||
| 332 | public: | |||
| 333 | explicit CountValue(CountValueType t, Register v, unsigned u = 0) { | |||
| 334 | Kind = t; | |||
| 335 | if (Kind == CV_Register) { | |||
| 336 | Contents.R.Reg = v; | |||
| 337 | Contents.R.Sub = u; | |||
| 338 | } else { | |||
| 339 | Contents.ImmVal = v; | |||
| 340 | } | |||
| 341 | } | |||
| 342 | ||||
| 343 | bool isReg() const { return Kind == CV_Register; } | |||
| 344 | bool isImm() const { return Kind == CV_Immediate; } | |||
| 345 | ||||
| 346 | Register getReg() const { | |||
| 347 | assert(isReg() && "Wrong CountValue accessor")(static_cast <bool> (isReg() && "Wrong CountValue accessor" ) ? void (0) : __assert_fail ("isReg() && \"Wrong CountValue accessor\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 347, __extension__ __PRETTY_FUNCTION__)); | |||
| 348 | return Contents.R.Reg; | |||
| 349 | } | |||
| 350 | ||||
| 351 | unsigned getSubReg() const { | |||
| 352 | assert(isReg() && "Wrong CountValue accessor")(static_cast <bool> (isReg() && "Wrong CountValue accessor" ) ? void (0) : __assert_fail ("isReg() && \"Wrong CountValue accessor\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 352, __extension__ __PRETTY_FUNCTION__)); | |||
| 353 | return Contents.R.Sub; | |||
| 354 | } | |||
| 355 | ||||
| 356 | unsigned getImm() const { | |||
| 357 | assert(isImm() && "Wrong CountValue accessor")(static_cast <bool> (isImm() && "Wrong CountValue accessor" ) ? void (0) : __assert_fail ("isImm() && \"Wrong CountValue accessor\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 357, __extension__ __PRETTY_FUNCTION__)); | |||
| 358 | return Contents.ImmVal; | |||
| 359 | } | |||
| 360 | ||||
| 361 | void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { | |||
| 362 | if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); } | |||
| 363 | if (isImm()) { OS << Contents.ImmVal; } | |||
| 364 | } | |||
| 365 | }; | |||
| 366 | ||||
| 367 | } // end anonymous namespace | |||
| 368 | ||||
| 369 | INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",static void *initializeHexagonHardwareLoopsPassOnce(PassRegistry &Registry) { | |||
| 370 | "Hexagon Hardware Loops", false, false)static void *initializeHexagonHardwareLoopsPassOnce(PassRegistry &Registry) { | |||
| 371 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry); | |||
| 372 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry); | |||
| 373 | INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",PassInfo *PI = new PassInfo( "Hexagon Hardware Loops", "hwloops" , &HexagonHardwareLoops::ID, PassInfo::NormalCtor_t(callDefaultCtor <HexagonHardwareLoops>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeHexagonHardwareLoopsPassFlag ; void llvm::initializeHexagonHardwareLoopsPass(PassRegistry & Registry) { llvm::call_once(InitializeHexagonHardwareLoopsPassFlag , initializeHexagonHardwareLoopsPassOnce, std::ref(Registry)) ; } | |||
| 374 | "Hexagon Hardware Loops", false, false)PassInfo *PI = new PassInfo( "Hexagon Hardware Loops", "hwloops" , &HexagonHardwareLoops::ID, PassInfo::NormalCtor_t(callDefaultCtor <HexagonHardwareLoops>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeHexagonHardwareLoopsPassFlag ; void llvm::initializeHexagonHardwareLoopsPass(PassRegistry & Registry) { llvm::call_once(InitializeHexagonHardwareLoopsPassFlag , initializeHexagonHardwareLoopsPassOnce, std::ref(Registry)) ; } | |||
| 375 | ||||
| 376 | FunctionPass *llvm::createHexagonHardwareLoops() { | |||
| 377 | return new HexagonHardwareLoops(); | |||
| 378 | } | |||
| 379 | ||||
| 380 | bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { | |||
| 381 | LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "********* Hexagon Hardware Loops *********\n" ; } } while (false); | |||
| 382 | if (skipFunction(MF.getFunction())) | |||
| 383 | return false; | |||
| 384 | ||||
| 385 | bool Changed = false; | |||
| 386 | ||||
| 387 | MLI = &getAnalysis<MachineLoopInfo>(); | |||
| 388 | MRI = &MF.getRegInfo(); | |||
| 389 | MDT = &getAnalysis<MachineDominatorTree>(); | |||
| 390 | const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); | |||
| 391 | TII = HST.getInstrInfo(); | |||
| 392 | TRI = HST.getRegisterInfo(); | |||
| 393 | ||||
| 394 | for (auto &L : *MLI) | |||
| 395 | if (L->isOutermost()) { | |||
| 396 | bool L0Used = false; | |||
| 397 | bool L1Used = false; | |||
| 398 | Changed |= convertToHardwareLoop(L, L0Used, L1Used); | |||
| 399 | } | |||
| 400 | ||||
| 401 | return Changed; | |||
| 402 | } | |||
| 403 | ||||
| 404 | bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, | |||
| 405 | Register &Reg, | |||
| 406 | int64_t &IVBump, | |||
| 407 | MachineInstr *&IVOp | |||
| 408 | ) const { | |||
| 409 | MachineBasicBlock *Header = L->getHeader(); | |||
| 410 | MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | |||
| 411 | MachineBasicBlock *Latch = L->getLoopLatch(); | |||
| 412 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | |||
| 413 | if (!Header || !Preheader || !Latch || !ExitingBlock) | |||
| 414 | return false; | |||
| 415 | ||||
| 416 | // This pair represents an induction register together with an immediate | |||
| 417 | // value that will be added to it in each loop iteration. | |||
| 418 | using RegisterBump = std::pair<Register, int64_t>; | |||
| 419 | ||||
| 420 | // Mapping: R.next -> (R, bump), where R, R.next and bump are derived | |||
| 421 | // from an induction operation | |||
| 422 | // R.next = R + bump | |||
| 423 | // where bump is an immediate value. | |||
| 424 | using InductionMap = std::map<Register, RegisterBump>; | |||
| 425 | ||||
| 426 | InductionMap IndMap; | |||
| 427 | ||||
| 428 | using instr_iterator = MachineBasicBlock::instr_iterator; | |||
| 429 | ||||
| 430 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | |||
| 431 | I != E && I->isPHI(); ++I) { | |||
| 432 | MachineInstr *Phi = &*I; | |||
| 433 | ||||
| 434 | // Have a PHI instruction. Get the operand that corresponds to the | |||
| 435 | // latch block, and see if is a result of an addition of form "reg+imm", | |||
| 436 | // where the "reg" is defined by the PHI node we are looking at. | |||
| 437 | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { | |||
| 438 | if (Phi->getOperand(i+1).getMBB() != Latch) | |||
| 439 | continue; | |||
| 440 | ||||
| 441 | Register PhiOpReg = Phi->getOperand(i).getReg(); | |||
| 442 | MachineInstr *DI = MRI->getVRegDef(PhiOpReg); | |||
| 443 | ||||
| 444 | if (DI->getDesc().isAdd()) { | |||
| 445 | // If the register operand to the add is the PHI we're looking at, this | |||
| 446 | // meets the induction pattern. | |||
| 447 | Register IndReg = DI->getOperand(1).getReg(); | |||
| 448 | MachineOperand &Opnd2 = DI->getOperand(2); | |||
| 449 | int64_t V; | |||
| 450 | if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { | |||
| 451 | Register UpdReg = DI->getOperand(0).getReg(); | |||
| 452 | IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); | |||
| 453 | } | |||
| 454 | } | |||
| 455 | } // for (i) | |||
| 456 | } // for (instr) | |||
| 457 | ||||
| 458 | SmallVector<MachineOperand,2> Cond; | |||
| 459 | MachineBasicBlock *TB = nullptr, *FB = nullptr; | |||
| 460 | bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | |||
| 461 | if (NotAnalyzed) | |||
| 462 | return false; | |||
| 463 | ||||
| 464 | Register PredR; | |||
| 465 | unsigned PredPos, PredRegFlags; | |||
| 466 | if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) | |||
| 467 | return false; | |||
| 468 | ||||
| 469 | MachineInstr *PredI = MRI->getVRegDef(PredR); | |||
| 470 | if (!PredI->isCompare()) | |||
| 471 | return false; | |||
| 472 | ||||
| 473 | Register CmpReg1, CmpReg2; | |||
| 474 | int64_t CmpImm = 0, CmpMask = 0; | |||
| 475 | bool CmpAnalyzed = | |||
| 476 | TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); | |||
| 477 | // Fail if the compare was not analyzed, or it's not comparing a register | |||
| 478 | // with an immediate value. Not checking the mask here, since we handle | |||
| 479 | // the individual compare opcodes (including A4_cmpb*) later on. | |||
| 480 | if (!CmpAnalyzed) | |||
| 481 | return false; | |||
| 482 | ||||
| 483 | // Exactly one of the input registers to the comparison should be among | |||
| 484 | // the induction registers. | |||
| 485 | InductionMap::iterator IndMapEnd = IndMap.end(); | |||
| 486 | InductionMap::iterator F = IndMapEnd; | |||
| 487 | if (CmpReg1 != 0) { | |||
| 488 | InductionMap::iterator F1 = IndMap.find(CmpReg1); | |||
| 489 | if (F1 != IndMapEnd) | |||
| 490 | F = F1; | |||
| 491 | } | |||
| 492 | if (CmpReg2 != 0) { | |||
| 493 | InductionMap::iterator F2 = IndMap.find(CmpReg2); | |||
| 494 | if (F2 != IndMapEnd) { | |||
| 495 | if (F != IndMapEnd) | |||
| 496 | return false; | |||
| 497 | F = F2; | |||
| 498 | } | |||
| 499 | } | |||
| 500 | if (F == IndMapEnd) | |||
| 501 | return false; | |||
| 502 | ||||
| 503 | Reg = F->second.first; | |||
| 504 | IVBump = F->second.second; | |||
| 505 | IVOp = MRI->getVRegDef(F->first); | |||
| 506 | return true; | |||
| 507 | } | |||
| 508 | ||||
| 509 | // Return the comparison kind for the specified opcode. | |||
| 510 | HexagonHardwareLoops::Comparison::Kind | |||
| 511 | HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, | |||
| 512 | MachineOperand *InitialValue, | |||
| 513 | const MachineOperand *EndValue, | |||
| 514 | int64_t IVBump) const { | |||
| 515 | Comparison::Kind Cmp = (Comparison::Kind)0; | |||
| 516 | switch (CondOpc) { | |||
| 517 | case Hexagon::C2_cmpeq: | |||
| 518 | case Hexagon::C2_cmpeqi: | |||
| 519 | case Hexagon::C2_cmpeqp: | |||
| 520 | Cmp = Comparison::EQ; | |||
| 521 | break; | |||
| 522 | case Hexagon::C4_cmpneq: | |||
| 523 | case Hexagon::C4_cmpneqi: | |||
| 524 | Cmp = Comparison::NE; | |||
| 525 | break; | |||
| 526 | case Hexagon::C2_cmplt: | |||
| 527 | Cmp = Comparison::LTs; | |||
| 528 | break; | |||
| 529 | case Hexagon::C2_cmpltu: | |||
| 530 | Cmp = Comparison::LTu; | |||
| 531 | break; | |||
| 532 | case Hexagon::C4_cmplte: | |||
| 533 | case Hexagon::C4_cmpltei: | |||
| 534 | Cmp = Comparison::LEs; | |||
| 535 | break; | |||
| 536 | case Hexagon::C4_cmplteu: | |||
| 537 | case Hexagon::C4_cmplteui: | |||
| 538 | Cmp = Comparison::LEu; | |||
| 539 | break; | |||
| 540 | case Hexagon::C2_cmpgt: | |||
| 541 | case Hexagon::C2_cmpgti: | |||
| 542 | case Hexagon::C2_cmpgtp: | |||
| 543 | Cmp = Comparison::GTs; | |||
| 544 | break; | |||
| 545 | case Hexagon::C2_cmpgtu: | |||
| 546 | case Hexagon::C2_cmpgtui: | |||
| 547 | case Hexagon::C2_cmpgtup: | |||
| 548 | Cmp = Comparison::GTu; | |||
| 549 | break; | |||
| 550 | case Hexagon::C2_cmpgei: | |||
| 551 | Cmp = Comparison::GEs; | |||
| 552 | break; | |||
| 553 | case Hexagon::C2_cmpgeui: | |||
| 554 | Cmp = Comparison::GEs; | |||
| 555 | break; | |||
| 556 | default: | |||
| 557 | return (Comparison::Kind)0; | |||
| 558 | } | |||
| 559 | return Cmp; | |||
| 560 | } | |||
| 561 | ||||
| 562 | /// Analyze the statements in a loop to determine if the loop has | |||
| 563 | /// a computable trip count and, if so, return a value that represents | |||
| 564 | /// the trip count expression. | |||
| 565 | /// | |||
| 566 | /// This function iterates over the phi nodes in the loop to check for | |||
| 567 | /// induction variable patterns that are used in the calculation for | |||
| 568 | /// the number of time the loop is executed. | |||
| 569 | CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, | |||
| 570 | SmallVectorImpl<MachineInstr *> &OldInsts) { | |||
| 571 | MachineBasicBlock *TopMBB = L->getTopBlock(); | |||
| 572 | MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); | |||
| 573 | assert(PI != TopMBB->pred_end() &&(static_cast <bool> (PI != TopMBB->pred_end() && "Loop must have more than one incoming edge!") ? void (0) : __assert_fail ("PI != TopMBB->pred_end() && \"Loop must have more than one incoming edge!\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 574, __extension__ __PRETTY_FUNCTION__)) | |||
| 574 | "Loop must have more than one incoming edge!")(static_cast <bool> (PI != TopMBB->pred_end() && "Loop must have more than one incoming edge!") ? void (0) : __assert_fail ("PI != TopMBB->pred_end() && \"Loop must have more than one incoming edge!\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 574, __extension__ __PRETTY_FUNCTION__)); | |||
| 575 | MachineBasicBlock *Backedge = *PI++; | |||
| 576 | if (PI == TopMBB->pred_end()) // dead loop? | |||
| 577 | return nullptr; | |||
| 578 | MachineBasicBlock *Incoming = *PI++; | |||
| 579 | if (PI != TopMBB->pred_end()) // multiple backedges? | |||
| 580 | return nullptr; | |||
| 581 | ||||
| 582 | // Make sure there is one incoming and one backedge and determine which | |||
| 583 | // is which. | |||
| 584 | if (L->contains(Incoming)) { | |||
| 585 | if (L->contains(Backedge)) | |||
| 586 | return nullptr; | |||
| 587 | std::swap(Incoming, Backedge); | |||
| 588 | } else if (!L->contains(Backedge)) | |||
| 589 | return nullptr; | |||
| 590 | ||||
| 591 | // Look for the cmp instruction to determine if we can get a useful trip | |||
| 592 | // count. The trip count can be either a register or an immediate. The | |||
| 593 | // location of the value depends upon the type (reg or imm). | |||
| 594 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | |||
| 595 | if (!ExitingBlock) | |||
| 596 | return nullptr; | |||
| 597 | ||||
| 598 | Register IVReg = 0; | |||
| 599 | int64_t IVBump = 0; | |||
| 600 | MachineInstr *IVOp; | |||
| 601 | bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); | |||
| 602 | if (!FoundIV) | |||
| 603 | return nullptr; | |||
| 604 | ||||
| 605 | MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | |||
| 606 | ||||
| 607 | MachineOperand *InitialValue = nullptr; | |||
| 608 | MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); | |||
| 609 | MachineBasicBlock *Latch = L->getLoopLatch(); | |||
| 610 | for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { | |||
| 611 | MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); | |||
| 612 | if (MBB == Preheader) | |||
| 613 | InitialValue = &IV_Phi->getOperand(i); | |||
| 614 | else if (MBB == Latch) | |||
| 615 | IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. | |||
| 616 | } | |||
| 617 | if (!InitialValue) | |||
| 618 | return nullptr; | |||
| 619 | ||||
| 620 | SmallVector<MachineOperand,2> Cond; | |||
| 621 | MachineBasicBlock *TB = nullptr, *FB = nullptr; | |||
| 622 | bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | |||
| 623 | if (NotAnalyzed) | |||
| 624 | return nullptr; | |||
| 625 | ||||
| 626 | MachineBasicBlock *Header = L->getHeader(); | |||
| 627 | // TB must be non-null. If FB is also non-null, one of them must be | |||
| 628 | // the header. Otherwise, branch to TB could be exiting the loop, and | |||
| 629 | // the fall through can go to the header. | |||
| 630 | assert (TB && "Exit block without a branch?")(static_cast <bool> (TB && "Exit block without a branch?" ) ? void (0) : __assert_fail ("TB && \"Exit block without a branch?\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 630, __extension__ __PRETTY_FUNCTION__)); | |||
| 631 | if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { | |||
| 632 | MachineBasicBlock *LTB = nullptr, *LFB = nullptr; | |||
| 633 | SmallVector<MachineOperand,2> LCond; | |||
| 634 | bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); | |||
| 635 | if (NotAnalyzed) | |||
| 636 | return nullptr; | |||
| 637 | if (TB == Latch) | |||
| 638 | TB = (LTB == Header) ? LTB : LFB; | |||
| 639 | else | |||
| 640 | FB = (LTB == Header) ? LTB: LFB; | |||
| 641 | } | |||
| 642 | assert ((!FB || TB == Header || FB == Header) && "Branches not to header?")(static_cast <bool> ((!FB || TB == Header || FB == Header ) && "Branches not to header?") ? void (0) : __assert_fail ("(!FB || TB == Header || FB == Header) && \"Branches not to header?\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 642, __extension__ __PRETTY_FUNCTION__)); | |||
| 643 | if (!TB || (FB && TB != Header && FB != Header)) | |||
| 644 | return nullptr; | |||
| 645 | ||||
| 646 | // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch | |||
| 647 | // to put imm(0), followed by P in the vector Cond. | |||
| 648 | // If TB is not the header, it means that the "not-taken" path must lead | |||
| 649 | // to the header. | |||
| 650 | bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); | |||
| 651 | Register PredReg; | |||
| 652 | unsigned PredPos, PredRegFlags; | |||
| 653 | if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) | |||
| 654 | return nullptr; | |||
| 655 | MachineInstr *CondI = MRI->getVRegDef(PredReg); | |||
| 656 | unsigned CondOpc = CondI->getOpcode(); | |||
| 657 | ||||
| 658 | Register CmpReg1, CmpReg2; | |||
| 659 | int64_t Mask = 0, ImmValue = 0; | |||
| 660 | bool AnalyzedCmp = | |||
| 661 | TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); | |||
| 662 | if (!AnalyzedCmp) | |||
| 663 | return nullptr; | |||
| 664 | ||||
| 665 | // The comparison operator type determines how we compute the loop | |||
| 666 | // trip count. | |||
| 667 | OldInsts.push_back(CondI); | |||
| 668 | OldInsts.push_back(IVOp); | |||
| 669 | ||||
| 670 | // Sadly, the following code gets information based on the position | |||
| 671 | // of the operands in the compare instruction. This has to be done | |||
| 672 | // this way, because the comparisons check for a specific relationship | |||
| 673 | // between the operands (e.g. is-less-than), rather than to find out | |||
| 674 | // what relationship the operands are in (as on PPC). | |||
| 675 | Comparison::Kind Cmp; | |||
| 676 | bool isSwapped = false; | |||
| 677 | const MachineOperand &Op1 = CondI->getOperand(1); | |||
| 678 | const MachineOperand &Op2 = CondI->getOperand(2); | |||
| 679 | const MachineOperand *EndValue = nullptr; | |||
| 680 | ||||
| 681 | if (Op1.isReg()) { | |||
| 682 | if (Op2.isImm() || Op1.getReg() == IVReg) | |||
| 683 | EndValue = &Op2; | |||
| 684 | else { | |||
| 685 | EndValue = &Op1; | |||
| 686 | isSwapped = true; | |||
| 687 | } | |||
| 688 | } | |||
| 689 | ||||
| 690 | if (!EndValue) | |||
| 691 | return nullptr; | |||
| 692 | ||||
| 693 | Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); | |||
| 694 | if (!Cmp) | |||
| 695 | return nullptr; | |||
| 696 | if (Negated) | |||
| 697 | Cmp = Comparison::getNegatedComparison(Cmp); | |||
| 698 | if (isSwapped) | |||
| 699 | Cmp = Comparison::getSwappedComparison(Cmp); | |||
| 700 | ||||
| 701 | if (InitialValue->isReg()) { | |||
| 702 | Register R = InitialValue->getReg(); | |||
| 703 | MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); | |||
| 704 | if (!MDT->properlyDominates(DefBB, Header)) { | |||
| 705 | int64_t V; | |||
| 706 | if (!checkForImmediate(*InitialValue, V)) | |||
| 707 | return nullptr; | |||
| 708 | } | |||
| 709 | OldInsts.push_back(MRI->getVRegDef(R)); | |||
| 710 | } | |||
| 711 | if (EndValue->isReg()) { | |||
| 712 | Register R = EndValue->getReg(); | |||
| 713 | MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); | |||
| 714 | if (!MDT->properlyDominates(DefBB, Header)) { | |||
| 715 | int64_t V; | |||
| 716 | if (!checkForImmediate(*EndValue, V)) | |||
| 717 | return nullptr; | |||
| 718 | } | |||
| 719 | OldInsts.push_back(MRI->getVRegDef(R)); | |||
| 720 | } | |||
| 721 | ||||
| 722 | return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); | |||
| 723 | } | |||
| 724 | ||||
| 725 | /// Helper function that returns the expression that represents the | |||
| 726 | /// number of times a loop iterates. The function takes the operands that | |||
| 727 | /// represent the loop start value, loop end value, and induction value. | |||
| 728 | /// Based upon these operands, the function attempts to compute the trip count. | |||
| 729 | CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, | |||
| 730 | const MachineOperand *Start, | |||
| 731 | const MachineOperand *End, | |||
| 732 | Register IVReg, | |||
| 733 | int64_t IVBump, | |||
| 734 | Comparison::Kind Cmp) const { | |||
| 735 | // Cannot handle comparison EQ, i.e. while (A == B). | |||
| 736 | if (Cmp == Comparison::EQ) | |||
| ||||
| 737 | return nullptr; | |||
| 738 | ||||
| 739 | // Check if either the start or end values are an assignment of an immediate. | |||
| 740 | // If so, use the immediate value rather than the register. | |||
| 741 | if (Start->isReg()) { | |||
| 742 | const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); | |||
| 743 | if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || | |||
| 744 | StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) | |||
| 745 | Start = &StartValInstr->getOperand(1); | |||
| 746 | } | |||
| 747 | if (End->isReg()) { | |||
| 748 | const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); | |||
| 749 | if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || | |||
| 750 | EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) | |||
| 751 | End = &EndValInstr->getOperand(1); | |||
| 752 | } | |||
| 753 | ||||
| 754 | if (!Start->isReg() && !Start->isImm()) | |||
| 755 | return nullptr; | |||
| 756 | if (!End->isReg() && !End->isImm()) | |||
| 757 | return nullptr; | |||
| 758 | ||||
| 759 | bool CmpLess = Cmp & Comparison::L; | |||
| 760 | bool CmpGreater = Cmp & Comparison::G; | |||
| 761 | bool CmpHasEqual = Cmp & Comparison::EQ; | |||
| 762 | ||||
| 763 | // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. | |||
| 764 | if (CmpLess && IVBump < 0) | |||
| 765 | // Loop going while iv is "less" with the iv value going down. Must wrap. | |||
| 766 | return nullptr; | |||
| 767 | ||||
| 768 | if (CmpGreater && IVBump > 0) | |||
| 769 | // Loop going while iv is "greater" with the iv value going up. Must wrap. | |||
| 770 | return nullptr; | |||
| 771 | ||||
| 772 | // Phis that may feed into the loop. | |||
| 773 | LoopFeederMap LoopFeederPhi; | |||
| 774 | ||||
| 775 | // Check if the initial value may be zero and can be decremented in the first | |||
| 776 | // iteration. If the value is zero, the endloop instruction will not decrement | |||
| 777 | // the loop counter, so we shouldn't generate a hardware loop in this case. | |||
| 778 | if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, | |||
| 779 | LoopFeederPhi)) | |||
| 780 | return nullptr; | |||
| 781 | ||||
| 782 | if (Start->isImm() && End->isImm()) { | |||
| 783 | // Both, start and end are immediates. | |||
| 784 | int64_t StartV = Start->getImm(); | |||
| 785 | int64_t EndV = End->getImm(); | |||
| 786 | int64_t Dist = EndV - StartV; | |||
| 787 | if (Dist == 0) | |||
| 788 | return nullptr; | |||
| 789 | ||||
| 790 | bool Exact = (Dist % IVBump) == 0; | |||
| ||||
| 791 | ||||
| 792 | if (Cmp == Comparison::NE) { | |||
| 793 | if (!Exact) | |||
| 794 | return nullptr; | |||
| 795 | if ((Dist < 0) ^ (IVBump < 0)) | |||
| 796 | return nullptr; | |||
| 797 | } | |||
| 798 | ||||
| 799 | // For comparisons that include the final value (i.e. include equality | |||
| 800 | // with the final value), we need to increase the distance by 1. | |||
| 801 | if (CmpHasEqual) | |||
| 802 | Dist = Dist > 0 ? Dist+1 : Dist-1; | |||
| 803 | ||||
| 804 | // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, | |||
| 805 | // CmpGreater should imply Dist < 0. These conditions could actually | |||
| 806 | // fail, for example, in unreachable code (which may still appear to be | |||
| 807 | // reachable in the CFG). | |||
| 808 | if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) | |||
| 809 | return nullptr; | |||
| 810 | ||||
| 811 | // "Normalized" distance, i.e. with the bump set to +-1. | |||
| 812 | int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump | |||
| 813 | : (-Dist + (-IVBump - 1)) / (-IVBump); | |||
| 814 | assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.")(static_cast <bool> (Dist1 > 0 && "Fishy thing. Both operands have the same sign." ) ? void (0) : __assert_fail ("Dist1 > 0 && \"Fishy thing. Both operands have the same sign.\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 814, __extension__ __PRETTY_FUNCTION__)); | |||
| 815 | ||||
| 816 | uint64_t Count = Dist1; | |||
| 817 | ||||
| 818 | if (Count > 0xFFFFFFFFULL) | |||
| 819 | return nullptr; | |||
| 820 | ||||
| 821 | return new CountValue(CountValue::CV_Immediate, Count); | |||
| 822 | } | |||
| 823 | ||||
| 824 | // A general case: Start and End are some values, but the actual | |||
| 825 | // iteration count may not be available. If it is not, insert | |||
| 826 | // a computation of it into the preheader. | |||
| 827 | ||||
| 828 | // If the induction variable bump is not a power of 2, quit. | |||
| 829 | // Othwerise we'd need a general integer division. | |||
| 830 | if (!isPowerOf2_64(std::abs(IVBump))) | |||
| 831 | return nullptr; | |||
| 832 | ||||
| 833 | MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); | |||
| 834 | assert (PH && "Should have a preheader by now")(static_cast <bool> (PH && "Should have a preheader by now" ) ? void (0) : __assert_fail ("PH && \"Should have a preheader by now\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 834, __extension__ __PRETTY_FUNCTION__)); | |||
| 835 | MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); | |||
| 836 | DebugLoc DL; | |||
| 837 | if (InsertPos != PH->end()) | |||
| 838 | DL = InsertPos->getDebugLoc(); | |||
| 839 | ||||
| 840 | // If Start is an immediate and End is a register, the trip count | |||
| 841 | // will be "reg - imm". Hexagon's "subtract immediate" instruction | |||
| 842 | // is actually "reg + -imm". | |||
| 843 | ||||
| 844 | // If the loop IV is going downwards, i.e. if the bump is negative, | |||
| 845 | // then the iteration count (computed as End-Start) will need to be | |||
| 846 | // negated. To avoid the negation, just swap Start and End. | |||
| 847 | if (IVBump < 0) { | |||
| 848 | std::swap(Start, End); | |||
| 849 | IVBump = -IVBump; | |||
| 850 | } | |||
| 851 | // Cmp may now have a wrong direction, e.g. LEs may now be GEs. | |||
| 852 | // Signedness, and "including equality" are preserved. | |||
| 853 | ||||
| 854 | bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) | |||
| 855 | bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) | |||
| 856 | ||||
| 857 | int64_t StartV = 0, EndV = 0; | |||
| 858 | if (Start->isImm()) | |||
| 859 | StartV = Start->getImm(); | |||
| 860 | if (End->isImm()) | |||
| 861 | EndV = End->getImm(); | |||
| 862 | ||||
| 863 | int64_t AdjV = 0; | |||
| 864 | // To compute the iteration count, we would need this computation: | |||
| 865 | // Count = (End - Start + (IVBump-1)) / IVBump | |||
| 866 | // or, when CmpHasEqual: | |||
| 867 | // Count = (End - Start + (IVBump-1)+1) / IVBump | |||
| 868 | // The "IVBump-1" part is the adjustment (AdjV). We can avoid | |||
| 869 | // generating an instruction specifically to add it if we can adjust | |||
| 870 | // the immediate values for Start or End. | |||
| 871 | ||||
| 872 | if (CmpHasEqual) { | |||
| 873 | // Need to add 1 to the total iteration count. | |||
| 874 | if (Start->isImm()) | |||
| 875 | StartV--; | |||
| 876 | else if (End->isImm()) | |||
| 877 | EndV++; | |||
| 878 | else | |||
| 879 | AdjV += 1; | |||
| 880 | } | |||
| 881 | ||||
| 882 | if (Cmp != Comparison::NE) { | |||
| 883 | if (Start->isImm()) | |||
| 884 | StartV -= (IVBump-1); | |||
| 885 | else if (End->isImm()) | |||
| 886 | EndV += (IVBump-1); | |||
| 887 | else | |||
| 888 | AdjV += (IVBump-1); | |||
| 889 | } | |||
| 890 | ||||
| 891 | Register R = 0; | |||
| 892 | unsigned SR = 0; | |||
| 893 | if (Start->isReg()) { | |||
| 894 | R = Start->getReg(); | |||
| 895 | SR = Start->getSubReg(); | |||
| 896 | } else { | |||
| 897 | R = End->getReg(); | |||
| 898 | SR = End->getSubReg(); | |||
| 899 | } | |||
| 900 | const TargetRegisterClass *RC = MRI->getRegClass(R); | |||
| 901 | // Hardware loops cannot handle 64-bit registers. If it's a double | |||
| 902 | // register, it has to have a subregister. | |||
| 903 | if (!SR && RC == &Hexagon::DoubleRegsRegClass) | |||
| 904 | return nullptr; | |||
| 905 | const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; | |||
| 906 | ||||
| 907 | // Compute DistR (register with the distance between Start and End). | |||
| 908 | Register DistR; | |||
| 909 | unsigned DistSR; | |||
| 910 | ||||
| 911 | // Avoid special case, where the start value is an imm(0). | |||
| 912 | if (Start->isImm() && StartV == 0) { | |||
| 913 | DistR = End->getReg(); | |||
| 914 | DistSR = End->getSubReg(); | |||
| 915 | } else { | |||
| 916 | const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : | |||
| 917 | (RegToImm ? TII->get(Hexagon::A2_subri) : | |||
| 918 | TII->get(Hexagon::A2_addi)); | |||
| 919 | if (RegToReg || RegToImm) { | |||
| 920 | Register SubR = MRI->createVirtualRegister(IntRC); | |||
| 921 | MachineInstrBuilder SubIB = | |||
| 922 | BuildMI(*PH, InsertPos, DL, SubD, SubR); | |||
| 923 | ||||
| 924 | if (RegToReg) | |||
| 925 | SubIB.addReg(End->getReg(), 0, End->getSubReg()) | |||
| 926 | .addReg(Start->getReg(), 0, Start->getSubReg()); | |||
| 927 | else | |||
| 928 | SubIB.addImm(EndV) | |||
| 929 | .addReg(Start->getReg(), 0, Start->getSubReg()); | |||
| 930 | DistR = SubR; | |||
| 931 | } else { | |||
| 932 | // If the loop has been unrolled, we should use the original loop count | |||
| 933 | // instead of recalculating the value. This will avoid additional | |||
| 934 | // 'Add' instruction. | |||
| 935 | const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); | |||
| 936 | if (EndValInstr->getOpcode() == Hexagon::A2_addi && | |||
| 937 | EndValInstr->getOperand(1).getSubReg() == 0 && | |||
| 938 | EndValInstr->getOperand(2).getImm() == StartV) { | |||
| 939 | DistR = EndValInstr->getOperand(1).getReg(); | |||
| 940 | } else { | |||
| 941 | Register SubR = MRI->createVirtualRegister(IntRC); | |||
| 942 | MachineInstrBuilder SubIB = | |||
| 943 | BuildMI(*PH, InsertPos, DL, SubD, SubR); | |||
| 944 | SubIB.addReg(End->getReg(), 0, End->getSubReg()) | |||
| 945 | .addImm(-StartV); | |||
| 946 | DistR = SubR; | |||
| 947 | } | |||
| 948 | } | |||
| 949 | DistSR = 0; | |||
| 950 | } | |||
| 951 | ||||
| 952 | // From DistR, compute AdjR (register with the adjusted distance). | |||
| 953 | Register AdjR; | |||
| 954 | unsigned AdjSR; | |||
| 955 | ||||
| 956 | if (AdjV == 0) { | |||
| 957 | AdjR = DistR; | |||
| 958 | AdjSR = DistSR; | |||
| 959 | } else { | |||
| 960 | // Generate CountR = ADD DistR, AdjVal | |||
| 961 | Register AddR = MRI->createVirtualRegister(IntRC); | |||
| 962 | MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); | |||
| 963 | BuildMI(*PH, InsertPos, DL, AddD, AddR) | |||
| 964 | .addReg(DistR, 0, DistSR) | |||
| 965 | .addImm(AdjV); | |||
| 966 | ||||
| 967 | AdjR = AddR; | |||
| 968 | AdjSR = 0; | |||
| 969 | } | |||
| 970 | ||||
| 971 | // From AdjR, compute CountR (register with the final count). | |||
| 972 | Register CountR; | |||
| 973 | unsigned CountSR; | |||
| 974 | ||||
| 975 | if (IVBump == 1) { | |||
| 976 | CountR = AdjR; | |||
| 977 | CountSR = AdjSR; | |||
| 978 | } else { | |||
| 979 | // The IV bump is a power of two. Log_2(IV bump) is the shift amount. | |||
| 980 | unsigned Shift = Log2_32(IVBump); | |||
| 981 | ||||
| 982 | // Generate NormR = LSR DistR, Shift. | |||
| 983 | Register LsrR = MRI->createVirtualRegister(IntRC); | |||
| 984 | const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); | |||
| 985 | BuildMI(*PH, InsertPos, DL, LsrD, LsrR) | |||
| 986 | .addReg(AdjR, 0, AdjSR) | |||
| 987 | .addImm(Shift); | |||
| 988 | ||||
| 989 | CountR = LsrR; | |||
| 990 | CountSR = 0; | |||
| 991 | } | |||
| 992 | ||||
| 993 | return new CountValue(CountValue::CV_Register, CountR, CountSR); | |||
| 994 | } | |||
| 995 | ||||
| 996 | /// Return true if the operation is invalid within hardware loop. | |||
| 997 | bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, | |||
| 998 | bool IsInnerHWLoop) const { | |||
| 999 | // Call is not allowed because the callee may use a hardware loop except for | |||
| 1000 | // the case when the call never returns. | |||
| 1001 | if (MI->getDesc().isCall()) | |||
| 1002 | return !TII->doesNotReturn(*MI); | |||
| 1003 | ||||
| 1004 | // Check if the instruction defines a hardware loop register. | |||
| 1005 | using namespace Hexagon; | |||
| 1006 | ||||
| 1007 | static const Register Regs01[] = { LC0, SA0, LC1, SA1 }; | |||
| 1008 | static const Register Regs1[] = { LC1, SA1 }; | |||
| 1009 | auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01, std::size(Regs01)) | |||
| 1010 | : ArrayRef(Regs1, std::size(Regs1)); | |||
| 1011 | for (Register R : CheckRegs) | |||
| 1012 | if (MI->modifiesRegister(R, TRI)) | |||
| 1013 | return true; | |||
| 1014 | ||||
| 1015 | return false; | |||
| 1016 | } | |||
| 1017 | ||||
| 1018 | /// Return true if the loop contains an instruction that inhibits | |||
| 1019 | /// the use of the hardware loop instruction. | |||
| 1020 | bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, | |||
| 1021 | bool IsInnerHWLoop) const { | |||
| 1022 | LLVM_DEBUG(dbgs() << "\nhw_loop head, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference (**L->block_begin()); } } while (false) | |||
| 1023 | << printMBBReference(**L->block_begin()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference (**L->block_begin()); } } while (false); | |||
| 1024 | for (MachineBasicBlock *MBB : L->getBlocks()) { | |||
| 1025 | for (const MachineInstr &MI : *MBB) { | |||
| 1026 | if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) { | |||
| 1027 | LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\nCannot convert to hw_loop due to:" ; MI.dump();; } } while (false) | |||
| 1028 | MI.dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\nCannot convert to hw_loop due to:" ; MI.dump();; } } while (false); | |||
| 1029 | return true; | |||
| 1030 | } | |||
| 1031 | } | |||
| 1032 | } | |||
| 1033 | return false; | |||
| 1034 | } | |||
| 1035 | ||||
| 1036 | /// Returns true if the instruction is dead. This was essentially | |||
| 1037 | /// copied from DeadMachineInstructionElim::isDead, but with special cases | |||
| 1038 | /// for inline asm, physical registers and instructions with side effects | |||
| 1039 | /// removed. | |||
| 1040 | bool HexagonHardwareLoops::isDead(const MachineInstr *MI, | |||
| 1041 | SmallVectorImpl<MachineInstr *> &DeadPhis) const { | |||
| 1042 | // Examine each operand. | |||
| 1043 | for (const MachineOperand &MO : MI->operands()) { | |||
| 1044 | if (!MO.isReg() || !MO.isDef()) | |||
| 1045 | continue; | |||
| 1046 | ||||
| 1047 | Register Reg = MO.getReg(); | |||
| 1048 | if (MRI->use_nodbg_empty(Reg)) | |||
| 1049 | continue; | |||
| 1050 | ||||
| 1051 | using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; | |||
| 1052 | ||||
| 1053 | // This instruction has users, but if the only user is the phi node for the | |||
| 1054 | // parent block, and the only use of that phi node is this instruction, then | |||
| 1055 | // this instruction is dead: both it (and the phi node) can be removed. | |||
| 1056 | use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); | |||
| 1057 | use_nodbg_iterator End = MRI->use_nodbg_end(); | |||
| 1058 | if (std::next(I) != End || !I->getParent()->isPHI()) | |||
| 1059 | return false; | |||
| 1060 | ||||
| 1061 | MachineInstr *OnePhi = I->getParent(); | |||
| 1062 | for (const MachineOperand &OPO : OnePhi->operands()) { | |||
| 1063 | if (!OPO.isReg() || !OPO.isDef()) | |||
| 1064 | continue; | |||
| 1065 | ||||
| 1066 | Register OPReg = OPO.getReg(); | |||
| 1067 | use_nodbg_iterator nextJ; | |||
| 1068 | for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); | |||
| 1069 | J != End; J = nextJ) { | |||
| 1070 | nextJ = std::next(J); | |||
| 1071 | MachineOperand &Use = *J; | |||
| 1072 | MachineInstr *UseMI = Use.getParent(); | |||
| 1073 | ||||
| 1074 | // If the phi node has a user that is not MI, bail. | |||
| 1075 | if (MI != UseMI) | |||
| 1076 | return false; | |||
| 1077 | } | |||
| 1078 | } | |||
| 1079 | DeadPhis.push_back(OnePhi); | |||
| 1080 | } | |||
| 1081 | ||||
| 1082 | // If there are no defs with uses, the instruction is dead. | |||
| 1083 | return true; | |||
| 1084 | } | |||
| 1085 | ||||
| 1086 | void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { | |||
| 1087 | // This procedure was essentially copied from DeadMachineInstructionElim. | |||
| 1088 | ||||
| 1089 | SmallVector<MachineInstr*, 1> DeadPhis; | |||
| 1090 | if (isDead(MI, DeadPhis)) { | |||
| 1091 | LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "HW looping will remove: " << *MI; } } while (false); | |||
| 1092 | ||||
| 1093 | // It is possible that some DBG_VALUE instructions refer to this | |||
| 1094 | // instruction. Examine each def operand for such references; | |||
| 1095 | // if found, mark the DBG_VALUE as undef (but don't delete it). | |||
| 1096 | for (const MachineOperand &MO : MI->operands()) { | |||
| 1097 | if (!MO.isReg() || !MO.isDef()) | |||
| 1098 | continue; | |||
| 1099 | Register Reg = MO.getReg(); | |||
| 1100 | // We use make_early_inc_range here because setReg below invalidates the | |||
| 1101 | // iterator. | |||
| 1102 | for (MachineOperand &MO : | |||
| 1103 | llvm::make_early_inc_range(MRI->use_operands(Reg))) { | |||
| 1104 | MachineInstr *UseMI = MO.getParent(); | |||
| 1105 | if (UseMI == MI) | |||
| 1106 | continue; | |||
| 1107 | if (MO.isDebug()) | |||
| 1108 | MO.setReg(0U); | |||
| 1109 | } | |||
| 1110 | } | |||
| 1111 | ||||
| 1112 | MI->eraseFromParent(); | |||
| 1113 | for (unsigned i = 0; i < DeadPhis.size(); ++i) | |||
| 1114 | DeadPhis[i]->eraseFromParent(); | |||
| 1115 | } | |||
| 1116 | } | |||
| 1117 | ||||
| 1118 | /// Check if the loop is a candidate for converting to a hardware | |||
| 1119 | /// loop. If so, then perform the transformation. | |||
| 1120 | /// | |||
| 1121 | /// This function works on innermost loops first. A loop can be converted | |||
| 1122 | /// if it is a counting loop; either a register value or an immediate. | |||
| 1123 | /// | |||
| 1124 | /// The code makes several assumptions about the representation of the loop | |||
| 1125 | /// in llvm. | |||
| 1126 | bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, | |||
| 1127 | bool &RecL0used, | |||
| 1128 | bool &RecL1used) { | |||
| 1129 | // This is just to confirm basic correctness. | |||
| 1130 | assert(L->getHeader() && "Loop without a header?")(static_cast <bool> (L->getHeader() && "Loop without a header?" ) ? void (0) : __assert_fail ("L->getHeader() && \"Loop without a header?\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1130, __extension__ __PRETTY_FUNCTION__)); | |||
| 1131 | ||||
| 1132 | bool Changed = false; | |||
| 1133 | bool L0Used = false; | |||
| 1134 | bool L1Used = false; | |||
| 1135 | ||||
| 1136 | // Process nested loops first. | |||
| 1137 | for (MachineLoop *I : *L) { | |||
| 1138 | Changed |= convertToHardwareLoop(I, RecL0used, RecL1used); | |||
| 1139 | L0Used |= RecL0used; | |||
| 1140 | L1Used |= RecL1used; | |||
| 1141 | } | |||
| 1142 | ||||
| 1143 | // If a nested loop has been converted, then we can't convert this loop. | |||
| 1144 | if (Changed && L0Used && L1Used) | |||
| 1145 | return Changed; | |||
| 1146 | ||||
| 1147 | unsigned LOOP_i; | |||
| 1148 | unsigned LOOP_r; | |||
| 1149 | unsigned ENDLOOP; | |||
| 1150 | ||||
| 1151 | // Flag used to track loopN instruction: | |||
| 1152 | // 1 - Hardware loop is being generated for the inner most loop. | |||
| 1153 | // 0 - Hardware loop is being generated for the outer loop. | |||
| 1154 | unsigned IsInnerHWLoop = 1; | |||
| 1155 | ||||
| 1156 | if (L0Used) { | |||
| 1157 | LOOP_i = Hexagon::J2_loop1i; | |||
| 1158 | LOOP_r = Hexagon::J2_loop1r; | |||
| 1159 | ENDLOOP = Hexagon::ENDLOOP1; | |||
| 1160 | IsInnerHWLoop = 0; | |||
| 1161 | } else { | |||
| 1162 | LOOP_i = Hexagon::J2_loop0i; | |||
| 1163 | LOOP_r = Hexagon::J2_loop0r; | |||
| 1164 | ENDLOOP = Hexagon::ENDLOOP0; | |||
| 1165 | } | |||
| 1166 | ||||
| 1167 | #ifndef NDEBUG | |||
| 1168 | // Stop trying after reaching the limit (if any). | |||
| 1169 | int Limit = HWLoopLimit; | |||
| 1170 | if (Limit >= 0) { | |||
| 1171 | if (Counter >= HWLoopLimit) | |||
| 1172 | return false; | |||
| 1173 | Counter++; | |||
| 1174 | } | |||
| 1175 | #endif | |||
| 1176 | ||||
| 1177 | // Does the loop contain any invalid instructions? | |||
| 1178 | if (containsInvalidInstruction(L, IsInnerHWLoop)) | |||
| 1179 | return false; | |||
| 1180 | ||||
| 1181 | MachineBasicBlock *LastMBB = L->findLoopControlBlock(); | |||
| 1182 | // Don't generate hw loop if the loop has more than one exit. | |||
| 1183 | if (!LastMBB) | |||
| 1184 | return false; | |||
| 1185 | ||||
| 1186 | MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); | |||
| 1187 | if (LastI == LastMBB->end()) | |||
| 1188 | return false; | |||
| 1189 | ||||
| 1190 | // Is the induction variable bump feeding the latch condition? | |||
| 1191 | if (!fixupInductionVariable(L)) | |||
| 1192 | return false; | |||
| 1193 | ||||
| 1194 | // Ensure the loop has a preheader: the loop instruction will be | |||
| 1195 | // placed there. | |||
| 1196 | MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | |||
| 1197 | if (!Preheader) { | |||
| 1198 | Preheader = createPreheaderForLoop(L); | |||
| 1199 | if (!Preheader) | |||
| 1200 | return false; | |||
| 1201 | } | |||
| 1202 | ||||
| 1203 | MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); | |||
| 1204 | ||||
| 1205 | SmallVector<MachineInstr*, 2> OldInsts; | |||
| 1206 | // Are we able to determine the trip count for the loop? | |||
| 1207 | CountValue *TripCount = getLoopTripCount(L, OldInsts); | |||
| 1208 | if (!TripCount) | |||
| 1209 | return false; | |||
| 1210 | ||||
| 1211 | // Is the trip count available in the preheader? | |||
| 1212 | if (TripCount->isReg()) { | |||
| 1213 | // There will be a use of the register inserted into the preheader, | |||
| 1214 | // so make sure that the register is actually defined at that point. | |||
| 1215 | MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); | |||
| 1216 | MachineBasicBlock *BBDef = TCDef->getParent(); | |||
| 1217 | if (!MDT->dominates(BBDef, Preheader)) | |||
| 1218 | return false; | |||
| 1219 | } | |||
| 1220 | ||||
| 1221 | // Determine the loop start. | |||
| 1222 | MachineBasicBlock *TopBlock = L->getTopBlock(); | |||
| 1223 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | |||
| 1224 | MachineBasicBlock *LoopStart = nullptr; | |||
| 1225 | if (ExitingBlock != L->getLoopLatch()) { | |||
| 1226 | MachineBasicBlock *TB = nullptr, *FB = nullptr; | |||
| 1227 | SmallVector<MachineOperand, 2> Cond; | |||
| 1228 | ||||
| 1229 | if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) | |||
| 1230 | return false; | |||
| 1231 | ||||
| 1232 | if (L->contains(TB)) | |||
| 1233 | LoopStart = TB; | |||
| 1234 | else if (L->contains(FB)) | |||
| 1235 | LoopStart = FB; | |||
| 1236 | else | |||
| 1237 | return false; | |||
| 1238 | } | |||
| 1239 | else | |||
| 1240 | LoopStart = TopBlock; | |||
| 1241 | ||||
| 1242 | // Convert the loop to a hardware loop. | |||
| 1243 | LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "Change to hardware loop at "; L->dump(); } } while (false); | |||
| 1244 | DebugLoc DL; | |||
| 1245 | if (InsertPos != Preheader->end()) | |||
| 1246 | DL = InsertPos->getDebugLoc(); | |||
| 1247 | ||||
| 1248 | if (TripCount->isReg()) { | |||
| 1249 | // Create a copy of the loop count register. | |||
| 1250 | Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 1251 | BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) | |||
| 1252 | .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); | |||
| 1253 | // Add the Loop instruction to the beginning of the loop. | |||
| 1254 | BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) | |||
| 1255 | .addReg(CountReg); | |||
| 1256 | } else { | |||
| 1257 | assert(TripCount->isImm() && "Expecting immediate value for trip count")(static_cast <bool> (TripCount->isImm() && "Expecting immediate value for trip count" ) ? void (0) : __assert_fail ("TripCount->isImm() && \"Expecting immediate value for trip count\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1257, __extension__ __PRETTY_FUNCTION__)); | |||
| 1258 | // Add the Loop immediate instruction to the beginning of the loop, | |||
| 1259 | // if the immediate fits in the instructions. Otherwise, we need to | |||
| 1260 | // create a new virtual register. | |||
| 1261 | int64_t CountImm = TripCount->getImm(); | |||
| 1262 | if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { | |||
| 1263 | Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 1264 | BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) | |||
| 1265 | .addImm(CountImm); | |||
| 1266 | BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) | |||
| 1267 | .addMBB(LoopStart).addReg(CountReg); | |||
| 1268 | } else | |||
| 1269 | BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) | |||
| 1270 | .addMBB(LoopStart).addImm(CountImm); | |||
| 1271 | } | |||
| 1272 | ||||
| 1273 | // Make sure the loop start always has a reference in the CFG. | |||
| 1274 | LoopStart->setMachineBlockAddressTaken(); | |||
| 1275 | ||||
| 1276 | // Replace the loop branch with an endloop instruction. | |||
| 1277 | DebugLoc LastIDL = LastI->getDebugLoc(); | |||
| 1278 | BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); | |||
| 1279 | ||||
| 1280 | // The loop ends with either: | |||
| 1281 | // - a conditional branch followed by an unconditional branch, or | |||
| 1282 | // - a conditional branch to the loop start. | |||
| 1283 | if (LastI->getOpcode() == Hexagon::J2_jumpt || | |||
| 1284 | LastI->getOpcode() == Hexagon::J2_jumpf) { | |||
| 1285 | // Delete one and change/add an uncond. branch to out of the loop. | |||
| 1286 | MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); | |||
| 1287 | LastI = LastMBB->erase(LastI); | |||
| 1288 | if (!L->contains(BranchTarget)) { | |||
| 1289 | if (LastI != LastMBB->end()) | |||
| 1290 | LastI = LastMBB->erase(LastI); | |||
| 1291 | SmallVector<MachineOperand, 0> Cond; | |||
| 1292 | TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); | |||
| 1293 | } | |||
| 1294 | } else { | |||
| 1295 | // Conditional branch to loop start; just delete it. | |||
| 1296 | LastMBB->erase(LastI); | |||
| 1297 | } | |||
| 1298 | delete TripCount; | |||
| 1299 | ||||
| 1300 | // The induction operation and the comparison may now be | |||
| 1301 | // unneeded. If these are unneeded, then remove them. | |||
| 1302 | for (unsigned i = 0; i < OldInsts.size(); ++i) | |||
| 1303 | removeIfDead(OldInsts[i]); | |||
| 1304 | ||||
| 1305 | ++NumHWLoops; | |||
| 1306 | ||||
| 1307 | // Set RecL1used and RecL0used only after hardware loop has been | |||
| 1308 | // successfully generated. Doing it earlier can cause wrong loop instruction | |||
| 1309 | // to be used. | |||
| 1310 | if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. | |||
| 1311 | RecL1used = true; | |||
| 1312 | else | |||
| 1313 | RecL0used = true; | |||
| 1314 | ||||
| 1315 | return true; | |||
| 1316 | } | |||
| 1317 | ||||
| 1318 | bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, | |||
| 1319 | MachineInstr *CmpI) { | |||
| 1320 | assert (BumpI != CmpI && "Bump and compare in the same instruction?")(static_cast <bool> (BumpI != CmpI && "Bump and compare in the same instruction?" ) ? void (0) : __assert_fail ("BumpI != CmpI && \"Bump and compare in the same instruction?\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1320, __extension__ __PRETTY_FUNCTION__)); | |||
| 1321 | ||||
| 1322 | MachineBasicBlock *BB = BumpI->getParent(); | |||
| 1323 | if (CmpI->getParent() != BB) | |||
| 1324 | return false; | |||
| 1325 | ||||
| 1326 | using instr_iterator = MachineBasicBlock::instr_iterator; | |||
| 1327 | ||||
| 1328 | // Check if things are in order to begin with. | |||
| 1329 | for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) | |||
| 1330 | if (&*I == CmpI) | |||
| 1331 | return true; | |||
| 1332 | ||||
| 1333 | // Out of order. | |||
| 1334 | Register PredR = CmpI->getOperand(0).getReg(); | |||
| 1335 | bool FoundBump = false; | |||
| 1336 | instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); | |||
| 1337 | for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { | |||
| 1338 | MachineInstr *In = &*I; | |||
| 1339 | for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { | |||
| 1340 | MachineOperand &MO = In->getOperand(i); | |||
| 1341 | if (MO.isReg() && MO.isUse()) { | |||
| 1342 | if (MO.getReg() == PredR) // Found an intervening use of PredR. | |||
| 1343 | return false; | |||
| 1344 | } | |||
| 1345 | } | |||
| 1346 | ||||
| 1347 | if (In == BumpI) { | |||
| 1348 | BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); | |||
| 1349 | FoundBump = true; | |||
| 1350 | break; | |||
| 1351 | } | |||
| 1352 | } | |||
| 1353 | assert (FoundBump && "Cannot determine instruction order")(static_cast <bool> (FoundBump && "Cannot determine instruction order" ) ? void (0) : __assert_fail ("FoundBump && \"Cannot determine instruction order\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1353, __extension__ __PRETTY_FUNCTION__)); | |||
| 1354 | return FoundBump; | |||
| 1355 | } | |||
| 1356 | ||||
| 1357 | /// This function is required to break recursion. Visiting phis in a loop may | |||
| 1358 | /// result in recursion during compilation. We break the recursion by making | |||
| 1359 | /// sure that we visit a MachineOperand and its definition in a | |||
| 1360 | /// MachineInstruction only once. If we attempt to visit more than once, then | |||
| 1361 | /// there is recursion, and will return false. | |||
| 1362 | bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, | |||
| 1363 | MachineInstr *MI, | |||
| 1364 | const MachineOperand *MO, | |||
| 1365 | LoopFeederMap &LoopFeederPhi) const { | |||
| 1366 | if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { | |||
| 1367 | LLVM_DEBUG(dbgs() << "\nhw_loop head, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference (**L->block_begin()); } } while (false) | |||
| 1368 | << printMBBReference(**L->block_begin()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference (**L->block_begin()); } } while (false); | |||
| 1369 | // Ignore all BBs that form Loop. | |||
| 1370 | if (llvm::is_contained(L->getBlocks(), A)) | |||
| 1371 | return false; | |||
| 1372 | MachineInstr *Def = MRI->getVRegDef(MO->getReg()); | |||
| 1373 | LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); | |||
| 1374 | return true; | |||
| 1375 | } else | |||
| 1376 | // Already visited node. | |||
| 1377 | return false; | |||
| 1378 | } | |||
| 1379 | ||||
| 1380 | /// Return true if a Phi may generate a value that can underflow. | |||
| 1381 | /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. | |||
| 1382 | bool HexagonHardwareLoops::phiMayWrapOrUnderflow( | |||
| 1383 | MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, | |||
| 1384 | MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { | |||
| 1385 | assert(Phi->isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi->isPHI() && "Expecting a Phi." ) ? void (0) : __assert_fail ("Phi->isPHI() && \"Expecting a Phi.\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1385, __extension__ __PRETTY_FUNCTION__)); | |||
| 1386 | // Walk through each Phi, and its used operands. Make sure that | |||
| 1387 | // if there is recursion in Phi, we won't generate hardware loops. | |||
| 1388 | for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) | |||
| 1389 | if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) | |||
| 1390 | if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, | |||
| 1391 | Phi->getParent(), L, LoopFeederPhi)) | |||
| 1392 | return true; | |||
| 1393 | return false; | |||
| 1394 | } | |||
| 1395 | ||||
| 1396 | /// Return true if the induction variable can underflow in the first iteration. | |||
| 1397 | /// An example, is an initial unsigned value that is 0 and is decrement in the | |||
| 1398 | /// first itertion of a do-while loop. In this case, we cannot generate a | |||
| 1399 | /// hardware loop because the endloop instruction does not decrement the loop | |||
| 1400 | /// counter if it is <= 1. We only need to perform this analysis if the | |||
| 1401 | /// initial value is a register. | |||
| 1402 | /// | |||
| 1403 | /// This function assumes the initial value may underfow unless proven | |||
| 1404 | /// otherwise. If the type is signed, then we don't care because signed | |||
| 1405 | /// underflow is undefined. We attempt to prove the initial value is not | |||
| 1406 | /// zero by perfoming a crude analysis of the loop counter. This function | |||
| 1407 | /// checks if the initial value is used in any comparison prior to the loop | |||
| 1408 | /// and, if so, assumes the comparison is a range check. This is inexact, | |||
| 1409 | /// but will catch the simple cases. | |||
| 1410 | bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( | |||
| 1411 | const MachineOperand *InitVal, const MachineOperand *EndVal, | |||
| 1412 | MachineBasicBlock *MBB, MachineLoop *L, | |||
| 1413 | LoopFeederMap &LoopFeederPhi) const { | |||
| 1414 | // Only check register values since they are unknown. | |||
| 1415 | if (!InitVal->isReg()) | |||
| 1416 | return false; | |||
| 1417 | ||||
| 1418 | if (!EndVal->isImm()) | |||
| 1419 | return false; | |||
| 1420 | ||||
| 1421 | // A register value that is assigned an immediate is a known value, and it | |||
| 1422 | // won't underflow in the first iteration. | |||
| 1423 | int64_t Imm; | |||
| 1424 | if (checkForImmediate(*InitVal, Imm)) | |||
| 1425 | return (EndVal->getImm() == Imm); | |||
| 1426 | ||||
| 1427 | Register Reg = InitVal->getReg(); | |||
| 1428 | ||||
| 1429 | // We don't know the value of a physical register. | |||
| 1430 | if (!Reg.isVirtual()) | |||
| 1431 | return true; | |||
| 1432 | ||||
| 1433 | MachineInstr *Def = MRI->getVRegDef(Reg); | |||
| 1434 | if (!Def) | |||
| 1435 | return true; | |||
| 1436 | ||||
| 1437 | // If the initial value is a Phi or copy and the operands may not underflow, | |||
| 1438 | // then the definition cannot be underflow either. | |||
| 1439 | if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), | |||
| 1440 | L, LoopFeederPhi)) | |||
| 1441 | return false; | |||
| 1442 | if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), | |||
| 1443 | EndVal, Def->getParent(), | |||
| 1444 | L, LoopFeederPhi)) | |||
| 1445 | return false; | |||
| 1446 | ||||
| 1447 | // Iterate over the uses of the initial value. If the initial value is used | |||
| 1448 | // in a compare, then we assume this is a range check that ensures the loop | |||
| 1449 | // doesn't underflow. This is not an exact test and should be improved. | |||
| 1450 | for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), | |||
| 1451 | E = MRI->use_instr_nodbg_end(); I != E; ++I) { | |||
| 1452 | MachineInstr *MI = &*I; | |||
| 1453 | Register CmpReg1, CmpReg2; | |||
| 1454 | int64_t CmpMask = 0, CmpValue = 0; | |||
| 1455 | ||||
| 1456 | if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) | |||
| 1457 | continue; | |||
| 1458 | ||||
| 1459 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | |||
| 1460 | SmallVector<MachineOperand, 2> Cond; | |||
| 1461 | if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) | |||
| 1462 | continue; | |||
| 1463 | ||||
| 1464 | Comparison::Kind Cmp = | |||
| 1465 | getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); | |||
| 1466 | if (Cmp == 0) | |||
| 1467 | continue; | |||
| 1468 | if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) | |||
| 1469 | Cmp = Comparison::getNegatedComparison(Cmp); | |||
| 1470 | if (CmpReg2 != 0 && CmpReg2 == Reg) | |||
| 1471 | Cmp = Comparison::getSwappedComparison(Cmp); | |||
| 1472 | ||||
| 1473 | // Signed underflow is undefined. | |||
| 1474 | if (Comparison::isSigned(Cmp)) | |||
| 1475 | return false; | |||
| 1476 | ||||
| 1477 | // Check if there is a comparison of the initial value. If the initial value | |||
| 1478 | // is greater than or not equal to another value, then assume this is a | |||
| 1479 | // range check. | |||
| 1480 | if ((Cmp & Comparison::G) || Cmp == Comparison::NE) | |||
| 1481 | return false; | |||
| 1482 | } | |||
| 1483 | ||||
| 1484 | // OK - this is a hack that needs to be improved. We really need to analyze | |||
| 1485 | // the instructions performed on the initial value. This works on the simplest | |||
| 1486 | // cases only. | |||
| 1487 | if (!Def->isCopy() && !Def->isPHI()) | |||
| 1488 | return false; | |||
| 1489 | ||||
| 1490 | return true; | |||
| 1491 | } | |||
| 1492 | ||||
| 1493 | bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, | |||
| 1494 | int64_t &Val) const { | |||
| 1495 | if (MO.isImm()) { | |||
| 1496 | Val = MO.getImm(); | |||
| 1497 | return true; | |||
| 1498 | } | |||
| 1499 | if (!MO.isReg()) | |||
| 1500 | return false; | |||
| 1501 | ||||
| 1502 | // MO is a register. Check whether it is defined as an immediate value, | |||
| 1503 | // and if so, get the value of it in TV. That value will then need to be | |||
| 1504 | // processed to handle potential subregisters in MO. | |||
| 1505 | int64_t TV; | |||
| 1506 | ||||
| 1507 | Register R = MO.getReg(); | |||
| 1508 | if (!R.isVirtual()) | |||
| 1509 | return false; | |||
| 1510 | MachineInstr *DI = MRI->getVRegDef(R); | |||
| 1511 | unsigned DOpc = DI->getOpcode(); | |||
| 1512 | switch (DOpc) { | |||
| 1513 | case TargetOpcode::COPY: | |||
| 1514 | case Hexagon::A2_tfrsi: | |||
| 1515 | case Hexagon::A2_tfrpi: | |||
| 1516 | case Hexagon::CONST32: | |||
| 1517 | case Hexagon::CONST64: | |||
| 1518 | // Call recursively to avoid an extra check whether operand(1) is | |||
| 1519 | // indeed an immediate (it could be a global address, for example), | |||
| 1520 | // plus we can handle COPY at the same time. | |||
| 1521 | if (!checkForImmediate(DI->getOperand(1), TV)) | |||
| 1522 | return false; | |||
| 1523 | break; | |||
| 1524 | case Hexagon::A2_combineii: | |||
| 1525 | case Hexagon::A4_combineir: | |||
| 1526 | case Hexagon::A4_combineii: | |||
| 1527 | case Hexagon::A4_combineri: | |||
| 1528 | case Hexagon::A2_combinew: { | |||
| 1529 | const MachineOperand &S1 = DI->getOperand(1); | |||
| 1530 | const MachineOperand &S2 = DI->getOperand(2); | |||
| 1531 | int64_t V1, V2; | |||
| 1532 | if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) | |||
| 1533 | return false; | |||
| 1534 | TV = V2 | (static_cast<uint64_t>(V1) << 32); | |||
| 1535 | break; | |||
| 1536 | } | |||
| 1537 | case TargetOpcode::REG_SEQUENCE: { | |||
| 1538 | const MachineOperand &S1 = DI->getOperand(1); | |||
| 1539 | const MachineOperand &S3 = DI->getOperand(3); | |||
| 1540 | int64_t V1, V3; | |||
| 1541 | if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) | |||
| 1542 | return false; | |||
| 1543 | unsigned Sub2 = DI->getOperand(2).getImm(); | |||
| 1544 | unsigned Sub4 = DI->getOperand(4).getImm(); | |||
| 1545 | if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) | |||
| 1546 | TV = V1 | (V3 << 32); | |||
| 1547 | else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) | |||
| 1548 | TV = V3 | (V1 << 32); | |||
| 1549 | else | |||
| 1550 | llvm_unreachable("Unexpected form of REG_SEQUENCE")::llvm::llvm_unreachable_internal("Unexpected form of REG_SEQUENCE" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1550); | |||
| 1551 | break; | |||
| 1552 | } | |||
| 1553 | ||||
| 1554 | default: | |||
| 1555 | return false; | |||
| 1556 | } | |||
| 1557 | ||||
| 1558 | // By now, we should have successfully obtained the immediate value defining | |||
| 1559 | // the register referenced in MO. Handle a potential use of a subregister. | |||
| 1560 | switch (MO.getSubReg()) { | |||
| 1561 | case Hexagon::isub_lo: | |||
| 1562 | Val = TV & 0xFFFFFFFFULL; | |||
| 1563 | break; | |||
| 1564 | case Hexagon::isub_hi: | |||
| 1565 | Val = (TV >> 32) & 0xFFFFFFFFULL; | |||
| 1566 | break; | |||
| 1567 | default: | |||
| 1568 | Val = TV; | |||
| 1569 | break; | |||
| 1570 | } | |||
| 1571 | return true; | |||
| 1572 | } | |||
| 1573 | ||||
| 1574 | void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { | |||
| 1575 | if (MO.isImm()) { | |||
| 1576 | MO.setImm(Val); | |||
| 1577 | return; | |||
| 1578 | } | |||
| 1579 | ||||
| 1580 | assert(MO.isReg())(static_cast <bool> (MO.isReg()) ? void (0) : __assert_fail ("MO.isReg()", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp" , 1580, __extension__ __PRETTY_FUNCTION__)); | |||
| 1581 | Register R = MO.getReg(); | |||
| 1582 | MachineInstr *DI = MRI->getVRegDef(R); | |||
| 1583 | ||||
| 1584 | const TargetRegisterClass *RC = MRI->getRegClass(R); | |||
| 1585 | Register NewR = MRI->createVirtualRegister(RC); | |||
| 1586 | MachineBasicBlock &B = *DI->getParent(); | |||
| 1587 | DebugLoc DL = DI->getDebugLoc(); | |||
| 1588 | BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); | |||
| 1589 | MO.setReg(NewR); | |||
| 1590 | } | |||
| 1591 | ||||
| 1592 | bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { | |||
| 1593 | MachineBasicBlock *Header = L->getHeader(); | |||
| 1594 | MachineBasicBlock *Latch = L->getLoopLatch(); | |||
| 1595 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | |||
| 1596 | ||||
| 1597 | if (!(Header && Latch && ExitingBlock)) | |||
| 1598 | return false; | |||
| 1599 | ||||
| 1600 | // These data structures follow the same concept as the corresponding | |||
| 1601 | // ones in findInductionRegister (where some comments are). | |||
| 1602 | using RegisterBump = std::pair<Register, int64_t>; | |||
| 1603 | using RegisterInduction = std::pair<Register, RegisterBump>; | |||
| 1604 | using RegisterInductionSet = std::set<RegisterInduction>; | |||
| 1605 | ||||
| 1606 | // Register candidates for induction variables, with their associated bumps. | |||
| 1607 | RegisterInductionSet IndRegs; | |||
| 1608 | ||||
| 1609 | // Look for induction patterns: | |||
| 1610 | // %1 = PHI ..., [ latch, %2 ] | |||
| 1611 | // %2 = ADD %1, imm | |||
| 1612 | using instr_iterator = MachineBasicBlock::instr_iterator; | |||
| 1613 | ||||
| 1614 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | |||
| 1615 | I != E && I->isPHI(); ++I) { | |||
| 1616 | MachineInstr *Phi = &*I; | |||
| 1617 | ||||
| 1618 | // Have a PHI instruction. | |||
| 1619 | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { | |||
| 1620 | if (Phi->getOperand(i+1).getMBB() != Latch) | |||
| 1621 | continue; | |||
| 1622 | ||||
| 1623 | Register PhiReg = Phi->getOperand(i).getReg(); | |||
| 1624 | MachineInstr *DI = MRI->getVRegDef(PhiReg); | |||
| 1625 | ||||
| 1626 | if (DI->getDesc().isAdd()) { | |||
| 1627 | // If the register operand to the add/sub is the PHI we are looking | |||
| 1628 | // at, this meets the induction pattern. | |||
| 1629 | Register IndReg = DI->getOperand(1).getReg(); | |||
| 1630 | MachineOperand &Opnd2 = DI->getOperand(2); | |||
| 1631 | int64_t V; | |||
| 1632 | if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { | |||
| 1633 | Register UpdReg = DI->getOperand(0).getReg(); | |||
| 1634 | IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); | |||
| 1635 | } | |||
| 1636 | } | |||
| 1637 | } // for (i) | |||
| 1638 | } // for (instr) | |||
| 1639 | ||||
| 1640 | if (IndRegs.empty()) | |||
| 1641 | return false; | |||
| 1642 | ||||
| 1643 | MachineBasicBlock *TB = nullptr, *FB = nullptr; | |||
| 1644 | SmallVector<MachineOperand,2> Cond; | |||
| 1645 | // analyzeBranch returns true if it fails to analyze branch. | |||
| 1646 | bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | |||
| 1647 | if (NotAnalyzed || Cond.empty()) | |||
| 1648 | return false; | |||
| 1649 | ||||
| 1650 | if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { | |||
| 1651 | MachineBasicBlock *LTB = nullptr, *LFB = nullptr; | |||
| 1652 | SmallVector<MachineOperand,2> LCond; | |||
| 1653 | bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); | |||
| 1654 | if (NotAnalyzed) | |||
| 1655 | return false; | |||
| 1656 | ||||
| 1657 | // Since latch is not the exiting block, the latch branch should be an | |||
| 1658 | // unconditional branch to the loop header. | |||
| 1659 | if (TB == Latch) | |||
| 1660 | TB = (LTB == Header) ? LTB : LFB; | |||
| 1661 | else | |||
| 1662 | FB = (LTB == Header) ? LTB : LFB; | |||
| 1663 | } | |||
| 1664 | if (TB != Header) { | |||
| 1665 | if (FB != Header) { | |||
| 1666 | // The latch/exit block does not go back to the header. | |||
| 1667 | return false; | |||
| 1668 | } | |||
| 1669 | // FB is the header (i.e., uncond. jump to branch header) | |||
| 1670 | // In this case, the LoopBody -> TB should not be a back edge otherwise | |||
| 1671 | // it could result in an infinite loop after conversion to hw_loop. | |||
| 1672 | // This case can happen when the Latch has two jumps like this: | |||
| 1673 | // Jmp_c OuterLoopHeader <-- TB | |||
| 1674 | // Jmp InnerLoopHeader <-- FB | |||
| 1675 | if (MDT->dominates(TB, FB)) | |||
| 1676 | return false; | |||
| 1677 | } | |||
| 1678 | ||||
| 1679 | // Expecting a predicate register as a condition. It won't be a hardware | |||
| 1680 | // predicate register at this point yet, just a vreg. | |||
| 1681 | // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0) | |||
| 1682 | // into Cond, followed by the predicate register. For non-negated branches | |||
| 1683 | // it's just the register. | |||
| 1684 | unsigned CSz = Cond.size(); | |||
| 1685 | if (CSz != 1 && CSz != 2) | |||
| 1686 | return false; | |||
| 1687 | ||||
| 1688 | if (!Cond[CSz-1].isReg()) | |||
| 1689 | return false; | |||
| 1690 | ||||
| 1691 | Register P = Cond[CSz - 1].getReg(); | |||
| 1692 | MachineInstr *PredDef = MRI->getVRegDef(P); | |||
| 1693 | ||||
| 1694 | if (!PredDef->isCompare()) | |||
| 1695 | return false; | |||
| 1696 | ||||
| 1697 | SmallSet<Register,2> CmpRegs; | |||
| 1698 | MachineOperand *CmpImmOp = nullptr; | |||
| 1699 | ||||
| 1700 | // Go over all operands to the compare and look for immediate and register | |||
| 1701 | // operands. Assume that if the compare has a single register use and a | |||
| 1702 | // single immediate operand, then the register is being compared with the | |||
| 1703 | // immediate value. | |||
| 1704 | for (MachineOperand &MO : PredDef->operands()) { | |||
| 1705 | if (MO.isReg()) { | |||
| 1706 | // Skip all implicit references. In one case there was: | |||
| 1707 | // %140 = FCMPUGT32_rr %138, %139, implicit %usr | |||
| 1708 | if (MO.isImplicit()) | |||
| 1709 | continue; | |||
| 1710 | if (MO.isUse()) { | |||
| 1711 | if (!isImmediate(MO)) { | |||
| 1712 | CmpRegs.insert(MO.getReg()); | |||
| 1713 | continue; | |||
| 1714 | } | |||
| 1715 | // Consider the register to be the "immediate" operand. | |||
| 1716 | if (CmpImmOp) | |||
| 1717 | return false; | |||
| 1718 | CmpImmOp = &MO; | |||
| 1719 | } | |||
| 1720 | } else if (MO.isImm()) { | |||
| 1721 | if (CmpImmOp) // A second immediate argument? Confusing. Bail out. | |||
| 1722 | return false; | |||
| 1723 | CmpImmOp = &MO; | |||
| 1724 | } | |||
| 1725 | } | |||
| 1726 | ||||
| 1727 | if (CmpRegs.empty()) | |||
| 1728 | return false; | |||
| 1729 | ||||
| 1730 | // Check if the compared register follows the order we want. Fix if needed. | |||
| 1731 | for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); | |||
| 1732 | I != E; ++I) { | |||
| 1733 | // This is a success. If the register used in the comparison is one that | |||
| 1734 | // we have identified as a bumped (updated) induction register, there is | |||
| 1735 | // nothing to do. | |||
| 1736 | if (CmpRegs.count(I->first)) | |||
| 1737 | return true; | |||
| 1738 | ||||
| 1739 | // Otherwise, if the register being compared comes out of a PHI node, | |||
| 1740 | // and has been recognized as following the induction pattern, and is | |||
| 1741 | // compared against an immediate, we can fix it. | |||
| 1742 | const RegisterBump &RB = I->second; | |||
| 1743 | if (CmpRegs.count(RB.first)) { | |||
| 1744 | if (!CmpImmOp) { | |||
| 1745 | // If both operands to the compare instruction are registers, see if | |||
| 1746 | // it can be changed to use induction register as one of the operands. | |||
| 1747 | MachineInstr *IndI = nullptr; | |||
| 1748 | MachineInstr *nonIndI = nullptr; | |||
| 1749 | MachineOperand *IndMO = nullptr; | |||
| 1750 | MachineOperand *nonIndMO = nullptr; | |||
| 1751 | ||||
| 1752 | for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { | |||
| 1753 | MachineOperand &MO = PredDef->getOperand(i); | |||
| 1754 | if (MO.isReg() && MO.getReg() == RB.first) { | |||
| 1755 | LLVM_DEBUG(dbgs() << "\n DefMI(" << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\n DefMI(" << i << ") = " << *(MRI->getVRegDef(I->first)); } } while (false) | |||
| 1756 | << ") = " << *(MRI->getVRegDef(I->first)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\n DefMI(" << i << ") = " << *(MRI->getVRegDef(I->first)); } } while (false); | |||
| 1757 | if (IndI) | |||
| 1758 | return false; | |||
| 1759 | ||||
| 1760 | IndI = MRI->getVRegDef(I->first); | |||
| 1761 | IndMO = &MO; | |||
| 1762 | } else if (MO.isReg()) { | |||
| 1763 | LLVM_DEBUG(dbgs() << "\n DefMI(" << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\n DefMI(" << i << ") = " << *(MRI->getVRegDef(MO.getReg())); } } while (false) | |||
| 1764 | << ") = " << *(MRI->getVRegDef(MO.getReg())))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hwloops")) { dbgs() << "\n DefMI(" << i << ") = " << *(MRI->getVRegDef(MO.getReg())); } } while (false); | |||
| 1765 | if (nonIndI) | |||
| 1766 | return false; | |||
| 1767 | ||||
| 1768 | nonIndI = MRI->getVRegDef(MO.getReg()); | |||
| 1769 | nonIndMO = &MO; | |||
| 1770 | } | |||
| 1771 | } | |||
| 1772 | if (IndI && nonIndI && | |||
| 1773 | nonIndI->getOpcode() == Hexagon::A2_addi && | |||
| 1774 | nonIndI->getOperand(2).isImm() && | |||
| 1775 | nonIndI->getOperand(2).getImm() == - RB.second) { | |||
| 1776 | bool Order = orderBumpCompare(IndI, PredDef); | |||
| 1777 | if (Order) { | |||
| 1778 | IndMO->setReg(I->first); | |||
| 1779 | nonIndMO->setReg(nonIndI->getOperand(1).getReg()); | |||
| 1780 | return true; | |||
| 1781 | } | |||
| 1782 | } | |||
| 1783 | return false; | |||
| 1784 | } | |||
| 1785 | ||||
| 1786 | // It is not valid to do this transformation on an unsigned comparison | |||
| 1787 | // because it may underflow. | |||
| 1788 | Comparison::Kind Cmp = | |||
| 1789 | getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); | |||
| 1790 | if (!Cmp || Comparison::isUnsigned(Cmp)) | |||
| 1791 | return false; | |||
| 1792 | ||||
| 1793 | // If the register is being compared against an immediate, try changing | |||
| 1794 | // the compare instruction to use induction register and adjust the | |||
| 1795 | // immediate operand. | |||
| 1796 | int64_t CmpImm = getImmediate(*CmpImmOp); | |||
| 1797 | int64_t V = RB.second; | |||
| 1798 | // Handle Overflow (64-bit). | |||
| 1799 | if (((V > 0) && (CmpImm > INT64_MAX(9223372036854775807L) - V)) || | |||
| 1800 | ((V < 0) && (CmpImm < INT64_MIN(-9223372036854775807L -1) - V))) | |||
| 1801 | return false; | |||
| 1802 | CmpImm += V; | |||
| 1803 | // Most comparisons of register against an immediate value allow | |||
| 1804 | // the immediate to be constant-extended. There are some exceptions | |||
| 1805 | // though. Make sure the new combination will work. | |||
| 1806 | if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) && | |||
| 1807 | !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false)) | |||
| 1808 | return false; | |||
| 1809 | ||||
| 1810 | // Make sure that the compare happens after the bump. Otherwise, | |||
| 1811 | // after the fixup, the compare would use a yet-undefined register. | |||
| 1812 | MachineInstr *BumpI = MRI->getVRegDef(I->first); | |||
| 1813 | bool Order = orderBumpCompare(BumpI, PredDef); | |||
| 1814 | if (!Order) | |||
| 1815 | return false; | |||
| 1816 | ||||
| 1817 | // Finally, fix the compare instruction. | |||
| 1818 | setImmediate(*CmpImmOp, CmpImm); | |||
| 1819 | for (MachineOperand &MO : PredDef->operands()) { | |||
| 1820 | if (MO.isReg() && MO.getReg() == RB.first) { | |||
| 1821 | MO.setReg(I->first); | |||
| 1822 | return true; | |||
| 1823 | } | |||
| 1824 | } | |||
| 1825 | } | |||
| 1826 | } | |||
| 1827 | ||||
| 1828 | return false; | |||
| 1829 | } | |||
| 1830 | ||||
| 1831 | /// createPreheaderForLoop - Create a preheader for a given loop. | |||
| 1832 | MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( | |||
| 1833 | MachineLoop *L) { | |||
| 1834 | if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) | |||
| 1835 | return TmpPH; | |||
| 1836 | if (!HWCreatePreheader) | |||
| 1837 | return nullptr; | |||
| 1838 | ||||
| 1839 | MachineBasicBlock *Header = L->getHeader(); | |||
| 1840 | MachineBasicBlock *Latch = L->getLoopLatch(); | |||
| 1841 | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | |||
| 1842 | MachineFunction *MF = Header->getParent(); | |||
| 1843 | DebugLoc DL; | |||
| 1844 | ||||
| 1845 | #ifndef NDEBUG | |||
| 1846 | if ((!PHFn.empty()) && (PHFn != MF->getName())) | |||
| 1847 | return nullptr; | |||
| 1848 | #endif | |||
| 1849 | ||||
| 1850 | if (!Latch || !ExitingBlock || Header->hasAddressTaken()) | |||
| 1851 | return nullptr; | |||
| 1852 | ||||
| 1853 | using instr_iterator = MachineBasicBlock::instr_iterator; | |||
| 1854 | ||||
| 1855 | // Verify that all existing predecessors have analyzable branches | |||
| 1856 | // (or no branches at all). | |||
| 1857 | using MBBVector = std::vector<MachineBasicBlock *>; | |||
| 1858 | ||||
| 1859 | MBBVector Preds(Header->pred_begin(), Header->pred_end()); | |||
| 1860 | SmallVector<MachineOperand,2> Tmp1; | |||
| 1861 | MachineBasicBlock *TB = nullptr, *FB = nullptr; | |||
| 1862 | ||||
| 1863 | if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) | |||
| 1864 | return nullptr; | |||
| 1865 | ||||
| 1866 | for (MachineBasicBlock *PB : Preds) { | |||
| 1867 | bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); | |||
| 1868 | if (NotAnalyzed) | |||
| 1869 | return nullptr; | |||
| 1870 | } | |||
| 1871 | ||||
| 1872 | MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); | |||
| 1873 | MF->insert(Header->getIterator(), NewPH); | |||
| 1874 | ||||
| 1875 | if (Header->pred_size() > 2) { | |||
| 1876 | // Ensure that the header has only two predecessors: the preheader and | |||
| 1877 | // the loop latch. Any additional predecessors of the header should | |||
| 1878 | // join at the newly created preheader. Inspect all PHI nodes from the | |||
| 1879 | // header and create appropriate corresponding PHI nodes in the preheader. | |||
| 1880 | ||||
| 1881 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | |||
| 1882 | I != E && I->isPHI(); ++I) { | |||
| 1883 | MachineInstr *PN = &*I; | |||
| 1884 | ||||
| 1885 | const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); | |||
| 1886 | MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); | |||
| 1887 | NewPH->insert(NewPH->end(), NewPN); | |||
| 1888 | ||||
| 1889 | Register PR = PN->getOperand(0).getReg(); | |||
| 1890 | const TargetRegisterClass *RC = MRI->getRegClass(PR); | |||
| 1891 | Register NewPR = MRI->createVirtualRegister(RC); | |||
| 1892 | NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); | |||
| 1893 | ||||
| 1894 | // Copy all non-latch operands of a header's PHI node to the newly | |||
| 1895 | // created PHI node in the preheader. | |||
| 1896 | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { | |||
| 1897 | Register PredR = PN->getOperand(i).getReg(); | |||
| 1898 | unsigned PredRSub = PN->getOperand(i).getSubReg(); | |||
| 1899 | MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); | |||
| 1900 | if (PredB == Latch) | |||
| 1901 | continue; | |||
| 1902 | ||||
| 1903 | MachineOperand MO = MachineOperand::CreateReg(PredR, false); | |||
| 1904 | MO.setSubReg(PredRSub); | |||
| 1905 | NewPN->addOperand(MO); | |||
| 1906 | NewPN->addOperand(MachineOperand::CreateMBB(PredB)); | |||
| 1907 | } | |||
| 1908 | ||||
| 1909 | // Remove copied operands from the old PHI node and add the value | |||
| 1910 | // coming from the preheader's PHI. | |||
| 1911 | for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { | |||
| 1912 | MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); | |||
| 1913 | if (PredB != Latch) { | |||
| 1914 | PN->removeOperand(i+1); | |||
| 1915 | PN->removeOperand(i); | |||
| 1916 | } | |||
| 1917 | } | |||
| 1918 | PN->addOperand(MachineOperand::CreateReg(NewPR, false)); | |||
| 1919 | PN->addOperand(MachineOperand::CreateMBB(NewPH)); | |||
| 1920 | } | |||
| 1921 | } else { | |||
| 1922 | assert(Header->pred_size() == 2)(static_cast <bool> (Header->pred_size() == 2) ? void (0) : __assert_fail ("Header->pred_size() == 2", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp" , 1922, __extension__ __PRETTY_FUNCTION__)); | |||
| 1923 | ||||
| 1924 | // The header has only two predecessors, but the non-latch predecessor | |||
| 1925 | // is not a preheader (e.g. it has other successors, etc.) | |||
| 1926 | // In such a case we don't need any extra PHI nodes in the new preheader, | |||
| 1927 | // all we need is to adjust existing PHIs in the header to now refer to | |||
| 1928 | // the new preheader. | |||
| 1929 | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | |||
| 1930 | I != E && I->isPHI(); ++I) { | |||
| 1931 | MachineInstr *PN = &*I; | |||
| 1932 | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { | |||
| 1933 | MachineOperand &MO = PN->getOperand(i+1); | |||
| 1934 | if (MO.getMBB() != Latch) | |||
| 1935 | MO.setMBB(NewPH); | |||
| 1936 | } | |||
| 1937 | } | |||
| 1938 | } | |||
| 1939 | ||||
| 1940 | // "Reroute" the CFG edges to link in the new preheader. | |||
| 1941 | // If any of the predecessors falls through to the header, insert a branch | |||
| 1942 | // to the new preheader in that place. | |||
| 1943 | SmallVector<MachineOperand,1> Tmp2; | |||
| 1944 | SmallVector<MachineOperand,1> EmptyCond; | |||
| 1945 | ||||
| 1946 | TB = FB = nullptr; | |||
| 1947 | ||||
| 1948 | for (MachineBasicBlock *PB : Preds) { | |||
| 1949 | if (PB != Latch) { | |||
| 1950 | Tmp2.clear(); | |||
| 1951 | bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); | |||
| 1952 | (void)NotAnalyzed; // suppress compiler warning | |||
| 1953 | assert (!NotAnalyzed && "Should be analyzable!")(static_cast <bool> (!NotAnalyzed && "Should be analyzable!" ) ? void (0) : __assert_fail ("!NotAnalyzed && \"Should be analyzable!\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1953, __extension__ __PRETTY_FUNCTION__)); | |||
| 1954 | if (TB != Header && (Tmp2.empty() || FB != Header)) | |||
| 1955 | TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); | |||
| 1956 | PB->ReplaceUsesOfBlockWith(Header, NewPH); | |||
| 1957 | } | |||
| 1958 | } | |||
| 1959 | ||||
| 1960 | // It can happen that the latch block will fall through into the header. | |||
| 1961 | // Insert an unconditional branch to the header. | |||
| 1962 | TB = FB = nullptr; | |||
| 1963 | bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); | |||
| 1964 | (void)LatchNotAnalyzed; // suppress compiler warning | |||
| 1965 | assert (!LatchNotAnalyzed && "Should be analyzable!")(static_cast <bool> (!LatchNotAnalyzed && "Should be analyzable!" ) ? void (0) : __assert_fail ("!LatchNotAnalyzed && \"Should be analyzable!\"" , "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1965, __extension__ __PRETTY_FUNCTION__)); | |||
| 1966 | if (!TB && !FB) | |||
| 1967 | TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); | |||
| 1968 | ||||
| 1969 | // Finally, the branch from the preheader to the header. | |||
| 1970 | TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); | |||
| 1971 | NewPH->addSuccessor(Header); | |||
| 1972 | ||||
| 1973 | MachineLoop *ParentLoop = L->getParentLoop(); | |||
| 1974 | if (ParentLoop) | |||
| 1975 | ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); | |||
| 1976 | ||||
| 1977 | // Update the dominator information with the new preheader. | |||
| 1978 | if (MDT) { | |||
| 1979 | if (MachineDomTreeNode *HN = MDT->getNode(Header)) { | |||
| 1980 | if (MachineDomTreeNode *DHN = HN->getIDom()) { | |||
| 1981 | MDT->addNewBlock(NewPH, DHN->getBlock()); | |||
| 1982 | MDT->changeImmediateDominator(Header, NewPH); | |||
| 1983 | } | |||
| 1984 | } | |||
| 1985 | } | |||
| 1986 | ||||
| 1987 | return NewPH; | |||
| 1988 | } |