File: | build/source/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp |
Warning: | line 1088, column 43 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file contains the Hexagon implementation of the TargetInstrInfo class. | |||
10 | // | |||
11 | //===----------------------------------------------------------------------===// | |||
12 | ||||
13 | #include "HexagonInstrInfo.h" | |||
14 | #include "Hexagon.h" | |||
15 | #include "HexagonFrameLowering.h" | |||
16 | #include "HexagonHazardRecognizer.h" | |||
17 | #include "HexagonRegisterInfo.h" | |||
18 | #include "HexagonSubtarget.h" | |||
19 | #include "llvm/ADT/ArrayRef.h" | |||
20 | #include "llvm/ADT/SmallPtrSet.h" | |||
21 | #include "llvm/ADT/SmallVector.h" | |||
22 | #include "llvm/ADT/StringRef.h" | |||
23 | #include "llvm/CodeGen/DFAPacketizer.h" | |||
24 | #include "llvm/CodeGen/LivePhysRegs.h" | |||
25 | #include "llvm/CodeGen/MachineBasicBlock.h" | |||
26 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | |||
27 | #include "llvm/CodeGen/MachineFrameInfo.h" | |||
28 | #include "llvm/CodeGen/MachineFunction.h" | |||
29 | #include "llvm/CodeGen/MachineInstr.h" | |||
30 | #include "llvm/CodeGen/MachineInstrBuilder.h" | |||
31 | #include "llvm/CodeGen/MachineInstrBundle.h" | |||
32 | #include "llvm/CodeGen/MachineLoopInfo.h" | |||
33 | #include "llvm/CodeGen/MachineMemOperand.h" | |||
34 | #include "llvm/CodeGen/MachineOperand.h" | |||
35 | #include "llvm/CodeGen/MachineRegisterInfo.h" | |||
36 | #include "llvm/CodeGen/ScheduleDAG.h" | |||
37 | #include "llvm/CodeGen/TargetInstrInfo.h" | |||
38 | #include "llvm/CodeGen/TargetOpcodes.h" | |||
39 | #include "llvm/CodeGen/TargetRegisterInfo.h" | |||
40 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | |||
41 | #include "llvm/IR/DebugLoc.h" | |||
42 | #include "llvm/MC/MCAsmInfo.h" | |||
43 | #include "llvm/MC/MCInstBuilder.h" | |||
44 | #include "llvm/MC/MCInstrDesc.h" | |||
45 | #include "llvm/MC/MCInstrItineraries.h" | |||
46 | #include "llvm/MC/MCRegisterInfo.h" | |||
47 | #include "llvm/Support/BranchProbability.h" | |||
48 | #include "llvm/Support/CommandLine.h" | |||
49 | #include "llvm/Support/Debug.h" | |||
50 | #include "llvm/Support/ErrorHandling.h" | |||
51 | #include "llvm/Support/MachineValueType.h" | |||
52 | #include "llvm/Support/MathExtras.h" | |||
53 | #include "llvm/Support/raw_ostream.h" | |||
54 | #include "llvm/Target/TargetMachine.h" | |||
55 | #include <cassert> | |||
56 | #include <cctype> | |||
57 | #include <cstdint> | |||
58 | #include <cstring> | |||
59 | #include <iterator> | |||
60 | #include <optional> | |||
61 | #include <string> | |||
62 | #include <utility> | |||
63 | ||||
64 | using namespace llvm; | |||
65 | ||||
66 | #define DEBUG_TYPE"hexagon-instrinfo" "hexagon-instrinfo" | |||
67 | ||||
68 | #define GET_INSTRINFO_CTOR_DTOR | |||
69 | #define GET_INSTRMAP_INFO | |||
70 | #include "HexagonDepTimingClasses.h" | |||
71 | #include "HexagonGenDFAPacketizer.inc" | |||
72 | #include "HexagonGenInstrInfo.inc" | |||
73 | ||||
74 | cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden, | |||
75 | cl::init(false), cl::desc("Do not consider inline-asm a scheduling/" | |||
76 | "packetization boundary.")); | |||
77 | ||||
78 | static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction", | |||
79 | cl::Hidden, cl::init(true), cl::desc("Enable branch prediction")); | |||
80 | ||||
81 | static cl::opt<bool> DisableNVSchedule( | |||
82 | "disable-hexagon-nv-schedule", cl::Hidden, | |||
83 | cl::desc("Disable schedule adjustment for new value stores.")); | |||
84 | ||||
85 | static cl::opt<bool> EnableTimingClassLatency( | |||
86 | "enable-timing-class-latency", cl::Hidden, cl::init(false), | |||
87 | cl::desc("Enable timing class latency")); | |||
88 | ||||
89 | static cl::opt<bool> EnableALUForwarding( | |||
90 | "enable-alu-forwarding", cl::Hidden, cl::init(true), | |||
91 | cl::desc("Enable vec alu forwarding")); | |||
92 | ||||
93 | static cl::opt<bool> EnableACCForwarding( | |||
94 | "enable-acc-forwarding", cl::Hidden, cl::init(true), | |||
95 | cl::desc("Enable vec acc forwarding")); | |||
96 | ||||
97 | static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large", | |||
98 | cl::init(true), cl::Hidden, | |||
99 | cl::desc("branch relax asm")); | |||
100 | ||||
101 | static cl::opt<bool> | |||
102 | UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden, | |||
103 | cl::desc("Use the DFA based hazard recognizer.")); | |||
104 | ||||
105 | /// Constants for Hexagon instructions. | |||
106 | const int Hexagon_MEMW_OFFSET_MAX = 4095; | |||
107 | const int Hexagon_MEMW_OFFSET_MIN = -4096; | |||
108 | const int Hexagon_MEMD_OFFSET_MAX = 8191; | |||
109 | const int Hexagon_MEMD_OFFSET_MIN = -8192; | |||
110 | const int Hexagon_MEMH_OFFSET_MAX = 2047; | |||
111 | const int Hexagon_MEMH_OFFSET_MIN = -2048; | |||
112 | const int Hexagon_MEMB_OFFSET_MAX = 1023; | |||
113 | const int Hexagon_MEMB_OFFSET_MIN = -1024; | |||
114 | const int Hexagon_ADDI_OFFSET_MAX = 32767; | |||
115 | const int Hexagon_ADDI_OFFSET_MIN = -32768; | |||
116 | ||||
117 | // Pin the vtable to this file. | |||
118 | void HexagonInstrInfo::anchor() {} | |||
119 | ||||
120 | HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) | |||
121 | : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), | |||
122 | Subtarget(ST) {} | |||
123 | ||||
124 | namespace llvm { | |||
125 | namespace HexagonFUnits { | |||
126 | bool isSlot0Only(unsigned units); | |||
127 | } | |||
128 | } | |||
129 | ||||
130 | static bool isIntRegForSubInst(Register Reg) { | |||
131 | return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || | |||
132 | (Reg >= Hexagon::R16 && Reg <= Hexagon::R23); | |||
133 | } | |||
134 | ||||
135 | static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI) { | |||
136 | return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) && | |||
137 | isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi)); | |||
138 | } | |||
139 | ||||
140 | /// Calculate number of instructions excluding the debug instructions. | |||
141 | static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, | |||
142 | MachineBasicBlock::const_instr_iterator MIE) { | |||
143 | unsigned Count = 0; | |||
144 | for (; MIB != MIE; ++MIB) { | |||
145 | if (!MIB->isDebugInstr()) | |||
146 | ++Count; | |||
147 | } | |||
148 | return Count; | |||
149 | } | |||
150 | ||||
151 | // Check if the A2_tfrsi instruction is cheap or not. If the operand has | |||
152 | // to be constant-extendend it is not cheap since it occupies two slots | |||
153 | // in a packet. | |||
154 | bool HexagonInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const { | |||
155 | // Enable the following steps only at Os/Oz | |||
156 | if (!(MI.getMF()->getFunction().hasOptSize())) | |||
157 | return MI.isAsCheapAsAMove(); | |||
158 | ||||
159 | if (MI.getOpcode() == Hexagon::A2_tfrsi) { | |||
160 | auto Op = MI.getOperand(1); | |||
161 | // If the instruction has a global address as operand, it is not cheap | |||
162 | // since the operand will be constant extended. | |||
163 | if (Op.isGlobal()) | |||
164 | return false; | |||
165 | // If the instruction has an operand of size > 16bits, its will be | |||
166 | // const-extended and hence, it is not cheap. | |||
167 | if (Op.isImm()) { | |||
168 | int64_t Imm = Op.getImm(); | |||
169 | if (!isInt<16>(Imm)) | |||
170 | return false; | |||
171 | } | |||
172 | } | |||
173 | return MI.isAsCheapAsAMove(); | |||
174 | } | |||
175 | ||||
176 | // Do not sink floating point instructions that updates USR register. | |||
177 | // Example: | |||
178 | // feclearexcept | |||
179 | // F2_conv_w2sf | |||
180 | // fetestexcept | |||
181 | // MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions. | |||
182 | // TODO: On some of these floating point instructions, USR is marked as Use. | |||
183 | // In reality, these instructions also Def the USR. If USR is marked as Def, | |||
184 | // some of the assumptions in assembler packetization are broken. | |||
185 | bool HexagonInstrInfo::shouldSink(const MachineInstr &MI) const { | |||
186 | // Assumption: A floating point instruction that reads the USR will write | |||
187 | // the USR as well. | |||
188 | if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Hexagon::USR)) | |||
189 | return false; | |||
190 | return true; | |||
191 | } | |||
192 | ||||
193 | /// Find the hardware loop instruction used to set-up the specified loop. | |||
194 | /// On Hexagon, we have two instructions used to set-up the hardware loop | |||
195 | /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions | |||
196 | /// to indicate the end of a loop. | |||
197 | MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB, | |||
198 | unsigned EndLoopOp, MachineBasicBlock *TargetBB, | |||
199 | SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { | |||
200 | unsigned LOOPi; | |||
201 | unsigned LOOPr; | |||
202 | if (EndLoopOp == Hexagon::ENDLOOP0) { | |||
203 | LOOPi = Hexagon::J2_loop0i; | |||
204 | LOOPr = Hexagon::J2_loop0r; | |||
205 | } else { // EndLoopOp == Hexagon::EndLOOP1 | |||
206 | LOOPi = Hexagon::J2_loop1i; | |||
207 | LOOPr = Hexagon::J2_loop1r; | |||
208 | } | |||
209 | ||||
210 | // The loop set-up instruction will be in a predecessor block | |||
211 | for (MachineBasicBlock *PB : BB->predecessors()) { | |||
212 | // If this has been visited, already skip it. | |||
213 | if (!Visited.insert(PB).second) | |||
214 | continue; | |||
215 | if (PB == BB) | |||
216 | continue; | |||
217 | for (MachineInstr &I : llvm::reverse(PB->instrs())) { | |||
218 | unsigned Opc = I.getOpcode(); | |||
219 | if (Opc == LOOPi || Opc == LOOPr) | |||
220 | return &I; | |||
221 | // We've reached a different loop, which means the loop01 has been | |||
222 | // removed. | |||
223 | if (Opc == EndLoopOp && I.getOperand(0).getMBB() != TargetBB) | |||
224 | return nullptr; | |||
225 | } | |||
226 | // Check the predecessors for the LOOP instruction. | |||
227 | if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited)) | |||
228 | return Loop; | |||
229 | } | |||
230 | return nullptr; | |||
231 | } | |||
232 | ||||
233 | /// Gather register def/uses from MI. | |||
234 | /// This treats possible (predicated) defs as actually happening ones | |||
235 | /// (conservatively). | |||
236 | static inline void parseOperands(const MachineInstr &MI, | |||
237 | SmallVectorImpl<Register> &Defs, SmallVectorImpl<Register> &Uses) { | |||
238 | Defs.clear(); | |||
239 | Uses.clear(); | |||
240 | ||||
241 | for (const MachineOperand &MO : MI.operands()) { | |||
242 | if (!MO.isReg()) | |||
243 | continue; | |||
244 | ||||
245 | Register Reg = MO.getReg(); | |||
246 | if (!Reg) | |||
247 | continue; | |||
248 | ||||
249 | if (MO.isUse()) | |||
250 | Uses.push_back(MO.getReg()); | |||
251 | ||||
252 | if (MO.isDef()) | |||
253 | Defs.push_back(MO.getReg()); | |||
254 | } | |||
255 | } | |||
256 | ||||
257 | // Position dependent, so check twice for swap. | |||
258 | static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) { | |||
259 | switch (Ga) { | |||
260 | case HexagonII::HSIG_None: | |||
261 | default: | |||
262 | return false; | |||
263 | case HexagonII::HSIG_L1: | |||
264 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A); | |||
265 | case HexagonII::HSIG_L2: | |||
266 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || | |||
267 | Gb == HexagonII::HSIG_A); | |||
268 | case HexagonII::HSIG_S1: | |||
269 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || | |||
270 | Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A); | |||
271 | case HexagonII::HSIG_S2: | |||
272 | return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 || | |||
273 | Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 || | |||
274 | Gb == HexagonII::HSIG_A); | |||
275 | case HexagonII::HSIG_A: | |||
276 | return (Gb == HexagonII::HSIG_A); | |||
277 | case HexagonII::HSIG_Compound: | |||
278 | return (Gb == HexagonII::HSIG_Compound); | |||
279 | } | |||
280 | return false; | |||
281 | } | |||
282 | ||||
283 | /// isLoadFromStackSlot - If the specified machine instruction is a direct | |||
284 | /// load from a stack slot, return the virtual or physical register number of | |||
285 | /// the destination along with the FrameIndex of the loaded stack slot. If | |||
286 | /// not, return 0. This predicate must return 0 if the instruction has | |||
287 | /// any side effects other than loading from the stack slot. | |||
288 | unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | |||
289 | int &FrameIndex) const { | |||
290 | switch (MI.getOpcode()) { | |||
291 | default: | |||
292 | break; | |||
293 | case Hexagon::L2_loadri_io: | |||
294 | case Hexagon::L2_loadrd_io: | |||
295 | case Hexagon::V6_vL32b_ai: | |||
296 | case Hexagon::V6_vL32b_nt_ai: | |||
297 | case Hexagon::V6_vL32Ub_ai: | |||
298 | case Hexagon::LDriw_pred: | |||
299 | case Hexagon::LDriw_ctr: | |||
300 | case Hexagon::PS_vloadrq_ai: | |||
301 | case Hexagon::PS_vloadrw_ai: | |||
302 | case Hexagon::PS_vloadrw_nt_ai: { | |||
303 | const MachineOperand OpFI = MI.getOperand(1); | |||
304 | if (!OpFI.isFI()) | |||
305 | return 0; | |||
306 | const MachineOperand OpOff = MI.getOperand(2); | |||
307 | if (!OpOff.isImm() || OpOff.getImm() != 0) | |||
308 | return 0; | |||
309 | FrameIndex = OpFI.getIndex(); | |||
310 | return MI.getOperand(0).getReg(); | |||
311 | } | |||
312 | ||||
313 | case Hexagon::L2_ploadrit_io: | |||
314 | case Hexagon::L2_ploadrif_io: | |||
315 | case Hexagon::L2_ploadrdt_io: | |||
316 | case Hexagon::L2_ploadrdf_io: { | |||
317 | const MachineOperand OpFI = MI.getOperand(2); | |||
318 | if (!OpFI.isFI()) | |||
319 | return 0; | |||
320 | const MachineOperand OpOff = MI.getOperand(3); | |||
321 | if (!OpOff.isImm() || OpOff.getImm() != 0) | |||
322 | return 0; | |||
323 | FrameIndex = OpFI.getIndex(); | |||
324 | return MI.getOperand(0).getReg(); | |||
325 | } | |||
326 | } | |||
327 | ||||
328 | return 0; | |||
329 | } | |||
330 | ||||
331 | /// isStoreToStackSlot - If the specified machine instruction is a direct | |||
332 | /// store to a stack slot, return the virtual or physical register number of | |||
333 | /// the source reg along with the FrameIndex of the loaded stack slot. If | |||
334 | /// not, return 0. This predicate must return 0 if the instruction has | |||
335 | /// any side effects other than storing to the stack slot. | |||
336 | unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI, | |||
337 | int &FrameIndex) const { | |||
338 | switch (MI.getOpcode()) { | |||
339 | default: | |||
340 | break; | |||
341 | case Hexagon::S2_storerb_io: | |||
342 | case Hexagon::S2_storerh_io: | |||
343 | case Hexagon::S2_storeri_io: | |||
344 | case Hexagon::S2_storerd_io: | |||
345 | case Hexagon::V6_vS32b_ai: | |||
346 | case Hexagon::V6_vS32Ub_ai: | |||
347 | case Hexagon::STriw_pred: | |||
348 | case Hexagon::STriw_ctr: | |||
349 | case Hexagon::PS_vstorerq_ai: | |||
350 | case Hexagon::PS_vstorerw_ai: { | |||
351 | const MachineOperand &OpFI = MI.getOperand(0); | |||
352 | if (!OpFI.isFI()) | |||
353 | return 0; | |||
354 | const MachineOperand &OpOff = MI.getOperand(1); | |||
355 | if (!OpOff.isImm() || OpOff.getImm() != 0) | |||
356 | return 0; | |||
357 | FrameIndex = OpFI.getIndex(); | |||
358 | return MI.getOperand(2).getReg(); | |||
359 | } | |||
360 | ||||
361 | case Hexagon::S2_pstorerbt_io: | |||
362 | case Hexagon::S2_pstorerbf_io: | |||
363 | case Hexagon::S2_pstorerht_io: | |||
364 | case Hexagon::S2_pstorerhf_io: | |||
365 | case Hexagon::S2_pstorerit_io: | |||
366 | case Hexagon::S2_pstorerif_io: | |||
367 | case Hexagon::S2_pstorerdt_io: | |||
368 | case Hexagon::S2_pstorerdf_io: { | |||
369 | const MachineOperand &OpFI = MI.getOperand(1); | |||
370 | if (!OpFI.isFI()) | |||
371 | return 0; | |||
372 | const MachineOperand &OpOff = MI.getOperand(2); | |||
373 | if (!OpOff.isImm() || OpOff.getImm() != 0) | |||
374 | return 0; | |||
375 | FrameIndex = OpFI.getIndex(); | |||
376 | return MI.getOperand(3).getReg(); | |||
377 | } | |||
378 | } | |||
379 | ||||
380 | return 0; | |||
381 | } | |||
382 | ||||
383 | /// This function checks if the instruction or bundle of instructions | |||
384 | /// has load from stack slot and returns frameindex and machine memory | |||
385 | /// operand of that instruction if true. | |||
386 | bool HexagonInstrInfo::hasLoadFromStackSlot( | |||
387 | const MachineInstr &MI, | |||
388 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const { | |||
389 | if (MI.isBundle()) { | |||
390 | const MachineBasicBlock *MBB = MI.getParent(); | |||
391 | MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); | |||
392 | for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) | |||
393 | if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses)) | |||
394 | return true; | |||
395 | return false; | |||
396 | } | |||
397 | ||||
398 | return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses); | |||
399 | } | |||
400 | ||||
401 | /// This function checks if the instruction or bundle of instructions | |||
402 | /// has store to stack slot and returns frameindex and machine memory | |||
403 | /// operand of that instruction if true. | |||
404 | bool HexagonInstrInfo::hasStoreToStackSlot( | |||
405 | const MachineInstr &MI, | |||
406 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const { | |||
407 | if (MI.isBundle()) { | |||
408 | const MachineBasicBlock *MBB = MI.getParent(); | |||
409 | MachineBasicBlock::const_instr_iterator MII = MI.getIterator(); | |||
410 | for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII) | |||
411 | if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses)) | |||
412 | return true; | |||
413 | return false; | |||
414 | } | |||
415 | ||||
416 | return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses); | |||
417 | } | |||
418 | ||||
419 | /// This function can analyze one/two way branching only and should (mostly) be | |||
420 | /// called by target independent side. | |||
421 | /// First entry is always the opcode of the branching instruction, except when | |||
422 | /// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a | |||
423 | /// BB with only unconditional jump. Subsequent entries depend upon the opcode, | |||
424 | /// e.g. Jump_c p will have | |||
425 | /// Cond[0] = Jump_c | |||
426 | /// Cond[1] = p | |||
427 | /// HW-loop ENDLOOP: | |||
428 | /// Cond[0] = ENDLOOP | |||
429 | /// Cond[1] = MBB | |||
430 | /// New value jump: | |||
431 | /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode | |||
432 | /// Cond[1] = R | |||
433 | /// Cond[2] = Imm | |||
434 | bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB, | |||
435 | MachineBasicBlock *&TBB, | |||
436 | MachineBasicBlock *&FBB, | |||
437 | SmallVectorImpl<MachineOperand> &Cond, | |||
438 | bool AllowModify) const { | |||
439 | TBB = nullptr; | |||
440 | FBB = nullptr; | |||
441 | Cond.clear(); | |||
442 | ||||
443 | // If the block has no terminators, it just falls into the block after it. | |||
444 | MachineBasicBlock::instr_iterator I = MBB.instr_end(); | |||
445 | if (I == MBB.instr_begin()) | |||
446 | return false; | |||
447 | ||||
448 | // A basic block may looks like this: | |||
449 | // | |||
450 | // [ insn | |||
451 | // EH_LABEL | |||
452 | // insn | |||
453 | // insn | |||
454 | // insn | |||
455 | // EH_LABEL | |||
456 | // insn ] | |||
457 | // | |||
458 | // It has two succs but does not have a terminator | |||
459 | // Don't know how to handle it. | |||
460 | do { | |||
461 | --I; | |||
462 | if (I->isEHLabel()) | |||
463 | // Don't analyze EH branches. | |||
464 | return true; | |||
465 | } while (I != MBB.instr_begin()); | |||
466 | ||||
467 | I = MBB.instr_end(); | |||
468 | --I; | |||
469 | ||||
470 | while (I->isDebugInstr()) { | |||
471 | if (I == MBB.instr_begin()) | |||
472 | return false; | |||
473 | --I; | |||
474 | } | |||
475 | ||||
476 | bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump && | |||
477 | I->getOperand(0).isMBB(); | |||
478 | // Delete the J2_jump if it's equivalent to a fall-through. | |||
479 | if (AllowModify && JumpToBlock && | |||
480 | MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | |||
481 | LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nErasing the jump to successor block\n" ;; } } while (false); | |||
482 | I->eraseFromParent(); | |||
483 | I = MBB.instr_end(); | |||
484 | if (I == MBB.instr_begin()) | |||
485 | return false; | |||
486 | --I; | |||
487 | } | |||
488 | if (!isUnpredicatedTerminator(*I)) | |||
489 | return false; | |||
490 | ||||
491 | // Get the last instruction in the block. | |||
492 | MachineInstr *LastInst = &*I; | |||
493 | MachineInstr *SecondLastInst = nullptr; | |||
494 | // Find one more terminator if present. | |||
495 | while (true) { | |||
496 | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) { | |||
497 | if (!SecondLastInst) | |||
498 | SecondLastInst = &*I; | |||
499 | else | |||
500 | // This is a third branch. | |||
501 | return true; | |||
502 | } | |||
503 | if (I == MBB.instr_begin()) | |||
504 | break; | |||
505 | --I; | |||
506 | } | |||
507 | ||||
508 | int LastOpcode = LastInst->getOpcode(); | |||
509 | int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0; | |||
510 | // If the branch target is not a basic block, it could be a tail call. | |||
511 | // (It is, if the target is a function.) | |||
512 | if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB()) | |||
513 | return true; | |||
514 | if (SecLastOpcode == Hexagon::J2_jump && | |||
515 | !SecondLastInst->getOperand(0).isMBB()) | |||
516 | return true; | |||
517 | ||||
518 | bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); | |||
519 | bool LastOpcodeHasNVJump = isNewValueJump(*LastInst); | |||
520 | ||||
521 | if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB()) | |||
522 | return true; | |||
523 | ||||
524 | // If there is only one terminator instruction, process it. | |||
525 | if (LastInst && !SecondLastInst) { | |||
526 | if (LastOpcode == Hexagon::J2_jump) { | |||
527 | TBB = LastInst->getOperand(0).getMBB(); | |||
528 | return false; | |||
529 | } | |||
530 | if (isEndLoopN(LastOpcode)) { | |||
531 | TBB = LastInst->getOperand(0).getMBB(); | |||
532 | Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); | |||
533 | Cond.push_back(LastInst->getOperand(0)); | |||
534 | return false; | |||
535 | } | |||
536 | if (LastOpcodeHasJMP_c) { | |||
537 | TBB = LastInst->getOperand(1).getMBB(); | |||
538 | Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); | |||
539 | Cond.push_back(LastInst->getOperand(0)); | |||
540 | return false; | |||
541 | } | |||
542 | // Only supporting rr/ri versions of new-value jumps. | |||
543 | if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) { | |||
544 | TBB = LastInst->getOperand(2).getMBB(); | |||
545 | Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); | |||
546 | Cond.push_back(LastInst->getOperand(0)); | |||
547 | Cond.push_back(LastInst->getOperand(1)); | |||
548 | return false; | |||
549 | } | |||
550 | LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nCant analyze " << printMBBReference(MBB) << " with one jump\n";; } } while (false) | |||
551 | << " with one jump\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nCant analyze " << printMBBReference(MBB) << " with one jump\n";; } } while (false); | |||
552 | // Otherwise, don't know what this is. | |||
553 | return true; | |||
554 | } | |||
555 | ||||
556 | bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); | |||
557 | bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst); | |||
558 | if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) { | |||
559 | if (!SecondLastInst->getOperand(1).isMBB()) | |||
560 | return true; | |||
561 | TBB = SecondLastInst->getOperand(1).getMBB(); | |||
562 | Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); | |||
563 | Cond.push_back(SecondLastInst->getOperand(0)); | |||
564 | FBB = LastInst->getOperand(0).getMBB(); | |||
565 | return false; | |||
566 | } | |||
567 | ||||
568 | // Only supporting rr/ri versions of new-value jumps. | |||
569 | if (SecLastOpcodeHasNVJump && | |||
570 | (SecondLastInst->getNumExplicitOperands() == 3) && | |||
571 | (LastOpcode == Hexagon::J2_jump)) { | |||
572 | TBB = SecondLastInst->getOperand(2).getMBB(); | |||
573 | Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); | |||
574 | Cond.push_back(SecondLastInst->getOperand(0)); | |||
575 | Cond.push_back(SecondLastInst->getOperand(1)); | |||
576 | FBB = LastInst->getOperand(0).getMBB(); | |||
577 | return false; | |||
578 | } | |||
579 | ||||
580 | // If the block ends with two Hexagon:JMPs, handle it. The second one is not | |||
581 | // executed, so remove it. | |||
582 | if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) { | |||
583 | TBB = SecondLastInst->getOperand(0).getMBB(); | |||
584 | I = LastInst->getIterator(); | |||
585 | if (AllowModify) | |||
586 | I->eraseFromParent(); | |||
587 | return false; | |||
588 | } | |||
589 | ||||
590 | // If the block ends with an ENDLOOP, and J2_jump, handle it. | |||
591 | if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) { | |||
592 | TBB = SecondLastInst->getOperand(0).getMBB(); | |||
593 | Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); | |||
594 | Cond.push_back(SecondLastInst->getOperand(0)); | |||
595 | FBB = LastInst->getOperand(0).getMBB(); | |||
596 | return false; | |||
597 | } | |||
598 | LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nCant analyze " << printMBBReference(MBB) << " with two jumps";; } } while (false) | |||
599 | << " with two jumps";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nCant analyze " << printMBBReference(MBB) << " with two jumps";; } } while (false); | |||
600 | // Otherwise, can't handle this. | |||
601 | return true; | |||
602 | } | |||
603 | ||||
604 | unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB, | |||
605 | int *BytesRemoved) const { | |||
606 | assert(!BytesRemoved && "code size not handled")(static_cast <bool> (!BytesRemoved && "code size not handled" ) ? void (0) : __assert_fail ("!BytesRemoved && \"code size not handled\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 606, __extension__ __PRETTY_FUNCTION__)); | |||
607 | ||||
608 | LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nRemoving branches out of " << printMBBReference(MBB); } } while (false); | |||
609 | MachineBasicBlock::iterator I = MBB.end(); | |||
610 | unsigned Count = 0; | |||
611 | while (I != MBB.begin()) { | |||
612 | --I; | |||
613 | if (I->isDebugInstr()) | |||
614 | continue; | |||
615 | // Only removing branches from end of MBB. | |||
616 | if (!I->isBranch()) | |||
617 | return Count; | |||
618 | if (Count && (I->getOpcode() == Hexagon::J2_jump)) | |||
619 | llvm_unreachable("Malformed basic block: unconditional branch not last")::llvm::llvm_unreachable_internal("Malformed basic block: unconditional branch not last" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 619); | |||
620 | MBB.erase(&MBB.back()); | |||
621 | I = MBB.end(); | |||
622 | ++Count; | |||
623 | } | |||
624 | return Count; | |||
625 | } | |||
626 | ||||
627 | unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB, | |||
628 | MachineBasicBlock *TBB, | |||
629 | MachineBasicBlock *FBB, | |||
630 | ArrayRef<MachineOperand> Cond, | |||
631 | const DebugLoc &DL, | |||
632 | int *BytesAdded) const { | |||
633 | unsigned BOpc = Hexagon::J2_jump; | |||
634 | unsigned BccOpc = Hexagon::J2_jumpt; | |||
635 | assert(validateBranchCond(Cond) && "Invalid branching condition")(static_cast <bool> (validateBranchCond(Cond) && "Invalid branching condition") ? void (0) : __assert_fail ("validateBranchCond(Cond) && \"Invalid branching condition\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 635, __extension__ __PRETTY_FUNCTION__)); | |||
636 | assert(TBB && "insertBranch must not be told to insert a fallthrough")(static_cast <bool> (TBB && "insertBranch must not be told to insert a fallthrough" ) ? void (0) : __assert_fail ("TBB && \"insertBranch must not be told to insert a fallthrough\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 636, __extension__ __PRETTY_FUNCTION__)); | |||
637 | assert(!BytesAdded && "code size not handled")(static_cast <bool> (!BytesAdded && "code size not handled" ) ? void (0) : __assert_fail ("!BytesAdded && \"code size not handled\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 637, __extension__ __PRETTY_FUNCTION__)); | |||
638 | ||||
639 | // Check if reverseBranchCondition has asked to reverse this branch | |||
640 | // If we want to reverse the branch an odd number of times, we want | |||
641 | // J2_jumpf. | |||
642 | if (!Cond.empty() && Cond[0].isImm()) | |||
643 | BccOpc = Cond[0].getImm(); | |||
644 | ||||
645 | if (!FBB) { | |||
646 | if (Cond.empty()) { | |||
647 | // Due to a bug in TailMerging/CFG Optimization, we need to add a | |||
648 | // special case handling of a predicated jump followed by an | |||
649 | // unconditional jump. If not, Tail Merging and CFG Optimization go | |||
650 | // into an infinite loop. | |||
651 | MachineBasicBlock *NewTBB, *NewFBB; | |||
652 | SmallVector<MachineOperand, 4> Cond; | |||
653 | auto Term = MBB.getFirstTerminator(); | |||
654 | if (Term != MBB.end() && isPredicated(*Term) && | |||
655 | !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) && | |||
656 | MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) { | |||
657 | reverseBranchCondition(Cond); | |||
658 | removeBranch(MBB); | |||
659 | return insertBranch(MBB, TBB, nullptr, Cond, DL); | |||
660 | } | |||
661 | BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); | |||
662 | } else if (isEndLoopN(Cond[0].getImm())) { | |||
663 | int EndLoopOp = Cond[0].getImm(); | |||
664 | assert(Cond[1].isMBB())(static_cast <bool> (Cond[1].isMBB()) ? void (0) : __assert_fail ("Cond[1].isMBB()", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 664, __extension__ __PRETTY_FUNCTION__)); | |||
665 | // Since we're adding an ENDLOOP, there better be a LOOP instruction. | |||
666 | // Check for it, and change the BB target if needed. | |||
667 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; | |||
668 | MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(), | |||
669 | VisitedBBs); | |||
670 | assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP")(static_cast <bool> (Loop != nullptr && "Inserting an ENDLOOP without a LOOP" ) ? void (0) : __assert_fail ("Loop != nullptr && \"Inserting an ENDLOOP without a LOOP\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 670, __extension__ __PRETTY_FUNCTION__)); | |||
671 | Loop->getOperand(0).setMBB(TBB); | |||
672 | // Add the ENDLOOP after the finding the LOOP0. | |||
673 | BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); | |||
674 | } else if (isNewValueJump(Cond[0].getImm())) { | |||
675 | assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump")(static_cast <bool> ((Cond.size() == 3) && "Only supporting rr/ri version of nvjump" ) ? void (0) : __assert_fail ("(Cond.size() == 3) && \"Only supporting rr/ri version of nvjump\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 675, __extension__ __PRETTY_FUNCTION__)); | |||
676 | // New value jump | |||
677 | // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset) | |||
678 | // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset) | |||
679 | unsigned Flags1 = getUndefRegState(Cond[1].isUndef()); | |||
680 | LLVM_DEBUG(dbgs() << "\nInserting NVJump for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nInserting NVJump for " << printMBBReference(MBB);; } } while (false) | |||
681 | << printMBBReference(MBB);)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nInserting NVJump for " << printMBBReference(MBB);; } } while (false); | |||
682 | if (Cond[2].isReg()) { | |||
683 | unsigned Flags2 = getUndefRegState(Cond[2].isUndef()); | |||
684 | BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). | |||
685 | addReg(Cond[2].getReg(), Flags2).addMBB(TBB); | |||
686 | } else if(Cond[2].isImm()) { | |||
687 | BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). | |||
688 | addImm(Cond[2].getImm()).addMBB(TBB); | |||
689 | } else | |||
690 | llvm_unreachable("Invalid condition for branching")::llvm::llvm_unreachable_internal("Invalid condition for branching" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 690); | |||
691 | } else { | |||
692 | assert((Cond.size() == 2) && "Malformed cond vector")(static_cast <bool> ((Cond.size() == 2) && "Malformed cond vector" ) ? void (0) : __assert_fail ("(Cond.size() == 2) && \"Malformed cond vector\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 692, __extension__ __PRETTY_FUNCTION__)); | |||
693 | const MachineOperand &RO = Cond[1]; | |||
694 | unsigned Flags = getUndefRegState(RO.isUndef()); | |||
695 | BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); | |||
696 | } | |||
697 | return 1; | |||
698 | } | |||
699 | assert((!Cond.empty()) &&(static_cast <bool> ((!Cond.empty()) && "Cond. cannot be empty when multiple branchings are required" ) ? void (0) : __assert_fail ("(!Cond.empty()) && \"Cond. cannot be empty when multiple branchings are required\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 700, __extension__ __PRETTY_FUNCTION__)) | |||
700 | "Cond. cannot be empty when multiple branchings are required")(static_cast <bool> ((!Cond.empty()) && "Cond. cannot be empty when multiple branchings are required" ) ? void (0) : __assert_fail ("(!Cond.empty()) && \"Cond. cannot be empty when multiple branchings are required\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 700, __extension__ __PRETTY_FUNCTION__)); | |||
701 | assert((!isNewValueJump(Cond[0].getImm())) &&(static_cast <bool> ((!isNewValueJump(Cond[0].getImm()) ) && "NV-jump cannot be inserted with another branch" ) ? void (0) : __assert_fail ("(!isNewValueJump(Cond[0].getImm())) && \"NV-jump cannot be inserted with another branch\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 702, __extension__ __PRETTY_FUNCTION__)) | |||
702 | "NV-jump cannot be inserted with another branch")(static_cast <bool> ((!isNewValueJump(Cond[0].getImm()) ) && "NV-jump cannot be inserted with another branch" ) ? void (0) : __assert_fail ("(!isNewValueJump(Cond[0].getImm())) && \"NV-jump cannot be inserted with another branch\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 702, __extension__ __PRETTY_FUNCTION__)); | |||
703 | // Special case for hardware loops. The condition is a basic block. | |||
704 | if (isEndLoopN(Cond[0].getImm())) { | |||
705 | int EndLoopOp = Cond[0].getImm(); | |||
706 | assert(Cond[1].isMBB())(static_cast <bool> (Cond[1].isMBB()) ? void (0) : __assert_fail ("Cond[1].isMBB()", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 706, __extension__ __PRETTY_FUNCTION__)); | |||
707 | // Since we're adding an ENDLOOP, there better be a LOOP instruction. | |||
708 | // Check for it, and change the BB target if needed. | |||
709 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; | |||
710 | MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(), | |||
711 | VisitedBBs); | |||
712 | assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP")(static_cast <bool> (Loop != nullptr && "Inserting an ENDLOOP without a LOOP" ) ? void (0) : __assert_fail ("Loop != nullptr && \"Inserting an ENDLOOP without a LOOP\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 712, __extension__ __PRETTY_FUNCTION__)); | |||
713 | Loop->getOperand(0).setMBB(TBB); | |||
714 | // Add the ENDLOOP after the finding the LOOP0. | |||
715 | BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); | |||
716 | } else { | |||
717 | const MachineOperand &RO = Cond[1]; | |||
718 | unsigned Flags = getUndefRegState(RO.isUndef()); | |||
719 | BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); | |||
720 | } | |||
721 | BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); | |||
722 | ||||
723 | return 2; | |||
724 | } | |||
725 | ||||
726 | namespace { | |||
727 | class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { | |||
728 | MachineInstr *Loop, *EndLoop; | |||
729 | MachineFunction *MF; | |||
730 | const HexagonInstrInfo *TII; | |||
731 | int64_t TripCount; | |||
732 | Register LoopCount; | |||
733 | DebugLoc DL; | |||
734 | ||||
735 | public: | |||
736 | HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop) | |||
737 | : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()), | |||
738 | TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()), | |||
739 | DL(Loop->getDebugLoc()) { | |||
740 | // Inspect the Loop instruction up-front, as it may be deleted when we call | |||
741 | // createTripCountGreaterCondition. | |||
742 | TripCount = Loop->getOpcode() == Hexagon::J2_loop0r | |||
743 | ? -1 | |||
744 | : Loop->getOperand(1).getImm(); | |||
745 | if (TripCount == -1) | |||
746 | LoopCount = Loop->getOperand(1).getReg(); | |||
747 | } | |||
748 | ||||
749 | bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { | |||
750 | // Only ignore the terminator. | |||
751 | return MI == EndLoop; | |||
752 | } | |||
753 | ||||
754 | std::optional<bool> createTripCountGreaterCondition( | |||
755 | int TC, MachineBasicBlock &MBB, | |||
756 | SmallVectorImpl<MachineOperand> &Cond) override { | |||
757 | if (TripCount == -1) { | |||
758 | // Check if we're done with the loop. | |||
759 | Register Done = TII->createVR(MF, MVT::i1); | |||
760 | MachineInstr *NewCmp = BuildMI(&MBB, DL, | |||
761 | TII->get(Hexagon::C2_cmpgtui), Done) | |||
762 | .addReg(LoopCount) | |||
763 | .addImm(TC); | |||
764 | Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf)); | |||
765 | Cond.push_back(NewCmp->getOperand(0)); | |||
766 | return {}; | |||
767 | } | |||
768 | ||||
769 | return TripCount > TC; | |||
770 | } | |||
771 | ||||
772 | void setPreheader(MachineBasicBlock *NewPreheader) override { | |||
773 | NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(), | |||
774 | Loop); | |||
775 | } | |||
776 | ||||
777 | void adjustTripCount(int TripCountAdjust) override { | |||
778 | // If the loop trip count is a compile-time value, then just change the | |||
779 | // value. | |||
780 | if (Loop->getOpcode() == Hexagon::J2_loop0i || | |||
781 | Loop->getOpcode() == Hexagon::J2_loop1i) { | |||
782 | int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust; | |||
783 | assert(TripCount > 0 && "Can't create an empty or negative loop!")(static_cast <bool> (TripCount > 0 && "Can't create an empty or negative loop!" ) ? void (0) : __assert_fail ("TripCount > 0 && \"Can't create an empty or negative loop!\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 783, __extension__ __PRETTY_FUNCTION__)); | |||
784 | Loop->getOperand(1).setImm(TripCount); | |||
785 | return; | |||
786 | } | |||
787 | ||||
788 | // The loop trip count is a run-time value. We generate code to subtract | |||
789 | // one from the trip count, and update the loop instruction. | |||
790 | Register LoopCount = Loop->getOperand(1).getReg(); | |||
791 | Register NewLoopCount = TII->createVR(MF, MVT::i32); | |||
792 | BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(), | |||
793 | TII->get(Hexagon::A2_addi), NewLoopCount) | |||
794 | .addReg(LoopCount) | |||
795 | .addImm(TripCountAdjust); | |||
796 | Loop->getOperand(1).setReg(NewLoopCount); | |||
797 | } | |||
798 | ||||
799 | void disposed() override { Loop->eraseFromParent(); } | |||
800 | }; | |||
801 | } // namespace | |||
802 | ||||
803 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> | |||
804 | HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { | |||
805 | // We really "analyze" only hardware loops right now. | |||
806 | MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); | |||
807 | ||||
808 | if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) { | |||
809 | SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs; | |||
810 | MachineInstr *LoopInst = findLoopInstr( | |||
811 | LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs); | |||
812 | if (LoopInst) | |||
813 | return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I); | |||
814 | } | |||
815 | return nullptr; | |||
816 | } | |||
817 | ||||
818 | bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB, | |||
819 | unsigned NumCycles, unsigned ExtraPredCycles, | |||
820 | BranchProbability Probability) const { | |||
821 | return nonDbgBBSize(&MBB) <= 3; | |||
822 | } | |||
823 | ||||
824 | bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, | |||
825 | unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, | |||
826 | unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability) | |||
827 | const { | |||
828 | return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3; | |||
829 | } | |||
830 | ||||
831 | bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB, | |||
832 | unsigned NumInstrs, BranchProbability Probability) const { | |||
833 | return NumInstrs <= 4; | |||
834 | } | |||
835 | ||||
836 | static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { | |||
837 | SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers; | |||
838 | const MachineBasicBlock &B = *MI.getParent(); | |||
839 | Regs.addLiveIns(B); | |||
840 | auto E = MachineBasicBlock::const_iterator(MI.getIterator()); | |||
841 | for (auto I = B.begin(); I != E; ++I) { | |||
842 | Clobbers.clear(); | |||
843 | Regs.stepForward(*I, Clobbers); | |||
844 | } | |||
845 | } | |||
846 | ||||
847 | static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) { | |||
848 | const MachineBasicBlock &B = *MI.getParent(); | |||
849 | Regs.addLiveOuts(B); | |||
850 | auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse(); | |||
851 | for (auto I = B.rbegin(); I != E; ++I) | |||
852 | Regs.stepBackward(*I); | |||
853 | } | |||
854 | ||||
855 | void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, | |||
856 | MachineBasicBlock::iterator I, | |||
857 | const DebugLoc &DL, MCRegister DestReg, | |||
858 | MCRegister SrcReg, bool KillSrc) const { | |||
859 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | |||
860 | unsigned KillFlag = getKillRegState(KillSrc); | |||
861 | ||||
862 | if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { | |||
863 | BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg) | |||
864 | .addReg(SrcReg, KillFlag); | |||
865 | return; | |||
866 | } | |||
867 | if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { | |||
868 | BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg) | |||
869 | .addReg(SrcReg, KillFlag); | |||
870 | return; | |||
871 | } | |||
872 | if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { | |||
873 | // Map Pd = Ps to Pd = or(Ps, Ps). | |||
874 | BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg) | |||
875 | .addReg(SrcReg).addReg(SrcReg, KillFlag); | |||
876 | return; | |||
877 | } | |||
878 | if (Hexagon::CtrRegsRegClass.contains(DestReg) && | |||
879 | Hexagon::IntRegsRegClass.contains(SrcReg)) { | |||
880 | BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg) | |||
881 | .addReg(SrcReg, KillFlag); | |||
882 | return; | |||
883 | } | |||
884 | if (Hexagon::IntRegsRegClass.contains(DestReg) && | |||
885 | Hexagon::CtrRegsRegClass.contains(SrcReg)) { | |||
886 | BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg) | |||
887 | .addReg(SrcReg, KillFlag); | |||
888 | return; | |||
889 | } | |||
890 | if (Hexagon::ModRegsRegClass.contains(DestReg) && | |||
891 | Hexagon::IntRegsRegClass.contains(SrcReg)) { | |||
892 | BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg) | |||
893 | .addReg(SrcReg, KillFlag); | |||
894 | return; | |||
895 | } | |||
896 | if (Hexagon::PredRegsRegClass.contains(SrcReg) && | |||
897 | Hexagon::IntRegsRegClass.contains(DestReg)) { | |||
898 | BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg) | |||
899 | .addReg(SrcReg, KillFlag); | |||
900 | return; | |||
901 | } | |||
902 | if (Hexagon::IntRegsRegClass.contains(SrcReg) && | |||
903 | Hexagon::PredRegsRegClass.contains(DestReg)) { | |||
904 | BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg) | |||
905 | .addReg(SrcReg, KillFlag); | |||
906 | return; | |||
907 | } | |||
908 | if (Hexagon::PredRegsRegClass.contains(SrcReg) && | |||
909 | Hexagon::IntRegsRegClass.contains(DestReg)) { | |||
910 | BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg) | |||
911 | .addReg(SrcReg, KillFlag); | |||
912 | return; | |||
913 | } | |||
914 | if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) { | |||
915 | BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg). | |||
916 | addReg(SrcReg, KillFlag); | |||
917 | return; | |||
918 | } | |||
919 | if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) { | |||
920 | LivePhysRegs LiveAtMI(HRI); | |||
921 | getLiveInRegsAt(LiveAtMI, *I); | |||
922 | Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); | |||
923 | Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); | |||
924 | unsigned UndefLo = getUndefRegState(!LiveAtMI.contains(SrcLo)); | |||
925 | unsigned UndefHi = getUndefRegState(!LiveAtMI.contains(SrcHi)); | |||
926 | BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg) | |||
927 | .addReg(SrcHi, KillFlag | UndefHi) | |||
928 | .addReg(SrcLo, KillFlag | UndefLo); | |||
929 | return; | |||
930 | } | |||
931 | if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) { | |||
932 | BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg) | |||
933 | .addReg(SrcReg) | |||
934 | .addReg(SrcReg, KillFlag); | |||
935 | return; | |||
936 | } | |||
937 | if (Hexagon::HvxQRRegClass.contains(SrcReg) && | |||
938 | Hexagon::HvxVRRegClass.contains(DestReg)) { | |||
939 | llvm_unreachable("Unimplemented pred to vec")::llvm::llvm_unreachable_internal("Unimplemented pred to vec" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 939); | |||
940 | return; | |||
941 | } | |||
942 | if (Hexagon::HvxQRRegClass.contains(DestReg) && | |||
943 | Hexagon::HvxVRRegClass.contains(SrcReg)) { | |||
944 | llvm_unreachable("Unimplemented vec to pred")::llvm::llvm_unreachable_internal("Unimplemented vec to pred" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 944); | |||
945 | return; | |||
946 | } | |||
947 | ||||
948 | #ifndef NDEBUG | |||
949 | // Show the invalid registers to ease debugging. | |||
950 | dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": " | |||
951 | << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n'; | |||
952 | #endif | |||
953 | llvm_unreachable("Unimplemented")::llvm::llvm_unreachable_internal("Unimplemented", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 953); | |||
954 | } | |||
955 | ||||
956 | void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | |||
957 | MachineBasicBlock::iterator I, | |||
958 | Register SrcReg, bool isKill, int FI, | |||
959 | const TargetRegisterClass *RC, | |||
960 | const TargetRegisterInfo *TRI, | |||
961 | Register VReg) const { | |||
962 | DebugLoc DL = MBB.findDebugLoc(I); | |||
963 | MachineFunction &MF = *MBB.getParent(); | |||
964 | MachineFrameInfo &MFI = MF.getFrameInfo(); | |||
965 | unsigned KillFlag = getKillRegState(isKill); | |||
966 | ||||
967 | MachineMemOperand *MMO = MF.getMachineMemOperand( | |||
968 | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, | |||
969 | MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); | |||
970 | ||||
971 | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { | |||
972 | BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io)) | |||
973 | .addFrameIndex(FI).addImm(0) | |||
974 | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | |||
975 | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { | |||
976 | BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io)) | |||
977 | .addFrameIndex(FI).addImm(0) | |||
978 | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | |||
979 | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { | |||
980 | BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) | |||
981 | .addFrameIndex(FI).addImm(0) | |||
982 | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | |||
983 | } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { | |||
984 | BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr)) | |||
985 | .addFrameIndex(FI).addImm(0) | |||
986 | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | |||
987 | } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { | |||
988 | BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai)) | |||
989 | .addFrameIndex(FI).addImm(0) | |||
990 | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | |||
991 | } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { | |||
992 | BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai)) | |||
993 | .addFrameIndex(FI).addImm(0) | |||
994 | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | |||
995 | } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { | |||
996 | BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai)) | |||
997 | .addFrameIndex(FI).addImm(0) | |||
998 | .addReg(SrcReg, KillFlag).addMemOperand(MMO); | |||
999 | } else { | |||
1000 | llvm_unreachable("Unimplemented")::llvm::llvm_unreachable_internal("Unimplemented", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1000); | |||
1001 | } | |||
1002 | } | |||
1003 | ||||
1004 | void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | |||
1005 | MachineBasicBlock::iterator I, | |||
1006 | Register DestReg, int FI, | |||
1007 | const TargetRegisterClass *RC, | |||
1008 | const TargetRegisterInfo *TRI, | |||
1009 | Register VReg) const { | |||
1010 | DebugLoc DL = MBB.findDebugLoc(I); | |||
1011 | MachineFunction &MF = *MBB.getParent(); | |||
1012 | MachineFrameInfo &MFI = MF.getFrameInfo(); | |||
1013 | ||||
1014 | MachineMemOperand *MMO = MF.getMachineMemOperand( | |||
1015 | MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, | |||
1016 | MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); | |||
1017 | ||||
1018 | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { | |||
1019 | BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg) | |||
1020 | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | |||
1021 | } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { | |||
1022 | BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg) | |||
1023 | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | |||
1024 | } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { | |||
1025 | BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) | |||
1026 | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | |||
1027 | } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) { | |||
1028 | BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg) | |||
1029 | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | |||
1030 | } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) { | |||
1031 | BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg) | |||
1032 | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | |||
1033 | } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) { | |||
1034 | BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg) | |||
1035 | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | |||
1036 | } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) { | |||
1037 | BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg) | |||
1038 | .addFrameIndex(FI).addImm(0).addMemOperand(MMO); | |||
1039 | } else { | |||
1040 | llvm_unreachable("Can't store this register to stack slot")::llvm::llvm_unreachable_internal("Can't store this register to stack slot" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 1040); | |||
1041 | } | |||
1042 | } | |||
1043 | ||||
1044 | /// expandPostRAPseudo - This function is called for all pseudo instructions | |||
1045 | /// that remain after register allocation. Many pseudo instructions are | |||
1046 | /// created to help register allocation. This is the place to convert them | |||
1047 | /// into real instructions. The target can edit MI in place, or it can insert | |||
1048 | /// new instructions and erase MI. The function should return true if | |||
1049 | /// anything was changed. | |||
1050 | bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { | |||
1051 | MachineBasicBlock &MBB = *MI.getParent(); | |||
1052 | MachineFunction &MF = *MBB.getParent(); | |||
1053 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
1054 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | |||
1055 | LivePhysRegs LiveIn(HRI), LiveOut(HRI); | |||
1056 | DebugLoc DL = MI.getDebugLoc(); | |||
1057 | unsigned Opc = MI.getOpcode(); | |||
1058 | ||||
1059 | auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) { | |||
1060 | Register Mx = MI.getOperand(MxOp).getReg(); | |||
1061 | Register CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1); | |||
1062 | BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx) | |||
1063 | .add(MI.getOperand((HasImm ? 5 : 4))); | |||
1064 | auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0)) | |||
1065 | .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3)); | |||
1066 | if (HasImm) | |||
1067 | MIB.add(MI.getOperand(4)); | |||
1068 | MIB.addReg(CSx, RegState::Implicit); | |||
1069 | MBB.erase(MI); | |||
1070 | return true; | |||
1071 | }; | |||
1072 | ||||
1073 | auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) { | |||
1074 | if (MI.memoperands().empty()) | |||
1075 | return false; | |||
1076 | return all_of(MI.memoperands(), [NeedAlign](const MachineMemOperand *MMO) { | |||
1077 | return MMO->getAlign() >= NeedAlign; | |||
1078 | }); | |||
1079 | }; | |||
1080 | ||||
1081 | switch (Opc) { | |||
| ||||
1082 | case Hexagon::PS_call_instrprof_custom: { | |||
1083 | auto Op0 = MI.getOperand(0); | |||
1084 | assert(Op0.isGlobal() &&(static_cast <bool> (Op0.isGlobal() && "First operand must be a global containing handler name." ) ? void (0) : __assert_fail ("Op0.isGlobal() && \"First operand must be a global containing handler name.\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 1085, __extension__ __PRETTY_FUNCTION__)) | |||
1085 | "First operand must be a global containing handler name.")(static_cast <bool> (Op0.isGlobal() && "First operand must be a global containing handler name." ) ? void (0) : __assert_fail ("Op0.isGlobal() && \"First operand must be a global containing handler name.\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 1085, __extension__ __PRETTY_FUNCTION__)); | |||
1086 | const GlobalValue *NameVar = Op0.getGlobal(); | |||
1087 | const GlobalVariable *GV = dyn_cast<GlobalVariable>(NameVar); | |||
1088 | auto *Arr = cast<ConstantDataArray>(GV->getInitializer()); | |||
| ||||
1089 | StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); | |||
1090 | ||||
1091 | MachineOperand &Op1 = MI.getOperand(1); | |||
1092 | // Set R0 with the imm value to be passed to the custom profiling handler. | |||
1093 | BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrsi), Hexagon::R0) | |||
1094 | .addImm(Op1.getImm()); | |||
1095 | // The call to the custom handler is being treated as a special one as the | |||
1096 | // callee is responsible for saving and restoring all the registers | |||
1097 | // (including caller saved registers) it needs to modify. This is | |||
1098 | // done to reduce the impact of instrumentation on the code being | |||
1099 | // instrumented/profiled. | |||
1100 | // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers | |||
1101 | // are in the Def list of the Hexagon::PS_call_instrprof_custom and | |||
1102 | // therefore will be handled appropriately duing register allocation. | |||
1103 | ||||
1104 | // TODO: It may be a good idea to add a separate pseudo instruction for | |||
1105 | // static relocation which doesn't need to reserve r14, r15 and r28. | |||
1106 | ||||
1107 | auto MIB = BuildMI(MBB, MI, DL, get(Hexagon::J2_call)) | |||
1108 | .addUse(Hexagon::R0, RegState::Implicit|RegState::InternalRead) | |||
1109 | .addDef(Hexagon::R29, RegState::ImplicitDefine) | |||
1110 | .addDef(Hexagon::R30, RegState::ImplicitDefine) | |||
1111 | .addDef(Hexagon::R14, RegState::ImplicitDefine) | |||
1112 | .addDef(Hexagon::R15, RegState::ImplicitDefine) | |||
1113 | .addDef(Hexagon::R28, RegState::ImplicitDefine); | |||
1114 | const char *cstr = MF.createExternalSymbolName(NameStr); | |||
1115 | MIB.addExternalSymbol(cstr); | |||
1116 | MBB.erase(MI); | |||
1117 | return true; | |||
1118 | } | |||
1119 | case TargetOpcode::COPY: { | |||
1120 | MachineOperand &MD = MI.getOperand(0); | |||
1121 | MachineOperand &MS = MI.getOperand(1); | |||
1122 | MachineBasicBlock::iterator MBBI = MI.getIterator(); | |||
1123 | if (MD.getReg() != MS.getReg() && !MS.isUndef()) { | |||
1124 | copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill()); | |||
1125 | std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI); | |||
1126 | } | |||
1127 | MBB.erase(MBBI); | |||
1128 | return true; | |||
1129 | } | |||
1130 | case Hexagon::PS_aligna: | |||
1131 | BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg()) | |||
1132 | .addReg(HRI.getFrameRegister()) | |||
1133 | .addImm(-MI.getOperand(1).getImm()); | |||
1134 | MBB.erase(MI); | |||
1135 | return true; | |||
1136 | case Hexagon::V6_vassignp: { | |||
1137 | Register SrcReg = MI.getOperand(1).getReg(); | |||
1138 | Register DstReg = MI.getOperand(0).getReg(); | |||
1139 | Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); | |||
1140 | Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); | |||
1141 | getLiveInRegsAt(LiveIn, MI); | |||
1142 | unsigned UndefLo = getUndefRegState(!LiveIn.contains(SrcLo)); | |||
1143 | unsigned UndefHi = getUndefRegState(!LiveIn.contains(SrcHi)); | |||
1144 | unsigned Kill = getKillRegState(MI.getOperand(1).isKill()); | |||
1145 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg) | |||
1146 | .addReg(SrcHi, UndefHi) | |||
1147 | .addReg(SrcLo, Kill | UndefLo); | |||
1148 | MBB.erase(MI); | |||
1149 | return true; | |||
1150 | } | |||
1151 | case Hexagon::V6_lo: { | |||
1152 | Register SrcReg = MI.getOperand(1).getReg(); | |||
1153 | Register DstReg = MI.getOperand(0).getReg(); | |||
1154 | Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo); | |||
1155 | copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill()); | |||
1156 | MBB.erase(MI); | |||
1157 | MRI.clearKillFlags(SrcSubLo); | |||
1158 | return true; | |||
1159 | } | |||
1160 | case Hexagon::V6_hi: { | |||
1161 | Register SrcReg = MI.getOperand(1).getReg(); | |||
1162 | Register DstReg = MI.getOperand(0).getReg(); | |||
1163 | Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi); | |||
1164 | copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill()); | |||
1165 | MBB.erase(MI); | |||
1166 | MRI.clearKillFlags(SrcSubHi); | |||
1167 | return true; | |||
1168 | } | |||
1169 | case Hexagon::PS_vloadrv_ai: { | |||
1170 | Register DstReg = MI.getOperand(0).getReg(); | |||
1171 | const MachineOperand &BaseOp = MI.getOperand(1); | |||
1172 | assert(BaseOp.getSubReg() == 0)(static_cast <bool> (BaseOp.getSubReg() == 0) ? void (0 ) : __assert_fail ("BaseOp.getSubReg() == 0", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1172, __extension__ __PRETTY_FUNCTION__)); | |||
1173 | int Offset = MI.getOperand(2).getImm(); | |||
1174 | Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); | |||
1175 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai | |||
1176 | : Hexagon::V6_vL32Ub_ai; | |||
1177 | BuildMI(MBB, MI, DL, get(NewOpc), DstReg) | |||
1178 | .addReg(BaseOp.getReg(), getRegState(BaseOp)) | |||
1179 | .addImm(Offset) | |||
1180 | .cloneMemRefs(MI); | |||
1181 | MBB.erase(MI); | |||
1182 | return true; | |||
1183 | } | |||
1184 | case Hexagon::PS_vloadrw_ai: { | |||
1185 | Register DstReg = MI.getOperand(0).getReg(); | |||
1186 | const MachineOperand &BaseOp = MI.getOperand(1); | |||
1187 | assert(BaseOp.getSubReg() == 0)(static_cast <bool> (BaseOp.getSubReg() == 0) ? void (0 ) : __assert_fail ("BaseOp.getSubReg() == 0", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1187, __extension__ __PRETTY_FUNCTION__)); | |||
1188 | int Offset = MI.getOperand(2).getImm(); | |||
1189 | unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass); | |||
1190 | Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); | |||
1191 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai | |||
1192 | : Hexagon::V6_vL32Ub_ai; | |||
1193 | BuildMI(MBB, MI, DL, get(NewOpc), | |||
1194 | HRI.getSubReg(DstReg, Hexagon::vsub_lo)) | |||
1195 | .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill) | |||
1196 | .addImm(Offset) | |||
1197 | .cloneMemRefs(MI); | |||
1198 | BuildMI(MBB, MI, DL, get(NewOpc), | |||
1199 | HRI.getSubReg(DstReg, Hexagon::vsub_hi)) | |||
1200 | .addReg(BaseOp.getReg(), getRegState(BaseOp)) | |||
1201 | .addImm(Offset + VecOffset) | |||
1202 | .cloneMemRefs(MI); | |||
1203 | MBB.erase(MI); | |||
1204 | return true; | |||
1205 | } | |||
1206 | case Hexagon::PS_vstorerv_ai: { | |||
1207 | const MachineOperand &SrcOp = MI.getOperand(2); | |||
1208 | assert(SrcOp.getSubReg() == 0)(static_cast <bool> (SrcOp.getSubReg() == 0) ? void (0) : __assert_fail ("SrcOp.getSubReg() == 0", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1208, __extension__ __PRETTY_FUNCTION__)); | |||
1209 | const MachineOperand &BaseOp = MI.getOperand(0); | |||
1210 | assert(BaseOp.getSubReg() == 0)(static_cast <bool> (BaseOp.getSubReg() == 0) ? void (0 ) : __assert_fail ("BaseOp.getSubReg() == 0", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1210, __extension__ __PRETTY_FUNCTION__)); | |||
1211 | int Offset = MI.getOperand(1).getImm(); | |||
1212 | Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); | |||
1213 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai | |||
1214 | : Hexagon::V6_vS32Ub_ai; | |||
1215 | BuildMI(MBB, MI, DL, get(NewOpc)) | |||
1216 | .addReg(BaseOp.getReg(), getRegState(BaseOp)) | |||
1217 | .addImm(Offset) | |||
1218 | .addReg(SrcOp.getReg(), getRegState(SrcOp)) | |||
1219 | .cloneMemRefs(MI); | |||
1220 | MBB.erase(MI); | |||
1221 | return true; | |||
1222 | } | |||
1223 | case Hexagon::PS_vstorerw_ai: { | |||
1224 | Register SrcReg = MI.getOperand(2).getReg(); | |||
1225 | const MachineOperand &BaseOp = MI.getOperand(0); | |||
1226 | assert(BaseOp.getSubReg() == 0)(static_cast <bool> (BaseOp.getSubReg() == 0) ? void (0 ) : __assert_fail ("BaseOp.getSubReg() == 0", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1226, __extension__ __PRETTY_FUNCTION__)); | |||
1227 | int Offset = MI.getOperand(1).getImm(); | |||
1228 | unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass); | |||
1229 | Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass); | |||
1230 | unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai | |||
1231 | : Hexagon::V6_vS32Ub_ai; | |||
1232 | BuildMI(MBB, MI, DL, get(NewOpc)) | |||
1233 | .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill) | |||
1234 | .addImm(Offset) | |||
1235 | .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo)) | |||
1236 | .cloneMemRefs(MI); | |||
1237 | BuildMI(MBB, MI, DL, get(NewOpc)) | |||
1238 | .addReg(BaseOp.getReg(), getRegState(BaseOp)) | |||
1239 | .addImm(Offset + VecOffset) | |||
1240 | .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi)) | |||
1241 | .cloneMemRefs(MI); | |||
1242 | MBB.erase(MI); | |||
1243 | return true; | |||
1244 | } | |||
1245 | case Hexagon::PS_true: { | |||
1246 | Register Reg = MI.getOperand(0).getReg(); | |||
1247 | BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg) | |||
1248 | .addReg(Reg, RegState::Undef) | |||
1249 | .addReg(Reg, RegState::Undef); | |||
1250 | MBB.erase(MI); | |||
1251 | return true; | |||
1252 | } | |||
1253 | case Hexagon::PS_false: { | |||
1254 | Register Reg = MI.getOperand(0).getReg(); | |||
1255 | BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg) | |||
1256 | .addReg(Reg, RegState::Undef) | |||
1257 | .addReg(Reg, RegState::Undef); | |||
1258 | MBB.erase(MI); | |||
1259 | return true; | |||
1260 | } | |||
1261 | case Hexagon::PS_qtrue: { | |||
1262 | BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg()) | |||
1263 | .addReg(Hexagon::V0, RegState::Undef) | |||
1264 | .addReg(Hexagon::V0, RegState::Undef); | |||
1265 | MBB.erase(MI); | |||
1266 | return true; | |||
1267 | } | |||
1268 | case Hexagon::PS_qfalse: { | |||
1269 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg()) | |||
1270 | .addReg(Hexagon::V0, RegState::Undef) | |||
1271 | .addReg(Hexagon::V0, RegState::Undef); | |||
1272 | MBB.erase(MI); | |||
1273 | return true; | |||
1274 | } | |||
1275 | case Hexagon::PS_vdd0: { | |||
1276 | Register Vd = MI.getOperand(0).getReg(); | |||
1277 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd) | |||
1278 | .addReg(Vd, RegState::Undef) | |||
1279 | .addReg(Vd, RegState::Undef); | |||
1280 | MBB.erase(MI); | |||
1281 | return true; | |||
1282 | } | |||
1283 | case Hexagon::PS_vmulw: { | |||
1284 | // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies. | |||
1285 | Register DstReg = MI.getOperand(0).getReg(); | |||
1286 | Register Src1Reg = MI.getOperand(1).getReg(); | |||
1287 | Register Src2Reg = MI.getOperand(2).getReg(); | |||
1288 | Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi); | |||
1289 | Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo); | |||
1290 | Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi); | |||
1291 | Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo); | |||
1292 | BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi), | |||
1293 | HRI.getSubReg(DstReg, Hexagon::isub_hi)) | |||
1294 | .addReg(Src1SubHi) | |||
1295 | .addReg(Src2SubHi); | |||
1296 | BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi), | |||
1297 | HRI.getSubReg(DstReg, Hexagon::isub_lo)) | |||
1298 | .addReg(Src1SubLo) | |||
1299 | .addReg(Src2SubLo); | |||
1300 | MBB.erase(MI); | |||
1301 | MRI.clearKillFlags(Src1SubHi); | |||
1302 | MRI.clearKillFlags(Src1SubLo); | |||
1303 | MRI.clearKillFlags(Src2SubHi); | |||
1304 | MRI.clearKillFlags(Src2SubLo); | |||
1305 | return true; | |||
1306 | } | |||
1307 | case Hexagon::PS_vmulw_acc: { | |||
1308 | // Expand 64-bit vector multiply with addition into 2 scalar multiplies. | |||
1309 | Register DstReg = MI.getOperand(0).getReg(); | |||
1310 | Register Src1Reg = MI.getOperand(1).getReg(); | |||
1311 | Register Src2Reg = MI.getOperand(2).getReg(); | |||
1312 | Register Src3Reg = MI.getOperand(3).getReg(); | |||
1313 | Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi); | |||
1314 | Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo); | |||
1315 | Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi); | |||
1316 | Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo); | |||
1317 | Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi); | |||
1318 | Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo); | |||
1319 | BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci), | |||
1320 | HRI.getSubReg(DstReg, Hexagon::isub_hi)) | |||
1321 | .addReg(Src1SubHi) | |||
1322 | .addReg(Src2SubHi) | |||
1323 | .addReg(Src3SubHi); | |||
1324 | BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci), | |||
1325 | HRI.getSubReg(DstReg, Hexagon::isub_lo)) | |||
1326 | .addReg(Src1SubLo) | |||
1327 | .addReg(Src2SubLo) | |||
1328 | .addReg(Src3SubLo); | |||
1329 | MBB.erase(MI); | |||
1330 | MRI.clearKillFlags(Src1SubHi); | |||
1331 | MRI.clearKillFlags(Src1SubLo); | |||
1332 | MRI.clearKillFlags(Src2SubHi); | |||
1333 | MRI.clearKillFlags(Src2SubLo); | |||
1334 | MRI.clearKillFlags(Src3SubHi); | |||
1335 | MRI.clearKillFlags(Src3SubLo); | |||
1336 | return true; | |||
1337 | } | |||
1338 | case Hexagon::PS_pselect: { | |||
1339 | const MachineOperand &Op0 = MI.getOperand(0); | |||
1340 | const MachineOperand &Op1 = MI.getOperand(1); | |||
1341 | const MachineOperand &Op2 = MI.getOperand(2); | |||
1342 | const MachineOperand &Op3 = MI.getOperand(3); | |||
1343 | Register Rd = Op0.getReg(); | |||
1344 | Register Pu = Op1.getReg(); | |||
1345 | Register Rs = Op2.getReg(); | |||
1346 | Register Rt = Op3.getReg(); | |||
1347 | DebugLoc DL = MI.getDebugLoc(); | |||
1348 | unsigned K1 = getKillRegState(Op1.isKill()); | |||
1349 | unsigned K2 = getKillRegState(Op2.isKill()); | |||
1350 | unsigned K3 = getKillRegState(Op3.isKill()); | |||
1351 | if (Rd != Rs) | |||
1352 | BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd) | |||
1353 | .addReg(Pu, (Rd == Rt) ? K1 : 0) | |||
1354 | .addReg(Rs, K2); | |||
1355 | if (Rd != Rt) | |||
1356 | BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd) | |||
1357 | .addReg(Pu, K1) | |||
1358 | .addReg(Rt, K3); | |||
1359 | MBB.erase(MI); | |||
1360 | return true; | |||
1361 | } | |||
1362 | case Hexagon::PS_vselect: { | |||
1363 | const MachineOperand &Op0 = MI.getOperand(0); | |||
1364 | const MachineOperand &Op1 = MI.getOperand(1); | |||
1365 | const MachineOperand &Op2 = MI.getOperand(2); | |||
1366 | const MachineOperand &Op3 = MI.getOperand(3); | |||
1367 | getLiveOutRegsAt(LiveOut, MI); | |||
1368 | bool IsDestLive = !LiveOut.available(MRI, Op0.getReg()); | |||
1369 | Register PReg = Op1.getReg(); | |||
1370 | assert(Op1.getSubReg() == 0)(static_cast <bool> (Op1.getSubReg() == 0) ? void (0) : __assert_fail ("Op1.getSubReg() == 0", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1370, __extension__ __PRETTY_FUNCTION__)); | |||
1371 | unsigned PState = getRegState(Op1); | |||
1372 | ||||
1373 | if (Op0.getReg() != Op2.getReg()) { | |||
1374 | unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill | |||
1375 | : PState; | |||
1376 | auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov)) | |||
1377 | .add(Op0) | |||
1378 | .addReg(PReg, S) | |||
1379 | .add(Op2); | |||
1380 | if (IsDestLive) | |||
1381 | T.addReg(Op0.getReg(), RegState::Implicit); | |||
1382 | IsDestLive = true; | |||
1383 | } | |||
1384 | if (Op0.getReg() != Op3.getReg()) { | |||
1385 | auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov)) | |||
1386 | .add(Op0) | |||
1387 | .addReg(PReg, PState) | |||
1388 | .add(Op3); | |||
1389 | if (IsDestLive) | |||
1390 | T.addReg(Op0.getReg(), RegState::Implicit); | |||
1391 | } | |||
1392 | MBB.erase(MI); | |||
1393 | return true; | |||
1394 | } | |||
1395 | case Hexagon::PS_wselect: { | |||
1396 | MachineOperand &Op0 = MI.getOperand(0); | |||
1397 | MachineOperand &Op1 = MI.getOperand(1); | |||
1398 | MachineOperand &Op2 = MI.getOperand(2); | |||
1399 | MachineOperand &Op3 = MI.getOperand(3); | |||
1400 | getLiveOutRegsAt(LiveOut, MI); | |||
1401 | bool IsDestLive = !LiveOut.available(MRI, Op0.getReg()); | |||
1402 | Register PReg = Op1.getReg(); | |||
1403 | assert(Op1.getSubReg() == 0)(static_cast <bool> (Op1.getSubReg() == 0) ? void (0) : __assert_fail ("Op1.getSubReg() == 0", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1403, __extension__ __PRETTY_FUNCTION__)); | |||
1404 | unsigned PState = getRegState(Op1); | |||
1405 | ||||
1406 | if (Op0.getReg() != Op2.getReg()) { | |||
1407 | unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill | |||
1408 | : PState; | |||
1409 | Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo); | |||
1410 | Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi); | |||
1411 | auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine)) | |||
1412 | .add(Op0) | |||
1413 | .addReg(PReg, S) | |||
1414 | .addReg(SrcHi) | |||
1415 | .addReg(SrcLo); | |||
1416 | if (IsDestLive) | |||
1417 | T.addReg(Op0.getReg(), RegState::Implicit); | |||
1418 | IsDestLive = true; | |||
1419 | } | |||
1420 | if (Op0.getReg() != Op3.getReg()) { | |||
1421 | Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo); | |||
1422 | Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi); | |||
1423 | auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine)) | |||
1424 | .add(Op0) | |||
1425 | .addReg(PReg, PState) | |||
1426 | .addReg(SrcHi) | |||
1427 | .addReg(SrcLo); | |||
1428 | if (IsDestLive) | |||
1429 | T.addReg(Op0.getReg(), RegState::Implicit); | |||
1430 | } | |||
1431 | MBB.erase(MI); | |||
1432 | return true; | |||
1433 | } | |||
1434 | ||||
1435 | case Hexagon::PS_crash: { | |||
1436 | // Generate a misaligned load that is guaranteed to cause a crash. | |||
1437 | class CrashPseudoSourceValue : public PseudoSourceValue { | |||
1438 | public: | |||
1439 | CrashPseudoSourceValue(const TargetMachine &TM) | |||
1440 | : PseudoSourceValue(TargetCustom, TM) {} | |||
1441 | ||||
1442 | bool isConstant(const MachineFrameInfo *) const override { | |||
1443 | return false; | |||
1444 | } | |||
1445 | bool isAliased(const MachineFrameInfo *) const override { | |||
1446 | return false; | |||
1447 | } | |||
1448 | bool mayAlias(const MachineFrameInfo *) const override { | |||
1449 | return false; | |||
1450 | } | |||
1451 | void printCustom(raw_ostream &OS) const override { | |||
1452 | OS << "MisalignedCrash"; | |||
1453 | } | |||
1454 | }; | |||
1455 | ||||
1456 | static const CrashPseudoSourceValue CrashPSV(MF.getTarget()); | |||
1457 | MachineMemOperand *MMO = MF.getMachineMemOperand( | |||
1458 | MachinePointerInfo(&CrashPSV), | |||
1459 | MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, | |||
1460 | Align(1)); | |||
1461 | BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13) | |||
1462 | .addImm(0xBADC0FEE) // Misaligned load. | |||
1463 | .addMemOperand(MMO); | |||
1464 | MBB.erase(MI); | |||
1465 | return true; | |||
1466 | } | |||
1467 | ||||
1468 | case Hexagon::PS_tailcall_i: | |||
1469 | MI.setDesc(get(Hexagon::J2_jump)); | |||
1470 | return true; | |||
1471 | case Hexagon::PS_tailcall_r: | |||
1472 | case Hexagon::PS_jmpret: | |||
1473 | MI.setDesc(get(Hexagon::J2_jumpr)); | |||
1474 | return true; | |||
1475 | case Hexagon::PS_jmprett: | |||
1476 | MI.setDesc(get(Hexagon::J2_jumprt)); | |||
1477 | return true; | |||
1478 | case Hexagon::PS_jmpretf: | |||
1479 | MI.setDesc(get(Hexagon::J2_jumprf)); | |||
1480 | return true; | |||
1481 | case Hexagon::PS_jmprettnewpt: | |||
1482 | MI.setDesc(get(Hexagon::J2_jumprtnewpt)); | |||
1483 | return true; | |||
1484 | case Hexagon::PS_jmpretfnewpt: | |||
1485 | MI.setDesc(get(Hexagon::J2_jumprfnewpt)); | |||
1486 | return true; | |||
1487 | case Hexagon::PS_jmprettnew: | |||
1488 | MI.setDesc(get(Hexagon::J2_jumprtnew)); | |||
1489 | return true; | |||
1490 | case Hexagon::PS_jmpretfnew: | |||
1491 | MI.setDesc(get(Hexagon::J2_jumprfnew)); | |||
1492 | return true; | |||
1493 | ||||
1494 | case Hexagon::PS_loadrub_pci: | |||
1495 | return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4); | |||
1496 | case Hexagon::PS_loadrb_pci: | |||
1497 | return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4); | |||
1498 | case Hexagon::PS_loadruh_pci: | |||
1499 | return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4); | |||
1500 | case Hexagon::PS_loadrh_pci: | |||
1501 | return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4); | |||
1502 | case Hexagon::PS_loadri_pci: | |||
1503 | return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4); | |||
1504 | case Hexagon::PS_loadrd_pci: | |||
1505 | return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4); | |||
1506 | case Hexagon::PS_loadrub_pcr: | |||
1507 | return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3); | |||
1508 | case Hexagon::PS_loadrb_pcr: | |||
1509 | return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3); | |||
1510 | case Hexagon::PS_loadruh_pcr: | |||
1511 | return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3); | |||
1512 | case Hexagon::PS_loadrh_pcr: | |||
1513 | return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3); | |||
1514 | case Hexagon::PS_loadri_pcr: | |||
1515 | return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3); | |||
1516 | case Hexagon::PS_loadrd_pcr: | |||
1517 | return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3); | |||
1518 | case Hexagon::PS_storerb_pci: | |||
1519 | return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3); | |||
1520 | case Hexagon::PS_storerh_pci: | |||
1521 | return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3); | |||
1522 | case Hexagon::PS_storerf_pci: | |||
1523 | return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3); | |||
1524 | case Hexagon::PS_storeri_pci: | |||
1525 | return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3); | |||
1526 | case Hexagon::PS_storerd_pci: | |||
1527 | return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3); | |||
1528 | case Hexagon::PS_storerb_pcr: | |||
1529 | return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2); | |||
1530 | case Hexagon::PS_storerh_pcr: | |||
1531 | return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2); | |||
1532 | case Hexagon::PS_storerf_pcr: | |||
1533 | return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2); | |||
1534 | case Hexagon::PS_storeri_pcr: | |||
1535 | return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2); | |||
1536 | case Hexagon::PS_storerd_pcr: | |||
1537 | return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2); | |||
1538 | } | |||
1539 | ||||
1540 | return false; | |||
1541 | } | |||
1542 | ||||
1543 | MachineBasicBlock::instr_iterator | |||
1544 | HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const { | |||
1545 | MachineBasicBlock &MBB = *MI.getParent(); | |||
1546 | const DebugLoc &DL = MI.getDebugLoc(); | |||
1547 | unsigned Opc = MI.getOpcode(); | |||
1548 | MachineBasicBlock::iterator First; | |||
1549 | ||||
1550 | switch (Opc) { | |||
1551 | case Hexagon::V6_vgathermh_pseudo: | |||
1552 | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh)) | |||
1553 | .add(MI.getOperand(2)) | |||
1554 | .add(MI.getOperand(3)) | |||
1555 | .add(MI.getOperand(4)); | |||
1556 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | |||
1557 | .add(MI.getOperand(0)) | |||
1558 | .addImm(MI.getOperand(1).getImm()) | |||
1559 | .addReg(Hexagon::VTMP); | |||
1560 | MBB.erase(MI); | |||
1561 | return First.getInstrIterator(); | |||
1562 | ||||
1563 | case Hexagon::V6_vgathermw_pseudo: | |||
1564 | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw)) | |||
1565 | .add(MI.getOperand(2)) | |||
1566 | .add(MI.getOperand(3)) | |||
1567 | .add(MI.getOperand(4)); | |||
1568 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | |||
1569 | .add(MI.getOperand(0)) | |||
1570 | .addImm(MI.getOperand(1).getImm()) | |||
1571 | .addReg(Hexagon::VTMP); | |||
1572 | MBB.erase(MI); | |||
1573 | return First.getInstrIterator(); | |||
1574 | ||||
1575 | case Hexagon::V6_vgathermhw_pseudo: | |||
1576 | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw)) | |||
1577 | .add(MI.getOperand(2)) | |||
1578 | .add(MI.getOperand(3)) | |||
1579 | .add(MI.getOperand(4)); | |||
1580 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | |||
1581 | .add(MI.getOperand(0)) | |||
1582 | .addImm(MI.getOperand(1).getImm()) | |||
1583 | .addReg(Hexagon::VTMP); | |||
1584 | MBB.erase(MI); | |||
1585 | return First.getInstrIterator(); | |||
1586 | ||||
1587 | case Hexagon::V6_vgathermhq_pseudo: | |||
1588 | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq)) | |||
1589 | .add(MI.getOperand(2)) | |||
1590 | .add(MI.getOperand(3)) | |||
1591 | .add(MI.getOperand(4)) | |||
1592 | .add(MI.getOperand(5)); | |||
1593 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | |||
1594 | .add(MI.getOperand(0)) | |||
1595 | .addImm(MI.getOperand(1).getImm()) | |||
1596 | .addReg(Hexagon::VTMP); | |||
1597 | MBB.erase(MI); | |||
1598 | return First.getInstrIterator(); | |||
1599 | ||||
1600 | case Hexagon::V6_vgathermwq_pseudo: | |||
1601 | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq)) | |||
1602 | .add(MI.getOperand(2)) | |||
1603 | .add(MI.getOperand(3)) | |||
1604 | .add(MI.getOperand(4)) | |||
1605 | .add(MI.getOperand(5)); | |||
1606 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | |||
1607 | .add(MI.getOperand(0)) | |||
1608 | .addImm(MI.getOperand(1).getImm()) | |||
1609 | .addReg(Hexagon::VTMP); | |||
1610 | MBB.erase(MI); | |||
1611 | return First.getInstrIterator(); | |||
1612 | ||||
1613 | case Hexagon::V6_vgathermhwq_pseudo: | |||
1614 | First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq)) | |||
1615 | .add(MI.getOperand(2)) | |||
1616 | .add(MI.getOperand(3)) | |||
1617 | .add(MI.getOperand(4)) | |||
1618 | .add(MI.getOperand(5)); | |||
1619 | BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai)) | |||
1620 | .add(MI.getOperand(0)) | |||
1621 | .addImm(MI.getOperand(1).getImm()) | |||
1622 | .addReg(Hexagon::VTMP); | |||
1623 | MBB.erase(MI); | |||
1624 | return First.getInstrIterator(); | |||
1625 | } | |||
1626 | ||||
1627 | return MI.getIterator(); | |||
1628 | } | |||
1629 | ||||
1630 | // We indicate that we want to reverse the branch by | |||
1631 | // inserting the reversed branching opcode. | |||
1632 | bool HexagonInstrInfo::reverseBranchCondition( | |||
1633 | SmallVectorImpl<MachineOperand> &Cond) const { | |||
1634 | if (Cond.empty()) | |||
1635 | return true; | |||
1636 | assert(Cond[0].isImm() && "First entry in the cond vector not imm-val")(static_cast <bool> (Cond[0].isImm() && "First entry in the cond vector not imm-val" ) ? void (0) : __assert_fail ("Cond[0].isImm() && \"First entry in the cond vector not imm-val\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 1636, __extension__ __PRETTY_FUNCTION__)); | |||
1637 | unsigned opcode = Cond[0].getImm(); | |||
1638 | //unsigned temp; | |||
1639 | assert(get(opcode).isBranch() && "Should be a branching condition.")(static_cast <bool> (get(opcode).isBranch() && "Should be a branching condition." ) ? void (0) : __assert_fail ("get(opcode).isBranch() && \"Should be a branching condition.\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 1639, __extension__ __PRETTY_FUNCTION__)); | |||
1640 | if (isEndLoopN(opcode)) | |||
1641 | return true; | |||
1642 | unsigned NewOpcode = getInvertedPredicatedOpcode(opcode); | |||
1643 | Cond[0].setImm(NewOpcode); | |||
1644 | return false; | |||
1645 | } | |||
1646 | ||||
1647 | void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB, | |||
1648 | MachineBasicBlock::iterator MI) const { | |||
1649 | DebugLoc DL; | |||
1650 | BuildMI(MBB, MI, DL, get(Hexagon::A2_nop)); | |||
1651 | } | |||
1652 | ||||
1653 | bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const { | |||
1654 | return getAddrMode(MI) == HexagonII::PostInc; | |||
1655 | } | |||
1656 | ||||
1657 | // Returns true if an instruction is predicated irrespective of the predicate | |||
1658 | // sense. For example, all of the following will return true. | |||
1659 | // if (p0) R1 = add(R2, R3) | |||
1660 | // if (!p0) R1 = add(R2, R3) | |||
1661 | // if (p0.new) R1 = add(R2, R3) | |||
1662 | // if (!p0.new) R1 = add(R2, R3) | |||
1663 | // Note: New-value stores are not included here as in the current | |||
1664 | // implementation, we don't need to check their predicate sense. | |||
1665 | bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const { | |||
1666 | const uint64_t F = MI.getDesc().TSFlags; | |||
1667 | return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; | |||
1668 | } | |||
1669 | ||||
1670 | bool HexagonInstrInfo::PredicateInstruction( | |||
1671 | MachineInstr &MI, ArrayRef<MachineOperand> Cond) const { | |||
1672 | if (Cond.empty() || isNewValueJump(Cond[0].getImm()) || | |||
1673 | isEndLoopN(Cond[0].getImm())) { | |||
1674 | LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nCannot predicate:" ; MI.dump();; } } while (false); | |||
1675 | return false; | |||
1676 | } | |||
1677 | int Opc = MI.getOpcode(); | |||
1678 | assert (isPredicable(MI) && "Expected predicable instruction")(static_cast <bool> (isPredicable(MI) && "Expected predicable instruction" ) ? void (0) : __assert_fail ("isPredicable(MI) && \"Expected predicable instruction\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 1678, __extension__ __PRETTY_FUNCTION__)); | |||
1679 | bool invertJump = predOpcodeHasNot(Cond); | |||
1680 | ||||
1681 | // We have to predicate MI "in place", i.e. after this function returns, | |||
1682 | // MI will need to be transformed into a predicated form. To avoid com- | |||
1683 | // plicated manipulations with the operands (handling tied operands, | |||
1684 | // etc.), build a new temporary instruction, then overwrite MI with it. | |||
1685 | ||||
1686 | MachineBasicBlock &B = *MI.getParent(); | |||
1687 | DebugLoc DL = MI.getDebugLoc(); | |||
1688 | unsigned PredOpc = getCondOpcode(Opc, invertJump); | |||
1689 | MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc)); | |||
1690 | unsigned NOp = 0, NumOps = MI.getNumOperands(); | |||
1691 | while (NOp < NumOps) { | |||
1692 | MachineOperand &Op = MI.getOperand(NOp); | |||
1693 | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) | |||
1694 | break; | |||
1695 | T.add(Op); | |||
1696 | NOp++; | |||
1697 | } | |||
1698 | ||||
1699 | Register PredReg; | |||
1700 | unsigned PredRegPos, PredRegFlags; | |||
1701 | bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags); | |||
1702 | (void)GotPredReg; | |||
1703 | assert(GotPredReg)(static_cast <bool> (GotPredReg) ? void (0) : __assert_fail ("GotPredReg", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 1703, __extension__ __PRETTY_FUNCTION__)); | |||
1704 | T.addReg(PredReg, PredRegFlags); | |||
1705 | while (NOp < NumOps) | |||
1706 | T.add(MI.getOperand(NOp++)); | |||
1707 | ||||
1708 | MI.setDesc(get(PredOpc)); | |||
1709 | while (unsigned n = MI.getNumOperands()) | |||
1710 | MI.removeOperand(n-1); | |||
1711 | for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i) | |||
1712 | MI.addOperand(T->getOperand(i)); | |||
1713 | ||||
1714 | MachineBasicBlock::instr_iterator TI = T->getIterator(); | |||
1715 | B.erase(TI); | |||
1716 | ||||
1717 | MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); | |||
1718 | MRI.clearKillFlags(PredReg); | |||
1719 | return true; | |||
1720 | } | |||
1721 | ||||
1722 | bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, | |||
1723 | ArrayRef<MachineOperand> Pred2) const { | |||
1724 | // TODO: Fix this | |||
1725 | return false; | |||
1726 | } | |||
1727 | ||||
1728 | bool HexagonInstrInfo::ClobbersPredicate(MachineInstr &MI, | |||
1729 | std::vector<MachineOperand> &Pred, | |||
1730 | bool SkipDead) const { | |||
1731 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | |||
1732 | ||||
1733 | for (const MachineOperand &MO : MI.operands()) { | |||
1734 | if (MO.isReg()) { | |||
1735 | if (!MO.isDef()) | |||
1736 | continue; | |||
1737 | const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg()); | |||
1738 | if (RC == &Hexagon::PredRegsRegClass) { | |||
1739 | Pred.push_back(MO); | |||
1740 | return true; | |||
1741 | } | |||
1742 | continue; | |||
1743 | } else if (MO.isRegMask()) { | |||
1744 | for (Register PR : Hexagon::PredRegsRegClass) { | |||
1745 | if (!MI.modifiesRegister(PR, &HRI)) | |||
1746 | continue; | |||
1747 | Pred.push_back(MO); | |||
1748 | return true; | |||
1749 | } | |||
1750 | } | |||
1751 | } | |||
1752 | return false; | |||
1753 | } | |||
1754 | ||||
1755 | bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const { | |||
1756 | if (!MI.getDesc().isPredicable()) | |||
1757 | return false; | |||
1758 | ||||
1759 | if (MI.isCall() || isTailCall(MI)) { | |||
1760 | if (!Subtarget.usePredicatedCalls()) | |||
1761 | return false; | |||
1762 | } | |||
1763 | ||||
1764 | // HVX loads are not predicable on v60, but are on v62. | |||
1765 | if (!Subtarget.hasV62Ops()) { | |||
1766 | switch (MI.getOpcode()) { | |||
1767 | case Hexagon::V6_vL32b_ai: | |||
1768 | case Hexagon::V6_vL32b_pi: | |||
1769 | case Hexagon::V6_vL32b_ppu: | |||
1770 | case Hexagon::V6_vL32b_cur_ai: | |||
1771 | case Hexagon::V6_vL32b_cur_pi: | |||
1772 | case Hexagon::V6_vL32b_cur_ppu: | |||
1773 | case Hexagon::V6_vL32b_nt_ai: | |||
1774 | case Hexagon::V6_vL32b_nt_pi: | |||
1775 | case Hexagon::V6_vL32b_nt_ppu: | |||
1776 | case Hexagon::V6_vL32b_tmp_ai: | |||
1777 | case Hexagon::V6_vL32b_tmp_pi: | |||
1778 | case Hexagon::V6_vL32b_tmp_ppu: | |||
1779 | case Hexagon::V6_vL32b_nt_cur_ai: | |||
1780 | case Hexagon::V6_vL32b_nt_cur_pi: | |||
1781 | case Hexagon::V6_vL32b_nt_cur_ppu: | |||
1782 | case Hexagon::V6_vL32b_nt_tmp_ai: | |||
1783 | case Hexagon::V6_vL32b_nt_tmp_pi: | |||
1784 | case Hexagon::V6_vL32b_nt_tmp_ppu: | |||
1785 | return false; | |||
1786 | } | |||
1787 | } | |||
1788 | return true; | |||
1789 | } | |||
1790 | ||||
1791 | bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI, | |||
1792 | const MachineBasicBlock *MBB, | |||
1793 | const MachineFunction &MF) const { | |||
1794 | // Debug info is never a scheduling boundary. It's necessary to be explicit | |||
1795 | // due to the special treatment of IT instructions below, otherwise a | |||
1796 | // dbg_value followed by an IT will result in the IT instruction being | |||
1797 | // considered a scheduling hazard, which is wrong. It should be the actual | |||
1798 | // instruction preceding the dbg_value instruction(s), just like it is | |||
1799 | // when debug info is not present. | |||
1800 | if (MI.isDebugInstr()) | |||
1801 | return false; | |||
1802 | ||||
1803 | // Throwing call is a boundary. | |||
1804 | if (MI.isCall()) { | |||
1805 | // Don't mess around with no return calls. | |||
1806 | if (doesNotReturn(MI)) | |||
1807 | return true; | |||
1808 | // If any of the block's successors is a landing pad, this could be a | |||
1809 | // throwing call. | |||
1810 | for (auto *I : MBB->successors()) | |||
1811 | if (I->isEHPad()) | |||
1812 | return true; | |||
1813 | } | |||
1814 | ||||
1815 | // Terminators and labels can't be scheduled around. | |||
1816 | if (MI.getDesc().isTerminator() || MI.isPosition()) | |||
1817 | return true; | |||
1818 | ||||
1819 | // INLINEASM_BR can jump to another block | |||
1820 | if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) | |||
1821 | return true; | |||
1822 | ||||
1823 | if (MI.isInlineAsm() && !ScheduleInlineAsm) | |||
1824 | return true; | |||
1825 | ||||
1826 | return false; | |||
1827 | } | |||
1828 | ||||
1829 | /// Measure the specified inline asm to determine an approximation of its | |||
1830 | /// length. | |||
1831 | /// Comments (which run till the next SeparatorString or newline) do not | |||
1832 | /// count as an instruction. | |||
1833 | /// Any other non-whitespace text is considered an instruction, with | |||
1834 | /// multiple instructions separated by SeparatorString or newlines. | |||
1835 | /// Variable-length instructions are not handled here; this function | |||
1836 | /// may be overloaded in the target code to do that. | |||
1837 | /// Hexagon counts the number of ##'s and adjust for that many | |||
1838 | /// constant exenders. | |||
1839 | unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str, | |||
1840 | const MCAsmInfo &MAI, | |||
1841 | const TargetSubtargetInfo *STI) const { | |||
1842 | StringRef AStr(Str); | |||
1843 | // Count the number of instructions in the asm. | |||
1844 | bool atInsnStart = true; | |||
1845 | unsigned Length = 0; | |||
1846 | const unsigned MaxInstLength = MAI.getMaxInstLength(STI); | |||
1847 | for (; *Str; ++Str) { | |||
1848 | if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), | |||
1849 | strlen(MAI.getSeparatorString())) == 0) | |||
1850 | atInsnStart = true; | |||
1851 | if (atInsnStart && !isSpace(static_cast<unsigned char>(*Str))) { | |||
1852 | Length += MaxInstLength; | |||
1853 | atInsnStart = false; | |||
1854 | } | |||
1855 | if (atInsnStart && strncmp(Str, MAI.getCommentString().data(), | |||
1856 | MAI.getCommentString().size()) == 0) | |||
1857 | atInsnStart = false; | |||
1858 | } | |||
1859 | ||||
1860 | // Add to size number of constant extenders seen * 4. | |||
1861 | StringRef Occ("##"); | |||
1862 | Length += AStr.count(Occ)*4; | |||
1863 | return Length; | |||
1864 | } | |||
1865 | ||||
1866 | ScheduleHazardRecognizer* | |||
1867 | HexagonInstrInfo::CreateTargetPostRAHazardRecognizer( | |||
1868 | const InstrItineraryData *II, const ScheduleDAG *DAG) const { | |||
1869 | if (UseDFAHazardRec) | |||
1870 | return new HexagonHazardRecognizer(II, this, Subtarget); | |||
1871 | return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); | |||
1872 | } | |||
1873 | ||||
1874 | /// For a comparison instruction, return the source registers in | |||
1875 | /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it | |||
1876 | /// compares against in CmpValue. Return true if the comparison instruction | |||
1877 | /// can be analyzed. | |||
1878 | bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, | |||
1879 | Register &SrcReg2, int64_t &Mask, | |||
1880 | int64_t &Value) const { | |||
1881 | unsigned Opc = MI.getOpcode(); | |||
1882 | ||||
1883 | // Set mask and the first source register. | |||
1884 | switch (Opc) { | |||
1885 | case Hexagon::C2_cmpeq: | |||
1886 | case Hexagon::C2_cmpeqp: | |||
1887 | case Hexagon::C2_cmpgt: | |||
1888 | case Hexagon::C2_cmpgtp: | |||
1889 | case Hexagon::C2_cmpgtu: | |||
1890 | case Hexagon::C2_cmpgtup: | |||
1891 | case Hexagon::C4_cmpneq: | |||
1892 | case Hexagon::C4_cmplte: | |||
1893 | case Hexagon::C4_cmplteu: | |||
1894 | case Hexagon::C2_cmpeqi: | |||
1895 | case Hexagon::C2_cmpgti: | |||
1896 | case Hexagon::C2_cmpgtui: | |||
1897 | case Hexagon::C4_cmpneqi: | |||
1898 | case Hexagon::C4_cmplteui: | |||
1899 | case Hexagon::C4_cmpltei: | |||
1900 | SrcReg = MI.getOperand(1).getReg(); | |||
1901 | Mask = ~0; | |||
1902 | break; | |||
1903 | case Hexagon::A4_cmpbeq: | |||
1904 | case Hexagon::A4_cmpbgt: | |||
1905 | case Hexagon::A4_cmpbgtu: | |||
1906 | case Hexagon::A4_cmpbeqi: | |||
1907 | case Hexagon::A4_cmpbgti: | |||
1908 | case Hexagon::A4_cmpbgtui: | |||
1909 | SrcReg = MI.getOperand(1).getReg(); | |||
1910 | Mask = 0xFF; | |||
1911 | break; | |||
1912 | case Hexagon::A4_cmpheq: | |||
1913 | case Hexagon::A4_cmphgt: | |||
1914 | case Hexagon::A4_cmphgtu: | |||
1915 | case Hexagon::A4_cmpheqi: | |||
1916 | case Hexagon::A4_cmphgti: | |||
1917 | case Hexagon::A4_cmphgtui: | |||
1918 | SrcReg = MI.getOperand(1).getReg(); | |||
1919 | Mask = 0xFFFF; | |||
1920 | break; | |||
1921 | } | |||
1922 | ||||
1923 | // Set the value/second source register. | |||
1924 | switch (Opc) { | |||
1925 | case Hexagon::C2_cmpeq: | |||
1926 | case Hexagon::C2_cmpeqp: | |||
1927 | case Hexagon::C2_cmpgt: | |||
1928 | case Hexagon::C2_cmpgtp: | |||
1929 | case Hexagon::C2_cmpgtu: | |||
1930 | case Hexagon::C2_cmpgtup: | |||
1931 | case Hexagon::A4_cmpbeq: | |||
1932 | case Hexagon::A4_cmpbgt: | |||
1933 | case Hexagon::A4_cmpbgtu: | |||
1934 | case Hexagon::A4_cmpheq: | |||
1935 | case Hexagon::A4_cmphgt: | |||
1936 | case Hexagon::A4_cmphgtu: | |||
1937 | case Hexagon::C4_cmpneq: | |||
1938 | case Hexagon::C4_cmplte: | |||
1939 | case Hexagon::C4_cmplteu: | |||
1940 | SrcReg2 = MI.getOperand(2).getReg(); | |||
1941 | Value = 0; | |||
1942 | return true; | |||
1943 | ||||
1944 | case Hexagon::C2_cmpeqi: | |||
1945 | case Hexagon::C2_cmpgtui: | |||
1946 | case Hexagon::C2_cmpgti: | |||
1947 | case Hexagon::C4_cmpneqi: | |||
1948 | case Hexagon::C4_cmplteui: | |||
1949 | case Hexagon::C4_cmpltei: | |||
1950 | case Hexagon::A4_cmpbeqi: | |||
1951 | case Hexagon::A4_cmpbgti: | |||
1952 | case Hexagon::A4_cmpbgtui: | |||
1953 | case Hexagon::A4_cmpheqi: | |||
1954 | case Hexagon::A4_cmphgti: | |||
1955 | case Hexagon::A4_cmphgtui: { | |||
1956 | SrcReg2 = 0; | |||
1957 | const MachineOperand &Op2 = MI.getOperand(2); | |||
1958 | if (!Op2.isImm()) | |||
1959 | return false; | |||
1960 | Value = MI.getOperand(2).getImm(); | |||
1961 | return true; | |||
1962 | } | |||
1963 | } | |||
1964 | ||||
1965 | return false; | |||
1966 | } | |||
1967 | ||||
1968 | unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | |||
1969 | const MachineInstr &MI, | |||
1970 | unsigned *PredCost) const { | |||
1971 | return getInstrTimingClassLatency(ItinData, MI); | |||
1972 | } | |||
1973 | ||||
1974 | DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( | |||
1975 | const TargetSubtargetInfo &STI) const { | |||
1976 | const InstrItineraryData *II = STI.getInstrItineraryData(); | |||
1977 | return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II); | |||
1978 | } | |||
1979 | ||||
1980 | // Inspired by this pair: | |||
1981 | // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0] | |||
1982 | // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1] | |||
1983 | // Currently AA considers the addresses in these instructions to be aliasing. | |||
1984 | bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint( | |||
1985 | const MachineInstr &MIa, const MachineInstr &MIb) const { | |||
1986 | if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || | |||
1987 | MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) | |||
1988 | return false; | |||
1989 | ||||
1990 | // Instructions that are pure loads, not loads and stores like memops are not | |||
1991 | // dependent. | |||
1992 | if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb)) | |||
1993 | return true; | |||
1994 | ||||
1995 | // Get the base register in MIa. | |||
1996 | unsigned BasePosA, OffsetPosA; | |||
1997 | if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA)) | |||
1998 | return false; | |||
1999 | const MachineOperand &BaseA = MIa.getOperand(BasePosA); | |||
2000 | Register BaseRegA = BaseA.getReg(); | |||
2001 | unsigned BaseSubA = BaseA.getSubReg(); | |||
2002 | ||||
2003 | // Get the base register in MIb. | |||
2004 | unsigned BasePosB, OffsetPosB; | |||
2005 | if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB)) | |||
2006 | return false; | |||
2007 | const MachineOperand &BaseB = MIb.getOperand(BasePosB); | |||
2008 | Register BaseRegB = BaseB.getReg(); | |||
2009 | unsigned BaseSubB = BaseB.getSubReg(); | |||
2010 | ||||
2011 | if (BaseRegA != BaseRegB || BaseSubA != BaseSubB) | |||
2012 | return false; | |||
2013 | ||||
2014 | // Get the access sizes. | |||
2015 | unsigned SizeA = getMemAccessSize(MIa); | |||
2016 | unsigned SizeB = getMemAccessSize(MIb); | |||
2017 | ||||
2018 | // Get the offsets. Handle immediates only for now. | |||
2019 | const MachineOperand &OffA = MIa.getOperand(OffsetPosA); | |||
2020 | const MachineOperand &OffB = MIb.getOperand(OffsetPosB); | |||
2021 | if (!MIa.getOperand(OffsetPosA).isImm() || | |||
2022 | !MIb.getOperand(OffsetPosB).isImm()) | |||
2023 | return false; | |||
2024 | int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm(); | |||
2025 | int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm(); | |||
2026 | ||||
2027 | // This is a mem access with the same base register and known offsets from it. | |||
2028 | // Reason about it. | |||
2029 | if (OffsetA > OffsetB) { | |||
2030 | uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB); | |||
2031 | return SizeB <= OffDiff; | |||
2032 | } | |||
2033 | if (OffsetA < OffsetB) { | |||
2034 | uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA); | |||
2035 | return SizeA <= OffDiff; | |||
2036 | } | |||
2037 | ||||
2038 | return false; | |||
2039 | } | |||
2040 | ||||
2041 | /// If the instruction is an increment of a constant value, return the amount. | |||
2042 | bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI, | |||
2043 | int &Value) const { | |||
2044 | if (isPostIncrement(MI)) { | |||
2045 | unsigned BasePos = 0, OffsetPos = 0; | |||
2046 | if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) | |||
2047 | return false; | |||
2048 | const MachineOperand &OffsetOp = MI.getOperand(OffsetPos); | |||
2049 | if (OffsetOp.isImm()) { | |||
2050 | Value = OffsetOp.getImm(); | |||
2051 | return true; | |||
2052 | } | |||
2053 | } else if (MI.getOpcode() == Hexagon::A2_addi) { | |||
2054 | const MachineOperand &AddOp = MI.getOperand(2); | |||
2055 | if (AddOp.isImm()) { | |||
2056 | Value = AddOp.getImm(); | |||
2057 | return true; | |||
2058 | } | |||
2059 | } | |||
2060 | ||||
2061 | return false; | |||
2062 | } | |||
2063 | ||||
2064 | std::pair<unsigned, unsigned> | |||
2065 | HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { | |||
2066 | return std::make_pair(TF & ~HexagonII::MO_Bitmasks, | |||
2067 | TF & HexagonII::MO_Bitmasks); | |||
2068 | } | |||
2069 | ||||
2070 | ArrayRef<std::pair<unsigned, const char*>> | |||
2071 | HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { | |||
2072 | using namespace HexagonII; | |||
2073 | ||||
2074 | static const std::pair<unsigned, const char*> Flags[] = { | |||
2075 | {MO_PCREL, "hexagon-pcrel"}, | |||
2076 | {MO_GOT, "hexagon-got"}, | |||
2077 | {MO_LO16, "hexagon-lo16"}, | |||
2078 | {MO_HI16, "hexagon-hi16"}, | |||
2079 | {MO_GPREL, "hexagon-gprel"}, | |||
2080 | {MO_GDGOT, "hexagon-gdgot"}, | |||
2081 | {MO_GDPLT, "hexagon-gdplt"}, | |||
2082 | {MO_IE, "hexagon-ie"}, | |||
2083 | {MO_IEGOT, "hexagon-iegot"}, | |||
2084 | {MO_TPREL, "hexagon-tprel"} | |||
2085 | }; | |||
2086 | return ArrayRef(Flags); | |||
2087 | } | |||
2088 | ||||
2089 | ArrayRef<std::pair<unsigned, const char*>> | |||
2090 | HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { | |||
2091 | using namespace HexagonII; | |||
2092 | ||||
2093 | static const std::pair<unsigned, const char*> Flags[] = { | |||
2094 | {HMOTF_ConstExtended, "hexagon-ext"} | |||
2095 | }; | |||
2096 | return ArrayRef(Flags); | |||
2097 | } | |||
2098 | ||||
2099 | Register HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const { | |||
2100 | MachineRegisterInfo &MRI = MF->getRegInfo(); | |||
2101 | const TargetRegisterClass *TRC; | |||
2102 | if (VT == MVT::i1) { | |||
2103 | TRC = &Hexagon::PredRegsRegClass; | |||
2104 | } else if (VT == MVT::i32 || VT == MVT::f32) { | |||
2105 | TRC = &Hexagon::IntRegsRegClass; | |||
2106 | } else if (VT == MVT::i64 || VT == MVT::f64) { | |||
2107 | TRC = &Hexagon::DoubleRegsRegClass; | |||
2108 | } else { | |||
2109 | llvm_unreachable("Cannot handle this register class")::llvm::llvm_unreachable_internal("Cannot handle this register class" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 2109); | |||
2110 | } | |||
2111 | ||||
2112 | Register NewReg = MRI.createVirtualRegister(TRC); | |||
2113 | return NewReg; | |||
2114 | } | |||
2115 | ||||
2116 | bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const { | |||
2117 | return (getAddrMode(MI) == HexagonII::AbsoluteSet); | |||
2118 | } | |||
2119 | ||||
2120 | bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const { | |||
2121 | const uint64_t F = MI.getDesc().TSFlags; | |||
2122 | return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask); | |||
2123 | } | |||
2124 | ||||
2125 | bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const { | |||
2126 | return getAddrMode(MI) == HexagonII::BaseImmOffset; | |||
2127 | } | |||
2128 | ||||
2129 | bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const { | |||
2130 | return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() && | |||
2131 | !MI.getDesc().mayStore() && | |||
2132 | MI.getDesc().getOpcode() != Hexagon::S2_allocframe && | |||
2133 | MI.getDesc().getOpcode() != Hexagon::L2_deallocframe && | |||
2134 | !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall(); | |||
2135 | } | |||
2136 | ||||
2137 | // Return true if the instruction is a compound branch instruction. | |||
2138 | bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const { | |||
2139 | return getType(MI) == HexagonII::TypeCJ && MI.isBranch(); | |||
2140 | } | |||
2141 | ||||
2142 | // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle | |||
2143 | // isFPImm and later getFPImm as well. | |||
2144 | bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const { | |||
2145 | const uint64_t F = MI.getDesc().TSFlags; | |||
2146 | unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; | |||
2147 | if (isExtended) // Instruction must be extended. | |||
2148 | return true; | |||
2149 | ||||
2150 | unsigned isExtendable = | |||
2151 | (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; | |||
2152 | if (!isExtendable) | |||
2153 | return false; | |||
2154 | ||||
2155 | if (MI.isCall()) | |||
2156 | return false; | |||
2157 | ||||
2158 | short ExtOpNum = getCExtOpNum(MI); | |||
2159 | const MachineOperand &MO = MI.getOperand(ExtOpNum); | |||
2160 | // Use MO operand flags to determine if MO | |||
2161 | // has the HMOTF_ConstExtended flag set. | |||
2162 | if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) | |||
2163 | return true; | |||
2164 | // If this is a Machine BB address we are talking about, and it is | |||
2165 | // not marked as extended, say so. | |||
2166 | if (MO.isMBB()) | |||
2167 | return false; | |||
2168 | ||||
2169 | // We could be using an instruction with an extendable immediate and shoehorn | |||
2170 | // a global address into it. If it is a global address it will be constant | |||
2171 | // extended. We do this for COMBINE. | |||
2172 | if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() || | |||
2173 | MO.isJTI() || MO.isCPI() || MO.isFPImm()) | |||
2174 | return true; | |||
2175 | ||||
2176 | // If the extendable operand is not 'Immediate' type, the instruction should | |||
2177 | // have 'isExtended' flag set. | |||
2178 | assert(MO.isImm() && "Extendable operand must be Immediate type")(static_cast <bool> (MO.isImm() && "Extendable operand must be Immediate type" ) ? void (0) : __assert_fail ("MO.isImm() && \"Extendable operand must be Immediate type\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 2178, __extension__ __PRETTY_FUNCTION__)); | |||
2179 | ||||
2180 | int MinValue = getMinValue(MI); | |||
2181 | int MaxValue = getMaxValue(MI); | |||
2182 | int ImmValue = MO.getImm(); | |||
2183 | ||||
2184 | return (ImmValue < MinValue || ImmValue > MaxValue); | |||
2185 | } | |||
2186 | ||||
2187 | bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const { | |||
2188 | switch (MI.getOpcode()) { | |||
2189 | case Hexagon::L4_return: | |||
2190 | case Hexagon::L4_return_t: | |||
2191 | case Hexagon::L4_return_f: | |||
2192 | case Hexagon::L4_return_tnew_pnt: | |||
2193 | case Hexagon::L4_return_fnew_pnt: | |||
2194 | case Hexagon::L4_return_tnew_pt: | |||
2195 | case Hexagon::L4_return_fnew_pt: | |||
2196 | return true; | |||
2197 | } | |||
2198 | return false; | |||
2199 | } | |||
2200 | ||||
2201 | // Return true when ConsMI uses a register defined by ProdMI. | |||
2202 | bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI, | |||
2203 | const MachineInstr &ConsMI) const { | |||
2204 | if (!ProdMI.getDesc().getNumDefs()) | |||
2205 | return false; | |||
2206 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | |||
2207 | ||||
2208 | SmallVector<Register, 4> DefsA; | |||
2209 | SmallVector<Register, 4> DefsB; | |||
2210 | SmallVector<Register, 8> UsesA; | |||
2211 | SmallVector<Register, 8> UsesB; | |||
2212 | ||||
2213 | parseOperands(ProdMI, DefsA, UsesA); | |||
2214 | parseOperands(ConsMI, DefsB, UsesB); | |||
2215 | ||||
2216 | for (auto &RegA : DefsA) | |||
2217 | for (auto &RegB : UsesB) { | |||
2218 | // True data dependency. | |||
2219 | if (RegA == RegB) | |||
2220 | return true; | |||
2221 | ||||
2222 | if (RegA.isPhysical()) | |||
2223 | for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs) | |||
2224 | if (RegB == *SubRegs) | |||
2225 | return true; | |||
2226 | ||||
2227 | if (RegB.isPhysical()) | |||
2228 | for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs) | |||
2229 | if (RegA == *SubRegs) | |||
2230 | return true; | |||
2231 | } | |||
2232 | ||||
2233 | return false; | |||
2234 | } | |||
2235 | ||||
2236 | // Returns true if the instruction is alread a .cur. | |||
2237 | bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const { | |||
2238 | switch (MI.getOpcode()) { | |||
2239 | case Hexagon::V6_vL32b_cur_pi: | |||
2240 | case Hexagon::V6_vL32b_cur_ai: | |||
2241 | return true; | |||
2242 | } | |||
2243 | return false; | |||
2244 | } | |||
2245 | ||||
2246 | // Returns true, if any one of the operands is a dot new | |||
2247 | // insn, whether it is predicated dot new or register dot new. | |||
2248 | bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const { | |||
2249 | if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI))) | |||
2250 | return true; | |||
2251 | ||||
2252 | return false; | |||
2253 | } | |||
2254 | ||||
2255 | /// Symmetrical. See if these two instructions are fit for duplex pair. | |||
2256 | bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa, | |||
2257 | const MachineInstr &MIb) const { | |||
2258 | HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa); | |||
2259 | HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb); | |||
2260 | return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG)); | |||
2261 | } | |||
2262 | ||||
2263 | bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const { | |||
2264 | return (Opcode == Hexagon::ENDLOOP0 || | |||
2265 | Opcode == Hexagon::ENDLOOP1); | |||
2266 | } | |||
2267 | ||||
2268 | bool HexagonInstrInfo::isExpr(unsigned OpType) const { | |||
2269 | switch(OpType) { | |||
2270 | case MachineOperand::MO_MachineBasicBlock: | |||
2271 | case MachineOperand::MO_GlobalAddress: | |||
2272 | case MachineOperand::MO_ExternalSymbol: | |||
2273 | case MachineOperand::MO_JumpTableIndex: | |||
2274 | case MachineOperand::MO_ConstantPoolIndex: | |||
2275 | case MachineOperand::MO_BlockAddress: | |||
2276 | return true; | |||
2277 | default: | |||
2278 | return false; | |||
2279 | } | |||
2280 | } | |||
2281 | ||||
2282 | bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const { | |||
2283 | const MCInstrDesc &MID = MI.getDesc(); | |||
2284 | const uint64_t F = MID.TSFlags; | |||
2285 | if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) | |||
2286 | return true; | |||
2287 | ||||
2288 | // TODO: This is largely obsolete now. Will need to be removed | |||
2289 | // in consecutive patches. | |||
2290 | switch (MI.getOpcode()) { | |||
2291 | // PS_fi and PS_fia remain special cases. | |||
2292 | case Hexagon::PS_fi: | |||
2293 | case Hexagon::PS_fia: | |||
2294 | return true; | |||
2295 | default: | |||
2296 | return false; | |||
2297 | } | |||
2298 | return false; | |||
2299 | } | |||
2300 | ||||
2301 | // This returns true in two cases: | |||
2302 | // - The OP code itself indicates that this is an extended instruction. | |||
2303 | // - One of MOs has been marked with HMOTF_ConstExtended flag. | |||
2304 | bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const { | |||
2305 | // First check if this is permanently extended op code. | |||
2306 | const uint64_t F = MI.getDesc().TSFlags; | |||
2307 | if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) | |||
2308 | return true; | |||
2309 | // Use MO operand flags to determine if one of MI's operands | |||
2310 | // has HMOTF_ConstExtended flag set. | |||
2311 | for (const MachineOperand &MO : MI.operands()) | |||
2312 | if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended) | |||
2313 | return true; | |||
2314 | return false; | |||
2315 | } | |||
2316 | ||||
2317 | bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const { | |||
2318 | unsigned Opcode = MI.getOpcode(); | |||
2319 | const uint64_t F = get(Opcode).TSFlags; | |||
2320 | return (F >> HexagonII::FPPos) & HexagonII::FPMask; | |||
2321 | } | |||
2322 | ||||
2323 | // No V60 HVX VMEM with A_INDIRECT. | |||
2324 | bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I, | |||
2325 | const MachineInstr &J) const { | |||
2326 | if (!isHVXVec(I)) | |||
2327 | return false; | |||
2328 | if (!I.mayLoad() && !I.mayStore()) | |||
2329 | return false; | |||
2330 | return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J); | |||
2331 | } | |||
2332 | ||||
2333 | bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const { | |||
2334 | switch (MI.getOpcode()) { | |||
2335 | case Hexagon::J2_callr: | |||
2336 | case Hexagon::J2_callrf: | |||
2337 | case Hexagon::J2_callrt: | |||
2338 | case Hexagon::PS_call_nr: | |||
2339 | return true; | |||
2340 | } | |||
2341 | return false; | |||
2342 | } | |||
2343 | ||||
2344 | bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const { | |||
2345 | switch (MI.getOpcode()) { | |||
2346 | case Hexagon::L4_return: | |||
2347 | case Hexagon::L4_return_t: | |||
2348 | case Hexagon::L4_return_f: | |||
2349 | case Hexagon::L4_return_fnew_pnt: | |||
2350 | case Hexagon::L4_return_fnew_pt: | |||
2351 | case Hexagon::L4_return_tnew_pnt: | |||
2352 | case Hexagon::L4_return_tnew_pt: | |||
2353 | return true; | |||
2354 | } | |||
2355 | return false; | |||
2356 | } | |||
2357 | ||||
2358 | bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const { | |||
2359 | switch (MI.getOpcode()) { | |||
2360 | case Hexagon::J2_jumpr: | |||
2361 | case Hexagon::J2_jumprt: | |||
2362 | case Hexagon::J2_jumprf: | |||
2363 | case Hexagon::J2_jumprtnewpt: | |||
2364 | case Hexagon::J2_jumprfnewpt: | |||
2365 | case Hexagon::J2_jumprtnew: | |||
2366 | case Hexagon::J2_jumprfnew: | |||
2367 | return true; | |||
2368 | } | |||
2369 | return false; | |||
2370 | } | |||
2371 | ||||
2372 | // Return true if a given MI can accommodate given offset. | |||
2373 | // Use abs estimate as oppose to the exact number. | |||
2374 | // TODO: This will need to be changed to use MC level | |||
2375 | // definition of instruction extendable field size. | |||
2376 | bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI, | |||
2377 | unsigned offset) const { | |||
2378 | // This selection of jump instructions matches to that what | |||
2379 | // analyzeBranch can parse, plus NVJ. | |||
2380 | if (isNewValueJump(MI)) // r9:2 | |||
2381 | return isInt<11>(offset); | |||
2382 | ||||
2383 | switch (MI.getOpcode()) { | |||
2384 | // Still missing Jump to address condition on register value. | |||
2385 | default: | |||
2386 | return false; | |||
2387 | case Hexagon::J2_jump: // bits<24> dst; // r22:2 | |||
2388 | case Hexagon::J2_call: | |||
2389 | case Hexagon::PS_call_nr: | |||
2390 | return isInt<24>(offset); | |||
2391 | case Hexagon::J2_jumpt: //bits<17> dst; // r15:2 | |||
2392 | case Hexagon::J2_jumpf: | |||
2393 | case Hexagon::J2_jumptnew: | |||
2394 | case Hexagon::J2_jumptnewpt: | |||
2395 | case Hexagon::J2_jumpfnew: | |||
2396 | case Hexagon::J2_jumpfnewpt: | |||
2397 | case Hexagon::J2_callt: | |||
2398 | case Hexagon::J2_callf: | |||
2399 | return isInt<17>(offset); | |||
2400 | case Hexagon::J2_loop0i: | |||
2401 | case Hexagon::J2_loop0iext: | |||
2402 | case Hexagon::J2_loop0r: | |||
2403 | case Hexagon::J2_loop0rext: | |||
2404 | case Hexagon::J2_loop1i: | |||
2405 | case Hexagon::J2_loop1iext: | |||
2406 | case Hexagon::J2_loop1r: | |||
2407 | case Hexagon::J2_loop1rext: | |||
2408 | return isInt<9>(offset); | |||
2409 | // TODO: Add all the compound branches here. Can we do this in Relation model? | |||
2410 | case Hexagon::J4_cmpeqi_tp0_jump_nt: | |||
2411 | case Hexagon::J4_cmpeqi_tp1_jump_nt: | |||
2412 | case Hexagon::J4_cmpeqn1_tp0_jump_nt: | |||
2413 | case Hexagon::J4_cmpeqn1_tp1_jump_nt: | |||
2414 | return isInt<11>(offset); | |||
2415 | } | |||
2416 | } | |||
2417 | ||||
2418 | bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const { | |||
2419 | // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply | |||
2420 | // resource, but all operands can be received late like an ALU instruction. | |||
2421 | return getType(MI) == HexagonII::TypeCVI_VX_LATE; | |||
2422 | } | |||
2423 | ||||
2424 | bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const { | |||
2425 | unsigned Opcode = MI.getOpcode(); | |||
2426 | return Opcode == Hexagon::J2_loop0i || | |||
2427 | Opcode == Hexagon::J2_loop0r || | |||
2428 | Opcode == Hexagon::J2_loop0iext || | |||
2429 | Opcode == Hexagon::J2_loop0rext || | |||
2430 | Opcode == Hexagon::J2_loop1i || | |||
2431 | Opcode == Hexagon::J2_loop1r || | |||
2432 | Opcode == Hexagon::J2_loop1iext || | |||
2433 | Opcode == Hexagon::J2_loop1rext; | |||
2434 | } | |||
2435 | ||||
2436 | bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const { | |||
2437 | switch (MI.getOpcode()) { | |||
2438 | default: return false; | |||
2439 | case Hexagon::L4_iadd_memopw_io: | |||
2440 | case Hexagon::L4_isub_memopw_io: | |||
2441 | case Hexagon::L4_add_memopw_io: | |||
2442 | case Hexagon::L4_sub_memopw_io: | |||
2443 | case Hexagon::L4_and_memopw_io: | |||
2444 | case Hexagon::L4_or_memopw_io: | |||
2445 | case Hexagon::L4_iadd_memoph_io: | |||
2446 | case Hexagon::L4_isub_memoph_io: | |||
2447 | case Hexagon::L4_add_memoph_io: | |||
2448 | case Hexagon::L4_sub_memoph_io: | |||
2449 | case Hexagon::L4_and_memoph_io: | |||
2450 | case Hexagon::L4_or_memoph_io: | |||
2451 | case Hexagon::L4_iadd_memopb_io: | |||
2452 | case Hexagon::L4_isub_memopb_io: | |||
2453 | case Hexagon::L4_add_memopb_io: | |||
2454 | case Hexagon::L4_sub_memopb_io: | |||
2455 | case Hexagon::L4_and_memopb_io: | |||
2456 | case Hexagon::L4_or_memopb_io: | |||
2457 | case Hexagon::L4_ior_memopb_io: | |||
2458 | case Hexagon::L4_ior_memoph_io: | |||
2459 | case Hexagon::L4_ior_memopw_io: | |||
2460 | case Hexagon::L4_iand_memopb_io: | |||
2461 | case Hexagon::L4_iand_memoph_io: | |||
2462 | case Hexagon::L4_iand_memopw_io: | |||
2463 | return true; | |||
2464 | } | |||
2465 | return false; | |||
2466 | } | |||
2467 | ||||
2468 | bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const { | |||
2469 | const uint64_t F = MI.getDesc().TSFlags; | |||
2470 | return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; | |||
2471 | } | |||
2472 | ||||
2473 | bool HexagonInstrInfo::isNewValue(unsigned Opcode) const { | |||
2474 | const uint64_t F = get(Opcode).TSFlags; | |||
2475 | return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask; | |||
2476 | } | |||
2477 | ||||
2478 | bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const { | |||
2479 | return isNewValueJump(MI) || isNewValueStore(MI); | |||
2480 | } | |||
2481 | ||||
2482 | bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const { | |||
2483 | return isNewValue(MI) && MI.isBranch(); | |||
2484 | } | |||
2485 | ||||
2486 | bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const { | |||
2487 | return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode); | |||
2488 | } | |||
2489 | ||||
2490 | bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const { | |||
2491 | const uint64_t F = MI.getDesc().TSFlags; | |||
2492 | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; | |||
2493 | } | |||
2494 | ||||
2495 | bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { | |||
2496 | const uint64_t F = get(Opcode).TSFlags; | |||
2497 | return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask; | |||
2498 | } | |||
2499 | ||||
2500 | // Returns true if a particular operand is extendable for an instruction. | |||
2501 | bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI, | |||
2502 | unsigned OperandNum) const { | |||
2503 | const uint64_t F = MI.getDesc().TSFlags; | |||
2504 | return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) | |||
2505 | == OperandNum; | |||
2506 | } | |||
2507 | ||||
2508 | bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const { | |||
2509 | const uint64_t F = MI.getDesc().TSFlags; | |||
2510 | assert(isPredicated(MI))(static_cast <bool> (isPredicated(MI)) ? void (0) : __assert_fail ("isPredicated(MI)", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 2510, __extension__ __PRETTY_FUNCTION__)); | |||
2511 | return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; | |||
2512 | } | |||
2513 | ||||
2514 | bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { | |||
2515 | const uint64_t F = get(Opcode).TSFlags; | |||
2516 | assert(isPredicated(Opcode))(static_cast <bool> (isPredicated(Opcode)) ? void (0) : __assert_fail ("isPredicated(Opcode)", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 2516, __extension__ __PRETTY_FUNCTION__)); | |||
2517 | return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask; | |||
2518 | } | |||
2519 | ||||
2520 | bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const { | |||
2521 | const uint64_t F = MI.getDesc().TSFlags; | |||
2522 | return !((F >> HexagonII::PredicatedFalsePos) & | |||
2523 | HexagonII::PredicatedFalseMask); | |||
2524 | } | |||
2525 | ||||
2526 | bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { | |||
2527 | const uint64_t F = get(Opcode).TSFlags; | |||
2528 | // Make sure that the instruction is predicated. | |||
2529 | assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask)(static_cast <bool> ((F>> HexagonII::PredicatedPos ) & HexagonII::PredicatedMask) ? void (0) : __assert_fail ("(F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 2529, __extension__ __PRETTY_FUNCTION__)); | |||
2530 | return !((F >> HexagonII::PredicatedFalsePos) & | |||
2531 | HexagonII::PredicatedFalseMask); | |||
2532 | } | |||
2533 | ||||
2534 | bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { | |||
2535 | const uint64_t F = get(Opcode).TSFlags; | |||
2536 | return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask; | |||
2537 | } | |||
2538 | ||||
2539 | bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const { | |||
2540 | const uint64_t F = get(Opcode).TSFlags; | |||
2541 | return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask; | |||
2542 | } | |||
2543 | ||||
2544 | bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const { | |||
2545 | const uint64_t F = get(Opcode).TSFlags; | |||
2546 | assert(get(Opcode).isBranch() &&(static_cast <bool> (get(Opcode).isBranch() && ( isPredicatedNew(Opcode) || isNewValue(Opcode))) ? void (0) : __assert_fail ("get(Opcode).isBranch() && (isPredicatedNew(Opcode) || isNewValue(Opcode))" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 2547, __extension__ __PRETTY_FUNCTION__)) | |||
2547 | (isPredicatedNew(Opcode) || isNewValue(Opcode)))(static_cast <bool> (get(Opcode).isBranch() && ( isPredicatedNew(Opcode) || isNewValue(Opcode))) ? void (0) : __assert_fail ("get(Opcode).isBranch() && (isPredicatedNew(Opcode) || isNewValue(Opcode))" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 2547, __extension__ __PRETTY_FUNCTION__)); | |||
2548 | return (F >> HexagonII::TakenPos) & HexagonII::TakenMask; | |||
2549 | } | |||
2550 | ||||
2551 | bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const { | |||
2552 | return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 || | |||
2553 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT || | |||
2554 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC || | |||
2555 | MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC; | |||
2556 | } | |||
2557 | ||||
2558 | bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const { | |||
2559 | switch (MI.getOpcode()) { | |||
2560 | // Byte | |||
2561 | case Hexagon::L2_loadrb_io: | |||
2562 | case Hexagon::L4_loadrb_ur: | |||
2563 | case Hexagon::L4_loadrb_ap: | |||
2564 | case Hexagon::L2_loadrb_pr: | |||
2565 | case Hexagon::L2_loadrb_pbr: | |||
2566 | case Hexagon::L2_loadrb_pi: | |||
2567 | case Hexagon::L2_loadrb_pci: | |||
2568 | case Hexagon::L2_loadrb_pcr: | |||
2569 | case Hexagon::L2_loadbsw2_io: | |||
2570 | case Hexagon::L4_loadbsw2_ur: | |||
2571 | case Hexagon::L4_loadbsw2_ap: | |||
2572 | case Hexagon::L2_loadbsw2_pr: | |||
2573 | case Hexagon::L2_loadbsw2_pbr: | |||
2574 | case Hexagon::L2_loadbsw2_pi: | |||
2575 | case Hexagon::L2_loadbsw2_pci: | |||
2576 | case Hexagon::L2_loadbsw2_pcr: | |||
2577 | case Hexagon::L2_loadbsw4_io: | |||
2578 | case Hexagon::L4_loadbsw4_ur: | |||
2579 | case Hexagon::L4_loadbsw4_ap: | |||
2580 | case Hexagon::L2_loadbsw4_pr: | |||
2581 | case Hexagon::L2_loadbsw4_pbr: | |||
2582 | case Hexagon::L2_loadbsw4_pi: | |||
2583 | case Hexagon::L2_loadbsw4_pci: | |||
2584 | case Hexagon::L2_loadbsw4_pcr: | |||
2585 | case Hexagon::L4_loadrb_rr: | |||
2586 | case Hexagon::L2_ploadrbt_io: | |||
2587 | case Hexagon::L2_ploadrbt_pi: | |||
2588 | case Hexagon::L2_ploadrbf_io: | |||
2589 | case Hexagon::L2_ploadrbf_pi: | |||
2590 | case Hexagon::L2_ploadrbtnew_io: | |||
2591 | case Hexagon::L2_ploadrbfnew_io: | |||
2592 | case Hexagon::L4_ploadrbt_rr: | |||
2593 | case Hexagon::L4_ploadrbf_rr: | |||
2594 | case Hexagon::L4_ploadrbtnew_rr: | |||
2595 | case Hexagon::L4_ploadrbfnew_rr: | |||
2596 | case Hexagon::L2_ploadrbtnew_pi: | |||
2597 | case Hexagon::L2_ploadrbfnew_pi: | |||
2598 | case Hexagon::L4_ploadrbt_abs: | |||
2599 | case Hexagon::L4_ploadrbf_abs: | |||
2600 | case Hexagon::L4_ploadrbtnew_abs: | |||
2601 | case Hexagon::L4_ploadrbfnew_abs: | |||
2602 | case Hexagon::L2_loadrbgp: | |||
2603 | // Half | |||
2604 | case Hexagon::L2_loadrh_io: | |||
2605 | case Hexagon::L4_loadrh_ur: | |||
2606 | case Hexagon::L4_loadrh_ap: | |||
2607 | case Hexagon::L2_loadrh_pr: | |||
2608 | case Hexagon::L2_loadrh_pbr: | |||
2609 | case Hexagon::L2_loadrh_pi: | |||
2610 | case Hexagon::L2_loadrh_pci: | |||
2611 | case Hexagon::L2_loadrh_pcr: | |||
2612 | case Hexagon::L4_loadrh_rr: | |||
2613 | case Hexagon::L2_ploadrht_io: | |||
2614 | case Hexagon::L2_ploadrht_pi: | |||
2615 | case Hexagon::L2_ploadrhf_io: | |||
2616 | case Hexagon::L2_ploadrhf_pi: | |||
2617 | case Hexagon::L2_ploadrhtnew_io: | |||
2618 | case Hexagon::L2_ploadrhfnew_io: | |||
2619 | case Hexagon::L4_ploadrht_rr: | |||
2620 | case Hexagon::L4_ploadrhf_rr: | |||
2621 | case Hexagon::L4_ploadrhtnew_rr: | |||
2622 | case Hexagon::L4_ploadrhfnew_rr: | |||
2623 | case Hexagon::L2_ploadrhtnew_pi: | |||
2624 | case Hexagon::L2_ploadrhfnew_pi: | |||
2625 | case Hexagon::L4_ploadrht_abs: | |||
2626 | case Hexagon::L4_ploadrhf_abs: | |||
2627 | case Hexagon::L4_ploadrhtnew_abs: | |||
2628 | case Hexagon::L4_ploadrhfnew_abs: | |||
2629 | case Hexagon::L2_loadrhgp: | |||
2630 | return true; | |||
2631 | default: | |||
2632 | return false; | |||
2633 | } | |||
2634 | } | |||
2635 | ||||
2636 | bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const { | |||
2637 | const uint64_t F = MI.getDesc().TSFlags; | |||
2638 | return (F >> HexagonII::SoloPos) & HexagonII::SoloMask; | |||
2639 | } | |||
2640 | ||||
2641 | bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const { | |||
2642 | switch (MI.getOpcode()) { | |||
2643 | case Hexagon::STriw_pred: | |||
2644 | case Hexagon::LDriw_pred: | |||
2645 | return true; | |||
2646 | default: | |||
2647 | return false; | |||
2648 | } | |||
2649 | } | |||
2650 | ||||
2651 | bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const { | |||
2652 | if (!MI.isBranch()) | |||
2653 | return false; | |||
2654 | ||||
2655 | for (auto &Op : MI.operands()) | |||
2656 | if (Op.isGlobal() || Op.isSymbol()) | |||
2657 | return true; | |||
2658 | return false; | |||
2659 | } | |||
2660 | ||||
2661 | // Returns true when SU has a timing class TC1. | |||
2662 | bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const { | |||
2663 | unsigned SchedClass = MI.getDesc().getSchedClass(); | |||
2664 | return is_TC1(SchedClass); | |||
2665 | } | |||
2666 | ||||
2667 | bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const { | |||
2668 | unsigned SchedClass = MI.getDesc().getSchedClass(); | |||
2669 | return is_TC2(SchedClass); | |||
2670 | } | |||
2671 | ||||
2672 | bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const { | |||
2673 | unsigned SchedClass = MI.getDesc().getSchedClass(); | |||
2674 | return is_TC2early(SchedClass); | |||
2675 | } | |||
2676 | ||||
2677 | bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const { | |||
2678 | unsigned SchedClass = MI.getDesc().getSchedClass(); | |||
2679 | return is_TC4x(SchedClass); | |||
2680 | } | |||
2681 | ||||
2682 | // Schedule this ASAP. | |||
2683 | bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1, | |||
2684 | const MachineInstr &MI2) const { | |||
2685 | if (mayBeCurLoad(MI1)) { | |||
2686 | // if (result of SU is used in Next) return true; | |||
2687 | Register DstReg = MI1.getOperand(0).getReg(); | |||
2688 | int N = MI2.getNumOperands(); | |||
2689 | for (int I = 0; I < N; I++) | |||
2690 | if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg()) | |||
2691 | return true; | |||
2692 | } | |||
2693 | if (mayBeNewStore(MI2)) | |||
2694 | if (MI2.getOpcode() == Hexagon::V6_vS32b_pi) | |||
2695 | if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() && | |||
2696 | MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg()) | |||
2697 | return true; | |||
2698 | return false; | |||
2699 | } | |||
2700 | ||||
2701 | bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const { | |||
2702 | const uint64_t V = getType(MI); | |||
2703 | return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST; | |||
2704 | } | |||
2705 | ||||
2706 | // Check if the Offset is a valid auto-inc imm by Load/Store Type. | |||
2707 | bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const { | |||
2708 | int Size = VT.getSizeInBits() / 8; | |||
2709 | if (Offset % Size != 0) | |||
2710 | return false; | |||
2711 | int Count = Offset / Size; | |||
2712 | ||||
2713 | switch (VT.getSimpleVT().SimpleTy) { | |||
2714 | // For scalars the auto-inc is s4 | |||
2715 | case MVT::i8: | |||
2716 | case MVT::i16: | |||
2717 | case MVT::i32: | |||
2718 | case MVT::i64: | |||
2719 | case MVT::f32: | |||
2720 | case MVT::f64: | |||
2721 | case MVT::v2i16: | |||
2722 | case MVT::v2i32: | |||
2723 | case MVT::v4i8: | |||
2724 | case MVT::v4i16: | |||
2725 | case MVT::v8i8: | |||
2726 | return isInt<4>(Count); | |||
2727 | // For HVX vectors the auto-inc is s3 | |||
2728 | case MVT::v64i8: | |||
2729 | case MVT::v32i16: | |||
2730 | case MVT::v16i32: | |||
2731 | case MVT::v8i64: | |||
2732 | case MVT::v128i8: | |||
2733 | case MVT::v64i16: | |||
2734 | case MVT::v32i32: | |||
2735 | case MVT::v16i64: | |||
2736 | return isInt<3>(Count); | |||
2737 | default: | |||
2738 | break; | |||
2739 | } | |||
2740 | ||||
2741 | llvm_unreachable("Not an valid type!")::llvm::llvm_unreachable_internal("Not an valid type!", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 2741); | |||
2742 | } | |||
2743 | ||||
2744 | bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset, | |||
2745 | const TargetRegisterInfo *TRI, bool Extend) const { | |||
2746 | // This function is to check whether the "Offset" is in the correct range of | |||
2747 | // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is | |||
2748 | // inserted to calculate the final address. Due to this reason, the function | |||
2749 | // assumes that the "Offset" has correct alignment. | |||
2750 | // We used to assert if the offset was not properly aligned, however, | |||
2751 | // there are cases where a misaligned pointer recast can cause this | |||
2752 | // problem, and we need to allow for it. The front end warns of such | |||
2753 | // misaligns with respect to load size. | |||
2754 | switch (Opcode) { | |||
2755 | case Hexagon::PS_vstorerq_ai: | |||
2756 | case Hexagon::PS_vstorerv_ai: | |||
2757 | case Hexagon::PS_vstorerw_ai: | |||
2758 | case Hexagon::PS_vstorerw_nt_ai: | |||
2759 | case Hexagon::PS_vloadrq_ai: | |||
2760 | case Hexagon::PS_vloadrv_ai: | |||
2761 | case Hexagon::PS_vloadrw_ai: | |||
2762 | case Hexagon::PS_vloadrw_nt_ai: | |||
2763 | case Hexagon::V6_vL32b_ai: | |||
2764 | case Hexagon::V6_vS32b_ai: | |||
2765 | case Hexagon::V6_vS32b_qpred_ai: | |||
2766 | case Hexagon::V6_vS32b_nqpred_ai: | |||
2767 | case Hexagon::V6_vL32b_nt_ai: | |||
2768 | case Hexagon::V6_vS32b_nt_ai: | |||
2769 | case Hexagon::V6_vL32Ub_ai: | |||
2770 | case Hexagon::V6_vS32Ub_ai: | |||
2771 | case Hexagon::V6_vgathermh_pseudo: | |||
2772 | case Hexagon::V6_vgathermw_pseudo: | |||
2773 | case Hexagon::V6_vgathermhw_pseudo: | |||
2774 | case Hexagon::V6_vgathermhq_pseudo: | |||
2775 | case Hexagon::V6_vgathermwq_pseudo: | |||
2776 | case Hexagon::V6_vgathermhwq_pseudo: { | |||
2777 | unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass); | |||
2778 | assert(isPowerOf2_32(VectorSize))(static_cast <bool> (isPowerOf2_32(VectorSize)) ? void ( 0) : __assert_fail ("isPowerOf2_32(VectorSize)", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 2778, __extension__ __PRETTY_FUNCTION__)); | |||
2779 | if (Offset & (VectorSize-1)) | |||
2780 | return false; | |||
2781 | return isInt<4>(Offset >> Log2_32(VectorSize)); | |||
2782 | } | |||
2783 | ||||
2784 | case Hexagon::J2_loop0i: | |||
2785 | case Hexagon::J2_loop1i: | |||
2786 | return isUInt<10>(Offset); | |||
2787 | ||||
2788 | case Hexagon::S4_storeirb_io: | |||
2789 | case Hexagon::S4_storeirbt_io: | |||
2790 | case Hexagon::S4_storeirbf_io: | |||
2791 | return isUInt<6>(Offset); | |||
2792 | ||||
2793 | case Hexagon::S4_storeirh_io: | |||
2794 | case Hexagon::S4_storeirht_io: | |||
2795 | case Hexagon::S4_storeirhf_io: | |||
2796 | return isShiftedUInt<6,1>(Offset); | |||
2797 | ||||
2798 | case Hexagon::S4_storeiri_io: | |||
2799 | case Hexagon::S4_storeirit_io: | |||
2800 | case Hexagon::S4_storeirif_io: | |||
2801 | return isShiftedUInt<6,2>(Offset); | |||
2802 | // Handle these two compare instructions that are not extendable. | |||
2803 | case Hexagon::A4_cmpbeqi: | |||
2804 | return isUInt<8>(Offset); | |||
2805 | case Hexagon::A4_cmpbgti: | |||
2806 | return isInt<8>(Offset); | |||
2807 | } | |||
2808 | ||||
2809 | if (Extend) | |||
2810 | return true; | |||
2811 | ||||
2812 | switch (Opcode) { | |||
2813 | case Hexagon::L2_loadri_io: | |||
2814 | case Hexagon::S2_storeri_io: | |||
2815 | return (Offset >= Hexagon_MEMW_OFFSET_MIN) && | |||
2816 | (Offset <= Hexagon_MEMW_OFFSET_MAX); | |||
2817 | ||||
2818 | case Hexagon::L2_loadrd_io: | |||
2819 | case Hexagon::S2_storerd_io: | |||
2820 | return (Offset >= Hexagon_MEMD_OFFSET_MIN) && | |||
2821 | (Offset <= Hexagon_MEMD_OFFSET_MAX); | |||
2822 | ||||
2823 | case Hexagon::L2_loadrh_io: | |||
2824 | case Hexagon::L2_loadruh_io: | |||
2825 | case Hexagon::S2_storerh_io: | |||
2826 | case Hexagon::S2_storerf_io: | |||
2827 | return (Offset >= Hexagon_MEMH_OFFSET_MIN) && | |||
2828 | (Offset <= Hexagon_MEMH_OFFSET_MAX); | |||
2829 | ||||
2830 | case Hexagon::L2_loadrb_io: | |||
2831 | case Hexagon::L2_loadrub_io: | |||
2832 | case Hexagon::S2_storerb_io: | |||
2833 | return (Offset >= Hexagon_MEMB_OFFSET_MIN) && | |||
2834 | (Offset <= Hexagon_MEMB_OFFSET_MAX); | |||
2835 | ||||
2836 | case Hexagon::A2_addi: | |||
2837 | return (Offset >= Hexagon_ADDI_OFFSET_MIN) && | |||
2838 | (Offset <= Hexagon_ADDI_OFFSET_MAX); | |||
2839 | ||||
2840 | case Hexagon::L4_iadd_memopw_io: | |||
2841 | case Hexagon::L4_isub_memopw_io: | |||
2842 | case Hexagon::L4_add_memopw_io: | |||
2843 | case Hexagon::L4_sub_memopw_io: | |||
2844 | case Hexagon::L4_iand_memopw_io: | |||
2845 | case Hexagon::L4_ior_memopw_io: | |||
2846 | case Hexagon::L4_and_memopw_io: | |||
2847 | case Hexagon::L4_or_memopw_io: | |||
2848 | return (0 <= Offset && Offset <= 255); | |||
2849 | ||||
2850 | case Hexagon::L4_iadd_memoph_io: | |||
2851 | case Hexagon::L4_isub_memoph_io: | |||
2852 | case Hexagon::L4_add_memoph_io: | |||
2853 | case Hexagon::L4_sub_memoph_io: | |||
2854 | case Hexagon::L4_iand_memoph_io: | |||
2855 | case Hexagon::L4_ior_memoph_io: | |||
2856 | case Hexagon::L4_and_memoph_io: | |||
2857 | case Hexagon::L4_or_memoph_io: | |||
2858 | return (0 <= Offset && Offset <= 127); | |||
2859 | ||||
2860 | case Hexagon::L4_iadd_memopb_io: | |||
2861 | case Hexagon::L4_isub_memopb_io: | |||
2862 | case Hexagon::L4_add_memopb_io: | |||
2863 | case Hexagon::L4_sub_memopb_io: | |||
2864 | case Hexagon::L4_iand_memopb_io: | |||
2865 | case Hexagon::L4_ior_memopb_io: | |||
2866 | case Hexagon::L4_and_memopb_io: | |||
2867 | case Hexagon::L4_or_memopb_io: | |||
2868 | return (0 <= Offset && Offset <= 63); | |||
2869 | ||||
2870 | // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of | |||
2871 | // any size. Later pass knows how to handle it. | |||
2872 | case Hexagon::STriw_pred: | |||
2873 | case Hexagon::LDriw_pred: | |||
2874 | case Hexagon::STriw_ctr: | |||
2875 | case Hexagon::LDriw_ctr: | |||
2876 | return true; | |||
2877 | ||||
2878 | case Hexagon::PS_fi: | |||
2879 | case Hexagon::PS_fia: | |||
2880 | case Hexagon::INLINEASM: | |||
2881 | return true; | |||
2882 | ||||
2883 | case Hexagon::L2_ploadrbt_io: | |||
2884 | case Hexagon::L2_ploadrbf_io: | |||
2885 | case Hexagon::L2_ploadrubt_io: | |||
2886 | case Hexagon::L2_ploadrubf_io: | |||
2887 | case Hexagon::S2_pstorerbt_io: | |||
2888 | case Hexagon::S2_pstorerbf_io: | |||
2889 | return isUInt<6>(Offset); | |||
2890 | ||||
2891 | case Hexagon::L2_ploadrht_io: | |||
2892 | case Hexagon::L2_ploadrhf_io: | |||
2893 | case Hexagon::L2_ploadruht_io: | |||
2894 | case Hexagon::L2_ploadruhf_io: | |||
2895 | case Hexagon::S2_pstorerht_io: | |||
2896 | case Hexagon::S2_pstorerhf_io: | |||
2897 | return isShiftedUInt<6,1>(Offset); | |||
2898 | ||||
2899 | case Hexagon::L2_ploadrit_io: | |||
2900 | case Hexagon::L2_ploadrif_io: | |||
2901 | case Hexagon::S2_pstorerit_io: | |||
2902 | case Hexagon::S2_pstorerif_io: | |||
2903 | return isShiftedUInt<6,2>(Offset); | |||
2904 | ||||
2905 | case Hexagon::L2_ploadrdt_io: | |||
2906 | case Hexagon::L2_ploadrdf_io: | |||
2907 | case Hexagon::S2_pstorerdt_io: | |||
2908 | case Hexagon::S2_pstorerdf_io: | |||
2909 | return isShiftedUInt<6,3>(Offset); | |||
2910 | ||||
2911 | case Hexagon::L2_loadbsw2_io: | |||
2912 | case Hexagon::L2_loadbzw2_io: | |||
2913 | return isShiftedInt<11,1>(Offset); | |||
2914 | ||||
2915 | case Hexagon::L2_loadbsw4_io: | |||
2916 | case Hexagon::L2_loadbzw4_io: | |||
2917 | return isShiftedInt<11,2>(Offset); | |||
2918 | } // switch | |||
2919 | ||||
2920 | dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode) | |||
2921 | << ")\n"; | |||
2922 | llvm_unreachable("No offset range is defined for this opcode. "::llvm::llvm_unreachable_internal("No offset range is defined for this opcode. " "Please define it in the above switch statement!", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 2923) | |||
2923 | "Please define it in the above switch statement!")::llvm::llvm_unreachable_internal("No offset range is defined for this opcode. " "Please define it in the above switch statement!", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 2923); | |||
2924 | } | |||
2925 | ||||
2926 | bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const { | |||
2927 | return isHVXVec(MI) && isAccumulator(MI); | |||
2928 | } | |||
2929 | ||||
2930 | bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const { | |||
2931 | const uint64_t F = get(MI.getOpcode()).TSFlags; | |||
2932 | const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask); | |||
2933 | return | |||
2934 | V == HexagonII::TypeCVI_VA || | |||
2935 | V == HexagonII::TypeCVI_VA_DV; | |||
2936 | } | |||
2937 | ||||
2938 | bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI, | |||
2939 | const MachineInstr &ConsMI) const { | |||
2940 | if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI)) | |||
2941 | return true; | |||
2942 | ||||
2943 | if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI))) | |||
2944 | return true; | |||
2945 | ||||
2946 | if (mayBeNewStore(ConsMI)) | |||
2947 | return true; | |||
2948 | ||||
2949 | return false; | |||
2950 | } | |||
2951 | ||||
2952 | bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const { | |||
2953 | switch (MI.getOpcode()) { | |||
2954 | // Byte | |||
2955 | case Hexagon::L2_loadrub_io: | |||
2956 | case Hexagon::L4_loadrub_ur: | |||
2957 | case Hexagon::L4_loadrub_ap: | |||
2958 | case Hexagon::L2_loadrub_pr: | |||
2959 | case Hexagon::L2_loadrub_pbr: | |||
2960 | case Hexagon::L2_loadrub_pi: | |||
2961 | case Hexagon::L2_loadrub_pci: | |||
2962 | case Hexagon::L2_loadrub_pcr: | |||
2963 | case Hexagon::L2_loadbzw2_io: | |||
2964 | case Hexagon::L4_loadbzw2_ur: | |||
2965 | case Hexagon::L4_loadbzw2_ap: | |||
2966 | case Hexagon::L2_loadbzw2_pr: | |||
2967 | case Hexagon::L2_loadbzw2_pbr: | |||
2968 | case Hexagon::L2_loadbzw2_pi: | |||
2969 | case Hexagon::L2_loadbzw2_pci: | |||
2970 | case Hexagon::L2_loadbzw2_pcr: | |||
2971 | case Hexagon::L2_loadbzw4_io: | |||
2972 | case Hexagon::L4_loadbzw4_ur: | |||
2973 | case Hexagon::L4_loadbzw4_ap: | |||
2974 | case Hexagon::L2_loadbzw4_pr: | |||
2975 | case Hexagon::L2_loadbzw4_pbr: | |||
2976 | case Hexagon::L2_loadbzw4_pi: | |||
2977 | case Hexagon::L2_loadbzw4_pci: | |||
2978 | case Hexagon::L2_loadbzw4_pcr: | |||
2979 | case Hexagon::L4_loadrub_rr: | |||
2980 | case Hexagon::L2_ploadrubt_io: | |||
2981 | case Hexagon::L2_ploadrubt_pi: | |||
2982 | case Hexagon::L2_ploadrubf_io: | |||
2983 | case Hexagon::L2_ploadrubf_pi: | |||
2984 | case Hexagon::L2_ploadrubtnew_io: | |||
2985 | case Hexagon::L2_ploadrubfnew_io: | |||
2986 | case Hexagon::L4_ploadrubt_rr: | |||
2987 | case Hexagon::L4_ploadrubf_rr: | |||
2988 | case Hexagon::L4_ploadrubtnew_rr: | |||
2989 | case Hexagon::L4_ploadrubfnew_rr: | |||
2990 | case Hexagon::L2_ploadrubtnew_pi: | |||
2991 | case Hexagon::L2_ploadrubfnew_pi: | |||
2992 | case Hexagon::L4_ploadrubt_abs: | |||
2993 | case Hexagon::L4_ploadrubf_abs: | |||
2994 | case Hexagon::L4_ploadrubtnew_abs: | |||
2995 | case Hexagon::L4_ploadrubfnew_abs: | |||
2996 | case Hexagon::L2_loadrubgp: | |||
2997 | // Half | |||
2998 | case Hexagon::L2_loadruh_io: | |||
2999 | case Hexagon::L4_loadruh_ur: | |||
3000 | case Hexagon::L4_loadruh_ap: | |||
3001 | case Hexagon::L2_loadruh_pr: | |||
3002 | case Hexagon::L2_loadruh_pbr: | |||
3003 | case Hexagon::L2_loadruh_pi: | |||
3004 | case Hexagon::L2_loadruh_pci: | |||
3005 | case Hexagon::L2_loadruh_pcr: | |||
3006 | case Hexagon::L4_loadruh_rr: | |||
3007 | case Hexagon::L2_ploadruht_io: | |||
3008 | case Hexagon::L2_ploadruht_pi: | |||
3009 | case Hexagon::L2_ploadruhf_io: | |||
3010 | case Hexagon::L2_ploadruhf_pi: | |||
3011 | case Hexagon::L2_ploadruhtnew_io: | |||
3012 | case Hexagon::L2_ploadruhfnew_io: | |||
3013 | case Hexagon::L4_ploadruht_rr: | |||
3014 | case Hexagon::L4_ploadruhf_rr: | |||
3015 | case Hexagon::L4_ploadruhtnew_rr: | |||
3016 | case Hexagon::L4_ploadruhfnew_rr: | |||
3017 | case Hexagon::L2_ploadruhtnew_pi: | |||
3018 | case Hexagon::L2_ploadruhfnew_pi: | |||
3019 | case Hexagon::L4_ploadruht_abs: | |||
3020 | case Hexagon::L4_ploadruhf_abs: | |||
3021 | case Hexagon::L4_ploadruhtnew_abs: | |||
3022 | case Hexagon::L4_ploadruhfnew_abs: | |||
3023 | case Hexagon::L2_loadruhgp: | |||
3024 | return true; | |||
3025 | default: | |||
3026 | return false; | |||
3027 | } | |||
3028 | } | |||
3029 | ||||
3030 | // Add latency to instruction. | |||
3031 | bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1, | |||
3032 | const MachineInstr &MI2) const { | |||
3033 | if (isHVXVec(MI1) && isHVXVec(MI2)) | |||
3034 | if (!isVecUsableNextPacket(MI1, MI2)) | |||
3035 | return true; | |||
3036 | return false; | |||
3037 | } | |||
3038 | ||||
3039 | /// Get the base register and byte offset of a load/store instr. | |||
3040 | bool HexagonInstrInfo::getMemOperandsWithOffsetWidth( | |||
3041 | const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, | |||
3042 | int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, | |||
3043 | const TargetRegisterInfo *TRI) const { | |||
3044 | OffsetIsScalable = false; | |||
3045 | const MachineOperand *BaseOp = getBaseAndOffset(LdSt, Offset, Width); | |||
3046 | if (!BaseOp || !BaseOp->isReg()) | |||
3047 | return false; | |||
3048 | BaseOps.push_back(BaseOp); | |||
3049 | return true; | |||
3050 | } | |||
3051 | ||||
3052 | /// Can these instructions execute at the same time in a bundle. | |||
3053 | bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First, | |||
3054 | const MachineInstr &Second) const { | |||
3055 | if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) { | |||
3056 | const MachineOperand &Op = Second.getOperand(0); | |||
3057 | if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29) | |||
3058 | return true; | |||
3059 | } | |||
3060 | if (DisableNVSchedule) | |||
3061 | return false; | |||
3062 | if (mayBeNewStore(Second)) { | |||
3063 | // Make sure the definition of the first instruction is the value being | |||
3064 | // stored. | |||
3065 | const MachineOperand &Stored = | |||
3066 | Second.getOperand(Second.getNumOperands() - 1); | |||
3067 | if (!Stored.isReg()) | |||
3068 | return false; | |||
3069 | for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) { | |||
3070 | const MachineOperand &Op = First.getOperand(i); | |||
3071 | if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg()) | |||
3072 | return true; | |||
3073 | } | |||
3074 | } | |||
3075 | return false; | |||
3076 | } | |||
3077 | ||||
3078 | bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const { | |||
3079 | unsigned Opc = CallMI.getOpcode(); | |||
3080 | return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr; | |||
3081 | } | |||
3082 | ||||
3083 | bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const { | |||
3084 | for (auto &I : *B) | |||
3085 | if (I.isEHLabel()) | |||
3086 | return true; | |||
3087 | return false; | |||
3088 | } | |||
3089 | ||||
3090 | // Returns true if an instruction can be converted into a non-extended | |||
3091 | // equivalent instruction. | |||
3092 | bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const { | |||
3093 | short NonExtOpcode; | |||
3094 | // Check if the instruction has a register form that uses register in place | |||
3095 | // of the extended operand, if so return that as the non-extended form. | |||
3096 | if (Hexagon::getRegForm(MI.getOpcode()) >= 0) | |||
3097 | return true; | |||
3098 | ||||
3099 | if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { | |||
3100 | // Check addressing mode and retrieve non-ext equivalent instruction. | |||
3101 | ||||
3102 | switch (getAddrMode(MI)) { | |||
3103 | case HexagonII::Absolute: | |||
3104 | // Load/store with absolute addressing mode can be converted into | |||
3105 | // base+offset mode. | |||
3106 | NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode()); | |||
3107 | break; | |||
3108 | case HexagonII::BaseImmOffset: | |||
3109 | // Load/store with base+offset addressing mode can be converted into | |||
3110 | // base+register offset addressing mode. However left shift operand should | |||
3111 | // be set to 0. | |||
3112 | NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode()); | |||
3113 | break; | |||
3114 | case HexagonII::BaseLongOffset: | |||
3115 | NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode()); | |||
3116 | break; | |||
3117 | default: | |||
3118 | return false; | |||
3119 | } | |||
3120 | if (NonExtOpcode < 0) | |||
3121 | return false; | |||
3122 | return true; | |||
3123 | } | |||
3124 | return false; | |||
3125 | } | |||
3126 | ||||
3127 | bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const { | |||
3128 | return Hexagon::getRealHWInstr(MI.getOpcode(), | |||
3129 | Hexagon::InstrType_Pseudo) >= 0; | |||
3130 | } | |||
3131 | ||||
3132 | bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B) | |||
3133 | const { | |||
3134 | MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); | |||
3135 | while (I != E) { | |||
3136 | if (I->isBarrier()) | |||
3137 | return true; | |||
3138 | ++I; | |||
3139 | } | |||
3140 | return false; | |||
3141 | } | |||
3142 | ||||
3143 | // Returns true, if a LD insn can be promoted to a cur load. | |||
3144 | bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const { | |||
3145 | const uint64_t F = MI.getDesc().TSFlags; | |||
3146 | return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) && | |||
3147 | Subtarget.hasV60Ops(); | |||
3148 | } | |||
3149 | ||||
3150 | // Returns true, if a ST insn can be promoted to a new-value store. | |||
3151 | bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const { | |||
3152 | if (MI.mayStore() && !Subtarget.useNewValueStores()) | |||
3153 | return false; | |||
3154 | ||||
3155 | const uint64_t F = MI.getDesc().TSFlags; | |||
3156 | return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask; | |||
3157 | } | |||
3158 | ||||
3159 | bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI, | |||
3160 | const MachineInstr &ConsMI) const { | |||
3161 | // There is no stall when ProdMI is not a V60 vector. | |||
3162 | if (!isHVXVec(ProdMI)) | |||
3163 | return false; | |||
3164 | ||||
3165 | // There is no stall when ProdMI and ConsMI are not dependent. | |||
3166 | if (!isDependent(ProdMI, ConsMI)) | |||
3167 | return false; | |||
3168 | ||||
3169 | // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI | |||
3170 | // are scheduled in consecutive packets. | |||
3171 | if (isVecUsableNextPacket(ProdMI, ConsMI)) | |||
3172 | return false; | |||
3173 | ||||
3174 | return true; | |||
3175 | } | |||
3176 | ||||
3177 | bool HexagonInstrInfo::producesStall(const MachineInstr &MI, | |||
3178 | MachineBasicBlock::const_instr_iterator BII) const { | |||
3179 | // There is no stall when I is not a V60 vector. | |||
3180 | if (!isHVXVec(MI)) | |||
3181 | return false; | |||
3182 | ||||
3183 | MachineBasicBlock::const_instr_iterator MII = BII; | |||
3184 | MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end(); | |||
3185 | ||||
3186 | if (!MII->isBundle()) | |||
3187 | return producesStall(*MII, MI); | |||
3188 | ||||
3189 | for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) { | |||
3190 | const MachineInstr &J = *MII; | |||
3191 | if (producesStall(J, MI)) | |||
3192 | return true; | |||
3193 | } | |||
3194 | return false; | |||
3195 | } | |||
3196 | ||||
3197 | bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI, | |||
3198 | Register PredReg) const { | |||
3199 | for (const MachineOperand &MO : MI.operands()) { | |||
3200 | // Predicate register must be explicitly defined. | |||
3201 | if (MO.isRegMask() && MO.clobbersPhysReg(PredReg)) | |||
3202 | return false; | |||
3203 | if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg)) | |||
3204 | return false; | |||
3205 | } | |||
3206 | ||||
3207 | // Instruction that produce late predicate cannot be used as sources of | |||
3208 | // dot-new. | |||
3209 | switch (MI.getOpcode()) { | |||
3210 | case Hexagon::A4_addp_c: | |||
3211 | case Hexagon::A4_subp_c: | |||
3212 | case Hexagon::A4_tlbmatch: | |||
3213 | case Hexagon::A5_ACS: | |||
3214 | case Hexagon::F2_sfinvsqrta: | |||
3215 | case Hexagon::F2_sfrecipa: | |||
3216 | case Hexagon::J2_endloop0: | |||
3217 | case Hexagon::J2_endloop01: | |||
3218 | case Hexagon::J2_ploop1si: | |||
3219 | case Hexagon::J2_ploop1sr: | |||
3220 | case Hexagon::J2_ploop2si: | |||
3221 | case Hexagon::J2_ploop2sr: | |||
3222 | case Hexagon::J2_ploop3si: | |||
3223 | case Hexagon::J2_ploop3sr: | |||
3224 | case Hexagon::S2_cabacdecbin: | |||
3225 | case Hexagon::S2_storew_locked: | |||
3226 | case Hexagon::S4_stored_locked: | |||
3227 | return false; | |||
3228 | } | |||
3229 | return true; | |||
3230 | } | |||
3231 | ||||
3232 | bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const { | |||
3233 | return Opcode == Hexagon::J2_jumpt || | |||
3234 | Opcode == Hexagon::J2_jumptpt || | |||
3235 | Opcode == Hexagon::J2_jumpf || | |||
3236 | Opcode == Hexagon::J2_jumpfpt || | |||
3237 | Opcode == Hexagon::J2_jumptnew || | |||
3238 | Opcode == Hexagon::J2_jumpfnew || | |||
3239 | Opcode == Hexagon::J2_jumptnewpt || | |||
3240 | Opcode == Hexagon::J2_jumpfnewpt; | |||
3241 | } | |||
3242 | ||||
3243 | bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const { | |||
3244 | if (Cond.empty() || !isPredicated(Cond[0].getImm())) | |||
3245 | return false; | |||
3246 | return !isPredicatedTrue(Cond[0].getImm()); | |||
3247 | } | |||
3248 | ||||
3249 | unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const { | |||
3250 | const uint64_t F = MI.getDesc().TSFlags; | |||
3251 | return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; | |||
3252 | } | |||
3253 | ||||
3254 | // Returns the base register in a memory access (load/store). The offset is | |||
3255 | // returned in Offset and the access size is returned in AccessSize. | |||
3256 | // If the base operand has a subregister or the offset field does not contain | |||
3257 | // an immediate value, return nullptr. | |||
3258 | MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI, | |||
3259 | int64_t &Offset, | |||
3260 | unsigned &AccessSize) const { | |||
3261 | // Return if it is not a base+offset type instruction or a MemOp. | |||
3262 | if (getAddrMode(MI) != HexagonII::BaseImmOffset && | |||
3263 | getAddrMode(MI) != HexagonII::BaseLongOffset && | |||
3264 | !isMemOp(MI) && !isPostIncrement(MI)) | |||
3265 | return nullptr; | |||
3266 | ||||
3267 | AccessSize = getMemAccessSize(MI); | |||
3268 | ||||
3269 | unsigned BasePos = 0, OffsetPos = 0; | |||
3270 | if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) | |||
3271 | return nullptr; | |||
3272 | ||||
3273 | // Post increment updates its EA after the mem access, | |||
3274 | // so we need to treat its offset as zero. | |||
3275 | if (isPostIncrement(MI)) { | |||
3276 | Offset = 0; | |||
3277 | } else { | |||
3278 | const MachineOperand &OffsetOp = MI.getOperand(OffsetPos); | |||
3279 | if (!OffsetOp.isImm()) | |||
3280 | return nullptr; | |||
3281 | Offset = OffsetOp.getImm(); | |||
3282 | } | |||
3283 | ||||
3284 | const MachineOperand &BaseOp = MI.getOperand(BasePos); | |||
3285 | if (BaseOp.getSubReg() != 0) | |||
3286 | return nullptr; | |||
3287 | return &const_cast<MachineOperand&>(BaseOp); | |||
3288 | } | |||
3289 | ||||
3290 | /// Return the position of the base and offset operands for this instruction. | |||
3291 | bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI, | |||
3292 | unsigned &BasePos, unsigned &OffsetPos) const { | |||
3293 | if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI)) | |||
3294 | return false; | |||
3295 | ||||
3296 | // Deal with memops first. | |||
3297 | if (isMemOp(MI)) { | |||
3298 | BasePos = 0; | |||
3299 | OffsetPos = 1; | |||
3300 | } else if (MI.mayStore()) { | |||
3301 | BasePos = 0; | |||
3302 | OffsetPos = 1; | |||
3303 | } else if (MI.mayLoad()) { | |||
3304 | BasePos = 1; | |||
3305 | OffsetPos = 2; | |||
3306 | } else | |||
3307 | return false; | |||
3308 | ||||
3309 | if (isPredicated(MI)) { | |||
3310 | BasePos++; | |||
3311 | OffsetPos++; | |||
3312 | } | |||
3313 | if (isPostIncrement(MI)) { | |||
3314 | BasePos++; | |||
3315 | OffsetPos++; | |||
3316 | } | |||
3317 | ||||
3318 | if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm()) | |||
3319 | return false; | |||
3320 | ||||
3321 | return true; | |||
3322 | } | |||
3323 | ||||
3324 | // Inserts branching instructions in reverse order of their occurrence. | |||
3325 | // e.g. jump_t t1 (i1) | |||
3326 | // jump t2 (i2) | |||
3327 | // Jumpers = {i2, i1} | |||
3328 | SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs( | |||
3329 | MachineBasicBlock& MBB) const { | |||
3330 | SmallVector<MachineInstr*, 2> Jumpers; | |||
3331 | // If the block has no terminators, it just falls into the block after it. | |||
3332 | MachineBasicBlock::instr_iterator I = MBB.instr_end(); | |||
3333 | if (I == MBB.instr_begin()) | |||
3334 | return Jumpers; | |||
3335 | ||||
3336 | // A basic block may looks like this: | |||
3337 | // | |||
3338 | // [ insn | |||
3339 | // EH_LABEL | |||
3340 | // insn | |||
3341 | // insn | |||
3342 | // insn | |||
3343 | // EH_LABEL | |||
3344 | // insn ] | |||
3345 | // | |||
3346 | // It has two succs but does not have a terminator | |||
3347 | // Don't know how to handle it. | |||
3348 | do { | |||
3349 | --I; | |||
3350 | if (I->isEHLabel()) | |||
3351 | return Jumpers; | |||
3352 | } while (I != MBB.instr_begin()); | |||
3353 | ||||
3354 | I = MBB.instr_end(); | |||
3355 | --I; | |||
3356 | ||||
3357 | while (I->isDebugInstr()) { | |||
3358 | if (I == MBB.instr_begin()) | |||
3359 | return Jumpers; | |||
3360 | --I; | |||
3361 | } | |||
3362 | if (!isUnpredicatedTerminator(*I)) | |||
3363 | return Jumpers; | |||
3364 | ||||
3365 | // Get the last instruction in the block. | |||
3366 | MachineInstr *LastInst = &*I; | |||
3367 | Jumpers.push_back(LastInst); | |||
3368 | MachineInstr *SecondLastInst = nullptr; | |||
3369 | // Find one more terminator if present. | |||
3370 | do { | |||
3371 | if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) { | |||
3372 | if (!SecondLastInst) { | |||
3373 | SecondLastInst = &*I; | |||
3374 | Jumpers.push_back(SecondLastInst); | |||
3375 | } else // This is a third branch. | |||
3376 | return Jumpers; | |||
3377 | } | |||
3378 | if (I == MBB.instr_begin()) | |||
3379 | break; | |||
3380 | --I; | |||
3381 | } while (true); | |||
3382 | return Jumpers; | |||
3383 | } | |||
3384 | ||||
3385 | // Returns Operand Index for the constant extended instruction. | |||
3386 | unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const { | |||
3387 | const uint64_t F = MI.getDesc().TSFlags; | |||
3388 | return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask; | |||
3389 | } | |||
3390 | ||||
3391 | // See if instruction could potentially be a duplex candidate. | |||
3392 | // If so, return its group. Zero otherwise. | |||
3393 | HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup( | |||
3394 | const MachineInstr &MI) const { | |||
3395 | Register DstReg, SrcReg, Src1Reg, Src2Reg; | |||
3396 | ||||
3397 | switch (MI.getOpcode()) { | |||
3398 | default: | |||
3399 | return HexagonII::HCG_None; | |||
3400 | // | |||
3401 | // Compound pairs. | |||
3402 | // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2" | |||
3403 | // "Rd16=#U6 ; jump #r9:2" | |||
3404 | // "Rd16=Rs16 ; jump #r9:2" | |||
3405 | // | |||
3406 | case Hexagon::C2_cmpeq: | |||
3407 | case Hexagon::C2_cmpgt: | |||
3408 | case Hexagon::C2_cmpgtu: | |||
3409 | DstReg = MI.getOperand(0).getReg(); | |||
3410 | Src1Reg = MI.getOperand(1).getReg(); | |||
3411 | Src2Reg = MI.getOperand(2).getReg(); | |||
3412 | if (Hexagon::PredRegsRegClass.contains(DstReg) && | |||
3413 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && | |||
3414 | isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg)) | |||
3415 | return HexagonII::HCG_A; | |||
3416 | break; | |||
3417 | case Hexagon::C2_cmpeqi: | |||
3418 | case Hexagon::C2_cmpgti: | |||
3419 | case Hexagon::C2_cmpgtui: | |||
3420 | // P0 = cmp.eq(Rs,#u2) | |||
3421 | DstReg = MI.getOperand(0).getReg(); | |||
3422 | SrcReg = MI.getOperand(1).getReg(); | |||
3423 | if (Hexagon::PredRegsRegClass.contains(DstReg) && | |||
3424 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && | |||
3425 | isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() && | |||
3426 | ((isUInt<5>(MI.getOperand(2).getImm())) || | |||
3427 | (MI.getOperand(2).getImm() == -1))) | |||
3428 | return HexagonII::HCG_A; | |||
3429 | break; | |||
3430 | case Hexagon::A2_tfr: | |||
3431 | // Rd = Rs | |||
3432 | DstReg = MI.getOperand(0).getReg(); | |||
3433 | SrcReg = MI.getOperand(1).getReg(); | |||
3434 | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) | |||
3435 | return HexagonII::HCG_A; | |||
3436 | break; | |||
3437 | case Hexagon::A2_tfrsi: | |||
3438 | // Rd = #u6 | |||
3439 | // Do not test for #u6 size since the const is getting extended | |||
3440 | // regardless and compound could be formed. | |||
3441 | DstReg = MI.getOperand(0).getReg(); | |||
3442 | if (isIntRegForSubInst(DstReg)) | |||
3443 | return HexagonII::HCG_A; | |||
3444 | break; | |||
3445 | case Hexagon::S2_tstbit_i: | |||
3446 | DstReg = MI.getOperand(0).getReg(); | |||
3447 | Src1Reg = MI.getOperand(1).getReg(); | |||
3448 | if (Hexagon::PredRegsRegClass.contains(DstReg) && | |||
3449 | (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) && | |||
3450 | MI.getOperand(2).isImm() && | |||
3451 | isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0)) | |||
3452 | return HexagonII::HCG_A; | |||
3453 | break; | |||
3454 | // The fact that .new form is used pretty much guarantees | |||
3455 | // that predicate register will match. Nevertheless, | |||
3456 | // there could be some false positives without additional | |||
3457 | // checking. | |||
3458 | case Hexagon::J2_jumptnew: | |||
3459 | case Hexagon::J2_jumpfnew: | |||
3460 | case Hexagon::J2_jumptnewpt: | |||
3461 | case Hexagon::J2_jumpfnewpt: | |||
3462 | Src1Reg = MI.getOperand(0).getReg(); | |||
3463 | if (Hexagon::PredRegsRegClass.contains(Src1Reg) && | |||
3464 | (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg)) | |||
3465 | return HexagonII::HCG_B; | |||
3466 | break; | |||
3467 | // Transfer and jump: | |||
3468 | // Rd=#U6 ; jump #r9:2 | |||
3469 | // Rd=Rs ; jump #r9:2 | |||
3470 | // Do not test for jump range here. | |||
3471 | case Hexagon::J2_jump: | |||
3472 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: | |||
3473 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: | |||
3474 | return HexagonII::HCG_C; | |||
3475 | } | |||
3476 | ||||
3477 | return HexagonII::HCG_None; | |||
3478 | } | |||
3479 | ||||
3480 | // Returns -1 when there is no opcode found. | |||
3481 | unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA, | |||
3482 | const MachineInstr &GB) const { | |||
3483 | assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A)(static_cast <bool> (getCompoundCandidateGroup(GA) == HexagonII ::HCG_A) ? void (0) : __assert_fail ("getCompoundCandidateGroup(GA) == HexagonII::HCG_A" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 3483, __extension__ __PRETTY_FUNCTION__)); | |||
3484 | assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B)(static_cast <bool> (getCompoundCandidateGroup(GB) == HexagonII ::HCG_B) ? void (0) : __assert_fail ("getCompoundCandidateGroup(GB) == HexagonII::HCG_B" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 3484, __extension__ __PRETTY_FUNCTION__)); | |||
3485 | if ((GA.getOpcode() != Hexagon::C2_cmpeqi) || | |||
3486 | (GB.getOpcode() != Hexagon::J2_jumptnew)) | |||
3487 | return -1u; | |||
3488 | Register DestReg = GA.getOperand(0).getReg(); | |||
3489 | if (!GB.readsRegister(DestReg)) | |||
3490 | return -1u; | |||
3491 | if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1) | |||
3492 | return -1u; | |||
3493 | // The value compared against must be either u5 or -1. | |||
3494 | const MachineOperand &CmpOp = GA.getOperand(2); | |||
3495 | if (!CmpOp.isImm()) | |||
3496 | return -1u; | |||
3497 | int V = CmpOp.getImm(); | |||
3498 | if (V == -1) | |||
3499 | return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt | |||
3500 | : Hexagon::J4_cmpeqn1_tp1_jump_nt; | |||
3501 | if (!isUInt<5>(V)) | |||
3502 | return -1u; | |||
3503 | return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt | |||
3504 | : Hexagon::J4_cmpeqi_tp1_jump_nt; | |||
3505 | } | |||
3506 | ||||
3507 | // Returns -1 if there is no opcode found. | |||
3508 | int HexagonInstrInfo::getDuplexOpcode(const MachineInstr &MI, | |||
3509 | bool ForBigCore) const { | |||
3510 | // Static table to switch the opcodes across Tiny Core and Big Core. | |||
3511 | // dup_ opcodes are Big core opcodes. | |||
3512 | // NOTE: There are special instructions that need to handled later. | |||
3513 | // L4_return* instructions, they will only occupy SLOT0 (on big core too). | |||
3514 | // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2. | |||
3515 | // The compiler need to base the root instruction to L6_return_map_to_raw | |||
3516 | // which can go any slot. | |||
3517 | static const std::map<unsigned, unsigned> DupMap = { | |||
3518 | {Hexagon::A2_add, Hexagon::dup_A2_add}, | |||
3519 | {Hexagon::A2_addi, Hexagon::dup_A2_addi}, | |||
3520 | {Hexagon::A2_andir, Hexagon::dup_A2_andir}, | |||
3521 | {Hexagon::A2_combineii, Hexagon::dup_A2_combineii}, | |||
3522 | {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb}, | |||
3523 | {Hexagon::A2_sxth, Hexagon::dup_A2_sxth}, | |||
3524 | {Hexagon::A2_tfr, Hexagon::dup_A2_tfr}, | |||
3525 | {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi}, | |||
3526 | {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb}, | |||
3527 | {Hexagon::A2_zxth, Hexagon::dup_A2_zxth}, | |||
3528 | {Hexagon::A4_combineii, Hexagon::dup_A4_combineii}, | |||
3529 | {Hexagon::A4_combineir, Hexagon::dup_A4_combineir}, | |||
3530 | {Hexagon::A4_combineri, Hexagon::dup_A4_combineri}, | |||
3531 | {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif}, | |||
3532 | {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit}, | |||
3533 | {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif}, | |||
3534 | {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit}, | |||
3535 | {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi}, | |||
3536 | {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe}, | |||
3537 | {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io}, | |||
3538 | {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io}, | |||
3539 | {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io}, | |||
3540 | {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io}, | |||
3541 | {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io}, | |||
3542 | {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io}, | |||
3543 | {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe}, | |||
3544 | {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io}, | |||
3545 | {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io}, | |||
3546 | {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io}, | |||
3547 | {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io}, | |||
3548 | {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io}, | |||
3549 | {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io}, | |||
3550 | }; | |||
3551 | unsigned OpNum = MI.getOpcode(); | |||
3552 | // Conversion to Big core. | |||
3553 | if (ForBigCore) { | |||
3554 | auto Iter = DupMap.find(OpNum); | |||
3555 | if (Iter != DupMap.end()) | |||
3556 | return Iter->second; | |||
3557 | } else { // Conversion to Tiny core. | |||
3558 | for (const auto &Iter : DupMap) | |||
3559 | if (Iter.second == OpNum) | |||
3560 | return Iter.first; | |||
3561 | } | |||
3562 | return -1; | |||
3563 | } | |||
3564 | ||||
3565 | int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const { | |||
3566 | enum Hexagon::PredSense inPredSense; | |||
3567 | inPredSense = invertPredicate ? Hexagon::PredSense_false : | |||
3568 | Hexagon::PredSense_true; | |||
3569 | int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); | |||
3570 | if (CondOpcode >= 0) // Valid Conditional opcode/instruction | |||
3571 | return CondOpcode; | |||
3572 | ||||
3573 | llvm_unreachable("Unexpected predicable instruction")::llvm::llvm_unreachable_internal("Unexpected predicable instruction" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 3573); | |||
3574 | } | |||
3575 | ||||
3576 | // Return the cur value instruction for a given store. | |||
3577 | int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const { | |||
3578 | switch (MI.getOpcode()) { | |||
3579 | default: llvm_unreachable("Unknown .cur type")::llvm::llvm_unreachable_internal("Unknown .cur type", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 3579); | |||
3580 | case Hexagon::V6_vL32b_pi: | |||
3581 | return Hexagon::V6_vL32b_cur_pi; | |||
3582 | case Hexagon::V6_vL32b_ai: | |||
3583 | return Hexagon::V6_vL32b_cur_ai; | |||
3584 | case Hexagon::V6_vL32b_nt_pi: | |||
3585 | return Hexagon::V6_vL32b_nt_cur_pi; | |||
3586 | case Hexagon::V6_vL32b_nt_ai: | |||
3587 | return Hexagon::V6_vL32b_nt_cur_ai; | |||
3588 | case Hexagon::V6_vL32b_ppu: | |||
3589 | return Hexagon::V6_vL32b_cur_ppu; | |||
3590 | case Hexagon::V6_vL32b_nt_ppu: | |||
3591 | return Hexagon::V6_vL32b_nt_cur_ppu; | |||
3592 | } | |||
3593 | return 0; | |||
3594 | } | |||
3595 | ||||
3596 | // Return the regular version of the .cur instruction. | |||
3597 | int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const { | |||
3598 | switch (MI.getOpcode()) { | |||
3599 | default: llvm_unreachable("Unknown .cur type")::llvm::llvm_unreachable_internal("Unknown .cur type", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 3599); | |||
3600 | case Hexagon::V6_vL32b_cur_pi: | |||
3601 | return Hexagon::V6_vL32b_pi; | |||
3602 | case Hexagon::V6_vL32b_cur_ai: | |||
3603 | return Hexagon::V6_vL32b_ai; | |||
3604 | case Hexagon::V6_vL32b_nt_cur_pi: | |||
3605 | return Hexagon::V6_vL32b_nt_pi; | |||
3606 | case Hexagon::V6_vL32b_nt_cur_ai: | |||
3607 | return Hexagon::V6_vL32b_nt_ai; | |||
3608 | case Hexagon::V6_vL32b_cur_ppu: | |||
3609 | return Hexagon::V6_vL32b_ppu; | |||
3610 | case Hexagon::V6_vL32b_nt_cur_ppu: | |||
3611 | return Hexagon::V6_vL32b_nt_ppu; | |||
3612 | } | |||
3613 | return 0; | |||
3614 | } | |||
3615 | ||||
3616 | // The diagram below shows the steps involved in the conversion of a predicated | |||
3617 | // store instruction to its .new predicated new-value form. | |||
3618 | // | |||
3619 | // Note: It doesn't include conditional new-value stores as they can't be | |||
3620 | // converted to .new predicate. | |||
3621 | // | |||
3622 | // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] | |||
3623 | // ^ ^ | |||
3624 | // / \ (not OK. it will cause new-value store to be | |||
3625 | // / X conditional on p0.new while R2 producer is | |||
3626 | // / \ on p0) | |||
3627 | // / \. | |||
3628 | // p.new store p.old NV store | |||
3629 | // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] | |||
3630 | // ^ ^ | |||
3631 | // \ / | |||
3632 | // \ / | |||
3633 | // \ / | |||
3634 | // p.old store | |||
3635 | // [if (p0)memw(R0+#0)=R2] | |||
3636 | // | |||
3637 | // The following set of instructions further explains the scenario where | |||
3638 | // conditional new-value store becomes invalid when promoted to .new predicate | |||
3639 | // form. | |||
3640 | // | |||
3641 | // { 1) if (p0) r0 = add(r1, r2) | |||
3642 | // 2) p0 = cmp.eq(r3, #0) } | |||
3643 | // | |||
3644 | // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with | |||
3645 | // the first two instructions because in instr 1, r0 is conditional on old value | |||
3646 | // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which | |||
3647 | // is not valid for new-value stores. | |||
3648 | // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded | |||
3649 | // from the "Conditional Store" list. Because a predicated new value store | |||
3650 | // would NOT be promoted to a double dot new store. See diagram below: | |||
3651 | // This function returns yes for those stores that are predicated but not | |||
3652 | // yet promoted to predicate dot new instructions. | |||
3653 | // | |||
3654 | // +---------------------+ | |||
3655 | // /-----| if (p0) memw(..)=r0 |---------\~ | |||
3656 | // || +---------------------+ || | |||
3657 | // promote || /\ /\ || promote | |||
3658 | // || /||\ /||\ || | |||
3659 | // \||/ demote || \||/ | |||
3660 | // \/ || || \/ | |||
3661 | // +-------------------------+ || +-------------------------+ | |||
3662 | // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | | |||
3663 | // +-------------------------+ || +-------------------------+ | |||
3664 | // || || || | |||
3665 | // || demote \||/ | |||
3666 | // promote || \/ NOT possible | |||
3667 | // || || /\~ | |||
3668 | // \||/ || /||\~ | |||
3669 | // \/ || || | |||
3670 | // +-----------------------------+ | |||
3671 | // | if (p0.new) memw(..)=r0.new | | |||
3672 | // +-----------------------------+ | |||
3673 | // Double Dot New Store | |||
3674 | // | |||
3675 | // Returns the most basic instruction for the .new predicated instructions and | |||
3676 | // new-value stores. | |||
3677 | // For example, all of the following instructions will be converted back to the | |||
3678 | // same instruction: | |||
3679 | // 1) if (p0.new) memw(R0+#0) = R1.new ---> | |||
3680 | // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 | |||
3681 | // 3) if (p0.new) memw(R0+#0) = R1 ---> | |||
3682 | // | |||
3683 | // To understand the translation of instruction 1 to its original form, consider | |||
3684 | // a packet with 3 instructions. | |||
3685 | // { p0 = cmp.eq(R0,R1) | |||
3686 | // if (p0.new) R2 = add(R3, R4) | |||
3687 | // R5 = add (R3, R1) | |||
3688 | // } | |||
3689 | // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet | |||
3690 | // | |||
3691 | // This instruction can be part of the previous packet only if both p0 and R2 | |||
3692 | // are promoted to .new values. This promotion happens in steps, first | |||
3693 | // predicate register is promoted to .new and in the next iteration R2 is | |||
3694 | // promoted. Therefore, in case of dependence check failure (due to R5) during | |||
3695 | // next iteration, it should be converted back to its most basic form. | |||
3696 | ||||
3697 | // Return the new value instruction for a given store. | |||
3698 | int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const { | |||
3699 | int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode()); | |||
3700 | if (NVOpcode >= 0) // Valid new-value store instruction. | |||
3701 | return NVOpcode; | |||
3702 | ||||
3703 | switch (MI.getOpcode()) { | |||
3704 | default: | |||
3705 | report_fatal_error(Twine("Unknown .new type: ") + | |||
3706 | std::to_string(MI.getOpcode())); | |||
3707 | case Hexagon::S4_storerb_ur: | |||
3708 | return Hexagon::S4_storerbnew_ur; | |||
3709 | ||||
3710 | case Hexagon::S2_storerb_pci: | |||
3711 | return Hexagon::S2_storerb_pci; | |||
3712 | ||||
3713 | case Hexagon::S2_storeri_pci: | |||
3714 | return Hexagon::S2_storeri_pci; | |||
3715 | ||||
3716 | case Hexagon::S2_storerh_pci: | |||
3717 | return Hexagon::S2_storerh_pci; | |||
3718 | ||||
3719 | case Hexagon::S2_storerd_pci: | |||
3720 | return Hexagon::S2_storerd_pci; | |||
3721 | ||||
3722 | case Hexagon::S2_storerf_pci: | |||
3723 | return Hexagon::S2_storerf_pci; | |||
3724 | ||||
3725 | case Hexagon::V6_vS32b_ai: | |||
3726 | return Hexagon::V6_vS32b_new_ai; | |||
3727 | ||||
3728 | case Hexagon::V6_vS32b_pi: | |||
3729 | return Hexagon::V6_vS32b_new_pi; | |||
3730 | } | |||
3731 | return 0; | |||
3732 | } | |||
3733 | ||||
3734 | // Returns the opcode to use when converting MI, which is a conditional jump, | |||
3735 | // into a conditional instruction which uses the .new value of the predicate. | |||
3736 | // We also use branch probabilities to add a hint to the jump. | |||
3737 | // If MBPI is null, all edges will be treated as equally likely for the | |||
3738 | // purposes of establishing a predication hint. | |||
3739 | int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI, | |||
3740 | const MachineBranchProbabilityInfo *MBPI) const { | |||
3741 | // We assume that block can have at most two successors. | |||
3742 | const MachineBasicBlock *Src = MI.getParent(); | |||
3743 | const MachineOperand &BrTarget = MI.getOperand(1); | |||
3744 | bool Taken = false; | |||
3745 | const BranchProbability OneHalf(1, 2); | |||
3746 | ||||
3747 | auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src, | |||
3748 | const MachineBasicBlock *Dst) { | |||
3749 | if (MBPI) | |||
3750 | return MBPI->getEdgeProbability(Src, Dst); | |||
3751 | return BranchProbability(1, Src->succ_size()); | |||
3752 | }; | |||
3753 | ||||
3754 | if (BrTarget.isMBB()) { | |||
3755 | const MachineBasicBlock *Dst = BrTarget.getMBB(); | |||
3756 | Taken = getEdgeProbability(Src, Dst) >= OneHalf; | |||
3757 | } else { | |||
3758 | // The branch target is not a basic block (most likely a function). | |||
3759 | // Since BPI only gives probabilities for targets that are basic blocks, | |||
3760 | // try to identify another target of this branch (potentially a fall- | |||
3761 | // -through) and check the probability of that target. | |||
3762 | // | |||
3763 | // The only handled branch combinations are: | |||
3764 | // - one conditional branch, | |||
3765 | // - one conditional branch followed by one unconditional branch. | |||
3766 | // Otherwise, assume not-taken. | |||
3767 | assert(MI.isConditionalBranch())(static_cast <bool> (MI.isConditionalBranch()) ? void ( 0) : __assert_fail ("MI.isConditionalBranch()", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 3767, __extension__ __PRETTY_FUNCTION__)); | |||
3768 | const MachineBasicBlock &B = *MI.getParent(); | |||
3769 | bool SawCond = false, Bad = false; | |||
3770 | for (const MachineInstr &I : B) { | |||
3771 | if (!I.isBranch()) | |||
3772 | continue; | |||
3773 | if (I.isConditionalBranch()) { | |||
3774 | SawCond = true; | |||
3775 | if (&I != &MI) { | |||
3776 | Bad = true; | |||
3777 | break; | |||
3778 | } | |||
3779 | } | |||
3780 | if (I.isUnconditionalBranch() && !SawCond) { | |||
3781 | Bad = true; | |||
3782 | break; | |||
3783 | } | |||
3784 | } | |||
3785 | if (!Bad) { | |||
3786 | MachineBasicBlock::const_instr_iterator It(MI); | |||
3787 | MachineBasicBlock::const_instr_iterator NextIt = std::next(It); | |||
3788 | if (NextIt == B.instr_end()) { | |||
3789 | // If this branch is the last, look for the fall-through block. | |||
3790 | for (const MachineBasicBlock *SB : B.successors()) { | |||
3791 | if (!B.isLayoutSuccessor(SB)) | |||
3792 | continue; | |||
3793 | Taken = getEdgeProbability(Src, SB) < OneHalf; | |||
3794 | break; | |||
3795 | } | |||
3796 | } else { | |||
3797 | assert(NextIt->isUnconditionalBranch())(static_cast <bool> (NextIt->isUnconditionalBranch() ) ? void (0) : __assert_fail ("NextIt->isUnconditionalBranch()" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 3797, __extension__ __PRETTY_FUNCTION__)); | |||
3798 | // Find the first MBB operand and assume it's the target. | |||
3799 | const MachineBasicBlock *BT = nullptr; | |||
3800 | for (const MachineOperand &Op : NextIt->operands()) { | |||
3801 | if (!Op.isMBB()) | |||
3802 | continue; | |||
3803 | BT = Op.getMBB(); | |||
3804 | break; | |||
3805 | } | |||
3806 | Taken = BT && getEdgeProbability(Src, BT) < OneHalf; | |||
3807 | } | |||
3808 | } // if (!Bad) | |||
3809 | } | |||
3810 | ||||
3811 | // The Taken flag should be set to something reasonable by this point. | |||
3812 | ||||
3813 | switch (MI.getOpcode()) { | |||
3814 | case Hexagon::J2_jumpt: | |||
3815 | return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew; | |||
3816 | case Hexagon::J2_jumpf: | |||
3817 | return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew; | |||
3818 | ||||
3819 | default: | |||
3820 | llvm_unreachable("Unexpected jump instruction.")::llvm::llvm_unreachable_internal("Unexpected jump instruction." , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 3820); | |||
3821 | } | |||
3822 | } | |||
3823 | ||||
3824 | // Return .new predicate version for an instruction. | |||
3825 | int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI, | |||
3826 | const MachineBranchProbabilityInfo *MBPI) const { | |||
3827 | switch (MI.getOpcode()) { | |||
3828 | // Condtional Jumps | |||
3829 | case Hexagon::J2_jumpt: | |||
3830 | case Hexagon::J2_jumpf: | |||
3831 | return getDotNewPredJumpOp(MI, MBPI); | |||
3832 | } | |||
3833 | ||||
3834 | int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode()); | |||
3835 | if (NewOpcode >= 0) | |||
3836 | return NewOpcode; | |||
3837 | return 0; | |||
3838 | } | |||
3839 | ||||
3840 | int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const { | |||
3841 | int NewOp = MI.getOpcode(); | |||
3842 | if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form | |||
3843 | NewOp = Hexagon::getPredOldOpcode(NewOp); | |||
3844 | // All Hexagon architectures have prediction bits on dot-new branches, | |||
3845 | // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure | |||
3846 | // to pick the right opcode when converting back to dot-old. | |||
3847 | if (!Subtarget.hasFeature(Hexagon::ArchV60)) { | |||
3848 | switch (NewOp) { | |||
3849 | case Hexagon::J2_jumptpt: | |||
3850 | NewOp = Hexagon::J2_jumpt; | |||
3851 | break; | |||
3852 | case Hexagon::J2_jumpfpt: | |||
3853 | NewOp = Hexagon::J2_jumpf; | |||
3854 | break; | |||
3855 | case Hexagon::J2_jumprtpt: | |||
3856 | NewOp = Hexagon::J2_jumprt; | |||
3857 | break; | |||
3858 | case Hexagon::J2_jumprfpt: | |||
3859 | NewOp = Hexagon::J2_jumprf; | |||
3860 | break; | |||
3861 | } | |||
3862 | } | |||
3863 | assert(NewOp >= 0 &&(static_cast <bool> (NewOp >= 0 && "Couldn't change predicate new instruction to its old form." ) ? void (0) : __assert_fail ("NewOp >= 0 && \"Couldn't change predicate new instruction to its old form.\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 3864, __extension__ __PRETTY_FUNCTION__)) | |||
3864 | "Couldn't change predicate new instruction to its old form.")(static_cast <bool> (NewOp >= 0 && "Couldn't change predicate new instruction to its old form." ) ? void (0) : __assert_fail ("NewOp >= 0 && \"Couldn't change predicate new instruction to its old form.\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 3864, __extension__ __PRETTY_FUNCTION__)); | |||
3865 | } | |||
3866 | ||||
3867 | if (isNewValueStore(NewOp)) { // Convert into non-new-value format | |||
3868 | NewOp = Hexagon::getNonNVStore(NewOp); | |||
3869 | assert(NewOp >= 0 && "Couldn't change new-value store to its old form.")(static_cast <bool> (NewOp >= 0 && "Couldn't change new-value store to its old form." ) ? void (0) : __assert_fail ("NewOp >= 0 && \"Couldn't change new-value store to its old form.\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 3869, __extension__ __PRETTY_FUNCTION__)); | |||
3870 | } | |||
3871 | ||||
3872 | if (Subtarget.hasV60Ops()) | |||
3873 | return NewOp; | |||
3874 | ||||
3875 | // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps. | |||
3876 | switch (NewOp) { | |||
3877 | case Hexagon::J2_jumpfpt: | |||
3878 | return Hexagon::J2_jumpf; | |||
3879 | case Hexagon::J2_jumptpt: | |||
3880 | return Hexagon::J2_jumpt; | |||
3881 | case Hexagon::J2_jumprfpt: | |||
3882 | return Hexagon::J2_jumprf; | |||
3883 | case Hexagon::J2_jumprtpt: | |||
3884 | return Hexagon::J2_jumprt; | |||
3885 | } | |||
3886 | return NewOp; | |||
3887 | } | |||
3888 | ||||
3889 | // See if instruction could potentially be a duplex candidate. | |||
3890 | // If so, return its group. Zero otherwise. | |||
3891 | HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup( | |||
3892 | const MachineInstr &MI) const { | |||
3893 | Register DstReg, SrcReg, Src1Reg, Src2Reg; | |||
3894 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | |||
3895 | ||||
3896 | switch (MI.getOpcode()) { | |||
3897 | default: | |||
3898 | return HexagonII::HSIG_None; | |||
3899 | // | |||
3900 | // Group L1: | |||
3901 | // | |||
3902 | // Rd = memw(Rs+#u4:2) | |||
3903 | // Rd = memub(Rs+#u4:0) | |||
3904 | case Hexagon::L2_loadri_io: | |||
3905 | case Hexagon::dup_L2_loadri_io: | |||
3906 | DstReg = MI.getOperand(0).getReg(); | |||
3907 | SrcReg = MI.getOperand(1).getReg(); | |||
3908 | // Special case this one from Group L2. | |||
3909 | // Rd = memw(r29+#u5:2) | |||
3910 | if (isIntRegForSubInst(DstReg)) { | |||
3911 | if (Hexagon::IntRegsRegClass.contains(SrcReg) && | |||
3912 | HRI.getStackRegister() == SrcReg && | |||
3913 | MI.getOperand(2).isImm() && | |||
3914 | isShiftedUInt<5,2>(MI.getOperand(2).getImm())) | |||
3915 | return HexagonII::HSIG_L2; | |||
3916 | // Rd = memw(Rs+#u4:2) | |||
3917 | if (isIntRegForSubInst(SrcReg) && | |||
3918 | (MI.getOperand(2).isImm() && | |||
3919 | isShiftedUInt<4,2>(MI.getOperand(2).getImm()))) | |||
3920 | return HexagonII::HSIG_L1; | |||
3921 | } | |||
3922 | break; | |||
3923 | case Hexagon::L2_loadrub_io: | |||
3924 | case Hexagon::dup_L2_loadrub_io: | |||
3925 | // Rd = memub(Rs+#u4:0) | |||
3926 | DstReg = MI.getOperand(0).getReg(); | |||
3927 | SrcReg = MI.getOperand(1).getReg(); | |||
3928 | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && | |||
3929 | MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm())) | |||
3930 | return HexagonII::HSIG_L1; | |||
3931 | break; | |||
3932 | // | |||
3933 | // Group L2: | |||
3934 | // | |||
3935 | // Rd = memh/memuh(Rs+#u3:1) | |||
3936 | // Rd = memb(Rs+#u3:0) | |||
3937 | // Rd = memw(r29+#u5:2) - Handled above. | |||
3938 | // Rdd = memd(r29+#u5:3) | |||
3939 | // deallocframe | |||
3940 | // [if ([!]p0[.new])] dealloc_return | |||
3941 | // [if ([!]p0[.new])] jumpr r31 | |||
3942 | case Hexagon::L2_loadrh_io: | |||
3943 | case Hexagon::L2_loadruh_io: | |||
3944 | case Hexagon::dup_L2_loadrh_io: | |||
3945 | case Hexagon::dup_L2_loadruh_io: | |||
3946 | // Rd = memh/memuh(Rs+#u3:1) | |||
3947 | DstReg = MI.getOperand(0).getReg(); | |||
3948 | SrcReg = MI.getOperand(1).getReg(); | |||
3949 | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && | |||
3950 | MI.getOperand(2).isImm() && | |||
3951 | isShiftedUInt<3,1>(MI.getOperand(2).getImm())) | |||
3952 | return HexagonII::HSIG_L2; | |||
3953 | break; | |||
3954 | case Hexagon::L2_loadrb_io: | |||
3955 | case Hexagon::dup_L2_loadrb_io: | |||
3956 | // Rd = memb(Rs+#u3:0) | |||
3957 | DstReg = MI.getOperand(0).getReg(); | |||
3958 | SrcReg = MI.getOperand(1).getReg(); | |||
3959 | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && | |||
3960 | MI.getOperand(2).isImm() && | |||
3961 | isUInt<3>(MI.getOperand(2).getImm())) | |||
3962 | return HexagonII::HSIG_L2; | |||
3963 | break; | |||
3964 | case Hexagon::L2_loadrd_io: | |||
3965 | case Hexagon::dup_L2_loadrd_io: | |||
3966 | // Rdd = memd(r29+#u5:3) | |||
3967 | DstReg = MI.getOperand(0).getReg(); | |||
3968 | SrcReg = MI.getOperand(1).getReg(); | |||
3969 | if (isDblRegForSubInst(DstReg, HRI) && | |||
3970 | Hexagon::IntRegsRegClass.contains(SrcReg) && | |||
3971 | HRI.getStackRegister() == SrcReg && | |||
3972 | MI.getOperand(2).isImm() && | |||
3973 | isShiftedUInt<5,3>(MI.getOperand(2).getImm())) | |||
3974 | return HexagonII::HSIG_L2; | |||
3975 | break; | |||
3976 | // dealloc_return is not documented in Hexagon Manual, but marked | |||
3977 | // with A_SUBINSN attribute in iset_v4classic.py. | |||
3978 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: | |||
3979 | case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: | |||
3980 | case Hexagon::L4_return: | |||
3981 | case Hexagon::L2_deallocframe: | |||
3982 | case Hexagon::dup_L2_deallocframe: | |||
3983 | return HexagonII::HSIG_L2; | |||
3984 | case Hexagon::EH_RETURN_JMPR: | |||
3985 | case Hexagon::PS_jmpret: | |||
3986 | case Hexagon::SL2_jumpr31: | |||
3987 | // jumpr r31 | |||
3988 | // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0 | |||
3989 | DstReg = MI.getOperand(0).getReg(); | |||
3990 | if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)) | |||
3991 | return HexagonII::HSIG_L2; | |||
3992 | break; | |||
3993 | case Hexagon::PS_jmprett: | |||
3994 | case Hexagon::PS_jmpretf: | |||
3995 | case Hexagon::PS_jmprettnewpt: | |||
3996 | case Hexagon::PS_jmpretfnewpt: | |||
3997 | case Hexagon::PS_jmprettnew: | |||
3998 | case Hexagon::PS_jmpretfnew: | |||
3999 | case Hexagon::SL2_jumpr31_t: | |||
4000 | case Hexagon::SL2_jumpr31_f: | |||
4001 | case Hexagon::SL2_jumpr31_tnew: | |||
4002 | case Hexagon::SL2_jumpr31_fnew: | |||
4003 | DstReg = MI.getOperand(1).getReg(); | |||
4004 | SrcReg = MI.getOperand(0).getReg(); | |||
4005 | // [if ([!]p0[.new])] jumpr r31 | |||
4006 | if ((Hexagon::PredRegsRegClass.contains(SrcReg) && | |||
4007 | (Hexagon::P0 == SrcReg)) && | |||
4008 | (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))) | |||
4009 | return HexagonII::HSIG_L2; | |||
4010 | break; | |||
4011 | case Hexagon::L4_return_t: | |||
4012 | case Hexagon::L4_return_f: | |||
4013 | case Hexagon::L4_return_tnew_pnt: | |||
4014 | case Hexagon::L4_return_fnew_pnt: | |||
4015 | case Hexagon::L4_return_tnew_pt: | |||
4016 | case Hexagon::L4_return_fnew_pt: | |||
4017 | // [if ([!]p0[.new])] dealloc_return | |||
4018 | SrcReg = MI.getOperand(0).getReg(); | |||
4019 | if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg)) | |||
4020 | return HexagonII::HSIG_L2; | |||
4021 | break; | |||
4022 | // | |||
4023 | // Group S1: | |||
4024 | // | |||
4025 | // memw(Rs+#u4:2) = Rt | |||
4026 | // memb(Rs+#u4:0) = Rt | |||
4027 | case Hexagon::S2_storeri_io: | |||
4028 | case Hexagon::dup_S2_storeri_io: | |||
4029 | // Special case this one from Group S2. | |||
4030 | // memw(r29+#u5:2) = Rt | |||
4031 | Src1Reg = MI.getOperand(0).getReg(); | |||
4032 | Src2Reg = MI.getOperand(2).getReg(); | |||
4033 | if (Hexagon::IntRegsRegClass.contains(Src1Reg) && | |||
4034 | isIntRegForSubInst(Src2Reg) && | |||
4035 | HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() && | |||
4036 | isShiftedUInt<5,2>(MI.getOperand(1).getImm())) | |||
4037 | return HexagonII::HSIG_S2; | |||
4038 | // memw(Rs+#u4:2) = Rt | |||
4039 | if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && | |||
4040 | MI.getOperand(1).isImm() && | |||
4041 | isShiftedUInt<4,2>(MI.getOperand(1).getImm())) | |||
4042 | return HexagonII::HSIG_S1; | |||
4043 | break; | |||
4044 | case Hexagon::S2_storerb_io: | |||
4045 | case Hexagon::dup_S2_storerb_io: | |||
4046 | // memb(Rs+#u4:0) = Rt | |||
4047 | Src1Reg = MI.getOperand(0).getReg(); | |||
4048 | Src2Reg = MI.getOperand(2).getReg(); | |||
4049 | if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && | |||
4050 | MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm())) | |||
4051 | return HexagonII::HSIG_S1; | |||
4052 | break; | |||
4053 | // | |||
4054 | // Group S2: | |||
4055 | // | |||
4056 | // memh(Rs+#u3:1) = Rt | |||
4057 | // memw(r29+#u5:2) = Rt | |||
4058 | // memd(r29+#s6:3) = Rtt | |||
4059 | // memw(Rs+#u4:2) = #U1 | |||
4060 | // memb(Rs+#u4) = #U1 | |||
4061 | // allocframe(#u5:3) | |||
4062 | case Hexagon::S2_storerh_io: | |||
4063 | case Hexagon::dup_S2_storerh_io: | |||
4064 | // memh(Rs+#u3:1) = Rt | |||
4065 | Src1Reg = MI.getOperand(0).getReg(); | |||
4066 | Src2Reg = MI.getOperand(2).getReg(); | |||
4067 | if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) && | |||
4068 | MI.getOperand(1).isImm() && | |||
4069 | isShiftedUInt<3,1>(MI.getOperand(1).getImm())) | |||
4070 | return HexagonII::HSIG_S1; | |||
4071 | break; | |||
4072 | case Hexagon::S2_storerd_io: | |||
4073 | case Hexagon::dup_S2_storerd_io: | |||
4074 | // memd(r29+#s6:3) = Rtt | |||
4075 | Src1Reg = MI.getOperand(0).getReg(); | |||
4076 | Src2Reg = MI.getOperand(2).getReg(); | |||
4077 | if (isDblRegForSubInst(Src2Reg, HRI) && | |||
4078 | Hexagon::IntRegsRegClass.contains(Src1Reg) && | |||
4079 | HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() && | |||
4080 | isShiftedInt<6,3>(MI.getOperand(1).getImm())) | |||
4081 | return HexagonII::HSIG_S2; | |||
4082 | break; | |||
4083 | case Hexagon::S4_storeiri_io: | |||
4084 | case Hexagon::dup_S4_storeiri_io: | |||
4085 | // memw(Rs+#u4:2) = #U1 | |||
4086 | Src1Reg = MI.getOperand(0).getReg(); | |||
4087 | if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() && | |||
4088 | isShiftedUInt<4,2>(MI.getOperand(1).getImm()) && | |||
4089 | MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm())) | |||
4090 | return HexagonII::HSIG_S2; | |||
4091 | break; | |||
4092 | case Hexagon::S4_storeirb_io: | |||
4093 | case Hexagon::dup_S4_storeirb_io: | |||
4094 | // memb(Rs+#u4) = #U1 | |||
4095 | Src1Reg = MI.getOperand(0).getReg(); | |||
4096 | if (isIntRegForSubInst(Src1Reg) && | |||
4097 | MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) && | |||
4098 | MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm())) | |||
4099 | return HexagonII::HSIG_S2; | |||
4100 | break; | |||
4101 | case Hexagon::S2_allocframe: | |||
4102 | case Hexagon::dup_S2_allocframe: | |||
4103 | if (MI.getOperand(2).isImm() && | |||
4104 | isShiftedUInt<5,3>(MI.getOperand(2).getImm())) | |||
4105 | return HexagonII::HSIG_S1; | |||
4106 | break; | |||
4107 | // | |||
4108 | // Group A: | |||
4109 | // | |||
4110 | // Rx = add(Rx,#s7) | |||
4111 | // Rd = Rs | |||
4112 | // Rd = #u6 | |||
4113 | // Rd = #-1 | |||
4114 | // if ([!]P0[.new]) Rd = #0 | |||
4115 | // Rd = add(r29,#u6:2) | |||
4116 | // Rx = add(Rx,Rs) | |||
4117 | // P0 = cmp.eq(Rs,#u2) | |||
4118 | // Rdd = combine(#0,Rs) | |||
4119 | // Rdd = combine(Rs,#0) | |||
4120 | // Rdd = combine(#u2,#U2) | |||
4121 | // Rd = add(Rs,#1) | |||
4122 | // Rd = add(Rs,#-1) | |||
4123 | // Rd = sxth/sxtb/zxtb/zxth(Rs) | |||
4124 | // Rd = and(Rs,#1) | |||
4125 | case Hexagon::A2_addi: | |||
4126 | case Hexagon::dup_A2_addi: | |||
4127 | DstReg = MI.getOperand(0).getReg(); | |||
4128 | SrcReg = MI.getOperand(1).getReg(); | |||
4129 | if (isIntRegForSubInst(DstReg)) { | |||
4130 | // Rd = add(r29,#u6:2) | |||
4131 | if (Hexagon::IntRegsRegClass.contains(SrcReg) && | |||
4132 | HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() && | |||
4133 | isShiftedUInt<6,2>(MI.getOperand(2).getImm())) | |||
4134 | return HexagonII::HSIG_A; | |||
4135 | // Rx = add(Rx,#s7) | |||
4136 | if ((DstReg == SrcReg) && MI.getOperand(2).isImm() && | |||
4137 | isInt<7>(MI.getOperand(2).getImm())) | |||
4138 | return HexagonII::HSIG_A; | |||
4139 | // Rd = add(Rs,#1) | |||
4140 | // Rd = add(Rs,#-1) | |||
4141 | if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() && | |||
4142 | ((MI.getOperand(2).getImm() == 1) || | |||
4143 | (MI.getOperand(2).getImm() == -1))) | |||
4144 | return HexagonII::HSIG_A; | |||
4145 | } | |||
4146 | break; | |||
4147 | case Hexagon::A2_add: | |||
4148 | case Hexagon::dup_A2_add: | |||
4149 | // Rx = add(Rx,Rs) | |||
4150 | DstReg = MI.getOperand(0).getReg(); | |||
4151 | Src1Reg = MI.getOperand(1).getReg(); | |||
4152 | Src2Reg = MI.getOperand(2).getReg(); | |||
4153 | if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) && | |||
4154 | isIntRegForSubInst(Src2Reg)) | |||
4155 | return HexagonII::HSIG_A; | |||
4156 | break; | |||
4157 | case Hexagon::A2_andir: | |||
4158 | case Hexagon::dup_A2_andir: | |||
4159 | // Same as zxtb. | |||
4160 | // Rd16=and(Rs16,#255) | |||
4161 | // Rd16=and(Rs16,#1) | |||
4162 | DstReg = MI.getOperand(0).getReg(); | |||
4163 | SrcReg = MI.getOperand(1).getReg(); | |||
4164 | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) && | |||
4165 | MI.getOperand(2).isImm() && | |||
4166 | ((MI.getOperand(2).getImm() == 1) || | |||
4167 | (MI.getOperand(2).getImm() == 255))) | |||
4168 | return HexagonII::HSIG_A; | |||
4169 | break; | |||
4170 | case Hexagon::A2_tfr: | |||
4171 | case Hexagon::dup_A2_tfr: | |||
4172 | // Rd = Rs | |||
4173 | DstReg = MI.getOperand(0).getReg(); | |||
4174 | SrcReg = MI.getOperand(1).getReg(); | |||
4175 | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) | |||
4176 | return HexagonII::HSIG_A; | |||
4177 | break; | |||
4178 | case Hexagon::A2_tfrsi: | |||
4179 | case Hexagon::dup_A2_tfrsi: | |||
4180 | // Rd = #u6 | |||
4181 | // Do not test for #u6 size since the const is getting extended | |||
4182 | // regardless and compound could be formed. | |||
4183 | // Rd = #-1 | |||
4184 | DstReg = MI.getOperand(0).getReg(); | |||
4185 | if (isIntRegForSubInst(DstReg)) | |||
4186 | return HexagonII::HSIG_A; | |||
4187 | break; | |||
4188 | case Hexagon::C2_cmoveit: | |||
4189 | case Hexagon::C2_cmovenewit: | |||
4190 | case Hexagon::C2_cmoveif: | |||
4191 | case Hexagon::C2_cmovenewif: | |||
4192 | case Hexagon::dup_C2_cmoveit: | |||
4193 | case Hexagon::dup_C2_cmovenewit: | |||
4194 | case Hexagon::dup_C2_cmoveif: | |||
4195 | case Hexagon::dup_C2_cmovenewif: | |||
4196 | // if ([!]P0[.new]) Rd = #0 | |||
4197 | // Actual form: | |||
4198 | // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16; | |||
4199 | DstReg = MI.getOperand(0).getReg(); | |||
4200 | SrcReg = MI.getOperand(1).getReg(); | |||
4201 | if (isIntRegForSubInst(DstReg) && | |||
4202 | Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg && | |||
4203 | MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) | |||
4204 | return HexagonII::HSIG_A; | |||
4205 | break; | |||
4206 | case Hexagon::C2_cmpeqi: | |||
4207 | case Hexagon::dup_C2_cmpeqi: | |||
4208 | // P0 = cmp.eq(Rs,#u2) | |||
4209 | DstReg = MI.getOperand(0).getReg(); | |||
4210 | SrcReg = MI.getOperand(1).getReg(); | |||
4211 | if (Hexagon::PredRegsRegClass.contains(DstReg) && | |||
4212 | Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) && | |||
4213 | MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) | |||
4214 | return HexagonII::HSIG_A; | |||
4215 | break; | |||
4216 | case Hexagon::A2_combineii: | |||
4217 | case Hexagon::A4_combineii: | |||
4218 | case Hexagon::dup_A2_combineii: | |||
4219 | case Hexagon::dup_A4_combineii: | |||
4220 | // Rdd = combine(#u2,#U2) | |||
4221 | DstReg = MI.getOperand(0).getReg(); | |||
4222 | if (isDblRegForSubInst(DstReg, HRI) && | |||
4223 | ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) || | |||
4224 | (MI.getOperand(1).isGlobal() && | |||
4225 | isUInt<2>(MI.getOperand(1).getOffset()))) && | |||
4226 | ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) || | |||
4227 | (MI.getOperand(2).isGlobal() && | |||
4228 | isUInt<2>(MI.getOperand(2).getOffset())))) | |||
4229 | return HexagonII::HSIG_A; | |||
4230 | break; | |||
4231 | case Hexagon::A4_combineri: | |||
4232 | case Hexagon::dup_A4_combineri: | |||
4233 | // Rdd = combine(Rs,#0) | |||
4234 | // Rdd = combine(Rs,#0) | |||
4235 | DstReg = MI.getOperand(0).getReg(); | |||
4236 | SrcReg = MI.getOperand(1).getReg(); | |||
4237 | if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) && | |||
4238 | ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) || | |||
4239 | (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0))) | |||
4240 | return HexagonII::HSIG_A; | |||
4241 | break; | |||
4242 | case Hexagon::A4_combineir: | |||
4243 | case Hexagon::dup_A4_combineir: | |||
4244 | // Rdd = combine(#0,Rs) | |||
4245 | DstReg = MI.getOperand(0).getReg(); | |||
4246 | SrcReg = MI.getOperand(2).getReg(); | |||
4247 | if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) && | |||
4248 | ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) || | |||
4249 | (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0))) | |||
4250 | return HexagonII::HSIG_A; | |||
4251 | break; | |||
4252 | case Hexagon::A2_sxtb: | |||
4253 | case Hexagon::A2_sxth: | |||
4254 | case Hexagon::A2_zxtb: | |||
4255 | case Hexagon::A2_zxth: | |||
4256 | case Hexagon::dup_A2_sxtb: | |||
4257 | case Hexagon::dup_A2_sxth: | |||
4258 | case Hexagon::dup_A2_zxtb: | |||
4259 | case Hexagon::dup_A2_zxth: | |||
4260 | // Rd = sxth/sxtb/zxtb/zxth(Rs) | |||
4261 | DstReg = MI.getOperand(0).getReg(); | |||
4262 | SrcReg = MI.getOperand(1).getReg(); | |||
4263 | if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg)) | |||
4264 | return HexagonII::HSIG_A; | |||
4265 | break; | |||
4266 | } | |||
4267 | ||||
4268 | return HexagonII::HSIG_None; | |||
4269 | } | |||
4270 | ||||
4271 | short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const { | |||
4272 | return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real); | |||
4273 | } | |||
4274 | ||||
4275 | unsigned HexagonInstrInfo::getInstrTimingClassLatency( | |||
4276 | const InstrItineraryData *ItinData, const MachineInstr &MI) const { | |||
4277 | // Default to one cycle for no itinerary. However, an "empty" itinerary may | |||
4278 | // still have a MinLatency property, which getStageLatency checks. | |||
4279 | if (!ItinData) | |||
4280 | return getInstrLatency(ItinData, MI); | |||
4281 | ||||
4282 | if (MI.isTransient()) | |||
4283 | return 0; | |||
4284 | return ItinData->getStageLatency(MI.getDesc().getSchedClass()); | |||
4285 | } | |||
4286 | ||||
4287 | /// getOperandLatency - Compute and return the use operand latency of a given | |||
4288 | /// pair of def and use. | |||
4289 | /// In most cases, the static scheduling itinerary was enough to determine the | |||
4290 | /// operand latency. But it may not be possible for instructions with variable | |||
4291 | /// number of defs / uses. | |||
4292 | /// | |||
4293 | /// This is a raw interface to the itinerary that may be directly overriden by | |||
4294 | /// a target. Use computeOperandLatency to get the best estimate of latency. | |||
4295 | int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | |||
4296 | const MachineInstr &DefMI, | |||
4297 | unsigned DefIdx, | |||
4298 | const MachineInstr &UseMI, | |||
4299 | unsigned UseIdx) const { | |||
4300 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | |||
4301 | ||||
4302 | // Get DefIdx and UseIdx for super registers. | |||
4303 | const MachineOperand &DefMO = DefMI.getOperand(DefIdx); | |||
4304 | ||||
4305 | if (DefMO.isReg() && DefMO.getReg().isPhysical()) { | |||
4306 | if (DefMO.isImplicit()) { | |||
4307 | for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) { | |||
4308 | int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI); | |||
4309 | if (Idx != -1) { | |||
4310 | DefIdx = Idx; | |||
4311 | break; | |||
4312 | } | |||
4313 | } | |||
4314 | } | |||
4315 | ||||
4316 | const MachineOperand &UseMO = UseMI.getOperand(UseIdx); | |||
4317 | if (UseMO.isImplicit()) { | |||
4318 | for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) { | |||
4319 | int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI); | |||
4320 | if (Idx != -1) { | |||
4321 | UseIdx = Idx; | |||
4322 | break; | |||
4323 | } | |||
4324 | } | |||
4325 | } | |||
4326 | } | |||
4327 | ||||
4328 | int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, | |||
4329 | UseMI, UseIdx); | |||
4330 | if (!Latency) | |||
4331 | // We should never have 0 cycle latency between two instructions unless | |||
4332 | // they can be packetized together. However, this decision can't be made | |||
4333 | // here. | |||
4334 | Latency = 1; | |||
4335 | return Latency; | |||
4336 | } | |||
4337 | ||||
4338 | // inverts the predication logic. | |||
4339 | // p -> NotP | |||
4340 | // NotP -> P | |||
4341 | bool HexagonInstrInfo::getInvertedPredSense( | |||
4342 | SmallVectorImpl<MachineOperand> &Cond) const { | |||
4343 | if (Cond.empty()) | |||
4344 | return false; | |||
4345 | unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm()); | |||
4346 | Cond[0].setImm(Opc); | |||
4347 | return true; | |||
4348 | } | |||
4349 | ||||
4350 | unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { | |||
4351 | int InvPredOpcode; | |||
4352 | InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) | |||
4353 | : Hexagon::getTruePredOpcode(Opc); | |||
4354 | if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. | |||
4355 | return InvPredOpcode; | |||
4356 | ||||
4357 | llvm_unreachable("Unexpected predicated instruction")::llvm::llvm_unreachable_internal("Unexpected predicated instruction" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4357); | |||
4358 | } | |||
4359 | ||||
4360 | // Returns the max value that doesn't need to be extended. | |||
4361 | int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const { | |||
4362 | const uint64_t F = MI.getDesc().TSFlags; | |||
4363 | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) | |||
4364 | & HexagonII::ExtentSignedMask; | |||
4365 | unsigned bits = (F >> HexagonII::ExtentBitsPos) | |||
4366 | & HexagonII::ExtentBitsMask; | |||
4367 | ||||
4368 | if (isSigned) // if value is signed | |||
4369 | return ~(-1U << (bits - 1)); | |||
4370 | else | |||
4371 | return ~(-1U << bits); | |||
4372 | } | |||
4373 | ||||
4374 | ||||
4375 | bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const { | |||
4376 | switch (MI.getOpcode()) { | |||
4377 | case Hexagon::L2_loadrbgp: | |||
4378 | case Hexagon::L2_loadrdgp: | |||
4379 | case Hexagon::L2_loadrhgp: | |||
4380 | case Hexagon::L2_loadrigp: | |||
4381 | case Hexagon::L2_loadrubgp: | |||
4382 | case Hexagon::L2_loadruhgp: | |||
4383 | case Hexagon::S2_storerbgp: | |||
4384 | case Hexagon::S2_storerbnewgp: | |||
4385 | case Hexagon::S2_storerhgp: | |||
4386 | case Hexagon::S2_storerhnewgp: | |||
4387 | case Hexagon::S2_storerigp: | |||
4388 | case Hexagon::S2_storerinewgp: | |||
4389 | case Hexagon::S2_storerdgp: | |||
4390 | case Hexagon::S2_storerfgp: | |||
4391 | return true; | |||
4392 | } | |||
4393 | const uint64_t F = MI.getDesc().TSFlags; | |||
4394 | unsigned addrMode = | |||
4395 | ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); | |||
4396 | // Disallow any base+offset instruction. The assembler does not yet reorder | |||
4397 | // based up any zero offset instruction. | |||
4398 | return (addrMode == HexagonII::BaseRegOffset || | |||
4399 | addrMode == HexagonII::BaseImmOffset || | |||
4400 | addrMode == HexagonII::BaseLongOffset); | |||
4401 | } | |||
4402 | ||||
4403 | bool HexagonInstrInfo::isPureSlot0(const MachineInstr &MI) const { | |||
4404 | // Workaround for the Global Scheduler. Sometimes, it creates | |||
4405 | // A4_ext as a Pseudo instruction and calls this function to see if | |||
4406 | // it can be added to an existing bundle. Since the instruction doesn't | |||
4407 | // belong to any BB yet, we can't use getUnits API. | |||
4408 | if (MI.getOpcode() == Hexagon::A4_ext) | |||
4409 | return false; | |||
4410 | ||||
4411 | unsigned FuncUnits = getUnits(MI); | |||
4412 | return HexagonFUnits::isSlot0Only(FuncUnits); | |||
4413 | } | |||
4414 | ||||
4415 | bool HexagonInstrInfo::isRestrictNoSlot1Store(const MachineInstr &MI) const { | |||
4416 | const uint64_t F = MI.getDesc().TSFlags; | |||
4417 | return ((F >> HexagonII::RestrictNoSlot1StorePos) & | |||
4418 | HexagonII::RestrictNoSlot1StoreMask); | |||
4419 | } | |||
4420 | ||||
4421 | void HexagonInstrInfo::changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, | |||
4422 | bool ToBigInstrs) const { | |||
4423 | int Opcode = -1; | |||
4424 | if (ToBigInstrs) { // To BigCore Instr. | |||
4425 | // Check if the instruction can form a Duplex. | |||
4426 | if (getDuplexCandidateGroup(*MII)) | |||
4427 | // Get the opcode marked "dup_*" tag. | |||
4428 | Opcode = getDuplexOpcode(*MII, ToBigInstrs); | |||
4429 | } else // To TinyCore Instr. | |||
4430 | Opcode = getDuplexOpcode(*MII, ToBigInstrs); | |||
4431 | ||||
4432 | // Change the opcode of the instruction. | |||
4433 | if (Opcode >= 0) | |||
4434 | MII->setDesc(get(Opcode)); | |||
4435 | } | |||
4436 | ||||
4437 | // This function is used to translate instructions to facilitate generating | |||
4438 | // Duplexes on TinyCore. | |||
4439 | void HexagonInstrInfo::translateInstrsForDup(MachineFunction &MF, | |||
4440 | bool ToBigInstrs) const { | |||
4441 | for (auto &MB : MF) | |||
4442 | for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(), | |||
4443 | End = MB.instr_end(); | |||
4444 | Instr != End; ++Instr) | |||
4445 | changeDuplexOpcode(Instr, ToBigInstrs); | |||
4446 | } | |||
4447 | ||||
4448 | // This is a specialized form of above function. | |||
4449 | void HexagonInstrInfo::translateInstrsForDup( | |||
4450 | MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const { | |||
4451 | MachineBasicBlock *MBB = MII->getParent(); | |||
4452 | while ((MII != MBB->instr_end()) && MII->isInsideBundle()) { | |||
4453 | changeDuplexOpcode(MII, ToBigInstrs); | |||
4454 | ++MII; | |||
4455 | } | |||
4456 | } | |||
4457 | ||||
4458 | unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const { | |||
4459 | using namespace HexagonII; | |||
4460 | ||||
4461 | const uint64_t F = MI.getDesc().TSFlags; | |||
4462 | unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask; | |||
4463 | unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S)); | |||
4464 | if (Size != 0) | |||
4465 | return Size; | |||
4466 | // Y2_dcfetchbo is special | |||
4467 | if (MI.getOpcode() == Hexagon::Y2_dcfetchbo) | |||
4468 | return HexagonII::DoubleWordAccess; | |||
4469 | ||||
4470 | // Handle vector access sizes. | |||
4471 | const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); | |||
4472 | switch (S) { | |||
4473 | case HexagonII::HVXVectorAccess: | |||
4474 | return HRI.getSpillSize(Hexagon::HvxVRRegClass); | |||
4475 | default: | |||
4476 | llvm_unreachable("Unexpected instruction")::llvm::llvm_unreachable_internal("Unexpected instruction", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 4476); | |||
4477 | } | |||
4478 | } | |||
4479 | ||||
4480 | // Returns the min value that doesn't need to be extended. | |||
4481 | int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const { | |||
4482 | const uint64_t F = MI.getDesc().TSFlags; | |||
4483 | unsigned isSigned = (F >> HexagonII::ExtentSignedPos) | |||
4484 | & HexagonII::ExtentSignedMask; | |||
4485 | unsigned bits = (F >> HexagonII::ExtentBitsPos) | |||
4486 | & HexagonII::ExtentBitsMask; | |||
4487 | ||||
4488 | if (isSigned) // if value is signed | |||
4489 | return -1U << (bits - 1); | |||
4490 | else | |||
4491 | return 0; | |||
4492 | } | |||
4493 | ||||
4494 | // Returns opcode of the non-extended equivalent instruction. | |||
4495 | short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const { | |||
4496 | // Check if the instruction has a register form that uses register in place | |||
4497 | // of the extended operand, if so return that as the non-extended form. | |||
4498 | short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode()); | |||
4499 | if (NonExtOpcode >= 0) | |||
4500 | return NonExtOpcode; | |||
4501 | ||||
4502 | if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) { | |||
4503 | // Check addressing mode and retrieve non-ext equivalent instruction. | |||
4504 | switch (getAddrMode(MI)) { | |||
4505 | case HexagonII::Absolute: | |||
4506 | return Hexagon::changeAddrMode_abs_io(MI.getOpcode()); | |||
4507 | case HexagonII::BaseImmOffset: | |||
4508 | return Hexagon::changeAddrMode_io_rr(MI.getOpcode()); | |||
4509 | case HexagonII::BaseLongOffset: | |||
4510 | return Hexagon::changeAddrMode_ur_rr(MI.getOpcode()); | |||
4511 | ||||
4512 | default: | |||
4513 | return -1; | |||
4514 | } | |||
4515 | } | |||
4516 | return -1; | |||
4517 | } | |||
4518 | ||||
4519 | bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond, | |||
4520 | Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const { | |||
4521 | if (Cond.empty()) | |||
4522 | return false; | |||
4523 | assert(Cond.size() == 2)(static_cast <bool> (Cond.size() == 2) ? void (0) : __assert_fail ("Cond.size() == 2", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 4523, __extension__ __PRETTY_FUNCTION__)); | |||
4524 | if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) { | |||
4525 | LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "No predregs for new-value jumps/endloop" ; } } while (false); | |||
4526 | return false; | |||
4527 | } | |||
4528 | PredReg = Cond[1].getReg(); | |||
4529 | PredRegPos = 1; | |||
4530 | // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef | |||
4531 | PredRegFlags = 0; | |||
4532 | if (Cond[1].isImplicit()) | |||
4533 | PredRegFlags = RegState::Implicit; | |||
4534 | if (Cond[1].isUndef()) | |||
4535 | PredRegFlags |= RegState::Undef; | |||
4536 | return true; | |||
4537 | } | |||
4538 | ||||
4539 | short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const { | |||
4540 | return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo); | |||
4541 | } | |||
4542 | ||||
4543 | short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const { | |||
4544 | return Hexagon::getRegForm(MI.getOpcode()); | |||
4545 | } | |||
4546 | ||||
4547 | // Return the number of bytes required to encode the instruction. | |||
4548 | // Hexagon instructions are fixed length, 4 bytes, unless they | |||
4549 | // use a constant extender, which requires another 4 bytes. | |||
4550 | // For debug instructions and prolog labels, return 0. | |||
4551 | unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const { | |||
4552 | if (MI.isDebugInstr() || MI.isPosition()) | |||
4553 | return 0; | |||
4554 | ||||
4555 | unsigned Size = MI.getDesc().getSize(); | |||
4556 | if (!Size) | |||
4557 | // Assume the default insn size in case it cannot be determined | |||
4558 | // for whatever reason. | |||
4559 | Size = HEXAGON_INSTR_SIZE4; | |||
4560 | ||||
4561 | if (isConstExtended(MI) || isExtended(MI)) | |||
4562 | Size += HEXAGON_INSTR_SIZE4; | |||
4563 | ||||
4564 | // Try and compute number of instructions in asm. | |||
4565 | if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) { | |||
4566 | const MachineBasicBlock &MBB = *MI.getParent(); | |||
4567 | const MachineFunction *MF = MBB.getParent(); | |||
4568 | const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); | |||
4569 | ||||
4570 | // Count the number of register definitions to find the asm string. | |||
4571 | unsigned NumDefs = 0; | |||
4572 | for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef(); | |||
4573 | ++NumDefs) | |||
4574 | assert(NumDefs != MI.getNumOperands()-2 && "No asm string?")(static_cast <bool> (NumDefs != MI.getNumOperands()-2 && "No asm string?") ? void (0) : __assert_fail ("NumDefs != MI.getNumOperands()-2 && \"No asm string?\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4574, __extension__ __PRETTY_FUNCTION__)); | |||
4575 | ||||
4576 | assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?")(static_cast <bool> (MI.getOperand(NumDefs).isSymbol() && "No asm string?") ? void (0) : __assert_fail ("MI.getOperand(NumDefs).isSymbol() && \"No asm string?\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4576, __extension__ __PRETTY_FUNCTION__)); | |||
4577 | // Disassemble the AsmStr and approximate number of instructions. | |||
4578 | const char *AsmStr = MI.getOperand(NumDefs).getSymbolName(); | |||
4579 | Size = getInlineAsmLength(AsmStr, *MAI); | |||
4580 | } | |||
4581 | ||||
4582 | return Size; | |||
4583 | } | |||
4584 | ||||
4585 | uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const { | |||
4586 | const uint64_t F = MI.getDesc().TSFlags; | |||
4587 | return (F >> HexagonII::TypePos) & HexagonII::TypeMask; | |||
4588 | } | |||
4589 | ||||
4590 | InstrStage::FuncUnits HexagonInstrInfo::getUnits(const MachineInstr &MI) const { | |||
4591 | const InstrItineraryData &II = *Subtarget.getInstrItineraryData(); | |||
4592 | const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass()); | |||
4593 | ||||
4594 | return IS.getUnits(); | |||
4595 | } | |||
4596 | ||||
4597 | // Calculate size of the basic block without debug instructions. | |||
4598 | unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const { | |||
4599 | return nonDbgMICount(BB->instr_begin(), BB->instr_end()); | |||
4600 | } | |||
4601 | ||||
4602 | unsigned HexagonInstrInfo::nonDbgBundleSize( | |||
4603 | MachineBasicBlock::const_iterator BundleHead) const { | |||
4604 | assert(BundleHead->isBundle() && "Not a bundle header")(static_cast <bool> (BundleHead->isBundle() && "Not a bundle header") ? void (0) : __assert_fail ("BundleHead->isBundle() && \"Not a bundle header\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4604, __extension__ __PRETTY_FUNCTION__)); | |||
4605 | auto MII = BundleHead.getInstrIterator(); | |||
4606 | // Skip the bundle header. | |||
4607 | return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator())); | |||
4608 | } | |||
4609 | ||||
4610 | /// immediateExtend - Changes the instruction in place to one using an immediate | |||
4611 | /// extender. | |||
4612 | void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const { | |||
4613 | assert((isExtendable(MI)||isConstExtended(MI)) &&(static_cast <bool> ((isExtendable(MI)||isConstExtended (MI)) && "Instruction must be extendable") ? void (0) : __assert_fail ("(isExtendable(MI)||isConstExtended(MI)) && \"Instruction must be extendable\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4614, __extension__ __PRETTY_FUNCTION__)) | |||
4614 | "Instruction must be extendable")(static_cast <bool> ((isExtendable(MI)||isConstExtended (MI)) && "Instruction must be extendable") ? void (0) : __assert_fail ("(isExtendable(MI)||isConstExtended(MI)) && \"Instruction must be extendable\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4614, __extension__ __PRETTY_FUNCTION__)); | |||
4615 | // Find which operand is extendable. | |||
4616 | short ExtOpNum = getCExtOpNum(MI); | |||
4617 | MachineOperand &MO = MI.getOperand(ExtOpNum); | |||
4618 | // This needs to be something we understand. | |||
4619 | assert((MO.isMBB() || MO.isImm()) &&(static_cast <bool> ((MO.isMBB() || MO.isImm()) && "Branch with unknown extendable field type") ? void (0) : __assert_fail ("(MO.isMBB() || MO.isImm()) && \"Branch with unknown extendable field type\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4620, __extension__ __PRETTY_FUNCTION__)) | |||
4620 | "Branch with unknown extendable field type")(static_cast <bool> ((MO.isMBB() || MO.isImm()) && "Branch with unknown extendable field type") ? void (0) : __assert_fail ("(MO.isMBB() || MO.isImm()) && \"Branch with unknown extendable field type\"" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4620, __extension__ __PRETTY_FUNCTION__)); | |||
4621 | // Mark given operand as extended. | |||
4622 | MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); | |||
4623 | } | |||
4624 | ||||
4625 | bool HexagonInstrInfo::invertAndChangeJumpTarget( | |||
4626 | MachineInstr &MI, MachineBasicBlock *NewTarget) const { | |||
4627 | LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\n[invertAndChangeJumpTarget] to " << printMBBReference(*NewTarget); MI.dump();; } } while (false) | |||
4628 | << printMBBReference(*NewTarget);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\n[invertAndChangeJumpTarget] to " << printMBBReference(*NewTarget); MI.dump();; } } while (false) | |||
4629 | MI.dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\n[invertAndChangeJumpTarget] to " << printMBBReference(*NewTarget); MI.dump();; } } while (false); | |||
4630 | assert(MI.isBranch())(static_cast <bool> (MI.isBranch()) ? void (0) : __assert_fail ("MI.isBranch()", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 4630, __extension__ __PRETTY_FUNCTION__)); | |||
4631 | unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode()); | |||
4632 | int TargetPos = MI.getNumOperands() - 1; | |||
4633 | // In general branch target is the last operand, | |||
4634 | // but some implicit defs added at the end might change it. | |||
4635 | while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB()) | |||
4636 | --TargetPos; | |||
4637 | assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB())(static_cast <bool> ((TargetPos >= 0) && MI. getOperand(TargetPos).isMBB()) ? void (0) : __assert_fail ("(TargetPos >= 0) && MI.getOperand(TargetPos).isMBB()" , "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp", 4637, __extension__ __PRETTY_FUNCTION__)); | |||
4638 | MI.getOperand(TargetPos).setMBB(NewTarget); | |||
4639 | if (EnableBranchPrediction && isPredicatedNew(MI)) { | |||
4640 | NewOpcode = reversePrediction(NewOpcode); | |||
4641 | } | |||
4642 | MI.setDesc(get(NewOpcode)); | |||
4643 | return true; | |||
4644 | } | |||
4645 | ||||
4646 | void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const { | |||
4647 | /* +++ The code below is used to generate complete set of Hexagon Insn +++ */ | |||
4648 | MachineFunction::iterator A = MF.begin(); | |||
4649 | MachineBasicBlock &B = *A; | |||
4650 | MachineBasicBlock::iterator I = B.begin(); | |||
4651 | DebugLoc DL = I->getDebugLoc(); | |||
4652 | MachineInstr *NewMI; | |||
4653 | ||||
4654 | for (unsigned insn = TargetOpcode::GENERIC_OP_END+1; | |||
4655 | insn < Hexagon::INSTRUCTION_LIST_END; ++insn) { | |||
4656 | NewMI = BuildMI(B, I, DL, get(insn)); | |||
4657 | LLVM_DEBUG(dbgs() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\n" << getName (NewMI->getOpcode()) << " Class: " << NewMI-> getDesc().getSchedClass(); } } while (false) | |||
4658 | << getName(NewMI->getOpcode())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\n" << getName (NewMI->getOpcode()) << " Class: " << NewMI-> getDesc().getSchedClass(); } } while (false) | |||
4659 | << " Class: " << NewMI->getDesc().getSchedClass())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\n" << getName (NewMI->getOpcode()) << " Class: " << NewMI-> getDesc().getSchedClass(); } } while (false); | |||
4660 | NewMI->eraseFromParent(); | |||
4661 | } | |||
4662 | /* --- The code above is used to generate complete set of Hexagon Insn --- */ | |||
4663 | } | |||
4664 | ||||
4665 | // inverts the predication logic. | |||
4666 | // p -> NotP | |||
4667 | // NotP -> P | |||
4668 | bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const { | |||
4669 | LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("hexagon-instrinfo")) { dbgs() << "\nTrying to reverse pred. sense of:" ; MI.dump(); } } while (false); | |||
4670 | MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode()))); | |||
4671 | return true; | |||
4672 | } | |||
4673 | ||||
4674 | // Reverse the branch prediction. | |||
4675 | unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const { | |||
4676 | int PredRevOpcode = -1; | |||
4677 | if (isPredictedTaken(Opcode)) | |||
4678 | PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode); | |||
4679 | else | |||
4680 | PredRevOpcode = Hexagon::takenBranchPrediction(Opcode); | |||
4681 | assert(PredRevOpcode > 0)(static_cast <bool> (PredRevOpcode > 0) ? void (0) : __assert_fail ("PredRevOpcode > 0", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 4681, __extension__ __PRETTY_FUNCTION__)); | |||
4682 | return PredRevOpcode; | |||
4683 | } | |||
4684 | ||||
4685 | // TODO: Add more rigorous validation. | |||
4686 | bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond) | |||
4687 | const { | |||
4688 | return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1)); | |||
4689 | } | |||
4690 | ||||
4691 | void HexagonInstrInfo:: | |||
4692 | setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const { | |||
4693 | assert(MIB->isBundle())(static_cast <bool> (MIB->isBundle()) ? void (0) : __assert_fail ("MIB->isBundle()", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 4693, __extension__ __PRETTY_FUNCTION__)); | |||
4694 | MachineOperand &Operand = MIB->getOperand(0); | |||
4695 | if (Operand.isImm()) | |||
4696 | Operand.setImm(Operand.getImm() | memShufDisabledMask); | |||
4697 | else | |||
4698 | MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask)); | |||
4699 | } | |||
4700 | ||||
4701 | bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const { | |||
4702 | assert(MIB.isBundle())(static_cast <bool> (MIB.isBundle()) ? void (0) : __assert_fail ("MIB.isBundle()", "llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp" , 4702, __extension__ __PRETTY_FUNCTION__)); | |||
4703 | const MachineOperand &Operand = MIB.getOperand(0); | |||
4704 | return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0); | |||
4705 | } | |||
4706 | ||||
4707 | // Addressing mode relations. | |||
4708 | short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const { | |||
4709 | return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc; | |||
4710 | } | |||
4711 | ||||
4712 | short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const { | |||
4713 | return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc; | |||
4714 | } | |||
4715 | ||||
4716 | short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const { | |||
4717 | return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc; | |||
4718 | } | |||
4719 | ||||
4720 | short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const { | |||
4721 | return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc; | |||
4722 | } | |||
4723 | ||||
4724 | short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const { | |||
4725 | return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc; | |||
4726 | } | |||
4727 | ||||
4728 | short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const { | |||
4729 | return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc; | |||
4730 | } | |||
4731 | ||||
4732 | short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const { | |||
4733 | return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc; | |||
4734 | } | |||
4735 | ||||
4736 | short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const { | |||
4737 | return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc; | |||
4738 | } | |||
4739 | ||||
4740 | MCInst HexagonInstrInfo::getNop() const { | |||
4741 | static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop); | |||
4742 | ||||
4743 | return MCInstBuilder(Hexagon::BUNDLE) | |||
4744 | .addImm(0) | |||
4745 | .addInst(&Nop); | |||
4746 | } |