| File: | build/source/llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp |
| Warning: | line 2916, column 10 1st function call argument is an uninitialized value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | ||||
| 9 | #include "HexagonISelLowering.h" | |||
| 10 | #include "HexagonRegisterInfo.h" | |||
| 11 | #include "HexagonSubtarget.h" | |||
| 12 | #include "llvm/ADT/SetVector.h" | |||
| 13 | #include "llvm/ADT/SmallVector.h" | |||
| 14 | #include "llvm/Analysis/MemoryLocation.h" | |||
| 15 | #include "llvm/CodeGen/MachineBasicBlock.h" | |||
| 16 | #include "llvm/CodeGen/MachineFunction.h" | |||
| 17 | #include "llvm/CodeGen/MachineInstr.h" | |||
| 18 | #include "llvm/CodeGen/MachineOperand.h" | |||
| 19 | #include "llvm/CodeGen/MachineRegisterInfo.h" | |||
| 20 | #include "llvm/CodeGen/TargetInstrInfo.h" | |||
| 21 | #include "llvm/IR/IntrinsicsHexagon.h" | |||
| 22 | #include "llvm/Support/CommandLine.h" | |||
| 23 | ||||
| 24 | #include <algorithm> | |||
| 25 | #include <string> | |||
| 26 | #include <utility> | |||
| 27 | ||||
| 28 | using namespace llvm; | |||
| 29 | ||||
| 30 | static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen", | |||
| 31 | cl::Hidden, cl::init(16), | |||
| 32 | cl::desc("Lower threshold (in bytes) for widening to HVX vectors")); | |||
| 33 | ||||
| 34 | static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 }; | |||
| 35 | static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; | |||
| 36 | static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; | |||
| 37 | static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 }; | |||
| 38 | ||||
| 39 | static std::tuple<unsigned, unsigned, unsigned> getIEEEProperties(MVT Ty) { | |||
| 40 | // For a float scalar type, return (exp-bits, exp-bias, fraction-bits) | |||
| 41 | MVT ElemTy = Ty.getScalarType(); | |||
| 42 | switch (ElemTy.SimpleTy) { | |||
| 43 | case MVT::f16: | |||
| 44 | return std::make_tuple(5, 15, 10); | |||
| 45 | case MVT::f32: | |||
| 46 | return std::make_tuple(8, 127, 23); | |||
| 47 | case MVT::f64: | |||
| 48 | return std::make_tuple(11, 1023, 52); | |||
| 49 | default: | |||
| 50 | break; | |||
| 51 | } | |||
| 52 | llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str())::llvm::llvm_unreachable_internal(("Unexpected type: " + EVT( ElemTy).getEVTString()).c_str(), "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 52); | |||
| 53 | } | |||
| 54 | ||||
| 55 | void | |||
| 56 | HexagonTargetLowering::initializeHVXLowering() { | |||
| 57 | if (Subtarget.useHVX64BOps()) { | |||
| 58 | addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass); | |||
| 59 | addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass); | |||
| 60 | addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass); | |||
| 61 | addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass); | |||
| 62 | addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass); | |||
| 63 | addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass); | |||
| 64 | // These "short" boolean vector types should be legal because | |||
| 65 | // they will appear as results of vector compares. If they were | |||
| 66 | // not legal, type legalization would try to make them legal | |||
| 67 | // and that would require using operations that do not use or | |||
| 68 | // produce such types. That, in turn, would imply using custom | |||
| 69 | // nodes, which would be unoptimizable by the DAG combiner. | |||
| 70 | // The idea is to rely on target-independent operations as much | |||
| 71 | // as possible. | |||
| 72 | addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass); | |||
| 73 | addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); | |||
| 74 | addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); | |||
| 75 | } else if (Subtarget.useHVX128BOps()) { | |||
| 76 | addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass); | |||
| 77 | addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass); | |||
| 78 | addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass); | |||
| 79 | addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass); | |||
| 80 | addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass); | |||
| 81 | addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass); | |||
| 82 | addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); | |||
| 83 | addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); | |||
| 84 | addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass); | |||
| 85 | if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) { | |||
| 86 | addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass); | |||
| 87 | addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass); | |||
| 88 | addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass); | |||
| 89 | addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass); | |||
| 90 | } | |||
| 91 | } | |||
| 92 | ||||
| 93 | // Set up operation actions. | |||
| 94 | ||||
| 95 | bool Use64b = Subtarget.useHVX64BOps(); | |||
| 96 | ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128; | |||
| 97 | ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128; | |||
| 98 | MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8; | |||
| 99 | MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32; | |||
| 100 | MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8; | |||
| 101 | ||||
| 102 | auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) { | |||
| 103 | setOperationAction(Opc, FromTy, Promote); | |||
| 104 | AddPromotedToType(Opc, FromTy, ToTy); | |||
| 105 | }; | |||
| 106 | ||||
| 107 | // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32). | |||
| 108 | // Note: v16i1 -> i16 is handled in type legalization instead of op | |||
| 109 | // legalization. | |||
| 110 | setOperationAction(ISD::BITCAST, MVT::i16, Custom); | |||
| 111 | setOperationAction(ISD::BITCAST, MVT::i32, Custom); | |||
| 112 | setOperationAction(ISD::BITCAST, MVT::i64, Custom); | |||
| 113 | setOperationAction(ISD::BITCAST, MVT::v16i1, Custom); | |||
| 114 | setOperationAction(ISD::BITCAST, MVT::v128i1, Custom); | |||
| 115 | setOperationAction(ISD::BITCAST, MVT::i128, Custom); | |||
| 116 | setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal); | |||
| 117 | setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal); | |||
| 118 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | |||
| 119 | ||||
| 120 | if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() && | |||
| 121 | Subtarget.useHVXFloatingPoint()) { | |||
| 122 | ||||
| 123 | static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 }; | |||
| 124 | static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 }; | |||
| 125 | ||||
| 126 | for (MVT T : FloatV) { | |||
| 127 | setOperationAction(ISD::FADD, T, Legal); | |||
| 128 | setOperationAction(ISD::FSUB, T, Legal); | |||
| 129 | setOperationAction(ISD::FMUL, T, Legal); | |||
| 130 | setOperationAction(ISD::FMINNUM, T, Legal); | |||
| 131 | setOperationAction(ISD::FMAXNUM, T, Legal); | |||
| 132 | ||||
| 133 | setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom); | |||
| 134 | setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); | |||
| 135 | ||||
| 136 | setOperationAction(ISD::SPLAT_VECTOR, T, Legal); | |||
| 137 | setOperationAction(ISD::SPLAT_VECTOR, T, Legal); | |||
| 138 | ||||
| 139 | setOperationAction(ISD::MLOAD, T, Custom); | |||
| 140 | setOperationAction(ISD::MSTORE, T, Custom); | |||
| 141 | // Custom-lower BUILD_VECTOR. The standard (target-independent) | |||
| 142 | // handling of it would convert it to a load, which is not always | |||
| 143 | // the optimal choice. | |||
| 144 | setOperationAction(ISD::BUILD_VECTOR, T, Custom); | |||
| 145 | } | |||
| 146 | ||||
| 147 | ||||
| 148 | // BUILD_VECTOR with f16 operands cannot be promoted without | |||
| 149 | // promoting the result, so lower the node to vsplat or constant pool | |||
| 150 | setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom); | |||
| 151 | setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16, Custom); | |||
| 152 | setOperationAction(ISD::SPLAT_VECTOR, MVT::f16, Custom); | |||
| 153 | ||||
| 154 | // Vector shuffle is always promoted to ByteV and a bitcast to f16 is | |||
| 155 | // generated. | |||
| 156 | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW); | |||
| 157 | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f16, ByteV); | |||
| 158 | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f32, ByteW); | |||
| 159 | setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v32f32, ByteV); | |||
| 160 | ||||
| 161 | for (MVT P : FloatW) { | |||
| 162 | setOperationAction(ISD::LOAD, P, Custom); | |||
| 163 | setOperationAction(ISD::STORE, P, Custom); | |||
| 164 | setOperationAction(ISD::FADD, P, Custom); | |||
| 165 | setOperationAction(ISD::FSUB, P, Custom); | |||
| 166 | setOperationAction(ISD::FMUL, P, Custom); | |||
| 167 | setOperationAction(ISD::FMINNUM, P, Custom); | |||
| 168 | setOperationAction(ISD::FMAXNUM, P, Custom); | |||
| 169 | setOperationAction(ISD::VSELECT, P, Custom); | |||
| 170 | ||||
| 171 | // Custom-lower BUILD_VECTOR. The standard (target-independent) | |||
| 172 | // handling of it would convert it to a load, which is not always | |||
| 173 | // the optimal choice. | |||
| 174 | setOperationAction(ISD::BUILD_VECTOR, P, Custom); | |||
| 175 | // Make concat-vectors custom to handle concats of more than 2 vectors. | |||
| 176 | setOperationAction(ISD::CONCAT_VECTORS, P, Custom); | |||
| 177 | ||||
| 178 | setOperationAction(ISD::MLOAD, P, Custom); | |||
| 179 | setOperationAction(ISD::MSTORE, P, Custom); | |||
| 180 | } | |||
| 181 | ||||
| 182 | if (Subtarget.useHVXQFloatOps()) { | |||
| 183 | setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom); | |||
| 184 | setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal); | |||
| 185 | } else if (Subtarget.useHVXIEEEFPOps()) { | |||
| 186 | setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal); | |||
| 187 | setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal); | |||
| 188 | } | |||
| 189 | } | |||
| 190 | ||||
| 191 | for (MVT T : LegalV) { | |||
| 192 | setIndexedLoadAction(ISD::POST_INC, T, Legal); | |||
| 193 | setIndexedStoreAction(ISD::POST_INC, T, Legal); | |||
| 194 | ||||
| 195 | setOperationAction(ISD::ABS, T, Legal); | |||
| 196 | setOperationAction(ISD::AND, T, Legal); | |||
| 197 | setOperationAction(ISD::OR, T, Legal); | |||
| 198 | setOperationAction(ISD::XOR, T, Legal); | |||
| 199 | setOperationAction(ISD::ADD, T, Legal); | |||
| 200 | setOperationAction(ISD::SUB, T, Legal); | |||
| 201 | setOperationAction(ISD::MUL, T, Legal); | |||
| 202 | setOperationAction(ISD::CTPOP, T, Legal); | |||
| 203 | setOperationAction(ISD::CTLZ, T, Legal); | |||
| 204 | setOperationAction(ISD::SELECT, T, Legal); | |||
| 205 | setOperationAction(ISD::SPLAT_VECTOR, T, Legal); | |||
| 206 | if (T != ByteV) { | |||
| 207 | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); | |||
| 208 | setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); | |||
| 209 | setOperationAction(ISD::BSWAP, T, Legal); | |||
| 210 | } | |||
| 211 | ||||
| 212 | setOperationAction(ISD::SMIN, T, Legal); | |||
| 213 | setOperationAction(ISD::SMAX, T, Legal); | |||
| 214 | if (T.getScalarType() != MVT::i32) { | |||
| 215 | setOperationAction(ISD::UMIN, T, Legal); | |||
| 216 | setOperationAction(ISD::UMAX, T, Legal); | |||
| 217 | } | |||
| 218 | ||||
| 219 | setOperationAction(ISD::CTTZ, T, Custom); | |||
| 220 | setOperationAction(ISD::LOAD, T, Custom); | |||
| 221 | setOperationAction(ISD::MLOAD, T, Custom); | |||
| 222 | setOperationAction(ISD::MSTORE, T, Custom); | |||
| 223 | if (T.getScalarType() != MVT::i32) { | |||
| 224 | setOperationAction(ISD::MULHS, T, Legal); | |||
| 225 | setOperationAction(ISD::MULHU, T, Legal); | |||
| 226 | } | |||
| 227 | ||||
| 228 | setOperationAction(ISD::BUILD_VECTOR, T, Custom); | |||
| 229 | // Make concat-vectors custom to handle concats of more than 2 vectors. | |||
| 230 | setOperationAction(ISD::CONCAT_VECTORS, T, Custom); | |||
| 231 | setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom); | |||
| 232 | setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom); | |||
| 233 | setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); | |||
| 234 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom); | |||
| 235 | setOperationAction(ISD::ANY_EXTEND, T, Custom); | |||
| 236 | setOperationAction(ISD::SIGN_EXTEND, T, Custom); | |||
| 237 | setOperationAction(ISD::ZERO_EXTEND, T, Custom); | |||
| 238 | setOperationAction(ISD::FSHL, T, Custom); | |||
| 239 | setOperationAction(ISD::FSHR, T, Custom); | |||
| 240 | if (T != ByteV) { | |||
| 241 | setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); | |||
| 242 | // HVX only has shifts of words and halfwords. | |||
| 243 | setOperationAction(ISD::SRA, T, Custom); | |||
| 244 | setOperationAction(ISD::SHL, T, Custom); | |||
| 245 | setOperationAction(ISD::SRL, T, Custom); | |||
| 246 | ||||
| 247 | // Promote all shuffles to operate on vectors of bytes. | |||
| 248 | setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV); | |||
| 249 | } | |||
| 250 | ||||
| 251 | if (Subtarget.useHVXFloatingPoint()) { | |||
| 252 | // Same action for both QFloat and IEEE. | |||
| 253 | setOperationAction(ISD::SINT_TO_FP, T, Custom); | |||
| 254 | setOperationAction(ISD::UINT_TO_FP, T, Custom); | |||
| 255 | setOperationAction(ISD::FP_TO_SINT, T, Custom); | |||
| 256 | setOperationAction(ISD::FP_TO_UINT, T, Custom); | |||
| 257 | } | |||
| 258 | ||||
| 259 | setCondCodeAction(ISD::SETNE, T, Expand); | |||
| 260 | setCondCodeAction(ISD::SETLE, T, Expand); | |||
| 261 | setCondCodeAction(ISD::SETGE, T, Expand); | |||
| 262 | setCondCodeAction(ISD::SETLT, T, Expand); | |||
| 263 | setCondCodeAction(ISD::SETULE, T, Expand); | |||
| 264 | setCondCodeAction(ISD::SETUGE, T, Expand); | |||
| 265 | setCondCodeAction(ISD::SETULT, T, Expand); | |||
| 266 | } | |||
| 267 | ||||
| 268 | for (MVT T : LegalW) { | |||
| 269 | // Custom-lower BUILD_VECTOR for vector pairs. The standard (target- | |||
| 270 | // independent) handling of it would convert it to a load, which is | |||
| 271 | // not always the optimal choice. | |||
| 272 | setOperationAction(ISD::BUILD_VECTOR, T, Custom); | |||
| 273 | // Make concat-vectors custom to handle concats of more than 2 vectors. | |||
| 274 | setOperationAction(ISD::CONCAT_VECTORS, T, Custom); | |||
| 275 | ||||
| 276 | // Custom-lower these operations for pairs. Expand them into a concat | |||
| 277 | // of the corresponding operations on individual vectors. | |||
| 278 | setOperationAction(ISD::ANY_EXTEND, T, Custom); | |||
| 279 | setOperationAction(ISD::SIGN_EXTEND, T, Custom); | |||
| 280 | setOperationAction(ISD::ZERO_EXTEND, T, Custom); | |||
| 281 | setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom); | |||
| 282 | setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); | |||
| 283 | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); | |||
| 284 | setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); | |||
| 285 | setOperationAction(ISD::SPLAT_VECTOR, T, Custom); | |||
| 286 | ||||
| 287 | setOperationAction(ISD::LOAD, T, Custom); | |||
| 288 | setOperationAction(ISD::STORE, T, Custom); | |||
| 289 | setOperationAction(ISD::MLOAD, T, Custom); | |||
| 290 | setOperationAction(ISD::MSTORE, T, Custom); | |||
| 291 | setOperationAction(ISD::ABS, T, Custom); | |||
| 292 | setOperationAction(ISD::CTLZ, T, Custom); | |||
| 293 | setOperationAction(ISD::CTTZ, T, Custom); | |||
| 294 | setOperationAction(ISD::CTPOP, T, Custom); | |||
| 295 | ||||
| 296 | setOperationAction(ISD::ADD, T, Legal); | |||
| 297 | setOperationAction(ISD::SUB, T, Legal); | |||
| 298 | setOperationAction(ISD::MUL, T, Custom); | |||
| 299 | setOperationAction(ISD::MULHS, T, Custom); | |||
| 300 | setOperationAction(ISD::MULHU, T, Custom); | |||
| 301 | setOperationAction(ISD::AND, T, Custom); | |||
| 302 | setOperationAction(ISD::OR, T, Custom); | |||
| 303 | setOperationAction(ISD::XOR, T, Custom); | |||
| 304 | setOperationAction(ISD::SETCC, T, Custom); | |||
| 305 | setOperationAction(ISD::VSELECT, T, Custom); | |||
| 306 | if (T != ByteW) { | |||
| 307 | setOperationAction(ISD::SRA, T, Custom); | |||
| 308 | setOperationAction(ISD::SHL, T, Custom); | |||
| 309 | setOperationAction(ISD::SRL, T, Custom); | |||
| 310 | ||||
| 311 | // Promote all shuffles to operate on vectors of bytes. | |||
| 312 | setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW); | |||
| 313 | } | |||
| 314 | setOperationAction(ISD::FSHL, T, Custom); | |||
| 315 | setOperationAction(ISD::FSHR, T, Custom); | |||
| 316 | ||||
| 317 | setOperationAction(ISD::SMIN, T, Custom); | |||
| 318 | setOperationAction(ISD::SMAX, T, Custom); | |||
| 319 | if (T.getScalarType() != MVT::i32) { | |||
| 320 | setOperationAction(ISD::UMIN, T, Custom); | |||
| 321 | setOperationAction(ISD::UMAX, T, Custom); | |||
| 322 | } | |||
| 323 | ||||
| 324 | if (Subtarget.useHVXFloatingPoint()) { | |||
| 325 | // Same action for both QFloat and IEEE. | |||
| 326 | setOperationAction(ISD::SINT_TO_FP, T, Custom); | |||
| 327 | setOperationAction(ISD::UINT_TO_FP, T, Custom); | |||
| 328 | setOperationAction(ISD::FP_TO_SINT, T, Custom); | |||
| 329 | setOperationAction(ISD::FP_TO_UINT, T, Custom); | |||
| 330 | } | |||
| 331 | } | |||
| 332 | ||||
| 333 | // Legalize all of these to HexagonISD::[SU]MUL_LOHI. | |||
| 334 | setOperationAction(ISD::MULHS, WordV, Custom); // -> _LOHI | |||
| 335 | setOperationAction(ISD::MULHU, WordV, Custom); // -> _LOHI | |||
| 336 | setOperationAction(ISD::SMUL_LOHI, WordV, Custom); | |||
| 337 | setOperationAction(ISD::UMUL_LOHI, WordV, Custom); | |||
| 338 | ||||
| 339 | setCondCodeAction(ISD::SETNE, MVT::v64f16, Expand); | |||
| 340 | setCondCodeAction(ISD::SETLE, MVT::v64f16, Expand); | |||
| 341 | setCondCodeAction(ISD::SETGE, MVT::v64f16, Expand); | |||
| 342 | setCondCodeAction(ISD::SETLT, MVT::v64f16, Expand); | |||
| 343 | setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand); | |||
| 344 | setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand); | |||
| 345 | setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand); | |||
| 346 | setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand); | |||
| 347 | setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand); | |||
| 348 | setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand); | |||
| 349 | setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand); | |||
| 350 | setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand); | |||
| 351 | ||||
| 352 | setCondCodeAction(ISD::SETNE, MVT::v32f32, Expand); | |||
| 353 | setCondCodeAction(ISD::SETLE, MVT::v32f32, Expand); | |||
| 354 | setCondCodeAction(ISD::SETGE, MVT::v32f32, Expand); | |||
| 355 | setCondCodeAction(ISD::SETLT, MVT::v32f32, Expand); | |||
| 356 | setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand); | |||
| 357 | setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand); | |||
| 358 | setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand); | |||
| 359 | setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand); | |||
| 360 | setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand); | |||
| 361 | setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand); | |||
| 362 | setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand); | |||
| 363 | setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand); | |||
| 364 | ||||
| 365 | // Boolean vectors. | |||
| 366 | ||||
| 367 | for (MVT T : LegalW) { | |||
| 368 | // Boolean types for vector pairs will overlap with the boolean | |||
| 369 | // types for single vectors, e.g. | |||
| 370 | // v64i8 -> v64i1 (single) | |||
| 371 | // v64i16 -> v64i1 (pair) | |||
| 372 | // Set these actions first, and allow the single actions to overwrite | |||
| 373 | // any duplicates. | |||
| 374 | MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); | |||
| 375 | setOperationAction(ISD::SETCC, BoolW, Custom); | |||
| 376 | setOperationAction(ISD::AND, BoolW, Custom); | |||
| 377 | setOperationAction(ISD::OR, BoolW, Custom); | |||
| 378 | setOperationAction(ISD::XOR, BoolW, Custom); | |||
| 379 | // Masked load/store takes a mask that may need splitting. | |||
| 380 | setOperationAction(ISD::MLOAD, BoolW, Custom); | |||
| 381 | setOperationAction(ISD::MSTORE, BoolW, Custom); | |||
| 382 | } | |||
| 383 | ||||
| 384 | for (MVT T : LegalV) { | |||
| 385 | MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); | |||
| 386 | setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom); | |||
| 387 | setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom); | |||
| 388 | setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom); | |||
| 389 | setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom); | |||
| 390 | setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom); | |||
| 391 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom); | |||
| 392 | setOperationAction(ISD::SELECT, BoolV, Custom); | |||
| 393 | setOperationAction(ISD::AND, BoolV, Legal); | |||
| 394 | setOperationAction(ISD::OR, BoolV, Legal); | |||
| 395 | setOperationAction(ISD::XOR, BoolV, Legal); | |||
| 396 | } | |||
| 397 | ||||
| 398 | if (Use64b) { | |||
| 399 | for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32}) | |||
| 400 | setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); | |||
| 401 | } else { | |||
| 402 | for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32}) | |||
| 403 | setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); | |||
| 404 | } | |||
| 405 | ||||
| 406 | // Handle store widening for short vectors. | |||
| 407 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 408 | for (MVT ElemTy : Subtarget.getHVXElementTypes()) { | |||
| 409 | if (ElemTy == MVT::i1) | |||
| 410 | continue; | |||
| 411 | int ElemWidth = ElemTy.getFixedSizeInBits(); | |||
| 412 | int MaxElems = (8*HwLen) / ElemWidth; | |||
| 413 | for (int N = 2; N < MaxElems; N *= 2) { | |||
| 414 | MVT VecTy = MVT::getVectorVT(ElemTy, N); | |||
| 415 | auto Action = getPreferredVectorAction(VecTy); | |||
| 416 | if (Action == TargetLoweringBase::TypeWidenVector) { | |||
| 417 | setOperationAction(ISD::LOAD, VecTy, Custom); | |||
| 418 | setOperationAction(ISD::STORE, VecTy, Custom); | |||
| 419 | setOperationAction(ISD::SETCC, VecTy, Custom); | |||
| 420 | setOperationAction(ISD::TRUNCATE, VecTy, Custom); | |||
| 421 | setOperationAction(ISD::ANY_EXTEND, VecTy, Custom); | |||
| 422 | setOperationAction(ISD::SIGN_EXTEND, VecTy, Custom); | |||
| 423 | setOperationAction(ISD::ZERO_EXTEND, VecTy, Custom); | |||
| 424 | if (Subtarget.useHVXFloatingPoint()) { | |||
| 425 | setOperationAction(ISD::FP_TO_SINT, VecTy, Custom); | |||
| 426 | setOperationAction(ISD::FP_TO_UINT, VecTy, Custom); | |||
| 427 | setOperationAction(ISD::SINT_TO_FP, VecTy, Custom); | |||
| 428 | setOperationAction(ISD::UINT_TO_FP, VecTy, Custom); | |||
| 429 | } | |||
| 430 | ||||
| 431 | MVT BoolTy = MVT::getVectorVT(MVT::i1, N); | |||
| 432 | if (!isTypeLegal(BoolTy)) | |||
| 433 | setOperationAction(ISD::SETCC, BoolTy, Custom); | |||
| 434 | } | |||
| 435 | } | |||
| 436 | } | |||
| 437 | ||||
| 438 | setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT}); | |||
| 439 | } | |||
| 440 | ||||
| 441 | unsigned | |||
| 442 | HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const { | |||
| 443 | MVT ElemTy = VecTy.getVectorElementType(); | |||
| 444 | unsigned VecLen = VecTy.getVectorNumElements(); | |||
| 445 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 446 | ||||
| 447 | // Split vectors of i1 that exceed byte vector length. | |||
| 448 | if (ElemTy == MVT::i1 && VecLen > HwLen) | |||
| 449 | return TargetLoweringBase::TypeSplitVector; | |||
| 450 | ||||
| 451 | ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes(); | |||
| 452 | // For shorter vectors of i1, widen them if any of the corresponding | |||
| 453 | // vectors of integers needs to be widened. | |||
| 454 | if (ElemTy == MVT::i1) { | |||
| 455 | for (MVT T : Tys) { | |||
| 456 | assert(T != MVT::i1)(static_cast <bool> (T != MVT::i1) ? void (0) : __assert_fail ("T != MVT::i1", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 456, __extension__ __PRETTY_FUNCTION__)); | |||
| 457 | auto A = getPreferredHvxVectorAction(MVT::getVectorVT(T, VecLen)); | |||
| 458 | if (A != ~0u) | |||
| 459 | return A; | |||
| 460 | } | |||
| 461 | return ~0u; | |||
| 462 | } | |||
| 463 | ||||
| 464 | // If the size of VecTy is at least half of the vector length, | |||
| 465 | // widen the vector. Note: the threshold was not selected in | |||
| 466 | // any scientific way. | |||
| 467 | if (llvm::is_contained(Tys, ElemTy)) { | |||
| 468 | unsigned VecWidth = VecTy.getSizeInBits(); | |||
| 469 | unsigned HwWidth = 8*HwLen; | |||
| 470 | if (VecWidth > 2*HwWidth) | |||
| 471 | return TargetLoweringBase::TypeSplitVector; | |||
| 472 | ||||
| 473 | bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0; | |||
| 474 | if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth) | |||
| 475 | return TargetLoweringBase::TypeWidenVector; | |||
| 476 | if (VecWidth >= HwWidth/2 && VecWidth < HwWidth) | |||
| 477 | return TargetLoweringBase::TypeWidenVector; | |||
| 478 | } | |||
| 479 | ||||
| 480 | // Defer to default. | |||
| 481 | return ~0u; | |||
| 482 | } | |||
| 483 | ||||
| 484 | unsigned | |||
| 485 | HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const { | |||
| 486 | unsigned Opc = Op.getOpcode(); | |||
| 487 | switch (Opc) { | |||
| 488 | case HexagonISD::SMUL_LOHI: | |||
| 489 | case HexagonISD::UMUL_LOHI: | |||
| 490 | case HexagonISD::USMUL_LOHI: | |||
| 491 | return TargetLoweringBase::Custom; | |||
| 492 | } | |||
| 493 | return TargetLoweringBase::Legal; | |||
| 494 | } | |||
| 495 | ||||
| 496 | SDValue | |||
| 497 | HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, | |||
| 498 | const SDLoc &dl, SelectionDAG &DAG) const { | |||
| 499 | SmallVector<SDValue,4> IntOps; | |||
| 500 | IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32)); | |||
| 501 | append_range(IntOps, Ops); | |||
| 502 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps); | |||
| 503 | } | |||
| 504 | ||||
| 505 | MVT | |||
| 506 | HexagonTargetLowering::typeJoin(const TypePair &Tys) const { | |||
| 507 | assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType())(static_cast <bool> (Tys.first.getVectorElementType() == Tys.second.getVectorElementType()) ? void (0) : __assert_fail ("Tys.first.getVectorElementType() == Tys.second.getVectorElementType()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 507, __extension__ __PRETTY_FUNCTION__)); | |||
| 508 | ||||
| 509 | MVT ElemTy = Tys.first.getVectorElementType(); | |||
| 510 | return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() + | |||
| 511 | Tys.second.getVectorNumElements()); | |||
| 512 | } | |||
| 513 | ||||
| 514 | HexagonTargetLowering::TypePair | |||
| 515 | HexagonTargetLowering::typeSplit(MVT VecTy) const { | |||
| 516 | assert(VecTy.isVector())(static_cast <bool> (VecTy.isVector()) ? void (0) : __assert_fail ("VecTy.isVector()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 516, __extension__ __PRETTY_FUNCTION__)); | |||
| 517 | unsigned NumElem = VecTy.getVectorNumElements(); | |||
| 518 | assert((NumElem % 2) == 0 && "Expecting even-sized vector type")(static_cast <bool> ((NumElem % 2) == 0 && "Expecting even-sized vector type" ) ? void (0) : __assert_fail ("(NumElem % 2) == 0 && \"Expecting even-sized vector type\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 518, __extension__ __PRETTY_FUNCTION__)); | |||
| 519 | MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2); | |||
| 520 | return { HalfTy, HalfTy }; | |||
| 521 | } | |||
| 522 | ||||
| 523 | MVT | |||
| 524 | HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const { | |||
| 525 | MVT ElemTy = VecTy.getVectorElementType(); | |||
| 526 | MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor); | |||
| 527 | return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); | |||
| 528 | } | |||
| 529 | ||||
| 530 | MVT | |||
| 531 | HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const { | |||
| 532 | MVT ElemTy = VecTy.getVectorElementType(); | |||
| 533 | MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor); | |||
| 534 | return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); | |||
| 535 | } | |||
| 536 | ||||
| 537 | SDValue | |||
| 538 | HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy, | |||
| 539 | SelectionDAG &DAG) const { | |||
| 540 | if (ty(Vec).getVectorElementType() == ElemTy) | |||
| 541 | return Vec; | |||
| 542 | MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy); | |||
| 543 | return DAG.getBitcast(CastTy, Vec); | |||
| 544 | } | |||
| 545 | ||||
| 546 | SDValue | |||
| 547 | HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl, | |||
| 548 | SelectionDAG &DAG) const { | |||
| 549 | return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)), | |||
| 550 | Ops.first, Ops.second); | |||
| 551 | } | |||
| 552 | ||||
| 553 | HexagonTargetLowering::VectorPair | |||
| 554 | HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl, | |||
| 555 | SelectionDAG &DAG) const { | |||
| 556 | TypePair Tys = typeSplit(ty(Vec)); | |||
| 557 | if (Vec.getOpcode() == HexagonISD::QCAT) | |||
| 558 | return VectorPair(Vec.getOperand(0), Vec.getOperand(1)); | |||
| 559 | return DAG.SplitVector(Vec, dl, Tys.first, Tys.second); | |||
| 560 | } | |||
| 561 | ||||
| 562 | bool | |||
| 563 | HexagonTargetLowering::isHvxSingleTy(MVT Ty) const { | |||
| 564 | return Subtarget.isHVXVectorType(Ty) && | |||
| 565 | Ty.getSizeInBits() == 8 * Subtarget.getVectorLength(); | |||
| 566 | } | |||
| 567 | ||||
| 568 | bool | |||
| 569 | HexagonTargetLowering::isHvxPairTy(MVT Ty) const { | |||
| 570 | return Subtarget.isHVXVectorType(Ty) && | |||
| 571 | Ty.getSizeInBits() == 16 * Subtarget.getVectorLength(); | |||
| 572 | } | |||
| 573 | ||||
| 574 | bool | |||
| 575 | HexagonTargetLowering::isHvxBoolTy(MVT Ty) const { | |||
| 576 | return Subtarget.isHVXVectorType(Ty, true) && | |||
| 577 | Ty.getVectorElementType() == MVT::i1; | |||
| 578 | } | |||
| 579 | ||||
| 580 | bool HexagonTargetLowering::allowsHvxMemoryAccess( | |||
| 581 | MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { | |||
| 582 | // Bool vectors are excluded by default, but make it explicit to | |||
| 583 | // emphasize that bool vectors cannot be loaded or stored. | |||
| 584 | // Also, disallow double vector stores (to prevent unnecessary | |||
| 585 | // store widening in DAG combiner). | |||
| 586 | if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength()) | |||
| 587 | return false; | |||
| 588 | if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false)) | |||
| 589 | return false; | |||
| 590 | if (Fast) | |||
| 591 | *Fast = 1; | |||
| 592 | return true; | |||
| 593 | } | |||
| 594 | ||||
| 595 | bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses( | |||
| 596 | MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const { | |||
| 597 | if (!Subtarget.isHVXVectorType(VecTy)) | |||
| 598 | return false; | |||
| 599 | // XXX Should this be false? vmemu are a bit slower than vmem. | |||
| 600 | if (Fast) | |||
| 601 | *Fast = 1; | |||
| 602 | return true; | |||
| 603 | } | |||
| 604 | ||||
| 605 | void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection( | |||
| 606 | MachineInstr &MI, SDNode *Node) const { | |||
| 607 | unsigned Opc = MI.getOpcode(); | |||
| 608 | const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); | |||
| 609 | MachineBasicBlock &MB = *MI.getParent(); | |||
| 610 | MachineFunction &MF = *MB.getParent(); | |||
| 611 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 612 | DebugLoc DL = MI.getDebugLoc(); | |||
| 613 | auto At = MI.getIterator(); | |||
| 614 | ||||
| 615 | switch (Opc) { | |||
| 616 | case Hexagon::PS_vsplatib: | |||
| 617 | if (Subtarget.useHVXV62Ops()) { | |||
| 618 | // SplatV = A2_tfrsi #imm | |||
| 619 | // OutV = V6_lvsplatb SplatV | |||
| 620 | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 621 | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | |||
| 622 | .add(MI.getOperand(1)); | |||
| 623 | Register OutV = MI.getOperand(0).getReg(); | |||
| 624 | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) | |||
| 625 | .addReg(SplatV); | |||
| 626 | } else { | |||
| 627 | // SplatV = A2_tfrsi #imm:#imm:#imm:#imm | |||
| 628 | // OutV = V6_lvsplatw SplatV | |||
| 629 | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 630 | const MachineOperand &InpOp = MI.getOperand(1); | |||
| 631 | assert(InpOp.isImm())(static_cast <bool> (InpOp.isImm()) ? void (0) : __assert_fail ("InpOp.isImm()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 631, __extension__ __PRETTY_FUNCTION__)); | |||
| 632 | uint32_t V = InpOp.getImm() & 0xFF; | |||
| 633 | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | |||
| 634 | .addImm(V << 24 | V << 16 | V << 8 | V); | |||
| 635 | Register OutV = MI.getOperand(0).getReg(); | |||
| 636 | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | |||
| 637 | } | |||
| 638 | MB.erase(At); | |||
| 639 | break; | |||
| 640 | case Hexagon::PS_vsplatrb: | |||
| 641 | if (Subtarget.useHVXV62Ops()) { | |||
| 642 | // OutV = V6_lvsplatb Inp | |||
| 643 | Register OutV = MI.getOperand(0).getReg(); | |||
| 644 | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV) | |||
| 645 | .add(MI.getOperand(1)); | |||
| 646 | } else { | |||
| 647 | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 648 | const MachineOperand &InpOp = MI.getOperand(1); | |||
| 649 | BuildMI(MB, At, DL, TII.get(Hexagon::S2_vsplatrb), SplatV) | |||
| 650 | .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); | |||
| 651 | Register OutV = MI.getOperand(0).getReg(); | |||
| 652 | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV) | |||
| 653 | .addReg(SplatV); | |||
| 654 | } | |||
| 655 | MB.erase(At); | |||
| 656 | break; | |||
| 657 | case Hexagon::PS_vsplatih: | |||
| 658 | if (Subtarget.useHVXV62Ops()) { | |||
| 659 | // SplatV = A2_tfrsi #imm | |||
| 660 | // OutV = V6_lvsplath SplatV | |||
| 661 | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 662 | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | |||
| 663 | .add(MI.getOperand(1)); | |||
| 664 | Register OutV = MI.getOperand(0).getReg(); | |||
| 665 | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) | |||
| 666 | .addReg(SplatV); | |||
| 667 | } else { | |||
| 668 | // SplatV = A2_tfrsi #imm:#imm | |||
| 669 | // OutV = V6_lvsplatw SplatV | |||
| 670 | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 671 | const MachineOperand &InpOp = MI.getOperand(1); | |||
| 672 | assert(InpOp.isImm())(static_cast <bool> (InpOp.isImm()) ? void (0) : __assert_fail ("InpOp.isImm()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 672, __extension__ __PRETTY_FUNCTION__)); | |||
| 673 | uint32_t V = InpOp.getImm() & 0xFFFF; | |||
| 674 | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | |||
| 675 | .addImm(V << 16 | V); | |||
| 676 | Register OutV = MI.getOperand(0).getReg(); | |||
| 677 | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | |||
| 678 | } | |||
| 679 | MB.erase(At); | |||
| 680 | break; | |||
| 681 | case Hexagon::PS_vsplatrh: | |||
| 682 | if (Subtarget.useHVXV62Ops()) { | |||
| 683 | // OutV = V6_lvsplath Inp | |||
| 684 | Register OutV = MI.getOperand(0).getReg(); | |||
| 685 | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV) | |||
| 686 | .add(MI.getOperand(1)); | |||
| 687 | } else { | |||
| 688 | // SplatV = A2_combine_ll Inp, Inp | |||
| 689 | // OutV = V6_lvsplatw SplatV | |||
| 690 | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 691 | const MachineOperand &InpOp = MI.getOperand(1); | |||
| 692 | BuildMI(MB, At, DL, TII.get(Hexagon::A2_combine_ll), SplatV) | |||
| 693 | .addReg(InpOp.getReg(), 0, InpOp.getSubReg()) | |||
| 694 | .addReg(InpOp.getReg(), 0, InpOp.getSubReg()); | |||
| 695 | Register OutV = MI.getOperand(0).getReg(); | |||
| 696 | BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV); | |||
| 697 | } | |||
| 698 | MB.erase(At); | |||
| 699 | break; | |||
| 700 | case Hexagon::PS_vsplatiw: | |||
| 701 | case Hexagon::PS_vsplatrw: | |||
| 702 | if (Opc == Hexagon::PS_vsplatiw) { | |||
| 703 | // SplatV = A2_tfrsi #imm | |||
| 704 | Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |||
| 705 | BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV) | |||
| 706 | .add(MI.getOperand(1)); | |||
| 707 | MI.getOperand(1).ChangeToRegister(SplatV, false); | |||
| 708 | } | |||
| 709 | // OutV = V6_lvsplatw SplatV/Inp | |||
| 710 | MI.setDesc(TII.get(Hexagon::V6_lvsplatw)); | |||
| 711 | break; | |||
| 712 | } | |||
| 713 | } | |||
| 714 | ||||
| 715 | SDValue | |||
| 716 | HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy, | |||
| 717 | SelectionDAG &DAG) const { | |||
| 718 | if (ElemIdx.getValueType().getSimpleVT() != MVT::i32) | |||
| 719 | ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx); | |||
| 720 | ||||
| 721 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 722 | if (ElemWidth == 8) | |||
| 723 | return ElemIdx; | |||
| 724 | ||||
| 725 | unsigned L = Log2_32(ElemWidth/8); | |||
| 726 | const SDLoc &dl(ElemIdx); | |||
| 727 | return DAG.getNode(ISD::SHL, dl, MVT::i32, | |||
| 728 | {ElemIdx, DAG.getConstant(L, dl, MVT::i32)}); | |||
| 729 | } | |||
| 730 | ||||
| 731 | SDValue | |||
| 732 | HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy, | |||
| 733 | SelectionDAG &DAG) const { | |||
| 734 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 735 | assert(ElemWidth >= 8 && ElemWidth <= 32)(static_cast <bool> (ElemWidth >= 8 && ElemWidth <= 32) ? void (0) : __assert_fail ("ElemWidth >= 8 && ElemWidth <= 32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 735, __extension__ __PRETTY_FUNCTION__)); | |||
| 736 | if (ElemWidth == 32) | |||
| 737 | return Idx; | |||
| 738 | ||||
| 739 | if (ty(Idx) != MVT::i32) | |||
| 740 | Idx = DAG.getBitcast(MVT::i32, Idx); | |||
| 741 | const SDLoc &dl(Idx); | |||
| 742 | SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32); | |||
| 743 | SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask}); | |||
| 744 | return SubIdx; | |||
| 745 | } | |||
| 746 | ||||
| 747 | SDValue | |||
| 748 | HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0, | |||
| 749 | SDValue Op1, ArrayRef<int> Mask, | |||
| 750 | SelectionDAG &DAG) const { | |||
| 751 | MVT OpTy = ty(Op0); | |||
| 752 | assert(OpTy == ty(Op1))(static_cast <bool> (OpTy == ty(Op1)) ? void (0) : __assert_fail ("OpTy == ty(Op1)", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 752, __extension__ __PRETTY_FUNCTION__)); | |||
| 753 | ||||
| 754 | MVT ElemTy = OpTy.getVectorElementType(); | |||
| 755 | if (ElemTy == MVT::i8) | |||
| 756 | return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask); | |||
| 757 | assert(ElemTy.getSizeInBits() >= 8)(static_cast <bool> (ElemTy.getSizeInBits() >= 8) ? void (0) : __assert_fail ("ElemTy.getSizeInBits() >= 8", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 757, __extension__ __PRETTY_FUNCTION__)); | |||
| 758 | ||||
| 759 | MVT ResTy = tyVector(OpTy, MVT::i8); | |||
| 760 | unsigned ElemSize = ElemTy.getSizeInBits() / 8; | |||
| 761 | ||||
| 762 | SmallVector<int,128> ByteMask; | |||
| 763 | for (int M : Mask) { | |||
| 764 | if (M < 0) { | |||
| 765 | for (unsigned I = 0; I != ElemSize; ++I) | |||
| 766 | ByteMask.push_back(-1); | |||
| 767 | } else { | |||
| 768 | int NewM = M*ElemSize; | |||
| 769 | for (unsigned I = 0; I != ElemSize; ++I) | |||
| 770 | ByteMask.push_back(NewM+I); | |||
| 771 | } | |||
| 772 | } | |||
| 773 | assert(ResTy.getVectorNumElements() == ByteMask.size())(static_cast <bool> (ResTy.getVectorNumElements() == ByteMask .size()) ? void (0) : __assert_fail ("ResTy.getVectorNumElements() == ByteMask.size()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 773, __extension__ __PRETTY_FUNCTION__)); | |||
| 774 | return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG), | |||
| 775 | opCastElem(Op1, MVT::i8, DAG), ByteMask); | |||
| 776 | } | |||
| 777 | ||||
| 778 | SDValue | |||
| 779 | HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values, | |||
| 780 | const SDLoc &dl, MVT VecTy, | |||
| 781 | SelectionDAG &DAG) const { | |||
| 782 | unsigned VecLen = Values.size(); | |||
| 783 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 784 | MVT ElemTy = VecTy.getVectorElementType(); | |||
| 785 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 786 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 787 | ||||
| 788 | unsigned ElemSize = ElemWidth / 8; | |||
| 789 | assert(ElemSize*VecLen == HwLen)(static_cast <bool> (ElemSize*VecLen == HwLen) ? void ( 0) : __assert_fail ("ElemSize*VecLen == HwLen", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 789, __extension__ __PRETTY_FUNCTION__)); | |||
| 790 | SmallVector<SDValue,32> Words; | |||
| 791 | ||||
| 792 | if (VecTy.getVectorElementType() != MVT::i32 && | |||
| 793 | !(Subtarget.useHVXFloatingPoint() && | |||
| 794 | VecTy.getVectorElementType() == MVT::f32)) { | |||
| 795 | assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size")(static_cast <bool> ((ElemSize == 1 || ElemSize == 2) && "Invalid element size") ? void (0) : __assert_fail ("(ElemSize == 1 || ElemSize == 2) && \"Invalid element size\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 795, __extension__ __PRETTY_FUNCTION__)); | |||
| 796 | unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2; | |||
| 797 | MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord); | |||
| 798 | for (unsigned i = 0; i != VecLen; i += OpsPerWord) { | |||
| 799 | SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG); | |||
| 800 | Words.push_back(DAG.getBitcast(MVT::i32, W)); | |||
| 801 | } | |||
| 802 | } else { | |||
| 803 | for (SDValue V : Values) | |||
| 804 | Words.push_back(DAG.getBitcast(MVT::i32, V)); | |||
| 805 | } | |||
| 806 | auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) { | |||
| 807 | unsigned NumValues = Values.size(); | |||
| 808 | assert(NumValues > 0)(static_cast <bool> (NumValues > 0) ? void (0) : __assert_fail ("NumValues > 0", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 808, __extension__ __PRETTY_FUNCTION__)); | |||
| 809 | bool IsUndef = true; | |||
| 810 | for (unsigned i = 0; i != NumValues; ++i) { | |||
| 811 | if (Values[i].isUndef()) | |||
| 812 | continue; | |||
| 813 | IsUndef = false; | |||
| 814 | if (!SplatV.getNode()) | |||
| 815 | SplatV = Values[i]; | |||
| 816 | else if (SplatV != Values[i]) | |||
| 817 | return false; | |||
| 818 | } | |||
| 819 | if (IsUndef) | |||
| 820 | SplatV = Values[0]; | |||
| 821 | return true; | |||
| 822 | }; | |||
| 823 | ||||
| 824 | unsigned NumWords = Words.size(); | |||
| 825 | SDValue SplatV; | |||
| 826 | bool IsSplat = isSplat(Words, SplatV); | |||
| 827 | if (IsSplat && isUndef(SplatV)) | |||
| 828 | return DAG.getUNDEF(VecTy); | |||
| 829 | if (IsSplat) { | |||
| 830 | assert(SplatV.getNode())(static_cast <bool> (SplatV.getNode()) ? void (0) : __assert_fail ("SplatV.getNode()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 830, __extension__ __PRETTY_FUNCTION__)); | |||
| 831 | auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode()); | |||
| 832 | if (IdxN && IdxN->isZero()) | |||
| 833 | return getZero(dl, VecTy, DAG); | |||
| 834 | MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); | |||
| 835 | SDValue S = DAG.getNode(ISD::SPLAT_VECTOR, dl, WordTy, SplatV); | |||
| 836 | return DAG.getBitcast(VecTy, S); | |||
| 837 | } | |||
| 838 | ||||
| 839 | // Delay recognizing constant vectors until here, so that we can generate | |||
| 840 | // a vsplat. | |||
| 841 | SmallVector<ConstantInt*, 128> Consts(VecLen); | |||
| 842 | bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts); | |||
| 843 | if (AllConst) { | |||
| 844 | ArrayRef<Constant*> Tmp((Constant**)Consts.begin(), | |||
| 845 | (Constant**)Consts.end()); | |||
| 846 | Constant *CV = ConstantVector::get(Tmp); | |||
| 847 | Align Alignment(HwLen); | |||
| 848 | SDValue CP = | |||
| 849 | LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG); | |||
| 850 | return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP, | |||
| 851 | MachinePointerInfo::getConstantPool(MF), Alignment); | |||
| 852 | } | |||
| 853 | ||||
| 854 | // A special case is a situation where the vector is built entirely from | |||
| 855 | // elements extracted from another vector. This could be done via a shuffle | |||
| 856 | // more efficiently, but typically, the size of the source vector will not | |||
| 857 | // match the size of the vector being built (which precludes the use of a | |||
| 858 | // shuffle directly). | |||
| 859 | // This only handles a single source vector, and the vector being built | |||
| 860 | // should be of a sub-vector type of the source vector type. | |||
| 861 | auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec, | |||
| 862 | SmallVectorImpl<int> &SrcIdx) { | |||
| 863 | SDValue Vec; | |||
| 864 | for (SDValue V : Values) { | |||
| 865 | if (isUndef(V)) { | |||
| 866 | SrcIdx.push_back(-1); | |||
| 867 | continue; | |||
| 868 | } | |||
| 869 | if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | |||
| 870 | return false; | |||
| 871 | // All extracts should come from the same vector. | |||
| 872 | SDValue T = V.getOperand(0); | |||
| 873 | if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode()) | |||
| 874 | return false; | |||
| 875 | Vec = T; | |||
| 876 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1)); | |||
| 877 | if (C == nullptr) | |||
| 878 | return false; | |||
| 879 | int I = C->getSExtValue(); | |||
| 880 | assert(I >= 0 && "Negative element index")(static_cast <bool> (I >= 0 && "Negative element index" ) ? void (0) : __assert_fail ("I >= 0 && \"Negative element index\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 880, __extension__ __PRETTY_FUNCTION__)); | |||
| 881 | SrcIdx.push_back(I); | |||
| 882 | } | |||
| 883 | SrcVec = Vec; | |||
| 884 | return true; | |||
| 885 | }; | |||
| 886 | ||||
| 887 | SmallVector<int,128> ExtIdx; | |||
| 888 | SDValue ExtVec; | |||
| 889 | if (IsBuildFromExtracts(ExtVec, ExtIdx)) { | |||
| 890 | MVT ExtTy = ty(ExtVec); | |||
| 891 | unsigned ExtLen = ExtTy.getVectorNumElements(); | |||
| 892 | if (ExtLen == VecLen || ExtLen == 2*VecLen) { | |||
| 893 | // Construct a new shuffle mask that will produce a vector with the same | |||
| 894 | // number of elements as the input vector, and such that the vector we | |||
| 895 | // want will be the initial subvector of it. | |||
| 896 | SmallVector<int,128> Mask; | |||
| 897 | BitVector Used(ExtLen); | |||
| 898 | ||||
| 899 | for (int M : ExtIdx) { | |||
| 900 | Mask.push_back(M); | |||
| 901 | if (M >= 0) | |||
| 902 | Used.set(M); | |||
| 903 | } | |||
| 904 | // Fill the rest of the mask with the unused elements of ExtVec in hopes | |||
| 905 | // that it will result in a permutation of ExtVec's elements. It's still | |||
| 906 | // fine if it doesn't (e.g. if undefs are present, or elements are | |||
| 907 | // repeated), but permutations can always be done efficiently via vdelta | |||
| 908 | // and vrdelta. | |||
| 909 | for (unsigned I = 0; I != ExtLen; ++I) { | |||
| 910 | if (Mask.size() == ExtLen) | |||
| 911 | break; | |||
| 912 | if (!Used.test(I)) | |||
| 913 | Mask.push_back(I); | |||
| 914 | } | |||
| 915 | ||||
| 916 | SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec, | |||
| 917 | DAG.getUNDEF(ExtTy), Mask); | |||
| 918 | return ExtLen == VecLen ? S : LoHalf(S, DAG); | |||
| 919 | } | |||
| 920 | } | |||
| 921 | ||||
| 922 | // Find most common element to initialize vector with. This is to avoid | |||
| 923 | // unnecessary vinsert/valign for cases where the same value is present | |||
| 924 | // many times. Creates a histogram of the vector's elements to find the | |||
| 925 | // most common element n. | |||
| 926 | assert(4*Words.size() == Subtarget.getVectorLength())(static_cast <bool> (4*Words.size() == Subtarget.getVectorLength ()) ? void (0) : __assert_fail ("4*Words.size() == Subtarget.getVectorLength()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 926, __extension__ __PRETTY_FUNCTION__)); | |||
| 927 | int VecHist[32]; | |||
| 928 | int n = 0; | |||
| 929 | for (unsigned i = 0; i != NumWords; ++i) { | |||
| 930 | VecHist[i] = 0; | |||
| 931 | if (Words[i].isUndef()) | |||
| 932 | continue; | |||
| 933 | for (unsigned j = i; j != NumWords; ++j) | |||
| 934 | if (Words[i] == Words[j]) | |||
| 935 | VecHist[i]++; | |||
| 936 | ||||
| 937 | if (VecHist[i] > VecHist[n]) | |||
| 938 | n = i; | |||
| 939 | } | |||
| 940 | ||||
| 941 | SDValue HalfV = getZero(dl, VecTy, DAG); | |||
| 942 | if (VecHist[n] > 1) { | |||
| 943 | SDValue SplatV = DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Words[n]); | |||
| 944 | HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy, | |||
| 945 | {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)}); | |||
| 946 | } | |||
| 947 | SDValue HalfV0 = HalfV; | |||
| 948 | SDValue HalfV1 = HalfV; | |||
| 949 | ||||
| 950 | // Construct two halves in parallel, then or them together. Rn and Rm count | |||
| 951 | // number of rotations needed before the next element. One last rotation is | |||
| 952 | // performed post-loop to position the last element. | |||
| 953 | int Rn = 0, Rm = 0; | |||
| 954 | SDValue Sn, Sm; | |||
| 955 | SDValue N = HalfV0; | |||
| 956 | SDValue M = HalfV1; | |||
| 957 | for (unsigned i = 0; i != NumWords/2; ++i) { | |||
| 958 | // Rotate by element count since last insertion. | |||
| 959 | if (Words[i] != Words[n] || VecHist[n] <= 1) { | |||
| 960 | Sn = DAG.getConstant(Rn, dl, MVT::i32); | |||
| 961 | HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); | |||
| 962 | N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, | |||
| 963 | {HalfV0, Words[i]}); | |||
| 964 | Rn = 0; | |||
| 965 | } | |||
| 966 | if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) { | |||
| 967 | Sm = DAG.getConstant(Rm, dl, MVT::i32); | |||
| 968 | HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); | |||
| 969 | M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, | |||
| 970 | {HalfV1, Words[i+NumWords/2]}); | |||
| 971 | Rm = 0; | |||
| 972 | } | |||
| 973 | Rn += 4; | |||
| 974 | Rm += 4; | |||
| 975 | } | |||
| 976 | // Perform last rotation. | |||
| 977 | Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32); | |||
| 978 | Sm = DAG.getConstant(Rm, dl, MVT::i32); | |||
| 979 | HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, Sn}); | |||
| 980 | HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, Sm}); | |||
| 981 | ||||
| 982 | SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0); | |||
| 983 | SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1); | |||
| 984 | ||||
| 985 | SDValue DstV = DAG.getNode(ISD::OR, dl, ty(T0), {T0, T1}); | |||
| 986 | ||||
| 987 | SDValue OutV = | |||
| 988 | DAG.getBitcast(tyVector(ty(DstV), VecTy.getVectorElementType()), DstV); | |||
| 989 | return OutV; | |||
| 990 | } | |||
| 991 | ||||
| 992 | SDValue | |||
| 993 | HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl, | |||
| 994 | unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const { | |||
| 995 | MVT PredTy = ty(PredV); | |||
| 996 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 997 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 998 | ||||
| 999 | if (Subtarget.isHVXVectorType(PredTy, true)) { | |||
| 1000 | // Move the vector predicate SubV to a vector register, and scale it | |||
| 1001 | // down to match the representation (bytes per type element) that VecV | |||
| 1002 | // uses. The scaling down will pick every 2nd or 4th (every Scale-th | |||
| 1003 | // in general) element and put them at the front of the resulting | |||
| 1004 | // vector. This subvector will then be inserted into the Q2V of VecV. | |||
| 1005 | // To avoid having an operation that generates an illegal type (short | |||
| 1006 | // vector), generate a full size vector. | |||
| 1007 | // | |||
| 1008 | SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV); | |||
| 1009 | SmallVector<int,128> Mask(HwLen); | |||
| 1010 | // Scale = BitBytes(PredV) / Given BitBytes. | |||
| 1011 | unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes); | |||
| 1012 | unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes; | |||
| 1013 | ||||
| 1014 | for (unsigned i = 0; i != HwLen; ++i) { | |||
| 1015 | unsigned Num = i % Scale; | |||
| 1016 | unsigned Off = i / Scale; | |||
| 1017 | Mask[BlockLen*Num + Off] = i; | |||
| 1018 | } | |||
| 1019 | SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask); | |||
| 1020 | if (!ZeroFill) | |||
| 1021 | return S; | |||
| 1022 | // Fill the bytes beyond BlockLen with 0s. | |||
| 1023 | // V6_pred_scalar2 cannot fill the entire predicate, so it only works | |||
| 1024 | // when BlockLen < HwLen. | |||
| 1025 | assert(BlockLen < HwLen && "vsetq(v1) prerequisite")(static_cast <bool> (BlockLen < HwLen && "vsetq(v1) prerequisite" ) ? void (0) : __assert_fail ("BlockLen < HwLen && \"vsetq(v1) prerequisite\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1025, __extension__ __PRETTY_FUNCTION__)); | |||
| 1026 | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | |||
| 1027 | SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | |||
| 1028 | {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); | |||
| 1029 | SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q); | |||
| 1030 | return DAG.getNode(ISD::AND, dl, ByteTy, S, M); | |||
| 1031 | } | |||
| 1032 | ||||
| 1033 | // Make sure that this is a valid scalar predicate. | |||
| 1034 | assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1)(static_cast <bool> (PredTy == MVT::v2i1 || PredTy == MVT ::v4i1 || PredTy == MVT::v8i1) ? void (0) : __assert_fail ("PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1034, __extension__ __PRETTY_FUNCTION__)); | |||
| 1035 | ||||
| 1036 | unsigned Bytes = 8 / PredTy.getVectorNumElements(); | |||
| 1037 | SmallVector<SDValue,4> Words[2]; | |||
| 1038 | unsigned IdxW = 0; | |||
| 1039 | ||||
| 1040 | SDValue W0 = isUndef(PredV) | |||
| 1041 | ? DAG.getUNDEF(MVT::i64) | |||
| 1042 | : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV); | |||
| 1043 | Words[IdxW].push_back(HiHalf(W0, DAG)); | |||
| 1044 | Words[IdxW].push_back(LoHalf(W0, DAG)); | |||
| 1045 | ||||
| 1046 | while (Bytes < BitBytes) { | |||
| 1047 | IdxW ^= 1; | |||
| 1048 | Words[IdxW].clear(); | |||
| 1049 | ||||
| 1050 | if (Bytes < 4) { | |||
| 1051 | for (const SDValue &W : Words[IdxW ^ 1]) { | |||
| 1052 | SDValue T = expandPredicate(W, dl, DAG); | |||
| 1053 | Words[IdxW].push_back(HiHalf(T, DAG)); | |||
| 1054 | Words[IdxW].push_back(LoHalf(T, DAG)); | |||
| 1055 | } | |||
| 1056 | } else { | |||
| 1057 | for (const SDValue &W : Words[IdxW ^ 1]) { | |||
| 1058 | Words[IdxW].push_back(W); | |||
| 1059 | Words[IdxW].push_back(W); | |||
| 1060 | } | |||
| 1061 | } | |||
| 1062 | Bytes *= 2; | |||
| 1063 | } | |||
| 1064 | ||||
| 1065 | assert(Bytes == BitBytes)(static_cast <bool> (Bytes == BitBytes) ? void (0) : __assert_fail ("Bytes == BitBytes", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 1065, __extension__ __PRETTY_FUNCTION__)); | |||
| 1066 | ||||
| 1067 | SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy); | |||
| 1068 | SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32); | |||
| 1069 | for (const SDValue &W : Words[IdxW]) { | |||
| 1070 | Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4); | |||
| 1071 | Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W); | |||
| 1072 | } | |||
| 1073 | ||||
| 1074 | return Vec; | |||
| 1075 | } | |||
| 1076 | ||||
| 1077 | SDValue | |||
| 1078 | HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values, | |||
| 1079 | const SDLoc &dl, MVT VecTy, | |||
| 1080 | SelectionDAG &DAG) const { | |||
| 1081 | // Construct a vector V of bytes, such that a comparison V >u 0 would | |||
| 1082 | // produce the required vector predicate. | |||
| 1083 | unsigned VecLen = Values.size(); | |||
| 1084 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1085 | assert(VecLen <= HwLen || VecLen == 8*HwLen)(static_cast <bool> (VecLen <= HwLen || VecLen == 8* HwLen) ? void (0) : __assert_fail ("VecLen <= HwLen || VecLen == 8*HwLen" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1085, __extension__ __PRETTY_FUNCTION__)); | |||
| 1086 | SmallVector<SDValue,128> Bytes; | |||
| 1087 | bool AllT = true, AllF = true; | |||
| 1088 | ||||
| 1089 | auto IsTrue = [] (SDValue V) { | |||
| 1090 | if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) | |||
| 1091 | return !N->isZero(); | |||
| 1092 | return false; | |||
| 1093 | }; | |||
| 1094 | auto IsFalse = [] (SDValue V) { | |||
| 1095 | if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) | |||
| 1096 | return N->isZero(); | |||
| 1097 | return false; | |||
| 1098 | }; | |||
| 1099 | ||||
| 1100 | if (VecLen <= HwLen) { | |||
| 1101 | // In the hardware, each bit of a vector predicate corresponds to a byte | |||
| 1102 | // of a vector register. Calculate how many bytes does a bit of VecTy | |||
| 1103 | // correspond to. | |||
| 1104 | assert(HwLen % VecLen == 0)(static_cast <bool> (HwLen % VecLen == 0) ? void (0) : __assert_fail ("HwLen % VecLen == 0", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 1104, __extension__ __PRETTY_FUNCTION__)); | |||
| 1105 | unsigned BitBytes = HwLen / VecLen; | |||
| 1106 | for (SDValue V : Values) { | |||
| 1107 | AllT &= IsTrue(V); | |||
| 1108 | AllF &= IsFalse(V); | |||
| 1109 | ||||
| 1110 | SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8) | |||
| 1111 | : DAG.getUNDEF(MVT::i8); | |||
| 1112 | for (unsigned B = 0; B != BitBytes; ++B) | |||
| 1113 | Bytes.push_back(Ext); | |||
| 1114 | } | |||
| 1115 | } else { | |||
| 1116 | // There are as many i1 values, as there are bits in a vector register. | |||
| 1117 | // Divide the values into groups of 8 and check that each group consists | |||
| 1118 | // of the same value (ignoring undefs). | |||
| 1119 | for (unsigned I = 0; I != VecLen; I += 8) { | |||
| 1120 | unsigned B = 0; | |||
| 1121 | // Find the first non-undef value in this group. | |||
| 1122 | for (; B != 8; ++B) { | |||
| 1123 | if (!Values[I+B].isUndef()) | |||
| 1124 | break; | |||
| 1125 | } | |||
| 1126 | SDValue F = Values[I+B]; | |||
| 1127 | AllT &= IsTrue(F); | |||
| 1128 | AllF &= IsFalse(F); | |||
| 1129 | ||||
| 1130 | SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8) | |||
| 1131 | : DAG.getUNDEF(MVT::i8); | |||
| 1132 | Bytes.push_back(Ext); | |||
| 1133 | // Verify that the rest of values in the group are the same as the | |||
| 1134 | // first. | |||
| 1135 | for (; B != 8; ++B) | |||
| 1136 | assert(Values[I+B].isUndef() || Values[I+B] == F)(static_cast <bool> (Values[I+B].isUndef() || Values[I+ B] == F) ? void (0) : __assert_fail ("Values[I+B].isUndef() || Values[I+B] == F" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1136, __extension__ __PRETTY_FUNCTION__)); | |||
| 1137 | } | |||
| 1138 | } | |||
| 1139 | ||||
| 1140 | if (AllT) | |||
| 1141 | return DAG.getNode(HexagonISD::QTRUE, dl, VecTy); | |||
| 1142 | if (AllF) | |||
| 1143 | return DAG.getNode(HexagonISD::QFALSE, dl, VecTy); | |||
| 1144 | ||||
| 1145 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 1146 | SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG); | |||
| 1147 | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); | |||
| 1148 | } | |||
| 1149 | ||||
| 1150 | SDValue | |||
| 1151 | HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV, | |||
| 1152 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | |||
| 1153 | MVT ElemTy = ty(VecV).getVectorElementType(); | |||
| 1154 | ||||
| 1155 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 1156 | assert(ElemWidth >= 8 && ElemWidth <= 32)(static_cast <bool> (ElemWidth >= 8 && ElemWidth <= 32) ? void (0) : __assert_fail ("ElemWidth >= 8 && ElemWidth <= 32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1156, __extension__ __PRETTY_FUNCTION__)); | |||
| 1157 | (void)ElemWidth; | |||
| 1158 | ||||
| 1159 | SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); | |||
| 1160 | SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, | |||
| 1161 | {VecV, ByteIdx}); | |||
| 1162 | if (ElemTy == MVT::i32) | |||
| 1163 | return ExWord; | |||
| 1164 | ||||
| 1165 | // Have an extracted word, need to extract the smaller element out of it. | |||
| 1166 | // 1. Extract the bits of (the original) IdxV that correspond to the index | |||
| 1167 | // of the desired element in the 32-bit word. | |||
| 1168 | SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); | |||
| 1169 | // 2. Extract the element from the word. | |||
| 1170 | SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord); | |||
| 1171 | return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG); | |||
| 1172 | } | |||
| 1173 | ||||
| 1174 | SDValue | |||
| 1175 | HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV, | |||
| 1176 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | |||
| 1177 | // Implement other return types if necessary. | |||
| 1178 | assert(ResTy == MVT::i1)(static_cast <bool> (ResTy == MVT::i1) ? void (0) : __assert_fail ("ResTy == MVT::i1", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 1178, __extension__ __PRETTY_FUNCTION__)); | |||
| 1179 | ||||
| 1180 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1181 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 1182 | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | |||
| 1183 | ||||
| 1184 | unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); | |||
| 1185 | SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); | |||
| 1186 | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); | |||
| 1187 | ||||
| 1188 | SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG); | |||
| 1189 | SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32); | |||
| 1190 | return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG); | |||
| 1191 | } | |||
| 1192 | ||||
| 1193 | SDValue | |||
| 1194 | HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV, | |||
| 1195 | SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { | |||
| 1196 | MVT ElemTy = ty(VecV).getVectorElementType(); | |||
| 1197 | ||||
| 1198 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 1199 | assert(ElemWidth >= 8 && ElemWidth <= 32)(static_cast <bool> (ElemWidth >= 8 && ElemWidth <= 32) ? void (0) : __assert_fail ("ElemWidth >= 8 && ElemWidth <= 32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1199, __extension__ __PRETTY_FUNCTION__)); | |||
| 1200 | (void)ElemWidth; | |||
| 1201 | ||||
| 1202 | auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV, | |||
| 1203 | SDValue ByteIdxV) { | |||
| 1204 | MVT VecTy = ty(VecV); | |||
| 1205 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1206 | SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32, | |||
| 1207 | {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)}); | |||
| 1208 | SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV}); | |||
| 1209 | SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV}); | |||
| 1210 | SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32, | |||
| 1211 | {DAG.getConstant(HwLen, dl, MVT::i32), MaskV}); | |||
| 1212 | SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV}); | |||
| 1213 | return TorV; | |||
| 1214 | }; | |||
| 1215 | ||||
| 1216 | SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); | |||
| 1217 | if (ElemTy == MVT::i32) | |||
| 1218 | return InsertWord(VecV, ValV, ByteIdx); | |||
| 1219 | ||||
| 1220 | // If this is not inserting a 32-bit word, convert it into such a thing. | |||
| 1221 | // 1. Extract the existing word from the target vector. | |||
| 1222 | SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32, | |||
| 1223 | {ByteIdx, DAG.getConstant(2, dl, MVT::i32)}); | |||
| 1224 | SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx, | |||
| 1225 | dl, MVT::i32, DAG); | |||
| 1226 | ||||
| 1227 | // 2. Treating the extracted word as a 32-bit vector, insert the given | |||
| 1228 | // value into it. | |||
| 1229 | SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); | |||
| 1230 | MVT SubVecTy = tyVector(ty(Ext), ElemTy); | |||
| 1231 | SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext), | |||
| 1232 | ValV, SubIdx, dl, ElemTy, DAG); | |||
| 1233 | ||||
| 1234 | // 3. Insert the 32-bit word back into the original vector. | |||
| 1235 | return InsertWord(VecV, Ins, ByteIdx); | |||
| 1236 | } | |||
| 1237 | ||||
| 1238 | SDValue | |||
| 1239 | HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV, | |||
| 1240 | SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { | |||
| 1241 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1242 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 1243 | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | |||
| 1244 | ||||
| 1245 | unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); | |||
| 1246 | SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); | |||
| 1247 | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); | |||
| 1248 | ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV); | |||
| 1249 | ||||
| 1250 | SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG); | |||
| 1251 | return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV); | |||
| 1252 | } | |||
| 1253 | ||||
| 1254 | SDValue | |||
| 1255 | HexagonTargetLowering::extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV, | |||
| 1256 | SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | |||
| 1257 | MVT VecTy = ty(VecV); | |||
| 1258 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1259 | unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); | |||
| 1260 | MVT ElemTy = VecTy.getVectorElementType(); | |||
| 1261 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 1262 | ||||
| 1263 | // If the source vector is a vector pair, get the single vector containing | |||
| 1264 | // the subvector of interest. The subvector will never overlap two single | |||
| 1265 | // vectors. | |||
| 1266 | if (isHvxPairTy(VecTy)) { | |||
| 1267 | if (Idx * ElemWidth >= 8*HwLen) | |||
| 1268 | Idx -= VecTy.getVectorNumElements() / 2; | |||
| 1269 | ||||
| 1270 | VecV = OrigOp; | |||
| 1271 | if (typeSplit(VecTy).first == ResTy) | |||
| 1272 | return VecV; | |||
| 1273 | } | |||
| 1274 | ||||
| 1275 | // The only meaningful subvectors of a single HVX vector are those that | |||
| 1276 | // fit in a scalar register. | |||
| 1277 | assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64)(static_cast <bool> (ResTy.getSizeInBits() == 32 || ResTy .getSizeInBits() == 64) ? void (0) : __assert_fail ("ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1277, __extension__ __PRETTY_FUNCTION__)); | |||
| 1278 | ||||
| 1279 | MVT WordTy = tyVector(VecTy, MVT::i32); | |||
| 1280 | SDValue WordVec = DAG.getBitcast(WordTy, VecV); | |||
| 1281 | unsigned WordIdx = (Idx*ElemWidth) / 32; | |||
| 1282 | ||||
| 1283 | SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32); | |||
| 1284 | SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG); | |||
| 1285 | if (ResTy.getSizeInBits() == 32) | |||
| 1286 | return DAG.getBitcast(ResTy, W0); | |||
| 1287 | ||||
| 1288 | SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32); | |||
| 1289 | SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG); | |||
| 1290 | SDValue WW = getCombine(W1, W0, dl, MVT::i64, DAG); | |||
| 1291 | return DAG.getBitcast(ResTy, WW); | |||
| 1292 | } | |||
| 1293 | ||||
| 1294 | SDValue | |||
| 1295 | HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, | |||
| 1296 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { | |||
| 1297 | MVT VecTy = ty(VecV); | |||
| 1298 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1299 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 1300 | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | |||
| 1301 | // IdxV is required to be a constant. | |||
| 1302 | unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); | |||
| 1303 | ||||
| 1304 | unsigned ResLen = ResTy.getVectorNumElements(); | |||
| 1305 | unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); | |||
| 1306 | unsigned Offset = Idx * BitBytes; | |||
| 1307 | SDValue Undef = DAG.getUNDEF(ByteTy); | |||
| 1308 | SmallVector<int,128> Mask; | |||
| 1309 | ||||
| 1310 | if (Subtarget.isHVXVectorType(ResTy, true)) { | |||
| 1311 | // Converting between two vector predicates. Since the result is shorter | |||
| 1312 | // than the source, it will correspond to a vector predicate with the | |||
| 1313 | // relevant bits replicated. The replication count is the ratio of the | |||
| 1314 | // source and target vector lengths. | |||
| 1315 | unsigned Rep = VecTy.getVectorNumElements() / ResLen; | |||
| 1316 | assert(isPowerOf2_32(Rep) && HwLen % Rep == 0)(static_cast <bool> (isPowerOf2_32(Rep) && HwLen % Rep == 0) ? void (0) : __assert_fail ("isPowerOf2_32(Rep) && HwLen % Rep == 0" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1316, __extension__ __PRETTY_FUNCTION__)); | |||
| 1317 | for (unsigned i = 0; i != HwLen/Rep; ++i) { | |||
| 1318 | for (unsigned j = 0; j != Rep; ++j) | |||
| 1319 | Mask.push_back(i + Offset); | |||
| 1320 | } | |||
| 1321 | SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); | |||
| 1322 | return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV); | |||
| 1323 | } | |||
| 1324 | ||||
| 1325 | // Converting between a vector predicate and a scalar predicate. In the | |||
| 1326 | // vector predicate, a group of BitBytes bits will correspond to a single | |||
| 1327 | // i1 element of the source vector type. Those bits will all have the same | |||
| 1328 | // value. The same will be true for ByteVec, where each byte corresponds | |||
| 1329 | // to a bit in the vector predicate. | |||
| 1330 | // The algorithm is to traverse the ByteVec, going over the i1 values from | |||
| 1331 | // the source vector, and generate the corresponding representation in an | |||
| 1332 | // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the | |||
| 1333 | // elements so that the interesting 8 bytes will be in the low end of the | |||
| 1334 | // vector. | |||
| 1335 | unsigned Rep = 8 / ResLen; | |||
| 1336 | // Make sure the output fill the entire vector register, so repeat the | |||
| 1337 | // 8-byte groups as many times as necessary. | |||
| 1338 | for (unsigned r = 0; r != HwLen/ResLen; ++r) { | |||
| 1339 | // This will generate the indexes of the 8 interesting bytes. | |||
| 1340 | for (unsigned i = 0; i != ResLen; ++i) { | |||
| 1341 | for (unsigned j = 0; j != Rep; ++j) | |||
| 1342 | Mask.push_back(Offset + i*BitBytes); | |||
| 1343 | } | |||
| 1344 | } | |||
| 1345 | ||||
| 1346 | SDValue Zero = getZero(dl, MVT::i32, DAG); | |||
| 1347 | SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); | |||
| 1348 | // Combine the two low words from ShuffV into a v8i8, and byte-compare | |||
| 1349 | // them against 0. | |||
| 1350 | SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero}); | |||
| 1351 | SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, | |||
| 1352 | {ShuffV, DAG.getConstant(4, dl, MVT::i32)}); | |||
| 1353 | SDValue Vec64 = getCombine(W1, W0, dl, MVT::v8i8, DAG); | |||
| 1354 | return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy, | |||
| 1355 | {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG); | |||
| 1356 | } | |||
| 1357 | ||||
| 1358 | SDValue | |||
| 1359 | HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV, | |||
| 1360 | SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { | |||
| 1361 | MVT VecTy = ty(VecV); | |||
| 1362 | MVT SubTy = ty(SubV); | |||
| 1363 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1364 | MVT ElemTy = VecTy.getVectorElementType(); | |||
| 1365 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 1366 | ||||
| 1367 | bool IsPair = isHvxPairTy(VecTy); | |||
| 1368 | MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth); | |||
| 1369 | // The two single vectors that VecV consists of, if it's a pair. | |||
| 1370 | SDValue V0, V1; | |||
| 1371 | SDValue SingleV = VecV; | |||
| 1372 | SDValue PickHi; | |||
| 1373 | ||||
| 1374 | if (IsPair) { | |||
| 1375 | V0 = LoHalf(VecV, DAG); | |||
| 1376 | V1 = HiHalf(VecV, DAG); | |||
| 1377 | ||||
| 1378 | SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(), | |||
| 1379 | dl, MVT::i32); | |||
| 1380 | PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT); | |||
| 1381 | if (isHvxSingleTy(SubTy)) { | |||
| 1382 | if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) { | |||
| 1383 | unsigned Idx = CN->getZExtValue(); | |||
| 1384 | assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2)(static_cast <bool> (Idx == 0 || Idx == VecTy.getVectorNumElements ()/2) ? void (0) : __assert_fail ("Idx == 0 || Idx == VecTy.getVectorNumElements()/2" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1384, __extension__ __PRETTY_FUNCTION__)); | |||
| 1385 | unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi; | |||
| 1386 | return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV); | |||
| 1387 | } | |||
| 1388 | // If IdxV is not a constant, generate the two variants: with the | |||
| 1389 | // SubV as the high and as the low subregister, and select the right | |||
| 1390 | // pair based on the IdxV. | |||
| 1391 | SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1}); | |||
| 1392 | SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV}); | |||
| 1393 | return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); | |||
| 1394 | } | |||
| 1395 | // The subvector being inserted must be entirely contained in one of | |||
| 1396 | // the vectors V0 or V1. Set SingleV to the correct one, and update | |||
| 1397 | // IdxV to be the index relative to the beginning of that vector. | |||
| 1398 | SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV); | |||
| 1399 | IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV); | |||
| 1400 | SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0); | |||
| 1401 | } | |||
| 1402 | ||||
| 1403 | // The only meaningful subvectors of a single HVX vector are those that | |||
| 1404 | // fit in a scalar register. | |||
| 1405 | assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64)(static_cast <bool> (SubTy.getSizeInBits() == 32 || SubTy .getSizeInBits() == 64) ? void (0) : __assert_fail ("SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1405, __extension__ __PRETTY_FUNCTION__)); | |||
| 1406 | // Convert IdxV to be index in bytes. | |||
| 1407 | auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); | |||
| 1408 | if (!IdxN || !IdxN->isZero()) { | |||
| 1409 | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | |||
| 1410 | DAG.getConstant(ElemWidth/8, dl, MVT::i32)); | |||
| 1411 | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV); | |||
| 1412 | } | |||
| 1413 | // When inserting a single word, the rotation back to the original position | |||
| 1414 | // would be by HwLen-Idx, but if two words are inserted, it will need to be | |||
| 1415 | // by (HwLen-4)-Idx. | |||
| 1416 | unsigned RolBase = HwLen; | |||
| 1417 | if (SubTy.getSizeInBits() == 32) { | |||
| 1418 | SDValue V = DAG.getBitcast(MVT::i32, SubV); | |||
| 1419 | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, V); | |||
| 1420 | } else { | |||
| 1421 | SDValue V = DAG.getBitcast(MVT::i64, SubV); | |||
| 1422 | SDValue R0 = LoHalf(V, DAG); | |||
| 1423 | SDValue R1 = HiHalf(V, DAG); | |||
| 1424 | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0); | |||
| 1425 | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, | |||
| 1426 | DAG.getConstant(4, dl, MVT::i32)); | |||
| 1427 | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1); | |||
| 1428 | RolBase = HwLen-4; | |||
| 1429 | } | |||
| 1430 | // If the vector wasn't ror'ed, don't ror it back. | |||
| 1431 | if (RolBase != 4 || !IdxN || !IdxN->isZero()) { | |||
| 1432 | SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32, | |||
| 1433 | DAG.getConstant(RolBase, dl, MVT::i32), IdxV); | |||
| 1434 | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV); | |||
| 1435 | } | |||
| 1436 | ||||
| 1437 | if (IsPair) { | |||
| 1438 | SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1}); | |||
| 1439 | SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV}); | |||
| 1440 | return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); | |||
| 1441 | } | |||
| 1442 | return SingleV; | |||
| 1443 | } | |||
| 1444 | ||||
| 1445 | SDValue | |||
| 1446 | HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV, | |||
| 1447 | SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { | |||
| 1448 | MVT VecTy = ty(VecV); | |||
| 1449 | MVT SubTy = ty(SubV); | |||
| 1450 | assert(Subtarget.isHVXVectorType(VecTy, true))(static_cast <bool> (Subtarget.isHVXVectorType(VecTy, true )) ? void (0) : __assert_fail ("Subtarget.isHVXVectorType(VecTy, true)" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1450, __extension__ __PRETTY_FUNCTION__)); | |||
| 1451 | // VecV is an HVX vector predicate. SubV may be either an HVX vector | |||
| 1452 | // predicate as well, or it can be a scalar predicate. | |||
| 1453 | ||||
| 1454 | unsigned VecLen = VecTy.getVectorNumElements(); | |||
| 1455 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1456 | assert(HwLen % VecLen == 0 && "Unexpected vector type")(static_cast <bool> (HwLen % VecLen == 0 && "Unexpected vector type" ) ? void (0) : __assert_fail ("HwLen % VecLen == 0 && \"Unexpected vector type\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1456, __extension__ __PRETTY_FUNCTION__)); | |||
| 1457 | ||||
| 1458 | unsigned Scale = VecLen / SubTy.getVectorNumElements(); | |||
| 1459 | unsigned BitBytes = HwLen / VecLen; | |||
| 1460 | unsigned BlockLen = HwLen / Scale; | |||
| 1461 | ||||
| 1462 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 1463 | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); | |||
| 1464 | SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG); | |||
| 1465 | SDValue ByteIdx; | |||
| 1466 | ||||
| 1467 | auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); | |||
| 1468 | if (!IdxN || !IdxN->isZero()) { | |||
| 1469 | ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, | |||
| 1470 | DAG.getConstant(BitBytes, dl, MVT::i32)); | |||
| 1471 | ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx); | |||
| 1472 | } | |||
| 1473 | ||||
| 1474 | // ByteVec is the target vector VecV rotated in such a way that the | |||
| 1475 | // subvector should be inserted at index 0. Generate a predicate mask | |||
| 1476 | // and use vmux to do the insertion. | |||
| 1477 | assert(BlockLen < HwLen && "vsetq(v1) prerequisite")(static_cast <bool> (BlockLen < HwLen && "vsetq(v1) prerequisite" ) ? void (0) : __assert_fail ("BlockLen < HwLen && \"vsetq(v1) prerequisite\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1477, __extension__ __PRETTY_FUNCTION__)); | |||
| 1478 | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | |||
| 1479 | SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | |||
| 1480 | {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); | |||
| 1481 | ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG); | |||
| 1482 | // Rotate ByteVec back, and convert to a vector predicate. | |||
| 1483 | if (!IdxN || !IdxN->isZero()) { | |||
| 1484 | SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32); | |||
| 1485 | SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx); | |||
| 1486 | ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi); | |||
| 1487 | } | |||
| 1488 | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); | |||
| 1489 | } | |||
| 1490 | ||||
| 1491 | SDValue | |||
| 1492 | HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl, | |||
| 1493 | MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const { | |||
| 1494 | // Sign- and any-extending of a vector predicate to a vector register is | |||
| 1495 | // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and | |||
| 1496 | // a vector of 1s (where the 1s are of type matching the vector type). | |||
| 1497 | assert(Subtarget.isHVXVectorType(ResTy))(static_cast <bool> (Subtarget.isHVXVectorType(ResTy)) ? void (0) : __assert_fail ("Subtarget.isHVXVectorType(ResTy)" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1497, __extension__ __PRETTY_FUNCTION__)); | |||
| 1498 | if (!ZeroExt) | |||
| 1499 | return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV); | |||
| 1500 | ||||
| 1501 | assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements())(static_cast <bool> (ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()) ? void (0) : __assert_fail ("ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1501, __extension__ __PRETTY_FUNCTION__)); | |||
| 1502 | SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | |||
| 1503 | DAG.getConstant(1, dl, MVT::i32)); | |||
| 1504 | SDValue False = getZero(dl, ResTy, DAG); | |||
| 1505 | return DAG.getSelect(dl, ResTy, VecV, True, False); | |||
| 1506 | } | |||
| 1507 | ||||
| 1508 | SDValue | |||
| 1509 | HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl, | |||
| 1510 | MVT ResTy, SelectionDAG &DAG) const { | |||
| 1511 | // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1] | |||
| 1512 | // (i.e. the entire predicate register) to bits [0..HwLen-1] of a | |||
| 1513 | // vector register. The remaining bits of the vector register are | |||
| 1514 | // unspecified. | |||
| 1515 | ||||
| 1516 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 1517 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1518 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 1519 | MVT PredTy = ty(VecQ); | |||
| 1520 | unsigned PredLen = PredTy.getVectorNumElements(); | |||
| 1521 | assert(HwLen % PredLen == 0)(static_cast <bool> (HwLen % PredLen == 0) ? void (0) : __assert_fail ("HwLen % PredLen == 0", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 1521, __extension__ __PRETTY_FUNCTION__)); | |||
| 1522 | MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen); | |||
| 1523 | ||||
| 1524 | Type *Int8Ty = Type::getInt8Ty(*DAG.getContext()); | |||
| 1525 | SmallVector<Constant*, 128> Tmp; | |||
| 1526 | // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,... | |||
| 1527 | // These are bytes with the LSB rotated left with respect to their index. | |||
| 1528 | for (unsigned i = 0; i != HwLen/8; ++i) { | |||
| 1529 | for (unsigned j = 0; j != 8; ++j) | |||
| 1530 | Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j)); | |||
| 1531 | } | |||
| 1532 | Constant *CV = ConstantVector::get(Tmp); | |||
| 1533 | Align Alignment(HwLen); | |||
| 1534 | SDValue CP = | |||
| 1535 | LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG); | |||
| 1536 | SDValue Bytes = | |||
| 1537 | DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP, | |||
| 1538 | MachinePointerInfo::getConstantPool(MF), Alignment); | |||
| 1539 | ||||
| 1540 | // Select the bytes that correspond to true bits in the vector predicate. | |||
| 1541 | SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes), | |||
| 1542 | getZero(dl, VecTy, DAG)); | |||
| 1543 | // Calculate the OR of all bytes in each group of 8. That will compress | |||
| 1544 | // all the individual bits into a single byte. | |||
| 1545 | // First, OR groups of 4, via vrmpy with 0x01010101. | |||
| 1546 | SDValue All1 = | |||
| 1547 | DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32)); | |||
| 1548 | SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG); | |||
| 1549 | // Then rotate the accumulated vector by 4 bytes, and do the final OR. | |||
| 1550 | SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy, | |||
| 1551 | {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG); | |||
| 1552 | SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot}); | |||
| 1553 | ||||
| 1554 | // Pick every 8th byte and coalesce them at the beginning of the output. | |||
| 1555 | // For symmetry, coalesce every 1+8th byte after that, then every 2+8th | |||
| 1556 | // byte and so on. | |||
| 1557 | SmallVector<int,128> Mask; | |||
| 1558 | for (unsigned i = 0; i != HwLen; ++i) | |||
| 1559 | Mask.push_back((8*i) % HwLen + i/(HwLen/8)); | |||
| 1560 | SDValue Collect = | |||
| 1561 | DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask); | |||
| 1562 | return DAG.getBitcast(ResTy, Collect); | |||
| 1563 | } | |||
| 1564 | ||||
| 1565 | SDValue | |||
| 1566 | HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed, | |||
| 1567 | const SDLoc &dl, SelectionDAG &DAG) const { | |||
| 1568 | // Take a vector and resize the element type to match the given type. | |||
| 1569 | MVT InpTy = ty(VecV); | |||
| 1570 | if (InpTy == ResTy) | |||
| 1571 | return VecV; | |||
| 1572 | ||||
| 1573 | unsigned InpWidth = InpTy.getSizeInBits(); | |||
| 1574 | unsigned ResWidth = ResTy.getSizeInBits(); | |||
| 1575 | ||||
| 1576 | if (InpTy.isFloatingPoint()) { | |||
| 1577 | return InpWidth < ResWidth ? DAG.getNode(ISD::FP_EXTEND, dl, ResTy, VecV) | |||
| 1578 | : DAG.getNode(ISD::FP_ROUND, dl, ResTy, VecV, | |||
| 1579 | getZero(dl, MVT::i32, DAG)); | |||
| 1580 | } | |||
| 1581 | ||||
| 1582 | assert(InpTy.isInteger())(static_cast <bool> (InpTy.isInteger()) ? void (0) : __assert_fail ("InpTy.isInteger()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 1582, __extension__ __PRETTY_FUNCTION__)); | |||
| 1583 | ||||
| 1584 | if (InpWidth < ResWidth) { | |||
| 1585 | unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | |||
| 1586 | return DAG.getNode(ExtOpc, dl, ResTy, VecV); | |||
| 1587 | } else { | |||
| 1588 | unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT; | |||
| 1589 | return DAG.getNode(NarOpc, dl, ResTy, VecV, DAG.getValueType(ResTy)); | |||
| 1590 | } | |||
| 1591 | } | |||
| 1592 | ||||
| 1593 | SDValue | |||
| 1594 | HexagonTargetLowering::extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx, | |||
| 1595 | SelectionDAG &DAG) const { | |||
| 1596 | assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0)(static_cast <bool> (ty(Vec).getSizeInBits() % SubTy.getSizeInBits () == 0) ? void (0) : __assert_fail ("ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1596, __extension__ __PRETTY_FUNCTION__)); | |||
| 1597 | ||||
| 1598 | const SDLoc &dl(Vec); | |||
| 1599 | unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements(); | |||
| 1600 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubTy, | |||
| 1601 | {Vec, DAG.getConstant(ElemIdx, dl, MVT::i32)}); | |||
| 1602 | } | |||
| 1603 | ||||
| 1604 | SDValue | |||
| 1605 | HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) | |||
| 1606 | const { | |||
| 1607 | const SDLoc &dl(Op); | |||
| 1608 | MVT VecTy = ty(Op); | |||
| 1609 | ||||
| 1610 | unsigned Size = Op.getNumOperands(); | |||
| 1611 | SmallVector<SDValue,128> Ops; | |||
| 1612 | for (unsigned i = 0; i != Size; ++i) | |||
| 1613 | Ops.push_back(Op.getOperand(i)); | |||
| 1614 | ||||
| 1615 | // First, split the BUILD_VECTOR for vector pairs. We could generate | |||
| 1616 | // some pairs directly (via splat), but splats should be generated | |||
| 1617 | // by the combiner prior to getting here. | |||
| 1618 | if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) { | |||
| 1619 | ArrayRef<SDValue> A(Ops); | |||
| 1620 | MVT SingleTy = typeSplit(VecTy).first; | |||
| 1621 | SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG); | |||
| 1622 | SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG); | |||
| 1623 | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1); | |||
| 1624 | } | |||
| 1625 | ||||
| 1626 | if (VecTy.getVectorElementType() == MVT::i1) | |||
| 1627 | return buildHvxVectorPred(Ops, dl, VecTy, DAG); | |||
| 1628 | ||||
| 1629 | // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is | |||
| 1630 | // not a legal type, just bitcast the node to use i16 | |||
| 1631 | // types and bitcast the result back to f16 | |||
| 1632 | if (VecTy.getVectorElementType() == MVT::f16) { | |||
| 1633 | SmallVector<SDValue,64> NewOps; | |||
| 1634 | for (unsigned i = 0; i != Size; i++) | |||
| 1635 | NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i])); | |||
| 1636 | ||||
| 1637 | SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl, | |||
| 1638 | tyVector(VecTy, MVT::i16), NewOps); | |||
| 1639 | return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); | |||
| 1640 | } | |||
| 1641 | ||||
| 1642 | return buildHvxVectorReg(Ops, dl, VecTy, DAG); | |||
| 1643 | } | |||
| 1644 | ||||
| 1645 | SDValue | |||
| 1646 | HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG) | |||
| 1647 | const { | |||
| 1648 | const SDLoc &dl(Op); | |||
| 1649 | MVT VecTy = ty(Op); | |||
| 1650 | MVT ArgTy = ty(Op.getOperand(0)); | |||
| 1651 | ||||
| 1652 | if (ArgTy == MVT::f16) { | |||
| 1653 | MVT SplatTy = MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements()); | |||
| 1654 | SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0)); | |||
| 1655 | SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16); | |||
| 1656 | SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, dl, SplatTy, ToInt32); | |||
| 1657 | return DAG.getBitcast(VecTy, Splat); | |||
| 1658 | } | |||
| 1659 | ||||
| 1660 | return SDValue(); | |||
| 1661 | } | |||
| 1662 | ||||
| 1663 | SDValue | |||
| 1664 | HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) | |||
| 1665 | const { | |||
| 1666 | // Vector concatenation of two integer (non-bool) vectors does not need | |||
| 1667 | // special lowering. Custom-lower concats of bool vectors and expand | |||
| 1668 | // concats of more than 2 vectors. | |||
| 1669 | MVT VecTy = ty(Op); | |||
| 1670 | const SDLoc &dl(Op); | |||
| 1671 | unsigned NumOp = Op.getNumOperands(); | |||
| 1672 | if (VecTy.getVectorElementType() != MVT::i1) { | |||
| 1673 | if (NumOp == 2) | |||
| 1674 | return Op; | |||
| 1675 | // Expand the other cases into a build-vector. | |||
| 1676 | SmallVector<SDValue,8> Elems; | |||
| 1677 | for (SDValue V : Op.getNode()->ops()) | |||
| 1678 | DAG.ExtractVectorElements(V, Elems); | |||
| 1679 | // A vector of i16 will be broken up into a build_vector of i16's. | |||
| 1680 | // This is a problem, since at the time of operation legalization, | |||
| 1681 | // all operations are expected to be type-legalized, and i16 is not | |||
| 1682 | // a legal type. If any of the extracted elements is not of a valid | |||
| 1683 | // type, sign-extend it to a valid one. | |||
| 1684 | for (unsigned i = 0, e = Elems.size(); i != e; ++i) { | |||
| 1685 | SDValue V = Elems[i]; | |||
| 1686 | MVT Ty = ty(V); | |||
| 1687 | if (!isTypeLegal(Ty)) { | |||
| 1688 | MVT NTy = typeLegalize(Ty, DAG); | |||
| 1689 | if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | |||
| 1690 | Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy, | |||
| 1691 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy, | |||
| 1692 | V.getOperand(0), V.getOperand(1)), | |||
| 1693 | DAG.getValueType(Ty)); | |||
| 1694 | continue; | |||
| 1695 | } | |||
| 1696 | // A few less complicated cases. | |||
| 1697 | switch (V.getOpcode()) { | |||
| 1698 | case ISD::Constant: | |||
| 1699 | Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy); | |||
| 1700 | break; | |||
| 1701 | case ISD::UNDEF: | |||
| 1702 | Elems[i] = DAG.getUNDEF(NTy); | |||
| 1703 | break; | |||
| 1704 | case ISD::TRUNCATE: | |||
| 1705 | Elems[i] = V.getOperand(0); | |||
| 1706 | break; | |||
| 1707 | default: | |||
| 1708 | llvm_unreachable("Unexpected vector element")::llvm::llvm_unreachable_internal("Unexpected vector element" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1708); | |||
| 1709 | } | |||
| 1710 | } | |||
| 1711 | } | |||
| 1712 | return DAG.getBuildVector(VecTy, dl, Elems); | |||
| 1713 | } | |||
| 1714 | ||||
| 1715 | assert(VecTy.getVectorElementType() == MVT::i1)(static_cast <bool> (VecTy.getVectorElementType() == MVT ::i1) ? void (0) : __assert_fail ("VecTy.getVectorElementType() == MVT::i1" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1715, __extension__ __PRETTY_FUNCTION__)); | |||
| 1716 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1717 | assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0)(static_cast <bool> (isPowerOf2_32(NumOp) && HwLen % NumOp == 0) ? void (0) : __assert_fail ("isPowerOf2_32(NumOp) && HwLen % NumOp == 0" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1717, __extension__ __PRETTY_FUNCTION__)); | |||
| 1718 | ||||
| 1719 | SDValue Op0 = Op.getOperand(0); | |||
| 1720 | ||||
| 1721 | // If the operands are HVX types (i.e. not scalar predicates), then | |||
| 1722 | // defer the concatenation, and create QCAT instead. | |||
| 1723 | if (Subtarget.isHVXVectorType(ty(Op0), true)) { | |||
| 1724 | if (NumOp == 2) | |||
| 1725 | return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1)); | |||
| 1726 | ||||
| 1727 | ArrayRef<SDUse> U(Op.getNode()->ops()); | |||
| 1728 | SmallVector<SDValue,4> SV(U.begin(), U.end()); | |||
| 1729 | ArrayRef<SDValue> Ops(SV); | |||
| 1730 | ||||
| 1731 | MVT HalfTy = typeSplit(VecTy).first; | |||
| 1732 | SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, | |||
| 1733 | Ops.take_front(NumOp/2)); | |||
| 1734 | SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, | |||
| 1735 | Ops.take_back(NumOp/2)); | |||
| 1736 | return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1); | |||
| 1737 | } | |||
| 1738 | ||||
| 1739 | // Count how many bytes (in a vector register) each bit in VecTy | |||
| 1740 | // corresponds to. | |||
| 1741 | unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); | |||
| 1742 | ||||
| 1743 | SmallVector<SDValue,8> Prefixes; | |||
| 1744 | for (SDValue V : Op.getNode()->op_values()) { | |||
| 1745 | SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG); | |||
| 1746 | Prefixes.push_back(P); | |||
| 1747 | } | |||
| 1748 | ||||
| 1749 | unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements(); | |||
| 1750 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 1751 | SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32); | |||
| 1752 | SDValue Res = getZero(dl, ByteTy, DAG); | |||
| 1753 | for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) { | |||
| 1754 | Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S); | |||
| 1755 | Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]); | |||
| 1756 | } | |||
| 1757 | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res); | |||
| 1758 | } | |||
| 1759 | ||||
| 1760 | SDValue | |||
| 1761 | HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) | |||
| 1762 | const { | |||
| 1763 | // Change the type of the extracted element to i32. | |||
| 1764 | SDValue VecV = Op.getOperand(0); | |||
| 1765 | MVT ElemTy = ty(VecV).getVectorElementType(); | |||
| 1766 | const SDLoc &dl(Op); | |||
| 1767 | SDValue IdxV = Op.getOperand(1); | |||
| 1768 | if (ElemTy == MVT::i1) | |||
| 1769 | return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG); | |||
| 1770 | ||||
| 1771 | return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG); | |||
| 1772 | } | |||
| 1773 | ||||
| 1774 | SDValue | |||
| 1775 | HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) | |||
| 1776 | const { | |||
| 1777 | const SDLoc &dl(Op); | |||
| 1778 | MVT VecTy = ty(Op); | |||
| 1779 | SDValue VecV = Op.getOperand(0); | |||
| 1780 | SDValue ValV = Op.getOperand(1); | |||
| 1781 | SDValue IdxV = Op.getOperand(2); | |||
| 1782 | MVT ElemTy = ty(VecV).getVectorElementType(); | |||
| 1783 | if (ElemTy == MVT::i1) | |||
| 1784 | return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG); | |||
| 1785 | ||||
| 1786 | if (ElemTy == MVT::f16) { | |||
| 1787 | SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, | |||
| 1788 | tyVector(VecTy, MVT::i16), | |||
| 1789 | DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV), | |||
| 1790 | DAG.getBitcast(MVT::i16, ValV), IdxV); | |||
| 1791 | return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0); | |||
| 1792 | } | |||
| 1793 | ||||
| 1794 | return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG); | |||
| 1795 | } | |||
| 1796 | ||||
| 1797 | SDValue | |||
| 1798 | HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) | |||
| 1799 | const { | |||
| 1800 | SDValue SrcV = Op.getOperand(0); | |||
| 1801 | MVT SrcTy = ty(SrcV); | |||
| 1802 | MVT DstTy = ty(Op); | |||
| 1803 | SDValue IdxV = Op.getOperand(1); | |||
| 1804 | unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); | |||
| 1805 | assert(Idx % DstTy.getVectorNumElements() == 0)(static_cast <bool> (Idx % DstTy.getVectorNumElements() == 0) ? void (0) : __assert_fail ("Idx % DstTy.getVectorNumElements() == 0" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1805, __extension__ __PRETTY_FUNCTION__)); | |||
| 1806 | (void)Idx; | |||
| 1807 | const SDLoc &dl(Op); | |||
| 1808 | ||||
| 1809 | MVT ElemTy = SrcTy.getVectorElementType(); | |||
| 1810 | if (ElemTy == MVT::i1) | |||
| 1811 | return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG); | |||
| 1812 | ||||
| 1813 | return extractHvxSubvectorReg(Op, SrcV, IdxV, dl, DstTy, DAG); | |||
| 1814 | } | |||
| 1815 | ||||
| 1816 | SDValue | |||
| 1817 | HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) | |||
| 1818 | const { | |||
| 1819 | // Idx does not need to be a constant. | |||
| 1820 | SDValue VecV = Op.getOperand(0); | |||
| 1821 | SDValue ValV = Op.getOperand(1); | |||
| 1822 | SDValue IdxV = Op.getOperand(2); | |||
| 1823 | ||||
| 1824 | const SDLoc &dl(Op); | |||
| 1825 | MVT VecTy = ty(VecV); | |||
| 1826 | MVT ElemTy = VecTy.getVectorElementType(); | |||
| 1827 | if (ElemTy == MVT::i1) | |||
| 1828 | return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG); | |||
| 1829 | ||||
| 1830 | return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG); | |||
| 1831 | } | |||
| 1832 | ||||
| 1833 | SDValue | |||
| 1834 | HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const { | |||
| 1835 | // Lower any-extends of boolean vectors to sign-extends, since they | |||
| 1836 | // translate directly to Q2V. Zero-extending could also be done equally | |||
| 1837 | // fast, but Q2V is used/recognized in more places. | |||
| 1838 | // For all other vectors, use zero-extend. | |||
| 1839 | MVT ResTy = ty(Op); | |||
| 1840 | SDValue InpV = Op.getOperand(0); | |||
| 1841 | MVT ElemTy = ty(InpV).getVectorElementType(); | |||
| 1842 | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | |||
| 1843 | return LowerHvxSignExt(Op, DAG); | |||
| 1844 | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV); | |||
| 1845 | } | |||
| 1846 | ||||
| 1847 | SDValue | |||
| 1848 | HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const { | |||
| 1849 | MVT ResTy = ty(Op); | |||
| 1850 | SDValue InpV = Op.getOperand(0); | |||
| 1851 | MVT ElemTy = ty(InpV).getVectorElementType(); | |||
| 1852 | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | |||
| 1853 | return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG); | |||
| 1854 | return Op; | |||
| 1855 | } | |||
| 1856 | ||||
| 1857 | SDValue | |||
| 1858 | HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const { | |||
| 1859 | MVT ResTy = ty(Op); | |||
| 1860 | SDValue InpV = Op.getOperand(0); | |||
| 1861 | MVT ElemTy = ty(InpV).getVectorElementType(); | |||
| 1862 | if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) | |||
| 1863 | return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG); | |||
| 1864 | return Op; | |||
| 1865 | } | |||
| 1866 | ||||
| 1867 | SDValue | |||
| 1868 | HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const { | |||
| 1869 | // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight): | |||
| 1870 | // cttz(x) = bitwidth(x) - ctlz(~x & (x-1)) | |||
| 1871 | const SDLoc &dl(Op); | |||
| 1872 | MVT ResTy = ty(Op); | |||
| 1873 | SDValue InpV = Op.getOperand(0); | |||
| 1874 | assert(ResTy == ty(InpV))(static_cast <bool> (ResTy == ty(InpV)) ? void (0) : __assert_fail ("ResTy == ty(InpV)", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 1874, __extension__ __PRETTY_FUNCTION__)); | |||
| 1875 | ||||
| 1876 | // Calculate the vectors of 1 and bitwidth(x). | |||
| 1877 | MVT ElemTy = ty(InpV).getVectorElementType(); | |||
| 1878 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 1879 | ||||
| 1880 | SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | |||
| 1881 | DAG.getConstant(1, dl, MVT::i32)); | |||
| 1882 | SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | |||
| 1883 | DAG.getConstant(ElemWidth, dl, MVT::i32)); | |||
| 1884 | SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy, | |||
| 1885 | DAG.getConstant(-1, dl, MVT::i32)); | |||
| 1886 | ||||
| 1887 | // Do not use DAG.getNOT, because that would create BUILD_VECTOR with | |||
| 1888 | // a BITCAST. Here we can skip the BITCAST (so we don't have to handle | |||
| 1889 | // it separately in custom combine or selection). | |||
| 1890 | SDValue A = DAG.getNode(ISD::AND, dl, ResTy, | |||
| 1891 | {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}), | |||
| 1892 | DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})}); | |||
| 1893 | return DAG.getNode(ISD::SUB, dl, ResTy, | |||
| 1894 | {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)}); | |||
| 1895 | } | |||
| 1896 | ||||
| 1897 | SDValue | |||
| 1898 | HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const { | |||
| 1899 | const SDLoc &dl(Op); | |||
| 1900 | MVT ResTy = ty(Op); | |||
| 1901 | assert(ResTy.getVectorElementType() == MVT::i32)(static_cast <bool> (ResTy.getVectorElementType() == MVT ::i32) ? void (0) : __assert_fail ("ResTy.getVectorElementType() == MVT::i32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1901, __extension__ __PRETTY_FUNCTION__)); | |||
| 1902 | ||||
| 1903 | SDValue Vs = Op.getOperand(0); | |||
| 1904 | SDValue Vt = Op.getOperand(1); | |||
| 1905 | ||||
| 1906 | SDVTList ResTys = DAG.getVTList(ResTy, ResTy); | |||
| 1907 | unsigned Opc = Op.getOpcode(); | |||
| 1908 | ||||
| 1909 | // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI. | |||
| 1910 | if (Opc == ISD::MULHU) | |||
| 1911 | return DAG.getNode(HexagonISD::UMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); | |||
| 1912 | if (Opc == ISD::MULHS) | |||
| 1913 | return DAG.getNode(HexagonISD::SMUL_LOHI, dl, ResTys, {Vs, Vt}).getValue(1); | |||
| 1914 | ||||
| 1915 | #ifndef NDEBUG | |||
| 1916 | Op.dump(&DAG); | |||
| 1917 | #endif | |||
| 1918 | llvm_unreachable("Unexpected mulh operation")::llvm::llvm_unreachable_internal("Unexpected mulh operation" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1918); | |||
| 1919 | } | |||
| 1920 | ||||
| 1921 | SDValue | |||
| 1922 | HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const { | |||
| 1923 | const SDLoc &dl(Op); | |||
| 1924 | unsigned Opc = Op.getOpcode(); | |||
| 1925 | SDValue Vu = Op.getOperand(0); | |||
| 1926 | SDValue Vv = Op.getOperand(1); | |||
| 1927 | ||||
| 1928 | // If the HI part is not used, convert it to a regular MUL. | |||
| 1929 | if (auto HiVal = Op.getValue(1); HiVal.use_empty()) { | |||
| 1930 | // Need to preserve the types and the number of values. | |||
| 1931 | SDValue Hi = DAG.getUNDEF(ty(HiVal)); | |||
| 1932 | SDValue Lo = DAG.getNode(ISD::MUL, dl, ty(Op), {Vu, Vv}); | |||
| 1933 | return DAG.getMergeValues({Lo, Hi}, dl); | |||
| 1934 | } | |||
| 1935 | ||||
| 1936 | bool SignedVu = Opc == HexagonISD::SMUL_LOHI; | |||
| 1937 | bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI; | |||
| 1938 | ||||
| 1939 | // Legal on HVX v62+, but lower it here because patterns can't handle multi- | |||
| 1940 | // valued nodes. | |||
| 1941 | if (Subtarget.useHVXV62Ops()) | |||
| 1942 | return emitHvxMulLoHiV62(Vu, SignedVu, Vv, SignedVv, dl, DAG); | |||
| 1943 | ||||
| 1944 | if (Opc == HexagonISD::SMUL_LOHI) { | |||
| 1945 | // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI, | |||
| 1946 | // for other signedness LOHI is cheaper. | |||
| 1947 | if (auto LoVal = Op.getValue(0); LoVal.use_empty()) { | |||
| 1948 | SDValue Hi = emitHvxMulHsV60(Vu, Vv, dl, DAG); | |||
| 1949 | SDValue Lo = DAG.getUNDEF(ty(LoVal)); | |||
| 1950 | return DAG.getMergeValues({Lo, Hi}, dl); | |||
| 1951 | } | |||
| 1952 | } | |||
| 1953 | ||||
| 1954 | return emitHvxMulLoHiV60(Vu, SignedVu, Vv, SignedVv, dl, DAG); | |||
| 1955 | } | |||
| 1956 | ||||
| 1957 | SDValue | |||
| 1958 | HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const { | |||
| 1959 | SDValue Val = Op.getOperand(0); | |||
| 1960 | MVT ResTy = ty(Op); | |||
| 1961 | MVT ValTy = ty(Val); | |||
| 1962 | const SDLoc &dl(Op); | |||
| 1963 | ||||
| 1964 | if (isHvxBoolTy(ValTy) && ResTy.isScalarInteger()) { | |||
| 1965 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 1966 | MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4); | |||
| 1967 | SDValue VQ = compressHvxPred(Val, dl, WordTy, DAG); | |||
| 1968 | unsigned BitWidth = ResTy.getSizeInBits(); | |||
| 1969 | ||||
| 1970 | if (BitWidth < 64) { | |||
| 1971 | SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32), | |||
| 1972 | dl, MVT::i32, DAG); | |||
| 1973 | if (BitWidth == 32) | |||
| 1974 | return W0; | |||
| 1975 | assert(BitWidth < 32u)(static_cast <bool> (BitWidth < 32u) ? void (0) : __assert_fail ("BitWidth < 32u", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 1975, __extension__ __PRETTY_FUNCTION__)); | |||
| 1976 | return DAG.getZExtOrTrunc(W0, dl, ResTy); | |||
| 1977 | } | |||
| 1978 | ||||
| 1979 | // The result is >= 64 bits. The only options are 64 or 128. | |||
| 1980 | assert(BitWidth == 64 || BitWidth == 128)(static_cast <bool> (BitWidth == 64 || BitWidth == 128) ? void (0) : __assert_fail ("BitWidth == 64 || BitWidth == 128" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 1980, __extension__ __PRETTY_FUNCTION__)); | |||
| 1981 | SmallVector<SDValue,4> Words; | |||
| 1982 | for (unsigned i = 0; i != BitWidth/32; ++i) { | |||
| 1983 | SDValue W = extractHvxElementReg( | |||
| 1984 | VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG); | |||
| 1985 | Words.push_back(W); | |||
| 1986 | } | |||
| 1987 | SmallVector<SDValue,2> Combines; | |||
| 1988 | assert(Words.size() % 2 == 0)(static_cast <bool> (Words.size() % 2 == 0) ? void (0) : __assert_fail ("Words.size() % 2 == 0", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 1988, __extension__ __PRETTY_FUNCTION__)); | |||
| 1989 | for (unsigned i = 0, e = Words.size(); i < e; i += 2) { | |||
| 1990 | SDValue C = getCombine(Words[i+1], Words[i], dl, MVT::i64, DAG); | |||
| 1991 | Combines.push_back(C); | |||
| 1992 | } | |||
| 1993 | ||||
| 1994 | if (BitWidth == 64) | |||
| 1995 | return Combines[0]; | |||
| 1996 | ||||
| 1997 | return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines); | |||
| 1998 | } | |||
| 1999 | if (isHvxBoolTy(ResTy) && ValTy.isScalarInteger()) { | |||
| 2000 | // Handle bitcast from i128 -> v128i1 and i64 -> v64i1. | |||
| 2001 | unsigned BitWidth = ValTy.getSizeInBits(); | |||
| 2002 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 2003 | assert(BitWidth == HwLen)(static_cast <bool> (BitWidth == HwLen) ? void (0) : __assert_fail ("BitWidth == HwLen", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2003, __extension__ __PRETTY_FUNCTION__)); | |||
| 2004 | ||||
| 2005 | MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8); | |||
| 2006 | SDValue ValAsVec = DAG.getBitcast(ValAsVecTy, Val); | |||
| 2007 | // Splat each byte of Val 8 times. | |||
| 2008 | // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8] | |||
| 2009 | // where b0, b1,..., b15 are least to most significant bytes of I. | |||
| 2010 | SmallVector<SDValue, 128> Bytes; | |||
| 2011 | // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,... | |||
| 2012 | // These are bytes with the LSB rotated left with respect to their index. | |||
| 2013 | SmallVector<SDValue, 128> Tmp; | |||
| 2014 | for (unsigned I = 0; I != HwLen / 8; ++I) { | |||
| 2015 | SDValue Idx = DAG.getConstant(I, dl, MVT::i32); | |||
| 2016 | SDValue Byte = | |||
| 2017 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx); | |||
| 2018 | for (unsigned J = 0; J != 8; ++J) { | |||
| 2019 | Bytes.push_back(Byte); | |||
| 2020 | Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8)); | |||
| 2021 | } | |||
| 2022 | } | |||
| 2023 | ||||
| 2024 | MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 2025 | SDValue ConstantVec = DAG.getBuildVector(ConstantVecTy, dl, Tmp); | |||
| 2026 | SDValue I2V = buildHvxVectorReg(Bytes, dl, ConstantVecTy, DAG); | |||
| 2027 | ||||
| 2028 | // Each Byte in the I2V will be set iff corresponding bit is set in Val. | |||
| 2029 | I2V = DAG.getNode(ISD::AND, dl, ConstantVecTy, {I2V, ConstantVec}); | |||
| 2030 | return DAG.getNode(HexagonISD::V2Q, dl, ResTy, I2V); | |||
| 2031 | } | |||
| 2032 | ||||
| 2033 | return Op; | |||
| 2034 | } | |||
| 2035 | ||||
| 2036 | SDValue | |||
| 2037 | HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const { | |||
| 2038 | // Sign- and zero-extends are legal. | |||
| 2039 | assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG)(static_cast <bool> (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ) ? void (0) : __assert_fail ("Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2039, __extension__ __PRETTY_FUNCTION__)); | |||
| 2040 | return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op), | |||
| 2041 | Op.getOperand(0)); | |||
| 2042 | } | |||
| 2043 | ||||
| 2044 | SDValue | |||
| 2045 | HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const { | |||
| 2046 | MVT ResTy = ty(Op); | |||
| 2047 | if (ResTy.getVectorElementType() != MVT::i1) | |||
| 2048 | return Op; | |||
| 2049 | ||||
| 2050 | const SDLoc &dl(Op); | |||
| 2051 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 2052 | unsigned VecLen = ResTy.getVectorNumElements(); | |||
| 2053 | assert(HwLen % VecLen == 0)(static_cast <bool> (HwLen % VecLen == 0) ? void (0) : __assert_fail ("HwLen % VecLen == 0", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2053, __extension__ __PRETTY_FUNCTION__)); | |||
| 2054 | unsigned ElemSize = HwLen / VecLen; | |||
| 2055 | ||||
| 2056 | MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(ElemSize * 8), VecLen); | |||
| 2057 | SDValue S = | |||
| 2058 | DAG.getNode(ISD::SELECT, dl, VecTy, Op.getOperand(0), | |||
| 2059 | DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(1)), | |||
| 2060 | DAG.getNode(HexagonISD::Q2V, dl, VecTy, Op.getOperand(2))); | |||
| 2061 | return DAG.getNode(HexagonISD::V2Q, dl, ResTy, S); | |||
| 2062 | } | |||
| 2063 | ||||
| 2064 | SDValue | |||
| 2065 | HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const { | |||
| 2066 | if (SDValue S = getVectorShiftByInt(Op, DAG)) | |||
| 2067 | return S; | |||
| 2068 | return Op; | |||
| 2069 | } | |||
| 2070 | ||||
| 2071 | SDValue | |||
| 2072 | HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op, | |||
| 2073 | SelectionDAG &DAG) const { | |||
| 2074 | unsigned Opc = Op.getOpcode(); | |||
| 2075 | assert(Opc == ISD::FSHL || Opc == ISD::FSHR)(static_cast <bool> (Opc == ISD::FSHL || Opc == ISD::FSHR ) ? void (0) : __assert_fail ("Opc == ISD::FSHL || Opc == ISD::FSHR" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2075, __extension__ __PRETTY_FUNCTION__)); | |||
| 2076 | ||||
| 2077 | // Make sure the shift amount is within the range of the bitwidth | |||
| 2078 | // of the element type. | |||
| 2079 | SDValue A = Op.getOperand(0); | |||
| 2080 | SDValue B = Op.getOperand(1); | |||
| 2081 | SDValue S = Op.getOperand(2); | |||
| 2082 | ||||
| 2083 | MVT InpTy = ty(A); | |||
| 2084 | MVT ElemTy = InpTy.getVectorElementType(); | |||
| 2085 | ||||
| 2086 | const SDLoc &dl(Op); | |||
| 2087 | unsigned ElemWidth = ElemTy.getSizeInBits(); | |||
| 2088 | bool IsLeft = Opc == ISD::FSHL; | |||
| 2089 | ||||
| 2090 | // The expansion into regular shifts produces worse code for i8 and for | |||
| 2091 | // right shift of i32 on v65+. | |||
| 2092 | bool UseShifts = ElemTy != MVT::i8; | |||
| 2093 | if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32) | |||
| 2094 | UseShifts = false; | |||
| 2095 | ||||
| 2096 | if (SDValue SplatV = getSplatValue(S, DAG); SplatV && UseShifts) { | |||
| 2097 | // If this is a funnel shift by a scalar, lower it into regular shifts. | |||
| 2098 | SDValue Mask = DAG.getConstant(ElemWidth - 1, dl, MVT::i32); | |||
| 2099 | SDValue ModS = | |||
| 2100 | DAG.getNode(ISD::AND, dl, MVT::i32, | |||
| 2101 | {DAG.getZExtOrTrunc(SplatV, dl, MVT::i32), Mask}); | |||
| 2102 | SDValue NegS = | |||
| 2103 | DAG.getNode(ISD::SUB, dl, MVT::i32, | |||
| 2104 | {DAG.getConstant(ElemWidth, dl, MVT::i32), ModS}); | |||
| 2105 | SDValue IsZero = | |||
| 2106 | DAG.getSetCC(dl, MVT::i1, ModS, getZero(dl, MVT::i32, DAG), ISD::SETEQ); | |||
| 2107 | // FSHL A, B => A << | B >>n | |||
| 2108 | // FSHR A, B => A <<n | B >> | |||
| 2109 | SDValue Part1 = | |||
| 2110 | DAG.getNode(HexagonISD::VASL, dl, InpTy, {A, IsLeft ? ModS : NegS}); | |||
| 2111 | SDValue Part2 = | |||
| 2112 | DAG.getNode(HexagonISD::VLSR, dl, InpTy, {B, IsLeft ? NegS : ModS}); | |||
| 2113 | SDValue Or = DAG.getNode(ISD::OR, dl, InpTy, {Part1, Part2}); | |||
| 2114 | // If the shift amount was 0, pick A or B, depending on the direction. | |||
| 2115 | // The opposite shift will also be by 0, so the "Or" will be incorrect. | |||
| 2116 | return DAG.getNode(ISD::SELECT, dl, InpTy, {IsZero, (IsLeft ? A : B), Or}); | |||
| 2117 | } | |||
| 2118 | ||||
| 2119 | SDValue Mask = DAG.getSplatBuildVector( | |||
| 2120 | InpTy, dl, DAG.getConstant(ElemWidth - 1, dl, ElemTy)); | |||
| 2121 | ||||
| 2122 | unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR; | |||
| 2123 | return DAG.getNode(MOpc, dl, ty(Op), | |||
| 2124 | {A, B, DAG.getNode(ISD::AND, dl, InpTy, {S, Mask})}); | |||
| 2125 | } | |||
| 2126 | ||||
| 2127 | SDValue | |||
| 2128 | HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const { | |||
| 2129 | const SDLoc &dl(Op); | |||
| 2130 | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | |||
| 2131 | SmallVector<SDValue> Ops(Op->ops().begin(), Op->ops().end()); | |||
| 2132 | ||||
| 2133 | auto Swap = [&](SDValue P) { | |||
| 2134 | return DAG.getMergeValues({P.getValue(1), P.getValue(0)}, dl); | |||
| 2135 | }; | |||
| 2136 | ||||
| 2137 | switch (IntNo) { | |||
| 2138 | case Intrinsic::hexagon_V6_pred_typecast: | |||
| 2139 | case Intrinsic::hexagon_V6_pred_typecast_128B: { | |||
| 2140 | MVT ResTy = ty(Op), InpTy = ty(Ops[1]); | |||
| 2141 | if (isHvxBoolTy(ResTy) && isHvxBoolTy(InpTy)) { | |||
| 2142 | if (ResTy == InpTy) | |||
| 2143 | return Ops[1]; | |||
| 2144 | return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Ops[1]); | |||
| 2145 | } | |||
| 2146 | break; | |||
| 2147 | } | |||
| 2148 | case Intrinsic::hexagon_V6_vmpyss_parts: | |||
| 2149 | case Intrinsic::hexagon_V6_vmpyss_parts_128B: | |||
| 2150 | return Swap(DAG.getNode(HexagonISD::SMUL_LOHI, dl, Op->getVTList(), | |||
| 2151 | {Ops[1], Ops[2]})); | |||
| 2152 | case Intrinsic::hexagon_V6_vmpyuu_parts: | |||
| 2153 | case Intrinsic::hexagon_V6_vmpyuu_parts_128B: | |||
| 2154 | return Swap(DAG.getNode(HexagonISD::UMUL_LOHI, dl, Op->getVTList(), | |||
| 2155 | {Ops[1], Ops[2]})); | |||
| 2156 | case Intrinsic::hexagon_V6_vmpyus_parts: | |||
| 2157 | case Intrinsic::hexagon_V6_vmpyus_parts_128B: { | |||
| 2158 | return Swap(DAG.getNode(HexagonISD::USMUL_LOHI, dl, Op->getVTList(), | |||
| 2159 | {Ops[1], Ops[2]})); | |||
| 2160 | } | |||
| 2161 | } // switch | |||
| 2162 | ||||
| 2163 | return Op; | |||
| 2164 | } | |||
| 2165 | ||||
| 2166 | SDValue | |||
| 2167 | HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const { | |||
| 2168 | const SDLoc &dl(Op); | |||
| 2169 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 2170 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 2171 | auto *MaskN = cast<MaskedLoadStoreSDNode>(Op.getNode()); | |||
| 2172 | SDValue Mask = MaskN->getMask(); | |||
| 2173 | SDValue Chain = MaskN->getChain(); | |||
| 2174 | SDValue Base = MaskN->getBasePtr(); | |||
| 2175 | auto *MemOp = MF.getMachineMemOperand(MaskN->getMemOperand(), 0, HwLen); | |||
| 2176 | ||||
| 2177 | unsigned Opc = Op->getOpcode(); | |||
| 2178 | assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE)(static_cast <bool> (Opc == ISD::MLOAD || Opc == ISD::MSTORE ) ? void (0) : __assert_fail ("Opc == ISD::MLOAD || Opc == ISD::MSTORE" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2178, __extension__ __PRETTY_FUNCTION__)); | |||
| 2179 | ||||
| 2180 | if (Opc == ISD::MLOAD) { | |||
| 2181 | MVT ValTy = ty(Op); | |||
| 2182 | SDValue Load = DAG.getLoad(ValTy, dl, Chain, Base, MemOp); | |||
| 2183 | SDValue Thru = cast<MaskedLoadSDNode>(MaskN)->getPassThru(); | |||
| 2184 | if (isUndef(Thru)) | |||
| 2185 | return Load; | |||
| 2186 | SDValue VSel = DAG.getNode(ISD::VSELECT, dl, ValTy, Mask, Load, Thru); | |||
| 2187 | return DAG.getMergeValues({VSel, Load.getValue(1)}, dl); | |||
| 2188 | } | |||
| 2189 | ||||
| 2190 | // MSTORE | |||
| 2191 | // HVX only has aligned masked stores. | |||
| 2192 | ||||
| 2193 | // TODO: Fold negations of the mask into the store. | |||
| 2194 | unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai; | |||
| 2195 | SDValue Value = cast<MaskedStoreSDNode>(MaskN)->getValue(); | |||
| 2196 | SDValue Offset0 = DAG.getTargetConstant(0, dl, ty(Base)); | |||
| 2197 | ||||
| 2198 | if (MaskN->getAlign().value() % HwLen == 0) { | |||
| 2199 | SDValue Store = getInstr(StoreOpc, dl, MVT::Other, | |||
| 2200 | {Mask, Base, Offset0, Value, Chain}, DAG); | |||
| 2201 | DAG.setNodeMemRefs(cast<MachineSDNode>(Store.getNode()), {MemOp}); | |||
| 2202 | return Store; | |||
| 2203 | } | |||
| 2204 | ||||
| 2205 | // Unaligned case. | |||
| 2206 | auto StoreAlign = [&](SDValue V, SDValue A) { | |||
| 2207 | SDValue Z = getZero(dl, ty(V), DAG); | |||
| 2208 | // TODO: use funnel shifts? | |||
| 2209 | // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the | |||
| 2210 | // upper half. | |||
| 2211 | SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG); | |||
| 2212 | SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG); | |||
| 2213 | return std::make_pair(LoV, HiV); | |||
| 2214 | }; | |||
| 2215 | ||||
| 2216 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 2217 | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | |||
| 2218 | SDValue MaskV = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Mask); | |||
| 2219 | VectorPair Tmp = StoreAlign(MaskV, Base); | |||
| 2220 | VectorPair MaskU = {DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.first), | |||
| 2221 | DAG.getNode(HexagonISD::V2Q, dl, BoolTy, Tmp.second)}; | |||
| 2222 | VectorPair ValueU = StoreAlign(Value, Base); | |||
| 2223 | ||||
| 2224 | SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32); | |||
| 2225 | SDValue StoreLo = | |||
| 2226 | getInstr(StoreOpc, dl, MVT::Other, | |||
| 2227 | {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG); | |||
| 2228 | SDValue StoreHi = | |||
| 2229 | getInstr(StoreOpc, dl, MVT::Other, | |||
| 2230 | {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG); | |||
| 2231 | DAG.setNodeMemRefs(cast<MachineSDNode>(StoreLo.getNode()), {MemOp}); | |||
| 2232 | DAG.setNodeMemRefs(cast<MachineSDNode>(StoreHi.getNode()), {MemOp}); | |||
| 2233 | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi}); | |||
| 2234 | } | |||
| 2235 | ||||
| 2236 | SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op, | |||
| 2237 | SelectionDAG &DAG) const { | |||
| 2238 | // This conversion only applies to QFloat. IEEE extension from f16 to f32 | |||
| 2239 | // is legal (done via a pattern). | |||
| 2240 | assert(Subtarget.useHVXQFloatOps())(static_cast <bool> (Subtarget.useHVXQFloatOps()) ? void (0) : __assert_fail ("Subtarget.useHVXQFloatOps()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2240, __extension__ __PRETTY_FUNCTION__)); | |||
| 2241 | ||||
| 2242 | assert(Op->getOpcode() == ISD::FP_EXTEND)(static_cast <bool> (Op->getOpcode() == ISD::FP_EXTEND ) ? void (0) : __assert_fail ("Op->getOpcode() == ISD::FP_EXTEND" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2242, __extension__ __PRETTY_FUNCTION__)); | |||
| 2243 | ||||
| 2244 | MVT VecTy = ty(Op); | |||
| 2245 | MVT ArgTy = ty(Op.getOperand(0)); | |||
| 2246 | const SDLoc &dl(Op); | |||
| 2247 | assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16)(static_cast <bool> (VecTy == MVT::v64f32 && ArgTy == MVT::v64f16) ? void (0) : __assert_fail ("VecTy == MVT::v64f32 && ArgTy == MVT::v64f16" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2247, __extension__ __PRETTY_FUNCTION__)); | |||
| 2248 | ||||
| 2249 | SDValue F16Vec = Op.getOperand(0); | |||
| 2250 | ||||
| 2251 | APFloat FloatVal = APFloat(1.0f); | |||
| 2252 | bool Ignored; | |||
| 2253 | FloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); | |||
| 2254 | SDValue Fp16Ones = DAG.getConstantFP(FloatVal, dl, ArgTy); | |||
| 2255 | SDValue VmpyVec = | |||
| 2256 | getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG); | |||
| 2257 | ||||
| 2258 | MVT HalfTy = typeSplit(VecTy).first; | |||
| 2259 | VectorPair Pair = opSplit(VmpyVec, dl, DAG); | |||
| 2260 | SDValue LoVec = | |||
| 2261 | getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG); | |||
| 2262 | SDValue HiVec = | |||
| 2263 | getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG); | |||
| 2264 | ||||
| 2265 | SDValue ShuffVec = | |||
| 2266 | getInstr(Hexagon::V6_vshuffvdd, dl, VecTy, | |||
| 2267 | {HiVec, LoVec, DAG.getConstant(-4, dl, MVT::i32)}, DAG); | |||
| 2268 | ||||
| 2269 | return ShuffVec; | |||
| 2270 | } | |||
| 2271 | ||||
| 2272 | SDValue | |||
| 2273 | HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { | |||
| 2274 | // Catch invalid conversion ops (just in case). | |||
| 2275 | assert(Op.getOpcode() == ISD::FP_TO_SINT ||(static_cast <bool> (Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::FP_TO_UINT) ? void (0) : __assert_fail ("Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::FP_TO_UINT" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2276, __extension__ __PRETTY_FUNCTION__)) | |||
| 2276 | Op.getOpcode() == ISD::FP_TO_UINT)(static_cast <bool> (Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::FP_TO_UINT) ? void (0) : __assert_fail ("Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::FP_TO_UINT" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2276, __extension__ __PRETTY_FUNCTION__)); | |||
| 2277 | ||||
| 2278 | MVT ResTy = ty(Op); | |||
| 2279 | MVT FpTy = ty(Op.getOperand(0)).getVectorElementType(); | |||
| 2280 | MVT IntTy = ResTy.getVectorElementType(); | |||
| 2281 | ||||
| 2282 | if (Subtarget.useHVXIEEEFPOps()) { | |||
| 2283 | // There are only conversions from f16. | |||
| 2284 | if (FpTy == MVT::f16) { | |||
| 2285 | // Other int types aren't legal in HVX, so we shouldn't see them here. | |||
| 2286 | assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32)(static_cast <bool> (IntTy == MVT::i8 || IntTy == MVT:: i16 || IntTy == MVT::i32) ? void (0) : __assert_fail ("IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2286, __extension__ __PRETTY_FUNCTION__)); | |||
| 2287 | // Conversions to i8 and i16 are legal. | |||
| 2288 | if (IntTy == MVT::i8 || IntTy == MVT::i16) | |||
| 2289 | return Op; | |||
| 2290 | } | |||
| 2291 | } | |||
| 2292 | ||||
| 2293 | if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) | |||
| 2294 | return EqualizeFpIntConversion(Op, DAG); | |||
| 2295 | ||||
| 2296 | return ExpandHvxFpToInt(Op, DAG); | |||
| 2297 | } | |||
| 2298 | ||||
| 2299 | SDValue | |||
| 2300 | HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { | |||
| 2301 | // Catch invalid conversion ops (just in case). | |||
| 2302 | assert(Op.getOpcode() == ISD::SINT_TO_FP ||(static_cast <bool> (Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::UINT_TO_FP) ? void (0) : __assert_fail ("Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::UINT_TO_FP" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2303, __extension__ __PRETTY_FUNCTION__)) | |||
| 2303 | Op.getOpcode() == ISD::UINT_TO_FP)(static_cast <bool> (Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::UINT_TO_FP) ? void (0) : __assert_fail ("Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::UINT_TO_FP" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2303, __extension__ __PRETTY_FUNCTION__)); | |||
| 2304 | ||||
| 2305 | MVT ResTy = ty(Op); | |||
| 2306 | MVT IntTy = ty(Op.getOperand(0)).getVectorElementType(); | |||
| 2307 | MVT FpTy = ResTy.getVectorElementType(); | |||
| 2308 | ||||
| 2309 | if (Subtarget.useHVXIEEEFPOps()) { | |||
| 2310 | // There are only conversions to f16. | |||
| 2311 | if (FpTy == MVT::f16) { | |||
| 2312 | // Other int types aren't legal in HVX, so we shouldn't see them here. | |||
| 2313 | assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32)(static_cast <bool> (IntTy == MVT::i8 || IntTy == MVT:: i16 || IntTy == MVT::i32) ? void (0) : __assert_fail ("IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2313, __extension__ __PRETTY_FUNCTION__)); | |||
| 2314 | // i8, i16 -> f16 is legal. | |||
| 2315 | if (IntTy == MVT::i8 || IntTy == MVT::i16) | |||
| 2316 | return Op; | |||
| 2317 | } | |||
| 2318 | } | |||
| 2319 | ||||
| 2320 | if (IntTy.getSizeInBits() != FpTy.getSizeInBits()) | |||
| 2321 | return EqualizeFpIntConversion(Op, DAG); | |||
| 2322 | ||||
| 2323 | return ExpandHvxIntToFp(Op, DAG); | |||
| 2324 | } | |||
| 2325 | ||||
| 2326 | HexagonTargetLowering::TypePair | |||
| 2327 | HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const { | |||
| 2328 | // Compare the widths of elements of the two types, and extend the narrower | |||
| 2329 | // type to match the with of the wider type. For vector types, apply this | |||
| 2330 | // to the element type. | |||
| 2331 | assert(Ty0.isVector() == Ty1.isVector())(static_cast <bool> (Ty0.isVector() == Ty1.isVector()) ? void (0) : __assert_fail ("Ty0.isVector() == Ty1.isVector()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2331, __extension__ __PRETTY_FUNCTION__)); | |||
| 2332 | ||||
| 2333 | MVT ElemTy0 = Ty0.getScalarType(); | |||
| 2334 | MVT ElemTy1 = Ty1.getScalarType(); | |||
| 2335 | ||||
| 2336 | unsigned Width0 = ElemTy0.getSizeInBits(); | |||
| 2337 | unsigned Width1 = ElemTy1.getSizeInBits(); | |||
| 2338 | unsigned MaxWidth = std::max(Width0, Width1); | |||
| 2339 | ||||
| 2340 | auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) { | |||
| 2341 | if (ScalarTy.isInteger()) | |||
| 2342 | return MVT::getIntegerVT(Width); | |||
| 2343 | assert(ScalarTy.isFloatingPoint())(static_cast <bool> (ScalarTy.isFloatingPoint()) ? void (0) : __assert_fail ("ScalarTy.isFloatingPoint()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2343, __extension__ __PRETTY_FUNCTION__)); | |||
| 2344 | return MVT::getFloatingPointVT(Width); | |||
| 2345 | }; | |||
| 2346 | ||||
| 2347 | MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth); | |||
| 2348 | MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth); | |||
| 2349 | ||||
| 2350 | if (!Ty0.isVector()) { | |||
| 2351 | // Both types are scalars. | |||
| 2352 | return {WideETy0, WideETy1}; | |||
| 2353 | } | |||
| 2354 | ||||
| 2355 | // Vector types. | |||
| 2356 | unsigned NumElem = Ty0.getVectorNumElements(); | |||
| 2357 | assert(NumElem == Ty1.getVectorNumElements())(static_cast <bool> (NumElem == Ty1.getVectorNumElements ()) ? void (0) : __assert_fail ("NumElem == Ty1.getVectorNumElements()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2357, __extension__ __PRETTY_FUNCTION__)); | |||
| 2358 | ||||
| 2359 | return {MVT::getVectorVT(WideETy0, NumElem), | |||
| 2360 | MVT::getVectorVT(WideETy1, NumElem)}; | |||
| 2361 | } | |||
| 2362 | ||||
| 2363 | HexagonTargetLowering::TypePair | |||
| 2364 | HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const { | |||
| 2365 | // Compare the numbers of elements of two vector types, and widen the | |||
| 2366 | // narrower one to match the number of elements in the wider one. | |||
| 2367 | assert(Ty0.isVector() && Ty1.isVector())(static_cast <bool> (Ty0.isVector() && Ty1.isVector ()) ? void (0) : __assert_fail ("Ty0.isVector() && Ty1.isVector()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2367, __extension__ __PRETTY_FUNCTION__)); | |||
| 2368 | ||||
| 2369 | unsigned Len0 = Ty0.getVectorNumElements(); | |||
| 2370 | unsigned Len1 = Ty1.getVectorNumElements(); | |||
| 2371 | if (Len0 == Len1) | |||
| 2372 | return {Ty0, Ty1}; | |||
| 2373 | ||||
| 2374 | unsigned MaxLen = std::max(Len0, Len1); | |||
| 2375 | return {MVT::getVectorVT(Ty0.getVectorElementType(), MaxLen), | |||
| 2376 | MVT::getVectorVT(Ty1.getVectorElementType(), MaxLen)}; | |||
| 2377 | } | |||
| 2378 | ||||
| 2379 | MVT | |||
| 2380 | HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const { | |||
| 2381 | EVT LegalTy = getTypeToTransformTo(*DAG.getContext(), Ty); | |||
| 2382 | assert(LegalTy.isSimple())(static_cast <bool> (LegalTy.isSimple()) ? void (0) : __assert_fail ("LegalTy.isSimple()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2382, __extension__ __PRETTY_FUNCTION__)); | |||
| 2383 | return LegalTy.getSimpleVT(); | |||
| 2384 | } | |||
| 2385 | ||||
| 2386 | MVT | |||
| 2387 | HexagonTargetLowering::typeWidenToHvx(MVT Ty) const { | |||
| 2388 | unsigned HwWidth = 8 * Subtarget.getVectorLength(); | |||
| 2389 | assert(Ty.getSizeInBits() <= HwWidth)(static_cast <bool> (Ty.getSizeInBits() <= HwWidth) ? void (0) : __assert_fail ("Ty.getSizeInBits() <= HwWidth" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2389, __extension__ __PRETTY_FUNCTION__)); | |||
| 2390 | if (Ty.getSizeInBits() == HwWidth) | |||
| 2391 | return Ty; | |||
| 2392 | ||||
| 2393 | MVT ElemTy = Ty.getScalarType(); | |||
| 2394 | return MVT::getVectorVT(ElemTy, HwWidth / ElemTy.getSizeInBits()); | |||
| 2395 | } | |||
| 2396 | ||||
| 2397 | HexagonTargetLowering::VectorPair | |||
| 2398 | HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B, | |||
| 2399 | const SDLoc &dl, bool Signed, SelectionDAG &DAG) const { | |||
| 2400 | // Compute A+B, return {A+B, O}, where O = vector predicate indicating | |||
| 2401 | // whether an overflow has occured. | |||
| 2402 | MVT ResTy = ty(A); | |||
| 2403 | assert(ResTy == ty(B))(static_cast <bool> (ResTy == ty(B)) ? void (0) : __assert_fail ("ResTy == ty(B)", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2403, __extension__ __PRETTY_FUNCTION__)); | |||
| 2404 | MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorNumElements()); | |||
| 2405 | ||||
| 2406 | if (!Signed) { | |||
| 2407 | // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't | |||
| 2408 | // save any instructions. | |||
| 2409 | SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); | |||
| 2410 | SDValue Ovf = DAG.getSetCC(dl, PredTy, Add, A, ISD::SETULT); | |||
| 2411 | return {Add, Ovf}; | |||
| 2412 | } | |||
| 2413 | ||||
| 2414 | // Signed overflow has happened, if: | |||
| 2415 | // (A, B have the same sign) and (A+B has a different sign from either) | |||
| 2416 | // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit | |||
| 2417 | SDValue Add = DAG.getNode(ISD::ADD, dl, ResTy, {A, B}); | |||
| 2418 | SDValue NotA = | |||
| 2419 | DAG.getNode(ISD::XOR, dl, ResTy, {A, DAG.getConstant(-1, dl, ResTy)}); | |||
| 2420 | SDValue Xor0 = DAG.getNode(ISD::XOR, dl, ResTy, {NotA, B}); | |||
| 2421 | SDValue Xor1 = DAG.getNode(ISD::XOR, dl, ResTy, {Add, B}); | |||
| 2422 | SDValue And = DAG.getNode(ISD::AND, dl, ResTy, {Xor0, Xor1}); | |||
| 2423 | SDValue MSB = | |||
| 2424 | DAG.getSetCC(dl, PredTy, And, getZero(dl, ResTy, DAG), ISD::SETLT); | |||
| 2425 | return {Add, MSB}; | |||
| 2426 | } | |||
| 2427 | ||||
| 2428 | HexagonTargetLowering::VectorPair | |||
| 2429 | HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt, | |||
| 2430 | bool Signed, SelectionDAG &DAG) const { | |||
| 2431 | // Shift Val right by Amt bits, round the result to the nearest integer, | |||
| 2432 | // tie-break by rounding halves to even integer. | |||
| 2433 | ||||
| 2434 | const SDLoc &dl(Val); | |||
| 2435 | MVT ValTy = ty(Val); | |||
| 2436 | ||||
| 2437 | // This should also work for signed integers. | |||
| 2438 | // | |||
| 2439 | // uint tmp0 = inp + ((1 << (Amt-1)) - 1); | |||
| 2440 | // bool ovf = (inp > tmp0); | |||
| 2441 | // uint rup = inp & (1 << (Amt+1)); | |||
| 2442 | // | |||
| 2443 | // uint tmp1 = inp >> (Amt-1); // tmp1 == tmp2 iff | |||
| 2444 | // uint tmp2 = tmp0 >> (Amt-1); // the Amt-1 lower bits were all 0 | |||
| 2445 | // uint tmp3 = tmp2 + rup; | |||
| 2446 | // uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1; | |||
| 2447 | unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits(); | |||
| 2448 | MVT ElemTy = MVT::getIntegerVT(ElemWidth); | |||
| 2449 | MVT IntTy = tyVector(ValTy, ElemTy); | |||
| 2450 | MVT PredTy = MVT::getVectorVT(MVT::i1, IntTy.getVectorNumElements()); | |||
| 2451 | unsigned ShRight = Signed ? ISD::SRA : ISD::SRL; | |||
| 2452 | ||||
| 2453 | SDValue Inp = DAG.getBitcast(IntTy, Val); | |||
| 2454 | SDValue LowBits = DAG.getConstant((1ull << (Amt - 1)) - 1, dl, IntTy); | |||
| 2455 | ||||
| 2456 | SDValue AmtP1 = DAG.getConstant(1ull << Amt, dl, IntTy); | |||
| 2457 | SDValue And = DAG.getNode(ISD::AND, dl, IntTy, {Inp, AmtP1}); | |||
| 2458 | SDValue Zero = getZero(dl, IntTy, DAG); | |||
| 2459 | SDValue Bit = DAG.getSetCC(dl, PredTy, And, Zero, ISD::SETNE); | |||
| 2460 | SDValue Rup = DAG.getZExtOrTrunc(Bit, dl, IntTy); | |||
| 2461 | auto [Tmp0, Ovf] = emitHvxAddWithOverflow(Inp, LowBits, dl, Signed, DAG); | |||
| 2462 | ||||
| 2463 | SDValue AmtM1 = DAG.getConstant(Amt - 1, dl, IntTy); | |||
| 2464 | SDValue Tmp1 = DAG.getNode(ShRight, dl, IntTy, Inp, AmtM1); | |||
| 2465 | SDValue Tmp2 = DAG.getNode(ShRight, dl, IntTy, Tmp0, AmtM1); | |||
| 2466 | SDValue Tmp3 = DAG.getNode(ISD::ADD, dl, IntTy, Tmp2, Rup); | |||
| 2467 | ||||
| 2468 | SDValue Eq = DAG.getSetCC(dl, PredTy, Tmp1, Tmp2, ISD::SETEQ); | |||
| 2469 | SDValue One = DAG.getConstant(1, dl, IntTy); | |||
| 2470 | SDValue Tmp4 = DAG.getNode(ShRight, dl, IntTy, {Tmp2, One}); | |||
| 2471 | SDValue Tmp5 = DAG.getNode(ShRight, dl, IntTy, {Tmp3, One}); | |||
| 2472 | SDValue Mux = DAG.getNode(ISD::VSELECT, dl, IntTy, {Eq, Tmp5, Tmp4}); | |||
| 2473 | return {Mux, Ovf}; | |||
| 2474 | } | |||
| 2475 | ||||
| 2476 | SDValue | |||
| 2477 | HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl, | |||
| 2478 | SelectionDAG &DAG) const { | |||
| 2479 | MVT VecTy = ty(A); | |||
| 2480 | MVT PairTy = typeJoin({VecTy, VecTy}); | |||
| 2481 | assert(VecTy.getVectorElementType() == MVT::i32)(static_cast <bool> (VecTy.getVectorElementType() == MVT ::i32) ? void (0) : __assert_fail ("VecTy.getVectorElementType() == MVT::i32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2481, __extension__ __PRETTY_FUNCTION__)); | |||
| 2482 | ||||
| 2483 | SDValue S16 = DAG.getConstant(16, dl, MVT::i32); | |||
| 2484 | ||||
| 2485 | // mulhs(A,B) = | |||
| 2486 | // = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32 | |||
| 2487 | // = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16 | |||
| 2488 | // + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32 | |||
| 2489 | // = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32 | |||
| 2490 | // The low half of Lo(A)*Lo(B) will be discarded (it's not added to | |||
| 2491 | // anything, so it cannot produce any carry over to higher bits), | |||
| 2492 | // so everything in [] can be shifted by 16 without loss of precision. | |||
| 2493 | // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16 | |||
| 2494 | // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16 | |||
| 2495 | // The final additions need to make sure to properly maintain any carry- | |||
| 2496 | // out bits. | |||
| 2497 | // | |||
| 2498 | // Hi(B) Lo(B) | |||
| 2499 | // Hi(A) Lo(A) | |||
| 2500 | // -------------- | |||
| 2501 | // Lo(B)*Lo(A) | T0 = V6_vmpyewuh(B,A) does this, | |||
| 2502 | // Hi(B)*Lo(A) | + dropping the low 16 bits | |||
| 2503 | // Hi(A)*Lo(B) | T2 | |||
| 2504 | // Hi(B)*Hi(A) | |||
| 2505 | ||||
| 2506 | SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, VecTy, {B, A}, DAG); | |||
| 2507 | // T1 = get Hi(A) into low halves. | |||
| 2508 | SDValue T1 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {A, S16}, DAG); | |||
| 2509 | // P0 = interleaved T1.h*B.uh (full precision product) | |||
| 2510 | SDValue P0 = getInstr(Hexagon::V6_vmpyhus, dl, PairTy, {T1, B}, DAG); | |||
| 2511 | // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B) | |||
| 2512 | SDValue T2 = LoHalf(P0, DAG); | |||
| 2513 | // We need to add T0+T2, recording the carry-out, which will be 1<<16 | |||
| 2514 | // added to the final sum. | |||
| 2515 | // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves | |||
| 2516 | SDValue P1 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {T0, T2}, DAG); | |||
| 2517 | // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves | |||
| 2518 | SDValue P2 = getInstr(Hexagon::V6_vaddhw, dl, PairTy, {T0, T2}, DAG); | |||
| 2519 | // T3 = full-precision(T0+T2) >> 16 | |||
| 2520 | // The low halves are added-unsigned, the high ones are added-signed. | |||
| 2521 | SDValue T3 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, | |||
| 2522 | {HiHalf(P2, DAG), LoHalf(P1, DAG), S16}, DAG); | |||
| 2523 | SDValue T4 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {B, S16}, DAG); | |||
| 2524 | // P3 = interleaved Hi(B)*Hi(A) (full precision), | |||
| 2525 | // which is now Lo(T1)*Lo(T4), so we want to keep the even product. | |||
| 2526 | SDValue P3 = getInstr(Hexagon::V6_vmpyhv, dl, PairTy, {T1, T4}, DAG); | |||
| 2527 | SDValue T5 = LoHalf(P3, DAG); | |||
| 2528 | // Add: | |||
| 2529 | SDValue T6 = DAG.getNode(ISD::ADD, dl, VecTy, {T3, T5}); | |||
| 2530 | return T6; | |||
| 2531 | } | |||
| 2532 | ||||
| 2533 | SDValue | |||
| 2534 | HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B, | |||
| 2535 | bool SignedB, const SDLoc &dl, | |||
| 2536 | SelectionDAG &DAG) const { | |||
| 2537 | MVT VecTy = ty(A); | |||
| 2538 | MVT PairTy = typeJoin({VecTy, VecTy}); | |||
| 2539 | assert(VecTy.getVectorElementType() == MVT::i32)(static_cast <bool> (VecTy.getVectorElementType() == MVT ::i32) ? void (0) : __assert_fail ("VecTy.getVectorElementType() == MVT::i32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2539, __extension__ __PRETTY_FUNCTION__)); | |||
| 2540 | ||||
| 2541 | SDValue S16 = DAG.getConstant(16, dl, MVT::i32); | |||
| 2542 | ||||
| 2543 | if (SignedA && !SignedB) { | |||
| 2544 | // Make A:unsigned, B:signed. | |||
| 2545 | std::swap(A, B); | |||
| 2546 | std::swap(SignedA, SignedB); | |||
| 2547 | } | |||
| 2548 | ||||
| 2549 | // Do halfword-wise multiplications for unsigned*unsigned product, then | |||
| 2550 | // add corrections for signed and unsigned*signed. | |||
| 2551 | ||||
| 2552 | SDValue Lo, Hi; | |||
| 2553 | ||||
| 2554 | // P0:lo = (uu) products of low halves of A and B, | |||
| 2555 | // P0:hi = (uu) products of high halves. | |||
| 2556 | SDValue P0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, B}, DAG); | |||
| 2557 | ||||
| 2558 | // Swap low/high halves in B | |||
| 2559 | SDValue T0 = getInstr(Hexagon::V6_lvsplatw, dl, VecTy, | |||
| 2560 | {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG); | |||
| 2561 | SDValue T1 = getInstr(Hexagon::V6_vdelta, dl, VecTy, {B, T0}, DAG); | |||
| 2562 | // P1 = products of even/odd halfwords. | |||
| 2563 | // P1:lo = (uu) products of even(A.uh) * odd(B.uh) | |||
| 2564 | // P1:hi = (uu) products of odd(A.uh) * even(B.uh) | |||
| 2565 | SDValue P1 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, T1}, DAG); | |||
| 2566 | ||||
| 2567 | // P2:lo = low halves of P1:lo + P1:hi, | |||
| 2568 | // P2:hi = high halves of P1:lo + P1:hi. | |||
| 2569 | SDValue P2 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, | |||
| 2570 | {HiHalf(P1, DAG), LoHalf(P1, DAG)}, DAG); | |||
| 2571 | // Still need to add the high halves of P0:lo to P2:lo | |||
| 2572 | SDValue T2 = | |||
| 2573 | getInstr(Hexagon::V6_vlsrw, dl, VecTy, {LoHalf(P0, DAG), S16}, DAG); | |||
| 2574 | SDValue T3 = DAG.getNode(ISD::ADD, dl, VecTy, {LoHalf(P2, DAG), T2}); | |||
| 2575 | ||||
| 2576 | // The high halves of T3 will contribute to the HI part of LOHI. | |||
| 2577 | SDValue T4 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy, | |||
| 2578 | {HiHalf(P2, DAG), T3, S16}, DAG); | |||
| 2579 | ||||
| 2580 | // The low halves of P2 need to be added to high halves of the LO part. | |||
| 2581 | Lo = getInstr(Hexagon::V6_vaslw_acc, dl, VecTy, | |||
| 2582 | {LoHalf(P0, DAG), LoHalf(P2, DAG), S16}, DAG); | |||
| 2583 | Hi = DAG.getNode(ISD::ADD, dl, VecTy, {HiHalf(P0, DAG), T4}); | |||
| 2584 | ||||
| 2585 | if (SignedA) { | |||
| 2586 | assert(SignedB && "Signed A and unsigned B should have been inverted")(static_cast <bool> (SignedB && "Signed A and unsigned B should have been inverted" ) ? void (0) : __assert_fail ("SignedB && \"Signed A and unsigned B should have been inverted\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2586, __extension__ __PRETTY_FUNCTION__)); | |||
| 2587 | ||||
| 2588 | MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | |||
| 2589 | SDValue Zero = getZero(dl, VecTy, DAG); | |||
| 2590 | SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | |||
| 2591 | SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | |||
| 2592 | SDValue X0 = DAG.getNode(ISD::VSELECT, dl, VecTy, {Q0, B, Zero}); | |||
| 2593 | SDValue X1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, X0, A}, DAG); | |||
| 2594 | Hi = getInstr(Hexagon::V6_vsubw, dl, VecTy, {Hi, X1}, DAG); | |||
| 2595 | } else if (SignedB) { | |||
| 2596 | // Same correction as for mulhus: | |||
| 2597 | // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0) | |||
| 2598 | MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | |||
| 2599 | SDValue Zero = getZero(dl, VecTy, DAG); | |||
| 2600 | SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | |||
| 2601 | Hi = getInstr(Hexagon::V6_vsubwq, dl, VecTy, {Q1, Hi, A}, DAG); | |||
| 2602 | } else { | |||
| 2603 | assert(!SignedA && !SignedB)(static_cast <bool> (!SignedA && !SignedB) ? void (0) : __assert_fail ("!SignedA && !SignedB", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2603, __extension__ __PRETTY_FUNCTION__)); | |||
| 2604 | } | |||
| 2605 | ||||
| 2606 | return DAG.getMergeValues({Lo, Hi}, dl); | |||
| 2607 | } | |||
| 2608 | ||||
| 2609 | SDValue | |||
| 2610 | HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA, | |||
| 2611 | SDValue B, bool SignedB, | |||
| 2612 | const SDLoc &dl, | |||
| 2613 | SelectionDAG &DAG) const { | |||
| 2614 | MVT VecTy = ty(A); | |||
| 2615 | MVT PairTy = typeJoin({VecTy, VecTy}); | |||
| 2616 | assert(VecTy.getVectorElementType() == MVT::i32)(static_cast <bool> (VecTy.getVectorElementType() == MVT ::i32) ? void (0) : __assert_fail ("VecTy.getVectorElementType() == MVT::i32" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2616, __extension__ __PRETTY_FUNCTION__)); | |||
| 2617 | ||||
| 2618 | if (SignedA && !SignedB) { | |||
| 2619 | // Make A:unsigned, B:signed. | |||
| 2620 | std::swap(A, B); | |||
| 2621 | std::swap(SignedA, SignedB); | |||
| 2622 | } | |||
| 2623 | ||||
| 2624 | // Do S*S first, then make corrections for U*S or U*U if needed. | |||
| 2625 | SDValue P0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {A, B}, DAG); | |||
| 2626 | SDValue P1 = | |||
| 2627 | getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy, {P0, A, B}, DAG); | |||
| 2628 | SDValue Lo = LoHalf(P1, DAG); | |||
| 2629 | SDValue Hi = HiHalf(P1, DAG); | |||
| 2630 | ||||
| 2631 | if (!SignedB) { | |||
| 2632 | assert(!SignedA && "Signed A and unsigned B should have been inverted")(static_cast <bool> (!SignedA && "Signed A and unsigned B should have been inverted" ) ? void (0) : __assert_fail ("!SignedA && \"Signed A and unsigned B should have been inverted\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2632, __extension__ __PRETTY_FUNCTION__)); | |||
| 2633 | SDValue Zero = getZero(dl, VecTy, DAG); | |||
| 2634 | MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | |||
| 2635 | ||||
| 2636 | // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0). | |||
| 2637 | // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)), | |||
| 2638 | // (V6_vaddw (HiHalf (Muls64O $A, $B)), | |||
| 2639 | // (V6_vaddwq (V6_vgtw (V6_vd0), $B), | |||
| 2640 | // (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B), | |||
| 2641 | // $A))>; | |||
| 2642 | SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | |||
| 2643 | SDValue Q1 = DAG.getSetCC(dl, PredTy, B, Zero, ISD::SETLT); | |||
| 2644 | SDValue T0 = getInstr(Hexagon::V6_vandvqv, dl, VecTy, {Q0, B}, DAG); | |||
| 2645 | SDValue T1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, T0, A}, DAG); | |||
| 2646 | Hi = getInstr(Hexagon::V6_vaddw, dl, VecTy, {Hi, T1}, DAG); | |||
| 2647 | } else if (!SignedA) { | |||
| 2648 | SDValue Zero = getZero(dl, VecTy, DAG); | |||
| 2649 | MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements()); | |||
| 2650 | ||||
| 2651 | // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0). | |||
| 2652 | // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)), | |||
| 2653 | // (V6_vaddwq (V6_vgtw (V6_vd0), $A), | |||
| 2654 | // (HiHalf (Muls64O $A, $B)), | |||
| 2655 | // $B)>; | |||
| 2656 | SDValue Q0 = DAG.getSetCC(dl, PredTy, A, Zero, ISD::SETLT); | |||
| 2657 | Hi = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q0, Hi, B}, DAG); | |||
| 2658 | } | |||
| 2659 | ||||
| 2660 | return DAG.getMergeValues({Lo, Hi}, dl); | |||
| 2661 | } | |||
| 2662 | ||||
| 2663 | SDValue | |||
| 2664 | HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG) | |||
| 2665 | const { | |||
| 2666 | // Rewrite conversion between integer and floating-point in such a way that | |||
| 2667 | // the integer type is extended/narrowed to match the bitwidth of the | |||
| 2668 | // floating-point type, combined with additional integer-integer extensions | |||
| 2669 | // or narrowings to match the original input/result types. | |||
| 2670 | // E.g. f32 -> i8 ==> f32 -> i32 -> i8 | |||
| 2671 | // | |||
| 2672 | // The input/result types are not required to be legal, but if they are | |||
| 2673 | // legal, this function should not introduce illegal types. | |||
| 2674 | ||||
| 2675 | unsigned Opc = Op.getOpcode(); | |||
| 2676 | assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT ||(static_cast <bool> (Opc == ISD::FP_TO_SINT || Opc == ISD ::FP_TO_UINT || Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP ) ? void (0) : __assert_fail ("Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT || Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2677, __extension__ __PRETTY_FUNCTION__)) | |||
| 2677 | Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP)(static_cast <bool> (Opc == ISD::FP_TO_SINT || Opc == ISD ::FP_TO_UINT || Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP ) ? void (0) : __assert_fail ("Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT || Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2677, __extension__ __PRETTY_FUNCTION__)); | |||
| 2678 | ||||
| 2679 | SDValue Inp = Op.getOperand(0); | |||
| 2680 | MVT InpTy = ty(Inp); | |||
| 2681 | MVT ResTy = ty(Op); | |||
| 2682 | ||||
| 2683 | if (InpTy == ResTy) | |||
| 2684 | return Op; | |||
| 2685 | ||||
| 2686 | const SDLoc &dl(Op); | |||
| 2687 | bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP; | |||
| 2688 | ||||
| 2689 | auto [WInpTy, WResTy] = typeExtendToWider(InpTy, ResTy); | |||
| 2690 | SDValue WInp = resizeToWidth(Inp, WInpTy, Signed, dl, DAG); | |||
| 2691 | SDValue Conv = DAG.getNode(Opc, dl, WResTy, WInp); | |||
| 2692 | SDValue Res = resizeToWidth(Conv, ResTy, Signed, dl, DAG); | |||
| 2693 | return Res; | |||
| 2694 | } | |||
| 2695 | ||||
| 2696 | SDValue | |||
| 2697 | HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const { | |||
| 2698 | unsigned Opc = Op.getOpcode(); | |||
| 2699 | assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT)(static_cast <bool> (Opc == ISD::FP_TO_SINT || Opc == ISD ::FP_TO_UINT) ? void (0) : __assert_fail ("Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2699, __extension__ __PRETTY_FUNCTION__)); | |||
| 2700 | ||||
| 2701 | const SDLoc &dl(Op); | |||
| 2702 | SDValue Op0 = Op.getOperand(0); | |||
| 2703 | MVT InpTy = ty(Op0); | |||
| 2704 | MVT ResTy = ty(Op); | |||
| 2705 | assert(InpTy.changeTypeToInteger() == ResTy)(static_cast <bool> (InpTy.changeTypeToInteger() == ResTy ) ? void (0) : __assert_fail ("InpTy.changeTypeToInteger() == ResTy" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2705, __extension__ __PRETTY_FUNCTION__)); | |||
| 2706 | ||||
| 2707 | // int32_t conv_f32_to_i32(uint32_t inp) { | |||
| 2708 | // // s | exp8 | frac23 | |||
| 2709 | // | |||
| 2710 | // int neg = (int32_t)inp < 0; | |||
| 2711 | // | |||
| 2712 | // // "expm1" is the actual exponent minus 1: instead of "bias", subtract | |||
| 2713 | // // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will | |||
| 2714 | // // produce a large positive "expm1", which will result in max u/int. | |||
| 2715 | // // In all IEEE formats, bias is the largest positive number that can be | |||
| 2716 | // // represented in bias-width bits (i.e. 011..1). | |||
| 2717 | // int32_t expm1 = (inp << 1) - 0x80000000; | |||
| 2718 | // expm1 >>= 24; | |||
| 2719 | // | |||
| 2720 | // // Always insert the "implicit 1". Subnormal numbers will become 0 | |||
| 2721 | // // regardless. | |||
| 2722 | // uint32_t frac = (inp << 8) | 0x80000000; | |||
| 2723 | // | |||
| 2724 | // // "frac" is the fraction part represented as Q1.31. If it was | |||
| 2725 | // // interpreted as uint32_t, it would be the fraction part multiplied | |||
| 2726 | // // by 2^31. | |||
| 2727 | // | |||
| 2728 | // // Calculate the amount of right shift, since shifting further to the | |||
| 2729 | // // left would lose significant bits. Limit it to 32, because we want | |||
| 2730 | // // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift | |||
| 2731 | // // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift | |||
| 2732 | // // left by 31). "rsh" can be negative. | |||
| 2733 | // int32_t rsh = min(31 - (expm1 + 1), 32); | |||
| 2734 | // | |||
| 2735 | // frac >>= rsh; // rsh == 32 will produce 0 | |||
| 2736 | // | |||
| 2737 | // // Everything up to this point is the same for conversion to signed | |||
| 2738 | // // unsigned integer. | |||
| 2739 | // | |||
| 2740 | // if (neg) // Only for signed int | |||
| 2741 | // frac = -frac; // | |||
| 2742 | // if (rsh <= 0 && neg) // bound = neg ? 0x80000000 : 0x7fffffff | |||
| 2743 | // frac = 0x80000000; // frac = rsh <= 0 ? bound : frac | |||
| 2744 | // if (rsh <= 0 && !neg) // | |||
| 2745 | // frac = 0x7fffffff; // | |||
| 2746 | // | |||
| 2747 | // if (neg) // Only for unsigned int | |||
| 2748 | // frac = 0; // | |||
| 2749 | // if (rsh < 0 && !neg) // frac = rsh < 0 ? 0x7fffffff : frac; | |||
| 2750 | // frac = 0x7fffffff; // frac = neg ? 0 : frac; | |||
| 2751 | // | |||
| 2752 | // return frac; | |||
| 2753 | // } | |||
| 2754 | ||||
| 2755 | MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorElementCount()); | |||
| 2756 | ||||
| 2757 | // Zero = V6_vd0(); | |||
| 2758 | // Neg = V6_vgtw(Zero, Inp); | |||
| 2759 | // One = V6_lvsplatw(1); | |||
| 2760 | // M80 = V6_lvsplatw(0x80000000); | |||
| 2761 | // Exp00 = V6_vaslwv(Inp, One); | |||
| 2762 | // Exp01 = V6_vsubw(Exp00, M80); | |||
| 2763 | // ExpM1 = V6_vasrw(Exp01, 24); | |||
| 2764 | // Frc00 = V6_vaslw(Inp, 8); | |||
| 2765 | // Frc01 = V6_vor(Frc00, M80); | |||
| 2766 | // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1); | |||
| 2767 | // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32)); | |||
| 2768 | // Frc02 = V6_vlsrwv(Frc01, Rsh01); | |||
| 2769 | ||||
| 2770 | // if signed int: | |||
| 2771 | // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff)) | |||
| 2772 | // Pos = V6_vgtw(Rsh01, Zero); | |||
| 2773 | // Frc13 = V6_vsubw(Zero, Frc02); | |||
| 2774 | // Frc14 = V6_vmux(Neg, Frc13, Frc02); | |||
| 2775 | // Int = V6_vmux(Pos, Frc14, Bnd); | |||
| 2776 | // | |||
| 2777 | // if unsigned int: | |||
| 2778 | // Rsn = V6_vgtw(Zero, Rsh01) | |||
| 2779 | // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02) | |||
| 2780 | // Int = V6_vmux(Neg, Zero, Frc23) | |||
| 2781 | ||||
| 2782 | auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(InpTy); | |||
| 2783 | unsigned ElemWidth = 1 + ExpWidth + FracWidth; | |||
| 2784 | assert((1ull << (ExpWidth - 1)) == (1 + ExpBias))(static_cast <bool> ((1ull << (ExpWidth - 1)) == ( 1 + ExpBias)) ? void (0) : __assert_fail ("(1ull << (ExpWidth - 1)) == (1 + ExpBias)" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2784, __extension__ __PRETTY_FUNCTION__)); | |||
| 2785 | ||||
| 2786 | SDValue Inp = DAG.getBitcast(ResTy, Op0); | |||
| 2787 | SDValue Zero = getZero(dl, ResTy, DAG); | |||
| 2788 | SDValue Neg = DAG.getSetCC(dl, PredTy, Inp, Zero, ISD::SETLT); | |||
| 2789 | SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, ResTy); | |||
| 2790 | SDValue M7F = DAG.getConstant((1ull << (ElemWidth - 1)) - 1, dl, ResTy); | |||
| 2791 | SDValue One = DAG.getConstant(1, dl, ResTy); | |||
| 2792 | SDValue Exp00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, One}); | |||
| 2793 | SDValue Exp01 = DAG.getNode(ISD::SUB, dl, ResTy, {Exp00, M80}); | |||
| 2794 | SDValue MNE = DAG.getConstant(ElemWidth - ExpWidth, dl, ResTy); | |||
| 2795 | SDValue ExpM1 = DAG.getNode(ISD::SRA, dl, ResTy, {Exp01, MNE}); | |||
| 2796 | ||||
| 2797 | SDValue ExpW = DAG.getConstant(ExpWidth, dl, ResTy); | |||
| 2798 | SDValue Frc00 = DAG.getNode(ISD::SHL, dl, ResTy, {Inp, ExpW}); | |||
| 2799 | SDValue Frc01 = DAG.getNode(ISD::OR, dl, ResTy, {Frc00, M80}); | |||
| 2800 | ||||
| 2801 | SDValue MN2 = DAG.getConstant(ElemWidth - 2, dl, ResTy); | |||
| 2802 | SDValue Rsh00 = DAG.getNode(ISD::SUB, dl, ResTy, {MN2, ExpM1}); | |||
| 2803 | SDValue MW = DAG.getConstant(ElemWidth, dl, ResTy); | |||
| 2804 | SDValue Rsh01 = DAG.getNode(ISD::SMIN, dl, ResTy, {Rsh00, MW}); | |||
| 2805 | SDValue Frc02 = DAG.getNode(ISD::SRL, dl, ResTy, {Frc01, Rsh01}); | |||
| 2806 | ||||
| 2807 | SDValue Int; | |||
| 2808 | ||||
| 2809 | if (Opc == ISD::FP_TO_SINT) { | |||
| 2810 | SDValue Bnd = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, M80, M7F}); | |||
| 2811 | SDValue Pos = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETGT); | |||
| 2812 | SDValue Frc13 = DAG.getNode(ISD::SUB, dl, ResTy, {Zero, Frc02}); | |||
| 2813 | SDValue Frc14 = DAG.getNode(ISD::VSELECT, dl, ResTy, {Neg, Frc13, Frc02}); | |||
| 2814 | Int = DAG.getNode(ISD::VSELECT, dl, ResTy, {Pos, Frc14, Bnd}); | |||
| 2815 | } else { | |||
| 2816 | assert(Opc == ISD::FP_TO_UINT)(static_cast <bool> (Opc == ISD::FP_TO_UINT) ? void (0) : __assert_fail ("Opc == ISD::FP_TO_UINT", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2816, __extension__ __PRETTY_FUNCTION__)); | |||
| 2817 | SDValue Rsn = DAG.getSetCC(dl, PredTy, Rsh01, Zero, ISD::SETLT); | |||
| 2818 | SDValue Frc23 = DAG.getNode(ISD::VSELECT, dl, ResTy, Rsn, M7F, Frc02); | |||
| 2819 | Int = DAG.getNode(ISD::VSELECT, dl, ResTy, Neg, Zero, Frc23); | |||
| 2820 | } | |||
| 2821 | ||||
| 2822 | return Int; | |||
| 2823 | } | |||
| 2824 | ||||
| 2825 | SDValue | |||
| 2826 | HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const { | |||
| 2827 | unsigned Opc = Op.getOpcode(); | |||
| 2828 | assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP)(static_cast <bool> (Opc == ISD::SINT_TO_FP || Opc == ISD ::UINT_TO_FP) ? void (0) : __assert_fail ("Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2828, __extension__ __PRETTY_FUNCTION__)); | |||
| 2829 | ||||
| 2830 | const SDLoc &dl(Op); | |||
| 2831 | SDValue Op0 = Op.getOperand(0); | |||
| 2832 | MVT InpTy = ty(Op0); | |||
| 2833 | MVT ResTy = ty(Op); | |||
| 2834 | assert(ResTy.changeTypeToInteger() == InpTy)(static_cast <bool> (ResTy.changeTypeToInteger() == InpTy ) ? void (0) : __assert_fail ("ResTy.changeTypeToInteger() == InpTy" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2834, __extension__ __PRETTY_FUNCTION__)); | |||
| 2835 | ||||
| 2836 | // uint32_t vnoc1_rnd(int32_t w) { | |||
| 2837 | // int32_t iszero = w == 0; | |||
| 2838 | // int32_t isneg = w < 0; | |||
| 2839 | // uint32_t u = __builtin_HEXAGON_A2_abs(w); | |||
| 2840 | // | |||
| 2841 | // uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1; | |||
| 2842 | // uint32_t frac0 = (uint64_t)u << norm_left; | |||
| 2843 | // | |||
| 2844 | // // Rounding: | |||
| 2845 | // uint32_t frac1 = frac0 + ((1 << 8) - 1); | |||
| 2846 | // uint32_t renorm = (frac0 > frac1); | |||
| 2847 | // uint32_t rup = (int)(frac0 << 22) < 0; | |||
| 2848 | // | |||
| 2849 | // uint32_t frac2 = frac0 >> 8; | |||
| 2850 | // uint32_t frac3 = frac1 >> 8; | |||
| 2851 | // uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1; | |||
| 2852 | // | |||
| 2853 | // int32_t exp = 32 - norm_left + renorm + 127; | |||
| 2854 | // exp <<= 23; | |||
| 2855 | // | |||
| 2856 | // uint32_t sign = 0x80000000 * isneg; | |||
| 2857 | // uint32_t f = sign | exp | frac; | |||
| 2858 | // return iszero ? 0 : f; | |||
| 2859 | // } | |||
| 2860 | ||||
| 2861 | MVT PredTy = MVT::getVectorVT(MVT::i1, InpTy.getVectorElementCount()); | |||
| 2862 | bool Signed = Opc == ISD::SINT_TO_FP; | |||
| 2863 | ||||
| 2864 | auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(ResTy); | |||
| 2865 | unsigned ElemWidth = 1 + ExpWidth + FracWidth; | |||
| 2866 | ||||
| 2867 | SDValue Zero = getZero(dl, InpTy, DAG); | |||
| 2868 | SDValue One = DAG.getConstant(1, dl, InpTy); | |||
| 2869 | SDValue IsZero = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETEQ); | |||
| 2870 | SDValue Abs = Signed ? DAG.getNode(ISD::ABS, dl, InpTy, Op0) : Op0; | |||
| 2871 | SDValue Clz = DAG.getNode(ISD::CTLZ, dl, InpTy, Abs); | |||
| 2872 | SDValue NLeft = DAG.getNode(ISD::ADD, dl, InpTy, {Clz, One}); | |||
| 2873 | SDValue Frac0 = DAG.getNode(ISD::SHL, dl, InpTy, {Abs, NLeft}); | |||
| 2874 | ||||
| 2875 | auto [Frac, Ovf] = emitHvxShiftRightRnd(Frac0, ExpWidth + 1, false, DAG); | |||
| 2876 | if (Signed) { | |||
| 2877 | SDValue IsNeg = DAG.getSetCC(dl, PredTy, Op0, Zero, ISD::SETLT); | |||
| 2878 | SDValue M80 = DAG.getConstant(1ull << (ElemWidth - 1), dl, InpTy); | |||
| 2879 | SDValue Sign = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsNeg, M80, Zero}); | |||
| 2880 | Frac = DAG.getNode(ISD::OR, dl, InpTy, {Sign, Frac}); | |||
| 2881 | } | |||
| 2882 | ||||
| 2883 | SDValue Rnrm = DAG.getZExtOrTrunc(Ovf, dl, InpTy); | |||
| 2884 | SDValue Exp0 = DAG.getConstant(ElemWidth + ExpBias, dl, InpTy); | |||
| 2885 | SDValue Exp1 = DAG.getNode(ISD::ADD, dl, InpTy, {Rnrm, Exp0}); | |||
| 2886 | SDValue Exp2 = DAG.getNode(ISD::SUB, dl, InpTy, {Exp1, NLeft}); | |||
| 2887 | SDValue Exp3 = DAG.getNode(ISD::SHL, dl, InpTy, | |||
| 2888 | {Exp2, DAG.getConstant(FracWidth, dl, InpTy)}); | |||
| 2889 | SDValue Flt0 = DAG.getNode(ISD::OR, dl, InpTy, {Frac, Exp3}); | |||
| 2890 | SDValue Flt1 = DAG.getNode(ISD::VSELECT, dl, InpTy, {IsZero, Zero, Flt0}); | |||
| 2891 | SDValue Flt = DAG.getBitcast(ResTy, Flt1); | |||
| 2892 | ||||
| 2893 | return Flt; | |||
| 2894 | } | |||
| 2895 | ||||
| 2896 | SDValue | |||
| 2897 | HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const { | |||
| 2898 | unsigned Opc = Op.getOpcode(); | |||
| 2899 | unsigned TLOpc; | |||
| 2900 | switch (Opc) { | |||
| 2901 | case ISD::ANY_EXTEND: | |||
| 2902 | case ISD::SIGN_EXTEND: | |||
| 2903 | case ISD::ZERO_EXTEND: | |||
| 2904 | TLOpc = HexagonISD::TL_EXTEND; | |||
| 2905 | break; | |||
| 2906 | case ISD::TRUNCATE: | |||
| 2907 | TLOpc = HexagonISD::TL_TRUNCATE; | |||
| 2908 | break; | |||
| 2909 | #ifndef NDEBUG | |||
| 2910 | Op.dump(&DAG); | |||
| 2911 | #endif | |||
| 2912 | llvm_unreachable("Unepected operator")::llvm::llvm_unreachable_internal("Unepected operator", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2912); | |||
| 2913 | } | |||
| 2914 | ||||
| 2915 | const SDLoc &dl(Op); | |||
| 2916 | return DAG.getNode(TLOpc, dl, ty(Op), Op.getOperand(0), | |||
| ||||
| 2917 | DAG.getUNDEF(MVT::i128), // illegal type | |||
| 2918 | DAG.getConstant(Opc, dl, MVT::i32)); | |||
| 2919 | } | |||
| 2920 | ||||
| 2921 | SDValue | |||
| 2922 | HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const { | |||
| 2923 | assert(Op.getOpcode() == HexagonISD::TL_EXTEND ||(static_cast <bool> (Op.getOpcode() == HexagonISD::TL_EXTEND || Op.getOpcode() == HexagonISD::TL_TRUNCATE) ? void (0) : __assert_fail ("Op.getOpcode() == HexagonISD::TL_EXTEND || Op.getOpcode() == HexagonISD::TL_TRUNCATE" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2924, __extension__ __PRETTY_FUNCTION__)) | |||
| 2924 | Op.getOpcode() == HexagonISD::TL_TRUNCATE)(static_cast <bool> (Op.getOpcode() == HexagonISD::TL_EXTEND || Op.getOpcode() == HexagonISD::TL_TRUNCATE) ? void (0) : __assert_fail ("Op.getOpcode() == HexagonISD::TL_EXTEND || Op.getOpcode() == HexagonISD::TL_TRUNCATE" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2924, __extension__ __PRETTY_FUNCTION__)); | |||
| 2925 | unsigned Opc = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | |||
| 2926 | return DAG.getNode(Opc, SDLoc(Op), ty(Op), Op.getOperand(0)); | |||
| 2927 | } | |||
| 2928 | ||||
| 2929 | HexagonTargetLowering::VectorPair | |||
| 2930 | HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const { | |||
| 2931 | assert(!Op.isMachineOpcode())(static_cast <bool> (!Op.isMachineOpcode()) ? void (0) : __assert_fail ("!Op.isMachineOpcode()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 2931, __extension__ __PRETTY_FUNCTION__)); | |||
| 2932 | SmallVector<SDValue, 2> OpsL, OpsH; | |||
| 2933 | const SDLoc &dl(Op); | |||
| 2934 | ||||
| 2935 | auto SplitVTNode = [&DAG, this](const VTSDNode *N) { | |||
| 2936 | MVT Ty = typeSplit(N->getVT().getSimpleVT()).first; | |||
| 2937 | SDValue TV = DAG.getValueType(Ty); | |||
| 2938 | return std::make_pair(TV, TV); | |||
| 2939 | }; | |||
| 2940 | ||||
| 2941 | for (SDValue A : Op.getNode()->ops()) { | |||
| 2942 | auto [Lo, Hi] = | |||
| 2943 | ty(A).isVector() ? opSplit(A, dl, DAG) : std::make_pair(A, A); | |||
| 2944 | // Special case for type operand. | |||
| 2945 | switch (Op.getOpcode()) { | |||
| 2946 | case ISD::SIGN_EXTEND_INREG: | |||
| 2947 | case HexagonISD::SSAT: | |||
| 2948 | case HexagonISD::USAT: | |||
| 2949 | if (const auto *N = dyn_cast<const VTSDNode>(A.getNode())) | |||
| 2950 | std::tie(Lo, Hi) = SplitVTNode(N); | |||
| 2951 | break; | |||
| 2952 | } | |||
| 2953 | OpsL.push_back(Lo); | |||
| 2954 | OpsH.push_back(Hi); | |||
| 2955 | } | |||
| 2956 | ||||
| 2957 | MVT ResTy = ty(Op); | |||
| 2958 | MVT HalfTy = typeSplit(ResTy).first; | |||
| 2959 | SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL); | |||
| 2960 | SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH); | |||
| 2961 | return {L, H}; | |||
| 2962 | } | |||
| 2963 | ||||
| 2964 | SDValue | |||
| 2965 | HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const { | |||
| 2966 | auto *MemN = cast<MemSDNode>(Op.getNode()); | |||
| 2967 | ||||
| 2968 | MVT MemTy = MemN->getMemoryVT().getSimpleVT(); | |||
| 2969 | if (!isHvxPairTy(MemTy)) | |||
| 2970 | return Op; | |||
| 2971 | ||||
| 2972 | const SDLoc &dl(Op); | |||
| 2973 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 2974 | MVT SingleTy = typeSplit(MemTy).first; | |||
| 2975 | SDValue Chain = MemN->getChain(); | |||
| 2976 | SDValue Base0 = MemN->getBasePtr(); | |||
| 2977 | SDValue Base1 = DAG.getMemBasePlusOffset(Base0, TypeSize::Fixed(HwLen), dl); | |||
| 2978 | unsigned MemOpc = MemN->getOpcode(); | |||
| 2979 | ||||
| 2980 | MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr; | |||
| 2981 | if (MachineMemOperand *MMO = MemN->getMemOperand()) { | |||
| 2982 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 2983 | uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE) | |||
| 2984 | ? (uint64_t)MemoryLocation::UnknownSize | |||
| 2985 | : HwLen; | |||
| 2986 | MOp0 = MF.getMachineMemOperand(MMO, 0, MemSize); | |||
| 2987 | MOp1 = MF.getMachineMemOperand(MMO, HwLen, MemSize); | |||
| 2988 | } | |||
| 2989 | ||||
| 2990 | if (MemOpc == ISD::LOAD) { | |||
| 2991 | assert(cast<LoadSDNode>(Op)->isUnindexed())(static_cast <bool> (cast<LoadSDNode>(Op)->isUnindexed ()) ? void (0) : __assert_fail ("cast<LoadSDNode>(Op)->isUnindexed()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 2991, __extension__ __PRETTY_FUNCTION__)); | |||
| 2992 | SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0); | |||
| 2993 | SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1); | |||
| 2994 | return DAG.getMergeValues( | |||
| 2995 | { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1), | |||
| 2996 | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | |||
| 2997 | Load0.getValue(1), Load1.getValue(1)) }, dl); | |||
| 2998 | } | |||
| 2999 | if (MemOpc == ISD::STORE) { | |||
| 3000 | assert(cast<StoreSDNode>(Op)->isUnindexed())(static_cast <bool> (cast<StoreSDNode>(Op)->isUnindexed ()) ? void (0) : __assert_fail ("cast<StoreSDNode>(Op)->isUnindexed()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3000, __extension__ __PRETTY_FUNCTION__)); | |||
| 3001 | VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG); | |||
| 3002 | SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0); | |||
| 3003 | SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1); | |||
| 3004 | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1); | |||
| 3005 | } | |||
| 3006 | ||||
| 3007 | assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE)(static_cast <bool> (MemOpc == ISD::MLOAD || MemOpc == ISD ::MSTORE) ? void (0) : __assert_fail ("MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3007, __extension__ __PRETTY_FUNCTION__)); | |||
| 3008 | ||||
| 3009 | auto MaskN = cast<MaskedLoadStoreSDNode>(Op); | |||
| 3010 | assert(MaskN->isUnindexed())(static_cast <bool> (MaskN->isUnindexed()) ? void (0 ) : __assert_fail ("MaskN->isUnindexed()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3010, __extension__ __PRETTY_FUNCTION__)); | |||
| 3011 | VectorPair Masks = opSplit(MaskN->getMask(), dl, DAG); | |||
| 3012 | SDValue Offset = DAG.getUNDEF(MVT::i32); | |||
| 3013 | ||||
| 3014 | if (MemOpc == ISD::MLOAD) { | |||
| 3015 | VectorPair Thru = | |||
| 3016 | opSplit(cast<MaskedLoadSDNode>(Op)->getPassThru(), dl, DAG); | |||
| 3017 | SDValue MLoad0 = | |||
| 3018 | DAG.getMaskedLoad(SingleTy, dl, Chain, Base0, Offset, Masks.first, | |||
| 3019 | Thru.first, SingleTy, MOp0, ISD::UNINDEXED, | |||
| 3020 | ISD::NON_EXTLOAD, false); | |||
| 3021 | SDValue MLoad1 = | |||
| 3022 | DAG.getMaskedLoad(SingleTy, dl, Chain, Base1, Offset, Masks.second, | |||
| 3023 | Thru.second, SingleTy, MOp1, ISD::UNINDEXED, | |||
| 3024 | ISD::NON_EXTLOAD, false); | |||
| 3025 | return DAG.getMergeValues( | |||
| 3026 | { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1), | |||
| 3027 | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | |||
| 3028 | MLoad0.getValue(1), MLoad1.getValue(1)) }, dl); | |||
| 3029 | } | |||
| 3030 | if (MemOpc == ISD::MSTORE) { | |||
| 3031 | VectorPair Vals = opSplit(cast<MaskedStoreSDNode>(Op)->getValue(), dl, DAG); | |||
| 3032 | SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Vals.first, Base0, Offset, | |||
| 3033 | Masks.first, SingleTy, MOp0, | |||
| 3034 | ISD::UNINDEXED, false, false); | |||
| 3035 | SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Vals.second, Base1, Offset, | |||
| 3036 | Masks.second, SingleTy, MOp1, | |||
| 3037 | ISD::UNINDEXED, false, false); | |||
| 3038 | return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1); | |||
| 3039 | } | |||
| 3040 | ||||
| 3041 | std::string Name = "Unexpected operation: " + Op->getOperationName(&DAG); | |||
| 3042 | llvm_unreachable(Name.c_str())::llvm::llvm_unreachable_internal(Name.c_str(), "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3042); | |||
| 3043 | } | |||
| 3044 | ||||
| 3045 | SDValue | |||
| 3046 | HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const { | |||
| 3047 | const SDLoc &dl(Op); | |||
| 3048 | auto *LoadN = cast<LoadSDNode>(Op.getNode()); | |||
| 3049 | assert(LoadN->isUnindexed() && "Not widening indexed loads yet")(static_cast <bool> (LoadN->isUnindexed() && "Not widening indexed loads yet") ? void (0) : __assert_fail ("LoadN->isUnindexed() && \"Not widening indexed loads yet\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3049, __extension__ __PRETTY_FUNCTION__)); | |||
| 3050 | assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 &&(static_cast <bool> (LoadN->getMemoryVT().getVectorElementType () != MVT::i1 && "Not widening loads of i1 yet") ? void (0) : __assert_fail ("LoadN->getMemoryVT().getVectorElementType() != MVT::i1 && \"Not widening loads of i1 yet\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3051, __extension__ __PRETTY_FUNCTION__)) | |||
| 3051 | "Not widening loads of i1 yet")(static_cast <bool> (LoadN->getMemoryVT().getVectorElementType () != MVT::i1 && "Not widening loads of i1 yet") ? void (0) : __assert_fail ("LoadN->getMemoryVT().getVectorElementType() != MVT::i1 && \"Not widening loads of i1 yet\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3051, __extension__ __PRETTY_FUNCTION__)); | |||
| 3052 | ||||
| 3053 | SDValue Chain = LoadN->getChain(); | |||
| 3054 | SDValue Base = LoadN->getBasePtr(); | |||
| 3055 | SDValue Offset = DAG.getUNDEF(MVT::i32); | |||
| 3056 | ||||
| 3057 | MVT ResTy = ty(Op); | |||
| 3058 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 3059 | unsigned ResLen = ResTy.getStoreSize(); | |||
| 3060 | assert(ResLen < HwLen && "vsetq(v1) prerequisite")(static_cast <bool> (ResLen < HwLen && "vsetq(v1) prerequisite" ) ? void (0) : __assert_fail ("ResLen < HwLen && \"vsetq(v1) prerequisite\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3060, __extension__ __PRETTY_FUNCTION__)); | |||
| 3061 | ||||
| 3062 | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | |||
| 3063 | SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | |||
| 3064 | {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG); | |||
| 3065 | ||||
| 3066 | MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen); | |||
| 3067 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 3068 | auto *MemOp = MF.getMachineMemOperand(LoadN->getMemOperand(), 0, HwLen); | |||
| 3069 | ||||
| 3070 | SDValue Load = DAG.getMaskedLoad(LoadTy, dl, Chain, Base, Offset, Mask, | |||
| 3071 | DAG.getUNDEF(LoadTy), LoadTy, MemOp, | |||
| 3072 | ISD::UNINDEXED, ISD::NON_EXTLOAD, false); | |||
| 3073 | SDValue Value = opCastElem(Load, ResTy.getVectorElementType(), DAG); | |||
| 3074 | return DAG.getMergeValues({Value, Load.getValue(1)}, dl); | |||
| 3075 | } | |||
| 3076 | ||||
| 3077 | SDValue | |||
| 3078 | HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const { | |||
| 3079 | const SDLoc &dl(Op); | |||
| 3080 | auto *StoreN = cast<StoreSDNode>(Op.getNode()); | |||
| 3081 | assert(StoreN->isUnindexed() && "Not widening indexed stores yet")(static_cast <bool> (StoreN->isUnindexed() && "Not widening indexed stores yet") ? void (0) : __assert_fail ("StoreN->isUnindexed() && \"Not widening indexed stores yet\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3081, __extension__ __PRETTY_FUNCTION__)); | |||
| 3082 | assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 &&(static_cast <bool> (StoreN->getMemoryVT().getVectorElementType () != MVT::i1 && "Not widening stores of i1 yet") ? void (0) : __assert_fail ("StoreN->getMemoryVT().getVectorElementType() != MVT::i1 && \"Not widening stores of i1 yet\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3083, __extension__ __PRETTY_FUNCTION__)) | |||
| 3083 | "Not widening stores of i1 yet")(static_cast <bool> (StoreN->getMemoryVT().getVectorElementType () != MVT::i1 && "Not widening stores of i1 yet") ? void (0) : __assert_fail ("StoreN->getMemoryVT().getVectorElementType() != MVT::i1 && \"Not widening stores of i1 yet\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3083, __extension__ __PRETTY_FUNCTION__)); | |||
| 3084 | ||||
| 3085 | SDValue Chain = StoreN->getChain(); | |||
| 3086 | SDValue Base = StoreN->getBasePtr(); | |||
| 3087 | SDValue Offset = DAG.getUNDEF(MVT::i32); | |||
| 3088 | ||||
| 3089 | SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG); | |||
| 3090 | MVT ValueTy = ty(Value); | |||
| 3091 | unsigned ValueLen = ValueTy.getVectorNumElements(); | |||
| 3092 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 3093 | assert(isPowerOf2_32(ValueLen))(static_cast <bool> (isPowerOf2_32(ValueLen)) ? void (0 ) : __assert_fail ("isPowerOf2_32(ValueLen)", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3093, __extension__ __PRETTY_FUNCTION__)); | |||
| 3094 | ||||
| 3095 | for (unsigned Len = ValueLen; Len < HwLen; ) { | |||
| 3096 | Value = opJoin({Value, DAG.getUNDEF(ty(Value))}, dl, DAG); | |||
| 3097 | Len = ty(Value).getVectorNumElements(); // This is Len *= 2 | |||
| 3098 | } | |||
| 3099 | assert(ty(Value).getVectorNumElements() == HwLen)(static_cast <bool> (ty(Value).getVectorNumElements() == HwLen) ? void (0) : __assert_fail ("ty(Value).getVectorNumElements() == HwLen" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3099, __extension__ __PRETTY_FUNCTION__)); // Paranoia | |||
| 3100 | ||||
| 3101 | assert(ValueLen < HwLen && "vsetq(v1) prerequisite")(static_cast <bool> (ValueLen < HwLen && "vsetq(v1) prerequisite" ) ? void (0) : __assert_fail ("ValueLen < HwLen && \"vsetq(v1) prerequisite\"" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3101, __extension__ __PRETTY_FUNCTION__)); | |||
| 3102 | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); | |||
| 3103 | SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, | |||
| 3104 | {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG); | |||
| 3105 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 3106 | auto *MemOp = MF.getMachineMemOperand(StoreN->getMemOperand(), 0, HwLen); | |||
| 3107 | return DAG.getMaskedStore(Chain, dl, Value, Base, Offset, Mask, ty(Value), | |||
| 3108 | MemOp, ISD::UNINDEXED, false, false); | |||
| 3109 | } | |||
| 3110 | ||||
| 3111 | SDValue | |||
| 3112 | HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const { | |||
| 3113 | const SDLoc &dl(Op); | |||
| 3114 | SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); | |||
| 3115 | MVT ElemTy = ty(Op0).getVectorElementType(); | |||
| 3116 | unsigned HwLen = Subtarget.getVectorLength(); | |||
| 3117 | ||||
| 3118 | unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits(); | |||
| 3119 | assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen)(static_cast <bool> (WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen) ? void (0) : __assert_fail ("WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3119, __extension__ __PRETTY_FUNCTION__)); | |||
| 3120 | MVT WideOpTy = MVT::getVectorVT(ElemTy, WideOpLen); | |||
| 3121 | if (!Subtarget.isHVXVectorType(WideOpTy, true)) | |||
| 3122 | return SDValue(); | |||
| 3123 | ||||
| 3124 | SDValue WideOp0 = appendUndef(Op0, WideOpTy, DAG); | |||
| 3125 | SDValue WideOp1 = appendUndef(Op1, WideOpTy, DAG); | |||
| 3126 | EVT ResTy = | |||
| 3127 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), WideOpTy); | |||
| 3128 | SDValue SetCC = DAG.getNode(ISD::SETCC, dl, ResTy, | |||
| 3129 | {WideOp0, WideOp1, Op.getOperand(2)}); | |||
| 3130 | ||||
| 3131 | EVT RetTy = typeLegalize(ty(Op), DAG); | |||
| 3132 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy, | |||
| 3133 | {SetCC, getZero(dl, MVT::i32, DAG)}); | |||
| 3134 | } | |||
| 3135 | ||||
| 3136 | SDValue | |||
| 3137 | HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const { | |||
| 3138 | unsigned Opc = Op.getOpcode(); | |||
| 3139 | bool IsPairOp = isHvxPairTy(ty(Op)) || | |||
| 3140 | llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) { | |||
| 3141 | return isHvxPairTy(ty(V)); | |||
| 3142 | }); | |||
| 3143 | ||||
| 3144 | if (IsPairOp) { | |||
| 3145 | switch (Opc) { | |||
| 3146 | default: | |||
| 3147 | break; | |||
| 3148 | case ISD::LOAD: | |||
| 3149 | case ISD::STORE: | |||
| 3150 | case ISD::MLOAD: | |||
| 3151 | case ISD::MSTORE: | |||
| 3152 | return SplitHvxMemOp(Op, DAG); | |||
| 3153 | case ISD::SINT_TO_FP: | |||
| 3154 | case ISD::UINT_TO_FP: | |||
| 3155 | case ISD::FP_TO_SINT: | |||
| 3156 | case ISD::FP_TO_UINT: | |||
| 3157 | if (ty(Op).getSizeInBits() == ty(Op.getOperand(0)).getSizeInBits()) | |||
| 3158 | return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | |||
| 3159 | break; | |||
| 3160 | case ISD::ABS: | |||
| 3161 | case ISD::CTPOP: | |||
| 3162 | case ISD::CTLZ: | |||
| 3163 | case ISD::CTTZ: | |||
| 3164 | case ISD::MUL: | |||
| 3165 | case ISD::FADD: | |||
| 3166 | case ISD::FSUB: | |||
| 3167 | case ISD::FMUL: | |||
| 3168 | case ISD::FMINNUM: | |||
| 3169 | case ISD::FMAXNUM: | |||
| 3170 | case ISD::MULHS: | |||
| 3171 | case ISD::MULHU: | |||
| 3172 | case ISD::AND: | |||
| 3173 | case ISD::OR: | |||
| 3174 | case ISD::XOR: | |||
| 3175 | case ISD::SRA: | |||
| 3176 | case ISD::SHL: | |||
| 3177 | case ISD::SRL: | |||
| 3178 | case ISD::FSHL: | |||
| 3179 | case ISD::FSHR: | |||
| 3180 | case ISD::SMIN: | |||
| 3181 | case ISD::SMAX: | |||
| 3182 | case ISD::UMIN: | |||
| 3183 | case ISD::UMAX: | |||
| 3184 | case ISD::SETCC: | |||
| 3185 | case ISD::VSELECT: | |||
| 3186 | case ISD::SIGN_EXTEND_INREG: | |||
| 3187 | case ISD::SPLAT_VECTOR: | |||
| 3188 | return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | |||
| 3189 | case ISD::SIGN_EXTEND: | |||
| 3190 | case ISD::ZERO_EXTEND: | |||
| 3191 | // In general, sign- and zero-extends can't be split and still | |||
| 3192 | // be legal. The only exception is extending bool vectors. | |||
| 3193 | if (ty(Op.getOperand(0)).getVectorElementType() == MVT::i1) | |||
| 3194 | return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | |||
| 3195 | break; | |||
| 3196 | } | |||
| 3197 | } | |||
| 3198 | ||||
| 3199 | switch (Opc) { | |||
| 3200 | default: | |||
| 3201 | break; | |||
| 3202 | case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG); | |||
| 3203 | case ISD::SPLAT_VECTOR: return LowerHvxSplatVector(Op, DAG); | |||
| 3204 | case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG); | |||
| 3205 | case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG); | |||
| 3206 | case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG); | |||
| 3207 | case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG); | |||
| 3208 | case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG); | |||
| 3209 | case ISD::BITCAST: return LowerHvxBitcast(Op, DAG); | |||
| 3210 | case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG); | |||
| 3211 | case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG); | |||
| 3212 | case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG); | |||
| 3213 | case ISD::CTTZ: return LowerHvxCttz(Op, DAG); | |||
| 3214 | case ISD::SELECT: return LowerHvxSelect(Op, DAG); | |||
| 3215 | case ISD::SRA: | |||
| 3216 | case ISD::SHL: | |||
| 3217 | case ISD::SRL: return LowerHvxShift(Op, DAG); | |||
| 3218 | case ISD::FSHL: | |||
| 3219 | case ISD::FSHR: return LowerHvxFunnelShift(Op, DAG); | |||
| 3220 | case ISD::MULHS: | |||
| 3221 | case ISD::MULHU: return LowerHvxMulh(Op, DAG); | |||
| 3222 | case ISD::SMUL_LOHI: | |||
| 3223 | case ISD::UMUL_LOHI: return LowerHvxMulLoHi(Op, DAG); | |||
| 3224 | case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG); | |||
| 3225 | case ISD::SETCC: | |||
| 3226 | case ISD::INTRINSIC_VOID: return Op; | |||
| 3227 | case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG); | |||
| 3228 | case ISD::MLOAD: | |||
| 3229 | case ISD::MSTORE: return LowerHvxMaskedOp(Op, DAG); | |||
| 3230 | // Unaligned loads will be handled by the default lowering. | |||
| 3231 | case ISD::LOAD: return SDValue(); | |||
| 3232 | case ISD::FP_EXTEND: return LowerHvxFpExtend(Op, DAG); | |||
| 3233 | case ISD::FP_TO_SINT: | |||
| 3234 | case ISD::FP_TO_UINT: return LowerHvxFpToInt(Op, DAG); | |||
| 3235 | case ISD::SINT_TO_FP: | |||
| 3236 | case ISD::UINT_TO_FP: return LowerHvxIntToFp(Op, DAG); | |||
| 3237 | ||||
| 3238 | // Special nodes: | |||
| 3239 | case HexagonISD::SMUL_LOHI: | |||
| 3240 | case HexagonISD::UMUL_LOHI: | |||
| 3241 | case HexagonISD::USMUL_LOHI: return LowerHvxMulLoHi(Op, DAG); | |||
| 3242 | } | |||
| 3243 | #ifndef NDEBUG | |||
| 3244 | Op.dumpr(&DAG); | |||
| 3245 | #endif | |||
| 3246 | llvm_unreachable("Unhandled HVX operation")::llvm::llvm_unreachable_internal("Unhandled HVX operation", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3246); | |||
| 3247 | } | |||
| 3248 | ||||
| 3249 | SDValue | |||
| 3250 | HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG) | |||
| 3251 | const { | |||
| 3252 | // Rewrite the extension/truncation/saturation op into steps where each | |||
| 3253 | // step changes the type widths by a factor of 2. | |||
| 3254 | // E.g. i8 -> i16 remains unchanged, but i8 -> i32 ==> i8 -> i16 -> i32. | |||
| 3255 | // | |||
| 3256 | // Some of the vector types in Op may not be legal. | |||
| 3257 | ||||
| 3258 | unsigned Opc = Op.getOpcode(); | |||
| 3259 | switch (Opc) { | |||
| 3260 | case HexagonISD::SSAT: | |||
| 3261 | case HexagonISD::USAT: | |||
| 3262 | case HexagonISD::TL_EXTEND: | |||
| 3263 | case HexagonISD::TL_TRUNCATE: | |||
| 3264 | break; | |||
| 3265 | case ISD::ANY_EXTEND: | |||
| 3266 | case ISD::ZERO_EXTEND: | |||
| 3267 | case ISD::SIGN_EXTEND: | |||
| 3268 | case ISD::TRUNCATE: | |||
| 3269 | llvm_unreachable("ISD:: ops will be auto-folded")::llvm::llvm_unreachable_internal("ISD:: ops will be auto-folded" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3269); | |||
| 3270 | break; | |||
| 3271 | #ifndef NDEBUG | |||
| 3272 | Op.dump(&DAG); | |||
| 3273 | #endif | |||
| 3274 | llvm_unreachable("Unexpected operation")::llvm::llvm_unreachable_internal("Unexpected operation", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3274); | |||
| 3275 | } | |||
| 3276 | ||||
| 3277 | SDValue Inp = Op.getOperand(0); | |||
| 3278 | MVT InpTy = ty(Inp); | |||
| 3279 | MVT ResTy = ty(Op); | |||
| 3280 | ||||
| 3281 | unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits(); | |||
| 3282 | unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits(); | |||
| 3283 | assert(InpWidth != ResWidth)(static_cast <bool> (InpWidth != ResWidth) ? void (0) : __assert_fail ("InpWidth != ResWidth", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3283, __extension__ __PRETTY_FUNCTION__)); | |||
| 3284 | ||||
| 3285 | if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth) | |||
| 3286 | return Op; | |||
| 3287 | ||||
| 3288 | const SDLoc &dl(Op); | |||
| 3289 | unsigned NumElems = InpTy.getVectorNumElements(); | |||
| 3290 | assert(NumElems == ResTy.getVectorNumElements())(static_cast <bool> (NumElems == ResTy.getVectorNumElements ()) ? void (0) : __assert_fail ("NumElems == ResTy.getVectorNumElements()" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3290, __extension__ __PRETTY_FUNCTION__)); | |||
| 3291 | ||||
| 3292 | auto repeatOp = [&](unsigned NewWidth, SDValue Arg) { | |||
| 3293 | MVT Ty = MVT::getVectorVT(MVT::getIntegerVT(NewWidth), NumElems); | |||
| 3294 | switch (Opc) { | |||
| 3295 | case HexagonISD::SSAT: | |||
| 3296 | case HexagonISD::USAT: | |||
| 3297 | return DAG.getNode(Opc, dl, Ty, {Arg, DAG.getValueType(Ty)}); | |||
| 3298 | case HexagonISD::TL_EXTEND: | |||
| 3299 | case HexagonISD::TL_TRUNCATE: | |||
| 3300 | return DAG.getNode(Opc, dl, Ty, {Arg, Op.getOperand(1), Op.getOperand(2)}); | |||
| 3301 | default: | |||
| 3302 | llvm_unreachable("Unexpected opcode")::llvm::llvm_unreachable_internal("Unexpected opcode", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3302); | |||
| 3303 | } | |||
| 3304 | }; | |||
| 3305 | ||||
| 3306 | SDValue S = Inp; | |||
| 3307 | if (InpWidth < ResWidth) { | |||
| 3308 | assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth))(static_cast <bool> (ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth)) ? void (0) : __assert_fail ("ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth)" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3308, __extension__ __PRETTY_FUNCTION__)); | |||
| 3309 | while (InpWidth * 2 <= ResWidth) | |||
| 3310 | S = repeatOp(InpWidth *= 2, S); | |||
| 3311 | } else { | |||
| 3312 | // InpWidth > ResWidth | |||
| 3313 | assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth))(static_cast <bool> (InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth)) ? void (0) : __assert_fail ("InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth)" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3313, __extension__ __PRETTY_FUNCTION__)); | |||
| 3314 | while (InpWidth / 2 >= ResWidth) | |||
| 3315 | S = repeatOp(InpWidth /= 2, S); | |||
| 3316 | } | |||
| 3317 | return S; | |||
| 3318 | } | |||
| 3319 | ||||
| 3320 | SDValue | |||
| 3321 | HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const { | |||
| 3322 | SDValue Inp0 = Op.getOperand(0); | |||
| 3323 | MVT InpTy = ty(Inp0); | |||
| 3324 | MVT ResTy = ty(Op); | |||
| 3325 | unsigned InpWidth = InpTy.getSizeInBits(); | |||
| 3326 | unsigned ResWidth = ResTy.getSizeInBits(); | |||
| 3327 | unsigned Opc = Op.getOpcode(); | |||
| 3328 | ||||
| 3329 | if (shouldWidenToHvx(InpTy, DAG) || shouldWidenToHvx(ResTy, DAG)) { | |||
| 3330 | // First, make sure that the narrower type is widened to HVX. | |||
| 3331 | // This may cause the result to be wider than what the legalizer | |||
| 3332 | // expects, so insert EXTRACT_SUBVECTOR to bring it back to the | |||
| 3333 | // desired type. | |||
| 3334 | auto [WInpTy, WResTy] = | |||
| 3335 | InpWidth < ResWidth ? typeWidenToWider(typeWidenToHvx(InpTy), ResTy) | |||
| 3336 | : typeWidenToWider(InpTy, typeWidenToHvx(ResTy)); | |||
| 3337 | SDValue W = appendUndef(Inp0, WInpTy, DAG); | |||
| 3338 | SDValue S; | |||
| 3339 | if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) { | |||
| 3340 | S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, Op.getOperand(1), | |||
| 3341 | Op.getOperand(2)); | |||
| 3342 | } else { | |||
| 3343 | S = DAG.getNode(Opc, SDLoc(Op), WResTy, W, DAG.getValueType(WResTy)); | |||
| 3344 | } | |||
| 3345 | SDValue T = ExpandHvxResizeIntoSteps(S, DAG); | |||
| 3346 | return extractSubvector(T, typeLegalize(ResTy, DAG), 0, DAG); | |||
| 3347 | } else if (shouldSplitToHvx(InpWidth < ResWidth ? ResTy : InpTy, DAG)) { | |||
| 3348 | return opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG); | |||
| 3349 | } else { | |||
| 3350 | assert(isTypeLegal(InpTy) && isTypeLegal(ResTy))(static_cast <bool> (isTypeLegal(InpTy) && isTypeLegal (ResTy)) ? void (0) : __assert_fail ("isTypeLegal(InpTy) && isTypeLegal(ResTy)" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3350, __extension__ __PRETTY_FUNCTION__)); | |||
| 3351 | return RemoveTLWrapper(Op, DAG); | |||
| 3352 | } | |||
| 3353 | llvm_unreachable("Unexpected situation")::llvm::llvm_unreachable_internal("Unexpected situation", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3353); | |||
| 3354 | } | |||
| 3355 | ||||
| 3356 | void | |||
| 3357 | HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N, | |||
| 3358 | SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | |||
| 3359 | unsigned Opc = N->getOpcode(); | |||
| 3360 | SDValue Op(N, 0); | |||
| 3361 | SDValue Inp0; // Optional first argument. | |||
| 3362 | if (N->getNumOperands() > 0) | |||
| ||||
| 3363 | Inp0 = Op.getOperand(0); | |||
| 3364 | ||||
| 3365 | switch (Opc) { | |||
| 3366 | case ISD::ANY_EXTEND: | |||
| 3367 | case ISD::SIGN_EXTEND: | |||
| 3368 | case ISD::ZERO_EXTEND: | |||
| 3369 | case ISD::TRUNCATE: | |||
| 3370 | if (Subtarget.isHVXElementType(ty(Op)) && | |||
| 3371 | Subtarget.isHVXElementType(ty(Inp0))) { | |||
| 3372 | Results.push_back(CreateTLWrapper(Op, DAG)); | |||
| 3373 | } | |||
| 3374 | break; | |||
| 3375 | case ISD::SETCC: | |||
| 3376 | if (shouldWidenToHvx(ty(Inp0), DAG)) { | |||
| 3377 | if (SDValue T = WidenHvxSetCC(Op, DAG)) | |||
| 3378 | Results.push_back(T); | |||
| 3379 | } | |||
| 3380 | break; | |||
| 3381 | case ISD::STORE: { | |||
| 3382 | if (shouldWidenToHvx(ty(cast<StoreSDNode>(N)->getValue()), DAG)) { | |||
| 3383 | SDValue Store = WidenHvxStore(Op, DAG); | |||
| 3384 | Results.push_back(Store); | |||
| 3385 | } | |||
| 3386 | break; | |||
| 3387 | } | |||
| 3388 | case ISD::MLOAD: | |||
| 3389 | if (isHvxPairTy(ty(Op))) { | |||
| 3390 | SDValue S = SplitHvxMemOp(Op, DAG); | |||
| 3391 | assert(S->getOpcode() == ISD::MERGE_VALUES)(static_cast <bool> (S->getOpcode() == ISD::MERGE_VALUES ) ? void (0) : __assert_fail ("S->getOpcode() == ISD::MERGE_VALUES" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3391, __extension__ __PRETTY_FUNCTION__)); | |||
| 3392 | Results.push_back(S.getOperand(0)); | |||
| 3393 | Results.push_back(S.getOperand(1)); | |||
| 3394 | } | |||
| 3395 | break; | |||
| 3396 | case ISD::MSTORE: | |||
| 3397 | if (isHvxPairTy(ty(Op->getOperand(1)))) { // Stored value | |||
| 3398 | SDValue S = SplitHvxMemOp(Op, DAG); | |||
| 3399 | Results.push_back(S); | |||
| 3400 | } | |||
| 3401 | break; | |||
| 3402 | case ISD::SINT_TO_FP: | |||
| 3403 | case ISD::UINT_TO_FP: | |||
| 3404 | case ISD::FP_TO_SINT: | |||
| 3405 | case ISD::FP_TO_UINT: | |||
| 3406 | if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { | |||
| 3407 | SDValue T = EqualizeFpIntConversion(Op, DAG); | |||
| 3408 | Results.push_back(T); | |||
| 3409 | } | |||
| 3410 | break; | |||
| 3411 | case HexagonISD::SSAT: | |||
| 3412 | case HexagonISD::USAT: | |||
| 3413 | case HexagonISD::TL_EXTEND: | |||
| 3414 | case HexagonISD::TL_TRUNCATE: | |||
| 3415 | Results.push_back(LegalizeHvxResize(Op, DAG)); | |||
| 3416 | break; | |||
| 3417 | default: | |||
| 3418 | break; | |||
| 3419 | } | |||
| 3420 | } | |||
| 3421 | ||||
| 3422 | void | |||
| 3423 | HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N, | |||
| 3424 | SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | |||
| 3425 | unsigned Opc = N->getOpcode(); | |||
| 3426 | SDValue Op(N, 0); | |||
| 3427 | SDValue Inp0; // Optional first argument. | |||
| 3428 | if (N->getNumOperands() > 0) | |||
| 3429 | Inp0 = Op.getOperand(0); | |||
| 3430 | ||||
| 3431 | switch (Opc) { | |||
| 3432 | case ISD::ANY_EXTEND: | |||
| 3433 | case ISD::SIGN_EXTEND: | |||
| 3434 | case ISD::ZERO_EXTEND: | |||
| 3435 | case ISD::TRUNCATE: | |||
| 3436 | if (Subtarget.isHVXElementType(ty(Op)) && | |||
| 3437 | Subtarget.isHVXElementType(ty(Inp0))) { | |||
| 3438 | Results.push_back(CreateTLWrapper(Op, DAG)); | |||
| 3439 | } | |||
| 3440 | break; | |||
| 3441 | case ISD::SETCC: | |||
| 3442 | if (shouldWidenToHvx(ty(Op), DAG)) { | |||
| 3443 | if (SDValue T = WidenHvxSetCC(Op, DAG)) | |||
| 3444 | Results.push_back(T); | |||
| 3445 | } | |||
| 3446 | break; | |||
| 3447 | case ISD::LOAD: { | |||
| 3448 | if (shouldWidenToHvx(ty(Op), DAG)) { | |||
| 3449 | SDValue Load = WidenHvxLoad(Op, DAG); | |||
| 3450 | assert(Load->getOpcode() == ISD::MERGE_VALUES)(static_cast <bool> (Load->getOpcode() == ISD::MERGE_VALUES ) ? void (0) : __assert_fail ("Load->getOpcode() == ISD::MERGE_VALUES" , "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3450, __extension__ __PRETTY_FUNCTION__)); | |||
| 3451 | Results.push_back(Load.getOperand(0)); | |||
| 3452 | Results.push_back(Load.getOperand(1)); | |||
| 3453 | } | |||
| 3454 | break; | |||
| 3455 | } | |||
| 3456 | case ISD::BITCAST: | |||
| 3457 | if (isHvxBoolTy(ty(Inp0))) { | |||
| 3458 | SDValue C = LowerHvxBitcast(Op, DAG); | |||
| 3459 | Results.push_back(C); | |||
| 3460 | } | |||
| 3461 | break; | |||
| 3462 | case ISD::FP_TO_SINT: | |||
| 3463 | case ISD::FP_TO_UINT: | |||
| 3464 | if (ty(Op).getSizeInBits() != ty(Inp0).getSizeInBits()) { | |||
| 3465 | SDValue T = EqualizeFpIntConversion(Op, DAG); | |||
| 3466 | Results.push_back(T); | |||
| 3467 | } | |||
| 3468 | break; | |||
| 3469 | case HexagonISD::SSAT: | |||
| 3470 | case HexagonISD::USAT: | |||
| 3471 | case HexagonISD::TL_EXTEND: | |||
| 3472 | case HexagonISD::TL_TRUNCATE: | |||
| 3473 | Results.push_back(LegalizeHvxResize(Op, DAG)); | |||
| 3474 | break; | |||
| 3475 | default: | |||
| 3476 | break; | |||
| 3477 | } | |||
| 3478 | } | |||
| 3479 | ||||
| 3480 | SDValue | |||
| 3481 | HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op, | |||
| 3482 | DAGCombinerInfo &DCI) const { | |||
| 3483 | // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB | |||
| 3484 | // to extract-subvector (shuffle V, pick even, pick odd) | |||
| 3485 | ||||
| 3486 | assert(Op.getOpcode() == ISD::TRUNCATE)(static_cast <bool> (Op.getOpcode() == ISD::TRUNCATE) ? void (0) : __assert_fail ("Op.getOpcode() == ISD::TRUNCATE", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp", 3486, __extension__ __PRETTY_FUNCTION__)); | |||
| 3487 | SelectionDAG &DAG = DCI.DAG; | |||
| 3488 | const SDLoc &dl(Op); | |||
| 3489 | ||||
| 3490 | if (Op.getOperand(0).getOpcode() == ISD::BITCAST) | |||
| 3491 | return SDValue(); | |||
| 3492 | SDValue Cast = Op.getOperand(0); | |||
| 3493 | SDValue Src = Cast.getOperand(0); | |||
| 3494 | ||||
| 3495 | EVT TruncTy = Op.getValueType(); | |||
| 3496 | EVT CastTy = Cast.getValueType(); | |||
| 3497 | EVT SrcTy = Src.getValueType(); | |||
| 3498 | if (SrcTy.isSimple()) | |||
| 3499 | return SDValue(); | |||
| 3500 | if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType()) | |||
| 3501 | return SDValue(); | |||
| 3502 | unsigned SrcLen = SrcTy.getVectorNumElements(); | |||
| 3503 | unsigned CastLen = CastTy.getVectorNumElements(); | |||
| 3504 | if (2 * CastLen != SrcLen) | |||
| 3505 | return SDValue(); | |||
| 3506 | ||||
| 3507 | SmallVector<int, 128> Mask(SrcLen); | |||
| 3508 | for (int i = 0; i != static_cast<int>(CastLen); ++i) { | |||
| 3509 | Mask[i] = 2 * i; | |||
| 3510 | Mask[i + CastLen] = 2 * i + 1; | |||
| 3511 | } | |||
| 3512 | SDValue Deal = | |||
| 3513 | DAG.getVectorShuffle(SrcTy, dl, Src, DAG.getUNDEF(SrcTy), Mask); | |||
| 3514 | return opSplit(Deal, dl, DAG).first; | |||
| 3515 | } | |||
| 3516 | ||||
| 3517 | SDValue | |||
| 3518 | HexagonTargetLowering::combineConcatVectorsBeforeLegal( | |||
| 3519 | SDValue Op, DAGCombinerInfo &DCI) const { | |||
| 3520 | // Fold | |||
| 3521 | // concat (shuffle x, y, m1), (shuffle x, y, m2) | |||
| 3522 | // into | |||
| 3523 | // shuffle (concat x, y), undef, m3 | |||
| 3524 | if (Op.getNumOperands() != 2) | |||
| 3525 | return SDValue(); | |||
| 3526 | ||||
| 3527 | SelectionDAG &DAG = DCI.DAG; | |||
| 3528 | const SDLoc &dl(Op); | |||
| 3529 | SDValue V0 = Op.getOperand(0); | |||
| 3530 | SDValue V1 = Op.getOperand(1); | |||
| 3531 | ||||
| 3532 | if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) | |||
| 3533 | return SDValue(); | |||
| 3534 | if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) | |||
| 3535 | return SDValue(); | |||
| 3536 | ||||
| 3537 | SetVector<SDValue> Order; | |||
| 3538 | Order.insert(V0.getOperand(0)); | |||
| 3539 | Order.insert(V0.getOperand(1)); | |||
| 3540 | Order.insert(V1.getOperand(0)); | |||
| 3541 | Order.insert(V1.getOperand(1)); | |||
| 3542 | ||||
| 3543 | if (Order.size() > 2) | |||
| 3544 | return SDValue(); | |||
| 3545 | ||||
| 3546 | // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the | |||
| 3547 | // result must be the same. | |||
| 3548 | EVT InpTy = V0.getValueType(); | |||
| 3549 | assert(InpTy.isVector())(static_cast <bool> (InpTy.isVector()) ? void (0) : __assert_fail ("InpTy.isVector()", "llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp" , 3549, __extension__ __PRETTY_FUNCTION__)); | |||
| 3550 | unsigned InpLen = InpTy.getVectorNumElements(); | |||
| 3551 | ||||
| 3552 | SmallVector<int, 128> LongMask; | |||
| 3553 | auto AppendToMask = [&](SDValue Shuffle) { | |||
| 3554 | auto *SV = cast<ShuffleVectorSDNode>(Shuffle.getNode()); | |||
| 3555 | ArrayRef<int> Mask = SV->getMask(); | |||
| 3556 | SDValue X = Shuffle.getOperand(0); | |||
| 3557 | SDValue Y = Shuffle.getOperand(1); | |||
| 3558 | for (int M : Mask) { | |||
| 3559 | if (M == -1) { | |||
| 3560 | LongMask.push_back(M); | |||
| 3561 | continue; | |||
| 3562 | } | |||
| 3563 | SDValue Src = static_cast<unsigned>(M) < InpLen ? X : Y; | |||
| 3564 | if (static_cast<unsigned>(M) >= InpLen) | |||
| 3565 | M -= InpLen; | |||
| 3566 | ||||
| 3567 | int OutOffset = Order[0] == Src ? 0 : InpLen; | |||
| 3568 | LongMask.push_back(M + OutOffset); | |||
| 3569 | } | |||
| 3570 | }; | |||
| 3571 | ||||
| 3572 | AppendToMask(V0); | |||
| 3573 | AppendToMask(V1); | |||
| 3574 | ||||
| 3575 | SDValue C0 = Order.front(); | |||
| 3576 | SDValue C1 = Order.back(); // Can be same as front | |||
| 3577 | EVT LongTy = InpTy.getDoubleNumVectorElementsVT(*DAG.getContext()); | |||
| 3578 | ||||
| 3579 | SDValue Cat = DAG.getNode(ISD::CONCAT_VECTORS, dl, LongTy, {C0, C1}); | |||
| 3580 | return DAG.getVectorShuffle(LongTy, dl, Cat, DAG.getUNDEF(LongTy), LongMask); | |||
| 3581 | } | |||
| 3582 | ||||
| 3583 | SDValue | |||
| 3584 | HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) | |||
| 3585 | const { | |||
| 3586 | const SDLoc &dl(N); | |||
| 3587 | SelectionDAG &DAG = DCI.DAG; | |||
| 3588 | SDValue Op(N, 0); | |||
| 3589 | unsigned Opc = Op.getOpcode(); | |||
| 3590 | ||||
| 3591 | SmallVector<SDValue, 4> Ops(N->ops().begin(), N->ops().end()); | |||
| 3592 | ||||
| 3593 | if (Opc == ISD::TRUNCATE) | |||
| 3594 | return combineTruncateBeforeLegal(Op, DCI); | |||
| 3595 | if (Opc == ISD::CONCAT_VECTORS) | |||
| 3596 | return combineConcatVectorsBeforeLegal(Op, DCI); | |||
| 3597 | ||||
| 3598 | if (DCI.isBeforeLegalizeOps()) | |||
| 3599 | return SDValue(); | |||
| 3600 | ||||
| 3601 | switch (Opc) { | |||
| 3602 | case ISD::VSELECT: { | |||
| 3603 | // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0) | |||
| 3604 | SDValue Cond = Ops[0]; | |||
| 3605 | if (Cond->getOpcode() == ISD::XOR) { | |||
| 3606 | SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); | |||
| 3607 | if (C1->getOpcode() == HexagonISD::QTRUE) | |||
| 3608 | return DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, Ops[2], Ops[1]); | |||
| 3609 | } | |||
| 3610 | break; | |||
| 3611 | } | |||
| 3612 | case HexagonISD::V2Q: | |||
| 3613 | if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) { | |||
| 3614 | if (const auto *C = dyn_cast<ConstantSDNode>(Ops[0].getOperand(0))) | |||
| 3615 | return C->isZero() ? DAG.getNode(HexagonISD::QFALSE, dl, ty(Op)) | |||
| 3616 | : DAG.getNode(HexagonISD::QTRUE, dl, ty(Op)); | |||
| 3617 | } | |||
| 3618 | break; | |||
| 3619 | case HexagonISD::Q2V: | |||
| 3620 | if (Ops[0].getOpcode() == HexagonISD::QTRUE) | |||
| 3621 | return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op), | |||
| 3622 | DAG.getConstant(-1, dl, MVT::i32)); | |||
| 3623 | if (Ops[0].getOpcode() == HexagonISD::QFALSE) | |||
| 3624 | return getZero(dl, ty(Op), DAG); | |||
| 3625 | break; | |||
| 3626 | case HexagonISD::VINSERTW0: | |||
| 3627 | if (isUndef(Ops[1])) | |||
| 3628 | return Ops[0];; | |||
| 3629 | break; | |||
| 3630 | case HexagonISD::VROR: { | |||
| 3631 | if (Ops[0].getOpcode() == HexagonISD::VROR) { | |||
| 3632 | SDValue Vec = Ops[0].getOperand(0); | |||
| 3633 | SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(1); | |||
| 3634 | SDValue Rot = DAG.getNode(ISD::ADD, dl, ty(Rot0), {Rot0, Rot1}); | |||
| 3635 | return DAG.getNode(HexagonISD::VROR, dl, ty(Op), {Vec, Rot}); | |||
| 3636 | } | |||
| 3637 | break; | |||
| 3638 | } | |||
| 3639 | } | |||
| 3640 | ||||
| 3641 | return SDValue(); | |||
| 3642 | } | |||
| 3643 | ||||
| 3644 | bool | |||
| 3645 | HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const { | |||
| 3646 | if (Subtarget.isHVXVectorType(Ty, true)) | |||
| 3647 | return false; | |||
| 3648 | auto Action = getPreferredHvxVectorAction(Ty); | |||
| 3649 | if (Action == TargetLoweringBase::TypeSplitVector) | |||
| 3650 | return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); | |||
| 3651 | return false; | |||
| 3652 | } | |||
| 3653 | ||||
| 3654 | bool | |||
| 3655 | HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const { | |||
| 3656 | if (Subtarget.isHVXVectorType(Ty, true)) | |||
| 3657 | return false; | |||
| 3658 | auto Action = getPreferredHvxVectorAction(Ty); | |||
| 3659 | if (Action == TargetLoweringBase::TypeWidenVector) | |||
| 3660 | return Subtarget.isHVXVectorType(typeLegalize(Ty, DAG), true); | |||
| 3661 | return false; | |||
| 3662 | } | |||
| 3663 | ||||
| 3664 | bool | |||
| 3665 | HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const { | |||
| 3666 | if (!Subtarget.useHVXOps()) | |||
| 3667 | return false; | |||
| 3668 | // If the type of any result, or any operand type are HVX vector types, | |||
| 3669 | // this is an HVX operation. | |||
| 3670 | auto IsHvxTy = [this](EVT Ty) { | |||
| 3671 | return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true); | |||
| 3672 | }; | |||
| 3673 | auto IsHvxOp = [this](SDValue Op) { | |||
| 3674 | return Op.getValueType().isSimple() && | |||
| 3675 | Subtarget.isHVXVectorType(ty(Op), true); | |||
| 3676 | }; | |||
| 3677 | if (llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp)) | |||
| 3678 | return true; | |||
| 3679 | ||||
| 3680 | // Check if this could be an HVX operation after type widening. | |||
| 3681 | auto IsWidenedToHvx = [this, &DAG](SDValue Op) { | |||
| 3682 | if (!Op.getValueType().isSimple()) | |||
| 3683 | return false; | |||
| 3684 | MVT ValTy = ty(Op); | |||
| 3685 | return ValTy.isVector() && shouldWidenToHvx(ValTy, DAG); | |||
| 3686 | }; | |||
| 3687 | ||||
| 3688 | for (int i = 0, e = N->getNumValues(); i != e; ++i) { | |||
| 3689 | if (IsWidenedToHvx(SDValue(N, i))) | |||
| 3690 | return true; | |||
| 3691 | } | |||
| 3692 | return llvm::any_of(N->ops(), IsWidenedToHvx); | |||
| 3693 | } |