Bug Summary

File:llvm/include/llvm/CodeGen/BasicTTIImpl.h
Warning:line 428, column 36
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name HexagonTargetTransformInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/lib/Target/Hexagon -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/lib/Target/Hexagon -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp

1//===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7/// \file
8/// This file implements a TargetTransformInfo analysis pass specific to the
9/// Hexagon target machine. It uses the target's detailed information to provide
10/// more precise answers to certain TTI queries, while letting the target
11/// independent and default TTI implementations handle the rest.
12///
13//===----------------------------------------------------------------------===//
14
15#include "HexagonTargetTransformInfo.h"
16#include "HexagonSubtarget.h"
17#include "llvm/Analysis/TargetTransformInfo.h"
18#include "llvm/CodeGen/ValueTypes.h"
19#include "llvm/IR/InstrTypes.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/IR/User.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Transforms/Utils/UnrollLoop.h"
25
26using namespace llvm;
27
28#define DEBUG_TYPE"hexagontti" "hexagontti"
29
30static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
31 cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
32
33static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
34 cl::init(true), cl::Hidden,
35 cl::desc("Control lookup table emission on Hexagon target"));
36
37// Constant "cost factor" to make floating point operations more expensive
38// in terms of vectorization cost. This isn't the best way, but it should
39// do. Ultimately, the cost should use cycles.
40static const unsigned FloatFactor = 4;
41
42bool HexagonTTIImpl::useHVX() const {
43 return ST.useHVXOps() && HexagonAutoHVX;
44}
45
46bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
47 assert(VecTy->isVectorTy())((VecTy->isVectorTy()) ? static_cast<void> (0) : __assert_fail
("VecTy->isVectorTy()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp"
, 47, __PRETTY_FUNCTION__))
;
48 if (cast<VectorType>(VecTy)->isScalable())
49 return false;
50 // Avoid types like <2 x i32*>.
51 if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
52 return false;
53 EVT VecVT = EVT::getEVT(VecTy);
54 if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
55 return false;
56 if (ST.isHVXVectorType(VecVT.getSimpleVT()))
57 return true;
58 auto Action = TLI.getPreferredVectorAction(VecVT.getSimpleVT());
59 return Action == TargetLoweringBase::TypeWidenVector;
60}
61
62unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
63 if (Ty->isVectorTy())
64 return Ty->getVectorNumElements();
65 assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&(((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
"Expecting scalar type") ? static_cast<void> (0) : __assert_fail
("(Ty->isIntegerTy() || Ty->isFloatingPointTy()) && \"Expecting scalar type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp"
, 66, __PRETTY_FUNCTION__))
66 "Expecting scalar type")(((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
"Expecting scalar type") ? static_cast<void> (0) : __assert_fail
("(Ty->isIntegerTy() || Ty->isFloatingPointTy()) && \"Expecting scalar type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp"
, 66, __PRETTY_FUNCTION__))
;
67 return 1;
68}
69
70TargetTransformInfo::PopcntSupportKind
71HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
72 // Return fast hardware support as every input < 64 bits will be promoted
73 // to 64 bits.
74 return TargetTransformInfo::PSK_FastHardware;
75}
76
77// The Hexagon target can unroll loops with run-time trip counts.
78void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
79 TTI::UnrollingPreferences &UP) {
80 UP.Runtime = UP.Partial = true;
81 // Only try to peel innermost loops with small runtime trip counts.
82 if (L && L->empty() && canPeel(L) &&
83 SE.getSmallConstantTripCount(L) == 0 &&
84 SE.getSmallConstantMaxTripCount(L) > 0 &&
85 SE.getSmallConstantMaxTripCount(L) <= 5) {
86 UP.PeelCount = 2;
87 }
88}
89
90bool HexagonTTIImpl::shouldFavorPostInc() const {
91 return true;
92}
93
94/// --- Vector TTI begin ---
95
96unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
97 if (Vector)
98 return useHVX() ? 32 : 0;
99 return 32;
100}
101
102unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
103 return useHVX() ? 2 : 0;
104}
105
106unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
107 return Vector ? getMinVectorRegisterBitWidth() : 32;
108}
109
110unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
111 return useHVX() ? ST.getVectorLength()*8 : 0;
112}
113
114unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
115 return (8 * ST.getVectorLength()) / ElemWidth;
116}
117
118unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
119 bool Extract) {
120 return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
121}
122
123unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
124 ArrayRef<const Value*> Args, unsigned VF) {
125 return BaseT::getOperandsScalarizationOverhead(Args, VF);
126}
127
128unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
129 ArrayRef<Type*> Tys) {
130 return BaseT::getCallInstrCost(F, RetTy, Tys);
131}
132
133unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
134 ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
135 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
136}
137
138unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
139 ArrayRef<Type*> Tys, FastMathFlags FMF,
140 unsigned ScalarizationCostPassed) {
141 if (ID == Intrinsic::bswap) {
142 std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
143 return LT.first + 2;
144 }
145 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
146 ScalarizationCostPassed);
147}
148
149unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
150 ScalarEvolution *SE, const SCEV *S) {
151 return 0;
152}
153
154unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
155 MaybeAlign Alignment,
156 unsigned AddressSpace,
157 const Instruction *I) {
158 assert(Opcode == Instruction::Load || Opcode == Instruction::Store)((Opcode == Instruction::Load || Opcode == Instruction::Store
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::Load || Opcode == Instruction::Store"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp"
, 158, __PRETTY_FUNCTION__))
;
159 if (Opcode == Instruction::Store)
160 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
161
162 if (Src->isVectorTy()) {
163 VectorType *VecTy = cast<VectorType>(Src);
164 unsigned VecWidth = VecTy->getBitWidth();
165 if (useHVX() && isTypeForHVX(VecTy)) {
166 unsigned RegWidth = getRegisterBitWidth(true);
167 assert(RegWidth && "Non-zero vector register width expected")((RegWidth && "Non-zero vector register width expected"
) ? static_cast<void> (0) : __assert_fail ("RegWidth && \"Non-zero vector register width expected\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp"
, 167, __PRETTY_FUNCTION__))
;
168 // Cost of HVX loads.
169 if (VecWidth % RegWidth == 0)
170 return VecWidth / RegWidth;
171 // Cost of constructing HVX vector from scalar loads
172 const Align RegAlign(RegWidth / 8);
173 if (!Alignment || *Alignment > RegAlign)
174 Alignment = RegAlign;
175 assert(Alignment)((Alignment) ? static_cast<void> (0) : __assert_fail ("Alignment"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp"
, 175, __PRETTY_FUNCTION__))
;
176 unsigned AlignWidth = 8 * Alignment->value();
177 unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
178 return 3 * NumLoads;
179 }
180
181 // Non-HVX vectors.
182 // Add extra cost for floating point types.
183 unsigned Cost =
184 VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
185
186 // At this point unspecified alignment is considered as Align::None().
187 const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
188 unsigned AlignWidth = 8 * BoundAlignment.value();
189 unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
190 if (Alignment == Align(4) || Alignment == Align(8))
191 return Cost * NumLoads;
192 // Loads of less than 32 bits will need extra inserts to compose a vector.
193 assert(BoundAlignment <= Align(8))((BoundAlignment <= Align(8)) ? static_cast<void> (0
) : __assert_fail ("BoundAlignment <= Align(8)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/lib/Target/Hexagon/HexagonTargetTransformInfo.cpp"
, 193, __PRETTY_FUNCTION__))
;
194 unsigned LogA = Log2(BoundAlignment);
195 return (3 - LogA) * Cost * NumLoads;
196 }
197
198 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
199}
200
201unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
202 Type *Src, unsigned Alignment, unsigned AddressSpace) {
203 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
204}
205
206unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
207 int Index, Type *SubTp) {
208 return 1;
209}
210
211unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
212 Value *Ptr, bool VariableMask, unsigned Alignment) {
213 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
214 Alignment);
215}
216
217unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
218 Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
219 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
220 bool UseMaskForGaps) {
221 if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
222 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
223 Alignment, AddressSpace,
224 UseMaskForCond, UseMaskForGaps);
225 return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
226 nullptr);
227}
228
229unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
230 Type *CondTy, const Instruction *I) {
231 if (ValTy->isVectorTy()) {
232 std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
233 if (Opcode == Instruction::FCmp)
234 return LT.first + FloatFactor * getTypeNumElements(ValTy);
235 }
236 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
237}
238
239unsigned HexagonTTIImpl::getArithmeticInstrCost(
240 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
241 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
242 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
243 const Instruction *CxtI) {
244 if (Ty->isVectorTy()) {
245 std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
246 if (LT.second.isFloatingPoint())
247 return LT.first + FloatFactor * getTypeNumElements(Ty);
248 }
249 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
250 Opd1PropInfo, Opd2PropInfo, Args, CxtI);
251}
252
253unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
254 Type *SrcTy, const Instruction *I) {
255 if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
256 unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
257 unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
258
259 std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
260 std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
261 return std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
262 }
263 return 1;
264}
265
266unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
267 unsigned Index) {
268 Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
269 : Val;
270 if (Opcode == Instruction::InsertElement) {
271 // Need two rotations for non-zero index.
272 unsigned Cost = (Index != 0) ? 2 : 0;
273 if (ElemTy->isIntegerTy(32))
274 return Cost;
275 // If it's not a 32-bit value, there will need to be an extract.
276 return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
277 }
278
279 if (Opcode == Instruction::ExtractElement)
280 return 2;
281
282 return 1;
283}
284
285/// --- Vector TTI end ---
286
287unsigned HexagonTTIImpl::getPrefetchDistance() const {
288 return ST.getL1PrefetchDistance();
289}
290
291unsigned HexagonTTIImpl::getCacheLineSize() const {
292 return ST.getL1CacheLineSize();
293}
294
295int HexagonTTIImpl::getUserCost(const User *U,
296 ArrayRef<const Value *> Operands) {
297 auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
298 if (!CI->isIntegerCast())
299 return false;
300 // Only extensions from an integer type shorter than 32-bit to i32
301 // can be folded into the load.
302 const DataLayout &DL = getDataLayout();
303 unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
304 unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
305 if (DBW != 32 || SBW >= DBW)
306 return false;
307
308 const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
309 // Technically, this code could allow multiple uses of the load, and
310 // check if all the uses are the same extension operation, but this
311 // should be sufficient for most cases.
312 return LI && LI->hasOneUse();
313 };
314
315 if (const CastInst *CI
1.1
'CI' is null
1.1
'CI' is null
1.1
'CI' is null
1.1
'CI' is null
1.1
'CI' is null
1.1
'CI' is null
1.1
'CI' is null
= dyn_cast<const CastInst>(U))
1
Assuming 'U' is not a 'CastInst'
2
Taking false branch
316 if (isCastFoldedIntoLoad(CI))
317 return TargetTransformInfo::TCC_Free;
318 return BaseT::getUserCost(U, Operands);
3
Calling 'TargetTransformInfoImplCRTPBase::getUserCost'
319}
320
321bool HexagonTTIImpl::shouldBuildLookupTables() const {
322 return EmitLookupTables;
323}

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h

1//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file provides helpers for the implementation of
10/// a TargetTransformInfo-conforming class.
11///
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
15#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16
17#include "llvm/Analysis/ScalarEvolutionExpressions.h"
18#include "llvm/Analysis/TargetTransformInfo.h"
19#include "llvm/Analysis/VectorUtils.h"
20#include "llvm/IR/CallSite.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/GetElementPtrTypeIterator.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/IR/Type.h"
26
27namespace llvm {
28
29/// Base class for use as a mix-in that aids implementing
30/// a TargetTransformInfo-compatible class.
31class TargetTransformInfoImplBase {
32protected:
33 typedef TargetTransformInfo TTI;
34
35 const DataLayout &DL;
36
37 explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
38
39public:
40 // Provide value semantics. MSVC requires that we spell all of these out.
41 TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
42 : DL(Arg.DL) {}
43 TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
44
45 const DataLayout &getDataLayout() const { return DL; }
46
47 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
48 switch (Opcode) {
49 default:
50 // By default, just classify everything as 'basic'.
51 return TTI::TCC_Basic;
52
53 case Instruction::GetElementPtr:
54 llvm_unreachable("Use getGEPCost for GEP operations!")::llvm::llvm_unreachable_internal("Use getGEPCost for GEP operations!"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 54)
;
55
56 case Instruction::BitCast:
57 assert(OpTy && "Cast instructions must provide the operand type")((OpTy && "Cast instructions must provide the operand type"
) ? static_cast<void> (0) : __assert_fail ("OpTy && \"Cast instructions must provide the operand type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 57, __PRETTY_FUNCTION__))
;
58 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
59 // Identity and pointer-to-pointer casts are free.
60 return TTI::TCC_Free;
61
62 // Otherwise, the default basic cost is used.
63 return TTI::TCC_Basic;
64
65 case Instruction::FDiv:
66 case Instruction::FRem:
67 case Instruction::SDiv:
68 case Instruction::SRem:
69 case Instruction::UDiv:
70 case Instruction::URem:
71 return TTI::TCC_Expensive;
72
73 case Instruction::IntToPtr: {
74 // An inttoptr cast is free so long as the input is a legal integer type
75 // which doesn't contain values outside the range of a pointer.
76 unsigned OpSize = OpTy->getScalarSizeInBits();
77 if (DL.isLegalInteger(OpSize) &&
78 OpSize <= DL.getPointerTypeSizeInBits(Ty))
79 return TTI::TCC_Free;
80
81 // Otherwise it's not a no-op.
82 return TTI::TCC_Basic;
83 }
84 case Instruction::PtrToInt: {
85 // A ptrtoint cast is free so long as the result is large enough to store
86 // the pointer, and a legal integer type.
87 unsigned DestSize = Ty->getScalarSizeInBits();
88 if (DL.isLegalInteger(DestSize) &&
89 DestSize >= DL.getPointerTypeSizeInBits(OpTy))
90 return TTI::TCC_Free;
91
92 // Otherwise it's not a no-op.
93 return TTI::TCC_Basic;
94 }
95 case Instruction::Trunc:
96 // trunc to a native type is free (assuming the target has compare and
97 // shift-right of the same width).
98 if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
99 return TTI::TCC_Free;
100
101 return TTI::TCC_Basic;
102 }
103 }
104
105 int getGEPCost(Type *PointeeType, const Value *Ptr,
106 ArrayRef<const Value *> Operands) {
107 // In the basic model, we just assume that all-constant GEPs will be folded
108 // into their uses via addressing modes.
109 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
110 if (!isa<Constant>(Operands[Idx]))
111 return TTI::TCC_Basic;
112
113 return TTI::TCC_Free;
114 }
115
116 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
117 unsigned &JTSize,
118 ProfileSummaryInfo *PSI,
119 BlockFrequencyInfo *BFI) {
120 (void)PSI;
121 (void)BFI;
122 JTSize = 0;
123 return SI.getNumCases();
124 }
125
126 int getExtCost(const Instruction *I, const Value *Src) {
127 return TTI::TCC_Basic;
128 }
129
130 unsigned getCallCost(FunctionType *FTy, int NumArgs, const User *U) {
131 assert(FTy && "FunctionType must be provided to this routine.")((FTy && "FunctionType must be provided to this routine."
) ? static_cast<void> (0) : __assert_fail ("FTy && \"FunctionType must be provided to this routine.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 131, __PRETTY_FUNCTION__))
;
132
133 // The target-independent implementation just measures the size of the
134 // function by approximating that each argument will take on average one
135 // instruction to prepare.
136
137 if (NumArgs < 0)
138 // Set the argument number to the number of explicit arguments in the
139 // function.
140 NumArgs = FTy->getNumParams();
141
142 return TTI::TCC_Basic * (NumArgs + 1);
143 }
144
145 unsigned getInliningThresholdMultiplier() { return 1; }
146
147 int getInlinerVectorBonusPercent() { return 150; }
148
149 unsigned getMemcpyCost(const Instruction *I) {
150 return TTI::TCC_Expensive;
151 }
152
153 bool hasBranchDivergence() { return false; }
154
155 bool isSourceOfDivergence(const Value *V) { return false; }
156
157 bool isAlwaysUniform(const Value *V) { return false; }
158
159 unsigned getFlatAddressSpace () {
160 return -1;
161 }
162
163 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
164 Intrinsic::ID IID) const {
165 return false;
166 }
167
168 bool rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
169 Value *OldV, Value *NewV) const {
170 return false;
171 }
172
173 bool isLoweredToCall(const Function *F) {
174 assert(F && "A concrete function must be provided to this routine.")((F && "A concrete function must be provided to this routine."
) ? static_cast<void> (0) : __assert_fail ("F && \"A concrete function must be provided to this routine.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 174, __PRETTY_FUNCTION__))
;
175
176 // FIXME: These should almost certainly not be handled here, and instead
177 // handled with the help of TLI or the target itself. This was largely
178 // ported from existing analysis heuristics here so that such refactorings
179 // can take place in the future.
180
181 if (F->isIntrinsic())
182 return false;
183
184 if (F->hasLocalLinkage() || !F->hasName())
185 return true;
186
187 StringRef Name = F->getName();
188
189 // These will all likely lower to a single selection DAG node.
190 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
191 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
192 Name == "fmin" || Name == "fminf" || Name == "fminl" ||
193 Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
194 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
195 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
196 return false;
197
198 // These are all likely to be optimized into something smaller.
199 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
200 Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
201 Name == "floorf" || Name == "ceil" || Name == "round" ||
202 Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
203 Name == "llabs")
204 return false;
205
206 return true;
207 }
208
209 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
210 AssumptionCache &AC,
211 TargetLibraryInfo *LibInfo,
212 HardwareLoopInfo &HWLoopInfo) {
213 return false;
214 }
215
216 bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
217 AssumptionCache &AC, TargetLibraryInfo *TLI,
218 DominatorTree *DT,
219 const LoopAccessInfo *LAI) const {
220 return false;
221 }
222
223 void getUnrollingPreferences(Loop *, ScalarEvolution &,
224 TTI::UnrollingPreferences &) {}
225
226 bool isLegalAddImmediate(int64_t Imm) { return false; }
227
228 bool isLegalICmpImmediate(int64_t Imm) { return false; }
229
230 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
231 bool HasBaseReg, int64_t Scale,
232 unsigned AddrSpace, Instruction *I = nullptr) {
233 // Guess that only reg and reg+reg addressing is allowed. This heuristic is
234 // taken from the implementation of LSR.
235 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
236 }
237
238 bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
239 return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
240 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
241 std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
242 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
243 }
244
245 bool canMacroFuseCmp() { return false; }
246
247 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
248 DominatorTree *DT, AssumptionCache *AC,
249 TargetLibraryInfo *LibInfo) {
250 return false;
251 }
252
253 bool shouldFavorPostInc() const { return false; }
254
255 bool shouldFavorBackedgeIndex(const Loop *L) const { return false; }
256
257 bool isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) { return false; }
258
259 bool isLegalMaskedLoad(Type *DataType, MaybeAlign Alignment) { return false; }
260
261 bool isLegalNTStore(Type *DataType, Align Alignment) {
262 // By default, assume nontemporal memory stores are available for stores
263 // that are aligned and have a size that is a power of 2.
264 unsigned DataSize = DL.getTypeStoreSize(DataType);
265 return Alignment >= DataSize && isPowerOf2_32(DataSize);
266 }
267
268 bool isLegalNTLoad(Type *DataType, Align Alignment) {
269 // By default, assume nontemporal memory loads are available for loads that
270 // are aligned and have a size that is a power of 2.
271 unsigned DataSize = DL.getTypeStoreSize(DataType);
272 return Alignment >= DataSize && isPowerOf2_32(DataSize);
273 }
274
275 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
276 return false;
277 }
278
279 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) {
280 return false;
281 }
282
283 bool isLegalMaskedCompressStore(Type *DataType) { return false; }
284
285 bool isLegalMaskedExpandLoad(Type *DataType) { return false; }
286
287 bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
288
289 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
290
291 bool prefersVectorizedAddressing() { return true; }
292
293 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
294 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
295 // Guess that all legal addressing mode are free.
296 if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
297 Scale, AddrSpace))
298 return 0;
299 return -1;
300 }
301
302 bool LSRWithInstrQueries() { return false; }
303
304 bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
305
306 bool isProfitableToHoist(Instruction *I) { return true; }
307
308 bool useAA() { return false; }
309
310 bool isTypeLegal(Type *Ty) { return false; }
311
312 bool shouldBuildLookupTables() { return true; }
313 bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
314
315 bool useColdCCForColdCall(Function &F) { return false; }
316
317 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
318 return 0;
319 }
320
321 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
322 unsigned VF) { return 0; }
323
324 bool supportsEfficientVectorElementLoadStore() { return false; }
325
326 bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
327
328 TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
329 bool IsZeroCmp) const {
330 return {};
331 }
332
333 bool enableInterleavedAccessVectorization() { return false; }
334
335 bool enableMaskedInterleavedAccessVectorization() { return false; }
336
337 bool isFPVectorizationPotentiallyUnsafe() { return false; }
338
339 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
340 unsigned BitWidth,
341 unsigned AddressSpace,
342 unsigned Alignment,
343 bool *Fast) { return false; }
344
345 TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
346 return TTI::PSK_Software;
347 }
348
349 bool haveFastSqrt(Type *Ty) { return false; }
350
351 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
352
353 unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
354
355 int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
356 Type *Ty) {
357 return 0;
358 }
359
360 unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
361
362 unsigned getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
363 Type *Ty) {
364 return TTI::TCC_Free;
365 }
366
367 unsigned getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
368 const APInt &Imm, Type *Ty) {
369 return TTI::TCC_Free;
370 }
371
372 unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; }
373
374 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
375 return Vector ? 1 : 0;
376 };
377
378 const char* getRegisterClassName(unsigned ClassID) const {
379 switch (ClassID) {
380 default:
381 return "Generic::Unknown Register Class";
382 case 0: return "Generic::ScalarRC";
383 case 1: return "Generic::VectorRC";
384 }
385 }
386
387 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
388
389 unsigned getMinVectorRegisterBitWidth() { return 128; }
390
391 bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
392
393 unsigned getMinimumVF(unsigned ElemWidth) const { return 0; }
394
395 bool
396 shouldConsiderAddressTypePromotion(const Instruction &I,
397 bool &AllowPromotionWithoutCommonHeader) {
398 AllowPromotionWithoutCommonHeader = false;
399 return false;
400 }
401
402 unsigned getCacheLineSize() const { return 0; }
403
404 llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) const {
405 switch (Level) {
406 case TargetTransformInfo::CacheLevel::L1D:
407 LLVM_FALLTHROUGH[[gnu::fallthrough]];
408 case TargetTransformInfo::CacheLevel::L2D:
409 return llvm::Optional<unsigned>();
410 }
411 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel")::llvm::llvm_unreachable_internal("Unknown TargetTransformInfo::CacheLevel"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 411)
;
412 }
413
414 llvm::Optional<unsigned> getCacheAssociativity(
415 TargetTransformInfo::CacheLevel Level) const {
416 switch (Level) {
417 case TargetTransformInfo::CacheLevel::L1D:
418 LLVM_FALLTHROUGH[[gnu::fallthrough]];
419 case TargetTransformInfo::CacheLevel::L2D:
420 return llvm::Optional<unsigned>();
421 }
422
423 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel")::llvm::llvm_unreachable_internal("Unknown TargetTransformInfo::CacheLevel"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 423)
;
424 }
425
426 unsigned getPrefetchDistance() const { return 0; }
427 unsigned getMinPrefetchStride() const { return 1; }
428 unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX(2147483647 *2U +1U); }
429
430 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
431
432 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
433 TTI::OperandValueKind Opd1Info,
434 TTI::OperandValueKind Opd2Info,
435 TTI::OperandValueProperties Opd1PropInfo,
436 TTI::OperandValueProperties Opd2PropInfo,
437 ArrayRef<const Value *> Args,
438 const Instruction *CxtI = nullptr) {
439 return 1;
440 }
441
442 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
443 Type *SubTp) {
444 return 1;
445 }
446
447 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
448 const Instruction *I) { return 1; }
449
450 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
451 VectorType *VecTy, unsigned Index) {
452 return 1;
453 }
454
455 unsigned getCFInstrCost(unsigned Opcode) { return 1; }
456
457 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
458 const Instruction *I) {
459 return 1;
460 }
461
462 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
463 return 1;
464 }
465
466 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
467 unsigned AddressSpace, const Instruction *I) {
468 return 1;
469 }
470
471 unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
472 unsigned AddressSpace) {
473 return 1;
474 }
475
476 unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
477 bool VariableMask,
478 unsigned Alignment) {
479 return 1;
480 }
481
482 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
483 unsigned Factor,
484 ArrayRef<unsigned> Indices,
485 unsigned Alignment, unsigned AddressSpace,
486 bool UseMaskForCond = false,
487 bool UseMaskForGaps = false) {
488 return 1;
489 }
490
491 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
492 ArrayRef<Type *> Tys, FastMathFlags FMF,
493 unsigned ScalarizationCostPassed) {
494 return 1;
495 }
496 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
497 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
498 return 1;
499 }
500
501 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
502 return 1;
503 }
504
505 unsigned getNumberOfParts(Type *Tp) { return 0; }
506
507 unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
508 const SCEV *) {
509 return 0;
510 }
511
512 unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
513
514 unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
515
516 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
517
518 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
519 return false;
520 }
521
522 unsigned getAtomicMemIntrinsicMaxElementSize() const {
523 // Note for overrides: You must ensure for all element unordered-atomic
524 // memory intrinsics that all power-of-2 element sizes up to, and
525 // including, the return value of this method have a corresponding
526 // runtime lib call. These runtime lib call definitions can be found
527 // in RuntimeLibcalls.h
528 return 0;
529 }
530
531 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
532 Type *ExpectedType) {
533 return nullptr;
534 }
535
536 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
537 unsigned SrcAlign, unsigned DestAlign) const {
538 return Type::getInt8Ty(Context);
539 }
540
541 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
542 LLVMContext &Context,
543 unsigned RemainingBytes,
544 unsigned SrcAlign,
545 unsigned DestAlign) const {
546 for (unsigned i = 0; i != RemainingBytes; ++i)
547 OpsOut.push_back(Type::getInt8Ty(Context));
548 }
549
550 bool areInlineCompatible(const Function *Caller,
551 const Function *Callee) const {
552 return (Caller->getFnAttribute("target-cpu") ==
553 Callee->getFnAttribute("target-cpu")) &&
554 (Caller->getFnAttribute("target-features") ==
555 Callee->getFnAttribute("target-features"));
556 }
557
558 bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
559 SmallPtrSetImpl<Argument *> &Args) const {
560 return (Caller->getFnAttribute("target-cpu") ==
561 Callee->getFnAttribute("target-cpu")) &&
562 (Caller->getFnAttribute("target-features") ==
563 Callee->getFnAttribute("target-features"));
564 }
565
566 bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
567 const DataLayout &DL) const {
568 return false;
569 }
570
571 bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
572 const DataLayout &DL) const {
573 return false;
574 }
575
576 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
577
578 bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
579
580 bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
581
582 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
583 unsigned Alignment,
584 unsigned AddrSpace) const {
585 return true;
586 }
587
588 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
589 unsigned Alignment,
590 unsigned AddrSpace) const {
591 return true;
592 }
593
594 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
595 unsigned ChainSizeInBytes,
596 VectorType *VecTy) const {
597 return VF;
598 }
599
600 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
601 unsigned ChainSizeInBytes,
602 VectorType *VecTy) const {
603 return VF;
604 }
605
606 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
607 TTI::ReductionFlags Flags) const {
608 return false;
609 }
610
611 bool shouldExpandReduction(const IntrinsicInst *II) const {
612 return true;
613 }
614
615 unsigned getGISelRematGlobalCost() const {
616 return 1;
617 }
618
619protected:
620 // Obtain the minimum required size to hold the value (without the sign)
621 // In case of a vector it returns the min required size for one element.
622 unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
623 if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
624 const auto* VectorValue = cast<Constant>(Val);
625
626 // In case of a vector need to pick the max between the min
627 // required size for each element
628 auto *VT = cast<VectorType>(Val->getType());
629
630 // Assume unsigned elements
631 isSigned = false;
632
633 // The max required size is the total vector width divided by num
634 // of elements in the vector
635 unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
636
637 unsigned MinRequiredSize = 0;
638 for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
639 if (auto* IntElement =
640 dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
641 bool signedElement = IntElement->getValue().isNegative();
642 // Get the element min required size.
643 unsigned ElementMinRequiredSize =
644 IntElement->getValue().getMinSignedBits() - 1;
645 // In case one element is signed then all the vector is signed.
646 isSigned |= signedElement;
647 // Save the max required bit size between all the elements.
648 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
649 }
650 else {
651 // not an int constant element
652 return MaxRequiredSize;
653 }
654 }
655 return MinRequiredSize;
656 }
657
658 if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
659 isSigned = CI->getValue().isNegative();
660 return CI->getValue().getMinSignedBits() - 1;
661 }
662
663 if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
664 isSigned = true;
665 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
666 }
667
668 if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
669 isSigned = false;
670 return Cast->getSrcTy()->getScalarSizeInBits();
671 }
672
673 isSigned = false;
674 return Val->getType()->getScalarSizeInBits();
675 }
676
677 bool isStridedAccess(const SCEV *Ptr) {
678 return Ptr && isa<SCEVAddRecExpr>(Ptr);
679 }
680
681 const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
682 const SCEV *Ptr) {
683 if (!isStridedAccess(Ptr))
684 return nullptr;
685 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
686 return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
687 }
688
689 bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
690 int64_t MergeDistance) {
691 const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
692 if (!Step)
693 return false;
694 APInt StrideVal = Step->getAPInt();
695 if (StrideVal.getBitWidth() > 64)
696 return false;
697 // FIXME: Need to take absolute value for negative stride case.
698 return StrideVal.getSExtValue() < MergeDistance;
699 }
700};
701
702/// CRTP base class for use as a mix-in that aids implementing
703/// a TargetTransformInfo-compatible class.
704template <typename T>
705class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
706private:
707 typedef TargetTransformInfoImplBase BaseT;
708
709protected:
710 explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
711
712public:
713 using BaseT::getCallCost;
714
715 unsigned getCallCost(const Function *F, int NumArgs, const User *U) {
716 assert(F && "A concrete function must be provided to this routine.")((F && "A concrete function must be provided to this routine."
) ? static_cast<void> (0) : __assert_fail ("F && \"A concrete function must be provided to this routine.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 716, __PRETTY_FUNCTION__))
;
717
718 if (NumArgs < 0)
719 // Set the argument number to the number of explicit arguments in the
720 // function.
721 NumArgs = F->arg_size();
722
723 if (Intrinsic::ID IID = F->getIntrinsicID()) {
724 FunctionType *FTy = F->getFunctionType();
725 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
726 return static_cast<T *>(this)
727 ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys, U);
728 }
729
730 if (!static_cast<T *>(this)->isLoweredToCall(F))
731 return TTI::TCC_Basic; // Give a basic cost if it will be lowered
732 // directly.
733
734 return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs, U);
735 }
736
737 unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments,
738 const User *U) {
739 // Simply delegate to generic handling of the call.
740 // FIXME: We should use instsimplify or something else to catch calls which
741 // will constant fold with these arguments.
742 return static_cast<T *>(this)->getCallCost(F, Arguments.size(), U);
743 }
744
745 using BaseT::getGEPCost;
746
747 int getGEPCost(Type *PointeeType, const Value *Ptr,
748 ArrayRef<const Value *> Operands) {
749 assert(PointeeType && Ptr && "can't get GEPCost of nullptr")((PointeeType && Ptr && "can't get GEPCost of nullptr"
) ? static_cast<void> (0) : __assert_fail ("PointeeType && Ptr && \"can't get GEPCost of nullptr\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 749, __PRETTY_FUNCTION__))
;
750 // TODO: will remove this when pointers have an opaque type.
751 assert(Ptr->getType()->getScalarType()->getPointerElementType() ==((Ptr->getType()->getScalarType()->getPointerElementType
() == PointeeType && "explicit pointee type doesn't match operand's pointee type"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->getScalarType()->getPointerElementType() == PointeeType && \"explicit pointee type doesn't match operand's pointee type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 753, __PRETTY_FUNCTION__))
752 PointeeType &&((Ptr->getType()->getScalarType()->getPointerElementType
() == PointeeType && "explicit pointee type doesn't match operand's pointee type"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->getScalarType()->getPointerElementType() == PointeeType && \"explicit pointee type doesn't match operand's pointee type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 753, __PRETTY_FUNCTION__))
753 "explicit pointee type doesn't match operand's pointee type")((Ptr->getType()->getScalarType()->getPointerElementType
() == PointeeType && "explicit pointee type doesn't match operand's pointee type"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->getScalarType()->getPointerElementType() == PointeeType && \"explicit pointee type doesn't match operand's pointee type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 753, __PRETTY_FUNCTION__))
;
754 auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
755 bool HasBaseReg = (BaseGV == nullptr);
756
757 auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
758 APInt BaseOffset(PtrSizeBits, 0);
759 int64_t Scale = 0;
760
761 auto GTI = gep_type_begin(PointeeType, Operands);
762 Type *TargetType = nullptr;
763
764 // Handle the case where the GEP instruction has a single operand,
765 // the basis, therefore TargetType is a nullptr.
766 if (Operands.empty())
767 return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
768
769 for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
770 TargetType = GTI.getIndexedType();
771 // We assume that the cost of Scalar GEP with constant index and the
772 // cost of Vector GEP with splat constant index are the same.
773 const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
774 if (!ConstIdx)
775 if (auto Splat = getSplatValue(*I))
776 ConstIdx = dyn_cast<ConstantInt>(Splat);
777 if (StructType *STy = GTI.getStructTypeOrNull()) {
778 // For structures the index is always splat or scalar constant
779 assert(ConstIdx && "Unexpected GEP index")((ConstIdx && "Unexpected GEP index") ? static_cast<
void> (0) : __assert_fail ("ConstIdx && \"Unexpected GEP index\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Analysis/TargetTransformInfoImpl.h"
, 779, __PRETTY_FUNCTION__))
;
780 uint64_t Field = ConstIdx->getZExtValue();
781 BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
782 } else {
783 int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
784 if (ConstIdx) {
785 BaseOffset +=
786 ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
787 } else {
788 // Needs scale register.
789 if (Scale != 0)
790 // No addressing mode takes two scale registers.
791 return TTI::TCC_Basic;
792 Scale = ElementSize;
793 }
794 }
795 }
796
797 if (static_cast<T *>(this)->isLegalAddressingMode(
798 TargetType, const_cast<GlobalValue *>(BaseGV),
799 BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale,
800 Ptr->getType()->getPointerAddressSpace()))
801 return TTI::TCC_Free;
802 return TTI::TCC_Basic;
803 }
804
805 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
806 ArrayRef<Type *> ParamTys, const User *U) {
807 switch (IID) {
808 default:
809 // Intrinsics rarely (if ever) have normal argument setup constraints.
810 // Model them as having a basic instruction cost.
811 return TTI::TCC_Basic;
812
813 // TODO: other libc intrinsics.
814 case Intrinsic::memcpy:
815 return static_cast<T *>(this)->getMemcpyCost(dyn_cast<Instruction>(U));
816
817 case Intrinsic::annotation:
818 case Intrinsic::assume:
819 case Intrinsic::sideeffect:
820 case Intrinsic::dbg_declare:
821 case Intrinsic::dbg_value:
822 case Intrinsic::dbg_label:
823 case Intrinsic::invariant_start:
824 case Intrinsic::invariant_end:
825 case Intrinsic::launder_invariant_group:
826 case Intrinsic::strip_invariant_group:
827 case Intrinsic::is_constant:
828 case Intrinsic::lifetime_start:
829 case Intrinsic::lifetime_end:
830 case Intrinsic::objectsize:
831 case Intrinsic::ptr_annotation:
832 case Intrinsic::var_annotation:
833 case Intrinsic::experimental_gc_result:
834 case Intrinsic::experimental_gc_relocate:
835 case Intrinsic::coro_alloc:
836 case Intrinsic::coro_begin:
837 case Intrinsic::coro_free:
838 case Intrinsic::coro_end:
839 case Intrinsic::coro_frame:
840 case Intrinsic::coro_size:
841 case Intrinsic::coro_suspend:
842 case Intrinsic::coro_param:
843 case Intrinsic::coro_subfn_addr:
844 // These intrinsics don't actually represent code after lowering.
845 return TTI::TCC_Free;
846 }
847 }
848
849 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
850 ArrayRef<const Value *> Arguments, const User *U) {
851 // Delegate to the generic intrinsic handling code. This mostly provides an
852 // opportunity for targets to (for example) special case the cost of
853 // certain intrinsics based on constants used as arguments.
854 SmallVector<Type *, 8> ParamTys;
855 ParamTys.reserve(Arguments.size());
856 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
857 ParamTys.push_back(Arguments[Idx]->getType());
858 return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys, U);
859 }
860
861 unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
862 if (isa<PHINode>(U))
4
Assuming 'U' is not a 'PHINode'
5
Taking false branch
863 return TTI::TCC_Free; // Model all PHI nodes as free.
864
865 if (isa<ExtractValueInst>(U))
6
Assuming 'U' is not a 'ExtractValueInst'
7
Taking false branch
866 return TTI::TCC_Free; // Model all ExtractValue nodes as free.
867
868 // Static alloca doesn't generate target instructions.
869 if (auto *A
8.1
'A' is null
8.1
'A' is null
8.1
'A' is null
8.1
'A' is null
8.1
'A' is null
8.1
'A' is null
8.1
'A' is null
= dyn_cast<AllocaInst>(U))
8
Assuming 'U' is not a 'AllocaInst'
9
Taking false branch
870 if (A->isStaticAlloca())
871 return TTI::TCC_Free;
872
873 if (const GEPOperator *GEP
10.1
'GEP' is null
10.1
'GEP' is null
10.1
'GEP' is null
10.1
'GEP' is null
10.1
'GEP' is null
10.1
'GEP' is null
10.1
'GEP' is null
= dyn_cast<GEPOperator>(U)) {
10
Assuming 'U' is not a 'GEPOperator'
11
Taking false branch
874 return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
875 GEP->getPointerOperand(),
876 Operands.drop_front());
877 }
878
879 if (auto CS = ImmutableCallSite(U)) {
12
Calling 'CallSiteBase::operator bool'
26
Returning from 'CallSiteBase::operator bool'
27
Taking false branch
880 const Function *F = CS.getCalledFunction();
881 if (!F) {
882 // Just use the called value type.
883 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
884 return static_cast<T *>(this)
885 ->getCallCost(cast<FunctionType>(FTy), CS.arg_size(), U);
886 }
887
888 SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
889 return static_cast<T *>(this)->getCallCost(F, Arguments, U);
890 }
891
892 if (isa<SExtInst>(U) || isa<ZExtInst>(U) || isa<FPExtInst>(U))
28
Assuming 'U' is not a 'SExtInst'
29
Assuming 'U' is not a 'ZExtInst'
30
Assuming 'U' is not a 'FPExtInst'
31
Taking false branch
893 // The old behaviour of generally treating extensions of icmp to be free
894 // has been removed. A target that needs it should override getUserCost().
895 return static_cast<T *>(this)->getExtCost(cast<Instruction>(U),
896 Operands.back());
897
898 return static_cast<T *>(this)->getOperationCost(
40
Calling 'BasicTTIImplBase::getOperationCost'
899 Operator::getOpcode(U), U->getType(),
32
Calling 'Operator::getOpcode'
36
Returning from 'Operator::getOpcode'
900 U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
37
Assuming the condition is false
38
'?' condition is false
39
Passing null pointer value via 3rd parameter 'OpTy'
901 }
902
903 int getInstructionLatency(const Instruction *I) {
904 SmallVector<const Value *, 4> Operands(I->value_op_begin(),
905 I->value_op_end());
906 if (getUserCost(I, Operands) == TTI::TCC_Free)
907 return 0;
908
909 if (isa<LoadInst>(I))
910 return 4;
911
912 Type *DstTy = I->getType();
913
914 // Usually an intrinsic is a simple instruction.
915 // A real function call is much slower.
916 if (auto *CI = dyn_cast<CallInst>(I)) {
917 const Function *F = CI->getCalledFunction();
918 if (!F || static_cast<T *>(this)->isLoweredToCall(F))
919 return 40;
920 // Some intrinsics return a value and a flag, we use the value type
921 // to decide its latency.
922 if (StructType* StructTy = dyn_cast<StructType>(DstTy))
923 DstTy = StructTy->getElementType(0);
924 // Fall through to simple instructions.
925 }
926
927 if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
928 DstTy = VectorTy->getElementType();
929 if (DstTy->isFloatingPointTy())
930 return 3;
931
932 return 1;
933 }
934};
935}
936
937#endif

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h

1//===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the CallSite class, which is a handy wrapper for code that
10// wants to treat Call, Invoke and CallBr instructions in a generic way. When
11// in non-mutation context (e.g. an analysis) ImmutableCallSite should be used.
12// Finally, when some degree of customization is necessary between these two
13// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
14//
15// NOTE: These classes are supposed to have "value semantics". So they should be
16// passed by value, not by reference; they should not be "new"ed or "delete"d.
17// They are efficiently copyable, assignable and constructable, with cost
18// equivalent to copying a pointer (notice that they have only a single data
19// member). The internal representation carries a flag which indicates which of
20// the three variants is enclosed. This allows for cheaper checks when various
21// accessors of CallSite are employed.
22//
23//===----------------------------------------------------------------------===//
24
25#ifndef LLVM_IR_CALLSITE_H
26#define LLVM_IR_CALLSITE_H
27
28#include "llvm/ADT/Optional.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/IR/Attributes.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/Use.h"
38#include "llvm/IR/User.h"
39#include "llvm/IR/Value.h"
40#include "llvm/Support/Casting.h"
41#include <cassert>
42#include <cstdint>
43#include <iterator>
44
45namespace llvm {
46
47namespace Intrinsic {
48typedef unsigned ID;
49}
50
51template <typename FunTy = const Function, typename BBTy = const BasicBlock,
52 typename ValTy = const Value, typename UserTy = const User,
53 typename UseTy = const Use, typename InstrTy = const Instruction,
54 typename CallTy = const CallInst,
55 typename InvokeTy = const InvokeInst,
56 typename CallBrTy = const CallBrInst,
57 typename IterTy = User::const_op_iterator>
58class CallSiteBase {
59protected:
60 PointerIntPair<InstrTy *, 2, int> I;
61
62 CallSiteBase() = default;
63 CallSiteBase(CallTy *CI) : I(CI, 1) { assert(CI)((CI) ? static_cast<void> (0) : __assert_fail ("CI", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 63, __PRETTY_FUNCTION__))
; }
64 CallSiteBase(InvokeTy *II) : I(II, 0) { assert(II)((II) ? static_cast<void> (0) : __assert_fail ("II", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 64, __PRETTY_FUNCTION__))
; }
65 CallSiteBase(CallBrTy *CBI) : I(CBI, 2) { assert(CBI)((CBI) ? static_cast<void> (0) : __assert_fail ("CBI", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 65, __PRETTY_FUNCTION__))
; }
66 explicit CallSiteBase(ValTy *II) { *this = get(II); }
67
68private:
69 /// This static method is like a constructor. It will create an appropriate
70 /// call site for a Call, Invoke or CallBr instruction, but it can also create
71 /// a null initialized CallSiteBase object for something which is NOT a call
72 /// site.
73 static CallSiteBase get(ValTy *V) {
74 if (InstrTy *II = dyn_cast<InstrTy>(V)) {
75 if (II->getOpcode() == Instruction::Call)
76 return CallSiteBase(static_cast<CallTy*>(II));
77 if (II->getOpcode() == Instruction::Invoke)
78 return CallSiteBase(static_cast<InvokeTy*>(II));
79 if (II->getOpcode() == Instruction::CallBr)
80 return CallSiteBase(static_cast<CallBrTy *>(II));
81 }
82 return CallSiteBase();
83 }
84
85public:
86 /// Return true if a CallInst is enclosed.
87 bool isCall() const { return I.getInt() == 1; }
88
89 /// Return true if a InvokeInst is enclosed. !I.getInt() may also signify a
90 /// NULL instruction pointer, so check that.
91 bool isInvoke() const { return getInstruction() && I.getInt() == 0; }
92
93 /// Return true if a CallBrInst is enclosed.
94 bool isCallBr() const { return I.getInt() == 2; }
95
96 InstrTy *getInstruction() const { return I.getPointer(); }
97 InstrTy *operator->() const { return I.getPointer(); }
98 explicit operator bool() const { return I.getPointer(); }
13
Calling 'PointerIntPair::getPointer'
24
Returning from 'PointerIntPair::getPointer'
25
Returning zero, which participates in a condition later
99
100 /// Get the basic block containing the call site.
101 BBTy* getParent() const { return getInstruction()->getParent(); }
102
103 /// Return the pointer to function that is being called.
104 ValTy *getCalledValue() const {
105 assert(getInstruction() && "Not a call, invoke or callbr instruction!")((getInstruction() && "Not a call, invoke or callbr instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, invoke or callbr instruction!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 105, __PRETTY_FUNCTION__))
;
106 return *getCallee();
107 }
108
109 /// Return the function being called if this is a direct call, otherwise
110 /// return null (if it's an indirect call).
111 FunTy *getCalledFunction() const {
112 return dyn_cast<FunTy>(getCalledValue());
113 }
114
115 /// Return true if the callsite is an indirect call.
116 bool isIndirectCall() const {
117 const Value *V = getCalledValue();
118 if (!V)
119 return false;
120 if (isa<FunTy>(V) || isa<Constant>(V))
121 return false;
122 if (const CallBase *CB = dyn_cast<CallBase>(getInstruction()))
123 if (CB->isInlineAsm())
124 return false;
125 return true;
126 }
127
128 /// Set the callee to the specified value. Unlike the function of the same
129 /// name on CallBase, does not modify the type!
130 void setCalledFunction(Value *V) {
131 assert(getInstruction() && "Not a call, callbr, or invoke instruction!")((getInstruction() && "Not a call, callbr, or invoke instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, callbr, or invoke instruction!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 131, __PRETTY_FUNCTION__))
;
132 assert(cast<PointerType>(V->getType())->getElementType() ==((cast<PointerType>(V->getType())->getElementType
() == cast<CallBase>(getInstruction())->getFunctionType
() && "New callee type does not match FunctionType on call"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(V->getType())->getElementType() == cast<CallBase>(getInstruction())->getFunctionType() && \"New callee type does not match FunctionType on call\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 134, __PRETTY_FUNCTION__))
133 cast<CallBase>(getInstruction())->getFunctionType() &&((cast<PointerType>(V->getType())->getElementType
() == cast<CallBase>(getInstruction())->getFunctionType
() && "New callee type does not match FunctionType on call"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(V->getType())->getElementType() == cast<CallBase>(getInstruction())->getFunctionType() && \"New callee type does not match FunctionType on call\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 134, __PRETTY_FUNCTION__))
134 "New callee type does not match FunctionType on call")((cast<PointerType>(V->getType())->getElementType
() == cast<CallBase>(getInstruction())->getFunctionType
() && "New callee type does not match FunctionType on call"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(V->getType())->getElementType() == cast<CallBase>(getInstruction())->getFunctionType() && \"New callee type does not match FunctionType on call\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 134, __PRETTY_FUNCTION__))
;
135 *getCallee() = V;
136 }
137
138 /// Return the intrinsic ID of the intrinsic called by this CallSite,
139 /// or Intrinsic::not_intrinsic if the called function is not an
140 /// intrinsic, or if this CallSite is an indirect call.
141 Intrinsic::ID getIntrinsicID() const {
142 if (auto *F = getCalledFunction())
143 return F->getIntrinsicID();
144 // Don't use Intrinsic::not_intrinsic, as it will require pulling
145 // Intrinsics.h into every header that uses CallSite.
146 return static_cast<Intrinsic::ID>(0);
147 }
148
149 /// Determine whether the passed iterator points to the callee operand's Use.
150 bool isCallee(Value::const_user_iterator UI) const {
151 return isCallee(&UI.getUse());
152 }
153
154 /// Determine whether this Use is the callee operand's Use.
155 bool isCallee(const Use *U) const { return getCallee() == U; }
156
157 /// Determine whether the passed iterator points to an argument operand.
158 bool isArgOperand(Value::const_user_iterator UI) const {
159 return isArgOperand(&UI.getUse());
160 }
161
162 /// Determine whether the passed use points to an argument operand.
163 bool isArgOperand(const Use *U) const {
164 assert(getInstruction() == U->getUser())((getInstruction() == U->getUser()) ? static_cast<void>
(0) : __assert_fail ("getInstruction() == U->getUser()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 164, __PRETTY_FUNCTION__))
;
165 return arg_begin() <= U && U < arg_end();
166 }
167
168 /// Determine whether the passed iterator points to a bundle operand.
169 bool isBundleOperand(Value::const_user_iterator UI) const {
170 return isBundleOperand(&UI.getUse());
171 }
172
173 /// Determine whether the passed use points to a bundle operand.
174 bool isBundleOperand(const Use *U) const {
175 assert(getInstruction() == U->getUser())((getInstruction() == U->getUser()) ? static_cast<void>
(0) : __assert_fail ("getInstruction() == U->getUser()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 175, __PRETTY_FUNCTION__))
;
176 if (!hasOperandBundles())
177 return false;
178 unsigned OperandNo = U - (*this)->op_begin();
179 return getBundleOperandsStartIndex() <= OperandNo &&
180 OperandNo < getBundleOperandsEndIndex();
181 }
182
183 /// Determine whether the passed iterator points to a data operand.
184 bool isDataOperand(Value::const_user_iterator UI) const {
185 return isDataOperand(&UI.getUse());
186 }
187
188 /// Determine whether the passed use points to a data operand.
189 bool isDataOperand(const Use *U) const {
190 return data_operands_begin() <= U && U < data_operands_end();
191 }
192
193 ValTy *getArgument(unsigned ArgNo) const {
194 assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!")((arg_begin() + ArgNo < arg_end() && "Argument # out of range!"
) ? static_cast<void> (0) : __assert_fail ("arg_begin() + ArgNo < arg_end() && \"Argument # out of range!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 194, __PRETTY_FUNCTION__))
;
195 return *(arg_begin() + ArgNo);
196 }
197
198 void setArgument(unsigned ArgNo, Value* newVal) {
199 assert(getInstruction() && "Not a call, invoke or callbr instruction!")((getInstruction() && "Not a call, invoke or callbr instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, invoke or callbr instruction!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 199, __PRETTY_FUNCTION__))
;
200 assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!")((arg_begin() + ArgNo < arg_end() && "Argument # out of range!"
) ? static_cast<void> (0) : __assert_fail ("arg_begin() + ArgNo < arg_end() && \"Argument # out of range!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 200, __PRETTY_FUNCTION__))
;
201 getInstruction()->setOperand(ArgNo, newVal);
202 }
203
204 /// Given a value use iterator, returns the argument that corresponds to it.
205 /// Iterator must actually correspond to an argument.
206 unsigned getArgumentNo(Value::const_user_iterator I) const {
207 return getArgumentNo(&I.getUse());
208 }
209
210 /// Given a use for an argument, get the argument number that corresponds to
211 /// it.
212 unsigned getArgumentNo(const Use *U) const {
213 assert(getInstruction() && "Not a call, invoke or callbr instruction!")((getInstruction() && "Not a call, invoke or callbr instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, invoke or callbr instruction!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 213, __PRETTY_FUNCTION__))
;
214 assert(isArgOperand(U) && "Argument # out of range!")((isArgOperand(U) && "Argument # out of range!") ? static_cast
<void> (0) : __assert_fail ("isArgOperand(U) && \"Argument # out of range!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 214, __PRETTY_FUNCTION__))
;
215 return U - arg_begin();
216 }
217
218 /// The type of iterator to use when looping over actual arguments at this
219 /// call site.
220 using arg_iterator = IterTy;
221
222 iterator_range<IterTy> args() const {
223 return make_range(arg_begin(), arg_end());
224 }
225 bool arg_empty() const { return arg_end() == arg_begin(); }
226 unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
227
228 /// Given a value use iterator, return the data operand corresponding to it.
229 /// Iterator must actually correspond to a data operand.
230 unsigned getDataOperandNo(Value::const_user_iterator UI) const {
231 return getDataOperandNo(&UI.getUse());
232 }
233
234 /// Given a use for a data operand, get the data operand number that
235 /// corresponds to it.
236 unsigned getDataOperandNo(const Use *U) const {
237 assert(getInstruction() && "Not a call, invoke or callbr instruction!")((getInstruction() && "Not a call, invoke or callbr instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call, invoke or callbr instruction!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 237, __PRETTY_FUNCTION__))
;
238 assert(isDataOperand(U) && "Data operand # out of range!")((isDataOperand(U) && "Data operand # out of range!")
? static_cast<void> (0) : __assert_fail ("isDataOperand(U) && \"Data operand # out of range!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 238, __PRETTY_FUNCTION__))
;
239 return U - data_operands_begin();
240 }
241
242 /// Type of iterator to use when looping over data operands at this call site
243 /// (see below).
244 using data_operand_iterator = IterTy;
245
246 /// data_operands_begin/data_operands_end - Return iterators iterating over
247 /// the call / invoke / callbr argument list and bundle operands. For invokes,
248 /// this is the set of instruction operands except the invoke target and the
249 /// two successor blocks; for calls this is the set of instruction operands
250 /// except the call target; for callbrs the number of labels to skip must be
251 /// determined first.
252
253 IterTy data_operands_begin() const {
254 assert(getInstruction() && "Not a call or invoke instruction!")((getInstruction() && "Not a call or invoke instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call or invoke instruction!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 254, __PRETTY_FUNCTION__))
;
255 return cast<CallBase>(getInstruction())->data_operands_begin();
256 }
257 IterTy data_operands_end() const {
258 assert(getInstruction() && "Not a call or invoke instruction!")((getInstruction() && "Not a call or invoke instruction!"
) ? static_cast<void> (0) : __assert_fail ("getInstruction() && \"Not a call or invoke instruction!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 258, __PRETTY_FUNCTION__))
;
259 return cast<CallBase>(getInstruction())->data_operands_end();
260 }
261 iterator_range<IterTy> data_ops() const {
262 return make_range(data_operands_begin(), data_operands_end());
263 }
264 bool data_operands_empty() const {
265 return data_operands_end() == data_operands_begin();
266 }
267 unsigned data_operands_size() const {
268 return std::distance(data_operands_begin(), data_operands_end());
269 }
270
271 /// Return the type of the instruction that generated this call site.
272 Type *getType() const { return (*this)->getType(); }
273
274 /// Return the caller function for this call site.
275 FunTy *getCaller() const { return (*this)->getParent()->getParent(); }
276
277 /// Tests if this call site must be tail call optimized. Only a CallInst can
278 /// be tail call optimized.
279 bool isMustTailCall() const {
280 return isCall() && cast<CallInst>(getInstruction())->isMustTailCall();
281 }
282
283 /// Tests if this call site is marked as a tail call.
284 bool isTailCall() const {
285 return isCall() && cast<CallInst>(getInstruction())->isTailCall();
286 }
287
288#define CALLSITE_DELEGATE_GETTER(METHOD) \
289 InstrTy *II = getInstruction(); \
290 return isCall() ? cast<CallInst>(II)->METHOD \
291 : isCallBr() ? cast<CallBrInst>(II)->METHOD \
292 : cast<InvokeInst>(II)->METHOD
293
294#define CALLSITE_DELEGATE_SETTER(METHOD) \
295 InstrTy *II = getInstruction(); \
296 if (isCall()) \
297 cast<CallInst>(II)->METHOD; \
298 else if (isCallBr()) \
299 cast<CallBrInst>(II)->METHOD; \
300 else \
301 cast<InvokeInst>(II)->METHOD
302
303 unsigned getNumArgOperands() const {
304 CALLSITE_DELEGATE_GETTER(getNumArgOperands());
305 }
306
307 ValTy *getArgOperand(unsigned i) const {
308 CALLSITE_DELEGATE_GETTER(getArgOperand(i));
309 }
310
311 ValTy *getReturnedArgOperand() const {
312 CALLSITE_DELEGATE_GETTER(getReturnedArgOperand());
313 }
314
315 bool isInlineAsm() const {
316 return cast<CallBase>(getInstruction())->isInlineAsm();
317 }
318
319 /// Get the calling convention of the call.
320 CallingConv::ID getCallingConv() const {
321 CALLSITE_DELEGATE_GETTER(getCallingConv());
322 }
323 /// Set the calling convention of the call.
324 void setCallingConv(CallingConv::ID CC) {
325 CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
326 }
327
328 FunctionType *getFunctionType() const {
329 CALLSITE_DELEGATE_GETTER(getFunctionType());
330 }
331
332 void mutateFunctionType(FunctionType *Ty) const {
333 CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty));
334 }
335
336 /// Get the parameter attributes of the call.
337 AttributeList getAttributes() const {
338 CALLSITE_DELEGATE_GETTER(getAttributes());
339 }
340 /// Set the parameter attributes of the call.
341 void setAttributes(AttributeList PAL) {
342 CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
343 }
344
345 void addAttribute(unsigned i, Attribute::AttrKind Kind) {
346 CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind));
347 }
348
349 void addAttribute(unsigned i, Attribute Attr) {
350 CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr));
351 }
352
353 void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
354 CALLSITE_DELEGATE_SETTER(addParamAttr(ArgNo, Kind));
355 }
356
357 void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
358 CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
359 }
360
361 void removeAttribute(unsigned i, StringRef Kind) {
362 CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
363 }
364
365 void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
366 CALLSITE_DELEGATE_SETTER(removeParamAttr(ArgNo, Kind));
367 }
368
369 /// Return true if this function has the given attribute.
370 bool hasFnAttr(Attribute::AttrKind Kind) const {
371 CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
372 }
373
374 /// Return true if this function has the given attribute.
375 bool hasFnAttr(StringRef Kind) const {
376 CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
377 }
378
379 /// Return true if this return value has the given attribute.
380 bool hasRetAttr(Attribute::AttrKind Kind) const {
381 CALLSITE_DELEGATE_GETTER(hasRetAttr(Kind));
382 }
383
384 /// Return true if the call or the callee has the given attribute.
385 bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
386 CALLSITE_DELEGATE_GETTER(paramHasAttr(ArgNo, Kind));
387 }
388
389 Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
390 CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
391 }
392
393 Attribute getAttribute(unsigned i, StringRef Kind) const {
394 CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
395 }
396
397 /// Return true if the data operand at index \p i directly or indirectly has
398 /// the attribute \p A.
399 ///
400 /// Normal call, invoke or callbr arguments have per operand attributes, as
401 /// specified in the attribute set attached to this instruction, while operand
402 /// bundle operands may have some attributes implied by the type of its
403 /// containing operand bundle.
404 bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
405 CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind));
406 }
407
408 /// Extract the alignment of the return value.
409 unsigned getRetAlignment() const {
410 CALLSITE_DELEGATE_GETTER(getRetAlignment());
411 }
412
413 /// Extract the alignment for a call or parameter (0=unknown).
414 unsigned getParamAlignment(unsigned ArgNo) const {
415 CALLSITE_DELEGATE_GETTER(getParamAlignment(ArgNo));
416 }
417
418 /// Extract the byval type for a call or parameter (nullptr=unknown).
419 Type *getParamByValType(unsigned ArgNo) const {
420 CALLSITE_DELEGATE_GETTER(getParamByValType(ArgNo));
421 }
422
423 /// Extract the number of dereferenceable bytes for a call or parameter
424 /// (0=unknown).
425 uint64_t getDereferenceableBytes(unsigned i) const {
426 CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i));
427 }
428
429 /// Extract the number of dereferenceable_or_null bytes for a call or
430 /// parameter (0=unknown).
431 uint64_t getDereferenceableOrNullBytes(unsigned i) const {
432 CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i));
433 }
434
435 /// Determine if the return value is marked with NoAlias attribute.
436 bool returnDoesNotAlias() const {
437 CALLSITE_DELEGATE_GETTER(returnDoesNotAlias());
438 }
439
440 /// Return true if the call should not be treated as a call to a builtin.
441 bool isNoBuiltin() const {
442 CALLSITE_DELEGATE_GETTER(isNoBuiltin());
443 }
444
445 /// Return true if the call requires strict floating point semantics.
446 bool isStrictFP() const {
447 CALLSITE_DELEGATE_GETTER(isStrictFP());
448 }
449
450 /// Return true if the call should not be inlined.
451 bool isNoInline() const {
452 CALLSITE_DELEGATE_GETTER(isNoInline());
453 }
454 void setIsNoInline(bool Value = true) {
455 CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
456 }
457
458 /// Determine if the call does not access memory.
459 bool doesNotAccessMemory() const {
460 CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
461 }
462 void setDoesNotAccessMemory() {
463 CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
464 }
465
466 /// Determine if the call does not access or only reads memory.
467 bool onlyReadsMemory() const {
468 CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
469 }
470 void setOnlyReadsMemory() {
471 CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
472 }
473
474 /// Determine if the call does not access or only writes memory.
475 bool doesNotReadMemory() const {
476 CALLSITE_DELEGATE_GETTER(doesNotReadMemory());
477 }
478 void setDoesNotReadMemory() {
479 CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory());
480 }
481
482 /// Determine if the call can access memmory only using pointers based
483 /// on its arguments.
484 bool onlyAccessesArgMemory() const {
485 CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory());
486 }
487 void setOnlyAccessesArgMemory() {
488 CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory());
489 }
490
491 /// Determine if the function may only access memory that is
492 /// inaccessible from the IR.
493 bool onlyAccessesInaccessibleMemory() const {
494 CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemory());
495 }
496 void setOnlyAccessesInaccessibleMemory() {
497 CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemory());
498 }
499
500 /// Determine if the function may only access memory that is
501 /// either inaccessible from the IR or pointed to by its arguments.
502 bool onlyAccessesInaccessibleMemOrArgMem() const {
503 CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemOrArgMem());
504 }
505 void setOnlyAccessesInaccessibleMemOrArgMem() {
506 CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemOrArgMem());
507 }
508
509 /// Determine if the call cannot return.
510 bool doesNotReturn() const {
511 CALLSITE_DELEGATE_GETTER(doesNotReturn());
512 }
513 void setDoesNotReturn() {
514 CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
515 }
516
517 /// Determine if the call cannot unwind.
518 bool doesNotThrow() const {
519 CALLSITE_DELEGATE_GETTER(doesNotThrow());
520 }
521 void setDoesNotThrow() {
522 CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
523 }
524
525 /// Determine if the call can be duplicated.
526 bool cannotDuplicate() const {
527 CALLSITE_DELEGATE_GETTER(cannotDuplicate());
528 }
529 void setCannotDuplicate() {
530 CALLSITE_DELEGATE_SETTER(setCannotDuplicate());
531 }
532
533 /// Determine if the call is convergent.
534 bool isConvergent() const {
535 CALLSITE_DELEGATE_GETTER(isConvergent());
536 }
537 void setConvergent() {
538 CALLSITE_DELEGATE_SETTER(setConvergent());
539 }
540 void setNotConvergent() {
541 CALLSITE_DELEGATE_SETTER(setNotConvergent());
542 }
543
544 unsigned getNumOperandBundles() const {
545 CALLSITE_DELEGATE_GETTER(getNumOperandBundles());
546 }
547
548 bool hasOperandBundles() const {
549 CALLSITE_DELEGATE_GETTER(hasOperandBundles());
550 }
551
552 unsigned getBundleOperandsStartIndex() const {
553 CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex());
554 }
555
556 unsigned getBundleOperandsEndIndex() const {
557 CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex());
558 }
559
560 unsigned getNumTotalBundleOperands() const {
561 CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands());
562 }
563
564 OperandBundleUse getOperandBundleAt(unsigned Index) const {
565 CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index));
566 }
567
568 Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
569 CALLSITE_DELEGATE_GETTER(getOperandBundle(Name));
570 }
571
572 Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
573 CALLSITE_DELEGATE_GETTER(getOperandBundle(ID));
574 }
575
576 unsigned countOperandBundlesOfType(uint32_t ID) const {
577 CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID));
578 }
579
580 bool isBundleOperand(unsigned Idx) const {
581 CALLSITE_DELEGATE_GETTER(isBundleOperand(Idx));
582 }
583
584 IterTy arg_begin() const {
585 CALLSITE_DELEGATE_GETTER(arg_begin());
586 }
587
588 IterTy arg_end() const {
589 CALLSITE_DELEGATE_GETTER(arg_end());
590 }
591
592#undef CALLSITE_DELEGATE_GETTER
593#undef CALLSITE_DELEGATE_SETTER
594
595 void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
596 // Since this is actually a getter that "looks like" a setter, don't use the
597 // above macros to avoid confusion.
598 cast<CallBase>(getInstruction())->getOperandBundlesAsDefs(Defs);
599 }
600
601 /// Determine whether this data operand is not captured.
602 bool doesNotCapture(unsigned OpNo) const {
603 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
604 }
605
606 /// Determine whether this argument is passed by value.
607 bool isByValArgument(unsigned ArgNo) const {
608 return paramHasAttr(ArgNo, Attribute::ByVal);
609 }
610
611 /// Determine whether this argument is passed in an alloca.
612 bool isInAllocaArgument(unsigned ArgNo) const {
613 return paramHasAttr(ArgNo, Attribute::InAlloca);
614 }
615
616 /// Determine whether this argument is passed by value or in an alloca.
617 bool isByValOrInAllocaArgument(unsigned ArgNo) const {
618 return paramHasAttr(ArgNo, Attribute::ByVal) ||
619 paramHasAttr(ArgNo, Attribute::InAlloca);
620 }
621
622 /// Determine if there are is an inalloca argument. Only the last argument can
623 /// have the inalloca attribute.
624 bool hasInAllocaArgument() const {
625 return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
626 }
627
628 bool doesNotAccessMemory(unsigned OpNo) const {
629 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
630 }
631
632 bool onlyReadsMemory(unsigned OpNo) const {
633 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
634 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
635 }
636
637 bool doesNotReadMemory(unsigned OpNo) const {
638 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
639 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
640 }
641
642 /// Return true if the return value is known to be not null.
643 /// This may be because it has the nonnull attribute, or because at least
644 /// one byte is dereferenceable and the pointer is in addrspace(0).
645 bool isReturnNonNull() const {
646 if (hasRetAttr(Attribute::NonNull))
647 return true;
648 else if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
649 !NullPointerIsDefined(getCaller(),
650 getType()->getPointerAddressSpace()))
651 return true;
652
653 return false;
654 }
655
656 /// Returns true if this CallSite passes the given Value* as an argument to
657 /// the called function.
658 bool hasArgument(const Value *Arg) const {
659 for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
660 ++AI)
661 if (AI->get() == Arg)
662 return true;
663 return false;
664 }
665
666private:
667 IterTy getCallee() const {
668 return cast<CallBase>(getInstruction())->op_end() - 1;
669 }
670};
671
672class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use,
673 Instruction, CallInst, InvokeInst,
674 CallBrInst, User::op_iterator> {
675public:
676 CallSite() = default;
677 CallSite(CallSiteBase B) : CallSiteBase(B) {}
678 CallSite(CallInst *CI) : CallSiteBase(CI) {}
679 CallSite(InvokeInst *II) : CallSiteBase(II) {}
680 CallSite(CallBrInst *CBI) : CallSiteBase(CBI) {}
681 explicit CallSite(Instruction *II) : CallSiteBase(II) {}
682 explicit CallSite(Value *V) : CallSiteBase(V) {}
683
684 bool operator==(const CallSite &CS) const { return I == CS.I; }
685 bool operator!=(const CallSite &CS) const { return I != CS.I; }
686 bool operator<(const CallSite &CS) const {
687 return getInstruction() < CS.getInstruction();
688 }
689
690private:
691 friend struct DenseMapInfo<CallSite>;
692
693 User::op_iterator getCallee() const;
694};
695
696/// Establish a view to a call site for examination.
697class ImmutableCallSite : public CallSiteBase<> {
698public:
699 ImmutableCallSite() = default;
700 ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {}
701 ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {}
702 ImmutableCallSite(const CallBrInst *CBI) : CallSiteBase(CBI) {}
703 explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {}
704 explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {}
705 ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {}
706};
707
708/// AbstractCallSite
709///
710/// An abstract call site is a wrapper that allows to treat direct,
711/// indirect, and callback calls the same. If an abstract call site
712/// represents a direct or indirect call site it behaves like a stripped
713/// down version of a normal call site object. The abstract call site can
714/// also represent a callback call, thus the fact that the initially
715/// called function (=broker) may invoke a third one (=callback callee).
716/// In this case, the abstract call site hides the middle man, hence the
717/// broker function. The result is a representation of the callback call,
718/// inside the broker, but in the context of the original call to the broker.
719///
720/// There are up to three functions involved when we talk about callback call
721/// sites. The caller (1), which invokes the broker function. The broker
722/// function (2), that will invoke the callee zero or more times. And finally
723/// the callee (3), which is the target of the callback call.
724///
725/// The abstract call site will handle the mapping from parameters to arguments
726/// depending on the semantic of the broker function. However, it is important
727/// to note that the mapping is often partial. Thus, some arguments of the
728/// call/invoke instruction are mapped to parameters of the callee while others
729/// are not.
730class AbstractCallSite {
731public:
732
733 /// The encoding of a callback with regards to the underlying instruction.
734 struct CallbackInfo {
735
736 /// For direct/indirect calls the parameter encoding is empty. If it is not,
737 /// the abstract call site represents a callback. In that case, the first
738 /// element of the encoding vector represents which argument of the call
739 /// site CS is the callback callee. The remaining elements map parameters
740 /// (identified by their position) to the arguments that will be passed
741 /// through (also identified by position but in the call site instruction).
742 ///
743 /// NOTE that we use LLVM argument numbers (starting at 0) and not
744 /// clang/source argument numbers (starting at 1). The -1 entries represent
745 /// unknown values that are passed to the callee.
746 using ParameterEncodingTy = SmallVector<int, 0>;
747 ParameterEncodingTy ParameterEncoding;
748
749 };
750
751private:
752
753 /// The underlying call site:
754 /// caller -> callee, if this is a direct or indirect call site
755 /// caller -> broker function, if this is a callback call site
756 CallSite CS;
757
758 /// The encoding of a callback with regards to the underlying instruction.
759 CallbackInfo CI;
760
761public:
762 /// Sole constructor for abstract call sites (ACS).
763 ///
764 /// An abstract call site can only be constructed through a llvm::Use because
765 /// each operand (=use) of an instruction could potentially be a different
766 /// abstract call site. Furthermore, even if the value of the llvm::Use is the
767 /// same, and the user is as well, the abstract call sites might not be.
768 ///
769 /// If a use is not associated with an abstract call site the constructed ACS
770 /// will evaluate to false if converted to a boolean.
771 ///
772 /// If the use is the callee use of a call or invoke instruction, the
773 /// constructed abstract call site will behave as a llvm::CallSite would.
774 ///
775 /// If the use is not a callee use of a call or invoke instruction, the
776 /// callback metadata is used to determine the argument <-> parameter mapping
777 /// as well as the callee of the abstract call site.
778 AbstractCallSite(const Use *U);
779
780 /// Add operand uses of \p ICS that represent callback uses into \p CBUses.
781 ///
782 /// All uses added to \p CBUses can be used to create abstract call sites for
783 /// which AbstractCallSite::isCallbackCall() will return true.
784 static void getCallbackUses(ImmutableCallSite ICS,
785 SmallVectorImpl<const Use *> &CBUses);
786
787 /// Conversion operator to conveniently check for a valid/initialized ACS.
788 explicit operator bool() const { return (bool)CS; }
789
790 /// Return the underlying instruction.
791 Instruction *getInstruction() const { return CS.getInstruction(); }
792
793 /// Return the call site abstraction for the underlying instruction.
794 CallSite getCallSite() const { return CS; }
795
796 /// Return true if this ACS represents a direct call.
797 bool isDirectCall() const {
798 return !isCallbackCall() && !CS.isIndirectCall();
799 }
800
801 /// Return true if this ACS represents an indirect call.
802 bool isIndirectCall() const {
803 return !isCallbackCall() && CS.isIndirectCall();
804 }
805
806 /// Return true if this ACS represents a callback call.
807 bool isCallbackCall() const {
808 // For a callback call site the callee is ALWAYS stored first in the
809 // transitive values vector. Thus, a non-empty vector indicates a callback.
810 return !CI.ParameterEncoding.empty();
811 }
812
813 /// Return true if @p UI is the use that defines the callee of this ACS.
814 bool isCallee(Value::const_user_iterator UI) const {
815 return isCallee(&UI.getUse());
816 }
817
818 /// Return true if @p U is the use that defines the callee of this ACS.
819 bool isCallee(const Use *U) const {
820 if (isDirectCall())
821 return CS.isCallee(U);
822
823 assert(!CI.ParameterEncoding.empty() &&((!CI.ParameterEncoding.empty() && "Callback without parameter encoding!"
) ? static_cast<void> (0) : __assert_fail ("!CI.ParameterEncoding.empty() && \"Callback without parameter encoding!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 824, __PRETTY_FUNCTION__))
824 "Callback without parameter encoding!")((!CI.ParameterEncoding.empty() && "Callback without parameter encoding!"
) ? static_cast<void> (0) : __assert_fail ("!CI.ParameterEncoding.empty() && \"Callback without parameter encoding!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 824, __PRETTY_FUNCTION__))
;
825
826 return (int)CS.getArgumentNo(U) == CI.ParameterEncoding[0];
827 }
828
829 /// Return the number of parameters of the callee.
830 unsigned getNumArgOperands() const {
831 if (isDirectCall())
832 return CS.getNumArgOperands();
833 // Subtract 1 for the callee encoding.
834 return CI.ParameterEncoding.size() - 1;
835 }
836
837 /// Return the operand index of the underlying instruction associated with @p
838 /// Arg.
839 int getCallArgOperandNo(Argument &Arg) const {
840 return getCallArgOperandNo(Arg.getArgNo());
841 }
842
843 /// Return the operand index of the underlying instruction associated with
844 /// the function parameter number @p ArgNo or -1 if there is none.
845 int getCallArgOperandNo(unsigned ArgNo) const {
846 if (isDirectCall())
847 return ArgNo;
848 // Add 1 for the callee encoding.
849 return CI.ParameterEncoding[ArgNo + 1];
850 }
851
852 /// Return the operand of the underlying instruction associated with @p Arg.
853 Value *getCallArgOperand(Argument &Arg) const {
854 return getCallArgOperand(Arg.getArgNo());
855 }
856
857 /// Return the operand of the underlying instruction associated with the
858 /// function parameter number @p ArgNo or nullptr if there is none.
859 Value *getCallArgOperand(unsigned ArgNo) const {
860 if (isDirectCall())
861 return CS.getArgOperand(ArgNo);
862 // Add 1 for the callee encoding.
863 return CI.ParameterEncoding[ArgNo + 1] >= 0
864 ? CS.getArgOperand(CI.ParameterEncoding[ArgNo + 1])
865 : nullptr;
866 }
867
868 /// Return the operand index of the underlying instruction associated with the
869 /// callee of this ACS. Only valid for callback calls!
870 int getCallArgOperandNoForCallee() const {
871 assert(isCallbackCall())((isCallbackCall()) ? static_cast<void> (0) : __assert_fail
("isCallbackCall()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 871, __PRETTY_FUNCTION__))
;
872 assert(CI.ParameterEncoding.size() && CI.ParameterEncoding[0] >= 0)((CI.ParameterEncoding.size() && CI.ParameterEncoding
[0] >= 0) ? static_cast<void> (0) : __assert_fail ("CI.ParameterEncoding.size() && CI.ParameterEncoding[0] >= 0"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 872, __PRETTY_FUNCTION__))
;
873 return CI.ParameterEncoding[0];
874 }
875
876 /// Return the use of the callee value in the underlying instruction. Only
877 /// valid for callback calls!
878 const Use &getCalleeUseForCallback() const {
879 int CalleeArgIdx = getCallArgOperandNoForCallee();
880 assert(CalleeArgIdx >= 0 &&((CalleeArgIdx >= 0 && unsigned(CalleeArgIdx) <
getInstruction()->getNumOperands()) ? static_cast<void
> (0) : __assert_fail ("CalleeArgIdx >= 0 && unsigned(CalleeArgIdx) < getInstruction()->getNumOperands()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 881, __PRETTY_FUNCTION__))
881 unsigned(CalleeArgIdx) < getInstruction()->getNumOperands())((CalleeArgIdx >= 0 && unsigned(CalleeArgIdx) <
getInstruction()->getNumOperands()) ? static_cast<void
> (0) : __assert_fail ("CalleeArgIdx >= 0 && unsigned(CalleeArgIdx) < getInstruction()->getNumOperands()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/CallSite.h"
, 881, __PRETTY_FUNCTION__))
;
882 return getInstruction()->getOperandUse(CalleeArgIdx);
883 }
884
885 /// Return the pointer to function that is being called.
886 Value *getCalledValue() const {
887 if (isDirectCall())
888 return CS.getCalledValue();
889 return CS.getArgOperand(getCallArgOperandNoForCallee());
890 }
891
892 /// Return the function being called if this is a direct call, otherwise
893 /// return null (if it's an indirect call).
894 Function *getCalledFunction() const {
895 Value *V = getCalledValue();
896 return V ? dyn_cast<Function>(V->stripPointerCasts()) : nullptr;
897 }
898};
899
900template <> struct DenseMapInfo<CallSite> {
901 using BaseInfo = DenseMapInfo<decltype(CallSite::I)>;
902
903 static CallSite getEmptyKey() {
904 CallSite CS;
905 CS.I = BaseInfo::getEmptyKey();
906 return CS;
907 }
908
909 static CallSite getTombstoneKey() {
910 CallSite CS;
911 CS.I = BaseInfo::getTombstoneKey();
912 return CS;
913 }
914
915 static unsigned getHashValue(const CallSite &CS) {
916 return BaseInfo::getHashValue(CS.I);
917 }
918
919 static bool isEqual(const CallSite &LHS, const CallSite &RHS) {
920 return LHS == RHS;
921 }
922};
923
924} // end namespace llvm
925
926#endif // LLVM_IR_CALLSITE_H

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/ADT/PointerIntPair.h

1//===- llvm/ADT/PointerIntPair.h - Pair for pointer and int -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerIntPair class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_POINTERINTPAIR_H
14#define LLVM_ADT_POINTERINTPAIR_H
15
16#include "llvm/Support/Compiler.h"
17#include "llvm/Support/PointerLikeTypeTraits.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <cstdint>
21#include <limits>
22
23namespace llvm {
24
25template <typename T> struct DenseMapInfo;
26template <typename PointerT, unsigned IntBits, typename PtrTraits>
27struct PointerIntPairInfo;
28
29/// PointerIntPair - This class implements a pair of a pointer and small
30/// integer. It is designed to represent this in the space required by one
31/// pointer by bitmangling the integer into the low part of the pointer. This
32/// can only be done for small integers: typically up to 3 bits, but it depends
33/// on the number of bits available according to PointerLikeTypeTraits for the
34/// type.
35///
36/// Note that PointerIntPair always puts the IntVal part in the highest bits
37/// possible. For example, PointerIntPair<void*, 1, bool> will put the bit for
38/// the bool into bit #2, not bit #0, which allows the low two bits to be used
39/// for something else. For example, this allows:
40/// PointerIntPair<PointerIntPair<void*, 1, bool>, 1, bool>
41/// ... and the two bools will land in different bits.
42template <typename PointerTy, unsigned IntBits, typename IntType = unsigned,
43 typename PtrTraits = PointerLikeTypeTraits<PointerTy>,
44 typename Info = PointerIntPairInfo<PointerTy, IntBits, PtrTraits>>
45class PointerIntPair {
46 // Used by MSVC visualizer and generally helpful for debugging/visualizing.
47 using InfoTy = Info;
48 intptr_t Value = 0;
49
50public:
51 constexpr PointerIntPair() = default;
52
53 PointerIntPair(PointerTy PtrVal, IntType IntVal) {
54 setPointerAndInt(PtrVal, IntVal);
55 }
56
57 explicit PointerIntPair(PointerTy PtrVal) { initWithPointer(PtrVal); }
58
59 PointerTy getPointer() const { return Info::getPointer(Value); }
14
Calling 'PointerIntPairInfo::getPointer'
22
Returning from 'PointerIntPairInfo::getPointer'
23
Returning null pointer, which participates in a condition later
60
61 IntType getInt() const { return (IntType)Info::getInt(Value); }
62
63 void setPointer(PointerTy PtrVal) LLVM_LVALUE_FUNCTION& {
64 Value = Info::updatePointer(Value, PtrVal);
65 }
66
67 void setInt(IntType IntVal) LLVM_LVALUE_FUNCTION& {
68 Value = Info::updateInt(Value, static_cast<intptr_t>(IntVal));
69 }
70
71 void initWithPointer(PointerTy PtrVal) LLVM_LVALUE_FUNCTION& {
72 Value = Info::updatePointer(0, PtrVal);
73 }
74
75 void setPointerAndInt(PointerTy PtrVal, IntType IntVal) LLVM_LVALUE_FUNCTION& {
76 Value = Info::updateInt(Info::updatePointer(0, PtrVal),
77 static_cast<intptr_t>(IntVal));
78 }
79
80 PointerTy const *getAddrOfPointer() const {
81 return const_cast<PointerIntPair *>(this)->getAddrOfPointer();
82 }
83
84 PointerTy *getAddrOfPointer() {
85 assert(Value == reinterpret_cast<intptr_t>(getPointer()) &&((Value == reinterpret_cast<intptr_t>(getPointer()) &&
"Can only return the address if IntBits is cleared and " "PtrTraits doesn't change the pointer"
) ? static_cast<void> (0) : __assert_fail ("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/ADT/PointerIntPair.h"
, 87, __PRETTY_FUNCTION__))
86 "Can only return the address if IntBits is cleared and "((Value == reinterpret_cast<intptr_t>(getPointer()) &&
"Can only return the address if IntBits is cleared and " "PtrTraits doesn't change the pointer"
) ? static_cast<void> (0) : __assert_fail ("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/ADT/PointerIntPair.h"
, 87, __PRETTY_FUNCTION__))
87 "PtrTraits doesn't change the pointer")((Value == reinterpret_cast<intptr_t>(getPointer()) &&
"Can only return the address if IntBits is cleared and " "PtrTraits doesn't change the pointer"
) ? static_cast<void> (0) : __assert_fail ("Value == reinterpret_cast<intptr_t>(getPointer()) && \"Can only return the address if IntBits is cleared and \" \"PtrTraits doesn't change the pointer\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/ADT/PointerIntPair.h"
, 87, __PRETTY_FUNCTION__))
;
88 return reinterpret_cast<PointerTy *>(&Value);
89 }
90
91 void *getOpaqueValue() const { return reinterpret_cast<void *>(Value); }
92
93 void setFromOpaqueValue(void *Val) LLVM_LVALUE_FUNCTION& {
94 Value = reinterpret_cast<intptr_t>(Val);
95 }
96
97 static PointerIntPair getFromOpaqueValue(void *V) {
98 PointerIntPair P;
99 P.setFromOpaqueValue(V);
100 return P;
101 }
102
103 // Allow PointerIntPairs to be created from const void * if and only if the
104 // pointer type could be created from a const void *.
105 static PointerIntPair getFromOpaqueValue(const void *V) {
106 (void)PtrTraits::getFromVoidPointer(V);
107 return getFromOpaqueValue(const_cast<void *>(V));
108 }
109
110 bool operator==(const PointerIntPair &RHS) const {
111 return Value == RHS.Value;
112 }
113
114 bool operator!=(const PointerIntPair &RHS) const {
115 return Value != RHS.Value;
116 }
117
118 bool operator<(const PointerIntPair &RHS) const { return Value < RHS.Value; }
119 bool operator>(const PointerIntPair &RHS) const { return Value > RHS.Value; }
120
121 bool operator<=(const PointerIntPair &RHS) const {
122 return Value <= RHS.Value;
123 }
124
125 bool operator>=(const PointerIntPair &RHS) const {
126 return Value >= RHS.Value;
127 }
128};
129
130// Specialize is_trivially_copyable to avoid limitation of llvm::is_trivially_copyable
131// when compiled with gcc 4.9.
132template <typename PointerTy, unsigned IntBits, typename IntType,
133 typename PtrTraits,
134 typename Info>
135struct is_trivially_copyable<PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>> : std::true_type {
136#ifdef HAVE_STD_IS_TRIVIALLY_COPYABLE
137 static_assert(std::is_trivially_copyable<PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>>::value,
138 "inconsistent behavior between llvm:: and std:: implementation of is_trivially_copyable");
139#endif
140};
141
142
143template <typename PointerT, unsigned IntBits, typename PtrTraits>
144struct PointerIntPairInfo {
145 static_assert(PtrTraits::NumLowBitsAvailable <
146 std::numeric_limits<uintptr_t>::digits,
147 "cannot use a pointer type that has all bits free");
148 static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
149 "PointerIntPair with integer size too large for pointer");
150 enum : uintptr_t {
151 /// PointerBitMask - The bits that come from the pointer.
152 PointerBitMask =
153 ~(uintptr_t)(((intptr_t)1 << PtrTraits::NumLowBitsAvailable) - 1),
154
155 /// IntShift - The number of low bits that we reserve for other uses, and
156 /// keep zero.
157 IntShift = (uintptr_t)PtrTraits::NumLowBitsAvailable - IntBits,
158
159 /// IntMask - This is the unshifted mask for valid bits of the int type.
160 IntMask = (uintptr_t)(((intptr_t)1 << IntBits) - 1),
161
162 // ShiftedIntMask - This is the bits for the integer shifted in place.
163 ShiftedIntMask = (uintptr_t)(IntMask << IntShift)
164 };
165
166 static PointerT getPointer(intptr_t Value) {
167 return PtrTraits::getFromVoidPointer(
15
Calling 'PointerLikeTypeTraits::getFromVoidPointer'
20
Returning from 'PointerLikeTypeTraits::getFromVoidPointer'
21
Returning null pointer, which participates in a condition later
168 reinterpret_cast<void *>(Value & PointerBitMask));
169 }
170
171 static intptr_t getInt(intptr_t Value) {
172 return (Value >> IntShift) & IntMask;
173 }
174
175 static intptr_t updatePointer(intptr_t OrigValue, PointerT Ptr) {
176 intptr_t PtrWord =
177 reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(Ptr));
178 assert((PtrWord & ~PointerBitMask) == 0 &&(((PtrWord & ~PointerBitMask) == 0 && "Pointer is not sufficiently aligned"
) ? static_cast<void> (0) : __assert_fail ("(PtrWord & ~PointerBitMask) == 0 && \"Pointer is not sufficiently aligned\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/ADT/PointerIntPair.h"
, 179, __PRETTY_FUNCTION__))
179 "Pointer is not sufficiently aligned")(((PtrWord & ~PointerBitMask) == 0 && "Pointer is not sufficiently aligned"
) ? static_cast<void> (0) : __assert_fail ("(PtrWord & ~PointerBitMask) == 0 && \"Pointer is not sufficiently aligned\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/ADT/PointerIntPair.h"
, 179, __PRETTY_FUNCTION__))
;
180 // Preserve all low bits, just update the pointer.
181 return PtrWord | (OrigValue & ~PointerBitMask);
182 }
183
184 static intptr_t updateInt(intptr_t OrigValue, intptr_t Int) {
185 intptr_t IntWord = static_cast<intptr_t>(Int);
186 assert((IntWord & ~IntMask) == 0 && "Integer too large for field")(((IntWord & ~IntMask) == 0 && "Integer too large for field"
) ? static_cast<void> (0) : __assert_fail ("(IntWord & ~IntMask) == 0 && \"Integer too large for field\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/ADT/PointerIntPair.h"
, 186, __PRETTY_FUNCTION__))
;
187
188 // Preserve all bits other than the ones we are updating.
189 return (OrigValue & ~ShiftedIntMask) | IntWord << IntShift;
190 }
191};
192
193// Provide specialization of DenseMapInfo for PointerIntPair.
194template <typename PointerTy, unsigned IntBits, typename IntType>
195struct DenseMapInfo<PointerIntPair<PointerTy, IntBits, IntType>> {
196 using Ty = PointerIntPair<PointerTy, IntBits, IntType>;
197
198 static Ty getEmptyKey() {
199 uintptr_t Val = static_cast<uintptr_t>(-1);
200 Val <<= PointerLikeTypeTraits<Ty>::NumLowBitsAvailable;
201 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
202 }
203
204 static Ty getTombstoneKey() {
205 uintptr_t Val = static_cast<uintptr_t>(-2);
206 Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
207 return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
208 }
209
210 static unsigned getHashValue(Ty V) {
211 uintptr_t IV = reinterpret_cast<uintptr_t>(V.getOpaqueValue());
212 return unsigned(IV) ^ unsigned(IV >> 9);
213 }
214
215 static bool isEqual(const Ty &LHS, const Ty &RHS) { return LHS == RHS; }
216};
217
218// Teach SmallPtrSet that PointerIntPair is "basically a pointer".
219template <typename PointerTy, unsigned IntBits, typename IntType,
220 typename PtrTraits>
221struct PointerLikeTypeTraits<
222 PointerIntPair<PointerTy, IntBits, IntType, PtrTraits>> {
223 static inline void *
224 getAsVoidPointer(const PointerIntPair<PointerTy, IntBits, IntType> &P) {
225 return P.getOpaqueValue();
226 }
227
228 static inline PointerIntPair<PointerTy, IntBits, IntType>
229 getFromVoidPointer(void *P) {
230 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
231 }
232
233 static inline PointerIntPair<PointerTy, IntBits, IntType>
234 getFromVoidPointer(const void *P) {
235 return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
236 }
237
238 enum { NumLowBitsAvailable = PtrTraits::NumLowBitsAvailable - IntBits };
239};
240
241} // end namespace llvm
242
243#endif // LLVM_ADT_POINTERINTPAIR_H

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Support/PointerLikeTypeTraits.h

1//===- llvm/Support/PointerLikeTypeTraits.h - Pointer Traits ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerLikeTypeTraits class. This allows data
10// structures to reason about pointers and other things that are pointer sized.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_POINTERLIKETYPETRAITS_H
15#define LLVM_SUPPORT_POINTERLIKETYPETRAITS_H
16
17#include "llvm/Support/DataTypes.h"
18#include <assert.h>
19#include <type_traits>
20
21namespace llvm {
22
23/// A traits type that is used to handle pointer types and things that are just
24/// wrappers for pointers as a uniform entity.
25template <typename T> struct PointerLikeTypeTraits;
26
27namespace detail {
28/// A tiny meta function to compute the log2 of a compile time constant.
29template <size_t N>
30struct ConstantLog2
31 : std::integral_constant<size_t, ConstantLog2<N / 2>::value + 1> {};
32template <> struct ConstantLog2<1> : std::integral_constant<size_t, 0> {};
33
34// Provide a trait to check if T is pointer-like.
35template <typename T, typename U = void> struct HasPointerLikeTypeTraits {
36 static const bool value = false;
37};
38
39// sizeof(T) is valid only for a complete T.
40template <typename T> struct HasPointerLikeTypeTraits<
41 T, decltype((sizeof(PointerLikeTypeTraits<T>) + sizeof(T)), void())> {
42 static const bool value = true;
43};
44
45template <typename T> struct IsPointerLike {
46 static const bool value = HasPointerLikeTypeTraits<T>::value;
47};
48
49template <typename T> struct IsPointerLike<T *> {
50 static const bool value = true;
51};
52} // namespace detail
53
54// Provide PointerLikeTypeTraits for non-cvr pointers.
55template <typename T> struct PointerLikeTypeTraits<T *> {
56 static inline void *getAsVoidPointer(T *P) { return P; }
57 static inline T *getFromVoidPointer(void *P) { return static_cast<T *>(P); }
17
Returning null pointer (loaded from 'P'), which participates in a condition later
58
59 enum { NumLowBitsAvailable = detail::ConstantLog2<alignof(T)>::value };
60};
61
62template <> struct PointerLikeTypeTraits<void *> {
63 static inline void *getAsVoidPointer(void *P) { return P; }
64 static inline void *getFromVoidPointer(void *P) { return P; }
65
66 /// Note, we assume here that void* is related to raw malloc'ed memory and
67 /// that malloc returns objects at least 4-byte aligned. However, this may be
68 /// wrong, or pointers may be from something other than malloc. In this case,
69 /// you should specify a real typed pointer or avoid this template.
70 ///
71 /// All clients should use assertions to do a run-time check to ensure that
72 /// this is actually true.
73 enum { NumLowBitsAvailable = 2 };
74};
75
76// Provide PointerLikeTypeTraits for const things.
77template <typename T> struct PointerLikeTypeTraits<const T> {
78 typedef PointerLikeTypeTraits<T> NonConst;
79
80 static inline const void *getAsVoidPointer(const T P) {
81 return NonConst::getAsVoidPointer(P);
82 }
83 static inline const T getFromVoidPointer(const void *P) {
84 return NonConst::getFromVoidPointer(const_cast<void *>(P));
85 }
86 enum { NumLowBitsAvailable = NonConst::NumLowBitsAvailable };
87};
88
89// Provide PointerLikeTypeTraits for const pointers.
90template <typename T> struct PointerLikeTypeTraits<const T *> {
91 typedef PointerLikeTypeTraits<T *> NonConst;
92
93 static inline const void *getAsVoidPointer(const T *P) {
94 return NonConst::getAsVoidPointer(const_cast<T *>(P));
95 }
96 static inline const T *getFromVoidPointer(const void *P) {
97 return NonConst::getFromVoidPointer(const_cast<void *>(P));
16
Calling 'PointerLikeTypeTraits::getFromVoidPointer'
18
Returning from 'PointerLikeTypeTraits::getFromVoidPointer'
19
Returning null pointer, which participates in a condition later
98 }
99 enum { NumLowBitsAvailable = NonConst::NumLowBitsAvailable };
100};
101
102// Provide PointerLikeTypeTraits for uintptr_t.
103template <> struct PointerLikeTypeTraits<uintptr_t> {
104 static inline void *getAsVoidPointer(uintptr_t P) {
105 return reinterpret_cast<void *>(P);
106 }
107 static inline uintptr_t getFromVoidPointer(void *P) {
108 return reinterpret_cast<uintptr_t>(P);
109 }
110 // No bits are available!
111 enum { NumLowBitsAvailable = 0 };
112};
113
114/// Provide suitable custom traits struct for function pointers.
115///
116/// Function pointers can't be directly given these traits as functions can't
117/// have their alignment computed with `alignof` and we need different casting.
118///
119/// To rely on higher alignment for a specialized use, you can provide a
120/// customized form of this template explicitly with higher alignment, and
121/// potentially use alignment attributes on functions to satisfy that.
122template <int Alignment, typename FunctionPointerT>
123struct FunctionPointerLikeTypeTraits {
124 enum { NumLowBitsAvailable = detail::ConstantLog2<Alignment>::value };
125 static inline void *getAsVoidPointer(FunctionPointerT P) {
126 assert((reinterpret_cast<uintptr_t>(P) &(((reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1
<< NumLowBitsAvailable)) == 0 && "Alignment not satisfied for an actual function pointer!"
) ? static_cast<void> (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Support/PointerLikeTypeTraits.h"
, 128, __PRETTY_FUNCTION__))
127 ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 &&(((reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1
<< NumLowBitsAvailable)) == 0 && "Alignment not satisfied for an actual function pointer!"
) ? static_cast<void> (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Support/PointerLikeTypeTraits.h"
, 128, __PRETTY_FUNCTION__))
128 "Alignment not satisfied for an actual function pointer!")(((reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1
<< NumLowBitsAvailable)) == 0 && "Alignment not satisfied for an actual function pointer!"
) ? static_cast<void> (0) : __assert_fail ("(reinterpret_cast<uintptr_t>(P) & ~((uintptr_t)-1 << NumLowBitsAvailable)) == 0 && \"Alignment not satisfied for an actual function pointer!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Support/PointerLikeTypeTraits.h"
, 128, __PRETTY_FUNCTION__))
;
129 return reinterpret_cast<void *>(P);
130 }
131 static inline FunctionPointerT getFromVoidPointer(void *P) {
132 return reinterpret_cast<FunctionPointerT>(P);
133 }
134};
135
136/// Provide a default specialization for function pointers that assumes 4-byte
137/// alignment.
138///
139/// We assume here that functions used with this are always at least 4-byte
140/// aligned. This means that, for example, thumb functions won't work or systems
141/// with weird unaligned function pointers won't work. But all practical systems
142/// we support satisfy this requirement.
143template <typename ReturnT, typename... ParamTs>
144struct PointerLikeTypeTraits<ReturnT (*)(ParamTs...)>
145 : FunctionPointerLikeTypeTraits<4, ReturnT (*)(ParamTs...)> {};
146
147} // end namespace llvm
148
149#endif

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/IR/Operator.h

1//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various classes for working with Instructions and
10// ConstantExprs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_OPERATOR_H
15#define LLVM_IR_OPERATOR_H
16
17#include "llvm/ADT/None.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Instruction.h"
21#include "llvm/IR/Type.h"
22#include "llvm/IR/Value.h"
23#include "llvm/Support/Casting.h"
24#include <cstddef>
25
26namespace llvm {
27
28/// This is a utility class that provides an abstraction for the common
29/// functionality between Instructions and ConstantExprs.
30class Operator : public User {
31public:
32 // The Operator class is intended to be used as a utility, and is never itself
33 // instantiated.
34 Operator() = delete;
35 ~Operator() = delete;
36
37 void *operator new(size_t s) = delete;
38
39 /// Return the opcode for this Instruction or ConstantExpr.
40 unsigned getOpcode() const {
41 if (const Instruction *I = dyn_cast<Instruction>(this))
42 return I->getOpcode();
43 return cast<ConstantExpr>(this)->getOpcode();
44 }
45
46 /// If V is an Instruction or ConstantExpr, return its opcode.
47 /// Otherwise return UserOp1.
48 static unsigned getOpcode(const Value *V) {
49 if (const Instruction *I
33.1
'I' is non-null
33.1
'I' is non-null
33.1
'I' is non-null
33.1
'I' is non-null
33.1
'I' is non-null
33.1
'I' is non-null
33.1
'I' is non-null
= dyn_cast<Instruction>(V))
33
Assuming 'V' is a 'Instruction'
34
Taking true branch
50 return I->getOpcode();
35
Returning value, which participates in a condition later
51 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
52 return CE->getOpcode();
53 return Instruction::UserOp1;
54 }
55
56 static bool classof(const Instruction *) { return true; }
57 static bool classof(const ConstantExpr *) { return true; }
58 static bool classof(const Value *V) {
59 return isa<Instruction>(V) || isa<ConstantExpr>(V);
60 }
61};
62
63/// Utility class for integer operators which may exhibit overflow - Add, Sub,
64/// Mul, and Shl. It does not include SDiv, despite that operator having the
65/// potential for overflow.
66class OverflowingBinaryOperator : public Operator {
67public:
68 enum {
69 AnyWrap = 0,
70 NoUnsignedWrap = (1 << 0),
71 NoSignedWrap = (1 << 1)
72 };
73
74private:
75 friend class Instruction;
76 friend class ConstantExpr;
77
78 void setHasNoUnsignedWrap(bool B) {
79 SubclassOptionalData =
80 (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
81 }
82 void setHasNoSignedWrap(bool B) {
83 SubclassOptionalData =
84 (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
85 }
86
87public:
88 /// Test whether this operation is known to never
89 /// undergo unsigned overflow, aka the nuw property.
90 bool hasNoUnsignedWrap() const {
91 return SubclassOptionalData & NoUnsignedWrap;
92 }
93
94 /// Test whether this operation is known to never
95 /// undergo signed overflow, aka the nsw property.
96 bool hasNoSignedWrap() const {
97 return (SubclassOptionalData & NoSignedWrap) != 0;
98 }
99
100 static bool classof(const Instruction *I) {
101 return I->getOpcode() == Instruction::Add ||
102 I->getOpcode() == Instruction::Sub ||
103 I->getOpcode() == Instruction::Mul ||
104 I->getOpcode() == Instruction::Shl;
105 }
106 static bool classof(const ConstantExpr *CE) {
107 return CE->getOpcode() == Instruction::Add ||
108 CE->getOpcode() == Instruction::Sub ||
109 CE->getOpcode() == Instruction::Mul ||
110 CE->getOpcode() == Instruction::Shl;
111 }
112 static bool classof(const Value *V) {
113 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
114 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
115 }
116};
117
118/// A udiv or sdiv instruction, which can be marked as "exact",
119/// indicating that no bits are destroyed.
120class PossiblyExactOperator : public Operator {
121public:
122 enum {
123 IsExact = (1 << 0)
124 };
125
126private:
127 friend class Instruction;
128 friend class ConstantExpr;
129
130 void setIsExact(bool B) {
131 SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
132 }
133
134public:
135 /// Test whether this division is known to be exact, with zero remainder.
136 bool isExact() const {
137 return SubclassOptionalData & IsExact;
138 }
139
140 static bool isPossiblyExactOpcode(unsigned OpC) {
141 return OpC == Instruction::SDiv ||
142 OpC == Instruction::UDiv ||
143 OpC == Instruction::AShr ||
144 OpC == Instruction::LShr;
145 }
146
147 static bool classof(const ConstantExpr *CE) {
148 return isPossiblyExactOpcode(CE->getOpcode());
149 }
150 static bool classof(const Instruction *I) {
151 return isPossiblyExactOpcode(I->getOpcode());
152 }
153 static bool classof(const Value *V) {
154 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
155 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
156 }
157};
158
159/// Convenience struct for specifying and reasoning about fast-math flags.
160class FastMathFlags {
161private:
162 friend class FPMathOperator;
163
164 unsigned Flags = 0;
165
166 FastMathFlags(unsigned F) {
167 // If all 7 bits are set, turn this into -1. If the number of bits grows,
168 // this must be updated. This is intended to provide some forward binary
169 // compatibility insurance for the meaning of 'fast' in case bits are added.
170 if (F == 0x7F) Flags = ~0U;
171 else Flags = F;
172 }
173
174public:
175 // This is how the bits are used in Value::SubclassOptionalData so they
176 // should fit there too.
177 // WARNING: We're out of space. SubclassOptionalData only has 7 bits. New
178 // functionality will require a change in how this information is stored.
179 enum {
180 AllowReassoc = (1 << 0),
181 NoNaNs = (1 << 1),
182 NoInfs = (1 << 2),
183 NoSignedZeros = (1 << 3),
184 AllowReciprocal = (1 << 4),
185 AllowContract = (1 << 5),
186 ApproxFunc = (1 << 6)
187 };
188
189 FastMathFlags() = default;
190
191 static FastMathFlags getFast() {
192 FastMathFlags FMF;
193 FMF.setFast();
194 return FMF;
195 }
196
197 bool any() const { return Flags != 0; }
198 bool none() const { return Flags == 0; }
199 bool all() const { return Flags == ~0U; }
200
201 void clear() { Flags = 0; }
202 void set() { Flags = ~0U; }
203
204 /// Flag queries
205 bool allowReassoc() const { return 0 != (Flags & AllowReassoc); }
206 bool noNaNs() const { return 0 != (Flags & NoNaNs); }
207 bool noInfs() const { return 0 != (Flags & NoInfs); }
208 bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); }
209 bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
210 bool allowContract() const { return 0 != (Flags & AllowContract); }
211 bool approxFunc() const { return 0 != (Flags & ApproxFunc); }
212 /// 'Fast' means all bits are set.
213 bool isFast() const { return all(); }
214
215 /// Flag setters
216 void setAllowReassoc(bool B = true) {
217 Flags = (Flags & ~AllowReassoc) | B * AllowReassoc;
218 }
219 void setNoNaNs(bool B = true) {
220 Flags = (Flags & ~NoNaNs) | B * NoNaNs;
221 }
222 void setNoInfs(bool B = true) {
223 Flags = (Flags & ~NoInfs) | B * NoInfs;
224 }
225 void setNoSignedZeros(bool B = true) {
226 Flags = (Flags & ~NoSignedZeros) | B * NoSignedZeros;
227 }
228 void setAllowReciprocal(bool B = true) {
229 Flags = (Flags & ~AllowReciprocal) | B * AllowReciprocal;
230 }
231 void setAllowContract(bool B = true) {
232 Flags = (Flags & ~AllowContract) | B * AllowContract;
233 }
234 void setApproxFunc(bool B = true) {
235 Flags = (Flags & ~ApproxFunc) | B * ApproxFunc;
236 }
237 void setFast(bool B = true) { B ? set() : clear(); }
238
239 void operator&=(const FastMathFlags &OtherFlags) {
240 Flags &= OtherFlags.Flags;
241 }
242};
243
244/// Utility class for floating point operations which can have
245/// information about relaxed accuracy requirements attached to them.
246class FPMathOperator : public Operator {
247private:
248 friend class Instruction;
249
250 /// 'Fast' means all bits are set.
251 void setFast(bool B) {
252 setHasAllowReassoc(B);
253 setHasNoNaNs(B);
254 setHasNoInfs(B);
255 setHasNoSignedZeros(B);
256 setHasAllowReciprocal(B);
257 setHasAllowContract(B);
258 setHasApproxFunc(B);
259 }
260
261 void setHasAllowReassoc(bool B) {
262 SubclassOptionalData =
263 (SubclassOptionalData & ~FastMathFlags::AllowReassoc) |
264 (B * FastMathFlags::AllowReassoc);
265 }
266
267 void setHasNoNaNs(bool B) {
268 SubclassOptionalData =
269 (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
270 (B * FastMathFlags::NoNaNs);
271 }
272
273 void setHasNoInfs(bool B) {
274 SubclassOptionalData =
275 (SubclassOptionalData & ~FastMathFlags::NoInfs) |
276 (B * FastMathFlags::NoInfs);
277 }
278
279 void setHasNoSignedZeros(bool B) {
280 SubclassOptionalData =
281 (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
282 (B * FastMathFlags::NoSignedZeros);
283 }
284
285 void setHasAllowReciprocal(bool B) {
286 SubclassOptionalData =
287 (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
288 (B * FastMathFlags::AllowReciprocal);
289 }
290
291 void setHasAllowContract(bool B) {
292 SubclassOptionalData =
293 (SubclassOptionalData & ~FastMathFlags::AllowContract) |
294 (B * FastMathFlags::AllowContract);
295 }
296
297 void setHasApproxFunc(bool B) {
298 SubclassOptionalData =
299 (SubclassOptionalData & ~FastMathFlags::ApproxFunc) |
300 (B * FastMathFlags::ApproxFunc);
301 }
302
303 /// Convenience function for setting multiple fast-math flags.
304 /// FMF is a mask of the bits to set.
305 void setFastMathFlags(FastMathFlags FMF) {
306 SubclassOptionalData |= FMF.Flags;
307 }
308
309 /// Convenience function for copying all fast-math flags.
310 /// All values in FMF are transferred to this operator.
311 void copyFastMathFlags(FastMathFlags FMF) {
312 SubclassOptionalData = FMF.Flags;
313 }
314
315public:
316 /// Test if this operation allows all non-strict floating-point transforms.
317 bool isFast() const {
318 return ((SubclassOptionalData & FastMathFlags::AllowReassoc) != 0 &&
319 (SubclassOptionalData & FastMathFlags::NoNaNs) != 0 &&
320 (SubclassOptionalData & FastMathFlags::NoInfs) != 0 &&
321 (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0 &&
322 (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0 &&
323 (SubclassOptionalData & FastMathFlags::AllowContract) != 0 &&
324 (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0);
325 }
326
327 /// Test if this operation may be simplified with reassociative transforms.
328 bool hasAllowReassoc() const {
329 return (SubclassOptionalData & FastMathFlags::AllowReassoc) != 0;
330 }
331
332 /// Test if this operation's arguments and results are assumed not-NaN.
333 bool hasNoNaNs() const {
334 return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
335 }
336
337 /// Test if this operation's arguments and results are assumed not-infinite.
338 bool hasNoInfs() const {
339 return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
340 }
341
342 /// Test if this operation can ignore the sign of zero.
343 bool hasNoSignedZeros() const {
344 return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
345 }
346
347 /// Test if this operation can use reciprocal multiply instead of division.
348 bool hasAllowReciprocal() const {
349 return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
350 }
351
352 /// Test if this operation can be floating-point contracted (FMA).
353 bool hasAllowContract() const {
354 return (SubclassOptionalData & FastMathFlags::AllowContract) != 0;
355 }
356
357 /// Test if this operation allows approximations of math library functions or
358 /// intrinsics.
359 bool hasApproxFunc() const {
360 return (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0;
361 }
362
363 /// Convenience function for getting all the fast-math flags
364 FastMathFlags getFastMathFlags() const {
365 return FastMathFlags(SubclassOptionalData);
366 }
367
368 /// Get the maximum error permitted by this operation in ULPs. An accuracy of
369 /// 0.0 means that the operation should be performed with the default
370 /// precision.
371 float getFPAccuracy() const;
372
373 static bool classof(const Value *V) {
374 unsigned Opcode;
375 if (auto *I = dyn_cast<Instruction>(V))
376 Opcode = I->getOpcode();
377 else if (auto *CE = dyn_cast<ConstantExpr>(V))
378 Opcode = CE->getOpcode();
379 else
380 return false;
381
382 switch (Opcode) {
383 case Instruction::FNeg:
384 case Instruction::FAdd:
385 case Instruction::FSub:
386 case Instruction::FMul:
387 case Instruction::FDiv:
388 case Instruction::FRem:
389 // FIXME: To clean up and correct the semantics of fast-math-flags, FCmp
390 // should not be treated as a math op, but the other opcodes should.
391 // This would make things consistent with Select/PHI (FP value type
392 // determines whether they are math ops and, therefore, capable of
393 // having fast-math-flags).
394 case Instruction::FCmp:
395 return true;
396 case Instruction::PHI:
397 case Instruction::Select:
398 case Instruction::Call: {
399 Type *Ty = V->getType();
400 while (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty))
401 Ty = ArrTy->getElementType();
402 return Ty->isFPOrFPVectorTy();
403 }
404 default:
405 return false;
406 }
407 }
408};
409
410/// A helper template for defining operators for individual opcodes.
411template<typename SuperClass, unsigned Opc>
412class ConcreteOperator : public SuperClass {
413public:
414 static bool classof(const Instruction *I) {
415 return I->getOpcode() == Opc;
416 }
417 static bool classof(const ConstantExpr *CE) {
418 return CE->getOpcode() == Opc;
419 }
420 static bool classof(const Value *V) {
421 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
422 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
423 }
424};
425
426class AddOperator
427 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
428};
429class SubOperator
430 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
431};
432class MulOperator
433 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
434};
435class ShlOperator
436 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
437};
438
439class SDivOperator
440 : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
441};
442class UDivOperator
443 : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
444};
445class AShrOperator
446 : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
447};
448class LShrOperator
449 : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
450};
451
452class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
453
454class GEPOperator
455 : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
456 friend class GetElementPtrInst;
457 friend class ConstantExpr;
458
459 enum {
460 IsInBounds = (1 << 0),
461 // InRangeIndex: bits 1-6
462 };
463
464 void setIsInBounds(bool B) {
465 SubclassOptionalData =
466 (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
467 }
468
469public:
470 /// Test whether this is an inbounds GEP, as defined by LangRef.html.
471 bool isInBounds() const {
472 return SubclassOptionalData & IsInBounds;
473 }
474
475 /// Returns the offset of the index with an inrange attachment, or None if
476 /// none.
477 Optional<unsigned> getInRangeIndex() const {
478 if (SubclassOptionalData >> 1 == 0) return None;
479 return (SubclassOptionalData >> 1) - 1;
480 }
481
482 inline op_iterator idx_begin() { return op_begin()+1; }
483 inline const_op_iterator idx_begin() const { return op_begin()+1; }
484 inline op_iterator idx_end() { return op_end(); }
485 inline const_op_iterator idx_end() const { return op_end(); }
486
487 Value *getPointerOperand() {
488 return getOperand(0);
489 }
490 const Value *getPointerOperand() const {
491 return getOperand(0);
492 }
493 static unsigned getPointerOperandIndex() {
494 return 0U; // get index for modifying correct operand
495 }
496
497 /// Method to return the pointer operand as a PointerType.
498 Type *getPointerOperandType() const {
499 return getPointerOperand()->getType();
500 }
501
502 Type *getSourceElementType() const;
503 Type *getResultElementType() const;
504
505 /// Method to return the address space of the pointer operand.
506 unsigned getPointerAddressSpace() const {
507 return getPointerOperandType()->getPointerAddressSpace();
508 }
509
510 unsigned getNumIndices() const { // Note: always non-negative
511 return getNumOperands() - 1;
512 }
513
514 bool hasIndices() const {
515 return getNumOperands() > 1;
516 }
517
518 /// Return true if all of the indices of this GEP are zeros.
519 /// If so, the result pointer and the first operand have the same
520 /// value, just potentially different types.
521 bool hasAllZeroIndices() const {
522 for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
523 if (ConstantInt *C = dyn_cast<ConstantInt>(I))
524 if (C->isZero())
525 continue;
526 return false;
527 }
528 return true;
529 }
530
531 /// Return true if all of the indices of this GEP are constant integers.
532 /// If so, the result pointer and the first operand have
533 /// a constant offset between them.
534 bool hasAllConstantIndices() const {
535 for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
536 if (!isa<ConstantInt>(I))
537 return false;
538 }
539 return true;
540 }
541
542 unsigned countNonConstantIndices() const {
543 return count_if(make_range(idx_begin(), idx_end()), [](const Use& use) {
544 return !isa<ConstantInt>(*use);
545 });
546 }
547
548 /// Accumulate the constant address offset of this GEP if possible.
549 ///
550 /// This routine accepts an APInt into which it will accumulate the constant
551 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
552 /// all-constant, it returns false and the value of the offset APInt is
553 /// undefined (it is *not* preserved!). The APInt passed into this routine
554 /// must be at exactly as wide as the IntPtr type for the address space of the
555 /// base GEP pointer.
556 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
557};
558
559class PtrToIntOperator
560 : public ConcreteOperator<Operator, Instruction::PtrToInt> {
561 friend class PtrToInt;
562 friend class ConstantExpr;
563
564public:
565 Value *getPointerOperand() {
566 return getOperand(0);
567 }
568 const Value *getPointerOperand() const {
569 return getOperand(0);
570 }
571
572 static unsigned getPointerOperandIndex() {
573 return 0U; // get index for modifying correct operand
574 }
575
576 /// Method to return the pointer operand as a PointerType.
577 Type *getPointerOperandType() const {
578 return getPointerOperand()->getType();
579 }
580
581 /// Method to return the address space of the pointer operand.
582 unsigned getPointerAddressSpace() const {
583 return cast<PointerType>(getPointerOperandType())->getAddressSpace();
584 }
585};
586
587class BitCastOperator
588 : public ConcreteOperator<Operator, Instruction::BitCast> {
589 friend class BitCastInst;
590 friend class ConstantExpr;
591
592public:
593 Type *getSrcTy() const {
594 return getOperand(0)->getType();
595 }
596
597 Type *getDestTy() const {
598 return getType();
599 }
600};
601
602} // end namespace llvm
603
604#endif // LLVM_IR_OPERATOR_H

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h

1//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file provides a helper that implements much of the TTI interface in
11/// terms of the target-independent code generator and TargetLowering
12/// interfaces.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17#define LLVM_CODEGEN_BASICTTIIMPL_H
18
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/BitVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/TargetTransformInfo.h"
26#include "llvm/Analysis/TargetTransformInfoImpl.h"
27#include "llvm/CodeGen/ISDOpcodes.h"
28#include "llvm/CodeGen/TargetLowering.h"
29#include "llvm/CodeGen/TargetSubtargetInfo.h"
30#include "llvm/CodeGen/ValueTypes.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/CallSite.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Type.h"
43#include "llvm/IR/Value.h"
44#include "llvm/MC/MCSchedule.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MachineValueType.h"
49#include "llvm/Support/MathExtras.h"
50#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <limits>
54#include <utility>
55
56namespace llvm {
57
58class Function;
59class GlobalValue;
60class LLVMContext;
61class ScalarEvolution;
62class SCEV;
63class TargetMachine;
64
65extern cl::opt<unsigned> PartialUnrollingThreshold;
66
67/// Base class which can be used to help build a TTI implementation.
68///
69/// This class provides as much implementation of the TTI interface as is
70/// possible using the target independent parts of the code generator.
71///
72/// In order to subclass it, your class must implement a getST() method to
73/// return the subtarget, and a getTLI() method to return the target lowering.
74/// We need these methods implemented in the derived class so that this class
75/// doesn't have to duplicate storage for them.
76template <typename T>
77class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
78private:
79 using BaseT = TargetTransformInfoImplCRTPBase<T>;
80 using TTI = TargetTransformInfo;
81
82 /// Estimate a cost of Broadcast as an extract and sequence of insert
83 /// operations.
84 unsigned getBroadcastShuffleOverhead(Type *Ty) {
85 assert(Ty->isVectorTy() && "Can only shuffle vectors")((Ty->isVectorTy() && "Can only shuffle vectors") ?
static_cast<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Can only shuffle vectors\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 85, __PRETTY_FUNCTION__))
;
86 unsigned Cost = 0;
87 // Broadcast cost is equal to the cost of extracting the zero'th element
88 // plus the cost of inserting it into every element of the result vector.
89 Cost += static_cast<T *>(this)->getVectorInstrCost(
90 Instruction::ExtractElement, Ty, 0);
91
92 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
93 Cost += static_cast<T *>(this)->getVectorInstrCost(
94 Instruction::InsertElement, Ty, i);
95 }
96 return Cost;
97 }
98
99 /// Estimate a cost of shuffle as a sequence of extract and insert
100 /// operations.
101 unsigned getPermuteShuffleOverhead(Type *Ty) {
102 assert(Ty->isVectorTy() && "Can only shuffle vectors")((Ty->isVectorTy() && "Can only shuffle vectors") ?
static_cast<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Can only shuffle vectors\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 102, __PRETTY_FUNCTION__))
;
103 unsigned Cost = 0;
104 // Shuffle cost is equal to the cost of extracting element from its argument
105 // plus the cost of inserting them onto the result vector.
106
107 // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
108 // index 0 of first vector, index 1 of second vector,index 2 of first
109 // vector and finally index 3 of second vector and insert them at index
110 // <0,1,2,3> of result vector.
111 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
112 Cost += static_cast<T *>(this)
113 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
114 Cost += static_cast<T *>(this)
115 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
116 }
117 return Cost;
118 }
119
120 /// Estimate a cost of subvector extraction as a sequence of extract and
121 /// insert operations.
122 unsigned getExtractSubvectorOverhead(Type *Ty, int Index, Type *SubTy) {
123 assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() &&((Ty && Ty->isVectorTy() && SubTy &&
SubTy->isVectorTy() && "Can only extract subvectors from vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && \"Can only extract subvectors from vectors\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 124, __PRETTY_FUNCTION__))
124 "Can only extract subvectors from vectors")((Ty && Ty->isVectorTy() && SubTy &&
SubTy->isVectorTy() && "Can only extract subvectors from vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && \"Can only extract subvectors from vectors\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 124, __PRETTY_FUNCTION__))
;
125 int NumSubElts = SubTy->getVectorNumElements();
126 assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() &&(((Index + NumSubElts) <= (int)Ty->getVectorNumElements
() && "SK_ExtractSubvector index out of range") ? static_cast
<void> (0) : __assert_fail ("(Index + NumSubElts) <= (int)Ty->getVectorNumElements() && \"SK_ExtractSubvector index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 127, __PRETTY_FUNCTION__))
127 "SK_ExtractSubvector index out of range")(((Index + NumSubElts) <= (int)Ty->getVectorNumElements
() && "SK_ExtractSubvector index out of range") ? static_cast
<void> (0) : __assert_fail ("(Index + NumSubElts) <= (int)Ty->getVectorNumElements() && \"SK_ExtractSubvector index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 127, __PRETTY_FUNCTION__))
;
128
129 unsigned Cost = 0;
130 // Subvector extraction cost is equal to the cost of extracting element from
131 // the source type plus the cost of inserting them into the result vector
132 // type.
133 for (int i = 0; i != NumSubElts; ++i) {
134 Cost += static_cast<T *>(this)->getVectorInstrCost(
135 Instruction::ExtractElement, Ty, i + Index);
136 Cost += static_cast<T *>(this)->getVectorInstrCost(
137 Instruction::InsertElement, SubTy, i);
138 }
139 return Cost;
140 }
141
142 /// Estimate a cost of subvector insertion as a sequence of extract and
143 /// insert operations.
144 unsigned getInsertSubvectorOverhead(Type *Ty, int Index, Type *SubTy) {
145 assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() &&((Ty && Ty->isVectorTy() && SubTy &&
SubTy->isVectorTy() && "Can only insert subvectors into vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && \"Can only insert subvectors into vectors\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 146, __PRETTY_FUNCTION__))
146 "Can only insert subvectors into vectors")((Ty && Ty->isVectorTy() && SubTy &&
SubTy->isVectorTy() && "Can only insert subvectors into vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && \"Can only insert subvectors into vectors\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 146, __PRETTY_FUNCTION__))
;
147 int NumSubElts = SubTy->getVectorNumElements();
148 assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() &&(((Index + NumSubElts) <= (int)Ty->getVectorNumElements
() && "SK_InsertSubvector index out of range") ? static_cast
<void> (0) : __assert_fail ("(Index + NumSubElts) <= (int)Ty->getVectorNumElements() && \"SK_InsertSubvector index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 149, __PRETTY_FUNCTION__))
149 "SK_InsertSubvector index out of range")(((Index + NumSubElts) <= (int)Ty->getVectorNumElements
() && "SK_InsertSubvector index out of range") ? static_cast
<void> (0) : __assert_fail ("(Index + NumSubElts) <= (int)Ty->getVectorNumElements() && \"SK_InsertSubvector index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 149, __PRETTY_FUNCTION__))
;
150
151 unsigned Cost = 0;
152 // Subvector insertion cost is equal to the cost of extracting element from
153 // the source type plus the cost of inserting them into the result vector
154 // type.
155 for (int i = 0; i != NumSubElts; ++i) {
156 Cost += static_cast<T *>(this)->getVectorInstrCost(
157 Instruction::ExtractElement, SubTy, i);
158 Cost += static_cast<T *>(this)->getVectorInstrCost(
159 Instruction::InsertElement, Ty, i + Index);
160 }
161 return Cost;
162 }
163
164 /// Local query method delegates up to T which *must* implement this!
165 const TargetSubtargetInfo *getST() const {
166 return static_cast<const T *>(this)->getST();
167 }
168
169 /// Local query method delegates up to T which *must* implement this!
170 const TargetLoweringBase *getTLI() const {
171 return static_cast<const T *>(this)->getTLI();
172 }
173
174 static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
175 switch (M) {
176 case TTI::MIM_Unindexed:
177 return ISD::UNINDEXED;
178 case TTI::MIM_PreInc:
179 return ISD::PRE_INC;
180 case TTI::MIM_PreDec:
181 return ISD::PRE_DEC;
182 case TTI::MIM_PostInc:
183 return ISD::POST_INC;
184 case TTI::MIM_PostDec:
185 return ISD::POST_DEC;
186 }
187 llvm_unreachable("Unexpected MemIndexedMode")::llvm::llvm_unreachable_internal("Unexpected MemIndexedMode"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 187)
;
188 }
189
190protected:
191 explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
192 : BaseT(DL) {}
193 virtual ~BasicTTIImplBase() = default;
194
195 using TargetTransformInfoImplBase::DL;
196
197public:
198 /// \name Scalar TTI Implementations
199 /// @{
200 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
201 unsigned AddressSpace, unsigned Alignment,
202 bool *Fast) const {
203 EVT E = EVT::getIntegerVT(Context, BitWidth);
204 return getTLI()->allowsMisalignedMemoryAccesses(
205 E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
206 }
207
208 bool hasBranchDivergence() { return false; }
209
210 bool isSourceOfDivergence(const Value *V) { return false; }
211
212 bool isAlwaysUniform(const Value *V) { return false; }
213
214 unsigned getFlatAddressSpace() {
215 // Return an invalid address space.
216 return -1;
217 }
218
219 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
220 Intrinsic::ID IID) const {
221 return false;
222 }
223
224 bool rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
225 Value *OldV, Value *NewV) const {
226 return false;
227 }
228
229 bool isLegalAddImmediate(int64_t imm) {
230 return getTLI()->isLegalAddImmediate(imm);
231 }
232
233 bool isLegalICmpImmediate(int64_t imm) {
234 return getTLI()->isLegalICmpImmediate(imm);
235 }
236
237 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
238 bool HasBaseReg, int64_t Scale,
239 unsigned AddrSpace, Instruction *I = nullptr) {
240 TargetLoweringBase::AddrMode AM;
241 AM.BaseGV = BaseGV;
242 AM.BaseOffs = BaseOffset;
243 AM.HasBaseReg = HasBaseReg;
244 AM.Scale = Scale;
245 return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
246 }
247
248 bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
249 const DataLayout &DL) const {
250 EVT VT = getTLI()->getValueType(DL, Ty);
251 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
252 }
253
254 bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
255 const DataLayout &DL) const {
256 EVT VT = getTLI()->getValueType(DL, Ty);
257 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
258 }
259
260 bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
261 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
262 }
263
264 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
265 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
266 TargetLoweringBase::AddrMode AM;
267 AM.BaseGV = BaseGV;
268 AM.BaseOffs = BaseOffset;
269 AM.HasBaseReg = HasBaseReg;
270 AM.Scale = Scale;
271 return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
272 }
273
274 bool isTruncateFree(Type *Ty1, Type *Ty2) {
275 return getTLI()->isTruncateFree(Ty1, Ty2);
276 }
277
278 bool isProfitableToHoist(Instruction *I) {
279 return getTLI()->isProfitableToHoist(I);
280 }
281
282 bool useAA() const { return getST()->useAA(); }
283
284 bool isTypeLegal(Type *Ty) {
285 EVT VT = getTLI()->getValueType(DL, Ty);
286 return getTLI()->isTypeLegal(VT);
287 }
288
289 int getGEPCost(Type *PointeeType, const Value *Ptr,
290 ArrayRef<const Value *> Operands) {
291 return BaseT::getGEPCost(PointeeType, Ptr, Operands);
292 }
293
294 int getExtCost(const Instruction *I, const Value *Src) {
295 if (getTLI()->isExtFree(I))
296 return TargetTransformInfo::TCC_Free;
297
298 if (isa<ZExtInst>(I) || isa<SExtInst>(I))
299 if (const LoadInst *LI = dyn_cast<LoadInst>(Src))
300 if (getTLI()->isExtLoad(LI, I, DL))
301 return TargetTransformInfo::TCC_Free;
302
303 return TargetTransformInfo::TCC_Basic;
304 }
305
306 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
307 ArrayRef<const Value *> Arguments, const User *U) {
308 return BaseT::getIntrinsicCost(IID, RetTy, Arguments, U);
309 }
310
311 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
312 ArrayRef<Type *> ParamTys, const User *U) {
313 if (IID == Intrinsic::cttz) {
314 if (getTLI()->isCheapToSpeculateCttz())
315 return TargetTransformInfo::TCC_Basic;
316 return TargetTransformInfo::TCC_Expensive;
317 }
318
319 if (IID == Intrinsic::ctlz) {
320 if (getTLI()->isCheapToSpeculateCtlz())
321 return TargetTransformInfo::TCC_Basic;
322 return TargetTransformInfo::TCC_Expensive;
323 }
324
325 return BaseT::getIntrinsicCost(IID, RetTy, ParamTys, U);
326 }
327
328 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
329 unsigned &JumpTableSize,
330 ProfileSummaryInfo *PSI,
331 BlockFrequencyInfo *BFI) {
332 /// Try to find the estimated number of clusters. Note that the number of
333 /// clusters identified in this function could be different from the actual
334 /// numbers found in lowering. This function ignore switches that are
335 /// lowered with a mix of jump table / bit test / BTree. This function was
336 /// initially intended to be used when estimating the cost of switch in
337 /// inline cost heuristic, but it's a generic cost model to be used in other
338 /// places (e.g., in loop unrolling).
339 unsigned N = SI.getNumCases();
340 const TargetLoweringBase *TLI = getTLI();
341 const DataLayout &DL = this->getDataLayout();
342
343 JumpTableSize = 0;
344 bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
345
346 // Early exit if both a jump table and bit test are not allowed.
347 if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
348 return N;
349
350 APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
351 APInt MinCaseVal = MaxCaseVal;
352 for (auto CI : SI.cases()) {
353 const APInt &CaseVal = CI.getCaseValue()->getValue();
354 if (CaseVal.sgt(MaxCaseVal))
355 MaxCaseVal = CaseVal;
356 if (CaseVal.slt(MinCaseVal))
357 MinCaseVal = CaseVal;
358 }
359
360 // Check if suitable for a bit test
361 if (N <= DL.getIndexSizeInBits(0u)) {
362 SmallPtrSet<const BasicBlock *, 4> Dests;
363 for (auto I : SI.cases())
364 Dests.insert(I.getCaseSuccessor());
365
366 if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
367 DL))
368 return 1;
369 }
370
371 // Check if suitable for a jump table.
372 if (IsJTAllowed) {
373 if (N < 2 || N < TLI->getMinimumJumpTableEntries())
374 return N;
375 uint64_t Range =
376 (MaxCaseVal - MinCaseVal)
377 .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
378 // Check whether a range of clusters is dense enough for a jump table
379 if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
380 JumpTableSize = Range;
381 return 1;
382 }
383 }
384 return N;
385 }
386
387 bool shouldBuildLookupTables() {
388 const TargetLoweringBase *TLI = getTLI();
389 return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
390 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
391 }
392
393 bool haveFastSqrt(Type *Ty) {
394 const TargetLoweringBase *TLI = getTLI();
395 EVT VT = TLI->getValueType(DL, Ty);
396 return TLI->isTypeLegal(VT) &&
397 TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
398 }
399
400 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
401 return true;
402 }
403
404 unsigned getFPOpCost(Type *Ty) {
405 // Check whether FADD is available, as a proxy for floating-point in
406 // general.
407 const TargetLoweringBase *TLI = getTLI();
408 EVT VT = TLI->getValueType(DL, Ty);
409 if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
410 return TargetTransformInfo::TCC_Basic;
411 return TargetTransformInfo::TCC_Expensive;
412 }
413
414 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
415 const TargetLoweringBase *TLI = getTLI();
416 switch (Opcode) {
41
Control jumps to 'case AddrSpaceCast:' at line 427
417 default: break;
418 case Instruction::Trunc:
419 if (TLI->isTruncateFree(OpTy, Ty))
420 return TargetTransformInfo::TCC_Free;
421 return TargetTransformInfo::TCC_Basic;
422 case Instruction::ZExt:
423 if (TLI->isZExtFree(OpTy, Ty))
424 return TargetTransformInfo::TCC_Free;
425 return TargetTransformInfo::TCC_Basic;
426
427 case Instruction::AddrSpaceCast:
428 if (TLI->isFreeAddrSpaceCast(OpTy->getPointerAddressSpace(),
42
Called C++ object pointer is null
429 Ty->getPointerAddressSpace()))
430 return TargetTransformInfo::TCC_Free;
431 return TargetTransformInfo::TCC_Basic;
432 }
433
434 return BaseT::getOperationCost(Opcode, Ty, OpTy);
435 }
436
437 unsigned getInliningThresholdMultiplier() { return 1; }
438
439 int getInlinerVectorBonusPercent() { return 150; }
440
441 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
442 TTI::UnrollingPreferences &UP) {
443 // This unrolling functionality is target independent, but to provide some
444 // motivation for its intended use, for x86:
445
446 // According to the Intel 64 and IA-32 Architectures Optimization Reference
447 // Manual, Intel Core models and later have a loop stream detector (and
448 // associated uop queue) that can benefit from partial unrolling.
449 // The relevant requirements are:
450 // - The loop must have no more than 4 (8 for Nehalem and later) branches
451 // taken, and none of them may be calls.
452 // - The loop can have no more than 18 (28 for Nehalem and later) uops.
453
454 // According to the Software Optimization Guide for AMD Family 15h
455 // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
456 // and loop buffer which can benefit from partial unrolling.
457 // The relevant requirements are:
458 // - The loop must have fewer than 16 branches
459 // - The loop must have less than 40 uops in all executed loop branches
460
461 // The number of taken branches in a loop is hard to estimate here, and
462 // benchmarking has revealed that it is better not to be conservative when
463 // estimating the branch count. As a result, we'll ignore the branch limits
464 // until someone finds a case where it matters in practice.
465
466 unsigned MaxOps;
467 const TargetSubtargetInfo *ST = getST();
468 if (PartialUnrollingThreshold.getNumOccurrences() > 0)
469 MaxOps = PartialUnrollingThreshold;
470 else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
471 MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
472 else
473 return;
474
475 // Scan the loop: don't unroll loops with calls.
476 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
477 ++I) {
478 BasicBlock *BB = *I;
479
480 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
481 if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
482 ImmutableCallSite CS(&*J);
483 if (const Function *F = CS.getCalledFunction()) {
484 if (!static_cast<T *>(this)->isLoweredToCall(F))
485 continue;
486 }
487
488 return;
489 }
490 }
491
492 // Enable runtime and partial unrolling up to the specified size.
493 // Enable using trip count upper bound to unroll loops.
494 UP.Partial = UP.Runtime = UP.UpperBound = true;
495 UP.PartialThreshold = MaxOps;
496
497 // Avoid unrolling when optimizing for size.
498 UP.OptSizeThreshold = 0;
499 UP.PartialOptSizeThreshold = 0;
500
501 // Set number of instructions optimized when "back edge"
502 // becomes "fall through" to default value of 2.
503 UP.BEInsns = 2;
504 }
505
506 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
507 AssumptionCache &AC,
508 TargetLibraryInfo *LibInfo,
509 HardwareLoopInfo &HWLoopInfo) {
510 return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
511 }
512
513 bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
514 AssumptionCache &AC, TargetLibraryInfo *TLI,
515 DominatorTree *DT,
516 const LoopAccessInfo *LAI) {
517 return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
518 }
519
520 int getInstructionLatency(const Instruction *I) {
521 if (isa<LoadInst>(I))
522 return getST()->getSchedModel().DefaultLoadLatency;
523
524 return BaseT::getInstructionLatency(I);
525 }
526
527 virtual Optional<unsigned>
528 getCacheSize(TargetTransformInfo::CacheLevel Level) const {
529 return Optional<unsigned>(
530 getST()->getCacheSize(static_cast<unsigned>(Level)));
531 }
532
533 virtual Optional<unsigned>
534 getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
535 Optional<unsigned> TargetResult =
536 getST()->getCacheAssociativity(static_cast<unsigned>(Level));
537
538 if (TargetResult)
539 return TargetResult;
540
541 return BaseT::getCacheAssociativity(Level);
542 }
543
544 virtual unsigned getCacheLineSize() const {
545 return getST()->getCacheLineSize();
546 }
547
548 virtual unsigned getPrefetchDistance() const {
549 return getST()->getPrefetchDistance();
550 }
551
552 virtual unsigned getMinPrefetchStride() const {
553 return getST()->getMinPrefetchStride();
554 }
555
556 virtual unsigned getMaxPrefetchIterationsAhead() const {
557 return getST()->getMaxPrefetchIterationsAhead();
558 }
559
560 /// @}
561
562 /// \name Vector TTI Implementations
563 /// @{
564
565 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
566
567 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
568 /// are set if the result needs to be inserted and/or extracted from vectors.
569 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
570 assert(Ty->isVectorTy() && "Can only scalarize vectors")((Ty->isVectorTy() && "Can only scalarize vectors"
) ? static_cast<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Can only scalarize vectors\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 570, __PRETTY_FUNCTION__))
;
571 unsigned Cost = 0;
572
573 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
574 if (Insert)
575 Cost += static_cast<T *>(this)
576 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
577 if (Extract)
578 Cost += static_cast<T *>(this)
579 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
580 }
581
582 return Cost;
583 }
584
585 /// Estimate the overhead of scalarizing an instructions unique
586 /// non-constant operands. The types of the arguments are ordinarily
587 /// scalar, in which case the costs are multiplied with VF.
588 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
589 unsigned VF) {
590 unsigned Cost = 0;
591 SmallPtrSet<const Value*, 4> UniqueOperands;
592 for (const Value *A : Args) {
593 if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
594 Type *VecTy = nullptr;
595 if (A->getType()->isVectorTy()) {
596 VecTy = A->getType();
597 // If A is a vector operand, VF should be 1 or correspond to A.
598 assert((VF == 1 || VF == VecTy->getVectorNumElements()) &&(((VF == 1 || VF == VecTy->getVectorNumElements()) &&
"Vector argument does not match VF") ? static_cast<void>
(0) : __assert_fail ("(VF == 1 || VF == VecTy->getVectorNumElements()) && \"Vector argument does not match VF\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 599, __PRETTY_FUNCTION__))
599 "Vector argument does not match VF")(((VF == 1 || VF == VecTy->getVectorNumElements()) &&
"Vector argument does not match VF") ? static_cast<void>
(0) : __assert_fail ("(VF == 1 || VF == VecTy->getVectorNumElements()) && \"Vector argument does not match VF\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 599, __PRETTY_FUNCTION__))
;
600 }
601 else
602 VecTy = VectorType::get(A->getType(), VF);
603
604 Cost += getScalarizationOverhead(VecTy, false, true);
605 }
606 }
607
608 return Cost;
609 }
610
611 unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) {
612 assert(VecTy->isVectorTy())((VecTy->isVectorTy()) ? static_cast<void> (0) : __assert_fail
("VecTy->isVectorTy()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 612, __PRETTY_FUNCTION__))
;
613
614 unsigned Cost = 0;
615
616 Cost += getScalarizationOverhead(VecTy, true, false);
617 if (!Args.empty())
618 Cost += getOperandsScalarizationOverhead(Args,
619 VecTy->getVectorNumElements());
620 else
621 // When no information on arguments is provided, we add the cost
622 // associated with one argument as a heuristic.
623 Cost += getScalarizationOverhead(VecTy, false, true);
624
625 return Cost;
626 }
627
628 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
629
630 unsigned getArithmeticInstrCost(
631 unsigned Opcode, Type *Ty,
632 TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
633 TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
634 TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
635 TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
636 ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
637 const Instruction *CxtI = nullptr) {
638 // Check if any of the operands are vector operands.
639 const TargetLoweringBase *TLI = getTLI();
640 int ISD = TLI->InstructionOpcodeToISD(Opcode);
641 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 641, __PRETTY_FUNCTION__))
;
642
643 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
644
645 bool IsFloat = Ty->isFPOrFPVectorTy();
646 // Assume that floating point arithmetic operations cost twice as much as
647 // integer operations.
648 unsigned OpCost = (IsFloat ? 2 : 1);
649
650 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
651 // The operation is legal. Assume it costs 1.
652 // TODO: Once we have extract/insert subvector cost we need to use them.
653 return LT.first * OpCost;
654 }
655
656 if (!TLI->isOperationExpand(ISD, LT.second)) {
657 // If the operation is custom lowered, then assume that the code is twice
658 // as expensive.
659 return LT.first * 2 * OpCost;
660 }
661
662 // Else, assume that we need to scalarize this op.
663 // TODO: If one of the types get legalized by splitting, handle this
664 // similarly to what getCastInstrCost() does.
665 if (Ty->isVectorTy()) {
666 unsigned Num = Ty->getVectorNumElements();
667 unsigned Cost = static_cast<T *>(this)
668 ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
669 // Return the cost of multiple scalar invocation plus the cost of
670 // inserting and extracting the values.
671 return getScalarizationOverhead(Ty, Args) + Num * Cost;
672 }
673
674 // We don't know anything about this scalar instruction.
675 return OpCost;
676 }
677
678 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
679 Type *SubTp) {
680 switch (Kind) {
681 case TTI::SK_Broadcast:
682 return getBroadcastShuffleOverhead(Tp);
683 case TTI::SK_Select:
684 case TTI::SK_Reverse:
685 case TTI::SK_Transpose:
686 case TTI::SK_PermuteSingleSrc:
687 case TTI::SK_PermuteTwoSrc:
688 return getPermuteShuffleOverhead(Tp);
689 case TTI::SK_ExtractSubvector:
690 return getExtractSubvectorOverhead(Tp, Index, SubTp);
691 case TTI::SK_InsertSubvector:
692 return getInsertSubvectorOverhead(Tp, Index, SubTp);
693 }
694 llvm_unreachable("Unknown TTI::ShuffleKind")::llvm::llvm_unreachable_internal("Unknown TTI::ShuffleKind",
"/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 694)
;
695 }
696
697 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
698 const Instruction *I = nullptr) {
699 const TargetLoweringBase *TLI = getTLI();
700 int ISD = TLI->InstructionOpcodeToISD(Opcode);
701 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 701, __PRETTY_FUNCTION__))
;
702 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
703 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
704
705 // Check for NOOP conversions.
706 if (SrcLT.first == DstLT.first &&
707 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
708
709 // Bitcast between types that are legalized to the same type are free.
710 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
711 return 0;
712 }
713
714 if (Opcode == Instruction::Trunc &&
715 TLI->isTruncateFree(SrcLT.second, DstLT.second))
716 return 0;
717
718 if (Opcode == Instruction::ZExt &&
719 TLI->isZExtFree(SrcLT.second, DstLT.second))
720 return 0;
721
722 if (Opcode == Instruction::AddrSpaceCast &&
723 TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
724 Dst->getPointerAddressSpace()))
725 return 0;
726
727 // If this is a zext/sext of a load, return 0 if the corresponding
728 // extending load exists on target.
729 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
730 I && isa<LoadInst>(I->getOperand(0))) {
731 EVT ExtVT = EVT::getEVT(Dst);
732 EVT LoadVT = EVT::getEVT(Src);
733 unsigned LType =
734 ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
735 if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
736 return 0;
737 }
738
739 // If the cast is marked as legal (or promote) then assume low cost.
740 if (SrcLT.first == DstLT.first &&
741 TLI->isOperationLegalOrPromote(ISD, DstLT.second))
742 return 1;
743
744 // Handle scalar conversions.
745 if (!Src->isVectorTy() && !Dst->isVectorTy()) {
746 // Scalar bitcasts are usually free.
747 if (Opcode == Instruction::BitCast)
748 return 0;
749
750 // Just check the op cost. If the operation is legal then assume it costs
751 // 1.
752 if (!TLI->isOperationExpand(ISD, DstLT.second))
753 return 1;
754
755 // Assume that illegal scalar instruction are expensive.
756 return 4;
757 }
758
759 // Check vector-to-vector casts.
760 if (Dst->isVectorTy() && Src->isVectorTy()) {
761 // If the cast is between same-sized registers, then the check is simple.
762 if (SrcLT.first == DstLT.first &&
763 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
764
765 // Assume that Zext is done using AND.
766 if (Opcode == Instruction::ZExt)
767 return 1;
768
769 // Assume that sext is done using SHL and SRA.
770 if (Opcode == Instruction::SExt)
771 return 2;
772
773 // Just check the op cost. If the operation is legal then assume it
774 // costs
775 // 1 and multiply by the type-legalization overhead.
776 if (!TLI->isOperationExpand(ISD, DstLT.second))
777 return SrcLT.first * 1;
778 }
779
780 // If we are legalizing by splitting, query the concrete TTI for the cost
781 // of casting the original vector twice. We also need to factor in the
782 // cost of the split itself. Count that as 1, to be consistent with
783 // TLI->getTypeLegalizationCost().
784 if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
785 TargetLowering::TypeSplitVector ||
786 TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
787 TargetLowering::TypeSplitVector) &&
788 Src->getVectorNumElements() > 1 && Dst->getVectorNumElements() > 1) {
789 Type *SplitDst = VectorType::get(Dst->getVectorElementType(),
790 Dst->getVectorNumElements() / 2);
791 Type *SplitSrc = VectorType::get(Src->getVectorElementType(),
792 Src->getVectorNumElements() / 2);
793 T *TTI = static_cast<T *>(this);
794 return TTI->getVectorSplitCost() +
795 (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I));
796 }
797
798 // In other cases where the source or destination are illegal, assume
799 // the operation will get scalarized.
800 unsigned Num = Dst->getVectorNumElements();
801 unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
802 Opcode, Dst->getScalarType(), Src->getScalarType(), I);
803
804 // Return the cost of multiple scalar invocation plus the cost of
805 // inserting and extracting the values.
806 return getScalarizationOverhead(Dst, true, true) + Num * Cost;
807 }
808
809 // We already handled vector-to-vector and scalar-to-scalar conversions.
810 // This
811 // is where we handle bitcast between vectors and scalars. We need to assume
812 // that the conversion is scalarized in one way or another.
813 if (Opcode == Instruction::BitCast)
814 // Illegal bitcasts are done by storing and loading from a stack slot.
815 return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
816 : 0) +
817 (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
818 : 0);
819
820 llvm_unreachable("Unhandled cast")::llvm::llvm_unreachable_internal("Unhandled cast", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 820)
;
821 }
822
823 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
824 VectorType *VecTy, unsigned Index) {
825 return static_cast<T *>(this)->getVectorInstrCost(
826 Instruction::ExtractElement, VecTy, Index) +
827 static_cast<T *>(this)->getCastInstrCost(Opcode, Dst,
828 VecTy->getElementType());
829 }
830
831 unsigned getCFInstrCost(unsigned Opcode) {
832 // Branches are assumed to be predicted.
833 return 0;
834 }
835
836 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
837 const Instruction *I) {
838 const TargetLoweringBase *TLI = getTLI();
839 int ISD = TLI->InstructionOpcodeToISD(Opcode);
840 assert(ISD && "Invalid opcode")((ISD && "Invalid opcode") ? static_cast<void> (
0) : __assert_fail ("ISD && \"Invalid opcode\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 840, __PRETTY_FUNCTION__))
;
841
842 // Selects on vectors are actually vector selects.
843 if (ISD == ISD::SELECT) {
844 assert(CondTy && "CondTy must exist")((CondTy && "CondTy must exist") ? static_cast<void
> (0) : __assert_fail ("CondTy && \"CondTy must exist\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 844, __PRETTY_FUNCTION__))
;
845 if (CondTy->isVectorTy())
846 ISD = ISD::VSELECT;
847 }
848 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
849
850 if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
851 !TLI->isOperationExpand(ISD, LT.second)) {
852 // The operation is legal. Assume it costs 1. Multiply
853 // by the type-legalization overhead.
854 return LT.first * 1;
855 }
856
857 // Otherwise, assume that the cast is scalarized.
858 // TODO: If one of the types get legalized by splitting, handle this
859 // similarly to what getCastInstrCost() does.
860 if (ValTy->isVectorTy()) {
861 unsigned Num = ValTy->getVectorNumElements();
862 if (CondTy)
863 CondTy = CondTy->getScalarType();
864 unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
865 Opcode, ValTy->getScalarType(), CondTy, I);
866
867 // Return the cost of multiple scalar invocation plus the cost of
868 // inserting and extracting the values.
869 return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
870 }
871
872 // Unknown scalar opcode.
873 return 1;
874 }
875
876 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
877 std::pair<unsigned, MVT> LT =
878 getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
879
880 return LT.first;
881 }
882
883 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
884 unsigned AddressSpace,
885 const Instruction *I = nullptr) {
886 assert(!Src->isVoidTy() && "Invalid type")((!Src->isVoidTy() && "Invalid type") ? static_cast
<void> (0) : __assert_fail ("!Src->isVoidTy() && \"Invalid type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 886, __PRETTY_FUNCTION__))
;
887 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
888
889 // Assuming that all loads of legal types cost 1.
890 unsigned Cost = LT.first;
891
892 if (Src->isVectorTy() &&
893 Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
894 // This is a vector load that legalizes to a larger type than the vector
895 // itself. Unless the corresponding extending load or truncating store is
896 // legal, then this will scalarize.
897 TargetLowering::LegalizeAction LA = TargetLowering::Expand;
898 EVT MemVT = getTLI()->getValueType(DL, Src);
899 if (Opcode == Instruction::Store)
900 LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
901 else
902 LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
903
904 if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
905 // This is a vector load/store for some illegal type that is scalarized.
906 // We must account for the cost of building or decomposing the vector.
907 Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
908 Opcode == Instruction::Store);
909 }
910 }
911
912 return Cost;
913 }
914
915 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
916 unsigned Factor,
917 ArrayRef<unsigned> Indices,
918 unsigned Alignment, unsigned AddressSpace,
919 bool UseMaskForCond = false,
920 bool UseMaskForGaps = false) {
921 VectorType *VT = dyn_cast<VectorType>(VecTy);
922 assert(VT && "Expect a vector type for interleaved memory op")((VT && "Expect a vector type for interleaved memory op"
) ? static_cast<void> (0) : __assert_fail ("VT && \"Expect a vector type for interleaved memory op\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 922, __PRETTY_FUNCTION__))
;
923
924 unsigned NumElts = VT->getNumElements();
925 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor")((Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"
) ? static_cast<void> (0) : __assert_fail ("Factor > 1 && NumElts % Factor == 0 && \"Invalid interleave factor\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 925, __PRETTY_FUNCTION__))
;
926
927 unsigned NumSubElts = NumElts / Factor;
928 VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
929
930 // Firstly, the cost of load/store operation.
931 unsigned Cost;
932 if (UseMaskForCond || UseMaskForGaps)
933 Cost = static_cast<T *>(this)->getMaskedMemoryOpCost(
934 Opcode, VecTy, Alignment, AddressSpace);
935 else
936 Cost = static_cast<T *>(this)->getMemoryOpCost(
937 Opcode, VecTy, MaybeAlign(Alignment), AddressSpace);
938
939 // Legalize the vector type, and get the legalized and unlegalized type
940 // sizes.
941 MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
942 unsigned VecTySize =
943 static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
944 unsigned VecTyLTSize = VecTyLT.getStoreSize();
945
946 // Return the ceiling of dividing A by B.
947 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
948
949 // Scale the cost of the memory operation by the fraction of legalized
950 // instructions that will actually be used. We shouldn't account for the
951 // cost of dead instructions since they will be removed.
952 //
953 // E.g., An interleaved load of factor 8:
954 // %vec = load <16 x i64>, <16 x i64>* %ptr
955 // %v0 = shufflevector %vec, undef, <0, 8>
956 //
957 // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
958 // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
959 // type). The other loads are unused.
960 //
961 // We only scale the cost of loads since interleaved store groups aren't
962 // allowed to have gaps.
963 if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
964 // The number of loads of a legal type it will take to represent a load
965 // of the unlegalized vector type.
966 unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
967
968 // The number of elements of the unlegalized type that correspond to a
969 // single legal instruction.
970 unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
971
972 // Determine which legal instructions will be used.
973 BitVector UsedInsts(NumLegalInsts, false);
974 for (unsigned Index : Indices)
975 for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
976 UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
977
978 // Scale the cost of the load by the fraction of legal instructions that
979 // will be used.
980 Cost *= UsedInsts.count() / NumLegalInsts;
981 }
982
983 // Then plus the cost of interleave operation.
984 if (Opcode == Instruction::Load) {
985 // The interleave cost is similar to extract sub vectors' elements
986 // from the wide vector, and insert them into sub vectors.
987 //
988 // E.g. An interleaved load of factor 2 (with one member of index 0):
989 // %vec = load <8 x i32>, <8 x i32>* %ptr
990 // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
991 // The cost is estimated as extract elements at 0, 2, 4, 6 from the
992 // <8 x i32> vector and insert them into a <4 x i32> vector.
993
994 assert(Indices.size() <= Factor &&((Indices.size() <= Factor && "Interleaved memory op has too many members"
) ? static_cast<void> (0) : __assert_fail ("Indices.size() <= Factor && \"Interleaved memory op has too many members\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 995, __PRETTY_FUNCTION__))
995 "Interleaved memory op has too many members")((Indices.size() <= Factor && "Interleaved memory op has too many members"
) ? static_cast<void> (0) : __assert_fail ("Indices.size() <= Factor && \"Interleaved memory op has too many members\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 995, __PRETTY_FUNCTION__))
;
996
997 for (unsigned Index : Indices) {
998 assert(Index < Factor && "Invalid index for interleaved memory op")((Index < Factor && "Invalid index for interleaved memory op"
) ? static_cast<void> (0) : __assert_fail ("Index < Factor && \"Invalid index for interleaved memory op\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 998, __PRETTY_FUNCTION__))
;
999
1000 // Extract elements from loaded vector for each sub vector.
1001 for (unsigned i = 0; i < NumSubElts; i++)
1002 Cost += static_cast<T *>(this)->getVectorInstrCost(
1003 Instruction::ExtractElement, VT, Index + i * Factor);
1004 }
1005
1006 unsigned InsSubCost = 0;
1007 for (unsigned i = 0; i < NumSubElts; i++)
1008 InsSubCost += static_cast<T *>(this)->getVectorInstrCost(
1009 Instruction::InsertElement, SubVT, i);
1010
1011 Cost += Indices.size() * InsSubCost;
1012 } else {
1013 // The interleave cost is extract all elements from sub vectors, and
1014 // insert them into the wide vector.
1015 //
1016 // E.g. An interleaved store of factor 2:
1017 // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
1018 // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
1019 // The cost is estimated as extract all elements from both <4 x i32>
1020 // vectors and insert into the <8 x i32> vector.
1021
1022 unsigned ExtSubCost = 0;
1023 for (unsigned i = 0; i < NumSubElts; i++)
1024 ExtSubCost += static_cast<T *>(this)->getVectorInstrCost(
1025 Instruction::ExtractElement, SubVT, i);
1026 Cost += ExtSubCost * Factor;
1027
1028 for (unsigned i = 0; i < NumElts; i++)
1029 Cost += static_cast<T *>(this)
1030 ->getVectorInstrCost(Instruction::InsertElement, VT, i);
1031 }
1032
1033 if (!UseMaskForCond)
1034 return Cost;
1035
1036 Type *I8Type = Type::getInt8Ty(VT->getContext());
1037 VectorType *MaskVT = VectorType::get(I8Type, NumElts);
1038 SubVT = VectorType::get(I8Type, NumSubElts);
1039
1040 // The Mask shuffling cost is extract all the elements of the Mask
1041 // and insert each of them Factor times into the wide vector:
1042 //
1043 // E.g. an interleaved group with factor 3:
1044 // %mask = icmp ult <8 x i32> %vec1, %vec2
1045 // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
1046 // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
1047 // The cost is estimated as extract all mask elements from the <8xi1> mask
1048 // vector and insert them factor times into the <24xi1> shuffled mask
1049 // vector.
1050 for (unsigned i = 0; i < NumSubElts; i++)
1051 Cost += static_cast<T *>(this)->getVectorInstrCost(
1052 Instruction::ExtractElement, SubVT, i);
1053
1054 for (unsigned i = 0; i < NumElts; i++)
1055 Cost += static_cast<T *>(this)->getVectorInstrCost(
1056 Instruction::InsertElement, MaskVT, i);
1057
1058 // The Gaps mask is invariant and created outside the loop, therefore the
1059 // cost of creating it is not accounted for here. However if we have both
1060 // a MaskForGaps and some other mask that guards the execution of the
1061 // memory access, we need to account for the cost of And-ing the two masks
1062 // inside the loop.
1063 if (UseMaskForGaps)
1064 Cost += static_cast<T *>(this)->getArithmeticInstrCost(
1065 BinaryOperator::And, MaskVT);
1066
1067 return Cost;
1068 }
1069
1070 /// Get intrinsic cost based on arguments.
1071 unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1072 ArrayRef<Value *> Args, FastMathFlags FMF,
1073 unsigned VF = 1) {
1074 unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
1075 assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type")(((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type"
) ? static_cast<void> (0) : __assert_fail ("(RetVF == 1 || VF == 1) && \"VF > 1 and RetVF is a vector type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1075, __PRETTY_FUNCTION__))
;
1076 auto *ConcreteTTI = static_cast<T *>(this);
1077
1078 switch (IID) {
1079 default: {
1080 // Assume that we need to scalarize this intrinsic.
1081 SmallVector<Type *, 4> Types;
1082 for (Value *Op : Args) {
1083 Type *OpTy = Op->getType();
1084 assert(VF == 1 || !OpTy->isVectorTy())((VF == 1 || !OpTy->isVectorTy()) ? static_cast<void>
(0) : __assert_fail ("VF == 1 || !OpTy->isVectorTy()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1084, __PRETTY_FUNCTION__))
;
1085 Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF));
1086 }
1087
1088 if (VF > 1 && !RetTy->isVoidTy())
1089 RetTy = VectorType::get(RetTy, VF);
1090
1091 // Compute the scalarization overhead based on Args for a vector
1092 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
1093 // CostModel will pass a vector RetTy and VF is 1.
1094 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
1095 if (RetVF > 1 || VF > 1) {
1096 ScalarizationCost = 0;
1097 if (!RetTy->isVoidTy())
1098 ScalarizationCost += getScalarizationOverhead(RetTy, true, false);
1099 ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
1100 }
1101
1102 return ConcreteTTI->getIntrinsicInstrCost(IID, RetTy, Types, FMF,
1103 ScalarizationCost);
1104 }
1105 case Intrinsic::masked_scatter: {
1106 assert(VF == 1 && "Can't vectorize types here.")((VF == 1 && "Can't vectorize types here.") ? static_cast
<void> (0) : __assert_fail ("VF == 1 && \"Can't vectorize types here.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1106, __PRETTY_FUNCTION__))
;
1107 Value *Mask = Args[3];
1108 bool VarMask = !isa<Constant>(Mask);
1109 unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue();
1110 return ConcreteTTI->getGatherScatterOpCost(
1111 Instruction::Store, Args[0]->getType(), Args[1], VarMask, Alignment);
1112 }
1113 case Intrinsic::masked_gather: {
1114 assert(VF == 1 && "Can't vectorize types here.")((VF == 1 && "Can't vectorize types here.") ? static_cast
<void> (0) : __assert_fail ("VF == 1 && \"Can't vectorize types here.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1114, __PRETTY_FUNCTION__))
;
1115 Value *Mask = Args[2];
1116 bool VarMask = !isa<Constant>(Mask);
1117 unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue();
1118 return ConcreteTTI->getGatherScatterOpCost(Instruction::Load, RetTy,
1119 Args[0], VarMask, Alignment);
1120 }
1121 case Intrinsic::experimental_vector_reduce_add:
1122 case Intrinsic::experimental_vector_reduce_mul:
1123 case Intrinsic::experimental_vector_reduce_and:
1124 case Intrinsic::experimental_vector_reduce_or:
1125 case Intrinsic::experimental_vector_reduce_xor:
1126 case Intrinsic::experimental_vector_reduce_v2_fadd:
1127 case Intrinsic::experimental_vector_reduce_v2_fmul:
1128 case Intrinsic::experimental_vector_reduce_smax:
1129 case Intrinsic::experimental_vector_reduce_smin:
1130 case Intrinsic::experimental_vector_reduce_fmax:
1131 case Intrinsic::experimental_vector_reduce_fmin:
1132 case Intrinsic::experimental_vector_reduce_umax:
1133 case Intrinsic::experimental_vector_reduce_umin:
1134 return getIntrinsicInstrCost(IID, RetTy, Args[0]->getType(), FMF);
1135 case Intrinsic::fshl:
1136 case Intrinsic::fshr: {
1137 Value *X = Args[0];
1138 Value *Y = Args[1];
1139 Value *Z = Args[2];
1140 TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW;
1141 TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX);
1142 TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY);
1143 TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ);
1144 TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue;
1145 OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
1146 : TTI::OP_None;
1147 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
1148 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
1149 unsigned Cost = 0;
1150 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Or, RetTy);
1151 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Sub, RetTy);
1152 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Shl, RetTy,
1153 OpKindX, OpKindZ, OpPropsX);
1154 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::LShr, RetTy,
1155 OpKindY, OpKindZ, OpPropsY);
1156 // Non-constant shift amounts requires a modulo.
1157 if (OpKindZ != TTI::OK_UniformConstantValue &&
1158 OpKindZ != TTI::OK_NonUniformConstantValue)
1159 Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
1160 OpKindZ, OpKindBW, OpPropsZ,
1161 OpPropsBW);
1162 // For non-rotates (X != Y) we must add shift-by-zero handling costs.
1163 if (X != Y) {
1164 Type *CondTy = RetTy->getWithNewBitWidth(1);
1165 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy,
1166 CondTy, nullptr);
1167 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1168 CondTy, nullptr);
1169 }
1170 return Cost;
1171 }
1172 }
1173 }
1174
1175 /// Get intrinsic cost based on argument types.
1176 /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
1177 /// cost of scalarizing the arguments and the return value will be computed
1178 /// based on types.
1179 unsigned getIntrinsicInstrCost(
1180 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF,
1181 unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) {
1182 auto *ConcreteTTI = static_cast<T *>(this);
1183
1184 SmallVector<unsigned, 2> ISDs;
1185 unsigned SingleCallCost = 10; // Library call cost. Make it expensive.
1186 switch (IID) {
1187 default: {
1188 // Assume that we need to scalarize this intrinsic.
1189 unsigned ScalarizationCost = ScalarizationCostPassed;
1190 unsigned ScalarCalls = 1;
1191 Type *ScalarRetTy = RetTy;
1192 if (RetTy->isVectorTy()) {
1193 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1194 ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
1195 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
1196 ScalarRetTy = RetTy->getScalarType();
1197 }
1198 SmallVector<Type *, 4> ScalarTys;
1199 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1200 Type *Ty = Tys[i];
1201 if (Ty->isVectorTy()) {
1202 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1203 ScalarizationCost += getScalarizationOverhead(Ty, false, true);
1204 ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
1205 Ty = Ty->getScalarType();
1206 }
1207 ScalarTys.push_back(Ty);
1208 }
1209 if (ScalarCalls == 1)
1210 return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
1211
1212 unsigned ScalarCost =
1213 ConcreteTTI->getIntrinsicInstrCost(IID, ScalarRetTy, ScalarTys, FMF);
1214
1215 return ScalarCalls * ScalarCost + ScalarizationCost;
1216 }
1217 // Look for intrinsics that can be lowered directly or turned into a scalar
1218 // intrinsic call.
1219 case Intrinsic::sqrt:
1220 ISDs.push_back(ISD::FSQRT);
1221 break;
1222 case Intrinsic::sin:
1223 ISDs.push_back(ISD::FSIN);
1224 break;
1225 case Intrinsic::cos:
1226 ISDs.push_back(ISD::FCOS);
1227 break;
1228 case Intrinsic::exp:
1229 ISDs.push_back(ISD::FEXP);
1230 break;
1231 case Intrinsic::exp2:
1232 ISDs.push_back(ISD::FEXP2);
1233 break;
1234 case Intrinsic::log:
1235 ISDs.push_back(ISD::FLOG);
1236 break;
1237 case Intrinsic::log10:
1238 ISDs.push_back(ISD::FLOG10);
1239 break;
1240 case Intrinsic::log2:
1241 ISDs.push_back(ISD::FLOG2);
1242 break;
1243 case Intrinsic::fabs:
1244 ISDs.push_back(ISD::FABS);
1245 break;
1246 case Intrinsic::canonicalize:
1247 ISDs.push_back(ISD::FCANONICALIZE);
1248 break;
1249 case Intrinsic::minnum:
1250 ISDs.push_back(ISD::FMINNUM);
1251 if (FMF.noNaNs())
1252 ISDs.push_back(ISD::FMINIMUM);
1253 break;
1254 case Intrinsic::maxnum:
1255 ISDs.push_back(ISD::FMAXNUM);
1256 if (FMF.noNaNs())
1257 ISDs.push_back(ISD::FMAXIMUM);
1258 break;
1259 case Intrinsic::copysign:
1260 ISDs.push_back(ISD::FCOPYSIGN);
1261 break;
1262 case Intrinsic::floor:
1263 ISDs.push_back(ISD::FFLOOR);
1264 break;
1265 case Intrinsic::ceil:
1266 ISDs.push_back(ISD::FCEIL);
1267 break;
1268 case Intrinsic::trunc:
1269 ISDs.push_back(ISD::FTRUNC);
1270 break;
1271 case Intrinsic::nearbyint:
1272 ISDs.push_back(ISD::FNEARBYINT);
1273 break;
1274 case Intrinsic::rint:
1275 ISDs.push_back(ISD::FRINT);
1276 break;
1277 case Intrinsic::round:
1278 ISDs.push_back(ISD::FROUND);
1279 break;
1280 case Intrinsic::pow:
1281 ISDs.push_back(ISD::FPOW);
1282 break;
1283 case Intrinsic::fma:
1284 ISDs.push_back(ISD::FMA);
1285 break;
1286 case Intrinsic::fmuladd:
1287 ISDs.push_back(ISD::FMA);
1288 break;
1289 // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
1290 case Intrinsic::lifetime_start:
1291 case Intrinsic::lifetime_end:
1292 case Intrinsic::sideeffect:
1293 return 0;
1294 case Intrinsic::masked_store:
1295 return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0,
1296 0);
1297 case Intrinsic::masked_load:
1298 return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
1299 case Intrinsic::experimental_vector_reduce_add:
1300 return ConcreteTTI->getArithmeticReductionCost(Instruction::Add, Tys[0],
1301 /*IsPairwiseForm=*/false);
1302 case Intrinsic::experimental_vector_reduce_mul:
1303 return ConcreteTTI->getArithmeticReductionCost(Instruction::Mul, Tys[0],
1304 /*IsPairwiseForm=*/false);
1305 case Intrinsic::experimental_vector_reduce_and:
1306 return ConcreteTTI->getArithmeticReductionCost(Instruction::And, Tys[0],
1307 /*IsPairwiseForm=*/false);
1308 case Intrinsic::experimental_vector_reduce_or:
1309 return ConcreteTTI->getArithmeticReductionCost(Instruction::Or, Tys[0],
1310 /*IsPairwiseForm=*/false);
1311 case Intrinsic::experimental_vector_reduce_xor:
1312 return ConcreteTTI->getArithmeticReductionCost(Instruction::Xor, Tys[0],
1313 /*IsPairwiseForm=*/false);
1314 case Intrinsic::experimental_vector_reduce_v2_fadd:
1315 return ConcreteTTI->getArithmeticReductionCost(
1316 Instruction::FAdd, Tys[0],
1317 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1318 // reductions.
1319 case Intrinsic::experimental_vector_reduce_v2_fmul:
1320 return ConcreteTTI->getArithmeticReductionCost(
1321 Instruction::FMul, Tys[0],
1322 /*IsPairwiseForm=*/false); // FIXME: Add new flag for cost of strict
1323 // reductions.
1324 case Intrinsic::experimental_vector_reduce_smax:
1325 case Intrinsic::experimental_vector_reduce_smin:
1326 case Intrinsic::experimental_vector_reduce_fmax:
1327 case Intrinsic::experimental_vector_reduce_fmin:
1328 return ConcreteTTI->getMinMaxReductionCost(
1329 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1330 /*IsUnsigned=*/true);
1331 case Intrinsic::experimental_vector_reduce_umax:
1332 case Intrinsic::experimental_vector_reduce_umin:
1333 return ConcreteTTI->getMinMaxReductionCost(
1334 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1335 /*IsUnsigned=*/false);
1336 case Intrinsic::sadd_sat:
1337 case Intrinsic::ssub_sat: {
1338 Type *CondTy = RetTy->getWithNewBitWidth(1);
1339
1340 Type *OpTy = StructType::create({RetTy, CondTy});
1341 Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
1342 ? Intrinsic::sadd_with_overflow
1343 : Intrinsic::ssub_with_overflow;
1344
1345 // SatMax -> Overflow && SumDiff < 0
1346 // SatMin -> Overflow && SumDiff >= 0
1347 unsigned Cost = 0;
1348 Cost += ConcreteTTI->getIntrinsicInstrCost(
1349 OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed);
1350 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy,
1351 CondTy, nullptr);
1352 Cost += 2 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1353 CondTy, nullptr);
1354 return Cost;
1355 }
1356 case Intrinsic::uadd_sat:
1357 case Intrinsic::usub_sat: {
1358 Type *CondTy = RetTy->getWithNewBitWidth(1);
1359
1360 Type *OpTy = StructType::create({RetTy, CondTy});
1361 Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
1362 ? Intrinsic::uadd_with_overflow
1363 : Intrinsic::usub_with_overflow;
1364
1365 unsigned Cost = 0;
1366 Cost += ConcreteTTI->getIntrinsicInstrCost(
1367 OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed);
1368 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy,
1369 CondTy, nullptr);
1370 return Cost;
1371 }
1372 case Intrinsic::smul_fix:
1373 case Intrinsic::umul_fix: {
1374 unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
1375 Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
1376
1377 unsigned ExtOp =
1378 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1379
1380 unsigned Cost = 0;
1381 Cost += 2 * ConcreteTTI->getCastInstrCost(ExtOp, ExtTy, RetTy);
1382 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Mul, ExtTy);
1383 Cost +=
1384 2 * ConcreteTTI->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy);
1385 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::LShr, RetTy,
1386 TTI::OK_AnyValue,
1387 TTI::OK_UniformConstantValue);
1388 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Shl, RetTy,
1389 TTI::OK_AnyValue,
1390 TTI::OK_UniformConstantValue);
1391 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Or, RetTy);
1392 return Cost;
1393 }
1394 case Intrinsic::sadd_with_overflow:
1395 case Intrinsic::ssub_with_overflow: {
1396 Type *SumTy = RetTy->getContainedType(0);
1397 Type *OverflowTy = RetTy->getContainedType(1);
1398 unsigned Opcode = IID == Intrinsic::sadd_with_overflow
1399 ? BinaryOperator::Add
1400 : BinaryOperator::Sub;
1401
1402 // LHSSign -> LHS >= 0
1403 // RHSSign -> RHS >= 0
1404 // SumSign -> Sum >= 0
1405 //
1406 // Add:
1407 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1408 // Sub:
1409 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
1410 unsigned Cost = 0;
1411 Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy);
1412 Cost += 3 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
1413 OverflowTy, nullptr);
1414 Cost += 2 * ConcreteTTI->getCmpSelInstrCost(
1415 BinaryOperator::ICmp, OverflowTy, OverflowTy, nullptr);
1416 Cost +=
1417 ConcreteTTI->getArithmeticInstrCost(BinaryOperator::And, OverflowTy);
1418 return Cost;
1419 }
1420 case Intrinsic::uadd_with_overflow:
1421 case Intrinsic::usub_with_overflow: {
1422 Type *SumTy = RetTy->getContainedType(0);
1423 Type *OverflowTy = RetTy->getContainedType(1);
1424 unsigned Opcode = IID == Intrinsic::uadd_with_overflow
1425 ? BinaryOperator::Add
1426 : BinaryOperator::Sub;
1427
1428 unsigned Cost = 0;
1429 Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy);
1430 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy,
1431 OverflowTy, nullptr);
1432 return Cost;
1433 }
1434 case Intrinsic::smul_with_overflow:
1435 case Intrinsic::umul_with_overflow: {
1436 Type *MulTy = RetTy->getContainedType(0);
1437 Type *OverflowTy = RetTy->getContainedType(1);
1438 unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
1439 Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
1440
1441 unsigned ExtOp =
1442 IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
1443
1444 unsigned Cost = 0;
1445 Cost += 2 * ConcreteTTI->getCastInstrCost(ExtOp, ExtTy, MulTy);
1446 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::Mul, ExtTy);
1447 Cost +=
1448 2 * ConcreteTTI->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy);
1449 Cost += ConcreteTTI->getArithmeticInstrCost(Instruction::LShr, MulTy,
1450 TTI::OK_AnyValue,
1451 TTI::OK_UniformConstantValue);
1452
1453 if (IID == Intrinsic::smul_with_overflow)
1454 Cost += ConcreteTTI->getArithmeticInstrCost(
1455 Instruction::AShr, MulTy, TTI::OK_AnyValue,
1456 TTI::OK_UniformConstantValue);
1457
1458 Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, MulTy,
1459 OverflowTy, nullptr);
1460 return Cost;
1461 }
1462 case Intrinsic::ctpop:
1463 ISDs.push_back(ISD::CTPOP);
1464 // In case of legalization use TCC_Expensive. This is cheaper than a
1465 // library call but still not a cheap instruction.
1466 SingleCallCost = TargetTransformInfo::TCC_Expensive;
1467 break;
1468 // FIXME: ctlz, cttz, ...
1469 }
1470
1471 const TargetLoweringBase *TLI = getTLI();
1472 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1473
1474 SmallVector<unsigned, 2> LegalCost;
1475 SmallVector<unsigned, 2> CustomCost;
1476 for (unsigned ISD : ISDs) {
1477 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
1478 if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
1479 TLI->isFAbsFree(LT.second)) {
1480 return 0;
1481 }
1482
1483 // The operation is legal. Assume it costs 1.
1484 // If the type is split to multiple registers, assume that there is some
1485 // overhead to this.
1486 // TODO: Once we have extract/insert subvector cost we need to use them.
1487 if (LT.first > 1)
1488 LegalCost.push_back(LT.first * 2);
1489 else
1490 LegalCost.push_back(LT.first * 1);
1491 } else if (!TLI->isOperationExpand(ISD, LT.second)) {
1492 // If the operation is custom lowered then assume
1493 // that the code is twice as expensive.
1494 CustomCost.push_back(LT.first * 2);
1495 }
1496 }
1497
1498 auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
1499 if (MinLegalCostI != LegalCost.end())
1500 return *MinLegalCostI;
1501
1502 auto MinCustomCostI =
1503 std::min_element(CustomCost.begin(), CustomCost.end());
1504 if (MinCustomCostI != CustomCost.end())
1505 return *MinCustomCostI;
1506
1507 // If we can't lower fmuladd into an FMA estimate the cost as a floating
1508 // point mul followed by an add.
1509 if (IID == Intrinsic::fmuladd)
1510 return ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
1511 ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
1512
1513 // Else, assume that we need to scalarize this intrinsic. For math builtins
1514 // this will emit a costly libcall, adding call overhead and spills. Make it
1515 // very expensive.
1516 if (RetTy->isVectorTy()) {
1517 unsigned ScalarizationCost =
1518 ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max())
1519 ? ScalarizationCostPassed
1520 : getScalarizationOverhead(RetTy, true, false));
1521 unsigned ScalarCalls = RetTy->getVectorNumElements();
1522 SmallVector<Type *, 4> ScalarTys;
1523 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1524 Type *Ty = Tys[i];
1525 if (Ty->isVectorTy())
1526 Ty = Ty->getScalarType();
1527 ScalarTys.push_back(Ty);
1528 }
1529 unsigned ScalarCost = ConcreteTTI->getIntrinsicInstrCost(
1530 IID, RetTy->getScalarType(), ScalarTys, FMF);
1531 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1532 if (Tys[i]->isVectorTy()) {
1533 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1534 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
1535 ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
1536 }
1537 }
1538
1539 return ScalarCalls * ScalarCost + ScalarizationCost;
1540 }
1541
1542 // This is going to be turned into a library call, make it expensive.
1543 return SingleCallCost;
1544 }
1545
1546 /// Compute a cost of the given call instruction.
1547 ///
1548 /// Compute the cost of calling function F with return type RetTy and
1549 /// argument types Tys. F might be nullptr, in this case the cost of an
1550 /// arbitrary call with the specified signature will be returned.
1551 /// This is used, for instance, when we estimate call of a vector
1552 /// counterpart of the given function.
1553 /// \param F Called function, might be nullptr.
1554 /// \param RetTy Return value types.
1555 /// \param Tys Argument types.
1556 /// \returns The cost of Call instruction.
1557 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
1558 return 10;
1559 }
1560
1561 unsigned getNumberOfParts(Type *Tp) {
1562 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
1563 return LT.first;
1564 }
1565
1566 unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
1567 const SCEV *) {
1568 return 0;
1569 }
1570
1571 /// Try to calculate arithmetic and shuffle op costs for reduction operations.
1572 /// We're assuming that reduction operation are performing the following way:
1573 /// 1. Non-pairwise reduction
1574 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1575 /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
1576 /// \----------------v-------------/ \----------v------------/
1577 /// n/2 elements n/2 elements
1578 /// %red1 = op <n x t> %val, <n x t> val1
1579 /// After this operation we have a vector %red1 where only the first n/2
1580 /// elements are meaningful, the second n/2 elements are undefined and can be
1581 /// dropped. All other operations are actually working with the vector of
1582 /// length n/2, not n, though the real vector length is still n.
1583 /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
1584 /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
1585 /// \----------------v-------------/ \----------v------------/
1586 /// n/4 elements 3*n/4 elements
1587 /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
1588 /// length n/2, the resulting vector has length n/4 etc.
1589 /// 2. Pairwise reduction:
1590 /// Everything is the same except for an additional shuffle operation which
1591 /// is used to produce operands for pairwise kind of reductions.
1592 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1593 /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
1594 /// \-------------v----------/ \----------v------------/
1595 /// n/2 elements n/2 elements
1596 /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
1597 /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
1598 /// \-------------v----------/ \----------v------------/
1599 /// n/2 elements n/2 elements
1600 /// %red1 = op <n x t> %val1, <n x t> val2
1601 /// Again, the operation is performed on <n x t> vector, but the resulting
1602 /// vector %red1 is <n/2 x t> vector.
1603 ///
1604 /// The cost model should take into account that the actual length of the
1605 /// vector is reduced on each iteration.
1606 unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1607 bool IsPairwise) {
1608 assert(Ty->isVectorTy() && "Expect a vector type")((Ty->isVectorTy() && "Expect a vector type") ? static_cast
<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Expect a vector type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1608, __PRETTY_FUNCTION__))
;
1609 Type *ScalarTy = Ty->getVectorElementType();
1610 unsigned NumVecElts = Ty->getVectorNumElements();
1611 unsigned NumReduxLevels = Log2_32(NumVecElts);
1612 unsigned ArithCost = 0;
1613 unsigned ShuffleCost = 0;
1614 auto *ConcreteTTI = static_cast<T *>(this);
1615 std::pair<unsigned, MVT> LT =
1616 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1617 unsigned LongVectorCount = 0;
1618 unsigned MVTLen =
1619 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1620 while (NumVecElts > MVTLen) {
1621 NumVecElts /= 2;
1622 Type *SubTy = VectorType::get(ScalarTy, NumVecElts);
1623 // Assume the pairwise shuffles add a cost.
1624 ShuffleCost += (IsPairwise + 1) *
1625 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1626 NumVecElts, SubTy);
1627 ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, SubTy);
1628 Ty = SubTy;
1629 ++LongVectorCount;
1630 }
1631
1632 NumReduxLevels -= LongVectorCount;
1633
1634 // The minimal length of the vector is limited by the real length of vector
1635 // operations performed on the current platform. That's why several final
1636 // reduction operations are performed on the vectors with the same
1637 // architecture-dependent length.
1638
1639 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1640 // reductions need two shuffles on every level, but the last one. On that
1641 // level one of the shuffles is <0, u, u, ...> which is identity.
1642 unsigned NumShuffles = NumReduxLevels;
1643 if (IsPairwise && NumReduxLevels >= 1)
1644 NumShuffles += NumReduxLevels - 1;
1645 ShuffleCost += NumShuffles *
1646 ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
1647 0, Ty);
1648 ArithCost += NumReduxLevels *
1649 ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
1650 return ShuffleCost + ArithCost +
1651 ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
1652 }
1653
1654 /// Try to calculate op costs for min/max reduction operations.
1655 /// \param CondTy Conditional type for the Select instruction.
1656 unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise,
1657 bool) {
1658 assert(Ty->isVectorTy() && "Expect a vector type")((Ty->isVectorTy() && "Expect a vector type") ? static_cast
<void> (0) : __assert_fail ("Ty->isVectorTy() && \"Expect a vector type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1658, __PRETTY_FUNCTION__))
;
1659 Type *ScalarTy = Ty->getVectorElementType();
1660 Type *ScalarCondTy = CondTy->getVectorElementType();
1661 unsigned NumVecElts = Ty->getVectorNumElements();
1662 unsigned NumReduxLevels = Log2_32(NumVecElts);
1663 unsigned CmpOpcode;
1664 if (Ty->isFPOrFPVectorTy()) {
1665 CmpOpcode = Instruction::FCmp;
1666 } else {
1667 assert(Ty->isIntOrIntVectorTy() &&((Ty->isIntOrIntVectorTy() && "expecting floating point or integer type for min/max reduction"
) ? static_cast<void> (0) : __assert_fail ("Ty->isIntOrIntVectorTy() && \"expecting floating point or integer type for min/max reduction\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1668, __PRETTY_FUNCTION__))
1668 "expecting floating point or integer type for min/max reduction")((Ty->isIntOrIntVectorTy() && "expecting floating point or integer type for min/max reduction"
) ? static_cast<void> (0) : __assert_fail ("Ty->isIntOrIntVectorTy() && \"expecting floating point or integer type for min/max reduction\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/CodeGen/BasicTTIImpl.h"
, 1668, __PRETTY_FUNCTION__))
;
1669 CmpOpcode = Instruction::ICmp;
1670 }
1671 unsigned MinMaxCost = 0;
1672 unsigned ShuffleCost = 0;
1673 auto *ConcreteTTI = static_cast<T *>(this);
1674 std::pair<unsigned, MVT> LT =
1675 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1676 unsigned LongVectorCount = 0;
1677 unsigned MVTLen =
1678 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1679 while (NumVecElts > MVTLen) {
1680 NumVecElts /= 2;
1681 Type *SubTy = VectorType::get(ScalarTy, NumVecElts);
1682 CondTy = VectorType::get(ScalarCondTy, NumVecElts);
1683
1684 // Assume the pairwise shuffles add a cost.
1685 ShuffleCost += (IsPairwise + 1) *
1686 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1687 NumVecElts, SubTy);
1688 MinMaxCost +=
1689 ConcreteTTI->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy, nullptr) +
1690 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
1691 nullptr);
1692 Ty = SubTy;
1693 ++LongVectorCount;
1694 }
1695
1696 NumReduxLevels -= LongVectorCount;
1697
1698 // The minimal length of the vector is limited by the real length of vector
1699 // operations performed on the current platform. That's why several final
1700 // reduction opertions are perfomed on the vectors with the same
1701 // architecture-dependent length.
1702
1703 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1704 // reductions need two shuffles on every level, but the last one. On that
1705 // level one of the shuffles is <0, u, u, ...> which is identity.
1706 unsigned NumShuffles = NumReduxLevels;
1707 if (IsPairwise && NumReduxLevels >= 1)
1708 NumShuffles += NumReduxLevels - 1;
1709 ShuffleCost += NumShuffles *
1710 ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty,
1711 0, Ty);
1712 MinMaxCost +=
1713 NumReduxLevels *
1714 (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
1715 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
1716 nullptr));
1717 // The last min/max should be in vector registers and we counted it above.
1718 // So just need a single extractelement.
1719 return ShuffleCost + MinMaxCost +
1720 ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
1721 }
1722
1723 unsigned getVectorSplitCost() { return 1; }
1724
1725 /// @}
1726};
1727
1728/// Concrete BasicTTIImpl that can be used if no further customization
1729/// is needed.
1730class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
1731 using BaseT = BasicTTIImplBase<BasicTTIImpl>;
1732
1733 friend class BasicTTIImplBase<BasicTTIImpl>;
1734
1735 const TargetSubtargetInfo *ST;
1736 const TargetLoweringBase *TLI;
1737
1738 const TargetSubtargetInfo *getST() const { return ST; }
1739 const TargetLoweringBase *getTLI() const { return TLI; }
1740
1741public:
1742 explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
1743};
1744
1745} // end namespace llvm
1746
1747#endif // LLVM_CODEGEN_BASICTTIIMPL_H