Bug Summary

File:build/source/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
Warning:line 790, column 24
Division by zero

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name HexagonHardwareLoops.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/Hexagon -I /build/source/llvm/lib/Target/Hexagon -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
1//===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass identifies loops where we can generate the Hexagon hardware
10// loop instruction. The hardware loop can perform loop branches with a
11// zero-cycle overhead.
12//
13// The pattern that defines the induction variable can changed depending on
14// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15// normalizes induction variables, and the Loop Strength Reduction pass
16// run by 'llc' may also make changes to the induction variable.
17// The pattern detected by this phase is due to running Strength Reduction.
18//
19// Criteria for hardware loops:
20// - Countable loops (w/ ind. var for a trip count)
21// - Assumes loops are normalized by IndVarSimplify
22// - Try inner-most loops first
23// - No function calls in loops.
24//
25//===----------------------------------------------------------------------===//
26
27#include "HexagonInstrInfo.h"
28#include "HexagonSubtarget.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringRef.h"
35#include "llvm/CodeGen/MachineBasicBlock.h"
36#include "llvm/CodeGen/MachineDominators.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFunctionPass.h"
39#include "llvm/CodeGen/MachineInstr.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineLoopInfo.h"
42#include "llvm/CodeGen/MachineOperand.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/TargetRegisterInfo.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DebugLoc.h"
47#include "llvm/InitializePasses.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include <cassert>
55#include <cstdint>
56#include <cstdlib>
57#include <iterator>
58#include <map>
59#include <set>
60#include <string>
61#include <utility>
62#include <vector>
63
64using namespace llvm;
65
66#define DEBUG_TYPE"hwloops" "hwloops"
67
68#ifndef NDEBUG
69static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
70
71// Option to create preheader only for a specific function.
72static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
73 cl::init(""));
74#endif
75
76// Option to create a preheader if one doesn't exist.
77static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78 cl::Hidden, cl::init(true),
79 cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
80
81// Turn it off by default. If a preheader block is not created here, the
82// software pipeliner may be unable to find a block suitable to serve as
83// a preheader. In that case SWP will not run.
84static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden,
85 cl::desc("Allow speculation of preheader "
86 "instructions"));
87
88STATISTIC(NumHWLoops, "Number of loops converted to hardware loops")static llvm::Statistic NumHWLoops = {"hwloops", "NumHWLoops",
"Number of loops converted to hardware loops"}
;
89
90namespace llvm {
91
92 FunctionPass *createHexagonHardwareLoops();
93 void initializeHexagonHardwareLoopsPass(PassRegistry&);
94
95} // end namespace llvm
96
97namespace {
98
99 class CountValue;
100
101 struct HexagonHardwareLoops : public MachineFunctionPass {
102 MachineLoopInfo *MLI;
103 MachineRegisterInfo *MRI;
104 MachineDominatorTree *MDT;
105 const HexagonInstrInfo *TII;
106 const HexagonRegisterInfo *TRI;
107#ifndef NDEBUG
108 static int Counter;
109#endif
110
111 public:
112 static char ID;
113
114 HexagonHardwareLoops() : MachineFunctionPass(ID) {}
115
116 bool runOnMachineFunction(MachineFunction &MF) override;
117
118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
119
120 void getAnalysisUsage(AnalysisUsage &AU) const override {
121 AU.addRequired<MachineDominatorTree>();
122 AU.addRequired<MachineLoopInfo>();
123 MachineFunctionPass::getAnalysisUsage(AU);
124 }
125
126 private:
127 using LoopFeederMap = std::map<Register, MachineInstr *>;
128
129 /// Kinds of comparisons in the compare instructions.
130 struct Comparison {
131 enum Kind {
132 EQ = 0x01,
133 NE = 0x02,
134 L = 0x04,
135 G = 0x08,
136 U = 0x40,
137 LTs = L,
138 LEs = L | EQ,
139 GTs = G,
140 GEs = G | EQ,
141 LTu = L | U,
142 LEu = L | EQ | U,
143 GTu = G | U,
144 GEu = G | EQ | U
145 };
146
147 static Kind getSwappedComparison(Kind Cmp) {
148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator")(static_cast <bool> ((!((Cmp & L) && (Cmp &
G))) && "Malformed comparison operator") ? void (0) :
__assert_fail ("(!((Cmp & L) && (Cmp & G))) && \"Malformed comparison operator\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 148, __extension__
__PRETTY_FUNCTION__))
;
149 if ((Cmp & L) || (Cmp & G))
150 return (Kind)(Cmp ^ (L|G));
151 return Cmp;
152 }
153
154 static Kind getNegatedComparison(Kind Cmp) {
155 if ((Cmp & L) || (Cmp & G))
156 return (Kind)((Cmp ^ (L | G)) ^ EQ);
157 if ((Cmp & NE) || (Cmp & EQ))
158 return (Kind)(Cmp ^ (EQ | NE));
159 return (Kind)0;
160 }
161
162 static bool isSigned(Kind Cmp) {
163 return (Cmp & (L | G) && !(Cmp & U));
164 }
165
166 static bool isUnsigned(Kind Cmp) {
167 return (Cmp & U);
168 }
169 };
170
171 /// Find the register that contains the loop controlling
172 /// induction variable.
173 /// If successful, it will return true and set the \p Reg, \p IVBump
174 /// and \p IVOp arguments. Otherwise it will return false.
175 /// The returned induction register is the register R that follows the
176 /// following induction pattern:
177 /// loop:
178 /// R = phi ..., [ R.next, LatchBlock ]
179 /// R.next = R + #bump
180 /// if (R.next < #N) goto loop
181 /// IVBump is the immediate value added to R, and IVOp is the instruction
182 /// "R.next = R + #bump".
183 bool findInductionRegister(MachineLoop *L, Register &Reg,
184 int64_t &IVBump, MachineInstr *&IVOp) const;
185
186 /// Return the comparison kind for the specified opcode.
187 Comparison::Kind getComparisonKind(unsigned CondOpc,
188 MachineOperand *InitialValue,
189 const MachineOperand *Endvalue,
190 int64_t IVBump) const;
191
192 /// Analyze the statements in a loop to determine if the loop
193 /// has a computable trip count and, if so, return a value that represents
194 /// the trip count expression.
195 CountValue *getLoopTripCount(MachineLoop *L,
196 SmallVectorImpl<MachineInstr *> &OldInsts);
197
198 /// Return the expression that represents the number of times
199 /// a loop iterates. The function takes the operands that represent the
200 /// loop start value, loop end value, and induction value. Based upon
201 /// these operands, the function attempts to compute the trip count.
202 /// If the trip count is not directly available (as an immediate value,
203 /// or a register), the function will attempt to insert computation of it
204 /// to the loop's preheader.
205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
206 const MachineOperand *End, Register IVReg,
207 int64_t IVBump, Comparison::Kind Cmp) const;
208
209 /// Return true if the instruction is not valid within a hardware
210 /// loop.
211 bool isInvalidLoopOperation(const MachineInstr *MI,
212 bool IsInnerHWLoop) const;
213
214 /// Return true if the loop contains an instruction that inhibits
215 /// using the hardware loop.
216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
217
218 /// Given a loop, check if we can convert it to a hardware loop.
219 /// If so, then perform the conversion and return true.
220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
221
222 /// Return true if the instruction is now dead.
223 bool isDead(const MachineInstr *MI,
224 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
225
226 /// Remove the instruction if it is now dead.
227 void removeIfDead(MachineInstr *MI);
228
229 /// Make sure that the "bump" instruction executes before the
230 /// compare. We need that for the IV fixup, so that the compare
231 /// instruction would not use a bumped value that has not yet been
232 /// defined. If the instructions are out of order, try to reorder them.
233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
234
235 /// Return true if MO and MI pair is visited only once. If visited
236 /// more than once, this indicates there is recursion. In such a case,
237 /// return false.
238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
239 const MachineOperand *MO,
240 LoopFeederMap &LoopFeederPhi) const;
241
242 /// Return true if the Phi may generate a value that may underflow,
243 /// or may wrap.
244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
245 MachineBasicBlock *MBB, MachineLoop *L,
246 LoopFeederMap &LoopFeederPhi) const;
247
248 /// Return true if the induction variable may underflow an unsigned
249 /// value in the first iteration.
250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
251 const MachineOperand *EndVal,
252 MachineBasicBlock *MBB, MachineLoop *L,
253 LoopFeederMap &LoopFeederPhi) const;
254
255 /// Check if the given operand has a compile-time known constant
256 /// value. Return true if yes, and false otherwise. When returning true, set
257 /// Val to the corresponding constant value.
258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
259
260 /// Check if the operand has a compile-time known constant value.
261 bool isImmediate(const MachineOperand &MO) const {
262 int64_t V;
263 return checkForImmediate(MO, V);
264 }
265
266 /// Return the immediate for the specified operand.
267 int64_t getImmediate(const MachineOperand &MO) const {
268 int64_t V;
269 if (!checkForImmediate(MO, V))
270 llvm_unreachable("Invalid operand")::llvm::llvm_unreachable_internal("Invalid operand", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp"
, 270)
;
271 return V;
272 }
273
274 /// Reset the given machine operand to now refer to a new immediate
275 /// value. Assumes that the operand was already referencing an immediate
276 /// value, either directly, or via a register.
277 void setImmediate(MachineOperand &MO, int64_t Val);
278
279 /// Fix the data flow of the induction variable.
280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
281 /// |
282 /// +-> back to phi
283 /// where "bump" is the increment of the induction variable:
284 /// iv = iv + #const.
285 /// Due to some prior code transformations, the actual flow may look
286 /// like this:
287 /// phi -+-> bump ---> back to phi
288 /// |
289 /// +-> comparison-in-latch (against upper_bound-bump),
290 /// i.e. the comparison that controls the loop execution may be using
291 /// the value of the induction variable from before the increment.
292 ///
293 /// Return true if the loop's flow is the desired one (i.e. it's
294 /// either been fixed, or no fixing was necessary).
295 /// Otherwise, return false. This can happen if the induction variable
296 /// couldn't be identified, or if the value in the latch's comparison
297 /// cannot be adjusted to reflect the post-bump value.
298 bool fixupInductionVariable(MachineLoop *L);
299
300 /// Given a loop, if it does not have a preheader, create one.
301 /// Return the block that is the preheader.
302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
303 };
304
305 char HexagonHardwareLoops::ID = 0;
306#ifndef NDEBUG
307 int HexagonHardwareLoops::Counter = 0;
308#endif
309
310 /// Abstraction for a trip count of a loop. A smaller version
311 /// of the MachineOperand class without the concerns of changing the
312 /// operand representation.
313 class CountValue {
314 public:
315 enum CountValueType {
316 CV_Register,
317 CV_Immediate
318 };
319
320 private:
321 CountValueType Kind;
322 union Values {
323 Values() : R{Register(), 0} {}
324 Values(const Values&) = default;
325 struct {
326 Register Reg;
327 unsigned Sub;
328 } R;
329 unsigned ImmVal;
330 } Contents;
331
332 public:
333 explicit CountValue(CountValueType t, Register v, unsigned u = 0) {
334 Kind = t;
335 if (Kind == CV_Register) {
336 Contents.R.Reg = v;
337 Contents.R.Sub = u;
338 } else {
339 Contents.ImmVal = v;
340 }
341 }
342
343 bool isReg() const { return Kind == CV_Register; }
344 bool isImm() const { return Kind == CV_Immediate; }
345
346 Register getReg() const {
347 assert(isReg() && "Wrong CountValue accessor")(static_cast <bool> (isReg() && "Wrong CountValue accessor"
) ? void (0) : __assert_fail ("isReg() && \"Wrong CountValue accessor\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 347, __extension__
__PRETTY_FUNCTION__))
;
348 return Contents.R.Reg;
349 }
350
351 unsigned getSubReg() const {
352 assert(isReg() && "Wrong CountValue accessor")(static_cast <bool> (isReg() && "Wrong CountValue accessor"
) ? void (0) : __assert_fail ("isReg() && \"Wrong CountValue accessor\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 352, __extension__
__PRETTY_FUNCTION__))
;
353 return Contents.R.Sub;
354 }
355
356 unsigned getImm() const {
357 assert(isImm() && "Wrong CountValue accessor")(static_cast <bool> (isImm() && "Wrong CountValue accessor"
) ? void (0) : __assert_fail ("isImm() && \"Wrong CountValue accessor\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 357, __extension__
__PRETTY_FUNCTION__))
;
358 return Contents.ImmVal;
359 }
360
361 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
362 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
363 if (isImm()) { OS << Contents.ImmVal; }
364 }
365 };
366
367} // end anonymous namespace
368
369INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",static void *initializeHexagonHardwareLoopsPassOnce(PassRegistry
&Registry) {
370 "Hexagon Hardware Loops", false, false)static void *initializeHexagonHardwareLoopsPassOnce(PassRegistry
&Registry) {
371INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry);
372INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
373INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",PassInfo *PI = new PassInfo( "Hexagon Hardware Loops", "hwloops"
, &HexagonHardwareLoops::ID, PassInfo::NormalCtor_t(callDefaultCtor
<HexagonHardwareLoops>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeHexagonHardwareLoopsPassFlag
; void llvm::initializeHexagonHardwareLoopsPass(PassRegistry &
Registry) { llvm::call_once(InitializeHexagonHardwareLoopsPassFlag
, initializeHexagonHardwareLoopsPassOnce, std::ref(Registry))
; }
374 "Hexagon Hardware Loops", false, false)PassInfo *PI = new PassInfo( "Hexagon Hardware Loops", "hwloops"
, &HexagonHardwareLoops::ID, PassInfo::NormalCtor_t(callDefaultCtor
<HexagonHardwareLoops>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeHexagonHardwareLoopsPassFlag
; void llvm::initializeHexagonHardwareLoopsPass(PassRegistry &
Registry) { llvm::call_once(InitializeHexagonHardwareLoopsPassFlag
, initializeHexagonHardwareLoopsPassOnce, std::ref(Registry))
; }
375
376FunctionPass *llvm::createHexagonHardwareLoops() {
377 return new HexagonHardwareLoops();
378}
379
380bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
381 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "********* Hexagon Hardware Loops *********\n"
; } } while (false)
;
382 if (skipFunction(MF.getFunction()))
383 return false;
384
385 bool Changed = false;
386
387 MLI = &getAnalysis<MachineLoopInfo>();
388 MRI = &MF.getRegInfo();
389 MDT = &getAnalysis<MachineDominatorTree>();
390 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
391 TII = HST.getInstrInfo();
392 TRI = HST.getRegisterInfo();
393
394 for (auto &L : *MLI)
395 if (L->isOutermost()) {
396 bool L0Used = false;
397 bool L1Used = false;
398 Changed |= convertToHardwareLoop(L, L0Used, L1Used);
399 }
400
401 return Changed;
402}
403
404bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
405 Register &Reg,
406 int64_t &IVBump,
407 MachineInstr *&IVOp
408 ) const {
409 MachineBasicBlock *Header = L->getHeader();
410 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
411 MachineBasicBlock *Latch = L->getLoopLatch();
412 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
413 if (!Header || !Preheader || !Latch || !ExitingBlock)
414 return false;
415
416 // This pair represents an induction register together with an immediate
417 // value that will be added to it in each loop iteration.
418 using RegisterBump = std::pair<Register, int64_t>;
419
420 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
421 // from an induction operation
422 // R.next = R + bump
423 // where bump is an immediate value.
424 using InductionMap = std::map<Register, RegisterBump>;
425
426 InductionMap IndMap;
427
428 using instr_iterator = MachineBasicBlock::instr_iterator;
429
430 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
431 I != E && I->isPHI(); ++I) {
432 MachineInstr *Phi = &*I;
433
434 // Have a PHI instruction. Get the operand that corresponds to the
435 // latch block, and see if is a result of an addition of form "reg+imm",
436 // where the "reg" is defined by the PHI node we are looking at.
437 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
438 if (Phi->getOperand(i+1).getMBB() != Latch)
439 continue;
440
441 Register PhiOpReg = Phi->getOperand(i).getReg();
442 MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
443
444 if (DI->getDesc().isAdd()) {
445 // If the register operand to the add is the PHI we're looking at, this
446 // meets the induction pattern.
447 Register IndReg = DI->getOperand(1).getReg();
448 MachineOperand &Opnd2 = DI->getOperand(2);
449 int64_t V;
450 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
451 Register UpdReg = DI->getOperand(0).getReg();
452 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
453 }
454 }
455 } // for (i)
456 } // for (instr)
457
458 SmallVector<MachineOperand,2> Cond;
459 MachineBasicBlock *TB = nullptr, *FB = nullptr;
460 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
461 if (NotAnalyzed)
462 return false;
463
464 Register PredR;
465 unsigned PredPos, PredRegFlags;
466 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
467 return false;
468
469 MachineInstr *PredI = MRI->getVRegDef(PredR);
470 if (!PredI->isCompare())
471 return false;
472
473 Register CmpReg1, CmpReg2;
474 int64_t CmpImm = 0, CmpMask = 0;
475 bool CmpAnalyzed =
476 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
477 // Fail if the compare was not analyzed, or it's not comparing a register
478 // with an immediate value. Not checking the mask here, since we handle
479 // the individual compare opcodes (including A4_cmpb*) later on.
480 if (!CmpAnalyzed)
481 return false;
482
483 // Exactly one of the input registers to the comparison should be among
484 // the induction registers.
485 InductionMap::iterator IndMapEnd = IndMap.end();
486 InductionMap::iterator F = IndMapEnd;
487 if (CmpReg1 != 0) {
488 InductionMap::iterator F1 = IndMap.find(CmpReg1);
489 if (F1 != IndMapEnd)
490 F = F1;
491 }
492 if (CmpReg2 != 0) {
493 InductionMap::iterator F2 = IndMap.find(CmpReg2);
494 if (F2 != IndMapEnd) {
495 if (F != IndMapEnd)
496 return false;
497 F = F2;
498 }
499 }
500 if (F == IndMapEnd)
501 return false;
502
503 Reg = F->second.first;
504 IVBump = F->second.second;
505 IVOp = MRI->getVRegDef(F->first);
506 return true;
507}
508
509// Return the comparison kind for the specified opcode.
510HexagonHardwareLoops::Comparison::Kind
511HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
512 MachineOperand *InitialValue,
513 const MachineOperand *EndValue,
514 int64_t IVBump) const {
515 Comparison::Kind Cmp = (Comparison::Kind)0;
516 switch (CondOpc) {
517 case Hexagon::C2_cmpeq:
518 case Hexagon::C2_cmpeqi:
519 case Hexagon::C2_cmpeqp:
520 Cmp = Comparison::EQ;
521 break;
522 case Hexagon::C4_cmpneq:
523 case Hexagon::C4_cmpneqi:
524 Cmp = Comparison::NE;
525 break;
526 case Hexagon::C2_cmplt:
527 Cmp = Comparison::LTs;
528 break;
529 case Hexagon::C2_cmpltu:
530 Cmp = Comparison::LTu;
531 break;
532 case Hexagon::C4_cmplte:
533 case Hexagon::C4_cmpltei:
534 Cmp = Comparison::LEs;
535 break;
536 case Hexagon::C4_cmplteu:
537 case Hexagon::C4_cmplteui:
538 Cmp = Comparison::LEu;
539 break;
540 case Hexagon::C2_cmpgt:
541 case Hexagon::C2_cmpgti:
542 case Hexagon::C2_cmpgtp:
543 Cmp = Comparison::GTs;
544 break;
545 case Hexagon::C2_cmpgtu:
546 case Hexagon::C2_cmpgtui:
547 case Hexagon::C2_cmpgtup:
548 Cmp = Comparison::GTu;
549 break;
550 case Hexagon::C2_cmpgei:
551 Cmp = Comparison::GEs;
552 break;
553 case Hexagon::C2_cmpgeui:
554 Cmp = Comparison::GEs;
555 break;
556 default:
557 return (Comparison::Kind)0;
558 }
559 return Cmp;
560}
561
562/// Analyze the statements in a loop to determine if the loop has
563/// a computable trip count and, if so, return a value that represents
564/// the trip count expression.
565///
566/// This function iterates over the phi nodes in the loop to check for
567/// induction variable patterns that are used in the calculation for
568/// the number of time the loop is executed.
569CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
570 SmallVectorImpl<MachineInstr *> &OldInsts) {
571 MachineBasicBlock *TopMBB = L->getTopBlock();
572 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
573 assert(PI != TopMBB->pred_end() &&(static_cast <bool> (PI != TopMBB->pred_end() &&
"Loop must have more than one incoming edge!") ? void (0) : __assert_fail
("PI != TopMBB->pred_end() && \"Loop must have more than one incoming edge!\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 574, __extension__
__PRETTY_FUNCTION__))
574 "Loop must have more than one incoming edge!")(static_cast <bool> (PI != TopMBB->pred_end() &&
"Loop must have more than one incoming edge!") ? void (0) : __assert_fail
("PI != TopMBB->pred_end() && \"Loop must have more than one incoming edge!\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 574, __extension__
__PRETTY_FUNCTION__))
;
575 MachineBasicBlock *Backedge = *PI++;
576 if (PI == TopMBB->pred_end()) // dead loop?
577 return nullptr;
578 MachineBasicBlock *Incoming = *PI++;
579 if (PI != TopMBB->pred_end()) // multiple backedges?
580 return nullptr;
581
582 // Make sure there is one incoming and one backedge and determine which
583 // is which.
584 if (L->contains(Incoming)) {
585 if (L->contains(Backedge))
586 return nullptr;
587 std::swap(Incoming, Backedge);
588 } else if (!L->contains(Backedge))
589 return nullptr;
590
591 // Look for the cmp instruction to determine if we can get a useful trip
592 // count. The trip count can be either a register or an immediate. The
593 // location of the value depends upon the type (reg or imm).
594 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
595 if (!ExitingBlock)
596 return nullptr;
597
598 Register IVReg = 0;
599 int64_t IVBump = 0;
600 MachineInstr *IVOp;
601 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
602 if (!FoundIV)
603 return nullptr;
604
605 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
606
607 MachineOperand *InitialValue = nullptr;
608 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
609 MachineBasicBlock *Latch = L->getLoopLatch();
610 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
611 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
612 if (MBB == Preheader)
613 InitialValue = &IV_Phi->getOperand(i);
614 else if (MBB == Latch)
615 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
616 }
617 if (!InitialValue)
618 return nullptr;
619
620 SmallVector<MachineOperand,2> Cond;
621 MachineBasicBlock *TB = nullptr, *FB = nullptr;
622 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
623 if (NotAnalyzed)
624 return nullptr;
625
626 MachineBasicBlock *Header = L->getHeader();
627 // TB must be non-null. If FB is also non-null, one of them must be
628 // the header. Otherwise, branch to TB could be exiting the loop, and
629 // the fall through can go to the header.
630 assert (TB && "Exit block without a branch?")(static_cast <bool> (TB && "Exit block without a branch?"
) ? void (0) : __assert_fail ("TB && \"Exit block without a branch?\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 630, __extension__
__PRETTY_FUNCTION__))
;
631 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
632 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
633 SmallVector<MachineOperand,2> LCond;
634 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
635 if (NotAnalyzed)
636 return nullptr;
637 if (TB == Latch)
638 TB = (LTB == Header) ? LTB : LFB;
639 else
640 FB = (LTB == Header) ? LTB: LFB;
641 }
642 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?")(static_cast <bool> ((!FB || TB == Header || FB == Header
) && "Branches not to header?") ? void (0) : __assert_fail
("(!FB || TB == Header || FB == Header) && \"Branches not to header?\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 642, __extension__
__PRETTY_FUNCTION__))
;
643 if (!TB || (FB && TB != Header && FB != Header))
644 return nullptr;
645
646 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
647 // to put imm(0), followed by P in the vector Cond.
648 // If TB is not the header, it means that the "not-taken" path must lead
649 // to the header.
650 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
651 Register PredReg;
652 unsigned PredPos, PredRegFlags;
653 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
654 return nullptr;
655 MachineInstr *CondI = MRI->getVRegDef(PredReg);
656 unsigned CondOpc = CondI->getOpcode();
657
658 Register CmpReg1, CmpReg2;
659 int64_t Mask = 0, ImmValue = 0;
660 bool AnalyzedCmp =
661 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
662 if (!AnalyzedCmp)
663 return nullptr;
664
665 // The comparison operator type determines how we compute the loop
666 // trip count.
667 OldInsts.push_back(CondI);
668 OldInsts.push_back(IVOp);
669
670 // Sadly, the following code gets information based on the position
671 // of the operands in the compare instruction. This has to be done
672 // this way, because the comparisons check for a specific relationship
673 // between the operands (e.g. is-less-than), rather than to find out
674 // what relationship the operands are in (as on PPC).
675 Comparison::Kind Cmp;
676 bool isSwapped = false;
677 const MachineOperand &Op1 = CondI->getOperand(1);
678 const MachineOperand &Op2 = CondI->getOperand(2);
679 const MachineOperand *EndValue = nullptr;
680
681 if (Op1.isReg()) {
682 if (Op2.isImm() || Op1.getReg() == IVReg)
683 EndValue = &Op2;
684 else {
685 EndValue = &Op1;
686 isSwapped = true;
687 }
688 }
689
690 if (!EndValue)
691 return nullptr;
692
693 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
694 if (!Cmp)
695 return nullptr;
696 if (Negated)
697 Cmp = Comparison::getNegatedComparison(Cmp);
698 if (isSwapped)
699 Cmp = Comparison::getSwappedComparison(Cmp);
700
701 if (InitialValue->isReg()) {
702 Register R = InitialValue->getReg();
703 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
704 if (!MDT->properlyDominates(DefBB, Header)) {
705 int64_t V;
706 if (!checkForImmediate(*InitialValue, V))
707 return nullptr;
708 }
709 OldInsts.push_back(MRI->getVRegDef(R));
710 }
711 if (EndValue->isReg()) {
712 Register R = EndValue->getReg();
713 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
714 if (!MDT->properlyDominates(DefBB, Header)) {
715 int64_t V;
716 if (!checkForImmediate(*EndValue, V))
717 return nullptr;
718 }
719 OldInsts.push_back(MRI->getVRegDef(R));
720 }
721
722 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
723}
724
725/// Helper function that returns the expression that represents the
726/// number of times a loop iterates. The function takes the operands that
727/// represent the loop start value, loop end value, and induction value.
728/// Based upon these operands, the function attempts to compute the trip count.
729CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
730 const MachineOperand *Start,
731 const MachineOperand *End,
732 Register IVReg,
733 int64_t IVBump,
734 Comparison::Kind Cmp) const {
735 // Cannot handle comparison EQ, i.e. while (A == B).
736 if (Cmp == Comparison::EQ)
1
Assuming 'Cmp' is not equal to EQ
2
Taking false branch
737 return nullptr;
738
739 // Check if either the start or end values are an assignment of an immediate.
740 // If so, use the immediate value rather than the register.
741 if (Start->isReg()) {
3
Taking false branch
742 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
743 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
744 StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
745 Start = &StartValInstr->getOperand(1);
746 }
747 if (End->isReg()) {
748 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
749 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
750 EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
751 End = &EndValInstr->getOperand(1);
752 }
753
754 if (!Start->isReg() && !Start->isImm())
755 return nullptr;
756 if (!End->isReg() && !End->isImm())
4
Taking false branch
757 return nullptr;
758
759 bool CmpLess = Cmp & Comparison::L;
760 bool CmpGreater = Cmp & Comparison::G;
761 bool CmpHasEqual = Cmp & Comparison::EQ;
762
763 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
764 if (CmpLess && IVBump < 0)
5
Assuming 'CmpLess' is true
6
Assuming 'IVBump' is >= 0
765 // Loop going while iv is "less" with the iv value going down. Must wrap.
766 return nullptr;
767
768 if (CmpGreater && IVBump > 0)
7
Assuming 'CmpGreater' is true
8
Assuming 'IVBump' is <= 0
9
Taking false branch
769 // Loop going while iv is "greater" with the iv value going up. Must wrap.
770 return nullptr;
771
772 // Phis that may feed into the loop.
773 LoopFeederMap LoopFeederPhi;
774
775 // Check if the initial value may be zero and can be decremented in the first
776 // iteration. If the value is zero, the endloop instruction will not decrement
777 // the loop counter, so we shouldn't generate a hardware loop in this case.
778 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
779 LoopFeederPhi))
780 return nullptr;
781
782 if (Start->isImm() && End->isImm()) {
10
Taking true branch
783 // Both, start and end are immediates.
784 int64_t StartV = Start->getImm();
785 int64_t EndV = End->getImm();
786 int64_t Dist = EndV - StartV;
787 if (Dist == 0)
11
Assuming 'Dist' is not equal to 0
12
Taking false branch
788 return nullptr;
789
790 bool Exact = (Dist % IVBump) == 0;
13
Division by zero
791
792 if (Cmp == Comparison::NE) {
793 if (!Exact)
794 return nullptr;
795 if ((Dist < 0) ^ (IVBump < 0))
796 return nullptr;
797 }
798
799 // For comparisons that include the final value (i.e. include equality
800 // with the final value), we need to increase the distance by 1.
801 if (CmpHasEqual)
802 Dist = Dist > 0 ? Dist+1 : Dist-1;
803
804 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
805 // CmpGreater should imply Dist < 0. These conditions could actually
806 // fail, for example, in unreachable code (which may still appear to be
807 // reachable in the CFG).
808 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
809 return nullptr;
810
811 // "Normalized" distance, i.e. with the bump set to +-1.
812 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
813 : (-Dist + (-IVBump - 1)) / (-IVBump);
814 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.")(static_cast <bool> (Dist1 > 0 && "Fishy thing. Both operands have the same sign."
) ? void (0) : __assert_fail ("Dist1 > 0 && \"Fishy thing. Both operands have the same sign.\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 814, __extension__
__PRETTY_FUNCTION__))
;
815
816 uint64_t Count = Dist1;
817
818 if (Count > 0xFFFFFFFFULL)
819 return nullptr;
820
821 return new CountValue(CountValue::CV_Immediate, Count);
822 }
823
824 // A general case: Start and End are some values, but the actual
825 // iteration count may not be available. If it is not, insert
826 // a computation of it into the preheader.
827
828 // If the induction variable bump is not a power of 2, quit.
829 // Othwerise we'd need a general integer division.
830 if (!isPowerOf2_64(std::abs(IVBump)))
831 return nullptr;
832
833 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
834 assert (PH && "Should have a preheader by now")(static_cast <bool> (PH && "Should have a preheader by now"
) ? void (0) : __assert_fail ("PH && \"Should have a preheader by now\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 834, __extension__
__PRETTY_FUNCTION__))
;
835 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
836 DebugLoc DL;
837 if (InsertPos != PH->end())
838 DL = InsertPos->getDebugLoc();
839
840 // If Start is an immediate and End is a register, the trip count
841 // will be "reg - imm". Hexagon's "subtract immediate" instruction
842 // is actually "reg + -imm".
843
844 // If the loop IV is going downwards, i.e. if the bump is negative,
845 // then the iteration count (computed as End-Start) will need to be
846 // negated. To avoid the negation, just swap Start and End.
847 if (IVBump < 0) {
848 std::swap(Start, End);
849 IVBump = -IVBump;
850 }
851 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
852 // Signedness, and "including equality" are preserved.
853
854 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
855 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
856
857 int64_t StartV = 0, EndV = 0;
858 if (Start->isImm())
859 StartV = Start->getImm();
860 if (End->isImm())
861 EndV = End->getImm();
862
863 int64_t AdjV = 0;
864 // To compute the iteration count, we would need this computation:
865 // Count = (End - Start + (IVBump-1)) / IVBump
866 // or, when CmpHasEqual:
867 // Count = (End - Start + (IVBump-1)+1) / IVBump
868 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
869 // generating an instruction specifically to add it if we can adjust
870 // the immediate values for Start or End.
871
872 if (CmpHasEqual) {
873 // Need to add 1 to the total iteration count.
874 if (Start->isImm())
875 StartV--;
876 else if (End->isImm())
877 EndV++;
878 else
879 AdjV += 1;
880 }
881
882 if (Cmp != Comparison::NE) {
883 if (Start->isImm())
884 StartV -= (IVBump-1);
885 else if (End->isImm())
886 EndV += (IVBump-1);
887 else
888 AdjV += (IVBump-1);
889 }
890
891 Register R = 0;
892 unsigned SR = 0;
893 if (Start->isReg()) {
894 R = Start->getReg();
895 SR = Start->getSubReg();
896 } else {
897 R = End->getReg();
898 SR = End->getSubReg();
899 }
900 const TargetRegisterClass *RC = MRI->getRegClass(R);
901 // Hardware loops cannot handle 64-bit registers. If it's a double
902 // register, it has to have a subregister.
903 if (!SR && RC == &Hexagon::DoubleRegsRegClass)
904 return nullptr;
905 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
906
907 // Compute DistR (register with the distance between Start and End).
908 Register DistR;
909 unsigned DistSR;
910
911 // Avoid special case, where the start value is an imm(0).
912 if (Start->isImm() && StartV == 0) {
913 DistR = End->getReg();
914 DistSR = End->getSubReg();
915 } else {
916 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
917 (RegToImm ? TII->get(Hexagon::A2_subri) :
918 TII->get(Hexagon::A2_addi));
919 if (RegToReg || RegToImm) {
920 Register SubR = MRI->createVirtualRegister(IntRC);
921 MachineInstrBuilder SubIB =
922 BuildMI(*PH, InsertPos, DL, SubD, SubR);
923
924 if (RegToReg)
925 SubIB.addReg(End->getReg(), 0, End->getSubReg())
926 .addReg(Start->getReg(), 0, Start->getSubReg());
927 else
928 SubIB.addImm(EndV)
929 .addReg(Start->getReg(), 0, Start->getSubReg());
930 DistR = SubR;
931 } else {
932 // If the loop has been unrolled, we should use the original loop count
933 // instead of recalculating the value. This will avoid additional
934 // 'Add' instruction.
935 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
936 if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
937 EndValInstr->getOperand(1).getSubReg() == 0 &&
938 EndValInstr->getOperand(2).getImm() == StartV) {
939 DistR = EndValInstr->getOperand(1).getReg();
940 } else {
941 Register SubR = MRI->createVirtualRegister(IntRC);
942 MachineInstrBuilder SubIB =
943 BuildMI(*PH, InsertPos, DL, SubD, SubR);
944 SubIB.addReg(End->getReg(), 0, End->getSubReg())
945 .addImm(-StartV);
946 DistR = SubR;
947 }
948 }
949 DistSR = 0;
950 }
951
952 // From DistR, compute AdjR (register with the adjusted distance).
953 Register AdjR;
954 unsigned AdjSR;
955
956 if (AdjV == 0) {
957 AdjR = DistR;
958 AdjSR = DistSR;
959 } else {
960 // Generate CountR = ADD DistR, AdjVal
961 Register AddR = MRI->createVirtualRegister(IntRC);
962 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
963 BuildMI(*PH, InsertPos, DL, AddD, AddR)
964 .addReg(DistR, 0, DistSR)
965 .addImm(AdjV);
966
967 AdjR = AddR;
968 AdjSR = 0;
969 }
970
971 // From AdjR, compute CountR (register with the final count).
972 Register CountR;
973 unsigned CountSR;
974
975 if (IVBump == 1) {
976 CountR = AdjR;
977 CountSR = AdjSR;
978 } else {
979 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
980 unsigned Shift = Log2_32(IVBump);
981
982 // Generate NormR = LSR DistR, Shift.
983 Register LsrR = MRI->createVirtualRegister(IntRC);
984 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
985 BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
986 .addReg(AdjR, 0, AdjSR)
987 .addImm(Shift);
988
989 CountR = LsrR;
990 CountSR = 0;
991 }
992
993 return new CountValue(CountValue::CV_Register, CountR, CountSR);
994}
995
996/// Return true if the operation is invalid within hardware loop.
997bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
998 bool IsInnerHWLoop) const {
999 // Call is not allowed because the callee may use a hardware loop except for
1000 // the case when the call never returns.
1001 if (MI->getDesc().isCall())
1002 return !TII->doesNotReturn(*MI);
1003
1004 // Check if the instruction defines a hardware loop register.
1005 using namespace Hexagon;
1006
1007 static const Register Regs01[] = { LC0, SA0, LC1, SA1 };
1008 static const Register Regs1[] = { LC1, SA1 };
1009 auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01, std::size(Regs01))
1010 : ArrayRef(Regs1, std::size(Regs1));
1011 for (Register R : CheckRegs)
1012 if (MI->modifiesRegister(R, TRI))
1013 return true;
1014
1015 return false;
1016}
1017
1018/// Return true if the loop contains an instruction that inhibits
1019/// the use of the hardware loop instruction.
1020bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
1021 bool IsInnerHWLoop) const {
1022 LLVM_DEBUG(dbgs() << "\nhw_loop head, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference
(**L->block_begin()); } } while (false)
1023 << printMBBReference(**L->block_begin()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference
(**L->block_begin()); } } while (false)
;
1024 for (MachineBasicBlock *MBB : L->getBlocks()) {
1025 for (const MachineInstr &MI : *MBB) {
1026 if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) {
1027 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nCannot convert to hw_loop due to:"
; MI.dump();; } } while (false)
1028 MI.dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nCannot convert to hw_loop due to:"
; MI.dump();; } } while (false)
;
1029 return true;
1030 }
1031 }
1032 }
1033 return false;
1034}
1035
1036/// Returns true if the instruction is dead. This was essentially
1037/// copied from DeadMachineInstructionElim::isDead, but with special cases
1038/// for inline asm, physical registers and instructions with side effects
1039/// removed.
1040bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
1041 SmallVectorImpl<MachineInstr *> &DeadPhis) const {
1042 // Examine each operand.
1043 for (const MachineOperand &MO : MI->operands()) {
1044 if (!MO.isReg() || !MO.isDef())
1045 continue;
1046
1047 Register Reg = MO.getReg();
1048 if (MRI->use_nodbg_empty(Reg))
1049 continue;
1050
1051 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
1052
1053 // This instruction has users, but if the only user is the phi node for the
1054 // parent block, and the only use of that phi node is this instruction, then
1055 // this instruction is dead: both it (and the phi node) can be removed.
1056 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
1057 use_nodbg_iterator End = MRI->use_nodbg_end();
1058 if (std::next(I) != End || !I->getParent()->isPHI())
1059 return false;
1060
1061 MachineInstr *OnePhi = I->getParent();
1062 for (const MachineOperand &OPO : OnePhi->operands()) {
1063 if (!OPO.isReg() || !OPO.isDef())
1064 continue;
1065
1066 Register OPReg = OPO.getReg();
1067 use_nodbg_iterator nextJ;
1068 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
1069 J != End; J = nextJ) {
1070 nextJ = std::next(J);
1071 MachineOperand &Use = *J;
1072 MachineInstr *UseMI = Use.getParent();
1073
1074 // If the phi node has a user that is not MI, bail.
1075 if (MI != UseMI)
1076 return false;
1077 }
1078 }
1079 DeadPhis.push_back(OnePhi);
1080 }
1081
1082 // If there are no defs with uses, the instruction is dead.
1083 return true;
1084}
1085
1086void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
1087 // This procedure was essentially copied from DeadMachineInstructionElim.
1088
1089 SmallVector<MachineInstr*, 1> DeadPhis;
1090 if (isDead(MI, DeadPhis)) {
1091 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "HW looping will remove: " <<
*MI; } } while (false)
;
1092
1093 // It is possible that some DBG_VALUE instructions refer to this
1094 // instruction. Examine each def operand for such references;
1095 // if found, mark the DBG_VALUE as undef (but don't delete it).
1096 for (const MachineOperand &MO : MI->operands()) {
1097 if (!MO.isReg() || !MO.isDef())
1098 continue;
1099 Register Reg = MO.getReg();
1100 // We use make_early_inc_range here because setReg below invalidates the
1101 // iterator.
1102 for (MachineOperand &MO :
1103 llvm::make_early_inc_range(MRI->use_operands(Reg))) {
1104 MachineInstr *UseMI = MO.getParent();
1105 if (UseMI == MI)
1106 continue;
1107 if (MO.isDebug())
1108 MO.setReg(0U);
1109 }
1110 }
1111
1112 MI->eraseFromParent();
1113 for (unsigned i = 0; i < DeadPhis.size(); ++i)
1114 DeadPhis[i]->eraseFromParent();
1115 }
1116}
1117
1118/// Check if the loop is a candidate for converting to a hardware
1119/// loop. If so, then perform the transformation.
1120///
1121/// This function works on innermost loops first. A loop can be converted
1122/// if it is a counting loop; either a register value or an immediate.
1123///
1124/// The code makes several assumptions about the representation of the loop
1125/// in llvm.
1126bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
1127 bool &RecL0used,
1128 bool &RecL1used) {
1129 // This is just to confirm basic correctness.
1130 assert(L->getHeader() && "Loop without a header?")(static_cast <bool> (L->getHeader() && "Loop without a header?"
) ? void (0) : __assert_fail ("L->getHeader() && \"Loop without a header?\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1130, __extension__
__PRETTY_FUNCTION__))
;
1131
1132 bool Changed = false;
1133 bool L0Used = false;
1134 bool L1Used = false;
1135
1136 // Process nested loops first.
1137 for (MachineLoop *I : *L) {
1138 Changed |= convertToHardwareLoop(I, RecL0used, RecL1used);
1139 L0Used |= RecL0used;
1140 L1Used |= RecL1used;
1141 }
1142
1143 // If a nested loop has been converted, then we can't convert this loop.
1144 if (Changed && L0Used && L1Used)
1145 return Changed;
1146
1147 unsigned LOOP_i;
1148 unsigned LOOP_r;
1149 unsigned ENDLOOP;
1150
1151 // Flag used to track loopN instruction:
1152 // 1 - Hardware loop is being generated for the inner most loop.
1153 // 0 - Hardware loop is being generated for the outer loop.
1154 unsigned IsInnerHWLoop = 1;
1155
1156 if (L0Used) {
1157 LOOP_i = Hexagon::J2_loop1i;
1158 LOOP_r = Hexagon::J2_loop1r;
1159 ENDLOOP = Hexagon::ENDLOOP1;
1160 IsInnerHWLoop = 0;
1161 } else {
1162 LOOP_i = Hexagon::J2_loop0i;
1163 LOOP_r = Hexagon::J2_loop0r;
1164 ENDLOOP = Hexagon::ENDLOOP0;
1165 }
1166
1167#ifndef NDEBUG
1168 // Stop trying after reaching the limit (if any).
1169 int Limit = HWLoopLimit;
1170 if (Limit >= 0) {
1171 if (Counter >= HWLoopLimit)
1172 return false;
1173 Counter++;
1174 }
1175#endif
1176
1177 // Does the loop contain any invalid instructions?
1178 if (containsInvalidInstruction(L, IsInnerHWLoop))
1179 return false;
1180
1181 MachineBasicBlock *LastMBB = L->findLoopControlBlock();
1182 // Don't generate hw loop if the loop has more than one exit.
1183 if (!LastMBB)
1184 return false;
1185
1186 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1187 if (LastI == LastMBB->end())
1188 return false;
1189
1190 // Is the induction variable bump feeding the latch condition?
1191 if (!fixupInductionVariable(L))
1192 return false;
1193
1194 // Ensure the loop has a preheader: the loop instruction will be
1195 // placed there.
1196 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
1197 if (!Preheader) {
1198 Preheader = createPreheaderForLoop(L);
1199 if (!Preheader)
1200 return false;
1201 }
1202
1203 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1204
1205 SmallVector<MachineInstr*, 2> OldInsts;
1206 // Are we able to determine the trip count for the loop?
1207 CountValue *TripCount = getLoopTripCount(L, OldInsts);
1208 if (!TripCount)
1209 return false;
1210
1211 // Is the trip count available in the preheader?
1212 if (TripCount->isReg()) {
1213 // There will be a use of the register inserted into the preheader,
1214 // so make sure that the register is actually defined at that point.
1215 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1216 MachineBasicBlock *BBDef = TCDef->getParent();
1217 if (!MDT->dominates(BBDef, Preheader))
1218 return false;
1219 }
1220
1221 // Determine the loop start.
1222 MachineBasicBlock *TopBlock = L->getTopBlock();
1223 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1224 MachineBasicBlock *LoopStart = nullptr;
1225 if (ExitingBlock != L->getLoopLatch()) {
1226 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1227 SmallVector<MachineOperand, 2> Cond;
1228
1229 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
1230 return false;
1231
1232 if (L->contains(TB))
1233 LoopStart = TB;
1234 else if (L->contains(FB))
1235 LoopStart = FB;
1236 else
1237 return false;
1238 }
1239 else
1240 LoopStart = TopBlock;
1241
1242 // Convert the loop to a hardware loop.
1243 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "Change to hardware loop at ";
L->dump(); } } while (false)
;
1244 DebugLoc DL;
1245 if (InsertPos != Preheader->end())
1246 DL = InsertPos->getDebugLoc();
1247
1248 if (TripCount->isReg()) {
1249 // Create a copy of the loop count register.
1250 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1251 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1252 .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1253 // Add the Loop instruction to the beginning of the loop.
1254 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
1255 .addReg(CountReg);
1256 } else {
1257 assert(TripCount->isImm() && "Expecting immediate value for trip count")(static_cast <bool> (TripCount->isImm() && "Expecting immediate value for trip count"
) ? void (0) : __assert_fail ("TripCount->isImm() && \"Expecting immediate value for trip count\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1257, __extension__
__PRETTY_FUNCTION__))
;
1258 // Add the Loop immediate instruction to the beginning of the loop,
1259 // if the immediate fits in the instructions. Otherwise, we need to
1260 // create a new virtual register.
1261 int64_t CountImm = TripCount->getImm();
1262 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
1263 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1264 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1265 .addImm(CountImm);
1266 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
1267 .addMBB(LoopStart).addReg(CountReg);
1268 } else
1269 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
1270 .addMBB(LoopStart).addImm(CountImm);
1271 }
1272
1273 // Make sure the loop start always has a reference in the CFG.
1274 LoopStart->setMachineBlockAddressTaken();
1275
1276 // Replace the loop branch with an endloop instruction.
1277 DebugLoc LastIDL = LastI->getDebugLoc();
1278 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
1279
1280 // The loop ends with either:
1281 // - a conditional branch followed by an unconditional branch, or
1282 // - a conditional branch to the loop start.
1283 if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1284 LastI->getOpcode() == Hexagon::J2_jumpf) {
1285 // Delete one and change/add an uncond. branch to out of the loop.
1286 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1287 LastI = LastMBB->erase(LastI);
1288 if (!L->contains(BranchTarget)) {
1289 if (LastI != LastMBB->end())
1290 LastI = LastMBB->erase(LastI);
1291 SmallVector<MachineOperand, 0> Cond;
1292 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1293 }
1294 } else {
1295 // Conditional branch to loop start; just delete it.
1296 LastMBB->erase(LastI);
1297 }
1298 delete TripCount;
1299
1300 // The induction operation and the comparison may now be
1301 // unneeded. If these are unneeded, then remove them.
1302 for (unsigned i = 0; i < OldInsts.size(); ++i)
1303 removeIfDead(OldInsts[i]);
1304
1305 ++NumHWLoops;
1306
1307 // Set RecL1used and RecL0used only after hardware loop has been
1308 // successfully generated. Doing it earlier can cause wrong loop instruction
1309 // to be used.
1310 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
1311 RecL1used = true;
1312 else
1313 RecL0used = true;
1314
1315 return true;
1316}
1317
1318bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1319 MachineInstr *CmpI) {
1320 assert (BumpI != CmpI && "Bump and compare in the same instruction?")(static_cast <bool> (BumpI != CmpI && "Bump and compare in the same instruction?"
) ? void (0) : __assert_fail ("BumpI != CmpI && \"Bump and compare in the same instruction?\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1320, __extension__
__PRETTY_FUNCTION__))
;
1321
1322 MachineBasicBlock *BB = BumpI->getParent();
1323 if (CmpI->getParent() != BB)
1324 return false;
1325
1326 using instr_iterator = MachineBasicBlock::instr_iterator;
1327
1328 // Check if things are in order to begin with.
1329 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
1330 if (&*I == CmpI)
1331 return true;
1332
1333 // Out of order.
1334 Register PredR = CmpI->getOperand(0).getReg();
1335 bool FoundBump = false;
1336 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
1337 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1338 MachineInstr *In = &*I;
1339 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1340 MachineOperand &MO = In->getOperand(i);
1341 if (MO.isReg() && MO.isUse()) {
1342 if (MO.getReg() == PredR) // Found an intervening use of PredR.
1343 return false;
1344 }
1345 }
1346
1347 if (In == BumpI) {
1348 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
1349 FoundBump = true;
1350 break;
1351 }
1352 }
1353 assert (FoundBump && "Cannot determine instruction order")(static_cast <bool> (FoundBump && "Cannot determine instruction order"
) ? void (0) : __assert_fail ("FoundBump && \"Cannot determine instruction order\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1353, __extension__
__PRETTY_FUNCTION__))
;
1354 return FoundBump;
1355}
1356
1357/// This function is required to break recursion. Visiting phis in a loop may
1358/// result in recursion during compilation. We break the recursion by making
1359/// sure that we visit a MachineOperand and its definition in a
1360/// MachineInstruction only once. If we attempt to visit more than once, then
1361/// there is recursion, and will return false.
1362bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
1363 MachineInstr *MI,
1364 const MachineOperand *MO,
1365 LoopFeederMap &LoopFeederPhi) const {
1366 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
1367 LLVM_DEBUG(dbgs() << "\nhw_loop head, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference
(**L->block_begin()); } } while (false)
1368 << printMBBReference(**L->block_begin()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\nhw_loop head, " << printMBBReference
(**L->block_begin()); } } while (false)
;
1369 // Ignore all BBs that form Loop.
1370 if (llvm::is_contained(L->getBlocks(), A))
1371 return false;
1372 MachineInstr *Def = MRI->getVRegDef(MO->getReg());
1373 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
1374 return true;
1375 } else
1376 // Already visited node.
1377 return false;
1378}
1379
1380/// Return true if a Phi may generate a value that can underflow.
1381/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1382bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1383 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
1384 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
1385 assert(Phi->isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi->isPHI() && "Expecting a Phi."
) ? void (0) : __assert_fail ("Phi->isPHI() && \"Expecting a Phi.\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1385, __extension__
__PRETTY_FUNCTION__))
;
1386 // Walk through each Phi, and its used operands. Make sure that
1387 // if there is recursion in Phi, we won't generate hardware loops.
1388 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
1389 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
1390 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
1391 Phi->getParent(), L, LoopFeederPhi))
1392 return true;
1393 return false;
1394}
1395
1396/// Return true if the induction variable can underflow in the first iteration.
1397/// An example, is an initial unsigned value that is 0 and is decrement in the
1398/// first itertion of a do-while loop. In this case, we cannot generate a
1399/// hardware loop because the endloop instruction does not decrement the loop
1400/// counter if it is <= 1. We only need to perform this analysis if the
1401/// initial value is a register.
1402///
1403/// This function assumes the initial value may underfow unless proven
1404/// otherwise. If the type is signed, then we don't care because signed
1405/// underflow is undefined. We attempt to prove the initial value is not
1406/// zero by perfoming a crude analysis of the loop counter. This function
1407/// checks if the initial value is used in any comparison prior to the loop
1408/// and, if so, assumes the comparison is a range check. This is inexact,
1409/// but will catch the simple cases.
1410bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1411 const MachineOperand *InitVal, const MachineOperand *EndVal,
1412 MachineBasicBlock *MBB, MachineLoop *L,
1413 LoopFeederMap &LoopFeederPhi) const {
1414 // Only check register values since they are unknown.
1415 if (!InitVal->isReg())
1416 return false;
1417
1418 if (!EndVal->isImm())
1419 return false;
1420
1421 // A register value that is assigned an immediate is a known value, and it
1422 // won't underflow in the first iteration.
1423 int64_t Imm;
1424 if (checkForImmediate(*InitVal, Imm))
1425 return (EndVal->getImm() == Imm);
1426
1427 Register Reg = InitVal->getReg();
1428
1429 // We don't know the value of a physical register.
1430 if (!Reg.isVirtual())
1431 return true;
1432
1433 MachineInstr *Def = MRI->getVRegDef(Reg);
1434 if (!Def)
1435 return true;
1436
1437 // If the initial value is a Phi or copy and the operands may not underflow,
1438 // then the definition cannot be underflow either.
1439 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
1440 L, LoopFeederPhi))
1441 return false;
1442 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
1443 EndVal, Def->getParent(),
1444 L, LoopFeederPhi))
1445 return false;
1446
1447 // Iterate over the uses of the initial value. If the initial value is used
1448 // in a compare, then we assume this is a range check that ensures the loop
1449 // doesn't underflow. This is not an exact test and should be improved.
1450 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
1451 E = MRI->use_instr_nodbg_end(); I != E; ++I) {
1452 MachineInstr *MI = &*I;
1453 Register CmpReg1, CmpReg2;
1454 int64_t CmpMask = 0, CmpValue = 0;
1455
1456 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
1457 continue;
1458
1459 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1460 SmallVector<MachineOperand, 2> Cond;
1461 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
1462 continue;
1463
1464 Comparison::Kind Cmp =
1465 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
1466 if (Cmp == 0)
1467 continue;
1468 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
1469 Cmp = Comparison::getNegatedComparison(Cmp);
1470 if (CmpReg2 != 0 && CmpReg2 == Reg)
1471 Cmp = Comparison::getSwappedComparison(Cmp);
1472
1473 // Signed underflow is undefined.
1474 if (Comparison::isSigned(Cmp))
1475 return false;
1476
1477 // Check if there is a comparison of the initial value. If the initial value
1478 // is greater than or not equal to another value, then assume this is a
1479 // range check.
1480 if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
1481 return false;
1482 }
1483
1484 // OK - this is a hack that needs to be improved. We really need to analyze
1485 // the instructions performed on the initial value. This works on the simplest
1486 // cases only.
1487 if (!Def->isCopy() && !Def->isPHI())
1488 return false;
1489
1490 return true;
1491}
1492
1493bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
1494 int64_t &Val) const {
1495 if (MO.isImm()) {
1496 Val = MO.getImm();
1497 return true;
1498 }
1499 if (!MO.isReg())
1500 return false;
1501
1502 // MO is a register. Check whether it is defined as an immediate value,
1503 // and if so, get the value of it in TV. That value will then need to be
1504 // processed to handle potential subregisters in MO.
1505 int64_t TV;
1506
1507 Register R = MO.getReg();
1508 if (!R.isVirtual())
1509 return false;
1510 MachineInstr *DI = MRI->getVRegDef(R);
1511 unsigned DOpc = DI->getOpcode();
1512 switch (DOpc) {
1513 case TargetOpcode::COPY:
1514 case Hexagon::A2_tfrsi:
1515 case Hexagon::A2_tfrpi:
1516 case Hexagon::CONST32:
1517 case Hexagon::CONST64:
1518 // Call recursively to avoid an extra check whether operand(1) is
1519 // indeed an immediate (it could be a global address, for example),
1520 // plus we can handle COPY at the same time.
1521 if (!checkForImmediate(DI->getOperand(1), TV))
1522 return false;
1523 break;
1524 case Hexagon::A2_combineii:
1525 case Hexagon::A4_combineir:
1526 case Hexagon::A4_combineii:
1527 case Hexagon::A4_combineri:
1528 case Hexagon::A2_combinew: {
1529 const MachineOperand &S1 = DI->getOperand(1);
1530 const MachineOperand &S2 = DI->getOperand(2);
1531 int64_t V1, V2;
1532 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
1533 return false;
1534 TV = V2 | (static_cast<uint64_t>(V1) << 32);
1535 break;
1536 }
1537 case TargetOpcode::REG_SEQUENCE: {
1538 const MachineOperand &S1 = DI->getOperand(1);
1539 const MachineOperand &S3 = DI->getOperand(3);
1540 int64_t V1, V3;
1541 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
1542 return false;
1543 unsigned Sub2 = DI->getOperand(2).getImm();
1544 unsigned Sub4 = DI->getOperand(4).getImm();
1545 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
1546 TV = V1 | (V3 << 32);
1547 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
1548 TV = V3 | (V1 << 32);
1549 else
1550 llvm_unreachable("Unexpected form of REG_SEQUENCE")::llvm::llvm_unreachable_internal("Unexpected form of REG_SEQUENCE"
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1550)
;
1551 break;
1552 }
1553
1554 default:
1555 return false;
1556 }
1557
1558 // By now, we should have successfully obtained the immediate value defining
1559 // the register referenced in MO. Handle a potential use of a subregister.
1560 switch (MO.getSubReg()) {
1561 case Hexagon::isub_lo:
1562 Val = TV & 0xFFFFFFFFULL;
1563 break;
1564 case Hexagon::isub_hi:
1565 Val = (TV >> 32) & 0xFFFFFFFFULL;
1566 break;
1567 default:
1568 Val = TV;
1569 break;
1570 }
1571 return true;
1572}
1573
1574void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1575 if (MO.isImm()) {
1576 MO.setImm(Val);
1577 return;
1578 }
1579
1580 assert(MO.isReg())(static_cast <bool> (MO.isReg()) ? void (0) : __assert_fail
("MO.isReg()", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp"
, 1580, __extension__ __PRETTY_FUNCTION__))
;
1581 Register R = MO.getReg();
1582 MachineInstr *DI = MRI->getVRegDef(R);
1583
1584 const TargetRegisterClass *RC = MRI->getRegClass(R);
1585 Register NewR = MRI->createVirtualRegister(RC);
1586 MachineBasicBlock &B = *DI->getParent();
1587 DebugLoc DL = DI->getDebugLoc();
1588 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
1589 MO.setReg(NewR);
1590}
1591
1592bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1593 MachineBasicBlock *Header = L->getHeader();
1594 MachineBasicBlock *Latch = L->getLoopLatch();
1595 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1596
1597 if (!(Header && Latch && ExitingBlock))
1598 return false;
1599
1600 // These data structures follow the same concept as the corresponding
1601 // ones in findInductionRegister (where some comments are).
1602 using RegisterBump = std::pair<Register, int64_t>;
1603 using RegisterInduction = std::pair<Register, RegisterBump>;
1604 using RegisterInductionSet = std::set<RegisterInduction>;
1605
1606 // Register candidates for induction variables, with their associated bumps.
1607 RegisterInductionSet IndRegs;
1608
1609 // Look for induction patterns:
1610 // %1 = PHI ..., [ latch, %2 ]
1611 // %2 = ADD %1, imm
1612 using instr_iterator = MachineBasicBlock::instr_iterator;
1613
1614 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1615 I != E && I->isPHI(); ++I) {
1616 MachineInstr *Phi = &*I;
1617
1618 // Have a PHI instruction.
1619 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1620 if (Phi->getOperand(i+1).getMBB() != Latch)
1621 continue;
1622
1623 Register PhiReg = Phi->getOperand(i).getReg();
1624 MachineInstr *DI = MRI->getVRegDef(PhiReg);
1625
1626 if (DI->getDesc().isAdd()) {
1627 // If the register operand to the add/sub is the PHI we are looking
1628 // at, this meets the induction pattern.
1629 Register IndReg = DI->getOperand(1).getReg();
1630 MachineOperand &Opnd2 = DI->getOperand(2);
1631 int64_t V;
1632 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
1633 Register UpdReg = DI->getOperand(0).getReg();
1634 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1635 }
1636 }
1637 } // for (i)
1638 } // for (instr)
1639
1640 if (IndRegs.empty())
1641 return false;
1642
1643 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1644 SmallVector<MachineOperand,2> Cond;
1645 // analyzeBranch returns true if it fails to analyze branch.
1646 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
1647 if (NotAnalyzed || Cond.empty())
1648 return false;
1649
1650 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
1651 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
1652 SmallVector<MachineOperand,2> LCond;
1653 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
1654 if (NotAnalyzed)
1655 return false;
1656
1657 // Since latch is not the exiting block, the latch branch should be an
1658 // unconditional branch to the loop header.
1659 if (TB == Latch)
1660 TB = (LTB == Header) ? LTB : LFB;
1661 else
1662 FB = (LTB == Header) ? LTB : LFB;
1663 }
1664 if (TB != Header) {
1665 if (FB != Header) {
1666 // The latch/exit block does not go back to the header.
1667 return false;
1668 }
1669 // FB is the header (i.e., uncond. jump to branch header)
1670 // In this case, the LoopBody -> TB should not be a back edge otherwise
1671 // it could result in an infinite loop after conversion to hw_loop.
1672 // This case can happen when the Latch has two jumps like this:
1673 // Jmp_c OuterLoopHeader <-- TB
1674 // Jmp InnerLoopHeader <-- FB
1675 if (MDT->dominates(TB, FB))
1676 return false;
1677 }
1678
1679 // Expecting a predicate register as a condition. It won't be a hardware
1680 // predicate register at this point yet, just a vreg.
1681 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
1682 // into Cond, followed by the predicate register. For non-negated branches
1683 // it's just the register.
1684 unsigned CSz = Cond.size();
1685 if (CSz != 1 && CSz != 2)
1686 return false;
1687
1688 if (!Cond[CSz-1].isReg())
1689 return false;
1690
1691 Register P = Cond[CSz - 1].getReg();
1692 MachineInstr *PredDef = MRI->getVRegDef(P);
1693
1694 if (!PredDef->isCompare())
1695 return false;
1696
1697 SmallSet<Register,2> CmpRegs;
1698 MachineOperand *CmpImmOp = nullptr;
1699
1700 // Go over all operands to the compare and look for immediate and register
1701 // operands. Assume that if the compare has a single register use and a
1702 // single immediate operand, then the register is being compared with the
1703 // immediate value.
1704 for (MachineOperand &MO : PredDef->operands()) {
1705 if (MO.isReg()) {
1706 // Skip all implicit references. In one case there was:
1707 // %140 = FCMPUGT32_rr %138, %139, implicit %usr
1708 if (MO.isImplicit())
1709 continue;
1710 if (MO.isUse()) {
1711 if (!isImmediate(MO)) {
1712 CmpRegs.insert(MO.getReg());
1713 continue;
1714 }
1715 // Consider the register to be the "immediate" operand.
1716 if (CmpImmOp)
1717 return false;
1718 CmpImmOp = &MO;
1719 }
1720 } else if (MO.isImm()) {
1721 if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
1722 return false;
1723 CmpImmOp = &MO;
1724 }
1725 }
1726
1727 if (CmpRegs.empty())
1728 return false;
1729
1730 // Check if the compared register follows the order we want. Fix if needed.
1731 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1732 I != E; ++I) {
1733 // This is a success. If the register used in the comparison is one that
1734 // we have identified as a bumped (updated) induction register, there is
1735 // nothing to do.
1736 if (CmpRegs.count(I->first))
1737 return true;
1738
1739 // Otherwise, if the register being compared comes out of a PHI node,
1740 // and has been recognized as following the induction pattern, and is
1741 // compared against an immediate, we can fix it.
1742 const RegisterBump &RB = I->second;
1743 if (CmpRegs.count(RB.first)) {
1744 if (!CmpImmOp) {
1745 // If both operands to the compare instruction are registers, see if
1746 // it can be changed to use induction register as one of the operands.
1747 MachineInstr *IndI = nullptr;
1748 MachineInstr *nonIndI = nullptr;
1749 MachineOperand *IndMO = nullptr;
1750 MachineOperand *nonIndMO = nullptr;
1751
1752 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
1753 MachineOperand &MO = PredDef->getOperand(i);
1754 if (MO.isReg() && MO.getReg() == RB.first) {
1755 LLVM_DEBUG(dbgs() << "\n DefMI(" << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\n DefMI(" << i <<
") = " << *(MRI->getVRegDef(I->first)); } } while
(false)
1756 << ") = " << *(MRI->getVRegDef(I->first)))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\n DefMI(" << i <<
") = " << *(MRI->getVRegDef(I->first)); } } while
(false)
;
1757 if (IndI)
1758 return false;
1759
1760 IndI = MRI->getVRegDef(I->first);
1761 IndMO = &MO;
1762 } else if (MO.isReg()) {
1763 LLVM_DEBUG(dbgs() << "\n DefMI(" << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\n DefMI(" << i <<
") = " << *(MRI->getVRegDef(MO.getReg())); } } while
(false)
1764 << ") = " << *(MRI->getVRegDef(MO.getReg())))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("hwloops")) { dbgs() << "\n DefMI(" << i <<
") = " << *(MRI->getVRegDef(MO.getReg())); } } while
(false)
;
1765 if (nonIndI)
1766 return false;
1767
1768 nonIndI = MRI->getVRegDef(MO.getReg());
1769 nonIndMO = &MO;
1770 }
1771 }
1772 if (IndI && nonIndI &&
1773 nonIndI->getOpcode() == Hexagon::A2_addi &&
1774 nonIndI->getOperand(2).isImm() &&
1775 nonIndI->getOperand(2).getImm() == - RB.second) {
1776 bool Order = orderBumpCompare(IndI, PredDef);
1777 if (Order) {
1778 IndMO->setReg(I->first);
1779 nonIndMO->setReg(nonIndI->getOperand(1).getReg());
1780 return true;
1781 }
1782 }
1783 return false;
1784 }
1785
1786 // It is not valid to do this transformation on an unsigned comparison
1787 // because it may underflow.
1788 Comparison::Kind Cmp =
1789 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
1790 if (!Cmp || Comparison::isUnsigned(Cmp))
1791 return false;
1792
1793 // If the register is being compared against an immediate, try changing
1794 // the compare instruction to use induction register and adjust the
1795 // immediate operand.
1796 int64_t CmpImm = getImmediate(*CmpImmOp);
1797 int64_t V = RB.second;
1798 // Handle Overflow (64-bit).
1799 if (((V > 0) && (CmpImm > INT64_MAX(9223372036854775807L) - V)) ||
1800 ((V < 0) && (CmpImm < INT64_MIN(-9223372036854775807L -1) - V)))
1801 return false;
1802 CmpImm += V;
1803 // Most comparisons of register against an immediate value allow
1804 // the immediate to be constant-extended. There are some exceptions
1805 // though. Make sure the new combination will work.
1806 if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) &&
1807 !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false))
1808 return false;
1809
1810 // Make sure that the compare happens after the bump. Otherwise,
1811 // after the fixup, the compare would use a yet-undefined register.
1812 MachineInstr *BumpI = MRI->getVRegDef(I->first);
1813 bool Order = orderBumpCompare(BumpI, PredDef);
1814 if (!Order)
1815 return false;
1816
1817 // Finally, fix the compare instruction.
1818 setImmediate(*CmpImmOp, CmpImm);
1819 for (MachineOperand &MO : PredDef->operands()) {
1820 if (MO.isReg() && MO.getReg() == RB.first) {
1821 MO.setReg(I->first);
1822 return true;
1823 }
1824 }
1825 }
1826 }
1827
1828 return false;
1829}
1830
1831/// createPreheaderForLoop - Create a preheader for a given loop.
1832MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1833 MachineLoop *L) {
1834 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
1835 return TmpPH;
1836 if (!HWCreatePreheader)
1837 return nullptr;
1838
1839 MachineBasicBlock *Header = L->getHeader();
1840 MachineBasicBlock *Latch = L->getLoopLatch();
1841 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1842 MachineFunction *MF = Header->getParent();
1843 DebugLoc DL;
1844
1845#ifndef NDEBUG
1846 if ((!PHFn.empty()) && (PHFn != MF->getName()))
1847 return nullptr;
1848#endif
1849
1850 if (!Latch || !ExitingBlock || Header->hasAddressTaken())
1851 return nullptr;
1852
1853 using instr_iterator = MachineBasicBlock::instr_iterator;
1854
1855 // Verify that all existing predecessors have analyzable branches
1856 // (or no branches at all).
1857 using MBBVector = std::vector<MachineBasicBlock *>;
1858
1859 MBBVector Preds(Header->pred_begin(), Header->pred_end());
1860 SmallVector<MachineOperand,2> Tmp1;
1861 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1862
1863 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
1864 return nullptr;
1865
1866 for (MachineBasicBlock *PB : Preds) {
1867 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
1868 if (NotAnalyzed)
1869 return nullptr;
1870 }
1871
1872 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1873 MF->insert(Header->getIterator(), NewPH);
1874
1875 if (Header->pred_size() > 2) {
1876 // Ensure that the header has only two predecessors: the preheader and
1877 // the loop latch. Any additional predecessors of the header should
1878 // join at the newly created preheader. Inspect all PHI nodes from the
1879 // header and create appropriate corresponding PHI nodes in the preheader.
1880
1881 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1882 I != E && I->isPHI(); ++I) {
1883 MachineInstr *PN = &*I;
1884
1885 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1886 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1887 NewPH->insert(NewPH->end(), NewPN);
1888
1889 Register PR = PN->getOperand(0).getReg();
1890 const TargetRegisterClass *RC = MRI->getRegClass(PR);
1891 Register NewPR = MRI->createVirtualRegister(RC);
1892 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1893
1894 // Copy all non-latch operands of a header's PHI node to the newly
1895 // created PHI node in the preheader.
1896 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1897 Register PredR = PN->getOperand(i).getReg();
1898 unsigned PredRSub = PN->getOperand(i).getSubReg();
1899 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1900 if (PredB == Latch)
1901 continue;
1902
1903 MachineOperand MO = MachineOperand::CreateReg(PredR, false);
1904 MO.setSubReg(PredRSub);
1905 NewPN->addOperand(MO);
1906 NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1907 }
1908
1909 // Remove copied operands from the old PHI node and add the value
1910 // coming from the preheader's PHI.
1911 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1912 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1913 if (PredB != Latch) {
1914 PN->removeOperand(i+1);
1915 PN->removeOperand(i);
1916 }
1917 }
1918 PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1919 PN->addOperand(MachineOperand::CreateMBB(NewPH));
1920 }
1921 } else {
1922 assert(Header->pred_size() == 2)(static_cast <bool> (Header->pred_size() == 2) ? void
(0) : __assert_fail ("Header->pred_size() == 2", "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp"
, 1922, __extension__ __PRETTY_FUNCTION__))
;
1923
1924 // The header has only two predecessors, but the non-latch predecessor
1925 // is not a preheader (e.g. it has other successors, etc.)
1926 // In such a case we don't need any extra PHI nodes in the new preheader,
1927 // all we need is to adjust existing PHIs in the header to now refer to
1928 // the new preheader.
1929 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1930 I != E && I->isPHI(); ++I) {
1931 MachineInstr *PN = &*I;
1932 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1933 MachineOperand &MO = PN->getOperand(i+1);
1934 if (MO.getMBB() != Latch)
1935 MO.setMBB(NewPH);
1936 }
1937 }
1938 }
1939
1940 // "Reroute" the CFG edges to link in the new preheader.
1941 // If any of the predecessors falls through to the header, insert a branch
1942 // to the new preheader in that place.
1943 SmallVector<MachineOperand,1> Tmp2;
1944 SmallVector<MachineOperand,1> EmptyCond;
1945
1946 TB = FB = nullptr;
1947
1948 for (MachineBasicBlock *PB : Preds) {
1949 if (PB != Latch) {
1950 Tmp2.clear();
1951 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
1952 (void)NotAnalyzed; // suppress compiler warning
1953 assert (!NotAnalyzed && "Should be analyzable!")(static_cast <bool> (!NotAnalyzed && "Should be analyzable!"
) ? void (0) : __assert_fail ("!NotAnalyzed && \"Should be analyzable!\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1953, __extension__
__PRETTY_FUNCTION__))
;
1954 if (TB != Header && (Tmp2.empty() || FB != Header))
1955 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1956 PB->ReplaceUsesOfBlockWith(Header, NewPH);
1957 }
1958 }
1959
1960 // It can happen that the latch block will fall through into the header.
1961 // Insert an unconditional branch to the header.
1962 TB = FB = nullptr;
1963 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
1964 (void)LatchNotAnalyzed; // suppress compiler warning
1965 assert (!LatchNotAnalyzed && "Should be analyzable!")(static_cast <bool> (!LatchNotAnalyzed && "Should be analyzable!"
) ? void (0) : __assert_fail ("!LatchNotAnalyzed && \"Should be analyzable!\""
, "llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp", 1965, __extension__
__PRETTY_FUNCTION__))
;
1966 if (!TB && !FB)
1967 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1968
1969 // Finally, the branch from the preheader to the header.
1970 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1971 NewPH->addSuccessor(Header);
1972
1973 MachineLoop *ParentLoop = L->getParentLoop();
1974 if (ParentLoop)
1975 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
1976
1977 // Update the dominator information with the new preheader.
1978 if (MDT) {
1979 if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
1980 if (MachineDomTreeNode *DHN = HN->getIDom()) {
1981 MDT->addNewBlock(NewPH, DHN->getBlock());
1982 MDT->changeImmediateDominator(Header, NewPH);
1983 }
1984 }
1985 }
1986
1987 return NewPH;
1988}